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Abstrat

The artiles [8℄ and [9℄ give a haraterization of entral quotients of the group Sp(2n; q) for n � 3

and all prime powers q up to some small ases that are left open. The present artile �lls in this gap,

thus providing the de�nitive version of the Phan-type theorem for Sp(2n; q).

1 Introdution

The modern approah to Phan-type theorems, i.e., haraterizations of �nite Chevalley groups in the

spirit of [18℄ and [19℄, falls into two parts, as outlined in [1℄. On one hand one has to prove the sim-

ple onnetedness of some suitable geometry, on the other hand one has to lassify related amalgams.

Ho�man, Shpetorov and the �rst author [8℄ gave a Phan-type haraterization of the group Sp(2n; q)

by studying the so-alled ipop geometry � of type C

n

over F

q

2
. The Main Theorem of that paper

states that this ipop geometry is simply onneted for n � 3 and q � 8, for n � 4 and q � 3, and

for n � 5. By Tits' Lemma (Corollaire 1 of [23℄, see also Lemma 3.1 of the present artile) this implies

that the amalgam onsisting of the rank 1 and rank 2 parabolis of the ag-transitive group Sp(2n; q) of

automorphisms of the ipop geometry � admits Sp(2n; q) as its universal ompletion. We refer to [8℄

for details. The seond part, the lassi�ation of amalgams was dealt with in [9℄.

The purpose of the present paper is to prove the Phan-type theorem, see Subsetion 2.3 for the preise

statements, in the remaining open ase over the �elds F

3

, F

4

, F

5

, F

7

.

In Setion 2 we remind the reader of the setting and state the main results. In Setion 3 we give a

geometri argument why our main result is true over the �eld F

7

, the other ases being dealt with by

a oset enumeration with omputer, f. Appendix C, that an be heked by the interested reader on a

standard desktop mahine. In Setion 4 we orret a laim made in [11℄. Appendies A and B remind

the reader of some notions from amalgam theory and inidene geometry.

Aknowledgement: The authors would like to express their gratitude to George Havas for running a

oset enumeration on one of his omputers for the group Sp(6; 7), thus omplementing our geometri

proof.

2 The Phan-type theorem for Sp(2n; q)

2.1 Geometrial setting

Let B

2n

be the matrix

�

0 id

n�n

�id

n�n

0

�

1
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over F

q

2

. Let (�; �) be the bilinear form de�ned by B

2n

via (x; y) := x

T

B

2n

y. We representG := Sp(2n; q

2

)

by the set of all invertible (2n)� (2n)-matries A over F

q

2

whih preserve (�; �), that is, A

T

B

2n

A = B

2n

holds.

Let V be the vetor spae F

2n

q

2

and let fe

1

; : : : ; e

n

; f

1

; : : : ; f

n

g be the standard basis. We denote

by � the unique non-trivial involutory �eld automorphism x 7! x

q

of F

q

2

. Consider the �-semi-linear

map � : V ! V de�ned by e

i

7! f

i

; f

i

7! �e

i

and �( � v) = �(v) for  2 F

q

2
; v 2 V . Note that

�(v) = B

2n

v = B

2n

v. Then the entralizer G

�

:= fg 2 G j 8v 2 V : g�(v) = �(gv)g of � in Sp(2n; q

2

)

is isomorphi to Sp(2n; q) (see [8℄, Proposition 3.8). For our omputations in the later setions, we take

G

�

as our representation of Sp(2n; q). Note that for a matrix A 2 Sp(2n; q

2

), entralizing � is equivalent

to the ondition A

�1

= A

T

.

We now de�ne the (so-alled ipop) geometry � whih we are studying in this artile. (For an

introdution to ipop geometries, see [1℄ or [10℄.) To this end, we de�ne a �-hermitian form ((�; �)) by

((u; v)) := (u; �(v)), f. [8℄, Lemma 3.2. To denote orthogonality with respet to the form (�; �), we use

the symbol ?. To denote orthogonality with respet to the form ((�; �)), we use the symbol ??.

De�nition 2.1 The objets of the geometry � are all non-trivial subspaes of V whih are totally

isotropi with respet to (�; �) and nondegenerate with respet to ((�; �)); inidene is de�ned by sym-

metrized ontainment.

As G

�

�

=

Sp(2n; q) respets both forms, it ats on the geometry. This ation is in fat ag-transitive

(see [8℄, Proposition 4.2).

For our omputations we hoose the maximal ag F equal to he

1

i � he

1

; e

2

i � : : : � he

1

; e

2

; : : : ; e

n

i.

When omputing stabilizers, we will refer to the stabilizers of eah of these subspaes as the point

stabilizer M

1

, the line stabilizer M

2

, the plane stabilizer M

3

and (for n = 4) the spae stabilizer M

4

,

respetively. The M

i

are the maximal parabolis of G

�

.

De�nition 2.2 For � 2 F

q

2

, let V

�

:= fu 2 V j �(u) = �ug.

Lemma 2.3

The following hold.

(i) V

�

is G

�

-invariant.

(ii) V

�

is an F

q

-subspae of V.

(iii) V

�

6= 0 if and only if �

�

� = �1

(iv) If V

�

6= 0 then V

�

ontains a basis of V.

Proof. See Lemma 3.6 of [8℄ or Lemma 2.4 of [9℄. 2

Let � 2 F

q

2

suh that �� = �1. Sine V

�

ontains a basis for V , it has the same dimension as V . As

it is a F

q

-subspae, we dedue that jV

�

j = q

2n

. Let v

n

:= �e

n

+ f

n

2 V

�

. We observe that G

�

v

n

� V

�

,

i.e. the orbit of v

n

, is a subset of V

�

, and hene jv

G

�

n

j < q

2n

.

Thus we have found a vetor with an orbit that is short enough to be suitable for our purposes. For

we an now use this to e�etively ompute lower bounds on the size of G

�

and its subgroups: All these

groups indue a permutation ation on the orbit G

�

v

n

. Hene we an ompute an homomorphi image

into a permutation group. There are good algorithms (and implementations of them) for determining the

size of suh a permutation group. (They work better the smaller the set is upon whih the group ats,

whih is why we went to some e�ort to �nd vetors with relatively small orbit.) Thus, we an eÆiently

ompute a lower bound on the size of a fator group of any subgroup H of G

�

. If the ation indued by

the group on the orbit is faithful, as is the ase here, then we atually obtain the exat size of the group.
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2.2 Phan systems

De�nition 2.4 (f. [2℄) Subgroups U

1

and U

2

of SU(3; q

2

) form a standard pair whenever eah

U

i

�

=

SU(2; q

2

) is the stabilizer in SU(3; q

2

) of a nonsingular vetor v

i

and, furthermore, v

1

and v

2

are perpendiular. Standard pairs in entral quotients of SU(3; q

2

) are de�ned as the images under the

natural homomorphism of the standard pairs from SU(3; q

2

). We denote a standard pair U

1

; U

2

of a

entral quotient of SU(3; q

2

) by

U

1

Æ

U

2

Æ.

For an element U of �, i.e. a (�; �)-totally singular, ((�; �))-nondegenerate subspae of V , let GU(U)

denote the subgroup of G

�

that preserves the form ((�; �))

jU�U

and ats trivially on U

?

\ U

??

. For a

nondegenerate �-invariant subspae W of V denote by Sp(W ) the subgroup of G

�

that preserves the

form (�; �)

jW

�

�W

�

(see De�nition 2.2 for the de�nition of W

�

) and ats trivially on U

?

\ U

??

.

De�nition 2.5 (f. [9℄) In ase n = 2, we have V = he

1

; e

�

1

; e

2

; e

�

2

i, G

�

=

Sp(4; q

2

), and G

�

�

=

Sp(4; q).

Subgroups U

1

�

=

Sp(2; q) and U

2

�

=

SU(2; q

2

) are alled a standard pair in G

�

if there exists a (�; �)-

isotropi and ((�; �))-non-isotropi vetor v of V and a two-dimensional (�; �)-totally isotropi and ((�; �))-

nondegenerate subspae U 3 v of V suh that the group U

1

oinides with Sp(v

?

\ v

??

) and the group

U

2

oinides with SU(U). Standard pairs in entral quotients of Sp(4; q) are de�ned as the images under

the natural homomorphism of the standard pairs from Sp(4; q). We denote the standard pair U

1

; U

2

of

Sp(4; q) by

U

1

Æ

>

U

2

Æ or by

U

2

Æ

<

U

1

Æ.

De�nition 2.6 Let n � 2, let � be a Dynkin diagramwith rank two subdiagrams isomorphi to Æ Æ

or Æ Æ or Æ

>

Æ, and let I = f1; : : : ; ng. A group G admits a weak Phan system of type �

over F

q

2

if G ontains subgroups U

i

�

=

SL(2; q)

�

=

Sp(2; q)

�

=

SU(2; q

2

), for i 2 I , and subgroups U

i;j

, for

i 6= j 2 I , so that the following hold:

(i) If (i; j) is not an edge in �, then U

i;j

is a entral produt of U

i

and U

j

;

(ii) if (i; j) is an edge in �, then U

i;j

is isomorphi to a entral quotient of SU(3; q

2

), if (i; j) is a single

edge, and isomorphi to a entral quotient of Sp(4; q), if (i; j) is a double edge; moreover, U

i

and

U

j

form a standard pair in U

i;j

aording to the diagram

U

i

Æ

U

j

Æ or

U

i

Æ

>

U

j

Æ; and

(iii) the subgroups (U

i;j

)

i;j2I

, generate G.

2.3 The main results

Main Theorem 1

Let q � 3, let n � 3, and let G be a group that ontains a weak Phan system of type C

n

over F

q

2

. Then

G is isomorphi to a entral quotient of Sp(2n; q).

Main Theorem 2

Let n � 4 and let G be a group that ontains a weak Phan system of type C

n

over F

4

. Suppose further

that

(i) for any triple i; j; k of nodes of the Dynkin diagram C

n

that form a subdiagram

i

Æ

j

Æ

k

Æ

of type A

3

, the subgroup hU

i;j

; U

j;k

i is isomorphi to a entral quotient of SU(4; 2

2

);



3 SIMPLE CONNECTEDNESS OF THE GEOMETRY 4

(ii) for any triple i; j; k of nodes of the Dynkin diagram C

n

that form a subdiagram

i

Æ

j

Æ

<

k

Æ

of type C

3

, the subgroup hU

i;j

; U

j;k

i is isomorphi to a entral quotient of Sp(6; 2);

(iii) (a) for any triple i; j; k of nodes of the Dynkin diagram C

n

that form a subdiagram

i

Æ

j

Æ

k

Æ

of type A

1

�A

2

, the groups U

i

and U

j;k

ommute elementwise; and

(b) for any quadruple of nodes of the Dynkin diagram C

n

that form a subdiagram

i

Æ

j

Æ

k

Æ

l

Æ

of type A

2

�A

2

, the groups U

i;j

and U

k;l

ommute elementwise; and

() for any triple i; j; k of nodes of the Dynkin diagram C

n

that form a subdiagram

i

Æ

j

Æ

<

k

Æ

of type A

1

� C

2

, the groups U

i

and U

j;k

ommute elementwise; and

(d) for any quadruple of nodes of the Dynkin diagram C

n

that form a subdiagram

i

Æ

j

Æ

k

Æ

<

l

Æ

of type A

2

� C

2

, the groups U

i;j

and U

k;l

ommute elementwise.

Then G is isomorphi to a entral quotient of Sp(2n; 2).

3 Simple onnetedness of the geometry

In this setion we will prove that for n = 3; q � 7, the geometry � is simply onneted. By the following

lemma, this implies that Sp(6; q) is the universal ompletion of the amalgam of its maximal parabolis,

as desired. This extends the proof from [8℄ to inlude the �eld F

7

.

Lemma 3.1 (Tits' Lemma)

Suppose a group G ats ag-transitively on a geometry G, and let A be the amalgam of parabolis

assoiated with some maximal ag F of G. Then G is the universal ompletion of the amalgam A if and

only if G is simply onneted.

Proof. See [5℄, [13℄, [16℄ or [23℄. 2
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3.1 Simple onnetedness

Using Tits' Lemma, we have transformed our group-theoreti problem (analyzing the universal ompletion

of an amalgam) into a geometri one (showing that a ertain geometry is simply onneted). Now we

have to onsider how to solve the latter problem. We need some mathematial tools and fats in order

to takle it suessfully.

Being simply onneted means the following for our geometry: All yles in its inidene graph have

to be null-homotopi, i.e., for every yle there exists a triangulization (for details, see for example [20℄).

If q � 3, every yle in the inidene graph of � is homotopi to a yle passing exlusively through

points and lines (Lemma 5.1 in [8℄). Sine � is a partially linear geometry, i.e., distint points have at

most one line joining them, the points of suh a yle uniquely determine the lines of the yle. Hene it

suÆes to study yles of the ollinearity graph of �. Sine the diameter of the ollinearity graph is two

(see Lemma 4.5 in [8℄), every yle of length at least six always deomposes into smaller yles (i.e. it is

the sum of these smaller yles), and hene it suÆes to study triangles, quadrangles and pentagons of

the ollinearity graph in order to prove simple onnetedness.

3.2 Some tools

The following lemma will prove to be very useful throughout the whole setion. Reall the terminology

and de�nitions introdued in Setion 2.1. Notie that if l is a two-dimensional subspae of V of ((�; �))-

rank at least one, then it ontains at least q

2

�q points of �. Indeed, if the ((�; �))-rank of l is one then the

radial is the only non-trivial isotropi subspae of l and if the ((�; �))-rank of l is two then l ontains q+1

distint non-trivial isotropi subspaes. Sine any point of l is (�; �)-singular, it ontains q

2

(respetively,

q

2

� q) points of �, if it has ((�; �))-rank one (respetively, two).

Lemma 3.2

Let p be a point of � and � � p be a three-dimensional subspae of V of ((�; �))-rank at least two suh

that p is in the (�; �)-radial of �. Then for any ((�; �))-nondegenerate two-dimensional subspae l of �,

all points of � inident with l are ollinear to p, with the exeption of at most q + 1 points.

Proof. This is a reformulation of Lemma 4.3 of [8℄. 2

A diret onsequene of this is that if l has ((�; �))-rank one (respetively, two) it ontains at least

q

2

� q � 1 (respetively, q

2

� 2q � 1) points ollinear to p. Furthermore, the following is true:

Lemma 3.3

Let p be a point of � and � � p be a three-dimensional subspae of V of ((�; �))-rank at least two. Then

any two-dimensional subspae l of � not ontaining p is inident with at least q

2

� q � 1 (respetively,

q

2

� 2q � 1) points of � that generate a ((�; �))-nondegenerate two spae with p if l has ((�; �))-rank one

(respetively, two).

Proof. See Corollary 4.4 of [8℄. 2

3.3 Triangles

The �rst step is the analysis of triangles of the ollinearity graph. We will all a triangle (a; b; ) a good

triangle if a, b and  are inident to a ommon plane of the geometry. A triangle that is not good is

alled bad. Note that a good triangle is null-homotopi, so we only have to deal with the bad ones.
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Lemma 3.4

Let (a; b; ) be a bad triangle. Then we an deompose this triangle into bad triangles, in suh a way

that for eah new triangle T

i

we an �nd a anonial basis e

1

, e

2

, e

3

, f

1

, f

2

, f

3

of V suh that eah T

i

equals he

1

i, he

2

i, hx

i

e

1

+ y

i

e

2

+ (k

i

e

3

+ f

3

)i with k

i

�

k

i

= �1 and x

i

y

i

6= 0 and x

i

�x

i

+ y

i

�y

i

6= 0.

Proof. This is a onsequene of the Lemmas 5.3, 5.4 and 6.1 in [8℄. 2

By the preeding Lemma we only have to show for a very limited lass of (bad) triangles that they

an be deomposed. To do this, we start with a triangle (a; b; ) and onstrut an otahedron with the

triangle forming one fae, and a suitably hosen null-homotopi triangle (p; p

0

; p

00

) forming the opposite

fae. With suitably hosen we mean that all triangles exept for the starting triangle shall be good. In

the following we will prove that this is possible for q � 4.

Before we do that, we need some more tools.

Lemma 3.5

Let k; l 2 F

q

2

suh that k

�

k = �1, l 6= 0 Then there exists a matrix of the form

A :=

0

B

B

B

B

B

B

�

1

1

x ��y

1

1

y �x

1

C

C

C

C

C

C

A

2 G

�

suh that (ke

3

+ f

3

)A = (k

�

le

3

+ lf

3

):

Proof. It is easy to verify that A 2 G

�

if and only if x�x + y�y = 1. Furthermore (ke

3

+ f

3

)A =

(kx + y)e

3

+ (�x � k�y)f

3

= k(�x� k�y)e

3

+ (�x � k�y)f

3

. So the laim is equivalent to showing that the

following system of equations has a solution: x�x + y�y = 1 and �x � k�y = l. Finding suh a solution is

easily ahieved via straight forward omputation: use the seond equation to replae the variable x in

the �rst equation:

(l + k�y)(l + k�y) + y�y = 1

() l

�

l + l

�

ky +

�

l

�

ky

�

= 1

() z + �z = 1� l

�

l 2 F

q

where z := l

�

ky. Now if r is a primitive root of F

q

2

, then r + �r 6= 0 and hene z =

r(1�l

�

l)

r+�r

is a solution to

this last equation. Bakward substitution yields the desired values for x and y. 2

Lemma 3.6

For 4 � q � 11, any bad triangle an be deomposed into good triangles.

Proof. Let a; b;  be a bad triangle. By Lemma 3.4, we an assume (a; b; ) = (he

1

i ; he

2

i ; hxe

1

+ ye

2

+ (ke

3

+ f

3

)i)

satisfying k

�

k = �1 and xy 6= 0 and x�x+y�y 6= 0. Sine x 6= 0, by Lemma 3.5 we an �nd g 2 G

�

suh that

(g(a); g(b); g()) = (he

1

i ; he

2

i ; hxe

1

+ ye

2

+ (k�xe

3

+ xf

3

)i) = (he

1

i ; he

2

i ; he

1

+ y

0

e

2

+ (k

0

e

3

+ f

3

)i) with

y

0

:=

y

x

and k

0

:=

k�x

x

. So every bad triangle is onjugate to suh a triangle. Note that k

0

�

k

0

=

k

�

kx�x

x�x

= �1,

so k

0

an take at most q + 1 di�erent values. Sine y

0

6= 0, it an take at most q

2

� 1 di�erent values.

Hene there are at most (q + 1)(q

2

� 1) di�erent onjugay lasses of bad triangles to onsider.

It is now a simple matter of ombinatoris to determine all the possible onjugay lasses of bad

triangles for a given q, and then testing for eah whether the triangle de�ned this way is deomposable.

We now laim that for 4 � q � 11 this is possible by using the otahedron onstrution desribed above,
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and setting (p; p

0

; p

00

) = (hf

3

i ; hse

1

+ kf

1

� xf

3

i ; hte

2

+ kf

1

� yf

3

i) where s; t 2 F

q

2

n f0g are hosen

suitably.

Verifying that this is possible requires at most (q+1)(q

2

� 1)

3

heks. This an readily be done using

a simple GAP program (see Appendix D of [12℄). In partiular we suessfully performed these heks for

4 � q � 11. (This upper bound ould easily be inreased, but of ourse we had to stop at some point. We

piked it so that it omplements the previous proof presented in [8℄ whih works without omputational

help for q � 13. So stopping at q = 11 is arbitrary, and the ode in Appendix D of [12℄ should work for

larger values of q, too.) 2

3.4 Quadrangles

Now we will shift our attention to quadrangles. By the preeding results, it is enough to deompose

quadrangles into triangles, regardless whether they are good or bad. Notie that if in a quadrangle a, b,

, d we have that a and  (or b and d) are ollinear then this quadrangle is immediately deomposed into

two triangles.

De�nition 3.7 We all a quadrangle a, b, , d half-speial if ha; i or hb; di is nondegenerate with

respet to both forms (�; �) and ((�; �)). We all it speial if both ha; i and hb; di are nondegenerate with

respet to both forms.

Lemma 3.8

Let q � 5. Then any quadrangle an be deomposed into triangles and half-speial quadrangles.

Proof. Consider an arbitrary quadrangle a, b, , d. Without loss of generality we may assume that b

and d are nonollinear. Pik an arbitrary point s 2 X = a

??

\b

?

\d

?

. The point s exists beause X is not

totally isotropi with respet to ((�; �)), being a three-dimensional spae ontained in the nondegenerate

�ve-dimensional spae a

??

. The line l = ha; si has ((�; �))-rank two. Using Lemma 3.3, the line l ontains

at least q

2

� 2q� 1 points of � that are ollinear with b, respetively d, and at least q

2

� 2q� 1 points of

� that generate a nondegenerate two-dimensional spae with . Sine q � 5 and sine l ontains q

2

� q

points of �, the spae l has to ontain a point p of � that generates a nondegenerate two-dimensional

spae with  and that is ollinear to both b and d. Clearly a, b, , d deomposes into a, b, p, d and , b,

p, d. If (a; p) = 0 then ha; pi is a line, implying that a, b, p, d deomposes into triangles. Otherwise, a,

b, p, d is half-speial with respet to ha; pi. Similarly for , b, p, d. 2

Lemma 3.9

Let q � 5. Then any quadrangle an be deomposed into triangles and speial quadrangles.

Proof. Apply Lemma 3.8 one to obtain triangles and half-speial quadrangles. Then apply Lemma

3.8 again, after suitably renaming the verties of the quadrangles, to obtain speial quadrangles. 2

Proposition 3.10

Let q � 7. Then any quadrangle an be deomposed into triangles.

Proof. Denote the quadrangle by (a; b; ; d). By the preeding lemma, we an assume without loss

of generality that it is speial, so (a; ) 6= 0 6= (b; d) and both ha; i and hb; di are ((�; �))-nondegenerate.

We try to �nd a point p ollinear to all of a; b; ; d, whih means we an deompose the quadrangle into

triangles.

Set W := a

?

\ 

?

and U

1

:= W \ b

?

and U

2

:= W \ d

?

and l := U

1

\ U

2

. Note that dimW = 4,

dimU

1

= dimU

2

= 3, dim l = 2. Also, W is ((�; �))-nondegenerate sine ha; i is ((�; �))-nondegenerate and
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W = a

?

\ 

?

= (a

�

)

??

\ (

�

)

??

= ha

�

; 

�

i

??

= (ha; i

�

)

??

. Similar arguments hold for a

?

\ b

?

, b

?

\ 

?

and so on.

We now distinguish three ases:

(i) If l is of ((�; �))-rank two, then we an apply Lemma 3.2 to the planes ha; li, hb; li, h; li, and hd; li to

obtain q

2

� 5q� 4 points of � on l ollinear to all of a, b, , d. Notie that this is a positive number

for q � 7.

(ii) Suppose now that l is of ((�; �))-rank one. Then the plane � := hb; li has ((�; �))-rank at least one.

It lies inside the four-dimensional ((�; �))-nondegenerate spae W . Assume � had ((�; �))-rank one.

Then it has a two-dimensional ((�; �))-radial R, whih would be maximal totally isotropi in W ,

sine dim(R) + dim(R

??

\ W ) = dim(W ) and R � R

??

. Similarly, R an not have a polar of

dimension three, whih � would be. Contradition, thus � has ((�; �))-rank two. Similar arguments

hold for the points a, , d instead of b. Applying Lemma 3.2 gives us q

2

�4q�4 points of � ollinear

to all of a, b, , d. Notie that this is a positive number for q � 5.

(iii) Suppose now l is totally isotropi with respet to ((�; �)). Then the planes U

1

and U

2

are ((�; �))-

degenerate. They must have ((�; �))-rank two (this an be shown with similar arguments as used in

ase (ii) for �).

Let R

1

and R

2

be the one-dimensional ((�; �))-radial s of U

1

and U

2

. They are ontained in l. For

assume that R

1

6� l; then U

1

= hR

1

; li. But then U

1

would be totally isotropi (sine l is totally

isotropi, and also orthogonal to R

1

, the radial of U

1

), a ontradition. We argue likewise for R

2

.

Furthermore, the radials annot oinide as otherwise we would obtain a radial for the ((�; �))-

nondegenerate spae a

?

\ 

?

. So we have l = hR

1

; R

2

i. Notie that b 6� l, sine (b; d) 6= 0. Hene b

is di�erent from R

1

and R

2

.

Choose a line t of � through b inside U

1

. This line exists sine the ((�; �))-rank of U

1

is two, and b is

not in the ((�; �))-radial R

1

of U

1

. Applying �rst Lemma 3.3 to hd; ti and then Lemma 3.2 to ha; ti

and h; ti yields the existene of (q

2

� 2q� 1)� 2(q+1) = q

2

� 4q� 3 > 0 points on t ollinear to a,

b,  and whih span a ((�; �))-nondegenerate spae with d. Choose one of these points not equal to

b and all it b

0

. Then (b

0

; d) 6= 0, for otherwise, b

0

2 l, ontraditing that l is totally isotropi with

respet to ((�; �)). Hene a; b

0

; ; d form a speial quadrangle.

Let U

0

1

:= b

0

?

\W . We laim that U

0

1

intersets U

2

in a line l

0

that does not ontain R

2

, implying the

((�; �))-rank of l

0

is two (sine it is ontained in U

2

whih has ((�; �))-rank two and doesn't interset

its radial) and so we have redued to ase (i) of this proof.

It remains to verify our last laim. Assume R

2

� U

0

1

\U

2

= l

0

. Then R

2

� l\ l

0

= (b

?

\ b

0?

)\U

2

=

(hb; b

0

i

?

) \ U

2

� hb; b

0

i

?

= t

?

, thus t � R

?

2

\ U

1

. Notie that R

?

2

\ U

1

= hb; R

2

i: Clearly

hb; R

2

i � R

?

2

\ U

1

, sine R

2

� R

?

2

, R

2

� l � U

1

, b � U

1

and b � l

?

� R

?

2

. Equality holds sine

R

2

is one-dimensional, and R

2

is not the (�; �)-radial of U

1

(whih is b, and we already know that

b 6= R

2

), and thus both sides of the equation have the same dimension. But then also t = hb; R

2

i,

implying that t has ((�; �))-rank one, a ontradition sine t is a line of �.

2

Note that the `pyramid' onstrution used in the preeding proposition is not suÆient for q � 5, so a

di�erent approah would be needed to over it. For a spei� example, let z denote a primitive element in

F

25

over F

5

with minimal polynomial x

2

�x+2. Then let a := he

1

i, b := he

2

i,  :=




e

2

+ z

�1

e

3

+ z

�1

f

1

�

,

d :=




e

1

+ z

5

e

2

+ z

6

f

2

+ z

9

f

3

�

. This is a speial quadrangle, and using the de�nitions from Proposition

3.10, l := hu; vi with u := he

1

+ f

3

i ; v :=




e

2

+ z

9

e

3

�

. Now l has ((�; �))-rank two, but ontains no point

p ollinear to all of a; b; ; d.
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3.5 Pentagons

Proposition 3.11

Let q � 5. Then any pentagon an be deomposed into triangles and quadrangles.

Proof. Let (a; b; ; d; e) be a pentagon. Consider the spae U := ha; b; di

?

of dimension three. Its

((�; �))-rank has to be at least two, as the ((�; �))-rank of ha; bi is two. Choosing a ((�; �))-nondegenerate

two-dimensional subspae l of U and applying Lemma 3.2 on the planes ha; li, hb; li, hd; li, we will �nd

(q

2

� q)� 3(q + 1) = q

2

� 4q � 3 > 0 points on l ollinear to all of a, b, d, deomposing the pentagon. 2

3.6 Proof of the Main Results

Combining the results from the preeding setions yields this proposition:

Proposition 3.12

If n = 3 and 7 � q � 11, the geometry � is simply onneted. 2

By A

(k)

we denote the amalgam of rank k parabolis with respet of the ag-transitive ation of G

�

on �.

Proposition 3.13

For (n; q) 2 f(3; 3); (3; 4); (3; 5); (3; 7); (4; 2)g, the group G

�

is the universal ompletion of A

(n�1)

.

Proof. This proposition is proved by the omputations desribed in Appendix C.1. 2

Using the results from [8℄ and the work done in the present artile we an prove the following theorem:

Theorem 3.14

G

�

is the universal ompletion of A

(n�1)

if and only if n � 3 and (n; q) 6= (3; 2).

Proof. We show that the ipop geometry � is simply onneted if and only if n � 3 and (n; q) 6=

(3; 2). From this follows the laim via Tits' Lemma (Lemma 3.1). Simple onnetedness for n � 3 and

(n; q) 6= (3; 2) is proved onjointly by Proposition 3.12, by ombining Proposition 3.13 with Tits' Lemma,

and �nally by Theorem 6.8 from [8℄.

If (n; q) = (3; 2), then the geometry is not simply onneted, as shown in [8℄, right after Theorem

6.8. Finally, if n = 2, the simpliial omplex is one dimensional, and hene only simply onneted if it

ontains no yles (i.e. if it is a tree). But the points he

1

i, he

2

i, hf

1

i, hf

2

i form a quadrangle, and hene

there exists a non-trivial yle in the simpliial omplex, thus the geometry is not simply onneted. 2

Proof of Main Result 1. See Setions 3 and 4 of [9℄ or Chapter 8 of [10℄. 2

Proof of Main Result 2. See [2℄ or Chapter 8 of [10℄. 2

4 The ase (n; q) = (3; 3) reviewed

In this artile, we prove that for (n; q) = (3; 3), the geometry � orresponding to Sp(6; 3) and C

3

is simply

onneted, and the group itself is the universal ompletion of the amalgam orresponding to the weak

Phan system.

In ase of A

3

or equivalently D

3

, however, one an show that either a three-fold or a nine-fold over

of the geometry exists. (Rihard Lyons gave a simple argument for this, see page 86 of [10℄). However,
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nothing was known so far about the universal over (ontrary to the laim made on page 144 in [11℄).

Reently the authors suessfully applied the tehniques used in this artile to the ase A

3

and determined

the universal over, whih turned out to be nine-fold.

Theorem 4.1

The ipop geometry �(3; 3) studied in [2℄ and [11℄ admits a nine-fold universal overing.

Finally, for B

3

nothing was known so far. The authors applied the tehniques desribed in Appendix

C here as well. The unexpeted result was that the oset enumeration (used to determine the size of the

universal ompletion of the amalgam of parabolis) did not terminate. However, by adding additional

relations we sueeded in proving that there has to exist a three-fold overing of the geometry, an obser-

vation that has been on�rmed by Sergey Shpetorov, who informed us that he onstruted a three-fold

over of Spin(7; 3) ontaining a weak Phan system.

A Appendix: Amalgams

In this setion, we introdue the notion of group amalgams. Note that we only need a speial kind of

amalgams; for a more general de�nition, see for example [21℄.

De�nition A.1 An amalgam of groups is a set A endowed with a partial multipliation and a �nite

family of subsets (G

i

)

i2I

suh that the following holds:

(i) A = [

i2I

G

i

,

(ii) the restrition of the multipliation to G

i

turns G

i

into a group for i 2 I ,

(iii) G

i

\G

j

is a subgroup both in G

i

and G

j

for all i; j 2 I .

De�nition A.2 A group G is alled a ompletion of an amalgam A if there exists a map � : A ! G

(alled the ompletion map) suh that

(i) for all i 2 I the restrition of � to G

i

is a homomorphism

(ii) �(A) generates G.

Among all ompletions of A there is a largest one whih, if A is �nite, an be de�ned as the group

having the following �nite presentation:

U(A) = ht

h

j h 2 A; t

x

t

y

= t

xy

if xy is de�ned i :

U(A) is alled the universal ompletion. Its ompletion map is given by

 : A ! U(A) : g 7! t

g

:

We all this ompletion universal sine it has the universal property that for any other ompletion

G with ompletion map �, there exists a unique group epimorphism b� from U(A) onto G suh that the

following diagram ommutes:

A

 

//

�

!!D

D

D

D

D

D

D

D

D

U(A)

b�

��

G
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We de�ne the map b� by �rst de�ning it on the the generators (A) of U(A) only, via b�

j (A)

: t

x

7! �(x).

This an be extended to a group epimorphism beause

b�(t

x

t

y

) = b�(t

x

)b�(t

y

) = �(x)�(y) = �(xy) = b�(t

xy

)

whenever xy and, thus, t

xy

are de�ned.

We now onsider the amalgam formed by subgroups of a given group G.

Lemma A.3

Let (G

i

)

i2I

be a �nite family of subgroups of a �nite group G whih generates G, let A := [

i2I

G

i

be the

assoiated amalgam of groups, and let  : A ! U(A) be the ompletion map. Then for eah i 2 I the

restrition  

jG

i

: G

i

! U(A) is injetive. Furthermore U(A)

�

=

G if and only if there exists an i 2 I suh

that the index of  (G

i

) in U(A) equals the index of G

i

in G.

Proof. Note that G is a ompletion of A, for whih the inlusion map � is a ompletion map. By

the universal nature of U(A), there exists an epimorphism � from U(A) onto G suh that the following

diagram ommutes:

A

 

//

�

!!D

D

D

D

D

D

D

D

D

U(A)

�

��

G

The map  

jG

i

must be injetive, as �

jG

i

is injetive. Let

e

G

i

:=  (G

i

). If U(A)

�

=

G, then the indies

[G : G

i

℄ and

h

U(A) :

e

G

i

i

oinide, whene this impliation is immediate. Conversely, assume that for

some i, the group G

i

has the same index in G as

e

G

i

has in U(A). The group

e

G

i

intersets the kernel of

� trivially, sine by the above �

�

e

G

i

�

= G

i

�

=

 (G

i

) =

e

G

i

. But by hypothesis

h

U(A) :

e

G

i

i

= [G : G

i

℄, so

jGj : jG

i

j = [G : G

i

℄

=

h

U(A) :

e

G

i

i

= jU(A)j :

�

�

�

e

G

i

�

�

�

= jGj � jker(�)j : jG

i

j;

whene jker(�)j = 1 and � is an isomorphism between U(A) and G. 2

B Appendix: Geometries

In the following, we give a quik run-down on the basis of syntheti geometry. For a more omplete

introdution to the subjet, refer for example to [3℄ or [17℄.

De�nition B.1 A pregeometry over a set I is a triple G = (X; �; typ) where X is a set (its elements

are alled the elements of G), � is a symmetri and reexive relation de�ned on X whih is alled the

inidene relation of G, and typ is a map from X to I (the set I is alled the type set of G) suh

that typ(x) = typ(y) and x � y imply x = y. The pregeometry G is alled onneted if the graph (X; �)

is onneted.
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De�nition B.2 If A � X , then A is of the type typ(A), of rank jtyp(A)j, and of orank jI n typ(A)j.

The ardinality jI j of I is alled the rank of G. A ag of G is a set of mutually inident elements of G.

Flags of type I are alled hambers.

De�nition B.3 If F is a ag of G, then the residue of F in G is the pregeometry G

F

= (X

F

; �

F

; typ

F

),

where X

F

is the set of elements of X that are inident with but distint from all elements of F , and �

F

and typ

F

are the restritions of � and typ to X

F

� X

F

respetively X

F

. The pregeometry G is alled

residually onneted if (X

F

; �

F

) is a onneted graph for eah ag F of G of orank greater or equal

two, and non-empty for eah ag F of orank one.

De�nition B.4 A geometry over I is a pregeometry G over I in whih every maximal ag is a hamber.

De�nition B.5 Let G be a group of automorphisms of a geometry G over I . We say G ats ag-

transitively on G if for eah J � I , the group G ats transitively on the set of ags of type J . In other

words, if F

1

and F

2

are ags in G of equal type, then there exists g 2 G suh that g(F

1

) = F

2

.

De�nition B.6 Let G be a geometry of rank n, let � : G ! AutG be a group homomorphism suh

that �(G) ats inidene-transitively on G. A rank k paraboli is the stabilizer of a ag of orank k

from G with respet to the ation given by gF := �(g)F . Parabolis of rank n � 1 are alled maximal

parabolis. They are exatly the stabilizers in G of single elements of G.

De�nition B.7 Let G be a geometry whih admits points and lines as two if its types. The ollinearity

graph is an undireted graph whih has as its verties the points of G, and in whih two verties v

1

; v

2

orresponding to points p

1

; p

2

are onneted by an edge if and only if there exists a line l inident to both

p

1

and p

2

.

C Appendix: Determining universal ompletions

C.1 General approah for omputing the amalgams: GAP

In order to ompute the universal ompletion of the amalgams of parabolis whih we are studying

here, we do the following: First, we determine generators for eah paraboli. They will be hosen suh

that the intersetion of the parabolis is generated by the intersetion of their respetive generating set.

Spei�ally, in the ase n = 3 the maximal parabolis we onsider are the point, line and plane stabilizers

of our ag F , with suitably hosen generators u; v; w. These stabilizers all interset in the ag stabilizer,

and so generators of the ag stabilizer together with u; v; w generate the desired parabolis as well as

their intersetions (whih are also parabolis).

To prove that the parabolis and their intersetions are generated by the matries for whih we laim

this, we �rst show that they generate a subgroup U of the desired group H ; then we ompute a lower

bound of the size for U . If this bound equals the size of the full group H , we have thus established that

H

�

=

U .

We proeed by using GAP [7℄ to ompute �nite presentations of the parabolis in terms of these

generators: We �rst �nd a permutation group isomorphi to our group, then from that determine the

orresponding relators (to learn more about the algorithms involved, whih GAP implements, refer to

[4℄ and [14℄). Due to our hoie of generators, the universal ompletion of the amalgam is obtained by

forming the union of all the generators and relators of the parabolis.

Finally, we have to prove that this universal ompletion is idential to Sp(2n; q). For this it would be

suÆient to ompute the size of the group. Doing that diretly via a oset enumeration over the trivial

group is not feasible due to the size of this �nitely presented group. Instead we ompute the index of one

of the parabolis inside the amalgam, whih also establishes the desired isomorphism (see Lemma A.3).
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All omputations (exept those for (n; q) = (3; 7)) were performed on an Apple PowerBook G4 1.5GHz

with 1 GB RAM using GAP 4.4.5. Computation times ranged from a few seonds up to about half an

hour (for (n; q) = (3; 5)); memory requirements ranged up to 350 MB (again for (n; q) = (3; 5)). Details

regarding (n; q) = (3; 7) are mentioned in Setion C.6.

Before we proeed with the details of this, we present some auxiliary results whih are useful for

omputing lower bounds on the group sizes.

C.2 Subgroups and their sizes

The maximal parabolis ofM

i

, with respet to our maximal ag F are subgroups of G

�

�

=

Sp(2n; q) with

the following isomorphism type (see [8℄):

M

i

�

=

(

Sp(2n� 2i; q)�GU(i; q

2

) for 1 � i � n� 1

GU(n; q

2

) for i = n

:

Note that by GU(n; q

2

) we denote the general unitary group of dimension n over the �eld F

q

2

(sometimes

in the literature this is referred to as GU(n; q), whih is also the notation used by GAP).

So we an ompute the size of the M

i

, sine it is well known (see e.g. [22℄) that jSp(2n; q)j =

q

n

2

Q

n

i=1

(q

2i

� 1) and jGU(n; q

2

)j = q

n(n�1)=2

Q

n

i=1

(q

i

+ (�1)

i+1

).

These size formulas are important in the following setions, where we use them to prove that the

groups generated by ertain matries are preisely the groups we are looking for.

C.3 The ase n = 3; q = 3

In this setion z denotes a primitive element in F

9

over F

3

with minimal polynomial x

2

�x�1. We de�ne

the following matries:

U :=

0

B

B

B

B

B

B

�

z

7

z

1

z

7

z

5

1

z

5

z

3

z

5

z

7

1

1

C

C

C

C

C

C

A

V :=

0

B

B

B

B

B

B

�

1

z

7

z

1

z

7

z

5

1

z

5

z

3

z

5

z

7

1

C

C

C

C

C

C

A

W :=

0

B

B

B

B

B

B

�

1

1

z

7

z

1

1

1

z

7

z

5

1

C

C

C

C

C

C

A

In addition to these elements we use diagonal matries D

i

; 1 � i � 3, that generate the stabilizer of the

ag F , a half-split torus isomorphi to C

3

4

.

Lemma C.1

Eah maximal paraboli in Sp(6; 3) is generated by the matries spei�ed in the following table together

with generators of the ag stabilizer.

stabilizer element generators isomorphism type index

M

1

he

1

i V;W Sp(4; 3)�GU(1; 9) 44226

M

2

he

1

; e

2

i U;W Sp(2; 3)�GU(2; 9) 3980340

M

3

he

1

; e

2

; e

3

i U; V GU(3; 9) 379080
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Furthermore, the pairwise intersetion of the stabilizers is generated by the intersetion of their generators

as given above.

Proof. The laimed generators of eah M

i

obviously eah stabilize the orresponding element in the

table. Hene they generate subgroups of the stabilizers. Also, the intersetion of the generators of any

twoM

i

forms a subgroup of the intersetion of the two groups. To omplete the proof, we ompute, using

GAP and Lemma 2.3 and the subsequent disussion, lower bounds of the group sizes. We then verify that

they are equal to the sizes of the maximal parabolis respetively the double stabilizers. 2

Based on the above table, we �nd presentations of the maximal parabolis on the generators d

1

, d

2

,

d

3

, u, v, w. These, together with the union of the relators of said presentations give a presentation for

the universal ompletion of the amalgam of the maximal parabolis.

Coset enumeration over the subgroup generated by d

1

, d

2

, d

3

, v, w gives an index of 44226 whih

orresponds to the index of M

1

in Sp(6; 3). By Lemma A.3 this shows that Sp(6; 3) is the universal

ompletion of the amalgam of maximal parabolis.

We give here presentations of the maximal parabolis on the generators d

1

; d

2

; d

3

; u; v; w. To eah

presentation the relators d

4

i

for 1 � i � 3 and [d

i

; d

j

℄ for 1 � i < j � 3 need to be added.

Generators for M

1

: d

1

; d

2

; d

3

; v; w.

Relators for M

1

:

v

3

; w

3

; [v; d

1

℄; [w; d

1

℄; [w; d

2

℄; d

2

v

�1

d

3

v

�1

d

�2

3

; wd

3

wd

3

wd

�1

3

;

vwv

�1

wd

�1

3

vw

�1

v

�1

d

3

w

�1

; d

3

vwv

�1

w

�1

vw

�1

v

�1

d

�1

3

vwv

�1

;

d

2

vwv

�1

w

�1

v

�1

d

�1

3

d

�1

2

wvwv

�1

w

�1

d

3

w

Generators for M

2

: d

1

; d

2

; d

3

; u; w.

Relators for M

2

:

u

3

; w

3

; [u;w℄; [u; d

3

℄; [w; d

1

℄; [w; d

2

℄; d

1

u

�1

d

2

u

�1

d

�2

2

; wd

2

3

w

�1

d

�2

3

; d

3

wd

�1

3

wd

3

w

Generators for M

3

: d

1

; d

2

; d

3

; u; v.

Relators for M

3

:

u

3

; v

3

; [v; d

1

℄; [u; d

3

℄; d

2

2

vd

2

vd

3

; ud

2

1

d

2

ud

1

; u

�1

vuv

�1

uv

C.4 The ase n = 3; q = 4

In this setion z denotes a primitive element in F

16

over F

2

with minimal polynomial x

4

+ x + 1. We

de�ne the following matries:

U :=

0

B

B

B

B

B

B

�

z

5

z

1

z

4

z

5

1

z

5

z

4

z

1

z

5

1

1

C

C

C

C

C

C

A

V :=

0

B

B

B

B

B

B

�

1

z

5

z

1

z

4

z

5

1

z

5

z

4

z

1

z

5

1

C

C

C

C

C

C

A

W :=

0

B

B

B

B

B

B

�

1

1

z

5

z

1

1

1

z

4

z

5

1

C

C

C

C

C

C

A
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In addition to these elements we use diagonal matries D

i

; 1 � i � 3, that generate the stabilizer of the

ag F , a half-split torus isomorphi to C

3

5

.

Lemma C.2

Eah maximal paraboli in Sp(6; 4) is generated by the matries spei�ed in the following table together

with generators of the ag stabilizer.

stabilizer element generators isomorphism type index

M

1

he

1

i V;W Sp(4; 4)�GU(1; 16) 838656

M

2

he

1

; e

2

i U;W Sp(2; 4)�GU(2; 16) 228114432

M

3

he

1

; e

2

; e

3

i U; V GU(3; 16) 13160448

Proof. See the proof of Lemma C.1. 2

Based on the above table, we �nd presentations of the maximal parabolis on the generators d

1

, d

2

,

d

3

, u, v, w. These, together with the union of the relators of said presentations give a presentation for

the universal ompletion of the amalgam of the maximal parabolis.

Coset enumeration over the subgroup generated by d

1

; d

2

; d

3

; v; w gives an index of 838656 whih

orresponds to the index of M

1

in Sp(6; 4). By Lemma A.3 this shows that Sp(6; 4) is the universal

ompletion of the amalgam of maximal parabolis.

We give here presentations of the maximal parabolis on the generators d

1

; d

2

; d

3

; u; v; w. To eah

presentation the relators d

5

i

for 1 � i � 3 and [d

i

; d

j

℄ for 1 � i < j � 3 need to be added.

Generators for M

1

: d

1

; d

2

; d

3

; v; w.

Relators for M

1

:

v

2

; w

2

; [v; d

1

℄; [w; d

1

℄; [w; d

2

℄; (wd

3

)

3

; (vw)

4

; vd

2

d

3

vd

�1

2

d

�1

3

; (vd

3

d

�1

2

)

3

;

(wvwvd

2

3

)

4

; wd

1

vd

3

wd

3

d

2

vd

3

d

2

2

vwd

3

vd

�1

1

d

2

wvd

3

wvwd

�1

3

vd

�1

2

d

3

wd

�1

3

wd

3

;

(wd

�2

3

wvwvd

�2

3

wd

2

3

)

2

; d

3

d

1

d

3

vwvwd

1

d

3

vwvd

�1

3

vwd

�2

1

vd

�2

3

wd

�2

3

w;

d

�2

3

wvd

�1

2

d

2

3

wd

�1

3

vwvd

3

wd

�1

3

vwvd

3

wd

�2

3

wd

2

3

wvd

3

wv;

d

2

vd

3

wvwd

�1

3

vwd

�1

2

d

3

vwvd

3

wd

�1

3

wd

3

wd

�1

3

wd

2

3

wd

�2

3

vwvd

�2

3

Generators for M

2

: d

1

; d

2

; d

3

; u; w.

Relators for M

2

:

u

2

; w

2

; [u;w℄; [u; d

3

℄; [w; d

1

℄; [w; d

2

℄; d

�1

3

wd

�1

3

wd

�1

3

w; ud

2

2

ud

�2

1

ud

�1

1

d

2

;

ud

2

d

1

ud

�1

1

d

�1

2

; ud

1

ud

�1

1

ud

�1

1

ud

1

ud

�1

1

ud

2

; wd

�2

3

wd

2

3

wd

�2

3

wd

2

3

wd

�2

3

wd

2

3

Generators for M

3

: d

1

; d

2

; d

3

; u; v.

Relators for M

3

:

u

2

; v

2

; [u; d

3

℄; [v; d

1

℄; d

2

d

�1

3

vd

�2

3

vd

2

2

v; ud

1

vd

3

vd

�1

3

d

2

vd

3

vd

�1

1

ud

�2

3

;

vd

2

3

ud

1

vd

2

3

uvd

�2

3

uvd

�1

1

ud

�2

3

; d

2

d

�1

3

uvd

�1

1

ud

�2

3

vd

�2

1

d

2

d

�1

3

uvd

�1

1

ud

�2

3

d

�2

1

;

d

2

d

3

vd

�1

3

d

�1

2

v; d

2

uvud

3

vud

2

2

d

�1

3

uvd

�1

1

ud

�2

3

d

�1

1

d

2

d

�1

3

uvd

�1

1

ud

�2

3

d

�1

1

;

vd

�1

1

ud

�2

3

d

2

d

�1

3

uvd

�1

1

ud

�2

3

d

2

1

d

2

d

�1

3

uvd

�1

1

ud

�2

3

d

�1

2

uvd

�1

3

uvd

�1

3

;

ud

2

d

1

ud

�1

2

d

�1

1

; d

�1

2

vd

�1

3

vd

�1

3

d

�2

2

d

2

3

ud

1

vud

3

d

�1

2

uvd

�1

2

vud

1

ud

2

3

d

1

vud

3

d

�1

2

vd

�1

1

;

d

2

d

�1

3

uvd

�1

1

uvd

�2

2

vuvd

�1

1

d

�2

3

ud

2

d

�1

3

uvd

�1

1

d

�2

3

ud

2

d

�1

3

uvd

�1

1

d

�2

3

ud

2

d

�1

3

uvd

�1

1

d

�2

3

u
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C.5 The ase n = 3; q = 5

In this setion z denotes a primitive element in F

25

over F

5

with minimal polynomial x

2

� x + 2. We

de�ne the following matries:

U :=

0

B

B

B

B

B

B

�

z

18

z

1

z

17

z

18

1

z

18

z

5

z

13

z

18

1

1

C

C

C

C

C

C

A

V :=

0

B

B

B

B

B

B

�

1

z

18

z

1

z

17

z

18

1

z

18

z

5

z

13

z

18

1

C

C

C

C

C

C

A

W :=

0

B

B

B

B

B

B

�

1

1

z

18

z

1

1

1

z

17

z

18

1

C

C

C

C

C

C

A

In addition to these elements we use diagonal matries D

i

; 1 � i � 3, that generate the stabilizer of the

ag F , a half-split torus isomorphi to C

3

6

.

Lemma C.3

Eah maximal paraboli in Sp(6; 5) is generated by the matries spei�ed in the following table together

with generators of the ag stabilizer.

stabilizer element generators isomorphism type index

M

1

he

1

i V;W Sp(4; 5)�GU(1; 25) 8137500

M

2

he

1

; e

2

i U;W Sp(2; 5)�GU(2; 25) 5289375000

M

3

he

1

; e

2

; e

3

i U; V GU(3; 25) 201500000

Proof. See the proof of Lemma C.1. 2

Based on the above table, we �nd presentations of the maximal parabolis on the generators d

1

, d

2

,

d

3

, u, v, w. These, together with the union of the relators of said presentations give a presentation for

the universal ompletion of the amalgam of the maximal parabolis.

Coset enumeration over the subgroup generated by d

1

; d

2

; d

3

; v; w gives an index of 8137500 whih

orresponds to the index of M

1

in Sp(6; 5). By Lemma A.3 this shows that Sp(6; 5) is the universal

ompletion of the amalgam of maximal parabolis.

We give here presentations of the maximal parabolis on the generators d

1

; d

2

; d

3

; u; v; w. To eah

presentation the relators d

6

i

for 1 � i � 3 and [d

i

; d

j

℄ for 1 � i < j � 3 need to be added.

Generators for M

1

: d

1

; d

2

; d

3

; v; w.

Relators for M

1

:

[v; d

1

℄; [w; d

2

℄; [w; d

1

℄; [v; d

2

d

3

℄; [w; d

3

3

℄; v

�3

(d

2

d

3

)

3

; v

�1

d

�1

2

d

2

3

v

�1

d

�2

3

d

2

;

w

�1

d

2

3

w

�1

d

3

w

�1

d

�1

3

w

�1

d

3

; d

3

w

�1

d

3

wd

3

w

2

d

3

w; d

�1

3

vd

�2

2

d

�1

3

v

�1

d

�1

3

vd

�1

2

v

�1

;

vd

2

2

v

�1

d

3

v

�1

d

�2

3

vd

�1

2

; d

3

vwd

2

vd

�1

2

w

�1

vd

�2

3

d

2

w

�1

d

�1

2

v

�1

wd

3

;

vd

�2

3

w

�1

v

�1

d

�1

3

wd

�1

3

w

�1

vd

2

wvd

�1

2

d

3

w

�1

d

�1

3

v

�1

d

3

w

�1

v

�1

d

�1

3

w

�1

d

3

;

d

2

v

�1

wv

�1

d

3

d

2

wv

�1

d

�1

3

d

2

v

�1

w

�1

d

�1

2

d

�2

3

w

�1

v

�1

d

�1

3

wd

3

w

3

d

3

w;

d

3

vwd

�1

3

vd

�1

3

v

�1

wd

�1

3

v

�1

d

3

vwd

2

3

v

�1

d

�1

3

vd

2

wvd

�1

2

d

�1

3

w

2

d

3

w

�1

d

3
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Generators for M

2

: d

1

; d

2

; d

3

; u; w.

Relators for M

2

:

w

6

; [u;w℄; [w; d

2

℄; [w; d

1

℄; [u; d

3

℄; d

3

3

w

3

; [u; d

1

d

2

℄; (u

�1

d

3

1

)

2

; d

2

3

wd

�1

3

w

�1

d

�1

3

wd

�1

3

w

�1

;

d

3

1

u

2

d

�3

2

u

�1

; wd

3

wd

�1

3

wd

�2

3

wd

�1

3

; ud

�1

2

u

�1

d

�1

1

u

�2

d

1

u

�1

d

2

; d

2

1

ud

�1

1

ud

1

d

�1

2

u

�1

d

�1

1

u

�1

Generators for M

3

: d

1

; d

2

; d

3

; u; v.

Relators for M

3

:

[v; d

1

℄; [u; d

3

℄; [v; d

2

d

3

℄; [u; d

1

d

2

℄; (uv)

�3

; (v

�1

d

3

2

)

2

; (d

3

1

u)

�2

; d

3

1

u

2

d

�3

2

u

�1

; d

3

2

v

2

d

�3

3

v

�1

;

ud

�1

2

u

�1

d

�1

1

u

�2

d

1

u

�1

d

2

; vd

�1

3

v

�1

d

�1

2

v

�2

d

2

v

�1

d

3

; d

2

2

vd

�1

2

vd

2

d

�1

3

v

�1

d

�1

2

v

�1

;

ud

�1

1

ud

2

ud

�2

2

u

�1

d

2

1

; vuv

�1

d

�1

3

vu

�1

v

�1

ud

1

u

�1

C.6 The ase n = 3; q = 7

This is the biggest of the open ases, with an index of 247163742. Using our standard representation of the

involved groups, that amounts to a memory requirement of about 12 GB when using ACE [6℄ to perform

the oset enumeration. This means that one has to use a 64bit mahine with suÆient memory in order

to perform the enumeration. George Havas, one of the authors of ACE, performed these omputations

for us on both a Spar and an Itanium system with suÆient memory.

In this setion z denotes a primitive element in F

49

over F

7

with minimal polynomial x

2

� x+3. We

de�ne the following matries:

U :=

0

B

B

B

B

B

B

�

z

11

z

1

z

31

z

29

1

z

29

z

7

z

25

z

11

1

1

C

C

C

C

C

C

A

V :=

0

B

B

B

B

B

B

�

1

z

11

z

1

z

31

z

29

1

z

29

z

7

z

25

z

11

1

C

C

C

C

C

C

A

W :=

0

B

B

B

B

B

B

�

1

1

t z

11

z

1

1

1

z

31

z

29

1

C

C

C

C

C

C

A

In addition to these elements we use diagonal matries D

i

; 1 � i � 3, that generate the stabilizer of the

ag F , a half-split torus isomorphi to C

3

8

.

Lemma C.4

Eah maximal paraboli in Sp(6; 7) is generated by the matries spei�ed in the following table together

with generators of the ag stabilizer.

stabilizer element generators isomorphism type index

M

1

he

1

i V;W Sp(4; 7)�GU(1; 49) 247163742

M

2

he

1

; e

2

i U;W Sp(2; 7)�GU(2; 49) 605551167900

M

3

he

1

; e

2

; e

3

i U; V GU(3; 49) 12070787400
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Proof. See the proof of Lemma C.1. 2

Based on the above table, we �nd presentations of the maximal parabolis on the generators d

1

, d

2

,

d

3

, u, v, w. These, together with the union of the relators of said presentations give a presentation for

the universal ompletion of the amalgam of the maximal parabolis.

Coset enumeration over the subgroup generated by d

1

; d

2

; d

3

; v; w gives an index of 247163742 whih

orresponds to the index of M

1

in Sp(6; 7). By Lemma A.3 this shows that Sp(6; 7) is the universal

ompletion of the amalgam of maximal parabolis.

We give here presentations of the maximal parabolis on the generators d

1

; d

2

; d

3

; u; v; w. To eah

presentation the relators d

8

i

for 1 � i � 3 and [d

i

; d

j

℄ for 1 � i < j � 3 need to be added.

Generators for M

1

: d

1

; d

2

; d

3

; v; w.

Relators for M

1

:

[v; d

1

℄; [w; d

1

℄; [w; d

2

℄; [v; d

2

d

2

℄; v

3

d

2

v

�1

d

�1

3

; w

2

d

�1

3

wd

3

wd

3

wd

�1

3

; d

2

2

d

3

d

2

d

3

3

vd

3

v;

d

3

wd

�1

3

w

�1

d

�1

3

w

�1

d

�1

3

wd

3

; v

�1

d

3

wvd

3

vw

�1

d

�1

3

v

�1

d

�1

3

; d

3

w

2

d

�2

3

w

�1

d

�2

3

w

�2

;

vd

3

w

�1

vw

�1

v

�1

w

3

d

�1

3

wd

�2

3

w

�1

d

3

v

2

d

3

wv

�2

w

�1

d

�1

3

w

�1

;

wv

�1

d

�1

3

v

�1

d

�1

2

d

2

3

d

�1

2

w

2

d

3

d

�1

2

d

�1

1

v

�1

d

�1

3

d

1

v

�1

d

2

3

d

�2

2

w

2

d

2

3

d

�1

2

;

d

2

v

�1

d

3

v

�1

w

�1

d

1

v

�1

d

3

v

�1

d

�2

3

w

�1

vd

1

d

2

d

�1

3

w

�2

d

�2

3

d

2

2

vd

�2

1

d

�3

3

wd

3

;

d

2

1

v

�1

d

�2

2

d

2

3

w

2

d

3

d

�1

2

d

�1

1

v

�1

d

�1

1

d

3

wd

3

d

1

vd

1

d

2

d

�1

3

w

�2

d

�2

3

d

2

2

vd

�2

1

w

�1

d

�2

3

;

d

1

vd

1

d

2

d

�1

3

w

�2

d

�2

3

d

2

d

�1

3

v

�2

d

3

d

�2

2

d

2

3

w

2

d

3

d

�1

2

v

�2

d

�2

2

d

2

3

w

2

d

3

d

�1

2

d

�1

1

v

�1

d

�1

1

wd

3

;

d

1

v

2

d

3

wv

�2

w

�1

d

1

v

�1

d

�2

2

d

2

3

w

2

d

3

d

�1

2

d

�1

1

v

�1

w

�1

d

1

v

�1

d

�2

2

d

2

3

w

2

d

3

d

�1

2

d

�1

1

v

�1

d

�1

1

d

�2

3

w

�1

d

3

Generators for M

2

: d

1

; d

2

; d

3

; u; w.

Relators for M

2

:

[u;w℄; [u; d

3

℄; [w; d

1

℄; [w; d

2

℄; ud

1

d

2

u

�1

d

�1

2

d

�1

1

; d

�1

2

u

3

d

1

u

�1

; ud

2

u

5

d

�1

1

;

wd

2

3

wd

�1

3

w

�1

d

�1

3

w

�1

d

�1

3

; d

�1

3

w

2

d

�1

3

wd

3

wd

3

w; d

1

d

2

d

1

u

�1

d

2

2

d

3

1

u

�1

;

w

2

d

�4

3

w

2

; d

�1

2

d

�1

1

u

�1

d

�1

1

u

�1

d

�2

1

u

�1

d

�1

1

u

�1

d

�2

1

; ud

�1

2

d

1

ud

�1

1

u

�1

d

�1

2

ud

2

u

�1

d

2

1

d

�1

2

Generators for M

3

: d

1

; d

2

; d

3

; u; v.

Relators for M

3

:

[v; d

1

℄; [u; d

3

℄; vd

2

d

3

v

�1

d

�1

3

d

�1

2

; ud

2

d

1

u

�1

d

�1

1

d

�1

2

; d

�1

3

v

3

d

2

v

�1

;

u

3

d

1

u

�1

d

�1

2

; vd

3

v

5

d

�1

2

; d

2

ud

�1

1

ud

�1

1

ud

2

u; d

2

d

2

1

d

2

d

1

d

2

u

�1

d

1

u

�1

d

1

;

d

2

2

d

3

v

�1

d

2

3

d

3

2

v

�1

; v

�1

u

�1

v

�1

d

3

v

�1

u

�1

v

�1

u

�1

d

�1

1

u

�1

;

d

�1

3

d

�1

2

v

�1

d

�1

2

v

�1

d

�2

2

v

�1

d

�1

2

v

�1

d

�2

2

; ud

�1

2

ud

�1

2

d

�1

1

d

�2

2

ud

�1

2

ud

�2

2

;

ud

1

d

�1

2

ud

2

2

u

�2

d

�1

1

u

�1

d

1

d

�2

2

; v

�2

u

�1

v

�1

u

�1

v

�2

u

2

d

1

ud

�2

2

d

1

C.7 The ase n = 4; q = 2

In this setion z denotes a primitive element in F

4

over F

2

with minimal polynomial x

2

+x+1. We de�ne

the following matries:
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P

1

:=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

1 z z

2

1 z

2

1

1

1

z

2

z 1

z 1 1

1

C

C

C

C

C

C

C

C

C

C

A

P

2

:=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

1

1

1

1

1

1

1

C

C

C

C

C

C

C

C

C

C

A

P

3

:=

0

B

B

B

B

B

B

B

B

B

B

�

1

z

2

1 1

1 z

2

1

1 1 z

2

1

z 1 1

1 z 1

1 1 z

1

C

C

C

C

C

C

C

C

C

C

A

P

4

:=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

1

1

1

1

1

1

1

C

C

C

C

C

C

C

C

C

C

A

P

5

:=

0

B

B

B

B

B

B

B

B

B

B

�

z 1 1

1 z 1

1 1 z

1

z

2

1 1

1 z

2

1

1 1 z

2

1

1

C

C

C

C

C

C

C

C

C

C

A

P

6

:=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

1

1

1

1

1

1

1

C

C

C

C

C

C

C

C

C

C

A

P

7

:=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

1

1

1

1

1

1

1

C

C

C

C

C

C

C

C

C

C

A

In addition to these elements we use diagonal matries D

i

; 1 � i � 4, that generate the stabilizer of the

ag F , a half-split torus isomorphi to C

4

3

.

Lemma C.5

Eah maximal paraboli in Sp(8; 2) is generated by the matries spei�ed in the following table together

with generators of the ag stabilizer.

stabilizer element generators isomorphism type index

M

1

he

1

i P

1

; P

2

; P

3

; P

6

; P

7

Sp(6; 2)�GU(1; 4) 10880

M

2

he

1

; e

2

i P

1

; P

4

; P

6

; P

7

Sp(4; 2)�GU(2; 4) 3655680

M

3

he

1

; e

2

; e

3

i P

2

; P

4

; P

5

; P

7

Sp(2; 2)�GU(3; 4) 12185600

M

4

he

1

; e

2

; e

3

; e

4

i P

2

; P

3

; P

4

; P

5

; P

6

GU(4; 4) 609280
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Proof. See the proof of Lemma C.1. 2

Based on the above table, we �nd presentations of the maximal parabolis on the generators d

1

, d

2

,

d

3

, d

4

, p

1

, p

2

, p

3

, p

4

, p

5

, p

6

, p

7

. These, together with the union of the relators of said presentations give

a presentation for the universal ompletion of the amalgam of the maximal parabolis. The following

presentations de�ne eah maximal paraboli.

Coset enumeration over the subgroup generated by d

1

; d

2

; d

3

; d

4

; p

1

; p

2

; p

3

; p

6

; p

7

gives an index of

10880 whih orresponds to the index of M

1

in Sp(8; 2). By Lemma A.3 this shows that Sp(8; 2) is the

universal ompletion of the amalgam of maximal parabolis.

We give here presentations of the maximal parabolis on the generators d

1

till d

4

and p

1

till p

7

. To

eah presentation the relators d

3

i

for 1 � i � 4 and [d

i

; d

j

℄ for 1 � i < j � 4 need to be added.

Generators for M

1

: d

1

; d

2

; d

3

; d

4

; p

1

; p

2

; p

3

; p

6

; p

7

.

Relators for M

1

:

p

2

1

; p

2

2

; p

3

3

; p

2

6

; p

2

7

; [p

1

; d

1

℄; [p

1

; d

2

℄; [p

2

; d

1

℄; [p

2

; d

4

℄; [p

2

; p

3

℄; [p

2

; p

7

℄; [p

3

; d

1

℄; [p

3

; p

6

℄;

[p

6

; d

1

℄; [p

6

; d

2

℄; [p

7

; d

1

℄; [p

7

; d

2

℄; [p

7

; d

3

℄; [p

7

; d

4

℄; (p

7

p

1

)

4

; p

2

d

�1

2

p

2

d

3

; p

6

d

3

p

6

d

�1

4

;

p

�1

3

p

2

d

4

p

�1

3

d

�1

2

d

�1

3

; p

6

p

�1

3

d

2

p

�1

3

d

�1

4

d

�1

3

; p

1

p

7

p

1

p

6

d

4

p

7

p

6

; d

�1

4

p

1

d

3

p

1

d

�1

3

p

6

p

1

p

7

;

d

4

p

6

p

1

d

4

p

6

d

�1

4

p

1

d

�1

3

; d

4

p

1

p

7

p

1

d

�1

4

p

1

p

7

p

1

; p

1

p

6

d

4

p

1

d

�1

3

d

�1

4

p

1

p

6

d

4

;

d

4

p

3

p

7

p

�1

3

p

7

d

�1

4

p

3

p

7

p

�1

3

d

�1

4

p

7

; p

2

p

1

d

�1

3

p

�1

3

p

1

p

7

p

6

p

7

p

6

p

�1

3

d

3

p

1

d

3

;

p

2

p

6

p

1

p

2

d

�1

2

d

4

p

1

d

4

p

3

p

7

d

�1

2

p

3

d

4

p

6

p

1

; p

3

p

7

d

�1

2

p

3

d

3

p

�1

3

d

2

p

7

p

3

d

2

p

7

p

6

p

�1

3

p

7

d

�1

3

;

p

3

p

7

d

�1

2

p

3

p

1

p

�1

3

d

2

p

7

p

�1

3

p

7

d

4

p

6

p

1

d

�1

4

p

6

p

7

p

1

d

�1

3

Generators for M

2

: d

1

; d

2

; d

3

; d

4

; p

1

; p

4

; p

6

; p

7

.

Relators for M

2

:

p

2

1

; p

2

4

; p

2

6

; p

2

7

; [p

1

; d

1

℄; [p

1

; d

2

℄; [p

1

; p

4

℄; [p

4

; d

3

℄; [p

4

; d

4

℄; [p

4

; p

7

℄; [p

6

; d

2

℄; [p

7

; d

1

℄;

[p

7

; d

2

℄; [p

7

; d

3

℄; [p

7

; d

4

℄; (p

1

p

7

)

4

; p

4

d

�1

1

p

4

d

2

; p

6

d

�1

4

p

6

d

3

; p

1

p

7

p

1

d

3

p

6

p

7

p

6

;

p

1

p

6

d

�1

4

p

1

p

7

d

�1

4

p

1

d

3

; d

4

p

1

p

6

p

1

d

3

d

�1

4

p

7

p

1

d

�1

3

p

7

p

6

Generators for M

3

: d

1

; d

2

; d

3

; d

4

; p

2

; p

4

; p

5

; p

7

.

Relators for M

3

:

p

2

2

; p

2

4

; p

3

5

; p

2

7

; [p

2

; d

1

℄; [p

2

; d

4

℄; [p

2

; p

5

℄; [p

2

; p

7

℄; [p

4

; d

3

℄; [p

4

; d

4

℄; [p

4

; p

5

℄; [p

4

; p

7

℄;

[p

5

; d

4

℄; [p

5

; p

7

℄; [p

7

; d

1

℄; [p

7

; d

2

℄; [p

7

; d

3

℄; [p

7

; d

4

℄; d

3

p

2

d

�1

2

p

2

; p

4

d

�1

1

p

4

d

2

;

p

4

p

5

d

3

p

5

d

�1

1

d

�1

2

; p

�1

5

d

�1

1

p

�1

5

d

2

d

3

p

2

Generators for M

4

: d

1

; d

2

; d

3

; d

4

; p

2

; p

3

; p

4

; p

5

; p

6

.
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Relators for M

4

:

p

2

2

; p

2

4

; p

2

6

; [p

2

; d

1

℄; [p

2

; d

4

℄; [p

3

; p

6

℄; [p

4

; d

3

℄; [p

4

; d

4

℄; [p

4

; p

5

℄; [p

4

; p

6

℄; [p

6

; d

1

℄; [p

6

; d

2

℄;

(p

5

p

3

)

3

; p

6

d

�1

3

p

6

d

4

; d

2

p

4

d

�1

1

p

4

; d

3

p

2

d

�1

2

p

2

; p

3

p

5

d

1

p

5

p

3

d

�1

4

; p

2

p

5

p

3

p

2

p

�1

3

p

�1

5

;

(p

5

p

3

d

4

d

�1

1

)

2

; d

3

p

6

p

3

d

3

d

�1

1

d

�1

2

d

�1

3

p

3

d

1

d

4

; d

�1

1

d

�1

4

p

3

p

5

p

�1

3

p

�1

5

d

�1

1

p

�1

3

p

�1

5

p

2

;

p

4

d

1

p

�1

5

d

2

p

5

p

3

d

1

d

�1

4

p

3

p

5

; p

5

p

2

3

p

5

d

1

d

4

d

2

d

3

p

�1

3

; d

4

d

1

d

�1

4

p

5

p

3

d

1

d

�1

4

d

�1

1

p

3

p

5

;

p

5

d

2

d

3

d

4

p

5

p

3

d

4

p

5

p

3

; d

2

d

1

p

3

p

4

p

�1

3

d

�1

4

p

5

p

6

p

�1

5

d

�1

2

d

�1

1

d

4

p

5

p

3

;

p

�1

5

p

3

p

4

p

�1

3

d

�1

1

d

�1

2

p

5

p

3

p

�1

5

p

�1

3

d

2

d

1

p

5

p

6

;

p

3

p

4

p

�1

3

d

�1

1

d

�1

2

p

5

p

3

d

4

p

�1

5

p

�1

3

d

1

d

2

p

5

p

6

p

�1

5

d

�1

1

;

p

�1

3

p

�1

5

p

2

d

2

d

1

p

3

p

4

p

�1

3

d

�1

2

p

2

d

2

p

5

p

6

p

�1

5

d

�1

2

d

�1

1

p
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