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Abstra
t

The arti
les [8℄ and [9℄ give a 
hara
terization of 
entral quotients of the group Sp(2n; q) for n � 3

and all prime powers q up to some small 
ases that are left open. The present arti
le �lls in this gap,

thus providing the de�nitive version of the Phan-type theorem for Sp(2n; q).

1 Introdu
tion

The modern approa
h to Phan-type theorems, i.e., 
hara
terizations of �nite Chevalley groups in the

spirit of [18℄ and [19℄, falls into two parts, as outlined in [1℄. On one hand one has to prove the sim-

ple 
onne
tedness of some suitable geometry, on the other hand one has to 
lassify related amalgams.

Ho�man, Shpe
torov and the �rst author [8℄ gave a Phan-type 
hara
terization of the group Sp(2n; q)

by studying the so-
alled 
ip
op geometry � of type C

n

over F

q

2
. The Main Theorem of that paper

states that this 
ip
op geometry is simply 
onne
ted for n � 3 and q � 8, for n � 4 and q � 3, and

for n � 5. By Tits' Lemma (Corollaire 1 of [23℄, see also Lemma 3.1 of the present arti
le) this implies

that the amalgam 
onsisting of the rank 1 and rank 2 paraboli
s of the 
ag-transitive group Sp(2n; q) of

automorphisms of the 
ip
op geometry � admits Sp(2n; q) as its universal 
ompletion. We refer to [8℄

for details. The se
ond part, the 
lassi�
ation of amalgams was dealt with in [9℄.

The purpose of the present paper is to prove the Phan-type theorem, see Subse
tion 2.3 for the pre
ise

statements, in the remaining open 
ase over the �elds F

3

, F

4

, F

5

, F

7

.

In Se
tion 2 we remind the reader of the setting and state the main results. In Se
tion 3 we give a

geometri
 argument why our main result is true over the �eld F

7

, the other 
ases being dealt with by

a 
oset enumeration with 
omputer, 
f. Appendix C, that 
an be 
he
ked by the interested reader on a

standard desktop ma
hine. In Se
tion 4 we 
orre
t a 
laim made in [11℄. Appendi
es A and B remind

the reader of some notions from amalgam theory and in
iden
e geometry.

A
knowledgement: The authors would like to express their gratitude to George Havas for running a


oset enumeration on one of his 
omputers for the group Sp(6; 7), thus 
omplementing our geometri


proof.

2 The Phan-type theorem for Sp(2n; q)

2.1 Geometri
al setting

Let B

2n

be the matrix

�

0 id

n�n

�id

n�n

0

�

1
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over F

q

2

. Let (�; �) be the bilinear form de�ned by B

2n

via (x; y) := x

T

B

2n

y. We representG := Sp(2n; q

2

)

by the set of all invertible (2n)� (2n)-matri
es A over F

q

2

whi
h preserve (�; �), that is, A

T

B

2n

A = B

2n

holds.

Let V be the ve
tor spa
e F

2n

q

2

and let fe

1

; : : : ; e

n

; f

1

; : : : ; f

n

g be the standard basis. We denote

by � the unique non-trivial involutory �eld automorphism x 7! x

q

of F

q

2

. Consider the �-semi-linear

map � : V ! V de�ned by e

i

7! f

i

; f

i

7! �e

i

and �(
 � v) = 
�(v) for 
 2 F

q

2
; v 2 V . Note that

�(v) = B

2n

v = B

2n

v. Then the 
entralizer G

�

:= fg 2 G j 8v 2 V : g�(v) = �(gv)g of � in Sp(2n; q

2

)

is isomorphi
 to Sp(2n; q) (see [8℄, Proposition 3.8). For our 
omputations in the later se
tions, we take

G

�

as our representation of Sp(2n; q). Note that for a matrix A 2 Sp(2n; q

2

), 
entralizing � is equivalent

to the 
ondition A

�1

= A

T

.

We now de�ne the (so-
alled 
ip
op) geometry � whi
h we are studying in this arti
le. (For an

introdu
tion to 
ip
op geometries, see [1℄ or [10℄.) To this end, we de�ne a �-hermitian form ((�; �)) by

((u; v)) := (u; �(v)), 
f. [8℄, Lemma 3.2. To denote orthogonality with respe
t to the form (�; �), we use

the symbol ?. To denote orthogonality with respe
t to the form ((�; �)), we use the symbol ??.

De�nition 2.1 The obje
ts of the geometry � are all non-trivial subspa
es of V whi
h are totally

isotropi
 with respe
t to (�; �) and nondegenerate with respe
t to ((�; �)); in
iden
e is de�ned by sym-

metrized 
ontainment.

As G

�

�

=

Sp(2n; q) respe
ts both forms, it a
ts on the geometry. This a
tion is in fa
t 
ag-transitive

(see [8℄, Proposition 4.2).

For our 
omputations we 
hoose the maximal 
ag F equal to he

1

i � he

1

; e

2

i � : : : � he

1

; e

2

; : : : ; e

n

i.

When 
omputing stabilizers, we will refer to the stabilizers of ea
h of these subspa
es as the point

stabilizer M

1

, the line stabilizer M

2

, the plane stabilizer M

3

and (for n = 4) the spa
e stabilizer M

4

,

respe
tively. The M

i

are the maximal paraboli
s of G

�

.

De�nition 2.2 For � 2 F

q

2

, let V

�

:= fu 2 V j �(u) = �ug.

Lemma 2.3

The following hold.

(i) V

�

is G

�

-invariant.

(ii) V

�

is an F

q

-subspa
e of V.

(iii) V

�

6= 0 if and only if �

�

� = �1

(iv) If V

�

6= 0 then V

�


ontains a basis of V.

Proof. See Lemma 3.6 of [8℄ or Lemma 2.4 of [9℄. 2

Let � 2 F

q

2

su
h that �� = �1. Sin
e V

�


ontains a basis for V , it has the same dimension as V . As

it is a F

q

-subspa
e, we dedu
e that jV

�

j = q

2n

. Let v

n

:= �e

n

+ f

n

2 V

�

. We observe that G

�

v

n

� V

�

,

i.e. the orbit of v

n

, is a subset of V

�

, and hen
e jv

G

�

n

j < q

2n

.

Thus we have found a ve
tor with an orbit that is short enough to be suitable for our purposes. For

we 
an now use this to e�e
tively 
ompute lower bounds on the size of G

�

and its subgroups: All these

groups indu
e a permutation a
tion on the orbit G

�

v

n

. Hen
e we 
an 
ompute an homomorphi
 image

into a permutation group. There are good algorithms (and implementations of them) for determining the

size of su
h a permutation group. (They work better the smaller the set is upon whi
h the group a
ts,

whi
h is why we went to some e�ort to �nd ve
tors with relatively small orbit.) Thus, we 
an eÆ
iently


ompute a lower bound on the size of a fa
tor group of any subgroup H of G

�

. If the a
tion indu
ed by

the group on the orbit is faithful, as is the 
ase here, then we a
tually obtain the exa
t size of the group.
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2.2 Phan systems

De�nition 2.4 (
f. [2℄) Subgroups U

1

and U

2

of SU(3; q

2

) form a standard pair whenever ea
h

U

i

�

=

SU(2; q

2

) is the stabilizer in SU(3; q

2

) of a nonsingular ve
tor v

i

and, furthermore, v

1

and v

2

are perpendi
ular. Standard pairs in 
entral quotients of SU(3; q

2

) are de�ned as the images under the

natural homomorphism of the standard pairs from SU(3; q

2

). We denote a standard pair U

1

; U

2

of a


entral quotient of SU(3; q

2

) by

U

1

Æ

U

2

Æ.

For an element U of �, i.e. a (�; �)-totally singular, ((�; �))-nondegenerate subspa
e of V , let GU(U)

denote the subgroup of G

�

that preserves the form ((�; �))

jU�U

and a
ts trivially on U

?

\ U

??

. For a

nondegenerate �-invariant subspa
e W of V denote by Sp(W ) the subgroup of G

�

that preserves the

form (�; �)

jW

�

�W

�

(see De�nition 2.2 for the de�nition of W

�

) and a
ts trivially on U

?

\ U

??

.

De�nition 2.5 (
f. [9℄) In 
ase n = 2, we have V = he

1

; e

�

1

; e

2

; e

�

2

i, G

�

=

Sp(4; q

2

), and G

�

�

=

Sp(4; q).

Subgroups U

1

�

=

Sp(2; q) and U

2

�

=

SU(2; q

2

) are 
alled a standard pair in G

�

if there exists a (�; �)-

isotropi
 and ((�; �))-non-isotropi
 ve
tor v of V and a two-dimensional (�; �)-totally isotropi
 and ((�; �))-

nondegenerate subspa
e U 3 v of V su
h that the group U

1


oin
ides with Sp(v

?

\ v

??

) and the group

U

2


oin
ides with SU(U). Standard pairs in 
entral quotients of Sp(4; q) are de�ned as the images under

the natural homomorphism of the standard pairs from Sp(4; q). We denote the standard pair U

1

; U

2

of

Sp(4; q) by

U

1

Æ

>

U

2

Æ or by

U

2

Æ

<

U

1

Æ.

De�nition 2.6 Let n � 2, let � be a Dynkin diagramwith rank two subdiagrams isomorphi
 to Æ Æ

or Æ Æ or Æ

>

Æ, and let I = f1; : : : ; ng. A group G admits a weak Phan system of type �

over F

q

2

if G 
ontains subgroups U

i

�

=

SL(2; q)

�

=

Sp(2; q)

�

=

SU(2; q

2

), for i 2 I , and subgroups U

i;j

, for

i 6= j 2 I , so that the following hold:

(i) If (i; j) is not an edge in �, then U

i;j

is a 
entral produ
t of U

i

and U

j

;

(ii) if (i; j) is an edge in �, then U

i;j

is isomorphi
 to a 
entral quotient of SU(3; q

2

), if (i; j) is a single

edge, and isomorphi
 to a 
entral quotient of Sp(4; q), if (i; j) is a double edge; moreover, U

i

and

U

j

form a standard pair in U

i;j

a

ording to the diagram

U

i

Æ

U

j

Æ or

U

i

Æ

>

U

j

Æ; and

(iii) the subgroups (U

i;j

)

i;j2I

, generate G.

2.3 The main results

Main Theorem 1

Let q � 3, let n � 3, and let G be a group that 
ontains a weak Phan system of type C

n

over F

q

2

. Then

G is isomorphi
 to a 
entral quotient of Sp(2n; q).

Main Theorem 2

Let n � 4 and let G be a group that 
ontains a weak Phan system of type C

n

over F

4

. Suppose further

that

(i) for any triple i; j; k of nodes of the Dynkin diagram C

n

that form a subdiagram

i

Æ

j

Æ

k

Æ

of type A

3

, the subgroup hU

i;j

; U

j;k

i is isomorphi
 to a 
entral quotient of SU(4; 2

2

);
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(ii) for any triple i; j; k of nodes of the Dynkin diagram C

n

that form a subdiagram

i

Æ

j

Æ

<

k

Æ

of type C

3

, the subgroup hU

i;j

; U

j;k

i is isomorphi
 to a 
entral quotient of Sp(6; 2);

(iii) (a) for any triple i; j; k of nodes of the Dynkin diagram C

n

that form a subdiagram

i

Æ

j

Æ

k

Æ

of type A

1

�A

2

, the groups U

i

and U

j;k


ommute elementwise; and

(b) for any quadruple of nodes of the Dynkin diagram C

n

that form a subdiagram

i

Æ

j

Æ

k

Æ

l

Æ

of type A

2

�A

2

, the groups U

i;j

and U

k;l


ommute elementwise; and

(
) for any triple i; j; k of nodes of the Dynkin diagram C

n

that form a subdiagram

i

Æ

j

Æ

<

k

Æ

of type A

1

� C

2

, the groups U

i

and U

j;k


ommute elementwise; and

(d) for any quadruple of nodes of the Dynkin diagram C

n

that form a subdiagram

i

Æ

j

Æ

k

Æ

<

l

Æ

of type A

2

� C

2

, the groups U

i;j

and U

k;l


ommute elementwise.

Then G is isomorphi
 to a 
entral quotient of Sp(2n; 2).

3 Simple 
onne
tedness of the geometry

In this se
tion we will prove that for n = 3; q � 7, the geometry � is simply 
onne
ted. By the following

lemma, this implies that Sp(6; q) is the universal 
ompletion of the amalgam of its maximal paraboli
s,

as desired. This extends the proof from [8℄ to in
lude the �eld F

7

.

Lemma 3.1 (Tits' Lemma)

Suppose a group G a
ts 
ag-transitively on a geometry G, and let A be the amalgam of paraboli
s

asso
iated with some maximal 
ag F of G. Then G is the universal 
ompletion of the amalgam A if and

only if G is simply 
onne
ted.

Proof. See [5℄, [13℄, [16℄ or [23℄. 2
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3.1 Simple 
onne
tedness

Using Tits' Lemma, we have transformed our group-theoreti
 problem (analyzing the universal 
ompletion

of an amalgam) into a geometri
 one (showing that a 
ertain geometry is simply 
onne
ted). Now we

have to 
onsider how to solve the latter problem. We need some mathemati
al tools and fa
ts in order

to ta
kle it su

essfully.

Being simply 
onne
ted means the following for our geometry: All 
y
les in its in
iden
e graph have

to be null-homotopi
, i.e., for every 
y
le there exists a triangulization (for details, see for example [20℄).

If q � 3, every 
y
le in the in
iden
e graph of � is homotopi
 to a 
y
le passing ex
lusively through

points and lines (Lemma 5.1 in [8℄). Sin
e � is a partially linear geometry, i.e., distin
t points have at

most one line joining them, the points of su
h a 
y
le uniquely determine the lines of the 
y
le. Hen
e it

suÆ
es to study 
y
les of the 
ollinearity graph of �. Sin
e the diameter of the 
ollinearity graph is two

(see Lemma 4.5 in [8℄), every 
y
le of length at least six always de
omposes into smaller 
y
les (i.e. it is

the sum of these smaller 
y
les), and hen
e it suÆ
es to study triangles, quadrangles and pentagons of

the 
ollinearity graph in order to prove simple 
onne
tedness.

3.2 Some tools

The following lemma will prove to be very useful throughout the whole se
tion. Re
all the terminology

and de�nitions introdu
ed in Se
tion 2.1. Noti
e that if l is a two-dimensional subspa
e of V of ((�; �))-

rank at least one, then it 
ontains at least q

2

�q points of �. Indeed, if the ((�; �))-rank of l is one then the

radi
al is the only non-trivial isotropi
 subspa
e of l and if the ((�; �))-rank of l is two then l 
ontains q+1

distin
t non-trivial isotropi
 subspa
es. Sin
e any point of l is (�; �)-singular, it 
ontains q

2

(respe
tively,

q

2

� q) points of �, if it has ((�; �))-rank one (respe
tively, two).

Lemma 3.2

Let p be a point of � and � � p be a three-dimensional subspa
e of V of ((�; �))-rank at least two su
h

that p is in the (�; �)-radi
al of �. Then for any ((�; �))-nondegenerate two-dimensional subspa
e l of �,

all points of � in
ident with l are 
ollinear to p, with the ex
eption of at most q + 1 points.

Proof. This is a reformulation of Lemma 4.3 of [8℄. 2

A dire
t 
onsequen
e of this is that if l has ((�; �))-rank one (respe
tively, two) it 
ontains at least

q

2

� q � 1 (respe
tively, q

2

� 2q � 1) points 
ollinear to p. Furthermore, the following is true:

Lemma 3.3

Let p be a point of � and � � p be a three-dimensional subspa
e of V of ((�; �))-rank at least two. Then

any two-dimensional subspa
e l of � not 
ontaining p is in
ident with at least q

2

� q � 1 (respe
tively,

q

2

� 2q � 1) points of � that generate a ((�; �))-nondegenerate two spa
e with p if l has ((�; �))-rank one

(respe
tively, two).

Proof. See Corollary 4.4 of [8℄. 2

3.3 Triangles

The �rst step is the analysis of triangles of the 
ollinearity graph. We will 
all a triangle (a; b; 
) a good

triangle if a, b and 
 are in
ident to a 
ommon plane of the geometry. A triangle that is not good is


alled bad. Note that a good triangle is null-homotopi
, so we only have to deal with the bad ones.
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Lemma 3.4

Let (a; b; 
) be a bad triangle. Then we 
an de
ompose this triangle into bad triangles, in su
h a way

that for ea
h new triangle T

i

we 
an �nd a 
anoni
al basis e

1

, e

2

, e

3

, f

1

, f

2

, f

3

of V su
h that ea
h T

i

equals he

1

i, he

2

i, hx

i

e

1

+ y

i

e

2

+ (k

i

e

3

+ f

3

)i with k

i

�

k

i

= �1 and x

i

y

i

6= 0 and x

i

�x

i

+ y

i

�y

i

6= 0.

Proof. This is a 
onsequen
e of the Lemmas 5.3, 5.4 and 6.1 in [8℄. 2

By the pre
eding Lemma we only have to show for a very limited 
lass of (bad) triangles that they


an be de
omposed. To do this, we start with a triangle (a; b; 
) and 
onstru
t an o
tahedron with the

triangle forming one fa
e, and a suitably 
hosen null-homotopi
 triangle (p; p

0

; p

00

) forming the opposite

fa
e. With suitably 
hosen we mean that all triangles ex
ept for the starting triangle shall be good. In

the following we will prove that this is possible for q � 4.

Before we do that, we need some more tools.

Lemma 3.5

Let k; l 2 F

q

2

su
h that k

�

k = �1, l 6= 0 Then there exists a matrix of the form

A :=

0

B

B

B

B

B

B

�

1

1

x ��y

1

1

y �x

1

C

C

C

C

C

C

A

2 G

�

su
h that (ke

3

+ f

3

)A = (k

�

le

3

+ lf

3

):

Proof. It is easy to verify that A 2 G

�

if and only if x�x + y�y = 1. Furthermore (ke

3

+ f

3

)A =

(kx + y)e

3

+ (�x � k�y)f

3

= k(�x� k�y)e

3

+ (�x � k�y)f

3

. So the 
laim is equivalent to showing that the

following system of equations has a solution: x�x + y�y = 1 and �x � k�y = l. Finding su
h a solution is

easily a
hieved via straight forward 
omputation: use the se
ond equation to repla
e the variable x in

the �rst equation:

(l + k�y)(l + k�y) + y�y = 1

() l

�

l + l

�

ky +

�

l

�

ky

�

= 1

() z + �z = 1� l

�

l 2 F

q

where z := l

�

ky. Now if r is a primitive root of F

q

2

, then r + �r 6= 0 and hen
e z =

r(1�l

�

l)

r+�r

is a solution to

this last equation. Ba
kward substitution yields the desired values for x and y. 2

Lemma 3.6

For 4 � q � 11, any bad triangle 
an be de
omposed into good triangles.

Proof. Let a; b; 
 be a bad triangle. By Lemma 3.4, we 
an assume (a; b; 
) = (he

1

i ; he

2

i ; hxe

1

+ ye

2

+ (ke

3

+ f

3

)i)

satisfying k

�

k = �1 and xy 6= 0 and x�x+y�y 6= 0. Sin
e x 6= 0, by Lemma 3.5 we 
an �nd g 2 G

�

su
h that

(g(a); g(b); g(
)) = (he

1

i ; he

2

i ; hxe

1

+ ye

2

+ (k�xe

3

+ xf

3

)i) = (he

1

i ; he

2

i ; he

1

+ y

0

e

2

+ (k

0

e

3

+ f

3

)i) with

y

0

:=

y

x

and k

0

:=

k�x

x

. So every bad triangle is 
onjugate to su
h a triangle. Note that k

0

�

k

0

=

k

�

kx�x

x�x

= �1,

so k

0


an take at most q + 1 di�erent values. Sin
e y

0

6= 0, it 
an take at most q

2

� 1 di�erent values.

Hen
e there are at most (q + 1)(q

2

� 1) di�erent 
onjuga
y 
lasses of bad triangles to 
onsider.

It is now a simple matter of 
ombinatori
s to determine all the possible 
onjuga
y 
lasses of bad

triangles for a given q, and then testing for ea
h whether the triangle de�ned this way is de
omposable.

We now 
laim that for 4 � q � 11 this is possible by using the o
tahedron 
onstru
tion des
ribed above,
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and setting (p; p

0

; p

00

) = (hf

3

i ; hse

1

+ kf

1

� xf

3

i ; hte

2

+ kf

1

� yf

3

i) where s; t 2 F

q

2

n f0g are 
hosen

suitably.

Verifying that this is possible requires at most (q+1)(q

2

� 1)

3


he
ks. This 
an readily be done using

a simple GAP program (see Appendix D of [12℄). In parti
ular we su

essfully performed these 
he
ks for

4 � q � 11. (This upper bound 
ould easily be in
reased, but of 
ourse we had to stop at some point. We

pi
ked it so that it 
omplements the previous proof presented in [8℄ whi
h works without 
omputational

help for q � 13. So stopping at q = 11 is arbitrary, and the 
ode in Appendix D of [12℄ should work for

larger values of q, too.) 2

3.4 Quadrangles

Now we will shift our attention to quadrangles. By the pre
eding results, it is enough to de
ompose

quadrangles into triangles, regardless whether they are good or bad. Noti
e that if in a quadrangle a, b,


, d we have that a and 
 (or b and d) are 
ollinear then this quadrangle is immediately de
omposed into

two triangles.

De�nition 3.7 We 
all a quadrangle a, b, 
, d half-spe
ial if ha; 
i or hb; di is nondegenerate with

respe
t to both forms (�; �) and ((�; �)). We 
all it spe
ial if both ha; 
i and hb; di are nondegenerate with

respe
t to both forms.

Lemma 3.8

Let q � 5. Then any quadrangle 
an be de
omposed into triangles and half-spe
ial quadrangles.

Proof. Consider an arbitrary quadrangle a, b, 
, d. Without loss of generality we may assume that b

and d are non
ollinear. Pi
k an arbitrary point s 2 X = a

??

\b

?

\d

?

. The point s exists be
ause X is not

totally isotropi
 with respe
t to ((�; �)), being a three-dimensional spa
e 
ontained in the nondegenerate

�ve-dimensional spa
e a

??

. The line l = ha; si has ((�; �))-rank two. Using Lemma 3.3, the line l 
ontains

at least q

2

� 2q� 1 points of � that are 
ollinear with b, respe
tively d, and at least q

2

� 2q� 1 points of

� that generate a nondegenerate two-dimensional spa
e with 
. Sin
e q � 5 and sin
e l 
ontains q

2

� q

points of �, the spa
e l has to 
ontain a point p of � that generates a nondegenerate two-dimensional

spa
e with 
 and that is 
ollinear to both b and d. Clearly a, b, 
, d de
omposes into a, b, p, d and 
, b,

p, d. If (a; p) = 0 then ha; pi is a line, implying that a, b, p, d de
omposes into triangles. Otherwise, a,

b, p, d is half-spe
ial with respe
t to ha; pi. Similarly for 
, b, p, d. 2

Lemma 3.9

Let q � 5. Then any quadrangle 
an be de
omposed into triangles and spe
ial quadrangles.

Proof. Apply Lemma 3.8 on
e to obtain triangles and half-spe
ial quadrangles. Then apply Lemma

3.8 again, after suitably renaming the verti
es of the quadrangles, to obtain spe
ial quadrangles. 2

Proposition 3.10

Let q � 7. Then any quadrangle 
an be de
omposed into triangles.

Proof. Denote the quadrangle by (a; b; 
; d). By the pre
eding lemma, we 
an assume without loss

of generality that it is spe
ial, so (a; 
) 6= 0 6= (b; d) and both ha; 
i and hb; di are ((�; �))-nondegenerate.

We try to �nd a point p 
ollinear to all of a; b; 
; d, whi
h means we 
an de
ompose the quadrangle into

triangles.

Set W := a

?

\ 


?

and U

1

:= W \ b

?

and U

2

:= W \ d

?

and l := U

1

\ U

2

. Note that dimW = 4,

dimU

1

= dimU

2

= 3, dim l = 2. Also, W is ((�; �))-nondegenerate sin
e ha; 
i is ((�; �))-nondegenerate and
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W = a

?

\ 


?

= (a

�

)

??

\ (


�

)

??

= ha

�

; 


�

i

??

= (ha; 
i

�

)

??

. Similar arguments hold for a

?

\ b

?

, b

?

\ 


?

and so on.

We now distinguish three 
ases:

(i) If l is of ((�; �))-rank two, then we 
an apply Lemma 3.2 to the planes ha; li, hb; li, h
; li, and hd; li to

obtain q

2

� 5q� 4 points of � on l 
ollinear to all of a, b, 
, d. Noti
e that this is a positive number

for q � 7.

(ii) Suppose now that l is of ((�; �))-rank one. Then the plane � := hb; li has ((�; �))-rank at least one.

It lies inside the four-dimensional ((�; �))-nondegenerate spa
e W . Assume � had ((�; �))-rank one.

Then it has a two-dimensional ((�; �))-radi
al R, whi
h would be maximal totally isotropi
 in W ,

sin
e dim(R) + dim(R

??

\ W ) = dim(W ) and R � R

??

. Similarly, R 
an not have a polar of

dimension three, whi
h � would be. Contradi
tion, thus � has ((�; �))-rank two. Similar arguments

hold for the points a, 
, d instead of b. Applying Lemma 3.2 gives us q

2

�4q�4 points of � 
ollinear

to all of a, b, 
, d. Noti
e that this is a positive number for q � 5.

(iii) Suppose now l is totally isotropi
 with respe
t to ((�; �)). Then the planes U

1

and U

2

are ((�; �))-

degenerate. They must have ((�; �))-rank two (this 
an be shown with similar arguments as used in


ase (ii) for �).

Let R

1

and R

2

be the one-dimensional ((�; �))-radi
al s of U

1

and U

2

. They are 
ontained in l. For

assume that R

1

6� l; then U

1

= hR

1

; li. But then U

1

would be totally isotropi
 (sin
e l is totally

isotropi
, and also orthogonal to R

1

, the radi
al of U

1

), a 
ontradi
tion. We argue likewise for R

2

.

Furthermore, the radi
als 
annot 
oin
ide as otherwise we would obtain a radi
al for the ((�; �))-

nondegenerate spa
e a

?

\ 


?

. So we have l = hR

1

; R

2

i. Noti
e that b 6� l, sin
e (b; d) 6= 0. Hen
e b

is di�erent from R

1

and R

2

.

Choose a line t of � through b inside U

1

. This line exists sin
e the ((�; �))-rank of U

1

is two, and b is

not in the ((�; �))-radi
al R

1

of U

1

. Applying �rst Lemma 3.3 to hd; ti and then Lemma 3.2 to ha; ti

and h
; ti yields the existen
e of (q

2

� 2q� 1)� 2(q+1) = q

2

� 4q� 3 > 0 points on t 
ollinear to a,

b, 
 and whi
h span a ((�; �))-nondegenerate spa
e with d. Choose one of these points not equal to

b and 
all it b

0

. Then (b

0

; d) 6= 0, for otherwise, b

0

2 l, 
ontradi
ting that l is totally isotropi
 with

respe
t to ((�; �)). Hen
e a; b

0

; 
; d form a spe
ial quadrangle.

Let U

0

1

:= b

0

?

\W . We 
laim that U

0

1

interse
ts U

2

in a line l

0

that does not 
ontain R

2

, implying the

((�; �))-rank of l

0

is two (sin
e it is 
ontained in U

2

whi
h has ((�; �))-rank two and doesn't interse
t

its radi
al) and so we have redu
ed to 
ase (i) of this proof.

It remains to verify our last 
laim. Assume R

2

� U

0

1

\U

2

= l

0

. Then R

2

� l\ l

0

= (b

?

\ b

0?

)\U

2

=

(hb; b

0

i

?

) \ U

2

� hb; b

0

i

?

= t

?

, thus t � R

?

2

\ U

1

. Noti
e that R

?

2

\ U

1

= hb; R

2

i: Clearly

hb; R

2

i � R

?

2

\ U

1

, sin
e R

2

� R

?

2

, R

2

� l � U

1

, b � U

1

and b � l

?

� R

?

2

. Equality holds sin
e

R

2

is one-dimensional, and R

2

is not the (�; �)-radi
al of U

1

(whi
h is b, and we already know that

b 6= R

2

), and thus both sides of the equation have the same dimension. But then also t = hb; R

2

i,

implying that t has ((�; �))-rank one, a 
ontradi
tion sin
e t is a line of �.

2

Note that the `pyramid' 
onstru
tion used in the pre
eding proposition is not suÆ
ient for q � 5, so a

di�erent approa
h would be needed to 
over it. For a spe
i�
 example, let z denote a primitive element in

F

25

over F

5

with minimal polynomial x

2

�x+2. Then let a := he

1

i, b := he

2

i, 
 :=




e

2

+ z

�1

e

3

+ z

�1

f

1

�

,

d :=




e

1

+ z

5

e

2

+ z

6

f

2

+ z

9

f

3

�

. This is a spe
ial quadrangle, and using the de�nitions from Proposition

3.10, l := hu; vi with u := he

1

+ f

3

i ; v :=




e

2

+ z

9

e

3

�

. Now l has ((�; �))-rank two, but 
ontains no point

p 
ollinear to all of a; b; 
; d.
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3.5 Pentagons

Proposition 3.11

Let q � 5. Then any pentagon 
an be de
omposed into triangles and quadrangles.

Proof. Let (a; b; 
; d; e) be a pentagon. Consider the spa
e U := ha; b; di

?

of dimension three. Its

((�; �))-rank has to be at least two, as the ((�; �))-rank of ha; bi is two. Choosing a ((�; �))-nondegenerate

two-dimensional subspa
e l of U and applying Lemma 3.2 on the planes ha; li, hb; li, hd; li, we will �nd

(q

2

� q)� 3(q + 1) = q

2

� 4q � 3 > 0 points on l 
ollinear to all of a, b, d, de
omposing the pentagon. 2

3.6 Proof of the Main Results

Combining the results from the pre
eding se
tions yields this proposition:

Proposition 3.12

If n = 3 and 7 � q � 11, the geometry � is simply 
onne
ted. 2

By A

(k)

we denote the amalgam of rank k paraboli
s with respe
t of the 
ag-transitive a
tion of G

�

on �.

Proposition 3.13

For (n; q) 2 f(3; 3); (3; 4); (3; 5); (3; 7); (4; 2)g, the group G

�

is the universal 
ompletion of A

(n�1)

.

Proof. This proposition is proved by the 
omputations des
ribed in Appendix C.1. 2

Using the results from [8℄ and the work done in the present arti
le we 
an prove the following theorem:

Theorem 3.14

G

�

is the universal 
ompletion of A

(n�1)

if and only if n � 3 and (n; q) 6= (3; 2).

Proof. We show that the 
ip
op geometry � is simply 
onne
ted if and only if n � 3 and (n; q) 6=

(3; 2). From this follows the 
laim via Tits' Lemma (Lemma 3.1). Simple 
onne
tedness for n � 3 and

(n; q) 6= (3; 2) is proved 
onjointly by Proposition 3.12, by 
ombining Proposition 3.13 with Tits' Lemma,

and �nally by Theorem 6.8 from [8℄.

If (n; q) = (3; 2), then the geometry is not simply 
onne
ted, as shown in [8℄, right after Theorem

6.8. Finally, if n = 2, the simpli
ial 
omplex is one dimensional, and hen
e only simply 
onne
ted if it


ontains no 
y
les (i.e. if it is a tree). But the points he

1

i, he

2

i, hf

1

i, hf

2

i form a quadrangle, and hen
e

there exists a non-trivial 
y
le in the simpli
ial 
omplex, thus the geometry is not simply 
onne
ted. 2

Proof of Main Result 1. See Se
tions 3 and 4 of [9℄ or Chapter 8 of [10℄. 2

Proof of Main Result 2. See [2℄ or Chapter 8 of [10℄. 2

4 The 
ase (n; q) = (3; 3) reviewed

In this arti
le, we prove that for (n; q) = (3; 3), the geometry � 
orresponding to Sp(6; 3) and C

3

is simply


onne
ted, and the group itself is the universal 
ompletion of the amalgam 
orresponding to the weak

Phan system.

In 
ase of A

3

or equivalently D

3

, however, one 
an show that either a three-fold or a nine-fold 
over

of the geometry exists. (Ri
hard Lyons gave a simple argument for this, see page 86 of [10℄). However,
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nothing was known so far about the universal 
over (
ontrary to the 
laim made on page 144 in [11℄).

Re
ently the authors su

essfully applied the te
hniques used in this arti
le to the 
ase A

3

and determined

the universal 
over, whi
h turned out to be nine-fold.

Theorem 4.1

The 
ip
op geometry �(3; 3) studied in [2℄ and [11℄ admits a nine-fold universal 
overing.

Finally, for B

3

nothing was known so far. The authors applied the te
hniques des
ribed in Appendix

C here as well. The unexpe
ted result was that the 
oset enumeration (used to determine the size of the

universal 
ompletion of the amalgam of paraboli
s) did not terminate. However, by adding additional

relations we su

eeded in proving that there has to exist a three-fold 
overing of the geometry, an obser-

vation that has been 
on�rmed by Sergey Shpe
torov, who informed us that he 
onstru
ted a three-fold


over of Spin(7; 3) 
ontaining a weak Phan system.

A Appendix: Amalgams

In this se
tion, we introdu
e the notion of group amalgams. Note that we only need a spe
ial kind of

amalgams; for a more general de�nition, see for example [21℄.

De�nition A.1 An amalgam of groups is a set A endowed with a partial multipli
ation and a �nite

family of subsets (G

i

)

i2I

su
h that the following holds:

(i) A = [

i2I

G

i

,

(ii) the restri
tion of the multipli
ation to G

i

turns G

i

into a group for i 2 I ,

(iii) G

i

\G

j

is a subgroup both in G

i

and G

j

for all i; j 2 I .

De�nition A.2 A group G is 
alled a 
ompletion of an amalgam A if there exists a map � : A ! G

(
alled the 
ompletion map) su
h that

(i) for all i 2 I the restri
tion of � to G

i

is a homomorphism

(ii) �(A) generates G.

Among all 
ompletions of A there is a largest one whi
h, if A is �nite, 
an be de�ned as the group

having the following �nite presentation:

U(A) = ht

h

j h 2 A; t

x

t

y

= t

xy

if xy is de�ned i :

U(A) is 
alled the universal 
ompletion. Its 
ompletion map is given by

 : A ! U(A) : g 7! t

g

:

We 
all this 
ompletion universal sin
e it has the universal property that for any other 
ompletion

G with 
ompletion map �, there exists a unique group epimorphism b� from U(A) onto G su
h that the

following diagram 
ommutes:

A

 

//

�

!!D

D

D

D

D

D

D

D

D

U(A)

b�

��

G
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We de�ne the map b� by �rst de�ning it on the the generators (A) of U(A) only, via b�

j (A)

: t

x

7! �(x).

This 
an be extended to a group epimorphism be
ause

b�(t

x

t

y

) = b�(t

x

)b�(t

y

) = �(x)�(y) = �(xy) = b�(t

xy

)

whenever xy and, thus, t

xy

are de�ned.

We now 
onsider the amalgam formed by subgroups of a given group G.

Lemma A.3

Let (G

i

)

i2I

be a �nite family of subgroups of a �nite group G whi
h generates G, let A := [

i2I

G

i

be the

asso
iated amalgam of groups, and let  : A ! U(A) be the 
ompletion map. Then for ea
h i 2 I the

restri
tion  

jG

i

: G

i

! U(A) is inje
tive. Furthermore U(A)

�

=

G if and only if there exists an i 2 I su
h

that the index of  (G

i

) in U(A) equals the index of G

i

in G.

Proof. Note that G is a 
ompletion of A, for whi
h the in
lusion map � is a 
ompletion map. By

the universal nature of U(A), there exists an epimorphism � from U(A) onto G su
h that the following

diagram 
ommutes:

A

 

//

�

!!D

D

D

D

D

D

D

D

D

U(A)

�

��

G

The map  

jG

i

must be inje
tive, as �

jG

i

is inje
tive. Let

e

G

i

:=  (G

i

). If U(A)

�

=

G, then the indi
es

[G : G

i

℄ and

h

U(A) :

e

G

i

i


oin
ide, when
e this impli
ation is immediate. Conversely, assume that for

some i, the group G

i

has the same index in G as

e

G

i

has in U(A). The group

e

G

i

interse
ts the kernel of

� trivially, sin
e by the above �

�

e

G

i

�

= G

i

�

=

 (G

i

) =

e

G

i

. But by hypothesis

h

U(A) :

e

G

i

i

= [G : G

i

℄, so

jGj : jG

i

j = [G : G

i

℄

=

h

U(A) :

e

G

i

i

= jU(A)j :

�

�

�

e

G

i

�

�

�

= jGj � jker(�)j : jG

i

j;

when
e jker(�)j = 1 and � is an isomorphism between U(A) and G. 2

B Appendix: Geometries

In the following, we give a qui
k run-down on the basi
s of syntheti
 geometry. For a more 
omplete

introdu
tion to the subje
t, refer for example to [3℄ or [17℄.

De�nition B.1 A pregeometry over a set I is a triple G = (X; �; typ) where X is a set (its elements

are 
alled the elements of G), � is a symmetri
 and re
exive relation de�ned on X whi
h is 
alled the

in
iden
e relation of G, and typ is a map from X to I (the set I is 
alled the type set of G) su
h

that typ(x) = typ(y) and x � y imply x = y. The pregeometry G is 
alled 
onne
ted if the graph (X; �)

is 
onne
ted.
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De�nition B.2 If A � X , then A is of the type typ(A), of rank jtyp(A)j, and of 
orank jI n typ(A)j.

The 
ardinality jI j of I is 
alled the rank of G. A 
ag of G is a set of mutually in
ident elements of G.

Flags of type I are 
alled 
hambers.

De�nition B.3 If F is a 
ag of G, then the residue of F in G is the pregeometry G

F

= (X

F

; �

F

; typ

F

),

where X

F

is the set of elements of X that are in
ident with but distin
t from all elements of F , and �

F

and typ

F

are the restri
tions of � and typ to X

F

� X

F

respe
tively X

F

. The pregeometry G is 
alled

residually 
onne
ted if (X

F

; �

F

) is a 
onne
ted graph for ea
h 
ag F of G of 
orank greater or equal

two, and non-empty for ea
h 
ag F of 
orank one.

De�nition B.4 A geometry over I is a pregeometry G over I in whi
h every maximal 
ag is a 
hamber.

De�nition B.5 Let G be a group of automorphisms of a geometry G over I . We say G a
ts 
ag-

transitively on G if for ea
h J � I , the group G a
ts transitively on the set of 
ags of type J . In other

words, if F

1

and F

2

are 
ags in G of equal type, then there exists g 2 G su
h that g(F

1

) = F

2

.

De�nition B.6 Let G be a geometry of rank n, let � : G ! AutG be a group homomorphism su
h

that �(G) a
ts in
iden
e-transitively on G. A rank k paraboli
 is the stabilizer of a 
ag of 
orank k

from G with respe
t to the a
tion given by gF := �(g)F . Paraboli
s of rank n � 1 are 
alled maximal

paraboli
s. They are exa
tly the stabilizers in G of single elements of G.

De�nition B.7 Let G be a geometry whi
h admits points and lines as two if its types. The 
ollinearity

graph is an undire
ted graph whi
h has as its verti
es the points of G, and in whi
h two verti
es v

1

; v

2


orresponding to points p

1

; p

2

are 
onne
ted by an edge if and only if there exists a line l in
ident to both

p

1

and p

2

.

C Appendix: Determining universal 
ompletions

C.1 General approa
h for 
omputing the amalgams: GAP

In order to 
ompute the universal 
ompletion of the amalgams of paraboli
s whi
h we are studying

here, we do the following: First, we determine generators for ea
h paraboli
. They will be 
hosen su
h

that the interse
tion of the paraboli
s is generated by the interse
tion of their respe
tive generating set.

Spe
i�
ally, in the 
ase n = 3 the maximal paraboli
s we 
onsider are the point, line and plane stabilizers

of our 
ag F , with suitably 
hosen generators u; v; w. These stabilizers all interse
t in the 
ag stabilizer,

and so generators of the 
ag stabilizer together with u; v; w generate the desired paraboli
s as well as

their interse
tions (whi
h are also paraboli
s).

To prove that the paraboli
s and their interse
tions are generated by the matri
es for whi
h we 
laim

this, we �rst show that they generate a subgroup U of the desired group H ; then we 
ompute a lower

bound of the size for U . If this bound equals the size of the full group H , we have thus established that

H

�

=

U .

We pro
eed by using GAP [7℄ to 
ompute �nite presentations of the paraboli
s in terms of these

generators: We �rst �nd a permutation group isomorphi
 to our group, then from that determine the


orresponding relators (to learn more about the algorithms involved, whi
h GAP implements, refer to

[4℄ and [14℄). Due to our 
hoi
e of generators, the universal 
ompletion of the amalgam is obtained by

forming the union of all the generators and relators of the paraboli
s.

Finally, we have to prove that this universal 
ompletion is identi
al to Sp(2n; q). For this it would be

suÆ
ient to 
ompute the size of the group. Doing that dire
tly via a 
oset enumeration over the trivial

group is not feasible due to the size of this �nitely presented group. Instead we 
ompute the index of one

of the paraboli
s inside the amalgam, whi
h also establishes the desired isomorphism (see Lemma A.3).
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All 
omputations (ex
ept those for (n; q) = (3; 7)) were performed on an Apple PowerBook G4 1.5GHz

with 1 GB RAM using GAP 4.4.5. Computation times ranged from a few se
onds up to about half an

hour (for (n; q) = (3; 5)); memory requirements ranged up to 350 MB (again for (n; q) = (3; 5)). Details

regarding (n; q) = (3; 7) are mentioned in Se
tion C.6.

Before we pro
eed with the details of this, we present some auxiliary results whi
h are useful for


omputing lower bounds on the group sizes.

C.2 Subgroups and their sizes

The maximal paraboli
s ofM

i

, with respe
t to our maximal 
ag F are subgroups of G

�

�

=

Sp(2n; q) with

the following isomorphism type (see [8℄):

M

i

�

=

(

Sp(2n� 2i; q)�GU(i; q

2

) for 1 � i � n� 1

GU(n; q

2

) for i = n

:

Note that by GU(n; q

2

) we denote the general unitary group of dimension n over the �eld F

q

2

(sometimes

in the literature this is referred to as GU(n; q), whi
h is also the notation used by GAP).

So we 
an 
ompute the size of the M

i

, sin
e it is well known (see e.g. [22℄) that jSp(2n; q)j =

q

n

2

Q

n

i=1

(q

2i

� 1) and jGU(n; q

2

)j = q

n(n�1)=2

Q

n

i=1

(q

i

+ (�1)

i+1

).

These size formulas are important in the following se
tions, where we use them to prove that the

groups generated by 
ertain matri
es are pre
isely the groups we are looking for.

C.3 The 
ase n = 3; q = 3

In this se
tion z denotes a primitive element in F

9

over F

3

with minimal polynomial x

2

�x�1. We de�ne

the following matri
es:

U :=

0

B

B

B

B

B

B

�

z

7

z

1

z

7

z

5

1

z

5

z

3

z

5

z

7

1

1

C

C

C

C

C

C

A

V :=

0

B

B

B

B

B

B

�

1

z

7

z

1

z

7

z

5

1

z

5

z

3

z

5

z

7

1

C

C

C

C

C

C

A

W :=

0

B

B

B

B

B

B

�

1

1

z

7

z

1

1

1

z

7

z

5

1

C

C

C

C

C

C

A

In addition to these elements we use diagonal matri
es D

i

; 1 � i � 3, that generate the stabilizer of the


ag F , a half-split torus isomorphi
 to C

3

4

.

Lemma C.1

Ea
h maximal paraboli
 in Sp(6; 3) is generated by the matri
es spe
i�ed in the following table together

with generators of the 
ag stabilizer.

stabilizer element generators isomorphism type index

M

1

he

1

i V;W Sp(4; 3)�GU(1; 9) 44226

M

2

he

1

; e

2

i U;W Sp(2; 3)�GU(2; 9) 3980340

M

3

he

1

; e

2

; e

3

i U; V GU(3; 9) 379080
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Furthermore, the pairwise interse
tion of the stabilizers is generated by the interse
tion of their generators

as given above.

Proof. The 
laimed generators of ea
h M

i

obviously ea
h stabilize the 
orresponding element in the

table. Hen
e they generate subgroups of the stabilizers. Also, the interse
tion of the generators of any

twoM

i

forms a subgroup of the interse
tion of the two groups. To 
omplete the proof, we 
ompute, using

GAP and Lemma 2.3 and the subsequent dis
ussion, lower bounds of the group sizes. We then verify that

they are equal to the sizes of the maximal paraboli
s respe
tively the double stabilizers. 2

Based on the above table, we �nd presentations of the maximal paraboli
s on the generators d

1

, d

2

,

d

3

, u, v, w. These, together with the union of the relators of said presentations give a presentation for

the universal 
ompletion of the amalgam of the maximal paraboli
s.

Coset enumeration over the subgroup generated by d

1

, d

2

, d

3

, v, w gives an index of 44226 whi
h


orresponds to the index of M

1

in Sp(6; 3). By Lemma A.3 this shows that Sp(6; 3) is the universal


ompletion of the amalgam of maximal paraboli
s.

We give here presentations of the maximal paraboli
s on the generators d

1

; d

2

; d

3

; u; v; w. To ea
h

presentation the relators d

4

i

for 1 � i � 3 and [d

i

; d

j

℄ for 1 � i < j � 3 need to be added.

Generators for M

1

: d

1

; d

2

; d

3

; v; w.

Relators for M

1

:

v

3

; w

3

; [v; d

1

℄; [w; d

1

℄; [w; d

2

℄; d

2

v

�1

d

3

v

�1

d

�2

3

; wd

3

wd

3

wd

�1

3

;

vwv

�1

wd

�1

3

vw

�1

v

�1

d

3

w

�1

; d

3

vwv

�1

w

�1

vw

�1

v

�1

d

�1

3

vwv

�1

;

d

2

vwv

�1

w

�1

v

�1

d

�1

3

d

�1

2

wvwv

�1

w

�1

d

3

w

Generators for M

2

: d

1

; d

2

; d

3

; u; w.

Relators for M

2

:

u

3

; w

3

; [u;w℄; [u; d

3

℄; [w; d

1

℄; [w; d

2

℄; d

1

u

�1

d

2

u

�1

d

�2

2

; wd

2

3

w

�1

d

�2

3

; d

3

wd

�1

3

wd

3

w

Generators for M

3

: d

1

; d

2

; d

3

; u; v.

Relators for M

3

:

u

3

; v

3

; [v; d

1

℄; [u; d

3

℄; d

2

2

vd

2

vd

3

; ud

2

1

d

2

ud

1

; u

�1

vuv

�1

uv

C.4 The 
ase n = 3; q = 4

In this se
tion z denotes a primitive element in F

16

over F

2

with minimal polynomial x

4

+ x + 1. We

de�ne the following matri
es:

U :=

0

B

B

B

B

B

B

�

z

5

z

1

z

4

z

5

1

z

5

z

4

z

1

z

5

1

1

C

C

C

C

C

C

A

V :=

0

B

B

B

B

B

B

�

1

z

5

z

1

z

4

z

5

1

z

5

z

4

z

1

z

5

1

C

C

C

C

C

C

A

W :=

0

B

B

B

B

B

B

�

1

1

z

5

z

1

1

1

z

4

z

5

1

C

C

C

C

C

C

A
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In addition to these elements we use diagonal matri
es D

i

; 1 � i � 3, that generate the stabilizer of the


ag F , a half-split torus isomorphi
 to C

3

5

.

Lemma C.2

Ea
h maximal paraboli
 in Sp(6; 4) is generated by the matri
es spe
i�ed in the following table together

with generators of the 
ag stabilizer.

stabilizer element generators isomorphism type index

M

1

he

1

i V;W Sp(4; 4)�GU(1; 16) 838656

M

2

he

1

; e

2

i U;W Sp(2; 4)�GU(2; 16) 228114432

M

3

he

1

; e

2

; e

3

i U; V GU(3; 16) 13160448

Proof. See the proof of Lemma C.1. 2

Based on the above table, we �nd presentations of the maximal paraboli
s on the generators d

1

, d

2

,

d

3

, u, v, w. These, together with the union of the relators of said presentations give a presentation for

the universal 
ompletion of the amalgam of the maximal paraboli
s.

Coset enumeration over the subgroup generated by d

1

; d

2

; d

3

; v; w gives an index of 838656 whi
h


orresponds to the index of M

1

in Sp(6; 4). By Lemma A.3 this shows that Sp(6; 4) is the universal


ompletion of the amalgam of maximal paraboli
s.

We give here presentations of the maximal paraboli
s on the generators d

1

; d

2

; d

3

; u; v; w. To ea
h

presentation the relators d

5

i

for 1 � i � 3 and [d

i

; d

j

℄ for 1 � i < j � 3 need to be added.

Generators for M

1

: d

1

; d

2

; d

3

; v; w.

Relators for M

1

:

v

2

; w

2

; [v; d

1

℄; [w; d

1

℄; [w; d

2

℄; (wd

3

)

3

; (vw)

4

; vd

2

d

3

vd

�1

2

d

�1

3

; (vd

3

d

�1

2

)

3

;

(wvwvd

2

3

)

4

; wd

1

vd

3

wd

3

d

2

vd

3

d

2

2

vwd

3

vd

�1

1

d

2

wvd

3

wvwd

�1

3

vd

�1

2

d

3

wd

�1

3

wd

3

;

(wd

�2

3

wvwvd

�2

3

wd

2

3

)

2

; d

3

d

1

d

3

vwvwd

1

d

3

vwvd

�1

3

vwd

�2

1

vd

�2

3

wd

�2

3

w;

d

�2

3

wvd

�1

2

d

2

3

wd

�1

3

vwvd

3

wd

�1

3

vwvd

3

wd

�2

3

wd

2

3

wvd

3

wv;

d

2

vd

3

wvwd

�1

3

vwd

�1

2

d

3

vwvd

3

wd

�1

3

wd

3

wd

�1

3

wd

2

3

wd

�2

3

vwvd

�2

3

Generators for M

2

: d

1

; d

2

; d

3

; u; w.

Relators for M

2

:

u

2

; w

2

; [u;w℄; [u; d

3

℄; [w; d

1

℄; [w; d

2

℄; d

�1

3

wd

�1

3

wd

�1

3

w; ud

2

2

ud

�2

1

ud

�1

1

d

2

;

ud

2

d

1

ud

�1

1

d

�1

2

; ud

1

ud

�1

1

ud

�1

1

ud

1

ud

�1

1

ud

2

; wd

�2

3

wd

2

3

wd

�2

3

wd

2

3

wd

�2

3

wd

2

3

Generators for M

3

: d

1

; d

2

; d

3

; u; v.

Relators for M

3

:

u

2

; v

2

; [u; d

3

℄; [v; d

1

℄; d

2

d

�1

3

vd

�2

3

vd

2

2

v; ud

1

vd

3

vd

�1

3

d

2

vd

3

vd

�1

1

ud

�2

3

;

vd

2

3

ud

1

vd

2

3

uvd

�2

3

uvd

�1

1

ud

�2

3

; d

2

d

�1

3

uvd

�1

1

ud

�2

3

vd

�2

1

d

2

d

�1

3

uvd

�1

1

ud

�2

3

d

�2

1

;

d

2

d

3

vd

�1

3

d

�1

2

v; d

2

uvud

3

vud

2

2

d

�1

3

uvd

�1

1

ud

�2

3

d

�1

1

d

2

d

�1

3

uvd

�1

1

ud

�2

3

d

�1

1

;

vd

�1

1

ud

�2

3

d

2

d

�1

3

uvd

�1

1

ud

�2

3

d

2

1

d

2

d

�1

3

uvd

�1

1

ud

�2

3

d

�1

2

uvd

�1

3

uvd

�1

3

;

ud

2

d

1

ud

�1

2

d

�1

1

; d

�1

2

vd

�1

3

vd

�1

3

d

�2

2

d

2

3

ud

1

vud

3

d

�1

2

uvd

�1

2

vud

1

ud

2

3

d

1

vud

3

d

�1

2

vd

�1

1

;

d

2

d

�1

3

uvd

�1

1

uvd

�2

2

vuvd

�1

1

d

�2

3

ud

2

d

�1

3

uvd

�1

1

d

�2

3

ud

2

d

�1

3

uvd

�1

1

d

�2

3

ud

2

d

�1

3

uvd

�1

1

d

�2

3

u
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C.5 The 
ase n = 3; q = 5

In this se
tion z denotes a primitive element in F

25

over F

5

with minimal polynomial x

2

� x + 2. We

de�ne the following matri
es:

U :=

0

B

B

B

B

B

B

�

z

18

z

1

z

17

z

18

1

z

18

z

5

z

13

z

18

1

1

C

C

C

C

C

C

A

V :=

0

B

B

B

B

B

B

�

1

z

18

z

1

z

17

z

18

1

z

18

z

5

z

13

z

18

1

C

C

C

C

C

C

A

W :=

0

B

B

B

B

B

B

�

1

1

z

18

z

1

1

1

z

17

z

18

1

C

C

C

C

C

C

A

In addition to these elements we use diagonal matri
es D

i

; 1 � i � 3, that generate the stabilizer of the


ag F , a half-split torus isomorphi
 to C

3

6

.

Lemma C.3

Ea
h maximal paraboli
 in Sp(6; 5) is generated by the matri
es spe
i�ed in the following table together

with generators of the 
ag stabilizer.

stabilizer element generators isomorphism type index

M

1

he

1

i V;W Sp(4; 5)�GU(1; 25) 8137500

M

2

he

1

; e

2

i U;W Sp(2; 5)�GU(2; 25) 5289375000

M

3

he

1

; e

2

; e

3

i U; V GU(3; 25) 201500000

Proof. See the proof of Lemma C.1. 2

Based on the above table, we �nd presentations of the maximal paraboli
s on the generators d

1

, d

2

,

d

3

, u, v, w. These, together with the union of the relators of said presentations give a presentation for

the universal 
ompletion of the amalgam of the maximal paraboli
s.

Coset enumeration over the subgroup generated by d

1

; d

2

; d

3

; v; w gives an index of 8137500 whi
h


orresponds to the index of M

1

in Sp(6; 5). By Lemma A.3 this shows that Sp(6; 5) is the universal


ompletion of the amalgam of maximal paraboli
s.

We give here presentations of the maximal paraboli
s on the generators d

1

; d

2

; d

3

; u; v; w. To ea
h

presentation the relators d

6

i

for 1 � i � 3 and [d

i

; d

j

℄ for 1 � i < j � 3 need to be added.

Generators for M

1

: d

1

; d

2

; d

3

; v; w.

Relators for M

1

:

[v; d

1

℄; [w; d

2

℄; [w; d

1

℄; [v; d

2

d

3

℄; [w; d

3

3

℄; v

�3

(d

2

d

3

)

3

; v

�1

d

�1

2

d

2

3

v

�1

d

�2

3

d

2

;

w

�1

d

2

3

w

�1

d

3

w

�1

d

�1

3

w

�1

d

3

; d

3

w

�1

d

3

wd

3

w

2

d

3

w; d

�1

3

vd

�2

2

d

�1

3

v

�1

d

�1

3

vd

�1

2

v

�1

;

vd

2

2

v

�1

d

3

v

�1

d

�2

3

vd

�1

2

; d

3

vwd

2

vd

�1

2

w

�1

vd

�2

3

d

2

w

�1

d

�1

2

v

�1

wd

3

;

vd

�2

3

w

�1

v

�1

d

�1

3

wd

�1

3

w

�1

vd

2

wvd

�1

2

d

3

w

�1

d

�1

3

v

�1

d

3

w

�1

v

�1

d

�1

3

w

�1

d

3

;

d

2

v

�1

wv

�1

d

3

d

2

wv

�1

d

�1

3

d

2

v

�1

w

�1

d

�1

2

d

�2

3

w

�1

v

�1

d

�1

3

wd

3

w

3

d

3

w;

d

3

vwd

�1

3

vd

�1

3

v

�1

wd

�1

3

v

�1

d

3

vwd

2

3

v

�1

d

�1

3

vd

2

wvd

�1

2

d

�1

3

w

2

d

3

w

�1

d

3
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Generators for M

2

: d

1

; d

2

; d

3

; u; w.

Relators for M

2

:

w

6

; [u;w℄; [w; d

2

℄; [w; d

1

℄; [u; d

3

℄; d

3

3

w

3

; [u; d

1

d

2

℄; (u

�1

d

3

1

)

2

; d

2

3

wd

�1

3

w

�1

d

�1

3

wd

�1

3

w

�1

;

d

3

1

u

2

d

�3

2

u

�1

; wd

3

wd

�1

3

wd

�2

3

wd

�1

3

; ud

�1

2

u

�1

d

�1

1

u

�2

d

1

u

�1

d

2

; d

2

1

ud

�1

1

ud

1

d

�1

2

u

�1

d

�1

1

u

�1

Generators for M

3

: d

1

; d

2

; d

3

; u; v.

Relators for M

3

:

[v; d

1

℄; [u; d

3

℄; [v; d

2

d

3

℄; [u; d

1

d

2

℄; (uv)

�3

; (v

�1

d

3

2

)

2

; (d

3

1

u)

�2

; d

3

1

u

2

d

�3

2

u

�1

; d

3

2

v

2

d

�3

3

v

�1

;

ud

�1

2

u

�1

d

�1

1

u

�2

d

1

u

�1

d

2

; vd

�1

3

v

�1

d

�1

2

v

�2

d

2

v

�1

d

3

; d

2

2

vd

�1

2

vd

2

d

�1

3

v

�1

d

�1

2

v

�1

;

ud

�1

1

ud

2

ud

�2

2

u

�1

d

2

1

; vuv

�1

d

�1

3

vu

�1

v

�1

ud

1

u

�1

C.6 The 
ase n = 3; q = 7

This is the biggest of the open 
ases, with an index of 247163742. Using our standard representation of the

involved groups, that amounts to a memory requirement of about 12 GB when using ACE [6℄ to perform

the 
oset enumeration. This means that one has to use a 64bit ma
hine with suÆ
ient memory in order

to perform the enumeration. George Havas, one of the authors of ACE, performed these 
omputations

for us on both a Spar
 and an Itanium system with suÆ
ient memory.

In this se
tion z denotes a primitive element in F

49

over F

7

with minimal polynomial x

2

� x+3. We

de�ne the following matri
es:

U :=

0

B

B

B

B

B

B

�

z

11

z

1

z

31

z

29

1

z

29

z

7

z

25

z

11

1

1

C

C

C

C

C

C

A

V :=

0

B

B

B

B

B

B

�

1

z

11

z

1

z

31

z

29

1

z

29

z

7

z

25

z

11

1

C

C

C

C

C

C

A

W :=

0

B

B

B

B

B

B

�

1

1

t z

11

z

1

1

1

z

31

z

29

1

C

C

C

C

C

C

A

In addition to these elements we use diagonal matri
es D

i

; 1 � i � 3, that generate the stabilizer of the


ag F , a half-split torus isomorphi
 to C

3

8

.

Lemma C.4

Ea
h maximal paraboli
 in Sp(6; 7) is generated by the matri
es spe
i�ed in the following table together

with generators of the 
ag stabilizer.

stabilizer element generators isomorphism type index

M

1

he

1

i V;W Sp(4; 7)�GU(1; 49) 247163742

M

2

he

1

; e

2

i U;W Sp(2; 7)�GU(2; 49) 605551167900

M

3

he

1

; e

2

; e

3

i U; V GU(3; 49) 12070787400
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Proof. See the proof of Lemma C.1. 2

Based on the above table, we �nd presentations of the maximal paraboli
s on the generators d

1

, d

2

,

d

3

, u, v, w. These, together with the union of the relators of said presentations give a presentation for

the universal 
ompletion of the amalgam of the maximal paraboli
s.

Coset enumeration over the subgroup generated by d

1

; d

2

; d

3

; v; w gives an index of 247163742 whi
h


orresponds to the index of M

1

in Sp(6; 7). By Lemma A.3 this shows that Sp(6; 7) is the universal


ompletion of the amalgam of maximal paraboli
s.

We give here presentations of the maximal paraboli
s on the generators d

1

; d

2

; d

3

; u; v; w. To ea
h

presentation the relators d

8

i

for 1 � i � 3 and [d

i

; d

j

℄ for 1 � i < j � 3 need to be added.

Generators for M

1

: d

1

; d

2

; d

3

; v; w.

Relators for M

1

:

[v; d

1

℄; [w; d

1

℄; [w; d

2

℄; [v; d

2

d

2

℄; v

3

d

2

v

�1

d

�1

3

; w

2

d

�1

3

wd

3

wd

3

wd

�1

3

; d

2

2

d

3

d

2

d

3

3

vd

3

v;

d

3

wd

�1

3

w

�1

d

�1

3

w

�1

d

�1

3

wd

3

; v

�1

d

3

wvd

3

vw

�1

d

�1

3

v

�1

d

�1

3

; d

3

w

2

d

�2

3

w

�1

d

�2

3

w

�2

;

vd

3

w

�1

vw

�1

v

�1

w

3

d

�1

3

wd

�2

3

w

�1

d

3

v

2

d

3

wv

�2

w

�1

d

�1

3

w

�1

;

wv

�1

d

�1

3

v

�1

d

�1

2

d

2

3

d

�1

2

w

2

d

3

d

�1

2

d

�1

1

v

�1

d

�1

3

d

1

v

�1

d

2

3

d

�2

2

w

2

d

2

3

d

�1

2

;

d

2

v

�1

d

3

v

�1

w

�1

d

1

v

�1

d

3

v

�1

d

�2

3

w

�1

vd

1

d

2

d

�1

3

w

�2

d

�2

3

d

2

2

vd

�2

1

d

�3

3

wd

3

;

d

2

1

v

�1

d

�2

2

d

2

3

w

2

d

3

d

�1

2

d

�1

1

v

�1

d

�1

1

d

3

wd

3

d

1

vd

1

d

2

d

�1

3

w

�2

d

�2

3

d

2

2

vd

�2

1

w

�1

d

�2

3

;

d

1

vd

1

d

2

d

�1

3

w

�2

d

�2

3

d

2

d

�1

3

v

�2

d

3

d

�2

2

d

2

3

w

2

d

3

d

�1

2

v

�2

d

�2

2

d

2

3

w

2

d

3

d

�1

2

d

�1

1

v

�1

d

�1

1

wd

3

;

d

1

v

2

d

3

wv

�2

w

�1

d

1

v

�1

d

�2

2

d

2

3

w

2

d

3

d

�1

2

d

�1

1

v

�1

w

�1

d

1

v

�1

d

�2

2

d

2

3

w

2

d

3

d

�1

2

d

�1

1

v

�1

d

�1

1

d

�2

3

w

�1

d

3

Generators for M

2

: d

1

; d

2

; d

3

; u; w.

Relators for M

2

:

[u;w℄; [u; d

3

℄; [w; d

1

℄; [w; d

2

℄; ud

1

d

2

u

�1

d

�1

2

d

�1

1

; d

�1

2

u

3

d

1

u

�1

; ud

2

u

5

d

�1

1

;

wd

2

3

wd

�1

3

w

�1

d

�1

3

w

�1

d

�1

3

; d

�1

3

w

2

d

�1

3

wd

3

wd

3

w; d

1

d

2

d

1

u

�1

d

2

2

d

3

1

u

�1

;

w

2

d

�4

3

w

2

; d

�1

2

d

�1

1

u

�1

d

�1

1

u

�1

d

�2

1

u

�1

d

�1

1

u

�1

d

�2

1

; ud

�1

2

d

1

ud

�1

1

u

�1

d

�1

2

ud

2

u

�1

d

2

1

d

�1

2

Generators for M

3

: d

1

; d

2

; d

3

; u; v.

Relators for M

3

:

[v; d

1

℄; [u; d

3

℄; vd

2

d

3

v

�1

d

�1

3

d

�1

2

; ud

2

d

1

u

�1

d

�1

1

d

�1

2

; d

�1

3

v

3

d

2

v

�1

;

u

3

d

1

u

�1

d

�1

2

; vd

3

v

5

d

�1

2

; d

2

ud

�1

1

ud

�1

1

ud

2

u; d

2

d

2

1

d

2

d

1

d

2

u

�1

d

1

u

�1

d

1

;

d

2

2

d

3

v

�1

d

2

3

d

3

2

v

�1

; v

�1

u

�1

v

�1

d

3

v

�1

u

�1

v

�1

u

�1

d

�1

1

u

�1

;

d

�1

3

d

�1

2

v

�1

d

�1

2

v

�1

d

�2

2

v

�1

d

�1

2

v

�1

d

�2

2

; ud

�1

2

ud

�1

2

d

�1

1

d

�2

2

ud

�1

2

ud

�2

2

;

ud

1

d

�1

2

ud

2

2

u

�2

d

�1

1

u

�1

d

1

d

�2

2

; v

�2

u

�1

v

�1

u

�1

v

�2

u

2

d

1

ud

�2

2

d

1

C.7 The 
ase n = 4; q = 2

In this se
tion z denotes a primitive element in F

4

over F

2

with minimal polynomial x

2

+x+1. We de�ne

the following matri
es:
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P

1

:=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

1 z z

2

1 z

2

1

1

1

z

2

z 1

z 1 1

1

C

C

C

C

C

C

C

C

C

C

A

P

2

:=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

1

1

1

1

1

1

1

C

C

C

C

C

C

C

C

C

C

A

P

3

:=

0

B

B

B

B

B

B

B

B

B

B

�

1

z

2

1 1

1 z

2

1

1 1 z

2

1

z 1 1

1 z 1

1 1 z

1

C

C

C

C

C

C

C

C

C

C

A

P

4

:=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

1

1

1

1

1

1

1

C

C

C

C

C

C

C

C

C

C

A

P

5

:=

0

B

B

B

B

B

B

B

B

B

B

�

z 1 1

1 z 1

1 1 z

1

z

2

1 1

1 z

2

1

1 1 z

2

1

1

C

C

C

C

C

C

C

C

C

C

A

P

6

:=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

1

1

1

1

1

1

1

C

C

C

C

C

C

C

C

C

C

A

P

7

:=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

1

1

1

1

1

1

1

C

C

C

C

C

C

C

C

C

C

A

In addition to these elements we use diagonal matri
es D

i

; 1 � i � 4, that generate the stabilizer of the


ag F , a half-split torus isomorphi
 to C

4

3

.

Lemma C.5

Ea
h maximal paraboli
 in Sp(8; 2) is generated by the matri
es spe
i�ed in the following table together

with generators of the 
ag stabilizer.

stabilizer element generators isomorphism type index

M

1

he

1

i P

1

; P

2

; P

3

; P

6

; P

7

Sp(6; 2)�GU(1; 4) 10880

M

2

he

1

; e

2

i P

1

; P

4

; P

6

; P

7

Sp(4; 2)�GU(2; 4) 3655680

M

3

he

1

; e

2

; e

3

i P

2

; P

4

; P

5

; P

7

Sp(2; 2)�GU(3; 4) 12185600

M

4

he

1

; e

2

; e

3

; e

4

i P

2

; P

3

; P

4

; P

5

; P

6

GU(4; 4) 609280
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Proof. See the proof of Lemma C.1. 2

Based on the above table, we �nd presentations of the maximal paraboli
s on the generators d

1

, d

2

,

d

3

, d

4

, p

1

, p

2

, p

3

, p

4

, p

5

, p

6

, p

7

. These, together with the union of the relators of said presentations give

a presentation for the universal 
ompletion of the amalgam of the maximal paraboli
s. The following

presentations de�ne ea
h maximal paraboli
.

Coset enumeration over the subgroup generated by d

1

; d

2

; d

3

; d

4

; p

1

; p

2

; p

3

; p

6

; p

7

gives an index of

10880 whi
h 
orresponds to the index of M

1

in Sp(8; 2). By Lemma A.3 this shows that Sp(8; 2) is the

universal 
ompletion of the amalgam of maximal paraboli
s.

We give here presentations of the maximal paraboli
s on the generators d

1

till d

4

and p

1

till p

7

. To

ea
h presentation the relators d

3

i

for 1 � i � 4 and [d

i

; d

j

℄ for 1 � i < j � 4 need to be added.

Generators for M

1

: d

1

; d

2

; d

3

; d

4

; p

1

; p

2

; p

3

; p

6

; p

7

.

Relators for M

1

:

p

2

1

; p

2

2

; p

3

3

; p

2

6

; p

2

7

; [p

1

; d

1

℄; [p

1

; d

2

℄; [p

2

; d

1

℄; [p

2

; d

4

℄; [p

2

; p

3

℄; [p

2

; p

7

℄; [p

3

; d

1

℄; [p

3

; p

6

℄;

[p

6

; d

1

℄; [p

6

; d

2

℄; [p

7

; d

1

℄; [p

7

; d

2

℄; [p

7

; d

3

℄; [p

7

; d

4

℄; (p

7

p

1

)

4

; p

2

d

�1

2

p

2

d

3

; p

6

d

3

p

6

d

�1

4

;

p

�1

3

p

2

d

4

p

�1

3

d

�1

2

d

�1

3

; p

6

p

�1

3

d

2

p

�1

3

d

�1

4

d

�1

3

; p

1

p

7

p

1

p

6

d

4

p

7

p

6

; d

�1

4

p

1

d

3

p

1

d

�1

3

p

6

p

1

p

7

;

d

4

p

6

p

1

d

4

p

6

d

�1

4

p

1

d

�1

3

; d

4

p

1

p

7

p

1

d

�1

4

p

1

p

7

p

1

; p

1

p

6

d

4

p

1

d

�1

3

d

�1

4

p

1

p

6

d

4

;

d

4

p

3

p

7

p

�1

3

p

7

d

�1

4

p

3

p

7

p

�1

3

d

�1

4

p

7

; p

2

p

1

d

�1

3

p

�1

3

p

1

p

7

p

6

p

7

p

6

p

�1

3

d

3

p

1

d

3

;

p

2

p

6

p

1

p

2

d

�1

2

d

4

p

1

d

4

p

3

p

7

d

�1

2

p

3

d

4

p

6

p

1

; p

3

p

7

d

�1

2

p

3

d

3

p

�1

3

d

2

p

7

p

3

d

2

p

7

p

6

p

�1

3

p

7

d

�1

3

;

p

3

p

7

d

�1

2

p

3

p

1

p

�1

3

d

2

p

7

p

�1

3

p

7

d

4

p

6

p

1

d

�1

4

p

6

p

7

p

1

d

�1

3

Generators for M

2

: d

1

; d

2

; d

3

; d

4

; p

1

; p

4

; p

6

; p

7

.

Relators for M

2

:

p

2

1

; p

2

4

; p

2

6

; p

2

7

; [p

1

; d

1

℄; [p

1

; d

2

℄; [p

1

; p

4

℄; [p

4

; d

3

℄; [p

4

; d

4

℄; [p

4

; p

7

℄; [p

6

; d

2

℄; [p

7

; d

1

℄;

[p

7

; d

2

℄; [p

7

; d

3

℄; [p

7

; d

4

℄; (p

1

p

7

)

4

; p

4

d

�1

1

p

4

d

2

; p

6

d

�1

4

p

6

d

3

; p

1

p

7

p

1

d

3

p

6

p

7

p

6

;

p

1

p

6

d

�1

4

p

1

p

7

d

�1

4

p

1

d

3

; d

4

p

1

p

6

p

1

d

3

d

�1

4

p

7

p

1

d

�1

3

p

7

p

6

Generators for M

3

: d

1

; d

2

; d

3

; d

4

; p

2

; p

4

; p

5

; p

7

.

Relators for M

3

:

p

2

2

; p

2

4

; p

3

5

; p

2

7

; [p

2

; d

1

℄; [p

2

; d

4

℄; [p

2

; p

5

℄; [p

2

; p

7

℄; [p

4

; d

3

℄; [p

4

; d

4

℄; [p

4

; p

5

℄; [p

4

; p

7

℄;

[p

5

; d

4

℄; [p

5

; p

7

℄; [p

7

; d

1

℄; [p

7

; d

2

℄; [p

7

; d

3

℄; [p

7

; d

4

℄; d

3

p

2

d

�1

2

p

2

; p

4

d

�1

1

p

4

d

2

;

p

4

p

5

d

3

p

5

d

�1

1

d

�1

2

; p

�1

5

d

�1

1

p

�1

5

d

2

d

3

p

2
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