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we present some of the main types of in�nite-dimensional Lie groups: linear Lie groups, groups of

smooth maps and groups of di�eomorphisms. We then turn in some more detail to manifolds mod-

eled on loally onvex spaes and the orresponding alulus (Setion II). In Setion III, we present

some basi Lie theory for loally onvex Lie groups. The Fundamental Theorem for Lie group-valued-

funtions on manifolds and some of its immediate appliations are disussed in Setion IV. For many

in�nite-dimensional groups, the exponential funtion behaves worse than for �nite-dimensional ones

or Banah{Lie groups. Setion V is devoted to the lass of loally exponential Lie groups, i.e., those

for whih the exponential funtion is a loal di�eomorphism in 0. We onlude these notes with a
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I. Introdution

Symmetries play a deisive role in the natural sienes and throughout mathematis.

In�nite-dimensional Lie theory deals with symmetries depending on in�nitely many parameters.

Suh symmetries may be studied on an in�nitesimal, loal or global level, whih amounts to

studying Lie algebras, loal Lie groups and global Lie groups, respetively.

Finite-dimensional Lie theory was reated in the late 19th entury by Marius Sophus Lie,

who showed that in �nite dimensions the loal and the in�nitesimal theory are essentially equiv-

alent. The di�erential-geometri approah to �nite-dimensional global Lie groups (as smooth

or analyti manifolds) is naturally omplemented by the theory of algebrai groups with whih

it interats most fruitfully. A ruial point of the �nite-dimensional theory is that �niteness

onditions permit to develop a full-edged struture theory of �nite-dimensional Lie groups in

terms of the Levi splitting and the �ne struture of semisimple groups.

In in�nite dimensions, the passage from the in�nitesimal to the loal level and from there

to the global level is not possible in general, whene the theory splits into three properly distint

levels. A substantial part of the literature on in�nite-dimensional Lie theory exlusively deals

with the level of Lie algebras, their struture, and their representations. However, only speial

lasses of groups, suh as Ka{Moody groups or ertain diret limit groups, an be approahed by

purely algebrai methods. In partiular, this is relevant for many appliations in mathematial

physis, where the in�nitesimal approah is onvenient for alulations, but a global perspetive

would be most desirable to understand global phenomena. We think that a similar statement

applies to non-ommutative geometry, where derivations and ovariant derivatives are ubiquitous,

but global symmetry groups have been negleted.

In these letures, we onentrate on the loal and global level of in�nite-dimensional Lie

theory, as well as the mehanisms allowing or preventing to pass from one level to another. Our

studies are based on a notion of Lie group whih is both simple and very general: A Lie group
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simply is a manifold, endowed with a group struture suh that multipliation and inversion

are smooth maps. The main di�erene ompared to the �nite-dimensional theory onerns the

notion of a manifold: The manifolds we onsider shall not be �nite-dimensional, but modeled

on an arbitrary loally onvex spae. It is quite useful to approah Lie groups from suh a

general perspetive, beause this enables a uni�ed disussion of all basi aspets of the theory.

To obtain more spei� results, it is essential to fous on individual lasses of Lie groups. In

this introdution, we disuss several lasses of in�nite-dimensional Lie groups without going into

details. The main purpose is to give an impression of the enormous variety of in�nite-dimensional

Lie groups.

Some history

The onept of a Banah{Lie group, i.e., a Lie group modeled on a Banah spae, has been

introdued by G. Birkho� in [Bi38℄. The step to more general lasses of in�nite-dimensional

Lie groups modeled on omplete loally onvex spaes ours �rst in an artile of Marsden and

Abraham [MA70℄ in the ontext of hydrodynamis. This Lie group onept has been worked out

by J. Milnor in his Les Houhes leture notes [Mil83℄ whih provide many basi results of the

general theory. The observation that the ompleteness ondition on the underlying loally onvex

spae an be omitted for the basi theory is due to H. Gl�okner ([Gl02a℄). This is important for

quotient onstrutions beause quotients of omplete loally onvex spaes need not be omplete.

There are other, weaker, onepts of Lie groups, resp., in�nite-dimensional manifolds. One

is based on the \onvenient setting" for global analysis developed by Fr�ohliher, Kriegl and

Mihor ([FK88℄ and [KM97℄). In the ontext of Fr�ehet manifolds, this setting does not di�er

from the one mentioned above, but for more general model spaes it provides a onept of a

smooth map whih does not neessarily imply ontinuity, hene leads to Lie groups whih are

not topologial groups. Another approah is based on the onept of a di�eologial spae due

to J.-M. Souriau ([So85℄) whih an be used to study spaes like quotients of R by non-disrete

subgroups in a di�erential geometri ontext. It has the important advantage that the ategory

of di�eologial spaes is artesian losed and that any quotient of a di�eologial spae arries a

natural di�eology. On the other hand, this inredible freedom reates some quite ugly reatures.

Throughout these notes, K 2 fR; C g and all vetor spaes are real or omplex. For two

topologial vetor spaes V;W , we write L(V;W ) for the spae of ontinuous linear operators

V !W and put L(V ) := L(V; V ).

I.1. Linear Lie groups

In �nite-dimensional Lie theory, a natural approah to Lie groups is via matrix groups, i.e.,

subgroups of the group GL

n

(R) of invertible real n�n-matries. Sine every �nite-dimensional

algebra an be embedded into a matrix algebra, this is equivalent to onsidering subgroups of

the unit groups A

�

:= fa 2 A: (9b 2 A)ab = ba = 1g of �nite-dimensional unital assoiative

algebras A . The advantage of this approah is that, under mild ompleteness assumptions, one

an de�ne the exponential funtion quite diretly via the exponential series and thus take a

shortut to several deeper results on Lie groups. This approah also works quite well in the

ontext of Banah-Lie groups. Here the linear Lie groups are subgroups of unit groups of Banah

algebras, but this setting is too restritive for many appliations of in�nite-dimensional Lie theory.

Let V be a loally onvex spae and A := L(V ) the unital assoiative algebra of all

ontinuous linear endomorphisms of V . Its unit group is the general linear group GL(V ) of

V , but unfortunately there is no natural manifold struture on GL(V ) if V is not a Banah

spae. In partiular, it is far from being open, as follows from the fat that if the spetrum of

the operator A is unbounded, then 1+ tA is not invertible for all suÆiently small values of t .

Therefore it is muh more natural to onsider a lass of well-behaved assoiative algebras instead

of the algebras of the form L(V ) for general loally onvex spaes.
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We shall see that the most natural lass of algebras for in�nite-dimensional Lie theory are

the so-alled ontinuous inverse algebras (CIAs). These are unital loally onvex algebras A with

ontinuous multipliation suh that the unit group A

�

is open and the inversion is a ontinuous

map A

�

! A .

Remark I.1.1. (a) Eah unital Banah algebra A is a ontinuous inverse algebra. In fat, if

k � k is a sub-multipliative norm on A with k1k = 1, then for eah x 2 A with kxk < 1 we

have 1� x 2 A

�

with

(1� x)

�1

=

1

X

k=0

x

k

;

and the geometri series, also alled the Neumann series, onverges uniformly on eah ball B

r

(0)

with r < 1. We onlude that A

�

ontains B

1

(1) and that inversion is ontinuous on this ball.

Now elementary arguments imply that A

�

is open and that inversion is ontinuous (Exerise I.1).

(b) For eah Banah spae V , the algebra L(V ) of ontinuous linear operators on V is a

unital Banah algebra with respet to the operator norm

k'k := supfk'(v)k: kvk � 1g;

hene in partiular a CIA.

() For eah CIA A and n 2 N , the matrix algebra M

n

(A) also is a CIA when endowed

with the produt topology obtained by identifying it with A

n

2

(f. [Bos90℄, Exerise I.3).

(d) If M is a ompat manifold, then the algebra C

1

(M; C ) is a ontinuous inverse algebra

(f. Setion II for the topology on this algebra).

(e) Let B be a Banah algebra and �:G � B ! B a strongly ontinuous ation of the

�nite-dimensional Lie group G on B by isometri automorphisms. Then the spae A := B

1

of smooth vetors for this ation is a dense subalgebra and a Fr�ehet CIA (f. [Bos90, Prop.

A.2.9℄).

We shall see below that the unit group of a CIA is a Lie group, when endowed with its

natural manifold strutures as an open subset. This property learly shows that in the ontext of

in�nite-dimensional Lie theory over loally onvex spaes, CIAs form the natural lass of algebras

to be onsidered.

In view of Remark I.1.1(), GL

n

(A) is a Lie group for eah CIA A . We think of \Lie

subgroups" of these groups as linear Lie groups, but we shall only see later in Setion III how

and in how many ways the notion of a Lie subgroup an be made more preise. Note that most

lassial Lie groups are de�ned as entralizers of ertain matries or as the set of �xed points for

a group of automorphisms. All these onstrutions have natural generalizations to matries with

entries in CIAs.

I.2. Groups of ontinuous and smooth maps

In the ontext of Banah{Lie groups, one onstruts Lie groups of mappings as follows.

For a ompat spae X and a Banah{Lie group K , the group C(X;K) of ontinuous maps is

a Banah{Lie group with Lie algebra C(X; k), where k := L(K) is the Lie algebra of K .

In the larger ontext of loally onvex Lie groups, one also obtains for eah Lie group K

and a ompat smooth manifold M a Lie group struture on the group C

1

(M;K) of smooth

maps from M to K . This is a Fr�ehet{Lie group if K is a Fr�ehet{Lie group and its Lie algebra

is C

1

(M; k).

The passage from ontinuous maps to smooth maps is motivated by the behavior of entral

extensions of these groups. The groups C

1

(M;K) have muh more entral extensions than the

groups C(M;K), hene exhibit a riher geometri struture. Closely related is the fat that

algebras of smooth funtions have muh more derivations than algebras of ontinuous funtions

(f. also the disussion in Setion I.3).
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A larger lass of groups of smooth maps is obtained as gauge groups of prinipal bundles.

If q:P ! B is a smooth prinipal bundle with struture group K and �:P �K ! P; (p; k) 7!

�

k

(p) = p:k denotes the right ation of K on P , then

Gau(P ) := f' 2 Di�(P ): q Æ ' = q; (8k 2 k) ' Æ �

k

= �

k

Æ 'g

is alled the gauge group of the bundle and its elements are alled gauge transformations. In view

of q Æ ' = q , eah gauge transformation ' an be written as '(p) = p:f(p) for some smooth

funtion f :P ! K , and from ' Æ �

k

= �

k

Æ ' we derive that kf(p:k) = f(p)k , i.e.,

(1:1:1) f(p:k) = k

�1

f(p)k; p 2 P; k 2 K:

Conversely, every smooth funtion f :P ! K satisfying (1.1.1) de�nes a gauge transformation

by '

f

(p) := p:f(p). Moreover,

'

f

1

('

f

2

(p)) = '

f

2

(p):f

1

�

'

f

2

(p)

�

= p:(f

2

(p)f

1

(p:f

2

(p))) = p:(f

1

(p)f

2

(p)) = '

f

1

f

2

(p)

implies that we obtain an isomorphism of groups

C

1

(P;K)

K

:= ff 2 C

1

(P;K): (8p 2 P )(8k 2 K) f(p:k) = k

�1

f(p)kg ! Gau(P ); f 7! '

f

:

We may therefore view Gau(P ) as a subgroup of the group C

1

(P;K), endowed with

the pointwise produt, and we shall see below under whih requirements on the bundle and the

struture group K one an show that Gau(P ) is a Lie group.

If the bundle P is trivial, then there exists a smooth global setion �:B ! P , and the

map

C

1

(P;K)

K

! C

1

(M;K); f 7! f Æ �

is an isomorphism of groups.

I.3. Groups of homeomorphisms and di�eomorphisms

Interesting groups arise naturally from geometri or other strutures on spaes as their

automorphism groups. In the spirit of Felix Klein's Erlangen Program, geometri strutures are

even de�ned in terms of their automorphism groups. In this setion, we take a loser look at the

homeomorphism group Homeo(X) of a topologial spae X , the di�eomorphism group Di�(M)

of a smooth manifold M and relate them to the automorphism groups of the orresponding

algebras of ontinuous and smooth funtions.

I.3.1. If X is a topologial spae, then the group Homeo(X) ats naturally by automorphisms

on the algebra C(X;R) of ontinuous real-valued funtions on X by algebra automorphisms via

(':f)(x) := f('

�1

(x)):

If, in addition, X is ompat, then C(X;R) has a natural Banah algebra struture given

by the sup-norm, and with Gelfand duality the spae X an be reovered from this algebra as

X

�

=

Hom

alg

(C(X;R);R) n f0g

in the sense that every non-zero algebra homomorphism C(X;R) ! R (whih is automatially

ontinuous) is given by a point evaluation Æ

p

(f) = f(p). The topology on X an be reovered

from C(X;R) by endowing Hom

alg

(C(X;R);R) with the topology of pointwise onvergene on

C(X;R) .

For any Banah algebra A , the group Aut(A) arries a natural Lie group struture (as

a Lie subgroup of GL(A)), so that Homeo(X)

�

=

Aut(C(X;R)) inherits a natural Lie group

struture when endowed with the topology inherited from the Banah algebra L(C(X;R)) . We
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laim that this topology turns Homeo(X) into a disrete group. In fat, if ' is a non-trivial

homeomorphism of X and p 2 X is moved by ' , then there exists a ontinuous funtion

f 2 C(X;R) with kfk = 1, f(p) = 0 and f('

�1

(p)) = 1. Then k':f � fk � 1 implies that

k' � 1k � 1. Therefore the group Homeo(X) is disrete. Sine exponentials of ontinuous

derivations yield one-parameter groups of automorphisms, it follows that der(C(X;R)) = f0g .

Nevertheless, one onsiders ontinuous ations of onneted Lie groups G on X , where

the ontinuity of the ation means that the ation map �:G �X ! X is ontinuous. But this

does not mean that the orresponding homomorphism G ! Homeo(X) is ontinuous. We will

see that this phenomenon, i.e., that ertain automorphism groups are endowed with Lie group

strutures whih are too �ne for many purposes, ours at several levels of the theory (f. also

Exerise I.5).

I.3.2. Now let M be a ompat smooth manifold and onsider the Fr�ehet algebra A :=

C

1

(M;R) of smooth funtions on M (f. Example II.1.4). In this ontext, we also have

M

�

=

Hom(C

1

(M;R);R) n f0g

in the sense that every non-zero algebra homomorphism C

1

(M;R) ! R is given by a point

evaluation Æ

p

(f) := f(p) for some p 2 M (see Theorem A.1). The smooth struture on M is

ompletely determined by the requirement that the maps M ! R; p 7! Æ

p

(f) are smooth. This

implies that the group Aut(C

1

(M;R)) of automorphisms of C

1

(M;R) an be identi�ed with

the group Di�(M) of all di�eomorphisms of M .

In sharp ontrast to the topologial ontext, the group Di�(M) has a non-trivial struture

as a Lie group modeled on the spae V(M) of (smooth) vetor �elds on M , whih then is the

Lie algebra of (the opposite of) this group. Moreover, for a �nite-dimensional Lie group G ,

smooth left ations �:G �M ! M orrespond to Lie group homomorphisms G ! Di�(M).

For G = R , we obtain in partiular the orrespondene between smooth ows on M , smooth

vetor �elds on M , and one-parameter subgroups of Di�(M). If X 2 V(M) is a vetor �eld

and Fl

X

:R ! Di�(M) the orresponding ow, then

exp:V(M)! Di�(M); X 7! Fl

X

(1)

is the exponential funtion of the Fr�ehet{Lie group Di�(M).

Other important groups of di�eomorphisms arise as subgroups of Di�(M). Of partiular

importane is the stabilizer subgroup Di�(M;�) of a volume form � on M (if M is orientable),

and the stabilizer Sp(M;!) of a sympleti form ! if (M;!) is sympleti (f. [KM97℄).

I.3.3. If M is a paraompat �nite-dimensional smooth manifold, then we still have

M

�

=

Hom(C

1

(M;R);R) n f0g and Di�(M)

�

=

Aut(C

1

(M;R))

(Theorem A.1), but then there is no natural Lie group struture on Di�(M) suh that smooth

ations of Lie groups G on M orrespond to Lie group homomorphisms G! Di�(M).

It is possible to turn Di�(M) into a Lie group with Lie algebra V



(M), the Lie algebra of

all smooth vetor �elds with ompat support. If M is ompat, this yields the aforementioned

Lie group struture on Di�(M), but if M is not ompat, then the orresponding topology on

Di�(M) is so �ne that the global ow generated by a vetor �eld whose support is not ompat

does not lead to a ontinuous homomorphism R ! Di�(M). For this Lie group struture, the

normal subgroup Di�



(M) of all di�eomorphisms whih oinide with id

M

outside a ompat

set is an open subgroup.

I.3.4. The situation for non-ompat manifolds is similar to the situation we enounter in the

theory of unitary group representations. Let H be a Hilbert spae and U(H) its unitary group.

This group has two natural topologies. The uniform topology on U(H) inherited from the

Banah algebra L(H) turns it into a Banah{Lie group, but this topology is rather �ne. The

strong operator topology (the topology of pointwise onvergene) turns U(H) into a topologial

group suh that ontinuous unitary representations of a topologial group G orrespond to
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ontinuous group homomorphisms G ! U(H). If G is a �nite-dimensional Lie group, then a

ontinuous unitary representation is ontinuous with respet to the uniform topology on U(H)

if and only if all operators of the derived representation are bounded, but this implies already

that the representation fators through a Lie group with ompat Lie algebra (f. [Si52℄, [Gu80℄,

Exerise I.6). In some sense, the ondition that the operators of the derived representation

are bounded is analogous to the requirement that the vetor �elds orresponding to a smooth

ation on a manifold have ompat support. In this sense, the uniform topology on U(H) shows

similarities to the Lie group struture from (I.3.3) on Di�(M) if M is non-ompat. The ase

of a ompat manifold M orresponds to the ase of a �nite-dimensional Hilbert spae H , for

whih the two topologies on U(H) oinide.

I.3.5. Clearly, the situation beomes worse if M is an in�nite-dimensional manifold. Then

Di�(M) has no natural group topology, but we an still make sense of smooth maps f :N !

Di�(M), where N is a smooth manifold, by requiring that the orresponding map

N �M !M

2

; (n;m) 7! (f(n)(m); f(n)

�1

(m))

is smooth. In this sense, a smooth ation of a Lie group G on M is a smooth homomorphism

G! Di�(M).

Similar statements hold for the group GL(V ), where V is a general loally onvex spae.

Exerises for Setion I

Exerise I.1. For an assoiative algebra A , we write A

+

for the algebra A � K with the

multipliation

(a; s)(b; t) := (ab+ sb+ ta; st):

(1) Verify that A

+

is a unital algebra with unit 1 = (0; 1).

(2) Show that GL

1

(A) := A

�

+

\ (A� f1g) is a group.

(3) If e 2 A is an identity element, then A

+

is isomorphi to the diret produt algebra A� K

with the produt (a; s)(b; t) = (ab; st).

Exerise I.2. A topologial ring is a ring R endowed with a topology for whih addition and

multipliation are ontinuous. Let R be a unital topologial ring. Show that:

(1) For x 2 R

�

, the left and right multipliations �

x

(y) := xy and �

x

(y) := yx are homeomor-

phisms of R .

(2) The unit group R

�

is open if and only if it is a neighborhood of 1 .

(3) The inversion R

�

! R is ontinuous, i.e., (R

�

; �) is a topologial group, if it is ontinuous

in 1 .

Exerise I.3. Let R be a unital ring, n 2 N and M

n

(R) the ring of all (n� n)-matries with

entries in R . In the following, we write elements x 2M

n

(R) as

x =

�

a b

 d

�

2M

n

(R) =

�

M

n�1

(R) M

n�1;1

(R)

M

1;n�1

(R) R

�

=

�

M

n�1

(R) R

n�1

(R

n�1

)

>

R

�

:

(1) Show that a matrix x is of the form

�

1 �

0 1

��

� 0

0 Æ

��

1 0

 1

�

with � 2 GL

n�1

(R); �; 

>

2 R

n�1

; Æ 2 R

�

if and only if d 2 R

�

; a� bd

�1

 2 GL

n�1

(R), and that in this ase

Æ = d; � = bd

�1

;  = d

�1

; � = a� bd

�1

:

(2) Assume, in addition, that R is a topologial ring with open unit group and ontinuous

inversion. Show by indution on n that

(a) GL

n

(R) is open in M

n

(R).

(b) Inversion in GL

n

(R) is ontinuous, i.e., GL

n

(R) is a topologial group.
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Exerise I.4. Let R be a unital ring and onsider the right R -module R

n

, where the module

struture is given by (x

1

; : : : ; x

n

):r := (x

1

r; : : : ; x

n

r). Let M be a right R -module, �: r 7! r

�

an involution on R , i.e., an involutive anti-automorphism and " 2 f�1g . A biadditive map

�:M �M ! R is alled � -sesquilinear if

�(x:r; y:s) = r

�

�(x; y)s for x; y 2M; r; s 2 R:

It is alled � -"-hermitian if, in addition,

�(x; y)

�

= "�(y; x) for x; y 2M:

For " = 1, we all the form � -hermitian and � -antihermitian for " = �1. For a � -"-hermitian

form � on M ,

U(M;�) := f' 2 Aut

R

(M): (8x; y 2M) �('(x); '(y)) = �(x; y)g

is alled the orresponding unitary group. Show that:

(1) End

R

(R

n

)

�

=

M

n

(R), where M

n

(R) operates by left multipliation on olumn vetors

on R

n

.

(2) Aut

R

(R

n

)

�

=

GL

n

(R).

(3) �(x; y) :=

P

n

i=1

x

�

i

y

i

is a � -hermitian form on R

n

. Desribe the orresponding unitary

group in terms of matries.

(4) �(x; y) :=

P

n

i=1

x

�

i

y

n+i

� x

�

n+i

y

i

is a � -antihermitian form on R

2n

. Desribe the orre-

sponding unitary group in terms of matries.

Exerise I.5. Let X be a topologial spae and endow the set C(X;X) of ontinuous self-

maps of X with the ompat open topology, i.e., the topology generated by the sets W (K;O) :=

ff 2 C(X;X): f(K) � Og , where K � X is ompat and O � X is open (f. Appendix B). We

endow the group Homeo(X) with the initial topology with respet to the map

Homeo(X)! C(X;X)

2

; ' 7! ('; '

�1

):

Show that if X is loally ompat, then this topology turns Homeo(X) into a topologial

group. Hint: If f Æ g 2 W (K;O) hoose a ompat subset K

0

and an open subset O

0

with

g(K) � O

0

� K

0

� f

�1

(O).

Exerise I.6. Let G be a �nite-dimensional onneted Lie group and �:G ! GL(X) be a

faithful representation whih is ontinuous when GL(X) arries the uniform topology inherited

from the Banah algebra L(X) and for whih �(G) is bounded. Show that g := L(G) is a

ompat Lie algebra by using the following steps:

(1) � is a smooth homomorphism of Lie groups. In partiular, we have a representation of the

Lie algebra L(�): g ! L(X).

(2) kxk := kL(�)(x)k de�nes a norm on g , and Ad(G) is bounded with respet to this norm.

(3) Ad(G) has ompat losure, so that g is a ompat Lie algebra.

If, in addition, X is a Hilbert spae, then one an even show that there exists a salar

produt ompatible with the topology whih is invariant under G , so that � beomes a unitary

representation with respet to this salar produt. This an be ahieved by showing that the

set of all ompatible salar produts is a Bruhat{Tits spae and then applying the Bruhat{Tits

Fixed Point Theorem.
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II. In�nite-dimensional manifolds

In this setion, we turn to some more details on in�nite-dimensional manifolds. First we briey

disuss the onept of a loally onvex spae, then the basis and the peuliarities of alulus on

these spaes, and �nally manifolds modeled on loally onvex spaes.

In this setion, V always denotes a K -vetor spae and K is R or C .

II.1. Loally onvex spaes

De�nition II.1.1. (a) If p is a seminorm on a K -vetor spae V , then N

p

:= p

�1

(0) is a

subspae of V , and V

p

:= V=N

p

is a normed spae with kv + N

p

k := p(v). Let �

p

:V ! V

p

denote the orresponding quotient map.

(b) We all a set P of seminorms on V separating if p(v) = 0 for all p 2 P implies v = 0.

This is equivalent to the linear map

�:V !

Y

p2P

V

p

; v 7! (�

p

(v))

p2P

being injetive.

() If X is a set and f

j

:X ! X

j

, j 2 J , are mappings into topologial spaes, then the

oarsest topology on X for whih all these maps are ontinuous is alled the initial topology on

X with respet to the family (f

j

)

j2J

. This topology is generated by the inverse images of open

subsets of the spaes X

j

under the maps f

j

. Combining the funtions f

j

to a single funtion

f :X !

Y

j2J

X

j

; x 7! (f

j

(x))

j2J

;

the initial topology on X is nothing but the inverse image of the produt topology under f .

(d) To eah separating family P of seminorms on V we assoiate the initial topology �

P

on V de�ned by the maps �

p

:V ! V

p

to the normed spaes V

p

. We all it the loally onvex

topology on V de�ned by P .

Sine the family P is separating, V is a Hausdor� spae. Further it is easy to show that

V is a topologial vetor spae in the sense that addition and salar multipliation on V are

ontinuous maps.

A loally onvex spae is a vetor spae endowed with a topology de�ned by a separating

family of seminorms. The preeding argument shows that eah loally onvex spae is in

partiular a topologial vetor spae whih an be embedded into a produt

Q

p2P

V

p

of normed

spaes.

(e) A loally onvex spae V is alled a Fr�ehet spae if its topology an be de�ned by

a ountable family P = fp

n

:n 2 Ng of seminorms and if V is omplete with respet to the

ompatible metri

d(x; y) :=

X

n2N

2

�n

p

n

(x� y)

1 + p

n

(x� y)

:

Remark II.1.2. (a) A sequene (x

n

)

n2N

in a loally onvex spae V is said to be a Cauhy

sequene if eah sequene �

p

(x

n

), p 2 P , is a Cauhy sequene in V

p

. We say that V is

sequentially omplete if every Cauhy sequene in V onverges.

(b) One has a natural notion of ompleteness for loally onvex spaes (every Cauhy �lter

onverges). Complete loally onvex spaes an be haraterized as those isomorphi to losed
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subspaes of produts of Banah spaes. In fat, let V

p

denote the ompletion of the normed

spae V

p

. We then have an embedding

�:V !

Y

p2P

V

p

; v 7! (�

p

(v))

p2P

;

and the ompleteness of V is equivalent to the losedness of �(V ) in the produt of the Banah

spaes V

p

, whih is a omplete spae (Exerise II.8).

Examples II.1.3. (a) Let X be a topologial spae. For eah ompat subset K � X , we

obtain a seminorm p

K

on C(X;R) by

p

K

(f) := supfjf(x)j:x 2 Kg:

The family P of these seminorms de�nes on C(X;R) the loally onvex topology of uniform

onvergene on ompat subsets of X .

If X is ompat, then we may take K = X and obtain a norm on C(X;R) whih de�nes

the topology; all other seminorms p

K

are redundant (f. Exerise II.1). In this ase, C(X;R) is

a Banah spae.

(b) The preeding example an be generalized to the spae C(X;V ), where X is a

topologial spae and V is a loally onvex spae. Then we de�ne for eah ompat subset

K � X and eah ontinuous seminorm q on V a seminorm

p

K;q

(f) := supfq(f(x)):x 2 Kg:

The family of these seminorms de�nes a loally onvex topology on C(X;V ), the topology of

uniform onvergene on ompat subsets of X (f. Appendix B).

() If X is loally ompat and ountable at in�nity, then there exists a sequene (K

n

)

n2N

of ompat subsets of X with

S

n

K

n

and K

n

� K

0

n+1

. We all suh a sequene (K

n

)

n2N

an

exhaustion of X . Then eah ompat subset K � X lies in some K

n

, so that eah seminorm p

K

is dominated by some p

K

n

. This implies that C(X;R) is metrizable, and sine it is also omplete,

it is a Fr�ehet spae. It even is a Fr�ehet algebra in the sense that the algebra multipliation is

ontinuous (f. Exerise II.4).

(d) For any set X , the spae R

X

of all real-valued funtion X ! R is a loally onvex spae

with respet to the produt topology. The topology is de�ned by the seminorms p

x

de�ned by

p

x

(f) := jf(x)j , x 2 X . This spae is omplete, and it is metrizable if and only if X is ountable.

Example II.1.4. (a) Let U � R

n

be an open subset and onsider the algebra C

1

(U;R). For

eah multiindex m = (m

1

; : : : ;m

n

) 2 N

0

with jmj := m

1

+ : : :+m

n

, we onsider the di�erential

operator

D

m

:= D

m

1

1

� � �D

m

n

n

:=

�

jmj

�

m

1

1

� � ��

m

n

n

:

We now obtain for eah m and eah ompat subset K � U a seminorm on C

1

(U;R) by

p

K;m

(f) := supfjD

m

f(x)j:x 2 Kg:

The family of all these seminorms de�nes a loally onvex topology on C

1

(U;R).

To obtain an exhaustion of U , we hoose a norm k � k on R

n

and onsider the ompat

subsets

K

n

:=

�

x 2 U : kxk � n; dist(x; U



) �

1

n

	

;

where U



:= R

n

n U denotes the omplement of U and dist(x; U



) := inffkx� yk: y 2 U



g is a

ontinuous funtion (Exerise II.5). It is easy to see that (K

n

)

n2N

is an exhaustion of U , so that

the topology on C

1

(U;R) an be de�ned by a ountable set of seminorms. Moreover, C

1

(U;R)
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is omplete with respet to the orresponding metri, and the multipliation on this algebra is

ontinuous, so that it is a Fr�ehet algebra (Exerise II.6).

(b) Let M be a smooth n-dimensional manifold and onsider the algebra C

1

(M;R) . If

(';U) is a hart of M , then '(U) is an open subset of some R

n

, so that, in view of (a), we have

already a Fr�ehet algebra struture on C

1

('(U);R) . We now onsider the map

�:C

1

(M;R) ,!

Y

(';U)

C

1

('(U);R); f 7! (f j

U

Æ '

�1

)

(';U)

and endow the right hand side with the produt topology, turning it into a loally onvex algebra

(Exerise II.8). Therefore the inverse image of this topology turns C

1

(M;R) into a loally

onvex algebra.

This desription is onvenient, but not very expliit. To see how it an be de�ned by

seminorms, note that for eah ompat subset K �M for whih there exists a hart ':U ! R

n

with K � U and for eah multiindex m 2 N

n

0

we have a seminorm

p

K;m

(f) := supfjD

m

(f Æ '

�1

)(x)j:x 2 '(K)g:

It is easy to see that these seminorms de�ne the topology on C

1

(M;R) and that we thus obtain

the struture of a Fr�ehet algebra on C

1

(M;R). The topology is alled the topology of loal

uniform onvergene of all partial derivatives.

() If M is a �nite-dimensional paraompat omplex manifold, then we onsider the

algebra Hol(M; C ) of holomorphi funtions on M as a subalgebra of C(M; C ), endowed with the

topology of uniform onvergene on ompat subsets of M (Example II.1.3). This topology turns

Hol(M; C ) into a Fr�ehet algebra. Moreover, one an show that the injetive map Hol(M; C ) ,!

C

1

(M; C )is also a topologial embedding (Exerise II.9).

De�nition II.1.5. Let V be a vetor spae and �

j

:V

j

! V linear maps, de�ned on loally

onvex spaes V

j

. We onsider the system P of all those seminorms p on V for whih all

ompositions p Æ �

j

are ontinuous seminorms on the spaes V

j

. By means of P , we obtain

on V a loally onvex topology alled the �nal loally onvex topology de�ned by the mappings

(�

j

)

j2J

.

This loally onvex topology has the universal property that a linear map ':V ! W into

a loally onvex spae W is ontinuous if and only if all the maps ' Æ�

j

, j 2 J , are ontinuous

(Exerise).

Example II.1.6. (a) Let X be a loally ompat spae and C



(X;R) the spae of ompatly

supported ontinuous funtions. For eah ompat subset K � X , we then have a natural

inlusion

�

K

:C

K

(X;R) := ff 2 C



(X;R): supp(f) � Kg ,! C



(X;R):

Eah spae C

K

(X;R) is a Banah spae with respet to the norm

kfk

1

:= supfjf(x)j:x 2 Xg = supfjf(x)j:x 2 Kg:

We endow C



(X;R) with the �nal loally onvex topology de�ned by the maps �

K

(De�ni-

tion II.1.5).

(b) Let M be a smooth manifold and onsider the spae C

1



(M;R) of smooth funtions

with ompat support. For eah ompat subset K �M , we then have a natural inlusion

�

K

:C

1

K

(M;R) := ff 2 C

1



(M;R): supp(f) � Kg ,! C

1



(M;R):

We endow eah spae C

1

K

(M;R) with the subspae topology inherited from C

1

(M;R), whih

turns it into a Fr�ehet spae. We endow C

1



(M;R) with the �nal loally onvex topology de�ned

by the maps �

K

.
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II.2. Calulus on loally onvex spaes

In this setion, we briey explain the ornerstones of alulus in loally onvex spaes.

The main point is that one uses an appropriate notion of di�erentiability, resp., smoothness

whih for the speial ase of Banah spaes di�ers from Fr�ehet di�erentiability but whih is

more onvenient in the setup of loally onvex spaes. Our basi referenes are [Ha82℄ and

[Gl02a℄, and in partiular the forthoming book [GN05℄, where one �nds detailed proofs. One

readily observes that one one has the Fundamental Theorem of Calulus, then the proofs of the

�nite-dimensional ase arry over.

A di�erent approah to di�erentiability in in�nite-dimensional spaes is provided by the

so-alled onvenient setting, whih an be found in [FK88℄ and [KM97℄. A entral feature of

this approah is that smooth maps are no longer required to be ontinuous, but for alulus over

Fr�ehet spaes one �nds the same lass of smooth maps. The onept of a di�eologial spae

due to J.-M. Souriau ([So85℄) goes muh further. It is primarily designed to study spaes with

pathologies like quotients of R by non-disrete subgroups in a di�erential geometri ontext.

De�nition II.2.1. Let X and Y be topologial vetor spaes, U � X open and f :U ! Y

a map. Then the derivative of f at x in the diretion of h is de�ned as

df(x)(h) := lim

t!0

1

t

�

f(x+ th)� f(x)

�

whenever the limit exists. The funtion f is alled di�erentiable at x if df(x)(h) exists for all

h 2 X . It is alled ontinuously di�erentiable if it is di�erentiable at all points of U and

df :U �X ! Y; (x; h) 7! df(x)(h)

is a ontinuous map. It is alled a C

1

-map if it is ontinuous and ontinuously di�erentiable; for

n � 2, a C

n

-map if df is a C

n�1

-map, and C

1

(or smooth) if it is C

n

for eah n 2 N . This is

the notion of di�erentiability used in [Mil83℄, [Ha82℄, [Gl02a℄ and [Ne01℄.

(b) If X and Y are omplex vetor spaes, then the map f is alled holomorphi if it is

C

1

and for all x 2 U the map df(x):X ! Y is omplex linear (f. [Mil83, p. 1027℄). We will see

below that the maps df(x) are always real linear (Lemma II.2.3).

() Higher derivatives are de�ned for C

n

-maps by

d

n

f(x)(h

1

; : : : ; h

n

) := lim

t!0

1

t

�

d

n�1

f(x+ th

n

)(h

1

; : : :; h

n�1

)� d

n�1

f(x)(h

1

; : : :; h

n�1

)

�

:

Remark II.2.2. (a) If X and Y are Banah spaes, then the notion of ontinuous di�eren-

tiability is weaker than the usual notion of ontinuous Fr�ehet-di�erentiability in Banah spaes,

whih requires that the map x 7! df(x) is ontinuous with respet to the operator norm. Nev-

ertheless, one an show that a C

2

-map in the sense de�ned above is C

1

in the sense of Fr�ehet

di�erentiability, so that the two onepts lead to the same lass of C

1

-funtions (f. [Ne01, I.6

and I.7℄).

(b) We also note that the existene of linear maps whih are not ontinuous shows that the

ontinuity of f does not follow from the di�erentiability of f beause eah linear map f :X ! Y

is di�erentiable at eah x 2 X in the sense of De�nition II.2.1(a).

Now we reall the preise statements of the most fundamental fats on alulus on loally

onvex spaes needed in the following.

Lemma II.2.3. Let X and Y be loally onvex spaes, U � X an open subset, and f :U ! Y

a ontinuously di�erentiable funtion.

(i) For any x 2 U , the map df(x):X ! Y is real linear and ontinuous.
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(ii) (Fundamental Theorem of Calulus) If x+ [0; 1℄h � U , then

f(x+ h) = f(x) +

Z

1

0

df(x+ th)(h) dt:

In partiular, f is loally onstant if and only if df = 0 .

(iii) f is ontinuous.

(iv) If f is C

n

, n � 2 , then the funtions (h

1

; : : : ; h

n

) 7! d

n

f(x)(h

1

; : : : ; h

n

) , x 2 U , are

symmetri n-linear maps.

(v) If x+ [0; 1℄h � U , then we have the Taylor Formula

f(x+ h) = f(x) + df(x)(h) + : : :+

1

(n� 1)!

d

n�1

f(x)(h; : : : ; h)

+

1

(n� 1)!

Z

1

0

(1� t)

n�1

d

n

f(x+ th)(h; : : : ; h) dt:

Proof. (i) For eah linear funtional � 2 Y

0

and h

1

; h

2

2 X , the map

F (t

1

; t

2

) := �(f(x + t

1

h

1

+ t

2

h

2

))

is de�ned on an open 0-neighborhood in R

2

and has ontinuous partial derivatives

�F

�t

1

(t

1

; t

2

) = df(x+ t

1

h

1

+ t

2

h

2

)(h

1

);

�F

�t

2

(t

1

; t

2

) = df(x+ t

1

h

1

+ t

2

h

2

)(h

2

):

From �nite-dimensional alulus we know that F is a C

1

-map and dF (0; 0):R

2

! R is linear.

This implies that � Æ df(x) is linear on spanfh

1

; h

2

g . Sine E

0

separates the points of Y and

h

1

; h

2

are arbitrary, the map df(x) is real linear. Its ontinuity follows from the ontinuity of df .

(ii) We onsider for � 2 Y

0

the C

1

-map

F : I ! R; F (t) := �(f(x+ th))

and obtain from the Fundamental Theorem in one variable alulus

�(f(x+ h)� f(x)) = F (1)� F (0) =

Z

1

0

F

0

(t) dt =

Z

1

0

�(df(x + th)(h)) dt:

Sine Y

0

separates the points of Y , this implies that the weak integral

R

1

0

df(x+ th)(h) dt; whih

a priori exists only in the ompletion of Y , atually de�nes an element of Y whih oinides

with f(x+ h)� f(x).

(iii) Let p be a ontinuous seminorm on Y and " > 0. Then there exists a balaned

0-neighborhood U

1

� X with x + U

1

� U and p

�

df(x + th)(h)

�

< " for t 2 [0; 1℄ and h 2 U

1

.

Hene

p

�

f(x+ h)� f(x)

�

�

Z

1

0

p

�

df(x+ th)(h)

�

dt � "

(Exerise II.12), and thus f is ontinuous.

(iv) Arguing as in (i), we may w.l.o.g. assume that Y = R . That the maps d

n

f(x) are

symmetri and n-linear follows by onsidering maps of the form

(t

1

; : : : ; t

n

)! f(x+ t

1

h

1

+ : : :+ t

n

h

n

)

on open 0-neighborhood in R

n

and then applying the orresponding �nite-dimensional result.

(v) We onsider the C

n

-map

F : I = [0; 1℄! R; F (t) := f(x+ th) with F

(n)

(t) = d

n

f(x+ th)(h; : : : ; h)

and apply the Taylor Formula for C

n

-funtions I ! R .

The following haraterization of C

1

-funtions is partiularly onvenient for the proof of

the Chain Rule.
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Proposition II.2.4. Let X and Y be loally onvex spaes, U � X an open subset and

f :U ! Y a map. Then

U

[1℄

:= f(x; h; t) 2 U �X � K :x + th 2 Ug

is an open subset of U � X � K and f is C

1

if and only if there exists a ontinuous funtion

f

[1℄

:U

[1℄

! Y with

f

[1℄

(x; h; t) :=

1

t

(f(x+ th)� f(x)) for t 6= 0:

If this is the ase, then

df(x)(h) = f

[1℄

(x; h; 0):

Proof. The openness of U

[1℄

follows from the ontinuity of the map U�X�K ! X; (x; h; t) 7!

x+ th , beause U

[1℄

is the inverse image of U under this map.

If a ontinuous funtion f

[1℄

exists with the required properties, then learly df(x)(h) =

f

[1℄

(x; h; 0), whih implies that f is a C

1

-funtion.

Suppose, onversely, that f is C

1

. Sine U is open, there exists for eah x 2 U a onvex

balaned 0-neighborhood V � X with x+V � U . For y; th 2

1

2

V , we then have y+[0; 1℄th � U ,

so that Lemma II.2.3(ii) implies that

1

t

(f(y + th)� f(y)) =

Z

1

0

df(y + sth)(h) ds:

Sine the right hand side de�nes a ontinuous funtion on the neighborhood

f(y; h; t) 2 U

[1℄

: y + [0; 1℄th � Ug

of U �X � f0g , we see that

f

[1℄

(x; h; t) :=

�

R

1

0

df(y + sth)(h) ds if x+ [0; 1℄th � U

1

t

(f(x+ th)� f(x)) otherwise

is a ontinuous funtion on U

[1℄

satisfying all requirements.

Proposition II.2.5. (Chain Rule) If X , Y and Z are loally onvex spaes, U � X and

V � Y are open, and f

1

:U ! V , f

2

:V ! Z are C

1

, then f

2

Æ f

1

:U ! Z is C

1

with

d(f

2

Æ f

1

)(x) = df

2

�

f

1

(x)

�

Æ df

1

(x) for x 2 U:

Proof. We use the haraterization of C

1

-funtion from Proposition II.2.4. For (x; h; t) 2

U

[1℄

, we have

1

t

�

(f

2

Æ f

1

)(x + th)� (f

2

Æ f

1

)(x)

�

=

1

t

�

f

2

(f

1

(x) + tf

[1℄

1

(x; h; t))� f

2

(f

1

(x))

�

= f

[1℄

2

(f

1

(x); f

[1℄

1

(x; h; t); t):

Sine this is a ontinuous funtion on U

[1℄

, Proposition II.2.4 implies that f

2

Æ f

1

is C

1

. For

t = 0, we obtain in partiular

d(f

2

Æ f

1

)(x)(h) = f

[1℄

2

(f

1

(x); f

[1℄

1

(x; h; 0); 0) = df

2

(f

1

(x))(df

1

(x)(h)):

Proposition II.2.6. If X

1

, X

2

and Y are loally onvex spaes, X = X

1

�X

2

, U � X is

open, and f :U ! Y is ontinuous, then the partial derivatives

d

1

f(x

1

; x

2

)(h) := lim

t!0

1

t

�

f(x

1

+ th; x

2

)� f(x

1

; x

2

)

�
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and

d

2

f(x

1

; x

2

)(h) := lim

t!0

1

t

�

f(x

1

; x

2

+ th)� f(x

1

; x

2

)

�

exist and are ontinuous if and only if f is C

1

. In this ase, we have

df(x

1

; x

2

)(h

1

; h

2

) = d

1

f(x

1

; x

2

)(h

1

) + d

2

f(x

1

; x

2

)(h

2

):

Proof. If f is C

1

, then the existene and ontinuity of the partial derivatives d

1

f and d

2

f

follows by restriting df .

Suppose, onversely, that the partial derivatives df

1

and df

2

exist and that they are

ontinuous, so that they are also linear in the last argument (Lemma III.2.3). For

(x

1

; x

2

) + ([0; 1℄h

1

; [0; 1℄h

2

) � U;

we then have

f(x

1

+ th

1

; x

2

+ th

2

)� f(x

1

; x

2

)

= f(x

1

+ th

1

; x

2

+ th

2

)� f(x

1

+ th

1

; x

2

) + f(x

1

+ th

1

; x

2

)� f(x

1

; x

2

)

=

Z

1

0

df

2

(x

1

+ th

1

; x

2

+ sth

2

)(th

2

) ds+

Z

1

0

d

1

f(x

1

+ sth

1

; x

2

)(th

1

) ds

= t

�

Z

1

0

df

2

(x

1

+ th

1

; x

2

+ sth

2

)(h

2

) ds+

Z

1

0

d

1

f(x

1

+ sth

1

; x

2

)(h

1

) ds

�

:

Using the ontinuous dependene of integrals on parameters (Exerise II.12()), we onlude that

all diretional derivatives of f exist and equal

df(x

1

; x

2

)(h

1

; h

2

) =

Z

1

0

df

2

(x

1

; x

2

)(h

2

) ds+

Z

1

0

d

1

f(x

1

; x

2

)(h

1

) ds

= d

2

f(x

1

; x

2

)(h

2

) + d

1

f(x

1

; x

2

)(h

1

):

Remark II.2.7. (a) If f :X ! Y is a ontinuous linear map, then f is smooth with

df(x)(h) = f(h)

for all x; h 2 X , and d

n

f = 0 for n � 2.

(b) From (a) and Proposition II.2.6 it follows that a ontinuous k -linear map

m:X

1

� : : :�X

k

! Y

is ontinuously di�erentiable with

dm(x)(h

1

; : : : ; h

k

) = m(h

1

; x

2

; : : : ; x

k

) + � � �+m(x

1

; : : : ; x

k�1

; h

k

):

Indutively one obtains that m is smooth with d

k+1

m = 0 (f. Exerise II.21).

() The addition map a:X �X ! X of a topologial vetor spae is smooth. In fat, we

have

da(x; y)(v; w) = v + w = a(v; w);

so that a is a C

1

-map. Indutively it follows that a is smooth.

(d) If f :U ! Y is C

n+1

, then Lemma II.2.3(iv) and Proposition II.2.6 imply that

d(d

n

f)(x; h

1

; : : : ; h

n

)(y; k

1

; : : : ; k

n

) = d

n+1

f(x)(h

1

; : : : ; h

n

; y)

+ d

n

f(x)(k

1

; h

2

; : : : ; h

n

) + : : :+ d

n

f(x)(h

1

; : : : ; h

n�1

; k

n

):

It follows in partiular that, whenever f is C

n

, then f is C

n+1

if and only if d

n

f is C

1

.

(e) If f :U ! Y is holomorphi, then the �nite-dimensional theory shows that for eah

h 2 X , the funtion U ! Y; x 7! df(x)(h) is holomorphi. Hene d

2

f(x) is omplex bilinear

and therefore d(df) is omplex linear. Thus df :U �X ! Y is also holomorphi.
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Example II.2.8. In the de�nition of C

1

-maps, we have not required the underlying topologial

vetor spaes to be loally onvex and one may wonder whether this assumption is made for

onveniene or if there are some serious underlying reasons. The following example shows that

loal onvexity is ruial for the validity of the Fundamental Theorem.

Let V denote the spae of measurable funtions f : [0; 1℄! R for whih

jf j :=

Z

1

0

jf(x)j

1

2

dx

is �nite and identify funtions whih oinide on a set whose omplement has measure zero.

Then d(f; g) := jf � gj de�nes a metri on this spae (Exerise II.3). We thus obtain a metri

topologial vetor spae (V; d).

For a subset E � [0; 1℄, let �

E

denote its harateristi funtion. Consider the urve

: [0; 1℄! V; (t) := �

[0;t℄

:

Then

jh

�1

�

(t+ h)� (t)

�

j = jhj

�

1

2

jhj ! 0

for eah t 2 [0; 1℄ as h ! 0. Hene  is C

1

with d = 0. Sine  is not onstant, the

Fundamental Theorem of Calulus does not hold in V .

The defet in this example is aused by the non-loal onvexity of V . In fat, one an even

show that all ontinuous linear funtionals on V vanish.

Remark II.2.9. (a) In the ontext of Banah spaes, one has an Inverse Funtion Theorem

and also an Impliit Funtion Theorem ([La99℄). Suh results annot be expeted in general for

Fr�ehet spaes (f. the exponential funtion of Di�(S

1

)). Nevertheless, Gl�okner's reent paper

[Gl03℄ ontains impliit funtion theorems for maps of the type f :E ! F , where F is a Banah

spae and E is loally onvex.

(b) Another remarkable pathology ourring already for Banah spaes is that a losed

subspae F of a Banah spae E need not have a losed omplement. A simple example is the

subspae F := 

0

(N;R) in E := `

1

(N;R) ([Wer95, Satz IV.6.5℄) (f. Exerise II.13).

This has the onsequene that the quotient map q:E ! E=F has no smooth setions

beause the existene of a smooth loal setion �:U ! E around 0 2 E=F implies the existene

of a losed omplement im(d�(0))

�

=

E=F to F in E . Nevertheless, the map q:E ! E=F de�nes

the struture of a topologial F -prinipal bundle over E=F whih has a ontinuous global setion

by Mihael's Seletion Theorem ([Mi59℄).

Remark II.2.10. (Pathologies of linear ODEs in Fr�ehet spaes) (a) First we give an example

of a linear ODE for whih solutions to initial value problems exist, but are not unique. We

onsider the Fr�ehet spae V := C

1

([0; 1℄;R) and the ontinuous linear operator Lf := f

0

on

this spae. We are asking for solutions of the initial value problem

(2:2:1) 

0

(t) = L(t); (0) = 

0

:

As a onsequene of E. Borel's Theorem that eah power series is the Taylor series of a smooth

funtion, eah 

0

has a smooth extension to a funtion on R . Let h be suh a funtion and

onsider

:R ! V; (t)(x) := h(t+ x):

Then (0) = h j

[0;1℄

= 

0

and 

0

(t)(x) = h

0

(t + x) = (L(t))(x). It is lear that these solutions

of (2.2.1) depend on the hoie of the extension h of 

0

. Di�erent hoies lead to di�erent

extensions.

(b) Now we onsider the spae V := C

1

(S

1

; C ) whih we identify with the spae of 2� -

periodi smooth funtions on the real line. We onsider the linear operator Lf := �f

00

and the
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equation (2.2.1), whih in this ase is the heat equation with reversed time. It is easy to analyze

this equation in terms of the Fourier expansion of  . So let

(t)(x) =

X

n2Z

a

n

(t)e

inx

be the Fourier expansion of (t). Then (2.2.1) implies a

0

n

(t) = n

2

a

n

(t) for eah n 2 Z , so that

a

n

(t) = a

n

(0)e

tn

2

holds for any solution  of (2.2.1). If the Fourier oeÆients a

n

(0) of 

0

do

not satisfy

X

n

ja

n

(0)je

"n

2

<1

for some " > 0 (whih need not be the ase for a smooth funtion 

0

), then (2.2.1) does not

have a solution on [0; "℄ .

As a onsequene, the operator exp(tL) is never de�ned for t 6= 0. Nevertheless, we may

use the Fourier series expansion to see that �(t) := (1+ it

2

)1+ tL de�nes a urve �:R ! GL(V )

whih is smooth in the sense that

R � V ! V � V; (t; v) 7! (�(t)(v); �(t)

�1

(v))

is smooth. We further have �

0

(0) = L , so that L arises as the tangent vetor of a smooth urve

in GL(V ), but not for a one-parameter group.

De�nition II.2.11. A loally onvex spae E is said to beMakey omplete if for eah smooth

urve �: [0; 1℄! E there exists a smooth urve �: [0; 1℄! E with �

0

= � .

For a more detailed disussion of Makey ompleteness and equivalent onditions we refer

to [KM97, Th. 2.14℄.

Remark II.2.12. If E is a sequentially omplete loally onvex spae, then it is Makey om-

plete beause the sequential ompleteness implies the existene of Riemann integrals of ontinuous

E -valued funtions on ompat intervals, hene that for eah ontinuous urve �: [0; 1℄! E there

exists a smooth urve �: [0; 1℄! E with �

0

= � .

Remark II.2.13. (a) We briey reall the basi de�nitions underlying the onvenient alulus

in [KM97℄. Let E be a loally onvex spae. The 

1

-topology on E is the �nal topology with

respet to the set C

1

(R; E). Let U � E be an open subset and f :U ! F a funtion, where F

is a loally onvex spae. Then we all f onveniently smooth if

f Æ C

1

(R; U) � C

1

(R; F ):

This implies nie artesian losedness properties of the lass of smooth maps (f. [KM97, p.30℄).

(b) If E is a Fr�ehet spae, then the 

1

-topology oinides with the original topology

([KM97, Th. 4.11℄), so that eah onveniently smooth map is ontinuous.

We laim that for an open subset U of a Fr�ehet spae, a map f :U ! F is onveniently

smooth if and only if it is smooth in the sense of De�nition II.2.1. This an be shown as follows.

Sine C

1

(R; E) is the same spae for both notions of di�erentiability, the Chain Rule shows that

smoothness in the sense of De�nition II.2.1 implies smoothness in the sense of onvenient alulus.

Now we assume that f :U ! F is onveniently smooth. Then the derivative df :U � E ! F

exists and de�nes a onveniently smooth map df :U ! L(E;F ) � C

1

(E;F ) ([KM97, Th. 3.18℄).

Hene df :U � E ! F is also onveniently smooth, and thus ontinuous with respet to the



1

-topology. As E �E is a Fr�ehet spae, it follows that df is ontinuous. Therefore f is C

1

in the sense of De�nition II.2.1, and now one an iterate the argument.
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II.3. Di�erentiable manifolds

Sine we have a hain rule for C

1

-maps between loally onvex spaes, hene also for

smooth maps, we an de�ne smooth manifolds as in the �nite-dimensional ase (f. [Ha82℄,

[Mil83℄, [Gl02a℄, [GN05℄):

De�nition II.3.1. Let M be a Hausdor� topologial spae and E a loally onvex spae.

An E -hart of an open subset U � M is a homeomorphism ':U ! '(U) � E onto an open

subset '(U) of E . We denote suh a hart as a pair (';U). Two harts (';U) and ( ; V ) are

said to be smoothly ompatible if the map

 Æ '

�1

j

'(U\V )

:'(U \ V )!  (U \ V )

is smooth. From the hain rule it follows that ompatibility of harts is an equivalene relation

on the set of all E -harts of M . An E -atlas of M is a family A := ('

i

; U

i

)

i2I

of pairwise

ompatible E -harts of M for whih

S

i

U

i

= M . A smooth E -struture on M is a maximal

E -atlas and a smooth E -manifold is a pair (M;A), where A is a maximal E -atlas on M .

We all a manifold modeled on a loally onvex, resp., Fr�ehet spae, resp., Banah spae

a loally onvex, resp., Fr�ehet, resp., Banah manifold.

Remark II.3.2. (a) Loally onvex spaes are regular in the sense that eah point has a

neighborhood base onsisting of losed sets, and this property is inherited by manifolds modeled

on these spaes (f. [Mil83℄).

(b) If M

1

; : : : ;M

n

are smooth manifolds modeled on the spaes E

i

, i = 1; : : : ; n , then

the produt set M := M

1

� : : : �M

n

arries a natural manifold struture with model spae

E =

Q

n

i=1

E

i

.

De�nition II.3.3. (a) One de�nes the tangent bundle �

TM

:TM ! M as follows. Let

A := ('

i

; U

i

)

i2I

be an E -atlas of M . On the disjoint union of the set '(U

i

)�E , we de�ne an

equivalene relation by

(x; v) �

�

('

j

Æ '

�1

i

)(x); d('

j

Æ '

�1

i

)(x)(v)

�

for x 2 '

i

(U

i

\ U

j

) and v 2 E and write [x; v℄ for the equivalene lass of (x; v). Let p 2 U

i

.

Then the equivalene lasses of the form ['

i

(p); v℄ are alled tangent vetors in p . Sine all the

di�erentials d('

j

Æ'

�1

i

)(x) are invertible linear maps, it easily follows that the set T

p

(M) of all

tangent vetors in p forms a vetor spae isomorphi to E under the map E ! T

p

(M); v 7! [x; v℄ .

Now we turn the tangent bundle

TM :=

[

p2M

T

p

(M)

into a manifold by the harts

 

i

:TU

i

:=

[

p2U

i

T

p

(M)! '(U

i

)�E; ['

i

(x); v℄ 7! ('

i

(x); v):

It is easy to see that for eah open subset U of a loally onvex spae E , we have TU

�

=

U �E

(as smooth manifolds) and in partiular TU

j

�

=

U

j

�E in the setting from above.

(b) Let M and N be smooth manifolds modeled on loally onvex spaes and f :M ! N

a smooth map. We write Tf :TM ! TN for the orresponding map indued on the level of

tangent vetors. Loally this map is given by

Tf(x; h) =

�

f(x); df(x)(h)

�

;
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where df(p) := T

p

(f):T

p

(M)! T

f(p)

(N) denotes the di�erential of f at p . In view of Remark

II.2.7(d), the tangent map Tf is smooth if f is smooth. In the following, we will always identify

M with the zero setion in TM . In this sense, we have Tf j

N

M

= f . If V is a loally onvex

spae, then TV

�

=

V � V and the map Tf an aordingly be written as Tf = (f; df), where

we think of df as a map TM ! V .

From the relations

T (id

M

) = id

TM

and T (f

1

Æ f

2

) = Tf

1

Æ Tf

2

for smooth maps f

2

:M

1

! M

2

and f

2

:M

2

! M

3

it follows that T is an endofuntor on the

ategory of smooth manifolds. Moreover, it preserves �nite produts in the sense that for smooth

manifolds M

1

; : : : ;M

n

, there is a natural isomorphism

T (M

1

� � � � �M

n

)

�

=

TM

1

� � � � � TM

n

:

() A (smooth) vetor �eld X on M is a smooth setion of the tangent bundle q

TM

:TM !

M , i.e. a smooth map X :M ! TM with �

TM

ÆX = id

M

. We write V(M) for the spae of all

vetor �elds on M . If f 2 C

1

(M;V ) is a smooth funtion on M with values in some loally

onvex spae V and X 2 V(M), then we obtain a smooth funtion on M via

X:f := df ÆX :M ! TM ! V:

Remark II.3.4. If M = U is an open subset of the loally onvex spae E , then TU = U �E

with the bundle projetion �

TU

:U �E ! U; (x; v) 7! x . Then eah smooth vetor �eld is of the

form X(x) = (x;

e

X(x)) for some smooth funtion

e

X:U ! E , and we may thus identify V(U)

with the spae C

1

(U;E).

Remark II.3.5. (a) One an also de�ne for eah E -manifold M a otangent bundle T

�

(M) =

S

m2M

T

m

(M)

0

and endow it with a vetor bundle struture over M , but to endow it with a

smooth manifold struture we need a loally onvex topology on the dual spae E

0

suh that for

eah loal di�eomorphism f :U ! E , U open in E , the map U � E

0

! E

0

; (x; �) 7! � Æ df(x)

is smooth. If E is a Banah spae, then the norm topology on E

0

has this property, and the

author of these notes is not aware of any other example where this is the ase.

In Setion II.4, we shall introdue di�erential forms diretly, without referene to any

otangent bundle.

(b) The following modi�ation might be useful to onstrut a replaement for a otangent

bundle. Instead of the, mostly badly behaved, duality E � E

0

! K , one may also start

with another loally onvex spae F for whih we have a non-degenerate ontinuous pairing

E � F ! K ; (e; f) 7! he; fi , so that we may think of F as a subspae of E

0

. Then we may

onsider E -manifolds with an atlas for whih all oordinate hanges

f :=  Æ '

�1

:'(U \ V )!  (U \ V ) � E

have the property that for eah x , the ontinuous linear map df(x):E ! E has an adjoint map

df(x)

>

on F , satisfying

hdf(x)v; wi = hv; df(x)

>

wi for v 2 E;w 2 F;

and for whih the map

'(U \ V )� F !  (U \ V )� F; (x;w) 7! (f(x); (df(x)

>

)

�1

w)

is smooth. Then one an use these maps as glueing maps to obtain an F -vetor bundle over M

whih is a subbundle of T

�

(M) with a natural di�erentiable struture.
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Lemma II.3.6. If X;Y 2 V(M) , then there exists a vetor �eld [X;Y ℄ 2 V(M) whih is

uniquely determined by the property that on eah open subset U �M we have

(2:3:1) [X;Y ℄:f = X:(Y:f)� Y:(X:f)

for all f 2 C

1

(U;R) .

Proof. Loally the vetor �elds X and Y are given as X(p) =

�

p;

e

X(p)

�

and Y (p) =

�

p;

e

Y (p)

�

. We de�ne a vetor �eld by

(2:3:2) [X;Y ℄e(p) := d

e

Y (p)

�

e

X(p)

�

� d

e

X(p)

�

e

Y (p)

�

:

Then the smoothness of the right hand side follows from the hain rule. The requirement that

(2.3.1) holds on ontinuous linear funtionals f determines [X;Y ℄e uniquely. Clearly, (2.3.2)

de�nes a smooth vetor �eld on M . Now the assertion follows beause loally (2.3.1) is a

onsequene of the Chain Rule (Proposition II.2.5).

Proposition II.3.7. (V(M); [�; �℄) is a Lie algebra.

Proof. The ruial part is to hek the Jaobi identity. This follows from the observation that

if U is an open subset of a loally onvex spae, then the mapping

�:V(U)! der

�

C

1

(U;R)

�

; �(X)(f) = X:f

is injetive and satis�es �([X;Y ℄) = [�(X);�(Y )℄ (Exerise II.17). Therefore the Jaobi identity

in V(U) follows from the Jaobi identity in the assoiative algebra End

�

C

1

(U;R)

�

.

For the appliations to Lie groups we will need the following lemma.

Lemma II.3.8. Let M and N be smooth manifolds and ':M ! N a smooth map. Suppose

that X

N

; Y

N

2 V(N) and X

M

; Y

M

2 V(M) are '-related in the sense that X

N

Æ ' = T' ÆX

M

and Y

N

Æ ' = T' Æ Y

M

. Then [X

N

; Y

N

℄ Æ ' = T' Æ [X

M

; Y

M

℄:

Proof. It suÆes to perform a loal alulation. Therefore we may w.l.o.g. assume that

M � F is open, where F is a loally onvex spae and that N is a loally onvex spae. Then

[X

N

; Y

N

℄e

�

'(p)

�

= d

e

Y

N

�

'(p)

�

:

e

X

N

�

'(p)

�

� d

e

X

N

�

'(p)

�

:

e

Y

N

�

'(p)

�

:

Next we note that our assumption implies that

e

Y

N

Æ' = d' Æ (id

F

�

e

Y

M

): Using the Chain Rule

we obtain

d

e

Y

N

�

'(p)

�

d'(p) = d(d')

�

p;

e

Y

M

(p)

�

Æ

�

id

F

; d

e

Y

M

(p)

�

whih, in view of Remark II.2.7(d), leads to

d

e

Y

N

�

'(p)

�

:

e

X

N

�

'(p)

�

= d

e

Y

N

�

'(p)

�

d'(p):

e

X

M

(p)

= d(d')

�

p;

e

Y

M

(p)

�

Æ

�

id

F

; d

e

Y

M

(p)

�

:

e

X

M

(p)

= d

2

'(p)

�

e

Y

M

(p);

e

X

M

(p)

�

+ d'(p)

�

d

e

Y

M

(p):

e

X

M

(p)

�

:

Now the symmetry of the seond derivative (Lemma II.2.3(iv)) implies that

[X

N

; Y

N

℄e

�

'(p)

�

=d'(p)

�

d

e

Y

M

(p):

e

X

M

(p)� d

e

X

M

(p):

e

Y

M

(p)

�

=d'(p)

�

[X

M

; Y

M

℄e(p)

�

:
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II.4. Di�erential forms

Di�erential forms play a signi�ant role throughout in�nite-dimensional Lie theory; either

as di�erential forms on Lie groups or as di�erential forms on manifolds on whih ertain Lie

groups at. In the present setion, we desribe a natural approah to di�erential forms on

manifolds modeled on loally onvex spaes. The main di�erene to the �nite-dimensional ase

is that in loal harts there is no natural oordinate desription of di�erential forms and that for

general loally onvex manifolds (not even for all Banah manifolds), smooth partitions of unity

are available, so that one has to be areful with loalization arguments.

We have already seen that for eah smooth manifold M , the spae V(M) of smooth vetor

�elds on M arries a natural Lie algebra struture. We shall see below that eah smooth p-form

! 2 


p

(M;V ) with values in a loally onvex spae V de�nes an alternating p-linear map

V(M)

p

! C

1

(M;V ); (X

1

; : : : ; X

p

) 7! !(X

1

; : : : ; X

p

):

If M has the property that eah tangent vetor extends to a smooth vetor �eld, whih is always

the ase loally, then this leads to an inlusion of 


p

(M;V ) into the spae of Lie algebra ohains

for V(M) with values in the V(M)-module C

1

(M;V ). We shall de�ne the exterior derivative on

di�erential forms in suh a way that with respet to this identi�ation, it orresponds to the Lie

algebra di�erential (Appendix C). This point of view will prove very useful, and in this setion

we use it to derive geometri strutures suh as the Lie derivative and the exterior di�erential

from the abstrat setting of Lie algebra ohains.

De�nition II.4.1. (a) If M is a di�erentiable manifold and V a loally onvex spae,

then a V -valued p-form ! on M is a funtion ! whih assoiates to eah x 2 M a k -

linear alternating map !

x

= !(x):T

x

(M)

p

! V suh that in loal oordinates the map

(x; v

1

; : : : ; v

p

) 7! !

x

(v

1

; : : : ; v

p

) is smooth. We write 


p

(M;V ) for the spae of smooth V -

valued p-forms on M with values in V and identify 


0

(M;V ) with the spae C

1

(M;V ) of

smooth V -valued funtions on M .

(b) Let V

1

; V

2

; V

3

be loally onvex spaes and �:V

1

� V

2

! V

3

be a ontinuous bilinear

map. Then the wedge produt




p

(M;V

1

)� 


q

(M;V

2

)! 


p+q

(M;V

3

); (!; �) 7! ! ^ �

is de�ned by (! ^ �)

x

:= !

x

^ �

x

, where

(!

x

^ �

x

)(v

1

; : : : ; v

p+q

) :=

1

p!q!

X

�2S

p+q

sgn(�)�

�

!

x

(v

�(1)

; : : : ; v

�(p)

); �

x

(v

�(p+1)

; : : : ; v

�(p+q)

)

�

:

For p = q = 1, we have in partiular

(! ^ �)

x

(v

1

; v

2

) = �(!

x

(v

1

); �

x

(v

2

))� �(!

x

(v

2

); �

x

(v

1

)):

Important speial ases where suh wedge produts are used are:

(1) �:R � V ! V is the salar multipliation of V .

(2) �:A�A! A is the multipliation of an assoiative algebra.

(3) �: g� g ! g is the Lie braket of a Lie algebra. In this ase, we also write [!; �℄ := ! ^ � .

() The pull-bak '

�

! of ! 2 


p

(M;V ) with respet to a smooth map ':N ! M is the

smooth p-form in 


p

(N; V ) de�ned by

('

�

!)

x

(v

1

; : : : ; v

p

) := !

'(x)

(d'(x)v

1

; : : : ; d'(x)v

p

) = !

'(x)

(T

x

(')v

1

; : : : ; T

x

(')v

p

):

Note that the hain rule implies that

(2:4:1) id

�

M

! = ! and '

�

1

('

�

2

!) = ('

2

Æ '

1

)

�

!

holds for ompositions of smooth maps. Moreover,

(2:4:2) '

�

(! ^ �) = '

�

! ^ '

�

�

follows diretly from the de�nitions. For f = ! 2 


0

(M;V ), we simply have '

�

f = f Æ ' .
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The de�nition of the exterior di�erential

d: 


p

(M;V )! 


p+1

(M;V )

is a bit more subtle than in �nite dimensions where one usually uses loal oordinates to de�ne

it in harts.

Proposition II.4.2. For ! 2 


p

(M;V ) , x 2 M and v

0

; : : : ; v

p

2 T

x

(M) , we hoose smooth

vetor �elds X

i

de�ned on a neighborhood of x satisfying X

i

(x) = v

i

. Then

(d!)

x

(v

0

; : : : ; v

p

) :=

p

X

i=0

(�1)

i

�

X

i

:!(X

0

; : : : ;

b

X

i

; : : : ; X

p

)

�

(x)(2:4:3)

+

X

i<j

(�1)

i+j

!([X

i

; X

j

℄; X

0

; : : : ;

b

X

i

; : : : ;

b

X

j

; : : : ; X

p

)(x)

does not depend on the hoie of the vetor �elds X

i

and de�nes a smooth (p + 1)-form d! 2




p+1

(M;V ) .

The de�nition of the di�erential is designed in suh a way that for X

0

; : : : ; X

p

2 V(M) we

have in C

1

(M;V ) the identity

(d!)(X

0

; : : : ; X

p

) :=

p

X

i=0

(�1)

i

X

i

:!(X

0

; : : : ;

b

X

i

; : : : ; X

p

)

+

X

i<j

(�1)

i+j

!([X

i

; X

j

℄; X

0

; : : : ;

b

X

i

; : : : ;

b

X

j

; : : : ; X

p

):(2:4:4)

Proof. We have to verify that the right hand side of (2.4.3) does not depend on the hoie

of the vetor �elds X

k

and that it is alternating in the v

k

. First we show that d! does not

depend on the hoie of the vetor �elds X

k

, whih amounts to showing that if one vetor �eld

X

k

vanishes in x , then the right hand side of (2.4.3) vanishes.

Suppose that X

k

(x) = 0. Then the only terms not obviously vanishing in x are

(2:4:5)

p

X

i 6=k

(�1)

i

�

X

i

:!(X

0

; : : : ;

b

X

i

; : : : ; X

p

)

�

(x);

(2:4:6)

X

i<k

(�1)

i+k

!([X

i

; X

k

℄; X

0

; : : : ;

b

X

i

; : : : ;

b

X

k

; : : : ; X

p

)(x);

and

(2:4:7)

X

k<i

(�1)

i+k

!([X

k

; X

i

℄; X

0

; : : : ;

b

X

k

; : : : ;

b

X

i

; : : : ; X

p

)(x):

In loal oordinates, we have

�

X

i

:!(X

0

; : : : ;

b

X

i

; : : : ; X

p

)

�

(x)

= (d

1

!)(x;X

i

(x))(X

1

(x); : : : ;

b

X

i

(x); : : : ; X

p

(x))

+

X

j<i

!

x

(X

0

(x); : : : ; dX

j

(x)X

i

(x); : : : ;

b

X

i

(x); : : : ; X

p

(x))

+

X

j>i

!

x

(X

0

(x); : : : ;

b

X

i

(x); : : : ; dX

j

(x)X

i

(x); : : : ; X

p

(x)):
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For a �xed i > k , the assumption X

k

(x) = 0 implies that only the term

!

x

(X

0

(x); : : : ; dX

k

(x)X

i

(x); : : : ;

b

X

i

(x); : : : ; X

p

(x))

ontributes. In view of X

k

(x) = 0, we have

dX

k

(x)X

i

(x) = dX

k

(x)X

i

(x)� dX

i

(x)X

k

(x) = [X

i

; X

k

℄(x):

This leads to

(�1)

k

!([X

k

; X

i

℄; X

0

; : : : ;

b

X

k

; : : : ;

b

X

i

; : : : ; X

p

)(x)

= �!

x

(X

0

(x); : : : ; dX

k

(x)X

i

(x); : : : ;

b

X

i

(x); : : : ; X

p

(x));

so that orresponding terms in (2.4.5) and (2.4.7) anel, and the same happens for i < k for

terms in (2.4.5) and (2.4.6). This proves that d! is independent of the hoie of the vetor �elds

X

i

.

To see that we obtain a smooth (p + 1)-form, we use loal oordinates and hoose the

vetor �elds X

i

as onstant vetor �elds. Then

(2:4:8) (d!)

x

(v

0

; : : : ; v

p

) =

p

X

i=0

(�1)

i

(d

1

!)(x; v

i

)(v

0

; : : : ; bv

i

; : : : ; v

p

)

is a smooth funtion of (x; v

0

; : : : ; v

p

).

It remains to show that d! is alternating. If v

i

= v

j

for some i < j , then the argument

above shows that we may assume that X

i

= X

j

. Sine ! is alternating, it suÆes to observe

that

(d!)

x

(v

0

; v

1

; : : : ; v

p

)

= (�1)

i

(d

1

!)(x; v

i

)(v

0

; : : : ; bv

i

; : : : ; v

p

) + (�1)

j

(d

1

!)(x; v

j

)(v

0

; : : : ; bv

j

; : : : ; v

p

)

= (�1)

i

(d

1

!)(x; v

i

)(v

0

; : : : ; bv

i

; : : : ; v

p

) + (�1)

i+1

(d

1

!)(x; v

i

)(v

0

; : : : ; bv

i

; : : : ; v

p

) = 0:

Proposition II.4.3. For eah ! 2 


p

(M;V ) , we have d

2

! = 0 .

Proof. It learly suÆes to verify this for the ase where M is an open subset of a loally

onvex spae E .

Eah p-form ! 2 


p

(M;V ) de�nes a p-linear map !

g

:V(M)

p

! C

1

(M;V ). In this

sense, we may onsider !

g

as a p-ohain for the Lie algebra g := V(M) with values in the

V(M)-module C

1

(M;V ), where the module struture is the natural one given by (X:f)(x) :=

df(x)X(x). The map ! 7! !

g

is injetive, as we see by evaluating p-forms on onstant vetor

�elds. Moreover, the de�nition of d implies that d

g

!

g

= (d!)

g

. Now (d

2

!)

g

= d

2

g

!

g

= 0 implies

that d

2

! = 0 (Appendix C).

Remark II.4.4. Another way to verify that d

2

! = 0 is to alulate diretly in loal oordinates

using formula (2.4.8). Then d

2

! = 0 easily follows from the symmetry of seond derivatives of

! (Lemma II.2.3(iv)) (Exerise II.10).

De�nition II.4.5. Extending d to a linear map on the spae 
(M;V ) :=

L

p2N

0




p

(M;V )

of all V -valued di�erential forms on M , the relation d

2

= 0 implies that the spae

Z

p

dR

(M;V ) := ker(d j




p

(M;V )

)

of losed forms ontains the spae B

p

dR

(M;V ) := d(


p�1

(M;V )) of exat forms, so that the

V -valued de Rham ohomology spae

H

p

dR

(M;V ) := Z

p

dR

(M;V )=B

p

dR

(M;V )

is well-de�ned.
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Remark II.4.6. We onsider smooth funtions f :M ! V as di�erential forms of degree 0.

Then df is the 1-form with df(x)(v) = T

x

(f)v , where df is the di�erential of f , as de�ned

above. Sine M is loally onvex, the vanishing of df means that the funtion f is loally

onstant (Lemma II.2.3(ii)). Thus H

0

dR

(M;V ) = Z

0

dR

(M;V ) is the spae of loally onstant

funtions on M . If M has d onneted omponents, then H

0

dR

(M;V )

�

=

V

d

.

Lemma II.4.7. If ':N !M is a smooth map and ! 2 


p

(M;V ) , then d('

�

!) = '

�

d!:

Proof. First we assume that ' is a di�eomorphism. Let X

0

; : : : ; X

p

2 V(N) and de�ne

Y

0

; : : : ; Y

p

2 V(M) by Y

i

('(x)) := d'(x)(X

i

(x)), so that Y

i

Æ ' = T' Æ X

i

. In view of

Lemma II.3.6, this implies that [Y

i

; Y

j

℄ Æ' = T' Æ [X

i

; X

j

℄ for i; j = 0; : : : ; p . Moreover, we have

'

�

(!(Y

0

; : : : ;

b

Y

i

; : : : ; Y

p

)) = ('

�

!)(X

0

; : : : ;

b

X

i

; : : : ; X

p

):

We further have for eah smooth funtion f on M the relation

'

�

(Y

i

:f)(x) = df('(x))Y

i

('(x)) = df('(x))d'(x)X

i

(x) = (X

i

:('

�

f))(x);

so that we obtain with (2.4.3)

'

�

(d!)(X

0

; : : : ; X

p

) = d('

�

!)(X

0

; : : : ; X

p

):

Sine this relation also holds on eah open subset of M , resp., N , we onlude that d('

�

!) =

'

�

(d!). The preeding argument applies in partiular to loal di�eomorphisms de�ned by harts.

To omplete the proof of the general ase, we may now assume w.l.o.g. that M and N are

open subsets of loally onvex spaes. Using onstant vetor �elds, we then have

(d!)

x

(v

0

; : : : ; v

p

) =

p

X

i=0

(�1)

i

(d

1

!(x; v

i

))(v

0

; : : : ; bv

i

; : : : ; v

p

)

and therefore

('

�

(d!))

x

(v

0

; : : : ; v

p

) =

p

X

i=0

(�1)

i

(d

1

!('(x); d'(x)v

i

))(d'(x)v

0

; : : : ; d'(x)bv

i

; : : : ; d'(x)v

p

):

On the other hand, the Chain Rule leads to

d('

�

!)

x

(v

0

; : : : ; v

p

)

=

p

X

i=0

(�1)

i

(d

1

!('(x); d'(x)v

i

))(d'(x)v

0

; : : : ; d'(x)bv

i

; : : : ; d'(x)v

p

)

+

p

X

i=0

(�1)

i

X

j<i

!

'(x)

(d'(x)v

0

; : : : ; d

2

'(x)(v

i

; v

j

); : : : ; d'(x)bv

i

; : : : ; d'(x)v

p

)

+

p

X

i=0

(�1)

i

X

j>i

!

'(x)

(d'(x)v

0

; : : : ; d'(x)bv

i

; : : : ; d

2

'(x)(v

i

; v

j

); : : : ; d'(x)v

p

)

=

p

X

i=0

(�1)

i

(d

1

!('(x); d'(x)v

i

))(d'(x)v

0

; : : : ; d'(x)bv

i

; : : : ; d'(x)v

p

);

where the terms in the last two lines anel beause of the symmetry of the bilinear maps d

2

'(x)

(Lemma II.2.3(iv)). This proves the assertion.

For �nite-dimensional manifolds, one usually de�nes the Lie derivative of a di�erential form

in the diretion of a vetor �eld X by using its loal ow t 7! Fl

t

X

:

L

X

! :=

d

dt

t=0

(Fl

�t

X

)

�

!:

Sine vetor �elds on in�nite-dimensional manifold need not have a loal ow (f. Remark II.2.10),

we introdue the Lie derivative more diretly, resembling its algebrai ounterpart (f. Ap-

pendix C).
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De�nition II.4.8. (a) For any smooth manifold M and eah loally onvex spae, we have

a natural representation of the Lie algebra V(M) on the spae 


p

(M;V ) of V -valued p-forms

on M , given by the Lie derivative. For Y 2 V(M), the Lie derivative L

Y

! is de�ned on

v

1

; : : : ; v

p

2 T

x

(M) by

(L

Y

:!)

x

(v

1

; : : : ; v

p

)

= (Y:!(X

1

; : : : ; X

p

))(x) �

p

X

j=1

!(X

1

; : : : ; [Y;X

j

℄; : : : ; X

p

)(x)

= (Y:!(X

1

; : : : ; X

p

))(x) +

p

X

j=1

(�1)

j

!([Y;X

j

℄; X

1

; : : : ;

b

X

j

; : : : ; X

p

)(x);

where X

1

; : : : ; X

p

are vetor �elds on a neighborhood of x satisfying X

i

(x) = v

i

. To see that

the right hand side does not depend on the hoie of the vetor �elds X

i

, suppose that X

i

(x) = 0

for some i . Then evaluation of the right hand side in x yields in loal oordinates

(Y:!(X

1

; : : : ; X

p

))(x) � !(X

1

; : : : ; [Y;X

i

℄; : : : ; X

p

)(x)

= !

x

(X

1

(x); : : : ; dX

i

(x)Y (x); : : : ; X

p

(x))

� !

x

(X

1

(x); : : : ; dX

i

(x)Y (x)� dY (x)X

i

(x); : : : ; X

p

(x)) = 0:

Therefore L

Y

! is well-de�ned. In loal oordinates, we have

(L

Y

!)

x

(v

1

; : : : ; v

p

) = (Y:!(v

1

; : : : ; v

p

))(x) +

p

X

j=1

!(v

1

; : : : ; dY (x)v

i

; : : : ; v

p

)

= (d

1

!)(x; Y (x))(v

1

; : : : ; v

p

) +

p

X

j=1

!(v

1

; : : : ; dY (x)v

i

; : : : ; v

p

);

whih immediately implies that L

Y

! de�nes a smooth V -valued p-form on M .

(b) We further obtain for eah X 2 V(M) and p � 1 a linear map

i

X

: 


p

(M;V )! 


p�1

(M;V ) with (i

X

!)

x

= i

X(x)

!

x

;

where

(i

v

!

x

)(v

1

; : : : ; v

p�1

) := !

x

(v; v

1

; : : : ; v

p�1

):

For ! 2 


0

(M;V ) = C

1

(M;V ), we put i

X

! := 0.

Proposition II.4.9. For X;Y 2 V(M) , we have on 
(M;V ) :

(1) [L

X

;L

Y

℄ = L

[X;Y ℄

, i.e., the Lie derivative de�nes a representation of the Lie algebra V(M)

on 


p

(M;V ) .

(2) [L

X

; i

Y

℄ = i

[X;Y ℄

.

(3) L

X

= d Æ i

X

+ i

X

Æ d (Cartan formula).

(4) L

X

Æ d = d Æ L

X

.

(5) L

X

(Z

p

dR

(M;V )) � B

p

dR

(M;V ) .

Proof. (1)-(3) It suÆes to verify these formulas loally in harts, so that we may assume

that M is an open subset of a loally onvex spae. Then (1)-(3) follow from the orresponding

formulas in Appendix C, applied to the Lie algebra g = V(M) and the module C

1

(M;V ).

(4) follows from (3) and d

2

= 0.

(5) follows from (3).



Monastir Summer Shool: In�nite-Dimensional Lie Groups 25

Remark II.4.10. Clearly integration of di�erential forms ! 2 


p

(M;V ) only makes sense if

M is a �nite-dimensional oriented manifold (possibly with boundary) of dimension p and V

is Makey omplete. We need the Makey ompleteness to insure that eah smooth funtion

f :Q! V on a ube Q :=

Q

p

i=1

[a

i

; b

i

℄ � R

p

has an iterated integral

Z

Q

fdx :=

Z

b

1

a

1

� � �

Z

b

p

a

p

f(x

1

; : : : ; x

p

) dx

1

� � � dx

p

:

If ':U ! R

p

is a hart of M ompatible with the orientation and supp(!) is a ompat subset

of U , then we de�ne

Z

M

! :=

Z

'(U)

('

�1

)

�

! =

Z

'(U)

f dx;

where f 2 C

1

('(U); V ) is the ompatly supported funtion determined by

(('

�1

)

�

!)(x) = f(x) dx

1

^ : : : ^ dx

p

:

If, more generally, ! has ompat support and (�

i

)

i2I

is a smooth partition of unity with

the property that supp(�

i

) is ontained in a hart domain, then we de�ne

Z

M

! :=

X

i2I

Z

M

�

i

!

and observe that the right hand side is a �nite sum, where eah summand is de�ned sine

supp(�

i

!) is ontained in a hart domain. Using the transformation formula for p-dimensional

integrals, it is easy to see that the de�nition of the integral

R

M

! does not depend on the hoie

of the harts and the partitions of unity.

We also note that Stokes' Theorem

Z

M

d� =

Z

�M

�

holds for V -valued (p � 1)-forms, where it is understood that the boundary �M arries the

indued orientation.

The assumption that V is Makey omplete is ruial in the following lemma to ensure the

existene of the Riemann integral de�ning ' . For a oneptual proof we refer to [GN05, Ch. III℄.

Lemma II.4.11. (Poinar�e Lemma) Let E be loally onvex, V a Makey omplete loally

onvex spae and U � E an open subset whih is star-shaped with respet to 0 . Let ! 2




k+1

(U; V ) be a V -valued losed (k+1)-form. Then ! = d' for some ' 2 


k

(U; V ) satisfying

'(0) = 0 whih is given by

'(x)(v

1

; : : : ; v

k

) =

Z

1

0

t

k

!(tx)(x; v

1

; : : : ; v

k

) dt:

Remark II.4.12. (a) The Poinar�e Lemma is the �rst step to de Rham's Theorem. To obtain

de Rham's Theorem for �nite-dimensional manifolds, one makes heavy use of smooth partitions

of unity whih do not always exist for in�nite-dimensional manifolds, not even for all Banah

manifolds.

(b) We all a smooth manifold M smoothly paraompat if every open over has a subor-

dinated smooth partition of unity. De Rham's Theorem holds for every smoothly paraompat

Fr�ehet manifold ([KM97,Thm. 34.7℄). Smoothly Hausdor� seond ountable manifolds modeled

on a smoothly regular spae are smoothly paraompat ([KM97, 27.4℄). Typial examples of

smoothly regular spaes are nulear Fr�ehet spaes ([KM97, Th. 16.10℄).

() Examples of Banah spaes whih are not smoothly paraompat are C([0; 1℄;R) and

`

1

(N;R) . On these spaes, there exists no non-zero smooth funtion supported in the unit ball

([KM97, 14.11℄).
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Exerises for Setion II

Exerise II.1. Let (V; �

P

) be a loally onvex spae.

(1) Show that a seminorm q on V is ontinuous if and only if there exists a � > 0 and

p

1

; : : : ; p

n

2 P suh that q � �max(p

1

; : : : ; p

n

): Hint: A seminorm is ontinuous if and only

if it is bounded on some 0-neighborhood.

(2) Two sets P

1

and P

2

of seminorms on V de�ne the same loally onvex topology if and only

if all seminorms in P

2

are ontinuous w.r.t. �

P

1

and vie versa.

Exerise II.2. Show that the set of all seminorms on a vetor spae V is separating. The

orresponding loally onvex topology is alled the �nest loally onvex topology. Hint: Every

vetor spae has a basis (provided one believes in the Axiom of Choie, resp., Zorn's Lemma).

Exerise II.3. Fix p 2℄0; 1[ and let V denote the spae of measurable funtions f : [0; 1℄! R

(we identify funtions whih oinide on a set whose omplement has measure zero), for whih

jf j :=

Z

1

0

jf(x)j

p

dx

is �nite. Show that d(f; g) := jf � gj de�nes a metri on this spae. Hint: The funtion

[0;1[! R; x 7! x

p

is sub-additive. This is turn follows from its onavity.

Exerise II.4. Let X be a loally ompat spae whih is ountable at in�nity, i.e., there

exists a sequene (K

n

)

n2N

of ompat subsets of X with X =

S

n

K

n

and K

n

� K

0

n+1

. We all

suh a sequene (K

n

)

n2N

an exhaustion of X . Show that:

(1) Eah ompat subset K � X lies in some K

n

.

(2) The topology of uniform onvergene on ompat subsets of X on the spae C(X;R) is

given by the sequene of seminorms (p

K

n

)

n2N

(Hint: Exerise II.1).

(3) C(X;R) is metrizable.

(4) C(X;R) is omplete.

(5) The multipliation on C(X;R) is ontinuous.

(6) C(X;R) is a Fr�ehet algebra.

Exerise II.5. Let (M;d) be a metri spae and � 6= S �M a subset. Show that the funtion

f :M ! R; x 7! dist(x; S) := inffd(x; s): s 2 Sg

is a ontration, hene in partiular ontinuous.

Exerise II.6. Let U � R

n

be an open subset and K

n

:= fx 2 U : kxk � n; dist(x; U



) �

1

n

g:

(1) Eah ompat subset K � U lies in some K

n

.

(2) The topology on the spae C

1

(U;R) is given by the ountable family of seminorms

(p

K

n

;m

)

n;m2N

(f. Example II.1.4).

(3) C

1

(U;R) is metrizable.

(4) C

1

(U;R) is omplete.

(5) The multipliation on C

1

(U;R) is ontinuous. Hint: Leibniz Rule.

(6) C

1

(U;R) is a Fr�ehet algebra.

Exerise II.7. Let X be a loally ompat spae. The unit group C(X;R)

�

= C(X;R

�

) is

open in C(X;R) if and only if X is ompat. Hint: If X is not ompat, then there exists for

eah ompat subset K � X a ontinuous funtion f

K

2 C(X;R) with f

K

j

K

= 1. Show that

the net (f

K

) onverges to 1.
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Exerise II.8. Let (X

i

)

i2I

be a family of loally onvex spaes. Show that:

(1) The produt topology on X :=

Q

i2I

X

i

de�nes on X the struture of a loally onvex

spae.

(2) This spae is omplete if and only if all the spaes X

i

are omplete.

(3) If, in addition, eah X

i

is a loally onvex unital algebra, then X is a loally onvex unital

algebra.

Exerise II.9. Let M be a paraompat �nite-dimensional omplex manifold and endow the

spae Hol(M; C ) with the topology of uniform onvergene on ompat subsets. Show that:

(1) Hol(M; C ) is a Fr�ehet algebra.

(2) The mapping Hol(M; C )! C

1

(M; C ) is a topologial embedding. Hint: Cauhy estimates

in several variables.

Exerise II.10. Verify that d

2

! = 0 for the exterior di�erential on 


p

(M;V ) (M a smooth

manifold modeled on X , V a loally onvex spae) diretly in loal oordinates, using formula

(2.4.8). Hint: For eah x 2M , the map

X

2

! Alt

p

(X;V ); (v; w) 7! d

2

1

!(x)(v; w)

(seond derivative with respet to the �rst argument of ! ) is symmetri (Lemma II.1.3).

Exerise II.11. Let X be a loally onvex spae and p a ontinuous seminorm on X . Show

that

p = supf� 2 X

0

:� � pg:

Hint: Consider the losed onvex subset B := fx 2 X : p(x) � 1g . Then � j

B

� 1 is equivalent

to � � p and if p(x) > 1, then there exists a ontinuous linear funtional � 2 Y

0

with � j

B

� 1

and �(x) > 1 (Hahn{Banah Separation Theorem).

Exerise II.12. Let Y be a loally onvex spae and : [a; b℄! Y a ontinuous urve. Assume

that the integral I() :=

R

b

a

(t) dt exists in the sense that there exists an element I 2 Y suh

that �(I()) =

R

b

a

�((t)) dt holds for eah ontinuous linear funtional � 2 Y

0

. Show that:

(a) For eah ontinuous seminorm p on Y , we have

p

�

Z

b

a

(t) dt

�

�

Z

b

a

p((t)) dt:

Hint: Use Exerise II.11.

(b) The map I :C([a; b℄; Y )! Y is ontinuous, when C([a; b℄; Y ) is endowed with the topology

of uniform onvergene (whih oinides with the ompat open topology; f. Appendix B).

() If X is a topologial spae and :X � [a; b℄! Y a ontinuous map, then the map

X ! Y; x 7!

Z

b

a

(x; t) dt

is ontinuous.

Exerise II.13. Let X be a omplete metri topologial vetor spae (f.i. a Fr�ehet spae) and

Y � X a losed subspae. Show that the following are equivalent:

(1) There exists a losed subspae Z � X for whih the map S:Y � Z ! X; (y; z) 7! y + z is

bijetive.

(2) There exists a losed subspae Z � X for whih the map S:Y � Z ! X is a topologial

isomorphism.

(3) There exists a ontinuous projetion p:X ! X with p(X) = Y .

Hint: Open Mapping Theorem.
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Exerise II.14. Let V be a K -vetor spae and g a K -Lie algebra, where K is a �eld of

harateristi zero. We write Alt

p

(V; g) for the linear spae of p-linear alternating maps V

p

! g

and put Alt

0

(V; g) := g and Alt

1

(V; g) := Lin(V; g). On the spae Alt(V; g) :=

L

p2N

0

Alt

p

(V; g),

we then de�ne a bilinear produt by

[�; �℄(v

1

; : : : ; v

p+q

) :=

1

p!q!

X

�2S

p+q

sgn(�)[�(v

�(1)

; : : : ; v

�(p)

); �(v

�(p+1)

; : : : ; v

�(p+q)

)℄

for � 2 Alt

p

(V; g) and � 2 Alt

q

(V; g). Show that this multipliation has the following properties

for � 2 Alt

p

(V; g), � 2 Alt

q

(V; g) and  2 Alt

r

(V; g):

(1) [�; �℄ = (�1)

pq+1

[�; �℄ .

(2) (�1)

pr

[[�; �℄; ℄ + (�1)

qp

[[�; ℄; �℄ + (�1)

qr

[[; �℄; �℄ = 0 (graded Jaobi identity).

(3) Alt(V; g) is a Lie superalgebra with respet to the 2-grading de�ned by

Alt(V; g) := Alt

even

(V; g)�Alt

odd

(V; g):

Exerise II.15. Let M be a smooth manifold and g a loally onvex Lie algebra. Then the

produt on the spae 
(M; g) :=

L

p2N

0




p

(M; g), de�ned in Proposition II.4.1(3) satis�es for

� 2 


p

(M; g); � 2 


q

(M; g) and  2 


r

(M; g):

(1) [�; �℄ = (�1)

pq+1

[�; �℄ .

(2) (�1)

pr

[[�; �℄; ℄ + (�1)

qp

[[�; ℄; �℄ + (�1)

qr

[[; �℄; �℄ = 0 (super Jaobi identity).

(3) 
(M; g) is a Lie super-algebra with respet to the 2-grading de�ned by


(M; g) := 


even

(M; g)� 


odd

(M; g):

Hint: If M is an open subset of a loally onvex spae, then we have the anonial embedding




p

(M; g) ,! Alt

p

(V(M); C

1

(M; g)) whih is ompatible with the produt, and Exerise II.14

applies.

Exerise II.16. Let f :M ! N be a smooth map between manifolds, �

TM

:TM ! M the

tangent bundle projetion and �

M

:M ! TM the zero setion. Show that

�

TN

Æ Tf = f Æ �

TM

and �

N

Æ f = Tf Æ �

M

:

Exerise II.17. Let M be a smooth manifold. Show that:

(a) For eah vetor �eld, the map C

1

(M;K ) ! C

1

(M;K ); f 7! L

X

f := X:f is a derivation.

(b) The map V(M)! der(C

1

(M;K )); X 7! L

X

from (a) is a homomorphism of Lie algebras.

() If M is an open subset of some loally onvex spae, then the map under (b) is injetive.

Exerise II.18. Let M and N be smooth manifolds. The C

k

-topology on the set C

k

(M;N)

of smooth maps M ! N is the topology obtained from the embedding

C

k

(M;N) ,! C(T

k

M;T

k

N); f 7! T

k

f;

where the spae C(T

k

M;T

k

N) is endowed with the ompat open topology. Show that:

(1) If M = U is open in a loally onvex spae E and N = F is a loally onvex spae, then the

C

k

-topology on the spae C

k

(U; F ) oinides with the topology de�ned by the embedding

C

k

(U; F ) ,!

k

Y

j=0

C(U �E

j

; F ); f 7! (f; df; : : : ; d

k

f);

where eah fator on the right hand side arries the ompat open topology.

(2) If M = U is open in E := K

n

and N = F is a loally onvex spae, then the C

k

-topology

on the spae C

k

(U; F ) oinides with the topology de�ned by the seminorms

q

K;j

(f) := supf(q ÆD

j

f)(x):x 2 Kg;

for j � m , K � U ompat and q a ontinuous seminorm on F (f. Example II.1.4). Hint:

Use that T

j

U

�

=

U � E

2

j

�1

and T

j

F

�

=

F

2

j

and desribe the 2

j

-omponents of the map

T

j

f in terms of higher derivatives of f .
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Exerise II.19. If E and F are Banah spaes and L(E;F ) is endowed with the operator

norm, then the subset Iso(E;F ) � L(E;F ) of all topologial isomorphisms E ! F is an open

subset.

Exerise II.20. Let M be a smooth ompat manifold. We endow the set C

1

(M;M) with

the C

1

-topology (f. Exerise II.18). Show that:

(1) The set Di�

1

lo

(M) of all maps f 2 C

1

(M;M) for whih eah map df(x):T

x

(M)! T

f(x)

(N)

is a linear isomorphism (the set of loal di�eomorphisms) is open. Hint: GL

n

(K ) is open in

M

n

(K ) .

(2) If f :M !M is a loal di�eomorphism, then it is a overing map. It is a di�eomorphism if

and only if it is one-to-one.

(3)

�

For a loal di�eomorphism f , the number n(f) := jf

�1

(x)j does not depend on x and it

de�nes a ontinuous funtion Di�

1

lo

(M)! N . Hint: Let q:



M !M denote the orientation

over of M . Then f lifts to a map

b

f :



M !



M and n(f) = j deg(

b

f)j holds for the mapping

degree deg(

b

f) of

b

f whih an be de�ned by

b

f

�

� = deg(

b

f)� for a volume form � on



M .

(4)

�

Show that the set of all loal di�eomorphisms f with n(f) � 2 is losed in the C

1

-topology.

Hint: Use a Riemannian metri on M to see that for eah  2℄0; 1[, the set of all f with

kdf(x)vk � kvk for all x 2 M , v 2 T

x

(M), is losed and a neighborhood of eah g

with kdg(x)vk >



2

kvk for all x 2 M , 0 6= v 2 T

x

(M). For any sequene f

n

! f with

f

n

(x

n

) = f

n

(y

n

) and f

n

! f , we may assume that x

n

! x , y

n

! y . Show that if x

n

6= y

n

for all n , then x 6= y and f(x) = f(y).

(5) Show that the group Di�

1

(M) of C

1

-di�eomorphisms is an open subset of C

1

(M;M). Hint:

Use (3) or (4).

Exerise II.21. Let X

1

; : : : ; X

k

and Y be loally onvex spaes. Show that for a k -linear

map m:X

1

� : : :�X

k

! Y , the following are equivalent:

(1) m is ontinuous.

(2) m is ontinuous in (0; 0; : : : ; 0).

(3) m is ontinuous in some k -tuple (x

1

; : : : ; x

k

).

III. In�nite-dimensional Lie groups

In this setion, we give the de�nition of an in�nite-dimensional (loally onvex) Lie group

and explain how its Lie algebra an be de�ned in suh a way that it de�nes a funtor from the

ategory of Lie groups to the ategory of loally onvex Lie algebras.

In our treatment of Lie groups, we basially follow [Mil83℄, but we do not assume that the

model spae of a Lie group is omplete (f. also [GN05℄).

Notation: Let G be a group and g 2 G . We write

�

g

:G! G; x 7! gx for the left multipliation by g ,

�

g

:G! G; x 7! xg for the right multipliation by g ,

m

G

:G�G! G; (x; y) 7! xy for the multipliation map, and

�

G

:G! G; x 7! x

�1

for the inversion.

In the following, K denotes either R or C .

III.1. In�nite-dimensional Lie groups and their Lie algebras

De�nition III.1.1. A loally onvex Lie group G is a loally onvex manifold endowed with

a group struture suh that the multipliation map and the inversion map are smooth. We shall

often write g := T

1

(G) for the tangent spae in 1 .
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A morphism of Lie groups is a smooth group homomorphism. In the following, we shall

all loally onvex Lie groups simply Lie groups. We write LieGrp for the so obtained ategory

of Lie groups.

Example III.1.2. (Vetor groups) Eah loally onvex spae V is an abelian Lie group with

respet to addition. In fat, we endow V with the obvious manifold struture and observe that

addition and inversion are smooth maps.

Example III.1.3. (Unit groups of CIAs) Let A be a ontinuous inverse algebra over K and

A

�

its unit group. As an open subset of A , the group A

�

arries a natural manifold struture.

The multipliation on A is bilinear and ontinuous, hene a smooth map (Remark II.2.7(b)).

Therefore the multipliation of A

�

is smooth.

It remains to see that the inversion �:A

�

! A

�

is smooth. Its ontinuity follows from the

assumption that A is a CIA. For a; b 2 A

�

, we have b

�1

� a

�1

= a

�1

(a� b)b

�1

; whih implies

that for t 2 K suÆiently lose to 0, we get

�(a+ th)� �(a) = (a+ th)

�1

� a

�1

= a

�1

(�th)(a+ th)

�1

= �ta

�1

h(a+ th)

�1

:

Therefore the ontinuity of � implies that � is everywhere di�erentiable with

d�(a)(h) = lim

t!0

1

t

(�(a+ th)� �(a)) = lim

t!0

�a

�1

h(a+ th)

�1

= �a

�1

ha

�1

:

Now the ontinuity of � implies that d�:A

�

�A! A is ontinuous, hene that � is a C

1

-map.

With the Chain Rule and the smoothness of the multipliation, this in turn implies that d� is a

C

1

-map, hene that � is C

2

. Iterating this argument, we onlude that � is smooth.

Lemma III.1.4. Let G be a Lie group.

(a) The tangent map

Tm

G

:T (G�G)

�

=

TG� TG! TG; (v; w) 7! v � w := Tm

G

(v; w)

de�nes a Lie group struture on TG with identity element 0 2 T

1

(G) = g and inversion T�

G

.

The anonial projetion �

TG

:TG! G is a morphism of Lie groups with kernel (g;+) and the

zero setion �:G! TG; g 7! 0

g

2 T

g

(G) is a homomorphism of Lie groups with �

TG

Æ � = id

G

.

(b) Identifying g 2 G with �(g) 2 TG , we write

(3:1:1) g:v := 0

g

� v; v:g := v � 0

g

for g 2 G; v 2 TG:

Then the map

�:G� g ! TG; (g; x) 7! g:x

is a di�eomorphism.

Proof. (a) Sine the multipliation map m

G

:G � G ! G is smooth, the same holds for its

tangent map

Tm

G

:T (G�G)

�

=

TG� TG! TG:

Let f1g denote the trivial group, "

G

:G ! f1g the onstant homomorphism and u

G

: f1g ! G

the group homomorphism representing the identity element. Then the group axioms for G are

enoded in the relations

(1) m

G

Æ (m

G

� id) = m

G

Æ (id�m

G

) (assoiativity),

(2) m

G

Æ (�

G

� id) = m

G

Æ (id��

G

) = "

G

(inversion), and

(3) m

G

Æ (u

G

� id) = m

G

Æ (id�u

G

) = id (unit element).

Using the funtoriality of T , we see that these properties arry over to the orresponding maps

on TG and show that TG is a Lie group with multipliation Tm

G

, inversion T�

G

, and unit

element 0 = Tu

G

(0) 2 T

1

(G) = g .
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For the zero setion �:G ! TG , we have Tm

G

Æ (� � �) = � Æm

G

; whih means that it

is a morphism of Lie groups. That �

TG

is a morphism of Lie groups follows likewise from

�

TG

Æ Tm

G

= m

G

Æ (�

TG

� �

TG

)

(f. Exerise II.16).

We have for v; v

0

2 g :

Tm

G

(g:v; g

0

:v

0

) = Tm

G

(g:v; g

0

:0) + Tm

G

(g:0; g

0

:v

0

) = (g:v):g

0

+ gg

0

:v

0

and in partiular Tm

G

(v; v

0

) = v + v

0

, showing that ker�

TG

�

=

(g;+).

That the smooth map � is a di�eomorphism follows from �

�1

(v) = (�

TG

(v); �

TG

(v)

�1

:v):

De�nition III.1.5. A vetor �eld X 2 V(G) is alled left invariant if

X Æ �

g

= T (�

g

) ÆX

holds for eah g 2 G if we onsider X as a setion X : G! TG of the tangent bundle TG . We

write V(G)

l

for the set of left invariant vetor �elds in V(G). The left invariane of a vetor �eld

X implies in partiular that for eah g 2 G , we have X(g) = g:X(1) in the sense of (3.1.1) in

Lemma III.1.4. For eah x 2 g , we have a unique left invariant vetor �eld x

l

2 V(G)

l

de�ned

by x

l

(g) := g:x , and the map

V(G)

l

! T

1

(G) = g; X 7! X(1)

is a linear bijetion. If X;Y are left invariant, then they are �

g

-related to themselves, and

Lemma II.3.8 implies that their Lie braket [X;Y ℄ inherits this property, hene that [X;Y ℄ 2

V(G)

l

. We thus obtain a unique Lie braket [�; �℄ on g satisfying

(3:1:2) [x; y℄

l

= [x

l

; y

l

℄ for all x; y 2 g:

Lemma III.1.6. For eah g-hart (';U) of G with 1 2 U and '(1) = 0 , the seond order

Taylor polynomial in (0; 0) of the multipliation x � y := '('

�1

(x)'

�1

(y)) is of the form

x+ y + b(x; y);

where b: g� g! g is a ontinuous bilinear map satisfying

(3:1:3) [x; y℄ = b(x; y)� b(y; x):

In partiular, the Lie braket on g = T

1

(G) is ontinuous.

Proof. We onsider a hart ':V ! g of G , where V � G is an open 1-neighborhood and

'(1) = 0. Let W � V be an open symmetri 1-neighborhood with WW � V . Then we have

on the open set '(W ) � g the smooth multipliation

x � y := '('

�1

(x)'

�1

(y)); x; y 2 '(W ):

From Tm(v; w) = v + w for v; w 2 T

1

(G) we immediately see that the seond order Taylor

polynomial of � has the form x+ y+ b(x; y); where b: g� g ! g is quadrati map, hene an be

written as

b(x; y) = �((x; y); (x; y))

for some ontinuous symmetri bilinear map �: (g � g)

2

! g (Lemma II.2.3(iv)). Comparing

Taylor expansions of x � 0 = 0 � x = x up to seond order implies that b(x; 0) = b(0; x) = 0, so

that

b(x; y) = �((x; 0); (0; y)) + �((0; y); (x; 0)):

It follows in partiular that b is bilinear.

For x 2 W , let �

x

:'(W ) ! g; y 7! x � y . Then the left invariant vetor �eld v

l

orresponding to v 2 g is given on '(W ) by v

l

(x) = d�

x

(0):v; and in 0 its �rst order Taylor

polynomial in 0 is v + b(x; v). Therefore, the Lie braket on g satis�es

[v; w℄ = [v

l

; w

l

℄(0) = dw

l

(0):v

l

(0)� dv

l

(0):w

l

(0) = dw

l

(0):v � dv

l

(0):w = b(v; w)� b(w; v):

De�nition III.1.7. The loally onvex Lie algebra L(G) := (g; [�; �℄) is alled the Lie algebra

of G .
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Proposition III.1.8. (Funtoriality of the Lie algebra) If ':G ! H is a homomorphism of

Lie groups, then the tangent map

L(') := T

1

('):L(G)! L(H)

is a homomorphism of Lie algebras.

Proof. Let x; y 2 g and x

l

; y

l

be the orresponding left invariant vetor �elds. Then

' Æ �

g

= �

'(g)

Æ ' for eah g 2 G implies that

T' Æ x

l

= L(')(x)

l

Æ ' and T' Æ y

l

= L(')(y)

l

Æ ';

and therefore

T' Æ [x

l

; y

l

℄ = [L(')(x)

l

;L(')(y)

l

℄ Æ '

(Lemma II.3.8). Evaluating at 1 , we obtain L('):[x; y℄ = [L(')(x);L(')(y)℄:

Remark III.1.9. We obviously have L(id

G

) = id

L(G)

, and for two morphisms '

1

:G

1

! G

2

and '

2

:G

2

! G

3

of Lie groups, we have

L('

2

Æ '

1

) = L('

2

) Æ L('

1

);

as a onsequene of the Chain Rule.

The preeding lemma implies that the assignments G 7! L(G) and ' 7! L(') de�ne a

funtor

L:LieGrp! lLieAlg

from the ategory LieGrp of (loally onvex) Lie groups to the ategory lLieAlg of loally

onvex Lie algebras.

Sine eah funtor maps isomorphisms to isomorphisms, for eah isomorphism of Lie groups

':G! H , the map L(') is an isomorphism of loally onvex Lie algebras.

De�nition III.1.10. A loally onvex Lie algebra g is said to be integrable if there exists a

Lie group G with L(G)

�

=

g .

Although every �nite-dimensional Lie algebra is integrable, integrability of in�nite-dimen-

sional Lie algebras turns out to be a very subtle property. We shall disuss some interesting

examples in Setion VI below.

We now have a look at the Lie algebras of the Lie groups from Examples II.1.2/3.

Examples III.1.11. (a) If G is an abelian Lie group, then the map b: g � g ! g in

Lemma III.1.6 is symmetri, whih implies that L(G) is abelian. This applies in partiular

to the additive Lie group (V;+) of a loally onvex spae.

(b) Let A be a CIA. Then the map

':A

�

! A; x 7! x� 1

is a hart of A

�

satisfying '(1) = 0. In this hart, the group multipliation is given by

x � y := '('

�1

(x)'

�1

(y)) = (x+ 1)(y + 1)� 1 = x+ y + xy:

In the terminology of Lemma III.1.6, we then have b(x; y) = xy and therefore

[x; y℄ = xy � yx

is the ommutator braket in the assoiative algebra A .

Using the Lie group strutures on tangent bundles, we an now also deal with groups of

smooth maps and di�eomorphism groups.
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Example III.1.12. (Groups of smooth maps) Let M be a manifold (possibly in�nite-dimen-

sional) and K a Lie group with Lie algebra k . Then we obtain a natural topology on the group

G := C

1

(M;K) as follows.

The tangent bundle TK of K is a Lie group (Lemma III.1.4). Iterating this proedure,

we obtain a Lie group struture on all higher tangent bundles T

n

K .

For eah n 2 N

0

, we thus obtain topologial groups C(T

n

M;T

n

K) by using the topology

of uniform onvergene on ompat subsets of T

n

M (Lemma B.3), whih oinides with the

ompat open topology (Proposition B.4). We also observe that for two smooth maps f

1

; f

2

:M !

K , the funtoriality of T yields

T (f

1

� f

2

) = T (m

G

Æ (f

1

� f

2

)) = T (m

G

) Æ (Tf

1

� Tf

2

) = Tf

1

� Tf

2

:

Therefore the anonial inlusion map

C

1

(M;K) ,!

Y

n2N

0

C(T

n

M;T

n

K); f 7! (T

n

f)

n2N

0

is a group homomorphism, so that the inverse image of the produt topology on the right hand

side is a group topology on C

1

(M;K). Therefore C

1

(M;K) always arries a natural struture

of a topologial group, even if M and K are in�nite-dimensional.

Now we assume that M is ompat. Then these topologial groups an even be turned into

Lie groups modeled on the spae g := C

1

(M; k). The harts of G are obtained from those of

K as follows. If '

K

:U

K

! k is a hart of K , i.e., a di�eomorphism of an open subset U

K

� K

onto an open subset '(U

K

) of k , then the set U

G

:= ff 2 G: f(M) � U

K

g is an open subset of

G (f. Appendix B). Assume, in addition, that 1 2 U

K

and '

K

(1) = 0. Then we use the map

'

G

:U

G

! g; f 7! '

K

Æ f

as a hart of a 1-neighborhood of G , and by ombining it with left translates, we obtain an atlas

of G de�ning a Lie group struture (f. Theorem II.2.1 below). For details we refer to [Gl01b℄,

resp., [GN05℄.

To alulate the Lie algebra of this group, we observe that for m 2 M , we have for the

multipliation in loal oordinates

(f �

G

g)(m) = '

G

�

'

�1

G

(f)'

�1

G

(g)

�

(m) = '

K

�

'

�1

K

(f(m))'

�1

K

(g(m))

�

= f(m) �

K

g(m) = f(m) + g(m) + b

k

(f(m); g(m)) + � � � :

In view of Lemma III.1.5, this implies that

�

b

g

(f; g)

�

(m) = b

k

(f(m); g(m)); and hene that

[f; g℄(m) = b

g

(f; g)(m)� b

g

(g; f)(m) = b

k

(f(m); g(m))� b

k

(g(m); f(m)) = [f(m); g(m)℄:

Therefore L(C

1

(M;K)) = C

1

(M; k), endowed with the pointwise de�ned Lie braket.

Remark III.1.13. If M is a non-ompat �nite-dimensional manifold, then one annot expet

the topologial groups C

1

(M;K) to be Lie groups. A typial example arises for M = N (a

0-dimensional manifold) and K = T := R=Z . Then C

1

(M;K)

�

=

T

N

is a topologial group for

whih no 1-neighborhood is ontratible, so that it arries no smooth manifold struture.

Remark III.1.14. (The Lie algebra of a loal Lie group) There is also a natural notion of a

loal Lie group. The orresponding algebrai onept is that of a loal group: Let G be a set

and D � G�G a subset on whih we are given a map

m

G

:D ! G; (x; y) 7! xy:

We say that the produt xy of two elements x; y 2 G is de�ned if (x; y) 2 D . The quadruple

(G;D;m

G

;1), where 1 is a distinguished element of G , is alled a loal group if the following

onditions are satis�ed:
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(1) Suppose that xy and yz are de�ned. If (xy)z or x(yz) is de�ned, then the other produt

is also de�ned and both are equal.

(2) For eah x 2 G , the produts x1 and 1x are de�ned and equal to x .

(3) For eah x 2 G , there exists a unique element x

�1

2 G suh that xx

�1

and x

�1

x are

de�ned and xx

�1

= x

�1

x = 1 .

(4) If xy is de�ned, then y

�1

x

�1

is de�ned.

If (G;D;m

G

;1) is a loal group and, in addition, G has a smooth manifold struture, D

is open, and the maps

m

G

:D ! G; �

G

:G! G; x 7! x

�1

are smooth, then G , resp., (G;D;m

G

;1) is alled a loal Lie group.

Let G be a loal Lie group and g := T

1

(G). For eah x 2 g = T

1

(G), we then obtain a

left invariant vetor �eld x

l

(g) := g:x := 0

g

� x . One an show that the Lie braket of two left

invariant vetor �elds is again left invariant and that we thus obtain a Lie algebra struture on g

(Exerise III.1). Desribing the multipliation in a loal hart ':V ! g with '(1) = 0, we an

argue as in the proof of Lemma III.1.6 that its seond order Taylor polynomial is of the form

x+ y + b(x; y) with a ontinuous bilinear map b: g� g ! g satisfying

[x; y℄ = b(x; y)� b(y; x):

We onlude that L(G) := L(G;D;m

G

;1) := (g; [�; �℄) is a loally onvex Lie algebra. For more

details on loal Lie groups we refer to [GN05℄.

The adjoint representation

The adjoint ation is a ruial struture element of a Lie group G . It is the representation

of G on L(G) obtained by taking derivatives in 1 for the onjugation ation of G on itself. In

this sense, it is a linearized piture of the non-ommutativity of G .

De�nition III.1.15. Let G be a Lie group. Then for eah g 2 G the map



g

:G! G; x 7! gxg

�1

;

is a smooth automorphism, hene indues a ontinuous linear automorphism

Ad(g) := L(

g

): g ! g:

We thus obtain an ation G� g ! g; (g; x) 7! Ad(g):x alled the adjoint ation of G on g .

If g

0

:= L(g;K ) denotes the topologial dual of g , then we also obtain a representation on

g

0

by Ad

�

(g):f := f Æ Ad(g)

�1

, alled the oadjoint ation. Sine we do not endow g

0

with a

topology, we will not speify any smoothness or ontinuity properties of this ation.

Proposition III.1.16. The adjoint ation Ad:G � g ! g; (g; x) 7! Ad(g):x is smooth. The

operators

adx: g ! g; adx(y) := T Ad(x; 0

y

) satisfy adx(y) = [x; y℄:

Proof. The smoothness of the adjoint ation of G on g follows diretly from the smoothness

of the multipliation of the Lie group TG beause Ad(g):x = (g:x):g

�1

(Lemma III.1.4).

To alulate the linear maps adx: g ! g , we onsider a loal hart ':V ! g of G , where

V � G is an open 1-neighborhood and '(1) = 0.

For x 2 '(W ), we write �

1

(x) + �

2

(x) for the seond order Taylor polynomial of the

inversion map x 7! x

�1

, where �

1

is linear and �

2

is quadrati. Comparing Taylor expansions

in 0 of

0 = x � x

�1

= x+ �

1

(x) + �

2

(x) + b(x; �

1

(x)) + : : :

(Lemma III.1.6), we get �

1

(x) = �x and �

2

(x) = �b(x;�x) = b(x; x). Therefore

(x � y) � x

�1

=

�

x+ y + b(x; y)

�

+

�

� x+ b(x; x)

�

+ b(x+ y;�x) + � � �

= y + b(x; y)� b(y; x) + � � �

by the Chain Rule for Taylor polynomials, and by taking the derivative w.r.t. x in 0 in the

diretion z , we eventually get ad z(y) = b(z; y)� b(y; z) = [z; y℄:
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The di�eomorphism group

Proposition III.1.17. Let G be a Lie group and �:M � G ! M; (m; g) 7! m:g a smooth

right ation of G on the smooth manifold M . Then the map T�:TM �TG! TM is a smooth

right ation of TG on TM . The assignment

_�: g ! V(M); with _�(x)(m) := d�(m;1)(0; x) = T�(0

m

; x)

is a homomorphism of Lie algebras.

Proof. That T� de�nes an ation of TG on TM follows in the same way as in Lemma III.1.4

above by applying T to the ommutative diagrams de�ning a right ation of a group.

To see that _� is a homomorphism of Lie algebras, we pik m 2 M and write '

m

:G !

M; g 7! m:g for the smooth orbit map of m . Then the equivariane of '

m

means that

'

m

Æ �

g

= '

m:g

. From this we derive

d'

m

(g)x

l

(g) = d'

m

(g)d�

g

(1)x = d'

m:g

(1)x = _�(x)(m:g);

i.e., the left invariant vetor �eld x

l

is '

m

-related to _�(x). Therefore Lemma II.3.8 implies that

_�([x; y℄)(m) = d'

m

(1)[x; y℄

l

(1) = d'

m

(1)[x

l

; y

l

℄(1) = [ _�(x); _�(x)℄(m):

Corollary III.1.18. If �:G�M !M is a smooth left aftion of G on M , then

_�: g ! V(M); with _�(x)(m) := �T�(x; 0

m

)

is a homomorphism of Lie algebras.

Proof. If � is a smooth left ation, then e�(m; g) := �(m; g

�1

) is a smooth right ation and

T e�(0

m

; x) = �T�(x; 0

m

) follows from the Chain Rule and d�

G

(1)x = �x .

Example III.1.19. Let M be a ompat manifold and g = V(M), the Lie algebra of smooth

vetor �elds on M . We now explain how the group Di�(M) an be turned into a Lie group,

modeled on g .

We shall see in Setion IV below that, although Di�(M) has a smooth exponential funtion,

it is not a loal di�eomorphism of a 0-neighborhood in g onto an identity neighborhood in G .

Therefore we annot use it to de�ne harts for G . But there is an easy way around this problem.

Let g be a Riemannian metri on M and Exp:TM ! M be its exponential funtion,

whih assigns to v 2 T

m

(M) the point (1), where : [0; 1℄ ! M is the geodesi segment with

(0) = m and 

0

(0) = v . We then obtain a smooth map

�:TM !M �M; v 7! (m;Exp v); v 2 T

m

(M):

There exists an open neighborhood U � TM of the zero setion suh that � maps U di�eo-

morphially onto an open neighborhood of the diagonal in M �M . Now

U

g

:= fX 2 V(M):X(M) � Ug

is an open subset of the Fr�ehet spae V(M), and we de�ne a map

':U

g

! C

1

(M;M); '(X)(m) := Exp(X(m)):

It is lear that '(0) = id

M

. One an show that after shrinking U

g

to a suÆiently small 0-

neighborhood in the C

1

-topology on V(M), we may ahieve that '(U

g

) � Di�(M). To see that

Di�(M) arries a Lie group struture for whih ' is a hart, one has to verify that the group



36 monas.tex January 9, 2006

operations are smooth in a 0-neighborhood when transfered to U

g

via ' , so that Theorem III.2.1

below applies. We thus obtain a Lie group struture on Di�(M) (f. [GN05℄).

From the smoothness of the map U

g

�M ! M; (X;m) 7! '(X)(m) = Exp(X(m)) it

follows that the anonial left ation �: Di�(M) �M ! M; (';m) 7! '(m) is smooth in an

identity neighborhood of Di�(M), and hene smooth, beause it is an ation by smooth maps.

The orresponding homomorphism of Lie algebras _�:L(Di�(M))! V(M) is given by

_�(X)(m) = �T�(X; 0

m

) = �(dExp)

0

m

(X(m)) = �X(m);

i.e., _� = � id

V(M)

. This leads to

L(Di�(M)) = (V(M); [�; �℄)

op

:

This \wrong" sign is aused by the fat that we onsider Di�(M) as a group ating on M

from the left. If we onsider it as a group ating on the right, we obtain the opposite multipliation

' �  :=  Æ ';

and

L(Di�(M)

op

)

�

=

(V(M); [�; �℄)

follows from Proposition III.1.17.

The tangent bundle of Di�(M) an be identi�ed with the set

T (Di�(M)) := fX 2 C

1

(M;TM):�

TM

ÆX 2 Di�(M)g;

where the map

�:T (Di�(M))! Di�(M); X 7! �

TM

ÆX

is the bundle projetion. Then

T

'

(Di�(M)) := �

�1

(') = fX 2 C

1

(M;TM):�

TM

ÆX = 'g

is the tangent spae in the di�eomorphism ' . The multipliation in the group T (Di�(M)) is

given by the formula

X � Y := �

T

2

M

Æ TX Æ Y;

where �

T

2

M

:T

2

M ! TM is the natural projetion. Note that

�

TM

Æ (X � Y ) = �

TM

Æ �

T

2

M

Æ TX Æ Y = �

TM

ÆX Æ �

TM

Æ Y

shows that � is a group homomorphism. Identifying ' 2 Di�(M) with the origin in T

'

(Di�(M)),

we get

X � ' = �

T

2

M

Æ TX Æ ' = X Æ ' and ' �X = �

T

2

M

Æ T' ÆX = T' ÆX:

In partiular, this leads to the formula

Ad('):X = T' ÆX Æ '

�1

for the adjoint ation of Di�(M) on T

0

(Di�(M)) = V(M).
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III.2. From loal data to global Lie groups

The following theorem is helpful to obtain Lie group strutures on groups.

Theorem III.2.1. Let G be a group and U = U

�1

a symmetri subset. We further assume

that U is a smooth manifold suh that

(L1) there exists an open 1-neighborhood V � U with V

2

= V � V � U suh that the group

multipliation m

V

:V � V ! U is smooth,

(L2) the inversion map �

U

:U ! U; u 7! u

�1

is smooth, and

(L3) for eah g 2 G there exists an open 1-neighborhood U

g

� U with 

g

(U

g

) � U and suh that

the onjugation map 

g

:U

g

! U; x 7! gxg

�1

is smooth.

Then there exists a unique Lie group struture on G for whih there exists an open 1-

neighborhood U

0

� U suh that the inlusion map U

0

! G indues a di�eomorphism onto an

open subset of G .

Proof. (f. [Ch46, x14, Prop. 2℄ or [Ti83, p.14℄ for the �nite-dimensional ase) First we onsider

the �lter basis F onsisting of all 1-neighborhoods in U . In the terminology of Lemma B.2,

(L1) implies (U1), (L2) implies (U2), and (L3) implies (U3). Moreover, the assumption that U

is Hausdor� implies that

T

F = f1g . Therefore Lemma B.2 implies that G arries a unique

struture of a (Hausdor�) topologial group for whih F is a basis of 1-neighborhoods.

After shrinking V and U , we may assume that there exists a di�eomorphism ':U !

'(U) � E , where E is a topologial K -vetor spae, '(U) an open subset, that V satis�es

V = V

�1

, V

4

� U , and that m

V

:V

2

� V

2

! U is smooth. For g 2 G , we onsider the maps

'

g

: gV ! E; '

g

(x) = '(g

�1

x)

whih are homeomorphisms of gV onto '(V ). We laim that ('

g

; gV )

g2G

is an E -atlas of G .

Let g

1

; g

2

2 G and put W := g

1

V \ g

2

V . If W 6= �, then g

�1

2

g

1

2 V V

�1

= V

2

. The

smoothness of the map

 := '

g

2

Æ '

�1

g

1

j

'

g

1

(W )

:'

g

1

(W )! '

g

2

(W )

given by

 (x) = '

g

2

('

�1

g

1

(x)) = '

g

2

(g

1

'

�1

(x)) = '(g

�1

2

g

1

'

�1

(x))

follows from the smoothness of the multipliation V

2

� V

2

! U . This proves that ('

g

; gU)

g2G

is an atlas of G . Moreover, the onstrution implies that all left translations of G are smooth

maps.

The onstrution also shows that for eah g 2 G , the onjugation 

g

:G ! G is smooth

in a neighborhood of 1 . Sine all left translations are smooth, and 

g

Æ �

x

= �



g

(x)

Æ 

g

; the

smoothness of 

g

in a neighborhood of x 2 G follows. Therefore all onjugations and hene also

all right multipliations are smooth. The smoothness of the inversion follows from its smoothness

on V and the fat that left and right multipliations are smooth. Finally the smoothness of the

multipliation follows from the smoothness in 1� 1 beause

m

G

(g

1

x; g

2

y) = g

1

xg

2

y = g

1

g

2



g

�1

2

(x)y = g

1

g

2

m

G

(

g

�1

2

(x); y):

The uniqueness of the Lie group struture is lear, beause eah loally di�eomorphi bijetive

homomorphism between Lie groups is a di�eomorphism.

Remark III.2.2. Suppose that the group G in Theorem III.2.1 is generated by eah 1-

neighborhood V in U . Then ondition (L3) an be omitted. Indeed, the onstrution of the

Lie group struture shows that for eah g 2 V , the onjugation 

g

:G ! G is smooth in a

neighborhood of 1 . Sine the set of all these g is a submonoid of G ontaining V , it ontains

V

n

for eah n 2 N , hene all of G beause G is generated by V . Therefore all onjugations are

smooth, and one an proeed as in the proof of Theorem III.2.1.
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Corollary III.2.3. Let G be a group and N E G a normal subgroup that arries a Lie group

struture. Then there exists a Lie group struture on G for whih N is an open subgroup if and

only if for eah g 2 G the restrition 

g

j

N

is a smooth automorphism of N .

Proof. If N is an open normal subgroup of the Lie group G , then learly all inner automor-

phisms of G restrit to smooth automorphisms of N .

Suppose, onversely, that N is a normal subgroup of the group G whih is a Lie group and

that all inner automorphisms of G restrit to smooth automorphisms of N . Then we an apply

Theorem III.2.1 with U = N and obtain a Lie group struture on G for whih the inlusion

N ! G is a loal di�eomorphism, hene a di�eomorphism onto an open subgroup of G .

For the following orollary we reall that a surjetive morphism ':G ! H of topologial

groups is alled a overing if it is an open map with disrete kernel.

Corollary III.2.4. Let ':G ! H be a overing of topologial groups. If G or H is a Lie

group, then the other group has a unique Lie group struture for whih ' is a morphism of Lie

groups whih is a loal di�eomorphism.

Proof. Sine ' is a overing, it is a loal homeomorphism, so that there exists an open

symmetri 1-neighborhood W � G suh that '

W

:= ' j

W

:W ! '(W ) is a homeomorphism.

We only have to hoose W so small that we have WW

�1

\ ker' = f1g to ensure that '

W

is

injetive.

Suppose �rst that G is a Lie group. Then we apply Theorem III.2.1 with U := '(W ).

To verify (L1), we hoose W

1

� W open with W

1

W

1

� W and put V := '(W

1

), and for (L3)

we note that the surjetivity of ' implies that for eah h 2 H , there is an element g 2 G

with '(g) = h . Now we hoose an open 1-neighborhood W

g

� W with 

g

(W

g

) � W and put

U

h

:= '(W

g

).

If, onversely, H is a Lie group, then we put U := W , as V we hoose any open 1-

neighborhood with V V � U , and as U

g

we may also hoose any open 1-neighborhood with



g

(U

g

) � U .

Corollary III.2.5. Let G be a Lie group.

(1) If N E G is a disrete subgroup, then the quotient G=N arries a unique Lie group struture

for whih the quotient map q:G! G=N is a loal di�eomorphism.

(2) If G is onneted and q

G

:

e

G! G the universal overing group, then

e

G arries a unique Lie

group struture for whih q

G

is a loal di�eomorphism.

Proof. (1) follows diretly from Corollary III.2.4, beause the quotient map G ! G=N is a

overing.

(2) We �rst have to onstrut a topologial group struture on the universal overing

spae

e

G . Pik an element

e

1 2 q

�1

G

(1). Then the multipliation map m

G

:G � G ! G lifts

uniquely to a ontinuous map em

G

:

e

G�

e

G!

e

G with em

G

(

e

1;

e

1) =

e

1 . To see that the multipliation

map em

G

is assoiative, we observe that

q

G

Æ em

G

Æ (id

e

G

�em

G

) = m

G

Æ (q

G

� q

G

) Æ (id

e

G

�em

G

) = m

G

Æ (id

G

�m

G

) Æ (q

G

� q

G

� q

G

)

= m

G

Æ (m

G

� id

G

) Æ (q

G

� q

G

� q

G

) = q

G

Æ em

G

Æ (em

G

� id

e

G

);

so that the two ontinuous maps

em

G

Æ (id

e

G

�em

G

); em

G

Æ (em

G

� id

e

G

):

e

G

3

! G;

are lifts of the same map G

3

! G and both map (

e

1;

e

1;

e

1) to

e

1 . Hene the uniqueness of

lifts implies that em

G

is assoiative. We likewise obtain that the unique lift e�

G

:

e

G !

e

G of the

inversion map �

G

:G! G with e�

G

(

e

1) =

e

1 satis�es

em

G

Æ (�

G

� id

e

G

) =

e

1 = em

G

Æ (id

e

G

��

G

):

Therefore em

G

de�nes on

e

G a topologial group struture suh that q

G

:

e

G ! G is a overing

morphism of topologial groups. Now Corollary III.2.4 applies.
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Remark III.2.6. If q

G

:

e

G ! G is the universal overing morphism of a onneted Lie group

G , then ker q

G

is a disrete normal subgroup of the onneted group

e

G , hene entral (Exer-

ise III.3). Left multipliations by elements of this group lead to dek transformations of the

overing

e

G! G , and this shows that �

1

(G)

�

=

ker q

G

as groups.

Clearly, G

�

=

e

G= ker q

G

. If, onversely, � �

e

G is a disrete entral subgroup, then

e

G=�

is a Lie group with the same universal overing group as G . Two suh groups

e

G=�

1

and

e

G=�

2

are isomorphi if and only if there exists a Lie group automorphism ' 2 Aut(

e

G) with

'(�

1

) = �

2

. Therefore the isomorphism lasses of Lie groups with the same universal overing

group G are parametrized by the orbits of the group Aut(

e

G) in the set S of disrete entral

subgroups of

e

G . Sine the normal subgroup Inn(

e

G) := f

g

: g 2

e

Gg of inner automorphisms

ats trivially on this set, the ation of Aut(

e

G) on S fators through an ation of the group

Out(

e

G) := Aut(

e

G)= Inn(

e

G).

Sine eah automorphism ' 2 Aut(G) lifts to a unique automorphism e' 2 Aut(

e

G) (Exer-

ise!), we have a natural embedding Aut(G) ,! Aut(

e

G), and the image of this homomorphism

onsists of the stabilizer of the subgroup ker q

G

� Z(

e

G).

Exerises for Setion III

Exerise III.1. Let (G;D;m

G

;1) be a loal Lie group. Show that:

(1) For g; h; u 2 G with (g; h); (h; u); (gh; u) 2 D , we have

d�

g

(h) Æ d�

h

(u) = d�

gh

(u):

Hint: Show that �

g

Æ �

h

= �

gh

on a neighborhood of u .

(2) For the open set D

g

:= fh 2 G: (g; h) 2 Dg and the smooth map

�

g

:D

g

! G; h 7! gh

the vetor �eld de�ned by x

l

(u) := d�

u

(1):x satis�es the left invariane ondition

x

l

Æ �

g

= T (�

g

) Æ x

l

j

D

g

:

(3) Show that the set V(G)

l

of left invariant vetor �elds on G is a Lie subalgebra of the Lie

algebra V(G) and show that this leads to a Lie braket on g = T

1

(G).

(4) The tangent bundle TG of G arries a loal Lie group struture (TG; TD; Tm

G

; 0

1

).

(5) If ':G! H is a morphism of loal Lie groups, then L(') := d'(1) is a homomorphism of

Lie algebras.

(6) For x 2 G and (x; y); (y; x

�1

); (xy; x

�1

) 2 D , we put 

x

(y) := (xy)x

�1

and note that this

map is de�ned on some neighborhood of 1 . If (x; y) 2 D , then 

x

Æ 

y

= 

xy

holds on a

neighborhood of 1 .

(7) Ad:G! Aut(g); g 7! L(

g

) is a homomorphism of the loal group G to the group Aut(g).

Exerise III.2. Let G be an abelian group and N � G a subgroup arrying a Lie group

struture. Then there exists a unique Lie group struture on G for whih N is an open subgroup.

Hint: Corollary III.2.3.

Exerise III.3. Let G be a onneted topologial group and � E G a disrete normal

subgroup. Then � is entral.

Exerise III.4. Let A be a CIA and M a ompat smooth manifold. Show that C

1

(M;A) is

a CIA with respet to the natural topology on this algebra whih is obtained from the embedding

C

1

(M;A) ,!

Y

p2N

0

C(T

p

M;T

p

A);

where the right hand side arries the produt topology and on eah fator the topology of ompat

onvergene (whih, in view of Appendix B, oinides with the ompat open topology).
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Exerise III.5. Let G be a Lie group and T

n

G , n 2 N , its iterated tangent bundles. Show

that:

(1) TG

�

=

(g;+)o

Ad

G .

(2) The adjoint ation of G on g indues an ation T Ad of TG

�

=

goG on Tg

�

=

g� g , given

by

(T Ad)(x; g)(v; w) = (Ad(g):v + [x;Ad(g):w℄;Ad(g):w):

(3) T

2

G

�

=

(g� g)o

T Ad

(goG): The multipliation in this group satis�es

(x

2

; x

1

; x

0

;1)(x

0

2

; x

0

1

; x

0

0

;1) = (x

2

+ x

0

2

+ [x

0

; x

0

1

℄; x

1

+ x

0

1

; x

0

+ x

0

0

):

(4) Generalize (3) to T

3

G .

(5) T

n

G

�

=

N oG , where N is a nilpotent Lie group di�eomorphi to g

2

n

�1

.

Exerise III.6. (a) Let m:G�G! G be a smooth assoiative multipliation on the manifold

G with identity element 1 . Show that the di�erential in (1;1) is given by

dm(1;1):T

1

(G) � T

1

(G)! T

1

(G); (v; w) 7! v + w:

(b) Show that the smoothness of the inversion in the de�nition of a Banah{Lie group is redundant

beause the Inverse Funtion Theorem an be applied to the map

G�G! G�G; (x; y) 7! (x; xy)

whose di�erential in (1;1) is given by the map (v; w) 7! (v; v + w).

Exerise III.7. Let G be a Lie group with Lie algebra g and ':U

G

! g a loal hart with

'(1) = 0. Show that:

(1) For the loal multipliation x � y := '('

�1

(x)'

�1

(y)), the seond order Taylor polynomial

of x � y � x

�1

� y

�1

in (0; 0) is the Lie braket [x; y℄ .

(2) Use (1) to show that for eah morphism of Lie groups ':G ! H , the map d'(1) is a

homomorphism of Lie algebras. Hint: Compare the seond order Taylor polynomials of

'(x) � '(y) � '(x)

�1

� '(y)

�1

and '(x � y � x

�1

� y

�1

) by using the Chain Rule for Taylor

polynomials.

Exerise III.8. Let G be a Lie group, V a loally onvex spae and �:G� V ! V a smooth

linear ation of G on V . Then all vetor �elds _�(x), x 2 g , are linear, and we thus obtain a

representation of Lie algebras L(�): g ! gl(V ) with L(�)(x)v = � _�(x)(v).

Exerise III.9. Let G and N be Lie groups and ':G ! Aut(N) be a homomorphism suh

that the map G � N ! N; (g; n) 7! '(g)(n) is smooth. Then the semi-diret produt group

N oG with the multipliation

(n; g)(n

0

; g

0

) := (n'(g)(n

0

); gg

0

)

is a Lie group with Lie algebra no

L(')

g , where L('): g ! der(n) is the derived representations

(f. Exerise III.8).

IV. The Fundamental Theorem for Lie group-valued funtions

In this setion, we undertake a systemati study of Lie group-valued funtions. In the

same way as a smooth funtion f :M ! V on a onneted manifold M with values in a loally

onvex spae V is determined by a value in one-point and the di�erential form df 2 


1

(M;V ),

we an assoiate to a smooth funtion f :M ! G with values in a Lie group a smooth 1-form
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Æ(f) 2 


1

(M; g). We shall see that if M is onneted, then Æ(f) determines f up to left

multipliation by a onstant. Conversely, we an ask whih g-valued 1-forms � are integrable in

the sense that � = Æ(f) for some smooth funtion f :M ! G . For the speial ase M = [0; 1℄,

this leads to the onept of a regular Lie group and �nally the Fundamental Theorem for Lie

group-valued funtions gives neessary and suÆient onditions for � 2 


1

(M; g) to be integrable

in the sense that it is of the form Æ(f).

The main point of this setup is that g-valued 1-forms are muh simpler objets than

Lie group-valued funtions. In partiular, eah Lie algebra homomorphism ':L(G) ! L(H)

de�nes an L(H)-valued 1-form on G whih is integrable if and only if there exists a Lie group

homomorphism  :G ! H with L( ) = ' . If G is 1-onneted and H is regular, suh a

homomorphism always exists.

IV.1. Logarithmi derivatives and their appliations

Equivariant di�erential forms and Lie algebra ohomology

De�nition IV.1.1. Let G be a Lie group and V a smooth loally onvex G-module, i.e., V

is a loally onvex spae and the ation map �

V

:G � V ! V; (g; v) 7! g:v is smooth. We write

�

V

(g)(v) := g:v for the orresponding ontinuous linear automorphisms of V .

We all a p-form � 2 


p

(G; V ) equivariant if we have for eah g 2 G the relation

�

�

g

� = �

V

(g) Æ �:

We write 


p

(G; V )

G

for the subspae of equivariant p-forms in 


p

(G; V ) and note that this is

the spae of G-�xed elements with respet to the ation given by g:� := �

V

(g) Æ (�

g

�1
)

�

� . *

If V is a trivial module, then an equivariant form is a left invariant V -valued form on G .

An equivariant p-form � is uniquely determined by the orresponding element �

1

2 C

p



(g; V ) =

Alt

p

(g; V ) (f. Appendix C):

(4:1:1) �

g

(g:x

1

; : : : ; g:x

p

) = �

V

(g) Æ �

1

(x

1

; : : : ; x

p

)

for g 2 G; x

i

2 g .

Conversely, (4.1.1) provides for eah ! 2 C

p



(g; V ) a unique equivariant p-form !

eq

on G

with !

eq

1

= ! .

The following proposition shows that the omplex of equivariant di�erential forms is the

same as the Lie algebra omplex assoiated to the g-module V .

Proposition IV.1.2. For eah ! 2 C

p



(g; V ) , we have d(!

eq

) = (d

g

!)

eq

. In partiular, the

evaluation map

ev

1

: 


p

(G; V )

G

! C

p



(g; V ); ! 7! !

1

de�nes an isomorphism from the hain omplex (


�

(G; V )

G

; d) of equivariant V -valued di�er-

ential forms on G to the ontinuous V -valued Lie algebra omplex (C

�



(g; V ); d

g

) .

Proof. (f. [ChE48, Th. 10.1℄) For g 2 G , we have

�

�

g

d!

eq

= d�

�

g

!

eq

= d(�

V

(g) Æ !

eq

) = �

V

(g) Æ (d!

eq

);

showing that d!

eq

is equivariant.

* The omplex (


�

(G; V )

G

; d) of equivariant di�erential forms has been introdued in the

�nite-dimensional setting by Chevalley and Eilenberg in [ChE48℄.
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For x 2 g , we write x

l

(g) := g:x for the orresponding left invariant vetor �eld on G . In

view of (4.1.1), it suÆes to alulate the value of d!

eq

on (p+1)-tuples of left invariant vetor

�elds in the identity element. From

!

eq

(x

1;l

; : : : ; x

p;l

)(g) = �

V

(g):!(x

1

; : : : ; x

p

);

we obtain

�

x

0;l

:!

eq

(x

1;l

; : : : ; x

p;l

)

�

(1) = x

0

:!(x

1

; : : : ; x

p

);

and therefore

�

d!

eq

(x

0;l

; : : : ; x

p;l

��

(1)

=

p

X

i=0

(�1)

i

x

i;l

:!

eq

(x

0;l

; : : : ; x

i;l

; : : : ; x

p;l

)(1)

+

X

i<j

(�1)

i+j

!

eq

([x

i;l

; x

j;l

℄; x

0;l

; : : : ; x

i;l

; : : : ; x

j;l

; : : : ; x

p;l

)(1)

=

p

X

i=0

(�1)

i

x

i

:!(x

0

; : : : ; bx

i

; : : : ; x

p

) +

X

i<j

(�1)

i+j

!([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

)

= (d

g

!)(x

0

; : : : ; x

p

):

This proves our assertion.

Maurer{Cartan forms and logarithmi derivatives

For the following de�nition, we reall from Lemma III.1.4 that for eah Lie group G ,

the tangent bundle TG has a natural Lie group struture ontaining G as the zero setion.

Restriting the multipliation of TG to G� TG , we obtain in partiular a smooth left ation of

G on TG whih we simply write (g; v) 7! g:v .

De�nition IV.1.3. (a) For v 2 T

g

(G), we de�ne �

G

(v) := g

�1

:v 2 g = T

1

(G) and note that

this de�nes a smooth 1-form �

G

2 


1

(G; g) beause the multipliation in the Lie group TG is

smooth. This form is alled the (left) Maurer{Cartan form of G . It is a left invariant g-valued

1-form on G .

(b) Let M be a smooth manifold and G a Lie group with Lie algebra L(G) = g . For an

element f 2 C

1

(M;G), we de�ne the (left) logarithmi derivative as the g-valued 1-form

Æ(f) := f

�

�

G

2 


1

(M; g):

For v 2 T

m

(M), this means that Æ(f)

m

(v) = f(m)

�1

:(df)

m

(v) = f(m)

�1

Tf(v):

We all � 2 


1

(M; g) G-integrable if there exists a smooth funtion f :M ! G with

Æ(f) = � .

() If M = I is an interval, then we identify 


1

(I; g) with C

1

(I; g) by identifying the

smooth funtion �: I ! g with the 1-form � � dt . In this sense, we an interprete for a smooth

urve : I ! G the logarithmi derivative Æ() = 

�

�

G

as a smooth urve in g . Expliitly, we

have

Æ()(t) = (t)

�1

:

0

(t):

We reall from De�nition II.4.1 that on the spae 


�

(M; g) of g-valued di�erential forms

on M we have a natural braket




p

(M; g)� 


q

(M; g)! 


p+q

(M; g); (�; �) 7! [�; �℄

whih for �; � 2 


1

(M; g) satis�es for v; w 2 T

m

(M)

[�; �℄

m

(v; w) = [�

m

(v); �

m

(w)℄ � [�

m

(w); �

m

(v)℄ = 2[�

m

(v); �

m

(w)℄

(Exerise II.15).
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Lemma IV.1.4. (Produt and Quotient Rule) For smooth funtions f; g:M ! G , we have

(4:1:2) Æ(fg) = Æ(g) + Ad(g)

�1

:Æ(f);

where (Ad(g)

�1

:Æ(f))

m

:= Ad(g(m))

�1

Æ Æ(f)

m

. In partiular, we have

(4:1:3) Æ(f

�1

) = �Ad(f):Æ(f):

Proof. Clearly the pointwise produt is a smooth funtion fg:M ! G . With the Chain Rule

we obtain

d(fg)

m

= f(m):(dg)

m

+ (df)

m

:g(m);

and this leads to

Æ(fg)

m

= (fg)(m)

�1

:d(fg)

m

= g(m)

�1

:(dg)

m

+ g(m)

�1

f(m)

�1

:(df)

m

:g(m)

= Æ(g)

m

+Ad(g(m))

�1

Æ Æ(f)

m

;

whih is (4.1.2). Putting g = f

�1

, we obtain (4.1.3).

The following lemma provides a uniqueness result for the equation Æ(f) = � .

Lemma IV.1.5. (Uniqueness Lemma) If two smooth funtions f

1

; f

2

:M ! G have the same

left logarithmi derivative and M is onneted, then there exists g 2 G with f

1

= �

g

Æ f

2

.

Proof. We have to show that the funtion x 7! f

1

(x)f

2

(x)

�1

is loally onstant, hene

onstant, beause M is onneted. First we obtain with Lemma IV.1.4

Æ(f

1

f

�1

2

) = Æ(f

�1

2

) + Ad(f

2

)Æ(f

1

) = Æ(f

�1

2

) + Ad(f

2

)Æ(f

2

) = Æ(f

2

f

�1

2

) = 0:

This implies that d(f

1

f

�1

2

) vanishes, and hene that f

1

f

�1

2

is loally onstant.

For the existene of a solution of the equation Æ(f) = � , the following lemma provides a

neessary ondition.

Lemma IV.1.6. If � = Æ(f) for some f 2 C

1

(M;G) , then � satis�es the Maurer{Cartan

equation

(MC) d�+

1

2

[�; �℄ = 0:

Proof. We �rst show that �

G

satis�es the MC equation. For that, we observe that the

isomorphism of hain omplexes

ev

1

: 


p

(G; g)

G

! C

p



(g; g); ! 7! !

1

;

orresponding to the trivial ation of G on g is ompatible with the braket de�ned on both

sides (f. Exerise II.15). Sine �

G

= (id

g

)

eq

and

(d

g

id

g

)(x; y) = � id

g

([x; y℄) = �[x; y℄ = �

1

2

[id

g

; id

g

℄(x; y);

we derive

d

g

id

g

+

1

2

[id

g

; id

g

℄

in C

2



(g; g), and with Proposition IV.1.2 this leads to

d�

G

+

1

2

[�

G

; �

G

℄ = 0:

Therefore � = f

�

�

G

satis�es

d� = f

�

d�

G

= �

1

2

f

�

([�

G

; �

G

℄) = �

1

2

[f

�

�

G

; f

�

�

G

℄ = �

1

2

[�; �℄;

whih is the Maurer{Cartan equation for � .
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Remark IV.1.7. If M is one-dimensional, then eah g-valued 2-form on M vanishes, so that

[�; �℄ = 0 = d� for �; � 2 


1

(M; g). Therefore all 1-forms trivially satisfy the Maurer{Cartan

equation.

Proposition IV.1.8. Let G and H be Lie groups.

(1) If ':G! H is a morphism of Lie groups, then Æ(') = L(') Æ�

G

: For any smooth funtion

f :M ! G , we have Æ(' Æ f) = L(') Æ Æ(f) .

(2) If G is onneted and '

1

; '

2

: G ! H are morphisms of Lie groups with L('

1

) = L('

2

) ,

then '

1

= '

2

.

(3) Suppose that we are given a smooth ation of the onneted Lie group G on H by auto-

morphisms, so that we also obtain a smooth ation of G on h = L(H) . Then for a smooth

funtion f :G! H with f(1) = 1 the following are equivalent:

(a) Æ(f) is an equivariant h-valued 1-form on G .

(b) f(gx) = f(g) � g:f(x) for g; x 2 G , i.e., f is a rossed homomorphism.

Proof. (1) For g 2 G , we have ' Æ �

g

= �

'(g)

Æ ' , so that

Æ(')

g

= d(�

�1

'(g)

Æ ')

g

= d(' Æ �

�1

g

)

g

= (d')(1) Æ d�

�1

g

(g) = L(') Æ (�

G

)

g

:

For any smooth funtion f :M ! G , we now get

Æ(' Æ f) = f

�

'

�

�

H

= f

�

(L(') Æ �

G

) = L(') Æ f

�

�

G

= L(') Æ Æ(f):

(2) In view of (1), Æ('

1

) = Æ('

2

), so that the assertion follows from '

1

(1) = '

2

(1) and

Lemma IV.1.3.

(3) We write g:x = �

h

(g):x for the ation of G on h and g:h = �

H

(g):h for the ation of

G on H and note that L(�

H

(g)) = �

h

(g) holds for eah g 2 G .

Let g 2 G . Then the logarithmi derivative of �

�1

f(g)

Æ f Æ�

g

is �

�

g

Æ(f), and, in view of (1),

the logarithmi derivative of �

H

(g) Æ f is �

h

(g) Æ Æ(f). Sine both funtions map 1 to 1 , they

oinide if and only if their logarithmi derivatives oinide (Lemma IV.1.5). This implies (3).

Corollary IV.1.9. If G is a onneted Lie group, then kerAd = Z(G) .

Proof. Let 

g

(x) = gxg

�1

. In view of Proposition IV.1.8(2), for g 2 G the onditions



g

= id

G

and L(

g

) = Ad(g) = id

g

are equivalent. This implies the assertion.

Proposition IV.1.10. A onneted Lie group G is abelian if and only if its Lie algebra is

abelian.

Proof. That the Lie algebra of an abelian Lie group is abelian is a diret onsequene of

Lemma III.1.6, whih implies that in any hart the seond order Taylor polynomial of the

multipliation has the form x + y + b(x; y) with [x; y℄ = b(x; y) � b(y; x). If G is abelian,

then b is symmetri, and therefore L(G) is abelian.

In view of the preeding orollary, we have to show that for eah g 2 G we have Ad(g) = 1 .

Let x 2 g and onsider a smooth urve : [0; 1℄ ! G with (0) = 1 and (1) = g . For

�(t) := Ad((t)):x , we then have by Proposition III.1.16

�

0

(t) = T Ad((t):Æ()(t); 0) = Ad((t)):[Æ()(t); x℄ = 0

for eah t , so that � is onstant. This implies that Ad(g):x = �(1) = �(0) = x .

Problem IV.1. Show that a onneted Lie group G is nilpotent/solvable if and only if its

Lie algebra g is nilpotent/solvable. A promising strategy should be to show that ertain om-

mutators vanishing for nilpotent/solvable Lie algebras an be expressed as derivatives of ertain

ommutator expressions in the group. Suh an argument would imply thay nilpotene/solvability

of G entails the orresponding property of g .

If, onversely, g is nilpotent/solvable, then the adjoint representation has ertain properties

whih have to be \integrated" to the group.
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IV.2. Regular Lie groups and the Fundamental Theorem

If M = I = [0; 1℄, then the Maurer{Cartan equation is satis�ed by eah � 2 


1

(I; g)

�

=

C

1

(I; g), beause eah 2-form on I vanishes. The requirement that for eah smooth urve

� 2 C

1

(I; g), the ordinary di�erential equation



0

(t) = (t):�(t) for t 2 I;

has a solution depending smoothly on � leads to the onept of a regular Lie group.

De�nition IV.2.1. A Lie group G is alled regular if for eah � 2 C

1

(I; g) the initial value

problem (IVP)

(4:2:1) (0) = 1; Æ() = �;

has a solution 

�

2 C

1

(I;G) and the evolution map

evol

G

:C

1

(I; g)! G; � 7! 

�

(1)

is smooth.

For a regular Lie group G , we de�ne the exponential funtion

exp:L(G) = g ! G by exp(x) := 

x

(1) = evol

G

(x);

where x 2 g is onsidered as a onstant funtion I ! g . As a restrition of the smooth funtion

evol

G

, the exponential funtion is smooth.

For a general Lie group G , we all a smooth funtion exp

G

: g ! G an exponential funtion

for G if for eah x 2 g the urve 

x

(t) := exp(tx) is a solution of the IVP (4.2.1). Aording to

Lemma IV.1.5, suh a solution is unique whenever it exists. Therefore a Lie group has at most

one exponential funtion.

Remark IV.2.2. (a) As a diret onsequene of the existene of solutions to ordinary di�eren-

tial equations on open domains of Banah spaes and their smooth dependene on parameters,

every Banah{Lie group is regular.

(b) Let A be a unital Banah algebra and A

�

its unit group. Sine A is a CIA, A

�

is a

Lie group. For x 2 A , the orresponding left invariant vetor �eld is given on A

�

by x

l

(a) = ax ,

and the unique solutions of the IVP (4.2.1) are given by (t) = exp(tx), where

exp

A

:A! A

�

; x 7!

1

X

k=0

1

k!

x

k

is the exponential funtion of A . This implies that exp

A

is a smooth exponential funtion of the

Lie group A .

This remains true for eah Makey omplete CIA A : For eah x 2 A , the exponential

series onverges and exp

A

de�nes a smooth exponential funtion of A

�

(f. [Gl02b℄).

() Although it might be hard to verify it in onrete situations, all \known" Lie groups

modeled on Makey omplete spaes are regular. For example we do not know if all unit groups of

Makey omplete CIAs are regular, but we have just seen in (b) that they always have a smooth

exponential funtion.

If the model spae is no longer assumed to be Makey omplete, one obtains non-regular

Lie groups as follows (f. [Gl02b, Set. 7℄): Let A � C([0; 1℄;R) denote the subalgebra of all

rational funtions, i.e., of all quotients p(x)=q(x), where q(x) is a polynomial without zero in

[0; 1℄. We endow A with the indued norm kfk := sup

0�t�1

jf(t)j . If an element f 2 A is
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invertible in C([0; 1℄;R), then it has no zero in [0; 1℄, whih implies that it is also invertible in

A , i.e.,

A

�

= C([0; 1℄;R)

�

\A:

This shows that A

�

is open in A , and sine the Banah algebra C([0; 1℄;R) is a CIA, the

smoothness of the inversion is inherited by A , so that A is a CIA. Hene A

�

is a Lie group

(Example III.1.3).

If A

�

is regular, then it also has a smooth exponential funtion, and from Lemma IV.1.3

we derive that it is the restrition of the exponential funtion of C([0; 1℄;R)

�

to A , whih leads

to

exp

A

(f) = e

f

; t 7! e

f(t)

:

This ontradits the observation that for the funtion f(t) = t , the funtion e

f

is not rational.

Therefore the Lie group A

�

does not have an exponential funtion, hene is not regular.

(d) If V is a loally onvex spae, then (V;+) is a regular Lie group if and only if it is

Makey omplete beause this means that for eah smooth urve �: I ! V , there is a smooth

urve 

�

: I ! V with 

0

�

= � . Regularity is inherited by all abelian Lie groups of the form

Z = V=�, where � is a disrete subgroup of V (Exerise III.4) (f. Corollary I.1.17 for the Lie

group struture on V=�).

(e) If K is a Lie group with a smooth exponential funtion exp

K

: k ! K and M is a

ompat smooth manifold, then we obtain an exponential funtion of the group C

1

(M;K) by

exp

G

: g = C

1

(M; k)! G = C

1

(M;K); � 7! exp

K

Æ�:

The following theorem is an important tool to verify that given Lie groups are regular.

Theorem IV.2.3. Let

b

G be a Lie group extension of the Lie groups G and N , i.e., there

exists a surjetive morphism q:

b

G! G with ker q

�

=

N , where

b

G arries the struture of an N -

prinipal bundle. Then the group

b

G is regular if and only if the groups G and N are regular.

The Fundamental Theorem

Lemma IV.2.4. (Omori) If G is a regular Lie group, x 2 g and � 2 C

1

(I; g) , then the initial

value problem

(E1) �

0

(t) = [�(t); �(t)℄; �(0) = x

has a unique solution given by

(E2) �(t) = Ad(

�

(t))

�1

:x:

Proof. For (t) := 

�

(t), we get with Lemma IV.1.4

Æ(

�1

) = �Ad():Æ() = �Ad():�:

We de�ne � by (E2). Then � is a smooth urve with

�

0

(t) = Ad((t))

�1

[�Ad((t)):�(t); x℄ = [Ad((t))

�1

:x; �(t)℄ = [�(t); �(t)℄

(Proposition III.1.16).

Now let � be another solution of (E1) and onsider the urve

e

�(t) := Ad((t)):�(t):

Then

e

�(0) = �(0) = x , and Proposition III.1.16 leads to

e

�

0

(t) = Ad((t)):[Æ()(t); �(t)℄ + Ad((t)):�

0

(t) = Ad((t)):

�

[�(t); �(t)℄ + �

0

(t)

�

= 0:

Therefore

e

� is onstant equal to x , and we obtain �(t) = Ad((t))

�1

:

e

�(t) = Ad((t))

�1

:x =

�(t):
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Remark IV.2.5. Let G be regular. Then the map

S: I � C

1

(I; g)! C

1

(I; g); S(s; �)(t) = s�(st)

is smooth. For � 2 C

1

(I; g) and 

�;s

(t) := 

�

(st), 0 � s � 1, we have Æ(

�;s

)(t) = s�(st) =

S(s; �)(t): Therefore



�

(s) = evol

G

�

S(s; �)

�

;

so that the map

evol

G

ÆS: I � C

1

(I; g)! G; (s; �) 7! 

�

(s)

is smooth.

Remark IV.2.6. Now we onsider smooth funtions I

2

! G , where I = [0; 1℄ is the unit

interval and G is a regular Lie group. A smooth g-valued 1-form � 2 


1

(I

2

; g) an be written

as

� = v � dx+ w � dy with v; w 2 C

1

(I

2

; g):

To evaluate the Maurer{Cartan equation for � , we �rst observe that

1

2

[�; �℄

�

�

�x

;

�

�y

�

=

h

�

�

�

�x

�

; �

�

�

�y

�i

= [v; w℄ 2 C

1

(I

2

; g);

and obtain

d�+

1

2

[�; �℄ =

�v

�y

dy ^ dx+

�w

�x

dx ^ dy + [v; w℄dx ^ dy =

�

�w

�x

�

�v

�y

+ [v; w℄

�

dx ^ dy:

Therefore the MC equation for � is equivalent to the partial di�erential equation

(4:1:5)

�v

�y

�

�w

�x

= [v; w℄:

Suppose that the two smooth funtions v; w: I

2

! g satisfy (4.1.5). Then we de�ne a

smooth funtion f : I

2

! G by

f(x; 0) := 

v(�;0)

(x) and f(x; y) := f(x; 0) � 

w(x;�)

(y):

Sine the map I ! C

1

(I; g); x 7! w(x; �) is smooth (Exerise!), f is a smooth funtion. We

have

Æ(f) = bv � dx+ w � dy with bv(x; 0) = v(x; 0); x 2 I:

The Maurer{Cartan equation for Æ(f) reads

�bv

�y

�

�w

�x

= [bv; w℄; so that subtration of this equation

from (4.1.5) leads to

�(v � bv)

�y

= [v � bv; w℄:

As (v � bv)(x; 0) = 0, the uniqueness assertion of Lemma IV.2.3, applied with �(t) := w(x; t),

implies that (v � bv)(x; y) = 0 for all x; y 2 I . We onlude that v = bv , whih means that

Æ(f) = v � dx+ w � dy .

Lemma IV.2.7. Let U be an open onvex subset of the loally onvex spae V , G a regular

Lie group and and � 2 


1

(U; g) satisfy the Maurer{Cartan equation. Then there exists a smooth

funtion f :U ! G satisfying Æ(f) = � .

Proof. We may w.l.o.g. assume that x

0

= 0 2 U . For x 2 U , we then onsider the smooth

urve

�

x

: I ! g; t 7! �(tx)(x):
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Then the map U ! C

1

(I; g) is smooth (Exerise), so that the funtion

f :U ! G; x 7! evol

G

(�

x

)

is smooth.

First we show that f(sx) = 

�

x

(s) holds for eah s 2 I . From Remark IV.2.4 we derive

that

S(s; �

x

)(t) = s�

x

(st) = �(stx)(sx) = �

sx

(t);

hene S(s; �

x

) = �

sx

; whih leads to f(sx) = 

�

x

(s).

For x; x+ h 2 U , we onsider the smooth map

': I � I ! U; (s; t) 7! t(x+ sh)

and the smooth funtion F := fÆ' . Then the preeding onsiderations imply F (s; 0) = f(0) = 1 ,

�F

�t

(s; t) =

d

dt

f(t(x+ sh)) =

d

dt



�

x+sh

(t) = F (s; t):�

x+sh

(t)

= F (s; t):�(t(x + sh))(x + sh) = F (s; t):('

�

�)

(s;t)

�

�

�t

�

:

As we have seen in Remark IV.2.5, these relations imply already that Æ(F ) = '

�

� holds on the

square I

2

. We therefore obtain

�

�s

f(x+ sh) =

�

�s

F (s; 1) = F (s; 1):�

x+sh

(h) = f(x+ sh):�

x+sh

(h);

and for s = 0, this leads to (df)

x

(h) = f(x):�

x

(h); whih means that Æ(f) = � .

The following theorem is a version of the Fundamental Theorem of alulus for funtions

with values in regular Lie groups.

Theorem IV.2.8. (Fundamental Theorem for Lie group valued funtions) Let M be a simply

onneted manifold and G a regular Lie group. Then � 2 


1

(M; g) is integrable if and only if

(MC) d�+

1

2

[�; �℄ = 0:

Proof. We have already seen in Lemma IV.1.6 that the MC equation is neessary for the

existene of a smooth funtion f :M ! G with Æ(f) = � .

We onsider the produt set P := M � G with the two projetion maps F :P ! G

and q:P ! M . We de�ne a topology on P as follows. For eah pair (U; f), onsisting of

an open subset U � M and a smooth funtion f :U ! G with Æ(f) = � j

U

, the graph

�(f; U) := f(x; f(x)):x 2 Ug is a subset of P . These sets form a basis for a topology � on P .

With respet to this topology, the mapping q:P ! M is a overing map. To see this, let

x 2 M . Sine M is a manifold, there exists a neighborhood U of x whih is di�eomorphi

to a onvex subset of a loally onvex spae. In view of Lemmas IV.1.10 and IV.1.5, for eah

g 2 G and eah x 2 U , the equation Æ(f) = � j

U

has a unique solution f

g

with f

g

(x) = g .

Now q

�1

(U) = U � G =

S

g2G

�(f

g

; U) is a disjoint union of open subsets of P (here we use

the onnetedness of U ), and therefore q is a overing. We onlude that P arries a natural

manifold struture, for whih q is a loal di�eomorphism. For this manifold struture, the

funtion F :P ! G is smooth with Æ(F ) = q

�

� .

Now we �x a point x

0

2M and an element g 2 G . Then the onneted omponent



M of

(x; g) in P is a onneted overing manifold of M , hene di�eomorphi to M , so that we may

put f := F Æ (q j

b

M

)

�1

.
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Remark IV.2.9. (a) If M is a omplex manifold, G is a omplex regular Lie group and

� 2 


1

(M; g) is a holomorphi 1-form, then for any smooth funtion f :M ! G with Æ(f) = � ,

the di�erential of f is omplex linear in eah point, so that f is holomorphi. Conversely, the

left logarithmi derivative of any holomorphi funtion f is a holomorphi 1-form.

If, in addition, M is a omplex urve, i.e., a one-dimensional omplex manifold, then for

eah holomorphi 1-form � 2 


1

(M; g) the 2-forms d� and [�; �℄ are holomorphi, whih im-

plies that they vanish, beause M is a one-dimensional. Therefore the Maurer{Cartan equation

is automatially satis�ed by all holomorphi 1-forms.

One of the main points of the notion of regularity is provided by the following theorem.

Theorem IV.2.10. If H is a regular Lie group, G is a simply onneted Lie group, and

':L(G) ! L(H) is a ontinuous homomorphism of Lie algebras, then there exists a unique Lie

group homomorphism f :G! H with L(f) = ' .

Proof. This is Theorem 8.1 in [Mil83℄ (see also [KM97, Th. 40.3℄). The uniqueness assertion

follows from Proposition IV.1.5 and does not require the regularity of H .

On G , we onsider the smooth h-valued 1-form given by � := ' Æ �

G

. That it satis�es

the Maurer{Cartan equation follows from

d� = ' Æ d�

G

= �

1

2

' Æ [�

G

; �

G

℄ = �

1

2

[' Æ �

G

; ' Æ �

G

℄ = �

1

2

[�; �℄:

Therefore the Fundamental Theorem implies the existene of a unique smooth funtion f :G! H

with Æ(f) = � and f(1

G

) = 1

H

. In view of Proposition IV.1.8(3), the funtion f is a morphism

of Lie groups, and we learly have L(f) = �

1

= ' .

Corollary IV.2.11. If G

1

and G

2

are regular simply onneted Lie groups with isomorphi

Lie algebras, then G

1

and G

2

are isomorphi.

The non-simply onneted ase

For a loally onvex Lie algebra g , we write

Z

1

dR

(M; g) := f� 2 


1

(M; g): d�+

1

2

[�; �℄ = 0g

for the set of solutions of the MC equation. Note that if g is abelian, then Z

1

dR

(M; g) is the

spae of losed g-valued 1-forms, but that for non-abelian Lie algebras g , the set Z

1

dR

(M; g)

does not have any natural vetor spae struture.

We are now looking for a suÆient ondition on � 2 Z

1

dR

(M; g) to be G-integrable. In the

remainder of this setion, we shall assume that G is regular and that M is onneted, but not

that M is simply onneted. We �x a base point m

0

2M .

Let � 2 Z

1

dR

(M; g). If : I = [0; 1℄!M is a pieewise smooth loop, then 

�

� 2 


1

(I; g)

�

=

C

1

(I; g), so that evol

G

(

�

�) 2 G is de�ned, beause G is regular.

Lemma IV.2.12. If � satis�es the MC equation, then evol

G

(

�

�) does not hange under

homotopies with �xed endpoints and

per

m

0

�

:�

1

(M;m

0

)! G; [℄ 7! evol

G

(

�

�)

is a group homomorphism.

Proof. Let q

M

:

f

M ! M denote a universal overing manifold of M and hoose a base

point em

0

2

f

M with q

M

(em

0

) = m

0

. Then the g-valued 1-form q

�

M

� on

f

M also satis�es

the Maurer{Cartan equation, so that the Fundamental Theorem for simply onneted manifolds



50 monas.tex January 9, 2006

(Theorem IV.2.7) implies the existene of a unique smooth funtion

e

f :

f

M ! G with Æ(

e

f) = q

�

M

�

and

e

f(em

0

) = 1 .

We write

�:�

1

(M;m

0

)�

f

M !

f

M; (d;m) 7! d:m = �

d

(m)

for the left ation of the fundamental group �

1

(M;m

0

) on

f

M . Then �

�

d

q

�

M

� = q

�

M

� for eah

d 2 �

1

(M;m

0

) implies the existene of a funtion

':�

1

(M;m

0

)! G with

e

f Æ �

d

= '(d) �

e

f; d 2 �

1

(M;m

0

);

beause

Æ(

e

f Æ �

d

) = �

�

d

q

�

M

� = q

�

M

� = Æ(

e

f):

For d

1

; d

2

2 �

1

(M;m

0

), we then have

e

f Æ �

d

1

d

2

=

e

f Æ �

d

1

Æ �

d

2

= ('(d

1

) �

e

f) Æ �

d

2

= '(d

1

) � (

e

f Æ �

d

2

) = '(d

1

)'(d

2

) �

e

f;

so that ' is a group homomorphism.

We now pik a ontinuous lift e: I !

f

M with q

M

Æ e =  and observe that

Æ(

e

f Æ e) = e

�

q

�

M

� = 

�

�;

whih entails that

'([℄) =

e

f([℄:em

0

) =

e

f(e(1)) = evol(

�

�):

This ompletes the proof.

De�nition IV.2.13. For � 2 Z

1

dR

(M; g), the homomorphism

per

m

0

�

:�

1

(M;m

0

)! G with per

m

0

�

([℄) = evol(

�

�)

for eah pieewise smooth loop : I ! M in m

0

is alled the period homomorphism of � with

respet to m

0

.

Clearly, the funtion

e

f in the proof of Lemma IV.2.12 fators through a smooth funtion

on M if and only if the period homomorphism is trivial. This leads to the following version of

the fundamental theorem for manifolds whih are not simply onneted.

Theorem IV.2.14. (Fundamental Theorem; non-simply onneted ase) Let M be a on-

neted manifold, m

0

2 M , G a regular Lie group and � 2 


1

(M; g) . There exists a smooth

funtion f :M ! G with � = Æ(f) if and only if � satis�es

d�+

1

2

[�; �℄ = 0 and per

m

0

�

= 1:

Exerises for Setion IV

Exerise IV.1. Let V be a Makey omplete spae and � � V a disrete subgroup. Show

that the quotient Lie group V=� is regular.

Exerise IV.2. Let M be a smooth manifold, H a regular Lie group and � 2 Z

1

dR

(M; h).

Show that:

(1) For any di�eomorphism ' 2 Di�(M), we have

per

m

0

�

('

�

�) = per

'(m

0

)

�

(�) Æ �

1

(';m

0

):�

1

(M;m

0

)! H:

(2) Let G be a Lie group, ating smoothly on M from the left by g:m = �

g

(m) and also on

H , resp., h , by automorphisms �

H

(g), resp., �

h

(g). We all � an equivariant form if

�

�

g

� = �

h

(g) Æ �

holds for eah g 2 G . Show that if � is equivariant, then

�

H

(g) Æ per

m

0

�

(�) = per

g:m

0

�

(�) Æ �

1

(�

g

;m

0

):�

1

(M;m

0

)! G:

If, in addition, m

0

is �xed by G and G is onneted, then

im(per

m

0

�

) � H

G

:
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V. Loally exponential Lie groups and Lie subgroups

In this setion, we turn to Lie groups with an exponential funtion exp:L(G) ! G whih

is well-behaved in the sense that it maps a 0-neighborhood in L(G) di�eomorphially onto a

1-neighborhood in G . We all suh Lie groups loally exponential.

The assumption of loal exponentiality has important strutural onsequenes, the most

important ones of whih are that it permits us to develop a good theory of Lie subgroups and that

there even is a haraterization of those subgroup for whih we may form Lie group quotients.

Unfortunately, not all regular Lie groups are loally exponential. As an important example

we disuss the group Di�(S

1

) in some detail.

V.1. Loally exponential Lie groups

De�nition V.1.1. We all a Lie group G loally exponential if it has a smooth exponential

funtion exp: g = L(G) ! G and there exists an open 0-neighborhood U � g suh that

exp j

U

:U ! exp(U) is a di�eomorphism onto an open 1-neighborhood of G . A Lie group

is alled exponential if it has an exponential funtion whih is a di�eomorphism g ! G .

Lemma V.1.2. If G is a Lie group with exponential funtion exp: g ! G , then

d exp(0) = id

g

:

Proof. For x 2 g , we have exp(x) = 

x

(1), where 

x

is a solution of the IVP

(0) = 1; Æ() = x:

This implies in partiular that exp(tx) = 

tx

(1) = 

x

(t) (Remark IV.2.4), and hene

(d exp)(0)(x) = 

0

x

(0) = x:

The preeding lemma is not as useful in the in�nite-dimensional ontext as it is in the �nite-

dimensional or Banah ontext. For Banah{Lie groups, it follows from the Inverse Funtion

Theorem that exp restrits to a di�eomorphism of some open 0-neighborhood in g to an open

1-neighborhood in G , so that we an use the exponential funtion to obtain harts around 1 . We

will see below that this onlusion does not work for Fr�ehet{Lie groups, beause in this ontext

there is no general Inverse Funtion Theorem. This observation also implies that to integrate

Lie algebra homomorphisms to group homomorphisms, it is in general not enough to start with

the presription �(exp

G

x) := exp

H

'(x) to prove Theorem IV.2.10, beause the image of exp

G

need not ontain an identity neighborhood in G (f. Theorem V.1.6 below).

Remark V.1.3. (a) In view of Lemma V.1.2, the Inverse Funtion Theorem implies that eah

Banah{Lie group is loally exponential. This also overs all �nite-dimensional Lie groups.

(b) Unit groups of Makey omplete CIAs are loally exponential (f. [Gl02b℄). In fat,

if A is a Makey omplete omplex CIA, then the fat that A

�

is open implies that for eah

a 2 A , the spetrum Spe(a) is a ompat subset (whih also is non-empty), and it is shown

in [Gl02b℄ that the holomorphi alulus works as for Banah algebras. We only have to use

partially smooth ountours around spetra. We thus obtain an exponential funtion

exp

A

:A! A

�

; x 7!

1

2�i

I

�

e

�

(�1� x)

�1

d�;
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where � is a pieewise smooth ontour around Spe(x). Then exp is a holomorphi funtion

A! A

�

.

Let �(a) := supfj�j:� 2 Spe(a)g denote the spetral radius of a 2 A . Then


 := fa 2 A: �(a� 1) < 1g

is an open 1-neighborhood in A

�

, and with the omplex logarithm funtion

log: fz 2 C : j1� zj < 1g ! C

satisfying log(1) = 0, we get the holomorphi funtion

log

A

: 
! A; x 7!

1

2�i

I

�

log(�)(�1 � x)

�1

d�;

where � is a ontour around Spe(x), lying in the open dis of radius 1 around 1. Now funtional

alulus implies that (log

A

Æ exp

A

)(x) = x for �(x) suÆiently small, and (exp

A

Æ log

A

)(x) = x

for eah x 2 
. We onlude that the unit group A

�

is loally exponential.

If A is a real CIA, then one uses the fat that its omplexi�ation A

C

is a CIA to see that

log

A

C

(
 \A

�

) � A , and that log

A

:= log

A

C

j




is a smooth loal inverse to exp

A

:= exp

A

C

j

A

.

() If K is a loally exponential Lie group and M is a ompat manifold, then the Lie

group G := C

1

(M;K) (Example III.1.12) is loally exponential.

In fat, if exp

K

: k ! K is an exponential funtion of K , then

exp

G

: g = C

1

(M; k)! G = C

1

(M;K); � 7! exp

K

Æ�

is a smooth exponential funtion of G . Sine we may use the exponential funtion exp

K

: k ! K

to get a loal hart of K , the onstrution of the loal harts of G implies that G is loally

exponential.

(d) Reent results of Ch. Wokel ([Wo03℄) imply that the preeding theorem generalizes

even to gauge groups: If K is loally exponential and q:P !M is a smooth prinipal K -bundle

over the ompat manifold M , then Gau(P ) arries a natural Lie group struture, turning it

into a loally exponential Lie group. In fat, one shows that

gau(P ) := C

1

(P; k)

K

! C

1

(P;K)

K

�

=

Gau(P ); � 7! exp

K

Æ�

is a loal homeomorphism, and that it an be used to de�ne a Lie group struture on Gau(P ).

(e) If g is a nilpotent loally onvex Lie algebra, then we an use the BCH series x � y :=

x+ y +

1

2

[x; y℄ + � � � to de�ne a polynomial Lie group struture (g; �) with L(g; �) = g .

More generally, if g = lim

 �

g

j

is a projetive limit of a family of nilpotent Lie algebras

(g

j

)

j2J

(a so-alled pro-nilpotent Lie algebra), then the orresponding morphisms of Lie algebras

are also morphisms for the orresponding group strutures, so that (g; �) := lim

 �

(g

j

; �) de�nes

on the spae g a Lie group struture with L(g; �) = g . We thus obtain an exponential Lie group

G = (g; �) with exp

G

= id

g

.

This onstrution an be used in many situations to see that ertain groups an be turned

into Lie groups. An important lass of examples arises as follows. Let V be a �nite-dimensional

K -vetor spae, let P

d

(V; V ) denote the spae of all polynomials funtions V ! V of degree d .

Then for eah n � 2, the spae g

n

:=

L

n

k=2

P

k

(V; V ) arries a natural Lie algebra struture

given for f 2 P

i

(V; V ) and g 2 P

j

(V; V ) by

[f; g℄(x) :=

�

dg(x)f(x) � df(x)g(x) for i+ j � 1 � n

0 for i+ j � 1 > n.

This is a modi�ation of the natural Lie braket on the spae C

1

(V; V )

�

=

V(V ), obtained by

utting of all terms of degree > n . From

[P

i

(V; V ); P

j

(V; V )℄ � P

i+j�1

(V; V )
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it immediately follows that eah g

n

is a nilpotent Lie algebra. For n < m , we have natural

projetions

'

nm

: g

m

! g

n

;

whih are atually homomorphisms of Lie algebras. The projetive limit Lie algebra g := lim

 �

g

n

an be identi�ed with the spae of V -valued formal power series starting in degree 2.

A natural Lie group orresponding to g

n

is the set of all polynomial maps f :V ! V with

f � id

V

2 g

n

. The group struture is given by omposition and then omitting all terms of order

> n :

f � g = (f Æ g)

�n

:

This turns G

n

into a nilpotent Lie group with Lie algebra g

n

. The orresponding exponential

funtion

exp

G

n

: g

n

! G

n

is given by \integrating" a vetor �eld X 2 g

n

modulo terms of order > n . Sine G

n

is

di�eomorphi to a vetor spae, its exponential funtion is a di�eomorphism g

n

! G

n

.

We an now form the projetive limit group G := lim

 �

G

n

whose manifold struture is

obtained from the fat that it is an aÆne spae with translation group g . Sine the exponential

funtions are ompatible with the limiting proess, we see that G is an exponential Lie group

with a pro-nilpotent Lie algebra. The group G an be de�ned with the set of all formal

di�eomorphisms of V �xing 0 and with �rst order term given by id

V

. Likewise, g an be

identi�ed with a Lie algebra of formal vetor �elds.

(f) We desribe a Fr�ehet{Lie group G whih is analyti, for whih exp: g ! G is a di�eo-

morphism and analyti, but exp

�1

is not an analyti map, and the orresponding multipliation

on g is not analyti.

Let A�(R) denote the aÆne group of R , whih is isomorphi to R

2

, endowed with the

multipliation

(x; y)(x

0

; y

0

) = (x + e

y

x

0

; y + y

0

)

and the exponential map

exp:R

2

! R

2

; exp(x; y) =

�

e

y

� 1

y

x; y

�

;

whose inverse is given by

log:R

2

! R

2

; log(x; y) =

�

y

e

y

� 1

x; y

�

:

On the Lie algebra level, we have

[(x; y); (x

0

; y

0

)℄ = (yx

0

� y

0

x; 0):

This means that

ad(0; y)

n

:(x

0

; y

0

) = (y

n

x

0

; 0);

so that

P

1

n=1

ad(0; y)

n

onverges if and only if jyj < 1.

We put

G := A�(R)

N

�

=

(R

2

)

N

with the multipliation

(x

n

; y

n

)

n2N

(x

0

n

; y

0

n

)

n2N

:= (x

n

+ e

y

n

x

0

n

; y

n

+ y

0

n

)

n2N

:

We endow G with the manifold struture we obtain by identifying it with the produt spae

(R

2

)

N

whih is a Fr�ehet spae (f. Exerise II.8). This turns G into an analyti manifold. As



54 monas.tex January 9, 2006

the power series de�ning the multipliation onverges globally, the multipliation of G is analyti,

and the same holds for the inversion map, beause in A�(R) we have

(x; y)

�1

= (�e

�y

x;�y):

Therefore G is an analyti Lie group.

The exponential map of G is given by

exp((x

n

; y

n

))

n

=

�

e

y

n

� 1

y

n

x

n

; y

n

�

;

and again we see that exp is analyti beause the orresponding power series onverges globally.

For the inverse funtion, we obtain

exp

�1

((x

n

; y

n

))

n

=

�

y

n

e

y

n

� 1

x

n

; y

n

�

;

but this map is not analyti, beause the power series of the real analyti funtion y 7!

y

e

y

�1

onverges only on the interval from �2� to 2� , and the produt of in�nitely many suh intervals

is not an open subset in g

�

=

(R

2

)

N

.

For the multipliation on the Lie algebra aff(R) obtained from the exponential hart, we

have

(x; y) � (x

0

; y

0

) = log(exp(x; y) exp(x

0

; y

0

)) = log

�

e

y

� 1

y

x+ e

y

e

y

0

� 1

y

0

x

0

; y + y

0

�

=

�

y + y

0

e

y+y

0

� 1

�

e

y

� 1

y

x+ e

y

e

y

0

� 1

y

0

x

0

�

; y + y

0

�

and in partiular

(0; y) � (1; 0) = log(e

y

; y) =

�

ye

y

e

y

� 1

; y

�

=

�

y

1� e

�y

; y

�

:

Therefore the argument form above also shows that the multipliation on the produt Lie algebra

g is not analyti.

For the following results we refer to [GN05℄.

Theorem V.1.4. Eah ontinuous homomorphism ':G ! H between loally exponential

groups is smooth.

Proof. (Idea) Using exponential harts, we obtain open 0-neighborhoods U

g

� g = L(G) and

U

h

� h = L(H) together with a ontinuous map  :U

g

! U

h

satisfying

 (x � y) =  (x) �  (y); x; y 2 U

g

:

Then one shows that

f(x) := lim

n!1

n (

1

n

x)

onverges for eah x 2 g , that f oinides on a 0-neighborhood with  , and that f is linear.

As f is ontinuous in a 0-neighborhood, it is smooth, and from exp

H

Æf = ' Æ exp

G

on a 0-

neighborhood in U

g

, we derive that ' is smooth.
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Theorem V.1.5. Let G and H be loally exponential groups,  :L(G)! L(H) a ontinuous

homomorphism of Lie algebras, and assume that G is onneted and simply onneted. Then

there exists a unique morphism of Lie groups ':G! H with L(') =  .

Proof. (Idea) Let U

g

� g = L(G) be a onvex balaned 0-neighborhood mapped di�eomor-

phially by the exponential funtion to an open subset of G .

First one shows that the loal Maurer{Cartan form on U

g

is given by

(�

g

)

x

:= (exp

�

�

G

)

x

=

Z

1

0

e

�t ad x

dt:

This implies that  

�

�

h

=  Æ �

g

on some 0-neighborhood in g . For the map f :U

G

! H; x 7!

exp

H

( (x)), this leads to

f

�

�

H

=  Æ �

G

;

showing that the h-valued 1-form  Æ �

G

is loally integrable. Sine this form on G is left

invariant and G is simply onneted, it is globally integrable (for that one an argue as in the

proof of the Fundamental Theorem IV.2.7), so that we �nd a smooth funtion ':G ! H with

'(1) = 1 and Æ(') =  Æ�

G

. Now Proposition IV.1.8(3) implies that ' is a group homomorphism

with L(') = �

1

=  .

Corollary V.1.6. If G

1

and G

2

are loally exponential simply onneted Lie groups with

isomorphi Lie algebras, then G

1

and G

2

are isomorphi.

It is instrutive to ompare the preeding orollary with Corollary IV.2.10, whih makes a

similar statement for regular Lie groups. Although all known Lie groups are regular, there is no

theorem saying that all loally exponential groups are regular. That the onverse is false is lear

from the example G = Di�(S

1

), whih is regular but not loally exponential.

Di�(S

1

) is not loally exponential

Below we show that the exponential funtion

exp:V(S

1

)! Di�(S

1

)

is not a loal di�eomorphism by proving that every identity neighborhood of Di�(S

1

) ontains

elements whih do not lie on a one-parameter group, hene are not ontained in the image of

exp.

Let G := Di�

+

(S

1

) denote the group of orientation preserving di�eomorphisms of S

1

, i.e.,

the identity omponent of Di�(S

1

). To get a better piture of this group, we �rst onstrut its

universal overing group

e

G . Let

e

G := f' 2 Di�(R): (8x 2 R) '(x + 2�) = '(x); '

0

> 0g:

We onsider the map

q:R ! S

1

:= R=2�Z; x 7! x+ 2�Z

as the universal overing map of S

1

. Then every orientation preserving di�eomorphism  2

Di�

+

(S

1

) lifts to a di�eomorphism

e

 of R , ommuting with the translation ation of the group

2�Z

�

=

�

1

(S

1

), whih means that

e

 (x + 2�) =

e

 (x) + 2� for eah x 2 R . The di�eomorphism

e

 is uniquely determined by the hoie of an element in q

�1

( (q(0))). That  is orientation

preserving means that

e

 

0

> 0. Hene we have a surjetive homomorphism

q

G

:

e

G! G; q

G

(')(q(x)) := q('(x))

with kernel isomorphi to Z .
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The Lie group struture of

e

G is rather simple. It an be de�ned by a global hart. Let

C

1

2�

(R;R) denote the Fr�ehet spae of 2� -periodi smooth funtions on R , whih is onsidered

as a losed subspae of the Fr�ehet spae C

1

(R;R). In this spae,

U := f' 2 C

1

2�

(R;R):'

0

> �1g

is an open onvex subset, and the map

�:U !

e

G; �(f)(x) := x+ f(x)

is a bijetion.

In fat, let f 2 U . Then �(f)(x+2�) = �(f)(x)+2� follows diretly from the requirement

that f is 2� -periodi, and �(f)

0

> 0 follows from f

0

> �1. Therefore �(f) is stritly inreasing,

hene a di�eomorphism of R onto the interval �(f)(R) . As the latter interval is invariant under

translation by 2� , we see that �(f) is surjetive and therefore �(f) 2

e

G . Conversely, it is easy

to see that �

�1

( )(x) =  (x) � x yields an inverse of �. We de�ne the manifold struture on

e

G by delaring � to be a global hart. With respet to this hart, the group operations in

e

G

are given by

m(f; g)(x) := f(g(x) + x) � x and �(f)(x) = (f + id

R

)

�1

(x) � x;

whih an be shown diretly to be smooth maps. We thus obtain on

e

G the struture of a Lie

group suh that �:U !

e

G is a di�eomorphism. In partiular,

e

G is ontratible and therefore

simply onneted, so that the map q

G

:

e

G! G turns out to be the universal overing map of G .

Theorem V.1.7. Every identity neighborhood in Di�(S

1

) ontains elements not ontained in

the image of the exponential funtion.

Proof. First we onstrut ertain elements in

e

G whih are lose to the identity. For 0 < " <

1

n

,

we onsider the funtion

f :R ! R; x 7! x+

�

n

+ " sin

2

(nx)

and observe that f 2

e

G follows from f

0

(x) = 1 + 2"n sin(nx) os(nx) = 1 + "n sin(2nx) > 0.

Step 1. For n large �xed and "! 0, we get elements in

e

G whih are arbitrarily lose to id

R

.

Step 2. q

G

(f) has a unique periodi orbit of order 2n on S

1

: Under q

G

(f), the point q(0) 2 S

1

is mapped to

�

n

et., so that we obtain the orbit

q(0)! q(

�

n

)! q(

2�

n

)! : : :! q(

(2n�1)�

n

)! q(0):

For 0 < x

0

<

�

n

, we have for x

1

:= f(x

0

):

x

0

+

�

n

< x

1

<

2�

n

;

and for x

n

:= f(x

n�1

), the relations

0 < x

0

< x

1

�

�

n

< x

2

�

2�

n

< � � � <

�

n

:

Therefore x

k

�x

0

62 2�Z for eah k 2 N , and hene the orbit of q(x

0

) under q

G

(f) is not �nite.

This proves that q

G

(f) has a unique periodi orbit and that the order of this orbit is 2n .

Step 3. q

G

(f) 6= g

2

for all g 2 Di�(S

1

): We analyze the periodi orbits. Every periodi point of

g is a periodi point of g

2

and vie versa. If the period of x under g is odd, then the period of x

under g and g

2

is the same. If the period of x is 2m , then its orbit under g breaks up into two

orbits under g

2

, eah of order m . Therefore g

2

an never have a single periodi orbit of even

order, and this proves that q

G

(f) has no square root in Di�(S

1

). It follows in partiular that

q

G

(f) does not lie on any one-parameter subgroup, i.e., q

G

(f) 6= expX for eah X 2 V(M).
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Remark V.1.8. (a) If M is a ompat manifold, then one an show that the identity om-

ponent Di�(M)

0

of Di�(M) is a simple group (Epstein, Hermann and Thurston; see [Ep70℄).

Being normal in Di�(M)

0

, the subgroup hexpV(M)i oinides with Di�(M)

0

. Hene every

di�eomorphism homotopi to the identity is a �nite produt of exponentials.

(b) Although Di�(M)

0

is a simple Lie group, its Lie algebra V(M) is far from being simple.

For eah subset K � M , the set V

K

(M) of all vetor �elds supported in the set K is a Lie

algebra ideal whih is proper if K is not dense.

The struture of abelian Lie groups

Proposition V.1.9. (Mihor{Teihmann, 1999) Let A be a onneted abelian Lie group

modeled on a Makey omplete spae a . Then A has a smooth exponential funtion if and only

if A

�

=

a=�

A

holds for a disrete subgroup �

A

of a .

Proof. For eah abelian Lie group of the form A = a=�

A

, the Lie algebra is L(A) = a and

the quotient map a ! A is a smooth exponential funtion.

Therefore it remains to see that the existene of a smooth exponential funtion implies that

A is of the form a=�

A

. First we laim that exp

A

is surjetive. Sine the adjoint ation of A is

trivial (Corollary IV.1.9), Lemma IV.1.4 implies that exp: (a;+)! A is a group homomorphism,

hene a morphism of Lie groups. Let a 2 A and onsider a smooth path : [0; 1℄ ! A with

(0) = 1 and (1) = a . Then the logarithmi derivative � := Æ() is a smooth map [0; 1℄! a ,

and we onsider the smooth path

�(t) := exp

A

�

Z

t

0

�(s) ds

�

that also satis�es Æ(�) = � (Proposition IV.1.8(1)). Here we have used the Makey ompleteness

of a to ensure the existene of the Riemann integral of the smooth urve � . Now �(0) = (0) = 1

implies that

a = (1) = �(1) = exp

�

Z

1

0

�(s) ds

�

2 im(exp)

(Lemma IV.1.5).

Let q

A

:

e

A ! A denote a universal overing homomorphism with L(q

A

) = id

a

. Then the

exponential funtion of A lifts to a smooth exponential funtion exp

e

A

: a !

e

A with exp

A

=

q

A

Æ exp

e

A

. Sine

e

A is simply onneted, the Lie algebra homomorphism id

a

: a! a integrates to

a Lie group homomorphism L:

e

A! a with L(L) = id

a

(Theorem IV.2.10). We now have

L Æ exp

e

A

= exp

a

ÆL(L) = id

a

Æ id

a

= id

a

;

and hene exp

e

A

ÆL restrits to the identity on im(exp

e

A

) = a (apply the reasing above to

e

A),

whih also leads to

exp

e

A

ÆL = id

e

A

:

Hene

e

A

�

=

a as Lie groups, whih implies that exp

A

is a overing morphism and therefore that

�

A

:= ker(exp

A

) � a is disrete with A

�

=

a=�

A

.

V.2. Lie subgroups

It is a well known result in �nite-dimensional Lie theory that for eah subalgebra h of the

Lie algebra g of a �nite-dimensional Lie group G , there exists a Lie group H with Lie algebra

h together with an injetive morphism of Lie groups �:H ! G for whih L(�): h ! g is the
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inlusion map. As a group H oinides with hexp hi , the analyti subgroup orresponding to h ,

and h an be reovered from this subgroup as the set

fx 2 g: exp(Rx) � Hg:

This nie and simple theory of analyti subgroups is no longer valid in full generality for in�nite-

dimensional Lie groups, not even for loally exponential ones. As we shall see below, it has to

be re�ned in several respets.

Proposition V.2.1. Let G be a loally exponential Lie group. For x; y 2 L(G) , we have the

Trotter Produt Formula

exp(x+ y) = lim

n!1

�

exp

�

x

n

�

exp

�

y

n

�

�

n

and the Commutator Formula

exp([x; y℄) = lim

n!1

�

exp

�

x

n

�

exp

�

y

n

�

exp

�

�

x

n

�

exp

�

�

y

n

�

�

n

2

:

As an immediate onsequene, we an assign to eah losed subgroup H � G a Lie

subalgebra of L(G):

Corollary V.2.2. For every losed subgroup H of the loally exponential Lie group G the

subset

L(H) := fX 2 L(G): exp(RX) � Hg

is a losed Lie subalgebra of L(G) .

Sine the range of a morphism of Lie algebras need not be losed, it is quite restritive to

onsider only losed subgroups, resp., losed Lie subalgebras.

De�nition V.2.3. A losed subgroup H of a loally exponential Lie group G is alled a Lie

subgroup if there exists an open 0-neighborhood V � L(G) suh that exp j

V

is a di�eomorphism

onto an open subset exp(V ) of G and

exp(V \ L(H)) = (expV ) \H:

Remark V.2.4. (a) In [La99℄, S. Lang alls a subgroup H of a Banah{Lie group G a Lie

subgroup if H arries a Lie group struture for whih there exists an immersion �:H ! G .

In view of the de�nition of an immersion, this onept requires the Lie algebra h = L(H) of

g = L(G) to be a losed subalgebra of g whih is omplemented in the sense that there exists a

losed vetor spae omplement. Conversely, it is shown in [La99℄ that for every omplemented

losed subalgebra h � g , there exists a Lie subgroup in this sense ([La99, Th. VI.5.4℄). For

a �nite-dimensional Lie group G , this onept desribes the analyti subgroups of G , beause

every subalgebra of a �nite-dimensional Lie algebra is losed and omplemented. As the dense

wind in the two-dimensional torus G = T

2

shows, subgroups of this type need not be losed. We

also note that the losed subspae



0

(N;R) � `

1

(N;R)

of sequenes onverging to 0 is not omplemented (see [Wer95, Satz IV.6.5℄ for an elementary

proof), hene not a Lie subgroup in the sense of Lang.

(b) The most restritive onept of a Lie subgroup is the one used in [Bou89, Ch. 3℄. Here

a Lie subgroup H is required to be a submanifold, whih implies in partiular that it is loally

losed and therefore losed. On the other hand, this implies that the quotient spae G=H has

a natural manifold struture for whih the quotient map q:G! G=H is a submersion ([Bou89,

Ch. 3, x1.6, Prop. 11℄).
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() For �nite-dimensional Lie groups, losed subgroups are Lie subgroups, but for Banah{

Lie groups this is no longer true. What remains true is that loally ompat subgroups (whih are

in partiular losed) are Lie subgroups (f. [HoMo98, Th. 5.41(vi)℄). How bad losed subgroups

may behave is illustrated by the following example due to K. H. Hofmann: We onsider the real

Hilbert spae G := L

2

([0; 1℄;R) as a Banah{Lie group. Then the subgroup H := L

2

([0; 1℄;Z)

of all those funtions whih almost everywhere take values in Z is a losed subgroup. Sine the

one-parameter subgroups of G are of the form Rf , f 2 G , we have L(H) = f0g . On the other

hand, the group H is arwise onneted and even ontratible,beause the map F : [0; 1℄�H ! H

given by

F (t; f)(x) :=

�

f(x) 0 � x � t

0 t < x � 1

is ontinuous with F (1; f) = f and F (0; f) = 0.

The following proposition shows that Lie subgroups arry natural Lie group strutures.

Proposition V.2.5. Let G be a loally exponential Lie group and H � G a Lie subgroup.

Then H arries a natural loally exponential Lie group struture suh that L(H) is the Lie

algebra of H ,and the exponential map of H is given by the restrition

exp

H

= exp

G

j

L(H)

:L(H)! H:

Moreover, the inlusion map �:H ! G is a morphism of Lie groups whih is a homeomorphism

onto its image, and L(�):L(H)! L(G) is the inlusion map.

Proof. (Idea) The idea is to apply Theorem III.2.1 to the subgroup H where U = expV

holds for some suitable open symmetri subset V � L(H).

Proposition V.2.6. If ':G

0

! G is a morphism of loally exponential Lie groups and H � G

is a Lie subgroup, then H

0

:= '

�1

(H) is a Lie subgroup. In partiular, ker' is a Lie subgroup

of G

0

.

Corollary V.2.7. If N E G is a normal subgroup of the loally exponential Lie group G

suh that the quotient group G=N arries a loally exponential Lie group struture for whih the

quotient map q:G! G=N is a morphism of Lie groups, then N is a Lie subgroup.

Theorem V.2.8. (Quotient Theorem for loally exponential groups) Let N E G be a normal

Lie subgroup and n � g = L(G) its Lie algebra. Then the quotient group G=N is a loally

exponential Lie group if and only if there exists a 0-neighborhood U � g suh that the operator

�

g

(x) :=

Z

1

0

e

�t adx

dt

on g satis�es

�

g

(x)(n) = n for all x 2 U:

Corollary V.2.9. (Quotient Theorem for Banah{Lie groups) Let N E G be a losed subgroup

of the Banah{Lie group G . Then the quotient group G=N is a Banah{Lie group if and only

N is a normal Lie subgroup.

Proof. Sine g = L(G) is a Banah{Lie algebra, the ideal n = L(N) is invariant under all

operators

�

g

(x) =

Z

1

0

e

�t adx

dt =

1� e

� adx

adx

=

1

X

n=0

1

(n+ 1)!

(�1)

n

(adx)

n

:

For Spe(adx) � B

2�

(0) (whih is the ase on some 0-neighborhood of g), this operator is

invertible, and its inverse an be expressed by a power series in adx . Therefore we also get

�

g

(x)

�1

(n) � n , whih implies �

g

(x)(n) = n .
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Algebrai subgroups

We will now disuss a very onvenient riterion whih in many onrete ases an be used

to verify that a losed subgroup H of a Banah{Lie group is a Lie subgroup. To this end, we

will need the onept of a polynomial funtion and of an algebrai subgroup.

De�nition V.2.10. Let A be a Banah algebra. A subgroup G � A

�

is alled algebrai if

there exists a d 2 N

0

and a set F of Banah spae valued polynomial funtions on A � A of

degree � d suh that

G = fg 2 A

�

: (8f 2 F) f(g; g

�1

) = 0g:

Theorem V.2.11. (Harris/Kaup) [Ne04, Prop. IV.14℄ Every algebrai subgroup G � A

�

of

the unit group A

�

of a Banah algebra A is a Lie subgroup.

Proposition V.2.12. Let E be a Banah spae and F � E a losed subspae. Then

H := fg 2 GL(E): g:F � Fg

is a Lie subgroup of GL(E) .

Proof. Let V � g be an open 0-neighborhood suh that exp j

V

:V ! expV is a di�eomor-

phism and k expx� 1k < 1 for all x 2 V . Then the inverse funtion

log:= (exp j

V

)

�1

: expV ! g

is given by the onvergent power series

log(g) =

1

X

n=1

(�1)

n+1

n

(g � 1)

n

(this requires a proof!). For g = expx 2 (expV ) \ H , we then obtain x:F � F diretly from

the power series.

Analyti subgroups

De�nition V.2.13. Let G be a Lie group with an exponential funtion, so that we obtain

for eah x 2 g := L(G) an automorphism e

adx

:= Ad(expx) 2 Aut(g). A subalgebra h � g is

alled stable if

e

adx

:h = Ad(expx):h = h for all x 2 h:

An ideal n E g is alled a stable ideal if

e

adx

:n = n for all x 2 g:

The following lemma shows that stability of kernel and range is a neessary reqirement for

the integrability of a homomorphism of Lie algebras.

Lemma V.2.14. If ':G! H is a morphism of Lie groups with an exponential funtion, then

im(L(')) is a stable subalgebra of L(H) , and ker(L(')) is a stable ideal of L(G) .

Proof. For � := L('), we have ' Æ exp

G

= exp

H

Æ�; whih leads to

�Æe

adx

= L(')ÆAd(expx) = L('Æ

expx

) = L(

'(expx)

Æ') = Ad(expL('):x)ÆL(') = e

ad�(x)

Æ�:

We onlude in partiular that im(�) is a stable subalgebra and that ker� is a stable ideal.



Monastir Summer Shool: In�nite-Dimensional Lie Groups 61

Example V.2.15. Let V := C

1

(R;R) and onsider the one-parameter group �:R ! GL(V ),

given by �(t)(f)(x) = f(x + t). Then R ats smoothly on V , so that we may form the

orresponding semidiret produt group

G := V o

�

R:

This is a Lie group with a smooth exponential funtion given by

exp(v; t) =

�

Z

1

0

�(st):v ds; t

�

;

where

�

Z

1

0

�(st):v ds

�

(x) =

Z

1

0

v(x + st) ds:

The Lie algebra g has the orresponding semidiret produt struture g = V o

D

R with

Dv = v

0

, i.e.,

[(f; t); (g; s)℄ = (tg

0

� sf

0

; 0):

In g

�

=

V o R , we now onsider the subalgebra h := V

[0;1℄

o R , where

V

[0;1℄

:= ff 2 V : supp(f) � [0; 1℄g:

Then h learly is a losed subalgebra of g . It is not stable beause �(�t)V

[0;1℄

= V

[t;t+1℄

: The

subgroup of G generated by exp h ontains f0g o R , V

[0;1℄

, and hene all intervales V

[t;t+1℄

,

whih implies that hexp hi = C

1



(R) o R .

The preeding lemma implies that the inlusion h ,! g does not integrate to a homomor-

phism ':H ! G of Lie group with an exponential funtion, for whih L(') is the inlusion

h ,! g .

De�nition V.2.16. Let G be a loally exponential Lie group. An analyti subgroup is an

injetive morphism �:H ! G of loally exponential Lie groups for whih H is onneted and

the di�erential L(�) of � is injetive.

Remark V.2.17. If �:H ! G is an analyti subgroup, then the relation

(5:2:1) exp

G

ÆL(�) = � Æ exp

H

implies that

ker(L(�)) = L(ker �) = f0g;

so that L(�):L(H) ! L(G) is an injetive morphism of loally exponential Lie algebras, whih

implies in partiular that h := im(L(�)) is a stable subalgebra of L(G) (Lemma V.2.14).

Moreover, (5.2.1) shows that the subgroup �(H) of G oinides, as a set, with the subgroup

hexp

G

hi of G generated by exp

G

h . Therefore an analyti subgroup an be viewed as a loally

exponential Lie group struture on the subgroup of G generated by exp

G

h .

De�nition V.2.18. A loally onvex Lie algebra g is alled loally exponential if there exists

a symmetri onvex open 0-neighborhood U � g and an open subset D � U � U on whih we

have a smooth map

m

U

:D ! U; (x; y) 7! x � y

suh that (U;D;m

U

; 0) is a loal Lie group with the additional property that

(E1)For x 2 U and jtj; jsj; jt+ sj � 1, we have (tx; sx) 2 D with

tx � sx = (t+ s)x:

(E2) The seond order term in the Taylor expansion of m

U

is b(x; y) =

1

2

[x; y℄:

Sine any loal Lie group (U;D;m

U

; 0) on an open subset of a loally onvex spae V leads

to a Lie algebra struture on V (Remark III.1.12), ondition (E2) only insures that g is the Lie

algebra of the loal group.
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Lemma V.2.19. The Lie algebra of a loally exponential Lie group is loally exponential.

Theorem V.2.20. (Analyti Subgroup Theorem) Let G be a loally exponential Lie group

and g its Lie algebra. Then an injetive morphism �: h ! g of loally onvex Lie algebras

integrates to an analyti subgroup if and only if h is a loally exponential Lie algebra.

The ondition that a losed subalgebra h � g is loally exponential is quite subtle. It

means that for x; y suÆiently lose to 0 in h , we have x � y 2 h . To verify this ondition,

one would like to show that the integral urve (t) := x � ty of the left invariant vetor �eld

y

l

through x does not leave the losed subspae h of g . This leads to the additional ondition

that d�

x

(0)(h) � h , whih, under the assumption that h is stable, means that the operator

�

g

(x) =

R

1

0

e

�t adx

dt satis�es �

g

(x)(h) = h for x 2 h suÆiently lose to 0 (Theorem V.2.8).

For a losed ideal n E g of the loally exponential Lie algebra g , the orresponding ondition

�

g

(x)(n) = n for all x suÆiently lose 0 is suÆient for n to be loally exponential. This result

is used in the proof of the Quotient Theorem V.2.8.

Corollary V.2.21. (Analyti Subgroup Theorem for Banah{Lie groups) Let G be a loally

exponential Lie group and g its Lie algebra. Then an injetive morphism �: h ! g of Banah

algebras always integrates to an analyti subgroup.

Proof. Using the BCH multipliation on a 0-neighborhood of h , it follows that h is loally

exponential.

Remark V.2.22. If G is a Banah{Lie group and h � g := L(G) a losed separable subalgebra,

then the analyti subgroup H := hexp hi � G satis�es

L(H) = fx 2 g: exp(Rx) � Hg = h;

i.e., expRx � H implies x 2 h (Theorem 5.52 in [HoMo98℄).

For non-separable subalgebras h , this is no longer true in general, as the following oun-

terexample shows ([HoMo98, p.157℄): We onsider the abelian Lie group g := `

1

(R;R)�R , where

the group struture is given by the addition. We write (e

r

)

r2R

for the anonial topologial basis

elements of `

1

(R;R). Then the subgroup D generated by the pairs (e

r

;�r), r 2 R , is losed

and disrete, so that G := g=D is an abelian Lie group. Now we onsider the losed subalgebra

h := `

1

(R;R) of g . As h+D = g , we have H := exp h = G , and therefore (0; 1) 2 L(H) n h:

Exerises for Setion V

Exerise V.1. Let V be a loally onvex spae. Show that every ontinuous group homomor-

phism : (R;+) ! (V;+) an be written as (t) = tv for some v 2 E .

Exerise V.2. Let E be a Banah spae.

(1) If F is a losed subspae of E and H := fg 2 GL(E): g(F ) � Fg (f. Proposition V.2.12),

then

L(H) = fY 2 L(E):Y (F ) � Fg:

(2) For eah v 2 E and H := fg 2 GL(E): g(v) = vg , we have

L(H) = fY 2 L(E):Y:v = 0g:

Exerise V.3. Let A be a Banah spae and m:A�A! A a ontinuous bilinear map. Then

the group

Aut(A;m) := fg 2 GL(A): (8a; b 2 A) m(g:a; g:b) = g:m(a; b)g

of automorphisms of the (not neessarily assoiative) algebra (A;m) is a Lie group whose Lie

algebra is the spae

der(A;m) := fX 2 L(A): (8a; b 2 A)X:m(a; b) = m(X:a; b) +m(a;X:b)g

of derivations of (A;m). Hint: Theorem V.2.11.
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Exerise V.4. Let J be a set. For a tuple x = (x

j

)

j2J

2 (R

+

)

J

, we de�ne

X

j2J

x

j

:= sup

n

X

j2F

x

j

:F � J �nite

o

:

Show that

`

1

(J;R) :=

n

x = (x

j

)

j2J

:

X

j2J

jx

j

j <1

o

is a Banah spae with respet to the norm kxk

1

:=

P

j2J

jx

j

j: De�ne e

j

2 `

1

(J;R) by

(e

j

)

i

= Æ

ij

. Show that the subgroup � generated by fe

j

: j 2 Jg is disrete.

VI. More on integrability of Lie algebras

We reall that a loally onvex Lie algebra g is said to integrable if there exists some Lie

group G with L(G) = g (De�nition III.1.9).

Examples VI.1. If g is a �nite-dimensional Lie algebra, endowed with its unique loally onvex

topology, then g is integrable. This is Lie's Third Theorem. One possibility to prove this is �rst

to use Ado's Theorem to �nd an embedding g ,! gl

n

(R) and then to endow the analyti subgroup

G := hexp gi � GL

n

(R) with a Lie group struture suh that L(G) = g (f. Corollary V.2.20).

Proposition VI.2. Let G be a onneted omplex Lie group. Then eah losed ideal of L(G)

is invariant under Ad(G) .

Proof. Let a E g = L(G) be a losed ideal. Sine G is assumed to be onneted, it suÆes

to show that there exists a 1-neighborhood U � G with Ad(U):a � a . We may w.l.o.g. assume

that U is di�eomorphi to an open onvex 0-neighborhood in g . Then we �nd for every g 2 U

a onneted open subset V � C with 0; 1 2 V and a holomorphi map p:V ! G with p(0) = 1

and p(1) = g .

Let w

0

2 a and w(t) := Ad(p(t)):w

0

for t 2 V . We have to show that w(1) = Ad(g):w

0

2

a . For the right logarithmi derivative v := Ad(p):Æ(p):V ! g , we obtain the di�erential

equation

(6:1) w

0

(t) = Ad(p(t)):[p

�1

(t):p

0

(t); w

0

℄ = Ad(p(t)):[Æ(p)(t); w

0

℄ = [v(t); w(t)℄:

Sine the maps v and w are holomorphi, their Taylor expansions onverge for t lose to 0:

v(t) =

1

X

n=0

v

n

t

n

and w(t) =

1

X

n=0

w

n

t

n

in g . Then the di�erential equation (6.1) for w an be written as

1

X

n=0

(n+ 1)w

n+1

t

n

= w

0

(t) = [v(t); w(t)℄ =

1

X

n=0

t

n

n

X

k=0

[v

k

; w

n�k

℄:

Comparing oeÆients now leads to

w

n+1

=

1

n+ 1

n

X

k=0

[v

k

; w

n�k

℄;

so that we obtain indutively w

n

2 a for eah n 2 N . Sine a is losed, we get w(t) 2 a for t

lose to 0. Applying the same argument in other points t

0

2 V , we see that the set w

�1

(a) is

an open losed subset of V , and therefore that a(1) 2 a beause a(0) 2 a and V is onneted.
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Corollary VI.3. If g is a omplex Fr�ehet{Lie algebra ontaining a losed ideal whih is not

stable, then g is not integrable to a omplex Lie group with an exponential funtion.

Remark VI.4. The preeding proposition an be generalized to the larger lass of real analyti

Lie groups, where it an be used to onlude that the Lie group Di�(M) does not possess an

analyti Lie group struture. Indeed, for eah non-dense open subset K �M , the subspae

V(M)

K

:= fX 2 V(M):X j

K

= 0g

is a losed ideal of V(M) not invariant under Di�(M) beause Ad('):V(M)

K

= V(M)

'(K)

for

' 2 Di�(M).

Theorem VI.5. (Lempert) If M is a ompat manifold, then the Fr�ehet{Lie algebra V(M)

C

is not integrable to a regular omplex Lie group.

Proof. (Sketh; see [Mil83℄) Let g := V(M)

C

and K � M be an open non-empty subset of

M whih is not dense. Then

i

K

:= fx 2 g:x j

K

= 0g

is a losed ideal of g .

Let G be a regular omplex Lie group with Lie algebra g and let q:

g

Di�(M) ! Di�(M)

0

denote the universal overing homomorphism of Di�(M)

0

. Then the inlusion homomorphism

V(M) ,! g an be integrated to a Lie group homomorphism ':

g

Di�(M)! G . For g 2

g

Di�(M),

we then have

Ad('(g)):i

K

= i

'(g)(K)

;

ontraditing the invariane of i

K

under Ad(G) (Proposition VI.2).

Remark VI.6. (a) In [Omo81℄, Omori shows that for any non-ompat smooth manifold M ,

the Lie algebra V(M) is not integrable.

(b) Theorem VI.5 holds without the regularity assumption, resulting in the fat that V(M)

C

is not integrable to any group G with an exponential funtion. The main point is that for any

suh group G and X 2 V(M) � g , the one-parameter group exp(RX) ats on g preisely as

the orresponding one-parameter group of Di�(M). This argument requires a uniqeness lemma

for \smooth" maps with values in Aut(g), whih is far from being a Lie group (f. [GN05℄).

Example VI.7. To onstrut an example of a non-integrable Banah{Lie algebra, we proeed

as follows.

Let H be an in�nite-dimensional omplex Hilbert spae and U(H) its unitary group. This

is a Banah{Lie group with Lie algebra

L(U(H)) = u(H) := fX 2 L(H):X

�

= �Xg:

The enter of this Lie algebra is given by z(u(H)) = Ri1: We onsider the Banah{Lie algebra

g :=

�

u(H)� u(H)

�

=Ri(1;

p

21):

We laim that g is not integrable. Let us assume to the ontrary that G is a onneted Lie

group with Lie algebra g . Let

q: u(H)� u(H)! g

denote the quotient homomorphism. Aording to Kuiper's Theorem, the group U(H) and

hene the group G

1

:= U(H)�U(H) is ontratible ([Ku65℄) and therefore in partiular simply

onneted. Hene there exists a unique Lie group homomorphism

f :G

1

! G with L(f) = q:

We then have exp

G

Æq = f Æexp

G

1

, and in partiular exp(ker q) � kerf: As Z(G

1

)

�

=

T

2

is a two-

dimensional torus and exp(ker q) is a dense one-parameter subgroup of Z(G

1

), the ontinuity of

f implies that Z(G

1

) � ker f and hene that z(g

1

) � kerL(f) = ker q , whih is a ontradition.

The following theorem is an immediate onsequene of Corollary V.2.20.
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Theorem VI.8. (van Est{Korthagen, 1964) Let h and g be Banah{Lie algebras. If g is

integrable and ': h ,! g is injetive, then h is integrable.

Corollary VI.9. If g is a Banah{Lie algebra, then g= ad z(g)

�

=

ad g is integrable.

Proof. The adjoint representation ad: g ! der g fators through an injetive homomorphism

g=z(g) ,! der g , and

der g := fD 2 L(g): (8x; y 2 g) D([x; y℄) = [D(x); y℄ + [x;D(y)℄g

is the Lie algebra of the Banah{Lie group Aut(g) (f. Exerise V.3).

The following theorem generalizes Corollary VI.9. It requires more re�ned mahinery

beause for a loally onvex Lie algebra g the group Aut(g) arries no natural Lie group struture.

Nevertheless, the tehnique of the proof is to endow the subgroup generated by e

ad g

, whih makes

sense for loally exponential Lie algebras, with a Lie group struture.

Theorem VI.10. For any loally exponential Lie algebra g , the quotient g=z(g) is integrable

to a loally exponential Lie group.

The preeding orollary redues the integrability problem for Banah{Lie algebras, and even

for loally exponential Lie algebras, to the question when a entral extension of an integrable Lie

algebra is again integrable. In this ontext, a entral extension is a quotient morphism q:

b

g ! g

of Lie algebras for whih z := ker q is entral in

b

g . Now the question is the following: given a

onneted Lie group G with Lie algebra g , when is there a entral group extension Z ,!

b

G! G

\integrating" the orresponding Lie algebra extension? Without going too muh into details,

we ite the following theorem whih points into a diretion whih an be followed with suess

for general Lie groups (see [Ne02a℄). Earlier versions of the following theorem for Banah{Lie

algebras have been obtained by van Est and Korthagen in their systemati disussion of the

non-integrability problem for Banah{Lie algebras in [EK64℄.

Theorem VI.11. Let G be a simply onneted loally exponential Lie group with Lie algebra

g . Then one an assoiate to eah entral Lie algebra extension z ,!

b

g! g a singular ohomology

lass  2 H

2

(G; z)

�

=

Hom(�

2

(G); z) whih we interpret as a period homomorphism

per



:�

2

(G)! z:

Then a orresponding entral extension Z ,!

b

G!! G exists for a Lie group Z with Lie algebra

z if and only if im(per



) � z is disrete.

Remark VI.12. (a) Let g be a loally exponential Lie algebra and G

ad

a simply onneted Lie

group with Lie algebra g=z(g) (Theorem VI.9). Then the preeding theorem implies in partiular

that g is integrable if and only if the period homomorphism per

g

:�

2

(G

ad

)! z(g) assoiated to

the entral extension ad: g ! g=z(g) has disrete image.

The problem with this haraterization is that in general it might be quite hard to determine

the image of the period homomorphism.

(b) For any quotient morphism G ! G=N of Banah{Lie groups, Mihael's Seletion

Theorem ([Mi59℄) implies that G is a loally trivial topologial N -prinipal bundle over G=N ,

whih implies the existene of a orresponding long exat homotopy sequene.

If g is an integrable Banah{Lie algebra and G is a simply onneted Banah{Lie group

with Lie algebra g , then the long exat homotopy sequene assoiated to the homomorphism

q:G! G

ad

with kernel Z(G)

0

indues a surjetive onneting homomorphism

�

2

(G

ad

)! �

1

(Z(G));

and by identifying the universal overing group of Z(G)

0

with (z(g);+), one an show that

this onneting homomorphism oinides with the period map. Its image is the group �

1

(Z(G)),

onsidered as a subgroup of z . With this piture in mind, one may think that the non-integrability

on a Banah{Lie algebra g is aused by the non-existene of a Lie group Z with Lie algebra z(g)

and fundamental group im(per

g

).

() If g is �nite-dimensional, then G

ad

is also �nite-dimensional, and therefore �

2

(G

ad

)

vanishes by a theorem of E. Cartan ([Mi95, Th. 3.7℄). Hene the period homomorphism per

g

is

trivial for every �nite-dimensional Lie algebra g .
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Example VI.13. We onsider the Lie algebra

g :=

�

u(H)� u(H)

�

=Ri(1;

p

21)

from Example VI.7. Then z(g)

�

=

iR , and one an show that the image of the period map is

given by

2�i(Z+

p

2Z)� iR;

whih is not disrete.

Appendix A. Charaters of the algebra of smooth funtions

Theorem A.1. Let M be a �nite-dimensional smooth paraompat manifold and A :=

C

1

(M;R) the unital Fr�ehet algebra of smooth funtions on M .

(1) If M is ompat, then eah maximal ideal of A is losed.

(2) Eah losed maximal ideal of A is the kernel of an evaluation homomorphism

Æ

p

:A! R; f 7! f(p) .

(3) Eah harater �:A! R is an evaluation in some point p 2M .

Proof. (1) If M is ompat, then the unit group A

�

= C

1

(M;R

�

) is an open subset of A .

If I � A is a maximal ideal, then I intersets A

�

trivially, and sine A

�

is open, the same

holds for the losure I . Hene I also is a proper ideal, so that the maximality of I implies that

I is losed.

(2) Let I � A be a losed maximal ideal. If all funtions in I vanish in the point p 2M ,

then the maximality of I implies that I = ker Æ

p

. So we have to show that suh a point exists.

Let us assume that this is not the ase. From that we shall derive the ontradition I = A .

Let K � M be a ompat set. Then for eah p 2 K , there exists a funtion f

p

2 I with

f

p

(p) 6= 0. The family (f

�1

p

(R

�

))

p2K

is an open over of K , so that there exist p

1

; : : : ; p

n

2 K

with f

K

:=

P

j

f

2

p

j

> 0 on K .

If M is ompat, then we thus obtain a funtion f

M

2 I with no zeros, whih leads to

the ontradition f

M

2 A

�

\ I . Suppose that M is non-ompat. Then there exists a sequene

(M

n

)

n2N

of ompat subsets with M =

S

n

M

n

and M

n

�M

0

n+1

. Let f

n

2 I be a non-negative

funtion supported by M

n+1

nM

0

n�1

with f

n

> 0 on the ompat set M

n

nM

0

n�1

. Here the

requirement on the support an be ahieved by multiplying with a smooth funtion supported

by M

n+1

nM

0

n�1

whih equals 1 on M

n

nM

0

n�1

. Then the series

P

n

f

n

onverges, beause on

eah set M

n

it is eventually onstant and eah ompat subset of M is ontained in some M

n

.

Now f :=

P

n

f

n

is a smooth funtion in I = I with f > 0. Hene f is invertible, whih is a

ontradition.

(3) Let �:A ! R be a harater. If f 2 A is non-negative, then for eah  > 0 we have

f +  = h

2

for some h 2 A

�

, and this implies that �(f)+  = �(f + ) = �(h)

2

� 0, whih leads

to �(f) � � , and onsequently �(f) � 0.

Now let F :M ! R be a smooth funtion for whih the sets F

�1

(℄ �1; ℄) ,  2 R , are

ompat. Suh a funtion an easily be onstruted from a sequene (M

n

)

n2N

as above using a

smooth version of Urysohn's Lemma (Exerise).

We onsider the ideal I := ker� . If I has a zero, then I = ker Æ

p

for some p 2M and this

implies that � = Æ

p

. Hene we may assume that I has no zeros. Then the argument under (2)

provides for eah ompat subset K �M a ompatly supported funtion f

K

2 I with f

K

> 0

on K . If h 2 A is supported by K , we therefore �nd a � > 0 with �f

K

�h � 0, whih leads to

0 � �(�f

K

� h) = �(�h);

and hene to �(h) � 0. Replaing h by �h , we also get �(h) � 0 and hene �(h) = 0.

Therefore � vanishes on all ompatly supported funtions.
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For  > 0, we now pik f



2 I with f



> 0 on the ompat subset F

�1

(℄ �1; ℄) and

f



� 0. Then there exists a � > 0 with �f



+F �  on F

�1

(℄�1; ℄) . Now �f



+F �  holds

on all of M , and therefore

�(F ) = �(F + �f



) � :

Sine  > 0 was arbitrary, we arrive at a ontradition.

Appendix B. The ompat open topology

In this appendix, we disuss some properties of the ompat open topology on the spae

C(X;Y ) of ontinuous maps between two topologial spaes X and Y .

De�nition B.1. If X and Y are topologial spaes, then the topology on C(X;Y ) generated

by the sets

W (K;O) := ff 2 C(X;Y ): f(K) � Og;

K � X ompat and O � Y open, is alled the ompat open topology.

The following lemma is extremely useful to onstrut group topologies from a �lter basis of

identity neighborhoods. Here we shall use it to see that for a topologial group G , the ompat

open topology turns C(X;G) into a topologial group.

Lemma B.2. Let G be a group and F a �lter basis of subsets of G satisfying

(U0)

T

F = f1g .

(U1) (8U 2 F)(9V 2 F) V V � U:

(U2) (8U 2 F)(9V 2 F) V

�1

� U:

(U3) (8U 2 F)(8g 2 G)(9V 2 F) gV g

�1

� U:

Then there exists a unique group topology on G suh that F is a basis of 1-neighborhoods in G .

This topology is given by fU � G: (8g 2 U)(9V 2 F) gV � Ug:

Proof. ([Bou88, Ch. III, x1.2, Prop. 1℄) Let

� := fU � G: (8g 2 U)(9V 2 F) gV � Ug:

First we show that � is a topology. Clearly �; G 2 � . Let (U

j

)

j2J

be a family of elements of

� and U :=

S

j2J

U

j

. For eah g 2 U , there exists a j

0

2 J with g 2 U

j

and a V 2 F with

gV � U

j

0

� U . Thus U 2 � , and we see that � is stable under arbitrary unions.

If U

1

; U

2

2 � and g 2 U

1

\ U

2

, then there exist V

1

; V

2

2 F with gV

i

� U

i

. Sine F is a

�lter basis, there exists V

3

2 F with V

3

� V

1

\ V

2

, and then gV

3

� U

1

\ U

2

. We onlude that

U

1

\ U

2

2 � , and hene that � is a topology on G .

We laim that the interior of a subset U � G is given by

U

0

= U

1

:= fu 2 U : (9V 2 F) uV � Ug:

In fat, if there exists a V 2 F with uV � U , then we pik a W 2 F with WW � V and

obtain uWW � U , so that uW � U

1

. Hene U

1

is open, and it learly is the largest open subset

ontained in U , i.e., U

1

= U

0

. It follows in partiular that U is a neighborhood of g if and

only if g 2 U

0

, and we see in partiular that F is a basis of the neighborhood �lter of 1 . The

property

T

F = f1g implies that for x 6= y , there exists U 2 F with y

�1

x 62 U . For V 2 F

with V V � U and W 2 F with W

�1

� V , we then obtain y

�1

x 62WW

�1

, i.e., xW \yW = �.

Thus (G; �) is a Hausdor� spae.

To see that G is a topologial group, we have to verify that the map

f :G�G! G; (x; y) 7! xy

�1

is ontinuous. So let x; y 2 G , U 2 F and pik V 2 F with yV y

�1

� U and W 2 F with

WW

�1

� V . Then

f(xW; yW ) = xWW

�1

y

�1

= xy

�1

y(WW

�1

)y

�1

� xy

�1

yV y

�1

� xy

�1

U;

implies that f is ontinuous in (x; y).
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Lemma B.3. Let X be a non-empty topologial spae and G a topologial group. Then the

set C(X;G) of all ontinuous maps X ! G is a group with respet to pointwise multipliation.

The unit element of this group is the onstant funtion 1 . The system F of all sets W (K;U) �

C(X;G) , where K � X is ompat and U � G is an open 1-neighborhood, is a �lter basis, and

there exists a unique group topology on C(X;G) for whih F is a basis of 1-neighborhoods.

This topology is alled the topology of ompat onvergene or the topology of uniform

onvergene on ompat sets.

Proof. First we show that F is a �lter basis:

For eah x 2 X , the set W (fxg; G) is ontained in F , so that F is not empty. Sine

eah set W (K;U) ontains the onstant map 1 , it is non-empty. We further have W (K

1

; U

1

) \

W (K

2

; U

2

) � W (K

1

[ K

2

; U

1

\ U

2

). This proves that F is a �lter basis of subsets of G . We

now verify the onditions in Lemma B.2:

(U0): If f 2 C(X;G) is ontained in W (fxg; U) for all 1-neighborhoods U in G , it

follows from the fat that G is Hausdor� that f(x) = 1 , so that

T

F onsists only of the

onstant funtion 1 .

(U1): For eah W (K;U) 2 F , we �nd a 1-neighborhood V � G with V V � U . Then

W (K;V )W (K;V ) �W (K;U).

(U2): W (K;U)

�1

=W (K;U

�1

).

(U3): For f 2 C(X;G) and W (K;U) 2 F , we onsider the open set

E := f(x; g) 2 X �G: f(x)gf(x)

�1

2 Ug:

Then K � f1g � E and the ompatness of K imply the existene of a 1-neighborhood V in

G with K � V � E . Then fW (K;V )f

�1

�W (K;U).

Now Lemma B.2 shows that there exists a unique group topology on C(X;G) for whih F

is a basis of 1-neighborhoods.

Proposition B.4. For a topologial spae X and a topologial group G , the ompat open

topology oinides on C(X;G) with the topology of ompat onvergene for whih the sets

W (K;O) , K � X ompat and O an open 1-neighborhood in G , form a basis of identity

neighborhoods.

Proof. Step 1: The topology of ompat onvergene is �ner than the ompat open

topology beause eah set W (K;O) is open in the topology of ompat onvergene. In fat, for

f 2 W (K;O) the set f(K) � O � G is ompat, so that there exists a 1-neighborhood U � G

with f(K)U � O . This implies that f �W (K;U) �W (K;O), and hene that W (K;O) is open

in the topology of uniform onvergene on ompat subsets of X .

Step 2: Let f

0

2 C(X;G). We laim that eah set of the form f

0

W (K;V ) ontains a

neighborhood of f

0

in the ompat open topology.

Let W = W

�1

� G be an open 1-neighborhood. Sine f

0

is ontinuous, eah k 2 K has

a ompat neighborhood U

k

in K with f

0

(U

k

) � f

0

(k)W . The ompatness of K implies that

it is overed by �nitely many of the sets U

k

, so that there exist k

1

; : : : ; k

n

2 K with

K � U

k

1

[ : : : [ U

k

n

:

Then the sets Q

j

:= f

0

(U

k

j

)W are open in G with f

0

2 W (U

k

j

; Q

j

). Therefore P :=

T

n

j=1

W (U

k

j

; Q

j

) is a neighborhood of f

0

with respet to the ompat open topology. For

f 2 P and x 2 U

k

j

, we have f

0

(x) 2 Q

j

and f(x) 2 Q

j

, whih implies that

f

0

(x)

�1

f(x) 2 Q

�1

j

Q

j

�W

�1

f

0

(U

k

j

)

�1

f

0

(U

k

j

)W �W

�1

W

�1

f

0

(k

j

)

�1

f

0

(k

j

)WW �W

4

� V:

We onlude that f 2 f

0

W (K;V ) and therefore P � f

0

W (K;V ). This ompletes the proof.
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Remark B.5. (a) If G is a �xed topologial group, then C(�; G) is a ontravariant funtor from

the ategory of Hausdor� topologial spaes and ontinuous maps to the ategory of topologial

groups.

In fat, for eah ontinuous map f :X ! Y , we have a group homomorphism

f

�

= C(f;G):C(Y;G) ! C(X;G); � 7! � Æ f:

For eah ompat subset K � X and eah open subset O � G , we have

(f

�

)

�1

(W (K;O)) �W (f(K); O);

whih implies the ontinuity of C(f;G).

(b) If X is a �xed Hausdor� spae and ':G! H a morphism of topologial groups, then

the map

'

�

= C(X;'):C(X;G)! C(X;H); � 7! ' Æ �

is a group homomorphism. For eah ompat subset K � X and eah open subset O � H , we

have

('

�

)

�1

(W (K;O)) �W (K;'

�1

(O));

whih implies the ontinuity of C(X;').

Proposition B.6. Let X and Y be topologial spaes. On C(X;Y ) , the ompat open

topology oinides with the graph topology, i.e., the topology generated by the sets of the form

C(X;Y )

U;K

:= ff 2 C(X;Y ): �(f j

K

) � Ug;

where U � X � Y is open, K � X is ompat, and �(f) � X � Y is the graph of f .

If, in addition, X is ompat, then a basis for the graph topology is given by the sets

C(X;Y )

U

:= ff 2 C(X;Y ): �(f) � Ug;

where U � X � Y is open.

Proof. Let f 2 C(X;Y ), K � X ompat and U � �(f j

K

) be an open subset of X�Y . Then

there exists for eah x 2 X a ompat neighborhood K

x

of x in K and an open neighborhood

U

f(x)

of f(x) in Y with K

x

� U

f(x)

� U and f(K

x

) � U

f(x)

. Covering K with �nitely many

sets K

x

i

, i = 1; : : : ; n , we see that

n

\

i=1

W (K

x

i

; U

f(x

i

)

) � C(X;Y )

U;K

:

This implies that eah set C(X;Y )

U;K

is open in the ompat open topology.

Conversely, let K � X be ompat and O � Y open. Then

W (K;O) = ff 2 C(X;Y ): �(f j

K

) � X �Og = C(X;Y )

X�O;K

is open in the graph topology. We onlude that the graph topology oinides with the ompat

open topology.

Assume, in addition, that X is ompat. The system of the sets C(X;Y )

U

is stable under

intersetions, hene a basis for the topology it generates. Eah set C(X;Y )

U

= C(X;Y )

U;X

is open in the graph topology. If, onversely, K � X is ompat and U � X � Y is open

with f 2 C(X;Y )

U;K

, then V :=

�

(X n K) � Y

�

[ U is an open subset of X � Y with

f 2 C(X;Y )

V

� C(X;Y )

U;K

. This ompletes the proof.
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Appendix C. Lie algebra ohomology

The ohomology of Lie algebras is the natural tool to understand how we an build new Lie

algebras

b

g from given Lie algebras g and a in suh a way that a E

b

g and

b

g=a

�

=

g . An important

speial ase of this situation arises if a is assumed to be abelian. We will see in partiular how

the abelian extensions of Lie algebras an be parametrized by a ertain ohomology spae.

Cohomology with values in topologial modules

Let K be a topologial �eld of harateristi zero (all �eld operations are assumed to be

ontinuous). A topologial Lie algebra g is a K -Lie algebra whih is a topologial vetor spae

for whih the Lie braket is a ontinuous bilinear map. A topologial g-module is a g-module V

whih is a topologial vetor spae for whih the module struture, viewed as a map g�V ! V ,

(x; v) 7! x:v is ontinuous. Note that every module V of a Lie algebra g over a �eld K beomes

a topologial module if we endow K , g and V with the disrete topology. In this sense, all the

following applies in partiular to general modules of Lie algebra over �elds of harateristi zero.

De�nition C.1. Let V be a topologial module of the topologial Lie algebra g . For p 2 N

0

,

let C

p



(g; V ) denote the spae of ontinuous alternating maps g

p

! V , i.e., the Lie algebra

p-ohains with values in the module V . We write C

�

(g; V ) :=

L

p2N

0

C

p



(g; V ). Note that

C

1



(g; V ) = L(g; V ) is the spae of ontinuous linear maps g ! V . We use the onvention

C

0



(g; V ) = V . We then obtain a hain omplex with the di�erential

d

g

:C

p



(g; V )! C

p+1



(g; V )

given on f 2 C

p



(g; V ) by

(d

g

f)(x

0

; : : : ; x

p

) :=

p

X

j=0

(�1)

j

x

j

:f(x

0

; : : : ; bx

j

; : : : ; x

p

)

+

X

i<j

(�1)

i+j

f([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

);

where bx

j

indiates omission of x

j

. Note that the ontinuity of the braket on g and the ation

on V imply that d

g

f is ontinuous and an element of C

p+1



(g; V ).

For elements of low degree, we have in partiular:

p = 0 : d

g

f(x) = x:f

p = 1 : d

g

f(x; y) = x:f(y)� y:f(x)� f([x; y℄)

p = 2 : d

g

f(x; y; z) = x:f(y; z)� y:f(x; z) + z:f(x; y)� f([x; y℄; z) + f([x; z℄; y)� f([y; z℄; x)

=

X

y:

x:f(y; z)� f([x; y℄; z);

where we have used the notation

X

y:

(x; y; z) := (x; y; z) + (y; z; x) + (z; x; y):

In this sense, the Jaobi identity reads

P

y:

[[x; y℄; z℄ = 0:

Below we shall show that d

2

g

= 0, so that the spae Z

p



(g; V ) := ker(d

g

j

C

p



(g;V )

) of p-

oyles ontains the spae B

p



(g; V ) := d

g

(C

p�1



(g; V )) of p-oboundaries. The quotient

H

p



(g; V ) := Z

p



(g; V )=B

p



(g; V )

is the p-th ontinuous ohomology spae of g with values in the g-module V . We write [f ℄ :=

f +B

p



(g; V ) for the ohomology lass of the oyle f .
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On C

�



(g; V ), we have a natural representation of g , given for x 2 g and f 2 C

p



(g; V ) by

the Lie derivative

(L

x

f)(x

1

; : : : ; x

p

) = x:f(x

1

; : : : ; x

p

)�

p

X

j=1

f(x

1

; : : : ; [x; x

j

℄; : : : ; x

p

)

= x:f(x

1

; : : : ; x

p

) +

p

X

j=1

(�1)

j

f([x; x

j

℄; x

1

; : : : ; bx

j

; : : : ; x

p

):

We further have for eah x 2 g an insertion map

i

x

:C

p



(g; V )! C

p�1



(g; V );

�

i

x

:f

�

(x

1

; : : : ; x

p�1

) = f(x; x

1

; : : : ; x

p�1

);

where we de�ne i

x

to be 0 on C

0



(g; V )

�

=

V .

Lemma C.2. For x; y 2 g , we have the following identities:

(1) L

x

= d

g

Æ i

x

+ i

x

Æ d

g

(Cartan formula).

(2) [L

x

; i

y

℄ = i

[x;y℄

.

(3) [L

x

; d

g

℄ = 0 .

(4) d

2

g

= 0 .

(5) L

x

(Z

p



(g; V )) � B

p



(g; V ) . In partiular, the natural g-ation on H

p



(g; V ) is trivial.

Proof. (1) Using the insertion map i

x

0

, we an rewrite the formula for the oboundary

operator as

�

i

x

0

:d

g

f

�

(x

1

; : : : ; x

p

) = x

0

:f(x

1

; : : : ; x

p

)�

p

X

j=1

(�1)

j�1

x

j

:f(x

0

; : : : ; bx

j

; : : : ; x

p

)

+

p

X

j=1

(�1)

j

f([x

0

; x

j

℄; x

1

; : : : ; bx

j

; : : : ; x

p

)

+

X

1�i<j

(�1)

i+j

f([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

)

=x

0

:f(x

1

; : : : ; x

p

)�

p

X

j=1

(�1)

j�1

x

j

:f(x

0

; : : : ; bx

j

; : : : ; x

p

)

�

p

X

j=1

f(x

1

; : : : ; x

j�1

; [x

0

; x

j

℄; x

j+1

; : : : ; x

p

)

�

X

1�i<j

(�1)

i+j

f(x

0

; [x

i

; x

j

℄; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

)

=(L

x

0

f)(x

1

; : : : ; x

p

)� d

g

�

i

x

0

f

�

(x

1

; : : : ; x

p

):

This proves our assertion.

(2) The expliit formula for L

x

implies that for y = x

1

, we have i

y

L

x

= L

x

i

y

� i

[x;y℄

:

(3),(4) Let ':C

�



(g; V ) ! C

�



(g; V ) be a linear map for whih there exists an " 2 f�1g

with ' Æ i

x

= "i

x

Æ' for all x 2 g and a k 2 N with '(C

p



(g; V )) � C

p+k



(g; V ) for eah p 2 N

0

.

We laim that ' = 0. Sine the operators i

x

:C

p



(g; V ) ! C

p�1



(g; V ), x 2 g , separate the

points, it suÆes to show that i

x

Æ' = "'Æ i

x

vanishes for eah x 2 g . On C

0



(g; V ), this follows

from the de�nition of i

x

, and on C

p



(g; V ), p 2 N , we obtain it by indution.

Now we prove (3). From (2) we get

L

[x;y℄

= [L

x

;L

y

℄ = [d

g

Æ i

x

;L

y

℄ + [i

x

Æ d

g

;L

y

℄

= [d

g

;L

y

℄ Æ i

x

+ d

g

Æ i

[x;y℄

+ i

[x;y℄

Æ d

g

+ i

x

Æ [d

g

;L

y

℄

= [d

g

;L

y

℄ Æ i

x

+ L

[x;y℄

+ i

x

Æ [d

g

;L

y

℄;
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so that ' := [d

g

;L

y

℄ antiommutes with the operators i

x

(" = �1 and k = 1). Therefore the

argument in the preeding paragraph shows that ' vanishes, whih is (3).

To obtain (4), we onsider the operator ' = d

2

g

. Combining (3) with the Cartan Formula,

we get

(C:2) 0 = [d

g

;L

x

℄ = d

2

g

Æ i

x

� i

x

Æ d

2

g

;

so that the argument above applies with " = 1 and k = 2. This proves that d

2

g

= 0.

(5) follows immediately from the Cartan formula (1).

De�nition C.3. A linear subspae W of a topologial vetor spae V is alled (topologially)

split if it is losed and there is a ontinuous linear map �:V=W ! V for whih the map

W � V=W ! V; (w; x) 7! w + �(x)

is an isomorphism of topologial vetor spaes. Note that the losedness of W guarantees that

the quotient topology turns V=W into a Hausdor� spae whih is a topologial vetor spae

with respet to the indued vetor spae struture. A ontinuous linear map f :V !W between

topologial vetor spaes is said to be (topologially) split if the subspaes ker(f) � V and

im(f) �W are topologially split.

Remark C.4. Let g be a Lie algebra and

0! V

1

�

��!V

2

�

��!V

3

! 0

be a topologially split short exat sequene of g-modules. Identifying V

1

with �(V

1

) � V

2

,

we then obtain injetive maps �

p

:C

p



(g; V

1

) ! C

p



(g; V

2

) and surjetive maps �

p

:C

p



(g; V

2

) !

C

p



(g; V

3

) whih lead a short exat sequene

0! C

�



(g; V

1

)

�

�

��!C

�



(g; V

2

)

�

�

��!C

�



(g; V

3

)! 0

of ohain omplexes. These maps an be ombined to a long exat sequene

0! H

0



(g; V

1

)! H

0



(g; V

2

)! H

0



(g; V

3

)! H

1



(g; V

1

)! H

1



(g; V

2

)! H

1



(g; V

3

)! : : : ;

where, for p 2 N

0

, the onneting map

Æ:H

p



(g; V

3

)! H

p+1

(g; V

1

)

is de�ned by Æ([f ℄) = [d

g

e

f ℄ , where

e

f 2 C

p

(g; V

2

) satis�es � Æ

e

f = f , whih implies that

im(d

g

e

f) � V

1

if f is a oyle.

AÆne ations of Lie algebras and 1-oyles

De�nition C.5. Let g be a (topologial) Lie algebra and n another (topologial) Lie algebra,

whih is a (topologial) g-module on whih g ats by derivations. A linear map f : g ! n is

alled a rossed homomorphism if

f([x; y℄) = x:f(y)� y:f(x) + [f(x); f(y)℄

holds for x; y 2 g . With respet to the braket on C

�

(g; n), this is the Maurer Cartan equation

d

g

f +

1

2

[f; f ℄ = 0

(f. Exerise II.14).

If V := n is abelian, hene simply a g-module, then the rossed homomorphisms are the

1-oyles. The elements of the subspae B

1

(g; V ) (the 1-oboundaries) are alled prinipal

rossed homomorphisms.

In the following, we write aff(V ) = V o gl(V ) for the aÆne Lie algebra of V , where

gl(V ) := L(V ), endowed with the ommutator braket. A ontinuous aÆne ation of a Lie

algebra g on V is a homomorphism �: g ! aff(V ) satisfying the following ontinuity ondition:

We assoiate to eah pair (v;A) 2 aff(V ) the aÆne map x 7! A:x+ v and we require the map

g� V ! V; (x; v) 7! �(x):v

to be ontinuous.
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Proposition C.6. Let (�; V ) be a topologial g-module. An element f 2 C

1



(g; V ) is in

Z

1



(g; V ) if and only if the map

�

f

= (f; �): g ! aff(V )

�

=

V o gl(V ); x 7!

�

f(x); �(x)

�

is a homomorphism of Lie algebras. The spae H

1



(g; V ) parametrizes the e

adV

-onjugay lasses

of ontinuous aÆne ations of g on V whose orresponding linear ation oinides with � .

The oboundaries orrespond to those aÆne ations whih are onjugate to a linear ation,

i.e., whih have a �xed point. The relation f = �d

g

v is equivalent to �

f

(x):v = 0 for all x 2 g .

Proof. The �rst assertion is easily heked. For v 2 V , we onsider the automorphism

of aff(V ) given by �

v

= e

ad v

= 1 + ad v . Then �

v

(w; x) = (w � x:v; x), showing that

�

v

Æ �

f

= �

f�d

g

v

; where d

g

v(x) = x:v . Thus two aÆne ations �

f

and �

f

0

are onjugate under

some �

v

if and only if the ohomology lasses of f and f

0

oinide. In this sense, H

1



(g; V )

parametrizes the e

adV

-onjugay lasses of aÆne ations of g on V whose orresponding linear

ation oinides with � , and the oboundaries orrespond to those aÆne ations whih are

onjugate to a linear ation. Moreover, it is lear that an aÆne ation �

f

is linearizable, i.e.,

onjugate to a linear ation, if and only if there exists a �xed point v 2 V , i.e., �

f

(x):v = 0 holds

for all x 2 g . This ondition means that f = �d

g

v .

Abelian extensions and 2-oyles

De�nition C.7. Let g and n be topologial Lie algebras. A topologially split short exat

sequene

n ,!

b

g !! g

is alled a (topologially split) extension of g by n . We identify n with its image in

b

g , and write

b

g as a diret sum

b

g = n � g of topologial vetor spaes. Then n is a topologially split ideal

and the quotient map q:

b

g! g orresponds to (n; x) 7! x . If n is abelian, then the extension is

alled abelian.

Two extensions n ,!

b

g

1

!! g and n ,!

b

g

2

!! g are alled equivalent if there exists a

morphism ':

b

g

1

!

b

g

2

of topologial Lie algebras suh that the diagram

n ,!

b

g

1

!! g

?

?

y

id

n

?

?

y

'

?

?

y

id

g

n ,!

b

g

2

!! g

ommutes. It is easy to see that this implies that ' is an isomorphism of topologial Lie algebras,

hene de�nes an equivalene relation. We write Ext(g; n) for the set of equivalene lasses of

extensions of g by n .

We all an extension q:

b

g ! g with ker q = n trivial, or say that the extension splits, if

there exists a ontinuous Lie algebra homomorphism �: g !

b

g with q Æ� = id

g

. In this ase, the

map

no

S

g !

b

g; (n; x) 7! n+ �(x)

is an isomorphism, where the semi-diret sum is de�ned by the homomorphism

S: g ! der(n); S(x)(n) := [�(x); n℄:

De�nition C.8. Let a be a topologial g-module. To eah ontinuous 2-oyle ! 2 Z

2



(g; a),

we assoiate a topologial Lie algebra a�

!

g as the topologial produt vetor spae a�g endowed

with the Lie braket

[(a; x); (a

0

; x

0

)℄ := (x:a

0

� x

0

:a+ !(x; x

0

); [x; x

0

℄):

The quotient map q: a�

!

g ! g; (a; x) 7! x is a ontinuous homomorphism of Lie algebras with

kernel a , hene de�nes an a-extension of g . The map �: g ! a�

!

g; x 7! (0; x) is a ontinuous

linear setion of q .
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Proposition C.9. Let (a; �

a

) be a topologial g-module and write Ext

�

a

(g; a) for the set of

all equivalene lasses of a-extensions

b

g of g for whih the adjoint ation of

b

g on a indues the

given g-module struture on a . Then the map

Z

2



(g; a)! Ext

�

a

(g; a); ! 7! [a�

!

g℄

fators through a bijetion

H

2



(g; a)! Ext

�

a

(g; a); [!℄ 7! [a�

!

g℄:

Proof. Suppose that q:

b

g! g is an a-extension of g for whih the indued g-module struture

on a oinides with �

a

. Let �: g !

b

g be a ontinuous linear setion, so that q Æ � = id

g

. Then

!(x; y) := [�(x); �(y)℄ � �([x; y℄)

has values in the subspae a = ker q of

b

g and the map

a� g !

b

g; (a; x) 7! a+ �(x)

de�nes an isomorphism of topologial Lie algebras a�

!

g !

b

g .

It is easy to verify that a �

!

g � a �

�

g if and only if ! � � 2 B

2



(g; a). Therefore the

quotient spae H

2



(g; a) lassi�es the equivalene lasses of a-extensions of g by the assignment

[!℄ 7! [a�

!

g℄ .
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