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Abstrat

The lassial Szeg�o theorems study the asymptoti behaviour of the

determinants of the �nite setions P

n

T (a)P

n

of Toeplitz operators, i.e., of

operators whih have onstant entries along eah diagonal. We generalize

these results to operators whih have almost periodi funtions on their

diagonals.

1 Introdution

This paper deals mainly with operators whih are onstituted by Laurent or

Toeplitz operators and by band-dominated operators. So we start with intro-

duing some notations and with realling some fats about Toeplitz and band-

dominated operators and their �nite setions.

Spaes and projetions. Given a non-empty subset I of the set Z of the

integers, let l

2

(I) stand for the Hilbert spae of all sequenes (x

n

)

n2I

of omplex

numbers with

P

n2I

jx

n

j

2

<1. We identify l

2

(I) with a losed subspae of l

2

(Z)

in the natural way, and we write P

I

for the orthogonal projetion from l

2

(Z) onto

l

2

(I).

The set of the non-negative integers will be denoted by Z

+

, and we write P

in plae of P

+

Z

and Q in plae of the omplementary projetion I � P . Thus,

Q = P

Z

�

where Z

�

refers to the set of all negative integers.

Further, for eah positive integer n, set

P

n

:= P

f0; 1; :::; n�1g

and R

n

:= P

f�n;�n+1; :::; n�1g

:

The projetions R

n

onverge strongly to the identity operator on l

2

(Z), and

the projetions P

n

onverge strongly to the identity operator on l

2

(Z

+

) when

1



onsidered as ating on l

2

(Z

+

) and to the projetion P when onsidered as ating

on l

2

(Z).

The C

�

-algebra of all bounded linear operators on a Hilbert spae H will be

denoted by L(H).

Funtions and operators. Let a 2 L

1

(T), the C

�

-algebra of all essentially

bounded measurable funtions on the omplex unit irle T, and let

a

j

:=

1

2�

Z

2�

0

a(e

it

)e

�ijt

dt:

refer to the jth Fourier oeÆient of a. Then the operator on l

2

(Z) given by

the matrix representation (a

i�j

)

i; j2Z

with respet to the standard basis of l

2

(Z)

indues a bounded linear operator L(a) on l

2

(Z), the so-alled Laurent operator

with generating funtion a. The operator T (a) := PL(a)P ating on l

2

(Z

+

) is

alled the Toeplitz operator with generating funtion a.

Laurent operators are distinguished by their shift invariane. For k 2 Z,

de�ne the shift operator

U

k

: l

2

(Z)! l

2

(Z); (x

n

) 7! (y

n

) with y

n

= x

n�k

:

Then A 2 L(l

2

(Z)) is a Laurent operator if and only if U

�k

AU

k

= A for eah

k 2 Z.

Further, eah funtion b 2 l

1

(Z), the C

�

-algebra of all bounded sequenes on

Z, indues a multipliation operator

aI : l

2

(Z)! l

2

(Z); (x

n

) 7! (a

n

x

n

):

Let X be a C

�

-subalgebra of L

1

(T) and Y be a shift invariant C

�

-subalgebra of

l

1

(Z). The latter means that U

�k

aU

k

2 Y whenever a 2 Y . We let A

X;Y

(Z)

stand for the smallest losed C

�

-subalgebra of L(l

2

(Z)) whih ontains all Laurent

operators L(a) with a 2 X and all multipliation operators bI with b 2 Y .

Similarly, we write A

X;Y

(Z

+

) for the smallest losed C

�

-subalgebra of L(l

2

(Z

+

))

whih ontains all Toeplitz operators T (a) with a 2 X and all operators PbP

with b 2 Y . So A

L

1

(T);C

(Z) is the C

�

-algebra of all Laurent operators, whih

is

�

-isomorphi to the algebra L

1

(T), and A

L

1

(T);C

(Z

+

) is the smallest losed

subalgebra of L(l

2

(Z

+

)) whih ontains all bounded Toeplitz operators.

Of partiular interest are the algebra X = C(T) of the ontinuous funtions

on T and the algebra Y = AP (Z) of the almost periodi funtions. A funtion

a 2 l

1

(Z) is alled almost periodi if the set of all multipliation operators U

�k

aU

k

with k 2 Z is relatively ompat in the norm topology of L(l

2

(Z)) or, equivalently,

in the norm topology of l

1

(Z).

The operators in A

C(T);l

1

(Z)

(Z) are usually referred to as band-dominated

operators, and the operators in A

C(T);Y

(Z) are alled band-dominated operators
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with oeÆients in Y . To operators in A

C(T);l

1

(Z)

(Z

+

), we also refer as band-

dominated operators over Z

+

. The reason for the notion band-dominated is that

ontinuous funtions on T an be uniformly approximated by trigonometri poly-

nomials, hene, operators in A

C(T);l

1

(Z)

an be approximated by band operators

in the norm of L(l

2

(Z)). We will usually write A

Y

(Z) and A

Y

(Z

+

) in plae of

A

C(T);Y

(Z) and A

C(T);Y

(Z

+

), respetively, whih is onsistent with the notations

in [32, 35℄. It is easy to see that PAP 2 A

Y

(Z

+

) whenever A 2 A

Y

(Z).

Szeg�o theorems for Toeplitz matries. There are several ways to express

the so-alled �rst Szeg�o limit theorem, and there are several kinds of hypotheses

under whih the theorem holds. A version whih is onvenient for us is via

stability of the �nite setions method. The nth �nite setion of the operator A

is the operator P

n

AP

n

. Unless otherwise stated, we will onsider this operator as

ating on imP

n

. Thus, P

n

AP

n

an be represented by an n � n matrix. Instead

of P

n

T (a)P

n

we will also write T

n

(a).

The sequene (P

n

AP

n

)

n2N

of the �nite setions of an operator A 2 L(l

2

(Z

+

))

is said to be stable if the matries P

n

AP

n

are invertible for suÆiently large n

and if the norms of their inverses are uniformly bounded.

Theorem 1.1 (First Szeg�o limit theorem) Let a 2 L

1

(T) and suppose that

the �nite setions sequene (T

n

(a))

n2N

is stable. Then T (a) is invertible and

lim

n!1

detT

n

(a)

detT

n�1

(a)

= G[a℄ (1)

where

G[a℄ := 1=(P

1

T (a)

�1

P

1

)

and, of ourse, P

1

T (a)

�1

P

1

stands for the 00th entry of T (a)

�1

.

If a 2 L

1

(T) is real-valued and T (a) is invertible, then the (ompat) essential

range of a is ontained in the open interval (0; 1) by the Hartman-Wintner

theorem (see 2.36 in [12℄ or Theorem 1.27 in [13℄). Thus, the funtion a has a

real-valued logarithm log a 2 L

1

(T), and it is not hard to show that

G[a℄ = exp

�

1

2�

Z

2�

0

(log a)(e

it

) dt

�

= exp(log a)

0

: (2)

Szeg�o [39℄ proved (1) under the assumptions that a 2 L

1

(T), a � 0 and log a 2

L

1

(T). The following theorems provide statements about the eigenvalue distribu-

tion of Toeplitz matries. One has to distinguish between real-valued generating

funtions a, in whih ase the funtion f has to be merely ontinuous, whereas

in ase of arbitrary bounded funtions a, one needs holomorphy of f .

They an be derived from Szeg�o's �rst limit theorem (ompare the proofs of

Theorems 5.9 and 5.10 in [13℄). Although this derivation is not without e�ort,
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they are also referred to as First Szeg�o limit theorems. In the present paper we

will all them the distributive versions of Theorem 1.1.

For eah n� n-matrix B, let �

i

(B) with i = 1; : : : ; n refer to the eigenvalues

of B. The order of enumeration is not of importane.

Theorem 1.2 (First Szeg�o limit theorem, distributive version I)

Let a 2 L

1

(T) be a real-valued funtion, and let g be any ontinuous funtion on

the onvex hull of the essential range of a. Then

lim

n!1

g(�

1

(T

n

(a)) + : : :+ g(�

n

(T

n

(a))

n

=

1

2�

Z

2�

0

g(a(e

it

)) dt: (3)

Theorem 1.3 (First Szeg�o limit theorem, distributive version II)

Let a be an arbitrary funtion in L

1

(T), and let g be analyti on an open neigh-

borhood of the onvex hull of the essential range of a. Then (3) holds again.

It is one thing to settle the onvergene (1) and another one to desribe the preise

asymptoti behaviour of the determinants detT

n

(a). The latter is the ontents

of the so-alled strong Szeg�o limit theorem, proved by Szeg�o [40℄ for positive

generating funtions with H�older ontinuous derivative. In the formulation below,

there ours an algebra, W

0; 0

\ B

1=2; 1=2

2; 2

, of ontinuous funtions on T whih is

de�ned in [12℄, 10.21.

Theorem 1.4 (Strong Szeg�o limit theorem) Let a 2 W

0; 0

\B

2; 2

1=2; 1=2

have no

zeros on T and winding number 0 with respet to the origin. Then

lim

n!1

detT

n

(a)

G[a℄

n

= E[a℄ (4)

where

E[a℄ = exp

1

X

k=1

k(log a)

k

(log a)

�k

: (5)

We will not go into the long and rih history of the Szeg�o limit theorems here

and refer to [12, 13℄ and to Chapter 2 of [37℄ instead. Let us only mention

that E. Basor, G. Baxter, A. B�otther, A. Devinatz, T. Ehrhardt, I. Gohberg, I.

Feldman, I. I. Hirshman, M. Ka, M. G. Krein and H. Widom are among the

main ontributors and that [6, 17, 18, 19, 21, 24, 43℄ mark some milestones in

this �eld.

About this paper. This paper is devoted to generalizations of the lassial

Szeg�o limit theorems to several lasses of operators with variable oeÆients

(whereas Toeplitz and Laurent operators are onsidered as operators with on-

stant oeÆients). Partiular attention is paid to operators with almost periodi
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oeÆients for whih we will obtain the most satisfying generalizations of Theo-

rems 1.1 { 1.3. These results will be disussed in Setions 3 and 4 below. On the

other hand, we have to report that the preise asymptoti behaviour of the deter-

minants of an operator with almost periodi diagonals still remains mysterious

for us. Thus, the question of a possible generalization of the strong Szeg�o limit

theorem is still open (although Torsten Ehrhardt's wonderful paper [19℄ seems to

o�er a omfortable way to attak this problem).

We prepare our disussion in Setion 2 by realling some fats about algebras

generated be sequenes of �nite setions and about band-dominated operators

and their �nite setions. The results ited in this setion an be found in [33, 35℄.

The onluding �fth setion is devoted to some appliations of our general Szeg�o

limit theorems.

The reader should have in mind that most of the results presented below an

be formulated in two di�erent settings: for operators ating on the two-sided

in�nite sequenes (with the Laurent operators as an example) and for operators

on one-sided in�nite sequenes (for instane, the Toeplitz operators). In order

to make our results omparable with the lassial Szeg�o theorems, we will state

them for operators on l

2

(Z

+

).

2 Preliminaries

2.1 Algebras related with �nite setions

Let P := (P

n

)

n2N

where the projetions P

n

are de�ned as in the introdution.

Write F

P

for the set of all sequenes (A

n

) of operators A

n

: imP

n

! imP

n

for

whih the strong limits

s-limA

n

P

n

and s-limA

�

n

P

n

exist, and G for the subset of F

P

onsisting of all sequenes (G

n

) with kG

n

k ! 0.

Provided with the operations

(A

n

) + (B

n

) := (A

n

+B

n

); �(A

n

) := (�A

n

); (A

n

) (B

n

) := (A

n

B

n

); (6)

the involution (A

n

)

�

:= (A

�

n

) and with the norm

k(A

n

)k := sup

n2N

kA

n

k;

the set F

P

beomes a C

�

-algebra, and G is a losed ideal of F

P

. We will often

use boldfae letters to refer to elements of F

P

. For A := (A

n

) 2 F

P

, we denote

the strong limit s-limA

n

P

n

by W (A). Thus, W is a

�

-homomorphism from F

P

onto L(l

2

(Z

+

)).

A sequene (A

n

) 2 F

P

is alled stable if the operators A

n

: imP

n

! imP

n

are

invertible for suÆiently large n and if the norms of their inverses are uniformly
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bounded. The following simple result is the basis for the algebraization of several

problems from numerial analysis.

Proposition 2.1 (Kozak) A sequene A 2 F

P

is stable if and only if the oset

A+ G is invertible in the quotient algebra F

P

=G.

The spetrum of the oset A+ G in F

P

=G will be denoted by �

F

P

=G

(A+ G) or

simply by �(A+G). It is also alled the stability spetrum of the sequene A and

will our in the formulation of several results below. Here we only mention the

following fat.

Proposition 2.2 Let A = (A

n

) 2 F

P

. Then

�

L(l

2

(Z

+

))

(W (A)) � �

F

P

=G

(A+ G);

and for eah open neighborhood U of �

F

P

=G

(A+ G) one has

�

L(imP

n

)

(A

n

) � U

for all suÆiently large n.

The proof of the �rst assertion is a onsequene of Polski's theorem (Theorem

1.4 in [22℄), and the seond one follows easily from the inlusion

lim sup�(A

n

) � �

F

P

=G

(A+ G) (7)

stated in Theorem 3.19 in [22℄, where lim sup is the set-theoretial limes superior.

Indeed, suppose there are an open neighborhood U of �

F

P

=G

(A+ G), a strongly

monotonially inreasing sequene � : N ! N , and points �

n

2 �(A

�(n)

) with �

n

62

U . Sine (A

n

) is a bounded sequene, the sequene (�

n

) is bounded, too. Hene,

it possesses a partial limit �

�

whih belongs to lim sup�(A

n

) (by de�nition) but

not to U (sine U is open). This ontradits (7).

It what follows we will have to onsider several subalgebras of F

P

. For X and Y

as in the introdution, let S

X;Y

(Z

+

) stand for the smallest losed C

�

-subalgebra

of F

P

whih ontains all sequenes (P

n

AP

n

) of �nite setions of operators A 2

A

X;Y

(Z

+

). Further we will often write A

Y

(Z

+

) in plae of A

C(T);Y

(Z

+

).

2.2 Band-dominated operators, their Fredholmness and

�nite setions

Here is a summary of the results from [30℄ needed in what follows. A ompre-

hensive treatment of this topi is in [32℄; see also the referenes mentioned there.
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Fredholmness of band-dominated operators. An operator A on a Hilbert

spae H is alled Fredholm if both its kernel kerA := fx 2 H : Ax = 0g and

its okernel okerA := H=(AH) are �nite dimensional linear spaes. There is a

Fredholm riterion for a general band-dominated operator A whih expresses the

Fredholm property in terms of the limit operators of A. To state this result, we

will need a few notations.

Let H stand for the set of all sequenes h : N ! Z whih tend to in�nity in

the sense that given C > 0, there is an n

0

suh that jh(n)j > C for all n � n

0

. An

operator A

h

2 L(l

2

(Z)) is alled the limit operator of A 2 L(l

2

(Z)) with respet

to the sequene h 2 H if U

�h(n)

AU

h(n)

tends

�

-strongly to A

h

as n!1. Notie

that every operator an possess at most one limit operator with respet to a given

sequene h 2 H. The set �

op

(A) of all limit operators of a given operator A is

the operator spetrum of A.

We write L

$

(l

2

(Z)) for the set of all operators A 2 L(l

2

(Z)) whih own the

following ompatness property: Every sequene h 2 H possesses a subsequene

g for whih the limit operator A

g

exists. Thus, operators in L

$

(l

2

(Z)) possess, in

a sense, many limit operators. They are also alled operators with rih operator

spetrum (therefore the notation).

Proposition 2.3 (a) L

$

(l

2

(Z)) is a C

�

-subalgebra of L(l

2

(Z)).

(b) A

L

1

(T);l

1

(Z)

(Z) � L

$

(l

2

(Z)).

Assertion (a) is Proposition 1.2.6 (a) in [32℄. Sine L

$

(l

2

(Z)) is a losed algebra,

assertion (b) will follow one it has been shown that all bounded Laurent operators

and all bounded multipliation operators belong to L

$

(l

2

(Z)). The �rst inlusion

is evident due to the shift invariane of Laurent operators, and the seond one is

Theorem 2.1.16 in [32℄.

It is not hard to see that every limit operator of a ompat operator is 0 and

that every limit operator of a Fredholm operator is invertible. A basi result of

[30℄ (see also Theorems 2.2.1 and 2.5.7 in [32℄) laims that the operator spetrum

of a band-dominated operator is rih enough in order to guarantee the reverse

impliations.

Theorem 2.4 Let A 2 L(l

2

(Z)) be a band-dominated operator. Then the opera-

tor A is Fredholm if and only if eah of its limit operators is invertible and if the

norms of their inverses are uniformly bounded. If A is a band operator, then A

is Fredholm if and only if eah of its limit operators is invertible.

An analogous result holds for band-dominated operators on Z

+

in whih ase one

has to take into aount all limit operators with respet to sequenes h tending

to +1. (Simply apply Theorem 2.4 to the operator PAP + Q, now ating on

all of Z.) We let �

�

(A) ollet the set of all limit operators of A whih are taken

with respet to a sequene tending to �1.
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Finite setions of band-dominated operators. One way to attak stability

problems is based on the following observation. Assoiate to the sequene A =

(A

n

) 2 F

P

the blok diagonal operator

Op (A) := diag (A

1

; A

2

; A

3

; : : :) (8)

onsidered as ating on l

2

(Z

+

). It is easy to hek that the sequene A is stable if

and only if the assoiated operator Op (A) is Fredholm. In general, this stability

riterion seems to be of less use. But if one starts with the sequene A = (P

n

AP

n

)

of the �nite setions method of a band-dominated operator A, then one ends up

with a band-dominated operator Op (A) on l

2

(Z

+

), and Theorem 2.4 applies

to study the Fredholmness of Op (A). Basially, one has to ompute the limit

operators of Op (A), whih leads to the following result (whih is Theorem 3 in

[31℄). See also Chapter 6 in [32℄ and the detailed aount on the �nite setions

method of band-dominated operators given in [35℄.

Theorem 2.5 Let A 2 L(l

2

(Z)) be a band-dominated operator. Then the �nite

setions method (R

n

AR

n

)

n�1

is stable if and only if the operator A, all operators

QA

h

Q+ P with A

h

2 �

+

(A)

and all operators

PA

h

P +Q with A

h

2 �

�

(A)

are invertible on l

2

(Z), and if the norms of their inverses are uniformly bounded.

The ondition of the uniform boundedness of the inverses is redundant if A is a

band operator.

Speifying this theorem to the ase of band operators on l

2

(Z

+

) we get the fol-

lowing, where J refers to the unitary operator

l

2

(Z)! l

2

(Z); (Jx)

m

:= x

�m�1

;

and where we de�ne �

+

(A) as �

+

(PAP +Q).

Theorem 2.6 Let A 2 L(l

2

(Z

+

)) be a band-dominated operator. Then the �-

nite setions method (P

n

AP

n

)

n�1

is stable if and only if the operator A and all

operators

JQA

h

QJ with A

h

2 �

+

(A)

are invertible on l

2

(Z

+

) and if the norms of their inverses are uniformly bounded.

The ondition of the uniform boundedness of the inverses is redundant if A is a

band operator.

There are generalizations of Theorems 2.5 and 2.6 whih an be veri�ed in the

same vein as their predeessors. We mention the result for the �nite setions

(P

n

AP

n

) only.
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Theorem 2.7 Let A 2 L(l

2

(Z

+

)) be a band-dominated operator, and let � :

N ! N be a strongly monotonially inreasing sequene. Then the sequene

(P

�(n)

AP

�(n)

)

n�1

is stable if and only if the operator A and all operators JQA

h

QJ

where A

h

is a limit operator of A with respet to a subsequene h of � are invertible

on l

2

(Z

+

) and if the norms of their inverses are uniformly bounded. The ondition

of the uniform boundedness of the inverses is redundant if A is a band operator.

Thus, instead of taking all limit operators of A with respet to monotonially

inreasing sequenes h, one has onsider only those with respet to subsequenes

of �.

Corollary 2.8 Let A 2 L(l

2

(Z

+

)) be a band-dominated operator, and let h : N !

N be a strongly monotonially inreasing sequene for whih the limit operator A

h

exists. Then the sequene (P

h(n)

AP

h(n)

)

n�1

is stable if and only if the operators

A and JQA

h

QJ are invertible.

2.3 Band-dominated operators with almost periodi oef-

�ients

Here we ollet some basi fats from [33℄ whih show that the onlusion of

Corollary 2.8 an be essentially simpli�ed if the sequene h is hosen appropri-

ately. These results will only be needed in Subsetion 5.1 (after Theorem 5.4)

below.

It is one peuliarity of band-dominated operators A 2 A

AP

(Z) that there is

a strongly monotonially inreasing sequene h : N ! N suh that

kU

�h(n)

AU

h(n)

� Ak ! 0 as n!1: (9)

Thus, A is its own limit operator with respet to h, and it is a limit operator in

the sense of norm onvergene. We shall prove this fat in Setion 5.3 in a more

general ontext. Eah sequene h with the properties mentioned above is alled

a distinguished sequene for A. If h is a distinguished sequene for A, then we

all (P

h(n)

PAPP

h(n)

) the assoiated distinguished �nite setions method for PAP

and (R

h(n)

AR

h(n)

) the assoiated distinguished �nite setions method for A.

Theorem 2.9 Let A 2 A

AP

(Z) and let h be a distinguished sequene for A.

Then the sequene (P

h(n)

PAPP

h(n)

) is stable if and only if the operators PAP

and JQAQJ are invertible.

Of ourse, this follows immediately from Corollary 2.8. But there is also an

elementary proof based on (9) whih mimis the proof of the stability of the

�nite setions method for invertible Toeplitz operators with ontinuous generating

funtion (see [10℄, Theorem 4.102 in [28℄ and Setion 1.4.2 in [22℄ for the proof in

the Toeplitz setting and [33℄ for band-dominated operators with almost periodi

oeÆients).

9



It is not always easy to �nd a distinguished sequene for a given operator in

A

AP

(Z). But sometimes it is, and here are two examples taken from [33℄.

Example 2.10 (Multipliation operators) For eah real number � 2 [0; 1),

the funtion

a : Z! C ; n 7! e

2�i�n

(10)

is almost periodi. Indeed, for every integer k, U

�k

aU

k

is the operator of multi-

pliation by the funtion a

k

with a

k

(n) = a(n + k) = e

2�i�k

a(n), i.e.,

U

�k

aU

k

= e

2�i�k

a: (11)

Let (U

�k(n)

aU

k(n)

) by any sequene in fU

�k

aU

k

: k 2 Zg. Due to the ompatness

of T, there are a subsequene (e

2�i�k(n(r))

)

r�1

of (e

2�i�k(n)

)

n�1

and a real number

� suh that

e

2�i�k(n(r))

! e

2�i�

as r !1:

Thus, the funtions a

k(n(r))

= e

2�i�k(n(r))

a onverge in the norm of l

1

(Z) to e

2�i�

a,

whene the almost periodiity of a. Thus, every funtion as in (10) belongs to

AP (Z). Conversely, AP (Z) is the losure in l

1

(Z) of the span of all funtions of

the form (10) with � 2 [0; 1) ([16℄, Theorems 1.9 { 1.11 and Theorem 1.27).

For the operator spetrum of the operator aI one �nds

�

op; s

(aI) = �

op; n

(aI) =

(

fe

2�il=q

a : l = 1; 2; : : : ; qg if � = 2p=q 2 Q ;

fe

it

a : t 2 Rg if � 62 Q ;

Here, p and q are relatively prime integers with q > 0. Indeed, the inlusion �

follows immediately from (11). The reverse inlusion is evident in ase � 2 Q . If

� 62 Q , then it follows from a theorem by Kroneker whih states that the set of

all numbers e

2�i�k

with integer k lies dense in the unit irle T.

Next we are looking for distinguished sequenes for the operator of multipli-

ation by the sequene 10. From (11) we infer that a sequene h is distinguished

for aI if and only if

lim

n!1

e

2�i�h(n)

= 1

In ase � = p=q 2 Q , the sequene a is q-periodi. Thus, h(n) := qn is a

distinguished sequene for aI. For non-rational � 2 (0; 1), expand � into its

ontinued fration

� = lim

n!1

1

b

1

+

1

b

2

+

1

.

.

.

b

n�1

+

1

b

n

10



with uniquely determined positive integers b

i

. Write this ontinued fration as

p

n

=q

n

with positive and relatively prime integers p

n

; q

n

. These integers satisfy

the reursions

p

n

= a

n

p

n�1

+ p

n�2

; q

n

= a

n

q

n�1

+ q

n�2

(12)

with p

0

= 0; p

1

= 1; q

0

= 1 and q

1

= a

1

, and one has for all n � 1

�

�

�

�

��

p

n

q

n

�

�

�

�

<

1

q

n

q

n+1

<

1

q

2

n

: (13)

Thus,

j�q

n

� p

n

j � q

n

�

�

�

�

��

p

n

q

n

�

�

�

�

�

1

q

n

! 0;

whene

e

2�i�q

n

= e

2�i(�q

n

�p

n

)

! 1:

Sine moreover q

1

< q

2

< : : : due to the reursion (12), this shows that the

sequene h(n) := q

n

belongs to H

A;n

and that A

h

= A, i.e. h is a distinguished

sequene for the operator aI with a as in (10).

Example 2.11 (Almost Mathieu operators) These are the operators H

�;�; �

on l

2

(Z) given by

(H

�; �; �

x)

n

:= x

n+1

+ x

n�1

+ �x

n

os 2�(n�+ �)

with real parameters �; � and �. Thus, H

�;�; �

is a band operator with almost

periodi oeÆients, and

H

�; �; �

= U

�1

+ U

1

+ aI with a(n) = � os 2�(n� + �):

For a treatment of the spetral theory of almost Mathieu operators see [9℄ and the

reently published papers [4, 29℄ where the long-standing Ten Martini problem is

solved.

As in Example 2.10 one gets

U

�k

H

�;�; �

U

k

= U

�1

+ U

1

+ a

k

I

with

a

k

(n) = a(n+ k) = � os 2�((n+ k)� + �)

= �(os 2�(n�+ �) os 2�k�� sin 2�(n� + �) sin 2�k�): (14)

We will only onsider the non-periodi ase, i.e., we let � 2 (0; 1) be irrational. As

in the previous example, we write � as a ontinued fration with nth approximant

p

n

=q

n

suh that (13) holds. Then

os 2��q

n

= os 2�(�q

n

� p

n

) = os 2�q

n

(�� p

n

=q

n

)! os 0 = 1

11



and, similarly, sin 2��q

n

! 0. Further we infer from (14) that

j(a

q

n

)� a)(n)j � j�j j1� os 2��q

n

j+ j�j j sin��q

n

j:

Hene, a

q

n

! a uniformly. Thus, h(n) := q

n

de�nes a distinguished sequene for

the Almost Mathieu operator H

�;�; �

. Notie that this sequene depends on the

parameter � only.

Theorem 2.9 implies the following.

Corollary 2.12 Let A := H

�; �; �

be an Almost Mathieu operator and h a distin-

guished sequene for A. Then the following onditions are equivalent:

(a) the distinguished �nite setions method (P

h(n)

PAPP

h(n)

) for PAP is stable;

(b) the distinguished �nite setions method (R

h(n)

AR

h(n)

) for A is stable;

() the operators PAP and QAQ are invertible.

If � = 0, then the Almost Mathieu operator A = H

�;�; 0

is ip invariant, i.e.,

JAJ = A. So we observe in this ase that the third ondition in Corollary 2.12

is equivalent to the invertibility of PAP alone.

For a di�erent numerial treatment of Almost Mathieu and other operators

in irrational rotation algebras onsult [15℄.

3 The �rst Szeg�o limit theorem

3.1 Operators with rih spetrum

Let A be an operator on l

2

(N) for whih the �nite setions sequene (P

n

AP

n

) is

stable. Then the matries P

n

AP

n

are invertible for n large enough, and it makes

sense to onsider the sequene

n 7!

det(P

n

AP

n

)

det(P

n�1

AP

n�1

)

: (15)

In ase A = T (a) is an invertible Toeplitz operator with ontinuous generating

funtion, the sequene (15) onverges, and its limit is equal to

G[a℄ := 1=(P

1

T (a)

�1

P

1

) (16)

by the �rst Szeg�o limit theorem 1.1. For general A, one annot expet onvergene

of (15) as already the band operator

A := diag

��

2 1

1 2

�

;

�

2 1

1 2

�

;

�

2 1

1 2

�

; : : :

�

shows. In this ase we denote by !(A) the set of all partial limits of the sequene

(15). It turns out that this set an be desribed via limit operators in ase A is

12



an operator with rih operator spetrum for whih the �nite setions method is

stable. In this ase, the operators JQA

h

QJ are invertible on l

2

(Z

+

) by Theorem

2.6. In analogy to (16), set

G[A

h

℄ := 1=(P

1

(JQA

h

QJ)

�1

P

1

) (17)

whih has to be read as follows: P

1

(JQA

h

QJ)

�1

P

1

an be understood as an

1� 1-matrix, and we identify this matrix with its only entry, whih is a omplex

number.

Theorem 3.1 Let A 2 L

$

(l

2

(Z

+

)) be an operator for whih the �nite setions

sequene (P

n

AP

n

) is stable. Then

!(A) = fG[A

h

℄ : A

h

2 �

+

(A)g: (18)

Proof. For n a positive integer, let

W

n

: l

2

(Z

+

)! l

2

(Z

+

); (x

0

; x

1

; : : :) 7! (x

n�1

; x

n�2

; : : : ; x

0

; 0; 0; : : :): (19)

If the �nite setions method (P

n

AP

n

) is stable, then the operators W

n

AW

n

,

onsidered as ating on imW

n

= imP

n

, are invertible for large n, and

det(P

n�1

AP

n�1

)

det(P

n

AP

n

)

=

det(W

n�1

AW

n�1

)

det(W

n

AW

n

)

=: �

n

:

By Cramer's rule, �

n

equals the �rst omponent of the solution x

(n)

to the equa-

tion

W

n

AW

n

x

(n)

= (1; 0; 0; : : : ; 0)

T

:

Let now � 2 !(A), and let h : N ! N be a sequene tending to in�nity suh that

�

�1

= lim�

h(n)

. Sine A has a rih operator spetrum, there is a subsequene g

of h suh that the limit operator

A

g

= s-limU

�g(n)

AU

g(n)

2 L(l

2

(Z))

exists. Then also the strong limit

s-limJU

�g(n)

P

g(n)

AP

g(n)

U

g(n)

J 2 L(l

2

(N))

exists and is equal to JQA

g

QJ . Sine JU

�n

P

n

= W

n

and P

n

U

n

J = W

n

, this

shows that the strong limit s-limW

g(n)

AW

g(n)

exists and that this limit is equal

to JQA

g

QJ 2 L(l

2

(N)). So one an onsider (W

g(n)

AW

g(n)

)

n2N

as a stable and

onvergent approximation sequene for the operator JQA

g

QJ . In partiular, the

solutions x

(n)

to the equation

W

g(n)

AW

g(n)

x

(n)

= (1; 0; 0; : : : ; 0)

T

(20)
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onverge in the norm of l

2

(N) to the solution x to the equation

JQA

g

QJx = (1; 0; 0; : : :)

T

: (21)

Thus, the �rst omponent �

g(n)

of the solution x

(n)

to equation (20) onverges

to the �rst omponent of the solution x to equation (21). Sine the latter one is

equal to

P

1

x = P

1

(JQA

g

QJ)

�1

P

1

;

we arrive at � = (P

1

(JQA

g

QJ)

�1

P

1

)

�1

= G[A

g

℄. This settles the inlusion � in

(18). The reverse inlusion an be proved by similar arguments.

3.2 Operators in the Toeplitz algebra

By Proposition 2.3 (b), the assertion of Theorem 3.1 holds in partiular for opera-

tors in the algebra A

L

1

(T);l

1

(Z)

(Z

+

) and, thus, for all band-dominated operators

A 2 A

l

1

(Z)

(Z

+

) and for all operators A in the Toeplitz algebra A

L

1

(T);C

(Z

+

).

The statement for band-operators has been already proved in [35℄, Theorem 7.23,

whereas the Toeplitz ase was the subjet of Setion 7.2.3 in [22℄. In the Toeplitz

ase, one an omplete the assertion of Theorem 3.1 essentially. The point is the

following observation.

Proposition 3.2 Let A 2 A

L

1

(T);C

(Z

+

).

(a) Consider A as an operator on l

2

(Z) whih ats as the zero operator on l

2

over

the negative integers. Then the sequene (U

�n

AU

n

)

n2N

onverges

�

-strongly on

l

2

(Z). Its limit is a bounded Laurent operator, i.e., it is of the form L(a) with

a 2 L

1

(T).

(b) The sequene (W

n

AW

n

)

n2N

onverges

�

-strongly on l

2

(Z

+

). Its limit is a

bounded Toeplitz operator, i.e., it is of the form T (b) with b 2 L

1

(T).

Moreover, b(t) = a(1=t) a.e. on T.

The funtion a is also alled the symbol of the operator A 2 A

L

1

(T);C

(Z

+

). We

denote it by s

A

.

For a proof of assertion (a), write T (a) as PL(a)P . Clearly, U

�n

L(a)U

n

=

L(a), and one easily heks that U

�n

PU

n

! I strongly. Thus,

U

�n

T (a)U

n

! L(a) as n!1:

Assertion (b) follows from (a) sine

W

n

AW

n

= JQU

�n

AU

n

QJ:

For another proof of (b) (and some fats around it) see Setions 4.3.3 and 7.2.3

in [22℄.
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It follows from Proposition 3.2 that the only limit operator at +1 of A 2

A

L

1

(T);C

(Z

+

) is the Laurent operator L(s

A

). Hene, the set !(T (a)) is the sin-

gleton fG[T (fs

A

)℄g in this ase, whene the onvergene of the sequene (15) to

this value.

Corollary 3.3 Let A 2 A

L

1

(T);C

(Z

+

) be an operator for whih the �nite setions

sequene (P

n

AP

n

) is stable. Then the sequene (15) onverges, and its limit is

G[T (fs

A

)℄ = 1=(P

1

(T (fs

A

))

�1

P

1

):

Corollary 3.4 Let a 2 L

1

(T) be suh that the �nite setions sequene (P

n

AP

n

)

for the Toeplitz operator A = T (a) is stable. Then the sequene (15) onverges,

and its limit is

G[T (~a)℄ = 1=(P

1

(T (~a))

�1

P

1

):

In order to show that this orollary indeed reprodues the �rst Szeg�o limit theo-

rem 1.1 we have to verify that

P

1

T (a)

�1

P

1

= P

1

(T (~a))

�1

P

1

: (22)

Let C : l

2

(Z

+

)! l

2

(Z

+

) denote the operator of onjugation (x

n

) 7! (x

n

) (whih

is linear over the �eld of the real numbers only). One easily heks that

T (~a) = CT (a)

�

C for eah funtion a 2 L

1

(T):

Hene, T (a) is invertible if and only if T (~a) is invertible, and if B is the inverse

of T (a), then CB

�

C is the inverse of T (~a). The 00th entries of B and CB

�

C

oinide obviously, whene (22).

There are two obstales for the appliation of Corollary 3.4. The �rst one onerns

the stability of the �nite setions sequene (P

n

T (a)P

n

) for whih there is no

general riterion known. But there are at least speial lasses of generating

funtions a 2 L

1

(T) (e.g., pieewise ontinuous or pieewise quasiontinuous

funtions) for whih one knows that the �nite setions sequene for the Toeplitz

operator T (a) is stable if and only the operator T (a) is invertible, and for whih

e�etive riteria for the invertibility of T (a) are available. Details an be found

in Setion IV.3 in [21℄, Setion 4.2 in [22℄ and Setion 2.4 in [13℄ for Toeplitz

operators with pieewise ontinuous generating funtions and in Chapter 7 in

[12℄ where a heavy mahinery is developed to attak stability problems.

The seond point onerns the onstant G[a℄ = (P

1

T (a)

�1

P

1

)

�1

for whih one

wants to have an e�etive way of omputation. Under suitable assumptions for

the generating funtion a (e.g., belonging to the Wiener algebra or being loally

setorial) one an identify the number G[a℄ with 1= exp(log a)

0

with b

0

referring

to the 0th Fourier oeÆient of the funtion b (details an be found in Setion

5.4 of [13℄, for example).
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The latter observation o�ers a also way to determine the onstant G[A

h

℄

in some further instanes. Let A 2 L(l

2

(Z

+

)) be a band-dominated operator

with slowly osillating oeÆients where a funtion b 2 l

1

(Z) is alled slowly

osillating if the di�erene b(n + 1) � b(n) tends to zero as n ! �1. Then all

limit operators of A are shift invariant (Proposition 2.4.1 in [32℄); hene, all partial

limits in !(A) are of the form P

1

T ( ~a

h

)

�1

P

1

with a ertain ontinuous funtion

a

h

. If, moreover, A =

P

a

k

V

k

satis�es the Wiener ondition

P

ka

k

k

1

<1, then

all funtions a

h

belong to the Wiener algebra, and one has

P

1

T ( ~a

h

)

�1

P

1

= P

1

T (a

h

)

�1

P

1

= 1= exp(log a

h

)

0

:

4 Distributive versions of the �rst Szeg�o limit

theorem

The goal of this setion is to prove versions of Theorems 1.2 and 1.3 for operators

in A

L

1

(T);AP (Z)

(Z

+

). For their formulation, we need some preparations.

It will be onvenient to put the proof into some algebrai framework whih has

been developed by Arveson, B�edos, and SeLegue [1, 2, 7, 8, 36℄ (see also Setion

7.2.1 in [22℄) and whih we are going to reall �rst. For the reader's onveniene,

we inlude the proofs.

4.1 The F�lner algebra

For eah operator A 2 L(l

2

(Z

+

)), let jAj denote its absolute value, i.e., the

non-negative square root of A

�

A. Let further tr refer to the anonial trae on

L(l

2

(Z

+

)), and abbreviate the sequene (P

n

) to P. Evidently, trP

n

= n.

Proposition 4.1 The set F(P) of all operators A 2 L(l

2

(Z

+

)) with

lim

n!1

tr (jP

n

A� AP

n

j)

trP

n

= 0 (23)

is a C

�

-subalgebra of L(l

2

(Z

+

)).

We refer to F(P) as the F�lner algebra assoiated with P.

Proof. Reall that the set N

1

:= fA 2 L(l

2

(Z

+

)) : tr (jAj) < 1g of the trae

lass operators is a two-sided (non-losed) ideal of L(l

2

(Z

+

)), that the mapping

A 7! tr (jAj) de�nes a norm on N

1

whih makes this set to a Banah spae, and

that

jtr (A)j � tr (jAj); (24)

tr (jA+Bj) � tr (jAj) + tr (jBj); (25)

max ftr (jACj); tr (jCAj)g � kCk tr (jAj); (26)
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tr(jAj) = tr (jA

�

j) (27)

for arbitrary operators A; B 2 N

1

and C 2 L(l

2

(Z

+

)). For details see [34℄,

Setion VI.6. Let now A; B 2 F(P). Then

tr (jP

n

(A+B)� (A+B)P

n

j) � tr (jP

n

A� AP

n

j) + tr (jP

n

B �BP

n

j)

and

tr (jP

n

(AB)� (AB)P

n

j) = tr (j(P

n

A� AP

n

)B + A(P

n

B �BP

n

)j)

� kBk tr (jP

n

A� AP

n

j) + kAk tr (jP

n

B � BP

n

j)

by (25) and (26), whih implies that A+B and AB are in F(P) again. Further,

if A

m

2 F(P) and A

m

! A in the norm of L(l

2

(Z

+

)), then

tr (jP

n

A� AP

n

j) � tr (jP

n

(A� A

m

)� (A� A

m

)P

n

j) + tr (jP

n

A

m

� A

m

P

n

j)

� 2 trP

n

kA� A

m

k+ tr (jP

n

A

m

� A

m

P

n

j);

whih gives the losedness of F(P) in L(l

2

(Z

+

)). The symmetry of F(P) is a

onsequene of (27).

Let S(F(P)) stand for the smallest losed subalgebra of F

P

whih ontains all

�nite setions sequenes (P

n

AP

n

) where A is in F(P). The following result is the

key to several generalizations of the �rst Szeg�o limit theorem.

Theorem 4.2 Let A := (A

n

) 2 S(F(P)). Then

1

n

tr (jA

n

� P

n

W (A)P

n

j)! 0 (28)

as n!1.

Proof. By (26), the funtionals

L(imP

n

)! C ; A

n

7!

1

n

tr (jA

n

j)

are uniformly bounded with respet to n (by 1). Hene, it is suÆient to prove

(28) for sequenes A in a dense subalgebra of S(F(P)).

Every sequene in S(F(P)) an be approximated as losely as desired (with

respet to the norm in F

P

) by sequenes of the form

B :=

X

j

Y

i

(P

n

B

ij

P

n

) where B

ij

2 F(P):

Clearly,

W (B) =

X

i

Y

j

B

ij

:

17



Thus, and by (25), it is suÆient to prove (28) for sequenes of the form B :=

Q

i

(P

n

B

i

P

n

) where B

i

2 F(P), i.e., to verify that

1

n

tr(jP

n

B

1

P

n

B

2

P

n

: : : P

n

B

k

P

n

� P

n

B

1

B

2

: : : B

k

P

n

j)! 0 (29)

as n!1. We prove (29) in ase k = 2 from whih the ase of general k follows

by indution. Assertion (29) for k = 2 will follow as soon as we have shown that

tr (jP

n

B

1

P

n

B

2

P

n

� P

n

B

1

B

2

P

n

j)

� max fkB

2

k tr (jP

n

B

1

�B

1

P

n

j); kB

1

k tr (jP

n

B

2

� B

2

P

n

j)g

for arbitrary operators B

1

; B

2

2 L(l

2

(Z

+

)). This estimate is a onsequene of

tr (jP

n

B

1

P

n

B

2

P

n

� P

n

B

1

B

2

P

n

j) = tr (jP

n

B

1

(I � P

n

)B

2

P

n

j)

� kB

1

k tr ((I � P

n

)B

2

P

n

j)

and of

tr (j(I � P

n

)B

2

P

n

j) = tr (j(I � P

n

)(B

2

P

n

� P

n

B

2

)j)

� kI � P

n

k tr (jP

n

B

2

�B

2

P

n

j)

where we used (26).

From (24) and (28) we onlude that

1

n

jtr (A

n

� P

n

W (A)P

n

)j ! 0:

Thus, if (w

ij

)

1

i; j=0

refers to the matrix representation of W (A) with respet to

the standard basis of l

2

(Z

+

), then (28) implies

�

�

1

(A

n

) + : : :+ �

n

(A

n

)

n

�

w

00

+ : : :+ w

n�1; n�1

n

�

! 0 (30)

as n!1 for every sequene A := (A

n

) 2 S(F(P)).

Remark 4.3 It is evident that the notion of a F�lner algebra is not restrited

to the ontext onsidered in this setion. Indeed, for every sequene P = (P

n

)

of orthogonal projetions of �nite rank ating on a ertain Hilbert spae and

tending strongly to the identity operator, there is an assoiated F�lner algebra.

This observation allows one to derive distributive versions of the �rst Szeg�o limit

theorem also in the higher dimensional ontext, by employing exatly the same

ideas whih will be pointed out in the following setions. In this way, the results

of [26, 38℄ an be both easily obtained and generalized.
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4.2 Operators and their diagonals

A further utilization of (28) and (30) requires to examine the trae tr (P

n

W (A)P

n

)

whih learly depends on the main diagonal of the operator W (A) only. In this

setion we show that the main diagonal of operators in A

L

1

(T);AP (Z)

(Z

+

) behaves

quite well.

Let A 2 L(l

2

(Z)) be an operator with matrix representation (a

ij

)

i; j2Z

with

respet to the standard basis of l

2

(Z). Sine

ja

ii

j = kP

fig

AP

fig

k � kAk;

the sequene (a

ii

)

i2Z

belongs to l

1

(Z). Hene, it de�nes a multipliation operator

on l

2

(Z) whih we all the main diagonal of A and whih we denote by D(A).

Similarly, the main diagonal of an operator B 2 L(l

2

(Z

+

)) is de�ned. It ats as

a multipliation operator on l

2

(Z

+

), and we denote it also by D(B) (whih will

not rise onfusion if one takes into aount where A and B live). In eah ase,

kD(A)k � kAk.

Theorem 4.4 If A 2 A

L

1

(T);AP (Z)

(Z), then D(A) 2 AP (Z).

Of ourse, then every diagonal whih is parallel to the main diagonal is almost

periodi, too.

Proof. Sine D : L(l

2

(Z)) ! l

1

(Z) is a ontinuous linear mapping, and sine

AP (Z) is a losed subalgebra of l

1

(Z), it is suÆient to prove the assertion for

the ase when A is a �nite produt of Laurent operators with generating funtions

in L

1

(T) and of operators of multipliation by almost periodi funtions. Thus,

we an assume that

A = L(a

1

) b

1

L(a

2

) b

2

: : : L(a

k

) b

k

I

with a

i

2 L

1

(T) and b

i

2 AP (Z). Consider the diagonalD(A) and let h : N ! Z

be an arbitrary sequene. We have to show that (U

�h(n)

D(A)U

h(n)

)

n2N

has a norm

onvergent subsequene. Sine

U

�h(n)

D(A)U

h(n)

= D(U

�h(n)

AU

h(n)

)

it is suÆient to show that (U

�h(n)

AU

h(n)

)

n2N

has a onvergent subsequene. Now

one has

U

�h(n)

AU

h(n)

= L(a

1

) (U

�h(n)

b

1

U

h(n)

)L(a

2

) (U

�h(n)

b

2

U

h(n)

) : : : L(a

k

) (U

�h(n)

b

k

U

h(n)

):

Sine b

1

is almost periodi, there is a subsequene h

1

of h suh that the sequene

(U

�h

1

(n)

b

1

U

h

1

(n)

)

n2N

onverges. Analogously, there is a subsequene h

2

of h

1

suh
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that the sequene (U

�h

2

(n)

b

2

U

h

2

(n)

)

n2N

onverges. We proeed in this way. Af-

ter k steps we arrive at a subsequene g of h for whih eah of the sequenes

(U

�g(n)

b

i

U

g(n)

)

n2N

and, thus, the sequene (U

�g(n)

AU

g(n)

)

n2N

onverges.

Let 

0

(Z

+

) stand for the set of all sequenes a : Z

+

! C with a(n) ! 0 as

n ! 1, and write AP (Z

+

) for the set of all funtions PaP where a 2 AP (Z),

onsidered as funtions on Z

+

. Evidently, both 

0

(Z

+

) and AP (Z

+

) are losed

subalgebras of l

1

(Z

+

).

Theorem 4.5 If A 2 A

L

1

(T);AP (Z)

(Z

+

), then D(A) 2 AP (Z

+

) + 

0

(Z

+

).

Proof. As is the proof of the previous theorem, it is suÆient to verify the

assertion for operators of the form

A = T (a

1

) b

1

T (a

2

) b

2

: : : T (a

k

) b

k

I

= PL(a

1

)Pb

1

PL(a

2

)Pb

2

: : : PL(a

k

)Pb

k

P

with a

i

2 L

1

(T) and b

i

2 AP (Z

+

). We replae all inner projetions P by I �Q

and fator out to get

A = PBP +R where B 2 A

L

1

(T);AP (Z)

(Z

+

) (31)

and where R is a �nite sum, with eah item in this sum being a produt of Laurent

operators, multipliation operators, projetions P and at least one projetion

Q. Evidently, the projetions P and Q have a rih operator spetrum, and

�

+

(Q) = f0g. Sine the set L

$

(l

2

(Z)) forms an algebra we onlude that the

operator R has a rih operator spetrum, too, and the algebrai properties of

limit operators stated in Proposition 1.2.2 in [32℄ yield that also �

+

(R) = f0g.

We laim that the main diagonal D(R) =: diag (r

nn

) of R is in 

0

(Z

+

). Sup-

pose it is not. Then there is a C > 0 and a strongly monotonially inreasing

sequene h : N ! N suh that jr

h(n);h(n)

j � C for all n 2 N . Sine R 2 L

$

(l

2

(Z))

there is a subsequene g of h for whih the limit operator R

g

exists. Sine h

(thus, g) tends to +1, one has R

g

2 �

+

(R), whene R

g

= 0. This implies in

partiular that

r

g(n);g(n)

= P

1

U

�g(n)

RU

g(n)

P

1

! 0;

a ontradition. Thus, D(R) 2 

0

(Z

+

), and passing to the main diagonals in (31)

yields

D(A) = PD(B)P +D(R) 2 AP (Z

+

) + 

0

(Z

+

)

due to Theorem 4.4.

Proposition 4.6 Eah funtion a 2 AP (Z

+

) + 

0

(Z

+

) has a unique representa-

tion in the form a = PfP +  where f 2 AP (Z) and  2 

0

(Z

+

).
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Proof. Let f

1

; f

2

2 AP (Z) and 

1

; 

2

2 

0

(Z

+

) be suh that Pf

1

P + 

1

=

Pf

2

P + 

2

. Then Pf

1

P � Pf

2

P = 

2

� 

1

. One easily heks that 

2

� 

1

is the

restrition of an almost periodi funtion only if 

2

� 

1

= 0. Thus, 

1

= 

2

and

Pf

1

P = Pf

2

P . The latter identity implies f

1

= f

2

by Corollary 3.3 in [33℄.

Thus, for eah operator A 2 A

L

1

(T);AP (Z)

(Z

+

), there is a uniquely determined

funtion f 2 AP (Z) suh that D(A)� PfP 2 

0

(Z

+

). We all this funtion the

almost periodi part of the main diagonal of A and denote it by D

ap

(A). Note

that D

ap

(PAP ) = D(A) for eah operator A 2 A

L

1

(T);AP (Z)

(Z).

4.3 The �rst Szeg�o limit theorem

We are now going to formulate a general version of the �rst Szeg�o limit theorem

whih will imply all other versions of Szeg�o limit theorems as partiular instanes.

This version is based on a fundamental property of every almost periodi funtion

a, namely that the arithmeti means

1

n

n�1

X

r=0

a(r) (32)

tend to some value M(a) alled the mean value of a (see [16℄, Theorem 1.28 or

[23℄, Example (b) in Setion (18.15)).

Theorem 4.7 Let A = (A

n

) 2 S

L

1

(T);AP (Z)

(Z

+

). Then

lim

n!1

�

1

(A

n

) + : : :+ �

n

(A

n

)

n

=M(D

ap

(W (A))): (33)

Proof. It is shown in Corollary 1 in [36℄ and in Setion 7.2.1 of [22℄ that the

F�lner algebra F(P) ontains all Laurent operators and all band-dominated op-

erators. Hene, A

L

1

(T);AP (Z)

(Z

+

) is a subalgebra of the F�lner algebra, and (28)

and (24) imply

1

n

jtr (A

n

� P

n

W (A)P

n

)j =

1

n

jtr (A

n

)� tr (P

n

W (A)P

n

)j ! 0: (34)

Evidently, tr (A

n

) = �

1

(A

n

) + : : :+ �

n

(A

n

), and it remains to show that

1

n

tr (P

n

W (A)P

n

)!M(D

ap

(W (A))): (35)

Sine A 2 S

L

1

(T);AP (Z)

(Z

+

), one has W (A) 2 A

L

1

(T);AP (Z)

(Z

+

). Then, by

Proposition 4.6,

1

n

tr (P

n

W (A)P

n

) =

1

n

tr (P

n

D(W (A))P

n

) =

1

n

 

n

X

k=1

D

ap

(W (A))(k) +

n

X

k=1

(k)

!
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with a ertain funtion  2 

0

(Z

+

). Sine

1

n

P

n

k=1

(k) ! 0, and by what has

been said before Theorem 4.7, the onvergene (35) follows.

Note that it is exatly the mean value property of the almost periodi funtions

whih allows us to prove the existene of the limit in (33).

Remark 4.8 For Toeplitz operators, the blok ase is onsidered as being of

partiular interest. In order to see how the blok ase follows from Theorem

4.7 we mention an obvious generalization of that theorem. Let � : N ! N be a

strongly monotonially inreasing sequene. In plae of the sequene A = (A

n

) 2

S

L

1

(T);AP (Z)

(Z

+

) we onsider its subsequene (A

�(n)

). Then the limit

lim

n!1

tr (A

�(n)

)

tr (P

�(n)

)

= lim

n!1

�

1

(A

�(n)

) + : : :+ �

�(n)

(A

�(n)

)

�(n)

exists and is equal to M(D

ap

(W (A))). The blok ase follows if one allows for

d-periodi oeÆients only and if one hooses �(n) := dn.

5 Speial ases

5.1 Szeg�o-type theorems

Continuous funtions of sequenes. Here we are going to derive versions of

Theorem 4.7 whih hold for funtions of sequenes in S

L

1

(T);AP (Z)

(Z

+

). Of ourse,

they annot yield anything whih is substantially new sine ontinuous funtions

of normal elements of this algebra belong to S

L

1

(T);AP (Z)

(Z

+

) again. But they

will bring us loser to the formulation of the lassial Szeg�o limit theorems.

Theorem 5.1 Let A = (A

n

) be a normal sequene in S

L

1

(T);AP (Z)

(Z

+

), and let

g be any funtion whih is ontinuous on a neighborhood in R of the stability

spetrum �(A+ G). Then

lim

n!1

g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

))

n

=M(D

ap

(g(W (A)))): (36)

Proof. Let U be a neighborhood of �(A + G) in R and g ontinuous on U . By

Proposition 2.2,

�(A

n

) � U and �(W (A)) � U;

and A

n

and W (A) are normal. Thus, g(A

n

) and g(W (A)) are well-de�ned via

the ontinuous funtional alulus for normal elements of a C

�

-algebra (Theorem

6.2.7 in [3℄). Without loss we an also assume that �

F

P
(A) � U suh that g(A)

is well-de�ned. Indeed, the spetrum of A in F

P

is the union of all spetra �(A

n

)

with the stability spetrum of A. Thus, there is a �nitely supported sequene

G suh that the spetrum of (B

n

) = B := A +G lies in U . Sine B

n

= A

n

for
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suÆiently large n and sine W (B) = W (A), one an replae A by B without

loss. Clearly, one also has B

n

= g(A

n

) for suÆiently large n.

Applying (33) to the sequene g(A) yields

lim

n!1

�

1

(g(A

n

)) + : : :+ �

n

(g(A

n

))

n

=M(D

ap

(W (g(A)))): (37)

The ontinuous funtional alulus for normal elements (or the Gelfand-Naimark

theory for ommutative C

�

-algebras) further tells us that

�(g(A

n

)) = g(�(A

n

)) (38)

for all n with �(A

n

) � U . Thus,

�

1

(g(A

n

)) + : : :+ �

n

(g(A

n

)) = g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

)): (39)

Finally one has

W (g(A)) = g(W (A)): (40)

This equality is evident when g(�) = p(�; �) where p is a polynomial in two

variables, in whih ase one has

g(W (A)) = p(W (A); W (A)

�

);

and it follows for general g sine every ompatly supported ontinuous funtion

an be uniformly approximated by polynomials of the form � 7! p(�; �) due to

the Stone-Weierstra� theorem (Theorem IV.10 in [34℄). The equalities (37), (39)

and (40) imply the assertion.

Holomorphi funtions of sequenes. Next we will disuss a version for non-

normal elements whih has to be based on the holomorphi funtional alulus.

Reall that, for eah element b of a Banah algebra B with identity e and for eah

funtion g whih is holomorphi in a neighborhood U of �

B

(b), the element g(b)

is de�ned by

g(b) :=

1

2�i

Z

�

g(�)(�e� b)

�1

d� (41)

where � is a smooth oriented Jordan urve in U n �

B

(b) whih surrounds �

B

(b).

This de�nition is independent of the hoie of �, and it settles a homomorphism

from the algebra of the holomorphi funtion s on U into B whih is ontinuous

in the sense that if a sequene (g

n

) onverges to g uniformly on ompat subsets

of U , then g(b) = lim g

n

(b) in the norm of B. Moreover,

�

B

(g(b)) = g(�

B

(b)): (42)

For details see [3℄, Setion III.3.
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Theorem 5.2 Let A = (A

n

) be a sequene in S

L

1

(T);AP (Z)

(Z

+

), and let g be any

funtion whih is holomorphi on a neighborhood U in C of the stability spetrum

�(A+ G). Then

lim

n!1

g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

))

n

=M(D

ap

(g(W (A)))): (43)

Proof. The proof runs ompletely parallel to that of Theorem 5.1. As there one

heks that all ourring terms as well as the sequene g(A) are well de�ned (the

latter after modi�ation by a �nitely supported sequene if neessary). Thus, the

analogue of (37) holds.

Further, the equality (42) implies the analogue of (38) whih, on its hand,

yields the analogue of (39). Finally, the analogue of (40) follows by apply-

ing the (ontinuous and unital) homomorphism W to the ontour integral (41):

approximate this integral by a sequene of Riemann sums r

n

(A) and use that

W (r

n

(A)) = r

n

(W (A)).

Another approah to this theorem employs Runge's approximation theorem ([20℄,

Theorem 2 in Setion III.1) in plae of the holomorphi funtional alulus.

Runge's theorem yields approximations of g(b) by linear ombinations of (�

i

e �

b)

�1

with simple poles �

i

in U n �(b). (Note that the Riemann sums for (41) also

yield suh approximations.)

Finite setions sequenes. Next we speify these results to �nite setions

sequenes (P

n

AP

n

) where A is a normal operator in A

L

1

(T);AP (Z)

(Z

+

).

Theorem 5.3 Let A be a normal operator in A

L

1

(T);AP (Z)

(Z

+

) and let g be any

ontinuous funtion on the onvex hull of the spetrum of A. Then

lim

n!1

g(�

1

(P

n

AP

n

)) + : : :+ g(�

n

(P

n

AP

n

))

n

= M(D

ap

(g(A))): (44)

Proof. The interesting new point is that g is merely assumed to be ontinuous

on the onvex hull I of the spetrum of the operator A. Of ourse, the operator

g(A) is still well de�ned. Further one knows that all eigenvalues of P

n

AP

n

belong

to I, too. This an be most easily seen by introduing the numerial range

N(B) := fhBx; xi : x 2 l

2

(Z

+

); kxk = 1g

of an operator B 2 L(l

2

(Z

+

)). It is well known that

onv �(A) � losN(A)

for eah operator A 2 L(l

2

(Z

+

)) and that equality holds in this inlusion if A is

normal (see [14℄ or Setion 3.4.1 in [22℄). Here, onvM stands for the onvex hull

of the set M � C . Consequently, for eah normal operator A,

�(P

n

AP

n

) � losN(P

n

AP

n

) � losN(A) = onv �(A)
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where the seond inlusion holds sine eah unit vetor in imP

n

is also a unit ve-

tor in l

2

(Z

+

). Thus, g(P

n

AP

n

) is also well-de�ned. The inlusions �(P

n

AP

n

) � I

holding for every n 2 N together with the property of being normal further imply

that the stability spetrum of the �nite setions sequene (P

n

AP

n

) is in I, too.

In a similar way, one derives the following speial ase of Theorem 5.2.

Theorem 5.4 Let A 2 A

L

1

(T);AP (Z)

(Z

+

) and A = (P

n

AP

n

). Further, let g

be any funtion whih is holomorphi on a neighborhood U in C of the stability

spetrum �(A+ G). Then

lim

n!1

g(�

1

(P

n

AP

n

)) + : : :+ g(�

n

(P

n

AP

n

))

n

= M(D

ap

(g(A))): (45)

Let now A 2 A

AP (Z)

(Z

+

) be a band-dominated operator with almost periodi

oeÆients. Then we an determine the stability spetrum of the �nite setions

sequene (P

n

AP

n

) by means of Theorem 2.6. If we pass from (P

n

AP

n

) to a

subsequene (P

h(n)

AP

h(n)

) then the stability spetrum will derease in aordane

with Theorem 2.7 and, thus, the set of the holomorphi funtions g for whih

(45) holds will beome larger. The minimal possible stability spetrum (thus,

the maximal set of holomorphi funtions g for whih (45) holds) is obtained if

we hoose h as a distinguished sequene of A. In this ase, the stability spetrum

of the sequene (P

h(n)

AP

h(n)

) is equal to

�(PAP ) [ �(JQaQJ)

by Theorem 2.9.

Operators in the Toeplitz algebra. Let now A be a normal operator in

the Toeplitz algebra A

L

1

(T);C

(Z

+

) and let g be ontinuous. Then D

ap

(g(A))

oinides with the onstant funtion g(s

A

)

0

where the symbol s

A

of A is de�ned

after Proposition 3.2. This equality follows by a similar reasoning as in the

proofs of Theorems 4.4 and 4.5. Sine D

ap

(g(A)) is a onstant funtion, one

learly has M(D

ap

(g(A))) = g(s

A

)

0

. Thus, speifying Theorem 5.3 to operators

in the Toeplitz algebra yields the following version of Szeg�o's �rst limit theorem

whih is due to SeLegue [36℄.

Corollary 5.5 (SeLegue) Let A be a normal operator in A

L

1

(T);C

(Z

+

) and let

g be any ontinuous funtion on the onvex hull of the spetrum of A. Then

lim

n!1

g(�

1

(P

n

AP

n

)) + : : :+ g(�

n

(P

n

AP

n

))

n

= g(s

A

)

0

=

1

2�

Z

2�

0

g(s

A

(e

it

)) dt:

(46)

In partiular, if A = T (a) is a Toeplitz operator with a generating funtion

a 2 L

1

(T), then s

A

= a. Thus, a further spei�ation of Corollary 5.5 to the

ase of normal Toeplitz operators yields the following.

25



Corollary 5.6 Let a 2 L

1

(T) be suh that the Toeplitz operator T (a) is normal,

and let g be any ontinuous funtion on the onvex hull of the essential range of

a. Then

lim

n!1

g(�

1

(T

n

(a)) + : : :+ g(�

n

(T

n

(a))

n

=

1

2�

Z

2�

0

g(a(e

it

)) dt: (47)

In this form, one �nds the �rst Szeg�o theorem in [13℄, Theorem 5.10, for instane.

Note that a Toeplitz operator T (a) is normal if and only if it is a omplex linear

ombination of a self-adjoint Toeplitz operator and the identity and, thus, if and

only if the essential range of a is ontained in a line segment (the Brown-Halmos

theorem, see Setion 3.3 in [13℄. Thus, for Toeplitz operators, there is no basi

di�erene between the normal and the self-adjoint ase. Note also that the �nite

setions P

n

T (a)P

n

are normal for a normal Toeplitz operator.

A �nal spei�ation of Corollary 5.6 to self-adjoint Toeplitz operators yields

preisely Theorem 1.2. Its holomorphi version Theorem 1.3 follows by a similar

spei�ation of Theorem 5.2.

Operators in algebras with unique traial state. We �nish this setion

with a few remarks on subalgebras B of the F�lner algebra whih own a unique

traial state, i.e., a state � with �(AB) = �(BA) for eah pair of operators

A; B 2 B. Their importane for generalized Szeg�o theorems rests on the following

result. For its proof and all further fats ited here see [1, 7℄ or Setions 7.2.1

and 7.2.4 in [22℄.

Theorem 5.7 (Arveson, B�edos) Let B be a unital C

�

-subalgebra of the F�lner

algebra F(P). For every n � 1, let �

n

be the state of B de�ned by

�

n

(A) :=

1

n

tr (P

n

AP

n

);

and let R

n

be the

�

-weak-losed onvex hull of the set f�

n

; �

n+1

; �

n+2

; : : :g. Then

R

1

:= \

n�1

R

n

is a non-empty set of traial states of B.

Thus, if B has a unique traial state � then the �

n

onverge

�

-weakly to � . In

partiular,

lim

n!1

�

n

(g(A)) = �(g(A))

for eah self-adjoint operator A 2 B and eah ontinuous funtion g. This implies

easily the following version of the �rst Szeg�o limit theorem.

Theorem 5.8 (Arveson, B�edos) Let B be a unital C

�

-subalgebra of the F�lner

algebra F(P) whih possesses a unique traial state � . Let further A 2 B be a

self-adjoint operator. Then, for every ompatly supported ontinuous funtion

g : R ! R,

lim

n!1

g(�

1

(P

n

AP

n

)) + : : :+ g(�

n

(P

n

AP

n

))

n

= �(g(A)):
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Note that, for eah self-adjoint operator A 2 B, the state � gives rise to a natural

probability measure �

A

on R via

Z

1

�1

g(x) d�

A

(x) := �(g(A)): (48)

A partiular example of a C

�

-subalgebra of the F�lner algebra with a unique

traial state is the irrational rotation algebra. The operators in this algebra

an be also onsidered as band-dominated operators with almost periodi oef-

�ients. Thus, they are subjet both to the Arveson-B�edos theorem 5.8 and to

our Theorem 5.3. This observation allows one to identify the traial state � of

the irrational rotation algebra as well as the measures assoiated with � by (48)

via

Z

1

�1

g(x) d�

A

(x) = �(g(A)) =M(f

g(A)

);

whih holds for eah ompatly supported ontinuous funtion g.

5.2 Avram-Parter-type theorems

The Avram-Parter theorem establishes a formula for the trae of

g(P

n

T (a)P

n

T (a)P

n

) with a 2 L

1

(T)

and is, thus, immediately related with produts of �nite setions sequenes and

with algebras generated by them. Indeed, we will see that this theorem an be

onsidered as another simple speial ase of Theorem 4.7. For eah n� n-matrix

B, let �

i

(B) with i = 1; : : : ; n refer to the singular values of B, i.e., to the non-

negative square roots of the eigenvalues of B

�

B. The order of enumeration is

again not of importane.

Let A = (A

n

) 2 F

P

. Then the entries of the sequene B := (A

�

A)

1=2

are the

matries B

n

:= (A

�

n

A

n

)

1=2

, and

�

j

(A

n

) = �

j

(B

n

) for j = 1; : : : ; n

under suitable enumeration. Thus, appliation of Theorem 5.1 to the sequene

B yields the following.

Theorem 5.9 Let A = (A

n

) be a sequene in S

L

1

(T);AP (Z)

(Z

+

), and let g be any

funtion whih is ontinuous on a neighborhood in R of the stability spetrum

�(B+ G) with B := (A

�

A)

1=2

. Then

lim

n!1

g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

))

n

=M(D

ap

(g(W (B)))): (49)
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Corollary 5.10 Let A := (P

n

AP

n

) with A 2 A

L

1

(T);AP (Z)

(Z

+

), and let g be any

funtion whih is ontinuous on a neighborhood in R of the stability spetrum

�(B+ G) with B := (A

�

A)

1=2

. Then

lim

n!1

g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

))

n

= M(D

ap

(g(B))) (50)

with B := (A

�

A)

1=2

.

Further spei�ation to the ase of operators in the Toeplitz algebra yields the

following version of SeLegue's result (Corollary 5.5).

Corollary 5.11 Let A := (P

n

AP

n

) with A 2 A

L

1

(T);C

(Z

+

), and let g be any

funtion whih is ontinuous on a neighborhood in R of the stability spetrum

�(B+ G) with B := (A

�

A)

1=2

. Then

lim

n!1

g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

))

n

= g(s

B

)

0

=

1

2�

Z

2�

0

g(s

B

(e

it

)) dt (51)

with B := (A

�

A)

1=2

.

Finally, if A = T (a) is a Toeplitz operator with generating funtion a 2 L

1

(T),

then

s

B

= s

(A

�

A)

1=2

= (aa)

1=2

= jaj:

Corollary 5.12 (Avram/Parter) Let A := (P

n

T (a)P

n

) with a 2 L

1

(T), and

let g be any funtion whih is ontinuous on a neighborhood in R of the stability

spetrum �(B+ G) with B := (A

�

A)

1=2

. Then

lim

n!1

g(�

1

(A

n

)) + : : :+ g(�

n

(A

n

))

n

=

1

2�

Z

2�

0

g(ja(e

it

)j) dt: (52)

This result was established by Parter [27℄ for loally self-adjoint (= produts of

ontinuous and real-valued) generating funtions a, and Avram [5℄ proved it for

general L

1

(T)-funtions. The algebrai approah to the Avram/Parter theorem

goes bak to B�otther and one of the authors (Setion 5.6 in [13℄). There (Se-

tion 4.5) one also �nds a short illustrated history of the Avram/Parter theorems

whih were aimed to explain Moler's phenomenon onerning the singular value

distribution of Toeplitz matries.

We would also like to mention that Tyrtyshnikov [41, 42℄ was able to show

that Corollary 5.12 remains valid for arbitrary funtions a 2 L

2

(T) (in whih ase

the Toeplitz operator T (a) is no longer bounded and our tehniques do not seem

to apply).
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5.3 B�otther-Otte-type theorems

The ontinuous and holomorphi funtional alulus an also be applied to the

sequenes onsidered in Theorem 4.2 and in (30). It seems that B�otther and

Otte [11℄ were interested in results of that type for the �rst time. The following

two orollaries to Theorem 4.2 follow by a straightforward appliation of the

funtional alulus as in Subsetion 5.1.

Corollary 5.13 Let A = (A

n

) be a normal sequene in S(F(P)), and let g be

any funtion whih is ontinuous on a neighborhood in R of the stability spetrum

�(A+ G). Then

lim

n!1

1

n

(tr g(A

n

)� tr (P

n

g(W (A))P

n

)) = 0: (53)

Corollary 5.14 Let A = (A

n

) be a sequene in S(F(P)), and let g be any fun-

tion whih is holomorphi on a neighborhood U in C of the stability spetrum

�(A+ G). Then (53) holds.
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