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Abstra
t

The 
lassi
al Szeg�o theorems study the asymptoti
 behaviour of the

determinants of the �nite se
tions P

n

T (a)P

n

of Toeplitz operators, i.e., of

operators whi
h have 
onstant entries along ea
h diagonal. We generalize

these results to operators whi
h have almost periodi
 fun
tions on their

diagonals.

1 Introdu
tion

This paper deals mainly with operators whi
h are 
onstituted by Laurent or

Toeplitz operators and by band-dominated operators. So we start with intro-

du
ing some notations and with re
alling some fa
ts about Toeplitz and band-

dominated operators and their �nite se
tions.

Spa
es and proje
tions. Given a non-empty subset I of the set Z of the

integers, let l

2

(I) stand for the Hilbert spa
e of all sequen
es (x

n

)

n2I

of 
omplex

numbers with

P

n2I

jx

n

j

2

<1. We identify l

2

(I) with a 
losed subspa
e of l

2

(Z)

in the natural way, and we write P

I

for the orthogonal proje
tion from l

2

(Z) onto

l

2

(I).

The set of the non-negative integers will be denoted by Z

+

, and we write P

in pla
e of P

+

Z

and Q in pla
e of the 
omplementary proje
tion I � P . Thus,

Q = P

Z

�

where Z

�

refers to the set of all negative integers.

Further, for ea
h positive integer n, set

P

n

:= P

f0; 1; :::; n�1g

and R

n

:= P

f�n;�n+1; :::; n�1g

:

The proje
tions R

n


onverge strongly to the identity operator on l

2

(Z), and

the proje
tions P

n


onverge strongly to the identity operator on l

2

(Z

+

) when
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onsidered as a
ting on l

2

(Z

+

) and to the proje
tion P when 
onsidered as a
ting

on l

2

(Z).

The C

�

-algebra of all bounded linear operators on a Hilbert spa
e H will be

denoted by L(H).

Fun
tions and operators. Let a 2 L

1

(T), the C

�

-algebra of all essentially

bounded measurable fun
tions on the 
omplex unit 
ir
le T, and let

a

j

:=

1

2�

Z

2�

0

a(e

it

)e

�ijt

dt:

refer to the jth Fourier 
oeÆ
ient of a. Then the operator on l

2

(Z) given by

the matrix representation (a

i�j

)

i; j2Z

with respe
t to the standard basis of l

2

(Z)

indu
es a bounded linear operator L(a) on l

2

(Z), the so-
alled Laurent operator

with generating fun
tion a. The operator T (a) := PL(a)P a
ting on l

2

(Z

+

) is


alled the Toeplitz operator with generating fun
tion a.

Laurent operators are distinguished by their shift invarian
e. For k 2 Z,

de�ne the shift operator

U

k

: l

2

(Z)! l

2

(Z); (x

n

) 7! (y

n

) with y

n

= x

n�k

:

Then A 2 L(l

2

(Z)) is a Laurent operator if and only if U

�k

AU

k

= A for ea
h

k 2 Z.

Further, ea
h fun
tion b 2 l

1

(Z), the C

�

-algebra of all bounded sequen
es on

Z, indu
es a multipli
ation operator

aI : l

2

(Z)! l

2

(Z); (x

n

) 7! (a

n

x

n

):

Let X be a C

�

-subalgebra of L

1

(T) and Y be a shift invariant C

�

-subalgebra of

l

1

(Z). The latter means that U

�k

aU

k

2 Y whenever a 2 Y . We let A

X;Y

(Z)

stand for the smallest 
losed C

�

-subalgebra of L(l

2

(Z)) whi
h 
ontains all Laurent

operators L(a) with a 2 X and all multipli
ation operators bI with b 2 Y .

Similarly, we write A

X;Y

(Z

+

) for the smallest 
losed C

�

-subalgebra of L(l

2

(Z

+

))

whi
h 
ontains all Toeplitz operators T (a) with a 2 X and all operators PbP

with b 2 Y . So A

L

1

(T);C

(Z) is the C

�

-algebra of all Laurent operators, whi
h

is

�

-isomorphi
 to the algebra L

1

(T), and A

L

1

(T);C

(Z

+

) is the smallest 
losed

subalgebra of L(l

2

(Z

+

)) whi
h 
ontains all bounded Toeplitz operators.

Of parti
ular interest are the algebra X = C(T) of the 
ontinuous fun
tions

on T and the algebra Y = AP (Z) of the almost periodi
 fun
tions. A fun
tion

a 2 l

1

(Z) is 
alled almost periodi
 if the set of all multipli
ation operators U

�k

aU

k

with k 2 Z is relatively 
ompa
t in the norm topology of L(l

2

(Z)) or, equivalently,

in the norm topology of l

1

(Z).

The operators in A

C(T);l

1

(Z)

(Z) are usually referred to as band-dominated

operators, and the operators in A

C(T);Y

(Z) are 
alled band-dominated operators
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with 
oeÆ
ients in Y . To operators in A

C(T);l

1

(Z)

(Z

+

), we also refer as band-

dominated operators over Z

+

. The reason for the notion band-dominated is that


ontinuous fun
tions on T 
an be uniformly approximated by trigonometri
 poly-

nomials, hen
e, operators in A

C(T);l

1

(Z)


an be approximated by band operators

in the norm of L(l

2

(Z)). We will usually write A

Y

(Z) and A

Y

(Z

+

) in pla
e of

A

C(T);Y

(Z) and A

C(T);Y

(Z

+

), respe
tively, whi
h is 
onsistent with the notations

in [32, 35℄. It is easy to see that PAP 2 A

Y

(Z

+

) whenever A 2 A

Y

(Z).

Szeg�o theorems for Toeplitz matri
es. There are several ways to express

the so-
alled �rst Szeg�o limit theorem, and there are several kinds of hypotheses

under whi
h the theorem holds. A version whi
h is 
onvenient for us is via

stability of the �nite se
tions method. The nth �nite se
tion of the operator A

is the operator P

n

AP

n

. Unless otherwise stated, we will 
onsider this operator as

a
ting on imP

n

. Thus, P

n

AP

n


an be represented by an n � n matrix. Instead

of P

n

T (a)P

n

we will also write T

n

(a).

The sequen
e (P

n

AP

n

)

n2N

of the �nite se
tions of an operator A 2 L(l

2

(Z

+

))

is said to be stable if the matri
es P

n

AP

n

are invertible for suÆ
iently large n

and if the norms of their inverses are uniformly bounded.

Theorem 1.1 (First Szeg�o limit theorem) Let a 2 L

1

(T) and suppose that

the �nite se
tions sequen
e (T

n

(a))

n2N

is stable. Then T (a) is invertible and

lim

n!1

detT

n

(a)

detT

n�1

(a)

= G[a℄ (1)

where

G[a℄ := 1=(P

1

T (a)

�1

P

1

)

and, of 
ourse, P

1

T (a)

�1

P

1

stands for the 00th entry of T (a)

�1

.

If a 2 L

1

(T) is real-valued and T (a) is invertible, then the (
ompa
t) essential

range of a is 
ontained in the open interval (0; 1) by the Hartman-Wintner

theorem (see 2.36 in [12℄ or Theorem 1.27 in [13℄). Thus, the fun
tion a has a

real-valued logarithm log a 2 L

1

(T), and it is not hard to show that

G[a℄ = exp

�

1

2�

Z

2�

0

(log a)(e

it

) dt

�

= exp(log a)

0

: (2)

Szeg�o [39℄ proved (1) under the assumptions that a 2 L

1

(T), a � 0 and log a 2

L

1

(T). The following theorems provide statements about the eigenvalue distribu-

tion of Toeplitz matri
es. One has to distinguish between real-valued generating

fun
tions a, in whi
h 
ase the fun
tion f has to be merely 
ontinuous, whereas

in 
ase of arbitrary bounded fun
tions a, one needs holomorphy of f .

They 
an be derived from Szeg�o's �rst limit theorem (
ompare the proofs of

Theorems 5.9 and 5.10 in [13℄). Although this derivation is not without e�ort,
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they are also referred to as First Szeg�o limit theorems. In the present paper we

will 
all them the distributive versions of Theorem 1.1.

For ea
h n� n-matrix B, let �

i

(B) with i = 1; : : : ; n refer to the eigenvalues

of B. The order of enumeration is not of importan
e.

Theorem 1.2 (First Szeg�o limit theorem, distributive version I)

Let a 2 L

1

(T) be a real-valued fun
tion, and let g be any 
ontinuous fun
tion on

the 
onvex hull of the essential range of a. Then

lim

n!1

g(�

1

(T

n

(a)) + : : :+ g(�

n

(T

n

(a))

n

=

1

2�

Z

2�

0

g(a(e

it

)) dt: (3)

Theorem 1.3 (First Szeg�o limit theorem, distributive version II)

Let a be an arbitrary fun
tion in L

1

(T), and let g be analyti
 on an open neigh-

borhood of the 
onvex hull of the essential range of a. Then (3) holds again.

It is one thing to settle the 
onvergen
e (1) and another one to des
ribe the pre
ise

asymptoti
 behaviour of the determinants detT

n

(a). The latter is the 
ontents

of the so-
alled strong Szeg�o limit theorem, proved by Szeg�o [40℄ for positive

generating fun
tions with H�older 
ontinuous derivative. In the formulation below,

there o

urs an algebra, W

0; 0

\ B

1=2; 1=2

2; 2

, of 
ontinuous fun
tions on T whi
h is

de�ned in [12℄, 10.21.

Theorem 1.4 (Strong Szeg�o limit theorem) Let a 2 W

0; 0

\B

2; 2

1=2; 1=2

have no

zeros on T and winding number 0 with respe
t to the origin. Then

lim

n!1

detT

n

(a)

G[a℄

n

= E[a℄ (4)

where

E[a℄ = exp

1

X

k=1

k(log a)

k

(log a)

�k

: (5)

We will not go into the long and ri
h history of the Szeg�o limit theorems here

and refer to [12, 13℄ and to Chapter 2 of [37℄ instead. Let us only mention

that E. Basor, G. Baxter, A. B�ott
her, A. Devinatz, T. Ehrhardt, I. Gohberg, I.

Feldman, I. I. Hirs
hman, M. Ka
, M. G. Krein and H. Widom are among the

main 
ontributors and that [6, 17, 18, 19, 21, 24, 43℄ mark some milestones in

this �eld.

About this paper. This paper is devoted to generalizations of the 
lassi
al

Szeg�o limit theorems to several 
lasses of operators with variable 
oeÆ
ients

(whereas Toeplitz and Laurent operators are 
onsidered as operators with 
on-

stant 
oeÆ
ients). Parti
ular attention is paid to operators with almost periodi
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oeÆ
ients for whi
h we will obtain the most satisfying generalizations of Theo-

rems 1.1 { 1.3. These results will be dis
ussed in Se
tions 3 and 4 below. On the

other hand, we have to report that the pre
ise asymptoti
 behaviour of the deter-

minants of an operator with almost periodi
 diagonals still remains mysterious

for us. Thus, the question of a possible generalization of the strong Szeg�o limit

theorem is still open (although Torsten Ehrhardt's wonderful paper [19℄ seems to

o�er a 
omfortable way to atta
k this problem).

We prepare our dis
ussion in Se
tion 2 by re
alling some fa
ts about algebras

generated be sequen
es of �nite se
tions and about band-dominated operators

and their �nite se
tions. The results 
ited in this se
tion 
an be found in [33, 35℄.

The 
on
luding �fth se
tion is devoted to some appli
ations of our general Szeg�o

limit theorems.

The reader should have in mind that most of the results presented below 
an

be formulated in two di�erent settings: for operators a
ting on the two-sided

in�nite sequen
es (with the Laurent operators as an example) and for operators

on one-sided in�nite sequen
es (for instan
e, the Toeplitz operators). In order

to make our results 
omparable with the 
lassi
al Szeg�o theorems, we will state

them for operators on l

2

(Z

+

).

2 Preliminaries

2.1 Algebras related with �nite se
tions

Let P := (P

n

)

n2N

where the proje
tions P

n

are de�ned as in the introdu
tion.

Write F

P

for the set of all sequen
es (A

n

) of operators A

n

: imP

n

! imP

n

for

whi
h the strong limits

s-limA

n

P

n

and s-limA

�

n

P

n

exist, and G for the subset of F

P


onsisting of all sequen
es (G

n

) with kG

n

k ! 0.

Provided with the operations

(A

n

) + (B

n

) := (A

n

+B

n

); �(A

n

) := (�A

n

); (A

n

) (B

n

) := (A

n

B

n

); (6)

the involution (A

n

)

�

:= (A

�

n

) and with the norm

k(A

n

)k := sup

n2N

kA

n

k;

the set F

P

be
omes a C

�

-algebra, and G is a 
losed ideal of F

P

. We will often

use boldfa
e letters to refer to elements of F

P

. For A := (A

n

) 2 F

P

, we denote

the strong limit s-limA

n

P

n

by W (A). Thus, W is a

�

-homomorphism from F

P

onto L(l

2

(Z

+

)).

A sequen
e (A

n

) 2 F

P

is 
alled stable if the operators A

n

: imP

n

! imP

n

are

invertible for suÆ
iently large n and if the norms of their inverses are uniformly
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bounded. The following simple result is the basis for the algebraization of several

problems from numeri
al analysis.

Proposition 2.1 (Kozak) A sequen
e A 2 F

P

is stable if and only if the 
oset

A+ G is invertible in the quotient algebra F

P

=G.

The spe
trum of the 
oset A+ G in F

P

=G will be denoted by �

F

P

=G

(A+ G) or

simply by �(A+G). It is also 
alled the stability spe
trum of the sequen
e A and

will o

ur in the formulation of several results below. Here we only mention the

following fa
t.

Proposition 2.2 Let A = (A

n

) 2 F

P

. Then

�

L(l

2

(Z

+

))

(W (A)) � �

F

P

=G

(A+ G);

and for ea
h open neighborhood U of �

F

P

=G

(A+ G) one has

�

L(imP

n

)

(A

n

) � U

for all suÆ
iently large n.

The proof of the �rst assertion is a 
onsequen
e of Polski's theorem (Theorem

1.4 in [22℄), and the se
ond one follows easily from the in
lusion

lim sup�(A

n

) � �

F

P

=G

(A+ G) (7)

stated in Theorem 3.19 in [22℄, where lim sup is the set-theoreti
al limes superior.

Indeed, suppose there are an open neighborhood U of �

F

P

=G

(A+ G), a strongly

monotoni
ally in
reasing sequen
e � : N ! N , and points �

n

2 �(A

�(n)

) with �

n

62

U . Sin
e (A

n

) is a bounded sequen
e, the sequen
e (�

n

) is bounded, too. Hen
e,

it possesses a partial limit �

�

whi
h belongs to lim sup�(A

n

) (by de�nition) but

not to U (sin
e U is open). This 
ontradi
ts (7).

It what follows we will have to 
onsider several subalgebras of F

P

. For X and Y

as in the introdu
tion, let S

X;Y

(Z

+

) stand for the smallest 
losed C

�

-subalgebra

of F

P

whi
h 
ontains all sequen
es (P

n

AP

n

) of �nite se
tions of operators A 2

A

X;Y

(Z

+

). Further we will often write A

Y

(Z

+

) in pla
e of A

C(T);Y

(Z

+

).

2.2 Band-dominated operators, their Fredholmness and

�nite se
tions

Here is a summary of the results from [30℄ needed in what follows. A 
ompre-

hensive treatment of this topi
 is in [32℄; see also the referen
es mentioned there.
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Fredholmness of band-dominated operators. An operator A on a Hilbert

spa
e H is 
alled Fredholm if both its kernel kerA := fx 2 H : Ax = 0g and

its 
okernel 
okerA := H=(AH) are �nite dimensional linear spa
es. There is a

Fredholm 
riterion for a general band-dominated operator A whi
h expresses the

Fredholm property in terms of the limit operators of A. To state this result, we

will need a few notations.

Let H stand for the set of all sequen
es h : N ! Z whi
h tend to in�nity in

the sense that given C > 0, there is an n

0

su
h that jh(n)j > C for all n � n

0

. An

operator A

h

2 L(l

2

(Z)) is 
alled the limit operator of A 2 L(l

2

(Z)) with respe
t

to the sequen
e h 2 H if U

�h(n)

AU

h(n)

tends

�

-strongly to A

h

as n!1. Noti
e

that every operator 
an possess at most one limit operator with respe
t to a given

sequen
e h 2 H. The set �

op

(A) of all limit operators of a given operator A is

the operator spe
trum of A.

We write L

$

(l

2

(Z)) for the set of all operators A 2 L(l

2

(Z)) whi
h own the

following 
ompa
tness property: Every sequen
e h 2 H possesses a subsequen
e

g for whi
h the limit operator A

g

exists. Thus, operators in L

$

(l

2

(Z)) possess, in

a sense, many limit operators. They are also 
alled operators with ri
h operator

spe
trum (therefore the notation).

Proposition 2.3 (a) L

$

(l

2

(Z)) is a C

�

-subalgebra of L(l

2

(Z)).

(b) A

L

1

(T);l

1

(Z)

(Z) � L

$

(l

2

(Z)).

Assertion (a) is Proposition 1.2.6 (a) in [32℄. Sin
e L

$

(l

2

(Z)) is a 
losed algebra,

assertion (b) will follow on
e it has been shown that all bounded Laurent operators

and all bounded multipli
ation operators belong to L

$

(l

2

(Z)). The �rst in
lusion

is evident due to the shift invarian
e of Laurent operators, and the se
ond one is

Theorem 2.1.16 in [32℄.

It is not hard to see that every limit operator of a 
ompa
t operator is 0 and

that every limit operator of a Fredholm operator is invertible. A basi
 result of

[30℄ (see also Theorems 2.2.1 and 2.5.7 in [32℄) 
laims that the operator spe
trum

of a band-dominated operator is ri
h enough in order to guarantee the reverse

impli
ations.

Theorem 2.4 Let A 2 L(l

2

(Z)) be a band-dominated operator. Then the opera-

tor A is Fredholm if and only if ea
h of its limit operators is invertible and if the

norms of their inverses are uniformly bounded. If A is a band operator, then A

is Fredholm if and only if ea
h of its limit operators is invertible.

An analogous result holds for band-dominated operators on Z

+

in whi
h 
ase one

has to take into a

ount all limit operators with respe
t to sequen
es h tending

to +1. (Simply apply Theorem 2.4 to the operator PAP + Q, now a
ting on

all of Z.) We let �

�

(A) 
olle
t the set of all limit operators of A whi
h are taken

with respe
t to a sequen
e tending to �1.
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Finite se
tions of band-dominated operators. One way to atta
k stability

problems is based on the following observation. Asso
iate to the sequen
e A =

(A

n

) 2 F

P

the blo
k diagonal operator

Op (A) := diag (A

1

; A

2

; A

3

; : : :) (8)


onsidered as a
ting on l

2

(Z

+

). It is easy to 
he
k that the sequen
e A is stable if

and only if the asso
iated operator Op (A) is Fredholm. In general, this stability


riterion seems to be of less use. But if one starts with the sequen
e A = (P

n

AP

n

)

of the �nite se
tions method of a band-dominated operator A, then one ends up

with a band-dominated operator Op (A) on l

2

(Z

+

), and Theorem 2.4 applies

to study the Fredholmness of Op (A). Basi
ally, one has to 
ompute the limit

operators of Op (A), whi
h leads to the following result (whi
h is Theorem 3 in

[31℄). See also Chapter 6 in [32℄ and the detailed a

ount on the �nite se
tions

method of band-dominated operators given in [35℄.

Theorem 2.5 Let A 2 L(l

2

(Z)) be a band-dominated operator. Then the �nite

se
tions method (R

n

AR

n

)

n�1

is stable if and only if the operator A, all operators

QA

h

Q+ P with A

h

2 �

+

(A)

and all operators

PA

h

P +Q with A

h

2 �

�

(A)

are invertible on l

2

(Z), and if the norms of their inverses are uniformly bounded.

The 
ondition of the uniform boundedness of the inverses is redundant if A is a

band operator.

Spe
ifying this theorem to the 
ase of band operators on l

2

(Z

+

) we get the fol-

lowing, where J refers to the unitary operator

l

2

(Z)! l

2

(Z); (Jx)

m

:= x

�m�1

;

and where we de�ne �

+

(A) as �

+

(PAP +Q).

Theorem 2.6 Let A 2 L(l

2

(Z

+

)) be a band-dominated operator. Then the �-

nite se
tions method (P

n

AP

n

)

n�1

is stable if and only if the operator A and all

operators

JQA

h

QJ with A

h

2 �

+

(A)

are invertible on l

2

(Z

+

) and if the norms of their inverses are uniformly bounded.

The 
ondition of the uniform boundedness of the inverses is redundant if A is a

band operator.

There are generalizations of Theorems 2.5 and 2.6 whi
h 
an be veri�ed in the

same vein as their prede
essors. We mention the result for the �nite se
tions

(P

n

AP

n

) only.
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Theorem 2.7 Let A 2 L(l

2

(Z

+

)) be a band-dominated operator, and let � :

N ! N be a strongly monotoni
ally in
reasing sequen
e. Then the sequen
e

(P

�(n)

AP

�(n)

)

n�1

is stable if and only if the operator A and all operators JQA

h

QJ

where A

h

is a limit operator of A with respe
t to a subsequen
e h of � are invertible

on l

2

(Z

+

) and if the norms of their inverses are uniformly bounded. The 
ondition

of the uniform boundedness of the inverses is redundant if A is a band operator.

Thus, instead of taking all limit operators of A with respe
t to monotoni
ally

in
reasing sequen
es h, one has 
onsider only those with respe
t to subsequen
es

of �.

Corollary 2.8 Let A 2 L(l

2

(Z

+

)) be a band-dominated operator, and let h : N !

N be a strongly monotoni
ally in
reasing sequen
e for whi
h the limit operator A

h

exists. Then the sequen
e (P

h(n)

AP

h(n)

)

n�1

is stable if and only if the operators

A and JQA

h

QJ are invertible.

2.3 Band-dominated operators with almost periodi
 
oef-

�
ients

Here we 
olle
t some basi
 fa
ts from [33℄ whi
h show that the 
on
lusion of

Corollary 2.8 
an be essentially simpli�ed if the sequen
e h is 
hosen appropri-

ately. These results will only be needed in Subse
tion 5.1 (after Theorem 5.4)

below.

It is one pe
uliarity of band-dominated operators A 2 A

AP

(Z) that there is

a strongly monotoni
ally in
reasing sequen
e h : N ! N su
h that

kU

�h(n)

AU

h(n)

� Ak ! 0 as n!1: (9)

Thus, A is its own limit operator with respe
t to h, and it is a limit operator in

the sense of norm 
onvergen
e. We shall prove this fa
t in Se
tion 5.3 in a more

general 
ontext. Ea
h sequen
e h with the properties mentioned above is 
alled

a distinguished sequen
e for A. If h is a distinguished sequen
e for A, then we


all (P

h(n)

PAPP

h(n)

) the asso
iated distinguished �nite se
tions method for PAP

and (R

h(n)

AR

h(n)

) the asso
iated distinguished �nite se
tions method for A.

Theorem 2.9 Let A 2 A

AP

(Z) and let h be a distinguished sequen
e for A.

Then the sequen
e (P

h(n)

PAPP

h(n)

) is stable if and only if the operators PAP

and JQAQJ are invertible.

Of 
ourse, this follows immediately from Corollary 2.8. But there is also an

elementary proof based on (9) whi
h mimi
s the proof of the stability of the

�nite se
tions method for invertible Toeplitz operators with 
ontinuous generating

fun
tion (see [10℄, Theorem 4.102 in [28℄ and Se
tion 1.4.2 in [22℄ for the proof in

the Toeplitz setting and [33℄ for band-dominated operators with almost periodi



oeÆ
ients).

9



It is not always easy to �nd a distinguished sequen
e for a given operator in

A

AP

(Z). But sometimes it is, and here are two examples taken from [33℄.

Example 2.10 (Multipli
ation operators) For ea
h real number � 2 [0; 1),

the fun
tion

a : Z! C ; n 7! e

2�i�n

(10)

is almost periodi
. Indeed, for every integer k, U

�k

aU

k

is the operator of multi-

pli
ation by the fun
tion a

k

with a

k

(n) = a(n + k) = e

2�i�k

a(n), i.e.,

U

�k

aU

k

= e

2�i�k

a: (11)

Let (U

�k(n)

aU

k(n)

) by any sequen
e in fU

�k

aU

k

: k 2 Zg. Due to the 
ompa
tness

of T, there are a subsequen
e (e

2�i�k(n(r))

)

r�1

of (e

2�i�k(n)

)

n�1

and a real number

� su
h that

e

2�i�k(n(r))

! e

2�i�

as r !1:

Thus, the fun
tions a

k(n(r))

= e

2�i�k(n(r))

a 
onverge in the norm of l

1

(Z) to e

2�i�

a,

when
e the almost periodi
ity of a. Thus, every fun
tion as in (10) belongs to

AP (Z). Conversely, AP (Z) is the 
losure in l

1

(Z) of the span of all fun
tions of

the form (10) with � 2 [0; 1) ([16℄, Theorems 1.9 { 1.11 and Theorem 1.27).

For the operator spe
trum of the operator aI one �nds

�

op; s

(aI) = �

op; n

(aI) =

(

fe

2�il=q

a : l = 1; 2; : : : ; qg if � = 2p=q 2 Q ;

fe

it

a : t 2 Rg if � 62 Q ;

Here, p and q are relatively prime integers with q > 0. Indeed, the in
lusion �

follows immediately from (11). The reverse in
lusion is evident in 
ase � 2 Q . If

� 62 Q , then it follows from a theorem by Krone
ker whi
h states that the set of

all numbers e

2�i�k

with integer k lies dense in the unit 
ir
le T.

Next we are looking for distinguished sequen
es for the operator of multipli-


ation by the sequen
e 10. From (11) we infer that a sequen
e h is distinguished

for aI if and only if

lim

n!1

e

2�i�h(n)

= 1

In 
ase � = p=q 2 Q , the sequen
e a is q-periodi
. Thus, h(n) := qn is a

distinguished sequen
e for aI. For non-rational � 2 (0; 1), expand � into its


ontinued fra
tion

� = lim

n!1

1

b

1

+

1

b

2

+

1

.

.

.

b

n�1

+

1

b

n

10



with uniquely determined positive integers b

i

. Write this 
ontinued fra
tion as

p

n

=q

n

with positive and relatively prime integers p

n

; q

n

. These integers satisfy

the re
ursions

p

n

= a

n

p

n�1

+ p

n�2

; q

n

= a

n

q

n�1

+ q

n�2

(12)

with p

0

= 0; p

1

= 1; q

0

= 1 and q

1

= a

1

, and one has for all n � 1

�

�

�

�

��

p

n

q

n

�

�

�

�

<

1

q

n

q

n+1

<

1

q

2

n

: (13)

Thus,

j�q

n

� p

n

j � q

n

�

�

�

�

��

p

n

q

n

�

�

�

�

�

1

q

n

! 0;

when
e

e

2�i�q

n

= e

2�i(�q

n

�p

n

)

! 1:

Sin
e moreover q

1

< q

2

< : : : due to the re
ursion (12), this shows that the

sequen
e h(n) := q

n

belongs to H

A;n

and that A

h

= A, i.e. h is a distinguished

sequen
e for the operator aI with a as in (10).

Example 2.11 (Almost Mathieu operators) These are the operators H

�;�; �

on l

2

(Z) given by

(H

�; �; �

x)

n

:= x

n+1

+ x

n�1

+ �x

n


os 2�(n�+ �)

with real parameters �; � and �. Thus, H

�;�; �

is a band operator with almost

periodi
 
oeÆ
ients, and

H

�; �; �

= U

�1

+ U

1

+ aI with a(n) = � 
os 2�(n� + �):

For a treatment of the spe
tral theory of almost Mathieu operators see [9℄ and the

re
ently published papers [4, 29℄ where the long-standing Ten Martini problem is

solved.

As in Example 2.10 one gets

U

�k

H

�;�; �

U

k

= U

�1

+ U

1

+ a

k

I

with

a

k

(n) = a(n+ k) = � 
os 2�((n+ k)� + �)

= �(
os 2�(n�+ �) 
os 2�k�� sin 2�(n� + �) sin 2�k�): (14)

We will only 
onsider the non-periodi
 
ase, i.e., we let � 2 (0; 1) be irrational. As

in the previous example, we write � as a 
ontinued fra
tion with nth approximant

p

n

=q

n

su
h that (13) holds. Then


os 2��q

n

= 
os 2�(�q

n

� p

n

) = 
os 2�q

n

(�� p

n

=q

n

)! 
os 0 = 1

11



and, similarly, sin 2��q

n

! 0. Further we infer from (14) that

j(a

q

n

)� a)(n)j � j�j j1� 
os 2��q

n

j+ j�j j sin��q

n

j:

Hen
e, a

q

n

! a uniformly. Thus, h(n) := q

n

de�nes a distinguished sequen
e for

the Almost Mathieu operator H

�;�; �

. Noti
e that this sequen
e depends on the

parameter � only.

Theorem 2.9 implies the following.

Corollary 2.12 Let A := H

�; �; �

be an Almost Mathieu operator and h a distin-

guished sequen
e for A. Then the following 
onditions are equivalent:

(a) the distinguished �nite se
tions method (P

h(n)

PAPP

h(n)

) for PAP is stable;

(b) the distinguished �nite se
tions method (R

h(n)

AR

h(n)

) for A is stable;

(
) the operators PAP and QAQ are invertible.

If � = 0, then the Almost Mathieu operator A = H

�;�; 0

is 
ip invariant, i.e.,

JAJ = A. So we observe in this 
ase that the third 
ondition in Corollary 2.12

is equivalent to the invertibility of PAP alone.

For a di�erent numeri
al treatment of Almost Mathieu and other operators

in irrational rotation algebras 
onsult [15℄.

3 The �rst Szeg�o limit theorem

3.1 Operators with ri
h spe
trum

Let A be an operator on l

2

(N) for whi
h the �nite se
tions sequen
e (P

n

AP

n

) is

stable. Then the matri
es P

n

AP

n

are invertible for n large enough, and it makes

sense to 
onsider the sequen
e

n 7!

det(P

n

AP

n

)

det(P

n�1

AP

n�1

)

: (15)

In 
ase A = T (a) is an invertible Toeplitz operator with 
ontinuous generating

fun
tion, the sequen
e (15) 
onverges, and its limit is equal to

G[a℄ := 1=(P

1

T (a)

�1

P

1

) (16)

by the �rst Szeg�o limit theorem 1.1. For general A, one 
annot expe
t 
onvergen
e

of (15) as already the band operator

A := diag

��

2 1

1 2

�

;

�

2 1

1 2

�

;

�

2 1

1 2

�

; : : :

�

shows. In this 
ase we denote by !(A) the set of all partial limits of the sequen
e

(15). It turns out that this set 
an be des
ribed via limit operators in 
ase A is

12



an operator with ri
h operator spe
trum for whi
h the �nite se
tions method is

stable. In this 
ase, the operators JQA

h

QJ are invertible on l

2

(Z

+

) by Theorem

2.6. In analogy to (16), set

G[A

h

℄ := 1=(P

1

(JQA

h

QJ)

�1

P

1

) (17)

whi
h has to be read as follows: P

1

(JQA

h

QJ)

�1

P

1


an be understood as an

1� 1-matrix, and we identify this matrix with its only entry, whi
h is a 
omplex

number.

Theorem 3.1 Let A 2 L

$

(l

2

(Z

+

)) be an operator for whi
h the �nite se
tions

sequen
e (P

n

AP

n

) is stable. Then

!(A) = fG[A

h

℄ : A

h

2 �

+

(A)g: (18)

Proof. For n a positive integer, let

W

n

: l

2

(Z

+

)! l

2

(Z

+

); (x

0

; x

1

; : : :) 7! (x

n�1

; x

n�2

; : : : ; x

0

; 0; 0; : : :): (19)

If the �nite se
tions method (P

n

AP

n

) is stable, then the operators W

n

AW

n

,


onsidered as a
ting on imW

n

= imP

n

, are invertible for large n, and

det(P

n�1

AP

n�1

)

det(P

n

AP

n

)

=

det(W

n�1

AW

n�1

)

det(W

n

AW

n

)

=: �

n

:

By Cramer's rule, �

n

equals the �rst 
omponent of the solution x

(n)

to the equa-

tion

W

n

AW

n

x

(n)

= (1; 0; 0; : : : ; 0)

T

:

Let now � 2 !(A), and let h : N ! N be a sequen
e tending to in�nity su
h that

�

�1

= lim�

h(n)

. Sin
e A has a ri
h operator spe
trum, there is a subsequen
e g

of h su
h that the limit operator

A

g

= s-limU

�g(n)

AU

g(n)

2 L(l

2

(Z))

exists. Then also the strong limit

s-limJU

�g(n)

P

g(n)

AP

g(n)

U

g(n)

J 2 L(l

2

(N))

exists and is equal to JQA

g

QJ . Sin
e JU

�n

P

n

= W

n

and P

n

U

n

J = W

n

, this

shows that the strong limit s-limW

g(n)

AW

g(n)

exists and that this limit is equal

to JQA

g

QJ 2 L(l

2

(N)). So one 
an 
onsider (W

g(n)

AW

g(n)

)

n2N

as a stable and


onvergent approximation sequen
e for the operator JQA

g

QJ . In parti
ular, the

solutions x

(n)

to the equation

W

g(n)

AW

g(n)

x

(n)

= (1; 0; 0; : : : ; 0)

T

(20)
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onverge in the norm of l

2

(N) to the solution x to the equation

JQA

g

QJx = (1; 0; 0; : : :)

T

: (21)

Thus, the �rst 
omponent �

g(n)

of the solution x

(n)

to equation (20) 
onverges

to the �rst 
omponent of the solution x to equation (21). Sin
e the latter one is

equal to

P

1

x = P

1

(JQA

g

QJ)

�1

P

1

;

we arrive at � = (P

1

(JQA

g

QJ)

�1

P

1

)

�1

= G[A

g

℄. This settles the in
lusion � in

(18). The reverse in
lusion 
an be proved by similar arguments.

3.2 Operators in the Toeplitz algebra

By Proposition 2.3 (b), the assertion of Theorem 3.1 holds in parti
ular for opera-

tors in the algebra A

L

1

(T);l

1

(Z)

(Z

+

) and, thus, for all band-dominated operators

A 2 A

l

1

(Z)

(Z

+

) and for all operators A in the Toeplitz algebra A

L

1

(T);C

(Z

+

).

The statement for band-operators has been already proved in [35℄, Theorem 7.23,

whereas the Toeplitz 
ase was the subje
t of Se
tion 7.2.3 in [22℄. In the Toeplitz


ase, one 
an 
omplete the assertion of Theorem 3.1 essentially. The point is the

following observation.

Proposition 3.2 Let A 2 A

L

1

(T);C

(Z

+

).

(a) Consider A as an operator on l

2

(Z) whi
h a
ts as the zero operator on l

2

over

the negative integers. Then the sequen
e (U

�n

AU

n

)

n2N


onverges

�

-strongly on

l

2

(Z). Its limit is a bounded Laurent operator, i.e., it is of the form L(a) with

a 2 L

1

(T).

(b) The sequen
e (W

n

AW

n

)

n2N


onverges

�

-strongly on l

2

(Z

+

). Its limit is a

bounded Toeplitz operator, i.e., it is of the form T (b) with b 2 L

1

(T).

Moreover, b(t) = a(1=t) a.e. on T.

The fun
tion a is also 
alled the symbol of the operator A 2 A

L

1

(T);C

(Z

+

). We

denote it by s

A

.

For a proof of assertion (a), write T (a) as PL(a)P . Clearly, U

�n

L(a)U

n

=

L(a), and one easily 
he
ks that U

�n

PU

n

! I strongly. Thus,

U

�n

T (a)U

n

! L(a) as n!1:

Assertion (b) follows from (a) sin
e

W

n

AW

n

= JQU

�n

AU

n

QJ:

For another proof of (b) (and some fa
ts around it) see Se
tions 4.3.3 and 7.2.3

in [22℄.
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It follows from Proposition 3.2 that the only limit operator at +1 of A 2

A

L

1

(T);C

(Z

+

) is the Laurent operator L(s

A

). Hen
e, the set !(T (a)) is the sin-

gleton fG[T (fs

A

)℄g in this 
ase, when
e the 
onvergen
e of the sequen
e (15) to

this value.

Corollary 3.3 Let A 2 A

L

1

(T);C

(Z

+

) be an operator for whi
h the �nite se
tions

sequen
e (P

n

AP

n

) is stable. Then the sequen
e (15) 
onverges, and its limit is

G[T (fs

A

)℄ = 1=(P

1

(T (fs

A

))

�1

P

1

):

Corollary 3.4 Let a 2 L

1

(T) be su
h that the �nite se
tions sequen
e (P

n

AP

n

)

for the Toeplitz operator A = T (a) is stable. Then the sequen
e (15) 
onverges,

and its limit is

G[T (~a)℄ = 1=(P

1

(T (~a))

�1

P

1

):

In order to show that this 
orollary indeed reprodu
es the �rst Szeg�o limit theo-

rem 1.1 we have to verify that

P

1

T (a)

�1

P

1

= P

1

(T (~a))

�1

P

1

: (22)

Let C : l

2

(Z

+

)! l

2

(Z

+

) denote the operator of 
onjugation (x

n

) 7! (x

n

) (whi
h

is linear over the �eld of the real numbers only). One easily 
he
ks that

T (~a) = CT (a)

�

C for ea
h fun
tion a 2 L

1

(T):

Hen
e, T (a) is invertible if and only if T (~a) is invertible, and if B is the inverse

of T (a), then CB

�

C is the inverse of T (~a). The 00th entries of B and CB

�

C


oin
ide obviously, when
e (22).

There are two obsta
les for the appli
ation of Corollary 3.4. The �rst one 
on
erns

the stability of the �nite se
tions sequen
e (P

n

T (a)P

n

) for whi
h there is no

general 
riterion known. But there are at least spe
ial 
lasses of generating

fun
tions a 2 L

1

(T) (e.g., pie
ewise 
ontinuous or pie
ewise quasi
ontinuous

fun
tions) for whi
h one knows that the �nite se
tions sequen
e for the Toeplitz

operator T (a) is stable if and only the operator T (a) is invertible, and for whi
h

e�e
tive 
riteria for the invertibility of T (a) are available. Details 
an be found

in Se
tion IV.3 in [21℄, Se
tion 4.2 in [22℄ and Se
tion 2.4 in [13℄ for Toeplitz

operators with pie
ewise 
ontinuous generating fun
tions and in Chapter 7 in

[12℄ where a heavy ma
hinery is developed to atta
k stability problems.

The se
ond point 
on
erns the 
onstant G[a℄ = (P

1

T (a)

�1

P

1

)

�1

for whi
h one

wants to have an e�e
tive way of 
omputation. Under suitable assumptions for

the generating fun
tion a (e.g., belonging to the Wiener algebra or being lo
ally

se
torial) one 
an identify the number G[a℄ with 1= exp(log a)

0

with b

0

referring

to the 0th Fourier 
oeÆ
ient of the fun
tion b (details 
an be found in Se
tion

5.4 of [13℄, for example).
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The latter observation o�ers a also way to determine the 
onstant G[A

h

℄

in some further instan
es. Let A 2 L(l

2

(Z

+

)) be a band-dominated operator

with slowly os
illating 
oeÆ
ients where a fun
tion b 2 l

1

(Z) is 
alled slowly

os
illating if the di�eren
e b(n + 1) � b(n) tends to zero as n ! �1. Then all

limit operators of A are shift invariant (Proposition 2.4.1 in [32℄); hen
e, all partial

limits in !(A) are of the form P

1

T ( ~a

h

)

�1

P

1

with a 
ertain 
ontinuous fun
tion

a

h

. If, moreover, A =

P

a

k

V

k

satis�es the Wiener 
ondition

P

ka

k

k

1

<1, then

all fun
tions a

h

belong to the Wiener algebra, and one has

P

1

T ( ~a

h

)

�1

P

1

= P

1

T (a

h

)

�1

P

1

= 1= exp(log a

h

)

0

:

4 Distributive versions of the �rst Szeg�o limit

theorem

The goal of this se
tion is to prove versions of Theorems 1.2 and 1.3 for operators

in A

L

1

(T);AP (Z)

(Z

+

). For their formulation, we need some preparations.

It will be 
onvenient to put the proof into some algebrai
 framework whi
h has

been developed by Arveson, B�edos, and SeLegue [1, 2, 7, 8, 36℄ (see also Se
tion

7.2.1 in [22℄) and whi
h we are going to re
all �rst. For the reader's 
onvenien
e,

we in
lude the proofs.

4.1 The F�lner algebra

For ea
h operator A 2 L(l

2

(Z

+

)), let jAj denote its absolute value, i.e., the

non-negative square root of A

�

A. Let further tr refer to the 
anoni
al tra
e on

L(l

2

(Z

+

)), and abbreviate the sequen
e (P

n

) to P. Evidently, trP

n

= n.

Proposition 4.1 The set F(P) of all operators A 2 L(l

2

(Z

+

)) with

lim

n!1

tr (jP

n

A� AP

n

j)

trP

n

= 0 (23)

is a C

�

-subalgebra of L(l

2

(Z

+

)).

We refer to F(P) as the F�lner algebra asso
iated with P.

Proof. Re
all that the set N

1

:= fA 2 L(l

2

(Z

+

)) : tr (jAj) < 1g of the tra
e


lass operators is a two-sided (non-
losed) ideal of L(l

2

(Z

+

)), that the mapping

A 7! tr (jAj) de�nes a norm on N

1

whi
h makes this set to a Bana
h spa
e, and

that

jtr (A)j � tr (jAj); (24)

tr (jA+Bj) � tr (jAj) + tr (jBj); (25)

max ftr (jACj); tr (jCAj)g � kCk tr (jAj); (26)
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tr(jAj) = tr (jA

�

j) (27)

for arbitrary operators A; B 2 N

1

and C 2 L(l

2

(Z

+

)). For details see [34℄,

Se
tion VI.6. Let now A; B 2 F(P). Then

tr (jP

n

(A+B)� (A+B)P

n

j) � tr (jP

n

A� AP

n

j) + tr (jP

n

B �BP

n

j)

and

tr (jP

n

(AB)� (AB)P

n

j) = tr (j(P

n

A� AP

n

)B + A(P

n

B �BP

n

)j)

� kBk tr (jP

n

A� AP

n

j) + kAk tr (jP

n

B � BP

n

j)

by (25) and (26), whi
h implies that A+B and AB are in F(P) again. Further,

if A

m

2 F(P) and A

m

! A in the norm of L(l

2

(Z

+

)), then

tr (jP

n

A� AP

n

j) � tr (jP

n

(A� A

m

)� (A� A

m

)P

n

j) + tr (jP

n

A

m

� A

m

P

n

j)

� 2 trP

n

kA� A

m

k+ tr (jP

n

A

m

� A

m

P

n

j);

whi
h gives the 
losedness of F(P) in L(l

2

(Z

+

)). The symmetry of F(P) is a


onsequen
e of (27).

Let S(F(P)) stand for the smallest 
losed subalgebra of F

P

whi
h 
ontains all

�nite se
tions sequen
es (P

n

AP

n

) where A is in F(P). The following result is the

key to several generalizations of the �rst Szeg�o limit theorem.

Theorem 4.2 Let A := (A

n

) 2 S(F(P)). Then

1

n

tr (jA

n

� P

n

W (A)P

n

j)! 0 (28)

as n!1.

Proof. By (26), the fun
tionals

L(imP

n

)! C ; A

n

7!

1

n

tr (jA

n

j)

are uniformly bounded with respe
t to n (by 1). Hen
e, it is suÆ
ient to prove

(28) for sequen
es A in a dense subalgebra of S(F(P)).

Every sequen
e in S(F(P)) 
an be approximated as 
losely as desired (with

respe
t to the norm in F

P

) by sequen
es of the form

B :=

X

j

Y

i

(P

n

B

ij

P

n

) where B

ij

2 F(P):

Clearly,

W (B) =

X

i

Y

j

B

ij

:

17



Thus, and by (25), it is suÆ
ient to prove (28) for sequen
es of the form B :=

Q

i

(P

n

B

i

P

n

) where B

i

2 F(P), i.e., to verify that

1

n

tr(jP

n

B

1

P

n

B

2

P

n

: : : P

n

B

k

P

n

� P

n

B

1

B

2

: : : B

k

P

n

j)! 0 (29)

as n!1. We prove (29) in 
ase k = 2 from whi
h the 
ase of general k follows

by indu
tion. Assertion (29) for k = 2 will follow as soon as we have shown that

tr (jP

n

B

1

P

n

B

2

P

n

� P

n

B

1

B

2

P

n

j)

� max fkB

2

k tr (jP

n

B

1

�B

1

P

n

j); kB

1

k tr (jP

n

B

2

� B

2

P

n

j)g

for arbitrary operators B

1

; B

2

2 L(l

2

(Z

+

)). This estimate is a 
onsequen
e of

tr (jP

n

B

1

P

n

B

2

P

n

� P

n

B

1

B

2

P

n

j) = tr (jP

n

B

1

(I � P

n

)B

2

P

n

j)

� kB

1

k tr ((I � P

n

)B

2

P

n

j)

and of

tr (j(I � P

n

)B

2

P

n

j) = tr (j(I � P

n

)(B

2

P

n

� P

n

B

2

)j)

� kI � P

n

k tr (jP

n

B

2

�B

2

P

n

j)

where we used (26).

From (24) and (28) we 
on
lude that

1

n

jtr (A

n

� P

n

W (A)P

n

)j ! 0:

Thus, if (w

ij

)

1

i; j=0

refers to the matrix representation of W (A) with respe
t to

the standard basis of l

2

(Z

+

), then (28) implies

�

�

1

(A

n

) + : : :+ �

n

(A

n

)

n

�

w

00

+ : : :+ w

n�1; n�1

n

�

! 0 (30)

as n!1 for every sequen
e A := (A

n

) 2 S(F(P)).

Remark 4.3 It is evident that the notion of a F�lner algebra is not restri
ted

to the 
ontext 
onsidered in this se
tion. Indeed, for every sequen
e P = (P

n

)

of orthogonal proje
tions of �nite rank a
ting on a 
ertain Hilbert spa
e and

tending strongly to the identity operator, there is an asso
iated F�lner algebra.

This observation allows one to derive distributive versions of the �rst Szeg�o limit

theorem also in the higher dimensional 
ontext, by employing exa
tly the same

ideas whi
h will be pointed out in the following se
tions. In this way, the results

of [26, 38℄ 
an be both easily obtained and generalized.
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4.2 Operators and their diagonals

A further utilization of (28) and (30) requires to examine the tra
e tr (P

n

W (A)P

n

)

whi
h 
learly depends on the main diagonal of the operator W (A) only. In this

se
tion we show that the main diagonal of operators in A

L

1

(T);AP (Z)

(Z

+

) behaves

quite well.

Let A 2 L(l

2

(Z)) be an operator with matrix representation (a

ij

)

i; j2Z

with

respe
t to the standard basis of l

2

(Z). Sin
e

ja

ii

j = kP

fig

AP

fig

k � kAk;

the sequen
e (a

ii

)

i2Z

belongs to l

1

(Z). Hen
e, it de�nes a multipli
ation operator

on l

2

(Z) whi
h we 
all the main diagonal of A and whi
h we denote by D(A).

Similarly, the main diagonal of an operator B 2 L(l

2

(Z

+

)) is de�ned. It a
ts as

a multipli
ation operator on l

2

(Z

+

), and we denote it also by D(B) (whi
h will

not rise 
onfusion if one takes into a

ount where A and B live). In ea
h 
ase,

kD(A)k � kAk.

Theorem 4.4 If A 2 A

L

1

(T);AP (Z)

(Z), then D(A) 2 AP (Z).

Of 
ourse, then every diagonal whi
h is parallel to the main diagonal is almost

periodi
, too.

Proof. Sin
e D : L(l

2

(Z)) ! l

1

(Z) is a 
ontinuous linear mapping, and sin
e

AP (Z) is a 
losed subalgebra of l

1

(Z), it is suÆ
ient to prove the assertion for

the 
ase when A is a �nite produ
t of Laurent operators with generating fun
tions

in L

1

(T) and of operators of multipli
ation by almost periodi
 fun
tions. Thus,

we 
an assume that

A = L(a

1

) b

1

L(a

2

) b

2

: : : L(a

k

) b

k

I

with a

i

2 L

1

(T) and b

i

2 AP (Z). Consider the diagonalD(A) and let h : N ! Z

be an arbitrary sequen
e. We have to show that (U

�h(n)

D(A)U

h(n)

)

n2N

has a norm


onvergent subsequen
e. Sin
e

U

�h(n)

D(A)U

h(n)

= D(U

�h(n)

AU

h(n)

)

it is suÆ
ient to show that (U

�h(n)

AU

h(n)

)

n2N

has a 
onvergent subsequen
e. Now

one has

U

�h(n)

AU

h(n)

= L(a

1

) (U

�h(n)

b

1

U

h(n)

)L(a

2

) (U

�h(n)

b

2

U

h(n)

) : : : L(a

k

) (U

�h(n)

b

k

U

h(n)

):

Sin
e b

1

is almost periodi
, there is a subsequen
e h

1

of h su
h that the sequen
e

(U

�h

1

(n)

b

1

U

h

1

(n)

)

n2N


onverges. Analogously, there is a subsequen
e h

2

of h

1

su
h
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that the sequen
e (U

�h

2

(n)

b

2

U

h

2

(n)

)

n2N


onverges. We pro
eed in this way. Af-

ter k steps we arrive at a subsequen
e g of h for whi
h ea
h of the sequen
es

(U

�g(n)

b

i

U

g(n)

)

n2N

and, thus, the sequen
e (U

�g(n)

AU

g(n)

)

n2N


onverges.

Let 


0

(Z

+

) stand for the set of all sequen
es a : Z

+

! C with a(n) ! 0 as

n ! 1, and write AP (Z

+

) for the set of all fun
tions PaP where a 2 AP (Z),


onsidered as fun
tions on Z

+

. Evidently, both 


0

(Z

+

) and AP (Z

+

) are 
losed

subalgebras of l

1

(Z

+

).

Theorem 4.5 If A 2 A

L

1

(T);AP (Z)

(Z

+

), then D(A) 2 AP (Z

+

) + 


0

(Z

+

).

Proof. As is the proof of the previous theorem, it is suÆ
ient to verify the

assertion for operators of the form

A = T (a

1

) b

1

T (a

2

) b

2

: : : T (a

k

) b

k

I

= PL(a

1

)Pb

1

PL(a

2

)Pb

2

: : : PL(a

k

)Pb

k

P

with a

i

2 L

1

(T) and b

i

2 AP (Z

+

). We repla
e all inner proje
tions P by I �Q

and fa
tor out to get

A = PBP +R where B 2 A

L

1

(T);AP (Z)

(Z

+

) (31)

and where R is a �nite sum, with ea
h item in this sum being a produ
t of Laurent

operators, multipli
ation operators, proje
tions P and at least one proje
tion

Q. Evidently, the proje
tions P and Q have a ri
h operator spe
trum, and

�

+

(Q) = f0g. Sin
e the set L

$

(l

2

(Z)) forms an algebra we 
on
lude that the

operator R has a ri
h operator spe
trum, too, and the algebrai
 properties of

limit operators stated in Proposition 1.2.2 in [32℄ yield that also �

+

(R) = f0g.

We 
laim that the main diagonal D(R) =: diag (r

nn

) of R is in 


0

(Z

+

). Sup-

pose it is not. Then there is a C > 0 and a strongly monotoni
ally in
reasing

sequen
e h : N ! N su
h that jr

h(n);h(n)

j � C for all n 2 N . Sin
e R 2 L

$

(l

2

(Z))

there is a subsequen
e g of h for whi
h the limit operator R

g

exists. Sin
e h

(thus, g) tends to +1, one has R

g

2 �

+

(R), when
e R

g

= 0. This implies in

parti
ular that

r

g(n);g(n)

= P

1

U

�g(n)

RU

g(n)

P

1

! 0;

a 
ontradi
tion. Thus, D(R) 2 


0

(Z

+

), and passing to the main diagonals in (31)

yields

D(A) = PD(B)P +D(R) 2 AP (Z

+

) + 


0

(Z

+

)

due to Theorem 4.4.

Proposition 4.6 Ea
h fun
tion a 2 AP (Z

+

) + 


0

(Z

+

) has a unique representa-

tion in the form a = PfP + 
 where f 2 AP (Z) and 
 2 


0

(Z

+

).
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Proof. Let f

1

; f

2

2 AP (Z) and 


1

; 


2

2 


0

(Z

+

) be su
h that Pf

1

P + 


1

=

Pf

2

P + 


2

. Then Pf

1

P � Pf

2

P = 


2

� 


1

. One easily 
he
ks that 


2

� 


1

is the

restri
tion of an almost periodi
 fun
tion only if 


2

� 


1

= 0. Thus, 


1

= 


2

and

Pf

1

P = Pf

2

P . The latter identity implies f

1

= f

2

by Corollary 3.3 in [33℄.

Thus, for ea
h operator A 2 A

L

1

(T);AP (Z)

(Z

+

), there is a uniquely determined

fun
tion f 2 AP (Z) su
h that D(A)� PfP 2 


0

(Z

+

). We 
all this fun
tion the

almost periodi
 part of the main diagonal of A and denote it by D

ap

(A). Note

that D

ap

(PAP ) = D(A) for ea
h operator A 2 A

L

1

(T);AP (Z)

(Z).

4.3 The �rst Szeg�o limit theorem

We are now going to formulate a general version of the �rst Szeg�o limit theorem

whi
h will imply all other versions of Szeg�o limit theorems as parti
ular instan
es.

This version is based on a fundamental property of every almost periodi
 fun
tion

a, namely that the arithmeti
 means

1

n

n�1

X

r=0

a(r) (32)

tend to some value M(a) 
alled the mean value of a (see [16℄, Theorem 1.28 or

[23℄, Example (b) in Se
tion (18.15)).

Theorem 4.7 Let A = (A

n

) 2 S

L

1

(T);AP (Z)

(Z

+

). Then

lim

n!1

�

1

(A

n

) + : : :+ �

n

(A

n

)

n

=M(D

ap

(W (A))): (33)

Proof. It is shown in Corollary 1 in [36℄ and in Se
tion 7.2.1 of [22℄ that the

F�lner algebra F(P) 
ontains all Laurent operators and all band-dominated op-

erators. Hen
e, A

L

1

(T);AP (Z)

(Z

+

) is a subalgebra of the F�lner algebra, and (28)

and (24) imply

1

n

jtr (A

n

� P

n

W (A)P

n

)j =

1

n

jtr (A

n

)� tr (P

n

W (A)P

n

)j ! 0: (34)

Evidently, tr (A

n

) = �

1

(A

n

) + : : :+ �

n

(A

n

), and it remains to show that

1

n

tr (P

n

W (A)P

n

)!M(D

ap

(W (A))): (35)

Sin
e A 2 S

L

1

(T);AP (Z)

(Z

+

), one has W (A) 2 A

L

1

(T);AP (Z)

(Z

+

). Then, by

Proposition 4.6,

1

n

tr (P

n

W (A)P

n

) =

1

n

tr (P

n

D(W (A))P

n

) =

1

n

 

n

X

k=1

D

ap

(W (A))(k) +

n

X

k=1


(k)

!
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with a 
ertain fun
tion 
 2 


0

(Z

+

). Sin
e

1

n

P

n

k=1


(k) ! 0, and by what has

been said before Theorem 4.7, the 
onvergen
e (35) follows.

Note that it is exa
tly the mean value property of the almost periodi
 fun
tions

whi
h allows us to prove the existen
e of the limit in (33).

Remark 4.8 For Toeplitz operators, the blo
k 
ase is 
onsidered as being of

parti
ular interest. In order to see how the blo
k 
ase follows from Theorem

4.7 we mention an obvious generalization of that theorem. Let � : N ! N be a

strongly monotoni
ally in
reasing sequen
e. In pla
e of the sequen
e A = (A

n

) 2

S

L

1

(T);AP (Z)

(Z

+

) we 
onsider its subsequen
e (A

�(n)

). Then the limit

lim

n!1

tr (A

�(n)

)

tr (P

�(n)

)

= lim

n!1

�

1

(A

�(n)

) + : : :+ �

�(n)

(A

�(n)

)

�(n)

exists and is equal to M(D

ap

(W (A))). The blo
k 
ase follows if one allows for

d-periodi
 
oeÆ
ients only and if one 
hooses �(n) := dn.

5 Spe
ial 
ases

5.1 Szeg�o-type theorems

Continuous fun
tions of sequen
es. Here we are going to derive versions of

Theorem 4.7 whi
h hold for fun
tions of sequen
es in S

L

1

(T);AP (Z)

(Z

+

). Of 
ourse,

they 
annot yield anything whi
h is substantially new sin
e 
ontinuous fun
tions

of normal elements of this algebra belong to S

L

1

(T);AP (Z)

(Z

+

) again. But they

will bring us 
loser to the formulation of the 
lassi
al Szeg�o limit theorems.

Theorem 5.1 Let A = (A

n

) be a normal sequen
e in S

L

1

(T);AP (Z)

(Z

+

), and let

g be any fun
tion whi
h is 
ontinuous on a neighborhood in R of the stability

spe
trum �(A+ G). Then

lim

n!1

g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

))

n

=M(D

ap

(g(W (A)))): (36)

Proof. Let U be a neighborhood of �(A + G) in R and g 
ontinuous on U . By

Proposition 2.2,

�(A

n

) � U and �(W (A)) � U;

and A

n

and W (A) are normal. Thus, g(A

n

) and g(W (A)) are well-de�ned via

the 
ontinuous fun
tional 
al
ulus for normal elements of a C

�

-algebra (Theorem

6.2.7 in [3℄). Without loss we 
an also assume that �

F

P
(A) � U su
h that g(A)

is well-de�ned. Indeed, the spe
trum of A in F

P

is the union of all spe
tra �(A

n

)

with the stability spe
trum of A. Thus, there is a �nitely supported sequen
e

G su
h that the spe
trum of (B

n

) = B := A +G lies in U . Sin
e B

n

= A

n

for
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suÆ
iently large n and sin
e W (B) = W (A), one 
an repla
e A by B without

loss. Clearly, one also has B

n

= g(A

n

) for suÆ
iently large n.

Applying (33) to the sequen
e g(A) yields

lim

n!1

�

1

(g(A

n

)) + : : :+ �

n

(g(A

n

))

n

=M(D

ap

(W (g(A)))): (37)

The 
ontinuous fun
tional 
al
ulus for normal elements (or the Gelfand-Naimark

theory for 
ommutative C

�

-algebras) further tells us that

�(g(A

n

)) = g(�(A

n

)) (38)

for all n with �(A

n

) � U . Thus,

�

1

(g(A

n

)) + : : :+ �

n

(g(A

n

)) = g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

)): (39)

Finally one has

W (g(A)) = g(W (A)): (40)

This equality is evident when g(�) = p(�; �) where p is a polynomial in two

variables, in whi
h 
ase one has

g(W (A)) = p(W (A); W (A)

�

);

and it follows for general g sin
e every 
ompa
tly supported 
ontinuous fun
tion


an be uniformly approximated by polynomials of the form � 7! p(�; �) due to

the Stone-Weierstra� theorem (Theorem IV.10 in [34℄). The equalities (37), (39)

and (40) imply the assertion.

Holomorphi
 fun
tions of sequen
es. Next we will dis
uss a version for non-

normal elements whi
h has to be based on the holomorphi
 fun
tional 
al
ulus.

Re
all that, for ea
h element b of a Bana
h algebra B with identity e and for ea
h

fun
tion g whi
h is holomorphi
 in a neighborhood U of �

B

(b), the element g(b)

is de�ned by

g(b) :=

1

2�i

Z

�

g(�)(�e� b)

�1

d� (41)

where � is a smooth oriented Jordan 
urve in U n �

B

(b) whi
h surrounds �

B

(b).

This de�nition is independent of the 
hoi
e of �, and it settles a homomorphism

from the algebra of the holomorphi
 fun
tion s on U into B whi
h is 
ontinuous

in the sense that if a sequen
e (g

n

) 
onverges to g uniformly on 
ompa
t subsets

of U , then g(b) = lim g

n

(b) in the norm of B. Moreover,

�

B

(g(b)) = g(�

B

(b)): (42)

For details see [3℄, Se
tion III.3.
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Theorem 5.2 Let A = (A

n

) be a sequen
e in S

L

1

(T);AP (Z)

(Z

+

), and let g be any

fun
tion whi
h is holomorphi
 on a neighborhood U in C of the stability spe
trum

�(A+ G). Then

lim

n!1

g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

))

n

=M(D

ap

(g(W (A)))): (43)

Proof. The proof runs 
ompletely parallel to that of Theorem 5.1. As there one


he
ks that all o

urring terms as well as the sequen
e g(A) are well de�ned (the

latter after modi�
ation by a �nitely supported sequen
e if ne
essary). Thus, the

analogue of (37) holds.

Further, the equality (42) implies the analogue of (38) whi
h, on its hand,

yields the analogue of (39). Finally, the analogue of (40) follows by apply-

ing the (
ontinuous and unital) homomorphism W to the 
ontour integral (41):

approximate this integral by a sequen
e of Riemann sums r

n

(A) and use that

W (r

n

(A)) = r

n

(W (A)).

Another approa
h to this theorem employs Runge's approximation theorem ([20℄,

Theorem 2 in Se
tion III.1) in pla
e of the holomorphi
 fun
tional 
al
ulus.

Runge's theorem yields approximations of g(b) by linear 
ombinations of (�

i

e �

b)

�1

with simple poles �

i

in U n �(b). (Note that the Riemann sums for (41) also

yield su
h approximations.)

Finite se
tions sequen
es. Next we spe
ify these results to �nite se
tions

sequen
es (P

n

AP

n

) where A is a normal operator in A

L

1

(T);AP (Z)

(Z

+

).

Theorem 5.3 Let A be a normal operator in A

L

1

(T);AP (Z)

(Z

+

) and let g be any


ontinuous fun
tion on the 
onvex hull of the spe
trum of A. Then

lim

n!1

g(�

1

(P

n

AP

n

)) + : : :+ g(�

n

(P

n

AP

n

))

n

= M(D

ap

(g(A))): (44)

Proof. The interesting new point is that g is merely assumed to be 
ontinuous

on the 
onvex hull I of the spe
trum of the operator A. Of 
ourse, the operator

g(A) is still well de�ned. Further one knows that all eigenvalues of P

n

AP

n

belong

to I, too. This 
an be most easily seen by introdu
ing the numeri
al range

N(B) := fhBx; xi : x 2 l

2

(Z

+

); kxk = 1g

of an operator B 2 L(l

2

(Z

+

)). It is well known that


onv �(A) � 
losN(A)

for ea
h operator A 2 L(l

2

(Z

+

)) and that equality holds in this in
lusion if A is

normal (see [14℄ or Se
tion 3.4.1 in [22℄). Here, 
onvM stands for the 
onvex hull

of the set M � C . Consequently, for ea
h normal operator A,

�(P

n

AP

n

) � 
losN(P

n

AP

n

) � 
losN(A) = 
onv �(A)
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where the se
ond in
lusion holds sin
e ea
h unit ve
tor in imP

n

is also a unit ve
-

tor in l

2

(Z

+

). Thus, g(P

n

AP

n

) is also well-de�ned. The in
lusions �(P

n

AP

n

) � I

holding for every n 2 N together with the property of being normal further imply

that the stability spe
trum of the �nite se
tions sequen
e (P

n

AP

n

) is in I, too.

In a similar way, one derives the following spe
ial 
ase of Theorem 5.2.

Theorem 5.4 Let A 2 A

L

1

(T);AP (Z)

(Z

+

) and A = (P

n

AP

n

). Further, let g

be any fun
tion whi
h is holomorphi
 on a neighborhood U in C of the stability

spe
trum �(A+ G). Then

lim

n!1

g(�

1

(P

n

AP

n

)) + : : :+ g(�

n

(P

n

AP

n

))

n

= M(D

ap

(g(A))): (45)

Let now A 2 A

AP (Z)

(Z

+

) be a band-dominated operator with almost periodi



oeÆ
ients. Then we 
an determine the stability spe
trum of the �nite se
tions

sequen
e (P

n

AP

n

) by means of Theorem 2.6. If we pass from (P

n

AP

n

) to a

subsequen
e (P

h(n)

AP

h(n)

) then the stability spe
trum will de
rease in a

ordan
e

with Theorem 2.7 and, thus, the set of the holomorphi
 fun
tions g for whi
h

(45) holds will be
ome larger. The minimal possible stability spe
trum (thus,

the maximal set of holomorphi
 fun
tions g for whi
h (45) holds) is obtained if

we 
hoose h as a distinguished sequen
e of A. In this 
ase, the stability spe
trum

of the sequen
e (P

h(n)

AP

h(n)

) is equal to

�(PAP ) [ �(JQaQJ)

by Theorem 2.9.

Operators in the Toeplitz algebra. Let now A be a normal operator in

the Toeplitz algebra A

L

1

(T);C

(Z

+

) and let g be 
ontinuous. Then D

ap

(g(A))


oin
ides with the 
onstant fun
tion g(s

A

)

0

where the symbol s

A

of A is de�ned

after Proposition 3.2. This equality follows by a similar reasoning as in the

proofs of Theorems 4.4 and 4.5. Sin
e D

ap

(g(A)) is a 
onstant fun
tion, one


learly has M(D

ap

(g(A))) = g(s

A

)

0

. Thus, spe
ifying Theorem 5.3 to operators

in the Toeplitz algebra yields the following version of Szeg�o's �rst limit theorem

whi
h is due to SeLegue [36℄.

Corollary 5.5 (SeLegue) Let A be a normal operator in A

L

1

(T);C

(Z

+

) and let

g be any 
ontinuous fun
tion on the 
onvex hull of the spe
trum of A. Then

lim

n!1

g(�

1

(P

n

AP

n

)) + : : :+ g(�

n

(P

n

AP

n

))

n

= g(s

A

)

0

=

1

2�

Z

2�

0

g(s

A

(e

it

)) dt:

(46)

In parti
ular, if A = T (a) is a Toeplitz operator with a generating fun
tion

a 2 L

1

(T), then s

A

= a. Thus, a further spe
i�
ation of Corollary 5.5 to the


ase of normal Toeplitz operators yields the following.
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Corollary 5.6 Let a 2 L

1

(T) be su
h that the Toeplitz operator T (a) is normal,

and let g be any 
ontinuous fun
tion on the 
onvex hull of the essential range of

a. Then

lim

n!1

g(�

1

(T

n

(a)) + : : :+ g(�

n

(T

n

(a))

n

=

1

2�

Z

2�

0

g(a(e

it

)) dt: (47)

In this form, one �nds the �rst Szeg�o theorem in [13℄, Theorem 5.10, for instan
e.

Note that a Toeplitz operator T (a) is normal if and only if it is a 
omplex linear


ombination of a self-adjoint Toeplitz operator and the identity and, thus, if and

only if the essential range of a is 
ontained in a line segment (the Brown-Halmos

theorem, see Se
tion 3.3 in [13℄. Thus, for Toeplitz operators, there is no basi


di�eren
e between the normal and the self-adjoint 
ase. Note also that the �nite

se
tions P

n

T (a)P

n

are normal for a normal Toeplitz operator.

A �nal spe
i�
ation of Corollary 5.6 to self-adjoint Toeplitz operators yields

pre
isely Theorem 1.2. Its holomorphi
 version Theorem 1.3 follows by a similar

spe
i�
ation of Theorem 5.2.

Operators in algebras with unique tra
ial state. We �nish this se
tion

with a few remarks on subalgebras B of the F�lner algebra whi
h own a unique

tra
ial state, i.e., a state � with �(AB) = �(BA) for ea
h pair of operators

A; B 2 B. Their importan
e for generalized Szeg�o theorems rests on the following

result. For its proof and all further fa
ts 
ited here see [1, 7℄ or Se
tions 7.2.1

and 7.2.4 in [22℄.

Theorem 5.7 (Arveson, B�edos) Let B be a unital C

�

-subalgebra of the F�lner

algebra F(P). For every n � 1, let �

n

be the state of B de�ned by

�

n

(A) :=

1

n

tr (P

n

AP

n

);

and let R

n

be the

�

-weak-
losed 
onvex hull of the set f�

n

; �

n+1

; �

n+2

; : : :g. Then

R

1

:= \

n�1

R

n

is a non-empty set of tra
ial states of B.

Thus, if B has a unique tra
ial state � then the �

n


onverge

�

-weakly to � . In

parti
ular,

lim

n!1

�

n

(g(A)) = �(g(A))

for ea
h self-adjoint operator A 2 B and ea
h 
ontinuous fun
tion g. This implies

easily the following version of the �rst Szeg�o limit theorem.

Theorem 5.8 (Arveson, B�edos) Let B be a unital C

�

-subalgebra of the F�lner

algebra F(P) whi
h possesses a unique tra
ial state � . Let further A 2 B be a

self-adjoint operator. Then, for every 
ompa
tly supported 
ontinuous fun
tion

g : R ! R,

lim

n!1

g(�

1

(P

n

AP

n

)) + : : :+ g(�

n

(P

n

AP

n

))

n

= �(g(A)):
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Note that, for ea
h self-adjoint operator A 2 B, the state � gives rise to a natural

probability measure �

A

on R via

Z

1

�1

g(x) d�

A

(x) := �(g(A)): (48)

A parti
ular example of a C

�

-subalgebra of the F�lner algebra with a unique

tra
ial state is the irrational rotation algebra. The operators in this algebra


an be also 
onsidered as band-dominated operators with almost periodi
 
oef-

�
ients. Thus, they are subje
t both to the Arveson-B�edos theorem 5.8 and to

our Theorem 5.3. This observation allows one to identify the tra
ial state � of

the irrational rotation algebra as well as the measures asso
iated with � by (48)

via

Z

1

�1

g(x) d�

A

(x) = �(g(A)) =M(f

g(A)

);

whi
h holds for ea
h 
ompa
tly supported 
ontinuous fun
tion g.

5.2 Avram-Parter-type theorems

The Avram-Parter theorem establishes a formula for the tra
e of

g(P

n

T (a)P

n

T (a)P

n

) with a 2 L

1

(T)

and is, thus, immediately related with produ
ts of �nite se
tions sequen
es and

with algebras generated by them. Indeed, we will see that this theorem 
an be


onsidered as another simple spe
ial 
ase of Theorem 4.7. For ea
h n� n-matrix

B, let �

i

(B) with i = 1; : : : ; n refer to the singular values of B, i.e., to the non-

negative square roots of the eigenvalues of B

�

B. The order of enumeration is

again not of importan
e.

Let A = (A

n

) 2 F

P

. Then the entries of the sequen
e B := (A

�

A)

1=2

are the

matri
es B

n

:= (A

�

n

A

n

)

1=2

, and

�

j

(A

n

) = �

j

(B

n

) for j = 1; : : : ; n

under suitable enumeration. Thus, appli
ation of Theorem 5.1 to the sequen
e

B yields the following.

Theorem 5.9 Let A = (A

n

) be a sequen
e in S

L

1

(T);AP (Z)

(Z

+

), and let g be any

fun
tion whi
h is 
ontinuous on a neighborhood in R of the stability spe
trum

�(B+ G) with B := (A

�

A)

1=2

. Then

lim

n!1

g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

))

n

=M(D

ap

(g(W (B)))): (49)
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Corollary 5.10 Let A := (P

n

AP

n

) with A 2 A

L

1

(T);AP (Z)

(Z

+

), and let g be any

fun
tion whi
h is 
ontinuous on a neighborhood in R of the stability spe
trum

�(B+ G) with B := (A

�

A)

1=2

. Then

lim

n!1

g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

))

n

= M(D

ap

(g(B))) (50)

with B := (A

�

A)

1=2

.

Further spe
i�
ation to the 
ase of operators in the Toeplitz algebra yields the

following version of SeLegue's result (Corollary 5.5).

Corollary 5.11 Let A := (P

n

AP

n

) with A 2 A

L

1

(T);C

(Z

+

), and let g be any

fun
tion whi
h is 
ontinuous on a neighborhood in R of the stability spe
trum

�(B+ G) with B := (A

�

A)

1=2

. Then

lim

n!1

g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

))

n

= g(s

B

)

0

=

1

2�

Z

2�

0

g(s

B

(e

it

)) dt (51)

with B := (A

�

A)

1=2

.

Finally, if A = T (a) is a Toeplitz operator with generating fun
tion a 2 L

1

(T),

then

s

B

= s

(A

�

A)

1=2

= (aa)

1=2

= jaj:

Corollary 5.12 (Avram/Parter) Let A := (P

n

T (a)P

n

) with a 2 L

1

(T), and

let g be any fun
tion whi
h is 
ontinuous on a neighborhood in R of the stability

spe
trum �(B+ G) with B := (A

�

A)

1=2

. Then

lim

n!1

g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

))

n

=

1

2�

Z

2�

0

g(ja(e

it

)j) dt: (52)

This result was established by Parter [27℄ for lo
ally self-adjoint (= produ
ts of


ontinuous and real-valued) generating fun
tions a, and Avram [5℄ proved it for

general L

1

(T)-fun
tions. The algebrai
 approa
h to the Avram/Parter theorem

goes ba
k to B�ott
her and one of the authors (Se
tion 5.6 in [13℄). There (Se
-

tion 4.5) one also �nds a short illustrated history of the Avram/Parter theorems

whi
h were aimed to explain Moler's phenomenon 
on
erning the singular value

distribution of Toeplitz matri
es.

We would also like to mention that Tyrtyshnikov [41, 42℄ was able to show

that Corollary 5.12 remains valid for arbitrary fun
tions a 2 L

2

(T) (in whi
h 
ase

the Toeplitz operator T (a) is no longer bounded and our te
hniques do not seem

to apply).
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5.3 B�ott
her-Otte-type theorems

The 
ontinuous and holomorphi
 fun
tional 
al
ulus 
an also be applied to the

sequen
es 
onsidered in Theorem 4.2 and in (30). It seems that B�ott
her and

Otte [11℄ were interested in results of that type for the �rst time. The following

two 
orollaries to Theorem 4.2 follow by a straightforward appli
ation of the

fun
tional 
al
ulus as in Subse
tion 5.1.

Corollary 5.13 Let A = (A

n

) be a normal sequen
e in S(F(P)), and let g be

any fun
tion whi
h is 
ontinuous on a neighborhood in R of the stability spe
trum

�(A+ G). Then

lim

n!1

1

n

(tr g(A

n

)� tr (P

n

g(W (A))P

n

)) = 0: (53)

Corollary 5.14 Let A = (A

n

) be a sequen
e in S(F(P)), and let g be any fun
-

tion whi
h is holomorphi
 on a neighborhood U in C of the stability spe
trum

�(A+ G). Then (53) holds.
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