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Abstra
t

We extend the Phan theory des
ribed in [BGHS℄ to the last remaining in�nite series of 
las-

si
al Chevalley groups over �nite �elds. Namely, we prove that the twin buildings for the

group Spin(2n+1; q

2

), q odd, admit a unique unitary 
ip and that the 
orresponding 
ip
op

geometry is simply 
onne
ted for almost all �nite �elds F

q

2

. Applying standard methods

from amalgam theory, this results in a 
hara
terization of 
entral quotients of the group

Spin(2n + 1; q) by a Phan system of rank one and rank two subgroups. In the present �rst

part of a series of two arti
les we present simple 
onne
tedness results for suÆ
iently large

�elds or suÆ
iently large rank. To be pre
ise, the result stated in the present paper is proved

for all 
ases but n = 3 and q 2 f3; 5; 7; 9g, the remaining 
ases are dealt with in the sequel

[Part2℄ 
omputationally.

1 Introdu
tion

The purpose of this paper is to establish the analog of Phan's theorems (
f. [P1℄ and [P2℄) for the

groups Spin(2n+ 1; q), q odd. To state these results we need some de�nitions, starting with the


on
ept of standard pairs in the groups SU(3; q

2

) and Spin(5; q).

De�nition 1.1 Let G

�

=

SU(3; q

2

) and V be the natural G-module over F

q

2

. Subgroups U

1

and

U

2

isomorphi
 to SU

2

(q

2

) of G

�

=

SU(3; q

2

) form a standard pair whenever ea
h U

i

is the stabilizer

in G of a nonsingular ve
tor v

i

2 V and, moreover, v

1

and v

2

are perpendi
ular. If U

1

and U

2

form

a standard pair in G, and � des
ribes a quotient map whose kernel is a subgroup of the 
enter of

G, then �(U

1

) and �(U

2

) are 
alled a standard pair in �(G).

De�nition 1.2 Let G

�

=

S
(5; q) and V be its natural module, where the invariant form is 
hosen

to be of dis
riminant one. Subgroups U

1

and U

2

of G

�

=

S
(5; q) form a standard pair if there is

an orthogonal de
omposition V = V

2

� V

0

2

� V

1

,

(i) with V

2

being 2-dimensional of minus type, su
h that U

1

is the ve
tor-wise stabilizer of V

2

;

(ii) where V

2

� V

0

2

is 4-dimensional of plus type, su
h that U

2

is one of the two dire
t fa
tors in

the ve
tor-wise stabilizer of V

1

.

We remark that here U

1

�

=

S
(3; q)

�

=

PSL(2; q) and U

2

�

=

SL(2; q). For

b

G

�

=

Spin(5; q) and the

natural homomorphism from � :

b

G ! G, subgroups U

1

; U

2

�

=

SL(2; q) of

b

G form a standard pair

if �(U

1

) and �(U

2

) form a standard pair in G.

�
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De�nition 1.1 repeats the de�nition in the introdu
tion of [BS℄, while De�nition 1.2 
an be

shown equivalent to the de�nition in [G1℄, Se
tion 3, of the standard pairs in Sp(4; q)

�

=

Spin(5; q).

We use diagrams to des
ribe 
on�gurations involving standard pairs. In su
h a diagram an edge

i

Æ

j

Æ represents the fa
t that a suitable group G 
ontains subgroups U

i

and U

j

su
h that

U

ij

:= hU

i

; U

j

i is isomorphi
 to SU(3; q

2

) (or its 
entral quotient PSU(3; q

2

)) and that U

i

and

U

j

form a standard pair in U

ij

. Similarly, the edge

i

Æ

>

j

Æ requires that U

ij

be isomorphi
 to

Spin(5; q) (or its 
entral quotient SO(5; q)) and that U

i

and U

j

again form a standard pair in U

ij

.

Note that De�nition 1.1 is symmetri
 with respe
t to U

1

and U

2

, whereas in De�nition 1.2 the

order of U

1

and U

2

matters, and so the diagram in this 
ase is asymmetri
. Noti
e also that our

de�nition works well for all values of q, ex
ept q = 2, where the standard pair does not generate

the entire SU(3; q

2

) or Spin(5; q); re
all that in this paper we are only interested in the 
ase q odd,

and so this 
ompli
ation does not arise. In addition to the above two types of edges we will need

the \empty" edge

i

Æ

j

Æ whi
h means that U

ij

is a 
entral produ
t of U

i

and U

j

.

With this notation in pla
e we 
an now give our main de�nition.

De�nition 1.3 Let n � 2. A group G 
ontains a weak Phan system of type B

n

over F

q

2

if G

is generated by a family of subgroups U

i

, i 2 I = f1; : : : ; ng, so that, for 1 � i < j � n, the

subgroups U

i

and U

j

form a standard pair in U

ij

:= hU

i

; U

j

i a

ording to the Dynkin diagram B

n

:

1

Æ

2

Æ � � �

n�2

Æ

n�1

Æ

>

n

Æ:

Our main result 
onsists of the following two theorems.

Main Theorem A For n � 3 and q � 5 an odd prime power, let G be a group 
ontaining a weak

Phan system of type B

n

over F

q

2

. Then G is isomorphi
 to Spin(2n+ 1; q) or a 
entral quotient

thereof.

There exists a 
ounterexample to the statement of Main Theorem A for n = 3, q = 3, 
f.

Se
tion 4 of [Part2℄. However, the following statement is true in 
ase q = 3.

Main Theorem B For n � 4, let G be a group 
ontaining a weak Phan system of type B

n

over

F

9

. In addition, assume that hU

i�1

; U

i

; U

i+1

i is isomorphi
 to a 
entral quotient of SU(4; 9) (if

2 � i � n� 2) or Spin(7; 3) (if i = n� 1). Then G is isomorphi
 to Spin(2n+ 1; 3) or a 
entral

quotient thereof.

We remark that the 
ases of diagrams A

n

, C

n

, and D

n

have been dealt with previously (see

[P1℄, [P2℄, and also [BS℄, [GHS℄, [G1℄, [H℄, [GHN℄, [GHNS℄). So our present result 
ompletes

the last series of Phan-type results for 
lassi
al groups, see details below. We turn now to the

motivation and history of the �eld and also outline how we approa
h the proof of Main Theorems

A and B.

In 1977 Phan published two papers, [P1℄ and [P2℄, in whi
h he stated and proved theorems

giving presentations for some Chevalley groups, that were similar in spirit to the Curtis-Tits

presentations for the groups with simply la
ed diagrams A

n

, D

n

, and E

n

. Instead of the subgroups

SL(2; q) and SL(3; q), as in the Curtis-Tits presentation, he used subgroups isomorphi
 to SU(2; q

2

)

and SU(3; q

2

). Phan's results, along with the Curtis-Tits theorem, proved to be fundamental for

the original 
lassi�
ation of the �nite simple groups announ
ed in 1981, espe
ially for As
hba
her's

paper [A℄. The 
urrent revision of the 
lassi�
ation, lead by Lyons and Solomon, also requires a

revision of Phan's results. Su
h a revision was started by Bennett and Shpe
torov in [BS℄; see

[BGHS℄ for a survey.

It was soon dis
overed that Phan's results are not just similar to the Curtis-Tits theorem, but

rather these theorems are mu
h more 
losely related to ea
h other (see [BGHS℄). It turned out

that the Curtis-Tits theorem is equivalent, via a 
ertain redu
tion, to the simple 
onne
tedness of

the so-
alled opposites geometry of the spheri
al twin buildings asso
iated with the 
orresponding

Chevalley group, 
f. [M℄, also [AM℄. When the Chevalley group is of untwisted type and is de�ned

2



over a �eld F

q

2

, the twin buildings have a 
lass of automorphisms that we 
all unitary 
ips. The

subgeometry of the opposites geometry, 
onsisting of all obje
ts �xed by the 
ip, is 
alled the


ip
op geometry. It turned out that Phan's theorems, in essen
e (that is, again modulo some

redu
tion), are the statements that the 
ip
op geometries of rank at least three for the simply

la
ed diagrams A

n

(Phan's �rst paper [P1℄), D

n

and E

n

(Phan's se
ond paper [P2℄) are simply


onne
ted with some ex
eptions when q equals to 2 or 3. Thus, Phan's theorems 
an be viewed

as twisted versions of parti
ular 
ases of the Curtis-Tits theorem.

As we have already mentioned, unitary 
ips exist for all untwisted Chevalley groups over F

q

2

.

On the other hand, Phan treated only the simply la
ed diagrams. So, naturally, it is interesting to

ask whether the 
ip
op geometries for the diagrams B

n

, C

n

, n � 3, and F

4

are simply 
onne
ted

for suÆ
iently large q. The positive answer for the diagram C

n

was obtained in [GHS℄ and re�ned

in [H℄, see also [GHN℄. Main Theorems A and B �nish the last in�nite series of Dynkin diagrams,

B

n

. Noti
e that in this 
ase we only need to 
onsider the 
ase where q is odd, be
ause B

n

and C

n

are the same when q is even.

We now outline how Main Theorems A and B are proved. The proof 
onsists of two stages. At

stage one let X be a group with a weak Phan system. De�ne the amalgam A =

S

1�i<j�n

U

ij

, as

found in X . For the general 
on
ept of a group amalgam see [S℄; we deal with a more restri
ted

notion, as des
ribed, e.g., in [BS℄. The goal of the �rst stage is to establish the uniqueness of the

amalgam A, that is, that it is essentially the same for all groups X with a weak Phan system of

type B

n

. This step is proved uniformly for all Dynkin diagrams. The �rst o

urren
e of this proof

was in [BS℄, where the 
ase of weak Phan systems of type A

n

was dealt with. That original proof

applies to all simply-la
ed diagrams. The proof was modi�ed in [G1℄ to in
lude the double bonds,

and in this modi�ed form it applies also to the diagrams B

n

, C

n

, and F

4

. There is also an even

more general treatment in [D℄. Be
ause of all of this, we do not in
lude details of the �rst stage

in the present paper.

On
e the uniqueness of A is known, it must be the amalgam found in the known example,

Spin(2n + 1; q). We observe that an arbitrary group X , having a weak Phan system of type B

n

,


ontains a 
opy of A, and so X must be isomorphi
 to a fa
tor group of the universal 
ompletion

U(A) of A. Thus, the main result follows if we prove that A 
ontains enough relations to de�ne

Spin(2n + 1; q). More pre
isely, it needs to be shown that the universal 
ompletion U(A) of A


oin
ides with Spin(2n+1; q); for the de�nition of the universal 
ompletion see, for example, [BS℄.

This is the se
ond stage, and the proof here 
onsists of two steps. First we de�ne D

i

= N

U

i

(U

j

),

where j is a neighbour of i in the diagram (it turns out that D

i

is independent of the neighbour j).

Let D = D

1

D

2

� � �D

n

(e.g., as subgroups of Spin(2n+1; q), where this produ
t is dire
t). Let also

b

U

i

= U

i

D and

b

U

ij

= U

ij

D for all 1 � i < j � n. It turns out that the amalgam

b

A =

S

1�i<j�n

b

U

ij

has exa
tly the same universal 
ompletion as A. The proof of this step is again identi
al for all

diagrams; in fa
t, it is a very general statement, 
f. Lemma 29.3 of [GLS℄. So we again skip

the details of this step in the present paper. It remains to show that the universal 
ompletion

of

b

A 
oin
ides with Spin(2n + 1; q), whi
h is the se
ond step of the se
ond stage. For this, we

observe that

b

A is the amalgam of rank one and two paraboli
s for Spin(2n + 1; q) a
ting 
ag-

transitively on the 
orresponding 
ip
op geometry �. (For the geometri
 terminology see Se
tion

3; for an overview over the topi
 of 
ip
op geometries see [BGHS℄ or [G2℄.) By Tits' Lemma (see

[T℄, also Corollary 1.4.6 of [IS℄, or, in a more general form, Corollary 3.2 of [GVM℄) the group

Spin(2n+1; q) is the universal 
ompletion of

b

A if and only if � and all its residues of rank at least

three are simply 
onne
ted. Thus, the proof is a
hieved via the study of �. This part is the only

part that is individual for ea
h diagram; and this is exa
tly what we do in the present paper for

the 
ase of the diagram B

n

. (We would like to mention that re
ently a building-theoreti
 method

has been found to treat all spheri
al diagrams simultaneously, in
luding the ex
eptional ones, over

suÆ
iently large �nite �elds, see [DM℄ and [GHMS℄.)

We now de�ne � and state the result that we prove about �. Sin
e � is the 
ip
op geometry

related to a unitary 
ip, the initial setup involves the �eld F

q

2

. Let V be the natural module

of the group G

�

=

S
(2n + 1; q

2

), q odd, with the nondegenerate symmetri
 bilinear form (�; �)

and the 
orresponding quadrati
 form f . Let � be an involutory semilinear transformation of V ,

3



satisfying (�(u); �(v)) = (u; v) = (u; v)

q

. We will show, see Proposition 2.10, that G

�

= C

G

(�)

is isomorphi
 to SO(2n+ 1; q). The 
ip
op geometry � 
onsists of those singular subspa
es of V

that trivially interse
t the polar of their images under �; see Proposition 3.1 for an alternative

des
ription of �. Clearly G

�

a
ts on � and this also leads to the a
tion of Spin(2n + 1; q) on �,

sin
e the latter group is a double 
over of the index two subgroup G

0

�

�

=

S
(2n+ 1; q) of G

�

.

Theorem Let q � 3 be odd and let n � 2. Then the following hold.

(i) � is a rank n geometry, on whi
h G

�

�

=

SO(2n + 1; q) and its index two subgroup G

0

�

�

=

S
(2n+ 1; q) a
t as 
ag-transitive groups of automorphisms.

(ii) � is residually 
onne
ted for q � 5.

(iii) � is simply 
onne
ted for n � 4 and for n = 3 and q � 5.

This theorem, together with the results of [BS℄, implies that all residues of � of rank at least

three are simply 
onne
ted, provided that q � 5. For q = 3, it implies that all residues of rank at

least four are simply 
onne
ted, leading to Main Theorem B. The 
ases n = 3 and 5 � q � 9 are

dealt with in the se
ond part [Part2℄ 
omputationally. In the present paper we thus assume that

q � 11 if n = 3. For n = 3 and q = 3 there exists a 
ounterexample to the 
on
lusion of part (iii)

of the Theorem. Namely, the universal 
over of � is �nite of degree 3

7

, see [Part2℄ for the details.

A
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2 Unitary 
ips

Let G = S
(2n+1; q

2

), q odd, let V be its natural module, and let (�; �) be the symmetri
 bilinear

form on V . Let�: a 7! �a = a

q

be the involutory automorphism of F

q

2

. By a unitary 
ip we mean

a semilinear transformation � of V satisfying the following 
onditions:

(F1) �(av) = �a�(v) for all a 2 F

q

2

and v 2 V ;

(F2) � semi-preserves (�; �) up to a s
alar; that is, (�(u); �(v)) = a(u; v) for some a 2 F

q

2

and all

u; v 2 V ;

(F3) �

2

is a s
alar transformation; that is, �

2

(v) = bv for some b 2 F

q

2

and all v 2 V .

The following is the main result of this se
tion.

Proposition 2.1 Up to 
onjugation with an element of �O(2n+ 1; q

2

) and multipli
ation with a

s
alar, there exists a unique unitary 
ip � of V . This � has the additional property that �(U)\U =

f0g for at least one maximal totally singular subspa
e U of V .

Let � be a semilinear transformation of V satisfying (F1), (F2) and (F3). Clearly, every s
alar

multiple of � also satis�es these 
onditions.

Lemma 2.2 There exists 
 2 F

q

2

su
h that (
�)

2

= Id.

Proof. By (F3) we have that �

2

= b � Id for some b 2 F

q

2

. We 
laim that, in fa
t, b 2 F

q

.

Indeed, on one hand, �

3

(v) = �

2

(�(v)) = b�(v), where v 2 V nf0g. On the other hand, �

3

(v) =

�(�

2

(v)) = �(bv) =

�

b�(v). Sin
e �(v) 6= 0, we 
on
lude that b 2 F

q

. By surje
tivity of the

norm map F

q

2

! F

q

, there exists 
 2 F

q

2

, su
h that b

�1

= 


q+1

= 
�
. Let �

0

= 
�. Then

(�

0

)

2

(v) = 
�(
�(v)) = 
�
�

2

(v) = b

�1

bv = v for all v 2 V . �

Be
ause of this lemma we assume from now on that

4



(F3') �

2

= Id.

Noti
e that this 
ondition does not spe
ify � uniquely among its s
alar multiples. More pre-


isely, (
�)

2

= Id if and only if 
�
 = 1. Sin
e 
�
 = 


q+1

, the �eld F

q

2


ontains exa
tly q + 1 su
h

s
alars 
. Next, we 
hoose among the s
alar multiples of the form (�; �), one that �ts our � best.

For d 2 F

q

2

nf0g let (�; �)

0

:= d(�; �). Clearly, (�; �)

0


an be used in pla
e of (�; �), as it de�nes the

same building geometry and the same orthogonal group. Furthermore, � semi-preserves (�; �)

0

, up

to a s
alar.

Lemma 2.3 There exists d 2 F

q

2
su
h that the 
orresponding form (�; �)

0

= d(�; �) is semi-preserved

by �; that is, (�(u); �(v))

0

= (u; v)

0

for all u; v 2 V .

Proof. Sin
e � semi-preserves (�; �) up to a s
alar, there exists a 2 F

q

2

su
h that (�(u); �(v)) =

a(u; v) for u; v 2 V . Noti
e that (u; v) = (�

2

(u); �

2

(v)) = a(�(u); �(v)) = aa(u; v) = a�a(u; v).

Hen
e a�a = 1, that is, a

q+1

= 1. This means that there exists d 2 F

q

2

su
h that a = d

q�1

=

�

d

d

. For

the 
orresponding form (�; �)

0

we have (�(u); �(v))

0

= d(�(u); �(v)) = (da)(u; v) =

�

d(u; v) = (u; v)

0

.

�

In view of this lemma we assume in what follows that

(F2') (�(u); �(v)) = (u; v) for all u; v 2 V .

Noti
e that a multiple 
� of � semi-preserves this (�; �) if and only if 


2

= 1. Thus, �� is the

only other multiple of � that semi-preserves (�; �). Noti
e also that �� squares to the identity, just

like �. Finally, � semi-preserves a nonzero multiple d(�; �) of (�; �) if and only if 1 =

�

d

d

= d

q�1

, that

is, if and only if d is a nonzero element of F

q

.

De�nition 2.4 For u; v 2 V , let

((u; v)) := (u; �(v)):

Moreover, let f(v) := (v; v) and g(v) := ((v; v)).

Clearly, ((�; �)) is a nondegenerate sesquilinear form on V . Perpendi
ularity with respe
t to

(�; �) will be denoted by ?, while perpendi
ularity with respe
t to ((�; �)) will be denoted by ??. A

subspa
e of V degenerate (respe
tively, nondegenerate) with respe
t to (�; �) and f will be 
alled

f -degenerate (respe
tively, f -nondegenerate), and similarly for ((�; �)) and g. Noti
e that a �-

invariant subspa
e is f -degenerate if and only if it is g-degenerate, so for su
h a subspa
e we 
an

speak simply of degenera
y or nondegenera
y.

Lemma 2.5 The form ((�; �)) is Hermitian. It is semi-preserved by � in the sense that ((�(u); �(v))) =

((u; v)).

Proof. Indeed, ((v; u)) = (v; �(u)) = (�(v); �

2

(u)) = (�(v); u) = (u; �(v)) = ((u; v)). Thus

((�; �)) is Hermitian. Sin
e ((�(u); �(v))) = (�(u); �

2

(v)) = (u; �(v)) = ((u; v)), we also see that �

semi-preserves ((�; �)). �

Let V

�

= C

V

(�) = fv 2 V j�(v) = vg. We 
all V

�

the model spa
e. If U is a �-invariant

subspa
e of V then U

�

= fu 2 U j�(u) = ug = U \ V

�

will be 
alled the model of U .

Lemma 2.6 The map U 7! U

�

is a dimension-preserving bije
tion between all �-invariant sub-

spa
es of V and all subspa
es of the F

q

-spa
e V

�

.

Proof. Sin
e � is F

q

-linear, V

�

is a ve
tor spa
e over F

q

. Suppose u

1

; : : : ; u

k

is the smallest

linearly independent subset of V

�

that is linearly dependent over F

q

2

, and let a

1

u

1

+ � � �+a

k

u

k

= 0

be a nontrivial linear dependen
e. Noti
e that we 
an assume a

1

= 1 and, furthermore, that at least

one 
oeÆ
ient a

i

is not 
ontained in F

q

. Applying �, we get a se
ond relation �a

1

u

1

+� � �+�a

k

u

k

= 0,

5



whi
h is not a s
alar multiple of the �rst relation. Using the se
ond relation we 
an ex
lude at least

one ve
tor from the �rst relation, yielding a 
ontradi
tion with the minimality of the set u

1

; : : : ; u

k

.

Thus, every linearly independent subset of V

�

is also independent over F

q

2
. To 
omplete the proof

of the se
ond 
laim, it remains to show that U

�

spans U . Let m be the dimension of U . Consider

U as a ve
tor spa
e over F

q

of dimension 2m and � as an F

q

-linear endomorphism of U . Sin
e

q is odd and �

2

= Id, the subspa
e U is the dire
t sum of the eigenspa
es of � 
orresponding to

the eigenvalues 1 and �1. The �rst eigenspa
e is U

�

, the se
ond one is U

��

. By the above, the

dimension of U

�

is at most m. Sin
e �� semi-preserves (�; �) and sin
e (��)

2

= Id, we also have

that the dimension of U

��

is at most m. It follows that the dimensions of both eigenspa
es are

m. Thus, every basis of U

�

is a basis of U over F

q

2

. �

In parti
ular, the dimension of V

�

is 2n + 1 and every basis of V

�

is a basis of V over F

q

2
.

It follows from the de�nition of ((�; �)) that its restri
tion to V

�


oin
ides with the restri
tion of

(�; �). Hen
e also the forms f and g agree on V

�

. Be
ause of this, we 
an speak of singular ve
tors

and subspa
es instead of f - or g-singular, and similarly for all other properties of ve
tors and

subspa
es of V

�

.

The next two lemmas are 
onsequen
es of Lemma 2.6.

Lemma 2.7 The restri
tions of (�; �) on V

�

is a nondegenerate bilinear form over F

q

.

Proof. Clearly, (�; �) is F

q

-bilinear. For u; v 2 V

�

, we have that (u; v) = (�(u); �(v)) = (u; v).

Hen
e the values of (�; �) on V

�

belong to F

q

. Finally, the restri
tion of (�; �) to V

�

is nondegenerate

be
ause V

�


ontains a basis of V . �

Lemma 2.8 If U

1

and U

2

are �-invariant subspa
es of V with U

1

� U

2

then U

2


ontains a

�-invariant 
omplement to U

1

.

Proof. Indeed, W 
an be 
hosen so that W

�

is a 
omplement to (U

2

)

�

in (U

1

)

�

. �

Proof of Proposition 2.1. Suppose � and �

0

are two semi-linear transformations of V ,

satisfying (F1), (F2'), and (F3') with respe
t to (�; �) and (�; �)

0

, respe
tively. Suppose further that

(�; �)

0

is a s
alar multiple of (�; �). Sin
e in odd dimension all nondegenerate symmetri
 bilinear

forms are isometri
, up to a possible non-square fa
tor, 
f. [C℄, [K℄, we 
an assume that we have

a bije
tive linear map  : V

�

! V

�

0

, su
h that ( (u);  (v))

0

= 
(u; v) for all u; v 2 V

�

and a �xed


 2 F

q

. Extend  by F

q

2

-linearity to the entire spa
e V . The resulting mapping is a bije
tive

endomorphism of V and it preserves (�; �), up to a s
alar. It also 
onjugates � to �

0

.

Thus, all su
h �'s are 
onjugate. It remains to show that � takes some maximal totally singular

subspa
e U to an opposite maximal totally singular subspa
e, that is, �(U) \ U = 0. Sin
e the

dimension of V is odd, we may assume without loss of generality that the determinant of the Gram

matrix of (�; �) is a square. Then a basis e

1

; f

1

; : : : ; e

n

; f

n

; x exists su
h that, for all 1 � i; j � n,

we have (e

i

; e

j

) = 0 = (f

i

; f

j

) = (e

i

; x) = (f

i

; x), (e

i

; f

j

) = Æ

i;j

, and (x; x) = 1. Set �

0

(e

i

) = f

i

,

�

0

(f

i

) = e

i

, �

0

(x) = x, and extend by semi-linearity to the entire V . This �

0

satis�es (F1), (F2'),

and (F3'). By the above, our initial � is 
onjugate to �

0

up to a s
alar fa
tor. Sin
e �

0

manifestly

takes U = he

1

; : : : ; e

n

i to �

0

(U) = hf

1

; : : : ; f

n

i, the last 
laim of Proposition 2.1 follows as well. �

A �-point in V is a 1-dimensional subspa
e U = hui su
h that u is f -singular and g-nonsingular.

Lemma 2.9 Suppose U is a �-invariant nondegenerate subspa
e of V of dimension at least two.

Then U 
ontains no �-point if and only if dimU = 2 and U

�

is of plus type in V

�

.

Proof. Suppose �rst that U is 2-dimensional. Sin
e the restri
tion of (�; �) to U

�

is a bilinear

form over F

q

, we have that U is of plus type. In parti
ular, U 
ontains exa
tly two 1-dimensional

f -singular subspa
es, and they are not perpendi
ular to ea
h other. Sin
e � takes an f -singular

ve
tor again to an f -singular ve
tor, U 
ontains a �-point if and only if � inter
hanges the two

f -singular subspa
es. Equivalently, U 
ontains no �-point if and only if both f -singular subspa
es
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of U are �-invariant. The latter 
ondition means that the interse
tions of the two f -singular

subspa
es with U

�

are nontrivial, that is, the restri
tion of (�; �) to U

�

is of plus type. Thus, the


laim of the lemma holds when dimU = 2.

If dimU � 3 then U

�


ontains a subspa
e X that is nondegenerate of minus type. By Lemma

2.6, we have X = W

�

for some �-invariant subspa
e W � U . By the above, W (and hen
e also

U) 
ontains a �-point. �

Let us now return to the proof of Proposition 2.1. A basis e

1

; : : : ; e

n

; f

1

; : : : ; f

n

; x as in this

proof is 
alled a standard basis of V with respe
t to (�; �) and �. That is, a standard basis satis�es

the following 
onditions: for all 1 � i; j � n, we have (e

i

; e

j

) = 0 = (f

i

; f

j

) = (e

i

; x) = (f

i

; x),

(e

i

; f

j

) = Æ

i;j

, and (x; x) = 1. Furthermore, �(e

i

) = f

i

(and hen
e �(f

i

) = e

i

for all i), and

�(x) = x. Suppose (�; �) and � satisfy (F1), (F2'), and (F3'). Does it mean that a standard basis

exists in V ? Not ne
essarily. Indeed, given a standard basis, set E

i

= he

i

; f

i

i, i = 1; : : : ; f

i

, and

X = hxi. Then V

�

de
omposes as the orthogonal dire
t sum of all (E

i

)

�

and X

�

. Sin
e E

i


ontains

�-points (namely, he

i

i and hf

i

i), ea
h summand (E

i

)

�

is of minus type in V

�

. Noti
e that x 2 X

�

.

This means that the dis
riminant of (�; �) on V

�

(determinant of the Gram matrix of (�; �) with

respe
t to an arbitrary basis of V

�

, taken modulo the squares in F

�

q

) is 
ongruent to (��)

n

. Here

� is an arbitrary non-square in F

q

. It is easy to reverse this argument and establish that standard

bases exist if and only if the dis
riminant of (�; �) on V

�

is 
ongruent to (��)

n

. Sin
e the dimension

of V is odd, by taking, if ne
essary, (�; �)

0

= �(�; �) in pla
e of (�; �), we may assume without loss

of generality that the 
ongruen
e 
ondition is satis�ed for (�; �) and �, and hen
e standard bases

exist. This assumption stays throughout the remainder of the paper.

Conjugation by � is an automorphism of G = S
(2n+1; q

2

). Let G

�

be the 
entralizer of � in

G. The above setup gives us means to identify G

�

. Let H be the group of linear transformations

of V

�

of determinant one, preserving (the restri
tion of) the form (�; �). By Lemma 2.6, the group

H is isomorphi
 to SO(2n+1; q). Sin
e V

�


ontains a basis of V , we 
an use F

q

2

-linearity to extend

the a
tion of the elements of H to the entire V . This allows us to identify H with a subgroup

of SO(V; f). Noti
e that under this identi�
ation H is 
ontained in S
(V; f) = G. Indeed, every

element of H 
an be written as a produ
t of re
e
tions in the nonsingular ve
tors v 2 V

�

. Sin
e

f(v) 2 F

q

is a square in F

q

2

, every element of H lies in S
(V; f).

Proposition 2.10 G

�

= H

�

=

SO(2n+ 1; q).

Proof. Choose a basis fw

1

; : : : ; w

2n+1

g in V

�

. Then this set is also a basis of V . Let h 2 H .

If u =

P

2n+1

i=1

x

i

w

i

2 V then h�(u) = h

�

P

2n+1

i=1

�x

i

w

i

�

=

P

2n+1

i=1

�x

i

h(w

i

). On the other hand,

�h(u) = �

�

P

2n+1

i=1

x

i

h(w

i

)

�

=

P

2n+1

i=1

�x

i

h(w

i

). Therefore, H � G

�

. Now take h 2 G

�

. If u 2 V

�

then �h(u) = h�(u) = h(u). This proves that h leaves V

�

invariant. Hen
e h indu
es on V

�

an

F

q

-linear transformation of determinant one, that preserves the restri
tion of (�; �). That is, h 2 H .

�

In what follows, G

0

�

denotes the index two subgroup of G

�

isomorphi
 to S
(2n+ 1; q).

3 The 
ip
op geometry

Geometries

In this se
tion we give a brief rundown of the basi
 terminology of syntheti
 geometry. For a


omprehensive introdu
tion into the subje
t, refer to [BC℄.

Let I be a �nite set, 
alled the set of types. Its elements as well as its subsets are 
alled

types. Let � = (X; �; typ) be a triple where X is a set, � � X �X is a symmetri
 and re
exive

relation and typ : X ! I is a map, su
h that, for x; y 2 X we have x = y if and only if x � y

and typ(x) = typ(y). Then � is 
alled a pregeometry over I . The elements of X are 
alled the

elements of �, the relation � is 
alled the in
iden
e relation of �, the map typ is 
alled the type

fun
tion of �.
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Let � = (X; �; typ) be a pregeometry over I . If A � X , then A is of type typ(A) � I , of 
otype

Intyp(A), of rank jtyp(A)j, and of 
orank jIntyp(A)j. The rank of A is also denoted by rk(A).

The 
ardinality jI j of I is 
alled the rank of �.

A 
ag F of a pregeometry � is a set of mutually in
ident elements of �. Noti
e that typ

jF

:

F ! I is a inje
tion. A maximal 
ag of � is a 
ag that is maximal with respe
t to in
lusion.

Flags of type I are 
alled 
hambers. A geometry over I is a pregeometry � over I in whi
h every

maximal 
ag is a 
hamber.

Let F be a 
ag of �, say of type J � I . Then the residue �

F

of F is the geometry

(X

0

; �

jX

0

�X

0
; typ

jX

) over InJ , with X

0

:= fx 2 X j F [ fxg is a 
ag of � and typ(x) =2 typ(F )g.

The geometry � is 
onne
ted if the graph (X; �) is 
onne
ted. The geometry � is residually


onne
ted if for any 
ag F of 
orank at least two the residue �

F

is 
onne
ted.

If � = (X; �; typ) and �

0

= (X

0

; �

0

; typ

0

) are two geometries, over I and I

0

, respe
tively, with

I \ I

0

= ;, then the dire
t sum � � �

0

is the geometry (X [ X

0

; �

00

; typ [ typ

0

) over I t I

0

, with

�

00

jX

= �, �

00

jX

0

= �

0

and (X �X

0

) � �

00

.

A group G of automorphisms of some pregeometry � is 
alled 
ag-transitive if for ea
h pair

F

1

; F

2

of 
ags of the same type there exists a g 2 G su
h that g(F

1

) = F

2

. Noti
e that for

a geometry � this 
ondition is equivalent to the 
ondition that G is transitive on the set of


hambers.

The 
ip
op geometry of type B

n

We will use the notation from Se
tion 2. In parti
ular, V is a nondegenerate orthogonal spa
e over

F

q

2

, of dimension 2n+ 1, with the bilinear form (�; �) and quadrati
 form f . The semilinear map

� is a (unitary) 
ip with the 
orresponding Hermitian form ((�; �)) and unitary form g. Also, G is

isomorphi
 to S
(2n+1; q

2

). Furthermore, G

�

is the 
entralizer C

G

(�) of � in G. The group G

�

is

isomorphi
 to SO(2n+1; q) and G

0

�

is the index two subgroup of G

�

, isomorphi
 to S
(2n+1; q).

Throughout this se
tion, we assume n � 2. Let B be the building geometry asso
iated with

G. The elements of B of type i = 1; 2; : : : ; n are the f -singular subspa
es of V of dimension i.

In
iden
e is given by symmetrized 
ontainment. We will use the 
ustomary geometri
 terminology.

In parti
ular, points, lines, and planes are subspa
es of a ve
tor spa
e of dimension 1, 2, and 3,

respe
tively.

Let � be the pregeometry 
onsisting of those nontrivial f -singular subspa
es of V that do not

interse
t the polar of their image under �. (See [BGHS℄ for an explanation why this is a natural

obje
t to 
onsider.) The pregeometry � is 
alled the 
ip
op geometry of B asso
iated with �.

Alternatively, we 
an des
ribe the 
ip
op geometry � as follows.

Proposition 3.1 The elements of � are all subspa
es f0g 6= U ( V , whi
h are f-singular and

g-nondegenerate.

Proof. We have U

??

= �(U

?

). Hen
e, if X is the g-radi
al of U , we have X = U \ U

??

=

U \ �(U

?

). Therefore X = f0g if and only if U \ �(U

?

) = f0g. �

We remark that the �-points, as de�ned in the pre
eding se
tion, are just the points of �. We

now establish that � is, in fa
t, a geometry.

Proposition 3.2 The pregeometry � is a geometry of rank n. Moreover, G

�

and G

0

�

a
t 
ag-

transitively on �.

Proof. For the �rst 
laim we need to show that a maximal 
ag F in � 
ontains elements of

all types. If F 
ontains an element of type i then, 
learly, it also 
ontains elements of all types

less than i. Suppose m is the highest type present in F , and let U be the element of type m in

F . Let W = hU; �(U)i and T = W

?

. Sin
e W is nondegenerate, so is T , and hen
e � is a 
ip of

T . Therefore, by Proposition 2.1 there exists a maximal f -singular subspa
e X in T , su
h that

�(X)\X = f0g. The spa
e X has dimension n�m and thus hU;Xi is an element of � of type n

in
ident to ea
h element of F . This shows that � is a geometry.
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For the se
ond 
laim, let V

1

; V

2

; : : : ; V

n

and V

0

1

; V

0

2

; : : : ; V

0

n

be two 
hambers ordered by types.

Choose a base e

1

; : : : ; e

n

in V

n

that is orthonormal with respe
t to ((�; �)) and su
h that V

i

=

he

1

; : : : ; e

i

i. Set f

i

:= �(e

i

), for i = 1; : : : ; n, and let x be 
hosen in hV

n

; �(V

n

)i

?

so that g(x) = 1

and �(x) = x. Su
h an x exists sin
e the dis
riminant of (�; �) on V

�

is 
ongruent to (��)

n

, � a non-

square in F

q

(
f. the dis
ussion after Lemma 2.9). Indeed, the dis
riminant of (�; �) on hV

n

; �(V

n

)i

�

is also 
ongruent to (��)

n

, whi
h yields that the dis
riminant of (�; �) on the 1-dimensional spa
e

(hV

n

; �(V

n

)i

?

)

�

is 
ongruent to one. Hen
e x 
an be 
hosen as 
laimed.

Now, e

1

; : : : ; e

n

; f

1

; : : : ; f

n

; x is a standard basis for �. Choose a similar standard basis e

0

1

; : : : ; e

0

n

;

f

0

1

; : : : ; f

0

n

; x

0

for the se
ond 
hamber. Let h be a linear transformation of V that sends every e

i

to e

0

i

, every f

i

to f

0

i

, and x to x

0

. Clearly, h preserves (�; �) and hen
e it is an orthogonal transfor-

mation. Substituting x

0

with �x

0

, if ne
essary, we may assume that h has determinant one. Now

observe that h� and �h are both semilinear and their a
tions on the basis e

1

; : : : ; e

n

; f

1

; : : : ; f

n

; x


oin
ide. This means that h 
ommutes with �. In parti
ular, h a
ts on the model spa
e V

�

as an

orthogonal transformation of determinant one, and we 
on
lude that h 2 H = G

�

. Manifestly, h

takes the �rst 
hamber to the se
ond one. Hen
e G

�

is 
ag-transitive on �.

In order to show that G

0

�

is also 
ag-transitive on � it suÆ
es to show that the stabilizer

in G

�

of a 
hamber F

1

is not 
ontained in G

0

�

. Let e

1

; : : : ; e

n

; f

1

; : : : ; f

n

; x be as above. Let

U = he

1

; : : : ; e

n�1

; f

1

; : : : ; f

n�1

i. The 
entralizer L of U in G

�

is isomorphi
 to SO(3; q) (a
ting on

U

?

= he

n

; f

n

; xi), while L \G

0

�

is the index two subgroup isomorphi
 to S
(3; q). Let D 
onsist

of all linear transformations d

�

, � 2 F

q

2

, �

�

� = 1, 
entralizing U and a
ting on U

?

as follows:

d

�

(e

n

) = �e

n

, d

�

(f

n

) =

�

�f

n

, and d

�

(x) = x. Then D is a 
y
li
 group of order q+1 that stabilizes

the 
hamber F

1

. Clearly, D � L, but D 6� L \G

0

�

�

=

S
(3; q)

�

=

PSL(2; q). �

We now 
olle
t some useful lemmas to be applied later.

Lemma 3.3 Let p be a point of � and W � p be a 3-dimensional f-singular subspa
e of V of

g-rank at least two. Let U be a 2-dimensional subspa
e of W that 
ontains at least one point of �

and does not 
ontain p. Then U 
ontains at least q

2

� 2q� 1 (respe
tively, q

2

� q� 1) points of �

that are 
ollinear with p if it is (respe
tively, is not) a line.

Proof. This is Lemma 4.4 of [GHNS℄. �

Lemma 3.4 Let W be a 3-dimensional f-nondegenerate subspa
e of V that is not g-singular.

Then W 
ontains at least q

2

� 2q � 1 points of �.

Proof. Sin
e (�; �) is nondegenerate onW , we 
an 
hoose a basis fe

1

; f

1

; xg inW for whi
h either

(�; �) or (�; �)

0

= �(�; �) (� a non-square in F

q

2
) has the following Gram matrix:

0

�

0 1 0

1 0 0

0 0 1

1

A

:

A simple 
al
ulation shows that e

1

+ af

1

+ bx is f -singular if and only if a =

�b

2

2

. The ve
tor f

1

and the q

2

ve
tors e

1

�

b

2

2

f

1

+ bx represent all f -singular 1-dimensional subspa
es of W . Now,

g(e

1

�

b

2

2

f

1

+ bx) = 0 if and only if

((e

1

; e

1

))�

�

b

2

2

((e

1

; f

1

)) +

�

b((e

1

; x)) �

b

2

2

((f

1

; e

1

)) +

b

2

�

b

2

4

((f

1

; f

1

))

+

b

2

�

b

2

((f

1

; x)) + b((x; e

1

) +

b

�

b

2

2

((x; f

1

)) + b

�

b((x; x)) = 0:

Sin
e

�

b = b

q

and not all the inner produ
ts above 
an be 0 by hypothesis, the above yields that

g(e

1

+ �

b

2

2

f

1

+ bx) = 0 if and only if b satis�es a polynomial of degree 2q + 2 in b. Hen
e the

number of 1-dimensional subspa
es of W that are simultaneously f - and g-singular is at most

2q + 2. Consequently, there are at least q

2

+ 1� (2q + 2) = q

2

� 2q � 1 points of � in W . �
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Lemma 3.5 Let W be a subspa
e of V 
ontaining a ve
tor u su
h that g(u) 6= 0. De�ne a unitary

form g

1

on W via g

1

(w) = g(pr

u

??

(w)), where pr

u

??

denotes the orthogonal (with respe
t to ((�; �)))

proje
tion onto u

??

. Then for, w 2W n hui, the 2-dimensional subspa
e hu;wi is g-nondegenerate

if and only if g

1

(w) 6= 0.

Proof. Indeed, u and pr

u

??

(w) form an orthogonal basis of hu;wi, and the Gram matrix of

((�; �)) with respe
t to this basis has determinant g(u)g(pr

u

??

(w)) = g(u)g

1

(w). �

Now we turn to the question of 
onne
tedness of �. In the 
ase n = 2 we have B

2

= C

2

, so we


an apply the results from [GHS℄ and obtain that � is 
onne
ted.

Lemma 3.6 Let q � 5 and n = 3. Then the 
ollinearity graph of � has diameter two.

Proof. Let p

1

and p

2

be points of �. If p

1

6? p

2

, then the 5-dimensional spa
e hp

1

; p

2

i

?

is f -

nondegenerate and has g-rank at least four. Hen
e hp

1

; p

2

i

?


ontains an f -isotropi
 2-dimensional

subspa
e that has g-rank at least one, 
f. Lemma 6.2 of [GHNS℄. By Lemma 3.3 this subspa
e


ontains q

2

� 3q � 2 points of � 
ollinear to p

1

and p

2

. If p

1

? p

2

, then hp

1

; p

2

i is 
ontained in

an f -totally isotropi
 3-dimensional subspa
e that has g-rank at least two, and again Lemma 3.3

applies. �

Proposition 3.7 Let q � 5 and n = 3, or let n � 4. Then the 
ollinearity graph of � has diameter

two.

Proof. The �rst 
ase was 
overed by the pre
eding lemma. If n � 4 and p

1

, p

2

are two points of

� then hp

1

; p

2

; p

�

1

; p

�

2

i

?

is at least 5-dimensional of rank at least three. Its radi
al is �-invariant,

so one 
an �nd a 3-dimensional subspa
e as in Lemma 3.4. That subspa
e 
ontains a 
ommon

neighbour of p

1

and p

2

. �

4 Simple 
onne
tedness

Homotopies

Considering the 
ag 
omplex of a geometry of rank n as an n-dimensional simpli
ial 
omplex, we


an use notions from 
ombinatorial topology, 
f. [ST℄.

Let G be a 
onne
ted geometry. A path of length k in the geometry is a sequen
e of elements

(x

0

; : : : ; x

k

) su
h that x

i

and x

i+1

are in
ident, 0 � i � k � 1. A 
y
le based at an element x

is a path in whi
h x

0

= x

k

= x. Two paths are homotopi
ally equivalent if one 
an be obtained

from the other via the following operations (
alled elementary homotopies): inserting or deleting

a repetition (i.e., repla
ing x by xx or vi
e versa), a return (i.e., repla
ing x by xyx or vi
e

versa), or a triangle (i.e., repla
ing x by xyzx or vi
e versa). The equivalen
e 
lasses of 
y
les

based at an element x form a group under the operation indu
ed by 
on
atenation of 
y
les. This

group is 
alled the fundamental group of G and denoted by �

1

(G; x). A 
y
le based at x that is

homotopi
ally equivalent to the trivial 
y
le (x) is 
alled null-homotopi
. Every 
y
le of length

two or three is null-homotopi
.

Suppose G and

b

G are geometries over the same type set and suppose � :

b

G ! G is a homomor-

phism of geometries, i.e., � preserves the types and sends in
ident elements to in
ident elements.

A surje
tive homomorphism � between 
onne
ted geometries

b

G and G is 
alled a 
overing if and

only if for every non-empty 
ag

b

F in

b

G the mapping � indu
es an isomorphism between the residue

of

b

F in

b

G and the residue of F = �(

b

F ) in G. Coverings of a geometry 
orrespond to the usual

topologi
al 
overings of the 
ag 
omplex. It is well-known that a surje
tive homomorphism �

between 
onne
ted geometries

b

G and G is a 
overing if and only if for every element bx in

b

G the

map � indu
es an isomorphism between the residue of bx in

b

G and the residue of x = �(bx) in G. If

� is an isomorphism, then the 
overing is said to be trivial.
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Re
all the well-known fa
t (see, e.g., Chapter 8 of [ST℄) that if G is a 
onne
ted geometry and

x an element of G, then every 
overing of the geometry G is trivial if and only if �

1

(G; x) is trivial.

A geometry satisfying the above equivalent 
onditions is 
alled simply 
onne
ted. A geometri



y
le in the geometry G is a 
y
le ea
h element of whi
h is in
ident with a 
ommon element x. A

geometri
 
y
le 
 is null-homotopi
, be
ause 
 and x form a 
one.

Simple 
onne
tedness of the 
ip
op geometry

Retain the notation from Se
tion 3. In parti
ular, � denotes the 
ip
op geometry. By the following

lemma, it suÆ
es to study the 
ollinearity graph of � instead of the in
iden
e graph when proving

simple 
onne
tedness.

Lemma 4.1 Let q � 5 and n = 3, or let n � 4. Then every 
y
le in the in
iden
e graph of �

is homotopi
ally equivalent to a 
y
le in the in
iden
e graph of � passing only through points and

lines.

Proof. Identi
al to the proof of Lemma 5.1 in [GHS℄, whi
h essentially requires a residually


onne
ted geometry with a string diagram. See also Lemma 5.4 in [GHNS℄. �

Therefore, in order to prove simple 
onne
tedness of the geometry, it suÆ
es to analyze the

point-line in
iden
e graph of �, and, thus, the 
ollinearity graph of �. Sin
e by Lemma 3.7 the


ollinearity graph has diameter two, we only have to study triangles, quadrangles and pentagons

in it.

Let us �rst 
onsider n � 4. Re
all that q is odd. Note that the spa
e generated by the three

points of a triangle is f -singular and of g-rank at least two. If the g-rank is three then the triangle

is geometri
.

Lemma 4.2 Any triangle 
an be de
omposed into geometri
 triangles.

Proof. Let p

1

; p

2

; p

3

be a triangle. If hp

1

; p

2

; p

3

i is nondegenerate then the triangle is geometri


and there is nothing to prove. So we 
an assume that hp

1

; p

2

; p

3

i is degenerate. Sin
e hp

1

; p

2

i is

a line, the g-radi
al r of hp

1

; p

2

; p

3

i 
an only be 1-dimensional. We need to 
onsider two separate


ases.

If hri

�

= hri then W = hp

1

; p

2

; p

3

; p

�

1

; p

�

2

; p

�

3

i is 5-dimensional and W

?

is (2n� 4)-dimensional

of g-rank 2n � 5 � 3. Therefore, every �-invariant 
omplement W

?

to its radi
al satis�es the

assumptions of Lemma 2.9. Hen
e, W

?


ontains a point p of �. The geometri
 triangles p, p

1

, p

2

and p, p

1

, p

3

and p, p

2

, p

3

de
ompose p

1

, p

2

, p

3

.

If hri

�

6= hri then let W = hp

1

; p

2

; p

�

1

; p

�

2

i, whi
h is �-invariant and nondegenerate. Both r

and r

�

are in W

?

, and the latter is a (2n � 3)-dimensional nondegenerate subspa
e. Consider

U =W

?

\r

??

, whi
h is a spa
e of dimension 2n�4. Pi
k a a ve
tor s 2 U su
h that s is f -singular

and hs; ri is f -nondegenerate. Then V

0

= hp

1

; p

2

; p

�

1

; p

�

2

; r; r

�

; s; s

�

i is an 8-dimensional �-invariant

nondegenerate subspa
e, on whi
h � a
ts as a 
ip (be
ause hp

1

; p

2

; r

�

; si satis�es 
ondition (F4b)

of Corollary 3.7 in [GHNS℄) and so we 
an use the result in [GHNS℄ to see that the triangle 
an

be de
omposed in V

0

, hen
e also in V . �

Lemma 4.3 All quadrangles are null-homotopi
.

Proof. The proofs of Lemmas 6.4 { 6.6 of [GHNS℄ work in this 
ase. �

Lemma 4.4 All pentagons are null-homotopi
.

Proof. Let a; b; 
; d; e be a pentagon. As in Lemma 6.7 from [GHNS℄, if a ? 
 and a ? d, then

the line h
; di 
ontains q

2

� 2q � 1 > 0 points that are 
ollinear to a.
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We 
an therefore assume that a 6? d and 
 6? e and 
on
lude that the spa
e ha; b; 
; d; ei has

f -rank at least four and g-rank at least two. Therefore the spa
e W = ha; b; 
; d; ei

?

is a (2n� 4)-

dimensional spa
e of f -rank at least 2n� 6 and not g-singular. It will then 
ontain a point w of

�, and w will be 
ollinear with at least one point on ea
h of ha; bi, hb; 
i, h
; di, hd; ei, and he; ai,

de
omposing the pentagon into quadrangles. �

This 
ompletes the proof of the following

Proposition 4.5 Let n � 4. Then the 
ip
op geometry � is simply 
onne
ted.

Now 
onsider the 
ase n = 3. Again, we will �rst de
ompose the triangles.

Lemma 4.6 Every nongeometri
 triangle 
an be de
omposed as a sum of triangles that have two

g-orthogonal verti
es.

Proof. Let p

1

; p

2

; p

3

be a triangle and let r be the g-radi
al of hp

1

; p

2

; p

3

i. Consider v 2

p

??

1

\ hp

2

; p

3

i. If v is g-singular then the 2-dimensional subspa
e hp

1

; vi is g-degenerate, so it must


ontain r, whi
h implies that hvi = hri, 
ontradi
ting the fa
t that hp

2

; p

3

i is a line of �. Therefore

v must be g-nonsingular. As before, hp

1

; vi is degenerate only if it 
ontains r. However, that would

mean that p

1

is in the g-radi
al of hr; vi, a 
ontradi
tion. Therefore, the initial triangle 
an be

de
omposed into the two triangles p

1

; v; p

2

and p

1

; v; p

3

. �

Lemma 4.7 Let q � 7. Then all triangles 
an be de
omposed into geometri
 triangles.

Proof. By the pre
eding lemma we 
an restri
t our attention to the triangles having g-orthogonal

verti
es. Sin
e the group G

�

a
ts transitively on pairs of points that are orthogonal with respe
t

to both forms, we may assume that our triangle has e

1

and e

2

as two of its verti
es. It then follows

that its g-radi
al hri lies in the spa
e he

3

; f

3

; xi. Let the third vertex of the triangle be hvi, where

v = �e

1

+ �e

2

+ r with �; � 6= 0, and assume that r = 
e

3

+ Æf

3

+ "x. The 
onditions on r give

0 = (r; r) = 2
Æ + "

2

and 0 = ((r; r)) = 
�
 + Æ

�

Æ + "�". Re
all that q is odd, when
e 2 is invertible,

and noti
e that Æ = 0 would imply " = 0 whi
h is nonsense in view of the above 
hoi
e for the

radi
al r. So the �rst 
ondition gives 
 = �

"

2

2Æ

. Multiplying 
 with �
 we get 
�
 =

("�")

2

4Æ

�

Æ

, and hen
e

the se
ond 
ondition gives 0 =

("�")

2

4Æ

�

Æ

+ Æ

�

Æ + "�" =

1

4Æ

�

Æ

("�"+ 2Æ

�

Æ)

2

, thus 
�
 = Æ

�

Æ = �

"�"

2

. Note that

the 
entralizer of the pair e

1

, e

2

a
ts transitively on the f - and g-singular 1-dimensional subspa
es

of he

3

; f

3

; xi and so we may assume that 
�
 = Æ

�

Æ is any �xed element of F

q

while � and � remain


onstant.

We will de
ompose the triangle (e

1

; e

2

; v) into a sum of seven geometri
 triangles by 
onstru
t-

ing an o
tahedron whose verti
es are he

1

i, he

2

i, hvi, hf

3

i, hf

3

�




�

f

2

i, and hf

3

�




�

f

1

i and in whi
h

all sides ex
ept (e

1

; e

2

; v) are geometri
 triangles.

The spa
e hf

1

; f

2

; f

3

i = hf

3

; f

3

�




�

f

2

; f

3

�




�

f

1

i is obviously an element of our geometry. Thus,

(f

3

; f

3

�




�

f

2

; f

3

�




�

f

1

) is a geometri
 triangle, on
e it is a triangle. For that we need f

3

�




�

f

2

and f

3

�




�

f

1

to be points and hf

3

�




�

f

2

; f

3

�




�

f

1

i a line. These three 
onditions are equivalent

to:

���+ 
�
 6= 0;

�

�

� + 
�
 6= 0; and

���+ �

�

� + 
�
 6= 0:

Noti
e that (f

3

; e

1

; e

2

), (e

1

; f

3

; f

3

�




�

f

2

), and (e

2

; f

3

; f

3

�




�

f

1

) are geometri
 triangles, if

f

3

�




�

f

1

and f

3

�




�

f

2

are points. The ve
tors f

3

�




�

f

2

, e

1

, and �e

1

+ �e

2

+ r generate a totally

(�; �)-isotropi
 subspa
e, and the Gram matrix with respe
t to ((�; �)) on it is

0

�

1 +


�


�

�

�

0

�

Æ

0 1 ��

Æ � ��� + �

�

�

1

A

;
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whose determinant equals ���+ �

�

� +


�
���

�

�

�

+ 
�
 � Æ

�

Æ� ����


�
���

�

�

�

= �

�

� 6= 0 and so we only need

to verify that the sides are lines of �. The only nontrivial 
ondition 
omes from hf

3

�




�

f

2

; �e

1

+

�e

2

+ ri. Here the Gram matrix with respe
t to ((�; �)) is

�

1 +


�


�

�

�

�

Æ

Æ ���+ �

�

�

�

and so the 
ondition is ���+ �

�

� +

���

�

�

�


�
 + 
�
 � Æ

�

Æ = ���+ �

�

� +

���

�

�

�


�
 6= 0.

Similarly the triangle (f

3

�




�

f

1

; e

2

; �e

1

+ �e

2

+ r) gives the 
ondition ���+ �

�

� +

�

�

�

���


�
 6= 0.

The �nal triangle is (f

3

�




�

f

1

; f

3

�




�

f

2

; �e

1

+�e

2

+r). It is 
lear that under the above 
onditions

the sides are lines of �, so we only need to verify that the whole subspa
e is ((�; �))-nondegenerate.

The 
orresponding Gram matrix is

0

�

1 +


�


�

�

�

1

�

Æ

1 1 +


�


���

�

Æ

Æ Æ ��� + �

�

�

1

A

:

Computing its determinant we obtain 2Æ

�

Æ+���+ �

�

�+


�
���

�

�

�

+2
�
+


�
�

�

�

���

+

(
�
)

2

�

�

�

+

(
�
)

2

���

�����

�

�

� �

Æ

�

Æ
�


�

�

�

�


�
Æ

�

Æ

���

=


�


����

�

�

(��� + �

�

�)

2

, as 
�
 = Æ

�

Æ, and so the 
ondition for this to be a geometri


triangle is that ���+ �

�

� 6= 0 whi
h is not a new 
ondition.

To summarize, we 
an de
ompose the initial triangle into seven geometri
 triangles if there

exists a 
�
 2 F

q

su
h that:


�
 6= 0;

���+ 
�
 6= 0;

�

�

� + 
�
 6= 0;

���+ �

�

� + 
�
 6= 0;

���+ �

�

� +

�

�

�

���


�
 6= 0;

���+ �

�

� +

���

�

�

�


�
 6= 0:

If q � 7, su
h a 
�
 
an be found. �

We now deal with quadrangles.

Lemma 4.8 Let q � 5 and let (a; b; 
; d) be a quadrangle with a ? 
 and b ? 
. Then a, b, 
, d


an be de
omposed into triangles.

Proof. The span ha; b; 
; di is f -totally isotropi
, hen
e it is three-dimensional. By Lemma 3.3

there exist at least q

2

�3q�2 > 0 points on ha; bi 
ollinear to 
 and d, de
omposing the quadrangle.

�

Lemma 4.9 Let q � 11 and let (a; b; 
; d) be a quadrangle with a 6? 
 and b 6? d. Then there exists

a 
ommon neighbour of a, b, 
, d.

Proof. Consider the spa
e U = ha; b; 
; di

?

. Then U is a 3-dimensional spa
e whi
h is nondegen-

erate with respe
t to f . If R denotes the g-radi
al of U , then R = Rad

g

(U) = Rad

g

(U

??

) =

Rad

g

((U

?

)

�

) = Rad

g

(ha; b; 
; di

�

). The latter is at most 2-dimensional, so the g-rank of U

is at least one. Consider hU; ai and de�ne for u 2 U , as in Lemma 3.5, the unitary form

g

a

(u) = g(pr

a

??

(u)), where pr

a

??

(u) denotes the proje
tion of u onto a

??

via the dire
t sum

de
omposition V = hai � a

??

. Note that U \ a

??

is at least 2-dimensional and 
annot be equal to

R. Indeed, dimR = 2 and a??R imply a ? R

�

, when
e R

�

� a

?

\U

?

= a

?

\ha; b; 
; di = ha; b; di,
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ontradi
ting the fa
t that the g-rank of ha; b; di is at least two, as it 
ontains lines of �. Therefore

g

a

is nontrivial on U . Similarly, g

b

, g




, g

d

are nontrivial on U , so using Lemma 3.4, there are at

least q

2

� 10q � 9 > 0 points that are non-isotropi
 with respe
t to g, g

a

, g

b

, g




, g

d

and, thus,


ollinear to a, b, 
, and d. Hen
e we are done. �

Lemma 4.10 Let q � 5 and let (a; b; 
; d) be a quadrangle with a 6? 
 and b ? d. Then there exists

a point p 
ollinear to a, 
, su
h that b 6? p and d 6? p.

Proof. Consider the spa
e W = ha; 
i

?

whi
h is an f -nondegenerate 5-dimensional spa
e of

g-rank at least four. Pi
k a point t 2 � that is 
ollinear with both a and 
, but is di�erent from

b; d. Now pi
k s 2W su
h that s is f -singular, t ? s, but b 6? s and d 6? s. Indeed, this is possible,

be
ause hti

?

6= hbi

?

and hti

?

6= hdi

?

. Now Lemma 3.3 implies that the spa
e hs; ti 
ontains

at least q

2

� 3q � 2 points of �, that are 
ollinear to a and 
. Moreover, sin
e hsti 6� hbi

?

and

hsti 6� hdi

?

, it follows that hs; ti 
ontains at least q

2

� 3q � 4 points satisfying the 
on
lusion of

the lemma. Sin
e q � 5, the 
on
lusion follows. �

We have proved the following.

Lemma 4.11 Let q � 11. Then any quadrangle 
an be de
omposed into triangles. �

Finally we need to 
onsider pentagons.

Lemma 4.12 Any pentagon (a; b; 
; d; e) with a ? 
 and a ? d 
an be de
omposed into triangles

and quadrangles.

Proof. By Lemma 3.3, the line h
; di 
ontains q

2

�2q�1 points of � 
ollinear to a, de
omposing

the pentagon. �

Lemma 4.13 Let q � 5. Then any pentagon 
an be de
omposed into triangles and quadrangles.

Proof. In view of Lemma 4.12, we will assume that the pentagon is a, b, 
, d, e with a 6? d.

The idea is to redu
e to the 
ase in Lemma 4.12. We 
onstru
t a point d

0


ollinear to both 
 and

e and su
h that d

0

? a, de
omposing the pentagon into the sum of the pentagon a, b, 
, d

0

, e and

the quadrangle 
, d, e, d

0

.

Note that if X is the f -radi
al of ha; 
; di then X 2 h
; di and X is also the radi
al of ha; 
; di

?

.

If X is also the g-radi
al of ha; 
; di

?

then it would be the f -radi
al of ha; 
; di

�

, whi
h 
ontradi
ts

the fa
t that h
; di

�

is nondegenerate with respe
t to g.

We now want to 
onstru
t a line of � that lies in ha; 
; di

?

and 
ontains X . If X is a point of

� then X

??

\ ha; 
; di

?

is a 
omplement to X and so it is an f -nondegenerate three-dimensional

spa
e. It is not totally isotropi
 for g, be
ause it lies in ha; 
; di, whi
h has rank at least three.

Lemma 3.4 gives a point of � in this spa
e, hen
e the required line of �. If X is not a point of �

and if p is f -singular 1-dimensional subspa
e of ha; 
; di

?

nX

??

then hX; pi is a line of �.

Finally, if l is a line of � as above, Lemma 3.3 implies that l has at least q

2

� 3q � 2 points of

�, that are 
ollinear to both a and 
, and if q > 3, there exists a point b

0


ollinear to both a and


 and su
h that d ? b

0

. We de
ompose the pentagon a, b, 
, d, e as the sum of the quadrangle a,

b, 
, b

0

and the pentagon a, b

0

, 
, d, e, in whi
h b

0

? d. If b

0

? e, we are done by Lemma 4.12. If

b

0

6? e, then we 
an repeat the argument above for b

0

; e; d to get a point a

0


ollinear to both e and

b

0

and su
h that a

0

? d. �

Proposition 4.14 Let n = 3 and q � 11 be odd. Then the 
ip
op geometry � is simply 
onne
ted.

Proof of the Theorem. Part (i) follows from Proposition 3.2. Part (ii) follows from Proposition

3.7. Part (iii) follows from Propositions 4.5 and 4.14 plus [Part2℄, Proposition 3.2. �
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