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Abstra
t

We investigate the stationary Navier-Stokes equations in Spa
es with Mu
k-

enhoupt weights. The aim is to �nd a 
lass of solutions as large as possible.

We join the notation of very weak solutions in [1℄ and [10℄. When estimating

the nonlinear term the weighted 
ontext 
auses diÆ
ulties. For this reason

we 
onsider solutions in weighted Bessel-potential spa
es.

Thus using 
omplex interpolation we establish a theory of solutions to the

Stokes equations in weighted Bessel-potential spa
es.
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1 Introdu
tion

We 
onsider the stationary Navier-Stokes equations with inhomogeneous data and vis-


osity 1

��u + u � ru+rp = F; in 
 (1.1)

div u = K; in 
 (1.2)

uj

�


= g: (1.3)

If one multiplies (1.1) with a test fun
tion � vanishing on the boundary and (1.2) with

a test fun
tion  then formal integration by parts yields

�hu;��i+ hu � ru; �i = hF; �i � hg;N � r�i and � hu;r i = hK; i � hg;N i:

Following [1℄, [3℄, [4℄, [10℄ we will use these equations for the de�nition of very weak

solutions.

Our aim is to 
onsider the stationary Navier-Stokes equations requiring the least

possible regularity of the data. We investigate this problem in the 
ontext of fun
tion

spa
es with Mu
kenhoupt weights. This is a large 
lass of lo
ally integrable weight-

fun
tions de�ned by (2.1). Their good properties 
on
erning harmoni
 analysis [15℄,

[11℄ where the base to treat to solvability of the Stokes and Navier Stokes equations [5℄,

[6℄, [7℄, [8℄.
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When it 
omes to estimate the nonlinear term u � ru, one needs a weighted analogue

to the Sobolev embedding theorems. Su
h embeddings 
an be proved as in [9℄ using

the 
ontinuity of weakly singular integral operators established in [14℄. However, these

estimates require strong assumptions to the weight fun
tion. As a rule the more general

data and solutions are the more restri
tions we have to impose on the weight fun
tion.

This is the reason why we study this problem in weighted Bessel potential spa
es.

Depending on the weight fun
tion w we �nd a 
lass of indi
es � su
h that the 
lass of

solutions is 
ontained in the Bessel-potential spa
e H

�;q

w

(
), presumed the data is 
hosen

appropriately. The 
lassi
al weak and strong solutions are 
ontained in the presented

theory for � = 1 and � = 2, respe
tively.

Our main result 
on
erning very weak solutions to the stationary Navier Stokes prob-

lem is the following:

Theorem 1.1. Let 0 � � < 1 and � �

ns

q

� 1 if n � 3 and � > �

1

2

+

2s

q

if n = 2.

Moreover, let F 2 W

�1;t

w

(
), K 2 L

t

w

(
) with

1� �

ns

+

1

q

�

1

t

= 0

and g 2 T

�;q

w

(�
) with hK; 1i = hg;Ni

�


. Then there exists a 
onstant � > 0 su
h that,

if

kFk

�1;t;w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

� �;

then there exists a very weak solution u 2 H

�;q

w

(
) to the stationary Navier-Stokes

equations. This solution ful�lls uj

�


= g in the sense of (2.12) and (2.11) and satis�es

the estimate

kuk

�;q;w

� 
(kFk

�1;t;w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

)

with 
 = 
(�; q; w;
).

If 1 � � � 2 we are in the situation between weak and strong solutions. In this 
ase

we have the following existen
e theorem

Theorem 1.2. Let 1 � � � 2 and � �

ns

q

� 1 if n � 3 and � >

2s

q

if n = 2. Moreover

let F 2 H

��2;q

w

(
), K 2 H

��1;q

w

(
) and g 2 T

�;q

w

(�
) with

R

K dx =

R

�


gN dS. Then

there exists a 
onstant � > 0 su
h that, if

kFk

��2;q;w

+ kKk

��1;q;w

+ kgk

T

�;q

w

(�
)

� �;

then there exists a weak solution u 2 H

�;q

w

(
) to the stationary Navier-Stokes equations.

This solution satis�es the estimate

kuk

�;q;w

� 
(kFk

��2;q;w

+ kKk

��1;q;w

+ kgk

T

�;q

w

(�
)

)

with 
 = 
(�; q; w;
).

The solution in Theorem 1.1 and 1.2 is unique with an additional smallness assumption

to u and K. It is shown in Theorem 4.8 using the uniqueness in the unweighted 
ase

established in [4℄.
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The di�eren
e between the 
ase 0 � � � 1 and 1 � � � 2 lies in the way of treating the

boundary 
onditions and the inhomogeneous divergen
e. If 1 � � � 2 then the solution

u 2 H

�;q

w

(
) is smooth enough to ensure that the restri
tion uj

�


to the boundary is

well-de�ned. Moreover the divergen
e K 2 H

��1;q

w

(
) ,! L

q

w

(
) and we are dealing

with produ
ts of fun
tions. If 0 � � � 1 one has to demand more regularity of f and k

to ensure this.

As a diÆ
ult step in the proof of the mentioned theorems we need the solvability of

the stationary Stokes equations in weighted Bessel potential spa
es. To establish this

we use 
omplex interpolation between the strong and the very weak solution. These

very weak solutions 
an be obtained by dualization of the strong solutions as done in

[13℄. This in turn requires interpolation theorems of spa
es with 0 boundary values. See

Se
tion 3 for details.

2 Preliminaries

2.1 Weighted Fun
tion Spa
es

Let A

q

, 1 < q < 1 be the set of Mu
kenhoupt weights whi
h is given by all 0 � w 2

L

1

lo


(R

n

) for whi
h

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1 (2.1)

The supremum is taken over all 
ubes Q in R

n

and jQj stands for the Lebesgue measure

of Q. To shorten the notation we write w(U) =

R

U

w dx for every measurable set

U � R

n

.

For w 2 A

q

and an open set 
 we de�ne

L

q

w

(
) := ff 2 L

1

lo


(
) j kfk

q;w

:=

�

Z




jf j

q

w dx

�

1

q

<1g:

It is easily seen that (L

q

w

(
))

0

= L

q

0

w

0

(
) with

1

q

+

1

q

0

= 1 and w

0

= w

�

1

q�1

2 A

q

0

.

Moreover, for k � 0 we introdu
e the weighted Sobolev spa
es

W

k;q

w

(
) :=

n

u 2 L

q

w

(
); j kuk

k;q;w

:=

X

j�j�k

kD

�

uk

q;w

<1

o

and W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

as well as the dual spa
e W

�k;q

w

(
) := (W

k;q

0

w

0

;0

(
))

0

. With

this notation one has W

0;q

w

(
) = W

0;q

w;0

(
) = L

q

w

(
).

Sin
e for k � 1 one has W

k;q

w

(
) � W

k;1

lo


(
), the restri
tion u 7! uj

�


is well-de�ned.

Thus we may de�ne T

k;q

w

(�
) := (W

k;q

w

(
))j

�


equipped with the norm of the fa
tor

spa
e

kgk

T

k;q

w

(�
)

:= inffu 2 W

k;q

w

(
) j uj

�


= gg:

Furthermore, we set T

0;q

w

(�
) := (T

1;q

0

w

0

(�
))

0

. Then L

q

w

(
), W

k;q

w

(
), W

k;q

w;0

(
) and

T

k;q

w

(�
) are re
exive Bana
h spa
es in whi
h C

1

(
) (C

1

(
)j

�


, resp.) is dense.
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We also use the divergen
e-free version of the spa
es

W

k;q

w;0;�

(
) := fu 2 W

k;q

w;0

(
) j div u = 0g

and C

1

0;�

(
), the spa
e of smooth and 
ompa
tly supported divergen
e-free fun
tions.

By [6℄ 
hange of variables is 
ontinuous between weighted Sobolev spa
es. More

pre
isely if w 2 A

q

and � 2 C

1;1

(R

n

), is a di�eomorphism then w Æ � 2 A

q

and

u 7! u Æ � :W

k;q

w

(R

n

)!W

k;q

wÆ�

(R

n

) is 
ontinuous for k = 0; 1; 2: (2.2)

For w 2 A

q

let

~w(x

0

; x

n

) =

(

w(x

0

; x

n

) on R

n

+

w(x

0

;�x

n

) on R

n

�

(2.3)

then an elementary proof (see [8℄) shows ~w 2 A

q

.

2.2 Very Weak Solutions to the Stokes Problem

Before dealing with very weak solutions to the Stokes equations in weighted Bessel-

potential spa
es we treat them in spe
ial weighted spa
es of fun
tionals. In this lowest

regularity 
ontext the data is given by fun
tionals whi
h are in general no distributions

on the domain 
. More pre
isely, the for
e is 
ontained in Y

0

q

0

;w

0

, the dual spa
e of

Y

q

0

;w

0

=: Y

q

0

;w

0

(
) := fu 2 W

2;q

0

w

0

(
) j uj

�


= 0g;

and the divergen
e k is 
ontained in W

�1;q

w;0

(
) := (W

1;q

0

w

0

(
))

0

. As a spa
e of test fun
-

tions we use

Y

�

:= Y

q

0

;w

0

;�

:= f� 2 Y

q

0

;w

0

j div� = 0g:

Then the de�nition of very weak solutions reads as follows.

De�nition 2.1. Let f 2 Y

w

0

;q

0

(
)

0

and k 2 W

�1;q

w;0

(
). A fun
tion u 2 L

q

w

(
) is 
alled

a very weak solution to the Stokes problem with respe
t to the data f and k if

hf; �i = �hu;��i; for all � 2 Y

�

and (2.4)

hk;  i = �hu;r i; for all  2 W

1;q

0

w

0

(
): (2.5)

The following two theorems guaranty existen
e, uniqueness and regularity of very

weak solutions. They are spe
ial 
ases of theorems in [13℄

Theorem 2.2. Let f 2 Y

0

q

0

;w

0

, k 2 W

�1;q

w;0

(
) with hk; 1i = 0. Then there exists a unique

very weak solution u 2 L

q

w

(
) to the Stokes problem in the sense of De�nition 2.1.

Moreover there exists a unique pressure fun
tional p 2 W

�1;q

0;w

(
) (unique modulo


onstants) su
h that (u; p) solves

�hu;��i � hp; div�i = hF; �i for all � 2 Y

q

0

;w

0

:

In parti
ular ��u+r(pj

C

1

0

(
)

) = f j

C

1

0

(
)

in the sense of distributions. The fun
tions

(u; p) ful�ll the inequality

kuk

q;w

+ kpk

�1;q;w;0

� 
(kfk

Y

0

q

0

;w

0

+ kkk

W

�1;q

w;0

(
)

); (2.6)

with 
 = 
(
; q; w).
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Theorem 2.3. Assume that f 2 Y

0

q

0

;w

0

and k 2 W

�1;q

w;0

(
) allow a de
omposition into

hf; �i = hF; �i � hg;N � r�i

�


for all � 2 Y

q

0

;w

0

;

hk;  i = hK; i � hg;N �  i

�


for all  2 W

1;q

0

w

0

(
)

(2.7)

with g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
). Then the very weak solution u to the

Stokes problem with respe
t to f and k is a strong solution with respe
t to F;K and g.

In parti
ular u 2 W

2;q

w

(
) and

kuk

2;q;w

� 
(kFk

q;w

+ kKk

1;q;w

+ kgk

T

2;q

w

(�
)

): (2.8)

One 
onsequen
e of this theorem is the following: If u is a very weak solution to the

Stokes problem with suÆ
iently regular f and k (It suÆ
es to assume that f and k are


ontained in some spa
e of distributions embedded into Y

0

q

0

;w

0

, W

�1;q

w;0

(
), resp.) then

uj

�


= 0.

However, we need to de�ne boundary 
onditions in a far more general 
ontext. Thus

we 
hoose 1 < r <1 and ~w 2 A

r

su
h that

W

�1;r

~w

(
) ,! Y

0

q

0

;w

0

and L

r

~w

(
) ,! W

�1;q

w;0

(
) (2.9)

and de�ne the spa
e

~

W

q;r

w; ~w

(
) :=

�

u 2 L

q

w

(
)

�

�

�uj

C

1

0;�

(
)


an be extended to an element of (W

1;r

0

0; ~w

0

;�

(
))

0

	

:

(2.10)

For u 2

~

W

q;r

w; ~w

(
) the tangential tra
e u

T

is given by

hu

T

; N � r�i

�


= hu;��i � h�u; �i (2.11)

for every � 2 Y

q

0

;w

0

;�

.

For the normal 
omponent of the boundary 
ondition we set

E

q;r

w; ~w

:= fv 2 L

q

w

(
) j div v 2 L

r

~w

(
)g

and de�ne for u 2 E

q;r

w; ~w

as in the 
lassi
al 
ase

hu

N

; Nvi

�


:= hdiv u; vi+ hu;rvi for all v 2 W

1;q

0

w

0

(
): (2.12)

For u 2

~

W

q;r

w; ~w

(
) \ E

q;r

w; ~w

we write uj

�


= g, if hu

T

; hi

�


= hg; hi

�


for every purely

tangential h and hu

N

; hi

�


= hg; hi

�


for every purely normal h.

See [13℄ for the well-de�nedness and the 
ontinuity of this restri
tion. Finally a very

weak solution assumes a given boundary 
ondition in the above sense. (See [13℄ for the

proof.)

Proposition 2.4. Let u be a very weak solution to the Stokes problem 
orresponding

to the data hf; �i = hF; �i � hg;N � r�i

�


and hk;  i = hK; i � hg;N �  i

�


with

F 2 W

�1;r

~w

(
), K 2 L

r

~w

(
) where r and ~w 2 A

r

are 
hosen a

ording to (2.9) and

g 2 T

0;q

w

(�
).

Then u 2

~

W

q;r

w; ~w

\ E

q;r

w; ~w

and uj

�


= g.
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2.3 Weighted Bessel Potential Spa
es and Complex Interpolation

Let fX

1

; X

2

g be an interpolation 
ouple and D = fz 2 C j 0 < Re z < 1g.

We denote by F (X

1

; X

2

) the spa
e of all holomorphi
 fun
tions from D to X

1

+X

2

whi
h are extendable to 
ontinuous fun
tions on D su
h that

kfk

F (X

1

;X

2

)

:= maxfsup

y2R

kf(iy)k

X

1

; sup

y2R

kf(iy + 1)k

X

2

g <1:

For 0 < � < 1 we write [X

1

; X

2

℄

�

for the 
omplex interpolation in the usual sense, see

e.g. [17℄.

On the spa
e S

0

(R

n

) of temperate distributions we de�ne for all � 2 C the operator

�

�

f = F

�1

(1 + j�j

2

)

�

2

Ff for all f 2 S

0

(R

n

);

where F stands for the Fourier transformation on S

0

(R

n

). Then for 1 < q <1, w 2 A

q

and � 2 R the weighted Bessel potential spa
e is given by

H

�;q

w

(R

n

) =

�

f 2 S

0

j kfk

H

�;q

w

(R

n

)

:= k�

�

fk

q;w;R

n

<1

	

:

Let 
 be an extension domain, i.e. 
 admits a 
ontinuous extension operator E :

W

k;q

w

(
)! W

k;q

w

(R

n

) whi
h is universal for all k � m. In parti
ular Lips
hitz domains

are extension domains (see Chua [2℄ and Jones [12℄). Then the weighted Bessel potential

spa
e on 
 is de�ned by

H

�;q

w

(
) = fuj




j u 2 H

�;q

w

(R

n

)g

equipped with the norm

kuk

�;q;w

:= kuk

H

�;q

w

(
)

:= inffkUk

H

�;q

w

(R

n

)

j U 2 H

�;q

w

(R

n

); U j




= ug:

Theorem 2.5. Let 
 be an extension domain, 1 < q <1, w 2 A

q

.

1. For k 2 N

0

one has H

k;q

w

(
) = W

k;q

w

(
) with equivalent norms.

2. For k 2 N, 0 � � � k one has

H

�;q

w

(
) = [L

q

w

(
);W

k;q

w

(
)℄�

k

:

3. The spa
es H

�;q

w

(
), � 2 R are independent of the values of the weight fun
tion

w 2 A

q

outside 
, i.e., if w

1

; w

2

2 A

q

, w

1

j




= w

2

j




then H

�;q

w

1

(
) = H

�;q

w

2

(
) with

equivalent norms.

Proof. [6, 8.2.2℄ and [9℄
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3 Stokes Equations in Weighted Bessel Potential Spa
es

3.1 Interpolation of Weighted Bessel Potential Spa
es with Zero

Boundary Values

For an extension domain 
 � R

n

, 1 < q < 1, w 2 A

q

and 0 � � � 2 we de�ne the

spa
e

~

H

�;q

w

(
) :=

8

<

:

Y

q;w

(
)

H

�;q

w

(R

n

)

; if 0 � � � 1 equipped with k � k

H

�;q

w

(R

n

)

;

Y

q;w

(
)

H

�;q

w

(
)

; if 1 < � � 2 equipped with k � k

H

�;q

w

(
)

;

where in the 
ase 0 � � � 1 the fun
tions of Y

q;w

(
) are assumed to be extended by 0

to fun
tions de�ned on the whole spa
e R

n

. This is possible, sin
e C

1

0

(
) is dense in

W

1;q

w;0

(
) � Y

q;w

(
) and W

1;q

w;0

(
) ,! W

1;q

w

(R

n

) ,! H

�;q

w

(R

n

).

Moreover, for su
h � it follows immediately from the de�nition of

~

H

�;q

w

(
) that the

extension of fun
tions u 2

~

H

�;q

w

(
) by 0 to fun
tions on R

n

is a 
ontinuous linear map

to H

�;q

w

(R

n

).

Finally, for � = 1 the two de�nitions are equivalent, i.e.

~

H

1;q

w

(
) = W

1;q

w;0

(
) =

Y

q;w

(
)

H

1;q

w

(
)

, equipped with k � k

H

1;q

w

(
)

. The reason is that for u 2 Y

q;w

one has by

Theorem 2.5

kuk

H

1;q

w

(
)

� 


1

kuk

W

1;q

w

(
)

= 


1

k~uk

W

1;q

w

(R

n

)

� 


2

k~uk

H

1;q

w

(R

n

)

� 


3

k~uk

W

1;q

w

(R

n

)

� 


4

kuk

H

1;q

w

(
)

;

where ~u denotes the extension of u by 0 to the whole spa
e R

n

.

For symmetrie reasons the question arises whether

~

H

�;q

w

(
) = Y

q;w

(
)

H

�;q

w

(
)

for all

0 � � � 2. However this is not the 
ase, not even in the unweighted 
ase. Indeed by

Triebel [18, I.6.5.23℄ one has

Y

q;1

(
)

H

1�

1

q

;q

(
)

= C

1

0

(
)

H

1�

1

q

;q

(
)

6= fu 2 H

1�

1

q

;q

(R

n

) j supp u � 
g =

~

H

1�

1

q

;q

(
):

(3.1)

We 
hoose the spa
es

~

H

�;q

w

(
) be
ause of their good properties with respe
t to interpo-

lation.

Theorem 3.1. Let 1 < q <1, w 2 A

q

and 0 � � � 2. Then

�

L

q

w

(R

n

+

); Y

q;w

(R

n

+

)

�

�

=

~

H

�;q

w

(R

n

+

);

where � =

�

2

with equivalent norms.

Proof. By Theorem 2.5 we may assume that w = ~w (given by (2.3)), i.e. w is even in

x

n

.

Step 1:

�

L

q

w

(R

n

+

); Y

q;w

(R

n

+

)

�

�

,!

~

H

�;q

w

(R

n

+

):

To see this let u 2

�

L

q

w

(R

n

+

); Y

q;w

(R

n

+

)

�

�

.

We begin with the 
ase 1 � � � 2. Then there is a fun
tion U 2 F (L

q

w

(R

n

+

); Y

q;w

(R

n

+

))

7



su
h that U(�) = u and kUk

F (L

q

w

(R

n

+

);Y

q;w

(R

n

+

))

� 
kuk

[L

q

w

(R

n

+

);Y

q;w

(R

n

+

)℄

�

.

Sin
e F (L

q

w

(R

n

+

); Y

q;w

(R

n

+

)) � F (L

q

w

(R

n

+

); H

2;q

w

(R

n

+

)) we obtain

u = U(�) 2 [L

q

w

(R

n

+

); H

2;q

w

(R

n

+

)℄

�

and

kuk

H

�;q

w

(R

n

+

)

� inf

n

kV k

F (L

q

w

(R

n

+

);H

2;q

w

(R

n

+

))

�

�

V 2 F (L

q

w

(R

n

+

); H

2;q

w

(R

n

+

)); V (�) = u

o

� kUk

F (L

q

w

(R

n

+

);Y

q;w

(R

n

+

))

� 
kuk

[L

q

w

(R

n

+

);Y

q;w

(R

n

+

)℄

�

:

Moreover, by [17, Theorem 1.9.3℄ we know that Y

q;w

(R

n

+

) is dense in [L

q

w

(R

n

+

); Y

q;w

(R

n

+

)℄

�

whi
h yields the assertion of Step 1 in the 
ase s � 1.

In the 
ase 0 � s � 1 we assume that we already know

�

L

q

w

(R

n

+

); Y

q;w

(R

n

+

)

�

1

2

=

~

H

1;q

w

(R

n

+

) = C

1

0

(R

n

+

)

W

1;q

w

(R

n

)

=W

1;q

0;w

(R

n

+

);

whi
h will be proved later on in this proof without using the present fa
t. Then, as

0 � � �

1

2

, the reiteration property implies

�

L

q

w

(R

n

+

); Y

q;w

(R

n

+

)

�

�

=

�

L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)

�

2�

:

Sin
e the extension

Tu(x) =

(

u(x) for x 2 R

n

+

0 for x 2 R

n

�

of fun
tions de�ned on the half spa
e is 
ontinuous from W

1;q

w;0

(R

n

+

) to W

1;q

w

(R

n

) and

from L

q

w

(R

n

+

) to L

q

w

(R

n

), we �nd by interpolation

T :

�

L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)

�

2�

! H

�;q

w

(R

n

)

is 
ontinuous. Thus for every u 2 C

1

0

(R

n

+

) we obtain

kuk

~

H

�;q

w

(R

n

+

)

= kTuk

�;q;w;R

n

� 
kuk

[L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)℄

2�

:

Then the density of the embedding C

1

0

(R

n

+

) ,!

�

L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)

�

2�

�nishes the proof

of Step 1.

Step 2: We show the following:

If the odd extension

E :

~

H

�;q

w

(R

n

+

)! H

�;q

w

(R

n

); Eu(x) =

(

u(x) if x 2 R

n

+

�u(x

0

;�x

n

) if x 2 R

n

�

where x = (x

0

; x

n

) is 
ontinuous, then the assertion is true for �.

Let u 2

~

H

�;q

w

(R

n

+

) and set

U(z) = e

z

2

�

(��z)2

Eu:

Then one has U 2 F (L

q

w

(R

n

);W

2;q

w

(R

n

)) with U(�) = e

�

2

Eu. Moreover, sin
e for every

� 2 C the operator �

�

maps odd fun
tions to odd fun
tions, one has U(iy+1)j

R

n�1

= 0

8



whi
h implies U(iy + 1)j

R

n

+

2 Y

q;w

(R

n

+

) for every y. Thus U j

R

n

+

2 F (L

q

w

(R

n

+

); Y

q;w

(R

n

+

))

and we obtain u 2

�

L

q

w

(R

n

+

); Y

q;w

(R

n

+

)

�

�

.

Step 3: The assertion is true for � < 1:

By the de�nition of

~

H

�;q

w

(R

n

+

) for � < 1 we know that the extension ~u of u by 0 on R

n

is 
ontinuous from

~

H

�;q

w

(R

n

+

) to H

�;q

w

(R

n

). Thus, the odd extension of u, whi
h is equal

to

Eu(x) = ~u(x)� ~u(x

0

;�x

n

);

is also 
ontinuous. Step 2 
ompletes the argument.

Step 4: The assertion is true for 1 � � � 2.

For g 2 T

2;q

w

(R

n�1

) there exists an extension S(g) with the following properties:

� S(g)j

R

n�1

= g.

� S is a 
ontinuous linear mapping

: T

2;q

w

(R

n�1

)!W

2;q

w

(R

n

) and : T

1;q

w

(R

n�1

)!W

1;q

w

(R

n

):

To see this we de�ne S(g)j

R

n

+

to be the solution of

(1��)S(g) = 0 on R

n

+

and S(g) = g on R

n�1

:

Then by [6, Lemma 3.14, Satz 3.7℄ we know that S(u)j

R

n

+

is well-de�ned and has the two

properties on R

n

+

. By [2, Theorem 1.5℄ there exists an extension operator, 
ontinuous

from W

2;q

w

(R

n

+

) to W

2;q

w

(R

n

) as well as from W

1;q

w

(R

n

+

) to W

1;q

w

(R

n

). Thus the existen
e

of su
h an S is proved.

Now we 
onsider the operator

B : H

2;q

w

(R

n

+

)! H

2;q

w

(R

n

); u 7! S(uj

R

n�1

) + E(u� S(uj

R

n�1

))

where E is the odd extension operator from Step 2. Sin
e w = ~w, the operator E

is 
ontinuous from Y

q;w

(R

n

+

) to W

2;q

w

(R

n

) and from W

1;q

w;0

(R

n

+

) to W

1;q

w

(R

n

). Thus, we

have 
onstru
ted an operator B 
ontinuous from W

2;q

w

(R

n

+

) to W

2;q

w

(R

n

) as well as from

W

1;q

w

(R

n

+

) to W

1;q

w

(R

n

) and whi
h 
oin
ides with E on

~

H

�;q

w

(
), � = 1; 2. By interpola-

tion we �nd that

B : H

�;q

w

(R

n

+

)! H

�;q

w

(R

n

)

is 
ontinuous for every 1 � � � 2. Thus for every u 2

~

H

�;q

w

(R

n

+

) �

~

H

1;q

w

(R

n

+

) one has

kEuk

H

�;q

w

(R

n

)

= kBuk

H

�;q

w

(R

n

)

� 
kuk

H

�;q

w

(R

n

+

)

= 
kuk

~

H

�;q

w

(R

n

+

)

:

Thus Step 2 �nishes the proof.

Theorem 3.2. The assertion of Theorem 3.1 holds true, when repla
ing R

n

+

by a

bounded C

1;1

-domain 
, i.e.,

[L

q

w

(
); Y

q;w

(
)℄

�

=

~

H

�;q

w

(
);

where � =

�

2

with equivalent norms.

9



Proof. Let �

j

, j = 1; :::; m, be a 
olle
tion of C

1;1

-
harts and  

j

a de
omposition of the

unity subordinate to the domains of the 
harts. We assume that every  

j

is extended

to an element of C

1

0

(R

n

) and that every �

i

is extended to an element of C

1;1

(R

n

) su
h

that it has an inverse �

�1

i

2 C

1;1

(R

n

).

Then we �x j, write  =  

j

and � = �

j

and de�ne the mapping

B :

~

H

�;q

wÆ�

(R

n

+

)!

~

H

�;q

w

(
); u 7! (u( Æ �)) Æ �

�1

:

We have to show, that B is a 
ontinuous mapping into the asserted image spa
e.

Case 1 (0 � � � 1): In this 
ase the extension ~u of a fun
tion u 2

~

H

�;q

wÆ�

(R

n

+

) by 0 is a


ontinuous operation into the spa
e H

�;q

wÆ�

(R

n

). By interpolation the operator

B : H

�;q

wÆ�

(R

n

)! H

�;q

w

(R

n

); u 7! (u( Æ �)) Æ �

�1

is 
ontinuous and we obtain for u 2

~

H

�;q

wÆ�

(R

n

+

)

kBuk

~

H

�;q

w

(
)

= k

f

Buk

�;q;w;R

n

= kB~uk

�;q;w;R

n

� 
k~uk

�;q;wÆ�;R

n

= 
kuk

~

H

�;q

wÆ�

(R

n

+

)

:

The assertion for 0 � � � 1 is proved.

Case 2 (1 � � � 2): Interpolation shows that B, extended in the 
anoni
 way, maps

H

�;q

wÆ�

(R

n

+

) 
ontinuously to H

�;q

w

(
). Sin
e

B(fu 2 W

2;q

wÆ�

(R

n

) j uj

R

n�1

= 0g) � fu 2 W

2;q

w

(
) j uj

�


= 0g

the operator B :

~

H

�;q

wÆ�

(R

n

+

)!

~

H

�;q

w

(
) is 
ontinuous by the density of Y

q;w

in

~

H

�;q

w

(
).

Now setting B

j

u = (u( 

j

Æ �

j

)) Æ �

�1

j

we de�ne the operator

B




:

m

Y

i=1

~

H

�;q

wÆ�

i

(R

n

+

)!

~

H

�;q

w

(
); (u

1

; :::; u

m

) 7!

m

X

i=1

B

i

u

i

whi
h is 
ontinuous and surje
tive. (Surje
tivity follows 
onsidering the operatorH

�;q

w

(
) 3

u 7! (u�

j

) Æ �

j

2 H

�;q

wÆ�

j

(R

n

+

), where �

j

is an appropriate 
ut-o� fun
tion, � 1 on

supp 

j

.)

Moreover, by interpolation it follows that

B




:

m

Y

i=1

~

H

�;q

wÆ�

i

(R

n

+

)! [L

q

w

(
); Y

q;w

(
)℄
�

2

is 
ontinuous. Thus we obtain [L

q

w

(
); Y

q;w

(
)℄
�

2

�

~

H

�;q

w

(
).

The in
lusion

00

�

00

is proved in the same way as in the proof of Theorem 3.1, Step 1.

3.2 Interpolation of Bessel Potential Spa
es of Negative Order

It is an easy 
onsequen
e of the de�nition of Bessel potential spa
es that H

��;q

w

(R

n

) =

�

H

�;q

0

w

0

(R

n

)

�

0

isometri
ally for every � > 0.
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Theorem 3.3. If 1 < q <1, w 2 A

q

, l; k 2 N and �l < � < k then

�

H

�l;q

w

(R

n

); H

k;q

w

(R

n

)

�

�

= H

�;q

w

(R

n

);

where � =

�+l

k+l

.

Proof. The proof is analogous to the one of [16, Proposition 13.6.2℄ using the weighted

multiplier theorem [11, IV Theorem 3.9℄.

For � > 0 the weighted Bessel potential spa
e of negative order on an extension

domain 
 is de�ned by H

��;q

w

(
) = fuj

C

1

0

(
)

j u 2 H

��;q

w

(R

n

)g, equipped with the norm

kuk

��;q;w;


= inffkvk

��;q;w;R

n

j v 2 H

��;q

w

(R

n

); vj

C

1

0

(
)

= ug:

Moreover, we set

H

�;q

w;0

(
) = (C

1

0

(
))

H

�;q

w

(R

n

)

;

assuming that � 2 C

1

0

(
) is extended by 0 to a fun
tion

~

� on R

n

. The spa
e H

�;q

w;0

(
)

is equipped with the norm k � k

�;q;w;0;


:= k � k

�;q;w;R

n

. Note that by (3.1) this norm is in

general not equivalent to k � k

s;q;w;


. With this de�nition one obtains a good behavior

of the dual spa
es and interpolation properties. It holds

H

��;q

w

(
) =

�

H

�;q

0

w

0

;0

(
)

�

0

; (3.2)

with equivalent norms.

To see this, let u 2 H

��;q

w

(
). Then by de�nition there exists U 2 H

��;q

w

(R

n

) su
h

that U j

C

1

0

(
)

= u with

2kuk

��;q;w;


� kUk

��;q;w;R

n

= sup

�2S(R

n

);k�k

�;q

0

;w

0

;R

n

�1

hU; �i

� sup

�2C

1

0

(
);k�k

�;q

0

;w

0

;R

n

�1

hu; �i = kuk

(H

�;q

0

w

0

;0

(
))

0

:

Thus u 2 (H

�;q

0

w

0

;0

(
))

0

.

Vi
e versa, by Hahn-Bana
h's theorem every u 2

�

H

�;q

0

w

0

;0

(
)

�

0


an be extended to an

element U 2 H

��;q

w

(R

n

) with kUk

��;q;w;R

n

= kuk

(H

�;q

0

w

0

;0

(
))

0

. Then a similar 
al
ulation

as above yields u 2 H

��;q

w

(
) with kuk

��;q;w;


� kuk

(H

�;q

0

w

0

;0

(
))

0

.

(3.2) also yields the 
ompleteness of H

��;q

w

(
).

Lemma 3.4. There exists a 
ontinuous linear extension operator

E : H

�1;q

w

(
)! H

�1;q

w

(R

n

)

su
h that Euj

C

1

0

(
)

= u whi
h is also 
ontinuous as a mapping : H

1;q

w

(
)! H

1;q

w

(R

n

).

11



Proof. We begin with showing the assertion for the half spa
e 
 = R

n

+

.

By [8℄ for every f 2 W

�1;q

w

(R

n

+

) there exists a unique u 2 W

1;q

w;0

(R

n

+

) solving (1��)u =

f whi
h depends linearly on f and ful�lls the estimate kuk

1;q

� 
kfk

�1;q

. We write

u = (1��)

�1

f .

To 
onstru
t E we remind that by [2℄ there exists a linear 
ontinuous extension op-

erator

~

E : W

1;q

w

(R

n

+

)!W

1;q

w

(R

n

) and : W

3;q

w

(R

n

+

)!W

3;q

w

(R

n

) with

~

Euj

R

n

+

= u:

For u 2 W

�1;q

w

(R

n

+

) let v = (1��)

�1

u 2 W

1;q

w

(R

n

+

). Then kvk

1;q;w

� 
kuk

�1;q;w

and by

[13℄ from u 2 H

1;q

w

(R

n

+

) it follows v 2 H

3;q

w

(R

n

+

) with kvk

3;q;w

� 
kuk

1;q;w

. Now we set

Eu = (1��)

~

Ev:

Thus E has the asserted properties on the half spa
e R

n

+

.

For a bounded C

1;1

-domain 
 we take a 
olle
tion of 
harts (�

j

)

m

j=1

and a de
omposi-

tion of the unity ( 

j

)

m

j=1

subordinate to the domains of the 
harts. Then for u 2 W

1;q

w

(
)

we set

E




u =

m

X

j=1

E

R

n

+

((u 

j

) Æ �

j

) Æ �

�1

j

;

where E

R

n

+

: W

1;q

wÆ�

j

(R

n

+

) ! W

1;q

wÆ�

j

(R

n

) is the operator just 
onstru
ted. Obviously

E




: W

1;q

w

(
)!W

1;q

w

(R

n

) is 
ontinuous. Moreover, it follows from (2.2) that u 7! uÆ�

j

is a 
ontinuous operation from W

�1;q

wÆ�

j

(
) ! W

�1;q

w

(
). This shows the 
ontinuity of

E




: W

�1;q

w

(
)!W

�1;q

w

(R

n

) and the proof is 
omplete.

Theorem 3.5. Let 1 < q < 1, w 2 A

q

, �1 � � � 1 and 
 a bounded C

1;1

-domain.

Then

1. [H

�1;q

w

(
); H

1;q

w

(
)℄

�

= H

�;q

w

(
), where � =

1+�

2

.

2.

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

�

=

(

H

�;q

w;0

(
) := (H

��;q

0

w

0

(
))

0

; if � <

1

2

H

�;q

w

(
); if � �

1

2

;

where � =

1+�

2

.

Proof. 1. "�" By 
omplex interpolation we obtain that

E :

�

H

�1;w

w

(
); H

1;q

w

(
)

�

�

!

�

H

�1;w

w

(R

n

); H

1;q

w

(R

n

)

�

�

= H

�;q

w

(R

n

)

is linear and 
ontinuous, where E is the extension operator from Lemma 3.4. Thus

every u 2 [H

�1;w

w

(
); H

1;q

w

(
)℄

�

is the restri
tion of Eu 2 H

�;q

w

(R

n

) to 
. By de�nition,

this implies u 2 H

�;q

w

(
).

\�" Follows from the same arguments as in the proof of \�", when repla
ing the

extension operator E by the restri
tion operator

R : W

�1;q

w

(R

n

)!W

�1;q

w

(
); u 7! uj

C

1

0

(
)

:

12



2. An appli
ation of the duality theorem in [17℄ to 1. yields

�

H

�1;q

w;0

(
); H

1;q

w;0

(
)

�

�

= H

�;q

w;0

(
): (3.3)

Sin
e

F (H

�1;q

w;0

(
); H

1;q

w;0

(
)) � F (H

�1;q

w;0

(
); H

1;q

w

(
))

and the same is true when repla
ing q by q

0

and w by w

0

, we have

L

q

w

(
) =

�

H

�1;q

w;0

(
); H

1;q

w;0

(
)

�

1

2

,!

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

1

2

(3.4)

and

L

q

0

w

0

(
) ,!

h

H

�1;q

0

w

0

;0

(
); H

1;q

0

w

0

(
)

i

1

2

=

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

0

1

2

: (3.5)

By the density of the embedding H

1;q

0

w

0

(
) ,!

h

H

�1;q

0

0;w

0

(
); H

1;q

0

w

0

(
)

i

1

2

we obtain that the

embedding (3.5) is dense. Thus we obtain, dualizing (3.5) and 
ombining it with (3.4),

�

H

�1;w

0;w

(
); H

1;q

w

(
)

�

1

2

= L

q

w

(
):

Now the assertion follows by the reiteration property in [17℄, using (3.3) for � <

1

2

and

the assertion of 1. for � �

1

2

3.3 Stokes Equations in Weighted Bessel Potential Spa
es

Theorem 3.6. Let 1 < q <1, w 2 A

q

, 0 � � � 2 and let 
 be a bounded C

1;1

-domain.

Moreover let

f 2

~

H

��2;q

w

(
) :=

�

~

H

2��;q

0

w

0

(
)

�

0

and k 2 H

��1;q

w;�

(
) :=

(

H

��1;q

w

(
); if � � 1

H

��1;q

0;w

(
); if � < 1

with hk; 1i = 0. Then there exists a unique very weak solution u 2

~

H

�;q

w

(
) to the Stokes

problem with respe
t to the data f; k, i.e.,

hf; 'i = �hu;�'i; for all ' 2 Y

�

and

hk;  i = �hu;r i; for all  2 W

1;q

0

w

0

(
):

(3.6)

This u ful�lls the estimate

kuk

~

H

�;q

w

(
)

� 


�

kfk

~

H

��2;q

w

(
)

+ kkk

��1;q;w;�;


�

;

where k � k

��1;q;w;�;


= k � k

��1;q;w;0;


if � < 1 and k � k

��1;q;w;�;


= k � k

��1;q;w;


if � � 1.

Moreover there exists a pressure fun
tional p 2 H

��1;q

w

(
), unique modulo 
onstants,

su
h that the Stokes equations

��u +rp = f j

C

1

0

(
)

; on 


are ful�lled in the sense of distributions.

13



Proof. In Se
tions 3.1 and 3.2 we have shown

�

(Y

q

0

;w

0

)

0

�H

�1;q

w;0

(
); L

q

w

(
)�H

1;q

w

(
)

�

�

=

~

H

��2;q

w

(
)�H

��1;q

w;�

(
);

where � =

�

2

. It is immediate that

k 7! K := k � hk; 1i 2 L(W

�1;q

w;0

(
)) \ L(W

1;q

w

(
)):

By Theorem 2.2 the mapping

S : (Y

q

0

;w

0

)

0

�H

�1;q

w;0

(
) 3 (f; k) 7! u 2 L

q

w

(
);

is 
ontinuous, where u 2 L

q

w

(
) is the very weak solution to the Stokes problem with

respe
t to the data f and K = k � hk; 1i.

If u is a solution to (3.6) with suÆ
iently regular data f and k then by Theorem

2.3 we �nd that u is a strong solution with 0 boundary values. In parti
ular S is also


ontinuous from L

q

w

(
)�H

1;q

w

(
) to Y

q;w

.

Now we obtain from interpolation that

S :

~

H

��2;q

w

(
)�H

��1;q

w;�

(
)!

~

H

�;q

w

(
)

is 
ontinuous, whi
h �nishes the proof of existen
e and estimates of u. Uniqueness

follows from the uniqueness of the very weak solutions in L

q

w

(
) (Theorem 2.2).

To show the existen
e of p we use the interpolation Theorem 3.5.1. and the existen
e

and uniqueness (modulo 
onstants) of the pressure in the 
ase of strong [8℄ and of very

weak solutions (Theorem 2.2). Then we obtain a fun
tional ~p 2 H

��1;q

w;�

(
) su
h that

�hu;��i � h~p; div �i = hF; �i for all � 2 Y

q

0

;w

0

:

The restri
tion p := ~pj

C

1

0

(
)

solves the problem.

By the de�nition of

~

H

�;q

w

(
) it follows, that whenever a restri
tion operator

tr : H

�;q

w

(
)! T (D)

for a boundary portion D � �
 is well-de�ned (as a 
ontinuous linear operator into

some boundary spa
e T (D), whi
h 
oin
ides with the usual tra
e on W

2;q

w

(
)), then for

the solution u 2

~

H

�;q

w

(
) one has tru = 0.

In the 
ase, where data and solutions are regular enough (in
luding the 
ase � = 1 of

weak solutions) we want to deal with inhomogeneous boundary values.

If � � 1 then H

�;q

w

(
) ,! W

1;q

w

(
) whi
h implies the existen
e of a 
ontinuous restri
-

tion operator

tr : H

�;q

w

(
)! T

1;q

w

(�
); tru = uj

�


if u 2 C

1

(
):

As in the 
ase of weighted Sobolev spa
es we de�ne the asso
iated boundary spa
e by

T

�;q

w

(�
) = tr

�

H

�;q

w

(
)

�

equipped with the norm of the fa
tor spa
e

kgk

T

�;q

w

(�
)

= inffkuk

�;q;w;


j u 2 H

�;q

w

(
); tr u = gg:

14



Lemma 3.7.

[T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

= T

�;q

w

(�
)

and there exists a 
ontinuous linear extension operator ext : T

�;q

w

(�
)! H

�;q

w

(
).

Proof. By [6℄ or [13℄ there exists a 
ontinuous linear extension operator

ext : T

1;q

w

(�
)!W

1;q

w

(
) and : T

2;q

w

(�
)!W

2;q

w

(
);

with (ext g)j

�


= g for every g 2 T

k;q

w

(�
), k = 1; 2. Thus by interpolation

ext : [T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

! H

�;q

w

(
)

is 
ontinuous and we obtain [T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

� T

�;q

w

(�
).

Vi
e versa the restri
tion operator

tr : H

�;q

w

= [W

1;q

w

(
);W

2;q

w

(
)℄

��1

! [T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

is 
ontinuous whi
h implies [T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

� T

�;q

w

(�
).

Thus the �rst assertion is proved. The se
ond assertion follows from the �rst assertion

when applying 
omplex interpolation to ext .

Theorem 3.8. Let 1 < q < 1, w 2 A

q

and 1 � � � 2. Moreover let F 2 H

��2;q

w

(
),

K 2 H

��1;q

w

(
) and g 2 T

�;q

w

(�
). Then there exists a unique weak solution u 2 H

�;q

w

(
),

i.e.

hru;r�i = hF; �i; for all � 2 W

1;q

w;0;�

(
)

ful�lling uj

�


= g and div u = K in the sense of distributions. This solution ful�lls the

estimate

kuk

�;q;w

� 
(kFk

��2;q;w

+ kKk

��1;q;w

+ kgk

T

�;q

w

(�
)

):

Moreover there exists a pressure fun
tion p 2 H

��1;q

w

(
), unique modulo 
onstants, su
h

that the Stokes equations are ful�lled distributionally.

Proof. Existen
e: For g 2 T

�;q

w

(�
) there exists v 2 H

�;q

w

(
) su
h that tr v = g and

kvk

�;q;w;


� 2kgk

T

�;q

w

(�
)

. Sin
e there exists an extension V of v to the whole spa
e R

n

with kV k

�;q;w;R

n

� 
kvk

�;q;w;


, one has �v = (�V )j

C

1

0

(
)

2 H

��2;q

w

(
) =

~

H

��2;q

w

(
).

Hen
e by Theorem 3.6 there exists U 2 H

�;q

w

(
) solving

hF +�v; 'i = �hU;�'i; for all ' 2 Y

�

and

hK � div v;  i = �hU;r i; for all  2 W

1;q

0

w

0

(
):

Sin
e U 2

~

H

�;q

w

(
) � W

1;q

w;0

(
), we obtain by integration by parts for � 2 Y

q

0

;w

0

, whi
h

is dense in W

1;q

w;0

(
), that

hr(U + v);r�i = �hU;��i � h�v; �i = hF; �i:

Setting now u := U + v we 
learly obtain div u = K distributionally and tr u = tr v +

trU = tr v = g. Moreover

kuk

�;q;w;


� kvk

�;q;w;


+ kUk

�;q;w;


� 
(kgk

T

�;q

w

(�
)

+ kFk

��2;q;w;


+ kKk

��1;q;w; Omega

):
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Uniqueness: Let u be a weak solution to the Stokes problem w.r.t the data F;K and g.

Then integration by parts yields

hu;��i = �hru;r�i+ hu;N � r�i

�


= �hF; �i+ hg;N � r�i

�


: (3.7)

Sin
e jhu;N � r�i

�


j � kgk

T

0;q

w

(�
)

k�k

2;q

0

;w

0

;


we �nd that the right hand side of (3.7),


onsidered as a map in �, is 
ontained in (Y

q

0

;w

0

)

0

. Thus u is a very weak solution. By

the uniqueness of very weak solutions in Theorem 2.2, we obtain the uniqueness of u.

Pressure: To show the existen
e of p we use that by de Rahm's Theorem there exists

p 2 (C

1

0

(
))

0

su
h that the Stokes equations are ful�lled distributionally. From the

equation we obtain rp 2 H

��2;q

w

(
). It remains to show p 2 H

��1;q

w

(
). For � = 1

and � = 2 this is 
lear by the Poi
arr�ee inequality [7, Corollary 2.1℄. If we assume in

addition that

R

p = 0 we obtain that p depends linearly and 
ontinuously on f , k and

g. Thus interpolation shows p 2 H

��1;q

w

(
).

Now we turn to the 
ase 0 � � � 1. Here we de�ne boundary spa
es by

T

�;q

w

(�
) =

�

T

0;q

w

(�
); T

1;q

w

(�
)

�

�

;

equipped with the norm of the interpolation spa
e.

To ensure the well-de�nedness of the boundary 
onditions we need to demand that the

for
e F and the divergen
e K is 
ontained in some spa
e of distributions on 
. Sin
e

Sobolev embeddings require strong assumptions to the weight fun
tion w we assume

(3.9). See Lemma 4.3 for suÆ
ient 
onditions su
h that (3.9) is ful�lled.

Theorem 3.9. Let 1 < q < 1, w 2 A

q

and 0 � � � 1. Assume that f 2

~

H

��2;q

w

(
)

and k 2 H

��1;q

w;0

(
) allow de
ompositions into

hf; �i = hF; �i � hg;N � r�i

�


; for every � 2 Y

q

0

;w

0

hk;  i = hK; i � hg;N i

�


; for every  2 W

1;q

0

w

0

(
)

(3.8)

with F 2 W

�1;r

~w

(
), K 2 L

r

~w

(
) and g 2 T

�;q

w

(�
), where r and ~w 2 A

r

are 
hosen su
h

that

W

�1;r

~w

(
) ,!

~

H

��2;q

w

(
) and L

r

~w

(
) ,! H

��1;q

w;0

(
): (3.9)

Then the very weak solution u 2 L

q

w

(
) with respe
t to f and k whi
h exists a

ording

to Theorem 2.2 is 
ontained in H

�;q

w

(
), assumes the boundary value g in the sense of

(2.11) and (2.12) and ful�lls the estimate

kuk

�;q;w

� 
(kFk

~

H

��2;q

w

(
)

+ kKk

H

��1;q

w;0

(
)

+ kgk

T

�;q

w

(�
)

): (3.10)

Proof. Step 1: We 
onsider the operator

B : T

0;q

w

(�
)! L

q

w

(
); g 7! u;

where u is the very weak solution to the Stokes problem with data

f = [� 7! hg;N � r�i

�


℄ and k = [ 7! hg;N i

�


℄:
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B is linear and 
ontinuous, also 
onsidered as an operator B : T

1;q

w

(�
) ! W

1;q

w

(
).

This follows from Theorem 3.8 in the 
ase � = 1 sin
e the very weak solution with

respe
t to f and k 
oin
ides with the weak solution with 0 for
e and divergen
e and

boundary 
ondition g. Thus, interpolation yields that

B : T

�;q

w

(�
)! H

�;q

w

(
)

is 
ontinuous whi
h implies the existen
e and estimates of the solution. Uniqueness

follows from the uniqueness of the very weak solution in L

q

w

(
) whi
h is known from

Theorem 2.2.

Step 2: Let U = Bg 2 H

�;q

w

(
) given by Step 1. Moreover let v 2 W

1;r

~w

(
) be the weak

solution to the Stokes Problem w.r.t the data F , K and zero boundary values whi
h

exists a

ording to Theorem 3.8.

By the embeddings (3.9) and Theorem 3.6 there also exists a very weak solution in

H

�;q

w

(
). Sin
e both, H

�;q

w

(
) and W

1;r

~w

(
) are embedded into some 
ommon spa
e

L

t

(
) for some t > 1 we obtain by the uniqueness of the very weak solution in L

t

(
)

(Theorem 3.9) that these solutions 
oin
ide. This yields the estimate

kvk

�;q;w

� 
(kFk

~

H

��2;q

w

(
)

+ kKk

H

��1;q

0;w

(
)

)

Now we set u := U + v. Then u is a very weak solution with respe
t to f and k and the

estimate (3.10). Moreover, by the de�nition of the tra
e in (2.11) and (2.12) we obtain

uj

�


= g.

The proof of the above theorem works in the same way, if one 
hooses F 2

~

H

��2;q

w

(
)

and K 2 H

��1;q

w;0

(
). This is also visible in the a priori estimate (3.10). However, with

su
h data it is not 
lear if the out
oming solution is regular enough to ensure that the

boundary value uj

�


is well de�ned.

Corollary 3.10. Let 
 be a bounded C

1;1

-domain. Moreover, let 1 < q; r <1, w 2 A

q

,

v 2 A

r

and 0 � � � 2 be given su
h that H

�;q

w

(
) ,! L

r

v

(
). Then

T

�;q

w

(�
) ,! T

0;r

v

(�
):

Proof. Let g 2 T

�;q

w

(�
). Then the very weak solution u 2 H

�;q

w

(
) to

�hu;��i = hg;N � r�i

�


for all � 2 Y

q

0

;w

0

;�

(
)

�hu;r i = hg;N i

�


for all  2 W

1;q

0

w

0

(
)

ful�lls kuk

�;q;w

� 
kgk

T

�;q

w

(�
)

and u 2

~

W

r;r

v;v

(de�ned in (2.10)) with kuk

~

W

r;r

v;v

= kuk

r;v

and

div u = 0. Thus tangential and normal tra
e are well-de�ned for u and sin
e uj

�


= g

we obtain

kgk

T

0;r

v

(�
)

� 
kuk

r;v

� 
kuk

�;q;w

� 
kgk

T

�;q

w

(�
)

:
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4 Stationary Navier Stokes Equations with Irregular

Data

4.1 Estimates of the Nonlinear Term

We prepare some embedding theorems. For 0 < � < n we de�ne the weakly singular

integral operator

I

�

g(x) =

Z

R

n

g(y)

jx� yj

n��

dy:

Theorem 4.1. Let 0 < � < n and 1 < p < q < 1, v 2 A

p

and w 2 A

q

. Moreover

assume that v and w ful�ll the 
ondition

jQj

�

n

�1

�

Z

Q

w

�

1

q

�

Z

Q

v

�

1

p�1

�

1

p

0

< 
 for every 
ube Q � R

n

:

Then

kI

�

fk

q;w

� 
kfk

p;v

for every f 2 L

q

v

(R

n

):

Proof. This is a spe
ial 
ase of [14, Theorem 1 (B)℄

Lemma 4.2. Let 1 < q < 1, w 2 A

q

, 1 < s < q and 
 � R

n

be bounded and open.

Moreover we assume that

jQj

s

� 
w(Q) for every 
ube Q � 


Æ

= fx 2 R

n

; dist (x;
) � Æg:

Then there exists a weight fun
tion W 2 A

q

with wj




=W j




and

jQj

s

� 
W (Q) for every 
ube Q � R

n

:

Proof. [6, Lemma A.2℄

Lemma 4.3. Let 
 be a bounded extension domain. Moreover, let 1 � s < r < q <1

and assume 0 < � < n su
h that

1

q

�

1

r

�

�

ns

:

Then for every w 2 A

s

the following embeddings are true:

1. H

�;r

w

(
) ,! L

q

w

(
).

2. H

�;q

0

w

q

(
) ,! L

r

0

w

r

(
), where w

q

= w

�

1

q�1

and w

r

= w

�

1

r�1

.

3. L

r

w

(
) ,! H

��;q

w

(
) and L

r

w

(
) ,! H

��;q

w;0

(
).

Proof. 1. By [9, Corollary 3.2℄ the asserted embedding holds, if jQj

�

n

w(Q)

1

q

�

1

r

< C for

all Q � U for some open set U � 
. By [15℄ we know that for every Q � U and w 2 A

s

it holds jQj

s

�

jU j

s

w(U)

w(Q). Thus

jQj

�

n

w(Q)

1

q

�

1

r

� 
w(Q)

�

sn

+

1

q

�

1

r

� 
w(U)

�

sn

+

1

q

�

1

r

=: C;
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sin
e

�

sn

+

1

q

�

1

r

� 0.

2. In the same way as in [9, Theorem 3.2℄ one shows using Theorem 4.1 that

jQj

�

n

�1

�

Z

Q

w

r

�

1

r

0

�

Z

Q

(w

q

)

�

1

q

0

�1

�

1

q

< 
 for every 
ube Q � R

n

(4.1)

implies

H


;q

0

w

q

(R

n

) ,! L

r

0

w

r

(R

n

) for every 
 � �:

Thus we have to show (4.1). As above w 2 A

s

implies w(Q) � 
(U)jQj

s

for every

Q � U . Thus by Lemma 4.2 we 
an assume without loss of generality w(Q) � 
(U)jQj

s

for every 
ube Q � R

n

. Sin
e

w

�

1

r

0

�1

r

= w

1

r

0

�1

1

r�1

= w = (w

q

)

�

1

q

0

�1

;

we 
an 
al
ulate using the de�nition of Mu
kenhoupt weights, w 2 A

r

and

1

q

�

1

r

< 0

jQj

�

n

�1

�

Z

Q

w

r

�

1

r

0

�

Z

Q

(w

q

)

�

1

q

0

�1

�

1

q

= jQj

�

n

�1

w

r

(Q)

1

r

0

w(Q)

1

q

� 
jQj

�

n

w(Q)

(

1

q

�

1

r

)

� 
jQj

�

n

+s(

1

q

�

1

r

)

:

The last term is bounded if

�

n

+ s(

1

q

�

1

r

) = 0. There exists 0 � � � � so that this is

true, be
ause s

�

1

q

�

1

r

�

< 0 and for � = � one has

�

n

+ s(

1

q

�

1

r

) �

�

n

� s

�

sn

= 0.

This �nishes the proof of 2.

3. Follows when 
onsidering the dual spa
es in 2 and using H

�;q

0

w

0

;0

(
) ,! H

�;q

0

w

0

(
).

Lemma 4.4. Let 
 � R

n

be a bounded C

1;1

-domain. Assume w 2 A

s

for some s < q

and � �

�

ns

q

� 1

�

.

1. Let in addition � � 1 and 1 < t <1 with

1� �

ns

+

1

q

�

1

t

= 0: (4.2)

If n = 2 assume in addition � > �

1

2

+

2s

q

. Then w 2 A

t

,

L

t

w

(
) ,! H

��1;q

w;0

(
)

and

a)

�

�

�

�

Z

uv dx

�

�

�

�

� 
kuk

�;q;w

kvk

�;q;w

k k

t

0

;w

0

for every u; v 2 H

�;q

w

(
) and  2 H

1��;q

0

w

0

(
).
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b)

�

�

�

�

Z

ku� dx

�

�

�

�

� 
kkk

t;w

kuk

�;q;w

k�k

1;t

0

;w

0

for every k 2 L

t

w

(
), u 2 H

�;q

w

(
) and � 2 H

2��;q

0

w

0

(
).

2. If � � 1 then

kurvk

2��;q;w

� 
kuk

�;q;w

kvk

�;q;w

for every u; v 2 H

�;q

w

(
);

if in the 
ase n = 2 the additional 
ondition � >

2s

q

is satis�ed.

Proof. One has

t =

nsq

q(1� �) + ns

�

nsq

q(2�

ns

q

) + ns

=

ns

2

> s

if n � 3. If n = 2 then t > s is guaranteed by the supplementary 
ondition below (4.2).

Thus, by Lemma 4.3 one has L

t

w

(
) ,! H

��1;q

w;0

(
) and H

1��;q

0

w

q

(
) ,! L

t

0

w

t

(
).

1. a) Let r =

nsq

�q�+ns

. Then by Lemma 4.3 one has u 2 H

�;q

w

(
) ,! L

r

w

(
). Moreover

we set � = (1�

2

r

)

�1

=

nsq

nsq+2�q�2ns

. Then

1

�

0

�

1

t

=

�2�q + 2ns

nsq

�

q � �q + ns

nsq

=

�q + ns� �q

nsq

� 0

Thus �

0

� t whi
h implies L

�

0

w

(
) ,! L

t

w

(
) and hen
e L

t

0

w

t

(
) ,! L

�

w

�

0

(
).

Sin
e

1

r

+

1

r

+

1

�

= 1 and �

1

(�

0

�1)�

+

1

r

+

1

r

= 0 we 
an 
al
ulate

�

�

�

�

Z

uv� dx

�

�

�

�

=

�

�

�

�

Z

uw

1

r

vw

1

r

 w

1

�

�

0

dx

�

�

�

�

� kuk

r;w

kvk

r;w

k k

�;w

�

0

� 
kuk

�;q;w

kvk

�;q;w

k k

t

0

;w

t

:

1. b) We set � =

�

1�

1

r

�

1

t

�

�1

=

rt

rt�t�r

and r =

nsq

�q�+ns

as above. Then

�

0

=

rt

r + t

=

nsq

q + 2ns� 2q�

�

nqs

3q

� s if n � 3:

If n = 2 one needs the 
ondition below (4.2) to make sure �

0

� s. Using this and the

fa
t that

�

1

�

0

+

1

t

+

1

ns

= �

1

r

+

1

ns

=

1 + � �

ns

q

ns

� 0

we obtain H

1;t

0

w

t

(
) ,! L

�

w

�

0

(
). Sin
e

1

t

+

1

q

+

1

�

= 1 and �

1

(�

0

�1)�

+

1

t

+

1

r

= 0 we 
an

estimate

�

�

�

�

Z

ku� dx

�

�

�

�

=

�

�

�

�

Z

kw

1

t

uw

1

r

�w

1

�

�

0

dx

�

�

�

�

� kkk

t;w

kuk

r;w

k�k

�;w

�

0

� 
kkk

t;w

kuk

�;q;w

k�k

1;t

0

;w

t

:

2. Let r :=

nsq

ns+2q�q�

, � :=

nsq

ns�q�

and � :=

ns

2

. Then one has

20



�

1

r

=

1

�

+

1

�

.

� L

r

w

(
) ,! H

��2;q

w

(
). If n = 2 we need the supplementary 
ondition to ensure

r > s.

� H

�;q

w

(
) ,! L

�

w

(
).

� H

��1;q

w

(
) ,! L

�

w

(
) (using � �

ns

q

� 1).

Thus it follows

kurvk

��2;q;w

� 
kurvk

r;w

= 


�

Z

juj

r

w

r

�

jrvj

r

w

1�

r

�

�

1

r

� 
kuk

�;w

krvk

�;w

� 
kuk

�;q;w

krvk

��1;q;w

� 
kuk

�;q;w

kvk

�;q;w

:

4.2 Stationary Navier Stokes Equations in Bessel Potential Spa
es

In this se
tion we always assume

� 
 � R

n

is a bounded C

1;1

-domain,

� 1 < q <1 and w 2 A

s

for some 1 � s < q,

�

ns

q

� 1 � � � 2 and � � 0. (If n � 3 this is always possible, sin
e for s = q one

has

ns

q

� 1 = n� 1 � 2).

De�nition 4.5. Let 0 � � � 1, 1 < q < 1 and w 2 A

q

. Moreover, let g 2 T

�;q

w

(�
),

F 2 W

�1;t

w

(
) and K 2 L

t

w

(
). Then u 2 H

�;q

w

(
) is 
alled a very weak solution to the

stationary Navier-Stokes equations, if

�hu;��i+ hg;N � r�i

�


� huu;r�i � hKu; �i = hF; �i for every � 2 Y

q

0

;w

0

;�

(
);

div u = K is ful�lled in the sense of distributions and u �N j

�


= g � N in the sense of

(2.12).

Proof of Theorem 1.1. For u 2 H

�;q

w

(
) let W (u) 2 (C

1

0

(
))

0

be given by

hW (u); �i = huu;r�i+ hKu; �i for all � 2 C

1

0

(
):

By Lemma 4.4.1 one has for � 2 C

1

0

(
)

jhW (u); �ij � 
kuk

2

�;q;w

kr�k

t

0

;w

0

+ 
kKk

t;w

kuk

�;q;w

k�k

1;t

0

;w

0

� 
(kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

)k�k

1;t

0

;w

0

and hen
e W (u) 2 W

�1;t

w

(
) with

kW (u)k

�1;t;w

� 
(kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

): (4.3)
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We de�ne the mapping S : H

�;q

w

(
)! H

�;q

w

(
) by

�hSu;��i = hF; �i+ hW (u); �i � hg;N � r�i

�


for every � 2 Y

q

0

;w

0

;�

�hSu;r i = hK; i � hg;N i

�


for every  2 W

1;q

0

w

0

(
):

This well-de�ned by Theorem 3.9.

We want to use Bana
h's Fixed Point Theorem to show that S has a �xed point,

presumed the data is small enough.

By the a priori estimate in Theorem 3.9 we know that

kvk

�;q;w

� D(kFk

�1;t;w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

); (4.4)

if v is a very weak solution to the Stokes problem with respe
t to the data F 2 H

�1;t

w

(
),

K 2 L

t

w

(
) and g 2 T

�;q

w

(�
).

We assume that the data F;K and g are 
hosen small enough su
h that the right

hand side of (4.4) is � � :=

1

6
D

, where 
 is the 
onstant in the estimate (4.3).

Next we show that for su
h data and Æ =

2

6
D

the ball B

Æ

(0) is mapped by S into

itself. By (4.4) and (4.3) one has for u 2 B

Æ

(0)

kSuk

�;q;w

� D(kFk

�1;t;w

+ 
(kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

) + kKk

t;w

+ kgk

T

�;q

w

(�
)

)

� �+ 
D�Æ + 
DÆ

2

=

6
D + 2
D + 4
D

(6
D)

2

=

2

6
D

= Æ:

The next step is to show that S is a 
ontra
tion on B

Æ

(0). Take u; v 2 B

Æ

(0). Then

Su� Sv is a solution of

�hSu� Sv;��i = hW (u)�W (v); �i for every � 2 Y

q

0

;w

0

;�

hSu� Sv;r i = 0 for every  2 W

1;q

0

w

0

(
):

Moreover from Lemma 4.4.1 we obtain

jhW (u)�W (v); �ij � jh(u� v)u;r�ij+ jhv(u� v);r�ij+ jhK(u� v); �ij

� 
(kuk

�;q;w

+ kvk

�;q;w

+ kKk

t;w

)ku� vk

�;q;w

k�k

1;t

0

;w

t

� (2
Æ + 
�)ku� vk

�;q;w

k�k

1;t

0

;w

t

=

5

6D

ku� vk

�;q;w

k�k

1;t

0

;w

t

:

Thus we again obtain from the a priori estimate that

kSu� Svk

�;q;w

� DkW (u)�W (v)k

�1;t;w

�

5

6

ku� vk

�;q;w

:

We have shown that there exists a unique �xed point of S in B

Æ

(0) and hen
e a solution

u 2 H

�;q

w

(
) to the stationary Navier-Stokes system.

The a priori estimate follows from

kuk

�;q;w

� D(kFk

�1;t;w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

+ 
(kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

)):

Sin
e D
(kuk

�;q;w

+kKk

t;w

) �

3

6

, one obtains the a priori estimate subtra
ting

3

6

kuk

�;q;w

from both sides of the above equation.
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To show uj

�


= g one uses the fa
t that u is a very weak solution to the Stokes

equations with respe
t to the data

f = [� 7! hF; �i+ hW (u); �i � hg;N � r�i

�


℄

k = [ 7! hK; i � hg;N i

�


℄;

where f = [� 7! hF; �i + hW (u); �i℄ 2 W

�1;t

w

(
). Then the assertion follows from

Proposition 3.9.

De�nition 4.6. Let 1 � � � 2. Moreover, let F 2 H

��2;q

w

(
), K 2 H

��1;q

w

(
) and

g 2 T

�;q

w

(�
). Then u 2 H

�;q

w

(
) is 
alled a weak solution to the stationary Navier-

Stokes equations, if

hru;r�i+ hu � ru; �i = hF; �i for every � 2 C

1

0;�

(
);

div u = K and uj

�


= g.

Proof of Theorem 1.2.

This 
an be proved in the same way as Theorem 1.1 using Lemma 4.4.2. instead of

Lemma 4.4.1. and Theorem 3.8 instead of Theorem 3.9.

The very weak solution is unique even without the assumption of the smallness of

the exterior for
e f and the boundary 
ondition g. To see this we need the following

embedding theorem.

Lemma 4.7. If 1 � s, w 2 A(s) and 1 � p <1 then for q � sp one has

L

q

w

(
) ,! L

p

(
):

Proof. First we assume that s > 1. Sin
e

q

p

� s one has w 2 A

q

p

. Thus w

�

1

q

p

�1

2 A

(

q

p

)

0
�

L

1

lo


(
). Together with the H�older inequality this yields

Z




jf j

p

dx =

Z




jf j

p

w

p

q

w

�

p

q

dx � kfk

p

q;w

�

Z




w

�

1

q

p

�1

dx

�

q�p

q

= 
kfk

p

q;w

for every f 2 L

q

w

(
).

If s = 1, then by [15℄ one 
an assume that w is bounded from below on 
. This implies

L

p

w

(
) ,! L

p

(
).

Theorem 4.8. Let the data F;K and g be given as in Theorem 1.1 and let u be a very

weak solution to the stationary Navier Stokes system with respe
t to the data F;K and

g.

Then there exists a 
onstant � > 0 su
h that under the 
ondition

kuk

�;q;w

+ kKk

t;w

� �;

there exists at most one very weak solution to the stationary Navier Stokes equations

a

ording to De�nition 4.5.
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Proof. By Lemma 4.3 and Lemma 4.7 one has

H

�;q

w

(
) ,! L

nsq

�q�+ns

w

(
) ,! L

nq

�q�+ns

(
) ,! L

n

(
);

by the assumptions on �. Analogously we �nd F 2 W

�1;

n

2

(
) and K 2 L

n

2

(
). From

Corollary 3.10 we thus obtain g 2 W

�

1

n

;n

(�
) := T

0;n

1

(�
). Hen
e the assumptions of

[4, Theorem 1.5℄ are ful�lled and we obtain the uniqueness.
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