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Abstract

The articles [8] and [9] give a characterization of central quotients of the group Sp(2n, q) for n > 3
and all prime powers ¢ up to some small cases that are left open. The present article fills in this gap,
thus providing the definitive version of the Phan-type theorem for Sp(2n, q).

1 Introduction

The modern approach to Phan-type theorems, i.e., characterizations of finite Chevalley groups in the
spirit of [18] and [19], falls into two parts, as outlined in [1]. On one hand one has to prove the sim-
ple connectedness of some suitable geometry, on the other hand one has to classify related amalgams.
Hoffman, Shpectorov and the first author [8] gave a Phan-type characterization of the group Sp(2n, q)
by studying the so-called flipflop geometry I' of type C, over F,2. The Main Theorem of that paper
states that this flipflop geometry is simply connected for n > 3 and ¢ > 8, for n > 4 and ¢ > 3, and
for n > 5. By Tits’ Lemma (Corollaire 1 of [23], see also Lemma 3.1 of the present article) this implies
that the amalgam consisting of the rank 1 and rank 2 parabolics of the flag-transitive group Sp(2n, q) of
automorphisms of the flipflop geometry I' admits Sp(2n,q) as its universal completion. We refer to [8]
for details. The second part, the classification of amalgams was dealt with in [9].

The purpose of the present paper is to prove the Phan-type theorem, see Subsection 2.3 for the precise
statements, in the remaining open case over the fields Fs, Fy, F5, F;.

In Section 2 we remind the reader of the setting and state the main results. In Section 3 we give a
geometric argument why our main result is true over the field F7, the other cases being dealt with by
a coset enumeration with computer, cf. Appendix C, that can be checked by the interested reader on a
standard desktop machine. In Section 4 we correct a claim made in [11]. Appendices A and B remind
the reader of some notions from amalgam theory and incidence geometry.

Acknowledgement: The authors would like to express their gratitude to George Havas for running a
coset enumeration on one of his computers for the group Sp(6,7), thus complementing our geometric
proof.

2 The Phan-type theorem for Sp(2n,q)

2.1 Geometrical setting

Let Bs,, be the matrix

< 0 Iidnm>
—idpxn | O
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over F2. Let (-, ) be the bilinear form defined by By, via (z,y) := 2 Bs,y. We represent G := Sp(2n, ¢*)
by the set of all invertible (2n) x (2n)-matrices A over F,» which preserve (-,-), that is, A” By, A = By,
holds.

Let V be the vector space ]Fg? and let {e1,...,en, f1,..., fn} be the standard basis. We denote
by ~ the unique non-trivial involutory field automorphism = +— x? of F,=. Consider the -semi-linear
map o : V — V defined by e; — fi, fi = —e; and o(c-v) = co(v) for ¢ € Fpz,v € V. Note that
0(v) = Ba,v = B, 0. Then the centralizer G, := {g € G | Vv € V : go(v) = o(gv)} of o in Sp(2n, ¢*)
is isomorphic to Sp(2n,¢q) (see [8], Proposition 3.8). For our computations in the later sections, we take
G, as our representation of Sp(2n, q). Note that for a matrix A € Sp(2n, ¢*), centralizing ¢ is equivalent
to the condition A~1 = A .

We now define the (so-called flipflop) geometry I' which we are studying in this article. (For an
introduction to flipflop geometries, see [1] or [10].) To this end, we define a ~hermitian form ((-,-)) by
((u,v)) == (u,0(v)), cf. [8], Lemma 3.2. To denote orthogonality with respect to the form (-,-), we use
the symbol L. To denote orthogonality with respect to the form ((-,-)), we use the symbol L.

Definition 2.1 The objects of the geometry I' are all non-trivial subspaces of V' which are totally
isotropic with respect to (-,-) and nondegenerate with respect to ((-,-)); incidence is defined by sym-
metrized containment.

As G, = Sp(2n, q) respects both forms, it acts on the geometry. This action is in fact flag-transitive
(see [8], Proposition 4.2).

For our computations we choose the maximal flag F' equal to (e;) C (e1,e2) C ... C (e1,€2,...,€n).
When computing stabilizers, we will refer to the stabilizers of each of these subspaces as the point
stabilizer M, the line stabilizer Ms, the plane stabilizer M3 and (for n = 4) the space stabilizer My,
respectively. The M; are the maximal parabolics of G, .

Definition 2.2 For A € Fpe, let V) :={u €V | o(u) = Au}.

Lemma 2.3
The following hold.

(i) Vi is G-invariant.

(ii) Vi is an F,-subspace of V.
(iii) Vi # 0 if and only if \X = —1
iv)

(iv) If Vy # 0 then V) contains a basis of V.
Proof. See Lemma 3.6 of [8] or Lemma 2.4 of [9]. i
Let A € F,2 such that A\ = —1. Since V) contains a basis for V, it has the same dimension as V. As

it is a F,-subspace, we deduce that |V\| = ¢>". Let v, := Xen + fn € Va. We observe that G, v, C Vj,
i.e. the orbit of vy, is a subset of V), and hence |[vS"| < ¢*".

Thus we have found a vector with an orbit that is short enough to be suitable for our purposes. For
we can now use this to effectively compute lower bounds on the size of G, and its subgroups: All these
groups induce a permutation action on the orbit G,v,. Hence we can compute an homomorphic image
into a permutation group. There are good algorithms (and implementations of them) for determining the
size of such a permutation group. (They work better the smaller the set is upon which the group acts,
which is why we went to some effort to find vectors with relatively small orbit.) Thus, we can efficiently
compute a lower bound on the size of a factor group of any subgroup H of G,. If the action induced by
the group on the orbit is faithful, as is the case here, then we actually obtain the exact size of the group.
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2.2 Phan systems

Definition 2.4 (cf. [2]) Subgroups U; and U, of SU(3,¢?) form a standard pair whenever each
U; = SU(2,q?) is the stabilizer in SU(3,¢?) of a nonsingular vector v; and, furthermore, v; and vy
are perpendicular. Standard pairs in central quotients of SU(3, ¢?) are defined as the images under the
natural homomorphism of the standard pairs from SU(3,¢?). We denote a standard pair Uy,U, of a
central quotient of SU(3,¢?) by o——o.
U Us
For an element U of T, i.e. a (-,-)-totally singular, ((,-))-nondegenerate subspace of V', let GU(U)
denote the subgroup of G, that preserves the form ((-,-));,; and acts trivially on U+ N U For a
nondegenerate o-invariant subspace W of V' denote by Sp(W) the subgroup of G, that preserves the
form (-, )|y, xw, (see Definition 2.2 for the definition of W) and acts trivially on U+tnuU+.

Definition 2.5 (cf. [9]) In case n = 2, we have V = (e1,€{,e2,e3), G = Sp(4,¢*), and G, = Sp(4,q).
Subgroups U; = Sp(2,q) and U, = SU(2,¢?) are called a standard pair in G, if there exists a (-,-)-
isotropic and ((+, -))-non-isotropic vector v of V' and a two-dimensional (-, -)-totally isotropic and ((-,-))-
nondegenerate subspace U 3 v of V such that the group U; coincides with Sp(v+ N v*) and the group
U, coincides with SU(U). Standard pairs in central quotients of Sp(4, ¢) are defined as the images under
the natural homomorphism of the standard pairs from Sp(4,¢). We denote the standard pair Uy, Us of

4,q) by —=—0 or by o—=—0.
Sp(4,q) by = -0 or by o o
Definition 2.6 Let n > 2, let A be a Dynkin diagram with rank two subdiagrams isomorphic to o o
or o o or o=—= o,and let I ={1,...,n}. A group G admits a weak Phan system of type A

over F if G contains subgroups U; = SL(2, q) = Sp(2, q) = SU(2, ¢*), for i € I, and subgroups U; j, for
i # j € I, so that the following hold:

(i) If (¢,7) is not an edge in A, then U; ; is a central product of U; and Uj;

(ii) if (4,7) is an edge in A, then U; ; is isomorphic to a central quotient of SU(3,¢?), if (4, ) is a single
edge, and isomorphic to a central quotient of Sp(4,q), if (i,j) is a double edge; moreover, U; and

U; form a standard pair in U; ; according to the diagram o o Or o o; and
’ Ui U U Uj

(iii) the subgroups (U; ;)i jer, generate G.

2.3 The main results

Main Theorem 1
Let g > 3, let n > 3, and let G be a group that contains a weak Phan system of type C, over F2. Then
G is isomorphic to a central quotient of Sp(2n, q).

Main Theorem 2
Let n > 4 and let G be a group that contains a weak Phan system of type C,, over F,. Suppose further
that

(i) for any triple i, j, k of nodes of the Dynkin diagram C,, that form a subdiagram

of type Az, the subgroup (U; ;,Uj ) is isomorphic to a central quotient of SU(4, 2%);
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(ii) for any triple i,j, k of nodes of the Dynkin diagram C,, that form a subdiagram

i3 < k

O——FQO0—0

of type Cs, the subgroup (U; j,Uj ) is isomorphic to a central quotient of Sp(6, 2);
(iii) (a) for any triple i, j, k of nodes of the Dynkin diagram C,, that form a subdiagram

i J k
o o——o0

of type Ay ® A,, the groups U; and Uy, commute elementwise; and

(b) for any quadruple of nodes of the Dynkin diagram C,, that form a subdiagram

i J k l
o——o0 o——o0

of type Ay ® A,, the groups U; ; and Uy, commute elementwise; and

(c) for any triple i, j,k of nodes of the Dynkin diagram C,, that form a subdiagram

of type A; ® Cs, the groups U; and Uj; commute elementwise; and

(d) for any quadruple of nodes of the Dynkin diagram C,, that form a subdiagram

i J k < 1

of type Ay ® Cb, the groups U; j and Uy, commute elementwise.

Then G is isomorphic to a central quotient of Sp(2n, 2).

3 Simple connectedness of the geometry

In this section we will prove that for n = 3,¢q > 7, the geometry I is simply connected. By the following
lemma, this implies that Sp(6,¢) is the universal completion of the amalgam of its maximal parabolics,
as desired. This extends the proof from [8] to include the field Fy.

Lemma 3.1 (Tits’ Lemma)
Suppose a group G acts flag-transitively on a geometry G, and let A be the amalgam of parabolics
associated with some maximal flag F' of G. Then G is the universal completion of the amalgam A if and
only if G is simply connected.

Proof. See [5], [13], [16] or [23]. m|
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3.1 Simple connectedness

Using Tits’ Lemma, we have transformed our group-theoretic problem (analyzing the universal completion
of an amalgam) into a geometric one (showing that a certain geometry is simply connected). Now we
have to consider how to solve the latter problem. We need some mathematical tools and facts in order
to tackle it successfully.

Being simply connected means the following for our geometry: All cycles in its incidence graph have
to be null-homotopic, i.e., for every cycle there exists a triangulization (for details, see for example [20]).
If ¢ > 3, every cycle in the incidence graph of I' is homotopic to a cycle passing exclusively through
points and lines (Lemma 5.1 in [8]). Since T is a partially linear geometry, i.e., distinct points have at
most one line joining them, the points of such a cycle uniquely determine the lines of the cycle. Hence it
suffices to study cycles of the collinearity graph of I'. Since the diameter of the collinearity graph is two
(see Lemma 4.5 in [8]), every cycle of length at least six always decomposes into smaller cycles (i.e. it is
the sum of these smaller cycles), and hence it suffices to study triangles, quadrangles and pentagons of
the collinearity graph in order to prove simple connectedness.

3.2 Some tools

The following lemma will prove to be very useful throughout the whole section. Recall the terminology
and definitions introduced in Section 2.1. Notice that if [ is a two-dimensional subspace of V' of ((-,-))-
rank at least one, then it contains at least ¢> —q points of I'. Indeed, if the ((,-))-rank of [ is one then the
radical is the only non-trivial isotropic subspace of [ and if the ((-,-))-rank of [ is two then ! contains ¢+ 1
distinct non-trivial isotropic subspaces. Since any point of [ is (-, -)-singular, it contains ¢* (respectively,
q® — q) points of T, if it has ((+,-))-rank one (respectively, two).

Lemma 3.2

Let p be a point of ' and II D p be a three-dimensional subspace of V' of ((,-))-rank at least two such
that p is in the (-,-)-radical of II. Then for any ((-,-))-nondegenerate two-dimensional subspace | of I,
all points of T" incident with [ are collinear to p, with the exception of at most q + 1 points.

Proof. This is a reformulation of Lemma 4.3 of [8]. O

A direct consequence of this is that if I has ((+,-))-rank one (respectively, two) it contains at least
q? — q — 1 (respectively, ¢ — 2q — 1) points collinear to p. Furthermore, the following is true:

Lemma 3.3

Let p be a point of T" and II D p be a three-dimensional subspace of V of ((-,-))-rank at least two. Then
any two-dimensional subspace | of Il not containing p is incident with at least ¢> — q — 1 (respectively,
q®> — 2q — 1) points of T’ that generate a ((-,-))-nondegenerate two space with p if | has ((-,-))-rank one
(respectively, two).

Proof. See Corollary 4.4 of [8]. m|

3.3 Triangles

The first step is the analysis of triangles of the collinearity graph. We will call a triangle (a,b, ¢) a good
triangle if a, b and ¢ are incident to a common plane of the geometry. A triangle that is not good is
called bad. Note that a good triangle is null-homotopic, so we only have to deal with the bad ones.
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Lemma 3.4

Let (a,b,c) be a bad triangle. Then we can decompose this triangle into bad triangles, in such a way
that for each new triangle T; we can find a canonical basis ey, ez, es, fi, f2, f3 of V such that each T;
equals {e1), (e2), (wie1 + yies + (kies + f3)) with k;k; = —1 and z;y; # 0 and z;%; + y;y; # 0.

Proof. This is a consequence of the Lemmas 5.3, 5.4 and 6.1 in [8]. O

By the preceding Lemma we only have to show for a very limited class of (bad) triangles that they
can be decomposed. To do this, we start with a triangle (a, b, ¢) and construct an octahedron with the
triangle forming one face, and a suitably chosen null-homotopic triangle (p,p’,p’") forming the opposite
face. With suitably chosen we mean that all triangles except for the starting triangle shall be good. In
the following we will prove that this is possible for ¢ > 4.

Before we do that, we need some more tools.

Lemma 3.5 -
Let k,l € F,> such that kk = —1, | # 0 Then there exists a matrix of the form

such that (kes + f3)A = (kles + 1f3).

Proof. It is easy to verify that A € G, if and only if 2Z + yj = 1. Furthermore (kes + f3)A =
(kz + y)es + (T — k§) fs = k(T — k§)es + (T — kg)f3. So the claim is equivalent to showing that the
following system of equations has a solution: zZ + yy = 1 and £ — ky = [. Finding such a solution is
easily achieved via straight forward computation: use the second equation to replace the variable z in
the first equation:

T+ kDI +kp) +yg =1

= U+lky+ (lky) =1

= z+z =1-1l€F,
where z := lky. Now if r is a primitive root of Fg2, then r + 7 # 0 and hence z = r(rlJ:;[) is a solution to
this last equation. Backward substitution yields the desired values for = and y. |

Lemma 3.6
For 4 < q <11, any bad triangle can be decomposed into good triangles.

Proof. Let a,b,cbe abad triangle. By Lemma 3.4, we can assume (a, b, ¢) = ({e1), {e2), (xe; + yes + (kes + f3)))
satisfying kk = —1 and 2y # 0 and 2Z +y7 # 0. Since z # 0, by Lemma, 3.5 we can find g € G, such that
(9(a), g(b), g(c)) = ((ex),(e2), (wer + yer + (kTes + xf3))) = ((er), (e2), (€1 +y'e2 + (K'es + f3))) with
y' =L and k' := kx—i So every bad triangle is conjugate to such a triangle. Note that &'k’ = % =-1
so k' can take at most g + 1 different values. Since y' # 0, it can take at most ¢? — 1 different values.
Hence there are at most (¢ + 1)(¢> — 1) different conjugacy classes of bad triangles to consider.

It is now a simple matter of combinatorics to determine all the possible conjugacy classes of bad
triangles for a given ¢, and then testing for each whether the triangle defined this way is decomposable.
We now claim that for 4 < ¢ < 11 this is possible by using the octahedron construction described above,

)
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and setting (p,p',p") = ((f3),(se1 + kfi —xf3),(tea + kfL —yf3)) where s,t € Fp= \ {0} are chosen
suitably.

Verifying that this is possible requires at most (¢ + 1)(¢? — 1)? checks. This can readily be done using
a simple GAP program (see Appendix D of [12]). In particular we successfully performed these checks for
4 < g < 11. (This upper bound could easily be increased, but of course we had to stop at some point. We
picked it so that it complements the previous proof presented in [8] which works without computational
help for ¢ > 13. So stopping at ¢ = 11 is arbitrary, and the code in Appendix D of [12] should work for
larger values of ¢, too.) O

3.4 Quadrangles

Now we will shift our attention to quadrangles. By the preceding results, it is enough to decompose
quadrangles into triangles, regardless whether they are good or bad. Notice that if in a quadrangle a, b,
¢, d we have that a and ¢ (or b and d) are collinear then this quadrangle is immediately decomposed into
two triangles.

Definition 3.7 We call a quadrangle a, b, ¢, d half-special if (a,c) or (b,d) is nondegenerate with
respect to both forms (-,-) and ((-,-)). We call it special if both (a, ) and (b, d) are nondegenerate with
respect to both forms.

Lemma 3.8
Let ¢ > 5. Then any quadrangle can be decomposed into triangles and half-special quadrangles.

Proof. Consider an arbitrary quadrangle a, b, ¢, d. Without loss of generality we may assume that b
and d are noncollinear. Pick an arbitrary point s € X = a*-Nb-Nd~+. The point s exists because X is not
totally isotropic with respect to ((+,)), being a three-dimensional space contained in the nondegenerate
five-dimensional space a*-. The line [ = (a, s) has ((-,-))-rank two. Using Lemma, 3.3, the line [ contains
at least g2 — 2¢ — 1 points of I that are collinear with b, respectively d, and at least ¢g> — 2¢ — 1 points of
I" that generate a nondegenerate two-dimensional space with c. Since ¢ > 5 and since [ contains ¢* — ¢
points of I', the space [ has to contain a point p of I' that generates a nondegenerate two-dimensional
space with ¢ and that is collinear to both b and d. Clearly a, b, ¢, d decomposes into a, b, p, d and ¢, b,
p, d. If (a,p) = 0 then (a,p) is a line, implying that a, b, p, d decomposes into triangles. Otherwise, a,
b, p, d is half-special with respect to {a,p). Similarly for ¢, b, p, d. O

Lemma 3.9
Let ¢ > 5. Then any quadrangle can be decomposed into triangles and special quadrangles.

Proof. Apply Lemma 3.8 once to obtain triangles and half-special quadrangles. Then apply Lemma
3.8 again, after suitably renaming the vertices of the quadrangles, to obtain special quadrangles. O

Proposition 3.10
Let ¢ > 7. Then any quadrangle can be decomposed into triangles.

Proof. Denote the quadrangle by (a,b,c,d). By the preceding lemma, we can assume without loss
of generality that it is special, so (a,c¢) # 0 # (b,d) and both (a,c) and (b,d) are ((-,-))-nondegenerate.
We try to find a point p collinear to all of a, b, ¢, d, which means we can decompose the quadrangle into
triangles.

Set W :=atNect and Uy := WNbt and Uy := WNdt and [ := U; N U,. Note that dim W = 4,
dimU; = dimU, = 3, dim! = 2. Also, W is ((-, -))-nondegenerate since (a, ¢) is ((+, -))-nondegenerate and
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W =atnet = (@)L n(e)t =, )" = ((a,c)a)ll'. Similar arguments hold for at Nbt, b+ Net
and so on.
We now distinguish three cases:

(i) Iflis of ((-,-))-rank two, then we can apply Lemma 3.2 to the planes (a,l), (b,1), (c,1), and (d, 1) to
obtain g% — 5¢ — 4 points of I' on [ collinear to all of a, b, ¢, d. Notice that this is a positive number
forg>T7.

(ii) Suppose now that [ is of ((-,-))-rank one. Then the plane II := (b,1) has ((-,-))-rank at least one.
It lies inside the four-dimensional ((-,-))-nondegenerate space W. Assume II had ((-,-))-rank one.
Then it has a two-dimensional ((-,-))-radical R, which would be maximal totally isotropic in W,
since dim(R) + dim(RL N W) = dim(W) and R C R*. Similarly, R can not have a polar of
dimension three, which IT would be. Contradiction, thus II has ((-,-))-rank two. Similar arguments
hold for the points a, ¢, d instead of b. Applying Lemma 3.2 gives us ¢> —4q — 4 points of I collinear
to all of a, b, ¢, d. Notice that this is a positive number for g > 5.

(iii) Suppose now [ is totally isotropic with respect to ((+,-)). Then the planes U; and Us are ((-,-))-
degenerate. They must have ((+,-))-rank two (this can be shown with similar arguments as used in
case (ii) for II).

Let R; and Ry be the one-dimensional ((+,))-radical s of U; and Us. They are contained in [. For
assume that Ry € I; then U; = (Ry,[). But then U; would be totally isotropic (since ! is totally
isotropic, and also orthogonal to Ry, the radical of U;), a contradiction. We argue likewise for R».

Furthermore, the radicals cannot coincide as otherwise we would obtain a radical for the ((-,-))-
nondegenerate space a~ Nct. So we have | = (R, Ry). Notice that b ¢ [, since (b,d) # 0. Hence b
is different from R; and R.

Choose a line ¢ of T through b inside U;. This line exists since the ((+,-))-rank of U; is two, and b is
not in the ((+,))-radical Ry of U;. Applying first Lemma 3.3 to (d,t) and then Lemma 3.2 to {(a,t)
and (c, t) yields the existence of (¢ —2¢—1) —2(¢+ 1) = ¢*> — 4¢— 3 > 0 points on ¢ collinear to a,
b, ¢ and which span a ((-,-))-nondegenerate space with d. Choose one of these points not equal to
b and call it ¥'. Then (b',d) # 0, for otherwise, b’ € [, contradicting that [ is totally isotropic with
respect to ((+,-)). Hence a,b’, ¢, d form a special quadrangle.

Let U] := Y-NW. We claim that U] intersects U, in a line I’ that does not contain Ry, implying the
((+,-))-rank of I' is two (since it is contained in U, which has ((:,-))-rank two and doesn’t intersect
its radical) and so we have reduced to case (i) of this proof.

It remains to verify our last claim. Assume Ry C U; NU, =1'. Then Ry CINI' = (b*N'H)NU, =
(b, b)) N U C (b,b)" = 1+, thus t C R+ NU;. Notice that RF N Uy = (b, Ry): Clearly
(b,Ry) C Ry NUy, since Ry C Ry, Ry C1 C Uy, bC Uy and b C I+ C Ry. Equality holds since
R is one-dimensional, and R, is not the (-, -)-radical of U; (which is b, and we already know that
b # R»), and thus both sides of the equation have the same dimension. But then also t = (b, R»),
implying that ¢ has ((-,-))-rank one, a contradiction since ¢ is a line of T'.

O

Note that the ‘pyramid’ construction used in the preceding proposition is not sufficient for ¢ < 5, so a
different approach would be needed to cover it. For a specific example, let z denote a primitive element in
F,5 over F5 with minimal polynomial 2% —z +2. Then let a := (e1), b := (es), ¢ := (ex + 2 tes + 271 f1),
d:.= <61 + 2%y + 28 + z9f3>. This is a special quadrangle, and using the definitions from Proposition
3.10, I := (u,v) with u := (e + f3) ,v := (ez + 2z%e3). Now [ has ((-,-))-rank two, but contains no point
p collinear to all of a, b, ¢, d.
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3.5 Pentagons

Proposition 3.11
Let ¢ > 5. Then any pentagon can be decomposed into triangles and quadrangles.

Proof. Let (a,b,c,d,e) be a pentagon. Consider the space U := (a,b, d)L of dimension three. Its
((+,-))-rank has to be at least two, as the ((-,-))-rank of {(a,b) is two. Choosing a ((-,))-nondegenerate
two-dimensional subspace | of U and applying Lemma 3.2 on the planes (a,l), (b,1), (d,1), we will find
(¢> —q) —3(qg+1) = ¢*> —4q — 3 > 0 points on [ collinear to all of a, b, d, decomposing the pentagon. O

3.6 Proof of the Main Results

Combining the results from the preceding sections yields this proposition:

Proposition 3.12
If n =3 and 7 < ¢ < 11, the geometry I' is simply connected. O

By Ay we denote the amalgam of rank & parabolics with respect of the flag-transitive action of G
onT.

Proposition 3.13
For (n,q) € {(3,3),(3,4),(3,5),(3,7), (4,2)}, the group G, is the universal completion of A(,_1).

Proof. This proposition is proved by the computations described in Appendix C.1. O

Using the results from [8] and the work done in the present article we can prove the following theorem:

Theorem 3.14
G is the universal completion of A(,,_) if and only if n > 3 and (n,q) # (3,2).

Proof. We show that the flipflop geometry I' is simply connected if and only if n > 3 and (n,q) #
(3,2). From this follows the claim via Tits’ Lemma (Lemma 3.1). Simple connectedness for n > 3 and
(n,q) # (3,2) is proved conjointly by Proposition 3.12, by combining Proposition 3.13 with Tits’ Lemma,
and finally by Theorem 6.8 from [8].

If (n,q) = (3,2), then the geometry is not simply connected, as shown in [8], right after Theorem
6.8. Finally, if n = 2, the simplicial complex is one dimensional, and hence only simply connected if it
contains no cycles (i.e. if it is a tree). But the points {e1), (e2), (f1), (f2) form a quadrangle, and hence
there exists a non-trivial cycle in the simplicial complex, thus the geometry is not simply connected. O

Proof of Main Result 1. See Sections 3 and 4 of [9] or Chapter 8 of [10]. O

Proof of Main Result 2. See [2] or Chapter 8 of [10]. O

4 The case (n,q) = (3,3) reviewed

In this article, we prove that for (n,q) = (3, 3), the geometry I" corresponding to Sp(6, 3) and Cj is simply
connected, and the group itself is the universal completion of the amalgam corresponding to the weak
Phan system.

In case of A3 or equivalently D3, however, one can show that either a three-fold or a nine-fold cover
of the geometry exists. (Richard Lyons gave a simple argument for this, see page 86 of [10]). However,
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nothing was known so far about the universal cover (contrary to the claim made on page 144 in [11]).
Recently the authors successfully applied the techniques used in this article to the case A3 and determined
the universal cover, which turned out to be nine-fold.

Theorem 4.1
The flipflop geometry T'(3,3) studied in [2] and [11] admits a nine-fold universal covering.

Finally, for B3 nothing was known so far. The authors applied the techniques described in Appendix
C here as well. The unexpected result was that the coset enumeration (used to determine the size of the
universal completion of the amalgam of parabolics) did not terminate. However, by adding additional
relations we succeeded in proving that there has to exist a three-fold covering of the geometry, an obser-
vation that has been confirmed by Sergey Shpectorov, who informed us that he constructed a three-fold
cover of Spin(7,3) containing a weak Phan system.

A Appendix: Amalgams

In this section, we introduce the notion of group amalgams. Note that we only need a special kind of
amalgams; for a more general definition, see for example [21].

Definition A.1 An amalgam of groups is a set 4 endowed with a partial multiplication and a finite
family of subsets (G;)ies such that the following holds:

(i) A= UG,
(ii) the restriction of the multiplication to G; turns G; into a group for i € I,

(i) G; NGy is a subgroup both in G; and G for all 4,5 € I.

Definition A.2 A group G is called a completion of an amalgam A if there exists a map 7 : A —» G
(called the completion map) such that

(i) for all ¢ € I the restriction of 7 to G; is a homomorphism
(ii) 7(A) generates G.

Among all completions of A there is a largest one which, if A is finite, can be defined as the group
having the following finite presentation:

U(A) = (tn | h € A, tyty =ty if zy is defined ) .
U(A) is called the universal completion. Its completion map is given by
YA UA) gt

We call this completion universal since it has the universal property that for any other completion
G with completion map 7, there exists a unique group epimorphism 7 from U (A) onto G such that the
following diagram commutes:
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We define the map 7 by first defining it on the the generators ¢)(A) of U(A) only, via 7|y (4) : tz = 7(x).
This can be extended to a group epimorphism because

whenever zy and, thus, t;, are defined.

We now consider the amalgam formed by subgroups of a given group G.

Lemma A.3

Let (Gy)icr be a finite family of subgroups of a finite group G which generates G, let A := U;c1G; be the
associated amalgam of groups, and let ¢ : A — U(A) be the completion map. Then for each i € I the
restriction Y, : Gy — U(A) is injective. Furthermore U(A) = G if and only if there exists an i € I such
that the index of (G;) in U(A) equals the index of G; in G.

Proof. Note that G is a completion of A4, for which the inclusion map ¢ is a completion map. By
the universal nature of U(A), there exists an epimorphism 7 from U(.A) onto G such that the following
diagram commutes:

The map 1|, must be injective, as ¢|¢, is injective. Let Gi = ¥(G;). T U(A) = G, then the indices
[G : G;] and [U (A): éz] coincide, whence this implication is immediate. Conversely, assume that for

some i, the group G; has the same index in G as @,- has in U(A). The group éi intersects the kernel of
m trivially, since by the above 7 (él) = @; = (G;) = G;. But by hypothesis [U(A) : é,] =[G :Gy], so

Gl G = [G:Gi
= [U(A) é]
= ) |G
= |G| |ker(m)| : |Gil,
whence |ker(m)| =1 and 7 is an isomorphism between U (4) and G. O

B Appendix: Geometries

In the following, we give a quick run-down on the basics of synthetic geometry. For a more complete
introduction to the subject, refer for example to [3] or [17].

Definition B.1 A pregeometry over a set [ is a triple G = (X, *, typ) where X is a set (its elements
are called the elements of G), x is a symmetric and reflexive relation defined on X which is called the
incidence relation of G, and typ is a map from X to I (the set I is called the type set of G) such
that typ(z) = typ(y) and x * y imply = y. The pregeometry G is called connected if the graph (X, )
is connected.
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Definition B.2 If A C X, then A is of the type typ(A), of rank |typ(A)|, and of corank |I\ typ(4)|.
The cardinality |I] of I is called the rank of G. A flag of G is a set of mutually incident elements of G.
Flags of type I are called chambers.

Definition B.3 If F is a flag of G, then the residue of F' in G is the pregeometry Gr = (Xp, xp, typr),
where X is the set of elements of X that are incident with but distinct from all elements of F', and *p
and typr are the restrictions of * and typ to Xr x X respectively Xp. The pregeometry G is called
residually connected if (Xp, *p) is a connected graph for each flag F' of G of corank greater or equal
two, and non-empty for each flag F' of corank one.

Definition B.4 A geometry over [ is a pregeometry G over I in which every maximal flag is a chamber.

Definition B.5 Let G be a group of automorphisms of a geometry G over I. We say G acts flag-
transitively on G if for each J C I, the group G acts transitively on the set of flags of type J. In other
words, if F; and Fy are flags in G of equal type, then there exists g € G such that g(F;) = Fb.

Definition B.6 Let G be a geometry of rank n, let ¢ : G — AutG be a group homomorphism such
that ¢(G) acts incidence-transitively on G. A rank k parabolic is the stabilizer of a flag of corank k
from G with respect to the action given by gF := ¢(g)F. Parabolics of rank n — 1 are called maximal
parabolics. They are exactly the stabilizers in G of single elements of G.

Definition B.7 Let G be a geometry which admits points and lines as two if its types. The collinearity
graph is an undirected graph which has as its vertices the points of G, and in which two vertices vy, v
corresponding to points py, p» are connected by an edge if and only if there exists a line [ incident to both
p1 and ps.

C Appendix: Determining universal completions

C.1 General approach for computing the amalgams: GAP

In order to compute the universal completion of the amalgams of parabolics which we are studying
here, we do the following: First, we determine generators for each parabolic. They will be chosen such
that the intersection of the parabolics is generated by the intersection of their respective generating set.
Specifically, in the case n = 3 the maximal parabolics we consider are the point, line and plane stabilizers
of our flag F', with suitably chosen generators u,v,w. These stabilizers all intersect in the flag stabilizer,
and so generators of the flag stabilizer together with w,v,w generate the desired parabolics as well as
their intersections (which are also parabolics).

To prove that the parabolics and their intersections are generated by the matrices for which we claim
this, we first show that they generate a subgroup U of the desired group H; then we compute a lower
bound of the size for U. If this bound equals the size of the full group H, we have thus established that
H=>~U.

We proceed by using GAP [7] to compute finite presentations of the parabolics in terms of these
generators: We first find a permutation group isomorphic to our group, then from that determine the
corresponding relators (to learn more about the algorithms involved, which GAP implements, refer to
[4] and [14]). Due to our choice of generators, the universal completion of the amalgam is obtained by
forming the union of all the generators and relators of the parabolics.

Finally, we have to prove that this universal completion is identical to Sp(2n,q). For this it would be
sufficient to compute the size of the group. Doing that directly via a coset enumeration over the trivial
group is not feasible due to the size of this finitely presented group. Instead we compute the index of one
of the parabolics inside the amalgam, which also establishes the desired isomorphism (see Lemma A.3).
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All computations (except those for (n,q) = (3, 7)) were performed on an Apple PowerBook G4 1.5GHz
with 1 GB RAM using GAP 4.4.5. Computation times ranged from a few seconds up to about half an
hour (for (n,q) = (3,5)); memory requirements ranged up to 350 MB (again for (n,q) = (3,5)). Details
regarding (n,q) = (3,7) are mentioned in Section C.6.

Before we proceed with the details of this, we present some auxiliary results which are useful for
computing lower bounds on the group sizes.

C.2 Subgroups and their sizes

The maximal parabolics of M;, with respect to our maximal flag F' are subgroups of G, = Sp(2n, ¢) with
the following isomorphism type (see [8]):

o ) Sp(2n - 2i,q) x GU(i,q?) for1<i<n-—1
T GU(n, ¢?) fori=n ’

Note that by GU(n, ¢*) we denote the general unitary group of dimension n over the field F 2 (sometimes
in the literature this is referred to as GU(n, q), which is also the notation used by GAP).

So we can compute the size of the M;, since it is well known (see e.g. [22]) that |Sp(2n,q)| =
¢ TTi, (¢ = 1) and |GU(n, ¢%)| = ¢" "D/ [, (¢ + (1)),

These size formulas are important in the following sections, where we use them to prove that the
groups generated by certain matrices are precisely the groups we are looking for.

C.3 Thecasen=3,q=3

In this section z denotes a primitive element in Fy over F5 with minimal polynomial 2 — 2 — 1. We define
the following matrices:

P 1
27 2P 27 2t
U= 1 Vo 27 28
- 25 28 - 1
25 27 25 28
1 25 27
1
1
27 21
W .= 1
1
27 25

In addition to these elements we use diagonal matrices D;,1 < ¢ < 3, that generate the stabilizer of the
flag F', a half-split torus isomorphic to C?.

Lemma C.1
Each maximal parabolic in Sp(6, 3) is generated by the matrices specified in the following table together
with generators of the flag stabilizer.

stabilizer | element | generators | isomorphism type | index
M, fen) V,W Sp(4,3) x GU(L,9) | 44226
M, (er,es) | UW Sp(2,3) x GU(2,9) | 3980340

M3 (61,62,63) U,V GU(3,9) 379080
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Furthermore, the pairwise intersection of the stabilizers is generated by the intersection of their generators
as given above.

Proof. The claimed generators of each M; obviously each stabilize the corresponding element in the
table. Hence they generate subgroups of the stabilizers. Also, the intersection of the generators of any
two M; forms a subgroup of the intersection of the two groups. To complete the proof, we compute, using
GAP and Lemma 2.3 and the subsequent discussion, lower bounds of the group sizes. We then verify that
they are equal to the sizes of the maximal parabolics respectively the double stabilizers. O

Based on the above table, we find presentations of the maximal parabolics on the generators dj, da,
ds, u, v, w. These, together with the union of the relators of said presentations give a presentation for
the universal completion of the amalgam of the maximal parabolics.

Coset enumeration over the subgroup generated by di, ds, d3, v, w gives an index of 44226 which
corresponds to the index of M; in Sp(6,3). By Lemma A.3 this shows that Sp(6,3) is the universal
completion of the amalgam of maximal parabolics.

We give here presentations of the maximal parabolics on the generators di,ds,ds,u,v,w. To each
presentation the relators df for 1 < i < 3 and [d;,d;] for 1 <i < j < 3 need to be added.

Generators for M;: dy,ds,ds,v,w.

Relators for M;:

v, w?, [v,di], [w,d1], [w,ds], d2v71d3v71d§2, wdgwdgwdgl,

_ -1 1 - _ _ _ 1 —1 g3—1 _
vwo™twdy fvw™ o dyw ™ dgvwe ™ o™ low ™ o g fown ™

1

_ 1 -1 3—1 1—1 _ _
dyvwv ™ tw 1d3 d,  wvwv Lwtdsw

Generators for Ms: dy,ds,ds, u, w.
Relators for Ms:

u?, w3, [u, w], [u, ds], [w, di], [w, dz], dyu™ dou="d5 2, wd%w_1d372, dgwdglwdgw

Generators for Ms: dy,ds,ds,u,v.
Relators for Mj:

u® 03, [v, di], [u, d3], dsvdavds, udsdaud, , ™ vuv ™ uw

C.4 Thecasen=3,q=14

In this section z denotes a primitive element in Fjg over F, with minimal polynomial z* + z + 1. We
define the following matrices:

25 2! 1
2t 2P 25 2!
U 1 Vo 24 2P
o 25 24 - 1
2l 25 25 2t
1 2t 25
1
1
25 21
W .= 1
1
24 25
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In addition to these elements we use diagonal matrices D;,1 < i < 3, that generate the stabilizer of the
flag F, a half-split torus isomorphic to C3.

Lemma C.2
Each maximal parabolic in Sp(6,4) is generated by the matrices specified in the following table together
with generators of the flag stabilizer.

stabilizer | element | generators | isomorphism type | index
M, (e1) V,W Sp(4,4) x GU(1,16) | 838656
M, (e1,€2) uw Sp(2,4) x GU(2,16) | 228114432
M; (e1,e9,e3) | U,V GU(3,16) 13160448
Proof. See the proof of Lemma C.1. O

Based on the above table, we find presentations of the maximal parabolics on the generators dj, da,
ds, u, v, w. These, together with the union of the relators of said presentations give a presentation for
the universal completion of the amalgam of the maximal parabolics.

Coset enumeration over the subgroup generated by di,ds,ds, v, w gives an index of 838656 which
corresponds to the index of M; in Sp(6,4). By Lemma A.3 this shows that Sp(6,4) is the universal
completion of the amalgam of maximal parabolics.

We give here presentations of the maximal parabolics on the generators di,ds,ds,u,v,w. To each
presentation the relators d? for 1 < i < 3 and [d;,d;] for 1 <i < j < 3 need to be added.

Generators for M;: dy,ds,ds,v,w.

Relators for M;:

02, w?, [v,di], [w, di], [w, ds], (wds)?, (vw)*, vdadzvdy  d3*, (vdsdy )3,
(wvwvd3)*, wd1vdgwd?,dgvdgd%vwdgvdl_ldngdngwdglvdgld3wd3_1wd3,
(wdy *wowvd; *wd3)?, d3dy dsvwowd, dzvwvdy *owd; *vdy *wdy *w,
ds *wody * djwd; fvwudswds fvwvdswdy *wdiwudzwo,
dyvdzwvwds L owdy, tdgvwodzwdy ' wdzwdy P wdiwdy *vwedy
Generators for Ms: dy,ds,ds, u,w.
Relators for Ms:
u27 ’LU2, [u7 ’LU], [’LL, d3]7 [’LU, d1]7 [’LU, d2]7 dS’_lwdglwdS’_lwa ud%udl_2’U’dl_ld27
udydyudy dyt udyudy  ud]  udy ud]  uds, wds wdiwds *wdiwds *wds
Generators for Ms: dy,ds,ds,u,v.
Relators for M;:
u?,v?, [u, ds), [v, di], dody tvds *vd3v, udivdzvdy * dyvdsvd; tudy ?,
vdjudyvdizuvdy *uvd; tudy ?, dods uvd; tudy *od; 2dady tuvd; fuds 2 dy
dodzvdy ' dy Mo, deuvudzvudydy fuvd; fudy 2dy t dody fuvd; fudy ?d) Y
vd; tudy 2dady tuvd; tudy Adi dody fuvd) udy ?dy fuvdy fuvdy !
udadyudy d;t dy tody fody tdy 2 diudyvudsdy fuvds, foudyudsdyvudsdy fod;

dody *uvd; fuvd, 2vuvd; tdy 2udady tuvd; s Fudsdy tfuvd; g Pudsdy fuvd) g P
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C.5 Thecasen=3,q=5

In this section z denotes a primitive element in Fp5 over Fs5 with minimal polynomial 2> — z 4+ 2. We
define the following matrices:

218 21 1
ST 18 L8 1
1 L1718
U= Vo=
18 2’5 1
L1318 S18 .5
1 L1318
1
1
18 1
z z
W =
1
1
L7 218

In addition to these elements we use diagonal matrices D;,1 < ¢ < 3, that generate the stabilizer of the
flag F, a half-split torus isomorphic to C§.

Lemma C.3

Each maximal parabolic in Sp(6,5) is generated by the matrices specified in the following table together
with generators of the flag stabilizer.

stabilizer | element | generators | isomorphism type | index
A ten) VW Sp(4,5) x GU(1,25) | 8137500
My (e ey |UW Sp(2,5) x GU(2,25) | 5289375000
M, (e1,enre5) | UV QU(3,25) 201500000
Proof. See the proof of Lemma C.1. O

Based on the above table, we find presentations of the maximal parabolics on the generators dj, da,
ds, u, v, w. These, together with the union of the relators of said presentations give a presentation for
the universal completion of the amalgam of the maximal parabolics.

Coset enumeration over the subgroup generated by dy,ds,ds,v,w gives an index of 8137500 which
corresponds to the index of M; in Sp(6,5). By Lemma A.3 this shows that Sp(6,5) is the universal
completion of the amalgam of maximal parabolics.

We give here presentations of the maximal parabolics on the generators di,ds,ds,u,v,w. To each
presentation the relators d¢ for 1 < i < 3 and [d;,d;] for 1 <i < j < 3 need to be added.

Generators for M;: dy,ds,ds,v,w.

Relators for M;:

[v, d1], [w, dz], [w, dy], [v, d2ds], [w, d3], v > (dad3)®, v dy tdavtdy 2 dy,
wtdw  daw T dy o s, dzw T dywdzw? dsw, dy tody 2dy to T dy fudy fo
vdivtdzvtdy 2udy b, dgvwdavdy fw T vdy 2dew ™ dy fo T wds,

vdy ?w o dy fwdy fw T todawody P dsw T g o daw T e dy e s,
dgvflwvfldgdzwvfldg_ldgvflwfld;1d§2w*1v*1d§1wd3w3d3w,

-1, 7—1, ~1, 7—1 —1 2,1 -1 —1-1,27 1
dsvwdy “vd; v wdy v dsvwdsvTdy  vdawedy T dy T widsw T ds
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Generators for Ms: dy,ds,ds, u,w.
Relators for Ms:

wb, [u, w], [w, da], [w, d1], [u, d3], d§w3, [u, d1ds], (utd?)?, d%wd;lwfld?,_lwd?,_lw*l,

d3u?dy*ut wdswds fwdy Pwdy !t udy tu Tt dT a2 dyu o, diudy tudy dy e T e

Generators for Ms: dy,ds,ds,u,v.
Relators for Mj:

[v,dy], [u, ds], [v, dads], [u, dids], (uv) ™2, (v™1d3)?, (diu) ™2, diu’dy *u™, dyv?d; o™t

udy *utdy fuT? dyuT g, vdy fo T dy o T2 dov T ds, dyvdy, fudady fo T dy T

1 1

~1 2, —1 52 —1g-1 -1 —1 -
ud; “udsud, “u” di,vuvT dy vuT v udiu

C.6 Thecasen=3,q=7

This is the biggest of the open cases, with an index of 247163742. Using our standard representation of the
involved groups, that amounts to a memory requirement of about 12 GB when using ACE [6] to perform
the coset enumeration. This means that one has to use a 64bit machine with sufficient memory in order
to perform the enumeration. George Havas, one of the authors of ACE, performed these computations
for us on both a Sparc and an Itanium system with sufficient memory.

In this section z denotes a primitive element in Fy9 over F; with minimal polynomial 22 — z + 3. We
define the following matrices:

P 1
531,29 L1 1
1 31,29
29 Z7 1
525 L1 529 LT
1 425 L1
1
1
" L1 1
W =
1
1
531 529

In addition to these elements we use diagonal matrices D;,1 < i < 3, that generate the stabilizer of the
flag F, a half-split torus isomorphic to C§.

Lemma C.4
Each maximal parabolic in Sp(6,7) is generated by the matrices specified in the following table together
with generators of the flag stabilizer.

stabilizer | element | generators | isomorphism type | index
M, (e1) V,W Sp(4,7) x GU(1,49) | 247163742
Moy (e1,e2) Uuw Sp(2,7) x GU(2,49) | 605551167900

M; (e1,e2,e3) | U,V GU(3,49) 12070787400
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Proof. See the proof of Lemma C.1. a

Based on the above table, we find presentations of the maximal parabolics on the generators d;, ds,
ds, u, v, w. These, together with the union of the relators of said presentations give a presentation for
the universal completion of the amalgam of the maximal parabolics.

Coset enumeration over the subgroup generated by dj,ds, ds, v, w gives an index of 247163742 which
corresponds to the index of M; in Sp(6,7). By Lemma A.3 this shows that Sp(6,7) is the universal
completion of the amalgam of maximal parabolics.

We give here presentations of the maximal parabolics on the generators di,ds,ds,u,v,w. To each
presentation the relators d§ for 1 < i < 3 and [d;,d;] for 1 <i < j < 3 need to be added.

Generators for M;: dy,ds,ds,v,w.

Relators for M;:

[v,dy], [w, dv], [w, dy], [v, dada], P dyv ™ d5 ", w?dy  wdswdswds !, d3dsdydivdsv,
dswdz wrdy w dy fwds, v dgwedsvw Ty o S dyw? dy P w T dg w2,
vdgwflvw*1v71w3d;1wdg2w*1d302d3wv*2w*1d371w*1,

wytdy v dy dady twidsdy T v dy dyw T ARy PP dady

dovrdzgvtw dyo T dav T dy 2w od dody w2 dy P diud P dy Pwds,

vty 2 dwidsdy AT v dT  dswdsdyvdy dody w2 dy P davd P w g

dyvdydads w2 dy 2 dody Mo 2 dsdy 2 diwP dsdy o2 dy P dRw? dsdy tdT o T  wds,

dividswo?w  dyo P dawt dsdy T o e dyw T dy P dawPdady P e T T P w T g
Generators for Ms: dy,ds,ds, u, w.

Relators for Ms:
[u, ], [u, d3], [w, dy], [w, 2], udrdyu™ dy b dy Muddyu™  udyu®d;
wdiwdy 'w™tdy tw dyt dy e dy fwdswdsw, dy dodyu Tt dadiuT
wdy *w? dytd e d e d 2T d e R udy tdyud T dy  udypu T Ryt
Generators for M3: dy,ds,ds,u,v.
Relators for M;:
[v,d1], [u, ds), vdadsv tdy " dy ' udadiu tdy Nyt dy PP dau
wrdyutdyt vdsv®dyt, dyud ud  uda, dodidady dou dyu T dy
dadzv didsvt v lu T  dgv T lw T o e T N e
dztdy v dy e dy P dy o dy R udy tudy T dy P udy fudy

udldgludgu_zdl_lu_ldld2_2, v_2u_1v_lu_lv_2u2d1ud2_2d1

C.7 The case n=4,q=2

In this section z denotes a primitive element in F; over F» with minimal polynomial 2% + z + 1. We define
the following matrices:
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1 1
1 1
1 z 22 1
1 21 1
P = T P = T
1 1
22z 1 1
z 1 1 1
1 1
22 1 1 1
1 22 1 1
1 1 22 1
P; = T P, = 1
z 1 1 1
1 =z 1
1 1 =z 1
z 1 1 1
1 z 1 1
1 1 z 1
1 1
P = p Py = T
1 22 1 1
1 1 22 1
1 1
1
1
1
1
P = 1
1
1
1

In addition to these elements we use diagonal matrices D;,1 < i < 4, that generate the stabilizer of the
flag F, a half-split torus isomorphic to Cj.

Lemma C.5

Each maximal parabolic in Sp(8,2) is generated by the matrices specified in the following table together
with generators of the flag stabilizer.

stabilizer | element | generators | isomorphism type | index
M1 <€1> Pl,PQ,P37P6,P7 Sp(6,2) XGU(1,4) 10880
M,y (61,€2> P17P4,P6,P7 Sp(4,2) X GU(2,4) 3655680
M3 (61,62,63) P27P4,P5,P7 Sp(2,2) X GU(3,4) 12185600
M4 <61,€2,63,64> Pz,Pg,P4,P5,P6 GU(4,4) 609280
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Proof. See the proof of Lemma C.1. a

Based on the above table, we find presentations of the maximal parabolics on the generators d;, ds,
ds, dy, p1, P2, P3, P4, D5, D6, P7- LThese, together with the union of the relators of said presentations give
a presentation for the universal completion of the amalgam of the maximal parabolics. The following
presentations define each maximal parabolic.

Coset enumeration over the subgroup generated by di,ds,ds,ds, p1,p2,P3,P6,P7 gives an index of
10880 which corresponds to the index of M; in Sp(8,2). By Lemma A.3 this shows that Sp(8,2) is the
universal completion of the amalgam of maximal parabolics.

We give here presentations of the maximal parabolics on the generators d; till dy and p; till p;. To
each presentation the relators d? for 1 <i < 4 and [d;, d;] for 1 <14 < j <4 need to be added.

Generators for My: di,ds,ds,dys, p1,p2,p3, D6, P1-

Relators for M;:

P1, 05,05, 05, 07, [P, dal, [Py, da), [pa, dal, [pa, dal, [pa, 3], [pa, 1], [ps, dul, [ps, b,
[ps, di1, [ps, da), [p7, di), [P, da), [P, d3), [Pr, da), (P7p1)*, pody ' pads, pedspedy
p5 'pedapy tdy dy" peps tdopy My Ny, pLprpipsdaprpe, dy  prdsprds pepipr,
dypeprdapsdy 'prdy ", dspiprpydy  prprpy, prpedapids ' dy ' pipeds,

dapsprps ' prdy "psprps tdy ' pr, papLds Py  pLpTPePTPEDs dspids,

Pp2pep1pads  dyprdapsprds  psdapepy, psprdy ' psdsps  daprpsdaprpeps ' prds
psprdy ' psp1ps  doprps  prdapepidy ' peprprds !

Generators for Ms: dy,ds,ds,ds, p1,pa, Pe, P7-
Relators for Ms:

p%ap?ppg:p%: [pl: dl]: [p17 d2]7 [p17p4]7 [p47 d3]7 [p47 d4]7 [p47p7]7 [p67 d2]7 [p77 d1]7
[p7,do], [pr,ds], [pr, da), (p1p7)*, pady ' pads, pedy  peds, p1prpr dspeprpe,
pipedy " piprdy 'pids, dapipeprdsdy tprpids  prpe

Generators for M3: di,ds,ds,ds,p2,ps, D5, D1
Relators for M;:

péapiapgap%7 [pZ;dl]a [p27 d4]7 [p27p5]7 [p27p7]7 [p47 d3]7 [p47d4]7 [p47p5]7 [p47p7]7
[ps,dal, [ps, 7], [p7, da], [p7, da], [p7, ds), [pr, da], dspady ' pa, pad; ' pads,
papsdspsdy 'dy " pstdy py tdadsps

Generators for My: di,ds,ds,ds, p2,p3, P4, D5, Ds-
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Relators for My:

P3. P4, D5, [p2, d1], [p2, dal, [p3, p6), [p4, ds], [pa, da], [pa, 5], [P4, D), [Pe, di], [ps, da),
(psp3)®, peds "peds, dapady "pa, dspady ' pa, pspsdipspsdy *, papspspaps ‘s ',
(pspsdad; )?, dspepsdsdy “dy ' dy "psdidy, di M dy P pspsps tps tdy s ps e,
padyips "dopspsdidy ' psps, pspipsdidadadsps b, dadydy  pspsdidy tdy  psps,
Psdadsdapspsdapsps, dadipspaps - dy ' pspeps dy tdy Hdapsps,

P5 'pspapy tdy tdy pspspy ps dadipsps,

pspapy dy Hdy  pspsdaps tps tdidapspeps tdy

Ps 'p5 ' p2dadipspaps tdy  padapspeps tdy My psps,

ps 'ps tdapspeps tdy tdy N dapy tps t dopspeps tdady Myt

References

[1] C.D. Bennett, R. Gramlich, C. Hoffman, S. Shpectorov Curtis-Phan-Tits theory. In: Groups, Com-
binatorics and Geometry, Proceedings of the Durham Conference on Groups and Geometry 2001
(edited by A.A. Ivanov, M.W. Liebeck, J. Saxl), World Scientific, New Jersey 2003, 13-29.

[2] C.D. Bennett, S. Shpectorov, A new proof of Phan’s theorem, J. Group Theory 7 (2004), 287-310.

[3] F. Buekenhout, A.M. Cohen, Diagram Geometry, in preparation.

[4] J. J. Cannon, Construction of defining relators for finite groups, Discrete Math. 5 (1973), 105-129.

[5] J. R. Dunlap, Uniqueness of Curtis-Phan-Tits amalgams, PhD Thesis, Bowling Green State Univer-
sity 2005.

[6] G. Gamble, G. Havas, A. Hulpke, C. Ramsay, ACE: a GAP j interface to the Advanced Coset
Enumerator of G. Havas and C. Ramsay, 2000,
http://www.math.rwth-aachen.de/~Greg.Gamble/ACE/.

[7] The GAP-Group, GAP — Groups, Algorithms, and Programming, Version 4.4, 2005,
http://www.gap-system.org.

[8] R. Gramlich, C. Hoffman and S. Shpectorov, A Phan-type theorem for Sp(2n,q), J. Algebra 264
(2003), 358-384.

[9] R. Gramlich, Weak Phan systems of type C,, J. Algebra 280 (2004), 1-19.
[10] R. Gramlich, Phan Theory, Habilitationsschrift, TU Darmstadt 2004.

[11] R. Gramlich, C. Hoffman, W. Nickel, S. Shpectorov, Even-dimensional orthogonal groups as amal-
gams of unitary groups, J. Algebra 284 (2005), 141-173.

[12] M. Horn, Amalgams of unitary groups in Sp(2n,q), Master’s Thesis, TU Darmstadt 2005.

[13] A. A. Ivanov and S. Shpectorov Geometry of sporadic groups II: representations and amalgams,
Cambridge University Press, Cambridge 2002.

[14] J. Neubiiser, An elementary introduction to coset table methods in computational group theory, in:
Groups — St. Andrews 1981 (edited by C. M. Campbell and E. F. Robertson), Cambridge University
Press, Cambridge 1982.



REFERENCES 22

[15] W. Nickel, Amalgams for two special orthogonal groups, preprint.

[16] Antonio Pasini, Some remarks on covers and apartments, in: Finite geometries (edited by C.A.
Baker, L.M. Batten), Dekker, New York 1985, 223-250.

[17] Antonio Pasini, Diagram Geometries, Oxford University Press, Oxford 1994.

[18] K. W. Phan, On groups generated by three-dimensional special unitary groups, I. J. Austral. Math.
Soc. Ser. A 23 (1977), 67-77.

[19] K. W. Phan, On groups generated by three-dimensional special unitary groups. II, J. Austral. Math.
Soc. Ser. A 23 (1977), 129-146.

20] H. Seifert, W. Threlfall, Lehrbuch der Topologie, Chelsea Publishing Company, New York 1934.

[

[21] J. P. Serre, Trees, Springer, Berlin 2003, second edition.

[22] D. E. Taylor, The geometry of the classical groups, Heldermann Verlag, Berlin 1992.
[

23] J. Tits, Ensembles Ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math. Belg. Sér. A 38
(1986), 367-387.

Authors’ Address:

TU Darmstadt

FB Mathematik

Schlo3gartenstrafle 7

64289 Darmstadt

Germany

{ gramlich, mhorn, nickel } @mathematik.tu-darmstadt.de



