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Abstra
t

We investigate very weak solutions the stationary Stokes- and Stokes resol-

vent problem in fun
tion spa
es with Mu
kenhoupt weights. The notion used

here is similar but even more general than the one used in [1℄ or [12℄. Conse-

quently the 
lass of solutions is enlarged. To des
ribe boundary 
onditions

we restri
t ourselves to more regular data. We introdu
e a Bana
h spa
e

admitting a restri
tion operator and 
ontaining the solutions a

ording to

su
h data.

As a preparation we prove a weighted analogue to Bogowski's Theorem and

extension theorems for fun
tions de�ned on the boundary.
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1 Introdu
tion

We 
onsider the generalized Stokes resolvent problem on a bounded C

1;1

-domain 
 �

R

n

, n � 2

�u��u+rp = F; in 
 (1.1)

div u = K; in 
 (1.2)

uj

�


= g (1.3)

for � 2 �

"

[ f0g where

�

"

:= f� 2 C n f0g j j arg�j <

�

2

+ "g; 0 < " <

�

2

:

Multipli
ation of (1.1) with a test fun
tion � with div � = 0 and �j

�


= 0 and of (1.2)

with a test fun
tion  and formal integration by parts yields

�hu;��i = hF; �i � hg;N � r�i and � hu;r i = hK; i � hg;N i; (1.4)

where N stands for the unit outer normal ve
tor. These or similar equations have been

used by in [1℄, [3℄ [4℄, [12℄ for the de�nition of very weak solutions.

One obtains a further generalization of this de�nition if one 
onsiders ea
h right hand

side of (1.4) as one fun
tional

f = [� 7! hF; �i � hg;N � r�i℄ and k = [ 7! hK; i � hg;N i℄:
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Taking su
h f and k in appropriate spa
es of fun
tionals enlarges the 
lass of solutions to

the whole spa
e L

q

w

(
). However, the data is in general no longer given by distributions

on 
 and �
.

We 
onsider the above resolvent problem in fun
tion spa
es with general Mu
kenhoupt

weights w. This is a large 
lass of lo
ally integrable weight-fun
tions de�ned in (2.1).

Their good properties 
on
erning harmoni
 analysis [13℄, [17℄ where the base to treat

the solvability of the Stokes and Navier Stokes equations [5℄, [8℄, [7℄, [9℄.

We 
onsider the following spa
es of fun
tions and fun
tionals:

Y := Y

q

0

;w

0

:= Y

q

0

;w

0

(
) := fu 2 W

2;q

0

w

0

(
) j uj

�


= 0g and W

�1;q

w;0

(
) := (W

1;q

0

w

0

(
))

0

:

Then our main result on the very weak solutions to the Stokes equations is the following.

Theorem 1.1. Let f 2 Y

0

q

0

;w

0

, k 2 W

�1;q

w;0

(
) with hk; 1i = 0 and let � 2 �

"

[ f0g with

0 < " <

�

2

. Then there exists a unique very weak solution u 2 L

q

w

(
) to the Stokes

resolvent problem in the sense of De�nition 5.2.2. It ful�lls the a priori estimate

�kuk

Y

0

q

0

;w

0

;�

+ kuk

q;w

� 
(kfk

Y

0

q

0

;w

0

+ kkk

W

�1;q

w;0

(
)

) (1.5)

with 
 = 
(
; q; w; ") depending A

q


onsistently on w.

The outline of the paper is as follows.

Be
ause needed in several steps of the theory in Se
tion 3 we prove a weighted analogue

to Bogowski's Theorem.

In Se
tion 4 we establish an extension theorem for fun
tions on the boundary. This

theorem uses weaker assumptions to the regularity of the boundary than the well-known

unweighted version in [14℄.

Se
tion 5 is devoted to very weak solutions. We introdu
e the notion of the very weak

solutions and give the proof of Theorem 1.1 in 5.1. Moreover, in 5.2 we prove regularity of

the solution in the 
ase of more regular data. In parti
ular we obtain strong solutions to

the Stokes resolvent problem with inhomogeneous boundary 
onditions and divergen
e.

In Se
tion 5.3 we return to data more regular data given by distributions on 
 and �
.

In this 
ontext we return to a situation similar to the one 
onsidered in [3℄, [12℄. We show

how the theory presented there is 
ontained in the one presented in Se
tion 5.1. To treat

the boundary 
onditions we �nd a Bana
h spa
e

~

W

q;r

w; ~w


ontaining all very weak solutions

with respe
t to appropriate data and a restri
tion operator tr :

~

W

q;r

w; ~w

! T

0;q

w

(
) to the

boundary whi
h 
oin
ides with the usual tra
e on smooth fun
tions.

2 Preliminaries

Let A

q

, 1 < q < 1 be the set of Mu
kenhoupt weights whi
h is given by all 0 � w 2

L

1

lo


(R

n

) for whi
h

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1 (2.1)
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The supremum is taken over all 
ubes in R

n

and jQj stands for the Lebesgue measure

of Q. A 
onstant C = C(w) is 
alled A

q

-
onsistent if for every 


0

> 0 it 
an be 
hosen

uniformly for all w with A

q

(w) < 


0

.

The the A

q


onsisten
e is of great importan
e when shoving the maximal regularity

of an operator. (See [9℄ or [6℄ for details)

For w 2 A

q

and an open set 
 we de�ne

L

q

w

(
) := ff 2 L

1

lo


(
) j kfk

q;w

:=

�

Z




jf j

q

w dx

�

1

q

<1g:

It is easily seen that (L

q

w

(
))

0

= L

q

0

w

0

(
) with

1

q

+

1

q

0

= 1 and w

0

= w

�

1

q�1

. By [17℄ and

[13℄, if w 2 A

q

then the maximal operator

M : L

q

w

(R

n

)! L

q

w

(R

n

); (Mf)(x) = sup

r>0

1

jB

r

j

Z

jyj�r

jf(x� y)jdy

is 
ontinuous.

Moreover, we introdu
e the weighted Sobolev spa
es

W

k;q

w

(
) =

n

u 2 L

q

w

(
); j kuk

k;q;w

:=

X

j�j�k

kD

�

uk

q;w

<1

o

and W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

as well as its dual spa
e W

�k;q

w

(
) := (W

k;q

w;0

(
))

0

.

Sin
e for k � 1 one has W

k;q

w

(
) � W

k;1

lo


(
) the restri
tion u 7! uj

�


is well-de�ned.

Thus we may de�ne T

k;q

w

(�
) := (W

k;q

w

(
))j

�


equipped with the norm k � k

T

k;q

w

of the

fa
tor spa
e

kgk

T

k;q

w

(�
)

:= inffu 2 W

k;q

w

(
) j uj

�


= gg:

Moreover, we set T

0;q

w

(�
) = (T

1;q

w

(�
))

0

. Then L

q

w

(
), W

k;q

w

(
), W

k;q

w;0

(
) and T

k;q

w

(�
)

are re
exive Bana
h spa
es in whi
h C

1

(
) (C

1

(
)j

�


, respe
tively) is dense.

We also use the divergen
e-free version of the spa
es

W

k;q

w;0;�

(
) := fu 2 W

k;q

w;0

(
) j div u = 0g

and C

1

0;�

(
), the spa
e of smooth and divergen
e-free fun
tions with 
ompa
t support

in 
.

By [8℄ the following weighted analogue of the Poin
ar�e inequality holds

kuk

q;w

� 
kruk

q;w

for every u with

Z




u = 0 (2.2)

3 The Problem div u = k

Throughout this se
tion let 1 < q <1 and w 2 A

q

.

Theorem 3.1. Let 
 � R

n

, n � 2, be a bounded and lo
ally lips
hitzian domain.

Assume f 2 W

k;q

0;w

(
) su
h that

R

f = 0. Then there exists a fun
tion u 2 W

k+1;q

w;0

(
)

su
h that

div u = f and kuk

k+1;q;w

� 
kfk

k;q;w

;
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where 
 = 
(
; q; w; k). Moreover u 
an be 
hosen su
h that it depends linearly on f and

su
h that u 2 C

1

0

(
) if f 2 C

1

0

(
).

The proof follows the same lines as the unweighted 
ase [11, 
hapter III.3℄. It uses non-

translation-invariant singular integral operators. Thus we apply the following theorem

proved in [17, V.6.13℄ whi
h ensures the 
ontinuity of a 
ertain 
lass of su
h operators.

Theorem 3.2. Let T be a bounded operator from L

2

(R

n

) into itself that is asso
iated

to a kernel K in the sense that

(Tf)(x) =

Z

R

n

K(x; y)f(y)dy

for all 
ompa
tly supported f 2 L

2

(R

n

) and all x outside the support of f . Suppose that

for some 
 > 0 and some A > 0, K satis�es the inequalities

jK(x; y)j � Ajx� yj

�n

(3.1)

and

jK(x; y)�K(x

0

; y)j � A

jx� x

0

j




jx� yj

n+


; if jx� x

0

j �

1

2

jx� yj (3.2)

as well as the symmetri
 version of the se
ond inequality in whi
h the roles of x and y

are inter
hanged. Writing

(T

"

f)(x) =

Z

jx�yj>"

K(x; y)f(y)dy and (T

�

f)(x) = sup

">0

j(T

"

f)(x)j;

we have that

Z

[(T

�

f)(x)℄

q

w(x)dx � 


Z

[(Mf)(x)℄

q

w(x)dx; (3.3)

where f is bounded and has 
ompa
t support, w 2 A

q

, and 1 < q <1.

Sin
e the maximal operatorM : L

q

w

(R

n

)! L

q

w

(R

n

) is 
ontinuous, the inequality (3.3)

guaranties the 
ontinuity of T

�

.

However, to make use of the above theorem we have to modify the singular integral

operator whi
h appears in the proof of Lemma 3.3 outside the bounded set 
 su
h that

it possesses the properties assumed in 3.2.

In the proof of the following Lemma the o

urring integral operators have to be

understood in the Cau
hy prin
iple value sense lim

"!0

T

"

f .

Lemma 3.3. Let 
 � R

n

, n � 2, be bounded and star-shaped with respe
t to every point

of some ball B with B � 
.

Then for every f 2 W

k;q

w;0

(
) with

R

f = 0 there exists a v 2 W

k+1;q

w;0

(
) with

div v = f and kvk

k+1;q;w

� 
kfk

k;q;w

;


 = 
(
; q; w; k), v depending linearly on f and f 2 C

1

0

(
) implies v 2 C

1

0

(
).
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Proof. Without loss of generality we may assume, using a 
oordinate transformation,

that B = B

1

(0).

First we assume that f 2 C

1

0

(
).

We 
hoose a 2 C

1

0

(B

1

(0)) su
h that

R

a = 1 and de�ne

v(x) :=

Z




f(y)(x� y)

�

Z

1

1

a (y + �(x� y)) �

n�1

d�

�

dy: (3.4)

In the proof of [11, Lemma III.3.1℄ it is shown that v 2 C

1

0

(
) and div v = f .

It thus remains to prove the weighted estimates. Therefore we use the following

representation of �

j

v also shown in the proof of [11, Lemma III.3.1℄:

�

j

v

i

(x) =

Z




K

i;j

(x; x� y)f(y)dy + f(x)

Z




(x

j

� y

j

)(x

i

� y

i

)

jx� yj

2

a(y)dy =: F

1

(x) + F

2

(x);

(3.5)

where

K

i;j

(x; x� y) =

Æ

i;j

jx� yj

n

Z

1

0

a

�

x + r

x� y

jx� yj

�

(jx� yj+ r)

n�1

dr

+

x

i

� y

i

jx� yj

n+1

Z

1

0

�

j

a

�

x + r

x� y

jx� yj

�

(jx� yj+ r)

n

dr;

(3.6)

for every x; y 2 R

n

. To show the 
ontinuity of the integral operator f 7! F

1

its kernel

must be modi�ed. Set

E := fz 2 
 j z = �z

1

+ (1� �)z

2

; z

1

2 supp f; z

2

2 B

1

(0); � 2 [0; 1℄g:

Sin
e 
 is star-shaped, E is a 
ompa
t subset of 
. For x 62 E and y 2 supp f we have

x+ r

x� y

jx� yj

62 B for all r > 0:

Thus, if we 
hoose a 
ut-o� fun
tion  2 C

1

0

(R

n

) with  (x) = 1 on 
 and supp �

B

R

(0) for some R > 0, and set '(x; y) =  (x) (y) we obtain

f(y)K

i;j

(x; x� y) = f(y)'(x; y)K

i;j

(x; x� y) =: f(y)

~

K

i;j

(x; x� y);

for x; y 2 R

n

, if f is assumed to be extended by 0 to R

n

. Moreover, for x 2 B

R

(0) we

have r > R + 1 ) a

�

x� r

x�y

jx�yj

�

= 0. Thus for x 2 
 one has

Z




f(y)K

i;j

(x; x� y)dy =

Z




f(y)

~

K

i;j

(x; x� y)dy

=

Z




f(y)'(x; y)

�

Æ

i;j

jx� yj

n

Z

R+1

0

a

�

x + r

x� y

jx� yj

�

(jx� yj+ r)

n�1

dr

+

x

i

� y

i

jx� yj

n+1

Z

R+1

0

�

j

a

�

x + r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

dy;
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Now we have to prove that

~

K

i;j

satis�es the assumptions of Theorem 3.2. By the proof

of [11, Lemma III.3.1℄ and the Calderon-Zygmund Theorem [11, Theorem II.9.4℄ we �nd

that

f 7!

Z




K

i;j

(x; x� y)f(y)dy : L

2

(R

n

)! L

2

(R

n

)

is 
ontinuous. Sin
e the multipli
ation M

 

with the C

1

0

-fun
tion  is a 
ontinuous

operator on L

2

(R

n

) we obtain the 
ontinuity of

f 7!

Z




~

K

i;j

(x; x� y)f(y)dy =M

 

Z




K

i;j

(x; x� y)M

 

f(y)dy : L

2

(R

n

)! L

2

(R

n

):

It remains to prove the estimates (3.1) and (3.2). For (3.1) we may assume jxj; jyj < R.

One has

jx� yj

n

j

~

K

i;j

(x; x� y)j =

�

�

�

�

'(x; y)Æ

i;j

Z

R+1

0

a

�

x + r

x� y

jx� yj

�

(jx� yj+ r)

n�1

dr

+ '(x; y)

x

i

� y

i

jx� yj

Z

R+1

0

�

j

a

�

x + r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

�

�

�

� 


�

Z

R+1

0

(2R + r)

n�1

dr +

Z

R+1

0

(2R + r)

n

dr

�

= 
:

To prove (3.2) we take x; x

0

; y 2 R

n

with jx � x

0

j �

1

2

jx � yj. If (x; y); (x

0

; y) 62 supp'

nothing is to prove. Thus, without loss of generality we may assume that y � R

and x � 3R. Then using the triangle inequality together with the fa
t that a, ' and

(jx � yj + r)

n

are Lips
hitz 
ontinuous on 
ompa
t sets a straight forward 
al
ulation

shows (3.2).

Combining the above and using Theorem 3.2 we obtain

kF

1

k

q;w

� kT

�

fk

q;w

� 
kMfk

q;w

� 
kfk

q;w

where T

�

is the operator given by Theorem 3.2 and asso
iated to the kernel

~

K

i;j

. F

2

is easily estimated, sin
e

R




(x

j

�y

j

)(x

i

�y

i

)

jx�yj

2

a(y)dy is bounded. Thus using the Poin
ar�e

inequality (2.2) we obtain kvk

1;q;w

� 
kfk

q;w

. Now the general 
ase with f 2 L

q

w

(
)

follows easily, sin
e we 
an approximate f by C

1

0

-fun
tions (f

n

) with

R

f

n

= 0.

It remains to prove the estimate in the spa
es W

k;q

w

(
). By [11, Remark III.3.2℄ we

have

�

�

v(x) =

X

���

�

�

n

�

n

�

Z




N

�

(x; y)�

���

f(x; y)dy;

where

N

�

(x; y) =

Z

1

1

�

�

a(y + r(x� y))r

n�1

dr:

Clearly �

�

a 2 C

1

0

(B

1

(0)). Hen
e the same proof as above yields kD

�

vk

1;q;w

� 
kfk

q;w

for f 2 C

1

0

(
). Approximating an arbitrary f 2 W

k;q

0;w

by C

1

0

-fun
tions (f

n

) with

R

f

n

= 0 �nishes the proof.

Using a de
omposition of the unity one obtain Theorem 3.1 from Lemma 3.3.
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4 Extension Theorems

4.1 Appropriate Charts

A domain 
 is 
alled a C

k;1

-domain, if the boundary 
an be lo
ally expressed as the

graph of a C

k;1

-fun
tion, i.e for every x

0

2 �
 we 
an rotate the 
oordinate system su
h

that in a neighborhood U(x

0

) of x

0

one has

�
 \ U(x

0

) = f(x

0

; a(x

0

)) j x

0

2 V (x

0

)g; (4.1)

where V (x

0

) is an appropriate ((n� 1)-dimensional) neighborhood of 0 and a : V (0)!

U(x

0

) � R is a C

k;1

-fun
tion. The fun
tion a and the 
oordinate system 
an be 
hosen

su
h that ra(0) = 0.

For the de�nition of the boundary values of a very weak solutions we need appropriate

extension theorems. The proof of them requires a 
hart � for whi
h one has

�

�x

n

�(x

0

; 0) =

�N(x

0

), i.e. normals to the boundary of the half spa
e are mapped to normals to �
.

The natural mapping with this property would be

x = (x

0

; x

n

) 7!

�

x

0

a(x

0

)

�

+ x

n

�N(x

0

):

Su
h 
harts are used by Ne�
as [14℄. However, if a is a C

k;1

-fun
tion, then this 
hart is

only of 
lass C

k�1;1

. For this reason we introdu
e a di�erent 
hart whi
h 
onserves the

regularity and still has the mentioned property.

Lemma 4.1. Let 
 � R

n

be a C

k;1

-domain. Then for every x

0

2 �
 there exists a

neighborhood U of x

0

and a neighborhood V of 0 and a bije
tive map � : V ! U su
h

that

�(0) = x

0

; �(V \R

n�1

) = U \ �
 and �(V \R

+

) = U \ 


and with the following properties:

1. � 2 C

k;1

(V; U)

2.

�

�x

n

�(x

0

; 0) = �N(x

0

) and

�

�

�x

n

�

j

�(x

0

; 0) = 0; (j = 2; :::; k).

Proof. We use the notation x = (x

0

; x

n

) with x

0

2 R

n�1

and x

n

2 R.

Let 0 � � 2 C

1

0

(R

n�1

) radial symmetri
 su
h that supp � � B

1

(0) and

R

� = 1. Set

�

t

(x

0

) =

1

t

n�1

�(

x

0

t

). We de�ne the fun
tion � as follows:

�(x

0

; x

n

) =

�

x

0

a(x

0

)

�

� (x

n

�

x

n

�N)(x

0

):

7



Then one has for every multi index 
 = (


0

; 


n

), with j
j � k and j


0

j < k

�




(x

n

�

x

n

�N)(x

0

) =�




n

(x

n

�

x

n

�N

(


0

)

(x

0

))

=�




n

x

n

Z

�(�)N

(


0

)

(x

0

� x

n

�)d�

=


n

(�1)




n

�1

Z

�(�)r




n

�1

N

(


0

)

(x

0

� x

n

�) (�; :::; �)

| {z }




n

�1

d�

+ x

n

�

�x

n

0

�

(�1)




n

�1

Z

�(�)r




n

�1

N

(


0

)

(x

0

� x

n

�) (�; :::; �)

| {z }




n

�1

d�

1

A

=(�1)




n

�1

Z

((�n+ 2)�(�)�r�(�) � �)

� r




n

�1

N

(


0

)

(x

0

� �x

n

) (�; :::; �)

| {z }




n

�1

d�:

(4.2)

Still we have to 
onsider the 
ase j


0

j = k. Then the situation is easier:

�




(x

n

�

x

n

�N)(x

0

) =

Z

�

(�

1

)

(�)N

(�

2

)

(x

0

� x

n

�)d� (4.3)

where 
 = �

1

+ �

2

and j�

1

j = 1.

The map x 7!

�

x

0

a(x

0

)

�

is of type C

k;1

be
ause a is. It remains to show that �




(x

n

�

x

n

�

N(x

0

)) is Lips
hitz 
ontinuous for every 
 2 N

n

, j
j � k. This is an easy 
onsequen
e

of the representations (4.2) and (4.3) and of N 2 C

k�1;1

, e.g.

j�




(x

n

�

x

n

�N(x

0

))� �




(y

n

�

y

n

�N(y

0

))j

�

Z

B

1

(0)

j


n

�(�)�r�(�) � �j jr




n

�1

N

(


0

)

(x

0

� �x

n

)�r




n

�1

N

(


0

)

(y

0

� �y

n

)jd�

� 
L




sup

�2B

1

(0)

jx

0

� y

0

+ �(x

n

� y

n

)j � 
L




jx� yj:

A similar 
al
ulation shows that the expression in (4.3) is Lips
hitz 
ontinuous.

The representation (4.2) and a straight forward 
al
ulation shows that for 1 < j � k

�

�

�x

n

�

j

�(x

0

; 0) = (�1)




n

�1

r

j�1

N(x

0

)2

Z

�(�)(�; :::; �)d� = 0;

sin
e � is rotation symmetri
 and � 7! (�; :::; �) is an odd fun
tion. Moreover,

�

�x

n

�(x

0

; 0) = �N(x

0

)

 

(2� n)

Z

�(�)d� �

n�1

X

i=1

Z

�

i

�(�)�

i

d�

!

= �N(x

0

):

This shows 2.

Using without loss of generality ra(0) = 0 and the representation formulas (4.2) and

(4.3) shows r�(0) = id . Thus the Impli
it Fun
tion Theorem shows that � is lo
ally

invertible and the proof is 
omplete.
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4.2 Extension of Normal Derivatives

Our next obje
tive is to 
onstru
t a linear extension operator. A good way to do this is

to 
onsider solutions to the resolvent problem of the Diri
hlet-Lapla
ian.

The following Theorem is proved in exa
tly the same way as in the 
lassi
al unweighted


ase. (see e.g. Evans [2℄ 6.3. Thm. 5). For the existen
e of weak solutions in weighted

spa
es see [9℄.

Theorem 4.2. (Regularity of the Diri
hlet Problem)

Let 1 < q <1, k 2 N, let f 2 W

k;q

w

(R

n

+

) and u 2 W

1;q

w

(R

n

+

) be the weak solution of

(1��)u = f and uj

R

n�1

= 0:

Then u 2 W

k+2;q

w

(R

n

+

) with kuk

k+2;q;w

� 
kfk

k;q;w

.

The same is true for the solution u of (1��)u = 0; uj

R

n�1

= g, if g 2 T

k+2;q

w

(R

n�1

).

Theorem 4.3. Let 1 < q < 1, w 2 A

q

and k 2 N. Then there exists a 
ontinuous

linear operator

T :

k�1

Y

j=0

T

k�j;q

w

(R

n�1

)! W

k;q

w

(R

n

+

)

su
h that

�

j

�x

j

n

T (g

0

; :::; g

k�1

)j

x

n

=0

= g

j

.

Proof. It suÆ
es to show that for every g 2 T

k�j;q

w

(R

n�1

), j = 1; :::; k � 1 there exists

a u 2 W

k;q

w

(R

n

+

) depending 
ontinuously and linearly on g su
h that

�

j

�x

j

n

u = g and

�

i

�x

i

n

u = 0 for every i = 0; :::; j � 1.

To show this weaker assertion let v 2 W

k�j;q

w

(R

n

+

) with (1��)v = 0 and vj

R

n�1

= g

whi
h is uniquely de�ned by [9, Theorem 4.4.℄ and Theorem 4.2. Let � 2 C

1

(R

+

) be

a 
ut-o� fun
tion with �(t) = 1 for t < 1 and �(t) = 0 for t > 2. We set

�(x) = �(x

n

) = x

j

n

� �(x

n

) and u(x) = �(x)v(x):

We want to show that �u solves the problem. More pre
isely we prove the following:

If � 2 C

1

(R

n

+

) with �(x) = �(x

n

), supp� � R

n�1

� [0; 2) and (

�

�x

n

)

m

�j

x

n

=0

=

0 for m = 0; :::; l and v 2 W

k;q

w

(R

n

+

) with (1 � �)v = 0 then �v 2 W

k+l;q

w

(
) with

k�vk

k+l;q;w

� 
kvk

k;q;w

.

To prove this we use mathemati
al indu
tion with respe
t to l and assume that we

already know the assertion is true for l � 1, l � 2 and all k.

Sin
e (1��)v = 0 we obtain

(1��)(�v) = ��v + 2rvr�: (4.4)

As (

�

�x

n

)

m

��j

x

n

=0

= 0 for m = 0; :::; l � 2, (

�

�x

n

)

m

r�j

x

n

=0

= 0 for m = 0; :::; l � 1 and

(1��)rv = 0, (4.4) and indu
tion yields (1��)(�v) 2 W

k+l�2;q

w

(
). Thus and sin
e

�vj

R

n�1

= 0, one has �v 2 W

k+l;q

w

(
) by the regularity of the Lapla
e resolvent problem.

Moreover

k�vk

k+l;q;w

� 
k��v + 2rvr�k

k+l�2;q;w

� 
(kvk

k;q;w

+ krvk

k�1;q;w

) � 
kvk

k;q;w

:
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For the start of indu
tion we need the 
ases l = 0 and l = 1. However they are proved

in the same way as the indu
tion step.

Thus we have shown u 2 W

k;q

w

(
). Moreover

�

l

�x

l

n

u(x

0

; 0) =

l

X

�=0

�

l

�

�

�

�

�x

�

n

v

�

l��

�x

l��

n

�(x

0

; 0) =

(

0 if l < j

g(x

0

) if l = j:

This shows the assertion about the boundary values.

Lemma 4.4. Let 
 and O be two domains in R

n

and � : O ! 
 a bije
tive C

k�1;1

-

mapping, k � 1. Then the operator

T : u 7! u Æ � : W

k;q

w

(
)!W

k;q

wÆ�

(O)

is 
ontinuous with kTuk

k;q;wÆ�;O

� 
kuk

k;q;w;


, 
 = 
(k; q; �).

The same is true for the operator

S : g 7! g Æ � : T

k;q

w

(�
)! T

k;q

wÆ�

(�O):

Proof. The 
ase k = 1 has been proved in [7℄ Lemma 3.17. Assume � 2 C

k�1;1

(O) and

the asserted 
ontinuity holds for k repla
ed by j, j < k. Then

kr(u Æ �)k

j;q;wÆ�;O

= k((ru) Æ �) � r�k

j;q;wÆ�;O

� 
k(ru) Æ �k

j;q;wÆ�;O

� 
kuk

j+1;q;w;


:

Thus Tu 2 W

j+1;q

wÆ�

(O) with k(uÆ�)k

j+1;q;wÆ�;O

� 
kuk

j+1;q;w;


. This proves the assertion.

The se
ond statement follows from the 
ontinuity of T and the identity S(g) = T (u)j

�O

,

where u 2 W

k;q

w

(
) is an extension of g.

Theorem 4.5. Let 
 � R

n

be a bounded C

k�1;1

-domain, k � 1. Then there exists a


ontinuous linear operator

L :

k�1

Y

j=0

T

k�j;q

w

(�
)!W

k;q

w

(
)

su
h that

�

j

�N

j

L(g) = g

j

, where g = (g

0

; :::; g

k�1

).

Proof. We 
hoose the 
olle
tion of 
harts (�

i

; V

i

; U

i

)

m

i=1

a

ording to Lemma 4.1 and a

de
omposition of the unity (�

i

)

m

i=1

subordinate to the U

i

.

Step 1: (Constru
tion of L)

To simplify the notation we �x i and set 
 = �

i

, U = U

i

, V = V

i

and � = �

i

.

Moreover we set ~g

j

= (g

j

� �) Æ 
 and ~g = (~g

0

; :::; ~g

k�1

). By Lemma 4.4 we know

~g

j

2 T

k�j;q

w

(R

n�1

). Thus we may apply the operator T from Theorem 4.3 and set

v := v

i

:= L

i

(g

0

; :::; g

k

) :=  

i

T (~g

0

; :::; ~g

k

) Æ 


�1

and L(g

0

; :::; g

k

) =

P

1

i=1

 

i

L

i

(g

0

; :::; g

k

),

where ( 

i

)

i

� C

1

0

(
) with  

i

= 1 in a neighborhood of supp�

i

\ �
 and supp 

i

� U

i

.

Step 2: We show that

�

j

�N

j

L(g

0

; :::; g

k�1

) = g

j

.

We have

~g

j

(x

0

) =

�

j

�x

j

n

T (~g)(x

0

; 0) =

�

j

�x

j

n

(v Æ 
)(x

0

; 0) =

�

j�1

�x

j�1

n

(rv Æ 
)�

n


(x

0

; 0)

= r

j

v Æ 
(�

n


; :::; �

n


)(x

0

; 0) + Terms 
ontaining �

i

n


, i � 2

= r

j

v(
(x

0

; 0)(N(x

0

); :::; N(x

0

)

| {z }

j

) =

�

j

�

j

N

v(
(x

0

; 0))
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by the 
hoi
e of 
 
ording to Lemma 4.1. Finally we obtain

�

j

�

j

N

L(g

0

; :::; g

k�1

) =

1

X

i=1

 

i

�

j

�

j

N

L

i

(g

0

; :::; g

k�1

) =

1

X

i=1

�

i

g

j

= g

j

:

Step 3: (Continuity of L)

kL(g

0

; :::; g

k�1

)k

q

k;q;w;


= k

m

X

i=1

 

i

T (�

i

g

0

; :::; �

i

g

k�1

) Æ 


�1

k

q

k;q;w;


� 


m

X

i=1

k�1

X

j=0

k�g

j

k

q

T

k�j;q

w

(�
)

�

k�1

X

j=0

kg

j

k

q

T

k�j;q

w

(�
)

using Lemma 4.4 and Theorem 4.3.

5 The Stokes Problem with Irregular Data

Let 
 be a bounded domain in R

n

, n � 2 with C

1;1

-boundary and let 1 < q < 1 and

w 2 A

q

. The aim of this se
tion is to �nd a 
lass of solutions to the Stokes problem in

weighted Lebesgue- and Sobolev-spa
es, where the divergen
e and exterior for
e are so

irregular that it is impossible to speak of boundary values. Moreover it will be shown

that this 
lass of solutions in
ludes strong solutions.

In the 
ase that the data is regular enough su
h that it 
an be des
ribed by distribu-

tions on 
 and on �
 we des
ribe in whi
h sense boundary values 
an be explained.

5.1 Very Weak Solutions Con
erning Non-Distributional Data

Let w 2 A

q

. We 
onsider exterior for
es f in Y

w

0

;q

0

(
)

0

, the dual spa
e of

Y = Y

w

0

;q

0

(
) = fu 2 W

2;q

0

w

0

(
) j uj

�


= 0g;

and assume the divergen
e k to be 
ontained in the spa
e

W

�1;q

w;0

(
) = (W

1;q

0

w

0

(
))

0

:

Lemma 5.1. C

1

(
) is dense in Y

0

and in W

�1;q

w;0

(
).

Proof. Y is re
exive being a 
losed subspa
e of the re
exive spa
e W

2;q

0

w

0

(
). Let x 2

Y

00

= Y su
h that h�; xi = 0 for all � 2 C

1

(
). This yields x = 0 and the assertion is

proved. The assertion about W

�1;q

w;0

(
) is proved in the same way.

Note that these spa
es do not 
onsist of distributions on 
 sin
e C

1

0

(
) is neither

dense in Y

q

0

;w

0

nor in W

1;q

0

w

0

(
). This leads to some diÆ
ulties when talking about

derivatives. However restri
ting f or k to test fun
tions ' 2 C

1

0

(
) one obtains an

element of W

�2;q

w

(
) or W

�1;q

w

(
), respe
tively. If we say that equations are ful�lled in

11



the distributional sense, we 
onsider these restri
tions. Our spa
e of test fun
tions will

be

Y

q

0

;w

0

;�

:= Y

�

:= f' 2 Y

w

0

;q

0

(
) j div' = 0g;

whi
h is by no 
oin
iden
e equal to the domain of de�nition of the Stokes operator in

L

q

0

w

0

(
).

De�nition 5.2. Let f 2 Y

w

0

;q

0

(
)

0

and k 2 W

�1;q

w;0

(
). A fun
tion u 2 L

q

w

(
) is 
alled

1. a very weak solution to the Stokes problem with respe
t to the data f and k if

hf; 'i = �hu;�'i; for all ' 2 Y

�

and (5.1)

hk;  i = �hu;r i; for all  2 W

1;q

0

w

0

(
): (5.2)

2. a very weak solution to the Stokes resolvent problem with respe
t to the data f and

k and � 2 C, if

hf; 'i = h�u; 'i � hu;�'i; for all ' 2 Y

�

and (5.3)

hk;  i = �hu;r i; for all  2 W

1;q

0

w

0

(
): (5.4)

Setting  = 1 in (5.2) and (5.4) it follows that a ne
essary 
ondition for the existen
e

of su
h a very weak solution u is hk; 1i = 0. This 
ondition is the analogue to the


ompatibility 
ondition hk; 1i = hg;Ni

�


between divergen
e and boundary values in

the 
ase of weak solutions.

Remark 5.3. Two 
omments about the missing boundary values:

1. For every u 2 L

q

w

(
) one has [' 7! hu;�'i℄ 2 Y

0

and [ 7! hu;r i℄ 2 W

�1;q

w;0

(
).

Thus any u 2 L

q

w

(
) appears as a very weak solution to the Stokes problem with

respe
t to appropriate data. However, sin
e C

1

0

(
) is dense in L

q

w

(
), it is im-

possible to de�ne boundary values for arbitrary L

q

w

-fun
tions in the sense of a


ontinuous linear operator from L

q

w

(
) into some boundary spa
e whi
h 
oin
ides

with the usual tra
e on smooth fun
tions.

2. Dealing with very weak solutions one 
an de�ne boundary values as des
ribed in

(1.4). This is done in [12, 3℄ in the 
ase of more regular data. However one easily

sees that if g 2 T

0;q

w

(�
) then

G = [' 7! hg;N � r'i

�


℄ 2 Y

0

and K = [ 7! hg;N �  i

�


℄ 2 W

�1;q

w;0

(
);

the spa
es of exterior for
es and divergen
es, respe
tively. This means

�hu;�'i = hf; 'i+ hg;N � r'i

�


= hf +G;'i and

�hu;r i = hk;  i+ hg;N �  i

�


= hk +K; i:

Hen
e, sin
e the data is so irregular, it is impossible to distinguish between for
e

or divergen
e and boundary value.
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Proof of Theorem 1.1.

Step 1 Let v 2 L

q

0

w

0

(
). By the existen
e of strong solutions to the Stokes resolvent

problem ([8, Theorem 3.3℄ in the 
ase of weighted and [11, 16℄ in the 
ase of un-weighted

spa
es) there are unique fun
tions � 2 W

2;q

0

w

0

(
) and  2 W

1;q

0

w

0

(
) su
h that

�����+r = v and div � = 0 in 
; �j

�


= 0 and

Z

 = 0: (5.5)

This solution satis�es �k�k

q

0

;w

0

+ k�k

2;q

0

;w

0

+ k k

1;q

0

;w

0

� 
kvk

q

0

;w

0

with an A

q


onsistent


onstant 
.

Step 2 (Existen
e and a priori estimates) Setting for v 2 L

q

0

w

0

(
)

hu; vi := hf; �i � hk;  i; with (�;  ) as in (5:5)

we obtain

jhu; vij = jhf; �ij+ jhk;  ij � kfk

Y

0

k�k

2;q

0

;w

0

+ kkk

W

�1;q

w;0

(
)

k k

1;q

0

;w

0

� 
(kfk

Y

0

+ kkk

W

�1;q

w;0

(
)

)kvk

q

0

;w

0

:

Thus u 2 (L

q

0

w

0

(
))

0

= L

q

w

(
) and ful�lls kuk

q;w

� 
(kfk

Y

0

+ kkk

W

�1;q

w;0

) with 
 inde-

pendent of � and depending A

q

-
onsistently on w.

We now show that u is a very weak solution to the Stokes problem with respe
t to f

and k. Choose test-fun
tions � 2 Y

�

and  2 W

1;q

0

w

0

(
). Then setting v = �����+r 

we obtain from the uniqueness of strong solutions

hu; ����� +r i = hu; vi = hf; �i � hk;  i:

Sin
e � and  were 
hosen arbitrarily (5.3) and (5.4) are ful�lled.

Step 3 (Uniqueness) Assume U 2 L

q

w

(
) is a very weak solution to the Stokes resolvent

problem with respe
t to f and k. As above for every v 2 L

q

0

w

0

(
) we �nd � 2 Y

�

and

 2 W

1;q

0

w

0

(
) su
h that �u���+r = v. If we add the equations (5.3) and (5.4) we

obtain

hU; vi = hU; �����+r i = hf; �i � hk;  i = hu; vi:

Sin
e v 2 L

q

0

w

0

(
) was arbitrary we obtain u = U . Moreover let � 2 Y

q

0

;w

0

;�

. Then we

obtain from the equation

jh�u; �ij � jhu;��ij+ jhf; �ij � (kuk

q;w

+ kfk

Y

0

q

0

;w

0

)k�k

2;q

0

;w

0

� 
(kfk

Y

0

+ kkk

W

�1;q

w;0

(
)

)k�k

2;q

0

;w

0

:

This proves (1.5)

Theorem 5.4. Let f and k be 
hosen as in Theorem 1.1 and let u 2 L

q

w

(
) be the

asso
iated very weak solution to the Stokes problem. Then there exists a unique pressure

fun
tional p 2 W

�1;q

0;w

(
) (unique modulo 
onstants) su
h that (u; p) solves

�hu;��i � hp; div�i = hF; �i for all � 2 Y

q

0

;w

0

:
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In parti
ular

��u+rpj

C

1

0

(
)

= f j

C

1

0

(
)

in the sense of distributions. The fun
tions (u; p) ful�ll the inequality

kuk

q;w

+ kpk

W

�1;q

w;0

� 
(kfk

Y

0

+ kkk

W

�1;q

w;0

); (5.6)

where 
 = 
(
; q; w).

Proof. By Lemma 5.1 there exist sequen
es (f

n

)

n

; (k

n

)

n

� C

1

(
) su
h that

f

n

Y

0

q

0

;w

0

���! f and k

n

W

�1;q

0;w

(
)

�����! k:

Then by [8, Theorem 3.3℄ there exist unique solutions (u

n

; p

n

) 2 W

2;q

w

(
) � W

1;q

w

(
)

su
h that

��u

n

+rp

n

= f

n

; div u

n

= k

n

; u

n

j

�


= 0;

Z

p

n

= 0:

Integration by parts immediately yields that u

n

is a very weak solution with respe
t

to f

n

; k

n

. Now the a priori estimate (5.2) yields u

n

L

q

w

(
)

���! u. For � 2 W

1;q

0

w

0

(
) with

R

� = 0 let � 2 Y

q

0

;w

0

with ��� + r� = 0 and div � = � and k�k

2;q

0

;w

� 
k�k

1;q

0

;w

0

.

Thus we obtain

jhp

n

� p

m

; �ij = jhp

n

� p

m

; div �ij = jhr(p

n

� p

m

); �ij

� jh�(u

n

� u

m

); �ij+ jhf

n

� f

m

; �ij

� 
(ku

n

� u

m

k

q;w

+ kf

n

� f

m

k

(Y

q

0

;w

0

)

0

)k�k

1;q;w

:

Thus kp

n

� p

m

k

�1;q;w;0

� 
(ku

n

�u

m

k

q;w

+kf

n

� f

m

k

Y

0

)

n;m!1

����! 0 and (p

n

)

n

is a Cau
hy

sequen
e 
onverging to some p 2 W

�1;q

0;w

(
). For this p

�hu;��i � hp; div �i = lim

n!1

(�hu

n

;��i � hp

n

; div�i) = lim

n!1

hf

n

; �i = hf; �i

holds for every � 2 Y

q

0

;w

0

. The estimate (5.6) follows from the estimates for p

n

.

5.2 Regularity

The following theorem des
ribes how strong solutions �t into the 
ontext of very weak

solutions 
onsidered in the previous se
tion. Moreover it prepares further 
onsiderations

about boundary values in the weakest possible sense.

From now on we assume the following situation: Let 1 < r < 1 and ~w 2 A(r) su
h

that

L

r

0

~w

0

(
) ,! L

q

0

w

0

(
): (5.7)

Then by duality it follows

L

r

~w

(
) ,!W

�1;q

w;0

(
) and W

�1;r

~w

(
) ,! Y

0

q

0

;w

0

:

The reason why we require these embeddings is that Sobolev-like inequalities in weighted

spa
es need strong assumptions on the weight-fun
tions. In [10℄ suÆ
ient 
onditions for

su
h embeddings are shown using the 
ontinuity of singular integral operators shown in

[15℄.
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Theorem 5.5. Assume that f 2 Y

0

q

0

;w

0

and k 2 W

�1;q

w;0

(
) allow a de
omposition into

hf; �i = hF; �i � hg;N � r�i

�


for all � 2 Y

q

0

;w

0

;

hk;  i = hK; i � hg;N �  i

�


for all  2 W

1;q

0

w

0

(
)

(5.8)

with g 2 T

0;q

w

(�
); F 2 W

�1;r

~w

(
); K 2 L

r

~w

(
), where 1 < r < 1 and ~w 2 A(r) are


hosen a

ording to (5.7). Then one has

1. Su
h a de
omposition is uniquely de�ned by f and k.

2. For � 2 �

"

[ f0g every strong solution u to the Stokes resolvent problem 
orre-

sponding to the data g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
) is a very weak

solution 
orresponding to the data f and k with the notation of (5.8).

3. If g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
), then the very weak solution u

to the Stokes resolvent problem with respe
t to f and k is a strong solution with

respe
t to F;K and g. In parti
ular u 2 W

2;q

w

(
) and

j�jkuk

q;w

+ kuk

2;q;w

� 
(kFk

q;w

+ kKk

1;q;w

+ k�Kk

W

�1;q

w;0

+ kgk

T

2;q

w

(�
)

+ k�gk

T

0;q

w

):

(5.9)

Proof. 1. Let hf; �i = hF

i

; �i � hg

i

; N � r�i

�


for i = 1; 2. This means

hF

1

� F

2

; �i = hg

1

� g

2

; N � r�i

�


for � 2 Y

q;w

:

The latter fun
tional vanishes on C

1

0

(
) and sin
e F

1

� F

2

is a distribution on 
, it

follows that F

1

� F

2

= 0 and hen
e hg

1

� g

2

; N � r�i = 0 for every � 2 Y

q

0

;w

0

. By

Theorem 4.3 the mapping

� 7! N � r� : Y

q

0

;w

0

! T

1;q

0

w

0

(�
)

is surje
tive, hen
e g

1

= g

2

. Analogously for the divergen
e.

2. Follows immediately from Green's Theorem.

3. By Theorem 4.3 there exists v

1

2 W

2;q

w

(
) with v

1

j

�


= g and kv

1

k

2;q;w

� 
kgk

T

2;q

w

and one has

hK � div v

1

; 1i = hK; 1i � hg;Ni

�


= hk; 1i = 0;

sin
e hk; 1i = 0 is a ne
essary 
ondition for the existen
e of a solution.

Hen
e, by [8, Theorem 3.3℄ there exists a strong solution v

2

2 W

2;q

w

(
) with respe
t

to the exterior for
e f � �v

1

+�v

1

and divergen
e K � div v

1

. It ful�lls the estimate

j�jkv

2

k

q;w

+ kv

2

k

2;q;w

� 
(kFk

q;w

+ k�v

1

k

q;w

+ j�jkv

1

k

q;w

+ kK � div v

1

k

1;q;w

+ j�jkK � div v

1

k

W

�1;q

w;0

):

� 
(kFk

q;w

+ j�jkv

1

k

q;w

+ kKk

1;q;w

+ j�jkK � div v

1

k

W

�1;q

w;0

+ kgk

T

2;q

w

):

(5.10)

Thus u = v

1

+ v

2

is a strong solution to the Stokes resolvent problem with respe
t to

the given data. Moreover, in the 
ase � = 0, also the estimate is proved.
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Now we repeat the above arguments with v

1

repla
ed by the solution to the Stokes

problem

��v

1

+rp = 0; div v

1

= 0 and v

1

j

�


= g:

Then v

1

ful�lls the estimate kv

1

k � 
kgk

2;q;w

. In addition, by 2. we know that v

1

is also

a very weak solution with respe
t to the data

~

f = [� 7! hg;N � r�i℄ and

~

k = [ 7! hg;N �  i℄:

Thus we obtain the estimate

kv

1

k

q;w

� 
(k

~

fk

Y

0

q

0

;w

0

+ k

~

kk

W

�1;q

w

) � 
kgk

T

0;q

w

:

Inserting this in (5.10) we obtain (5.9).

Thus there exists a strong solution to the Stokes resolvent problem with respe
t to

the given data whi
h ful�lls the estimate.

The uniqueness of very weak solutions proved in Theorem 1.1 together with 2. yields

that u 
oin
ides with the very weak solution. In parti
ular the very weak solution is

regular a

ording to the data.

Remark 5.6. If there exist de
ompositions for the data f and k as in (5.8) even with

smooth fun
tions F;K; g this does not mean that f and k are smooth. The reason is, that

if g 6= 0, then � 7! hg;N � r�i is never more regular than Y

0

q

0

;w

0

sin
e it is a fun
tional

supported by the boundary and depending on derivatives.

Vi
e versa, if f and k are regular, e.g. f 2 W

�1;q

w

(
) and k 2 L

q

w

(
) allowing a

de
omposition a

ording to (5.8), then we automati
ally obtain g = 0, whi
h means that

the very weak solution with respe
t to f and k has zero boundary values.

5.3 Boundary Values in Case of More Regular Data

Our next aim is to de�ne boundary values for very weak solutions to the Stokes problem

presumed the data is suÆ
iently regular. To this aim we �nd a Bana
h spa
e 
ontaining

all these solutions and a 
ontinuous linear operator on this spa
e 
oin
iding with the

usual tra
e on C

1

(
).

From now on let 1 < r < 1, ~w 2 A

r

su
h that (5.7) is ful�lled. As a large spa
e of

fun
tions in whi
h the de�nition of tangential boundary 
onditions is possible we de�ne

~

W

q;r

w; ~w

(
) :=

�

u 2 L

q

w

(
)

�

�

(�u)j

C

1

0;�

(
)


an be extended to an element of (W

1;r

0

~w

0

;0;�

(
))

0

	

:

We will omit the 
 and write

~

W

q;r

w; ~w

if no 
onfusion 
an o

ur.

Sin
e � : L

q

w

(
) ! W

�2;q

w

(
) is 
ontinuous, it follows that

~

W

q;r

w; ~w

is a Bana
h spa
e

equipped with the norm

kuk

~

W

q;r

w; ~w

= kuk

q;w

+ k�uj

C

1

0

(
)

k

(W

1;r

0

~w

0

;0;�

(
))

0

:

Lemma 5.7. Let f 2 (Y

q

0

;w

0

;�

)

0

with hf; �i = 0 for every � 2 C

1

0;�

(
).

Then there exists an extension F 2 (Y

q

0

;w

0

)

0

su
h that hF; �i = 0 for every � 2 C

1

0

(
)

and with kFk

(Y

q

0

;w

0

)

0

� 
kfk

(Y

q

0

;w

0

;�

)

0

.
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Proof. First we show that

~

f de�ned by

h

~

f; �i =

(

hf; �i if � 2 Y

q

0

;w

0

;�

0 if � 2 W

2;q

w;0

(
)

is a 
ontinuous fun
tional on Y

q

0

;w

0

;�

+W

2;q

w;0

(
). Well-de�nedness and linearity is 
lear

sin
e hf; �i = 0 on Y

q

0

;w

0

;�

\W

2;q

0

w

0

;0

(
) = W

2;q

0

w

0

;0;�

(
) = C

1

0;�

(
)

2;q

0

;w

0

.

Thus it remains to prove 
ontinuity. By Theorem 3.1 there exists a 
ontinuous linear

operator T : fv 2 W

1;q

0

w

0

;0

(
) j

R

v = 0g !W

2;q

0

w

0

;0

(
) su
h that div (Tv) = v.

Let � 2 Y

q

0

;w

0

;�

+W

2;q

0

w

0

;0

(
). Then div � 2 W

1;q

0

w

0

;0

(
),

R

div � = 0 and we may write

� = (�� Tdiv�) + T (div �). Thus we obtain

jh

~

f; �ij = jh

~

f; ��T (div �)i+h

~

f; T (div �)ij = jhf; ��T (div �)ij � 
kfk

(Y

q

0

;w;�

)

0

k�k

2;q

0

;w;�

and k

~

fk

(Y

q

0

;w

0

;�

+W

2;q

w;0

(
))

0

� 
kfk

(Y

q

0

;w;�

)

0

.

By the Hahn-Bana
h Theorem we may extend

~

f to an element F 2 (Y

q

0

;w

0

)

0

with

kFk

(Y

q

0

;w

0

)

0

= k

~

fk

(Y

q

0

;w

0

;�

+W

2;q

w;0

(
))

0

. This �nishes the proof.

The following Lemma is 
ru
ial when proving the well-de�nedness of the tangential


omponent of the tra
e on

~

W

q;r

w; ~w

.

Lemma 5.8. C

1

(
) is dense in

~

W

q;r

w; ~w

.

Proof. Let u 2

~

W

q;r

w; ~w

. Then by the de�nition ofW

q;r

w; ~w

we have �uj

C

1

0;�

2 (W

1;r

0

~w

0

;0;�

(
))

0

,!

Y

0

q

0

;w

0

;�

. The Hahn-Bana
h-theorem yields the existen
e of some f 2 (W

1;r

0

~w

0

;0

(
))

0

su
h

that

hf; �i = h�u; �i for all � 2 C

1

0;�

(
):

By Lemma 5.7 there exists an extension F 2 Y

0

q

0

;w

0

of (hu;��i � f)j

Y

q

0

;w

0

;�

vanishing

on C

1

0

(
). Analogously to the Stokes equations but easier one 
an prove existen
e

and uniqueness of very weak solutions to the Lapla
e equation. Thus there exists a

v 2 L

q

w

(
) su
h that

hv;��i = hF; �i for all � 2 Y

q

0

;w

0

:

This v is harmoni
 on 
 be
ause hF; �i = 0 for all � 2 C

1

0

(
).

Now we assume temporarily that 
 is star-shaped with respe
t to some ball B

r

(0) with


enter 0 and radius r. So we may set v

�

(x) := v(�x), where � 2 (0; 1). We show that

v

�

�!1

��! v in L

q

w

(
).

Note that the following argumentation strongly relies on the fa
t that v is harmoni
.

For arbitrary u 2 L

q

w

(
) the 
on
lusion u(��) 2 L

q

w

(
) is in general wrong.

Let d = sup

x2


jxj and K <

r

d

. Then for every � with

1

2

< � < 1 one has

B

K(1��)jxj

(�x) � 
 for every x 2 
.
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Now let ~v be the extension of v by 0 to the whole of R

n

. Take x 2 
 and � < 1 �xed.

Sin
e v is harmoni
 we have by the mean value property

jv

�

(x)j = jv(�x)j =

1

jB

K(1��)jxj

(�x)j

�

�

�

�

�

Z

B

K(1��)jxj

(�x)

v(x)dt

�

�

�

�

�

�

1

jB

K(1��)jxj

(�x)j

Z

B

jxj((1��)+K(1��))

(x)

j~v(t)jdt

�

(K + 1)

3

K

3

1

jB

(K+1)(1��)jxj

(x)j

Z

B

jxj(1��)+K(1��))

(x)

j~v(t)jdt � 
M~v(x):

Sin
e M , the maximal operator in L

q

w

(
) is 
ontinuous, one has M~v 2 L

q

w

(R

n

). Thus,

we have found a majorant. Moreover, sin
e the harmoni
 fun
tion v 2 C

1

(
), the


onvergen
e v

�

! v is point-wise. By Lebesgue's Theorem we �nd v

�

! v in L

q

w

(
).

For a general bounded C

1;1

-domain we use de
omposition of the unity.

Moreover, sin
e every v

�

is harmoni
 we have �v

�

��v = 0 for all � 2 (0; 1) whi
h

yields the 
onvergen
e in

~

W

q;r

w; ~w

.

Moreover we have

hu� v;��i = hf; �i+ hF; �i � hF; �i = hf; �i for � 2 Y

q

0

;�;w

0

hu� v;r i =: hk;  i for  2 W

1;q

0

w

0

(
):

Let (f

n

)

n

; (k

n

)

n

� C

1

(
) su
h that f

n

n!1

���! f inW

�1;r

~w

(
) and k

n

n!1

���! k inW

�1;q

0;w

(
).

The embedding W

�1;r

~w

(
) ,! Y

0

q

0

;w

0

and the a priori estimate for very weak solutions to

the Stokes equations (1.5) yields that the sequen
e of very weak solutions (u

n

)

n

to the

Stokes problem w.r.t. f

n

and k

n


onverges to u� v in L

q

w

(
). By the regularity of the

data and of the boundary (Theorem 5.5) one has u

n

2 W

2;q

w

(
).

We show that u

n

tends to u� v in

~

W

q;r

w; ~w

. The 
onvergen
e in L

q

w

(
) is already shown.

Moreover for � 2 C

1

0;�

(
) one has

hu

n

;��i = hf

n

; �i

n!1

���! hf; �i:

Thus the sequen
e (u

n

+ v

�

n

)

n

� W

2;q

w

(
) approximates u in the norm of

~

W

q;r

w; ~w

where

(�

n

) � (0; 1) is a sequen
e 
onverging to 1. However, sin
e C

1

(
) is dense in W

2;q

w

(
),

the assertion is proved.

It is not diÆ
ult to see that if � 2 W

2;q

w

(
) with �j

�


= 0, then N � r� is purely

tangential. The next Lemma shows that vi
e versa every purely tangential fun
tion on

the boundary is a normal derivative of su
h a fun
tion. This ensures that the amount

of test fun
tions is suÆ
ient.

Lemma 5.9. Let 
 be a bounded C

1;1

-domain, 1 < q < 1 and w 2 A

q

. For every

h 2 T

1;q

w

(�
) with N � h = 0 there exists a fun
tion '

h

2 W

2;q

w

(
) su
h that

'

h

j

�


= 0; N � r'

h

= h and div'

h

= 0:

Moreover '

h


an be 
hosen depending linearly on h and ful�lling the estimate

k'

h

k

2;q;w

� 
khk

T

1;q

w

(�
)

with a 
onstant 
 = 
(
; q; w).
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Proof. For h 2 T

1;q

w

(�
) there exists by Theorem 4.3 a fun
tion  

h

2 W

2;q

w

(
) depending

linearly on h su
h that

 

h

j

�


= 0; N � r 

h

= h and k 

h

k

2;q;w

� 
khk

T

1;q

w

(�
)

:

Sin
e h = N � r 

h

is purely tangential, one 
an show (see [12℄) that div 

h

2 W

1;q

0;w

(
).

Thus by Theorem 3.1 there exists a fun
tion � 2 W

2;q

w;0

(
) with div � = div 

h

depending

linearly on  

h

and satisfying the estimate k�k

2;q;w

� 
kdiv 

h

k

1;q;w

� 
k 

h

k

2;q;w

.

Now '

h

:=  

h

� � solves the problem.

Using this lemma we de�ne the tangential 
omponent of u 2

~

W

q;r

w; ~w

on the boundary

as follows.

Theorem 5.10. There exists a 
ontinuous linear operator


 :

~

W

q;r

w; ~w

! T

0;q

w

(�
); su
h that

h
(u); hi

�


= hu;�'

h

i � h�u; '

h

i if N � h = 0;

h
(u); hi

�


= 0 if N � h = 0

(5.11)

for h 2 T

1;q

0

w

(�
) where '

h

is given by Lemma 5.9. Moreover this tangential tra
e is in-

dependent of the 
hoi
e of the extension '

h

and 
oin
ides with the tangential 
omponent

of the usual restri
tion if u 2 C

1

(
).

Proof. Assume that 
 is de�ned by (5.11). Let m 2 T

1;q

0

w

(�
). The fun
tion m 
an be

de
omposed into normal and tangential 
omponent

m = (N �m)N + (N �m)�N = (N �m)N + h

with khk

T

1;q

0

w

0

(�
)

� 
kmk

T

1;q

0

w

0

(�
)

. Then one obtains

jh
(u); mi

�


j = jh
(u); hi

�


j = jhu;�'

h

i � h�u; '

h

ij

� kuk

q;w

k'

h

k

2;q

0

;w

0

+ k�uk

(W

1;r

0

~w

0

;0;�

)

0

k'

h

k

1;r

0

; ~w

0

� 
kuk

~

W

q;r

w; ~w

kmk

T

1;q

0

w

0

(�
)

:

Thus 
 is 
ontinuous.

By Gauss' Theorem we know that for u 2 C

1

(
) we have 
(u) is equal to (N �

uj

�


) � N , the tangential 
omponent of uj

�


whi
h is in parti
ular independent of the

extension of h. Sin
e by Lemma 5.8 the spa
e C

1

(
) is dense in

~

W

q;r

w; ~w

the same is true

for u 2

~

W

q;r

w; ~w

.

The de�nition of tangential tra
es is easier. If

u 2 E

q;r

w; ~w

:= fv 2 L

q

w

(
) j div v 2 L

r

~w

(
)g

then we 
an de�ne the normal tra
e as in unweighted spa
es: Using 
onvolutions one

shows that C

1

(
) is dense in E

q;r

w; ~w

and we 
an de�ne the normal tra
e u 7! N � uj

�


using Green's formula by

hN � uj

�


; Nvi

�


:= hdiv u; vi+ hu;rvi for all v 2 W

1;q

0

w

0

(
): (5.12)

Using the above theorem we say that uj

�


= g if h
(u); hi

�


= hg; hi

�


for h � N = 0

and u �N j

�


= g �N .
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Proposition 5.11. Let u be a very weak solution to the Stokes problem 
orresponding

to the data hf; �i = hF; �i � hg;N � r�i

�


and hk;  i = hK; i � hg;N �  i

�


with

F 2 W

�1;r

~w

(
), K 2 L

r

~w

(
), g 2 T

0;q

w

(�
).

Then u 2

~

W

q;r

w; ~w

and uj

�


= g.

Proof. u is the solution of

�hu;��i = hF; �i � hg;N � r�i

�


; for all � 2 Y

q

0

;w

0

;�

and

�hu;r i =hK; i � hg;N �  i

�


; for all  2 W

1;q

w

0

(
):

Inserting � 2 C

1

0;�

(
) into the �rst equation we obtain that � 7! [h�u; �i = �hF; �i℄ is

extendable to an element of (W

1;r

0

~w;0;�

(
))

0

. Thus u 2

~

W

q;r

w; ~w

and by the de�nition of the

tangential tra
e we have

h
(u); N � r�i

�


= hu;��i � h�u; �i = hu;��i+ hF; �i = hg;N � r�i

�


for all � 2 Y

q

0

;w

0

;�

. Using the se
ond equation one shows that N � uj

�


= N � g.

Remark 5.12. 1. It is not diÆ
ult to see that the spa
e

~

W

q;r

w; ~w

is equal to the spa
e of very

weak solutions to the Stokes problem with respe
t to data f = [� 7! hF; �i� hg;N � r�i℄

with F 2 W

�1;r

~w

(
) and g 2 T

0;q

w

(�
) and k 2 W

�1;q

w;0

(
). Indeed let u 2

~

W

q;r

w; ~w

and

let F 2 W

�1;r

~w

(
) be an extension of ��uj

C

1

0;�

(
)

. Then g := tru 2 T

0;q

w

(
) and by

de�nition

�hu;��i = hF; �i � hg;N � r�i for every � 2 Y

q

0

;w

0

;�

:

2. In [12℄ the spa
e in whi
h the tra
es are well-de�ned is given by




W

1;q

(
) := W

1;q

(
)

k�k




W

1;q

(
)

where kuk




W

1;q

(
)

:= kuk

q

+ kA

�

1

2

r

P

r

�uk

r

;

where A

r

stands for the Stokes operator in L

r

(
),

1

r

�

1

n

+

1

q

. For u 2 C

1

(
) one has

k�uk

(W

1;r

0

0;�

)

0

= sup

�2C

1

0;�

;k�k

1;r

0

=1

h�u; �i � sup

�2C

1

0;�

;k�k

r

0

=1

hP�u;A

�

1

2

r

0

�i = kA

�

1

2

r

P�uk

r

Thus in the unweighted 
ase these norms are equivalent and the spa
es are equal.
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