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Abstract

We investigate very weak solutions the stationary Stokes- and Stokes resol-
vent problem in function spaces with Muckenhoupt weights. The notion used
here is similar but even more general than the one used in [1] or [12]. Conse-
quently the class of solutions is enlarged. To describe boundary conditions
we restrict ourselves to more regular data. We introduce a Banach space
admitting a restriction operator and containing the solutions according to
such data.

As a preparation we prove a weighted analogue to Bogowski’s Theorem and
extension theorems for functions defined on the boundary.
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1 Introduction

We consider the generalized Stokes resolvent problem on a bounded C“'-domain Q C
R", n>2
A —Au+Vp=F, in
divu = K, in Q
ulog = g

for A\ € 3. U {0} where

Eg::{)\GC\{OH|arg)\|<g+5}, 0<€<g.

Multiplication of (1.1) with a test function ¢ with div¢ = 0 and ¢|sq = 0 and of (1.2)
with a test function ¢ and formal integration by parts yields

_<U’7 A¢> = <F7 ¢> - <97N ' V¢> and — <U’7 Vl[)> = <K7¢> - <gaN7>[)>7 (14)

where N stands for the unit outer normal vector. These or similar equations have been
used by in [1], [3] [4], [12] for the definition of very weak solutions.

One obtains a further generalization of this definition if one considers each right hand
side of (1.4) as one functional

f=10=(Fd)= (g, N-V@)] and k = [ = (K, ) — (g9, N)].



Taking such f and k in appropriate spaces of functionals enlarges the class of solutions to
the whole space LY (€2). However, the data is in general no longer given by distributions
on {2 and 0f2.

We consider the above resolvent problem in function spaces with general Muckenhoupt
weights w. This is a large class of locally integrable weight-functions defined in (2.1).
Their good properties concerning harmonic analysis [13], [17] where the base to treat
the solvability of the Stokes and Navier Stokes equations [5], [8], [7], [9].

We consider the following spaces of functions and functionals:

w/

YV i=Ypuw =Yy w(Q)={ue Wiiq,(Q) | ulgn =0} and Wuj})’q(Q) = (WL (Q)).
Then our main result on the very weak solutions to the Stokes equations is the following.

Theorem 1.1. Let f € Y], .., k € W g4(Q) with (k,1) = 0 and let X\ € E. U {0} with
0 < e < . Then there exists a unique very weak solution u € L () to the Stokes

resolvent problem in the sense of Definition 5.2.2. It fulfills the a priori estimate

Mully, -+ o < clfllys,, + [Flw-tagoy) (15)

with ¢ = ¢(2, ¢, w, <) depending A, consistently on w.

The outline of the paper is as follows.

Because needed in several steps of the theory in Section 3 we prove a weighted analogue
to Bogowski’s Theorem.

In Section 4 we establish an extension theorem for functions on the boundary. This
theorem uses weaker assumptions to the regularity of the boundary than the well-known
unweighted version in [14].

Section 5 is devoted to very weak solutions. We introduce the notion of the very weak
solutions and give the proof of Theorem 1.1 in 5.1. Moreover, in 5.2 we prove regularity of
the solution in the case of more regular data. In particular we obtain strong solutions to
the Stokes resolvent problem with inhomogeneous boundary conditions and divergence.
In Section 5.3 we return to data more regular data given by distributions on €2 and 0f2.
In this context we return to a situation similar to the one considered in [3], [12]. We show
how the theory presented there is contained in the one presented in Section 5.1. To treat
the boundary conditions we find a Banach space Wuq,:u containing all very weak solutions
with respect to appropriate data and a restriction operator tr : Wuq)fu — T949(Q) to the
boundary which coincides with the usual trace on smooth functions.

2 Preliminaries

Let A;, 1 < ¢ < oo be the set of Muckenhoupt weights which is given by all 0 < w €
L, .(R™) for which

loc
1 1 1 ot
Ay (w) == sgp <@/dex> (m/Qw a da;) < 00 (2.1)



The supremum is taken over all cubes in R™ and |@| stands for the Lebesgue measure
of Q. A constant C' = C(w) is called A,-consistent if for every ¢y > 0 it can be chosen
uniformly for all w with A,(w) < ¢.

The the A, consistence is of great importance when shoving the maximal regularity
of an operator. (See [9] or [6] for details)

For w € A, and an open set {2 we define

L3,(Q) == {f € Lino(D) | If

lgw = (/Q |f|qwd:r>q < o0}

It is easily seen that (L (Q))" = Lz:,(Q) with % + % —1landw' =w 71. By [17] and
[13], if w € A, then the maximal operator

M LY(RY) = LY(R™),  (Mf)(x) = sup —

r>0 |B7‘| ly|<r

|f (& = y)ldy

is continuous.
Moreover, we introduce the weighted Sobolev spaces

W) = {u € L4(Q), | ulngw = Y 1D ullga < 00}

la|<k

and Wﬁg(ﬂ) = CgO(Q)Mk’q’w as well as its dual space W %4(Q) := (Wﬁg(Q))’
Since for k > 1 one has W54(Q) € W/ (Q) the restriction u — u|sq is well-defined.

loc
Thus we may define T:9(9€2) := (WE4(Q))|sn equipped with the norm || - ||,x.q of the

factor space
190l 75000y = inf{u € WE(Q) | uloo = g}.
Moreover, we set T99(9Q) = (T19(0S2))". Then LI (Q), Wk4(Q), Wﬁg(Q) and TH9(59)

are reflexive Banach spaces in which C*(Q) (C>(Q)|aq, respectively) is dense.
We also use the divergence-free version of the spaces

Wt (Q) == {u e Wyi(Q) | divu = 0}

w,0,0

and C’gfj,(Q), the space of smooth and divergence-free functions with compact support
in Q.
By [8] the following weighted analogue of the Poincaré inequality holds

|ullgw < €||Vu||gw for every u with /u: 0 (2.2)
0

3 The Problem divu = k&

Throughout this section let 1 < ¢ < 0o and w € A,.

Theorem 3.1. Let 2 C R"™, n > 2, be a bounded and locally lipschitzian domain.
Assume f € W&;ﬁ(Q) such that [ f = 0. Then there exists a function u € Wu]fj{)l’q(Q)
such that

divu=f and [Juflerrgw < cllfllkgw



where ¢ = ¢(2, ¢, w, k). Moreover u can be chosen such that it depends linearly on f and
such that u € C§°(Q) if f € C§°().

The proof follows the same lines as the unweighted case [11, chapter II1.3]. It uses non-
translation-invariant singular integral operators. Thus we apply the following theorem
proved in [17, V.6.13] which ensures the continuity of a certain class of such operators.

Theorem 3.2. Let T be a bounded operator from L*(R™) into itself that is associated
to a kernel K in the sense that

(Th)w) = | K(z,y)f(y)dy

Rn

for all compactly supported f € L*(R"™) and all x outside the support of f. Suppose that
for some v > 0 and some A > 0, K satisfies the inequalities

|K(z,y)| < Alz —y[™" (3.1)
and | I .
/ r—x . 1
|K(x,y)—K(x,y)|§AW, Zf|33—90|§§|90—y| (3.2)

as well as the symmetric version of the second inequality in which the roles of © and y
are interchanged. Writing

TNE@ = [ Ky ond (7.0)() = sup (L))

e>0

we have that
JiE s @t < e [0 @) (33)
where f is bounded and has compact support, w € Ay, and 1 < q¢ < o0.

Since the maximal operator M : L% (R™) — L% (RR™) is continuous, the inequality (3.3)
guaranties the continuity of 7.

However, to make use of the above theorem we have to modify the singular integral
operator which appears in the proof of Lemma 3.3 outside the bounded set €2 such that
it possesses the properties assumed in 3.2.

In the proof of the following Lemma the occurring integral operators have to be
understood in the Cauchy principle value sense lim,_,o 7. f.

Lemma 3.3. Let Q C R", n > 2, be bounded and star-shaped with respect to every point
of some ball B with B C ).
Then for every f € kag(Q) with [ f =0 there exists a v € WEH(Q) with

w,

divo = f and [ollisigu < cllf

k,q,w>

c=c(Q,q,w,k), v depending linearly on f and f € C§°() implies v € C§°(Q2).



Proof. Without loss of generality we may assume, using a coordinate transformation,
First we assume that f € C§°(Q).
We choose a € C§°(B;(0)) such that [a =1 and define

= /Qf(y)(@“—y) </looa(y+£(:v—y))£"ld£> dy. (3.4)

In the proof of [11, Lemma II1.3.1] it is shown that v € C§°(£2) and divv = f.
It thus remains to prove the weighted estimates. Therefore we use the following
representation of d;v also shown in the proof of [11, Lemma III.3.1]:

oyuie) = [ Kigtos — )y + 5(0) [ EZEEZ )0y = B + o)
(3.5)
where
i, r—y) = Oi ooa z raz—y T — ) tdr
Kigteo =) =22 [a (w20 oyl 4t »

+ — dialx+r x—y|+r)dr,

for every x,y € R™. To show the continuity of the integral operator f +— F} its kernel
must be modified. Set

E={z€Q|z=Xz1 +(1 =Nz, 21 €supp f, 22 € B1(0), A € [0,1]}.

Since () is star-shaped, F is a compact subset of 2. For x ¢ E and y € supp f we have

T —

T+
Ix—yl

¢ B for all r > 0.

Thus, if we choose a cut-off function ¢ € C§°(R™) with ¢(z) =1 on 2 and suppy C
Bgr(0) for some R > 0, and set p(z,y) = ¥ (x)(y) we obtain

FO)Kij(a,x—y) = f)ele,y) Ko, —y) = fy)Kij(z,z—y),

for z,y € R™, if f is assumed to be extended by 0 to R". Moreover, for x € Bp(0) we

have r > R+1 = a(x—ré:;’j') = (. Thus for z € ) one has

/Q F @)Ky, — y)dy = / £y — y)dy
5%] Rt ( r—y > . n—1
/f { —y|”/o Ty ([ =yl +r)dr

. R+1 B
+ LT Y / dja (a; +r Ty ) (|lz —y|+ r)"dr] dy,
0 |$_?J|

|a;—y|"+1




Now we have to prove that f(i,j satisfies the assumptions of Theorem 3.2. By the proof
of [11, Lemma II11.3.1] and the Calderon-Zygmund Theorem [11, Theorem I1.9.4] we find
that

= /Q Koja,o — ) f(y)dy: L(R") — L2(R")

is continuous. Since the multiplication My with the C§°-function ¢ is a continuous
operator on L?(R"™) we obtain the continuity of

fe /Qf(i,j(fr, x—y)f(y)dy = My /Q Kij(z, o —y)Myf(y)dy : L*(R") — L*(R").

[t remains to prove the estimates (3.1) and (3.2). For (3.1) we may assume |z|, |y| < R.
One has

~ el r—y 1
o=y Ko —y)| = \m,y)éz-,j ’ (x+r ) (I =yl + )y~ ldr
0

[z — y|

R+1
0

R+1 R+1
< c (/ (2R + )" tdr + / (2R + r)”dr) =c.
0 0

To prove (3.2) we take z,2',y € R" with |z — 2’| < |z —y|. If (z,y), (2',y) & supp ¢
nothing is to prove. Thus, without loss of generality we may assume that y < R
and x < 3R. Then using the triangle inequality together with the fact that a, ¢ and
(|z — y| + r)™ are Lipschitz continuous on compact sets a straight forward calculation
shows (3.2).

Combining the above and using Theorem 3.2 we obtain

| £

where 7™ is the operator given by Theorem 3.2 and associated to the kernel f(i,j. Fy
is easily estimated, since [, %a(y)dy is bounded. Thus using the Poincaré
inequality (2.2) we obtain ||v||14w < ¢||fllgw- Now the general case with f € LZ(2)
follows easily, since we can approximate f by Cg°-functions (f,) with [ f, = 0.

It remains to prove the estimate in the spaces W*4(Q2). By [11, Remark I11.3.2] we

have
aa _— n) N ) aa_ﬂ b d Y
v(z) 5§§a (@z /Q ﬂ(x y) fx,y)dy

where

Ns(z,y) = /100 aly +r(x —y))r" 'dr.

Clearly 9°a € C5°(B;(0)). Hence the same proof as above yields || D%||1 g < || f g0

for f € C§°(2). Approximating an arbitrary f € W(i;z by Cg°-functions (f,) with
[ fn = 0 finishes the proof. 0

Using a decomposition of the unity one obtain Theorem 3.1 from Lemma 3.3.



4 Extension Theorems

4.1 Appropriate Charts

A domain € is called a C*!-domain, if the boundary can be locally expressed as the
graph of a C*!-function, i.e for every xy, € 9Q we can rotate the coordinate system such
that in a neighborhood U(xy) of xy one has

N U(xp) = {(a,a(z")) | 2" € V(xy)}, (4.1)

where V(xy) is an appropriate ((n — 1)-dimensional) neighborhood of 0 and a : V/(0) —
U(zg) C R is a C*'-function. The function a and the coordinate system can be chosen
such that Va(0) = 0.

For the definition of the boundary values of a very weak solutions we need appropriate
extension theorems. The proof of them requires a chart « for which one has %a(x’ ,0) =
—N(z'), i.e. normals to the boundary of the half space are mapped to normals to 0.
The natural mapping with this property would be

v = (2, 2,) <aa)> + 2, N(2).

Such charts are used by Necas [14]. However, if a is a C*!-function, then this chart is
only of class C*~11. For this reason we introduce a different chart which conserves the
regularity and still has the mentioned property.

Lemma 4.1. Let Q C R™ be a C*'-domain. Then for every xo € 052 there exists a
netghborhood U of xy and a neighborhood V' of 0 and a bijective map o : V' — U such
that

a(0) =29, a(VAR"H)=UNN and o(VNR,)=UNN

and with the following properties:
1. a € CHY(V,U)

2. 2Za(',0) = —N(a') and (%)Ja(w',m =0, (j=2,,k).

Proof. We use the notation z = (2, z,,) with 2’ € R*! and z,, € R.
Let 0 < p € Cg°(R™!) radial symmetric such that supp p C B;(0) and [ p = 1. Set
pi(2) = 7 p(L). We define the function « as follows:

als) = () = (ot s M@,



Then one has for every multi index v = (7, v,), with |y| < k and |y| < k
O (wnps, * N)(2') =0" (@nps, * NO(a'))
="z, / p(ON) (2! — x,€)dE

(1) / POV N (& — 2,6 (€, ... €) d

Tm—1

ta 2 (e [ AOTHNO ) )
——r

oz,
Yn—1
(-1 [ ((=n+ 20l - V0(O)- )
VI IINOD (@ — €x,) (€, .0, ) dE.
——
Yn—1
(4.2)
Still we have to consider the case |y'| = k. Then the situation is easier:

0" (xnpu, * N) (@) = /P(ﬁl)(E)N(ﬂ”(w' — Tn€)d¢ (4.3)

where v = 51 + (3 apd |51 = 1.

The map x — (a(”;c,)) is of type C*! because a is. It remains to show that 97 (Tp P, *

N(z")) is Lipschitz continuous for every v € N, |y| < k. This is an easy consequence
of the representations (4.2) and (4.3) and of N € C*~1L! e.g.

|07 (20, * N(2")) = 0" (Ynpy, * N(y'))|
< / lcanp(€) = Vp(&) - & [V N2 — €a,) — V"IN (Y — €y, |dE

B1(0)
S CL"/ sup |xl - y, +€(xn - yn)| S CL"/|*T - y|
£eB1(0)

A similar calculation shows that the expression in (4.3) is Lipschitz continuous.
The representation (4.2) and a straight forward calculation shows that for 1 < j <k

0\’ i
(o) ale'0) = (1" 19 N2 [ pOE. s €1 =0
since p is rotation symmetric and £ — (&, ..., &) is an odd function. Moreover,

aina(@“',o) = —N(') ((2 —")/P(f)df— ;/&'P(ﬁ)&df) = —N(z').

This shows 2.

Using without loss of generality Va(0) = 0 and the representation formulas (4.2) and
(4.3) shows Va(0) = id. Thus the Implicit Function Theorem shows that « is locally
invertible and the proof is complete. O




4.2 Extension of Normal Derivatives

Our next objective is to construct a linear extension operator. A good way to do this is
to consider solutions to the resolvent problem of the Dirichlet-Laplacian.

The following Theorem is proved in exactly the same way as in the classical unweighted
case. (see e.g. Evans [2] 6.3. Thm. 5). For the existence of weak solutions in weighted
spaces see [9].

Theorem 4.2. (Regularity of the Dirichlet Problem)
Let 1 < g<oo, k€N, let fe WE(RY) and u € Wi (R") be the weak solution of

(1-Au=f and u|lg.— =0.

Then w € Wy 9(RY) with ||ulles2.g0 < cllfllkga-

The same is true for the solution u of (1 — A)u =0, u|gn—1 = g, if g € TET2I(R" ).

Theorem 4.3. Let 1 < ¢ < oo, w € Ay, and k € N. Then there exists a continuous

linear operator
k—1

7 [T R = Wh(Re)

=0

such that %T(go, coor Ok=1) lan=0 = Gj-

Proof. Tt suffices to show that for every g € TF=34(R* 1Y), j =1,...,k — 1 there exists
a u € WEI(R?) depending continuously and linearly on g such that %u = ¢ and
o "
ozt '

To show this weaker assertion let v € WE=4(R") with (1 — A)v =0 and v|ga-1 = ¢
which is uniquely defined by [9, Theorem 4.4.] and Theorem 4.2. Let ( € C*°(R,) be

a cut-off function with ((¢) =1 for t < 1 and ((t) = 0 for ¢t > 2. We set

¢(2) = ¢(wn) = a7, - C(2n) and  u(z) = ¢(z)v(z).

We want to show that ¢u solves the problem. More precisely we prove the following:
If € C®(RY) with ¢(z) = ¢(z,), suppd C R* ! x [0,2) and (%)mmxnzg =
0 for m =0,..,l and v € WE(R") with (1 — A)v = 0 then ¢v € WFTH(Q) with
[6v]lk+1.g0 < €llv]lkg-
To prove this we use mathematical induction with respect to [ and assume that we
already know the assertion is true for [ — 1, [ — 2 and all £.

Since (1 — A)v = 0 we obtain

u =0 for every 1 =0, ...,5 — 1.

(1 —A)(¢v) = Apv + 2VoVe. (4.4)

As (32)"A¢ly,—0 = 0 for m = 0,...,1 = 2, (3%)"V|s,—0 = 0 for m =0,...,l — 1 and
(1 —A)Vv =0, (4.4) and induction yields (1 — A)(¢v) € WEFH=24(Q)). Thus and since
Pv|gn—1 = 0, one has ¢pv € WFT4(Q) by the regularity of the Laplace resolvent problem.
Moreover

[0vllht100 < cllAGv +2VUV k124w < C(|0]lhgw + [V Olle-1,00) < cllv]lkg-



For the start of induction we need the cases [ = 0 and [ = 1. However they are proved
in the same way as the induction step.
Thus we have shown u € Wk?(Q). Moreover

l

o N 0 ifl<j
8—3351u(x 0) = Z (l/) aa;g“axg;v(ﬁ(x 0) = { it [=j.

e g(z")
This shows the assertion about the boundary values. O

Lemma 4.4. Let Q and O be two domains in R™ and o : © — Q a bijective CF~11-
mapping, k > 1. Then the operator

T:u—uoa: Wk(Q) =Wk (O)

won

is continuous with || Tul|k.q woa.0 < ||tk qwas ¢ = c(k, ¢, a).
The same is true for the operator

S:grrgoa: TH(0Q) — TH (00).

won

Proof. The case k = 1 has been proved in [7] Lemma 3.17. Assume « € C*11(O) and
the asserted continuity holds for k replaced by j, 7 < k. Then

IV (u o a)lljguwon0o = [[(Vu) o) - Va|jguweao < cll(Vu) 0 alljgueno < cllulljigwo-

Thus Tw € WiTH4(O) with || (uoc)||j1+1.qwoa.0 < ¢l|t]lj+1,4w.0- This proves the assertion.

The second statement follows from the continuity of 7" and the identity S(g) = T'(u)|s0,
where u € W4(Q) is an extension of g. O

Theorem 4.5. Let Q C R" be a bounded C*"'-domain, k > 1. Then there exists a
continuous linear operator

k—1
L:[[Ti7(09) — Wh(Q)

=0

such that 8‘?\],]-L(g) = gj, where g = (go, -, Gk—1)-

Proof. We choose the collection of charts (o, V;,U;), according to Lemma 4.1 and a
decomposition of the unity (¢;)", subordinate to the Uj.

Step 1: (Construction of L)

To simplify the notation we fix ¢ and set v = o4, U = U;;, V = V; and ¢ = ¢,.
Moreover we set g; = (g; - ¢) oy and § = (go,..., Gk—1). By Lemma 4.4 we know
g; € TF749(R"1). Thus we may apply the operator 7' from Theorem 4.3 and set

UV =0 = Li(g[)a 7_gk) = %T@o; 7.&]6) o 7_1 and L(g[)a 7gk) - Z;.Zl szz(qu; "'7gk)7

where (¢;); C C§°(§2) with ¢b; = 1 in a neighborhood of supp ¢; N 9 and supp ; C Uj.
Step 2: We show that 55=L(go, ..., ge—1) = g;-

We have
~ ! 8] ~ ! a] ! 8]_1 !
gi(a') = ax%T(g)(x ,0) = ) (vor)(a',0) = W(VU 0 y)Opy (', 0)

= V9voy(0uy, ..., 0,7)(a',0) + Terms containing 0%, i > 2

= Viu(y(«',0)(N(2), ..., N(a')) = a?—]Nv(y(a;',O))

-

~~

J

10



by the choice of v cording to Lemma 4.1. Finally we obtain

o ad 07 ad
GJNL(QO’ oy Qf—1) = Zz:;i/)iaj—NLi(go, ey Qp—1) = Zzz;@gj = gj-

Step 3: (Continuity of L)

||L(g[), "'7gk*1)||z,q,w,ﬂ k,q,w,Q

m k—1 k—
S CZZ ||¢gj||;1—vk*j,lZ(69 Z ||gj||qlC —Ja 89
i=1 j=0 ¢ -0

using Lemma 4.4 and Theorem 4.3. U

1D T (digo, -r $ige1) 07 i
=1

5 The Stokes Problem with Irregular Data

Let Q be a bounded domain in R*, n > 2 with C"!'-boundary and let 1 < ¢ < oo and
w € A,. The aim of this section is to find a class of solutions to the Stokes problem in
weighted Lebesgue- and Sobolev-spaces, where the divergence and exterior force are so
irregular that it is impossible to speak of boundary values. Moreover it will be shown
that this class of solutions includes strong solutions.

In the case that the data is regular enough such that it can be described by distribu-
tions on 2 and on 02 we describe in which sense boundary values can be explained.

5.1 Very Weak Solutions Concerning Non-Distributional Data

Let w € A,. We consider exterior forces f in Y, (€)', the dual space of
Y = Yurg (@) = {u € Wi (Q) | ufon = 0},
and assume the divergence k to be contained in the space

W,5"(9Q) = (W, ()"

w,0
Lemma 5.1. C%(Q) is dense in Y and in W ().

Proof. Y is reflexive being a closed subspace of the reflexive space WZ;qI(Q). Let x €
Y"” =Y such that (¢,z) = 0 for all ¢ € C>°(£2). This yields x = 0 and the assertion is
proved. The assertion about W, 57() is proved in the same way. O

Note that these spaces do not consist of distributions on € since C§°(2) is neither
dense in Yy, nor in Wul};q’(Q). This leads to some difficulties when talking about
derivatives. However restricting f or k to test functions ¢ € C§°(€2) one obtains an
element of W, %4(Q2) or W, 14(Q), respectively. If we say that equations are fulfilled in

11



the distributional sense, we consider these restrictions. Our space of test functions will
be

YZI’:w,aU = YU = {(10 S Yw’,q’ (Q) | dlvgo - 0}7
which is by no coincidence equal to the domain of definition of the Stokes operator in

LY ().

Definition 5.2. Let f € Yy »(Q) and k € W, 9(Q). A function u € L%(Q) is called

w,

1. a very weak solution to the Stokes problem with respect to the data f and k if

<f7§0> :_<U’7ASO>7 fO’f’ all(peya and
(k) = —(u, V),  for all p € WhT (). (5.2)
2. a very weak solution to the Stokes resolvent problem with respect to the data f and
k and X\ € C, if
(fio)= (A, 0) = (u,Ap),  forallp €Y, and (5.3)
(k,¥) = —(u, V1)), for all € WhT(Q). (5.4)

Setting ¢ = 1 in (5.2) and (5.4) it follows that a necessary condition for the existence
of such a very weak solution u is (k,1) = 0. This condition is the analogue to the
compatibility condition (k,1) = (g, N)sq between divergence and boundary values in
the case of weak solutions.

Remark 5.3. Two comments about the missing boundary values:

1. For everyu € LL(Q) one has [ — (u, Ap)] € Y' and [¢p — (u, V)] € Wl;,[l)’q(Q).
Thus any u € L1(S) appears as a very weak solution to the Stokes problem with
respect to appropriate data. However, since C§°(2) is dense in L1 (), it is im-
possible to define boundary values for arbitrary LI -functions in the sense of a
continuous linear operator from L () into some boundary space which coincides
with the usual trace on smooth functions.

2. Dealing with very weak solutions one can define boundary values as described in
(1.4). This is done in [12, 3] in the case of more reqular data. However one easily
sees that if g € T21(0Q) then

G=lp— (9, N Vp)oal €Y' and K =[p — (g, N -1)an] € Wy (),
the spaces of exterior forces and divergences, respectively. This means

—(u,Ap) = (f,0) +{9,N-Vp)oa = ([ +G,p) and
—(u, Vo) = (k,¥)+ (g9,N -V)sq = (k+ K, ).

Hence, since the data is so irregular, it is impossible to distinguish between force
or divergence and boundary value.

12



Proof of Theorem 1,.1.
Step 1 Let v € L,(Q2). By the existence of strong solutions to the Stokes resolvent
problem ([8, Theorem 3.3] in the case of weighted and [11, 16] in the case of un-weighted

spaces) there are unique functions ¢ € WY (Q) and ¢ € W57 (Q) such that
Ap—Ap+Vip=v and divg=0 in€, ¢lsn=0 and /1/):(). (5.5)
This solution satisfies A||¢|

constant c.
Step 2 (Ewistence and a priori estimates) Setting for v € LI (Q)

(u,v) == (f,0) = (K, ¥), with (¢,¢) asin (5.5)

g T Pll2gw + | Vlhg w < cl|v]lg . with an A, consistent

we obtain

o)) = &)+ (k)] < 1yl + Rl oy 16t
< elllfllye + el syl

! anl .
q,w

Thus u € (L,(Q)) = L4(Q) and fulfills |[ullgu < e(||f]lyr + [[F]ly-10) with ¢ inde-
pendent of A and depending A,-consistently on w. ,

We now show that u is a very weak solution to the Stokes problem with respect to f
and k. Choose test-functions ¢ € Y, and ¢ € Wul);q,(Q). Then setting v = Ap— A¢p+ V)
we obtain from the uniqueness of strong solutions

(u, Ao = ¢ + Vi) = (u,v) = (f, &) — (k, V).

Since ¢ and v were chosen arbitrarily (5.3) and (5.4) are fulfilled.
Step 3 (Uniqueness) Assume U € L1 () is a very weak solution to the Stokes resolvent
problem with respect to f and k. As above for every v € LZ:,(Q) we find ¢ € Y, and

€ WhT(Q) such that Au— A¢ + Vip = v. If we add the equations (5.3) and (5.4) we
obtain

(Uyv) = (U, Ap = Ap + V) = (f, ¢) — (k, ¥) = (u, ).

Since v € LZ:,(Q) was arbitrary we obtain u = U. Moreover let ¢ € Yy . Then we
obtain from the equation

[{(Au, )| [{w, Ag) [+ [(F, ) < ([ullgw + [1Fllyy, I NP2

<
< v+ el 6l
This proves (1.5) 0

Theorem 5.4. Let f and k be chosen as in Theorem 1.1 and let w € L1 () be the
associated very weak solution to the Stokes problem. Then there exists a unique pressure
functional p € Wotj)’q(Q) (unique modulo constants) such that (u,p) solves

—<U,A¢> - <p7 div ¢> = <F7 ¢> fO’/‘ all ¢ S K]',w’-

13



In particular
—Au+ Vpleg@ = flog o)
in the sense of distributions. The functions (u,p) fulfill the inequality

llgao + 12lwte < (Ul + [Ellyoso): (5.6)

where ¢ = ¢(Q, q, w).

Proof. By Lemma 5.1 there exist sequences (f,,)n, (kn)n C C®(2) such that

Yot W, ()
fo % f and K, —2— 5 k.

Then by [8, Theorem 3.3] there exist unique solutions (u,,p,) € W21(Q2) x Wki1(Q)
such that

_Aun + an - fn; div Up = kn; Un|8Q - 07 /pn =0.

Integration by parts immediately yields that u, is a very weak solution with respect
. . . L9 / .
to fn,kn,. Now the a priori estimate (5.2) yields u, Lwl®, . For ¢ € Wul};q (Q2) with

[¢=01let ¢ € Yy with —AC + Vr = 0 and div{ = ¢ and ||C[l2gw < cl|@
Thus we obtain

|<pn _pma¢>| = |<pn _pm;diV<>| = |<V(pn _pm)7<>|
(A (un = tm), O + [(fa = fim, O
c(llun = umllgw + 1fn — fm||(Yq/,w:)’)||¢

Lq w'-

<
<

1,qw-

7,1M—00

Thus ||pn — Pmll-1,0.0,0 < c(||tn — Uml|gw + || fn — frlly?) —— 0 and (p,),, is a Cauchy
sequence converging to some p € Wofl},’q(ﬂ). For this p

_<u7 A¢> - <p7 div ¢> = nh_{g()(—(lbn, A¢> - <pn7 div ¢>) = nh—>I§o<f"’ ¢> = <fa ¢>

holds for every ¢ € Y,/ .. The estimate (5.6) follows from the estimates for p,,. O

5.2 Regularity

The following theorem describes how strong solutions fit into the context of very weak
solutions considered in the previous section. Moreover it prepares further considerations
about boundary values in the weakest possible sense.
From now on we assume the following situation: Let 1 < r < oo and @ € A(r) such
that
Lo (Q) — L%,(9). (5.7)

Then by duality it follows
L7(Q) = Wy g(Q) and Wi (Q) =Y .

The reason why we require these embeddings is that Sobolev-like inequalities in weighted
spaces need strong assumptions on the weight-functions. In [10] sufficient conditions for
such embeddings are shown using the continuity of singular integral operators shown in
[15].
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Theorem 5.5. Assume that f €Y, and k € Wujj)’q(ﬂ) allow a decomposition into

(f,0) =(F.6) = (9, N-Vo)og  forall ¢ € Yy,
(k,¢) = (K, %) — (g, N - ¥)an for all v € W7 (Q)

with g € T(0Q),F € W, (Q), K € L5(Q), where 1 < r < oo and w € A(r) are
chosen according to (5.7). Then one has

(5.8)

1. Such a decomposition is uniquely defined by f and k.

2. For A € ¥. U {0} every strong solution u to the Stokes resolvent problem corre-
sponding to the data g € T>1(0R2), F € L1 (Q) and K € W24(Q) is a very weak
solution corresponding to the data f and k with the notation of (5.8).

8. If g € T>1(0Q), F € LL(Q) and K € W)U(Q), then the very weak solution u
to the Stokes resolvent problem with respect to f and k is a strong solution with
respect to F, K and g. In particular u € W24(Q) and

[Alllullgaw + [[ull2,gw < e((|F

g + 1 [0 + MK =10 + llllz20ay + [Allz0).

(5.9)
Proof. 1. Let (f,¢) = (F;, ¢) — (gi, N - Vp)oq for i = 1,2. This means

<F1 - F27 ¢> = <gl - g27N ) v¢>39 for ¢ € }/;Lw'

The latter functional vanishes on C§°(€2) and since Fy — Fy is a distribution on €, it
follows that Fy — F, = 0 and hence (g1 — g2, N - V¢) = 0 for every ¢ € Y, ,. By
Theorem 4.3 the mapping

b N-Vo: Yy — TH(09)

is surjective, hence g; = go. Analogously for the divergence.

2. Follows immediately from Green’s Theorem.

3. By Theorem 4.3 there exists v; € W24(Q) with v1]|sq = g and |[v1]|24w < ¢||g]l2a

and one has :
<K —div vy, 1> = <K= 1> - <gaN>OQ = <k= 1> =0,

since (k,1) = 0 is a necessary condition for the existence of a solution.
Hence, by [8, Theorem 3.3] there exists a strong solution vy € W24(£2) with respect
to the exterior force f — Av; + Av; and divergence K — divv;. It fulfills the estimate

| AMlv2lgw + o220
< c([[Fllgw + 1A g0 + [Alloallgw + 15 = divor[ygw + A = divey|[y-ia).

< c(|F

g+ [Alflon

s 1Kl g+ I = divenlly v + llglza).
(5.10)

Thus u = v; + vy is a strong solution to the Stokes resolvent problem with respect to
the given data. Moreover, in the case A = 0, also the estimate is proved.

15



Now we repeat the above arguments with v; replaced by the solution to the Stokes
problem
—Av; +Vp=0, dive; =0 and v|sn = g.

Then v, fulfills the estimate ||v1|| < ¢||g]|2,40- In addition, by 2. we know that v, is also
a very weak solution with respect to the data

f=1p— (9, N-Ve)] and k= [t~ (g, N-¢)].

Thus we obtain the estimate

lorllgw < clfllyz, ., + 1Kl 2a) < €llgllzos.

Inserting this in (5.10) we obtain (5.9).

Thus there exists a strong solution to the Stokes resolvent problem with respect to
the given data which fulfills the estimate.

The uniqueness of very weak solutions proved in Theorem 1.1 together with 2. yields
that u coincides with the very weak solution. In particular the very weak solution is
regular according to the data. O

Remark 5.6. If there exist decompositions for the data f and k as in (5.8) even with
smooth functions F, K, g this does not mean that f and k are smooth. The reason is, that
if g #0, then ¢ — (g, N - V@) is never more reqular than Y, . since it is a functional
supported by the boundary and depending on derivatives.

Vice versa, if f and k are reqular, e.g. f € W, (Q) and k € LL(Q) allowing a
decomposition according to (5.8), then we automatically obtain g = 0, which means that
the very weak solution with respect to f and k has zero boundary values.

5.3 Boundary Values in Case of More Regular Data

Our next aim is to define boundary values for very weak solutions to the Stokes problem
presumed the data is sufficiently regular. To this aim we find a Banach space containing
all these solutions and a continuous linear operator on this space coinciding with the
usual trace on C*(Q).

From now on let 1 < r < oo, w € A, such that (5.7) is fulfilled. As a large space of

functions in which the definition of tangential boundary conditions is possible we define
Wgz}(Q) = {u € LL(Q)|(Au)|cz (o) can be extended to an element of (W;},T(;U(Q))'}

We will omit the © and write W27 if no confusion can occur.

Since A : L% (Q) — W29(Q) is continuous, it follows that Wf}; is a Banach space
equipped with the norm

b, = Il + 180l o0l e
Lemma 5.7. Let f € (Y w o) with (f,¢) =0 for every ¢ € Cg5(€2).

Then there exists an extension F' € (Yy ) such that (F,$) = 0 for every ¢ € C5°(Q2)
and with |[Fllx, . < clflle,

,u)’,o-), .
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Proof. First we show that f defined by

3 o <f7¢> ifgbey;]’,w’a
(00 = {0 if ¢ € Wo3(Q)

is a continuous functional on Yy v, + Wf,[q)(Q) Well-definedness and linearity is clear

since (f, @) =0 on Yy u s NWah(Q) = Wi, (Q) = C55(9)
Thus it remains to prove continuity. By Th,eorem 3.1 there exists a continuous linear
operator T : {v € W (Q)| [v =0} — W2%(Q) such that div (Tv) = v.
Let ¢ € Yywo + Wuz),q(’)(Q) Then div¢ € WJ};%(Q), [ divg = 0 and we may write
¢ = (¢ — T'div ¢) + T'(div ¢). Thus we obtain

(f, 0) = [(f, 6 =T (div ¢))+(f, T(div ¢))| = [, 6—T(div )| < ellfllrv,, .y I6ll2gr v

2,¢ w'

and I, gy < el
By the Hahn-Banach Theorem we may extend f to an element F € (Yyu)' with
1oy = “fH(Yq’ 4w (qyy- This finishes the proof. O

The following Lemma is crucial when proving the well-definedness of the tangential
component of the trace on W7

Lemma 5.8. C%(Q) is dense in W

Proof. Let u € W7 Then by the definition of W7 we have Aulcg € (Wul),r(;a(ﬂ))' —
Y/ o The Hahn-Banach-theorem yields the existence of some f € (Wul),r(;(Q))’ such
that

(f,0) = (Au,¢) forall ¢ € O, ().

By Lemma 5.7 there exists an extension I € Y, , of ({u,A-) — f)|y, , ~vanishing
on C§°(2). Analogously to the Stokes equations but easier one can prove existence
and uniqueness of very weak solutions to the Laplace equation. Thus there exists a
v € L1(Q) such that

(v, Ap) = (F,¢) forall ¢ € Yy,

This v is harmonic on € because (F,¢) =0 for all ¢ € C§°(Q).
Now we assume temporarily that € is star-shaped with respect to some ball B,.(0) with
center 0 and radius r. So we may set vy(z) := v(Ax), where A € (0,1). We show that
A—1 .

vy — v in LI ().

Note that the following argumentation strongly relies on the fact that v is harmonic.
For arbitrary u € L%(£2) the conclusion u(\-) € L () is in general wrong.

Let d = sup,cq|z| and K < %. Then for every A with 3 < A < 1 one has

d
Bra-ne|(Az) C Q for every z € Q.
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Now let ¥ be the extension of v by 0 to the whole of R". Take x € Q and A < 1 fixed.
Since v is harmonic we have by the mean value property

1
Iy (z)] = [v(Az)| = / v(z)dt
|BK 1-XA ‘I‘()\x” BK(l—/\)|m|()‘x)
1
- 5(1)|dt
|BK(17)\)\I\()‘:L‘)| Bla((1=2)+K(1-2) (@)
(K +1)° 1

o(t)|dt < cMuo(z).
T K Branya-nel (@) B, 0 ko @ o(e)lat < @)

Since M, the maximal operator in L7 (€2) is continuous, one has Mo € LI (R™). Thus,
we have found a majorant. Moreover, since the harmonic function v € C*({2), the
convergence v, — v is point-wise. By Lebesgue’s Theorem we find vy — v in L7 (2).

For a general bounded C*!'-domain we use decomposition of the unity.

Moreover, since every vy is harmonic we have Avy — Av = 0 for all A € (0,1) which
yields the convergence in W7

Moreover we have

(U—U,A¢> ( > <F7¢>_<F7¢>:<fa¢> fOI"¢EY
(u—v, Vo) =: (k, ) for ¢ € WhT ().
( n— o0 n— o0

Let (fu)n, (kn)n C C®(Q) such that f, “ fin W;""(Q) and k, “— k in W, *(Q).
The embedding W; " (Q) < Y, ,» and the a priori estimate for very weak solutions to
the Stokes equations (1.5) yields that the sequence of very weak solutions (uy,), to the
Stokes problem w.r.t. f, and k, converges to u — v in L% (€2). By the regularity of the
data and of the boundary (Theorem 5.5) one has u, € W21(Q).

We show that u, tends to u — v in Wl‘f,z} The convergence in LY () is already shown.
Moreover for ¢ € Cg%,(€2) one has

(tn, AD) = (fn, &) > (f, 0).

Thus the sequence (u, + vy, ), C W2>4(2) approximates u in the norm of Wf}; where
(Ax) C (0,1) is a sequence converging to 1. However, since C*(€2) is dense in W29(Q),

the assertion is proved. O

It is not difficult to see that if ¢ € W2(Q) with ¢|sq = 0, then N - V¢ is purely
tangential. The next Lemma shows that vice versa every purely tangential function on
the boundary is a normal derivative of such a function. This ensures that the amount
of test functions is sufficient.

Lemma 5.9. Let Q be a bounded C**-domain, 1 < q < co and w € A,. For every
h € TL1(0Q) with N - h =0 there exists a function @, € W24(Q) such that

onloa =0, N -V, =h and div ¢, = 0.

Moreover ¢, can be chosen depending linearly on h and fulfilling the estimate

lonll2,0w < C“h”Tul;q(aQ)

with a constant ¢ = ¢(Q, q, w).
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Proof. For h € T14(09Q) there exists by Theorem 4.3 a function ¢, € W21(Q) depending
linearly on h such that

Unlag =0, N - Vb, = h and ||[{p]]2,40 < C||h||T,};‘J(aQ)-

Since h = N - Vi), is purely tangential, one can show (see [12]) that divy, € Wol’q(Q)
Thus by Theorem 3.1 there exists a function ¢ € W2 q(Q) with div { = div ¢, dependlng
linearly on 1, and satisfying the estimate ||C||2,4w < ¢[|divonll1gw < cl|¥nll2,g.w

Now ¢}, := 9, — ( solves the problem. O

Using this lemma we define the tangential component of u € Wq '~ on the boundary
as follows.

Theorem 5.10. There exists a continuous linear operator

v f,w — T94(99), such that
(7(u), o <u Apn) — (Au,pp)  if N-h =0, (5.11)
(v(u), h)o if N xh=0

for h € Tul;q'(aQ) where @y, is given by Lemma 5.9. Moreover this tangential trace is in-
dependent of the choice of the extension @y, and coincides with the tangential component
of the usual restriction if u € C*°(2).

Proof. Assume that 7 is defined by (5.11). Let m € T, (09). The function m can be
decomposed into normal and tangential component

=(N-m)N+(Nxm)xN=(N-mN+h

with |||, L' ) < cllm||, 1 (90" Then one obtains
[(y(w), m)aal = [{(v(u), h)oal = |(u, Apn) — (Au, @)
< Mullowlienllzgwr + 1Al gy llonllimre < clullys: Imllze o)

Thus v is continuous.

By Gauss’ Theorem we know that for u € C*°(Q) we have v(u) is equal to (N x
ulaq) X N, the tangential component of u|sq which is in particular independent of the
extension of h. Since by Lemma 5.8 the space C*°(€2) is dense in Wq’ the same is true

for u € Wf}; O
The definition of tangential traces is easier. If
u€ By ={veLi(Q) |dive e L;(Q)}

then we can define the normal trace as in unweighted spaces: Using convolutions one
shows that C>(Q) is dense in E;; and we can define the normal trace u — N - ufaq
using Green’s formula by

(N - ul|ag, Nv)aog = (divu,v) + (u, Vv) forall ve Wul};q’(Q). (5.12)
Using the above theorem we say that u|sg = ¢ if (y(u), h)aq = (g, h)sq for h- N =0
and u - N|gpg =g - N.
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Proposition 5.11. Let u be a very weak solution to the Stokes problem corresponding

to the data <f7 ¢> = <F7 ¢> - <gaN ' V¢>8Q and <k7w> = <Kﬂ/)> o <gJN ) d)>39 with
FeW;"(Q), K € Li(Q), g € T2(09).
Then v € WL and u|sn = g.

w, W0

Proof. wu is the solution of

—(u, A¢) =(F,¢) — (9, N - V)sq, forall p € Yy, , and
—<U,, Vd)> :<K7¢> - <gaN ' ¢>aQ; for all w € Wul;;q(Q)

Inserting ¢ € C§% (€2) into the first equation we obtain that ¢ — [(Au, ¢) = —(F, ¢)] is

extendable to an element of (WJISIU(Q))’ Thus u € W27 and by the definition of the
tangential trace we have

for all ¢ € Yy v ». Using the second equation one shows that N - u|gpg = N - g. O

Remark 5.12. 1. It is not difficult to see that the space Wuq)fb is equal to the space of very
weak solutions to the Stokes problem with respect to data f = [¢ — (F, ¢) — (g, N - V)]
with F € Wz"(Q) and g € T2U(09Q) and k € Wy g(Q). Indeed let u € W' and
let F € W;"(Q) be an exstension of —Aulcge (). Then g == tru € T24(Q) and by
definition

_<U7A¢> = (Fa ¢> - <ga N - V¢> fOT’ every ¢ € Y;]',w’,ar
2. In [12] the space in which the traces are well-defined is given by
T ool e -3
Wh(Q) := Whe(Q) @ where ullipragy = llullg + [[Ar > P Aull,,

where A, stands for the Stokes operator in L™(), + <

S =

+ %. For u € C*(Q) one has

= sup (Au, @) ~ sup <PAU,A;%¢> = ||A;%PAU||,«

¢€C(?,OJ,H¢||1,T’:1 ¢€C(?,OJ,H¢||T’:1

A,

Wosr )
Thus in the unweighted case these norms are equivalent and the spaces are equal.
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