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Abstrat

We extend the Phan theory desribed in [BGHS℄ to the last remaining in�nite series of las-

sial Chevalley groups over �nite �elds. Namely, we prove that the twin buildings for the

group Spin(2n+1; q

2

), q odd, admit a unique unitary ip and that the orresponding ipop

geometry is simply onneted for almost all �nite �elds F

q

2

. Applying standard methods

from amalgam theory, this results in a haraterization of entral quotients of the group

Spin(2n + 1; q) by a Phan system of rank one and rank two subgroups. In the present �rst

part of a series of two artiles we present simple onnetedness results for suÆiently large

�elds or suÆiently large rank. To be preise, the result stated in the present paper is proved

for all ases but n = 3 and q 2 f3; 5; 7; 9g, the remaining ases are dealt with in the sequel

[Part2℄ omputationally.

1 Introdution

The purpose of this paper is to establish the analog of Phan's theorems (f. [P1℄ and [P2℄) for the

groups Spin(2n+ 1; q), q odd. To state these results we need some de�nitions, starting with the

onept of standard pairs in the groups SU(3; q

2

) and Spin(5; q).

De�nition 1.1 Let G

�

=

SU(3; q

2

) and V be the natural G-module over F

q

2

. Subgroups U

1

and

U

2

isomorphi to SU

2

(q

2

) of G

�

=

SU(3; q

2

) form a standard pair whenever eah U

i

is the stabilizer

in G of a nonsingular vetor v

i

2 V and, moreover, v

1

and v

2

are perpendiular. If U

1

and U

2

form

a standard pair in G, and � desribes a quotient map whose kernel is a subgroup of the enter of

G, then �(U

1

) and �(U

2

) are alled a standard pair in �(G).

De�nition 1.2 Let G

�

=

S
(5; q) and V be its natural module, where the invariant form is hosen

to be of disriminant one. Subgroups U

1

and U

2

of G

�

=

S
(5; q) form a standard pair if there is

an orthogonal deomposition V = V

2

� V

0

2

� V

1

,

(i) with V

2

being 2-dimensional of minus type, suh that U

1

is the vetor-wise stabilizer of V

2

;

(ii) where V

2

� V

0

2

is 4-dimensional of plus type, suh that U

2

is one of the two diret fators in

the vetor-wise stabilizer of V

1

.

We remark that here U

1

�

=

S
(3; q)

�

=

PSL(2; q) and U

2

�

=

SL(2; q). For

b

G

�

=

Spin(5; q) and the

natural homomorphism from � :

b

G ! G, subgroups U

1

; U

2

�

=

SL(2; q) of

b

G form a standard pair

if �(U

1

) and �(U

2

) form a standard pair in G.

�
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De�nition 1.1 repeats the de�nition in the introdution of [BS℄, while De�nition 1.2 an be

shown equivalent to the de�nition in [G1℄, Setion 3, of the standard pairs in Sp(4; q)

�

=

Spin(5; q).

We use diagrams to desribe on�gurations involving standard pairs. In suh a diagram an edge

i

Æ

j

Æ represents the fat that a suitable group G ontains subgroups U

i

and U

j

suh that

U

ij

:= hU

i

; U

j

i is isomorphi to SU(3; q

2

) (or its entral quotient PSU(3; q

2

)) and that U

i

and

U

j

form a standard pair in U

ij

. Similarly, the edge

i

Æ

>

j

Æ requires that U

ij

be isomorphi to

Spin(5; q) (or its entral quotient SO(5; q)) and that U

i

and U

j

again form a standard pair in U

ij

.

Note that De�nition 1.1 is symmetri with respet to U

1

and U

2

, whereas in De�nition 1.2 the

order of U

1

and U

2

matters, and so the diagram in this ase is asymmetri. Notie also that our

de�nition works well for all values of q, exept q = 2, where the standard pair does not generate

the entire SU(3; q

2

) or Spin(5; q); reall that in this paper we are only interested in the ase q odd,

and so this ompliation does not arise. In addition to the above two types of edges we will need

the \empty" edge

i

Æ

j

Æ whih means that U

ij

is a entral produt of U

i

and U

j

.

With this notation in plae we an now give our main de�nition.

De�nition 1.3 Let n � 2. A group G ontains a weak Phan system of type B

n

over F

q

2

if G

is generated by a family of subgroups U

i

, i 2 I = f1; : : : ; ng, so that, for 1 � i < j � n, the

subgroups U

i

and U

j

form a standard pair in U

ij

:= hU

i

; U

j

i aording to the Dynkin diagram B

n

:

1

Æ

2

Æ � � �

n�2

Æ

n�1

Æ

>

n

Æ:

Our main result onsists of the following two theorems.

Main Theorem A For n � 3 and q � 5 an odd prime power, let G be a group ontaining a weak

Phan system of type B

n

over F

q

2

. Then G is isomorphi to Spin(2n+ 1; q) or a entral quotient

thereof.

There exists a ounterexample to the statement of Main Theorem A for n = 3, q = 3, f.

Setion 4 of [Part2℄. However, the following statement is true in ase q = 3.

Main Theorem B For n � 4, let G be a group ontaining a weak Phan system of type B

n

over

F

9

. In addition, assume that hU

i�1

; U

i

; U

i+1

i is isomorphi to a entral quotient of SU(4; 9) (if

2 � i � n� 2) or Spin(7; 3) (if i = n� 1). Then G is isomorphi to Spin(2n+ 1; 3) or a entral

quotient thereof.

We remark that the ases of diagrams A

n

, C

n

, and D

n

have been dealt with previously (see

[P1℄, [P2℄, and also [BS℄, [GHS℄, [G1℄, [H℄, [GHN℄, [GHNS℄). So our present result ompletes

the last series of Phan-type results for lassial groups, see details below. We turn now to the

motivation and history of the �eld and also outline how we approah the proof of Main Theorems

A and B.

In 1977 Phan published two papers, [P1℄ and [P2℄, in whih he stated and proved theorems

giving presentations for some Chevalley groups, that were similar in spirit to the Curtis-Tits

presentations for the groups with simply laed diagrams A

n

, D

n

, and E

n

. Instead of the subgroups

SL(2; q) and SL(3; q), as in the Curtis-Tits presentation, he used subgroups isomorphi to SU(2; q

2

)

and SU(3; q

2

). Phan's results, along with the Curtis-Tits theorem, proved to be fundamental for

the original lassi�ation of the �nite simple groups announed in 1981, espeially for Ashbaher's

paper [A℄. The urrent revision of the lassi�ation, lead by Lyons and Solomon, also requires a

revision of Phan's results. Suh a revision was started by Bennett and Shpetorov in [BS℄; see

[BGHS℄ for a survey.

It was soon disovered that Phan's results are not just similar to the Curtis-Tits theorem, but

rather these theorems are muh more losely related to eah other (see [BGHS℄). It turned out

that the Curtis-Tits theorem is equivalent, via a ertain redution, to the simple onnetedness of

the so-alled opposites geometry of the spherial twin buildings assoiated with the orresponding

Chevalley group, f. [M℄, also [AM℄. When the Chevalley group is of untwisted type and is de�ned

2



over a �eld F

q

2

, the twin buildings have a lass of automorphisms that we all unitary ips. The

subgeometry of the opposites geometry, onsisting of all objets �xed by the ip, is alled the

ipop geometry. It turned out that Phan's theorems, in essene (that is, again modulo some

redution), are the statements that the ipop geometries of rank at least three for the simply

laed diagrams A

n

(Phan's �rst paper [P1℄), D

n

and E

n

(Phan's seond paper [P2℄) are simply

onneted with some exeptions when q equals to 2 or 3. Thus, Phan's theorems an be viewed

as twisted versions of partiular ases of the Curtis-Tits theorem.

As we have already mentioned, unitary ips exist for all untwisted Chevalley groups over F

q

2

.

On the other hand, Phan treated only the simply laed diagrams. So, naturally, it is interesting to

ask whether the ipop geometries for the diagrams B

n

, C

n

, n � 3, and F

4

are simply onneted

for suÆiently large q. The positive answer for the diagram C

n

was obtained in [GHS℄ and re�ned

in [H℄, see also [GHN℄. Main Theorems A and B �nish the last in�nite series of Dynkin diagrams,

B

n

. Notie that in this ase we only need to onsider the ase where q is odd, beause B

n

and C

n

are the same when q is even.

We now outline how Main Theorems A and B are proved. The proof onsists of two stages. At

stage one let X be a group with a weak Phan system. De�ne the amalgam A =

S

1�i<j�n

U

ij

, as

found in X . For the general onept of a group amalgam see [S℄; we deal with a more restrited

notion, as desribed, e.g., in [BS℄. The goal of the �rst stage is to establish the uniqueness of the

amalgam A, that is, that it is essentially the same for all groups X with a weak Phan system of

type B

n

. This step is proved uniformly for all Dynkin diagrams. The �rst ourrene of this proof

was in [BS℄, where the ase of weak Phan systems of type A

n

was dealt with. That original proof

applies to all simply-laed diagrams. The proof was modi�ed in [G1℄ to inlude the double bonds,

and in this modi�ed form it applies also to the diagrams B

n

, C

n

, and F

4

. There is also an even

more general treatment in [D℄. Beause of all of this, we do not inlude details of the �rst stage

in the present paper.

One the uniqueness of A is known, it must be the amalgam found in the known example,

Spin(2n + 1; q). We observe that an arbitrary group X , having a weak Phan system of type B

n

,

ontains a opy of A, and so X must be isomorphi to a fator group of the universal ompletion

U(A) of A. Thus, the main result follows if we prove that A ontains enough relations to de�ne

Spin(2n + 1; q). More preisely, it needs to be shown that the universal ompletion U(A) of A

oinides with Spin(2n+1; q); for the de�nition of the universal ompletion see, for example, [BS℄.

This is the seond stage, and the proof here onsists of two steps. First we de�ne D

i

= N

U

i

(U

j

),

where j is a neighbour of i in the diagram (it turns out that D

i

is independent of the neighbour j).

Let D = D

1

D

2

� � �D

n

(e.g., as subgroups of Spin(2n+1; q), where this produt is diret). Let also

b

U

i

= U

i

D and

b

U

ij

= U

ij

D for all 1 � i < j � n. It turns out that the amalgam

b

A =

S

1�i<j�n

b

U

ij

has exatly the same universal ompletion as A. The proof of this step is again idential for all

diagrams; in fat, it is a very general statement, f. Lemma 29.3 of [GLS℄. So we again skip

the details of this step in the present paper. It remains to show that the universal ompletion

of

b

A oinides with Spin(2n + 1; q), whih is the seond step of the seond stage. For this, we

observe that

b

A is the amalgam of rank one and two parabolis for Spin(2n + 1; q) ating ag-

transitively on the orresponding ipop geometry �. (For the geometri terminology see Setion

3; for an overview over the topi of ipop geometries see [BGHS℄ or [G2℄.) By Tits' Lemma (see

[T℄, also Corollary 1.4.6 of [IS℄, or, in a more general form, Corollary 3.2 of [GVM℄) the group

Spin(2n+1; q) is the universal ompletion of

b

A if and only if � and all its residues of rank at least

three are simply onneted. Thus, the proof is ahieved via the study of �. This part is the only

part that is individual for eah diagram; and this is exatly what we do in the present paper for

the ase of the diagram B

n

. (We would like to mention that reently a building-theoreti method

has been found to treat all spherial diagrams simultaneously, inluding the exeptional ones, over

suÆiently large �nite �elds, see [DM℄ and [GHMS℄.)

We now de�ne � and state the result that we prove about �. Sine � is the ipop geometry

related to a unitary ip, the initial setup involves the �eld F

q

2

. Let V be the natural module

of the group G

�

=

S
(2n + 1; q

2

), q odd, with the nondegenerate symmetri bilinear form (�; �)

and the orresponding quadrati form f . Let � be an involutory semilinear transformation of V ,

3



satisfying (�(u); �(v)) = (u; v) = (u; v)

q

. We will show, see Proposition 2.10, that G

�

= C

G

(�)

is isomorphi to SO(2n+ 1; q). The ipop geometry � onsists of those singular subspaes of V

that trivially interset the polar of their images under �; see Proposition 3.1 for an alternative

desription of �. Clearly G

�

ats on � and this also leads to the ation of Spin(2n + 1; q) on �,

sine the latter group is a double over of the index two subgroup G

0

�

�

=

S
(2n+ 1; q) of G

�

.

Theorem Let q � 3 be odd and let n � 2. Then the following hold.

(i) � is a rank n geometry, on whih G

�

�

=

SO(2n + 1; q) and its index two subgroup G

0

�

�

=

S
(2n+ 1; q) at as ag-transitive groups of automorphisms.

(ii) � is residually onneted for q � 5.

(iii) � is simply onneted for n � 4 and for n = 3 and q � 5.

This theorem, together with the results of [BS℄, implies that all residues of � of rank at least

three are simply onneted, provided that q � 5. For q = 3, it implies that all residues of rank at

least four are simply onneted, leading to Main Theorem B. The ases n = 3 and 5 � q � 9 are

dealt with in the seond part [Part2℄ omputationally. In the present paper we thus assume that

q � 11 if n = 3. For n = 3 and q = 3 there exists a ounterexample to the onlusion of part (iii)

of the Theorem. Namely, the universal over of � is �nite of degree 3

7

, see [Part2℄ for the details.

Aknowledgements: The researh for this artile was �nished during an RiP-stay at the Mathe-

matishes Forshungsinstitut Oberwolfah (MFO), and the authors would like to express their

gratitude for the hospitality of the MFO. The authors would also like to express their gratitude

to Max Horn for a areful proof-reading of the present paper.

2 Unitary ips

Let G = S
(2n+1; q

2

), q odd, let V be its natural module, and let (�; �) be the symmetri bilinear

form on V . Let�: a 7! �a = a

q

be the involutory automorphism of F

q

2

. By a unitary ip we mean

a semilinear transformation � of V satisfying the following onditions:

(F1) �(av) = �a�(v) for all a 2 F

q

2

and v 2 V ;

(F2) � semi-preserves (�; �) up to a salar; that is, (�(u); �(v)) = a(u; v) for some a 2 F

q

2

and all

u; v 2 V ;

(F3) �

2

is a salar transformation; that is, �

2

(v) = bv for some b 2 F

q

2

and all v 2 V .

The following is the main result of this setion.

Proposition 2.1 Up to onjugation with an element of �O(2n+ 1; q

2

) and multipliation with a

salar, there exists a unique unitary ip � of V . This � has the additional property that �(U)\U =

f0g for at least one maximal totally singular subspae U of V .

Let � be a semilinear transformation of V satisfying (F1), (F2) and (F3). Clearly, every salar

multiple of � also satis�es these onditions.

Lemma 2.2 There exists  2 F

q

2

suh that (�)

2

= Id.

Proof. By (F3) we have that �

2

= b � Id for some b 2 F

q

2

. We laim that, in fat, b 2 F

q

.

Indeed, on one hand, �

3

(v) = �

2

(�(v)) = b�(v), where v 2 V nf0g. On the other hand, �

3

(v) =

�(�

2

(v)) = �(bv) =

�

b�(v). Sine �(v) 6= 0, we onlude that b 2 F

q

. By surjetivity of the

norm map F

q

2

! F

q

, there exists  2 F

q

2

, suh that b

�1

= 

q+1

= �. Let �

0

= �. Then

(�

0

)

2

(v) = �(�(v)) = ��

2

(v) = b

�1

bv = v for all v 2 V . �

Beause of this lemma we assume from now on that
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(F3') �

2

= Id.

Notie that this ondition does not speify � uniquely among its salar multiples. More pre-

isely, (�)

2

= Id if and only if � = 1. Sine � = 

q+1

, the �eld F

q

2

ontains exatly q + 1 suh

salars . Next, we hoose among the salar multiples of the form (�; �), one that �ts our � best.

For d 2 F

q

2

nf0g let (�; �)

0

:= d(�; �). Clearly, (�; �)

0

an be used in plae of (�; �), as it de�nes the

same building geometry and the same orthogonal group. Furthermore, � semi-preserves (�; �)

0

, up

to a salar.

Lemma 2.3 There exists d 2 F

q

2
suh that the orresponding form (�; �)

0

= d(�; �) is semi-preserved

by �; that is, (�(u); �(v))

0

= (u; v)

0

for all u; v 2 V .

Proof. Sine � semi-preserves (�; �) up to a salar, there exists a 2 F

q

2

suh that (�(u); �(v)) =

a(u; v) for u; v 2 V . Notie that (u; v) = (�

2

(u); �

2

(v)) = a(�(u); �(v)) = aa(u; v) = a�a(u; v).

Hene a�a = 1, that is, a

q+1

= 1. This means that there exists d 2 F

q

2

suh that a = d

q�1

=

�

d

d

. For

the orresponding form (�; �)

0

we have (�(u); �(v))

0

= d(�(u); �(v)) = (da)(u; v) =

�

d(u; v) = (u; v)

0

.

�

In view of this lemma we assume in what follows that

(F2') (�(u); �(v)) = (u; v) for all u; v 2 V .

Notie that a multiple � of � semi-preserves this (�; �) if and only if 

2

= 1. Thus, �� is the

only other multiple of � that semi-preserves (�; �). Notie also that �� squares to the identity, just

like �. Finally, � semi-preserves a nonzero multiple d(�; �) of (�; �) if and only if 1 =

�

d

d

= d

q�1

, that

is, if and only if d is a nonzero element of F

q

.

De�nition 2.4 For u; v 2 V , let

((u; v)) := (u; �(v)):

Moreover, let f(v) := (v; v) and g(v) := ((v; v)).

Clearly, ((�; �)) is a nondegenerate sesquilinear form on V . Perpendiularity with respet to

(�; �) will be denoted by ?, while perpendiularity with respet to ((�; �)) will be denoted by ??. A

subspae of V degenerate (respetively, nondegenerate) with respet to (�; �) and f will be alled

f -degenerate (respetively, f -nondegenerate), and similarly for ((�; �)) and g. Notie that a �-

invariant subspae is f -degenerate if and only if it is g-degenerate, so for suh a subspae we an

speak simply of degeneray or nondegeneray.

Lemma 2.5 The form ((�; �)) is Hermitian. It is semi-preserved by � in the sense that ((�(u); �(v))) =

((u; v)).

Proof. Indeed, ((v; u)) = (v; �(u)) = (�(v); �

2

(u)) = (�(v); u) = (u; �(v)) = ((u; v)). Thus

((�; �)) is Hermitian. Sine ((�(u); �(v))) = (�(u); �

2

(v)) = (u; �(v)) = ((u; v)), we also see that �

semi-preserves ((�; �)). �

Let V

�

= C

V

(�) = fv 2 V j�(v) = vg. We all V

�

the model spae. If U is a �-invariant

subspae of V then U

�

= fu 2 U j�(u) = ug = U \ V

�

will be alled the model of U .

Lemma 2.6 The map U 7! U

�

is a dimension-preserving bijetion between all �-invariant sub-

spaes of V and all subspaes of the F

q

-spae V

�

.

Proof. Sine � is F

q

-linear, V

�

is a vetor spae over F

q

. Suppose u

1

; : : : ; u

k

is the smallest

linearly independent subset of V

�

that is linearly dependent over F

q

2

, and let a

1

u

1

+ � � �+a

k

u

k

= 0

be a nontrivial linear dependene. Notie that we an assume a

1

= 1 and, furthermore, that at least

one oeÆient a

i

is not ontained in F

q

. Applying �, we get a seond relation �a

1

u

1

+� � �+�a

k

u

k

= 0,
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whih is not a salar multiple of the �rst relation. Using the seond relation we an exlude at least

one vetor from the �rst relation, yielding a ontradition with the minimality of the set u

1

; : : : ; u

k

.

Thus, every linearly independent subset of V

�

is also independent over F

q

2
. To omplete the proof

of the seond laim, it remains to show that U

�

spans U . Let m be the dimension of U . Consider

U as a vetor spae over F

q

of dimension 2m and � as an F

q

-linear endomorphism of U . Sine

q is odd and �

2

= Id, the subspae U is the diret sum of the eigenspaes of � orresponding to

the eigenvalues 1 and �1. The �rst eigenspae is U

�

, the seond one is U

��

. By the above, the

dimension of U

�

is at most m. Sine �� semi-preserves (�; �) and sine (��)

2

= Id, we also have

that the dimension of U

��

is at most m. It follows that the dimensions of both eigenspaes are

m. Thus, every basis of U

�

is a basis of U over F

q

2

. �

In partiular, the dimension of V

�

is 2n + 1 and every basis of V

�

is a basis of V over F

q

2
.

It follows from the de�nition of ((�; �)) that its restrition to V

�

oinides with the restrition of

(�; �). Hene also the forms f and g agree on V

�

. Beause of this, we an speak of singular vetors

and subspaes instead of f - or g-singular, and similarly for all other properties of vetors and

subspaes of V

�

.

The next two lemmas are onsequenes of Lemma 2.6.

Lemma 2.7 The restritions of (�; �) on V

�

is a nondegenerate bilinear form over F

q

.

Proof. Clearly, (�; �) is F

q

-bilinear. For u; v 2 V

�

, we have that (u; v) = (�(u); �(v)) = (u; v).

Hene the values of (�; �) on V

�

belong to F

q

. Finally, the restrition of (�; �) to V

�

is nondegenerate

beause V

�

ontains a basis of V . �

Lemma 2.8 If U

1

and U

2

are �-invariant subspaes of V with U

1

� U

2

then U

2

ontains a

�-invariant omplement to U

1

.

Proof. Indeed, W an be hosen so that W

�

is a omplement to (U

2

)

�

in (U

1

)

�

. �

Proof of Proposition 2.1. Suppose � and �

0

are two semi-linear transformations of V ,

satisfying (F1), (F2'), and (F3') with respet to (�; �) and (�; �)

0

, respetively. Suppose further that

(�; �)

0

is a salar multiple of (�; �). Sine in odd dimension all nondegenerate symmetri bilinear

forms are isometri, up to a possible non-square fator, f. [C℄, [K℄, we an assume that we have

a bijetive linear map  : V

�

! V

�

0

, suh that ( (u);  (v))

0

= (u; v) for all u; v 2 V

�

and a �xed

 2 F

q

. Extend  by F

q

2

-linearity to the entire spae V . The resulting mapping is a bijetive

endomorphism of V and it preserves (�; �), up to a salar. It also onjugates � to �

0

.

Thus, all suh �'s are onjugate. It remains to show that � takes some maximal totally singular

subspae U to an opposite maximal totally singular subspae, that is, �(U) \ U = 0. Sine the

dimension of V is odd, we may assume without loss of generality that the determinant of the Gram

matrix of (�; �) is a square. Then a basis e

1

; f

1

; : : : ; e

n

; f

n

; x exists suh that, for all 1 � i; j � n,

we have (e

i

; e

j

) = 0 = (f

i

; f

j

) = (e

i

; x) = (f

i

; x), (e

i

; f

j

) = Æ

i;j

, and (x; x) = 1. Set �

0

(e

i

) = f

i

,

�

0

(f

i

) = e

i

, �

0

(x) = x, and extend by semi-linearity to the entire V . This �

0

satis�es (F1), (F2'),

and (F3'). By the above, our initial � is onjugate to �

0

up to a salar fator. Sine �

0

manifestly

takes U = he

1

; : : : ; e

n

i to �

0

(U) = hf

1

; : : : ; f

n

i, the last laim of Proposition 2.1 follows as well. �

A �-point in V is a 1-dimensional subspae U = hui suh that u is f -singular and g-nonsingular.

Lemma 2.9 Suppose U is a �-invariant nondegenerate subspae of V of dimension at least two.

Then U ontains no �-point if and only if dimU = 2 and U

�

is of plus type in V

�

.

Proof. Suppose �rst that U is 2-dimensional. Sine the restrition of (�; �) to U

�

is a bilinear

form over F

q

, we have that U is of plus type. In partiular, U ontains exatly two 1-dimensional

f -singular subspaes, and they are not perpendiular to eah other. Sine � takes an f -singular

vetor again to an f -singular vetor, U ontains a �-point if and only if � interhanges the two

f -singular subspaes. Equivalently, U ontains no �-point if and only if both f -singular subspaes
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of U are �-invariant. The latter ondition means that the intersetions of the two f -singular

subspaes with U

�

are nontrivial, that is, the restrition of (�; �) to U

�

is of plus type. Thus, the

laim of the lemma holds when dimU = 2.

If dimU � 3 then U

�

ontains a subspae X that is nondegenerate of minus type. By Lemma

2.6, we have X = W

�

for some �-invariant subspae W � U . By the above, W (and hene also

U) ontains a �-point. �

Let us now return to the proof of Proposition 2.1. A basis e

1

; : : : ; e

n

; f

1

; : : : ; f

n

; x as in this

proof is alled a standard basis of V with respet to (�; �) and �. That is, a standard basis satis�es

the following onditions: for all 1 � i; j � n, we have (e

i

; e

j

) = 0 = (f

i

; f

j

) = (e

i

; x) = (f

i

; x),

(e

i

; f

j

) = Æ

i;j

, and (x; x) = 1. Furthermore, �(e

i

) = f

i

(and hene �(f

i

) = e

i

for all i), and

�(x) = x. Suppose (�; �) and � satisfy (F1), (F2'), and (F3'). Does it mean that a standard basis

exists in V ? Not neessarily. Indeed, given a standard basis, set E

i

= he

i

; f

i

i, i = 1; : : : ; f

i

, and

X = hxi. Then V

�

deomposes as the orthogonal diret sum of all (E

i

)

�

and X

�

. Sine E

i

ontains

�-points (namely, he

i

i and hf

i

i), eah summand (E

i

)

�

is of minus type in V

�

. Notie that x 2 X

�

.

This means that the disriminant of (�; �) on V

�

(determinant of the Gram matrix of (�; �) with

respet to an arbitrary basis of V

�

, taken modulo the squares in F

�

q

) is ongruent to (��)

n

. Here

� is an arbitrary non-square in F

q

. It is easy to reverse this argument and establish that standard

bases exist if and only if the disriminant of (�; �) on V

�

is ongruent to (��)

n

. Sine the dimension

of V is odd, by taking, if neessary, (�; �)

0

= �(�; �) in plae of (�; �), we may assume without loss

of generality that the ongruene ondition is satis�ed for (�; �) and �, and hene standard bases

exist. This assumption stays throughout the remainder of the paper.

Conjugation by � is an automorphism of G = S
(2n+1; q

2

). Let G

�

be the entralizer of � in

G. The above setup gives us means to identify G

�

. Let H be the group of linear transformations

of V

�

of determinant one, preserving (the restrition of) the form (�; �). By Lemma 2.6, the group

H is isomorphi to SO(2n+1; q). Sine V

�

ontains a basis of V , we an use F

q

2

-linearity to extend

the ation of the elements of H to the entire V . This allows us to identify H with a subgroup

of SO(V; f). Notie that under this identi�ation H is ontained in S
(V; f) = G. Indeed, every

element of H an be written as a produt of reetions in the nonsingular vetors v 2 V

�

. Sine

f(v) 2 F

q

is a square in F

q

2

, every element of H lies in S
(V; f).

Proposition 2.10 G

�

= H

�

=

SO(2n+ 1; q).

Proof. Choose a basis fw

1

; : : : ; w

2n+1

g in V

�

. Then this set is also a basis of V . Let h 2 H .

If u =

P

2n+1

i=1

x

i

w

i

2 V then h�(u) = h

�

P

2n+1

i=1

�x

i

w

i

�

=

P

2n+1

i=1

�x

i

h(w

i

). On the other hand,

�h(u) = �

�

P

2n+1

i=1

x

i

h(w

i

)

�

=

P

2n+1

i=1

�x

i

h(w

i

). Therefore, H � G

�

. Now take h 2 G

�

. If u 2 V

�

then �h(u) = h�(u) = h(u). This proves that h leaves V

�

invariant. Hene h indues on V

�

an

F

q

-linear transformation of determinant one, that preserves the restrition of (�; �). That is, h 2 H .

�

In what follows, G

0

�

denotes the index two subgroup of G

�

isomorphi to S
(2n+ 1; q).

3 The ipop geometry

Geometries

In this setion we give a brief rundown of the basi terminology of syntheti geometry. For a

omprehensive introdution into the subjet, refer to [BC℄.

Let I be a �nite set, alled the set of types. Its elements as well as its subsets are alled

types. Let � = (X; �; typ) be a triple where X is a set, � � X �X is a symmetri and reexive

relation and typ : X ! I is a map, suh that, for x; y 2 X we have x = y if and only if x � y

and typ(x) = typ(y). Then � is alled a pregeometry over I . The elements of X are alled the

elements of �, the relation � is alled the inidene relation of �, the map typ is alled the type

funtion of �.
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Let � = (X; �; typ) be a pregeometry over I . If A � X , then A is of type typ(A) � I , of otype

Intyp(A), of rank jtyp(A)j, and of orank jIntyp(A)j. The rank of A is also denoted by rk(A).

The ardinality jI j of I is alled the rank of �.

A ag F of a pregeometry � is a set of mutually inident elements of �. Notie that typ

jF

:

F ! I is a injetion. A maximal ag of � is a ag that is maximal with respet to inlusion.

Flags of type I are alled hambers. A geometry over I is a pregeometry � over I in whih every

maximal ag is a hamber.

Let F be a ag of �, say of type J � I . Then the residue �

F

of F is the geometry

(X

0

; �

jX

0

�X

0
; typ

jX

) over InJ , with X

0

:= fx 2 X j F [ fxg is a ag of � and typ(x) =2 typ(F )g.

The geometry � is onneted if the graph (X; �) is onneted. The geometry � is residually

onneted if for any ag F of orank at least two the residue �

F

is onneted.

If � = (X; �; typ) and �

0

= (X

0

; �

0

; typ

0

) are two geometries, over I and I

0

, respetively, with

I \ I

0

= ;, then the diret sum � � �

0

is the geometry (X [ X

0

; �

00

; typ [ typ

0

) over I t I

0

, with

�

00

jX

= �, �

00

jX

0

= �

0

and (X �X

0

) � �

00

.

A group G of automorphisms of some pregeometry � is alled ag-transitive if for eah pair

F

1

; F

2

of ags of the same type there exists a g 2 G suh that g(F

1

) = F

2

. Notie that for

a geometry � this ondition is equivalent to the ondition that G is transitive on the set of

hambers.

The ipop geometry of type B

n

We will use the notation from Setion 2. In partiular, V is a nondegenerate orthogonal spae over

F

q

2

, of dimension 2n+ 1, with the bilinear form (�; �) and quadrati form f . The semilinear map

� is a (unitary) ip with the orresponding Hermitian form ((�; �)) and unitary form g. Also, G is

isomorphi to S
(2n+1; q

2

). Furthermore, G

�

is the entralizer C

G

(�) of � in G. The group G

�

is

isomorphi to SO(2n+1; q) and G

0

�

is the index two subgroup of G

�

, isomorphi to S
(2n+1; q).

Throughout this setion, we assume n � 2. Let B be the building geometry assoiated with

G. The elements of B of type i = 1; 2; : : : ; n are the f -singular subspaes of V of dimension i.

Inidene is given by symmetrized ontainment. We will use the ustomary geometri terminology.

In partiular, points, lines, and planes are subspaes of a vetor spae of dimension 1, 2, and 3,

respetively.

Let � be the pregeometry onsisting of those nontrivial f -singular subspaes of V that do not

interset the polar of their image under �. (See [BGHS℄ for an explanation why this is a natural

objet to onsider.) The pregeometry � is alled the ipop geometry of B assoiated with �.

Alternatively, we an desribe the ipop geometry � as follows.

Proposition 3.1 The elements of � are all subspaes f0g 6= U ( V , whih are f-singular and

g-nondegenerate.

Proof. We have U

??

= �(U

?

). Hene, if X is the g-radial of U , we have X = U \ U

??

=

U \ �(U

?

). Therefore X = f0g if and only if U \ �(U

?

) = f0g. �

We remark that the �-points, as de�ned in the preeding setion, are just the points of �. We

now establish that � is, in fat, a geometry.

Proposition 3.2 The pregeometry � is a geometry of rank n. Moreover, G

�

and G

0

�

at ag-

transitively on �.

Proof. For the �rst laim we need to show that a maximal ag F in � ontains elements of

all types. If F ontains an element of type i then, learly, it also ontains elements of all types

less than i. Suppose m is the highest type present in F , and let U be the element of type m in

F . Let W = hU; �(U)i and T = W

?

. Sine W is nondegenerate, so is T , and hene � is a ip of

T . Therefore, by Proposition 2.1 there exists a maximal f -singular subspae X in T , suh that

�(X)\X = f0g. The spae X has dimension n�m and thus hU;Xi is an element of � of type n

inident to eah element of F . This shows that � is a geometry.
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For the seond laim, let V

1

; V

2

; : : : ; V

n

and V

0

1

; V

0

2

; : : : ; V

0

n

be two hambers ordered by types.

Choose a base e

1

; : : : ; e

n

in V

n

that is orthonormal with respet to ((�; �)) and suh that V

i

=

he

1

; : : : ; e

i

i. Set f

i

:= �(e

i

), for i = 1; : : : ; n, and let x be hosen in hV

n

; �(V

n

)i

?

so that g(x) = 1

and �(x) = x. Suh an x exists sine the disriminant of (�; �) on V

�

is ongruent to (��)

n

, � a non-

square in F

q

(f. the disussion after Lemma 2.9). Indeed, the disriminant of (�; �) on hV

n

; �(V

n

)i

�

is also ongruent to (��)

n

, whih yields that the disriminant of (�; �) on the 1-dimensional spae

(hV

n

; �(V

n

)i

?

)

�

is ongruent to one. Hene x an be hosen as laimed.

Now, e

1

; : : : ; e

n

; f

1

; : : : ; f

n

; x is a standard basis for �. Choose a similar standard basis e

0

1

; : : : ; e

0

n

;

f

0

1

; : : : ; f

0

n

; x

0

for the seond hamber. Let h be a linear transformation of V that sends every e

i

to e

0

i

, every f

i

to f

0

i

, and x to x

0

. Clearly, h preserves (�; �) and hene it is an orthogonal transfor-

mation. Substituting x

0

with �x

0

, if neessary, we may assume that h has determinant one. Now

observe that h� and �h are both semilinear and their ations on the basis e

1

; : : : ; e

n

; f

1

; : : : ; f

n

; x

oinide. This means that h ommutes with �. In partiular, h ats on the model spae V

�

as an

orthogonal transformation of determinant one, and we onlude that h 2 H = G

�

. Manifestly, h

takes the �rst hamber to the seond one. Hene G

�

is ag-transitive on �.

In order to show that G

0

�

is also ag-transitive on � it suÆes to show that the stabilizer

in G

�

of a hamber F

1

is not ontained in G

0

�

. Let e

1

; : : : ; e

n

; f

1

; : : : ; f

n

; x be as above. Let

U = he

1

; : : : ; e

n�1

; f

1

; : : : ; f

n�1

i. The entralizer L of U in G

�

is isomorphi to SO(3; q) (ating on

U

?

= he

n

; f

n

; xi), while L \G

0

�

is the index two subgroup isomorphi to S
(3; q). Let D onsist

of all linear transformations d

�

, � 2 F

q

2

, �

�

� = 1, entralizing U and ating on U

?

as follows:

d

�

(e

n

) = �e

n

, d

�

(f

n

) =

�

�f

n

, and d

�

(x) = x. Then D is a yli group of order q+1 that stabilizes

the hamber F

1

. Clearly, D � L, but D 6� L \G

0

�

�

=

S
(3; q)

�

=

PSL(2; q). �

We now ollet some useful lemmas to be applied later.

Lemma 3.3 Let p be a point of � and W � p be a 3-dimensional f-singular subspae of V of

g-rank at least two. Let U be a 2-dimensional subspae of W that ontains at least one point of �

and does not ontain p. Then U ontains at least q

2

� 2q� 1 (respetively, q

2

� q� 1) points of �

that are ollinear with p if it is (respetively, is not) a line.

Proof. This is Lemma 4.4 of [GHNS℄. �

Lemma 3.4 Let W be a 3-dimensional f-nondegenerate subspae of V that is not g-singular.

Then W ontains at least q

2

� 2q � 1 points of �.

Proof. Sine (�; �) is nondegenerate onW , we an hoose a basis fe

1

; f

1

; xg inW for whih either

(�; �) or (�; �)

0

= �(�; �) (� a non-square in F

q

2
) has the following Gram matrix:

0

�

0 1 0

1 0 0

0 0 1

1

A

:

A simple alulation shows that e

1

+ af

1

+ bx is f -singular if and only if a =

�b

2

2

. The vetor f

1

and the q

2

vetors e

1

�

b

2

2

f

1

+ bx represent all f -singular 1-dimensional subspaes of W . Now,

g(e

1

�

b

2

2

f

1

+ bx) = 0 if and only if

((e

1

; e

1

))�

�

b

2

2

((e

1

; f

1

)) +

�

b((e

1

; x)) �

b

2

2

((f

1

; e

1

)) +

b

2

�

b

2

4

((f

1

; f

1

))

+

b

2

�

b

2

((f

1

; x)) + b((x; e

1

) +

b

�

b

2

2

((x; f

1

)) + b

�

b((x; x)) = 0:

Sine

�

b = b

q

and not all the inner produts above an be 0 by hypothesis, the above yields that

g(e

1

+ �

b

2

2

f

1

+ bx) = 0 if and only if b satis�es a polynomial of degree 2q + 2 in b. Hene the

number of 1-dimensional subspaes of W that are simultaneously f - and g-singular is at most

2q + 2. Consequently, there are at least q

2

+ 1� (2q + 2) = q

2

� 2q � 1 points of � in W . �
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Lemma 3.5 Let W be a subspae of V ontaining a vetor u suh that g(u) 6= 0. De�ne a unitary

form g

1

on W via g

1

(w) = g(pr

u

??

(w)), where pr

u

??

denotes the orthogonal (with respet to ((�; �)))

projetion onto u

??

. Then for, w 2W n hui, the 2-dimensional subspae hu;wi is g-nondegenerate

if and only if g

1

(w) 6= 0.

Proof. Indeed, u and pr

u

??

(w) form an orthogonal basis of hu;wi, and the Gram matrix of

((�; �)) with respet to this basis has determinant g(u)g(pr

u

??

(w)) = g(u)g

1

(w). �

Now we turn to the question of onnetedness of �. In the ase n = 2 we have B

2

= C

2

, so we

an apply the results from [GHS℄ and obtain that � is onneted.

Lemma 3.6 Let q � 5 and n = 3. Then the ollinearity graph of � has diameter two.

Proof. Let p

1

and p

2

be points of �. If p

1

6? p

2

, then the 5-dimensional spae hp

1

; p

2

i

?

is f -

nondegenerate and has g-rank at least four. Hene hp

1

; p

2

i

?

ontains an f -isotropi 2-dimensional

subspae that has g-rank at least one, f. Lemma 6.2 of [GHNS℄. By Lemma 3.3 this subspae

ontains q

2

� 3q � 2 points of � ollinear to p

1

and p

2

. If p

1

? p

2

, then hp

1

; p

2

i is ontained in

an f -totally isotropi 3-dimensional subspae that has g-rank at least two, and again Lemma 3.3

applies. �

Proposition 3.7 Let q � 5 and n = 3, or let n � 4. Then the ollinearity graph of � has diameter

two.

Proof. The �rst ase was overed by the preeding lemma. If n � 4 and p

1

, p

2

are two points of

� then hp

1

; p

2

; p

�

1

; p

�

2

i

?

is at least 5-dimensional of rank at least three. Its radial is �-invariant,

so one an �nd a 3-dimensional subspae as in Lemma 3.4. That subspae ontains a ommon

neighbour of p

1

and p

2

. �

4 Simple onnetedness

Homotopies

Considering the ag omplex of a geometry of rank n as an n-dimensional simpliial omplex, we

an use notions from ombinatorial topology, f. [ST℄.

Let G be a onneted geometry. A path of length k in the geometry is a sequene of elements

(x

0

; : : : ; x

k

) suh that x

i

and x

i+1

are inident, 0 � i � k � 1. A yle based at an element x

is a path in whih x

0

= x

k

= x. Two paths are homotopially equivalent if one an be obtained

from the other via the following operations (alled elementary homotopies): inserting or deleting

a repetition (i.e., replaing x by xx or vie versa), a return (i.e., replaing x by xyx or vie

versa), or a triangle (i.e., replaing x by xyzx or vie versa). The equivalene lasses of yles

based at an element x form a group under the operation indued by onatenation of yles. This

group is alled the fundamental group of G and denoted by �

1

(G; x). A yle based at x that is

homotopially equivalent to the trivial yle (x) is alled null-homotopi. Every yle of length

two or three is null-homotopi.

Suppose G and

b

G are geometries over the same type set and suppose � :

b

G ! G is a homomor-

phism of geometries, i.e., � preserves the types and sends inident elements to inident elements.

A surjetive homomorphism � between onneted geometries

b

G and G is alled a overing if and

only if for every non-empty ag

b

F in

b

G the mapping � indues an isomorphism between the residue

of

b

F in

b

G and the residue of F = �(

b

F ) in G. Coverings of a geometry orrespond to the usual

topologial overings of the ag omplex. It is well-known that a surjetive homomorphism �

between onneted geometries

b

G and G is a overing if and only if for every element bx in

b

G the

map � indues an isomorphism between the residue of bx in

b

G and the residue of x = �(bx) in G. If

� is an isomorphism, then the overing is said to be trivial.

10



Reall the well-known fat (see, e.g., Chapter 8 of [ST℄) that if G is a onneted geometry and

x an element of G, then every overing of the geometry G is trivial if and only if �

1

(G; x) is trivial.

A geometry satisfying the above equivalent onditions is alled simply onneted. A geometri

yle in the geometry G is a yle eah element of whih is inident with a ommon element x. A

geometri yle  is null-homotopi, beause  and x form a one.

Simple onnetedness of the ipop geometry

Retain the notation from Setion 3. In partiular, � denotes the ipop geometry. By the following

lemma, it suÆes to study the ollinearity graph of � instead of the inidene graph when proving

simple onnetedness.

Lemma 4.1 Let q � 5 and n = 3, or let n � 4. Then every yle in the inidene graph of �

is homotopially equivalent to a yle in the inidene graph of � passing only through points and

lines.

Proof. Idential to the proof of Lemma 5.1 in [GHS℄, whih essentially requires a residually

onneted geometry with a string diagram. See also Lemma 5.4 in [GHNS℄. �

Therefore, in order to prove simple onnetedness of the geometry, it suÆes to analyze the

point-line inidene graph of �, and, thus, the ollinearity graph of �. Sine by Lemma 3.7 the

ollinearity graph has diameter two, we only have to study triangles, quadrangles and pentagons

in it.

Let us �rst onsider n � 4. Reall that q is odd. Note that the spae generated by the three

points of a triangle is f -singular and of g-rank at least two. If the g-rank is three then the triangle

is geometri.

Lemma 4.2 Any triangle an be deomposed into geometri triangles.

Proof. Let p

1

; p

2

; p

3

be a triangle. If hp

1

; p

2

; p

3

i is nondegenerate then the triangle is geometri

and there is nothing to prove. So we an assume that hp

1

; p

2

; p

3

i is degenerate. Sine hp

1

; p

2

i is

a line, the g-radial r of hp

1

; p

2

; p

3

i an only be 1-dimensional. We need to onsider two separate

ases.

If hri

�

= hri then W = hp

1

; p

2

; p

3

; p

�

1

; p

�

2

; p

�

3

i is 5-dimensional and W

?

is (2n� 4)-dimensional

of g-rank 2n � 5 � 3. Therefore, every �-invariant omplement W

?

to its radial satis�es the

assumptions of Lemma 2.9. Hene, W

?

ontains a point p of �. The geometri triangles p, p

1

, p

2

and p, p

1

, p

3

and p, p

2

, p

3

deompose p

1

, p

2

, p

3

.

If hri

�

6= hri then let W = hp

1

; p

2

; p

�

1

; p

�

2

i, whih is �-invariant and nondegenerate. Both r

and r

�

are in W

?

, and the latter is a (2n � 3)-dimensional nondegenerate subspae. Consider

U =W

?

\r

??

, whih is a spae of dimension 2n�4. Pik a a vetor s 2 U suh that s is f -singular

and hs; ri is f -nondegenerate. Then V

0

= hp

1

; p

2

; p

�

1

; p

�

2

; r; r

�

; s; s

�

i is an 8-dimensional �-invariant

nondegenerate subspae, on whih � ats as a ip (beause hp

1

; p

2

; r

�

; si satis�es ondition (F4b)

of Corollary 3.7 in [GHNS℄) and so we an use the result in [GHNS℄ to see that the triangle an

be deomposed in V

0

, hene also in V . �

Lemma 4.3 All quadrangles are null-homotopi.

Proof. The proofs of Lemmas 6.4 { 6.6 of [GHNS℄ work in this ase. �

Lemma 4.4 All pentagons are null-homotopi.

Proof. Let a; b; ; d; e be a pentagon. As in Lemma 6.7 from [GHNS℄, if a ?  and a ? d, then

the line h; di ontains q

2

� 2q � 1 > 0 points that are ollinear to a.

11



We an therefore assume that a 6? d and  6? e and onlude that the spae ha; b; ; d; ei has

f -rank at least four and g-rank at least two. Therefore the spae W = ha; b; ; d; ei

?

is a (2n� 4)-

dimensional spae of f -rank at least 2n� 6 and not g-singular. It will then ontain a point w of

�, and w will be ollinear with at least one point on eah of ha; bi, hb; i, h; di, hd; ei, and he; ai,

deomposing the pentagon into quadrangles. �

This ompletes the proof of the following

Proposition 4.5 Let n � 4. Then the ipop geometry � is simply onneted.

Now onsider the ase n = 3. Again, we will �rst deompose the triangles.

Lemma 4.6 Every nongeometri triangle an be deomposed as a sum of triangles that have two

g-orthogonal verties.

Proof. Let p

1

; p

2

; p

3

be a triangle and let r be the g-radial of hp

1

; p

2

; p

3

i. Consider v 2

p

??

1

\ hp

2

; p

3

i. If v is g-singular then the 2-dimensional subspae hp

1

; vi is g-degenerate, so it must

ontain r, whih implies that hvi = hri, ontraditing the fat that hp

2

; p

3

i is a line of �. Therefore

v must be g-nonsingular. As before, hp

1

; vi is degenerate only if it ontains r. However, that would

mean that p

1

is in the g-radial of hr; vi, a ontradition. Therefore, the initial triangle an be

deomposed into the two triangles p

1

; v; p

2

and p

1

; v; p

3

. �

Lemma 4.7 Let q � 7. Then all triangles an be deomposed into geometri triangles.

Proof. By the preeding lemma we an restrit our attention to the triangles having g-orthogonal

verties. Sine the group G

�

ats transitively on pairs of points that are orthogonal with respet

to both forms, we may assume that our triangle has e

1

and e

2

as two of its verties. It then follows

that its g-radial hri lies in the spae he

3

; f

3

; xi. Let the third vertex of the triangle be hvi, where

v = �e

1

+ �e

2

+ r with �; � 6= 0, and assume that r = e

3

+ Æf

3

+ "x. The onditions on r give

0 = (r; r) = 2Æ + "

2

and 0 = ((r; r)) = � + Æ

�

Æ + "�". Reall that q is odd, whene 2 is invertible,

and notie that Æ = 0 would imply " = 0 whih is nonsense in view of the above hoie for the

radial r. So the �rst ondition gives  = �

"

2

2Æ

. Multiplying  with � we get � =

("�")

2

4Æ

�

Æ

, and hene

the seond ondition gives 0 =

("�")

2

4Æ

�

Æ

+ Æ

�

Æ + "�" =

1

4Æ

�

Æ

("�"+ 2Æ

�

Æ)

2

, thus � = Æ

�

Æ = �

"�"

2

. Note that

the entralizer of the pair e

1

, e

2

ats transitively on the f - and g-singular 1-dimensional subspaes

of he

3

; f

3

; xi and so we may assume that � = Æ

�

Æ is any �xed element of F

q

while � and � remain

onstant.

We will deompose the triangle (e

1

; e

2

; v) into a sum of seven geometri triangles by onstrut-

ing an otahedron whose verties are he

1

i, he

2

i, hvi, hf

3

i, hf

3

�



�

f

2

i, and hf

3

�



�

f

1

i and in whih

all sides exept (e

1

; e

2

; v) are geometri triangles.

The spae hf

1

; f

2

; f

3

i = hf

3

; f

3

�



�

f

2

; f

3

�



�

f

1

i is obviously an element of our geometry. Thus,

(f

3

; f

3

�



�

f

2

; f

3

�



�

f

1

) is a geometri triangle, one it is a triangle. For that we need f

3

�



�

f

2

and f

3

�



�

f

1

to be points and hf

3

�



�

f

2

; f

3

�



�

f

1

i a line. These three onditions are equivalent

to:

���+ � 6= 0;

�

�

� + � 6= 0; and

���+ �

�

� + � 6= 0:

Notie that (f

3

; e

1

; e

2

), (e

1

; f

3

; f

3

�



�

f

2

), and (e

2

; f

3

; f

3

�



�

f

1

) are geometri triangles, if

f

3

�



�

f

1

and f

3

�



�

f

2

are points. The vetors f

3

�



�

f

2

, e

1

, and �e

1

+ �e

2

+ r generate a totally

(�; �)-isotropi subspae, and the Gram matrix with respet to ((�; �)) on it is

0

�

1 +

�

�

�

�

0

�

Æ

0 1 ��

Æ � ��� + �

�

�

1

A

;
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whose determinant equals ���+ �

�

� +

����

�

�

�

+ � � Æ

�

Æ� ����

����

�

�

�

= �

�

� 6= 0 and so we only need

to verify that the sides are lines of �. The only nontrivial ondition omes from hf

3

�



�

f

2

; �e

1

+

�e

2

+ ri. Here the Gram matrix with respet to ((�; �)) is

�

1 +

�

�

�

�

�

Æ

Æ ���+ �

�

�

�

and so the ondition is ���+ �

�

� +

���

�

�

�

� + � � Æ

�

Æ = ���+ �

�

� +

���

�

�

�

� 6= 0.

Similarly the triangle (f

3

�



�

f

1

; e

2

; �e

1

+ �e

2

+ r) gives the ondition ���+ �

�

� +

�

�

�

���

� 6= 0.

The �nal triangle is (f

3

�



�

f

1

; f

3

�



�

f

2

; �e

1

+�e

2

+r). It is lear that under the above onditions

the sides are lines of �, so we only need to verify that the whole subspae is ((�; �))-nondegenerate.

The orresponding Gram matrix is

0

�

1 +

�

�

�

�

1

�

Æ

1 1 +

�

���

�

Æ

Æ Æ ��� + �

�

�

1

A

:

Computing its determinant we obtain 2Æ

�

Æ+���+ �

�

�+

����

�

�

�

+2�+

��

�

�

���

+

(�)

2

�

�

�

+

(�)

2

���

�����

�

�

� �

Æ

�

Æ�

�

�

�

�

�Æ

�

Æ

���

=

�

����

�

�

(��� + �

�

�)

2

, as � = Æ

�

Æ, and so the ondition for this to be a geometri

triangle is that ���+ �

�

� 6= 0 whih is not a new ondition.

To summarize, we an deompose the initial triangle into seven geometri triangles if there

exists a � 2 F

q

suh that:

� 6= 0;

���+ � 6= 0;

�

�

� + � 6= 0;

���+ �

�

� + � 6= 0;

���+ �

�

� +

�

�

�

���

� 6= 0;

���+ �

�

� +

���

�

�

�

� 6= 0:

If q � 7, suh a � an be found. �

We now deal with quadrangles.

Lemma 4.8 Let q � 5 and let (a; b; ; d) be a quadrangle with a ?  and b ? . Then a, b, , d

an be deomposed into triangles.

Proof. The span ha; b; ; di is f -totally isotropi, hene it is three-dimensional. By Lemma 3.3

there exist at least q

2

�3q�2 > 0 points on ha; bi ollinear to  and d, deomposing the quadrangle.

�

Lemma 4.9 Let q � 11 and let (a; b; ; d) be a quadrangle with a 6?  and b 6? d. Then there exists

a ommon neighbour of a, b, , d.

Proof. Consider the spae U = ha; b; ; di

?

. Then U is a 3-dimensional spae whih is nondegen-

erate with respet to f . If R denotes the g-radial of U , then R = Rad

g

(U) = Rad

g

(U

??

) =

Rad

g

((U

?

)

�

) = Rad

g

(ha; b; ; di

�

). The latter is at most 2-dimensional, so the g-rank of U

is at least one. Consider hU; ai and de�ne for u 2 U , as in Lemma 3.5, the unitary form

g

a

(u) = g(pr

a

??

(u)), where pr

a

??

(u) denotes the projetion of u onto a

??

via the diret sum

deomposition V = hai � a

??

. Note that U \ a

??

is at least 2-dimensional and annot be equal to

R. Indeed, dimR = 2 and a??R imply a ? R

�

, whene R

�

� a

?

\U

?

= a

?

\ha; b; ; di = ha; b; di,
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ontraditing the fat that the g-rank of ha; b; di is at least two, as it ontains lines of �. Therefore

g

a

is nontrivial on U . Similarly, g

b

, g



, g

d

are nontrivial on U , so using Lemma 3.4, there are at

least q

2

� 10q � 9 > 0 points that are non-isotropi with respet to g, g

a

, g

b

, g



, g

d

and, thus,

ollinear to a, b, , and d. Hene we are done. �

Lemma 4.10 Let q � 5 and let (a; b; ; d) be a quadrangle with a 6?  and b ? d. Then there exists

a point p ollinear to a, , suh that b 6? p and d 6? p.

Proof. Consider the spae W = ha; i

?

whih is an f -nondegenerate 5-dimensional spae of

g-rank at least four. Pik a point t 2 � that is ollinear with both a and , but is di�erent from

b; d. Now pik s 2W suh that s is f -singular, t ? s, but b 6? s and d 6? s. Indeed, this is possible,

beause hti

?

6= hbi

?

and hti

?

6= hdi

?

. Now Lemma 3.3 implies that the spae hs; ti ontains

at least q

2

� 3q � 2 points of �, that are ollinear to a and . Moreover, sine hsti 6� hbi

?

and

hsti 6� hdi

?

, it follows that hs; ti ontains at least q

2

� 3q � 4 points satisfying the onlusion of

the lemma. Sine q � 5, the onlusion follows. �

We have proved the following.

Lemma 4.11 Let q � 11. Then any quadrangle an be deomposed into triangles. �

Finally we need to onsider pentagons.

Lemma 4.12 Any pentagon (a; b; ; d; e) with a ?  and a ? d an be deomposed into triangles

and quadrangles.

Proof. By Lemma 3.3, the line h; di ontains q

2

�2q�1 points of � ollinear to a, deomposing

the pentagon. �

Lemma 4.13 Let q � 5. Then any pentagon an be deomposed into triangles and quadrangles.

Proof. In view of Lemma 4.12, we will assume that the pentagon is a, b, , d, e with a 6? d.

The idea is to redue to the ase in Lemma 4.12. We onstrut a point d

0

ollinear to both  and

e and suh that d

0

? a, deomposing the pentagon into the sum of the pentagon a, b, , d

0

, e and

the quadrangle , d, e, d

0

.

Note that if X is the f -radial of ha; ; di then X 2 h; di and X is also the radial of ha; ; di

?

.

If X is also the g-radial of ha; ; di

?

then it would be the f -radial of ha; ; di

�

, whih ontradits

the fat that h; di

�

is nondegenerate with respet to g.

We now want to onstrut a line of � that lies in ha; ; di

?

and ontains X . If X is a point of

� then X

??

\ ha; ; di

?

is a omplement to X and so it is an f -nondegenerate three-dimensional

spae. It is not totally isotropi for g, beause it lies in ha; ; di, whih has rank at least three.

Lemma 3.4 gives a point of � in this spae, hene the required line of �. If X is not a point of �

and if p is f -singular 1-dimensional subspae of ha; ; di

?

nX

??

then hX; pi is a line of �.

Finally, if l is a line of � as above, Lemma 3.3 implies that l has at least q

2

� 3q � 2 points of

�, that are ollinear to both a and , and if q > 3, there exists a point b

0

ollinear to both a and

 and suh that d ? b

0

. We deompose the pentagon a, b, , d, e as the sum of the quadrangle a,

b, , b

0

and the pentagon a, b

0

, , d, e, in whih b

0

? d. If b

0

? e, we are done by Lemma 4.12. If

b

0

6? e, then we an repeat the argument above for b

0

; e; d to get a point a

0

ollinear to both e and

b

0

and suh that a

0

? d. �

Proposition 4.14 Let n = 3 and q � 11 be odd. Then the ipop geometry � is simply onneted.

Proof of the Theorem. Part (i) follows from Proposition 3.2. Part (ii) follows from Proposition

3.7. Part (iii) follows from Propositions 4.5 and 4.14 plus [Part2℄, Proposition 3.2. �
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