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Abstract

In the first part [Part1], a characterization of central quotients of the group Spin(2n + 1, q)
is given for n ≥ 3 and all odd prime powers q, with the exception of the cases n = 3,
q ∈ {3, 5, 7, 9}. The present article treats these cases computationally, thus completing the
Phan-type theorem for the group Spin(2n + 1, q).

1 Introduction

The goal of the paper is to complete the proof of a Phan-type theorem that characterizes the
group Spin(2n + 1, q) for n ≥ 3 and an odd prime power q. The characterization relies on the
following theorem on a certain geometry Γ defined in Section 2.

Theorem Let q ≥ 3 be odd and let n ≥ 2. Then the following hold.

(i) Γ is a rank n geometry, on which Gσ
∼= SO(2n + 1, q) and its index two subgroup G′

σ
∼=

SΩ(2n + 1, q) act as flag-transitive groups of automorphisms.

(ii) Γ is residually connected for q ≥ 5.

(iii) Γ is simply connected for n ≥ 4 and for n = 3 and q ≥ 5.

Part 1 [Part1] of this work proves this theorem except for the cases n = 3 and 5 ≤ q ≤ 9. For
n = q = 3 the geometry Γ is not simply connected but rather admits a 2187-fold universal cover.

This work is a case study of how theoretic arguments, covering all but a few small cases, and
machine calculations for those cases complement each other to obtain the complete statement of a
theorem. It is not uncommon in combinatorial situations that the general arguments do not apply
to small parameters. As it happens in this work, these cases can be too involved to be accessible
to hand calculations. Here, sophisticated algebra software provides a useful tool for dealing with
these cases. Furthermore, machine-based computations help to decide whether the theorem under
consideration can be extended. For the above theorem, we showed with the help of the computer
that Γ is not simply connected if n = q = 3.

Before we turn to the problem setting described above, we first want to state the Phan-type
theorem which motivates this work. Full details can be found in [Part1]. For convenience we
restate some relevant definitions from [Part1], starting with the concept of standard pairs in the
groups SU(3, q2) and Spin(5, q).

Definition 1.1 Let G ∼= SU(3, q2) and V be the natural G-module over Fq2 . Subgroups U1 and
U2 of G ∼= SU(3, q2) form a standard pair whenever each Ui is the stabilizer in G of a nonsingular
vector vi ∈ V and, moreover, v1 and v2 are perpendicular. If U1 and U2 form a standard pair in
G, and π describes a quotient map whose kernel is a subgroup of the center of G, then π(U1) and
π(U2) are called a standard pair in π(G).
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Definition 1.2 Let G ∼= SΩ(5, q) and V be its natural module, where the invariant form is chosen
to be of discriminant one. Subgroups U1 and U2 of G ∼= SΩ(5, q) form a standard pair if there is
an orthogonal decomposition V = V2 ⊕ V ′

2 ⊕ V1, where

(i) V2 is 2-dimensional of minus type, and U1 is the vector-wise stabilizer of V2;

(ii) V2⊕V ′
2 is 4-dimensional of plus type, and U2 is one of the two direct factors in the vector-wise

stabilizer of V1.

We remark that here U1
∼= SΩ(3, q) ∼= PSL(2, q) and U2

∼= SL(2, q).

For Ĝ ∼= Spin(5, q) and the natural homomorphism from π : Ĝ → G, subgroups U1, U2
∼=

SL(2, q) of Ĝ form a standard pair if π(U1) and π(U2) form a standard pair in G.

We use diagrams to describe configurations involving standard pairs. In such a diagram an
edge

i
◦

j
◦ represents the fact that a suitable group G contains subgroups Ui and Uj such that

Uij := 〈Ui, Uj〉 is isomorphic to SU(3, q2) (or its central quotient PSU(3, q2)) and that Ui and

Uj form a standard pair in Uij . Similarly, the edge
i
◦ >

j
◦ requires that Uij be isomorphic to

Spin(5, q) (or its central quotient SΩ(5, q)) and that Ui and Uj again form a standard pair in Uij .
In addition to the above two types of edges we will need the “empty” edge

i
◦

j
◦ which means

that Uij is a central product of Ui and Uj.

Definition 1.3 Let n ≥ 2. A group G contains a weak Phan system of type Bn over Fq2 if G is
generated by a family of subgroups Ui, i ∈ I = {1, . . . , n}, so that, for 1 ≤ i < j ≤ n, the subgroups
Ui and Uj form a standard pair in Uij := 〈Ui, Uj〉 according to the Dynkin diagram Bn:

1
◦

2
◦ · · ·

n−2
◦

n−1
◦

>

n
◦.

The main result of [Part1] consists of the following two theorems.

Main Theorem A For n ≥ 3 and q ≥ 5 an odd prime power, let G be a group containing a weak
Phan system of type Bn over Fq2 . Then G is isomorphic to Spin(2n + 1, q) or a central quotient
thereof.

Main Theorem B For n ≥ 4, let G be a group containing a weak Phan system of type Bn over
F9. In addition, assume that 〈Ui−1, Ui, Ui+1〉 is isomorphic to a central quotient of SU(4, 9) (if
2 ≤ i ≤ n− 2) or Spin(7, 3) (if i = n− 1). Then G is isomorphic to Spin(2n + 1, 3) or a central
quotient thereof.

By the argument given in the introduction of [Part1], Main Theorems A and B are an immediate
consequence of the Theorem.

Acknowledgement: The authors would like to thank Derek Holt for his advice in matters of
group cohomology, and Sergey Shpectorov for careful proofreading of a draft of this paper.

2 Geometrical setting

In this section we introduce the geometry Γ dealt with in the Theorem. For a brief introduction
to synthetic geometry, refer to [Part1] or, for a comprehensive introduction, to [BC].

Fix a dimension n (in this article we actually only deal with n = 3) and an odd prime power
q. Let B be the (2n + 1)× (2n + 1) matrix




idn×n

idn×n

1




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over Fq2 and (·, ·) be the bilinear form defined via (x, y) := xT By. As representation of SO(2n +
1, q2) we choose the set of all invertible (2n + 1) × (2n + 1)-matrices A over Fq2 which preserve
(·, ·), that is, AT BA = B holds. With G = SΩ(2n + 1, q2) we denote the commutator subgroup of
SO(2n + 1, q2).

Let V be the vector space F
2n+1

q2 endowed with the form (·, ·) and let {e1, . . . , en, f1, . . . , fn, x}

be a hyperbolic basis, i.e. a basis such that the Gram matrix of (·, ·) with respect to that basis
equals B. We denote by ¯ the unique non-trivial involutory field automorphism x 7→ xq of Fq2 .
Consider the -̄semi-linear map σ : V → V defined by ei 7→ fi, fi 7→ ei, x 7→ x and σ(c · v) = cσ(v)
for c ∈ Fq2 , v ∈ V . The basis {e1, . . . , en, f1, . . . , fn, x} is called canonical for σ. Note that
σ(v) = Bv = Bv. The centralizer Gσ := {g ∈ G | ∀v ∈ V : gσ(v) = σ(gv)} of σ in SΩ(2n + 1, q2)
is isomorphic to SO(2n + 1, q) (see [Part1], Proposition 2.10). For our computations, we take Gσ

as our representation of SO(2n + 1, q). Note that for a matrix A ∈ SO(2n + 1, q2), centralizing σ

is equivalent to the condition A−1 = A
T
.

We now define the flipflop geometry Γ which we are studying in this article. (For an introduc-
tion to flipflop geometries, see [BGHS] or [G2].) To this end, we define a -̄hermitian form ((·, ·))
by ((u, v)) := (u, σ(v)), cf. [Part1], Definition 2.4 and Lemma 2.5. To denote orthogonality with
respect to the form (·, ·), we use the symbol ⊥. To denote orthogonality with respect to the form
((·, ·)), we use the symbol ⊥⊥.

Definition 2.1 (Cf. Proposition 3.1 in [Part1]) The objects of the geometry Γ are all non-
trivial subspaces of V that are totally isotropic with respect to (·, ·) and nondegenerate with respect
to ((·, ·)). Incidence is defined by symmetrized containment.

3 Simple connectedness

In this section we prove the simple connectedness of the flipflop geometry Γ for n = 3 and
q ∈ {5, 7, 9}. The concept of simple connectedness or homotopies of a geometry are based on said
concepts found in algebraic topology, especially the theory of simplicial complexes. For a brief
overview, refer to Section 3.1 in [Part1]. For details see [ST].

In Proposition 3.7 of [Part1], it was shown that for q ≥ 5, the collinearity graph of the
geometry Γ has diameter two. Furthermore it was shown — cf. Lemma 4.1 of [Part1] and the
subsequent discussion — that in order to prove the simple connectedness of Γ, it suffices to deal
with triangles, quadrangles and pentagons in the collinearity graph of Γ. To decompose them, we
will make use of the fact that all geometric triangles — that is, triangles in the collinearity graph
for which an element of the geometry exists that is incident to all points and lines in the triangle
— are trivially null-homotopic and thus can be used to decompose all other cycles. The pentagons
was already covered by Lemma 4.12 in [Part1].

3.1 Triangles

As a first step, we want to decompose triangles. In [Part1], Lemmas 4.6 – 4.8, this was already
done for q ≥ 7. Hence we need to show that this is possible for q = 5. Lemma 4.6 in [Part1]
states that any nongeometric triangle can be decomposed into triangles that have two g-orthogonal
vertices. We can therefore restrict our attention to such triangles. As was shown in [Part1], we
can further restrict ourselves to consider triangles (e1, e2, v3) where v3 = αe1+βe2+r, where r is in
the g-radical. Assume that r = γe3 + δf3 +εx. Then the condition on r gives 0 = (r, r) = 2γδ+ε2

and 0 = ((r, r)) = γγ + δδ + εε. If δ = 0, then also ε = 0 = γ, which would mean our triangle

was really a line; hence δ 6= 0. Thus γ = − ε2

2δ
and a short calculation shows γγ = δδ = − εε

2
(in

particular we also see that γ 6= 0 6= δ).
To decompose a triangle (e1, e2, v3) we construct an octahedron with that triangle as one face,

and a suitably chosen geometric triangle (p1, p2, p3) as the opposite face (see Figure 1) such that
all other faces of the octahedron are geometric.
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p3

p2

v3

p1

e2

e1

Figure 1: Octahedron construction used in Lemma 3.1

In Lemma 4.7 of [Part1], this construction is used with the triangle (p1, p2, p3) = (f3, f3 −
γ
β
f2, f3−

γ
α
f1) to show that for q ≥ 7 all triangles can be decomposed into geometric triangles and

hence are null-homotopic. This result is sharp in the sense that for q = 5 there are triangles which
cannot be decomposed by the octahedron construction using that triangle. For an example, let z
denote a primitive element in F25 over F5 with minimal polynomial x2 − x + 2. Then

a := 〈e1〉, b := 〈e2〉, c := 〈ze1 + e2 + z5e3 + zf3 + x〉

form a triangle that cannot be decomposed using the octahedron construction. Hence a different
triangle (p1, p2, p3) or even a completely different approach is required. Fortunately, it turns out
that the former suffices.

Lemma 3.1 Let q = 5. Then all triangles can be decomposed into geometric triangles.

Proof. We assume as above that the triangle is (e1, e2, v3) where v3 = αe1 + βe2 + r where
r = γe3 + δf3 + εx is in the g-radical. We will now construct an octahedron using the initial
vertices and the points

p1 = f3,

p2 = θ1θ2αγe1 +
1

2
θ2
1βγe2 −

γ

β
f2 + (1− θ1ε)f3 + θ1γx, (3.1)

p3 =
1

2
θ2
2αγe1 −

γ

α
f1 + (1 − θ2ε)f3 + θ2γx. (3.2)

where θ1, θ2 ∈ Fq2 . For θ1 = 0 = θ2 this is identical to the triangle used in Lemma 4.7 of [Part1].
We now have to show that for each triangle (e1, e2, v3) there exist values for θ1 and θ2 such that

the octahedron construction with the triangle (p1, p2, p3) decomposes our starting triangle, i.e. in
which all faces except for the starting triangle are geometric triangles. Since the stabilizer of the
pair e1, e2 acts transitively on the f - and g-singular one-dimensional subspaces of 〈e3, f3, x〉, we can
fix one admissable value for r, and only have to vary α and β. Thus only about |Fq2 |2 = q4 = 625
triangles have to be considered. We do this by an exhaustive search through all values for α and
β. For each pair we search through admissible values for θ1 and θ2 where a suitable geometrical
triangle (p1, p2, p3) is formed. This search was successful in all cases. A simple GAP program (see
Appendix A) is sufficient to verify the claim in all these cases. ✷
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3.2 Quadrangles

In this section we show that all quadrangles a, b, c, d can be decomposed into triangles for 5 ≤ q ≤ 9.
Consider a generic quadrangle:

a = (a1, a2, a3, a4, a5, a6, a7),

b = (b1, b2, b3, b4, b5, b6, b7),

c = (c1, c2, c3, c4, c5, c6, c7),

d = (d1, d2, d3, d4, d5, d6, d7).

We will present an algorithm that verifies for all quadrangles that they are decomposable. To this
end, we first explain how to reduce the number of conjugacy classes to be considered as much as
possible. A naive check would have to check approximately |Fq2 |4·6 = q48 quadrangles, a number
which exceeds the capacities of commonly available hardware and even of many super computers.

Finally, we need a way to efficiently decompose a representative of each quadrangle conjugacy
class into triangles.

3.2.1 Determining quadrangle conjugacy classes

The group Gσ = SO(7, q) acts transitively on the flags of the geometry Γσ. Since a quadrangle is
decomposable if and only if all its conjugates are decomposable, we can use the action of Gσ to
reduce the number of cases we have to consider.

The flag 〈a〉, 〈a, b〉 is conjugated to the flag 〈e1〉, 〈e1, e2〉. Hence we can assume that

a = e1, b = λe1 + e2, λλ̄ 6= −1.

Let U be the natural module of G. Let M2 be the stabilizer, called line stabilizer, of the
subspace U2 := 〈e1, e2〉 of U . Since M2 preserves both our forms, it also stabilizes Uσ

2 = 〈f1, f2〉
and W := U⊥

2 ∩ U⊥⊥
2 = 〈e3, f3, x〉, i.e. it stabilizes the direct decomposition

U2 ⊕ Uσ
2 ⊕ 〈U2, U

σ
2 〉

⊥ = 〈e1, e2〉 ⊕ 〈f1, f2〉 ⊕ 〈e3, f3, x〉.

By sharp observation, we determine that the action of M2 on U induces GU(2, q2) on U2 (and
Uσ

2 ) and SO(3, q) on W . In particular, the group M2 is isomorphic to

GU(2, q2)× SO(3, q).

We use the action of GU(2, q2) on U2 to reduce the number of values for λ we have to regard.
For this, we take the stabilizer S of 〈e1〉 in GU(2, q2), which is generated by diagonal matrices with
respect to our chosen basis. We observe that the orbit of 〈b〉 under the action of S consists of all
elements 〈λ′e1 + e2〉 for which λ′λ̄′ = λλ̄. Hence for λ we only need to consider one representative
for each of the q − 1 values λλ̄ ∈ Fq \ {−1}.

Next take the action of SO(3, q) on W and notice that again it is sufficient to consider one
representative for each orbit of c3, c6, c7. A computation in GAP shows that there are q3 + q2 + q
orbits for q ∈ {3, 5, 7, 9} (we do not know whether this holds for larger values of q).

Combining all this (ignoring for the moment that we are in a projective space) leaves eleven
free parameters (c1, c2, c4, c5 and d1 to d7), which gives a quadrangle conjugacy class count of at
most |Fq2 |11 · (q − 1) · (q3 + q2 + q) = q26 − q23.

3.2.2 Reducing the conjugacy classes using geometric arguments

It is sufficient for us to consider quadrangles for which 〈a, c〉 and 〈b, d〉 are not f -singular, as
the other cases are already covered in Lemmas 4.8 and 4.10 of [Part1]. So (a, c) = c4 6= 0 and
(b, d) = d5 + d4λ 6= 0.

Since we are working in a projective space, we can scale c such that

c4 = 1.
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Since 〈c〉 is a point, we have that (c, c) = 0. This gives

0 = (c, c) = 2c1 + 2c2c5 + 2c3c6 + c2
7, whence c1 = −(c2c5 + c3c6 +

c2
7

2
).

Next, we use that the sides of the quadrangle must be lines of the geometry and hence:

0 = (a, b),

0 = (b, c) = c5 + λc4 = c5 + λ, whence c5 = −λ,

0 = (d, a) = d4.

Since (b, d) = d5 + d4λ 6= 0, and d4 = 0, we conclude that d5 6= 0 and hence we can scale d such
that

d5 = 1.

Finally we consider the line 〈c, d〉 and the point 〈d〉:

0 = (c, d) = c2 + d1 + c6d3 + c3d6 + c7d7 − d2λ, whence d1 = −(c2 + c6d3 + c3d6 + c7d7 − d2λ),

0 = (d, d) = 2d2 + 2d3d6 + d2
7, whence d2 = −d3d6 −

d2
7

2
.

Collecting all we know, we have

a = (1, 0, 0, 0, 0, 0, 0),

b = (λ, 1, 0, 0, 0, 0, 0),

c = (λc2 − c3c6 −
c2
7

2
, c2, c3, 1, −λ, c6, c7), (3.3)

d = (−(c2 + c6d3 + c3d6 + c7d7 + λ(d3d6 +
d2
7

2
)), −d3d6 −

d2
7

2
, d3, 0, 1, d6, d7). (3.4)

Combining this with the results from the previous section we have at most

|Fq2 |4 · (q − 1) · (q3 + q2 + q) = q12 − q9

quadrangle conjugacy classes to consider. Not all of these will be quadrangles of the geometry Γ,
since the conditions we have used so far are necessary but not sufficient to ensure that the one-
and two-dimensional spaces occurring here are elements of the geometry. We have not yet ensured
that they must be g-nondegenerate. That condition yields inequalities, which makes it difficult to
use it to narrow down the conjugacy classes. Instead, our program will filter out those conjugacy
class representatives which are not quadrangles of the geometry before trying to decompose them.

3.2.3 Decomposing quadrangles, the simple way

The simplest way to decompose a quadrangle is to find a point p which is collinear to all of its
corners, thus decomposing the quadrangle into four triangles. We call this pyramid construction
(see Figure 2). Such a point must form an f -singular space with each of a, b, c, d, yielding the
following conditions in our situation:

(p, a) = 0 =⇒ p4 = 0,

(p, b) = 0 =⇒ λp4 + p5 = 0 =⇒ p5 = 0,

(p, c) = 0 =⇒ p1 + c6p3 + c3p6 + c7p7 − p2λ = 0 =⇒ p1 = −c6p3 − c3p6 − c7p7 + p2λ,

(p, d) = 0 =⇒ p2 + d6p3 + d3p6 + d7p7 = 0 =⇒ p2 = −d6p3 − d3p6 − d7p7.

Thus p looks as follows:

p = (−c6p3 − c3p6 − c7p7 + p2λ,−d6p3 − d3p6 − d7p7, p3, 0, 0, p6, p7). (3.5)
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d
c

a

p

b

Figure 2: Basic quadrangle decomposition: Pyramid construction

Since p should be a point of the geometry, i.e. (p, p) = 0, we get as a further restriction the
equation 2p3p6 + p2

7 = 0. If p3 = 0, then also p7 = 0 and we can assume that p6 = 1. If on the

other hand p3 6= 0, we can assume that p3 = 1, p7 is arbitrary and p6 = −
p2

7

2
. Thus we get q2 + 1

candidates for p. Not all of these are points or generate lines with the corners of the quadrangle.
In fact, it turns out that there are some quadrangles for which such a point p does not exist. For

an example, let z denote a primitive element in F81 over F3 with minimal polynomial x4− x3− 1.
Then

a := 〈e1〉, b := 〈e2〉, c := 〈e2 + e3 + f1 + f3 + x〉, d := 〈2e1 + z2e3 + f2 + z2f3 + z2x〉

form a quadrangle that cannot be decomposed using the pyramid construction. For such quad-
rangles a more sophisticated approach is needed.

3.2.4 Decomposing quadrangles, the hard way

d
c

a

p

d′

b

Figure 3: Enhanced quadrangle decomposition

When we encounter a quadrangle that fails to decompose using the pyramid construction
described in the previous section, we use the following refined technique (see Figure 3): We search
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for a point d′ which is collinear to a, c, d auch that the pyramid construction is applicable to
the quadrangle formed by a, b, c, d′. In particular, 〈b, d′〉 must be f -singular. We conclude that
0 = (a, d′) = d′4 and 0 6= (b, d′) = d′5 + λd′4 = d′5, and hence we can scale d′ such that d′5 = 1.
Furthermore, d′ must be a point and collinear to c, thus

0 = (c, d′) = c2 + d′1 + c6d
′

3 + c3d
′

6 + c7d
′

7 − d′2λ, whence d′1 = −(c2 + c6d
′

3 + c3d
′

6 + c7d
′

7 − d′2λ),

0 = (d′, d′) = 2d′2 + 2d′3d
′

6 + d′7
2
, whence d′2 = −d′3d

′

6 −
d′7

2

2
.

With this d′ has the following form:

d′ = (−(c2 + c6d
′

3 + c3d
′

6 + c7d
′

7 − d′2λ), −d′3d
′

6 −
d′7

2

2
, d′3, 0, 1, d′6, d′7). (3.6)

Note that d′ has the same form as d as given in Equation 3.4. Hence we can then reuse the
computations we made in the previous section and apply the pyramid decomposition strategy to
the new quadrangle a, b, c, d′.

We have not yet made use of the collinearity of d and d′:

0 = (d, d′) = −d3d6 −
d2
7

2
+ d6d

′

3 + d3d
′

6 − 2d′3d
′

6 + d7d
′

7 − d′7
2
.

However, we chose not to directly use this condition to further improve our algorithm (the condition
is still being verified before accepting any solution), since there seems to be no easy way to directly
exploit it, and empirically we determined that there are comparatively few quadrangles that need
to be treated by this advanced decomposition strategy, hence further optimizations at this point
yield little benefit for the overall run time.

The advantage of this improved strategy is that it is simple to implement and reuses what we
already know. It turned out that it managed to decompose all (remaining) quadrangles.

3.2.5 Putting it all together

Assembling everything we have described above yields the algorithm described in Appendix A.

The approach described in the previous sections works because the geometry turns out to
be connected, and for each quadrangle, we can relatively quickly determine a decomposition.
Disproving simple connectedness this way would be much harder: To show simple connectedness,
it sufficies to find a decomposition of our quadrangle, but to disprove it would require finding a
quadrangle for which no decomposition is possible, in any conceivable way.

In Sections 3.2.1 and 3.2.2 we saw that we need to check about q12 quadrangle conjugacy
classes. In Section 3.2.3 we saw that decomposing a quadrangle with the pyramid construction
works in O(q2) (if such a decomposition exists), while the more complicated scheme in 3.2.4 runs
in O(q6). This would suggest a total run time complexity of O(q19).

When we run the algorithm, it quickly became apparent that the advanced decomposition
algorithm usually succeeds in far less time. In addition, only a tiny fraction of all quadrangles fail
to decompose via the pyramid construction. Hence the actual complexity is empirically O(q14).

3.3 Summary

Since the collinearity graph of Γ has diameter 2, we have thus proven the following:

Proposition 3.2 Let n = 3 and q ∈ {5, 7, 9}. Then the flipflop geometry Γ is simply connected.

Together with Propositions 4.5 and 4.14 of [Part1] this completes the proof of (iii) of the
Theorem. Main Theorems A and B now hold by the argument given in the introduction of
[Part1].
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4 The case q = 3

So far we were able to deal with the open cases using geometric methods. We now turn to the last
open case, namely n = 3 = q. We will prove that the geometry Γ is not simply connected, but for
this proof we will use group-theoretic methods. In particular, Tits’ Lemma plays a central role:

Proposition 4.1 (Tits’ Lemma) Suppose a group H acts flag-transitively on a geometry Γ and
let A be the amalgam of maximal parabolics associated with some maximal flag F . Then H is the
universal completion of the amalgam A if and only if Γ is simply connected.

Proof. This follows from [T], Corollaire 1, applied to the flag complex of Γ. See also Corollary
1.4.6 of [IS], or, in more general form, Corollary 3.2 of [GVM]. ✷

4.1 A representation of SΩ(7, 3)

We start by giving a representation of SΩ(7, 3) matching the definitions and constructions in
Section 2. Namely, we construct it as a perfect subgroup of SO(7, 9) preserving the forms (·, ·)
and ((·, ·)), that has the correct size.

Let z denote a primitive element in F9 over F3 with minimal polynomial x2−x− 1. We define
the following matrices:

U :




z7 z5

z3 z5

1
z5 z7

z z7

1
1




V :




1
z5 z7

z z7

1
z7 z5

z3 z5

1




W :




1
1

z6 1 z7

1
1

1 z2 z5

z3 z 0




In addition to these elements we use the diagonal matrices D̂1 := diag(z2, 1, 1, z6, 1, 1, 1), D̂2 :=

diag(1, z2, 1, 1, z6, 1, 1), D̂3 := diag(1, 1, z2, 1, 1, z6, 1), that generate the stabilizer of the flag F in

SO(7, 3), a half-split torus isomorphic to C3
4 , as well as D1 := D̂1D̂2, D2 := D̂2D̂3, D3 := D̂3D̂1.

which generate the stabilizer of the flag F in SΩ(7, 3).

Lemma 4.2 The matrices U , V , W and D̂i, 1 ≤ i ≤ 3 generate SO(7, 3). The matrices U , V , W
and Di, 1 ≤ i ≤ 3 generate SΩ(7, 3).

Proof. Using GAP or another computer algebra system one verifies that the matrices are all
invertible and preserve (·, ·) and ((·, ·)), hence are in SO(7, 3), and generate groups of the correct
sizes. In the second case, one then verifies (again with the help of a computer) that the generated
group is perfect. ✷

We have seen earlier what the isomorphism type of the line stabilizer M2 is. One can similarly
deduce the isomorphism types of the other maximal parabolics in SO(7, 3) and arrives at the
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following table (the size and index of each group is readily computed using GAP or well-known
formulas for the sizes of orthogonal and unitary groups, see e.g. [Ta]):

stabilizer stabilized element(s) isomorphism type size index

M̂123 〈e1〉, 〈e1, e2〉, 〈e1, e2, e3〉 C3
4 64 ∼ 143M

M̂1 〈e1〉 GU(1, 9)× SO(5, 3) 207360 44226

M̂2 〈e1, e2〉 GU(2, 9)× SO(3, 3) 2304 3980340

M̂3 〈e1, e2, e3〉 GU(3, 9) 24192 379080

Lemma 4.3 Each maximal parabolic in SΩ(7, 3) is generated by the matrices, and has the size
and index, as specified in the following table.

stabilizer stabilized element(s) generators size index

M123 〈e1〉, 〈e1, e2〉, 〈e1, e2, e3〉 D1, D2, D3 32 ∼ 143M
M1 〈e1〉 D1, D2, D3, V, W 103680 44226
M2 〈e1, e2〉 D1, D2, D3, U, W 1152 3980340
M3 〈e1, e2, e3〉 D1, D2, D3, U, V 12096 379080

Furthermore, the pairwise intersection of the stabilizers is generated by the intersection of the
generating sets given above.

Proof. The claimed generators of each Mi obviously each stabilize the corresponding flag in the
table. Hence they generate subgroups of the stabilizers. Clearly, the intersection of the generators
of any two Mi generates a subgroup of their intersection. Since M123 must be a subgroup of the
flag stabilizer, and since D̂1 is not in SΩ(7, 3), we know that M123 has to be smaller than M̂123

which has 64 elements. We compute its size to be 32, hence it already is the full flag stabilizer in
SΩ(7, 3).

The stabilizers in SΩ(7, 3) are obtained by intersecting the stabilizers M̂i with SΩ(7, 3). Since
SΩ(7, 3) has index two in SO(7, 3), its stabilizers are either the same or also have index two in
their counterparts. But clearly the flag stabilizer in SΩ(7, 3) is already smaller, and it is contained

in all other parabolics. Hence all stabilizers Mi are strictly smaller than the corresponding M̂i.
This justifies the table.

We compute using GAP the sizes of the Mi and verify that these match the sizes of the
maximal parabolics given in the table. Finally, again using GAP we compute the sizes of the
pairwise intersections of the Mi and verify that these are generated as claimed. ✷

4.2 Amalgam

Based on the above table, we determine with the help of GAP a finite presentation of the maximal
parabolics on the generators d1, d2, d3, u, v, w. Taking these elements as generators, and the union
of the relators of said presentations yields a finite presentation of the universal completion H
of the amalgam of the maximal parabolics (by virtue of the intersection property shown in the
preceeding lemma). We obtained the following relators:

d4
1, d4

2, u3, v3, w3, [d1, d2], [d1, d3], [d1, u], [d1, w], [d2, d3], [d2, v], [u, w], (d1d2d3)
2,

d−1

1 wd3wd2, (d3uw)2d1, (vd1d
−1

3 )3, d3vd2d
−1

1 vd2, d−1

3 d2ud2ud2, uvu(vuv)−1, wvwv(vwvw)−1 ,

d2v
−1d1d2v

−1d−1

3 , d−1

3 u−1d2d
−1

3 u−1d2u, d3v
−1d−1

1 w−1vd2w
−1d3v

−1w−1d2d
−1

1 vw−1,

v−1d−1

1 w−1vd2wd2vd3w
−1d2d

−1

1 vwd1d
−1

2 , d3d2vwv−1d2wvd−1

3 d1vwvd−1

3 d2wd−1

2 w−1,

d2wvd3v
−1d−1

1 w−1d2vd2vwvd3v
−1d−1

1 w−1d2v
−1.

Note that G̃ := SΩ(7, 3), generated as above, is a quotient of H . In the following we will determine
the exact structure of H .
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Lemma 4.4 Let φ : H → G̃ be the canonical group epimorphism which maps the generators of H
onto the generators of G̃. Then | kerφ| = 37 = 2187, or equivalently |H | = 2187 · |G̃|.

Proof. Let M ′
1 := 〈d1, d2, d3, v, w〉, and note that (by construction) φ |M ′

1
is an isomorphism

between M ′
1 and M1. We use a two stage approach to determine the size of kerφ. Consider the

following subgroup R of H and its intersection S with M ′
1:

R := 〈d2
1, d2, d3d

−1

1 , v, w, uv(uvw)−1d−1

3 v(uvw)−1〉

S := 〈d2
1, d2, d3, v, w〉 ⊆W ∩M ′

1

But φ induces an isomorphism on M ′
1 and also on S, thus we see

|H | = |H : R| · |R : S| · |S| = |H : R| · |R : S| · 51840.

Computing |H : R| = 378 using coset enumeration is easy. To compute |R : S|, some more
effort is required: One has to compute a suitable finite presentation of R first. Fortunately, GAP
does that for us, and we find that |R : S| = 511758. Hence

|H | = 378 · 511758 · 51840 = 10028164124160 = 2187 · |SΩ(7, 3)|.

✷

As a small remark, notice that one could try to directly compute the index of a suitable
subgroup, e.g. make use of the fact that

| kerφ| = |H : M ′

1|/|G̃ : M1| = |H : M ′

1|/44226

and use coset enumeration to compute |H : M ′
1|. If the geometry was indeed simply connected,

this would require only about 44026 cosets. Unfortunately, it is not, as we have seen above. Rather
we would actually need at least 44026 · 2187 ≃ 96 million cosets (which translates, when using
[ACE], to about 5 GB of RAM).

We can now proceed to determine the nature of the kernel.

Lemma 4.5 The kernel of φ is isomorphic to (Z/3Z)7.

Proof. Let k7 := (uvw)9. Consider the subgroup

V := 〈d1, d2, d3, u, v, w, d−1

2 k7d2〉

of H . A coset enumeration yields that |H : V | = 398034. The resulting coset table can be used to
derive a permutation representation of (a subgroup of) H of degree 398034. Computing the size
of this permutation group, we find that it is indeed a faithful representation of H .

Computing the kernel of φ is a relatively simple computation. Taking the normal closure of
k7, we indeed obtain a (normal) subgroup of size 2187 of H , which we verify to be the kernel of
φ. Computing its isomorphism type finally proves the claim. ✷

Proposition 4.6 The group H is isomorphic to a non-split extension of SΩ(7, 3) by K := (Z/3Z)7,
i.e. the following sequence is exact and non-split:

1→ K → H
φ
−→ SΩ(7, 3)→ 1.

Proof. We observe that K = kerφ corresponds to the 7-dimensional vector space F
7
3. We

compute the action of H on kerφ to compute a 7-dimensional representation of H which is not
faithful, but rather is isomorphic to SΩ(7, 3). It is generated by the following two matrices:
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A :




1
1 1 1 2 1 1
1 1 1 2 2

1 2 1 2 2
1 1 2

2 2 2 2 2
2 2 2 2




B :




1
1

1
1 2 2 1
2 2 1 1 2
2 1 2 2 2 1

2 2 2 2 1




which preserve the bilinear form induced by the matrix




1 1 1 2 2
2 1 2 1 1

1 2 2
1 1 2 2 2
2 2 2 2 2 2 1

1 2 2 1 1
2 1 2 1 1 1




.

We now apply the OCOneCocycles command in GAP to our extension (making use of the finite
presentation, the permutation presentation, and the action on the module described above), which,
after a few computations, confirms that we are indeed dealing with a non-split extension here.

In [Ku] it is proved that SΩ(7, 3) admits precisely one non-split extension by its natural 7-
dimensional module. Hence H is uniquely determined. ✷

We also used the cohomolo package [Cohom] to compute the the second cohomology group
of SΩ(7, 3) with respect to the module given above. This yielded dimension one, confirming the
results presented in [F] and [Ku].

We finally conclude the following:

Corollary 4.7 For (n, q) = (3, 3), the geometry Γ admits a 2187-fold covering. In particular it is
not simply connected.

Proof. This is a direct consequence from Proposition 4.6 and Tits’ Lemma. ✷

A Algorithm description

The following pseudocode demonstrates how the observations regarding triangle and quadrangle
decomposition from Section 3 can be turned into a working computer program. We implemented
the triangle decomposition in GAP, and the quadrangle decomposition in C++. The full source
for our implementation of these algorithms can be downloaded from:

http://www.mathematik.tu-darmstadt.de/∼mhorn/papers/quad-scan-20060204.tar.gz.

The triangle code, for q = 5, when run on a 1.5Ghz PowerBook G4 under Mac OS X 10.4 and
GAP 4.4.5, takes about 5 seconds to successfully decompose all relevant triangle conjugacy classes.

The quadrangle code had to be run for q ∈ {5, 7, 9}. In the biggest case, i.e. for q = 9, a
total of about 150 billion quadrangles had to be split. This would have taken about a week of
computation time, but by letting the code run on multiple computers in parallel, we were able to
get the result after about 20 hours. Note that only 2430 of the quadrangles required the more
advanced decomposition strategy described in Section 3.2.4.
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Algorithm 1 Triangle decomposition

1: function TryToDecomposeTri(α, β, γ, δ, ε) ⊲ Uses the method described in Lemma 3.1
2: a← (1, 0, 0, 0, 0, 0, 0)
3: b← (0, 1, 0, 0, 0, 0, 0)
4: c← (α, β, γ, 0, 0, δ, ε)
5: p1 ← (0, 0, 0, 0, 0, 1, 0)
6: for θ2 ∈ Fq2 do
7: p3 ← (1

2
θ2
2αγ, 0, 0,− γ

α
, 0, (1− θ2ε), θ2γ) ⊲ Equation 3.2

8: if p is a point collinear to each of p1, c, b and (p3, b, c), (p3, b, p1) are triangles then
9: for θ1 ∈ Fq2 do

10: p2 ← (θ1θ2αγ, 1

2
θ2
1βγ, 0, 0,− γ

β
, (1 − θ1ε), θ1γ) ⊲ Equation 3.1

11: if (p1, p2, p3) forms an octahedron with (a, b, c) then
12: return success
13: end if
14: end for
15: end if
16: end for
17: return failure
18: end function

Algorithm 2 Triangle main program

1: ε← 1 ⊲ We can fix an arbitrary value for ε
2: for δ ∈ Fq2 do ⊲ Find suitable values for δ, γ

3: γ ← − ε2

2δ

4: if γγ̄ + δδ̄ + εε̄ = 0 then
5: end loop

6: end if
7: end for
8: for (α, β) ∈ F

2
q2 do

9: if TryToDecomposeTri(α, β, γ, δ, ε) fails then
10: abort and print FAILURE

11: end if
12: end for

Algorithm 3 Hard quadrangle decomposition

1: function TryToSplitQuadHard(a, b, c, d) ⊲ Uses the method described in Section 3.2.4
2: for (d′3, d

′
6, d

′
7) ∈ F

3
q2 do

3: d′2 ← −(d′3d
′
6 + d′7

2
/2)

4: d′1 ← −(c2 + c3d
′
6 + c6d

′
3 + c7d

′
7) + b1d

′
2

5: d′ ← (d′1, d
′
2, d

′
3, 0, 1, d′6, d

′
7) ⊲ See Equation 3.6

6: if d′ is a point collinear to each of a, c, d then
7: if TryToSplitQuad(a, b, c, d′) succeeds then
8: return success
9: end if

10: end if
11: end for
12: return failure
13: end function
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Algorithm 4 Simple quadrangle decomposition

1: function IsPointSplitting(a, b, c, d, x, y, z)
2: p← (−(c6 + d6b1)x− (c3 + d3b1)y − (c7 + d7b1)z,−(d6x + d3y + d7z), x, 0, 0, y, z)

⊲ See Equation 3.5
3: if p is a point collinear to each of a, b, c, d then
4: return success
5: else
6: return failure
7: end if
8: end function

9: function TryToSplitQuad(a, b, c, d) ⊲ Uses the method described in Section 3.2.3
10: if IsPointSplitting(0, 1, 0) then
11: return success
12: end if
13: for x ∈ Fq2 do
14: if IsPointSplitting(1,−x2/2, x) then
15: return success
16: end if
17: end for
18: return failure
19: end function

Algorithm 5 Quadrangle main program

1: ORB ← orbit representatives for the action of SO(3, q) on F
3
q2 ⊲ See Section 3.2.1

2: a← (1, 0, 0, 0, 0, 0, 0)
3: for λ′ ∈ Fq \ {−1} do
4: λ← value from Fq2 such that λλ = λ′

5: b← (λ, 1, 0, 0, 0, 0, 0)
6: for c2 ∈ Fq2 do
7: for (c3, c6, c7) ∈ ORB do
8: c← (c2b1 − c3c6 − c2

7/2, c2, c3, 1,−λ, c6, c7) ⊲ Equation 3.3
9: if c is a point collinear to a and b and c /∈ a⊥ then

10: for (d3, d6, d7) ∈ F
3
q2 do

11: d2 ← −(d3d6 + d2
7/2)

12: d1 ← −(c2 + c3d6 + c6d3 + c7d7) + λd2

13: d← (d1, d2, d3, 0, 1, d6, d7) ⊲ Equation 3.4
14: if d is a point collinear to each of a, b, c and d /∈ b⊥ then
15: if TryToSplitQuad(a, b, c, d) fails then
16: if TryToSplitQuadHard(a, b, c, d) fails then
17: abort and print FAILURE

18: end if
19: end if
20: end if
21: end for
22: end if
23: end for
24: end for
25: end for
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