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Abstrat

We investigate very weak solutions the stationary Stokes- and Stokes resol-

vent problem in funtion spaes with Mukenhoupt weights. The notion used

here is similar but even more general than the one used in [1℄ or [12℄. Conse-

quently the lass of solutions is enlarged. To desribe boundary onditions

we restrit ourselves to more regular data. We introdue a Banah spae

admitting a restrition operator and ontaining the solutions aording to

suh data.

As a preparation we prove a weighted analogue to Bogowski's Theorem and

extension theorems for funtions de�ned on the boundary.
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1 Introdution

We onsider the generalized Stokes resolvent problem on a bounded C

1;1

-domain 
 �

R

n

, n � 2

�u��u+rp = F; in 
 (1.1)

div u = K; in 
 (1.2)

uj

�


= g (1.3)

for � 2 �

"

[ f0g where

�

"

:= f� 2 C n f0g j j arg�j <

�

2

+ "g; 0 < " <

�

2

:

Multipliation of (1.1) with a test funtion � with div � = 0 and �j

�


= 0 and of (1.2)

with a test funtion  and formal integration by parts yields

�hu;��i = hF; �i � hg;N � r�i and � hu;r i = hK; i � hg;N i; (1.4)

where N stands for the unit outer normal vetor. These or similar equations have been

used by in [1℄, [3℄ [4℄, [12℄ for the de�nition of very weak solutions.

One obtains a further generalization of this de�nition if one onsiders eah right hand

side of (1.4) as one funtional

f = [� 7! hF; �i � hg;N � r�i℄ and k = [ 7! hK; i � hg;N i℄:
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Taking suh f and k in appropriate spaes of funtionals enlarges the lass of solutions to

the whole spae L

q

w

(
). However, the data is in general no longer given by distributions

on 
 and �
.

We onsider the above resolvent problem in funtion spaes with general Mukenhoupt

weights w. This is a large lass of loally integrable weight-funtions de�ned in (2.1).

Their good properties onerning harmoni analysis [13℄, [17℄ where the base to treat

the solvability of the Stokes and Navier Stokes equations [5℄, [8℄, [7℄, [9℄.

We onsider the following spaes of funtions and funtionals:

Y := Y

q

0

;w

0

:= Y

q

0

;w

0

(
) := fu 2 W

2;q

0

w

0

(
) j uj

�


= 0g and W

�1;q

w;0

(
) := (W

1;q

0

w

0

(
))

0

:

Then our main result on the very weak solutions to the Stokes equations is the following.

Theorem 1.1. Let f 2 Y

0

q

0

;w

0

, k 2 W

�1;q

w;0

(
) with hk; 1i = 0 and let � 2 �

"

[ f0g with

0 < " <

�

2

. Then there exists a unique very weak solution u 2 L

q

w

(
) to the Stokes

resolvent problem in the sense of De�nition 5.2.2. It ful�lls the a priori estimate

�kuk

Y

0

q

0

;w

0

;�

+ kuk

q;w

� (kfk

Y

0

q

0

;w

0

+ kkk

W

�1;q

w;0

(
)

) (1.5)

with  = (
; q; w; ") depending A

q

onsistently on w.

The outline of the paper is as follows.

Beause needed in several steps of the theory in Setion 3 we prove a weighted analogue

to Bogowski's Theorem.

In Setion 4 we establish an extension theorem for funtions on the boundary. This

theorem uses weaker assumptions to the regularity of the boundary than the well-known

unweighted version in [14℄.

Setion 5 is devoted to very weak solutions. We introdue the notion of the very weak

solutions and give the proof of Theorem 1.1 in 5.1. Moreover, in 5.2 we prove regularity of

the solution in the ase of more regular data. In partiular we obtain strong solutions to

the Stokes resolvent problem with inhomogeneous boundary onditions and divergene.

In Setion 5.3 we return to data more regular data given by distributions on 
 and �
.

In this ontext we return to a situation similar to the one onsidered in [3℄, [12℄. We show

how the theory presented there is ontained in the one presented in Setion 5.1. To treat

the boundary onditions we �nd a Banah spae

~

W

q;r

w; ~w

ontaining all very weak solutions

with respet to appropriate data and a restrition operator tr :

~

W

q;r

w; ~w

! T

0;q

w

(
) to the

boundary whih oinides with the usual trae on smooth funtions.

2 Preliminaries

Let A

q

, 1 < q < 1 be the set of Mukenhoupt weights whih is given by all 0 � w 2

L

1

lo

(R

n

) for whih

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1 (2.1)
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The supremum is taken over all ubes in R

n

and jQj stands for the Lebesgue measure

of Q. A onstant C = C(w) is alled A

q

-onsistent if for every 

0

> 0 it an be hosen

uniformly for all w with A

q

(w) < 

0

.

The the A

q

onsistene is of great importane when shoving the maximal regularity

of an operator. (See [9℄ or [6℄ for details)

For w 2 A

q

and an open set 
 we de�ne

L

q

w

(
) := ff 2 L

1

lo

(
) j kfk

q;w

:=

�

Z




jf j

q

w dx

�

1

q

<1g:

It is easily seen that (L

q

w

(
))

0

= L

q

0

w

0

(
) with

1

q

+

1

q

0

= 1 and w

0

= w

�

1

q�1

. By [17℄ and

[13℄, if w 2 A

q

then the maximal operator

M : L

q

w

(R

n

)! L

q

w

(R

n

); (Mf)(x) = sup

r>0

1

jB

r

j

Z

jyj�r

jf(x� y)jdy

is ontinuous.

Moreover, we introdue the weighted Sobolev spaes

W

k;q

w

(
) =

n

u 2 L

q

w

(
); j kuk

k;q;w

:=

X

j�j�k

kD

�

uk

q;w

<1

o

and W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

as well as its dual spae W

�k;q

w

(
) := (W

k;q

w;0

(
))

0

.

Sine for k � 1 one has W

k;q

w

(
) � W

k;1

lo

(
) the restrition u 7! uj

�


is well-de�ned.

Thus we may de�ne T

k;q

w

(�
) := (W

k;q

w

(
))j

�


equipped with the norm k � k

T

k;q

w

of the

fator spae

kgk

T

k;q

w

(�
)

:= inffu 2 W

k;q

w

(
) j uj

�


= gg:

Moreover, we set T

0;q

w

(�
) = (T

1;q

w

(�
))

0

. Then L

q

w

(
), W

k;q

w

(
), W

k;q

w;0

(
) and T

k;q

w

(�
)

are reexive Banah spaes in whih C

1

(
) (C

1

(
)j

�


, respetively) is dense.

We also use the divergene-free version of the spaes

W

k;q

w;0;�

(
) := fu 2 W

k;q

w;0

(
) j div u = 0g

and C

1

0;�

(
), the spae of smooth and divergene-free funtions with ompat support

in 
.

By [8℄ the following weighted analogue of the Poinar�e inequality holds

kuk

q;w

� kruk

q;w

for every u with

Z




u = 0 (2.2)

3 The Problem div u = k

Throughout this setion let 1 < q <1 and w 2 A

q

.

Theorem 3.1. Let 
 � R

n

, n � 2, be a bounded and loally lipshitzian domain.

Assume f 2 W

k;q

0;w

(
) suh that

R

f = 0. Then there exists a funtion u 2 W

k+1;q

w;0

(
)

suh that

div u = f and kuk

k+1;q;w

� kfk

k;q;w

;
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where  = (
; q; w; k). Moreover u an be hosen suh that it depends linearly on f and

suh that u 2 C

1

0

(
) if f 2 C

1

0

(
).

The proof follows the same lines as the unweighted ase [11, hapter III.3℄. It uses non-

translation-invariant singular integral operators. Thus we apply the following theorem

proved in [17, V.6.13℄ whih ensures the ontinuity of a ertain lass of suh operators.

Theorem 3.2. Let T be a bounded operator from L

2

(R

n

) into itself that is assoiated

to a kernel K in the sense that

(Tf)(x) =

Z

R

n

K(x; y)f(y)dy

for all ompatly supported f 2 L

2

(R

n

) and all x outside the support of f . Suppose that

for some  > 0 and some A > 0, K satis�es the inequalities

jK(x; y)j � Ajx� yj

�n

(3.1)

and

jK(x; y)�K(x

0

; y)j � A

jx� x

0

j



jx� yj

n+

; if jx� x

0

j �

1

2

jx� yj (3.2)

as well as the symmetri version of the seond inequality in whih the roles of x and y

are interhanged. Writing

(T

"

f)(x) =

Z

jx�yj>"

K(x; y)f(y)dy and (T

�

f)(x) = sup

">0

j(T

"

f)(x)j;

we have that

Z

[(T

�

f)(x)℄

q

w(x)dx � 

Z

[(Mf)(x)℄

q

w(x)dx; (3.3)

where f is bounded and has ompat support, w 2 A

q

, and 1 < q <1.

Sine the maximal operatorM : L

q

w

(R

n

)! L

q

w

(R

n

) is ontinuous, the inequality (3.3)

guaranties the ontinuity of T

�

.

However, to make use of the above theorem we have to modify the singular integral

operator whih appears in the proof of Lemma 3.3 outside the bounded set 
 suh that

it possesses the properties assumed in 3.2.

In the proof of the following Lemma the ourring integral operators have to be

understood in the Cauhy priniple value sense lim

"!0

T

"

f .

Lemma 3.3. Let 
 � R

n

, n � 2, be bounded and star-shaped with respet to every point

of some ball B with B � 
.

Then for every f 2 W

k;q

w;0

(
) with

R

f = 0 there exists a v 2 W

k+1;q

w;0

(
) with

div v = f and kvk

k+1;q;w

� kfk

k;q;w

;

 = (
; q; w; k), v depending linearly on f and f 2 C

1

0

(
) implies v 2 C

1

0

(
).
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Proof. Without loss of generality we may assume, using a oordinate transformation,

that B = B

1

(0).

First we assume that f 2 C

1

0

(
).

We hoose a 2 C

1

0

(B

1

(0)) suh that

R

a = 1 and de�ne

v(x) :=

Z




f(y)(x� y)

�

Z

1

1

a (y + �(x� y)) �

n�1

d�

�

dy: (3.4)

In the proof of [11, Lemma III.3.1℄ it is shown that v 2 C

1

0

(
) and div v = f .

It thus remains to prove the weighted estimates. Therefore we use the following

representation of �

j

v also shown in the proof of [11, Lemma III.3.1℄:

�

j

v

i

(x) =

Z




K

i;j

(x; x� y)f(y)dy + f(x)

Z




(x

j

� y

j

)(x

i

� y

i

)

jx� yj

2

a(y)dy =: F

1

(x) + F

2

(x);

(3.5)

where

K

i;j

(x; x� y) =

Æ

i;j

jx� yj

n

Z

1

0

a

�

x + r

x� y

jx� yj

�

(jx� yj+ r)

n�1

dr

+

x

i

� y

i

jx� yj

n+1

Z

1

0

�

j

a

�

x + r

x� y

jx� yj

�

(jx� yj+ r)

n

dr;

(3.6)

for every x; y 2 R

n

. To show the ontinuity of the integral operator f 7! F

1

its kernel

must be modi�ed. Set

E := fz 2 
 j z = �z

1

+ (1� �)z

2

; z

1

2 supp f; z

2

2 B

1

(0); � 2 [0; 1℄g:

Sine 
 is star-shaped, E is a ompat subset of 
. For x 62 E and y 2 supp f we have

x+ r

x� y

jx� yj

62 B for all r > 0:

Thus, if we hoose a ut-o� funtion  2 C

1

0

(R

n

) with  (x) = 1 on 
 and supp �

B

R

(0) for some R > 0, and set '(x; y) =  (x) (y) we obtain

f(y)K

i;j

(x; x� y) = f(y)'(x; y)K

i;j

(x; x� y) =: f(y)

~

K

i;j

(x; x� y);

for x; y 2 R

n

, if f is assumed to be extended by 0 to R

n

. Moreover, for x 2 B

R

(0) we

have r > R + 1 ) a

�

x� r

x�y

jx�yj

�

= 0. Thus for x 2 
 one has

Z




f(y)K

i;j

(x; x� y)dy =

Z




f(y)

~

K

i;j

(x; x� y)dy

=

Z




f(y)'(x; y)

�

Æ

i;j

jx� yj

n

Z

R+1

0

a

�

x + r

x� y

jx� yj

�

(jx� yj+ r)

n�1

dr

+

x

i

� y

i

jx� yj

n+1

Z

R+1

0

�

j

a

�

x + r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

dy;
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Now we have to prove that

~

K

i;j

satis�es the assumptions of Theorem 3.2. By the proof

of [11, Lemma III.3.1℄ and the Calderon-Zygmund Theorem [11, Theorem II.9.4℄ we �nd

that

f 7!

Z




K

i;j

(x; x� y)f(y)dy : L

2

(R

n

)! L

2

(R

n

)

is ontinuous. Sine the multipliation M

 

with the C

1

0

-funtion  is a ontinuous

operator on L

2

(R

n

) we obtain the ontinuity of

f 7!

Z




~

K

i;j

(x; x� y)f(y)dy =M

 

Z




K

i;j

(x; x� y)M

 

f(y)dy : L

2

(R

n

)! L

2

(R

n

):

It remains to prove the estimates (3.1) and (3.2). For (3.1) we may assume jxj; jyj < R.

One has

jx� yj

n

j

~

K

i;j

(x; x� y)j =

�

�

�

�

'(x; y)Æ

i;j

Z

R+1

0

a

�

x + r

x� y

jx� yj

�

(jx� yj+ r)

n�1

dr

+ '(x; y)

x

i

� y

i

jx� yj

Z

R+1

0

�

j

a

�

x + r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

�

�

�

� 

�

Z

R+1

0

(2R + r)

n�1

dr +

Z

R+1

0

(2R + r)

n

dr

�

= :

To prove (3.2) we take x; x

0

; y 2 R

n

with jx � x

0

j �

1

2

jx � yj. If (x; y); (x

0

; y) 62 supp'

nothing is to prove. Thus, without loss of generality we may assume that y � R

and x � 3R. Then using the triangle inequality together with the fat that a, ' and

(jx � yj + r)

n

are Lipshitz ontinuous on ompat sets a straight forward alulation

shows (3.2).

Combining the above and using Theorem 3.2 we obtain

kF

1

k

q;w

� kT

�

fk

q;w

� kMfk

q;w

� kfk

q;w

where T

�

is the operator given by Theorem 3.2 and assoiated to the kernel

~

K

i;j

. F

2

is easily estimated, sine

R




(x

j

�y

j

)(x

i

�y

i

)

jx�yj

2

a(y)dy is bounded. Thus using the Poinar�e

inequality (2.2) we obtain kvk

1;q;w

� kfk

q;w

. Now the general ase with f 2 L

q

w

(
)

follows easily, sine we an approximate f by C

1

0

-funtions (f

n

) with

R

f

n

= 0.

It remains to prove the estimate in the spaes W

k;q

w

(
). By [11, Remark III.3.2℄ we

have

�

�

v(x) =

X

���

�

�

n

�

n

�

Z




N

�

(x; y)�

���

f(x; y)dy;

where

N

�

(x; y) =

Z

1

1

�

�

a(y + r(x� y))r

n�1

dr:

Clearly �

�

a 2 C

1

0

(B

1

(0)). Hene the same proof as above yields kD

�

vk

1;q;w

� kfk

q;w

for f 2 C

1

0

(
). Approximating an arbitrary f 2 W

k;q

0;w

by C

1

0

-funtions (f

n

) with

R

f

n

= 0 �nishes the proof.

Using a deomposition of the unity one obtain Theorem 3.1 from Lemma 3.3.
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4 Extension Theorems

4.1 Appropriate Charts

A domain 
 is alled a C

k;1

-domain, if the boundary an be loally expressed as the

graph of a C

k;1

-funtion, i.e for every x

0

2 �
 we an rotate the oordinate system suh

that in a neighborhood U(x

0

) of x

0

one has

�
 \ U(x

0

) = f(x

0

; a(x

0

)) j x

0

2 V (x

0

)g; (4.1)

where V (x

0

) is an appropriate ((n� 1)-dimensional) neighborhood of 0 and a : V (0)!

U(x

0

) � R is a C

k;1

-funtion. The funtion a and the oordinate system an be hosen

suh that ra(0) = 0.

For the de�nition of the boundary values of a very weak solutions we need appropriate

extension theorems. The proof of them requires a hart � for whih one has

�

�x

n

�(x

0

; 0) =

�N(x

0

), i.e. normals to the boundary of the half spae are mapped to normals to �
.

The natural mapping with this property would be

x = (x

0

; x

n

) 7!

�

x

0

a(x

0

)

�

+ x

n

�N(x

0

):

Suh harts are used by Ne�as [14℄. However, if a is a C

k;1

-funtion, then this hart is

only of lass C

k�1;1

. For this reason we introdue a di�erent hart whih onserves the

regularity and still has the mentioned property.

Lemma 4.1. Let 
 � R

n

be a C

k;1

-domain. Then for every x

0

2 �
 there exists a

neighborhood U of x

0

and a neighborhood V of 0 and a bijetive map � : V ! U suh

that

�(0) = x

0

; �(V \R

n�1

) = U \ �
 and �(V \R

+

) = U \ 


and with the following properties:

1. � 2 C

k;1

(V; U)

2.

�

�x

n

�(x

0

; 0) = �N(x

0

) and

�

�

�x

n

�

j

�(x

0

; 0) = 0; (j = 2; :::; k).

Proof. We use the notation x = (x

0

; x

n

) with x

0

2 R

n�1

and x

n

2 R.

Let 0 � � 2 C

1

0

(R

n�1

) radial symmetri suh that supp � � B

1

(0) and

R

� = 1. Set

�

t

(x

0

) =

1

t

n�1

�(

x

0

t

). We de�ne the funtion � as follows:

�(x

0

; x

n

) =

�

x

0

a(x

0

)

�

� (x

n

�

x

n

�N)(x

0

):
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Then one has for every multi index  = (

0

; 

n

), with jj � k and j

0

j < k

�



(x

n

�

x

n

�N)(x

0

) =�



n

(x

n

�

x

n

�N

(

0

)

(x

0

))

=�



n

x

n

Z

�(�)N

(

0

)

(x

0

� x

n

�)d�

=

n

(�1)



n

�1

Z

�(�)r



n

�1

N

(

0

)

(x

0

� x

n

�) (�; :::; �)

| {z }



n

�1

d�

+ x

n

�

�x

n

0

�

(�1)



n

�1

Z

�(�)r



n

�1

N

(

0

)

(x

0

� x

n

�) (�; :::; �)

| {z }



n

�1

d�

1

A

=(�1)



n

�1

Z

((�n+ 2)�(�)�r�(�) � �)

� r



n

�1

N

(

0

)

(x

0

� �x

n

) (�; :::; �)

| {z }



n

�1

d�:

(4.2)

Still we have to onsider the ase j

0

j = k. Then the situation is easier:

�



(x

n

�

x

n

�N)(x

0

) =

Z

�

(�

1

)

(�)N

(�

2

)

(x

0

� x

n

�)d� (4.3)

where  = �

1

+ �

2

and j�

1

j = 1.

The map x 7!

�

x

0

a(x

0

)

�

is of type C

k;1

beause a is. It remains to show that �



(x

n

�

x

n

�

N(x

0

)) is Lipshitz ontinuous for every  2 N

n

, jj � k. This is an easy onsequene

of the representations (4.2) and (4.3) and of N 2 C

k�1;1

, e.g.

j�



(x

n

�

x

n

�N(x

0

))� �



(y

n

�

y

n

�N(y

0

))j

�

Z

B

1

(0)

j

n

�(�)�r�(�) � �j jr



n

�1

N

(

0

)

(x

0

� �x

n

)�r



n

�1

N

(

0

)

(y

0

� �y

n

)jd�

� L



sup

�2B

1

(0)

jx

0

� y

0

+ �(x

n

� y

n

)j � L



jx� yj:

A similar alulation shows that the expression in (4.3) is Lipshitz ontinuous.

The representation (4.2) and a straight forward alulation shows that for 1 < j � k

�

�

�x

n

�

j

�(x

0

; 0) = (�1)



n

�1

r

j�1

N(x

0

)2

Z

�(�)(�; :::; �)d� = 0;

sine � is rotation symmetri and � 7! (�; :::; �) is an odd funtion. Moreover,

�

�x

n

�(x

0

; 0) = �N(x

0

)

 

(2� n)

Z

�(�)d� �

n�1

X

i=1

Z

�

i

�(�)�

i

d�

!

= �N(x

0

):

This shows 2.

Using without loss of generality ra(0) = 0 and the representation formulas (4.2) and

(4.3) shows r�(0) = id . Thus the Impliit Funtion Theorem shows that � is loally

invertible and the proof is omplete.
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4.2 Extension of Normal Derivatives

Our next objetive is to onstrut a linear extension operator. A good way to do this is

to onsider solutions to the resolvent problem of the Dirihlet-Laplaian.

The following Theorem is proved in exatly the same way as in the lassial unweighted

ase. (see e.g. Evans [2℄ 6.3. Thm. 5). For the existene of weak solutions in weighted

spaes see [9℄.

Theorem 4.2. (Regularity of the Dirihlet Problem)

Let 1 < q <1, k 2 N, let f 2 W

k;q

w

(R

n

+

) and u 2 W

1;q

w

(R

n

+

) be the weak solution of

(1��)u = f and uj

R

n�1

= 0:

Then u 2 W

k+2;q

w

(R

n

+

) with kuk

k+2;q;w

� kfk

k;q;w

.

The same is true for the solution u of (1��)u = 0; uj

R

n�1

= g, if g 2 T

k+2;q

w

(R

n�1

).

Theorem 4.3. Let 1 < q < 1, w 2 A

q

and k 2 N. Then there exists a ontinuous

linear operator

T :

k�1

Y

j=0

T

k�j;q

w

(R

n�1

)! W

k;q

w

(R

n

+

)

suh that

�

j

�x

j

n

T (g

0

; :::; g

k�1

)j

x

n

=0

= g

j

.

Proof. It suÆes to show that for every g 2 T

k�j;q

w

(R

n�1

), j = 1; :::; k � 1 there exists

a u 2 W

k;q

w

(R

n

+

) depending ontinuously and linearly on g suh that

�

j

�x

j

n

u = g and

�

i

�x

i

n

u = 0 for every i = 0; :::; j � 1.

To show this weaker assertion let v 2 W

k�j;q

w

(R

n

+

) with (1��)v = 0 and vj

R

n�1

= g

whih is uniquely de�ned by [9, Theorem 4.4.℄ and Theorem 4.2. Let � 2 C

1

(R

+

) be

a ut-o� funtion with �(t) = 1 for t < 1 and �(t) = 0 for t > 2. We set

�(x) = �(x

n

) = x

j

n

� �(x

n

) and u(x) = �(x)v(x):

We want to show that �u solves the problem. More preisely we prove the following:

If � 2 C

1

(R

n

+

) with �(x) = �(x

n

), supp� � R

n�1

� [0; 2) and (

�

�x

n

)

m

�j

x

n

=0

=

0 for m = 0; :::; l and v 2 W

k;q

w

(R

n

+

) with (1 � �)v = 0 then �v 2 W

k+l;q

w

(
) with

k�vk

k+l;q;w

� kvk

k;q;w

.

To prove this we use mathematial indution with respet to l and assume that we

already know the assertion is true for l � 1, l � 2 and all k.

Sine (1��)v = 0 we obtain

(1��)(�v) = ��v + 2rvr�: (4.4)

As (

�

�x

n

)

m

��j

x

n

=0

= 0 for m = 0; :::; l � 2, (

�

�x

n

)

m

r�j

x

n

=0

= 0 for m = 0; :::; l � 1 and

(1��)rv = 0, (4.4) and indution yields (1��)(�v) 2 W

k+l�2;q

w

(
). Thus and sine

�vj

R

n�1

= 0, one has �v 2 W

k+l;q

w

(
) by the regularity of the Laplae resolvent problem.

Moreover

k�vk

k+l;q;w

� k��v + 2rvr�k

k+l�2;q;w

� (kvk

k;q;w

+ krvk

k�1;q;w

) � kvk

k;q;w

:

9



For the start of indution we need the ases l = 0 and l = 1. However they are proved

in the same way as the indution step.

Thus we have shown u 2 W

k;q

w

(
). Moreover

�

l

�x

l

n

u(x

0

; 0) =

l

X

�=0

�

l

�

�

�

�

�x

�

n

v

�

l��

�x

l��

n

�(x

0

; 0) =

(

0 if l < j

g(x

0

) if l = j:

This shows the assertion about the boundary values.

Lemma 4.4. Let 
 and O be two domains in R

n

and � : O ! 
 a bijetive C

k�1;1

-

mapping, k � 1. Then the operator

T : u 7! u Æ � : W

k;q

w

(
)!W

k;q

wÆ�

(O)

is ontinuous with kTuk

k;q;wÆ�;O

� kuk

k;q;w;


,  = (k; q; �).

The same is true for the operator

S : g 7! g Æ � : T

k;q

w

(�
)! T

k;q

wÆ�

(�O):

Proof. The ase k = 1 has been proved in [7℄ Lemma 3.17. Assume � 2 C

k�1;1

(O) and

the asserted ontinuity holds for k replaed by j, j < k. Then

kr(u Æ �)k

j;q;wÆ�;O

= k((ru) Æ �) � r�k

j;q;wÆ�;O

� k(ru) Æ �k

j;q;wÆ�;O

� kuk

j+1;q;w;


:

Thus Tu 2 W

j+1;q

wÆ�

(O) with k(uÆ�)k

j+1;q;wÆ�;O

� kuk

j+1;q;w;


. This proves the assertion.

The seond statement follows from the ontinuity of T and the identity S(g) = T (u)j

�O

,

where u 2 W

k;q

w

(
) is an extension of g.

Theorem 4.5. Let 
 � R

n

be a bounded C

k�1;1

-domain, k � 1. Then there exists a

ontinuous linear operator

L :

k�1

Y

j=0

T

k�j;q

w

(�
)!W

k;q

w

(
)

suh that

�

j

�N

j

L(g) = g

j

, where g = (g

0

; :::; g

k�1

).

Proof. We hoose the olletion of harts (�

i

; V

i

; U

i

)

m

i=1

aording to Lemma 4.1 and a

deomposition of the unity (�

i

)

m

i=1

subordinate to the U

i

.

Step 1: (Constrution of L)

To simplify the notation we �x i and set  = �

i

, U = U

i

, V = V

i

and � = �

i

.

Moreover we set ~g

j

= (g

j

� �) Æ  and ~g = (~g

0

; :::; ~g

k�1

). By Lemma 4.4 we know

~g

j

2 T

k�j;q

w

(R

n�1

). Thus we may apply the operator T from Theorem 4.3 and set

v := v

i

:= L

i

(g

0

; :::; g

k

) :=  

i

T (~g

0

; :::; ~g

k

) Æ 

�1

and L(g

0

; :::; g

k

) =

P

1

i=1

 

i

L

i

(g

0

; :::; g

k

),

where ( 

i

)

i

� C

1

0

(
) with  

i

= 1 in a neighborhood of supp�

i

\ �
 and supp 

i

� U

i

.

Step 2: We show that

�

j

�N

j

L(g

0

; :::; g

k�1

) = g

j

.

We have

~g

j

(x

0

) =

�

j

�x

j

n

T (~g)(x

0

; 0) =

�

j

�x

j

n

(v Æ )(x

0

; 0) =

�

j�1

�x

j�1

n

(rv Æ )�

n

(x

0

; 0)

= r

j

v Æ (�

n

; :::; �

n

)(x

0

; 0) + Terms ontaining �

i

n

, i � 2

= r

j

v((x

0

; 0)(N(x

0

); :::; N(x

0

)

| {z }

j

) =

�

j

�

j

N

v((x

0

; 0))
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by the hoie of  ording to Lemma 4.1. Finally we obtain

�

j

�

j

N

L(g

0

; :::; g

k�1

) =

1

X

i=1

 

i

�

j

�

j

N

L

i

(g

0

; :::; g

k�1

) =

1

X

i=1

�

i

g

j

= g

j

:

Step 3: (Continuity of L)

kL(g

0

; :::; g

k�1

)k

q

k;q;w;


= k

m

X

i=1

 

i

T (�

i

g

0

; :::; �

i

g

k�1

) Æ 

�1

k

q

k;q;w;


� 

m

X

i=1

k�1

X

j=0

k�g

j

k

q

T

k�j;q

w

(�
)

�

k�1

X

j=0

kg

j

k

q

T

k�j;q

w

(�
)

using Lemma 4.4 and Theorem 4.3.

5 The Stokes Problem with Irregular Data

Let 
 be a bounded domain in R

n

, n � 2 with C

1;1

-boundary and let 1 < q < 1 and

w 2 A

q

. The aim of this setion is to �nd a lass of solutions to the Stokes problem in

weighted Lebesgue- and Sobolev-spaes, where the divergene and exterior fore are so

irregular that it is impossible to speak of boundary values. Moreover it will be shown

that this lass of solutions inludes strong solutions.

In the ase that the data is regular enough suh that it an be desribed by distribu-

tions on 
 and on �
 we desribe in whih sense boundary values an be explained.

5.1 Very Weak Solutions Conerning Non-Distributional Data

Let w 2 A

q

. We onsider exterior fores f in Y

w

0

;q

0

(
)

0

, the dual spae of

Y = Y

w

0

;q

0

(
) = fu 2 W

2;q

0

w

0

(
) j uj

�


= 0g;

and assume the divergene k to be ontained in the spae

W

�1;q

w;0

(
) = (W

1;q

0

w

0

(
))

0

:

Lemma 5.1. C

1

(
) is dense in Y

0

and in W

�1;q

w;0

(
).

Proof. Y is reexive being a losed subspae of the reexive spae W

2;q

0

w

0

(
). Let x 2

Y

00

= Y suh that h�; xi = 0 for all � 2 C

1

(
). This yields x = 0 and the assertion is

proved. The assertion about W

�1;q

w;0

(
) is proved in the same way.

Note that these spaes do not onsist of distributions on 
 sine C

1

0

(
) is neither

dense in Y

q

0

;w

0

nor in W

1;q

0

w

0

(
). This leads to some diÆulties when talking about

derivatives. However restriting f or k to test funtions ' 2 C

1

0

(
) one obtains an

element of W

�2;q

w

(
) or W

�1;q

w

(
), respetively. If we say that equations are ful�lled in

11



the distributional sense, we onsider these restritions. Our spae of test funtions will

be

Y

q

0

;w

0

;�

:= Y

�

:= f' 2 Y

w

0

;q

0

(
) j div' = 0g;

whih is by no oinidene equal to the domain of de�nition of the Stokes operator in

L

q

0

w

0

(
).

De�nition 5.2. Let f 2 Y

w

0

;q

0

(
)

0

and k 2 W

�1;q

w;0

(
). A funtion u 2 L

q

w

(
) is alled

1. a very weak solution to the Stokes problem with respet to the data f and k if

hf; 'i = �hu;�'i; for all ' 2 Y

�

and (5.1)

hk;  i = �hu;r i; for all  2 W

1;q

0

w

0

(
): (5.2)

2. a very weak solution to the Stokes resolvent problem with respet to the data f and

k and � 2 C, if

hf; 'i = h�u; 'i � hu;�'i; for all ' 2 Y

�

and (5.3)

hk;  i = �hu;r i; for all  2 W

1;q

0

w

0

(
): (5.4)

Setting  = 1 in (5.2) and (5.4) it follows that a neessary ondition for the existene

of suh a very weak solution u is hk; 1i = 0. This ondition is the analogue to the

ompatibility ondition hk; 1i = hg;Ni

�


between divergene and boundary values in

the ase of weak solutions.

Remark 5.3. Two omments about the missing boundary values:

1. For every u 2 L

q

w

(
) one has [' 7! hu;�'i℄ 2 Y

0

and [ 7! hu;r i℄ 2 W

�1;q

w;0

(
).

Thus any u 2 L

q

w

(
) appears as a very weak solution to the Stokes problem with

respet to appropriate data. However, sine C

1

0

(
) is dense in L

q

w

(
), it is im-

possible to de�ne boundary values for arbitrary L

q

w

-funtions in the sense of a

ontinuous linear operator from L

q

w

(
) into some boundary spae whih oinides

with the usual trae on smooth funtions.

2. Dealing with very weak solutions one an de�ne boundary values as desribed in

(1.4). This is done in [12, 3℄ in the ase of more regular data. However one easily

sees that if g 2 T

0;q

w

(�
) then

G = [' 7! hg;N � r'i

�


℄ 2 Y

0

and K = [ 7! hg;N �  i

�


℄ 2 W

�1;q

w;0

(
);

the spaes of exterior fores and divergenes, respetively. This means

�hu;�'i = hf; 'i+ hg;N � r'i

�


= hf +G;'i and

�hu;r i = hk;  i+ hg;N �  i

�


= hk +K; i:

Hene, sine the data is so irregular, it is impossible to distinguish between fore

or divergene and boundary value.
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Proof of Theorem 1.1.

Step 1 Let v 2 L

q

0

w

0

(
). By the existene of strong solutions to the Stokes resolvent

problem ([8, Theorem 3.3℄ in the ase of weighted and [11, 16℄ in the ase of un-weighted

spaes) there are unique funtions � 2 W

2;q

0

w

0

(
) and  2 W

1;q

0

w

0

(
) suh that

�����+r = v and div � = 0 in 
; �j

�


= 0 and

Z

 = 0: (5.5)

This solution satis�es �k�k

q

0

;w

0

+ k�k

2;q

0

;w

0

+ k k

1;q

0

;w

0

� kvk

q

0

;w

0

with an A

q

onsistent

onstant .

Step 2 (Existene and a priori estimates) Setting for v 2 L

q

0

w

0

(
)

hu; vi := hf; �i � hk;  i; with (�;  ) as in (5:5)

we obtain

jhu; vij = jhf; �ij+ jhk;  ij � kfk

Y

0

k�k

2;q

0

;w

0

+ kkk

W

�1;q

w;0

(
)

k k

1;q

0

;w

0

� (kfk

Y

0

+ kkk

W

�1;q

w;0

(
)

)kvk

q

0

;w

0

:

Thus u 2 (L

q

0

w

0

(
))

0

= L

q

w

(
) and ful�lls kuk

q;w

� (kfk

Y

0

+ kkk

W

�1;q

w;0

) with  inde-

pendent of � and depending A

q

-onsistently on w.

We now show that u is a very weak solution to the Stokes problem with respet to f

and k. Choose test-funtions � 2 Y

�

and  2 W

1;q

0

w

0

(
). Then setting v = �����+r 

we obtain from the uniqueness of strong solutions

hu; ����� +r i = hu; vi = hf; �i � hk;  i:

Sine � and  were hosen arbitrarily (5.3) and (5.4) are ful�lled.

Step 3 (Uniqueness) Assume U 2 L

q

w

(
) is a very weak solution to the Stokes resolvent

problem with respet to f and k. As above for every v 2 L

q

0

w

0

(
) we �nd � 2 Y

�

and

 2 W

1;q

0

w

0

(
) suh that �u���+r = v. If we add the equations (5.3) and (5.4) we

obtain

hU; vi = hU; �����+r i = hf; �i � hk;  i = hu; vi:

Sine v 2 L

q

0

w

0

(
) was arbitrary we obtain u = U . Moreover let � 2 Y

q

0

;w

0

;�

. Then we

obtain from the equation

jh�u; �ij � jhu;��ij+ jhf; �ij � (kuk

q;w

+ kfk

Y

0

q

0

;w

0

)k�k

2;q

0

;w

0

� (kfk

Y

0

+ kkk

W

�1;q

w;0

(
)

)k�k

2;q

0

;w

0

:

This proves (1.5)

Theorem 5.4. Let f and k be hosen as in Theorem 1.1 and let u 2 L

q

w

(
) be the

assoiated very weak solution to the Stokes problem. Then there exists a unique pressure

funtional p 2 W

�1;q

0;w

(
) (unique modulo onstants) suh that (u; p) solves

�hu;��i � hp; div�i = hF; �i for all � 2 Y

q

0

;w

0

:
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In partiular

��u+rpj

C

1

0

(
)

= f j

C

1

0

(
)

in the sense of distributions. The funtions (u; p) ful�ll the inequality

kuk

q;w

+ kpk

W

�1;q

w;0

� (kfk

Y

0

+ kkk

W

�1;q

w;0

); (5.6)

where  = (
; q; w).

Proof. By Lemma 5.1 there exist sequenes (f

n

)

n

; (k

n

)

n

� C

1

(
) suh that

f

n

Y

0

q

0

;w

0

���! f and k

n

W

�1;q

0;w

(
)

�����! k:

Then by [8, Theorem 3.3℄ there exist unique solutions (u

n

; p

n

) 2 W

2;q

w

(
) � W

1;q

w

(
)

suh that

��u

n

+rp

n

= f

n

; div u

n

= k

n

; u

n

j

�


= 0;

Z

p

n

= 0:

Integration by parts immediately yields that u

n

is a very weak solution with respet

to f

n

; k

n

. Now the a priori estimate (5.2) yields u

n

L

q

w

(
)

���! u. For � 2 W

1;q

0

w

0

(
) with

R

� = 0 let � 2 Y

q

0

;w

0

with ��� + r� = 0 and div � = � and k�k

2;q

0

;w

� k�k

1;q

0

;w

0

.

Thus we obtain

jhp

n

� p

m

; �ij = jhp

n

� p

m

; div �ij = jhr(p

n

� p

m

); �ij

� jh�(u

n

� u

m

); �ij+ jhf

n

� f

m

; �ij

� (ku

n

� u

m

k

q;w

+ kf

n

� f

m

k

(Y

q

0

;w

0

)

0

)k�k

1;q;w

:

Thus kp

n

� p

m

k

�1;q;w;0

� (ku

n

�u

m

k

q;w

+kf

n

� f

m

k

Y

0

)

n;m!1

����! 0 and (p

n

)

n

is a Cauhy

sequene onverging to some p 2 W

�1;q

0;w

(
). For this p

�hu;��i � hp; div �i = lim

n!1

(�hu

n

;��i � hp

n

; div�i) = lim

n!1

hf

n

; �i = hf; �i

holds for every � 2 Y

q

0

;w

0

. The estimate (5.6) follows from the estimates for p

n

.

5.2 Regularity

The following theorem desribes how strong solutions �t into the ontext of very weak

solutions onsidered in the previous setion. Moreover it prepares further onsiderations

about boundary values in the weakest possible sense.

From now on we assume the following situation: Let 1 < r < 1 and ~w 2 A(r) suh

that

L

r

0

~w

0

(
) ,! L

q

0

w

0

(
): (5.7)

Then by duality it follows

L

r

~w

(
) ,!W

�1;q

w;0

(
) and W

�1;r

~w

(
) ,! Y

0

q

0

;w

0

:

The reason why we require these embeddings is that Sobolev-like inequalities in weighted

spaes need strong assumptions on the weight-funtions. In [10℄ suÆient onditions for

suh embeddings are shown using the ontinuity of singular integral operators shown in

[15℄.

14



Theorem 5.5. Assume that f 2 Y

0

q

0

;w

0

and k 2 W

�1;q

w;0

(
) allow a deomposition into

hf; �i = hF; �i � hg;N � r�i

�


for all � 2 Y

q

0

;w

0

;

hk;  i = hK; i � hg;N �  i

�


for all  2 W

1;q

0

w

0

(
)

(5.8)

with g 2 T

0;q

w

(�
); F 2 W

�1;r

~w

(
); K 2 L

r

~w

(
), where 1 < r < 1 and ~w 2 A(r) are

hosen aording to (5.7). Then one has

1. Suh a deomposition is uniquely de�ned by f and k.

2. For � 2 �

"

[ f0g every strong solution u to the Stokes resolvent problem orre-

sponding to the data g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
) is a very weak

solution orresponding to the data f and k with the notation of (5.8).

3. If g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
), then the very weak solution u

to the Stokes resolvent problem with respet to f and k is a strong solution with

respet to F;K and g. In partiular u 2 W

2;q

w

(
) and

j�jkuk

q;w

+ kuk

2;q;w

� (kFk

q;w

+ kKk

1;q;w

+ k�Kk

W

�1;q

w;0

+ kgk

T

2;q

w

(�
)

+ k�gk

T

0;q

w

):

(5.9)

Proof. 1. Let hf; �i = hF

i

; �i � hg

i

; N � r�i

�


for i = 1; 2. This means

hF

1

� F

2

; �i = hg

1

� g

2

; N � r�i

�


for � 2 Y

q;w

:

The latter funtional vanishes on C

1

0

(
) and sine F

1

� F

2

is a distribution on 
, it

follows that F

1

� F

2

= 0 and hene hg

1

� g

2

; N � r�i = 0 for every � 2 Y

q

0

;w

0

. By

Theorem 4.3 the mapping

� 7! N � r� : Y

q

0

;w

0

! T

1;q

0

w

0

(�
)

is surjetive, hene g

1

= g

2

. Analogously for the divergene.

2. Follows immediately from Green's Theorem.

3. By Theorem 4.3 there exists v

1

2 W

2;q

w

(
) with v

1

j

�


= g and kv

1

k

2;q;w

� kgk

T

2;q

w

and one has

hK � div v

1

; 1i = hK; 1i � hg;Ni

�


= hk; 1i = 0;

sine hk; 1i = 0 is a neessary ondition for the existene of a solution.

Hene, by [8, Theorem 3.3℄ there exists a strong solution v

2

2 W

2;q

w

(
) with respet

to the exterior fore f � �v

1

+�v

1

and divergene K � div v

1

. It ful�lls the estimate

j�jkv

2

k

q;w

+ kv

2

k

2;q;w

� (kFk

q;w

+ k�v

1

k

q;w

+ j�jkv

1

k

q;w

+ kK � div v

1

k

1;q;w

+ j�jkK � div v

1

k

W

�1;q

w;0

):

� (kFk

q;w

+ j�jkv

1

k

q;w

+ kKk

1;q;w

+ j�jkK � div v

1

k

W

�1;q

w;0

+ kgk

T

2;q

w

):

(5.10)

Thus u = v

1

+ v

2

is a strong solution to the Stokes resolvent problem with respet to

the given data. Moreover, in the ase � = 0, also the estimate is proved.
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Now we repeat the above arguments with v

1

replaed by the solution to the Stokes

problem

��v

1

+rp = 0; div v

1

= 0 and v

1

j

�


= g:

Then v

1

ful�lls the estimate kv

1

k � kgk

2;q;w

. In addition, by 2. we know that v

1

is also

a very weak solution with respet to the data

~

f = [� 7! hg;N � r�i℄ and

~

k = [ 7! hg;N �  i℄:

Thus we obtain the estimate

kv

1

k

q;w

� (k

~

fk

Y

0

q

0

;w

0

+ k

~

kk

W

�1;q

w

) � kgk

T

0;q

w

:

Inserting this in (5.10) we obtain (5.9).

Thus there exists a strong solution to the Stokes resolvent problem with respet to

the given data whih ful�lls the estimate.

The uniqueness of very weak solutions proved in Theorem 1.1 together with 2. yields

that u oinides with the very weak solution. In partiular the very weak solution is

regular aording to the data.

Remark 5.6. If there exist deompositions for the data f and k as in (5.8) even with

smooth funtions F;K; g this does not mean that f and k are smooth. The reason is, that

if g 6= 0, then � 7! hg;N � r�i is never more regular than Y

0

q

0

;w

0

sine it is a funtional

supported by the boundary and depending on derivatives.

Vie versa, if f and k are regular, e.g. f 2 W

�1;q

w

(
) and k 2 L

q

w

(
) allowing a

deomposition aording to (5.8), then we automatially obtain g = 0, whih means that

the very weak solution with respet to f and k has zero boundary values.

5.3 Boundary Values in Case of More Regular Data

Our next aim is to de�ne boundary values for very weak solutions to the Stokes problem

presumed the data is suÆiently regular. To this aim we �nd a Banah spae ontaining

all these solutions and a ontinuous linear operator on this spae oiniding with the

usual trae on C

1

(
).

From now on let 1 < r < 1, ~w 2 A

r

suh that (5.7) is ful�lled. As a large spae of

funtions in whih the de�nition of tangential boundary onditions is possible we de�ne

~

W

q;r

w; ~w

(
) :=

�

u 2 L

q

w

(
)

�

�

(�u)j

C

1

0;�

(
)

an be extended to an element of (W

1;r

0

~w

0

;0;�

(
))

0

	

:

We will omit the 
 and write

~

W

q;r

w; ~w

if no onfusion an our.

Sine � : L

q

w

(
) ! W

�2;q

w

(
) is ontinuous, it follows that

~

W

q;r

w; ~w

is a Banah spae

equipped with the norm

kuk

~

W

q;r

w; ~w

= kuk

q;w

+ k�uj

C

1

0

(
)

k

(W

1;r

0

~w

0

;0;�

(
))

0

:

Lemma 5.7. Let f 2 (Y

q

0

;w

0

;�

)

0

with hf; �i = 0 for every � 2 C

1

0;�

(
).

Then there exists an extension F 2 (Y

q

0

;w

0

)

0

suh that hF; �i = 0 for every � 2 C

1

0

(
)

and with kFk

(Y

q

0

;w

0

)

0

� kfk

(Y

q

0

;w

0

;�

)

0

.
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Proof. First we show that

~

f de�ned by

h

~

f; �i =

(

hf; �i if � 2 Y

q

0

;w

0

;�

0 if � 2 W

2;q

w;0

(
)

is a ontinuous funtional on Y

q

0

;w

0

;�

+W

2;q

w;0

(
). Well-de�nedness and linearity is lear

sine hf; �i = 0 on Y

q

0

;w

0

;�

\W

2;q

0

w

0

;0

(
) = W

2;q

0

w

0

;0;�

(
) = C

1

0;�

(
)

2;q

0

;w

0

.

Thus it remains to prove ontinuity. By Theorem 3.1 there exists a ontinuous linear

operator T : fv 2 W

1;q

0

w

0

;0

(
) j

R

v = 0g !W

2;q

0

w

0

;0

(
) suh that div (Tv) = v.

Let � 2 Y

q

0

;w

0

;�

+W

2;q

0

w

0

;0

(
). Then div � 2 W

1;q

0

w

0

;0

(
),

R

div � = 0 and we may write

� = (�� Tdiv�) + T (div �). Thus we obtain

jh

~

f; �ij = jh

~

f; ��T (div �)i+h

~

f; T (div �)ij = jhf; ��T (div �)ij � kfk

(Y

q

0

;w;�

)

0

k�k

2;q

0

;w;�

and k

~

fk

(Y

q

0

;w

0

;�

+W

2;q

w;0

(
))

0

� kfk

(Y

q

0

;w;�

)

0

.

By the Hahn-Banah Theorem we may extend

~

f to an element F 2 (Y

q

0

;w

0

)

0

with

kFk

(Y

q

0

;w

0

)

0

= k

~

fk

(Y

q

0

;w

0

;�

+W

2;q

w;0

(
))

0

. This �nishes the proof.

The following Lemma is ruial when proving the well-de�nedness of the tangential

omponent of the trae on

~

W

q;r

w; ~w

.

Lemma 5.8. C

1

(
) is dense in

~

W

q;r

w; ~w

.

Proof. Let u 2

~

W

q;r

w; ~w

. Then by the de�nition ofW

q;r

w; ~w

we have �uj

C

1

0;�

2 (W

1;r

0

~w

0

;0;�

(
))

0

,!

Y

0

q

0

;w

0

;�

. The Hahn-Banah-theorem yields the existene of some f 2 (W

1;r

0

~w

0

;0

(
))

0

suh

that

hf; �i = h�u; �i for all � 2 C

1

0;�

(
):

By Lemma 5.7 there exists an extension F 2 Y

0

q

0

;w

0

of (hu;��i � f)j

Y

q

0

;w

0

;�

vanishing

on C

1

0

(
). Analogously to the Stokes equations but easier one an prove existene

and uniqueness of very weak solutions to the Laplae equation. Thus there exists a

v 2 L

q

w

(
) suh that

hv;��i = hF; �i for all � 2 Y

q

0

;w

0

:

This v is harmoni on 
 beause hF; �i = 0 for all � 2 C

1

0

(
).

Now we assume temporarily that 
 is star-shaped with respet to some ball B

r

(0) with

enter 0 and radius r. So we may set v

�

(x) := v(�x), where � 2 (0; 1). We show that

v

�

�!1

��! v in L

q

w

(
).

Note that the following argumentation strongly relies on the fat that v is harmoni.

For arbitrary u 2 L

q

w

(
) the onlusion u(��) 2 L

q

w

(
) is in general wrong.

Let d = sup

x2


jxj and K <

r

d

. Then for every � with

1

2

< � < 1 one has

B

K(1��)jxj

(�x) � 
 for every x 2 
.
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Now let ~v be the extension of v by 0 to the whole of R

n

. Take x 2 
 and � < 1 �xed.

Sine v is harmoni we have by the mean value property

jv

�

(x)j = jv(�x)j =

1

jB

K(1��)jxj

(�x)j

�

�

�

�

�

Z

B

K(1��)jxj

(�x)

v(x)dt

�

�

�

�

�

�

1

jB

K(1��)jxj

(�x)j

Z

B

jxj((1��)+K(1��))

(x)

j~v(t)jdt

�

(K + 1)

3

K

3

1

jB

(K+1)(1��)jxj

(x)j

Z

B

jxj(1��)+K(1��))

(x)

j~v(t)jdt � M~v(x):

Sine M , the maximal operator in L

q

w

(
) is ontinuous, one has M~v 2 L

q

w

(R

n

). Thus,

we have found a majorant. Moreover, sine the harmoni funtion v 2 C

1

(
), the

onvergene v

�

! v is point-wise. By Lebesgue's Theorem we �nd v

�

! v in L

q

w

(
).

For a general bounded C

1;1

-domain we use deomposition of the unity.

Moreover, sine every v

�

is harmoni we have �v

�

��v = 0 for all � 2 (0; 1) whih

yields the onvergene in

~

W

q;r

w; ~w

.

Moreover we have

hu� v;��i = hf; �i+ hF; �i � hF; �i = hf; �i for � 2 Y

q

0

;�;w

0

hu� v;r i =: hk;  i for  2 W

1;q

0

w

0

(
):

Let (f

n

)

n

; (k

n

)

n

� C

1

(
) suh that f

n

n!1

���! f inW

�1;r

~w

(
) and k

n

n!1

���! k inW

�1;q

0;w

(
).

The embedding W

�1;r

~w

(
) ,! Y

0

q

0

;w

0

and the a priori estimate for very weak solutions to

the Stokes equations (1.5) yields that the sequene of very weak solutions (u

n

)

n

to the

Stokes problem w.r.t. f

n

and k

n

onverges to u� v in L

q

w

(
). By the regularity of the

data and of the boundary (Theorem 5.5) one has u

n

2 W

2;q

w

(
).

We show that u

n

tends to u� v in

~

W

q;r

w; ~w

. The onvergene in L

q

w

(
) is already shown.

Moreover for � 2 C

1

0;�

(
) one has

hu

n

;��i = hf

n

; �i

n!1

���! hf; �i:

Thus the sequene (u

n

+ v

�

n

)

n

� W

2;q

w

(
) approximates u in the norm of

~

W

q;r

w; ~w

where

(�

n

) � (0; 1) is a sequene onverging to 1. However, sine C

1

(
) is dense in W

2;q

w

(
),

the assertion is proved.

It is not diÆult to see that if � 2 W

2;q

w

(
) with �j

�


= 0, then N � r� is purely

tangential. The next Lemma shows that vie versa every purely tangential funtion on

the boundary is a normal derivative of suh a funtion. This ensures that the amount

of test funtions is suÆient.

Lemma 5.9. Let 
 be a bounded C

1;1

-domain, 1 < q < 1 and w 2 A

q

. For every

h 2 T

1;q

w

(�
) with N � h = 0 there exists a funtion '

h

2 W

2;q

w

(
) suh that

'

h

j

�


= 0; N � r'

h

= h and div'

h

= 0:

Moreover '

h

an be hosen depending linearly on h and ful�lling the estimate

k'

h

k

2;q;w

� khk

T

1;q

w

(�
)

with a onstant  = (
; q; w).
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Proof. For h 2 T

1;q

w

(�
) there exists by Theorem 4.3 a funtion  

h

2 W

2;q

w

(
) depending

linearly on h suh that

 

h

j

�


= 0; N � r 

h

= h and k 

h

k

2;q;w

� khk

T

1;q

w

(�
)

:

Sine h = N � r 

h

is purely tangential, one an show (see [12℄) that div 

h

2 W

1;q

0;w

(
).

Thus by Theorem 3.1 there exists a funtion � 2 W

2;q

w;0

(
) with div � = div 

h

depending

linearly on  

h

and satisfying the estimate k�k

2;q;w

� kdiv 

h

k

1;q;w

� k 

h

k

2;q;w

.

Now '

h

:=  

h

� � solves the problem.

Using this lemma we de�ne the tangential omponent of u 2

~

W

q;r

w; ~w

on the boundary

as follows.

Theorem 5.10. There exists a ontinuous linear operator

 :

~

W

q;r

w; ~w

! T

0;q

w

(�
); suh that

h(u); hi

�


= hu;�'

h

i � h�u; '

h

i if N � h = 0;

h(u); hi

�


= 0 if N � h = 0

(5.11)

for h 2 T

1;q

0

w

(�
) where '

h

is given by Lemma 5.9. Moreover this tangential trae is in-

dependent of the hoie of the extension '

h

and oinides with the tangential omponent

of the usual restrition if u 2 C

1

(
).

Proof. Assume that  is de�ned by (5.11). Let m 2 T

1;q

0

w

(�
). The funtion m an be

deomposed into normal and tangential omponent

m = (N �m)N + (N �m)�N = (N �m)N + h

with khk

T

1;q

0

w

0

(�
)

� kmk

T

1;q

0

w

0

(�
)

. Then one obtains

jh(u); mi

�


j = jh(u); hi

�


j = jhu;�'

h

i � h�u; '

h

ij

� kuk

q;w

k'

h

k

2;q

0

;w

0

+ k�uk

(W

1;r

0

~w

0

;0;�

)

0

k'

h

k

1;r

0

; ~w

0

� kuk

~

W

q;r

w; ~w

kmk

T

1;q

0

w

0

(�
)

:

Thus  is ontinuous.

By Gauss' Theorem we know that for u 2 C

1

(
) we have (u) is equal to (N �

uj

�


) � N , the tangential omponent of uj

�


whih is in partiular independent of the

extension of h. Sine by Lemma 5.8 the spae C

1

(
) is dense in

~

W

q;r

w; ~w

the same is true

for u 2

~

W

q;r

w; ~w

.

The de�nition of tangential traes is easier. If

u 2 E

q;r

w; ~w

:= fv 2 L

q

w

(
) j div v 2 L

r

~w

(
)g

then we an de�ne the normal trae as in unweighted spaes: Using onvolutions one

shows that C

1

(
) is dense in E

q;r

w; ~w

and we an de�ne the normal trae u 7! N � uj

�


using Green's formula by

hN � uj

�


; Nvi

�


:= hdiv u; vi+ hu;rvi for all v 2 W

1;q

0

w

0

(
): (5.12)

Using the above theorem we say that uj

�


= g if h(u); hi

�


= hg; hi

�


for h � N = 0

and u �N j

�


= g �N .
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Proposition 5.11. Let u be a very weak solution to the Stokes problem orresponding

to the data hf; �i = hF; �i � hg;N � r�i

�


and hk;  i = hK; i � hg;N �  i

�


with

F 2 W

�1;r

~w

(
), K 2 L

r

~w

(
), g 2 T

0;q

w

(�
).

Then u 2

~

W

q;r

w; ~w

and uj

�


= g.

Proof. u is the solution of

�hu;��i = hF; �i � hg;N � r�i

�


; for all � 2 Y

q

0

;w

0

;�

and

�hu;r i =hK; i � hg;N �  i

�


; for all  2 W

1;q

w

0

(
):

Inserting � 2 C

1

0;�

(
) into the �rst equation we obtain that � 7! [h�u; �i = �hF; �i℄ is

extendable to an element of (W

1;r

0

~w;0;�

(
))

0

. Thus u 2

~

W

q;r

w; ~w

and by the de�nition of the

tangential trae we have

h(u); N � r�i

�


= hu;��i � h�u; �i = hu;��i+ hF; �i = hg;N � r�i

�


for all � 2 Y

q

0

;w

0

;�

. Using the seond equation one shows that N � uj

�


= N � g.

Remark 5.12. 1. It is not diÆult to see that the spae

~

W

q;r

w; ~w

is equal to the spae of very

weak solutions to the Stokes problem with respet to data f = [� 7! hF; �i� hg;N � r�i℄

with F 2 W

�1;r

~w

(
) and g 2 T

0;q

w

(�
) and k 2 W

�1;q

w;0

(
). Indeed let u 2

~

W

q;r

w; ~w

and

let F 2 W

�1;r

~w

(
) be an extension of ��uj

C

1

0;�

(
)

. Then g := tru 2 T

0;q

w

(
) and by

de�nition

�hu;��i = hF; �i � hg;N � r�i for every � 2 Y

q

0

;w

0

;�

:

2. In [12℄ the spae in whih the traes are well-de�ned is given by



W

1;q

(
) := W

1;q

(
)

k�k



W

1;q

(
)

where kuk



W

1;q

(
)

:= kuk

q

+ kA

�

1

2

r

P

r

�uk

r

;

where A

r

stands for the Stokes operator in L

r

(
),

1

r

�

1

n

+

1

q

. For u 2 C

1

(
) one has

k�uk

(W

1;r

0

0;�

)

0

= sup

�2C

1

0;�

;k�k

1;r

0

=1

h�u; �i � sup

�2C

1

0;�

;k�k

r

0

=1

hP�u;A

�

1

2

r

0

�i = kA

�

1

2

r

P�uk

r

Thus in the unweighted ase these norms are equivalent and the spaes are equal.
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