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Abstract

We investigate the stationary Navier-Stokes equations in Spaces with Muck-
enhoupt weights. The aim is to find a class of solutions as large as possible.
We join the notation of very weak solutions in [1] and [10]. When estimating
the nonlinear term the weighted context causes difficulties. For this reason
we consider solutions in weighted Bessel-potential spaces.

Thus using complex interpolation we establish a theory of solutions to the
Stokes equations in weighted Bessel-potential spaces.
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1 Introduction

We consider the stationary Navier-Stokes equations with inhomogeneous data and vis-
cosity 1

—Au+u-Vu+Vp=F, in Q
divu =K, in Q

U|aQ =g.

If one multiplies (1.1) with a test function ¢ vanishing on the boundary and (1.2) with
a test function v then formal integration by parts yields

_<U’7A¢>+<U’VU’7¢>:<F7¢>_<97NV¢> and _<U’7V7>[)>:<K77>[)>_<97Nw>

Following [1], [3], [4], [10] we will use these equations for the definition of very weak
solutions.

Our aim is to consider the stationary Navier-Stokes equations requiring the least
possible regularity of the data. We investigate this problem in the context of function
spaces with Muckenhoupt weights. This is a large class of locally integrable weight-
functions defined by (2.1). Their good properties concerning harmonic analysis [15],
[11] where the base to treat to solvability of the Stokes and Navier Stokes equations [5],

(6], [7], [8].



When it comes to estimate the nonlinear term « - Vu, one needs a weighted analogue
to the Sobolev embedding theorems. Such embeddings can be proved as in [9] using
the continuity of weakly singular integral operators established in [14]. However, these
estimates require strong assumptions to the weight function. As a rule the more general
data and solutions are the more restrictions we have to impose on the weight function.
This is the reason why we study this problem in weighted Bessel potential spaces.
Depending on the weight function w we find a class of indices 5 such that the class of
solutions is contained in the Bessel-potential space H?(Q), presumed the data is chosen
appropriately. The classical weak and strong solutions are contained in the presented
theory for f =1 and 8 = 2, respectively.

Our main result concerning very weak solutions to the stationary Navier Stokes prob-
lem is the following:

Theorem 1.1. LetO§B<1andﬂz%—lifn23andﬁ>—%+2—;ifnz?.

Moreover, let F € W;(Q), K € L (Q) with

1-— 1 1
can
ns q 1
and g € TP9(99) with (K,1) = (g, N)aq. Then there exists a constant p > 0 such that,

if
IEN e + [ K

tow T ||g||T£’q(8Q) < p,

then there erists a very weak solution u € HP4(Q) to the stationary Navier-Stokes
equations. This solution fulfills u|sq = g in the sense of (2.12) and (2.11) and satisfies
the estimate

gaw < C(1Fll-1pw + [1K

[l

with ¢ = ¢(5, ¢, w, ).

tow T+ ||g||T£’q(8Q))

If 1 <3 <2 we are in the situation between weak and strong solutions. In this case
we have the following existence theorem

Theorem 1.2. Let 1 < <2 and 3 > % —1i4fn>3andf > 27: if n = 2. Moreover
let F e HI79(Q), K € HJ™"(Q) and g € T)1(0Q) with [ K dv = [,,gN dS. Then

there exists a constant p > 0 such that, if
1EW 5200 + 1K 100 + 9]l 78.200) < P,

then there exists a weak solution u € HP(Q) to the stationary Navier-Stokes equations.
This solution satisfies the estimate

[ull.q0 < e[ Flls-20w + 1K 5100 + 9]l 789(50))
with ¢ = ¢(f, ¢, w, ).

The solution in Theorem 1.1 and 1.2 is unique with an additional smallness assumption
to u and K. It is shown in Theorem 4.8 using the uniqueness in the unweighted case
established in [4].



The difference between the case 0 < f < 1land 1 < 8 < 2lies in the way of treating the
boundary conditions and the inhomogeneous divergence. If 1 < 5 < 2 then the solution
u € HP(Q) is smooth enough to ensure that the restriction u|sq to the boundary is
well-defined. Moreover the divergence K € HS14(Q) — L%(2) and we are dealing
with products of functions. If 0 < # < 1 one has to demand more regularity of f and k
to ensure this.

As a difficult step in the proof of the mentioned theorems we need the solvability of
the stationary Stokes equations in weighted Bessel potential spaces. To establish this
we use complex interpolation between the strong and the very weak solution. These
very weak solutions can be obtained by dualization of the strong solutions as done in
[13]. This in turn requires interpolation theorems of spaces with 0 boundary values. See
Section 3 for details.

2 Preliminaries

2.1 Weighted Function Spaces

Let A;, 1 < ¢ < oo be the set of Muckenhoupt weights which is given by all 0 < w €
L}, .(R") for which

loc
1 1 _ 1 ot
Ay(w) = sgp <@/de:v> <@/Qw a da;) < 00 (2.1)

The supremum is taken over all cubes @) in R™ and |@Q| stands for the Lebesgue measure
of Q. To shorten the notation we write w(U) = [, wdz for every measurable set
UcCR"

For w € A, and an open set {2 we define

L3,(Q) == {f € Lipe(Q) | [ fllgw := (/Q |f|"w daf)% < 0o}

It is easily seen that (LZ(Q))" = LZ:,(Q) with 5 + % =land v =w i1 € Ay
Moreover, for £ > 0 we introduce the weighted Sobolev spaces

W) = {u € LL(Q), | ullbgw = D 1D ullgu < o0}

la <k

and Wu]fg(Q) = CSO(Q)”'Hk’q’w as well as the dual space W, *4(Q) := (Wi,q(;(Q))’ With
this notation one has W54(Q2) = Wpd(Q) = Lg,(Q).
Since for k > 1 one has Wk4(Q) ¢ W5(Q), the restriction u — ulaq is well-defined.

loc
Thus we may define T9(0Q2) := (WF4(Q))|sq equipped with the norm of the factor
space

Furthermore, we set T24(9Q) := (T5¢ (99))'. Then L&(Q), Wki(Q), WEE(Q) and
TE1(9Q) are reflexive Banach spaces in which C®(Q) (C*(Q)]aq, resp.) is dense.



We also use the divergence-free version of the spaces

Wet (Q) :={ue Wyi(Q) | divu =0}

w,0,0

and C§%(€2), the space of smooth and compactly supported divergence-free functions.
By [6] change of variables is continuous between weighted Sobolev spaces. More
precisely if w € 4, and o € C*(R™), is a diffeomorphism then w o« € A, and

urruoa :WFI(R™) — W (R™) is continuous for &k =0,1,2. (2.2)

wor

For w € Ay let

/

/ n
(', 1,) = w(a', o) - on RY (2.3)
w(a', —x,) on R™

then an elementary proof (see [8]) shows w € A,.

2.2 Very Weak Solutions to the Stokes Problem

Before dealing with very weak solutions to the Stokes equations in weighted Bessel-
potential spaces we treat them in special weighted spaces of functionals. In this lowest
regularity context the data is given by functionals which are in general no distributions
on the domain 2. More precisely, the force is contained in Y, ., the dual space of

}/q/’w, = }/'ql’wl(Q) = {u c Wf};ql(Q) | U/|8Q = 0},

and the divergence k is contained in WJ})"I(Q) = (Wul);q’(Q))’. As a space of test func-
tions we use
Ya = Y;f,w’,a = {¢ S YZ]’,w’ | d1V¢ = 0}
Then the definition of very weak solutions reads as follows.
Definition 2.1. Let f € Y,y () and k € Wuj})’q(Q). A function v € LI (Q) is called
a very weak solution to the Stokes problem with respect to the data f and k if
(f,9) = —(u,A¢), forall p €Y, and (2.4)
(k) =—(u, V),  for allp € W5 (Q). (2.5)

The following two theorems guaranty existence, uniqueness and regularity of very
weak solutions. They are special cases of theorems in [13]

Theorem 2.2. Let f €Y ., k€ W,;})’q(Q) with (k,1) = 0. Then there ezists a unique
very weak solution u € L1 (§2) to the Stokes problem in the sense of Definition 2.1.

Moreover there exists a unique pressure functional p € WOTJ}"I(Q) (unique modulo
constants) such that (u,p) solves

_<U7A¢> - <p7 div ¢> = <F7 ¢> fOT all ¢ € Y;J’,w’

In particular —Au + V(plege)) = floge) in the sense of distributions. The functions
(u,p) fulfill the inequality

[ellgw + 1Pl 1gw0 < el fllyy, , + [1Elw-ta0), (2.6)

with ¢ = ¢(Q, q, w).



Theorem 2.3. Assume that f €Y, and k € Wujj)’q(ﬂ) allow a decomposition into

!
,2W

(f,0) =(F.6) = (9, N-Vo)og  forall ¢ € Yy,
(k,¢) = (K, %) — (g, N - ¥)an for all ¥ € W7 (Q)

with g € T>1(09Q), F € LL(Q) and K € W24(Q). Then the very weak solution u to the
Stokes problem with respect to f and k is a strong solution with respect to F, K and g.
In particular uw € W24(Q) and

(2.7)

[ellzq < CU1E g + 1K 100 + 119]l72900))- (2.8)

One consequence of this theorem is the following: If u is a very weak solution to the
Stokes problem with sufficiently regular f and & (It suffices to assume that f and k are
contained in some space of distributions embedded into Y, ., Wujyé’q(Q), resp.) then
U|39 = 0.

However, we need to define boundary conditions in a far more general context. Thus
we choose 1 < r < oo and w € A, such that

Wo(Q) = Yy, and L (Q) = Wy () (2.9)
and define the space

WSJZU(Q) = {u € LL(Q)|Aulcze () can be extended to an element of (WOIS,U(Q))'}

For u € Wl’sz}(Q) the tangential trace ur is given by (210
(up, N - V@)oo = (u, Ad) — (Au, @) (2.11)
for every ¢ € Yy 4 0.
For the normal component of the boundary condition we set
By = {v e LL(Q) [ dive € L(Q)}
and define for u € EJ’; as in the classical case
(un, Nv)ag := (divu, v) + (u, Vo) for all ve W5 (Q). (2.12)

For u € Wg;(Q) N Ey we write ulag = g, if (ur, h)ao = (g, h)aq for every purely
tangential i and (uy, h)aq = (g, h)aq for every purely normal h.

See [13] for the well-definedness and the continuity of this restriction. Finally a very
weak solution assumes a given boundary condition in the above sense. (See [13] for the

proof.)

Proposition 2.4. Let u be a very weak solution to the Stokes problem corresponding
to the data (f,¢) = (F,¢) — (g, N - Vo and (k,) = (K,¢) — (g, N - )sq with
F e W, (Q), K € L',(Q) where r and © € A, are chosen according to (2.9) and
g € T>1(09Q).

Then uw € WE N EL" and ulpq = g.



2.3 Weighted Bessel Potential Spaces and Complex Interpolation

Let {X1, X5} be an interpolation couple and D ={z € C | 0 < Rez < 1}.
We denote by F'(X1, Xy) the space of all holomorphic functions from D to X; + X,
which are extendable to continuous functions on D such that

1Nl pxi,x) == max{sup | f (iy)||x,, sup || f(iy + 1) x,} < oc.
yeR yeR

For 0 < # < 1 we write [X;, X3y for the complex interpolation in the usual sense, see
e.g. [17].
On the space §’'(R") of temperate distributions we define for all 8 € C the operator

Nf=F Y1+ ER)5Ff forall fe SR,

where F stands for the Fourier transformation on &'(R™). Then for 1 < ¢ < oo, w € 4,
and J € R the weighted Bessel potential space is given by

HYURY) = {f € 8 |1 | ygaqeny = 1A Fllgunn < o0}

Let 2 be an extension domain, i.e. () admits a continuous extension operator £ :
WkEa(Q2) — WE4(R") which is universal for all k¥ < m. In particular Lipschitz domains
are extension domains (see Chua [2] and Jones [12]). Then the weighted Bessel potential
space on 2 is defined by

Hy(Q) = {ulo | u € Hy'(R")}
equipped with the norm
ull.ga = lull 200y = {1 Ul gagny | U € Hy*(R"), Ula = u}.
Theorem 2.5. Let € be an extension domain, 1 < ¢ < oo, w € A,.
1. For k € Ny one has H®1(Q) = Wk4(Q) with equivalent norms.

2. Fork e N, 0 < 3 <k one has

Hy#(Q) = [L4, (), Wy ()]s

=lw

3. The spaces H?1(Q), B € R are independent of the values of the weight function
w € Ay outside Q, i.e., if wi, wy € Ay, wilg = ws|o then HE(Q) = H4(Q) with
equivalent norms.

Proof. [6, 8.2.2] and [9] O



3 Stokes Equations in Weighted Bessel Potential Spaces

3.1 Interpolation of Weighted Bessel Potential Spaces with Zero
Boundary Values

For an extension domain 2 C R", 1 < ¢ < 0o, w € A; and 0 < 8 < 2 we define the
space

Hg,q (R™)

- ) Yw(Q) , if 0< B <1 equipped with || - [ 5.4 g,

You(9)

HE(Q)

, if 1< <2 equipped with || - ||H5),q(Q),

where in the case 0 < § < 1 the functions of Y, ,(£2) are assumed to be extended by 0
to functions defined on the whole space R"™. This is possible, since C§°(£2) is dense in
Was(2) O Yo () and W §() > W 9(R") < HEI(R?).

Moreover, for such 3 it follows immediately from the definition of H?4(Q) that the
extension of functions u € H%(Q) by 0 to functions on R” is a continuous linear map
to HO4(R™).

Finally, for f = 1 the two definitions are equivalent, i.e. HL9(Q) = W 4(Q) =

w,0
ooy Hu' ()
You(€2)
Theorem 2.5

, equipped with || - ||H5;q(9). The reason is that for v € Y;,, one has by

||U||H§;‘1(Q) CIHU’HW&,’q(Q) = CIHQHWUE*‘I(W) < 02“@”;1;’?(1@)

<
< C3||@||W,};Q(Rn) < C4||“||Hi;q(ﬂ)’

where % denotes the extension of u by 0 to the whole space R".

~ ———H0Q
For symmetrie reasons the question arises whether HZ(Q) = Y, ,(Q2) “ for an

0 < B < 2. However this is not the case, not even in the unweighted case. Indeed by
Triebel [18, 1.6.5.23] one has

1 _1
H'T0UQ)  ———H T

Ce () e #{u e Hl_%’q(lR") | suppu C Q} = f{l_é’q(Q).

. (3.1)
We choose the spaces H24(€2) because of their good properties with respect to interpo-
lation.

Yy(€)

Theorem 3.1. Let 1 < g < oo, w € Ay and 0 < 3 < 2. Then
[L4,(RY), Yo (RY)], = H(RY),

where 0 = g with equivalent norms.

Proof. By Theorem 2.5 we may assume that w = @ (given by (2.3)), i.e. w is even in
Ty
Step 1: .

[L3(RY), You(RY)]) — H(RY).

To see this let u € [L%(R™), Yyu(RY)],-
We begin with the case 1 < 3 < 2. Then there is a function U € F(LZL(R?), Y,,(R%))



such that U(0) = u and [[U]| pg,mp),vomy) < cllvlliwsme),vi.umy -
Since F'(LY(R™), Yy (RY)) C F(LL(RY), H2(R")) we obtain

u=U(0) € [L},(R}), Hy*(RY)]o

and

lllugomey < i LIV ey ey |V € FLE(RL), HA(RL), V(0) =

< ||U||F(LZ,(]RZ_),Yq,w(Ri)) < C||“||[L?U(IR1),Yq,w(Ri)}e-

Moreover, by [17, Theorem 1.9.3] we know that Y, ,,(R"}) is dense in [L (R" ), Y, (R% )]s
which yields the assertion of Step 1 in the case s > 1.
In the case 0 < s < 1 we assume that we already know

n n ] n %) n W’}J,q(Rn)
[Lgu(]R’+)’}/;17w(]R’+)i| 1= Hi’q(]RJr) = C3°(R%)

2

= Wou(RY),

which will be proved later on in this proof without using the present fact. Then, as
0<H< %, the reiteration property implies

(L4, (RY), You(RE)], = [LE,(R2), W 5(RL)] -

Since the extension

Tu(z) = u(z)  for x € R
0 for v € R”

of functions defined on the half space is continuous from WJ)Z%(IR’}F) to WL4(R™) and
from LI (R%) to LI (R™), we find by interpolation

T [LG(RY), Wb (RY)],) — Hy"(RY)
is continuous. Thus for every u € C3°(R") we obtain
||U||ﬁ5’q(]Ri) = | Tullgquo,rn < CHU’H[LZ,(]Ri),Wi)’,%(]Ri)]zg'

Then the density of the embedding C§°(R%) — [LY(R"), Wul,%(IRi)] ,p finishes the proof
of Step 1.

Step 2: We show the following:

If the odd extension

u(z) if x e RY}

E: H>YR") - H>Y(R"), E =
o (R3) o (R) u(z) {—u(m’,—xn) if xreR"

where z = (2, ,,) is continuous, then the assertion is true for j.
Let u € HZ?(R") and set

U(z) = e’ AO=2 By,

Then one has U € F(L%(R™), W24(R")) with U(#) = ¢ Eu. Moreover, since for every
p € C the operator A* maps odd functions to odd functions, one has U(iy +1)|gn-1 =0



which implies U(iy + 1)|rn € qu(IR’}J for every y. Thus Ulry € F(LL(RY), Yyw(RY))
and we obtain u € [Lg,(IR” wo(R)],-
Step 3: The assertion is true for 5 < 1:
By the definition of H24(R") for # < 1 we know that the extension @ of u by 0 on R"
is continuous from H24(R?) to H}4(R™). Thus, the odd extension of u, which is equal
to

Eu(z) = a(z) — a2, —x,),

is also continuous. Step 2 completes the argument.
Step 4: The assertion is true for 1 < < 2.
For g € T29(R™ ") there exists an extension S(g) with the following properties:

b S(g)hR"*l =g.

e S is a continuous linear mapping
TR = WRIR®) and TR — W 4(R™).
To see this we define S(g)|g: to be the solution of
(1-A)S(g)=0 onR? and S(g)=g¢g on R* "

Then by [6, Lemma 3.14, Satz 3.7] we know that S(u)|rs is well-defined and has the two
properties on R”. By [2, Theorem 1.5] there exists an extension operator, continuous
from W24(R™) to W21(R") as well as from W 4(R™) to W,»?(R™). Thus the existence
of such an S is proved.

Now we consider the operator

B:H(RY) — HZYR"), u+— S(ulgn-1) + E(u— S(u|ge-1))

where E is the odd extension operator from Step 2. Since w = w, the operator F
is continuous from Y, (R%) to W24(R") and from W, §(R") to W.4(R"). Thus, we
have constructed an operator B continuous from W2?(R") to W24(R™) as well as from
WEe(R?) to Wh(R™) and which coincides with E on H?4(Q), 8 = 1,2. By interpola-
tion we find that

B: HJYRY) — HYY(R")

is continuous for every 1 < 8 < 2. Thus for every u € H}9(R") C HLY(R") one has
||Eu||HEJ’q(Rn) = ||BU||H3"1(]RTL) < CHUHHE;‘I(Ri) = C”u”ﬁ[ﬁ’q(ﬁi)'
Thus Step 2 finishes the proof. O

Theorem 3.2. The assertion of Theorem 3.1 holds true, when replacing R" by a
bounded C*-domain Q, i.e.,

[L2(9), Yyu(Q)], = HE(Q),

where 0 = g with equivalent norms.



Proof. Let o, j =1,...,m, be a collection of C!-charts and 1); a decomposition of the
unity subordinate to the domains of the charts. We assume that every ¢; is extended
to an element of C{°(R") and that every «; is extended to an element of C*!(RR™) such
that it has an inverse o' € CH1(R").
Then we fix j, write ¢ = 9; and a = a; and define the mapping
B: Hgoqa(IR”) — H(Q), u— (u(oa))oal.
We have to show, that B is a continuous mapping into the asserted image space.
Case 1 (0 < B < 1): In this case the extension @ of a function u € H2 (R") by 0 is a

wow

continuous operation into the space H%4 (R"). By interpolation the operator

woo

B: HP(RY) — HPYR™), uw (u(poa))oa™

wow

is continuous and we obtain for u € HZ% (R")

wow

1Bull gg.aiqy = l1Bullsguwpn = aswoair = Cllull o g

The assertion for 0 < 8 < 1 is proved.
Case 2 (1 < f < 2): Interpolation shows that B, extended in the canonic way, maps
HP4 (R™) continuously to H24(). Since

wow

B({u € Wi (R") | ulgre—r = 0}) C {u € Wp(Q) | ulp = 0}

wow

the operator B : HZ (R?) — HP4(Q) is continuous by the density of Y, ,, in H?9(Q).

won

Now setting Bju = (u(¢; o aj)) o aj_l we define the operator

Bq : HHﬂq (RY) = HYQ), (ur,.oum) = Y Biug

woa;

which is continuous and surjective. (Surjectivity follows considering the operator H24(Q) >
u — (ug;) oa; € HZE (R™), where ¢; is an appropriate cut-off function, = 1 on

woa
supp v;.)
Moreover, by interpolation it follows that

B : HHB"] (R}) = [L%(9), You()]s

woq; w ) ,

is continuous. Thus we obtain [LZ(Q), Y,.,(Q)]z D HZ(Q).
2
The inclusion ” C” is proved in the same way as in the proof of Theorem 3.1, Step 1. O

3.2 Interpolation of Bessel Potential Spaces of Negative Order

It is an easy consequence of the definition of Bessel potential spaces that H,_%4(R") =
f !
(Hg;q (]R")) isometrically for every 5 > 0.

10



Theorem 3.3. If1 <g<oo, we Ay, [,k €N and -l < 3 <k then
[H,"(R"), Hy(R")], = Hy(R"),

_ B

where 0 pw

Proof. The proof is analogous to the one of [16, Proposition 13.6.2] using the weighted
multiplier theorem [11, IV Theorem 3.9]. O

For g > 0 the weighted Bessel potential space of negative order on an extension
domain € is defined by H,?4(Q) = {u|cso() | u € Hy,?(R™)}, equipped with the norm

[ull-p.g.0 = nf{[[v]| -5 gure | v € HPRY), vlege(a) = u}.

Moreover, we set
e He(R™)

H,5(9) = (CF(Q)) :

w,0

assuming that ¢ € C$°(Q) is extended by 0 to a function ¢ on R". The space ngg(Q)
is equipped with the norm || - {|,g.w0,0 == || - [|8,¢,w,g"- Note that by (3.1) this norm is in
general not equivalent to || - ||54w,0. With this definition one obtains a good behavior
of the dual spaces and interpolation properties. It holds

’ !
H,21(9) = (H45(9) (3.2)
with equivalent norms.

To see this, let u € H_?4(2). Then by definition there exists U € H_?4(R") such
that U|C[()XJ(Q) = u with

2||U’||—ﬂ,q,w,ﬂ Z ||U||—5,(I;’w7]R" = Sup <U7 ¢>
PES(R™),[|9ll5,4 0t rn <1
> sup <U’7 ¢> = ||u||(Hi;q(;(Q))’

¢€CSO(Q)’H¢”B,(1’,U)’,]R71Sl

Thus u € (Hg;%(Q))’.

Vice versa, by Hahn-Banach’s theorem every u € (Hg;%(Q))I can be extended to an
element U € H;#9(R") with ||U||_s4wrr = ||U||(Hi;?(l)(9))"
as above yields u € H,?4(Q) with ||ul| w0 < ||u||(

(3.2) also yields the completeness of H,?%9(().

Then a similar calculation

/ .
HET (@)

Lemma 3.4. There exists a continuous linear extension operator
E: H, Q) — H,"(R")

such that Eu|ce() = u which is also continuous as a mapping : Hy?(Q) — HyI(R").

11



Proof. We begin with showing the assertion for the half space 1 = R"}.

By [8] for every f € W b(R" ) there exists a unique u € Wul)’fé(]Rﬁ) solving (1—A)u =
f which depends linearly on f and fulfills the estimate ||ul|;, < ¢||f]|-1,, We write
u=(1-—A)"tf.

To construct E we remind that by [2] there exists a linear continuous extension op-
erator

E:WE(RY) — WEI(R") and : W2I(RY) — W2(R") with Eum = u.

For u € W, bM(R%) let v = (1 — A) tu € W4(R'}). Then ||v||1,4,0 < ¢l|uf|-1,4w and by
[13] from w € Hy?(R™) it follows v € H24(R™) with [[v]]3,4.0 < ¢[|t]l1,40- Now we set

Eu=(1-A)Ewv.

Thus E has the asserted properties on the half space R’ .

For a bounded C''-domain 2 we take a collection of charts (o)7L, and a decomposi-
tion of the unity (t;)7-, subordinate to the domains of the charts. Then for u € W;4(€2)
we set

Equ =Y Ega ((ut)) 0 o) 0 o,

j=1
where Egn : Wyl (R}) — W,E, (R") is the operator just constructed. Obviously

Eq : WL1(Q) — Wi4(R") is continuous. Moreover, it follows from (2.2) that u — uoq;
is a continuous operation from W, 1¢(Q) — W, 14(Q). This shows the continuity of

wou;

Eq : W;4(Q) — W-L4(R") and the proof is complete. O

Theorem 3.5. Let 1 < g < o0, w € A;, =1 < 3 <1 and Q a bounded C"*-domain.
Then

1. [H,"(Q), Hy ()], = Hj(Q), where § = =2,

w

2.
. Hyb(Q) = (H1(Q)), if 0<
1, 1, - w,0 w
[H q(Q), H q(Q)]a - {Hg,q(Q), if 0>

= N[

Proof. 1. 7C” By complex interpolation we obtain that

E:[H,"(Q), H* ()]

w

= [H 2 (R, HY(R)], = HO ()

is linear and continuous, where E is the extension operator from Lemma 3.4. Thus
every u € [H;'(Q), H1(Q)], is the restriction of Eu € HZ(R") to Q. By definition,
this implies u € H2(Q).

“D” Follows from the same arguments as in the proof of “C”, when replacing the
extension operator E by the restriction operator

R:Wib(RY) — Wy (Q), u— uleeq).

12



2. An application of the duality theorem in [17] to 1. yields

[H, (), H55(©)], = HEH(9). (33)

w,0 y S0

Since
F(Hy,"(), Hy§ () C F(Hy,"(%), Hyy* (%)

w,0 » T4 w,0

and the same is true when replacing ¢ by ¢’ and w by w’, we have

L4,(Q) = [H, (), Hy5(@)], < [H,5"(2), H(Q)], (3.4)
and
LE,(Q) = [yl (@) Hy (@), = [Hy5"(Q), H(@)] (3.5)

By the density of the embedding H57 (€2) < [H&;’,q’(Q), Hij,q,(Q)] _ we obtain that the

embedding (3.5) is dense. Thus we obtain, dualizing (3.5) and confbining it with (3.4),

[Hyw" (), Hy " ()]

0,w

= L(Q).

N

Now the assertion follows by the reiteration property in [17], using (3.3) for 5 < 1 and
the assertion of 1. for f > % O

3.3 Stokes Equations in Weighted Bessel Potential Spaces

Theorem 3.6. Let 1 < g < oo, w € Ay, 0 < 3 <2 and let Q be a bounded CH*-domain.
Moreover let

HEb(Q),  if f>1

!
€ HO29(Q) .= (HZ 7 (Q d ke HM(Q) =
f w Q) ( w ( )) an w1 () Hg;l,q(g), if B<1

with (k,1) = 0. Then there exists a unique very weak solution u € H>(Q) to the Stokes
problem with respect to the data f,k, i.e.,

<f7 80> = _<U/7 ASD>, fOT all 90 E YO’ C’Vn’d (3 6)
(k) = —(u, V),  forall € W7 (). ‘
This w fulfills the estimate
lull gy < € (11l g-2a(0) + I1Ell3-1amen)
where || - s 1gwe0 = || - l5-1qwo0 if B <1 and |- s 1qmwrn = I 8- 1gwa if 5> 1.

Moreover there exists a pressure functional p € HP=19(Q), unique modulo constants,
such that the Stokes equations

—Au+Vp = flee@), on

are fulfilled in the sense of distributions.

13



Proof. In Sections 3.1 and 3.2 we have shown
(Vi) x Hyg"(9), LE,(Q) x Hy ()], = HE™9(Q) x Hj M(Q),
where 0 = g It is immediate that
ks K=k — (k1) € LW, ¢(Q) N LOV1(Q)).
By Theorem 2.2 the mapping
S (Vo) x Hyg'() 3 (f,k) = u € Li,(9),

is continuous, where u € L% () is the very weak solution to the Stokes problem with
respect to the data f and K =k — (k, 1).

If w is a solution to (3.6) with sufficiently regular data f and k then by Theorem
2.3 we find that u is a strong solution with 0 boundary values. In particular § is also
continuous from LI () x HLY(Q) to Yy .

Now we obtain from interpolation that

S HE729(Q) x HEH(Q) — HP(Q)

is continuous, which finishes the proof of existence and estimates of w. Uniqueness
follows from the uniqueness of the very weak solutions in L (€2) (Theorem 2.2).

To show the existence of p we use the interpolation Theorem 3.5.1. and the existence
and uniqueness (modulo constants) of the pressure in the case of strong [8] and of very
weak solutions (Theorem 2.2). Then we obtain a functional p € HJ»4(£2) such that

—(u, Ap) — (p,div ) = (F,¢) forall ¢ € Yy
The restriction p := 15|Cgo(g) solves the problem. O
By the definition of H>7(() it follows, that whenever a restriction operator
tr : H>9(Q) — T(D)

for a boundary portion D C 09 is well-defined (as a continuous linear operator into
some boundary space T'(D), which coincides with the usual trace on W24(Q2)), then for
the solution u € H?4(Q2) one has tru = 0.

In the case, where data and solutions are regular enough (including the case 5 =1 of
weak solutions) we want to deal with inhomogeneous boundary values.

If 3> 1 then H29(Q) — W.14(Q) which implies the existence of a continuous restric-
tion operator

tr : HP1(Q) — TL(09Q), tru = ulspq if u € C®(Q).
As in the case of weighted Sobolev spaces we define the associated boundary space by
TH9(00) = tr (HL(%)
equipped with the norm of the factor space

||9||T£*‘1(69) = inf{|lullgqueo | v e Hp(Q), tru = g}.

14



Lemma 3.7.
[T,%(092), T2 (09)] -1 = T}y *(0%2)

and there exists a continuous linear extension operator ext : T39(0Q) — H4(Q).

Proof. By [6] or [13] there exists a continuous linear extension operator
ext : T27(0Q) — Wh1(Q) and : T21(9Q) — W2(Q),
with (ext g)|aq = g for every g € TH4(0R2), k = 1,2. Thus by interpolation
ext : [T27(0), T>1(092)] g1 — H(Q)

is continuous and we obtain [T.19(0S2), T21(9Q)]5-1 C T21(09).
Vice versa the restriction operator

b Hypt = [W,7(Q), Wt ()51 — [1,(09), T (0Q)]5-1

is continuous which implies [T727(99Q), T249(02)]g—1 D T54(0%2).
Thus the first assertion is proved. The second assertion follows from the first assertion
when applying complex interpolation to ext . O

Theorem 3.8. Let 1 < g < oo, w € A, and 1 < 8 < 2. Moreover let F € HP=24(Q),
K € HZY9(Q) and g € TP9(98Y). Then there exists a unique weak solution u € H5(S2),
i.€e.

(Vu, Vo) = (F, ), forall ¢ € W, 5,(2)

w,0,0

fulfilling u|pq = g and divu = K in the sense of distributions. This solution fulfills the
estimate

||U; Baqaw S C(HF“ﬂ—Z’q’w + ||K||B_1aqaw + ||g||T£’q(aﬂ))

Moreover there exists a pressure function p € HZ=59(Q), unique modulo constants, such
that the Stokes equations are fulfilled distributionally.

Proof. Emistence: For g € T59(9Q) there exists v € H29(Q) such that trv = g and

ol g.gw.0 < 2||g||Tg,q(8Q). Since there exists an extension V' of v to the whole space R™

with ||V 5,quwre < €l[v]|g,gwa, one has Av = (AV)|ce () € HE29(Q) = HE729(Q).
Hence by Theorem 3.6 there exists U € H?%(Q) solving

(F+ Av, o) = —(U, Agp), for all p € Y, and
(K —dive,¢) = —(U, Vi), forallyp € W' (Q).

Since U € HP4(Q) C WJ,”%(Q), we obtain by integration by parts for ¢ € Y s, which
is dense in WJ)”%(Q), that

<V(U + U)7V¢> = _<U7 A¢> - <AU,¢> = <F7 ¢>

Setting now u := U + v we clearly obtain divu = K distributionally and tru = trv +
trU = trv = g. Moreover

[ulls.gme < Nvllsgwa + 1Ulsqwa < cllgllzgepa) + [1Flls-20w0 + 1 Klls-16w, omega):
(09)
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Uniqueness: Let u be a weak solution to the Stokes problem w.r.t the data F, K and g.
Then integration by parts yields

Since [(u, N+ V§)oa| < [|g]l704(50)|#ll2,4w,0 We find that the right hand side of (3.7),
considered as a map in ¢, is contained in (Yy ). Thus u is a very weak solution. By
the uniqueness of very weak solutions in Theorem 2.2, we obtain the uniqueness of u.

Pressure: To show the existence of p we use that by de Rahm’s Theorem there exists
p € (C5°(R2))" such that the Stokes equations are fulfilled distributionally. From the
equation we obtain Vp € HP=24(Q). It remains to show p € H5~14(Q). For g =1
and = 2 this is clear by the Poicarrée inequality [7, Corollary 2.1]. If we assume in
addition that [p = 0 we obtain that p depends linearly and continuously on f, k and
g. Thus interpolation shows p € HZ~19((Q). O

Now we turn to the case 0 < 3 < 1. Here we define boundary spaces by
T29(00) = [197(00), T5(00)] ,.

equipped with the norm of the interpolation space.

To ensure the well-definedness of the boundary conditions we need to demand that the
force F' and the divergence K is contained in some space of distributions on 2. Since
Sobolev embeddings require strong assumptions to the weight function w we assume
(3.9). See Lemma 4.3 for sufficient conditions such that (3.9) is fulfilled.

Theorem 3.9. Let 1 < ¢ < 0o, w € A, and 0 < B < 1. Assume that f € HP=29(Q)
and k € ngol’q(Q) allow decompositions into

<f7 ¢> = <F7 ¢> - <gaN : v¢>397 fOT’ every ¢ S Y;]’,w’,
(k) = (K, ¢) — (g9, N¢)o,  for every v € Wi (Q)

with F € W 5(Q), K € L5(Q) and g € T59(09Q), where r and w € A, are chosen such
that

(3.8)

W () = HI72(Q) and Li(2) — Hip™(Q). (3.9)

w

Then the very weak solution v € L1 (Q) with respect to f and k which ezists according
to Theorem 2.2 is contained in HP4(SY), assumes the boundary value g in the sense of
(2.11) and (2.12) and fulfills the estimate

[ullg g < c[F] gg-2a0) + 1K g2-1a0) + 19/l 729(00))- (3.10)
Proof. Step 1: We consider the operator
B :T>(0) — LL(Q), g+ u,
where u is the very weak solution to the Stokes problem with data

f=l¢= (9, N-Vo)ao] and k=[¢ = (g, NP)aa].
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B is linear and continuous, also considered as an operator B : T 4(9Q) — WL1(Q).
This follows from Theorem 3.8 in the case 5 = 1 since the very weak solution with
respect to f and k coincides with the weak solution with 0 force and divergence and
boundary condition g. Thus, interpolation yields that

B:TP(00Q) — HZ(Q)

is continuous which implies the existence and estimates of the solution. Uniqueness
follows from the uniqueness of the very weak solution in Lg (€2) which is known from
Theorem 2.2.

Step 2: Let U = Bg € HP4(Q) given by Step 1. Moreover let v € W;"(Q2) be the weak
solution to the Stokes Problem w.r.t the data F', K and zero boundary values which
exists according to Theorem 3.8.

By the embeddings (3.9) and Theorem 3.6 there also exists a very weak solution in
HP4(Q). Since both, H?4(Q) and W,"(Q) are embedded into some common space
LY(2) for some ¢ > 1 we obtain by the uniqueness of the very weak solution in L*({2)
(Theorem 3.9) that these solutions coincide. This yields the estimate

[vll5.0.0 < c(1E gz-200) + 1Kl 5210 ()

Now we set u := U +wv. Then u is a very weak solution with respect to f and k and the
estimate (3.10). Moreover, by the definition of the trace in (2.11) and (2.12) we obtain
ulon = g. U

The proof of the above theorem works in the same way, if one chooses F € HZ=24(1)
and K € ngol’q(Q). This is also visible in the a priori estimate (3.10). However, with
such data it is not clear if the outcoming solution is regular enough to ensure that the
boundary value u|sq is well defined.

Corollary 3.10. Let Q be a bounded C*'-domain. Moreover, let 1 < ¢,r < 0o, w € Ay,
v €A, and 0 < B <2 be given such that H?(Q) — L' (). Then

TP1(00Q) < T (99).
Proof. Let g € T24(952). Then the very weak solution u € H2>(Q) to

—(u, Ap) = (g, N - V)oq forall ¢ € Yy o(Q)
—(u, V) = (g, Nt))oqr for all ¢ € W57 (Q)
fulfills [Jul|g,¢,0 < C||g||T5,q(3Q) and u € WJ{; (defined in (2.10)) with [|ul[yrr = [|ull, and

divu = 0. Thus tangential and normal trace are well-defined for u and since u|sg = ¢
we obtain

||9||T,9*T(ag) < clluflrp < cllullpgw < CHQ“T@”(@Q)'
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4 Stationary Navier Stokes Equations with Irregular
Data

4.1 Estimates of the Nonlinear Term

We prepare some embedding theorems. For 0 < < n we define the weakly singular

integral operator
9(y)
Isg(x :/ ————dy.
p92) re [T —y|"?

Theorem 4.1. Let 0 < B <nand 1 <p < q < oo, veE A, and w € A;. Moreover
assume that v and w fulfill the condition

|Q|§—1 (/ w>q (/ v_ﬁ> < c for every cube Q@ C R".
Q Q

||Iﬁf||q,w < C“pr,v for every f € LI(R™).

Proof. This is a special case of [14, Theorem 1 (B)] O

S

Then

Lemma 4.2. Let1 < g < oo, w € A;, 1 <5 < q and Q@ C R" be bounded and open.
Moreover we assume that

Q" < cw(Q) for every cube Q C Qs = {x € R", dist (z,Q) < 6}.
Then there exists a weight function W € A, with w|q = Wlq and
1Q° < cW(Q) for every cube @ C R".

Proof. [6, Lemma A.2] O

Lemma 4.3. Let €2 be a bounded extension domain. Moreover, let 1 < s <1r < q < 00
and assume 0 < 8 < n such that

1 B

’

1
- > .
q ns

Then for every w € Ag the following embeddings are true:
1. HP(Q2) < L1(Q).

1

2. HT(Q) < Lty (Q), where w, = w1 and w, = W
3. L' (Q) = H;1Q) and L' (Q) — Hujf)’q(ﬂ),

Proof. 1. By [9, Corollary 3.2] the asserted embedding holds, if |Q|%w(Q)7~* < C for
all Q C U for some open set U D €. By [15] we know that for every Q C U and w € A,
it holds |Q|* < %w(@). Thus

S|
S|

QI w(@)i < ew(@) 7 < ew()n T =
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. B 1 1
smceEwLE—;ZO.

2. In the same way as in [9, Theorem 3.2] one shows using Theorem 4.1 that

Q! </ W)T </ (wq)q'll>q <c forevery cube QCR"  (41)
Q Q

Hg);q,(]Rn) — LZ;T(R“) for every v > .

Thus we have to show (4.1). As above w € A, implies w(Q) > ¢(U)|Q|® for every
) C U. Thus by Lemma 4.2 we can assume without loss of generality w(Q) > ¢(U)|Q|°
for every cube (Q C R™. Since

implies

1 1 __1
Wy —qwr'-1r7r-1 = = (wq) q’—l,

we can calculate using the definition of Muckenhoupt weights, w € A, and % — % <0

@l </Q“’>_ </Q(wq>‘q’+l>% = QI (@) w(Q)F

< dQpEtT.

N

S
\S)

3
£
L

T e
|

S

The last term is bounded if & + 8(5 — %) = 0. There exists 0 < o < 3 so that this is

true, becauses(l—l) <0andfora =ponehas £ 5 —1)>2 58
q T n q T

This finishes the proof of 2. , ,
3. Follows when considering the dual spaces in 2 and using Hg}?O(Q) — HY(Q). O

Lemma 4.4. Let Q C R" be a bounded C*'-domain. Assume w € A, for some s < q

and > ("7 _ 1).
1. Let in addition <1 and 1 <t < oo with

1-8 1 1
-——-=0. 4.2
ns +q t (42)

If n = 2 assume in addition 3 > —% + %. Then w € Ay,
L4 (Q) < Hy o (9)

and

< c||u

(01150011

B’q’w t’ ’w,

‘/um/) da

for every u,v € H?4(Q) and ¢ € H;Tﬁ’q/(g)-
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b)

‘//ﬂ@d:p <

for every k € LI (), u € HZ(Q) and ¢ € HiTﬂ’q,(Q)-

2. If B > 1 then
H(9),

[N vll—p.0.0 < cllulls gullv

if in the case n = 2 the additional condition B > 25 is satisfied.

Proof. One has
P nsq S nsq _ns
g(l—=B)+ns = q2-")+ns 2

if n > 3. If n =2 then ¢ > s is guaranteed by the supplementary condition below (4.2).
Thus, by Lemma 4.3 one has L () < Hf;ol’q(Q) and H&;ﬂ’q’(Q) — LY ().
1. a) Let r = =22 Then by Lemma 4.3 one has u € H?9(Q) < L" (Q). Moreover

—(12,8+ns
we set n = (]_ — ;)71 = WZ—QTLS Then
1 1  =2Bg+2ns q—Pg+ns _—q+ns—[fq <0
n' t nsq nsq nsq -
Thus o >t which implies L"'(Q) L!(Q) and hence L () < Ly, (9).
Since 1 st + = =1 and ,—1)” + % + % = 0 we can calculate

‘/uvqﬁdaz

1
F O
= ‘/uwrvwrwwg,da;

S nWyr — C||u||ﬂyq7w||v B,q,w |w||t,7wt'
1. b) Weset n= (1—+— %)71 =L —andr = —ims @ above. Then
, rt nsq nq

>s if n>3.

g Trtt q+2ns—2q[3_ 3q

If n = 2 one needs the condition below (4.2) to make sure 1" > s. Using this and the
fact that

1 1 1 1 1 1+p-%

n ot T ns ns
We‘obtain HE(Q) — L%nl (Q) Since 1 + % + % =1 and —m + 141 =0 we can
estimate

11, L
‘/kwbdx = ‘/k‘wtuwr@un", dx
< lkllewllwllrwl 0], < wll @l -

2. Let r := nsf;qq_qﬂ, n = n?f‘;ﬁ and p := %. Then one has
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_|_

ﬁ
S
==

L' () < HP24(Q). If n = 2 we need the supplementary condition to ensure
r>s.

H39(Q) = L (Q).

B_Ia 1 ns __
o H,=H1(Q) — Li(Q) (using § > 72 —1).

Thus it follows

c||uVo|lrw =c (/ |u|’w:|VU|’"w1:> '

cl[wllnwl[VOlluw < ellullsgwl Vollsrew < cllullsgullvlisow

IN

||uvv||ﬂ_2vq7w

N

O

4.2 Stationary Navier Stokes Equations in Bessel Potential Spaces

In this section we always assume
e () C R"is a bounded C''-domain,
e 1 <qg<ooand wée€ A, for some 1 < s <gq,

° % —1<p<2and 8> 0. (If n < 3 this is always possible, since for s = ¢ one
has % —1=n—-1<2).

Definition 4.5. Let 0 < 3 < 1,1 < q < oo and w € A,. Moreover, let g € T21(09),
Fe W, Q) and K € L' (Q). Then u € H?9(Q) is called a very weak solution to the
stationary Navier-Stokes equations, if

—<U, A¢> + (ga N - v¢>39 - <uu7 V¢> - (KU, ¢> = <F7 ¢> fOT every ¢ € Y;J',UI',U(Q%

divu = K is fulfilled in the sense of distributions and u - N|sq = g - N in the sense of
(2.12).

Proof of Theorem 1.1. For u € H24(Q2) let W (u) € (C°(R2)) be given by
(W(u), ) = (uu, Vo) + (Ku, ¢y forall ¢ € C5°(Q).
By Lemma 4.4.1 one has for ¢ € C§°(Q2)

(W (w), 6)] ellullf 4wl VOl + el Kllewllullsguwll Sl w
c(lull5 g + I leaollull5.g0) 161070

t,w

<
<

and hence W (u) € W H(Q) with

W ()|t < e(ullg g + 1K ]l .g.0). (4.3)
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We define the mapping S : H?4(Q) — HP(Q) by

—(Su,A¢p) =(F,¢)+ (W(u),p) — (g, N-V)oq forevery ¢ € Yq/,wf,g
—(Su, Vi) = (K,v¥) — (g, Ni)aq for every 1 € Wul)iq (Q).

This well-defined by Theorem 3.9.

We want to use Banach’s Fixed Point Theorem to show that S has a fixed point,
presumed the data is small enough.

By the a priori estimate in Theorem 3.9 we know that

[0]l5.9.0 < DUF( 100 + [1Klew + 19l 75990 (4.4)

if v is a very weak solution to the Stokes problem with respect to the data F' € H (),
K € L!(Q) and g € T?9(09).

We assume that the data F, K and g are chosen small enough such that the right
hand side of (4.4) is < p := 715, where ¢ is the constant in the estimate (4.3).

Next we show that for such data and § = % the ball Bs(0) is mapped by S into
itself. By (4.4) and (4.3) one has for u € B;(0)

1Sullgaw < DUIFI-1w + cllull gw + 1K lewllullsgw) + 1K lbw + 9]l 2.000,)
6¢cD + 2¢D + 4cD 2
< Dpb + ¢Dé* = = = .
s phcebpote (6¢D)? 6¢D

The next step is to show that S is a contraction on Bs(0). Take u,v € Bjs(0). Then
Su — Sv is a solution of

—(Su— Sv,A¢) = (W(u)—W(v),¢) forevery ¢ € Yy,
(Su— Sv, Vi) =0 for every o € Wul)iq,(Q).

Moreover from Lemma 4.4.1 we obtain

[(W(w) =W(v),0)| < (u—=v)u, V)| + [(v(u—0v), Vo) + [(K(u —v),¢)|
< clllullggw + vllsgw + 1K w) e = vllsgwldlle w.
5
< (200 +ep)llu = vllsgulldllew = g5 llu = vlsgwlldlee.
Thus we again obtain from the a priori estimate that
5
15u = Svllggw < DIW () = W(0)l-1tw < gllu = vllsgu-

We have shown that there exists a unique fixed point of S in B;(0) and hence a solution
u € HP(Q) to the stationary Navier-Stokes system.
The a priori estimate follows from

lullggw < DUF |-t + HE llew + 191l 8900y + Ulull5 g + HE llewllulls.0.0))-
(69)

Since De(||ul|g,quw + |1 K ||tw) < 2, one obtains the a priori estimate subtracting 2||u||s,q,.
from both sides of the above equation.
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To show u|sg = ¢ one uses the fact that w is a very weak solution to the Stokes
equations with respect to the data

f =l = (F¢)+ W(u),d)—(9,N - Vd)aal
ko= = (K1) — (g9, Ni)aal,

where f = [¢ — (F,¢) + (W(u),¢)] € W;Y4(Q). Then the assertion follows from
Proposition 3.9. O

Definition 4.6. Let 1 < 3 < 2. Moreover, let F € HP%9(Q), K € HZ 1(Q) and
g € TP10Q). Then u € HE(Q) is called a weak solution to the stationary Navier-
Stokes equations, if

(Vu, Vo) + (u-Vu,¢) = (F,¢) for every ¢ € C5,(<2),
divu = K and ulsq = g.

Proof of Theorem 1.2.
This can be proved in the same way as Theorem 1.1 using Lemma 4.4.2. instead of
Lemma 4.4.1. and Theorem 3.8 instead of Theorem 3.9. ]

The very weak solution is unique even without the assumption of the smallness of
the exterior force f and the boundary condition g. To see this we need the following
embedding theorem.

Lemma 4.7. If 1 < s, w € A(s) and 1 < p < oo then for ¢ > sp one has

L9(Q) — LP(Q).

1

Proof. First we assume that s > 1. Since I—q) > sonehasw € Aa. Thusw » ' € Ay C
p p
L. (). Together with the Holder inequality this yields

loc

a—p

[ivde= [ 1sputuar < sl ( [wF dx) — |l fl
Q Q Q

for every f e L1(Q).
If s =1, then by [15] one can assume that w is bounded from below on ). This implies
LP(Q) — LP(Q). O

Theorem 4.8. Let the data F, K and g be given as in Theorem 1.1 and let u be a very
weak solution to the stationary Navier Stokes system with respect to the data F, K and

g.
Then there exists a constant p > 0 such that under the condition

[ellg.g0 + 1K lw < p

there exists at most one very weak solution to the stationary Navier Stokes equations
according to Definition 4.5.
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Proof. By Lemma 4.3 and Lemma 4.7 one has

nsq

HP9(Q) < L, ™ (Q) s Lot () — L™(S),

by the assumptions on 3. Analogously we find F € W~=13(Q2) and K € L3 (). From
Corollary 3.10 we thus obtain g € W —="(99) := T>"(99). Hence the assumptions of
[4, Theorem 1.5] are fulfilled and we obtain the uniqueness. O
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