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Abstract

We extend the Phan theory described in [BGHS] to the last remaining infinite series of clas-
sical Chevalley groups over finite fields. Namely, we prove that the twin buildings for the
group Spin(2n + 1, ¢?), ¢ odd, admit a unique unitary flip and that the corresponding flipflop
geometry is simply connected for almost all finite fields F». Applying standard methods
from amalgam theory, this results in a characterization of central quotients of the group
Spin(2n + 1,q) by a Phan system of rank one and rank two subgroups. In the present first
part of a series of two articles we present simple connectedness results for sufficiently large
fields or sufficiently large rank. To be precise, the result stated in the present paper is proved
for all cases but n = 3 and ¢ € {3,5,7,9}, the remaining cases are dealt with in the sequel
[PART2] computationally.

1 Introduction

The purpose of this paper is to establish the analog of Phan’s theorems (cf. [P1] and [P2]) for the
groups Spin(2n + 1,¢q), ¢ odd. To state these results we need some definitions, starting with the
concept of standard pairs in the groups SU(3, ¢%) and Spin(5, q).

Definition 1.1 Let G = SU(3,¢*) and V be the natural G-module over F,z. Subgroups U; and
U, isomorphic to SUz(¢?) of G = SU(3, ¢?) form a standard pair whenever each U; is the stabilizer
in G of a nonsingular vector v; € V' and, moreover, v; and vy are perpendicular. If U; and U, form
a standard pair in GG, and 7 describes a quotient map whose kernel is a subgroup of the center of
G, then w(U;) and 7(U,) are called a standard pair in 7(G).

Definition 1.2 Let G = SQ(5, ¢) and V be its natural module, where the invariant form is chosen
to be of discriminant one. Subgroups U; and U, of G = SQ(5, ¢) form a standard pair if there is
an orthogonal decomposition V =V, & V) & V1,

(i) with V5 being 2-dimensional of minus type, such that U; is the vector-wise stabilizer of V»;

(ii) where V5 @ Vi is 4-dimensional of plus type, such that U, is one of the two direct factors in
the vector-wise stabilizer of V;.

We remark that here U; = SQ(3,q) = PSL(2,q) and Us = SL(2,q). For G Spin(5, ¢) and the
natural homomorphism from 7 : G — G, subgroups Uy, Us = SL(2,q) of G form a standard pair
if #(Uy) and 7(Uz) form a standard pair in G.
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Definition 1.1 repeats the definition in the introduction of [BS], while Definition 1.2 can be
shown equivalent to the definition in [G1], Section 3, of the standard pairs in Sp(4, ¢) 2 Spin(5, q).
We use diagrams to describe configurations involving standard pairs. In such a diagram an edge

o———o represents the fact that a suitable group G' contains subgroups U; and Uj such that
i J
U;j := (U;,Uj) is isomorphic to SU(3,¢?) (or its central quotient PSU(3,¢?)) and that U; and

U; form a standard pair in U;;. Similarly, the edge 9%9 requires that U;; be isomorphic to
i J

Spin(5, ¢) (or its central quotient SO(5, ¢)) and that U; and U; again form a standard pair in Uj;.
Note that Definition 1.1 is symmetric with respect to U; and Uz, whereas in Definition 1.2 the
order of U; and U; matters, and so the diagram in this case is asymmetric. Notice also that our
definition works well for all values of ¢, except ¢ = 2, where the standard pair does not generate
the entire SU(3, ¢?) or Spin(5, q); recall that in this paper we are only interested in the case g odd,
and so this complication does not arise. In addition to the above two types of edges we will need
the “empty” edge ° c; which means that Uj; is a central product of U; and Uj.

With this notation in place we can now give our main definition.

Definition 1.3 Let n > 2. A group G contains a weak Phan system of type By over F if G
is generated by a family of subgroups U;, i € I = {1,...,n}, so that, for 1 < i < j < n, the
subgroups U; and U; form a standard pair in U;; := (U;, U;) according to the Dynkin diagram B,,:

>
1 2 n—2 n—1 n

Our main result consists of the following two theorems.

Main Theorem A Forn > 3 and q > 5 an odd prime power, let G be a group containing a weak
Phan system of type By over F,2. Then G is isomorphic to Spin(2n + 1,q) or a central quotient
thereof.

There exists a counterexample to the statement of Main Theorem A for n = 3, ¢ = 3, cf.
Section 4 of [PART2]. However, the following statement is true in case ¢ = 3.

Main Theorem B For n > 4, let G be a group containing a weak Phan system of type B,, over
Fo. In addition, assume that (U;_1,U;,U;y1) is isomorphic to a central quotient of SU(4,9) (if
2<i<n-—2)orSpin(7,3) (ifi =n—1). Then G is isomorphic to Spin(2n + 1,3) or a central
quotient thereof.

We remark that the cases of diagrams A,,, C,,, and D,, have been dealt with previously (see
[P1], [P2], and also [BS], [GHS], [G1], [H], [GHN], [GHNS]). So our present result completes
the last series of Phan-type results for classical groups, see details below. We turn now to the
motivation and history of the field and also outline how we approach the proof of Main Theorems
A and B.

In 1977 Phan published two papers, [P1] and [P2], in which he stated and proved theorems
giving presentations for some Chevalley groups, that were similar in spirit to the Curtis-Tits
presentations for the groups with simply laced diagrams A,,, D,,, and E,,. Instead of the subgroups
SL(2,q) and SL(3, q), as in the Curtis-Tits presentation, he used subgroups isomorphic to SU(2, ¢?)
and SU(3, ¢?). Phan’s results, along with the Curtis-Tits theorem, proved to be fundamental for
the original classification of the finite simple groups announced in 1981, especially for Aschbacher’s
paper [A]. The current revision of the classification, lead by Lyons and Solomon, also requires a
revision of Phan’s results. Such a revision was started by Bennett and Shpectorov in [BS]; see
[BGHS] for a survey.

It was soon discovered that Phan’s results are not just similar to the Curtis-Tits theorem, but
rather these theorems are much more closely related to each other (see [BGHS]). It turned out
that the Curtis-Tits theorem is equivalent, via a certain reduction, to the simple connectedness of
the so-called opposites geometry of the spherical twin buildings associated with the corresponding
Chevalley group, cf. [M], also [AM]. When the Chevalley group is of untwisted type and is defined



over a field F,2, the twin buildings have a class of automorphisms that we call unitary flips. The
subgeometry of the opposites geometry, consisting of all objects fixed by the flip, is called the
flipflop geometry. It turned out that Phan’s theorems, in essence (that is, again modulo some
reduction), are the statements that the flipflop geometries of rank at least three for the simply
laced diagrams A,, (Phan’s first paper [P1]), D,, and E,, (Phan’s second paper [P2]) are simply
connected with some exceptions when ¢ equals to 2 or 3. Thus, Phan’s theorems can be viewed
as twisted versions of particular cases of the Curtis-Tits theorem.

As we have already mentioned, unitary flips exist for all untwisted Chevalley groups over F.
On the other hand, Phan treated only the simply laced diagrams. So, naturally, it is interesting to
ask whether the flipflop geometries for the diagrams B,,, C),, n > 3, and F} are simply connected
for sufficiently large ¢. The positive answer for the diagram C), was obtained in [GHS] and refined
in [H], see also [GHN]. Main Theorems A and B finish the last infinite series of Dynkin diagrams,
B,,. Notice that in this case we only need to consider the case where ¢ is odd, because B,, and C,
are the same when g is even.

We now outline how Main Theorems A and B are proved. The proof consists of two stages. At
stage one let X be a group with a weak Phan system. Define the amalgam A = U1§i<j§n Uij, as
found in X. For the general concept of a group amalgam see [S]; we deal with a more restricted
notion, as described, e.g., in [BS]. The goal of the first stage is to establish the uniqueness of the
amalgam A, that is, that it is essentially the same for all groups X with a weak Phan system of
type B,,. This step is proved uniformly for all Dynkin diagrams. The first occurrence of this proof
was in [BS], where the case of weak Phan systems of type A,, was dealt with. That original proof
applies to all simply-laced diagrams. The proof was modified in [G1] to include the double bonds,
and in this modified form it applies also to the diagrams B,, C,, and Fy. There is also an even
more general treatment in [D]. Because of all of this, we do not include details of the first stage
in the present paper.

Once the uniqueness of A is known, it must be the amalgam found in the known example,
Spin(2n + 1,q). We observe that an arbitrary group X, having a weak Phan system of type B,,,
contains a copy of A, and so X must be isomorphic to a factor group of the universal completion
U(A) of A. Thus, the main result follows if we prove that A contains enough relations to define
Spin(2n + 1,q). More precisely, it needs to be shown that the universal completion U/(A) of A
coincides with Spin(2n + 1, q); for the definition of the universal completion see, for example, [BS].
This is the second stage, and the proof here consists of two steps. First we define D; = Ny, (Uj;),
where j is a neighbour of ¢ in the diagram (it turns out that D; is independent of the neighbour 7).
Let D = D1D5--- D, (e.g., as subgroups of Spin(2n + 1, q), where this product is direct). Let also
ﬁi = U;D and 17,-3- =U;; D forall 1 <4 < j <n. It turns out that the amalgam A= U1§i<j§n ﬁij
has exactly the same universal completion as A. The proof of this step is again identical for all
diagrams; in fact, it is a very general statement, cf. Lemma 29.3 of [GLS]. So we again skip
the details of this step in the present paper. It remains to show that the universal completion
of A coincides with Spin(2n + 1,¢), which is the second step of the second stage. For this, we
observe that A is the amalgam of rank one and two parabolics for Spin(2n + 1,¢) acting flag-
transitively on the corresponding flipflop geometry I'. (For the geometric terminology see Section
3; for an overview over the topic of flipflop geometries see [BGHS] or [G2].) By Tits’ Lemma (see
[T], also Corollary 1.4.6 of [IS], or, in a more general form, Corollary 3.2 of [GVM]) the group
Spin(2n + 1, ¢) is the universal completion of A if and only if " and all its residues of rank at least
three are simply connected. Thus, the proof is achieved via the study of I'. This part is the only
part that is individual for each diagram; and this is exactly what we do in the present paper for
the case of the diagram B,,. (We would like to mention that recently a building-theoretic method
has been found to treat all spherical diagrams simultaneously, including the exceptional ones, over
sufficiently large finite fields, see [DM] and [GHMS].)

We now define I' and state the result that we prove about I'. Since I is the flipflop geometry
related to a unitary flip, the initial setup involves the field Fp2. Let V be the natural module
of the group G = SQ(2n + 1,¢?), ¢ odd, with the nondegenerate symmetric bilinear form (-,-)
and the corresponding quadratic form f. Let ¢ be an involutory semilinear transformation of V,



satisfying (o(u),o(v)) = (u,v) = (u,v)?. We will show, see Proposition 2.10, that G, = Ce(0)
is isomorphic to SO(2n + 1,¢). The flipflop geometry T consists of those singular subspaces of V
that trivially intersect the polar of their images under o; see Proposition 3.1 for an alternative
description of I'. Clearly G, acts on I' and this also leads to the action of Spin(2n + 1,¢) on T,
since the latter group is a double cover of the index two subgroup G/ = SQ(2n + 1,¢q) of G, .

Theorem Let g > 3 be odd and let n > 2. Then the following hold.

(i) T is a rank n geometry, on which G, = SO(2n + 1,q) and its index two subgroup Gl =
SQ(2n +1,q) act as flag-transitive groups of automorphisms.

(ii) T is residually connected for g > 5.

(iii) T is simply connected for n > 4 and for n =3 and q¢ > 5.

This theorem, together with the results of [BS], implies that all residues of I of rank at least
three are simply connected, provided that g > 5. For ¢ = 3, it implies that all residues of rank at
least four are simply connected, leading to Main Theorem B. The cases n =3 and 5 < ¢ < 9 are
dealt with in the second part [PART2] computationally. In the present paper we thus assume that
g>11if n = 3. For n = 3 and ¢ = 3 there exists a counterexample to the conclusion of part (iii)
of the Theorem. Namely, the universal cover of I is finite of degree 37, see [PART2] for the details.
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2 Unitary flips

Let G = SQ(2n+1,¢?), q odd, let V be its natural module, and let (-, ) be the symmetric bilinear
form on V. Let™: a — @ = a? be the involutory automorphism of Fy2. By a unitary flip we mean
a semilinear transformation o of V' satisfying the following conditions:

(F1) o(av) = a@o(v) for all a € Fjz and v € V;

(F2) o semi-preserves (-,-) up to a scalar; that is, (o(u),0(v)) = a(u,v) for some a € Fj2 and all
u,v €V,

(F3) o7 is a scalar transformation; that is, o2 (v) = bv for some b € F2 and allv € V.
The following is the main result of this section.
Proposition 2.1 Up to conjugation with an element of TO(2n + 1,q¢%) and multiplication with a

scalar, there exists a unique unitary flip o of V.. This o has the additional property that o (U)NU =
{0} for at least one mazimal totally singular subspace U of V.

Let o be a semilinear transformation of V' satisfying (F1), (F2) and (F3). Clearly, every scalar
multiple of o also satisfies these conditions.

Lemma 2.2 There exists ¢ € F2 such that (co)? = 1d.

Proof. By (F3) we have that ¢ = b-1d for some b € F2. We claim that, in fact, b € F,.
Indeed, on one hand, o®(v) = 0?(o(v)) = bo(v), where v € V\{0}. On the other hand, o3(v) =
o(0?(v)) = o(bv) = bo(v). Since o(v) # 0, we conclude that b € F,. By surjectivity of the
norm map F,2 — F,, there exists ¢ € F,2, such that b=! = ¢*! = ¢é. Let o/ = co. Then
(0")2(v) = co(co(v)) = céo?(v) =b tbv =v forallv e V. O

Because of this lemma we assume from now on that



(F3") o2 =1d.

Notice that this condition does not specify ¢ uniquely among its scalar multiples. More pre-
cisely, (co)? = Id if and only if c¢ = 1. Since c¢ = ¢!, the field F,2 contains exactly ¢ + 1 such
scalars ¢. Next, we choose among the scalar multiples of the form (-, ), one that fits our o best.
For d € F,;2\{0} let (-,-)" := d(-,-). Clearly, (-,-) can be used in place of (-,-), as it defines the
same building geometry and the same orthogonal group. Furthermore, ¢ semi-preserves (-,-)’, up
to a scalar.

Lemma 2.3 There existsd € F,2 such that the corresponding form (-,-)" = d(-, ) is semi-preserved

by o; that is, (0(u),o(v)) = (u,v)" for all u,v € V.

Proof. Since o semi-preserves (-,-) up to a scalar, there exists a € F,2 such that (o(u),o(v)) =

a(u,v) for u,v € V. Notice that (u,v) = (¢%(u),0%(v)) = a(o(u),0(v)) = aa(u,v) = aa(u,v).
Hence aa = 1, that is, a?™" = 1. This means that there exists d € F,2 such that a = d?~' = 4. For
the corresponding form (-, -)" we have (o(u), 0(v)) = d(o(u),o(v)) = (da)(u,v) = d(u,v) = (u,v)".
(|

In view of this lemma we assume in what follows that
(F2) (o(u),o(v)) = (u,v) for all u,v € V.

Notice that a multiple co of o semi-preserves this (-, -) if and only if ¢ = 1. Thus, —o is the
only other multiple of o that semi-preserves (-,-). Notice also that —o squares to the identity, just
like 0. Finally, o semi-preserves a nonzero multiple d(-,-) of (-,-) if and only if 1 = % =d97!, that
is, if and only if d is a nonzero element of F,.

Definition 2.4 For u,v € V, let
((u,v)) := (u,a(v)).
Moreover, let f(v) := (v,v) and g(v) := ((v,v)).

Clearly, ((-,-)) is a nondegenerate sesquilinear form on V. Perpendicularity with respect to
(+,-) will be denoted by L, while perpendicularity with respect to ((-,-)) will be denoted by 1. A
subspace of V' degenerate (respectively, nondegenerate) with respect to (-,-) and f will be called
f-degenerate (respectively, f-nondegenerate), and similarly for ((,-)) and g. Notice that a o-
invariant subspace is f-degenerate if and only if it is g-degenerate, so for such a subspace we can
speak simply of degeneracy or nondegeneracy.

Lemma 2.5 The form ((-,-)) is Hermitian. It is semi-preserved by o in the sense that ((o(u),o(v))) =

((u,v)).

Proof. Indeed, ((v,u)) = (v,0(u)) = (c(v),02(u)) = (c(v),u) = (u,0(v)) = ((u,v)). Thus
(-, )) is Hermi‘gi(an.))Since ((o(u), o)) = (o(u),o? () = (u,o(v)) = ((u,v)), we also see thatg
semi-preserves ((-,)).

Let V, = Cy (o) = {v € V|o(v) = v}. We call V, the model space. If U is a o-invariant
subspace of V' then U, = {u € U|o(u) = u} = U NV, will be called the model of U.

Lemma 2.6 The map U — U, is a dimension-preserving bijection between all o-invariant sub-
spaces of V' and all subspaces of the F,-space V.

Proof. Since o is F;-linear, V,, is a vector space over F,. Suppose u;,...,u; is the smallest
linearly independent subset of V;; that is linearly dependent over Fp2, and let aju; +- - - +agug =0
be a nontrivial linear dependence. Notice that we can assume a; = 1 and, furthermore, that at least
one coeflicient a; is not contained in I,. Applying o, we get a second relation aui +- - -+aguy, =0,



which is not a scalar multiple of the first relation. Using the second relation we can exclude at least
one vector from the first relation, yielding a contradiction with the minimality of the set uq, ..., ug.
Thus, every linearly independent subset of V; is also independent over 2. To complete the proof
of the second claim, it remains to show that U, spans U. Let m be the dimension of U. Consider
U as a vector space over F, of dimension 2m and ¢ as an F,-linear endomorphism of U. Since
q is odd and ¢? = Id, the subspace U is the direct sum of the eigenspaces of o corresponding to
the eigenvalues 1 and —1. The first eigenspace is U,, the second one is U_,. By the above, the
dimension of U, is at most m. Since —¢ semi-preserves (-,-) and since (—o)? = Id, we also have
that the dimension of U_, is at most m. It follows that the dimensions of both eigenspaces are
m. Thus, every basis of U, is a basis of U over Fg. O

In particular, the dimension of V, is 2n + 1 and every basis of V,, is a basis of V' over Fp.
It follows from the definition of ((-,-)) that its restriction to V, coincides with the restriction of
(+,-). Hence also the forms f and g agree on V. Because of this, we can speak of singular vectors
and subspaces instead of f- or g-singular, and similarly for all other properties of vectors and
subspaces of V.

The next two lemmas are consequences of Lemma 2.6.

Lemma 2.7 The restrictions of (-,-) on V, is a nondegenerate bilinear form over F,.

Proof. Clearly, (-,-) is Fy-bilinear. For u,v € V,, we have that (u,v) = (o(u),o(v)) = (u,v).
Hence the values of (-, -) on V,, belong to F,. Finally, the restriction of (-, -) to V, is nondegenerate
because V, contains a basis of V. O

Lemma 2.8 If U; and Uy are o-invariant subspaces of V. with Uy C Us then Us contains a
o-invariant complement to Uy .

Proof. Indeed, W can be chosen so that W, is a complement to (Us), in (Uy)e- O

Proof of Proposition 2.1. Suppose ¢ and ¢’ are two semi-linear transformations of V,
satisfying (F1), (F2’), and (F3’) with respect to (-,-) and (-,-)’, respectively. Suppose further that
(-,-)" is a scalar multiple of (-,-). Since in odd dimension all nondegenerate symmetric bilinear
forms are isometric, up to a possible non-square factor, cf. [C], [K], we can assume that we have
a bijective linear map ¢ : V, — V,/, such that (¢ (u), % (v))" = ¢(u,v) for all u,v € V, and a fixed
c € F,. Extend 1 by F,»-linearity to the entire space V. The resulting mapping is a bijective
endomorphism of V' and it preserves (-,-), up to a scalar. It also conjugates o to o'.

Thus, all such o’s are conjugate. It remains to show that o takes some maximal totally singular
subspace U to an opposite maximal totally singular subspace, that is, o(U) N U = 0. Since the
dimension of V' is odd, we may assume without loss of generality that the determinant of the Gram
matrix of (-,-) is a square. Then a basis e1, f1,.-.,€n, fn, T exists such that, for all 1 <i,j < n,
we have (e;,e;) = 0 = (fi, f;) = (e:,2) = (fi, ), (i, f;) = &;5, and (z,2) = 1. Set o'(e;) = fi,
o'(fi) = e;, o' (x) = x, and extend by semi-linearity to the entire V. This o’ satisfies (F1), (F2’),
and (F3’). By the above, our initial o is conjugate to o’ up to a scalar factor. Since o’ manifestly
takes U = (e1,...,en) to o' (U) = (f1,..., fn), the last claim of Proposition 2.1 follows as well. O

A o-pointin V is a 1-dimensional subspace U = (u) such that u is f-singular and g-nonsingular.

Lemma 2.9 Suppose U is a o-invariant nondegenerate subspace of V' of dimension at least two.
Then U contains no o-point if and only if dim U = 2 and U, is of plus type in V.

Proof. Suppose first that U is 2-dimensional. Since the restriction of (-,-) to U, is a bilinear
form over F,, we have that U is of plus type. In particular, U contains exactly two 1-dimensional
f-singular subspaces, and they are not perpendicular to each other. Since o takes an f-singular
vector again to an f-singular vector, U contains a o-point if and only if o interchanges the two
f-singular subspaces. Equivalently, U contains no o-point if and only if both f-singular subspaces



of U are o-invariant. The latter condition means that the intersections of the two f-singular
subspaces with U, are nontrivial, that is, the restriction of (-,-) to U, is of plus type. Thus, the
claim of the lemma holds when dim U = 2.

If dim U > 3 then U, contains a subspace X that is nondegenerate of minus type. By Lemma
2.6, we have X = W, for some o-invariant subspace W < U. By the above, W (and hence also
U) contains a o-point. O

Let us now return to the proof of Proposition 2.1. A basis e1,...,€n, f1,.--, fn, € as in this
proof is called a standard basis of V' with respect to (-,-) and o. That is, a standard basis satisfies
the following conditions: for all 1 < 4,j < n, we have (e;,ej) = 0 = (fi, f;) = (es,x) = (fi, ),
(es, fj) = 6ij, and (x,2) = 1. Furthermore, o(e;) = f; (and hence o(f;) = e; for all 7), and
o(z) = x. Suppose (-,-) and o satisfy (F1), (F2’), and (F3’). Does it mean that a standard basis
exists in V? Not necessarily. Indeed, given a standard basis, set E; = (e;, fi}, i = 1,..., fi, and
X = (z). Then V, decomposes as the orthogonal direct sum of all (E;), and X,. Since E; contains
o-points (namely, (e;) and (f;)), each summand (FE;), is of minus type in V,,. Notice that z € X, .
This means that the discriminant of (-,-) on V, (determinant of the Gram matrix of (-,-) with
respect to an arbitrary basis of V,, taken modulo the squares in IE‘[;) is congruent to (—&)". Here
¢ is an arbitrary non-square in ;. It is easy to reverse this argument and establish that standard
bases exist if and only if the discriminant of (-,-) on V, is congruent to (—&)™. Since the dimension
of V is odd, by taking, if necessary, (-,-)" = &(-,-) in place of (-,-), we may assume without loss
of generality that the congruence condition is satisfied for (-,-) and o, and hence standard bases
exist. This assumption stays throughout the remainder of the paper.

Conjugation by o is an automorphism of G = SQ(2n +1,¢?). Let G, be the centralizer of o in
G. The above setup gives us means to identify G,. Let H be the group of linear transformations
of V, of determinant one, preserving (the restriction of) the form (-,-). By Lemma 2.6, the group
H is isomorphic to SO(2n+1, ¢). Since V,, contains a basis of V', we can use F,2-linearity to extend
the action of the elements of H to the entire V. This allows us to identify H with a subgroup
of SO(V, f). Notice that under this identification H is contained in SQ(V, f) = G. Indeed, every
element of H can be written as a product of reflections in the nonsingular vectors v € V,,. Since
f(v) € Fy is a square in Fy2, every element of H lies in SQ(V, f).

Proposition 2.10 G, = H 2 S0(2n + 1,q).

Proof. Choose a basis {wy,...,wa,+1} in V,. Then this set is also a basis of V. Let h € H.
Ifu =" 2w; €V then ho(u) = h (Efﬁfl a‘:iwi) = Y2 #;h(w;). On the other hand,

oh(u) = o (Z?gfl mih(wi)) = 32" #;h(w;). Therefore, H < G,. Now take h € G,. Ifu € V,
then oh(u) = ho(u) = h(u). This proves that h leaves V, invariant. Hence h induces on V, an

F,-linear transformation of determinant one, that preserves the restriction of (-,-). That is, h € H.
d

In what follows, G’ denotes the index two subgroup of G, isomorphic to SQ(2n + 1, q).

3 The flipflop geometry

Geometries

In this section we give a brief rundown of the basic terminology of synthetic geometry. For a
comprehensive introduction into the subject, refer to [BC].

Let I be a finite set, called the set of types. Its elements as well as its subsets are called
types. Let T' = (X, *,typ) be a triple where X is a set, * C X x X is a symmetric and reflexive
relation and typ : X — [ is a map, such that, for z,y € X we have ¢ = y if and only if x * y
and typ(z) = typ(y). Then I is called a pregeometry over I. The elements of X are called the
elements of I, the relation * is called the incidence relation of I', the map typ is called the type
function of T.



Let ' = (X, %,typ) be a pregeometry over I. If A C X, then A is of type typ(A) C I, of cotype
I\typ(A), of rank |typ(A4)|, and of corank |I\typ(A)|. The rank of A is also denoted by rk(A).
The cardinality |I| of I is called the rank of T

A flag F' of a pregeometry I' is a set of mutually incident elements of I'. Notice that typ|p :
F — [ is a injection. A mazimal flag of T' is a flag that is maximal with respect to inclusion.
Flags of type I are called chambers. A geometry over I is a pregeometry I' over I in which every
maximal flag is a chamber.

Let F' be a flag of I, say of type J C I. Then the residue I'r of F' is the geometry
(X', % xrx x5 typ| x) over I\J, with X' := {2z € X | FU {z} is a flag of I' and typ(z) ¢ typ(F)}.

The geometry I' is connected if the graph (X, *) is connected. The geometry I' is residually
connected if for any flag F' of corank at least two the residue I'r is connected.

T = (X,* typ) and I = (X', «', typ') are two geometries, over I and I', respectively, with
INI' =, then the direct sum T & I’ is the geometry (X U X', «” typ U typ') over I U I', with
*T’X = x, *TIX’ =" and (X x X') C«".

A group G of automorphisms of some pregeometry A is called flag-transitive if for each pair
Fy, F, of flags of the same type there exists a ¢ € G such that g(F;) = F,. Notice that for
a geometry A this condition is equivalent to the condition that G is transitive on the set of
chambers.

The flipflop geometry of type B,

We will use the notation from Section 2. In particular, V' is a nondegenerate orthogonal space over
[F,2, of dimension 2n + 1, with the bilinear form (-,-) and quadratic form f. The semilinear map
o is a (unitary) flip with the corresponding Hermitian form ((-,-)) and unitary form g. Also, G is
isomorphic to SQ(2n+1, ¢?). Furthermore, G, is the centralizer Cs (o) of o in G. The group G, is
isomorphic to SO(2n +1,¢) and G is the index two subgroup of G, isomorphic to SQ(2n + 1, ¢).

Throughout this section, we assume n > 2. Let B be the building geometry associated with
G. The elements of B of type i« = 1,2,...,n are the f-singular subspaces of V' of dimension i.
Incidence is given by symmetrized containment. We will use the customary geometric terminology.
In particular, points, lines, and planes are subspaces of a vector space of dimension 1, 2, and 3,
respectively.

Let ' be the pregeometry consisting of those nontrivial f-singular subspaces of V' that do not
intersect the polar of their image under o. (See [BGHS] for an explanation why this is a natural
object to consider.) The pregeometry I' is called the flipflop geometry of B associated with o.
Alternatively, we can describe the flipflop geometry I" as follows.

Proposition 3.1 The elements of I' are all subspaces {0} # U C V, which are f-singular and
g-nondegenerate.

Proof. We have UL = ¢(U'). Hence, if X is the g-radical of U, we have X = UNUL =
UNo(Ut). Therefore X = {0} if and only if U na(U+) = {0}. O

We remark that the o-points, as defined in the preceding section, are just the points of I'. We
now establish that I' is, in fact, a geometry.

Proposition 3.2 The pregeometry ' is a geometry of rank n. Moreover, G, and G! act flag-
transitively on T,

Proof. For the first claim we need to show that a maximal flag F' in T" contains elements of
all types. If F' contains an element of type ¢ then, clearly, it also contains elements of all types
less than i. Suppose m is the highest type present in F', and let U be the element of type m in
F. Let W = (U,0(U)) and T = W+. Since W is nondegenerate, so is T, and hence o is a flip of
T. Therefore, by Proposition 2.1 there exists a maximal f-singular subspace X in 7', such that
o(X)NX = {0}. The space X has dimension n —m and thus (U, X) is an element of I of type n
incident to each element of F'. This shows that I is a geometry.



For the second claim, let V4, V5,...,V, and V/,V;,..., V! be two chambers ordered by types.
Choose a base e1,...,e, in V, that is orthonormal with respect to ((-,-)) and such that V; =
(e1,...,ei). Set f;:=o(e;), fori =1,...,n, and let = be chosen in (V,,,o(V,,))* so that g(z) =1
and o(z) = z. Such an z exists since the discriminant of (-, -) on Vj is congruent to (—¢£)™,  a non-
square in F; (cf. the discussion after Lemma 2.9). Indeed, the discriminant of (-,-) on (V,,,0(Vy))s
is also congruent to (—&)™, which yields that the discriminant of (-,-) on the 1-dimensional space
((Vy,a(V))4), is congruent to one. Hence x can be chosen as claimed.

Now, e1,...,€n, f1,-.., fn,x is astandard basis for 0. Choose a similar standard basisef, ..., e,
fi,..., fl,x" for the second chamber. Let h be a linear transformation of V' that sends every e;
to e}, every f; to f!, and z to z’. Clearly, h preserves (-,-) and hence it is an orthogonal transfor-
mation. Substituting ' with —z’, if necessary, we may assume that h has determinant one. Now
observe that ho and oh are both semilinear and their actions on the basis ey, ...,epn, f1,---, fn, &
coincide. This means that h commutes with o. In particular, h acts on the model space V, as an
orthogonal transformation of determinant one, and we conclude that h € H = G,. Manifestly, h
takes the first chamber to the second one. Hence G, is flag-transitive on I'.

In order to show that G’ is also flag-transitive on I' it suffices to show that the stabilizer
in G, of a chamber F; is not contained in G!. Let ey,...,ep, f1,..., fn,z be as above. Let
U={e1, - en-1,f1,--+, fn=1). The centralizer L of U in G, is isomorphic to SO(3, ¢) (acting on
U+ = (en, fn,z)), while LN G! is the index two subgroup isomorphic to SQ(3,q). Let D consist
of all linear transformations dy, A € Fp2, A\ = 1, centralizing U and acting on U+ as follows:
dyx(en) = Xen, dx(frn) = Afn, and dy(z) = x. Then D is a cyclic group of order g+ 1 that stabilizes
the chamber Fj. Clearly, D < L, but D £ LN G = S0Q(3,q) = PSL(2,q). O

We now collect some useful lemmas to be applied later.
Lemma 3.3 Let p be a point of ' and W D p be a 3-dimensional f-singular subspace of V' of
g-rank at least two. Let U be a 2-dimensional subspace of W that contains at least one point of T’

and does not contain p. Then U contains at least ¢ —2q — 1 (respectively, ¢> — q — 1) points of T’
that are collinear with p if it is (respectively, is not) a line.

Proof. This is Lemma 4.4 of [GHNS]. a
Lemma 3.4 Let W be a 3-dimensional f-nondegenerate subspace of V' that is not g-singular.
Then W contains at least ¢> — 2q — 1 points of T.

Proof. Since (-,-) is nondegenerate on W, we can choose a basis {e1, f1,z} in W for which either
(-,)) or (+,-) = &(+,-) (¢ a non-square in F,2) has the following Gram matrix:

010

1 00

0 01

A simple calculation shows that e; + afi + bz is f-singular if and only if a = ’T”Z The vector f;
and the ¢® vectors e; — %fl + bz represent all f-singular 1-dimensional subspaces of W. Now,
gler — %fl + bz) = 0 if and only if

B2 ~ b2 272
((e1,e1)) — 5_((61;f1)) +b((e1, @) — ?((fl:el)) + = ((f1,.f1))
FED () 4 (@) + (@ 1)) + BB, ) =

Since b = b? and not all the inner products above can be 0 by hypothesis, the above yields that
gler + —gfl + bx) = 0 if and only if b satisfies a polynomial of degree 2¢q + 2 in b. Hence the
number of 1-dimensional subspaces of W that are simultaneously f- and g-singular is at most
2q + 2. Consequently, there are at least ¢? + 1 — (2¢ + 2) = ¢? — 2¢ — 1 points of [ in W. g



Lemma 3.5 Let W be a subspace of V' containing a vector u such that g(u) # 0. Define a unitary
form g1 on W via g1 (w) = g(pr,u (w)), where pr,u denotes the orthogonal (with respect to ((-,-)))
projection onto u*-. Then for, w € W \ (u), the 2-dimensional subspace (u,w) is g-nondegenerate

if and only if g1 (w) # 0.

Proof. Indeed, v and pr,u (w) form an orthogonal basis of (u,w), and the Gram matrix of
((+,-)) with respect to this basis has determinant g(u)g(pr, . (w)) = g(u)g:1 (w). O

Now we turn to the question of connectedness of I'. In the case n = 2 we have By = Cs, so we
can apply the results from [GHS] and obtain that I' is connected.

Lemma 3.6 Let ¢ > 5 and n = 3. Then the collinearity graph of I has diameter two.

Proof. Let p; and p; be points of I'. If p; £ p», then the 5-dimensional space (p1,ps)* is f-
nondegenerate and has g-rank at least four. Hence (p;, p2)* contains an f-isotropic 2-dimensional
subspace that has g-rank at least one, cf. Lemma 6.2 of [GHNS]. By Lemma 3.3 this subspace
contains ¢ — 3¢ — 2 points of I' collinear to p; and p». If p; L ps, then (p;,p2) is contained in
an f-totally isotropic 3-dimensional subspace that has g-rank at least two, and again Lemma 3.3
applies. d

Proposition 3.7 Letq > 5 andn = 3, or let n > 4. Then the collinearity graph of I' has diameter
two.

Proof. The first case was covered by the preceding lemma. If n > 4 and p;, p2 are two points of
I then (p1,p2,pf,ps)* is at least 5-dimensional of rank at least three. Its radical is o-invariant,
so one can find a 3-dimensional subspace as in Lemma 3.4. That subspace contains a common
neighbour of p; and p,. O

4 Simple connectedness

Homotopies

Considering the flag complex of a geometry of rank n as an n-dimensional simplicial complex, we
can use notions from combinatorial topology, cf. [ST].

Let G be a connected geometry. A path of length k in the geometry is a sequence of elements
(zo,-..,xk) such that z; and z;41 are incident, 0 < ¢ < k — 1. A cycle based at an element x
is a path in which x¢9 = x;, = . Two paths are homotopically equivalent if one can be obtained
from the other via the following operations (called elementary homotopies): inserting or deleting
a repetition (i.e., replacing x by xx or vice versa), a return (i.e., replacing x by xzyx or vice
versa), or a triangle (i.e., replacing x by xyzx or vice versa). The equivalence classes of cycles
based at an element = form a group under the operation induced by concatenation of cycles. This
group is called the fundamental group of G and denoted by m1(G,z). A cycle based at z that is
homotopically equivalent to the trivial cycle (z) is called null-homotopic. Every cycle of length
two or three is null-homotopic.

Suppose G and G are geometries over the same type set and suppose ¢ : G — G is a homomor-
phism of geometries, i.e., ¢ preserves the types and sends incident elements to incident elements.
A surjective homomorphlsm ¢ between connected geometries g and G is called a covering if and
only if for every non-empty flag Fin g the mapping ¢ induces an isomorphism between the residue
of F in G and the residue of F = o(F ) in G. Coverings of a geometry correspond to the usual
topological coverings of the flag complex. It is well-known that a surjective homomorphism ¢
between connected geometries G and G is a covering if and only if for every element Z in G the
map ¢ induces an isomorphism between the residue of Z in G and the residue of z = ¢(Z) in G. If
¢ is an isomorphism, then the covering is said to be trivial.
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Recall the well-known fact (see, e.g., Chapter 8 of [ST]) that if G is a connected geometry and
x an element of G, then every covering of the geometry G is trivial if and only if 71 (G, z) is trivial.
A geometry satisfying the above equivalent conditions is called simply connected. A geometric
cycle in the geometry G is a cycle each element of which is incident with a common element z. A
geometric cycle v is null-homotopic, because v and z form a cone.

Simple connectedness of the flipflop geometry

Retain the notation from Section 3. In particular, I" denotes the flipflop geometry. By the following
lemma, it suffices to study the collinearity graph of I instead of the incidence graph when proving
simple connectedness.

Lemma 4.1 Let ¢ > 5 and n = 3, or let n > 4. Then every cycle in the incidence graph of T
is homotopically equivalent to a cycle in the incidence graph of I' passing only through points and
lines.

Proof. Identical to the proof of Lemma 5.1 in [GHS], which essentially requires a residually
connected geometry with a string diagram. See also Lemma 5.4 in [GHNS]. O

Therefore, in order to prove simple connectedness of the geometry, it suffices to analyze the
point-line incidence graph of I', and, thus, the collinearity graph of I'. Since by Lemma 3.7 the
collinearity graph has diameter two, we only have to study triangles, quadrangles and pentagons
in it.

Let us first consider n > 4. Recall that ¢ is odd. Note that the space generated by the three
points of a triangle is f-singular and of g-rank at least two. If the g-rank is three then the triangle
is geometric.

Lemma 4.2 Any triangle can be decomposed into geometric triangles.

Proof. Let p1,pe,ps be a triangle. If (p1, ps, p3) is nondegenerate then the triangle is geometric
and there is nothing to prove. So we can assume that (pi,ps,ps) is degenerate. Since (p1,po) is
a line, the g-radical r of (p1,p2,ps) can only be 1-dimensional. We need to consider two separate
cases.

If (r)7 = (r) then W = (py, p2, p3, p{,p5,pg) is 5-dimensional and W is (2n — 4)-dimensional
of g-rank 2n — 5 > 3. Therefore, every o-invariant complement W+ to its radical satisfies the
assumptions of Lemma, 2.9. Hence, W+ contains a point p of I'. The geometric triangles p, p1, p»
and p, p1, p3 and p, p2, ps decompose pi, pa, p3.

If (r)o # (r) then let W = (p1,p2,p{,ps), which is o-invariant and nondegenerate. Both r
and r? are in W+, and the latter is a (2n — 3)-dimensional nondegenerate subspace. Consider
U = W+nri which is a space of dimension 2n —4. Pick a a vector s € U such that s is f-singular
and (s, r) is f-nondegenerate. Then V' = (py,p2,p{,p5,r,r%,s,s%) is an 8-dimensional o-invariant
nondegenerate subspace, on which o acts as a flip (because (p1,p2,77,s) satisfies condition (F4b)
of Corollary 3.7 in [GHNS]) and so we can use the result in [GHNS] to see that the triangle can
be decomposed in V', hence also in V. (]

Lemma 4.3 All quadrangles are null-homotopic.

Proof. The proofs of Lemmas 6.4 — 6.6 of [GHNS] work in this case. O
Lemma 4.4 All pentagons are null-homotopic.

Proof. Let a,b,c,d,e be a pentagon. As in Lemma 6.7 from [GHNS], if a L ¢ and a L d, then
the line (c,d) contains ¢ — 2¢ — 1 > 0 points that are collinear to a.
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We can therefore assume that a £ d and ¢ £ e and conclude that the space (a,b,¢,d, e) has
f-rank at least four and g-rank at least two. Therefore the space W = (a, b, c,d,e)" is a (2n — 4)-
dimensional space of f-rank at least 2n — 6 and not g-singular. It will then contain a point w of
T, and w will be collinear with at least one point on each of (a,b), (b,c), (c,d), (d,e), and (e, a),
decomposing the pentagon into quadrangles. O

This completes the proof of the following

Proposition 4.5 Let n > 4. Then the flipflop geometry I is simply connected.

Now consider the case n = 3. Again, we will first decompose the triangles.

Lemma 4.6 Every nongeometric triangle can be decomposed as a sum of triangles that have two
g-orthogonal vertices.

Proof. Let p1,p2,ps be a triangle and let r be the g-radical of (p1,p2,ps). Consider v €
pi- N (p2,p3). If v is g-singular then the 2-dimensional subspace (p;,v) is g-degenerate, so it must
contain -, which implies that (v) = (r}), contradicting the fact that (p2,p3) is a line of I'. Therefore
v must be g-nonsingular. As before, (p1,v) is degenerate only if it contains r. However, that would
mean that p; is in the g-radical of (r,v), a contradiction. Therefore, the initial triangle can be
decomposed into the two triangles p;, v, p2 and p;, v, ps. d

Lemma 4.7 Let ¢ > 7. Then all triangles can be decomposed into geometric triangles.

Proof. By the preceding lemma we can restrict our attention to the triangles having g-orthogonal
vertices. Since the group G, acts transitively on pairs of points that are orthogonal with respect
to both forms, we may assume that our triangle has e; and ey as two of its vertices. It then follows
that its g-radical (r) lies in the space (es, f3,x). Let the third vertex of the triangle be (v), where
v = aey + fey + 1 with a, 8 # 0, and assume that r = yes + d f3 + ex. The conditions on r give
0= (r,r) =2y +e% and 0 = ((r,7)) = v5 + d6 + €&. Recall that ¢ is odd, whence 2 is invertible,
and notice that § = 0 would imply € = 0 which is nonsense in view of the above choice for the

radical r. So the first condition gives v = —;—Z. Multiplying v with ¥ we get vy = %, and hence
the second condition gives 0 = % + 00 + g6 = 5= (2 + 266)?, thus vy = 66 = —%F. Note that

the centralizer of the pair e1, e acts transitively on the f- and g-singular 1-dimensional subspaces
of (es, f3, ) and so we may assume that y5 = ¢ is any fixed element of F, while o and § remain
constant.

We will decompose the triangle (eq, €2, v) into a sum of seven geometric triangles by construct-
ing an octahedron whose vertices are (e1), (e2), (v), (f3), (fs — §f2), and (f; — 2 f1) and in which
all sides except (e, e2,v) are geometric triangles.

The space (f1, f2, f3) = (f3, f3 — % f2, f3 =2 f1) is obviously an element of our geometry. Thus,
(f3,f3 — %fg, f3 — 2f1) is a geometric triangle, once it is a triangle. For that we need f3 — %fg
and fz — 1 f1 to be points and (f3 — %fg, f3 — 2 f1) aline. These three conditions are equivalent
to:

aa+yy # 0,
BB+vy # 0, and
aa+pBB+vy # 0

Notice that (fs,e1,e2), (e1, f3, f3 — %fg), and (e2, f3, fs — 2 f1) are geometric triangles, if
fas—2fi and f3 — %fz are points. The vectors f3 — %fz, e1, and ae; + fes + r generate a totally
(+, -)-isotropic subspace, and the Gram matrix with respect to ((-,-)) on it is

v _
1+ 0 o
o 1 a
0 a aa+ B
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whose determinant equals aa + 33 + 7;%”‘ + 77 B B = 33 # 0 and so we only need
to verify that the sides are lines of I'. The only nontrivial condition comes from (fs — 3 T fo,er +

Bes + r). Here the Gram matrix with respect to ((+,)) is

1+ 22 §
( 0 oza-l—ﬂﬂ)

and so the condition is aa + 33 +3 77 + 95— 386 = aa + BB + 5 77 # 0.

Similarly the triangle (f3; — ”fl, 62, aey + fBes + 1) gives the condltlon aa + BB + 77 # 0.

The final triangle is (f3 — %fl, fs—% 2 fa, ae1 +Pes+r). It is clear that under the above conditions
the sides are lines of I', so we only need to verify that the whole subspace is ((-, -))-nondegenerate.
The corresponding Gram matrix is

v _
1+ﬁ3 17 (f

1 1+ 23 0

) ) aa + 33

Computing its determinant we obtain 266 + aa + 85 + WM + 297y + WBB + ( ) I Cled R

aQ
BB — 55’” 7225 = aa,B,B 1_(aa + BB)?, as y5 = 64, and so the condltlon for thls to be a geometric

trlangle is that aa + B8 # 0 which is not a new condition.
To summarize, we can decompose the initial triangle into seven geometric triangles if there
exists a vy € F, such that:

v # 0
aa+vy # 0
BB+vy # 0
aa+pBB+vy # 0
ozd-l—ﬁB‘l‘ﬁ—é’Y:Y £ 0
aa-l—ﬁﬂ-l——vv # 0.
BB
If ¢ > 7, such a v can be found. a

We now deal with quadrangles.

Lemma 4.8 Let ¢ > 5 and let (a,b,c,d) be a quadrangle with a L ¢ and b L ¢. Then a, b, ¢, d
can be decomposed into triangles.

Proof. The span (a,b,c,d) is f-totally isotropic, hence it is three-dimensional. By Lemma 3.3
there exist at least ¢ —3¢—2 > 0 points on (a, b) collinear to ¢ and d, decomposing the quadrangle.
d

Lemma 4.9 Let ¢ > 11 and let (a,b, ¢,d) be a quadrangle with a X ¢ and b £ d. Then there exists
a common neighbour of a, b, ¢, d.

Proof. Consider the space U = (a,b,c,d)*. Then U is a 3-dimensional space which is nondegen-
erate with respect to f. If R denotes the g-radical of U, then R = Rad,(U) = Rad,(U*) =
Rad,((U1)?) = Rad,({(a,b,c,d)?). The latter is at most 2-dimensional, so the g-rank of U
is at least one. Consider (U,a) and define for v € U, as in Lemma 3.5, the unitary form
ga(u) = g(pryu (u)), where pr,u (u) denotes the projection of u onto a'- via the direct sum
decomposition V = (a) ® a*. Note that U Natt is at least 2-dimensional and cannot be equal to
R. Indeed, dim R = 2 and aIL R imply a 1 R?, whence R’ C a*NU* = a*N{a,b,c,d) = (a,b,d),
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contradicting the fact that the g-rank of (a, b, d) is at least two, as it contains lines of I". Therefore
go is nontrivial on U. Similarly, gy, g, g4 are nontrivial on U, so using Lemma 3.4, there are at
least ¢ — 10g — 9 > 0 points that are non-isotropic with respect to ¢, ga, 9s, g, ga and, thus,
collinear to a, b, ¢, and d. Hence we are done. d

Lemma 4.10 Let g > 5 and let (a,b,c,d) be a quadrangle with a X ¢ and b L d. Then there exists
a point p collinear to a, ¢, such thatb Y p and d [ p.

Proof. Consider the space W = (a,c)" which is an f-nondegenerate 5-dimensional space of
g-rank at least four. Pick a point ¢ € T' that is collinear with both a and ¢, but is different from
b,d. Now pick s € W such that sis f-singular, ¢ L s, but b £ s and d £ s. Indeed, this is possible,
because (t)t # (b)L and (t)L # (d)*. Now Lemma 3.3 implies that the space (s,t) contains
at least ¢> — 3¢ — 2 points of I, that are collinear to a and c¢. Moreover, since (st) ¢ (b)* and
(st) ¢ (d)*, it follows that (s,t) contains at least ¢> — 3¢ — 4 points satisfying the conclusion of
the lemma. Since ¢ > 5, the conclusion follows. a

We have proved the following.

Lemma 4.11 Let ¢ > 11. Then any quadrangle can be decomposed into triangles. a

Finally we need to consider pentagons.

Lemma 4.12 Any pentagon (a,b,c,d,e) with a L ¢ and a L d can be decomposed into triangles
and quadrangles.

Proof. By Lemma 3.3, the line (c,d) contains ¢* —2¢ — 1 points of T collinear to a, decomposing
the pentagon. O

Lemma 4.13 Let ¢ > 5. Then any pentagon can be decomposed into triangles and quadrangles.

Proof. In view of Lemma 4.12, we will assume that the pentagon is a, b, ¢, d, e with a [ d.
The idea is to reduce to the case in Lemma 4.12. We construct a point d' collinear to both ¢ and
e and such that d' L a, decomposing the pentagon into the sum of the pentagon a, b, ¢, d’, e and
the quadrangle ¢, d, e, d'.

Note that if X is the f-radical of (a,c,d) then X € (c,d) and X is also the radical of {(a, c,d)".
If X is also the g-radical of (a,c,d)* then it would be the f-radical of {(a,c, d)?, which contradicts
the fact that (c,d)” is nondegenerate with respect to g.

We now want to construct a line of I' that lies in (a, ¢,d)" and contains X. If X is a point of
[ then X N {a,c,d)* is a complement to X and so it is an f-nondegenerate three-dimensional
space. It is not totally isotropic for g, because it lies in (a,c,d), which has rank at least three.
Lemma 3.4 gives a point of ' in this space, hence the required line of I'. If X is not a point of I’
and if p is f-singular 1-dimensional subspace of {a,c,d)* \ X< then (X, p) is a line of T

Finally, if [ is a line of I" as above, Lemma 3.3 implies that [ has at least ¢®> — 3¢ — 2 points of
T, that are collinear to both a and ¢, and if ¢ > 3, there exists a point ' collinear to both a and
¢ and such that d L b’". We decompose the pentagon a, b, ¢, d, e as the sum of the quadrangle a,
b, ¢, b’ and the pentagon a, V', ¢, d, e, in which b 1 d. If b’ 1 e, we are done by Lemma 4.12. If
b Y e, then we can repeat the argument above for V', e,d to get a point a' collinear to both e and
b and such that a’ L d. O

>J_

Proposition 4.14 Letn = 3 and g > 11 be odd. Then the flipflop geometry I is simply connected.

Proof of the Theorem. Part (i) follows from Proposition 3.2. Part (ii) follows from Proposition
3.7. Part (iii) follows from Propositions 4.5 and 4.14 plus [PART2], Proposition 3.2. O
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