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1 Introdution

We onsider the stationary Navier-Stokes equations with inhomogeneous data and vis-

osity 1

��u + u � ru+rp = F; in 
 (1.1)

div u = K; in 
 (1.2)

uj

�


= g: (1.3)

If one multiplies (1.1) with a test funtion � vanishing on the boundary and (1.2) with

a test funtion  then formal integration by parts yields

�hu;��i+ hu � ru; �i = hF; �i � hg;N � r�i and � hu;r i = hK; i � hg;N i:

Following [1℄, [3℄, [4℄, [10℄ we will use these equations for the de�nition of very weak

solutions.

Our aim is to onsider the stationary Navier-Stokes equations requiring the least

possible regularity of the data. We investigate this problem in the ontext of funtion

spaes with Mukenhoupt weights. This is a large lass of loally integrable weight-

funtions de�ned by (2.1). Their good properties onerning harmoni analysis [15℄,

[11℄ where the base to treat to solvability of the Stokes and Navier Stokes equations [5℄,

[6℄, [7℄, [8℄.
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When it omes to estimate the nonlinear term u � ru, one needs a weighted analogue

to the Sobolev embedding theorems. Suh embeddings an be proved as in [9℄ using

the ontinuity of weakly singular integral operators established in [14℄. However, these

estimates require strong assumptions to the weight funtion. As a rule the more general

data and solutions are the more restritions we have to impose on the weight funtion.

This is the reason why we study this problem in weighted Bessel potential spaes.

Depending on the weight funtion w we �nd a lass of indies � suh that the lass of

solutions is ontained in the Bessel-potential spae H

�;q

w

(
), presumed the data is hosen

appropriately. The lassial weak and strong solutions are ontained in the presented

theory for � = 1 and � = 2, respetively.

Our main result onerning very weak solutions to the stationary Navier Stokes prob-

lem is the following:

Theorem 1.1. Let 0 � � < 1 and � �

ns

q

� 1 if n � 3 and � > �

1

2

+

2s

q

if n = 2.

Moreover, let F 2 W

�1;t

w

(
), K 2 L

t

w

(
) with

1� �

ns

+

1

q

�

1

t

= 0

and g 2 T

�;q

w

(�
) with hK; 1i = hg;Ni

�


. Then there exists a onstant � > 0 suh that,

if

kFk

�1;t;w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

� �;

then there exists a very weak solution u 2 H

�;q

w

(
) to the stationary Navier-Stokes

equations. This solution ful�lls uj

�


= g in the sense of (2.12) and (2.11) and satis�es

the estimate

kuk

�;q;w

� (kFk

�1;t;w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

)

with  = (�; q; w;
).

If 1 � � � 2 we are in the situation between weak and strong solutions. In this ase

we have the following existene theorem

Theorem 1.2. Let 1 � � � 2 and � �

ns

q

� 1 if n � 3 and � >

2s

q

if n = 2. Moreover

let F 2 H

��2;q

w

(
), K 2 H

��1;q

w

(
) and g 2 T

�;q

w

(�
) with

R

K dx =

R

�


gN dS. Then

there exists a onstant � > 0 suh that, if

kFk

��2;q;w

+ kKk

��1;q;w

+ kgk

T

�;q

w

(�
)

� �;

then there exists a weak solution u 2 H

�;q

w

(
) to the stationary Navier-Stokes equations.

This solution satis�es the estimate

kuk

�;q;w

� (kFk

��2;q;w

+ kKk

��1;q;w

+ kgk

T

�;q

w

(�
)

)

with  = (�; q; w;
).

The solution in Theorem 1.1 and 1.2 is unique with an additional smallness assumption

to u and K. It is shown in Theorem 4.8 using the uniqueness in the unweighted ase

established in [4℄.
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The di�erene between the ase 0 � � � 1 and 1 � � � 2 lies in the way of treating the

boundary onditions and the inhomogeneous divergene. If 1 � � � 2 then the solution

u 2 H

�;q

w

(
) is smooth enough to ensure that the restrition uj

�


to the boundary is

well-de�ned. Moreover the divergene K 2 H

��1;q

w

(
) ,! L

q

w

(
) and we are dealing

with produts of funtions. If 0 � � � 1 one has to demand more regularity of f and k

to ensure this.

As a diÆult step in the proof of the mentioned theorems we need the solvability of

the stationary Stokes equations in weighted Bessel potential spaes. To establish this

we use omplex interpolation between the strong and the very weak solution. These

very weak solutions an be obtained by dualization of the strong solutions as done in

[13℄. This in turn requires interpolation theorems of spaes with 0 boundary values. See

Setion 3 for details.

2 Preliminaries

2.1 Weighted Funtion Spaes

Let A

q

, 1 < q < 1 be the set of Mukenhoupt weights whih is given by all 0 � w 2

L

1

lo

(R

n

) for whih

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1 (2.1)

The supremum is taken over all ubes Q in R

n

and jQj stands for the Lebesgue measure

of Q. To shorten the notation we write w(U) =

R

U

w dx for every measurable set

U � R

n

.

For w 2 A

q

and an open set 
 we de�ne

L

q

w

(
) := ff 2 L

1

lo

(
) j kfk

q;w

:=

�

Z




jf j

q

w dx

�

1

q

<1g:

It is easily seen that (L

q

w

(
))

0

= L

q

0

w

0

(
) with

1

q

+

1

q

0

= 1 and w

0

= w

�

1

q�1

2 A

q

0

.

Moreover, for k � 0 we introdue the weighted Sobolev spaes

W

k;q

w

(
) :=

n

u 2 L

q

w

(
); j kuk

k;q;w

:=

X

j�j�k

kD

�

uk

q;w

<1

o

and W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

as well as the dual spae W

�k;q

w

(
) := (W

k;q

0

w

0

;0

(
))

0

. With

this notation one has W

0;q

w

(
) = W

0;q

w;0

(
) = L

q

w

(
).

Sine for k � 1 one has W

k;q

w

(
) � W

k;1

lo

(
), the restrition u 7! uj

�


is well-de�ned.

Thus we may de�ne T

k;q

w

(�
) := (W

k;q

w

(
))j

�


equipped with the norm of the fator

spae

kgk

T

k;q

w

(�
)

:= inffu 2 W

k;q

w

(
) j uj

�


= gg:

Furthermore, we set T

0;q

w

(�
) := (T

1;q

0

w

0

(�
))

0

. Then L

q

w

(
), W

k;q

w

(
), W

k;q

w;0

(
) and

T

k;q

w

(�
) are reexive Banah spaes in whih C

1

(
) (C

1

(
)j

�


, resp.) is dense.
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We also use the divergene-free version of the spaes

W

k;q

w;0;�

(
) := fu 2 W

k;q

w;0

(
) j div u = 0g

and C

1

0;�

(
), the spae of smooth and ompatly supported divergene-free funtions.

By [6℄ hange of variables is ontinuous between weighted Sobolev spaes. More

preisely if w 2 A

q

and � 2 C

1;1

(R

n

), is a di�eomorphism then w Æ � 2 A

q

and

u 7! u Æ � :W

k;q

w

(R

n

)!W

k;q

wÆ�

(R

n

) is ontinuous for k = 0; 1; 2: (2.2)

For w 2 A

q

let

~w(x

0

; x

n

) =

(

w(x

0

; x

n

) on R

n

+

w(x

0

;�x

n

) on R

n

�

(2.3)

then an elementary proof (see [8℄) shows ~w 2 A

q

.

2.2 Very Weak Solutions to the Stokes Problem

Before dealing with very weak solutions to the Stokes equations in weighted Bessel-

potential spaes we treat them in speial weighted spaes of funtionals. In this lowest

regularity ontext the data is given by funtionals whih are in general no distributions

on the domain 
. More preisely, the fore is ontained in Y

0

q

0

;w

0

, the dual spae of

Y

q

0

;w

0

=: Y

q

0

;w

0

(
) := fu 2 W

2;q

0

w

0

(
) j uj

�


= 0g;

and the divergene k is ontained in W

�1;q

w;0

(
) := (W

1;q

0

w

0

(
))

0

. As a spae of test fun-

tions we use

Y

�

:= Y

q

0

;w

0

;�

:= f� 2 Y

q

0

;w

0

j div� = 0g:

Then the de�nition of very weak solutions reads as follows.

De�nition 2.1. Let f 2 Y

w

0

;q

0

(
)

0

and k 2 W

�1;q

w;0

(
). A funtion u 2 L

q

w

(
) is alled

a very weak solution to the Stokes problem with respet to the data f and k if

hf; �i = �hu;��i; for all � 2 Y

�

and (2.4)

hk;  i = �hu;r i; for all  2 W

1;q

0

w

0

(
): (2.5)

The following two theorems guaranty existene, uniqueness and regularity of very

weak solutions. They are speial ases of theorems in [13℄

Theorem 2.2. Let f 2 Y

0

q

0

;w

0

, k 2 W

�1;q

w;0

(
) with hk; 1i = 0. Then there exists a unique

very weak solution u 2 L

q

w

(
) to the Stokes problem in the sense of De�nition 2.1.

Moreover there exists a unique pressure funtional p 2 W

�1;q

0;w

(
) (unique modulo

onstants) suh that (u; p) solves

�hu;��i � hp; div�i = hF; �i for all � 2 Y

q

0

;w

0

:

In partiular ��u+r(pj

C

1

0

(
)

) = f j

C

1

0

(
)

in the sense of distributions. The funtions

(u; p) ful�ll the inequality

kuk

q;w

+ kpk

�1;q;w;0

� (kfk

Y

0

q

0

;w

0

+ kkk

W

�1;q

w;0

(
)

); (2.6)

with  = (
; q; w).
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Theorem 2.3. Assume that f 2 Y

0

q

0

;w

0

and k 2 W

�1;q

w;0

(
) allow a deomposition into

hf; �i = hF; �i � hg;N � r�i

�


for all � 2 Y

q

0

;w

0

;

hk;  i = hK; i � hg;N �  i

�


for all  2 W

1;q

0

w

0

(
)

(2.7)

with g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
). Then the very weak solution u to the

Stokes problem with respet to f and k is a strong solution with respet to F;K and g.

In partiular u 2 W

2;q

w

(
) and

kuk

2;q;w

� (kFk

q;w

+ kKk

1;q;w

+ kgk

T

2;q

w

(�
)

): (2.8)

One onsequene of this theorem is the following: If u is a very weak solution to the

Stokes problem with suÆiently regular f and k (It suÆes to assume that f and k are

ontained in some spae of distributions embedded into Y

0

q

0

;w

0

, W

�1;q

w;0

(
), resp.) then

uj

�


= 0.

However, we need to de�ne boundary onditions in a far more general ontext. Thus

we hoose 1 < r <1 and ~w 2 A

r

suh that

W

�1;r

~w

(
) ,! Y

0

q

0

;w

0

and L

r

~w

(
) ,! W

�1;q

w;0

(
) (2.9)

and de�ne the spae

~

W

q;r

w; ~w

(
) :=

�

u 2 L

q

w

(
)

�

�

�uj

C

1

0;�

(
)

an be extended to an element of (W

1;r

0

0; ~w

0

;�

(
))

0

	

:

(2.10)

For u 2

~

W

q;r

w; ~w

(
) the tangential trae u

T

is given by

hu

T

; N � r�i

�


= hu;��i � h�u; �i (2.11)

for every � 2 Y

q

0

;w

0

;�

.

For the normal omponent of the boundary ondition we set

E

q;r

w; ~w

:= fv 2 L

q

w

(
) j div v 2 L

r

~w

(
)g

and de�ne for u 2 E

q;r

w; ~w

as in the lassial ase

hu

N

; Nvi

�


:= hdiv u; vi+ hu;rvi for all v 2 W

1;q

0

w

0

(
): (2.12)

For u 2

~

W

q;r

w; ~w

(
) \ E

q;r

w; ~w

we write uj

�


= g, if hu

T

; hi

�


= hg; hi

�


for every purely

tangential h and hu

N

; hi

�


= hg; hi

�


for every purely normal h.

See [13℄ for the well-de�nedness and the ontinuity of this restrition. Finally a very

weak solution assumes a given boundary ondition in the above sense. (See [13℄ for the

proof.)

Proposition 2.4. Let u be a very weak solution to the Stokes problem orresponding

to the data hf; �i = hF; �i � hg;N � r�i

�


and hk;  i = hK; i � hg;N �  i

�


with

F 2 W

�1;r

~w

(
), K 2 L

r

~w

(
) where r and ~w 2 A

r

are hosen aording to (2.9) and

g 2 T

0;q

w

(�
).

Then u 2

~

W

q;r

w; ~w

\ E

q;r

w; ~w

and uj

�


= g.
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2.3 Weighted Bessel Potential Spaes and Complex Interpolation

Let fX

1

; X

2

g be an interpolation ouple and D = fz 2 C j 0 < Re z < 1g.

We denote by F (X

1

; X

2

) the spae of all holomorphi funtions from D to X

1

+X

2

whih are extendable to ontinuous funtions on D suh that

kfk

F (X

1

;X

2

)

:= maxfsup

y2R

kf(iy)k

X

1

; sup

y2R

kf(iy + 1)k

X

2

g <1:

For 0 < � < 1 we write [X

1

; X

2

℄

�

for the omplex interpolation in the usual sense, see

e.g. [17℄.

On the spae S

0

(R

n

) of temperate distributions we de�ne for all � 2 C the operator

�

�

f = F

�1

(1 + j�j

2

)

�

2

Ff for all f 2 S

0

(R

n

);

where F stands for the Fourier transformation on S

0

(R

n

). Then for 1 < q <1, w 2 A

q

and � 2 R the weighted Bessel potential spae is given by

H

�;q

w

(R

n

) =

�

f 2 S

0

j kfk

H

�;q

w

(R

n

)

:= k�

�

fk

q;w;R

n

<1

	

:

Let 
 be an extension domain, i.e. 
 admits a ontinuous extension operator E :

W

k;q

w

(
)! W

k;q

w

(R

n

) whih is universal for all k � m. In partiular Lipshitz domains

are extension domains (see Chua [2℄ and Jones [12℄). Then the weighted Bessel potential

spae on 
 is de�ned by

H

�;q

w

(
) = fuj




j u 2 H

�;q

w

(R

n

)g

equipped with the norm

kuk

�;q;w

:= kuk

H

�;q

w

(
)

:= inffkUk

H

�;q

w

(R

n

)

j U 2 H

�;q

w

(R

n

); U j




= ug:

Theorem 2.5. Let 
 be an extension domain, 1 < q <1, w 2 A

q

.

1. For k 2 N

0

one has H

k;q

w

(
) = W

k;q

w

(
) with equivalent norms.

2. For k 2 N, 0 � � � k one has

H

�;q

w

(
) = [L

q

w

(
);W

k;q

w

(
)℄�

k

:

3. The spaes H

�;q

w

(
), � 2 R are independent of the values of the weight funtion

w 2 A

q

outside 
, i.e., if w

1

; w

2

2 A

q

, w

1

j




= w

2

j




then H

�;q

w

1

(
) = H

�;q

w

2

(
) with

equivalent norms.

Proof. [6, 8.2.2℄ and [9℄
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3 Stokes Equations in Weighted Bessel Potential Spaes

3.1 Interpolation of Weighted Bessel Potential Spaes with Zero

Boundary Values

For an extension domain 
 � R

n

, 1 < q < 1, w 2 A

q

and 0 � � � 2 we de�ne the

spae

~

H

�;q

w

(
) :=

8

<

:

Y

q;w

(
)

H

�;q

w

(R

n

)

; if 0 � � � 1 equipped with k � k

H

�;q

w

(R

n

)

;

Y

q;w

(
)

H

�;q

w

(
)

; if 1 < � � 2 equipped with k � k

H

�;q

w

(
)

;

where in the ase 0 � � � 1 the funtions of Y

q;w

(
) are assumed to be extended by 0

to funtions de�ned on the whole spae R

n

. This is possible, sine C

1

0

(
) is dense in

W

1;q

w;0

(
) � Y

q;w

(
) and W

1;q

w;0

(
) ,! W

1;q

w

(R

n

) ,! H

�;q

w

(R

n

).

Moreover, for suh � it follows immediately from the de�nition of

~

H

�;q

w

(
) that the

extension of funtions u 2

~

H

�;q

w

(
) by 0 to funtions on R

n

is a ontinuous linear map

to H

�;q

w

(R

n

).

Finally, for � = 1 the two de�nitions are equivalent, i.e.

~

H

1;q

w

(
) = W

1;q

w;0

(
) =

Y

q;w

(
)

H

1;q

w

(
)

, equipped with k � k

H

1;q

w

(
)

. The reason is that for u 2 Y

q;w

one has by

Theorem 2.5

kuk

H

1;q

w

(
)

� 

1

kuk

W

1;q

w

(
)

= 

1

k~uk

W

1;q

w

(R

n

)

� 

2

k~uk

H

1;q

w

(R

n

)

� 

3

k~uk

W

1;q

w

(R

n

)

� 

4

kuk

H

1;q

w

(
)

;

where ~u denotes the extension of u by 0 to the whole spae R

n

.

For symmetrie reasons the question arises whether

~

H

�;q

w

(
) = Y

q;w

(
)

H

�;q

w

(
)

for all

0 � � � 2. However this is not the ase, not even in the unweighted ase. Indeed by

Triebel [18, I.6.5.23℄ one has

Y

q;1

(
)

H

1�

1

q

;q

(
)

= C

1

0

(
)

H

1�

1

q

;q

(
)

6= fu 2 H

1�

1

q

;q

(R

n

) j supp u � 
g =

~

H

1�

1

q

;q

(
):

(3.1)

We hoose the spaes

~

H

�;q

w

(
) beause of their good properties with respet to interpo-

lation.

Theorem 3.1. Let 1 < q <1, w 2 A

q

and 0 � � � 2. Then

�

L

q

w

(R

n

+

); Y

q;w

(R

n

+

)

�

�

=

~

H

�;q

w

(R

n

+

);

where � =

�

2

with equivalent norms.

Proof. By Theorem 2.5 we may assume that w = ~w (given by (2.3)), i.e. w is even in

x

n

.

Step 1:

�

L

q

w

(R

n

+

); Y

q;w

(R

n

+

)

�

�

,!

~

H

�;q

w

(R

n

+

):

To see this let u 2

�

L

q

w

(R

n

+

); Y

q;w

(R

n

+

)

�

�

.

We begin with the ase 1 � � � 2. Then there is a funtion U 2 F (L

q

w

(R

n

+

); Y

q;w

(R

n

+

))

7



suh that U(�) = u and kUk

F (L

q

w

(R

n

+

);Y

q;w

(R

n

+

))

� kuk

[L

q

w

(R

n

+

);Y

q;w

(R

n

+

)℄

�

.

Sine F (L

q

w

(R

n

+

); Y

q;w

(R

n

+

)) � F (L

q

w

(R

n

+

); H

2;q

w

(R

n

+

)) we obtain

u = U(�) 2 [L

q

w

(R

n

+

); H

2;q

w

(R

n

+

)℄

�

and

kuk

H

�;q

w

(R

n

+

)

� inf

n

kV k

F (L

q

w

(R

n

+

);H

2;q

w

(R

n

+

))

�

�

V 2 F (L

q

w

(R

n

+

); H

2;q

w

(R

n

+

)); V (�) = u

o

� kUk

F (L

q

w

(R

n

+

);Y

q;w

(R

n

+

))

� kuk

[L

q

w

(R

n

+

);Y

q;w

(R

n

+

)℄

�

:

Moreover, by [17, Theorem 1.9.3℄ we know that Y

q;w

(R

n

+

) is dense in [L

q

w

(R

n

+

); Y

q;w

(R

n

+

)℄

�

whih yields the assertion of Step 1 in the ase s � 1.

In the ase 0 � s � 1 we assume that we already know

�

L

q

w

(R

n

+

); Y

q;w

(R

n

+

)

�

1

2

=

~

H

1;q

w

(R

n

+

) = C

1

0

(R

n

+

)

W

1;q

w

(R

n

)

=W

1;q

0;w

(R

n

+

);

whih will be proved later on in this proof without using the present fat. Then, as

0 � � �

1

2

, the reiteration property implies

�

L

q

w

(R

n

+

); Y

q;w

(R

n

+

)

�

�

=

�

L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)

�

2�

:

Sine the extension

Tu(x) =

(

u(x) for x 2 R

n

+

0 for x 2 R

n

�

of funtions de�ned on the half spae is ontinuous from W

1;q

w;0

(R

n

+

) to W

1;q

w

(R

n

) and

from L

q

w

(R

n

+

) to L

q

w

(R

n

), we �nd by interpolation

T :

�

L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)

�

2�

! H

�;q

w

(R

n

)

is ontinuous. Thus for every u 2 C

1

0

(R

n

+

) we obtain

kuk

~

H

�;q

w

(R

n

+

)

= kTuk

�;q;w;R

n

� kuk

[L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)℄

2�

:

Then the density of the embedding C

1

0

(R

n

+

) ,!

�

L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)

�

2�

�nishes the proof

of Step 1.

Step 2: We show the following:

If the odd extension

E :

~

H

�;q

w

(R

n

+

)! H

�;q

w

(R

n

); Eu(x) =

(

u(x) if x 2 R

n

+

�u(x

0

;�x

n

) if x 2 R

n

�

where x = (x

0

; x

n

) is ontinuous, then the assertion is true for �.

Let u 2

~

H

�;q

w

(R

n

+

) and set

U(z) = e

z

2

�

(��z)2

Eu:

Then one has U 2 F (L

q

w

(R

n

);W

2;q

w

(R

n

)) with U(�) = e

�

2

Eu. Moreover, sine for every

� 2 C the operator �

�

maps odd funtions to odd funtions, one has U(iy+1)j

R

n�1

= 0

8



whih implies U(iy + 1)j

R

n

+

2 Y

q;w

(R

n

+

) for every y. Thus U j

R

n

+

2 F (L

q

w

(R

n

+

); Y

q;w

(R

n

+

))

and we obtain u 2

�

L

q

w

(R

n

+

); Y

q;w

(R

n

+

)

�

�

.

Step 3: The assertion is true for � < 1:

By the de�nition of

~

H

�;q

w

(R

n

+

) for � < 1 we know that the extension ~u of u by 0 on R

n

is ontinuous from

~

H

�;q

w

(R

n

+

) to H

�;q

w

(R

n

). Thus, the odd extension of u, whih is equal

to

Eu(x) = ~u(x)� ~u(x

0

;�x

n

);

is also ontinuous. Step 2 ompletes the argument.

Step 4: The assertion is true for 1 � � � 2.

For g 2 T

2;q

w

(R

n�1

) there exists an extension S(g) with the following properties:

� S(g)j

R

n�1

= g.

� S is a ontinuous linear mapping

: T

2;q

w

(R

n�1

)!W

2;q

w

(R

n

) and : T

1;q

w

(R

n�1

)!W

1;q

w

(R

n

):

To see this we de�ne S(g)j

R

n

+

to be the solution of

(1��)S(g) = 0 on R

n

+

and S(g) = g on R

n�1

:

Then by [6, Lemma 3.14, Satz 3.7℄ we know that S(u)j

R

n

+

is well-de�ned and has the two

properties on R

n

+

. By [2, Theorem 1.5℄ there exists an extension operator, ontinuous

from W

2;q

w

(R

n

+

) to W

2;q

w

(R

n

) as well as from W

1;q

w

(R

n

+

) to W

1;q

w

(R

n

). Thus the existene

of suh an S is proved.

Now we onsider the operator

B : H

2;q

w

(R

n

+

)! H

2;q

w

(R

n

); u 7! S(uj

R

n�1

) + E(u� S(uj

R

n�1

))

where E is the odd extension operator from Step 2. Sine w = ~w, the operator E

is ontinuous from Y

q;w

(R

n

+

) to W

2;q

w

(R

n

) and from W

1;q

w;0

(R

n

+

) to W

1;q

w

(R

n

). Thus, we

have onstruted an operator B ontinuous from W

2;q

w

(R

n

+

) to W

2;q

w

(R

n

) as well as from

W

1;q

w

(R

n

+

) to W

1;q

w

(R

n

) and whih oinides with E on

~

H

�;q

w

(
), � = 1; 2. By interpola-

tion we �nd that

B : H

�;q

w

(R

n

+

)! H

�;q

w

(R

n

)

is ontinuous for every 1 � � � 2. Thus for every u 2

~

H

�;q

w

(R

n

+

) �

~

H

1;q

w

(R

n

+

) one has

kEuk

H

�;q

w

(R

n

)

= kBuk

H

�;q

w

(R

n

)

� kuk

H

�;q

w

(R

n

+

)

= kuk

~

H

�;q

w

(R

n

+

)

:

Thus Step 2 �nishes the proof.

Theorem 3.2. The assertion of Theorem 3.1 holds true, when replaing R

n

+

by a

bounded C

1;1

-domain 
, i.e.,

[L

q

w

(
); Y

q;w

(
)℄

�

=

~

H

�;q

w

(
);

where � =

�

2

with equivalent norms.
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Proof. Let �

j

, j = 1; :::; m, be a olletion of C

1;1

-harts and  

j

a deomposition of the

unity subordinate to the domains of the harts. We assume that every  

j

is extended

to an element of C

1

0

(R

n

) and that every �

i

is extended to an element of C

1;1

(R

n

) suh

that it has an inverse �

�1

i

2 C

1;1

(R

n

).

Then we �x j, write  =  

j

and � = �

j

and de�ne the mapping

B :

~

H

�;q

wÆ�

(R

n

+

)!

~

H

�;q

w

(
); u 7! (u( Æ �)) Æ �

�1

:

We have to show, that B is a ontinuous mapping into the asserted image spae.

Case 1 (0 � � � 1): In this ase the extension ~u of a funtion u 2

~

H

�;q

wÆ�

(R

n

+

) by 0 is a

ontinuous operation into the spae H

�;q

wÆ�

(R

n

). By interpolation the operator

B : H

�;q

wÆ�

(R

n

)! H

�;q

w

(R

n

); u 7! (u( Æ �)) Æ �

�1

is ontinuous and we obtain for u 2

~

H

�;q

wÆ�

(R

n

+

)

kBuk

~

H

�;q

w

(
)

= k

f

Buk

�;q;w;R

n

= kB~uk

�;q;w;R

n

� k~uk

�;q;wÆ�;R

n

= kuk

~

H

�;q

wÆ�

(R

n

+

)

:

The assertion for 0 � � � 1 is proved.

Case 2 (1 � � � 2): Interpolation shows that B, extended in the anoni way, maps

H

�;q

wÆ�

(R

n

+

) ontinuously to H

�;q

w

(
). Sine

B(fu 2 W

2;q

wÆ�

(R

n

) j uj

R

n�1

= 0g) � fu 2 W

2;q

w

(
) j uj

�


= 0g

the operator B :

~

H

�;q

wÆ�

(R

n

+

)!

~

H

�;q

w

(
) is ontinuous by the density of Y

q;w

in

~

H

�;q

w

(
).

Now setting B

j

u = (u( 

j

Æ �

j

)) Æ �

�1

j

we de�ne the operator

B




:

m

Y

i=1

~

H

�;q

wÆ�

i

(R

n

+

)!

~

H

�;q

w

(
); (u

1

; :::; u

m

) 7!

m

X

i=1

B

i

u

i

whih is ontinuous and surjetive. (Surjetivity follows onsidering the operatorH

�;q

w

(
) 3

u 7! (u�

j

) Æ �

j

2 H

�;q

wÆ�

j

(R

n

+

), where �

j

is an appropriate ut-o� funtion, � 1 on

supp 

j

.)

Moreover, by interpolation it follows that

B




:

m

Y

i=1

~

H

�;q

wÆ�

i

(R

n

+

)! [L

q

w

(
); Y

q;w

(
)℄
�

2

is ontinuous. Thus we obtain [L

q

w

(
); Y

q;w

(
)℄
�

2

�

~

H

�;q

w

(
).

The inlusion

00

�

00

is proved in the same way as in the proof of Theorem 3.1, Step 1.

3.2 Interpolation of Bessel Potential Spaes of Negative Order

It is an easy onsequene of the de�nition of Bessel potential spaes that H

��;q

w

(R

n

) =

�

H

�;q

0

w

0

(R

n

)

�

0

isometrially for every � > 0.
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Theorem 3.3. If 1 < q <1, w 2 A

q

, l; k 2 N and �l < � < k then

�

H

�l;q

w

(R

n

); H

k;q

w

(R

n

)

�

�

= H

�;q

w

(R

n

);

where � =

�+l

k+l

.

Proof. The proof is analogous to the one of [16, Proposition 13.6.2℄ using the weighted

multiplier theorem [11, IV Theorem 3.9℄.

For � > 0 the weighted Bessel potential spae of negative order on an extension

domain 
 is de�ned by H

��;q

w

(
) = fuj

C

1

0

(
)

j u 2 H

��;q

w

(R

n

)g, equipped with the norm

kuk

��;q;w;


= inffkvk

��;q;w;R

n

j v 2 H

��;q

w

(R

n

); vj

C

1

0

(
)

= ug:

Moreover, we set

H

�;q

w;0

(
) = (C

1

0

(
))

H

�;q

w

(R

n

)

;

assuming that � 2 C

1

0

(
) is extended by 0 to a funtion

~

� on R

n

. The spae H

�;q

w;0

(
)

is equipped with the norm k � k

�;q;w;0;


:= k � k

�;q;w;R

n

. Note that by (3.1) this norm is in

general not equivalent to k � k

s;q;w;


. With this de�nition one obtains a good behavior

of the dual spaes and interpolation properties. It holds

H

��;q

w

(
) =

�

H

�;q

0

w

0

;0

(
)

�

0

; (3.2)

with equivalent norms.

To see this, let u 2 H

��;q

w

(
). Then by de�nition there exists U 2 H

��;q

w

(R

n

) suh

that U j

C

1

0

(
)

= u with

2kuk

��;q;w;


� kUk

��;q;w;R

n

= sup

�2S(R

n

);k�k

�;q

0

;w

0

;R

n

�1

hU; �i

� sup

�2C

1

0

(
);k�k

�;q

0

;w

0

;R

n

�1

hu; �i = kuk

(H

�;q

0

w

0

;0

(
))

0

:

Thus u 2 (H

�;q

0

w

0

;0

(
))

0

.

Vie versa, by Hahn-Banah's theorem every u 2

�

H

�;q

0

w

0

;0

(
)

�

0

an be extended to an

element U 2 H

��;q

w

(R

n

) with kUk

��;q;w;R

n

= kuk

(H

�;q

0

w

0

;0

(
))

0

. Then a similar alulation

as above yields u 2 H

��;q

w

(
) with kuk

��;q;w;


� kuk

(H

�;q

0

w

0

;0

(
))

0

.

(3.2) also yields the ompleteness of H

��;q

w

(
).

Lemma 3.4. There exists a ontinuous linear extension operator

E : H

�1;q

w

(
)! H

�1;q

w

(R

n

)

suh that Euj

C

1

0

(
)

= u whih is also ontinuous as a mapping : H

1;q

w

(
)! H

1;q

w

(R

n

).

11



Proof. We begin with showing the assertion for the half spae 
 = R

n

+

.

By [8℄ for every f 2 W

�1;q

w

(R

n

+

) there exists a unique u 2 W

1;q

w;0

(R

n

+

) solving (1��)u =

f whih depends linearly on f and ful�lls the estimate kuk

1;q

� kfk

�1;q

. We write

u = (1��)

�1

f .

To onstrut E we remind that by [2℄ there exists a linear ontinuous extension op-

erator

~

E : W

1;q

w

(R

n

+

)!W

1;q

w

(R

n

) and : W

3;q

w

(R

n

+

)!W

3;q

w

(R

n

) with

~

Euj

R

n

+

= u:

For u 2 W

�1;q

w

(R

n

+

) let v = (1��)

�1

u 2 W

1;q

w

(R

n

+

). Then kvk

1;q;w

� kuk

�1;q;w

and by

[13℄ from u 2 H

1;q

w

(R

n

+

) it follows v 2 H

3;q

w

(R

n

+

) with kvk

3;q;w

� kuk

1;q;w

. Now we set

Eu = (1��)

~

Ev:

Thus E has the asserted properties on the half spae R

n

+

.

For a bounded C

1;1

-domain 
 we take a olletion of harts (�

j

)

m

j=1

and a deomposi-

tion of the unity ( 

j

)

m

j=1

subordinate to the domains of the harts. Then for u 2 W

1;q

w

(
)

we set

E




u =

m

X

j=1

E

R

n

+

((u 

j

) Æ �

j

) Æ �

�1

j

;

where E

R

n

+

: W

1;q

wÆ�

j

(R

n

+

) ! W

1;q

wÆ�

j

(R

n

) is the operator just onstruted. Obviously

E




: W

1;q

w

(
)!W

1;q

w

(R

n

) is ontinuous. Moreover, it follows from (2.2) that u 7! uÆ�

j

is a ontinuous operation from W

�1;q

wÆ�

j

(
) ! W

�1;q

w

(
). This shows the ontinuity of

E




: W

�1;q

w

(
)!W

�1;q

w

(R

n

) and the proof is omplete.

Theorem 3.5. Let 1 < q < 1, w 2 A

q

, �1 � � � 1 and 
 a bounded C

1;1

-domain.

Then

1. [H

�1;q

w

(
); H

1;q

w

(
)℄

�

= H

�;q

w

(
), where � =

1+�

2

.

2.

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

�

=

(

H

�;q

w;0

(
) := (H

��;q

0

w

0

(
))

0

; if � <

1

2

H

�;q

w

(
); if � �

1

2

;

where � =

1+�

2

.

Proof. 1. "�" By omplex interpolation we obtain that

E :

�

H

�1;w

w

(
); H

1;q

w

(
)

�

�

!

�

H

�1;w

w

(R

n

); H

1;q

w

(R

n

)

�

�

= H

�;q

w

(R

n

)

is linear and ontinuous, where E is the extension operator from Lemma 3.4. Thus

every u 2 [H

�1;w

w

(
); H

1;q

w

(
)℄

�

is the restrition of Eu 2 H

�;q

w

(R

n

) to 
. By de�nition,

this implies u 2 H

�;q

w

(
).

\�" Follows from the same arguments as in the proof of \�", when replaing the

extension operator E by the restrition operator

R : W

�1;q

w

(R

n

)!W

�1;q

w

(
); u 7! uj

C

1

0

(
)

:

12



2. An appliation of the duality theorem in [17℄ to 1. yields

�

H

�1;q

w;0

(
); H

1;q

w;0

(
)

�

�

= H

�;q

w;0

(
): (3.3)

Sine

F (H

�1;q

w;0

(
); H

1;q

w;0

(
)) � F (H

�1;q

w;0

(
); H

1;q

w

(
))

and the same is true when replaing q by q

0

and w by w

0

, we have

L

q

w

(
) =

�

H

�1;q

w;0

(
); H

1;q

w;0

(
)

�

1

2

,!

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

1

2

(3.4)

and

L

q

0

w

0

(
) ,!

h

H

�1;q

0

w

0

;0

(
); H

1;q

0

w

0

(
)

i

1

2

=

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

0

1

2

: (3.5)

By the density of the embedding H

1;q

0

w

0

(
) ,!

h

H

�1;q

0

0;w

0

(
); H

1;q

0

w

0

(
)

i

1

2

we obtain that the

embedding (3.5) is dense. Thus we obtain, dualizing (3.5) and ombining it with (3.4),

�

H

�1;w

0;w

(
); H

1;q

w

(
)

�

1

2

= L

q

w

(
):

Now the assertion follows by the reiteration property in [17℄, using (3.3) for � <

1

2

and

the assertion of 1. for � �

1

2

3.3 Stokes Equations in Weighted Bessel Potential Spaes

Theorem 3.6. Let 1 < q <1, w 2 A

q

, 0 � � � 2 and let 
 be a bounded C

1;1

-domain.

Moreover let

f 2

~

H

��2;q

w

(
) :=

�

~

H

2��;q

0

w

0

(
)

�

0

and k 2 H

��1;q

w;�

(
) :=

(

H

��1;q

w

(
); if � � 1

H

��1;q

0;w

(
); if � < 1

with hk; 1i = 0. Then there exists a unique very weak solution u 2

~

H

�;q

w

(
) to the Stokes

problem with respet to the data f; k, i.e.,

hf; 'i = �hu;�'i; for all ' 2 Y

�

and

hk;  i = �hu;r i; for all  2 W

1;q

0

w

0

(
):

(3.6)

This u ful�lls the estimate

kuk

~

H

�;q

w

(
)

� 

�

kfk

~

H

��2;q

w

(
)

+ kkk

��1;q;w;�;


�

;

where k � k

��1;q;w;�;


= k � k

��1;q;w;0;


if � < 1 and k � k

��1;q;w;�;


= k � k

��1;q;w;


if � � 1.

Moreover there exists a pressure funtional p 2 H

��1;q

w

(
), unique modulo onstants,

suh that the Stokes equations

��u +rp = f j

C

1

0

(
)

; on 


are ful�lled in the sense of distributions.

13



Proof. In Setions 3.1 and 3.2 we have shown

�

(Y

q

0

;w

0

)

0

�H

�1;q

w;0

(
); L

q

w

(
)�H

1;q

w

(
)

�

�

=

~

H

��2;q

w

(
)�H

��1;q

w;�

(
);

where � =

�

2

. It is immediate that

k 7! K := k � hk; 1i 2 L(W

�1;q

w;0

(
)) \ L(W

1;q

w

(
)):

By Theorem 2.2 the mapping

S : (Y

q

0

;w

0

)

0

�H

�1;q

w;0

(
) 3 (f; k) 7! u 2 L

q

w

(
);

is ontinuous, where u 2 L

q

w

(
) is the very weak solution to the Stokes problem with

respet to the data f and K = k � hk; 1i.

If u is a solution to (3.6) with suÆiently regular data f and k then by Theorem

2.3 we �nd that u is a strong solution with 0 boundary values. In partiular S is also

ontinuous from L

q

w

(
)�H

1;q

w

(
) to Y

q;w

.

Now we obtain from interpolation that

S :

~

H

��2;q

w

(
)�H

��1;q

w;�

(
)!

~

H

�;q

w

(
)

is ontinuous, whih �nishes the proof of existene and estimates of u. Uniqueness

follows from the uniqueness of the very weak solutions in L

q

w

(
) (Theorem 2.2).

To show the existene of p we use the interpolation Theorem 3.5.1. and the existene

and uniqueness (modulo onstants) of the pressure in the ase of strong [8℄ and of very

weak solutions (Theorem 2.2). Then we obtain a funtional ~p 2 H

��1;q

w;�

(
) suh that

�hu;��i � h~p; div �i = hF; �i for all � 2 Y

q

0

;w

0

:

The restrition p := ~pj

C

1

0

(
)

solves the problem.

By the de�nition of

~

H

�;q

w

(
) it follows, that whenever a restrition operator

tr : H

�;q

w

(
)! T (D)

for a boundary portion D � �
 is well-de�ned (as a ontinuous linear operator into

some boundary spae T (D), whih oinides with the usual trae on W

2;q

w

(
)), then for

the solution u 2

~

H

�;q

w

(
) one has tru = 0.

In the ase, where data and solutions are regular enough (inluding the ase � = 1 of

weak solutions) we want to deal with inhomogeneous boundary values.

If � � 1 then H

�;q

w

(
) ,! W

1;q

w

(
) whih implies the existene of a ontinuous restri-

tion operator

tr : H

�;q

w

(
)! T

1;q

w

(�
); tru = uj

�


if u 2 C

1

(
):

As in the ase of weighted Sobolev spaes we de�ne the assoiated boundary spae by

T

�;q

w

(�
) = tr

�

H

�;q

w

(
)

�

equipped with the norm of the fator spae

kgk

T

�;q

w

(�
)

= inffkuk

�;q;w;


j u 2 H

�;q

w

(
); tr u = gg:

14



Lemma 3.7.

[T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

= T

�;q

w

(�
)

and there exists a ontinuous linear extension operator ext : T

�;q

w

(�
)! H

�;q

w

(
).

Proof. By [6℄ or [13℄ there exists a ontinuous linear extension operator

ext : T

1;q

w

(�
)!W

1;q

w

(
) and : T

2;q

w

(�
)!W

2;q

w

(
);

with (ext g)j

�


= g for every g 2 T

k;q

w

(�
), k = 1; 2. Thus by interpolation

ext : [T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

! H

�;q

w

(
)

is ontinuous and we obtain [T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

� T

�;q

w

(�
).

Vie versa the restrition operator

tr : H

�;q

w

= [W

1;q

w

(
);W

2;q

w

(
)℄

��1

! [T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

is ontinuous whih implies [T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

� T

�;q

w

(�
).

Thus the �rst assertion is proved. The seond assertion follows from the �rst assertion

when applying omplex interpolation to ext .

Theorem 3.8. Let 1 < q < 1, w 2 A

q

and 1 � � � 2. Moreover let F 2 H

��2;q

w

(
),

K 2 H

��1;q

w

(
) and g 2 T

�;q

w

(�
). Then there exists a unique weak solution u 2 H

�;q

w

(
),

i.e.

hru;r�i = hF; �i; for all � 2 W

1;q

w;0;�

(
)

ful�lling uj

�


= g and div u = K in the sense of distributions. This solution ful�lls the

estimate

kuk

�;q;w

� (kFk

��2;q;w

+ kKk

��1;q;w

+ kgk

T

�;q

w

(�
)

):

Moreover there exists a pressure funtion p 2 H

��1;q

w

(
), unique modulo onstants, suh

that the Stokes equations are ful�lled distributionally.

Proof. Existene: For g 2 T

�;q

w

(�
) there exists v 2 H

�;q

w

(
) suh that tr v = g and

kvk

�;q;w;


� 2kgk

T

�;q

w

(�
)

. Sine there exists an extension V of v to the whole spae R

n

with kV k

�;q;w;R

n

� kvk

�;q;w;


, one has �v = (�V )j

C

1

0

(
)

2 H

��2;q

w

(
) =

~

H

��2;q

w

(
).

Hene by Theorem 3.6 there exists U 2 H

�;q

w

(
) solving

hF +�v; 'i = �hU;�'i; for all ' 2 Y

�

and

hK � div v;  i = �hU;r i; for all  2 W

1;q

0

w

0

(
):

Sine U 2

~

H

�;q

w

(
) � W

1;q

w;0

(
), we obtain by integration by parts for � 2 Y

q

0

;w

0

, whih

is dense in W

1;q

w;0

(
), that

hr(U + v);r�i = �hU;��i � h�v; �i = hF; �i:

Setting now u := U + v we learly obtain div u = K distributionally and tr u = tr v +

trU = tr v = g. Moreover

kuk

�;q;w;


� kvk

�;q;w;


+ kUk

�;q;w;


� (kgk

T

�;q

w

(�
)

+ kFk

��2;q;w;


+ kKk

��1;q;w; Omega

):
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Uniqueness: Let u be a weak solution to the Stokes problem w.r.t the data F;K and g.

Then integration by parts yields

hu;��i = �hru;r�i+ hu;N � r�i

�


= �hF; �i+ hg;N � r�i

�


: (3.7)

Sine jhu;N � r�i

�


j � kgk

T

0;q

w

(�
)

k�k

2;q

0

;w

0

;


we �nd that the right hand side of (3.7),

onsidered as a map in �, is ontained in (Y

q

0

;w

0

)

0

. Thus u is a very weak solution. By

the uniqueness of very weak solutions in Theorem 2.2, we obtain the uniqueness of u.

Pressure: To show the existene of p we use that by de Rahm's Theorem there exists

p 2 (C

1

0

(
))

0

suh that the Stokes equations are ful�lled distributionally. From the

equation we obtain rp 2 H

��2;q

w

(
). It remains to show p 2 H

��1;q

w

(
). For � = 1

and � = 2 this is lear by the Poiarr�ee inequality [7, Corollary 2.1℄. If we assume in

addition that

R

p = 0 we obtain that p depends linearly and ontinuously on f , k and

g. Thus interpolation shows p 2 H

��1;q

w

(
).

Now we turn to the ase 0 � � � 1. Here we de�ne boundary spaes by

T

�;q

w

(�
) =

�

T

0;q

w

(�
); T

1;q

w

(�
)

�

�

;

equipped with the norm of the interpolation spae.

To ensure the well-de�nedness of the boundary onditions we need to demand that the

fore F and the divergene K is ontained in some spae of distributions on 
. Sine

Sobolev embeddings require strong assumptions to the weight funtion w we assume

(3.9). See Lemma 4.3 for suÆient onditions suh that (3.9) is ful�lled.

Theorem 3.9. Let 1 < q < 1, w 2 A

q

and 0 � � � 1. Assume that f 2

~

H

��2;q

w

(
)

and k 2 H

��1;q

w;0

(
) allow deompositions into

hf; �i = hF; �i � hg;N � r�i

�


; for every � 2 Y

q

0

;w

0

hk;  i = hK; i � hg;N i

�


; for every  2 W

1;q

0

w

0

(
)

(3.8)

with F 2 W

�1;r

~w

(
), K 2 L

r

~w

(
) and g 2 T

�;q

w

(�
), where r and ~w 2 A

r

are hosen suh

that

W

�1;r

~w

(
) ,!

~

H

��2;q

w

(
) and L

r

~w

(
) ,! H

��1;q

w;0

(
): (3.9)

Then the very weak solution u 2 L

q

w

(
) with respet to f and k whih exists aording

to Theorem 2.2 is ontained in H

�;q

w

(
), assumes the boundary value g in the sense of

(2.11) and (2.12) and ful�lls the estimate

kuk

�;q;w

� (kFk

~

H

��2;q

w

(
)

+ kKk

H

��1;q

w;0

(
)

+ kgk

T

�;q

w

(�
)

): (3.10)

Proof. Step 1: We onsider the operator

B : T

0;q

w

(�
)! L

q

w

(
); g 7! u;

where u is the very weak solution to the Stokes problem with data

f = [� 7! hg;N � r�i

�


℄ and k = [ 7! hg;N i

�


℄:
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B is linear and ontinuous, also onsidered as an operator B : T

1;q

w

(�
) ! W

1;q

w

(
).

This follows from Theorem 3.8 in the ase � = 1 sine the very weak solution with

respet to f and k oinides with the weak solution with 0 fore and divergene and

boundary ondition g. Thus, interpolation yields that

B : T

�;q

w

(�
)! H

�;q

w

(
)

is ontinuous whih implies the existene and estimates of the solution. Uniqueness

follows from the uniqueness of the very weak solution in L

q

w

(
) whih is known from

Theorem 2.2.

Step 2: Let U = Bg 2 H

�;q

w

(
) given by Step 1. Moreover let v 2 W

1;r

~w

(
) be the weak

solution to the Stokes Problem w.r.t the data F , K and zero boundary values whih

exists aording to Theorem 3.8.

By the embeddings (3.9) and Theorem 3.6 there also exists a very weak solution in

H

�;q

w

(
). Sine both, H

�;q

w

(
) and W

1;r

~w

(
) are embedded into some ommon spae

L

t

(
) for some t > 1 we obtain by the uniqueness of the very weak solution in L

t

(
)

(Theorem 3.9) that these solutions oinide. This yields the estimate

kvk

�;q;w

� (kFk

~

H

��2;q

w

(
)

+ kKk

H

��1;q

0;w

(
)

)

Now we set u := U + v. Then u is a very weak solution with respet to f and k and the

estimate (3.10). Moreover, by the de�nition of the trae in (2.11) and (2.12) we obtain

uj

�


= g.

The proof of the above theorem works in the same way, if one hooses F 2

~

H

��2;q

w

(
)

and K 2 H

��1;q

w;0

(
). This is also visible in the a priori estimate (3.10). However, with

suh data it is not lear if the outoming solution is regular enough to ensure that the

boundary value uj

�


is well de�ned.

Corollary 3.10. Let 
 be a bounded C

1;1

-domain. Moreover, let 1 < q; r <1, w 2 A

q

,

v 2 A

r

and 0 � � � 2 be given suh that H

�;q

w

(
) ,! L

r

v

(
). Then

T

�;q

w

(�
) ,! T

0;r

v

(�
):

Proof. Let g 2 T

�;q

w

(�
). Then the very weak solution u 2 H

�;q

w

(
) to

�hu;��i = hg;N � r�i

�


for all � 2 Y

q

0

;w

0

;�

(
)

�hu;r i = hg;N i

�


for all  2 W

1;q

0

w

0

(
)

ful�lls kuk

�;q;w

� kgk

T

�;q

w

(�
)

and u 2

~

W

r;r

v;v

(de�ned in (2.10)) with kuk

~

W

r;r

v;v

= kuk

r;v

and

div u = 0. Thus tangential and normal trae are well-de�ned for u and sine uj

�


= g

we obtain

kgk

T

0;r

v

(�
)

� kuk

r;v

� kuk

�;q;w

� kgk

T

�;q

w

(�
)

:
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4 Stationary Navier Stokes Equations with Irregular

Data

4.1 Estimates of the Nonlinear Term

We prepare some embedding theorems. For 0 < � < n we de�ne the weakly singular

integral operator

I

�

g(x) =

Z

R

n

g(y)

jx� yj

n��

dy:

Theorem 4.1. Let 0 < � < n and 1 < p < q < 1, v 2 A

p

and w 2 A

q

. Moreover

assume that v and w ful�ll the ondition

jQj

�

n

�1

�

Z

Q

w

�

1

q

�

Z

Q

v

�

1

p�1

�

1

p

0

<  for every ube Q � R

n

:

Then

kI

�

fk

q;w

� kfk

p;v

for every f 2 L

q

v

(R

n

):

Proof. This is a speial ase of [14, Theorem 1 (B)℄

Lemma 4.2. Let 1 < q < 1, w 2 A

q

, 1 < s < q and 
 � R

n

be bounded and open.

Moreover we assume that

jQj

s

� w(Q) for every ube Q � 


Æ

= fx 2 R

n

; dist (x;
) � Æg:

Then there exists a weight funtion W 2 A

q

with wj




=W j




and

jQj

s

� W (Q) for every ube Q � R

n

:

Proof. [6, Lemma A.2℄

Lemma 4.3. Let 
 be a bounded extension domain. Moreover, let 1 � s < r < q <1

and assume 0 < � < n suh that

1

q

�

1

r

�

�

ns

:

Then for every w 2 A

s

the following embeddings are true:

1. H

�;r

w

(
) ,! L

q

w

(
).

2. H

�;q

0

w

q

(
) ,! L

r

0

w

r

(
), where w

q

= w

�

1

q�1

and w

r

= w

�

1

r�1

.

3. L

r

w

(
) ,! H

��;q

w

(
) and L

r

w

(
) ,! H

��;q

w;0

(
).

Proof. 1. By [9, Corollary 3.2℄ the asserted embedding holds, if jQj

�

n

w(Q)

1

q

�

1

r

< C for

all Q � U for some open set U � 
. By [15℄ we know that for every Q � U and w 2 A

s

it holds jQj

s

�

jU j

s

w(U)

w(Q). Thus

jQj

�

n

w(Q)

1

q

�

1

r

� w(Q)

�

sn

+

1

q

�

1

r

� w(U)

�

sn

+

1

q

�

1

r

=: C;
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sine

�

sn

+

1

q

�

1

r

� 0.

2. In the same way as in [9, Theorem 3.2℄ one shows using Theorem 4.1 that

jQj

�

n

�1

�

Z

Q

w

r

�

1

r

0

�

Z

Q

(w

q

)

�

1

q

0

�1

�

1

q

<  for every ube Q � R

n

(4.1)

implies

H

;q

0

w

q

(R

n

) ,! L

r

0

w

r

(R

n

) for every  � �:

Thus we have to show (4.1). As above w 2 A

s

implies w(Q) � (U)jQj

s

for every

Q � U . Thus by Lemma 4.2 we an assume without loss of generality w(Q) � (U)jQj

s

for every ube Q � R

n

. Sine

w

�

1

r

0

�1

r

= w

1

r

0

�1

1

r�1

= w = (w

q

)

�

1

q

0

�1

;

we an alulate using the de�nition of Mukenhoupt weights, w 2 A

r

and

1

q

�

1

r

< 0

jQj

�

n

�1

�

Z

Q

w

r

�

1

r

0

�

Z

Q

(w

q

)

�

1

q

0

�1

�

1

q

= jQj

�

n

�1

w

r

(Q)

1

r

0

w(Q)

1

q

� jQj

�

n

w(Q)

(

1

q

�

1

r

)

� jQj

�

n

+s(

1

q

�

1

r

)

:

The last term is bounded if

�

n

+ s(

1

q

�

1

r

) = 0. There exists 0 � � � � so that this is

true, beause s

�

1

q

�

1

r

�

< 0 and for � = � one has

�

n

+ s(

1

q

�

1

r

) �

�

n

� s

�

sn

= 0.

This �nishes the proof of 2.

3. Follows when onsidering the dual spaes in 2 and using H

�;q

0

w

0

;0

(
) ,! H

�;q

0

w

0

(
).

Lemma 4.4. Let 
 � R

n

be a bounded C

1;1

-domain. Assume w 2 A

s

for some s < q

and � �

�

ns

q

� 1

�

.

1. Let in addition � � 1 and 1 < t <1 with

1� �

ns

+

1

q

�

1

t

= 0: (4.2)

If n = 2 assume in addition � > �

1

2

+

2s

q

. Then w 2 A

t

,

L

t

w

(
) ,! H

��1;q

w;0

(
)

and

a)

�

�

�

�

Z

uv dx

�

�

�

�

� kuk

�;q;w

kvk

�;q;w

k k

t

0

;w

0

for every u; v 2 H

�;q

w

(
) and  2 H

1��;q

0

w

0

(
).
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b)

�

�

�

�

Z

ku� dx

�

�

�

�

� kkk

t;w

kuk

�;q;w

k�k

1;t

0

;w

0

for every k 2 L

t

w

(
), u 2 H

�;q

w

(
) and � 2 H

2��;q

0

w

0

(
).

2. If � � 1 then

kurvk

2��;q;w

� kuk

�;q;w

kvk

�;q;w

for every u; v 2 H

�;q

w

(
);

if in the ase n = 2 the additional ondition � >

2s

q

is satis�ed.

Proof. One has

t =

nsq

q(1� �) + ns

�

nsq

q(2�

ns

q

) + ns

=

ns

2

> s

if n � 3. If n = 2 then t > s is guaranteed by the supplementary ondition below (4.2).

Thus, by Lemma 4.3 one has L

t

w

(
) ,! H

��1;q

w;0

(
) and H

1��;q

0

w

q

(
) ,! L

t

0

w

t

(
).

1. a) Let r =

nsq

�q�+ns

. Then by Lemma 4.3 one has u 2 H

�;q

w

(
) ,! L

r

w

(
). Moreover

we set � = (1�

2

r

)

�1

=

nsq

nsq+2�q�2ns

. Then

1

�

0

�

1

t

=

�2�q + 2ns

nsq

�

q � �q + ns

nsq

=

�q + ns� �q

nsq

� 0

Thus �

0

� t whih implies L

�

0

w

(
) ,! L

t

w

(
) and hene L

t

0

w

t

(
) ,! L

�

w

�

0

(
).

Sine

1

r

+

1

r

+

1

�

= 1 and �

1

(�

0

�1)�

+

1

r

+

1

r

= 0 we an alulate

�

�

�

�

Z

uv� dx

�

�

�

�

=

�

�

�

�

Z

uw

1

r

vw

1

r

 w

1

�

�

0

dx

�

�

�

�

� kuk

r;w

kvk

r;w

k k

�;w

�

0

� kuk

�;q;w

kvk

�;q;w

k k

t

0

;w

t

:

1. b) We set � =

�

1�

1

r

�

1

t

�

�1

=

rt

rt�t�r

and r =

nsq

�q�+ns

as above. Then

�

0

=

rt

r + t

=

nsq

q + 2ns� 2q�

�

nqs

3q

� s if n � 3:

If n = 2 one needs the ondition below (4.2) to make sure �

0

� s. Using this and the

fat that

�

1

�

0

+

1

t

+

1

ns

= �

1

r

+

1

ns

=

1 + � �

ns

q

ns

� 0

we obtain H

1;t

0

w

t

(
) ,! L

�

w

�

0

(
). Sine

1

t

+

1

q

+

1

�

= 1 and �

1

(�

0

�1)�

+

1

t

+

1

r

= 0 we an

estimate

�

�

�

�

Z

ku� dx

�

�

�

�

=

�

�

�

�

Z

kw

1

t

uw

1

r

�w

1

�

�

0

dx

�

�

�

�

� kkk

t;w

kuk

r;w

k�k

�;w

�

0

� kkk

t;w

kuk

�;q;w

k�k

1;t

0

;w

t

:

2. Let r :=

nsq

ns+2q�q�

, � :=

nsq

ns�q�

and � :=

ns

2

. Then one has
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�

1

r

=

1

�

+

1

�

.

� L

r

w

(
) ,! H

��2;q

w

(
). If n = 2 we need the supplementary ondition to ensure

r > s.

� H

�;q

w

(
) ,! L

�

w

(
).

� H

��1;q

w

(
) ,! L

�

w

(
) (using � �

ns

q

� 1).

Thus it follows

kurvk

��2;q;w

� kurvk

r;w

= 

�

Z

juj

r

w

r

�

jrvj

r

w

1�

r

�

�

1

r

� kuk

�;w

krvk

�;w

� kuk

�;q;w

krvk

��1;q;w

� kuk

�;q;w

kvk

�;q;w

:

4.2 Stationary Navier Stokes Equations in Bessel Potential Spaes

In this setion we always assume

� 
 � R

n

is a bounded C

1;1

-domain,

� 1 < q <1 and w 2 A

s

for some 1 � s < q,

�

ns

q

� 1 � � � 2 and � � 0. (If n � 3 this is always possible, sine for s = q one

has

ns

q

� 1 = n� 1 � 2).

De�nition 4.5. Let 0 � � � 1, 1 < q < 1 and w 2 A

q

. Moreover, let g 2 T

�;q

w

(�
),

F 2 W

�1;t

w

(
) and K 2 L

t

w

(
). Then u 2 H

�;q

w

(
) is alled a very weak solution to the

stationary Navier-Stokes equations, if

�hu;��i+ hg;N � r�i

�


� huu;r�i � hKu; �i = hF; �i for every � 2 Y

q

0

;w

0

;�

(
);

div u = K is ful�lled in the sense of distributions and u �N j

�


= g � N in the sense of

(2.12).

Proof of Theorem 1.1. For u 2 H

�;q

w

(
) let W (u) 2 (C

1

0

(
))

0

be given by

hW (u); �i = huu;r�i+ hKu; �i for all � 2 C

1

0

(
):

By Lemma 4.4.1 one has for � 2 C

1

0

(
)

jhW (u); �ij � kuk

2

�;q;w

kr�k

t

0

;w

0

+ kKk

t;w

kuk

�;q;w

k�k

1;t

0

;w

0

� (kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

)k�k

1;t

0

;w

0

and hene W (u) 2 W

�1;t

w

(
) with

kW (u)k

�1;t;w

� (kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

): (4.3)
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We de�ne the mapping S : H

�;q

w

(
)! H

�;q

w

(
) by

�hSu;��i = hF; �i+ hW (u); �i � hg;N � r�i

�


for every � 2 Y

q

0

;w

0

;�

�hSu;r i = hK; i � hg;N i

�


for every  2 W

1;q

0

w

0

(
):

This well-de�ned by Theorem 3.9.

We want to use Banah's Fixed Point Theorem to show that S has a �xed point,

presumed the data is small enough.

By the a priori estimate in Theorem 3.9 we know that

kvk

�;q;w

� D(kFk

�1;t;w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

); (4.4)

if v is a very weak solution to the Stokes problem with respet to the data F 2 H

�1;t

w

(
),

K 2 L

t

w

(
) and g 2 T

�;q

w

(�
).

We assume that the data F;K and g are hosen small enough suh that the right

hand side of (4.4) is � � :=

1

6D

, where  is the onstant in the estimate (4.3).

Next we show that for suh data and Æ =

2

6D

the ball B

Æ

(0) is mapped by S into

itself. By (4.4) and (4.3) one has for u 2 B

Æ

(0)

kSuk

�;q;w

� D(kFk

�1;t;w

+ (kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

) + kKk

t;w

+ kgk

T

�;q

w

(�
)

)

� �+ D�Æ + DÆ

2

=

6D + 2D + 4D

(6D)

2

=

2

6D

= Æ:

The next step is to show that S is a ontration on B

Æ

(0). Take u; v 2 B

Æ

(0). Then

Su� Sv is a solution of

�hSu� Sv;��i = hW (u)�W (v); �i for every � 2 Y

q

0

;w

0

;�

hSu� Sv;r i = 0 for every  2 W

1;q

0

w

0

(
):

Moreover from Lemma 4.4.1 we obtain

jhW (u)�W (v); �ij � jh(u� v)u;r�ij+ jhv(u� v);r�ij+ jhK(u� v); �ij

� (kuk

�;q;w

+ kvk

�;q;w

+ kKk

t;w

)ku� vk

�;q;w

k�k

1;t

0

;w

t

� (2Æ + �)ku� vk

�;q;w

k�k

1;t

0

;w

t

=

5

6D

ku� vk

�;q;w

k�k

1;t

0

;w

t

:

Thus we again obtain from the a priori estimate that

kSu� Svk

�;q;w

� DkW (u)�W (v)k

�1;t;w

�

5

6

ku� vk

�;q;w

:

We have shown that there exists a unique �xed point of S in B

Æ

(0) and hene a solution

u 2 H

�;q

w

(
) to the stationary Navier-Stokes system.

The a priori estimate follows from

kuk

�;q;w

� D(kFk

�1;t;w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

+ (kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

)):

Sine D(kuk

�;q;w

+kKk

t;w

) �

3

6

, one obtains the a priori estimate subtrating

3

6

kuk

�;q;w

from both sides of the above equation.
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To show uj

�


= g one uses the fat that u is a very weak solution to the Stokes

equations with respet to the data

f = [� 7! hF; �i+ hW (u); �i � hg;N � r�i

�


℄

k = [ 7! hK; i � hg;N i

�


℄;

where f = [� 7! hF; �i + hW (u); �i℄ 2 W

�1;t

w

(
). Then the assertion follows from

Proposition 3.9.

De�nition 4.6. Let 1 � � � 2. Moreover, let F 2 H

��2;q

w

(
), K 2 H

��1;q

w

(
) and

g 2 T

�;q

w

(�
). Then u 2 H

�;q

w

(
) is alled a weak solution to the stationary Navier-

Stokes equations, if

hru;r�i+ hu � ru; �i = hF; �i for every � 2 C

1

0;�

(
);

div u = K and uj

�


= g.

Proof of Theorem 1.2.

This an be proved in the same way as Theorem 1.1 using Lemma 4.4.2. instead of

Lemma 4.4.1. and Theorem 3.8 instead of Theorem 3.9.

The very weak solution is unique even without the assumption of the smallness of

the exterior fore f and the boundary ondition g. To see this we need the following

embedding theorem.

Lemma 4.7. If 1 � s, w 2 A(s) and 1 � p <1 then for q � sp one has

L

q

w

(
) ,! L

p

(
):

Proof. First we assume that s > 1. Sine

q

p

� s one has w 2 A

q

p

. Thus w

�

1

q

p

�1

2 A

(

q

p

)

0
�

L

1

lo

(
). Together with the H�older inequality this yields

Z




jf j

p

dx =

Z




jf j

p

w

p

q

w

�

p

q

dx � kfk

p

q;w

�

Z




w

�

1

q

p

�1

dx

�

q�p

q

= kfk

p

q;w

for every f 2 L

q

w

(
).

If s = 1, then by [15℄ one an assume that w is bounded from below on 
. This implies

L

p

w

(
) ,! L

p

(
).

Theorem 4.8. Let the data F;K and g be given as in Theorem 1.1 and let u be a very

weak solution to the stationary Navier Stokes system with respet to the data F;K and

g.

Then there exists a onstant � > 0 suh that under the ondition

kuk

�;q;w

+ kKk

t;w

� �;

there exists at most one very weak solution to the stationary Navier Stokes equations

aording to De�nition 4.5.
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Proof. By Lemma 4.3 and Lemma 4.7 one has

H

�;q

w

(
) ,! L

nsq

�q�+ns

w

(
) ,! L

nq

�q�+ns

(
) ,! L

n

(
);

by the assumptions on �. Analogously we �nd F 2 W

�1;

n

2

(
) and K 2 L

n

2

(
). From

Corollary 3.10 we thus obtain g 2 W

�

1

n

;n

(�
) := T

0;n

1

(�
). Hene the assumptions of

[4, Theorem 1.5℄ are ful�lled and we obtain the uniqueness.
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