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Abstra
t. These are le
ture notes of a 
ourse given at a summer s
hool in Monastir in July 2005.

The main purpose of this 
ourse is to present some of the main ideas of in�nite-dimensional Lie

theory and to explain how it di�ers from the �nite-dimensional theory. In the introdu
tory se
tion,

we present some of the main types of in�nite-dimensional Lie groups: linear Lie groups, groups of

smooth maps and groups of di�eomorphisms. We then turn in some more detail to manifolds mod-

eled on lo
ally 
onvex spa
es and the 
orresponding 
al
ulus (Se
tion II). In Se
tion III, we present

some basi
 Lie theory for lo
ally 
onvex Lie groups. The Fundamental Theorem for Lie group-valued-

fun
tions on manifolds and some of its immediate appli
ations are dis
ussed in Se
tion IV. For many

in�nite-dimensional groups, the exponential fun
tion behaves worse than for �nite-dimensional ones

or Bana
h{Lie groups. Se
tion V is devoted to the 
lass of lo
ally exponential Lie groups, i.e., those

for whi
h the exponential fun
tion is a lo
al di�eomorphism in 0. We 
on
lude these notes with a

brief dis
ussion of the integrability problem for lo
ally 
onvex Lie algebras: When is a lo
ally 
onvex

Lie algebra the Lie algebra of a global Lie group?
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I. Introdu
tion

Symmetries play a de
isive role in the natural s
ien
es and throughout mathemati
s.

In�nite-dimensional Lie theory deals with symmetries depending on in�nitely many parameters.

Su
h symmetries may be studied on an in�nitesimal, lo
al or global level, whi
h amounts to

studying Lie algebras, lo
al Lie groups and global Lie groups, respe
tively.

Finite-dimensional Lie theory was 
reated in the late 19th 
entury by Marius Sophus Lie,

who showed that in �nite dimensions the lo
al and the in�nitesimal theory are essentially equiv-

alent. The di�erential-geometri
 approa
h to �nite-dimensional global Lie groups (as smooth

or analyti
 manifolds) is naturally 
omplemented by the theory of algebrai
 groups with whi
h

it intera
ts most fruitfully. A 
ru
ial point of the �nite-dimensional theory is that �niteness


onditions permit to develop a full-
edged stru
ture theory of �nite-dimensional Lie groups in

terms of the Levi splitting and the �ne stru
ture of semisimple groups.

In in�nite dimensions, the passage from the in�nitesimal to the lo
al level and from there

to the global level is not possible in general, when
e the theory splits into three properly distin
t

levels. A substantial part of the literature on in�nite-dimensional Lie theory ex
lusively deals

with the level of Lie algebras, their stru
ture, and their representations. However, only spe
ial


lasses of groups, su
h as Ka
{Moody groups or 
ertain dire
t limit groups, 
an be approa
hed by

purely algebrai
 methods. In parti
ular, this is relevant for many appli
ations in mathemati
al

physi
s, where the in�nitesimal approa
h is 
onvenient for 
al
ulations, but a global perspe
tive

would be most desirable to understand global phenomena. We think that a similar statement

applies to non-
ommutative geometry, where derivations and 
ovariant derivatives are ubiquitous,

but global symmetry groups have been negle
ted.

In these le
tures, we 
on
entrate on the lo
al and global level of in�nite-dimensional Lie

theory, as well as the me
hanisms allowing or preventing to pass from one level to another. Our

studies are based on a notion of Lie group whi
h is both simple and very general: A Lie group
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simply is a manifold, endowed with a group stru
ture su
h that multipli
ation and inversion

are smooth maps. The main di�eren
e 
ompared to the �nite-dimensional theory 
on
erns the

notion of a manifold: The manifolds we 
onsider shall not be �nite-dimensional, but modeled

on an arbitrary lo
ally 
onvex spa
e. It is quite useful to approa
h Lie groups from su
h a

general perspe
tive, be
ause this enables a uni�ed dis
ussion of all basi
 aspe
ts of the theory.

To obtain more spe
i�
 results, it is essential to fo
us on individual 
lasses of Lie groups. In

this introdu
tion, we dis
uss several 
lasses of in�nite-dimensional Lie groups without going into

details. The main purpose is to give an impression of the enormous variety of in�nite-dimensional

Lie groups.

Some history

The 
on
ept of a Bana
h{Lie group, i.e., a Lie group modeled on a Bana
h spa
e, has been

introdu
ed by G. Birkho� in [Bi38℄. The step to more general 
lasses of in�nite-dimensional

Lie groups modeled on 
omplete lo
ally 
onvex spa
es o

urs �rst in an arti
le of Marsden and

Abraham [MA70℄ in the 
ontext of hydrodynami
s. This Lie group 
on
ept has been worked out

by J. Milnor in his Les Hou
hes le
ture notes [Mil83℄ whi
h provide many basi
 results of the

general theory. The observation that the 
ompleteness 
ondition on the underlying lo
ally 
onvex

spa
e 
an be omitted for the basi
 theory is due to H. Gl�o
kner ([Gl02a℄). This is important for

quotient 
onstru
tions be
ause quotients of 
omplete lo
ally 
onvex spa
es need not be 
omplete.

There are other, weaker, 
on
epts of Lie groups, resp., in�nite-dimensional manifolds. One

is based on the \
onvenient setting" for global analysis developed by Fr�ohli
her, Kriegl and

Mi
hor ([FK88℄ and [KM97℄). In the 
ontext of Fr�e
het manifolds, this setting does not di�er

from the one mentioned above, but for more general model spa
es it provides a 
on
ept of a

smooth map whi
h does not ne
essarily imply 
ontinuity, hen
e leads to Lie groups whi
h are

not topologi
al groups. Another approa
h is based on the 
on
ept of a di�eologi
al spa
e due

to J.-M. Souriau ([So85℄) whi
h 
an be used to study spa
es like quotients of R by non-dis
rete

subgroups in a di�erential geometri
 
ontext. It has the important advantage that the 
ategory

of di�eologi
al spa
es is 
artesian 
losed and that any quotient of a di�eologi
al spa
e 
arries a

natural di�eology. On the other hand, this in
redible freedom 
reates some quite ugly 
reatures.

Throughout these notes, K 2 fR; C g and all ve
tor spa
es are real or 
omplex. For two

topologi
al ve
tor spa
es V;W , we write L(V;W ) for the spa
e of 
ontinuous linear operators

V !W and put L(V ) := L(V; V ).

I.1. Linear Lie groups

In �nite-dimensional Lie theory, a natural approa
h to Lie groups is via matrix groups, i.e.,

subgroups of the group GL

n

(R) of invertible real n�n-matri
es. Sin
e every �nite-dimensional

algebra 
an be embedded into a matrix algebra, this is equivalent to 
onsidering subgroups of

the unit groups A

�

:= fa 2 A: (9b 2 A)ab = ba = 1g of �nite-dimensional unital asso
iative

algebras A . The advantage of this approa
h is that, under mild 
ompleteness assumptions, one


an de�ne the exponential fun
tion quite dire
tly via the exponential series and thus take a

short
ut to several deeper results on Lie groups. This approa
h also works quite well in the


ontext of Bana
h-Lie groups. Here the linear Lie groups are subgroups of unit groups of Bana
h

algebras, but this setting is too restri
tive for many appli
ations of in�nite-dimensional Lie theory.

Let V be a lo
ally 
onvex spa
e and A := L(V ) the unital asso
iative algebra of all


ontinuous linear endomorphisms of V . Its unit group is the general linear group GL(V ) of

V , but unfortunately there is no natural manifold stru
ture on GL(V ) if V is not a Bana
h

spa
e. In parti
ular, it is far from being open, as follows from the fa
t that if the spe
trum of

the operator A is unbounded, then 1+ tA is not invertible for all suÆ
iently small values of t .

Therefore it is mu
h more natural to 
onsider a 
lass of well-behaved asso
iative algebras instead

of the algebras of the form L(V ) for general lo
ally 
onvex spa
es.
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We shall see that the most natural 
lass of algebras for in�nite-dimensional Lie theory are

the so-
alled 
ontinuous inverse algebras (CIAs). These are unital lo
ally 
onvex algebras A with


ontinuous multipli
ation su
h that the unit group A

�

is open and the inversion is a 
ontinuous

map A

�

! A .

Remark I.1.1. (a) Ea
h unital Bana
h algebra A is a 
ontinuous inverse algebra. In fa
t, if

k � k is a sub-multipli
ative norm on A with k1k = 1, then for ea
h x 2 A with kxk < 1 we

have 1� x 2 A

�

with

(1� x)

�1

=

1

X

k=0

x

k

;

and the geometri
 series, also 
alled the Neumann series, 
onverges uniformly on ea
h ball B

r

(0)

with r < 1. We 
on
lude that A

�


ontains B

1

(1) and that inversion is 
ontinuous on this ball.

Now elementary arguments imply that A

�

is open and that inversion is 
ontinuous (Exer
ise I.1).

(b) For ea
h Bana
h spa
e V , the algebra L(V ) of 
ontinuous linear operators on V is a

unital Bana
h algebra with respe
t to the operator norm

k'k := supfk'(v)k: kvk � 1g;

hen
e in parti
ular a CIA.

(
) For ea
h CIA A and n 2 N , the matrix algebra M

n

(A) also is a CIA when endowed

with the produ
t topology obtained by identifying it with A

n

2

(
f. [Bos90℄, Exer
ise I.3).

(d) If M is a 
ompa
t manifold, then the algebra C

1

(M; C ) is a 
ontinuous inverse algebra

(
f. Se
tion II for the topology on this algebra).

(e) Let B be a Bana
h algebra and �:G � B ! B a strongly 
ontinuous a
tion of the

�nite-dimensional Lie group G on B by isometri
 automorphisms. Then the spa
e A := B

1

of smooth ve
tors for this a
tion is a dense subalgebra and a Fr�e
het CIA (
f. [Bos90, Prop.

A.2.9℄).

We shall see below that the unit group of a CIA is a Lie group, when endowed with its

natural manifold stru
tures as an open subset. This property 
learly shows that in the 
ontext of

in�nite-dimensional Lie theory over lo
ally 
onvex spa
es, CIAs form the natural 
lass of algebras

to be 
onsidered.

In view of Remark I.1.1(
), GL

n

(A) is a Lie group for ea
h CIA A . We think of \Lie

subgroups" of these groups as linear Lie groups, but we shall only see later in Se
tion III how

and in how many ways the notion of a Lie subgroup 
an be made more pre
ise. Note that most


lassi
al Lie groups are de�ned as 
entralizers of 
ertain matri
es or as the set of �xed points for

a group of automorphisms. All these 
onstru
tions have natural generalizations to matri
es with

entries in CIAs.

I.2. Groups of 
ontinuous and smooth maps

In the 
ontext of Bana
h{Lie groups, one 
onstru
ts Lie groups of mappings as follows.

For a 
ompa
t spa
e X and a Bana
h{Lie group K , the group C(X;K) of 
ontinuous maps is

a Bana
h{Lie group with Lie algebra C(X; k), where k := L(K) is the Lie algebra of K .

In the larger 
ontext of lo
ally 
onvex Lie groups, one also obtains for ea
h Lie group K

and a 
ompa
t smooth manifold M a Lie group stru
ture on the group C

1

(M;K) of smooth

maps from M to K . This is a Fr�e
het{Lie group if K is a Fr�e
het{Lie group and its Lie algebra

is C

1

(M; k).

The passage from 
ontinuous maps to smooth maps is motivated by the behavior of 
entral

extensions of these groups. The groups C

1

(M;K) have mu
h more 
entral extensions than the

groups C(M;K), hen
e exhibit a ri
her geometri
 stru
ture. Closely related is the fa
t that

algebras of smooth fun
tions have mu
h more derivations than algebras of 
ontinuous fun
tions

(
f. also the dis
ussion in Se
tion I.3).
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A larger 
lass of groups of smooth maps is obtained as gauge groups of prin
ipal bundles.

If q:P ! B is a smooth prin
ipal bundle with stru
ture group K and �:P �K ! P; (p; k) 7!

�

k

(p) = p:k denotes the right a
tion of K on P , then

Gau(P ) := f' 2 Di�(P ): q Æ ' = q; (8k 2 k) ' Æ �

k

= �

k

Æ 'g

is 
alled the gauge group of the bundle and its elements are 
alled gauge transformations. In view

of q Æ ' = q , ea
h gauge transformation ' 
an be written as '(p) = p:f(p) for some smooth

fun
tion f :P ! K , and from ' Æ �

k

= �

k

Æ ' we derive that kf(p:k) = f(p)k , i.e.,

(1:1:1) f(p:k) = k

�1

f(p)k; p 2 P; k 2 K:

Conversely, every smooth fun
tion f :P ! K satisfying (1.1.1) de�nes a gauge transformation

by '

f

(p) := p:f(p). Moreover,

'

f

1

('

f

2

(p)) = '

f

2

(p):f

1

�

'

f

2

(p)

�

= p:(f

2

(p)f

1

(p:f

2

(p))) = p:(f

1

(p)f

2

(p)) = '

f

1

f

2

(p)

implies that we obtain an isomorphism of groups

C

1

(P;K)

K

:= ff 2 C

1

(P;K): (8p 2 P )(8k 2 K) f(p:k) = k

�1

f(p)kg ! Gau(P ); f 7! '

f

:

We may therefore view Gau(P ) as a subgroup of the group C

1

(P;K), endowed with

the pointwise produ
t, and we shall see below under whi
h requirements on the bundle and the

stru
ture group K one 
an show that Gau(P ) is a Lie group.

If the bundle P is trivial, then there exists a smooth global se
tion �:B ! P , and the

map

C

1

(P;K)

K

! C

1

(M;K); f 7! f Æ �

is an isomorphism of groups.

I.3. Groups of homeomorphisms and di�eomorphisms

Interesting groups arise naturally from geometri
 or other stru
tures on spa
es as their

automorphism groups. In the spirit of Felix Klein's Erlangen Program, geometri
 stru
tures are

even de�ned in terms of their automorphism groups. In this se
tion, we take a 
loser look at the

homeomorphism group Homeo(X) of a topologi
al spa
e X , the di�eomorphism group Di�(M)

of a smooth manifold M and relate them to the automorphism groups of the 
orresponding

algebras of 
ontinuous and smooth fun
tions.

I.3.1. If X is a topologi
al spa
e, then the group Homeo(X) a
ts naturally by automorphisms

on the algebra C(X;R) of 
ontinuous real-valued fun
tions on X by algebra automorphisms via

(':f)(x) := f('

�1

(x)):

If, in addition, X is 
ompa
t, then C(X;R) has a natural Bana
h algebra stru
ture given

by the sup-norm, and with Gelfand duality the spa
e X 
an be re
overed from this algebra as

X

�

=

Hom

alg

(C(X;R);R) n f0g

in the sense that every non-zero algebra homomorphism C(X;R) ! R (whi
h is automati
ally


ontinuous) is given by a point evaluation Æ

p

(f) = f(p). The topology on X 
an be re
overed

from C(X;R) by endowing Hom

alg

(C(X;R);R) with the topology of pointwise 
onvergen
e on

C(X;R) .

For any Bana
h algebra A , the group Aut(A) 
arries a natural Lie group stru
ture (as

a Lie subgroup of GL(A)), so that Homeo(X)

�

=

Aut(C(X;R)) inherits a natural Lie group

stru
ture when endowed with the topology inherited from the Bana
h algebra L(C(X;R)) . We
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laim that this topology turns Homeo(X) into a dis
rete group. In fa
t, if ' is a non-trivial

homeomorphism of X and p 2 X is moved by ' , then there exists a 
ontinuous fun
tion

f 2 C(X;R) with kfk = 1, f(p) = 0 and f('

�1

(p)) = 1. Then k':f � fk � 1 implies that

k' � 1k � 1. Therefore the group Homeo(X) is dis
rete. Sin
e exponentials of 
ontinuous

derivations yield one-parameter groups of automorphisms, it follows that der(C(X;R)) = f0g .

Nevertheless, one 
onsiders 
ontinuous a
tions of 
onne
ted Lie groups G on X , where

the 
ontinuity of the a
tion means that the a
tion map �:G �X ! X is 
ontinuous. But this

does not mean that the 
orresponding homomorphism G ! Homeo(X) is 
ontinuous. We will

see that this phenomenon, i.e., that 
ertain automorphism groups are endowed with Lie group

stru
tures whi
h are too �ne for many purposes, o

urs at several levels of the theory (
f. also

Exer
ise I.5).

I.3.2. Now let M be a 
ompa
t smooth manifold and 
onsider the Fr�e
het algebra A :=

C

1

(M;R) of smooth fun
tions on M (
f. Example II.1.4). In this 
ontext, we also have

M

�

=

Hom(C

1

(M;R);R) n f0g

in the sense that every non-zero algebra homomorphism C

1

(M;R) ! R is given by a point

evaluation Æ

p

(f) := f(p) for some p 2 M (see Theorem A.1). The smooth stru
ture on M is


ompletely determined by the requirement that the maps M ! R; p 7! Æ

p

(f) are smooth. This

implies that the group Aut(C

1

(M;R)) of automorphisms of C

1

(M;R) 
an be identi�ed with

the group Di�(M) of all di�eomorphisms of M .

In sharp 
ontrast to the topologi
al 
ontext, the group Di�(M) has a non-trivial stru
ture

as a Lie group modeled on the spa
e V(M) of (smooth) ve
tor �elds on M , whi
h then is the

Lie algebra of (the opposite of) this group. Moreover, for a �nite-dimensional Lie group G ,

smooth left a
tions �:G �M ! M 
orrespond to Lie group homomorphisms G ! Di�(M).

For G = R , we obtain in parti
ular the 
orresponden
e between smooth 
ows on M , smooth

ve
tor �elds on M , and one-parameter subgroups of Di�(M). If X 2 V(M) is a ve
tor �eld

and Fl

X

:R ! Di�(M) the 
orresponding 
ow, then

exp:V(M)! Di�(M); X 7! Fl

X

(1)

is the exponential fun
tion of the Fr�e
het{Lie group Di�(M).

Other important groups of di�eomorphisms arise as subgroups of Di�(M). Of parti
ular

importan
e is the stabilizer subgroup Di�(M;�) of a volume form � on M (if M is orientable),

and the stabilizer Sp(M;!) of a symple
ti
 form ! if (M;!) is symple
ti
 (
f. [KM97℄).

I.3.3. If M is a para
ompa
t �nite-dimensional smooth manifold, then we still have

M

�

=

Hom(C

1

(M;R);R) n f0g and Di�(M)

�

=

Aut(C

1

(M;R))

(Theorem A.1), but then there is no natural Lie group stru
ture on Di�(M) su
h that smooth

a
tions of Lie groups G on M 
orrespond to Lie group homomorphisms G! Di�(M).

It is possible to turn Di�(M) into a Lie group with Lie algebra V




(M), the Lie algebra of

all smooth ve
tor �elds with 
ompa
t support. If M is 
ompa
t, this yields the aforementioned

Lie group stru
ture on Di�(M), but if M is not 
ompa
t, then the 
orresponding topology on

Di�(M) is so �ne that the global 
ow generated by a ve
tor �eld whose support is not 
ompa
t

does not lead to a 
ontinuous homomorphism R ! Di�(M). For this Lie group stru
ture, the

normal subgroup Di�




(M) of all di�eomorphisms whi
h 
oin
ide with id

M

outside a 
ompa
t

set is an open subgroup.

I.3.4. The situation for non-
ompa
t manifolds is similar to the situation we en
ounter in the

theory of unitary group representations. Let H be a Hilbert spa
e and U(H) its unitary group.

This group has two natural topologies. The uniform topology on U(H) inherited from the

Bana
h algebra L(H) turns it into a Bana
h{Lie group, but this topology is rather �ne. The

strong operator topology (the topology of pointwise 
onvergen
e) turns U(H) into a topologi
al

group su
h that 
ontinuous unitary representations of a topologi
al group G 
orrespond to
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ontinuous group homomorphisms G ! U(H). If G is a �nite-dimensional Lie group, then a


ontinuous unitary representation is 
ontinuous with respe
t to the uniform topology on U(H)

if and only if all operators of the derived representation are bounded, but this implies already

that the representation fa
tors through a Lie group with 
ompa
t Lie algebra (
f. [Si52℄, [Gu80℄,

Exer
ise I.6). In some sense, the 
ondition that the operators of the derived representation

are bounded is analogous to the requirement that the ve
tor �elds 
orresponding to a smooth

a
tion on a manifold have 
ompa
t support. In this sense, the uniform topology on U(H) shows

similarities to the Lie group stru
ture from (I.3.3) on Di�(M) if M is non-
ompa
t. The 
ase

of a 
ompa
t manifold M 
orresponds to the 
ase of a �nite-dimensional Hilbert spa
e H , for

whi
h the two topologies on U(H) 
oin
ide.

I.3.5. Clearly, the situation be
omes worse if M is an in�nite-dimensional manifold. Then

Di�(M) has no natural group topology, but we 
an still make sense of smooth maps f :N !

Di�(M), where N is a smooth manifold, by requiring that the 
orresponding map

N �M !M

2

; (n;m) 7! (f(n)(m); f(n)

�1

(m))

is smooth. In this sense, a smooth a
tion of a Lie group G on M is a smooth homomorphism

G! Di�(M).

Similar statements hold for the group GL(V ), where V is a general lo
ally 
onvex spa
e.

Exer
ises for Se
tion I

Exer
ise I.1. For an asso
iative algebra A , we write A

+

for the algebra A � K with the

multipli
ation

(a; s)(b; t) := (ab+ sb+ ta; st):

(1) Verify that A

+

is a unital algebra with unit 1 = (0; 1).

(2) Show that GL

1

(A) := A

�

+

\ (A� f1g) is a group.

(3) If e 2 A is an identity element, then A

+

is isomorphi
 to the dire
t produ
t algebra A� K

with the produ
t (a; s)(b; t) = (ab; st).

Exer
ise I.2. A topologi
al ring is a ring R endowed with a topology for whi
h addition and

multipli
ation are 
ontinuous. Let R be a unital topologi
al ring. Show that:

(1) For x 2 R

�

, the left and right multipli
ations �

x

(y) := xy and �

x

(y) := yx are homeomor-

phisms of R .

(2) The unit group R

�

is open if and only if it is a neighborhood of 1 .

(3) The inversion R

�

! R is 
ontinuous, i.e., (R

�

; �) is a topologi
al group, if it is 
ontinuous

in 1 .

Exer
ise I.3. Let R be a unital ring, n 2 N and M

n

(R) the ring of all (n� n)-matri
es with

entries in R . In the following, we write elements x 2M

n

(R) as

x =

�

a b


 d

�

2M

n

(R) =

�

M

n�1

(R) M

n�1;1

(R)

M

1;n�1

(R) R

�

=

�

M

n�1

(R) R

n�1

(R

n�1

)

>

R

�

:

(1) Show that a matrix x is of the form

�

1 �

0 1

��

� 0

0 Æ

��

1 0


 1

�

with � 2 GL

n�1

(R); �; 


>

2 R

n�1

; Æ 2 R

�

if and only if d 2 R

�

; a� bd

�1


 2 GL

n�1

(R), and that in this 
ase

Æ = d; � = bd

�1

; 
 = d

�1


; � = a� bd

�1


:

(2) Assume, in addition, that R is a topologi
al ring with open unit group and 
ontinuous

inversion. Show by indu
tion on n that

(a) GL

n

(R) is open in M

n

(R).

(b) Inversion in GL

n

(R) is 
ontinuous, i.e., GL

n

(R) is a topologi
al group.
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Exer
ise I.4. Let R be a unital ring and 
onsider the right R -module R

n

, where the module

stru
ture is given by (x

1

; : : : ; x

n

):r := (x

1

r; : : : ; x

n

r). Let M be a right R -module, �: r 7! r

�

an involution on R , i.e., an involutive anti-automorphism and " 2 f�1g . A biadditive map

�:M �M ! R is 
alled � -sesquilinear if

�(x:r; y:s) = r

�

�(x; y)s for x; y 2M; r; s 2 R:

It is 
alled � -"-hermitian if, in addition,

�(x; y)

�

= "�(y; x) for x; y 2M:

For " = 1, we 
all the form � -hermitian and � -antihermitian for " = �1. For a � -"-hermitian

form � on M ,

U(M;�) := f' 2 Aut

R

(M): (8x; y 2M) �('(x); '(y)) = �(x; y)g

is 
alled the 
orresponding unitary group. Show that:

(1) End

R

(R

n

)

�

=

M

n

(R), where M

n

(R) operates by left multipli
ation on 
olumn ve
tors

on R

n

.

(2) Aut

R

(R

n

)

�

=

GL

n

(R).

(3) �(x; y) :=

P

n

i=1

x

�

i

y

i

is a � -hermitian form on R

n

. Des
ribe the 
orresponding unitary

group in terms of matri
es.

(4) �(x; y) :=

P

n

i=1

x

�

i

y

n+i

� x

�

n+i

y

i

is a � -antihermitian form on R

2n

. Des
ribe the 
orre-

sponding unitary group in terms of matri
es.

Exer
ise I.5. Let X be a topologi
al spa
e and endow the set C(X;X) of 
ontinuous self-

maps of X with the 
ompa
t open topology, i.e., the topology generated by the sets W (K;O) :=

ff 2 C(X;X): f(K) � Og , where K � X is 
ompa
t and O � X is open (
f. Appendix B). We

endow the group Homeo(X) with the initial topology with respe
t to the map

Homeo(X)! C(X;X)

2

; ' 7! ('; '

�1

):

Show that if X is lo
ally 
ompa
t, then this topology turns Homeo(X) into a topologi
al

group. Hint: If f Æ g 2 W (K;O) 
hoose a 
ompa
t subset K

0

and an open subset O

0

with

g(K) � O

0

� K

0

� f

�1

(O).

Exer
ise I.6. Let G be a �nite-dimensional 
onne
ted Lie group and �:G ! GL(X) be a

faithful representation whi
h is 
ontinuous when GL(X) 
arries the uniform topology inherited

from the Bana
h algebra L(X) and for whi
h �(G) is bounded. Show that g := L(G) is a


ompa
t Lie algebra by using the following steps:

(1) � is a smooth homomorphism of Lie groups. In parti
ular, we have a representation of the

Lie algebra L(�): g ! L(X).

(2) kxk := kL(�)(x)k de�nes a norm on g , and Ad(G) is bounded with respe
t to this norm.

(3) Ad(G) has 
ompa
t 
losure, so that g is a 
ompa
t Lie algebra.

If, in addition, X is a Hilbert spa
e, then one 
an even show that there exists a s
alar

produ
t 
ompatible with the topology whi
h is invariant under G , so that � be
omes a unitary

representation with respe
t to this s
alar produ
t. This 
an be a
hieved by showing that the

set of all 
ompatible s
alar produ
ts is a Bruhat{Tits spa
e and then applying the Bruhat{Tits

Fixed Point Theorem.
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II. In�nite-dimensional manifolds

In this se
tion, we turn to some more details on in�nite-dimensional manifolds. First we brie
y

dis
uss the 
on
ept of a lo
ally 
onvex spa
e, then the basi
s and the pe
uliarities of 
al
ulus on

these spa
es, and �nally manifolds modeled on lo
ally 
onvex spa
es.

In this se
tion, V always denotes a K -ve
tor spa
e and K is R or C .

II.1. Lo
ally 
onvex spa
es

De�nition II.1.1. (a) If p is a seminorm on a K -ve
tor spa
e V , then N

p

:= p

�1

(0) is a

subspa
e of V , and V

p

:= V=N

p

is a normed spa
e with kv + N

p

k := p(v). Let �

p

:V ! V

p

denote the 
orresponding quotient map.

(b) We 
all a set P of seminorms on V separating if p(v) = 0 for all p 2 P implies v = 0.

This is equivalent to the linear map

�:V !

Y

p2P

V

p

; v 7! (�

p

(v))

p2P

being inje
tive.

(
) If X is a set and f

j

:X ! X

j

, j 2 J , are mappings into topologi
al spa
es, then the


oarsest topology on X for whi
h all these maps are 
ontinuous is 
alled the initial topology on

X with respe
t to the family (f

j

)

j2J

. This topology is generated by the inverse images of open

subsets of the spa
es X

j

under the maps f

j

. Combining the fun
tions f

j

to a single fun
tion

f :X !

Y

j2J

X

j

; x 7! (f

j

(x))

j2J

;

the initial topology on X is nothing but the inverse image of the produ
t topology under f .

(d) To ea
h separating family P of seminorms on V we asso
iate the initial topology �

P

on V de�ned by the maps �

p

:V ! V

p

to the normed spa
es V

p

. We 
all it the lo
ally 
onvex

topology on V de�ned by P .

Sin
e the family P is separating, V is a Hausdor� spa
e. Further it is easy to show that

V is a topologi
al ve
tor spa
e in the sense that addition and s
alar multipli
ation on V are


ontinuous maps.

A lo
ally 
onvex spa
e is a ve
tor spa
e endowed with a topology de�ned by a separating

family of seminorms. The pre
eding argument shows that ea
h lo
ally 
onvex spa
e is in

parti
ular a topologi
al ve
tor spa
e whi
h 
an be embedded into a produ
t

Q

p2P

V

p

of normed

spa
es.

(e) A lo
ally 
onvex spa
e V is 
alled a Fr�e
het spa
e if its topology 
an be de�ned by

a 
ountable family P = fp

n

:n 2 Ng of seminorms and if V is 
omplete with respe
t to the


ompatible metri


d(x; y) :=

X

n2N

2

�n

p

n

(x� y)

1 + p

n

(x� y)

:

Remark II.1.2. (a) A sequen
e (x

n

)

n2N

in a lo
ally 
onvex spa
e V is said to be a Cau
hy

sequen
e if ea
h sequen
e �

p

(x

n

), p 2 P , is a Cau
hy sequen
e in V

p

. We say that V is

sequentially 
omplete if every Cau
hy sequen
e in V 
onverges.

(b) One has a natural notion of 
ompleteness for lo
ally 
onvex spa
es (every Cau
hy �lter


onverges). Complete lo
ally 
onvex spa
es 
an be 
hara
terized as those isomorphi
 to 
losed
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subspa
es of produ
ts of Bana
h spa
es. In fa
t, let V

p

denote the 
ompletion of the normed

spa
e V

p

. We then have an embedding

�:V !

Y

p2P

V

p

; v 7! (�

p

(v))

p2P

;

and the 
ompleteness of V is equivalent to the 
losedness of �(V ) in the produ
t of the Bana
h

spa
es V

p

, whi
h is a 
omplete spa
e (Exer
ise II.8).

Examples II.1.3. (a) Let X be a topologi
al spa
e. For ea
h 
ompa
t subset K � X , we

obtain a seminorm p

K

on C(X;R) by

p

K

(f) := supfjf(x)j:x 2 Kg:

The family P of these seminorms de�nes on C(X;R) the lo
ally 
onvex topology of uniform


onvergen
e on 
ompa
t subsets of X .

If X is 
ompa
t, then we may take K = X and obtain a norm on C(X;R) whi
h de�nes

the topology; all other seminorms p

K

are redundant (
f. Exer
ise II.1). In this 
ase, C(X;R) is

a Bana
h spa
e.

(b) The pre
eding example 
an be generalized to the spa
e C(X;V ), where X is a

topologi
al spa
e and V is a lo
ally 
onvex spa
e. Then we de�ne for ea
h 
ompa
t subset

K � X and ea
h 
ontinuous seminorm q on V a seminorm

p

K;q

(f) := supfq(f(x)):x 2 Kg:

The family of these seminorms de�nes a lo
ally 
onvex topology on C(X;V ), the topology of

uniform 
onvergen
e on 
ompa
t subsets of X (
f. Appendix B).

(
) If X is lo
ally 
ompa
t and 
ountable at in�nity, then there exists a sequen
e (K

n

)

n2N

of 
ompa
t subsets of X with

S

n

K

n

and K

n

� K

0

n+1

. We 
all su
h a sequen
e (K

n

)

n2N

an

exhaustion of X . Then ea
h 
ompa
t subset K � X lies in some K

n

, so that ea
h seminorm p

K

is dominated by some p

K

n

. This implies that C(X;R) is metrizable, and sin
e it is also 
omplete,

it is a Fr�e
het spa
e. It even is a Fr�e
het algebra in the sense that the algebra multipli
ation is


ontinuous (
f. Exer
ise II.4).

(d) For any set X , the spa
e R

X

of all real-valued fun
tion X ! R is a lo
ally 
onvex spa
e

with respe
t to the produ
t topology. The topology is de�ned by the seminorms p

x

de�ned by

p

x

(f) := jf(x)j , x 2 X . This spa
e is 
omplete, and it is metrizable if and only if X is 
ountable.

Example II.1.4. (a) Let U � R

n

be an open subset and 
onsider the algebra C

1

(U;R). For

ea
h multiindex m = (m

1

; : : : ;m

n

) 2 N

0

with jmj := m

1

+ : : :+m

n

, we 
onsider the di�erential

operator

D

m

:= D

m

1

1

� � �D

m

n

n

:=

�

jmj

�

m

1

1

� � ��

m

n

n

:

We now obtain for ea
h m and ea
h 
ompa
t subset K � U a seminorm on C

1

(U;R) by

p

K;m

(f) := supfjD

m

f(x)j:x 2 Kg:

The family of all these seminorms de�nes a lo
ally 
onvex topology on C

1

(U;R).

To obtain an exhaustion of U , we 
hoose a norm k � k on R

n

and 
onsider the 
ompa
t

subsets

K

n

:=

�

x 2 U : kxk � n; dist(x; U




) �

1

n

	

;

where U




:= R

n

n U denotes the 
omplement of U and dist(x; U




) := inffkx� yk: y 2 U




g is a


ontinuous fun
tion (Exer
ise II.5). It is easy to see that (K

n

)

n2N

is an exhaustion of U , so that

the topology on C

1

(U;R) 
an be de�ned by a 
ountable set of seminorms. Moreover, C

1

(U;R)
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is 
omplete with respe
t to the 
orresponding metri
, and the multipli
ation on this algebra is


ontinuous, so that it is a Fr�e
het algebra (Exer
ise II.6).

(b) Let M be a smooth n-dimensional manifold and 
onsider the algebra C

1

(M;R) . If

(';U) is a 
hart of M , then '(U) is an open subset of some R

n

, so that, in view of (a), we have

already a Fr�e
het algebra stru
ture on C

1

('(U);R) . We now 
onsider the map

�:C

1

(M;R) ,!

Y

(';U)

C

1

('(U);R); f 7! (f j

U

Æ '

�1

)

(';U)

and endow the right hand side with the produ
t topology, turning it into a lo
ally 
onvex algebra

(Exer
ise II.8). Therefore the inverse image of this topology turns C

1

(M;R) into a lo
ally


onvex algebra.

This des
ription is 
onvenient, but not very expli
it. To see how it 
an be de�ned by

seminorms, note that for ea
h 
ompa
t subset K �M for whi
h there exists a 
hart ':U ! R

n

with K � U and for ea
h multiindex m 2 N

n

0

we have a seminorm

p

K;m

(f) := supfjD

m

(f Æ '

�1

)(x)j:x 2 '(K)g:

It is easy to see that these seminorms de�ne the topology on C

1

(M;R) and that we thus obtain

the stru
ture of a Fr�e
het algebra on C

1

(M;R). The topology is 
alled the topology of lo
al

uniform 
onvergen
e of all partial derivatives.

(
) If M is a �nite-dimensional para
ompa
t 
omplex manifold, then we 
onsider the

algebra Hol(M; C ) of holomorphi
 fun
tions on M as a subalgebra of C(M; C ), endowed with the

topology of uniform 
onvergen
e on 
ompa
t subsets of M (Example II.1.3). This topology turns

Hol(M; C ) into a Fr�e
het algebra. Moreover, one 
an show that the inje
tive map Hol(M; C ) ,!

C

1

(M; C )is also a topologi
al embedding (Exer
ise II.9).

De�nition II.1.5. Let V be a ve
tor spa
e and �

j

:V

j

! V linear maps, de�ned on lo
ally


onvex spa
es V

j

. We 
onsider the system P of all those seminorms p on V for whi
h all


ompositions p Æ �

j

are 
ontinuous seminorms on the spa
es V

j

. By means of P , we obtain

on V a lo
ally 
onvex topology 
alled the �nal lo
ally 
onvex topology de�ned by the mappings

(�

j

)

j2J

.

This lo
ally 
onvex topology has the universal property that a linear map ':V ! W into

a lo
ally 
onvex spa
e W is 
ontinuous if and only if all the maps ' Æ�

j

, j 2 J , are 
ontinuous

(Exer
ise).

Example II.1.6. (a) Let X be a lo
ally 
ompa
t spa
e and C




(X;R) the spa
e of 
ompa
tly

supported 
ontinuous fun
tions. For ea
h 
ompa
t subset K � X , we then have a natural

in
lusion

�

K

:C

K

(X;R) := ff 2 C




(X;R): supp(f) � Kg ,! C




(X;R):

Ea
h spa
e C

K

(X;R) is a Bana
h spa
e with respe
t to the norm

kfk

1

:= supfjf(x)j:x 2 Xg = supfjf(x)j:x 2 Kg:

We endow C




(X;R) with the �nal lo
ally 
onvex topology de�ned by the maps �

K

(De�ni-

tion II.1.5).

(b) Let M be a smooth manifold and 
onsider the spa
e C

1




(M;R) of smooth fun
tions

with 
ompa
t support. For ea
h 
ompa
t subset K �M , we then have a natural in
lusion

�

K

:C

1

K

(M;R) := ff 2 C

1




(M;R): supp(f) � Kg ,! C

1




(M;R):

We endow ea
h spa
e C

1

K

(M;R) with the subspa
e topology inherited from C

1

(M;R), whi
h

turns it into a Fr�e
het spa
e. We endow C

1




(M;R) with the �nal lo
ally 
onvex topology de�ned

by the maps �

K

.
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II.2. Cal
ulus on lo
ally 
onvex spa
es

In this se
tion, we brie
y explain the 
ornerstones of 
al
ulus in lo
ally 
onvex spa
es.

The main point is that one uses an appropriate notion of di�erentiability, resp., smoothness

whi
h for the spe
ial 
ase of Bana
h spa
es di�ers from Fr�e
het di�erentiability but whi
h is

more 
onvenient in the setup of lo
ally 
onvex spa
es. Our basi
 referen
es are [Ha82℄ and

[Gl02a℄, and in parti
ular the forth
oming book [GN05℄, where one �nds detailed proofs. One

readily observes that on
e one has the Fundamental Theorem of Cal
ulus, then the proofs of the

�nite-dimensional 
ase 
arry over.

A di�erent approa
h to di�erentiability in in�nite-dimensional spa
es is provided by the

so-
alled 
onvenient setting, whi
h 
an be found in [FK88℄ and [KM97℄. A 
entral feature of

this approa
h is that smooth maps are no longer required to be 
ontinuous, but for 
al
ulus over

Fr�e
het spa
es one �nds the same 
lass of smooth maps. The 
on
ept of a di�eologi
al spa
e

due to J.-M. Souriau ([So85℄) goes mu
h further. It is primarily designed to study spa
es with

pathologies like quotients of R by non-dis
rete subgroups in a di�erential geometri
 
ontext.

De�nition II.2.1. Let X and Y be topologi
al ve
tor spa
es, U � X open and f :U ! Y

a map. Then the derivative of f at x in the dire
tion of h is de�ned as

df(x)(h) := lim

t!0

1

t

�

f(x+ th)� f(x)

�

whenever the limit exists. The fun
tion f is 
alled di�erentiable at x if df(x)(h) exists for all

h 2 X . It is 
alled 
ontinuously di�erentiable if it is di�erentiable at all points of U and

df :U �X ! Y; (x; h) 7! df(x)(h)

is a 
ontinuous map. It is 
alled a C

1

-map if it is 
ontinuous and 
ontinuously di�erentiable; for

n � 2, a C

n

-map if df is a C

n�1

-map, and C

1

(or smooth) if it is C

n

for ea
h n 2 N . This is

the notion of di�erentiability used in [Mil83℄, [Ha82℄, [Gl02a℄ and [Ne01℄.

(b) If X and Y are 
omplex ve
tor spa
es, then the map f is 
alled holomorphi
 if it is

C

1

and for all x 2 U the map df(x):X ! Y is 
omplex linear (
f. [Mil83, p. 1027℄). We will see

below that the maps df(x) are always real linear (Lemma II.2.3).

(
) Higher derivatives are de�ned for C

n

-maps by

d

n

f(x)(h

1

; : : : ; h

n

) := lim

t!0

1

t

�

d

n�1

f(x+ th

n

)(h

1

; : : :; h

n�1

)� d

n�1

f(x)(h

1

; : : :; h

n�1

)

�

:

Remark II.2.2. (a) If X and Y are Bana
h spa
es, then the notion of 
ontinuous di�eren-

tiability is weaker than the usual notion of 
ontinuous Fr�e
het-di�erentiability in Bana
h spa
es,

whi
h requires that the map x 7! df(x) is 
ontinuous with respe
t to the operator norm. Nev-

ertheless, one 
an show that a C

2

-map in the sense de�ned above is C

1

in the sense of Fr�e
het

di�erentiability, so that the two 
on
epts lead to the same 
lass of C

1

-fun
tions (
f. [Ne01, I.6

and I.7℄).

(b) We also note that the existen
e of linear maps whi
h are not 
ontinuous shows that the


ontinuity of f does not follow from the di�erentiability of f be
ause ea
h linear map f :X ! Y

is di�erentiable at ea
h x 2 X in the sense of De�nition II.2.1(a).

Now we re
all the pre
ise statements of the most fundamental fa
ts on 
al
ulus on lo
ally


onvex spa
es needed in the following.

Lemma II.2.3. Let X and Y be lo
ally 
onvex spa
es, U � X an open subset, and f :U ! Y

a 
ontinuously di�erentiable fun
tion.

(i) For any x 2 U , the map df(x):X ! Y is real linear and 
ontinuous.
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(ii) (Fundamental Theorem of Cal
ulus) If x+ [0; 1℄h � U , then

f(x+ h) = f(x) +

Z

1

0

df(x+ th)(h) dt:

In parti
ular, f is lo
ally 
onstant if and only if df = 0 .

(iii) f is 
ontinuous.

(iv) If f is C

n

, n � 2 , then the fun
tions (h

1

; : : : ; h

n

) 7! d

n

f(x)(h

1

; : : : ; h

n

) , x 2 U , are

symmetri
 n-linear maps.

(v) If x+ [0; 1℄h � U , then we have the Taylor Formula

f(x+ h) = f(x) + df(x)(h) + : : :+

1

(n� 1)!

d

n�1

f(x)(h; : : : ; h)

+

1

(n� 1)!

Z

1

0

(1� t)

n�1

d

n

f(x+ th)(h; : : : ; h) dt:

Proof. (i) For ea
h linear fun
tional � 2 Y

0

and h

1

; h

2

2 X , the map

F (t

1

; t

2

) := �(f(x + t

1

h

1

+ t

2

h

2

))

is de�ned on an open 0-neighborhood in R

2

and has 
ontinuous partial derivatives

�F

�t

1

(t

1

; t

2

) = df(x+ t

1

h

1

+ t

2

h

2

)(h

1

);

�F

�t

2

(t

1

; t

2

) = df(x+ t

1

h

1

+ t

2

h

2

)(h

2

):

From �nite-dimensional 
al
ulus we know that F is a C

1

-map and dF (0; 0):R

2

! R is linear.

This implies that � Æ df(x) is linear on spanfh

1

; h

2

g . Sin
e E

0

separates the points of Y and

h

1

; h

2

are arbitrary, the map df(x) is real linear. Its 
ontinuity follows from the 
ontinuity of df .

(ii) We 
onsider for � 2 Y

0

the C

1

-map

F : I ! R; F (t) := �(f(x+ th))

and obtain from the Fundamental Theorem in one variable 
al
ulus

�(f(x+ h)� f(x)) = F (1)� F (0) =

Z

1

0

F

0

(t) dt =

Z

1

0

�(df(x + th)(h)) dt:

Sin
e Y

0

separates the points of Y , this implies that the weak integral

R

1

0

df(x+ th)(h) dt; whi
h

a priori exists only in the 
ompletion of Y , a
tually de�nes an element of Y whi
h 
oin
ides

with f(x+ h)� f(x).

(iii) Let p be a 
ontinuous seminorm on Y and " > 0. Then there exists a balan
ed

0-neighborhood U

1

� X with x + U

1

� U and p

�

df(x + th)(h)

�

< " for t 2 [0; 1℄ and h 2 U

1

.

Hen
e

p

�

f(x+ h)� f(x)

�

�

Z

1

0

p

�

df(x+ th)(h)

�

dt � "

(Exer
ise II.12), and thus f is 
ontinuous.

(iv) Arguing as in (i), we may w.l.o.g. assume that Y = R . That the maps d

n

f(x) are

symmetri
 and n-linear follows by 
onsidering maps of the form

(t

1

; : : : ; t

n

)! f(x+ t

1

h

1

+ : : :+ t

n

h

n

)

on open 0-neighborhood in R

n

and then applying the 
orresponding �nite-dimensional result.

(v) We 
onsider the C

n

-map

F : I = [0; 1℄! R; F (t) := f(x+ th) with F

(n)

(t) = d

n

f(x+ th)(h; : : : ; h)

and apply the Taylor Formula for C

n

-fun
tions I ! R .

The following 
hara
terization of C

1

-fun
tions is parti
ularly 
onvenient for the proof of

the Chain Rule.
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Proposition II.2.4. Let X and Y be lo
ally 
onvex spa
es, U � X an open subset and

f :U ! Y a map. Then

U

[1℄

:= f(x; h; t) 2 U �X � K :x + th 2 Ug

is an open subset of U � X � K and f is C

1

if and only if there exists a 
ontinuous fun
tion

f

[1℄

:U

[1℄

! Y with

f

[1℄

(x; h; t) :=

1

t

(f(x+ th)� f(x)) for t 6= 0:

If this is the 
ase, then

df(x)(h) = f

[1℄

(x; h; 0):

Proof. The openness of U

[1℄

follows from the 
ontinuity of the map U�X�K ! X; (x; h; t) 7!

x+ th , be
ause U

[1℄

is the inverse image of U under this map.

If a 
ontinuous fun
tion f

[1℄

exists with the required properties, then 
learly df(x)(h) =

f

[1℄

(x; h; 0), whi
h implies that f is a C

1

-fun
tion.

Suppose, 
onversely, that f is C

1

. Sin
e U is open, there exists for ea
h x 2 U a 
onvex

balan
ed 0-neighborhood V � X with x+V � U . For y; th 2

1

2

V , we then have y+[0; 1℄th � U ,

so that Lemma II.2.3(ii) implies that

1

t

(f(y + th)� f(y)) =

Z

1

0

df(y + sth)(h) ds:

Sin
e the right hand side de�nes a 
ontinuous fun
tion on the neighborhood

f(y; h; t) 2 U

[1℄

: y + [0; 1℄th � Ug

of U �X � f0g , we see that

f

[1℄

(x; h; t) :=

�

R

1

0

df(y + sth)(h) ds if x+ [0; 1℄th � U

1

t

(f(x+ th)� f(x)) otherwise

is a 
ontinuous fun
tion on U

[1℄

satisfying all requirements.

Proposition II.2.5. (Chain Rule) If X , Y and Z are lo
ally 
onvex spa
es, U � X and

V � Y are open, and f

1

:U ! V , f

2

:V ! Z are C

1

, then f

2

Æ f

1

:U ! Z is C

1

with

d(f

2

Æ f

1

)(x) = df

2

�

f

1

(x)

�

Æ df

1

(x) for x 2 U:

Proof. We use the 
hara
terization of C

1

-fun
tion from Proposition II.2.4. For (x; h; t) 2

U

[1℄

, we have

1

t

�

(f

2

Æ f

1

)(x + th)� (f

2

Æ f

1

)(x)

�

=

1

t

�

f

2

(f

1

(x) + tf

[1℄

1

(x; h; t))� f

2

(f

1

(x))

�

= f

[1℄

2

(f

1

(x); f

[1℄

1

(x; h; t); t):

Sin
e this is a 
ontinuous fun
tion on U

[1℄

, Proposition II.2.4 implies that f

2

Æ f

1

is C

1

. For

t = 0, we obtain in parti
ular

d(f

2

Æ f

1

)(x)(h) = f

[1℄

2

(f

1

(x); f

[1℄

1

(x; h; 0); 0) = df

2

(f

1

(x))(df

1

(x)(h)):

Proposition II.2.6. If X

1

, X

2

and Y are lo
ally 
onvex spa
es, X = X

1

�X

2

, U � X is

open, and f :U ! Y is 
ontinuous, then the partial derivatives

d

1

f(x

1

; x

2

)(h) := lim

t!0

1

t

�

f(x

1

+ th; x

2

)� f(x

1

; x

2

)

�
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and

d

2

f(x

1

; x

2

)(h) := lim

t!0

1

t

�

f(x

1

; x

2

+ th)� f(x

1

; x

2

)

�

exist and are 
ontinuous if and only if f is C

1

. In this 
ase, we have

df(x

1

; x

2

)(h

1

; h

2

) = d

1

f(x

1

; x

2

)(h

1

) + d

2

f(x

1

; x

2

)(h

2

):

Proof. If f is C

1

, then the existen
e and 
ontinuity of the partial derivatives d

1

f and d

2

f

follows by restri
ting df .

Suppose, 
onversely, that the partial derivatives df

1

and df

2

exist and that they are


ontinuous, so that they are also linear in the last argument (Lemma III.2.3). For

(x

1

; x

2

) + ([0; 1℄h

1

; [0; 1℄h

2

) � U;

we then have

f(x

1

+ th

1

; x

2

+ th

2

)� f(x

1

; x

2

)

= f(x

1

+ th

1

; x

2

+ th

2

)� f(x

1

+ th

1

; x

2

) + f(x

1

+ th

1

; x

2

)� f(x

1

; x

2

)

=

Z

1

0

df

2

(x

1

+ th

1

; x

2

+ sth

2

)(th

2

) ds+

Z

1

0

d

1

f(x

1

+ sth

1

; x

2

)(th

1

) ds

= t

�

Z

1

0

df

2

(x

1

+ th

1

; x

2

+ sth

2

)(h

2

) ds+

Z

1

0

d

1

f(x

1

+ sth

1

; x

2

)(h

1

) ds

�

:

Using the 
ontinuous dependen
e of integrals on parameters (Exer
ise II.12(
)), we 
on
lude that

all dire
tional derivatives of f exist and equal

df(x

1

; x

2

)(h

1

; h

2

) =

Z

1

0

df

2

(x

1

; x

2

)(h

2

) ds+

Z

1

0

d

1

f(x

1

; x

2

)(h

1

) ds

= d

2

f(x

1

; x

2

)(h

2

) + d

1

f(x

1

; x

2

)(h

1

):

Remark II.2.7. (a) If f :X ! Y is a 
ontinuous linear map, then f is smooth with

df(x)(h) = f(h)

for all x; h 2 X , and d

n

f = 0 for n � 2.

(b) From (a) and Proposition II.2.6 it follows that a 
ontinuous k -linear map

m:X

1

� : : :�X

k

! Y

is 
ontinuously di�erentiable with

dm(x)(h

1

; : : : ; h

k

) = m(h

1

; x

2

; : : : ; x

k

) + � � �+m(x

1

; : : : ; x

k�1

; h

k

):

Indu
tively one obtains that m is smooth with d

k+1

m = 0 (
f. Exer
ise II.21).

(
) The addition map a:X �X ! X of a topologi
al ve
tor spa
e is smooth. In fa
t, we

have

da(x; y)(v; w) = v + w = a(v; w);

so that a is a C

1

-map. Indu
tively it follows that a is smooth.

(d) If f :U ! Y is C

n+1

, then Lemma II.2.3(iv) and Proposition II.2.6 imply that

d(d

n

f)(x; h

1

; : : : ; h

n

)(y; k

1

; : : : ; k

n

) = d

n+1

f(x)(h

1

; : : : ; h

n

; y)

+ d

n

f(x)(k

1

; h

2

; : : : ; h

n

) + : : :+ d

n

f(x)(h

1

; : : : ; h

n�1

; k

n

):

It follows in parti
ular that, whenever f is C

n

, then f is C

n+1

if and only if d

n

f is C

1

.

(e) If f :U ! Y is holomorphi
, then the �nite-dimensional theory shows that for ea
h

h 2 X , the fun
tion U ! Y; x 7! df(x)(h) is holomorphi
. Hen
e d

2

f(x) is 
omplex bilinear

and therefore d(df) is 
omplex linear. Thus df :U �X ! Y is also holomorphi
.
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Example II.2.8. In the de�nition of C

1

-maps, we have not required the underlying topologi
al

ve
tor spa
es to be lo
ally 
onvex and one may wonder whether this assumption is made for


onvenien
e or if there are some serious underlying reasons. The following example shows that

lo
al 
onvexity is 
ru
ial for the validity of the Fundamental Theorem.

Let V denote the spa
e of measurable fun
tions f : [0; 1℄! R for whi
h

jf j :=

Z

1

0

jf(x)j

1

2

dx

is �nite and identify fun
tions whi
h 
oin
ide on a set whose 
omplement has measure zero.

Then d(f; g) := jf � gj de�nes a metri
 on this spa
e (Exer
ise II.3). We thus obtain a metri


topologi
al ve
tor spa
e (V; d).

For a subset E � [0; 1℄, let �

E

denote its 
hara
teristi
 fun
tion. Consider the 
urve


: [0; 1℄! V; 
(t) := �

[0;t℄

:

Then

jh

�1

�


(t+ h)� 
(t)

�

j = jhj

�

1

2

jhj ! 0

for ea
h t 2 [0; 1℄ as h ! 0. Hen
e 
 is C

1

with d
 = 0. Sin
e 
 is not 
onstant, the

Fundamental Theorem of Cal
ulus does not hold in V .

The defe
t in this example is 
aused by the non-lo
al 
onvexity of V . In fa
t, one 
an even

show that all 
ontinuous linear fun
tionals on V vanish.

Remark II.2.9. (a) In the 
ontext of Bana
h spa
es, one has an Inverse Fun
tion Theorem

and also an Impli
it Fun
tion Theorem ([La99℄). Su
h results 
annot be expe
ted in general for

Fr�e
het spa
es (
f. the exponential fun
tion of Di�(S

1

)). Nevertheless, Gl�o
kner's re
ent paper

[Gl03℄ 
ontains impli
it fun
tion theorems for maps of the type f :E ! F , where F is a Bana
h

spa
e and E is lo
ally 
onvex.

(b) Another remarkable pathology o

urring already for Bana
h spa
es is that a 
losed

subspa
e F of a Bana
h spa
e E need not have a 
losed 
omplement. A simple example is the

subspa
e F := 


0

(N;R) in E := `

1

(N;R) ([Wer95, Satz IV.6.5℄) (
f. Exer
ise II.13).

This has the 
onsequen
e that the quotient map q:E ! E=F has no smooth se
tions

be
ause the existen
e of a smooth lo
al se
tion �:U ! E around 0 2 E=F implies the existen
e

of a 
losed 
omplement im(d�(0))

�

=

E=F to F in E . Nevertheless, the map q:E ! E=F de�nes

the stru
ture of a topologi
al F -prin
ipal bundle over E=F whi
h has a 
ontinuous global se
tion

by Mi
hael's Sele
tion Theorem ([Mi59℄).

Remark II.2.10. (Pathologies of linear ODEs in Fr�e
het spa
es) (a) First we give an example

of a linear ODE for whi
h solutions to initial value problems exist, but are not unique. We


onsider the Fr�e
het spa
e V := C

1

([0; 1℄;R) and the 
ontinuous linear operator Lf := f

0

on

this spa
e. We are asking for solutions of the initial value problem

(2:2:1) 


0

(t) = L
(t); 
(0) = 


0

:

As a 
onsequen
e of E. Borel's Theorem that ea
h power series is the Taylor series of a smooth

fun
tion, ea
h 


0

has a smooth extension to a fun
tion on R . Let h be su
h a fun
tion and


onsider


:R ! V; 
(t)(x) := h(t+ x):

Then 
(0) = h j

[0;1℄

= 


0

and 


0

(t)(x) = h

0

(t + x) = (L
(t))(x). It is 
lear that these solutions

of (2.2.1) depend on the 
hoi
e of the extension h of 


0

. Di�erent 
hoi
es lead to di�erent

extensions.

(b) Now we 
onsider the spa
e V := C

1

(S

1

; C ) whi
h we identify with the spa
e of 2� -

periodi
 smooth fun
tions on the real line. We 
onsider the linear operator Lf := �f

00

and the
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equation (2.2.1), whi
h in this 
ase is the heat equation with reversed time. It is easy to analyze

this equation in terms of the Fourier expansion of 
 . So let


(t)(x) =

X

n2Z

a

n

(t)e

inx

be the Fourier expansion of 
(t). Then (2.2.1) implies a

0

n

(t) = n

2

a

n

(t) for ea
h n 2 Z , so that

a

n

(t) = a

n

(0)e

tn

2

holds for any solution 
 of (2.2.1). If the Fourier 
oeÆ
ients a

n

(0) of 


0

do

not satisfy

X

n

ja

n

(0)je

"n

2

<1

for some " > 0 (whi
h need not be the 
ase for a smooth fun
tion 


0

), then (2.2.1) does not

have a solution on [0; "℄ .

As a 
onsequen
e, the operator exp(tL) is never de�ned for t 6= 0. Nevertheless, we may

use the Fourier series expansion to see that �(t) := (1+ it

2

)1+ tL de�nes a 
urve �:R ! GL(V )

whi
h is smooth in the sense that

R � V ! V � V; (t; v) 7! (�(t)(v); �(t)

�1

(v))

is smooth. We further have �

0

(0) = L , so that L arises as the tangent ve
tor of a smooth 
urve

in GL(V ), but not for a one-parameter group.

De�nition II.2.11. A lo
ally 
onvex spa
e E is said to beMa
key 
omplete if for ea
h smooth


urve �: [0; 1℄! E there exists a smooth 
urve �: [0; 1℄! E with �

0

= � .

For a more detailed dis
ussion of Ma
key 
ompleteness and equivalent 
onditions we refer

to [KM97, Th. 2.14℄.

Remark II.2.12. If E is a sequentially 
omplete lo
ally 
onvex spa
e, then it is Ma
key 
om-

plete be
ause the sequential 
ompleteness implies the existen
e of Riemann integrals of 
ontinuous

E -valued fun
tions on 
ompa
t intervals, hen
e that for ea
h 
ontinuous 
urve �: [0; 1℄! E there

exists a smooth 
urve �: [0; 1℄! E with �

0

= � .

Remark II.2.13. (a) We brie
y re
all the basi
 de�nitions underlying the 
onvenient 
al
ulus

in [KM97℄. Let E be a lo
ally 
onvex spa
e. The 


1

-topology on E is the �nal topology with

respe
t to the set C

1

(R; E). Let U � E be an open subset and f :U ! F a fun
tion, where F

is a lo
ally 
onvex spa
e. Then we 
all f 
onveniently smooth if

f Æ C

1

(R; U) � C

1

(R; F ):

This implies ni
e 
artesian 
losedness properties of the 
lass of smooth maps (
f. [KM97, p.30℄).

(b) If E is a Fr�e
het spa
e, then the 


1

-topology 
oin
ides with the original topology

([KM97, Th. 4.11℄), so that ea
h 
onveniently smooth map is 
ontinuous.

We 
laim that for an open subset U of a Fr�e
het spa
e, a map f :U ! F is 
onveniently

smooth if and only if it is smooth in the sense of De�nition II.2.1. This 
an be shown as follows.

Sin
e C

1

(R; E) is the same spa
e for both notions of di�erentiability, the Chain Rule shows that

smoothness in the sense of De�nition II.2.1 implies smoothness in the sense of 
onvenient 
al
ulus.

Now we assume that f :U ! F is 
onveniently smooth. Then the derivative df :U � E ! F

exists and de�nes a 
onveniently smooth map df :U ! L(E;F ) � C

1

(E;F ) ([KM97, Th. 3.18℄).

Hen
e df :U � E ! F is also 
onveniently smooth, and thus 
ontinuous with respe
t to the




1

-topology. As E �E is a Fr�e
het spa
e, it follows that df is 
ontinuous. Therefore f is C

1

in the sense of De�nition II.2.1, and now one 
an iterate the argument.
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II.3. Di�erentiable manifolds

Sin
e we have a 
hain rule for C

1

-maps between lo
ally 
onvex spa
es, hen
e also for

smooth maps, we 
an de�ne smooth manifolds as in the �nite-dimensional 
ase (
f. [Ha82℄,

[Mil83℄, [Gl02a℄, [GN05℄):

De�nition II.3.1. Let M be a Hausdor� topologi
al spa
e and E a lo
ally 
onvex spa
e.

An E -
hart of an open subset U � M is a homeomorphism ':U ! '(U) � E onto an open

subset '(U) of E . We denote su
h a 
hart as a pair (';U). Two 
harts (';U) and ( ; V ) are

said to be smoothly 
ompatible if the map

 Æ '

�1

j

'(U\V )

:'(U \ V )!  (U \ V )

is smooth. From the 
hain rule it follows that 
ompatibility of 
harts is an equivalen
e relation

on the set of all E -
harts of M . An E -atlas of M is a family A := ('

i

; U

i

)

i2I

of pairwise


ompatible E -
harts of M for whi
h

S

i

U

i

= M . A smooth E -stru
ture on M is a maximal

E -atlas and a smooth E -manifold is a pair (M;A), where A is a maximal E -atlas on M .

We 
all a manifold modeled on a lo
ally 
onvex, resp., Fr�e
het spa
e, resp., Bana
h spa
e

a lo
ally 
onvex, resp., Fr�e
het, resp., Bana
h manifold.

Remark II.3.2. (a) Lo
ally 
onvex spa
es are regular in the sense that ea
h point has a

neighborhood base 
onsisting of 
losed sets, and this property is inherited by manifolds modeled

on these spa
es (
f. [Mil83℄).

(b) If M

1

; : : : ;M

n

are smooth manifolds modeled on the spa
es E

i

, i = 1; : : : ; n , then

the produ
t set M := M

1

� : : : �M

n


arries a natural manifold stru
ture with model spa
e

E =

Q

n

i=1

E

i

.

De�nition II.3.3. (a) One de�nes the tangent bundle �

TM

:TM ! M as follows. Let

A := ('

i

; U

i

)

i2I

be an E -atlas of M . On the disjoint union of the set '(U

i

)�E , we de�ne an

equivalen
e relation by

(x; v) �

�

('

j

Æ '

�1

i

)(x); d('

j

Æ '

�1

i

)(x)(v)

�

for x 2 '

i

(U

i

\ U

j

) and v 2 E and write [x; v℄ for the equivalen
e 
lass of (x; v). Let p 2 U

i

.

Then the equivalen
e 
lasses of the form ['

i

(p); v℄ are 
alled tangent ve
tors in p . Sin
e all the

di�erentials d('

j

Æ'

�1

i

)(x) are invertible linear maps, it easily follows that the set T

p

(M) of all

tangent ve
tors in p forms a ve
tor spa
e isomorphi
 to E under the map E ! T

p

(M); v 7! [x; v℄ .

Now we turn the tangent bundle

TM :=

[

p2M

T

p

(M)

into a manifold by the 
harts

 

i

:TU

i

:=

[

p2U

i

T

p

(M)! '(U

i

)�E; ['

i

(x); v℄ 7! ('

i

(x); v):

It is easy to see that for ea
h open subset U of a lo
ally 
onvex spa
e E , we have TU

�

=

U �E

(as smooth manifolds) and in parti
ular TU

j

�

=

U

j

�E in the setting from above.

(b) Let M and N be smooth manifolds modeled on lo
ally 
onvex spa
es and f :M ! N

a smooth map. We write Tf :TM ! TN for the 
orresponding map indu
ed on the level of

tangent ve
tors. Lo
ally this map is given by

Tf(x; h) =

�

f(x); df(x)(h)

�

;
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where df(p) := T

p

(f):T

p

(M)! T

f(p)

(N) denotes the di�erential of f at p . In view of Remark

II.2.7(d), the tangent map Tf is smooth if f is smooth. In the following, we will always identify

M with the zero se
tion in TM . In this sense, we have Tf j

N

M

= f . If V is a lo
ally 
onvex

spa
e, then TV

�

=

V � V and the map Tf 
an a

ordingly be written as Tf = (f; df), where

we think of df as a map TM ! V .

From the relations

T (id

M

) = id

TM

and T (f

1

Æ f

2

) = Tf

1

Æ Tf

2

for smooth maps f

2

:M

1

! M

2

and f

2

:M

2

! M

3

it follows that T is an endofun
tor on the


ategory of smooth manifolds. Moreover, it preserves �nite produ
ts in the sense that for smooth

manifolds M

1

; : : : ;M

n

, there is a natural isomorphism

T (M

1

� � � � �M

n

)

�

=

TM

1

� � � � � TM

n

:

(
) A (smooth) ve
tor �eld X on M is a smooth se
tion of the tangent bundle q

TM

:TM !

M , i.e. a smooth map X :M ! TM with �

TM

ÆX = id

M

. We write V(M) for the spa
e of all

ve
tor �elds on M . If f 2 C

1

(M;V ) is a smooth fun
tion on M with values in some lo
ally


onvex spa
e V and X 2 V(M), then we obtain a smooth fun
tion on M via

X:f := df ÆX :M ! TM ! V:

Remark II.3.4. If M = U is an open subset of the lo
ally 
onvex spa
e E , then TU = U �E

with the bundle proje
tion �

TU

:U �E ! U; (x; v) 7! x . Then ea
h smooth ve
tor �eld is of the

form X(x) = (x;

e

X(x)) for some smooth fun
tion

e

X:U ! E , and we may thus identify V(U)

with the spa
e C

1

(U;E).

Remark II.3.5. (a) One 
an also de�ne for ea
h E -manifold M a 
otangent bundle T

�

(M) =

S

m2M

T

m

(M)

0

and endow it with a ve
tor bundle stru
ture over M , but to endow it with a

smooth manifold stru
ture we need a lo
ally 
onvex topology on the dual spa
e E

0

su
h that for

ea
h lo
al di�eomorphism f :U ! E , U open in E , the map U � E

0

! E

0

; (x; �) 7! � Æ df(x)

is smooth. If E is a Bana
h spa
e, then the norm topology on E

0

has this property, and the

author of these notes is not aware of any other example where this is the 
ase.

In Se
tion II.4, we shall introdu
e di�erential forms dire
tly, without referen
e to any


otangent bundle.

(b) The following modi�
ation might be useful to 
onstru
t a repla
ement for a 
otangent

bundle. Instead of the, mostly badly behaved, duality E � E

0

! K , one may also start

with another lo
ally 
onvex spa
e F for whi
h we have a non-degenerate 
ontinuous pairing

E � F ! K ; (e; f) 7! he; fi , so that we may think of F as a subspa
e of E

0

. Then we may


onsider E -manifolds with an atlas for whi
h all 
oordinate 
hanges

f :=  Æ '

�1

:'(U \ V )!  (U \ V ) � E

have the property that for ea
h x , the 
ontinuous linear map df(x):E ! E has an adjoint map

df(x)

>

on F , satisfying

hdf(x)v; wi = hv; df(x)

>

wi for v 2 E;w 2 F;

and for whi
h the map

'(U \ V )� F !  (U \ V )� F; (x;w) 7! (f(x); (df(x)

>

)

�1

w)

is smooth. Then one 
an use these maps as glueing maps to obtain an F -ve
tor bundle over M

whi
h is a subbundle of T

�

(M) with a natural di�erentiable stru
ture.
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Lemma II.3.6. If X;Y 2 V(M) , then there exists a ve
tor �eld [X;Y ℄ 2 V(M) whi
h is

uniquely determined by the property that on ea
h open subset U �M we have

(2:3:1) [X;Y ℄:f = X:(Y:f)� Y:(X:f)

for all f 2 C

1

(U;R) .

Proof. Lo
ally the ve
tor �elds X and Y are given as X(p) =

�

p;

e

X(p)

�

and Y (p) =

�

p;

e

Y (p)

�

. We de�ne a ve
tor �eld by

(2:3:2) [X;Y ℄e(p) := d

e

Y (p)

�

e

X(p)

�

� d

e

X(p)

�

e

Y (p)

�

:

Then the smoothness of the right hand side follows from the 
hain rule. The requirement that

(2.3.1) holds on 
ontinuous linear fun
tionals f determines [X;Y ℄e uniquely. Clearly, (2.3.2)

de�nes a smooth ve
tor �eld on M . Now the assertion follows be
ause lo
ally (2.3.1) is a


onsequen
e of the Chain Rule (Proposition II.2.5).

Proposition II.3.7. (V(M); [�; �℄) is a Lie algebra.

Proof. The 
ru
ial part is to 
he
k the Ja
obi identity. This follows from the observation that

if U is an open subset of a lo
ally 
onvex spa
e, then the mapping

�:V(U)! der

�

C

1

(U;R)

�

; �(X)(f) = X:f

is inje
tive and satis�es �([X;Y ℄) = [�(X);�(Y )℄ (Exer
ise II.17). Therefore the Ja
obi identity

in V(U) follows from the Ja
obi identity in the asso
iative algebra End

�

C

1

(U;R)

�

.

For the appli
ations to Lie groups we will need the following lemma.

Lemma II.3.8. Let M and N be smooth manifolds and ':M ! N a smooth map. Suppose

that X

N

; Y

N

2 V(N) and X

M

; Y

M

2 V(M) are '-related in the sense that X

N

Æ ' = T' ÆX

M

and Y

N

Æ ' = T' Æ Y

M

. Then [X

N

; Y

N

℄ Æ ' = T' Æ [X

M

; Y

M

℄:

Proof. It suÆ
es to perform a lo
al 
al
ulation. Therefore we may w.l.o.g. assume that

M � F is open, where F is a lo
ally 
onvex spa
e and that N is a lo
ally 
onvex spa
e. Then

[X

N

; Y

N

℄e

�

'(p)

�

= d

e

Y

N

�

'(p)

�

:

e

X

N

�

'(p)

�

� d

e

X

N

�

'(p)

�

:

e

Y

N

�

'(p)

�

:

Next we note that our assumption implies that

e

Y

N

Æ' = d' Æ (id

F

�

e

Y

M

): Using the Chain Rule

we obtain

d

e

Y

N

�

'(p)

�

d'(p) = d(d')

�

p;

e

Y

M

(p)

�

Æ

�

id

F

; d

e

Y

M

(p)

�

whi
h, in view of Remark II.2.7(d), leads to

d

e

Y

N

�

'(p)

�

:

e

X

N

�

'(p)

�

= d

e

Y

N

�

'(p)

�

d'(p):

e

X

M

(p)

= d(d')

�

p;

e

Y

M

(p)

�

Æ

�

id

F

; d

e

Y

M

(p)

�

:

e

X

M

(p)

= d

2

'(p)

�

e

Y

M

(p);

e

X

M

(p)

�

+ d'(p)

�

d

e

Y

M

(p):

e

X

M

(p)

�

:

Now the symmetry of the se
ond derivative (Lemma II.2.3(iv)) implies that

[X

N

; Y

N

℄e

�

'(p)

�

=d'(p)

�

d

e

Y

M

(p):

e

X

M

(p)� d

e

X

M

(p):

e

Y

M

(p)

�

=d'(p)

�

[X

M

; Y

M

℄e(p)

�

:
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II.4. Di�erential forms

Di�erential forms play a signi�
ant role throughout in�nite-dimensional Lie theory; either

as di�erential forms on Lie groups or as di�erential forms on manifolds on whi
h 
ertain Lie

groups a
t. In the present se
tion, we des
ribe a natural approa
h to di�erential forms on

manifolds modeled on lo
ally 
onvex spa
es. The main di�eren
e to the �nite-dimensional 
ase

is that in lo
al 
harts there is no natural 
oordinate des
ription of di�erential forms and that for

general lo
ally 
onvex manifolds (not even for all Bana
h manifolds), smooth partitions of unity

are available, so that one has to be 
areful with lo
alization arguments.

We have already seen that for ea
h smooth manifold M , the spa
e V(M) of smooth ve
tor

�elds on M 
arries a natural Lie algebra stru
ture. We shall see below that ea
h smooth p-form

! 2 


p

(M;V ) with values in a lo
ally 
onvex spa
e V de�nes an alternating p-linear map

V(M)

p

! C

1

(M;V ); (X

1

; : : : ; X

p

) 7! !(X

1

; : : : ; X

p

):

If M has the property that ea
h tangent ve
tor extends to a smooth ve
tor �eld, whi
h is always

the 
ase lo
ally, then this leads to an in
lusion of 


p

(M;V ) into the spa
e of Lie algebra 
o
hains

for V(M) with values in the V(M)-module C

1

(M;V ). We shall de�ne the exterior derivative on

di�erential forms in su
h a way that with respe
t to this identi�
ation, it 
orresponds to the Lie

algebra di�erential (Appendix C). This point of view will prove very useful, and in this se
tion

we use it to derive geometri
 stru
tures su
h as the Lie derivative and the exterior di�erential

from the abstra
t setting of Lie algebra 
o
hains.

De�nition II.4.1. (a) If M is a di�erentiable manifold and V a lo
ally 
onvex spa
e,

then a V -valued p-form ! on M is a fun
tion ! whi
h asso
iates to ea
h x 2 M a k -

linear alternating map !

x

= !(x):T

x

(M)

p

! V su
h that in lo
al 
oordinates the map

(x; v

1

; : : : ; v

p

) 7! !

x

(v

1

; : : : ; v

p

) is smooth. We write 


p

(M;V ) for the spa
e of smooth V -

valued p-forms on M with values in V and identify 


0

(M;V ) with the spa
e C

1

(M;V ) of

smooth V -valued fun
tions on M .

(b) Let V

1

; V

2

; V

3

be lo
ally 
onvex spa
es and �:V

1

� V

2

! V

3

be a 
ontinuous bilinear

map. Then the wedge produ
t




p

(M;V

1

)� 


q

(M;V

2

)! 


p+q

(M;V

3

); (!; �) 7! ! ^ �

is de�ned by (! ^ �)

x

:= !

x

^ �

x

, where

(!

x

^ �

x

)(v

1

; : : : ; v

p+q

) :=

1

p!q!

X

�2S

p+q

sgn(�)�

�

!

x

(v

�(1)

; : : : ; v

�(p)

); �

x

(v

�(p+1)

; : : : ; v

�(p+q)

)

�

:

For p = q = 1, we have in parti
ular

(! ^ �)

x

(v

1

; v

2

) = �(!

x

(v

1

); �

x

(v

2

))� �(!

x

(v

2

); �

x

(v

1

)):

Important spe
ial 
ases where su
h wedge produ
ts are used are:

(1) �:R � V ! V is the s
alar multipli
ation of V .

(2) �:A�A! A is the multipli
ation of an asso
iative algebra.

(3) �: g� g ! g is the Lie bra
ket of a Lie algebra. In this 
ase, we also write [!; �℄ := ! ^ � .

(
) The pull-ba
k '

�

! of ! 2 


p

(M;V ) with respe
t to a smooth map ':N ! M is the

smooth p-form in 


p

(N; V ) de�ned by

('

�

!)

x

(v

1

; : : : ; v

p

) := !

'(x)

(d'(x)v

1

; : : : ; d'(x)v

p

) = !

'(x)

(T

x

(')v

1

; : : : ; T

x

(')v

p

):

Note that the 
hain rule implies that

(2:4:1) id

�

M

! = ! and '

�

1

('

�

2

!) = ('

2

Æ '

1

)

�

!

holds for 
ompositions of smooth maps. Moreover,

(2:4:2) '

�

(! ^ �) = '

�

! ^ '

�

�

follows dire
tly from the de�nitions. For f = ! 2 


0

(M;V ), we simply have '

�

f = f Æ ' .
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The de�nition of the exterior di�erential

d: 


p

(M;V )! 


p+1

(M;V )

is a bit more subtle than in �nite dimensions where one usually uses lo
al 
oordinates to de�ne

it in 
harts.

Proposition II.4.2. For ! 2 


p

(M;V ) , x 2 M and v

0

; : : : ; v

p

2 T

x

(M) , we 
hoose smooth

ve
tor �elds X

i

de�ned on a neighborhood of x satisfying X

i

(x) = v

i

. Then

(d!)

x

(v

0

; : : : ; v

p

) :=

p

X

i=0

(�1)

i

�

X

i

:!(X

0

; : : : ;

b

X

i

; : : : ; X

p

)

�

(x)(2:4:3)

+

X

i<j

(�1)

i+j

!([X

i

; X

j

℄; X

0

; : : : ;

b

X

i

; : : : ;

b

X

j

; : : : ; X

p

)(x)

does not depend on the 
hoi
e of the ve
tor �elds X

i

and de�nes a smooth (p + 1)-form d! 2




p+1

(M;V ) .

The de�nition of the di�erential is designed in su
h a way that for X

0

; : : : ; X

p

2 V(M) we

have in C

1

(M;V ) the identity

(d!)(X

0

; : : : ; X

p

) :=

p

X

i=0

(�1)

i

X

i

:!(X

0

; : : : ;

b

X

i

; : : : ; X

p

)

+

X

i<j

(�1)

i+j

!([X

i

; X

j

℄; X

0

; : : : ;

b

X

i

; : : : ;

b

X

j

; : : : ; X

p

):(2:4:4)

Proof. We have to verify that the right hand side of (2.4.3) does not depend on the 
hoi
e

of the ve
tor �elds X

k

and that it is alternating in the v

k

. First we show that d! does not

depend on the 
hoi
e of the ve
tor �elds X

k

, whi
h amounts to showing that if one ve
tor �eld

X

k

vanishes in x , then the right hand side of (2.4.3) vanishes.

Suppose that X

k

(x) = 0. Then the only terms not obviously vanishing in x are

(2:4:5)

p

X

i 6=k

(�1)

i

�

X

i

:!(X

0

; : : : ;

b

X

i

; : : : ; X

p

)

�

(x);

(2:4:6)

X

i<k

(�1)

i+k

!([X

i

; X

k

℄; X

0

; : : : ;

b

X

i

; : : : ;

b

X

k

; : : : ; X

p

)(x);

and

(2:4:7)

X

k<i

(�1)

i+k

!([X

k

; X

i

℄; X

0

; : : : ;

b

X

k

; : : : ;

b

X

i

; : : : ; X

p

)(x):

In lo
al 
oordinates, we have

�

X

i

:!(X

0

; : : : ;

b

X

i

; : : : ; X

p

)

�

(x)

= (d

1

!)(x;X

i

(x))(X

1

(x); : : : ;

b

X

i

(x); : : : ; X

p

(x))

+

X

j<i

!

x

(X

0

(x); : : : ; dX

j

(x)X

i

(x); : : : ;

b

X

i

(x); : : : ; X

p

(x))

+

X

j>i

!

x

(X

0

(x); : : : ;

b

X

i

(x); : : : ; dX

j

(x)X

i

(x); : : : ; X

p

(x)):
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For a �xed i > k , the assumption X

k

(x) = 0 implies that only the term

!

x

(X

0

(x); : : : ; dX

k

(x)X

i

(x); : : : ;

b

X

i

(x); : : : ; X

p

(x))


ontributes. In view of X

k

(x) = 0, we have

dX

k

(x)X

i

(x) = dX

k

(x)X

i

(x)� dX

i

(x)X

k

(x) = [X

i

; X

k

℄(x):

This leads to

(�1)

k

!([X

k

; X

i

℄; X

0

; : : : ;

b

X

k

; : : : ;

b

X

i

; : : : ; X

p

)(x)

= �!

x

(X

0

(x); : : : ; dX

k

(x)X

i

(x); : : : ;

b

X

i

(x); : : : ; X

p

(x));

so that 
orresponding terms in (2.4.5) and (2.4.7) 
an
el, and the same happens for i < k for

terms in (2.4.5) and (2.4.6). This proves that d! is independent of the 
hoi
e of the ve
tor �elds

X

i

.

To see that we obtain a smooth (p + 1)-form, we use lo
al 
oordinates and 
hoose the

ve
tor �elds X

i

as 
onstant ve
tor �elds. Then

(2:4:8) (d!)

x

(v

0

; : : : ; v

p

) =

p

X

i=0

(�1)

i

(d

1

!)(x; v

i

)(v

0

; : : : ; bv

i

; : : : ; v

p

)

is a smooth fun
tion of (x; v

0

; : : : ; v

p

).

It remains to show that d! is alternating. If v

i

= v

j

for some i < j , then the argument

above shows that we may assume that X

i

= X

j

. Sin
e ! is alternating, it suÆ
es to observe

that

(d!)

x

(v

0

; v

1

; : : : ; v

p

)

= (�1)

i

(d

1

!)(x; v

i

)(v

0

; : : : ; bv

i

; : : : ; v

p

) + (�1)

j

(d

1

!)(x; v

j

)(v

0

; : : : ; bv

j

; : : : ; v

p

)

= (�1)

i

(d

1

!)(x; v

i

)(v

0

; : : : ; bv

i

; : : : ; v

p

) + (�1)

i+1

(d

1

!)(x; v

i

)(v

0

; : : : ; bv

i

; : : : ; v

p

) = 0:

Proposition II.4.3. For ea
h ! 2 


p

(M;V ) , we have d

2

! = 0 .

Proof. It 
learly suÆ
es to verify this for the 
ase where M is an open subset of a lo
ally


onvex spa
e E .

Ea
h p-form ! 2 


p

(M;V ) de�nes a p-linear map !

g

:V(M)

p

! C

1

(M;V ). In this

sense, we may 
onsider !

g

as a p-
o
hain for the Lie algebra g := V(M) with values in the

V(M)-module C

1

(M;V ), where the module stru
ture is the natural one given by (X:f)(x) :=

df(x)X(x). The map ! 7! !

g

is inje
tive, as we see by evaluating p-forms on 
onstant ve
tor

�elds. Moreover, the de�nition of d implies that d

g

!

g

= (d!)

g

. Now (d

2

!)

g

= d

2

g

!

g

= 0 implies

that d

2

! = 0 (Appendix C).

Remark II.4.4. Another way to verify that d

2

! = 0 is to 
al
ulate dire
tly in lo
al 
oordinates

using formula (2.4.8). Then d

2

! = 0 easily follows from the symmetry of se
ond derivatives of

! (Lemma II.2.3(iv)) (Exer
ise II.10).

De�nition II.4.5. Extending d to a linear map on the spa
e 
(M;V ) :=

L

p2N

0




p

(M;V )

of all V -valued di�erential forms on M , the relation d

2

= 0 implies that the spa
e

Z

p

dR

(M;V ) := ker(d j




p

(M;V )

)

of 
losed forms 
ontains the spa
e B

p

dR

(M;V ) := d(


p�1

(M;V )) of exa
t forms, so that the

V -valued de Rham 
ohomology spa
e

H

p

dR

(M;V ) := Z

p

dR

(M;V )=B

p

dR

(M;V )

is well-de�ned.
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Remark II.4.6. We 
onsider smooth fun
tions f :M ! V as di�erential forms of degree 0.

Then df is the 1-form with df(x)(v) = T

x

(f)v , where df is the di�erential of f , as de�ned

above. Sin
e M is lo
ally 
onvex, the vanishing of df means that the fun
tion f is lo
ally


onstant (Lemma II.2.3(ii)). Thus H

0

dR

(M;V ) = Z

0

dR

(M;V ) is the spa
e of lo
ally 
onstant

fun
tions on M . If M has d 
onne
ted 
omponents, then H

0

dR

(M;V )

�

=

V

d

.

Lemma II.4.7. If ':N !M is a smooth map and ! 2 


p

(M;V ) , then d('

�

!) = '

�

d!:

Proof. First we assume that ' is a di�eomorphism. Let X

0

; : : : ; X

p

2 V(N) and de�ne

Y

0

; : : : ; Y

p

2 V(M) by Y

i

('(x)) := d'(x)(X

i

(x)), so that Y

i

Æ ' = T' Æ X

i

. In view of

Lemma II.3.6, this implies that [Y

i

; Y

j

℄ Æ' = T' Æ [X

i

; X

j

℄ for i; j = 0; : : : ; p . Moreover, we have

'

�

(!(Y

0

; : : : ;

b

Y

i

; : : : ; Y

p

)) = ('

�

!)(X

0

; : : : ;

b

X

i

; : : : ; X

p

):

We further have for ea
h smooth fun
tion f on M the relation

'

�

(Y

i

:f)(x) = df('(x))Y

i

('(x)) = df('(x))d'(x)X

i

(x) = (X

i

:('

�

f))(x);

so that we obtain with (2.4.3)

'

�

(d!)(X

0

; : : : ; X

p

) = d('

�

!)(X

0

; : : : ; X

p

):

Sin
e this relation also holds on ea
h open subset of M , resp., N , we 
on
lude that d('

�

!) =

'

�

(d!). The pre
eding argument applies in parti
ular to lo
al di�eomorphisms de�ned by 
harts.

To 
omplete the proof of the general 
ase, we may now assume w.l.o.g. that M and N are

open subsets of lo
ally 
onvex spa
es. Using 
onstant ve
tor �elds, we then have

(d!)

x

(v

0

; : : : ; v

p

) =

p

X

i=0

(�1)

i

(d

1

!(x; v

i

))(v

0

; : : : ; bv

i

; : : : ; v

p

)

and therefore

('

�

(d!))

x

(v

0

; : : : ; v

p

) =

p

X

i=0

(�1)

i

(d

1

!('(x); d'(x)v

i

))(d'(x)v

0

; : : : ; d'(x)bv

i

; : : : ; d'(x)v

p

):

On the other hand, the Chain Rule leads to

d('

�

!)

x

(v

0

; : : : ; v

p

)

=

p

X

i=0

(�1)

i

(d

1

!('(x); d'(x)v

i

))(d'(x)v

0

; : : : ; d'(x)bv

i

; : : : ; d'(x)v

p

)

+

p

X

i=0

(�1)

i

X

j<i

!

'(x)

(d'(x)v

0

; : : : ; d

2

'(x)(v

i

; v

j

); : : : ; d'(x)bv

i

; : : : ; d'(x)v

p

)

+

p

X

i=0

(�1)

i

X

j>i

!

'(x)

(d'(x)v

0

; : : : ; d'(x)bv

i

; : : : ; d

2

'(x)(v

i

; v

j

); : : : ; d'(x)v

p

)

=

p

X

i=0

(�1)

i

(d

1

!('(x); d'(x)v

i

))(d'(x)v

0

; : : : ; d'(x)bv

i

; : : : ; d'(x)v

p

);

where the terms in the last two lines 
an
el be
ause of the symmetry of the bilinear maps d

2

'(x)

(Lemma II.2.3(iv)). This proves the assertion.

For �nite-dimensional manifolds, one usually de�nes the Lie derivative of a di�erential form

in the dire
tion of a ve
tor �eld X by using its lo
al 
ow t 7! Fl

t

X

:

L

X

! :=

d

dt

t=0

(Fl

�t

X

)

�

!:

Sin
e ve
tor �elds on in�nite-dimensional manifold need not have a lo
al 
ow (
f. Remark II.2.10),

we introdu
e the Lie derivative more dire
tly, resembling its algebrai
 
ounterpart (
f. Ap-

pendix C).
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De�nition II.4.8. (a) For any smooth manifold M and ea
h lo
ally 
onvex spa
e, we have

a natural representation of the Lie algebra V(M) on the spa
e 


p

(M;V ) of V -valued p-forms

on M , given by the Lie derivative. For Y 2 V(M), the Lie derivative L

Y

! is de�ned on

v

1

; : : : ; v

p

2 T

x

(M) by

(L

Y

:!)

x

(v

1

; : : : ; v

p

)

= (Y:!(X

1

; : : : ; X

p

))(x) �

p

X

j=1

!(X

1

; : : : ; [Y;X

j

℄; : : : ; X

p

)(x)

= (Y:!(X

1

; : : : ; X

p

))(x) +

p

X

j=1

(�1)

j

!([Y;X

j

℄; X

1

; : : : ;

b

X

j

; : : : ; X

p

)(x);

where X

1

; : : : ; X

p

are ve
tor �elds on a neighborhood of x satisfying X

i

(x) = v

i

. To see that

the right hand side does not depend on the 
hoi
e of the ve
tor �elds X

i

, suppose that X

i

(x) = 0

for some i . Then evaluation of the right hand side in x yields in lo
al 
oordinates

(Y:!(X

1

; : : : ; X

p

))(x) � !(X

1

; : : : ; [Y;X

i

℄; : : : ; X

p

)(x)

= !

x

(X

1

(x); : : : ; dX

i

(x)Y (x); : : : ; X

p

(x))

� !

x

(X

1

(x); : : : ; dX

i

(x)Y (x)� dY (x)X

i

(x); : : : ; X

p

(x)) = 0:

Therefore L

Y

! is well-de�ned. In lo
al 
oordinates, we have

(L

Y

!)

x

(v

1

; : : : ; v

p

) = (Y:!(v

1

; : : : ; v

p

))(x) +

p

X

j=1

!(v

1

; : : : ; dY (x)v

i

; : : : ; v

p

)

= (d

1

!)(x; Y (x))(v

1

; : : : ; v

p

) +

p

X

j=1

!(v

1

; : : : ; dY (x)v

i

; : : : ; v

p

);

whi
h immediately implies that L

Y

! de�nes a smooth V -valued p-form on M .

(b) We further obtain for ea
h X 2 V(M) and p � 1 a linear map

i

X

: 


p

(M;V )! 


p�1

(M;V ) with (i

X

!)

x

= i

X(x)

!

x

;

where

(i

v

!

x

)(v

1

; : : : ; v

p�1

) := !

x

(v; v

1

; : : : ; v

p�1

):

For ! 2 


0

(M;V ) = C

1

(M;V ), we put i

X

! := 0.

Proposition II.4.9. For X;Y 2 V(M) , we have on 
(M;V ) :

(1) [L

X

;L

Y

℄ = L

[X;Y ℄

, i.e., the Lie derivative de�nes a representation of the Lie algebra V(M)

on 


p

(M;V ) .

(2) [L

X

; i

Y

℄ = i

[X;Y ℄

.

(3) L

X

= d Æ i

X

+ i

X

Æ d (Cartan formula).

(4) L

X

Æ d = d Æ L

X

.

(5) L

X

(Z

p

dR

(M;V )) � B

p

dR

(M;V ) .

Proof. (1)-(3) It suÆ
es to verify these formulas lo
ally in 
harts, so that we may assume

that M is an open subset of a lo
ally 
onvex spa
e. Then (1)-(3) follow from the 
orresponding

formulas in Appendix C, applied to the Lie algebra g = V(M) and the module C

1

(M;V ).

(4) follows from (3) and d

2

= 0.

(5) follows from (3).
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Remark II.4.10. Clearly integration of di�erential forms ! 2 


p

(M;V ) only makes sense if

M is a �nite-dimensional oriented manifold (possibly with boundary) of dimension p and V

is Ma
key 
omplete. We need the Ma
key 
ompleteness to insure that ea
h smooth fun
tion

f :Q! V on a 
ube Q :=

Q

p

i=1

[a

i

; b

i

℄ � R

p

has an iterated integral

Z

Q

fdx :=

Z

b

1

a

1

� � �

Z

b

p

a

p

f(x

1

; : : : ; x

p

) dx

1

� � � dx

p

:

If ':U ! R

p

is a 
hart of M 
ompatible with the orientation and supp(!) is a 
ompa
t subset

of U , then we de�ne

Z

M

! :=

Z

'(U)

('

�1

)

�

! =

Z

'(U)

f dx;

where f 2 C

1

('(U); V ) is the 
ompa
tly supported fun
tion determined by

(('

�1

)

�

!)(x) = f(x) dx

1

^ : : : ^ dx

p

:

If, more generally, ! has 
ompa
t support and (�

i

)

i2I

is a smooth partition of unity with

the property that supp(�

i

) is 
ontained in a 
hart domain, then we de�ne

Z

M

! :=

X

i2I

Z

M

�

i

!

and observe that the right hand side is a �nite sum, where ea
h summand is de�ned sin
e

supp(�

i

!) is 
ontained in a 
hart domain. Using the transformation formula for p-dimensional

integrals, it is easy to see that the de�nition of the integral

R

M

! does not depend on the 
hoi
e

of the 
harts and the partitions of unity.

We also note that Stokes' Theorem

Z

M

d� =

Z

�M

�

holds for V -valued (p � 1)-forms, where it is understood that the boundary �M 
arries the

indu
ed orientation.

The assumption that V is Ma
key 
omplete is 
ru
ial in the following lemma to ensure the

existen
e of the Riemann integral de�ning ' . For a 
on
eptual proof we refer to [GN05, Ch. III℄.

Lemma II.4.11. (Poin
ar�e Lemma) Let E be lo
ally 
onvex, V a Ma
key 
omplete lo
ally


onvex spa
e and U � E an open subset whi
h is star-shaped with respe
t to 0 . Let ! 2




k+1

(U; V ) be a V -valued 
losed (k+1)-form. Then ! = d' for some ' 2 


k

(U; V ) satisfying

'(0) = 0 whi
h is given by

'(x)(v

1

; : : : ; v

k

) =

Z

1

0

t

k

!(tx)(x; v

1

; : : : ; v

k

) dt:

Remark II.4.12. (a) The Poin
ar�e Lemma is the �rst step to de Rham's Theorem. To obtain

de Rham's Theorem for �nite-dimensional manifolds, one makes heavy use of smooth partitions

of unity whi
h do not always exist for in�nite-dimensional manifolds, not even for all Bana
h

manifolds.

(b) We 
all a smooth manifold M smoothly para
ompa
t if every open 
over has a subor-

dinated smooth partition of unity. De Rham's Theorem holds for every smoothly para
ompa
t

Fr�e
het manifold ([KM97,Thm. 34.7℄). Smoothly Hausdor� se
ond 
ountable manifolds modeled

on a smoothly regular spa
e are smoothly para
ompa
t ([KM97, 27.4℄). Typi
al examples of

smoothly regular spa
es are nu
lear Fr�e
het spa
es ([KM97, Th. 16.10℄).

(
) Examples of Bana
h spa
es whi
h are not smoothly para
ompa
t are C([0; 1℄;R) and

`

1

(N;R) . On these spa
es, there exists no non-zero smooth fun
tion supported in the unit ball

([KM97, 14.11℄).
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Exer
ises for Se
tion II

Exer
ise II.1. Let (V; �

P

) be a lo
ally 
onvex spa
e.

(1) Show that a seminorm q on V is 
ontinuous if and only if there exists a � > 0 and

p

1

; : : : ; p

n

2 P su
h that q � �max(p

1

; : : : ; p

n

): Hint: A seminorm is 
ontinuous if and only

if it is bounded on some 0-neighborhood.

(2) Two sets P

1

and P

2

of seminorms on V de�ne the same lo
ally 
onvex topology if and only

if all seminorms in P

2

are 
ontinuous w.r.t. �

P

1

and vi
e versa.

Exer
ise II.2. Show that the set of all seminorms on a ve
tor spa
e V is separating. The


orresponding lo
ally 
onvex topology is 
alled the �nest lo
ally 
onvex topology. Hint: Every

ve
tor spa
e has a basis (provided one believes in the Axiom of Choi
e, resp., Zorn's Lemma).

Exer
ise II.3. Fix p 2℄0; 1[ and let V denote the spa
e of measurable fun
tions f : [0; 1℄! R

(we identify fun
tions whi
h 
oin
ide on a set whose 
omplement has measure zero), for whi
h

jf j :=

Z

1

0

jf(x)j

p

dx

is �nite. Show that d(f; g) := jf � gj de�nes a metri
 on this spa
e. Hint: The fun
tion

[0;1[! R; x 7! x

p

is sub-additive. This is turn follows from its 
on
avity.

Exer
ise II.4. Let X be a lo
ally 
ompa
t spa
e whi
h is 
ountable at in�nity, i.e., there

exists a sequen
e (K

n

)

n2N

of 
ompa
t subsets of X with X =

S

n

K

n

and K

n

� K

0

n+1

. We 
all

su
h a sequen
e (K

n

)

n2N

an exhaustion of X . Show that:

(1) Ea
h 
ompa
t subset K � X lies in some K

n

.

(2) The topology of uniform 
onvergen
e on 
ompa
t subsets of X on the spa
e C(X;R) is

given by the sequen
e of seminorms (p

K

n

)

n2N

(Hint: Exer
ise II.1).

(3) C(X;R) is metrizable.

(4) C(X;R) is 
omplete.

(5) The multipli
ation on C(X;R) is 
ontinuous.

(6) C(X;R) is a Fr�e
het algebra.

Exer
ise II.5. Let (M;d) be a metri
 spa
e and � 6= S �M a subset. Show that the fun
tion

f :M ! R; x 7! dist(x; S) := inffd(x; s): s 2 Sg

is a 
ontra
tion, hen
e in parti
ular 
ontinuous.

Exer
ise II.6. Let U � R

n

be an open subset and K

n

:= fx 2 U : kxk � n; dist(x; U




) �

1

n

g:

(1) Ea
h 
ompa
t subset K � U lies in some K

n

.

(2) The topology on the spa
e C

1

(U;R) is given by the 
ountable family of seminorms

(p

K

n

;m

)

n;m2N

(
f. Example II.1.4).

(3) C

1

(U;R) is metrizable.

(4) C

1

(U;R) is 
omplete.

(5) The multipli
ation on C

1

(U;R) is 
ontinuous. Hint: Leibniz Rule.

(6) C

1

(U;R) is a Fr�e
het algebra.

Exer
ise II.7. Let X be a lo
ally 
ompa
t spa
e. The unit group C(X;R)

�

= C(X;R

�

) is

open in C(X;R) if and only if X is 
ompa
t. Hint: If X is not 
ompa
t, then there exists for

ea
h 
ompa
t subset K � X a 
ontinuous fun
tion f

K

2 C(X;R) with f

K

j

K

= 1. Show that

the net (f

K

) 
onverges to 1.
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Exer
ise II.8. Let (X

i

)

i2I

be a family of lo
ally 
onvex spa
es. Show that:

(1) The produ
t topology on X :=

Q

i2I

X

i

de�nes on X the stru
ture of a lo
ally 
onvex

spa
e.

(2) This spa
e is 
omplete if and only if all the spa
es X

i

are 
omplete.

(3) If, in addition, ea
h X

i

is a lo
ally 
onvex unital algebra, then X is a lo
ally 
onvex unital

algebra.

Exer
ise II.9. Let M be a para
ompa
t �nite-dimensional 
omplex manifold and endow the

spa
e Hol(M; C ) with the topology of uniform 
onvergen
e on 
ompa
t subsets. Show that:

(1) Hol(M; C ) is a Fr�e
het algebra.

(2) The mapping Hol(M; C )! C

1

(M; C ) is a topologi
al embedding. Hint: Cau
hy estimates

in several variables.

Exer
ise II.10. Verify that d

2

! = 0 for the exterior di�erential on 


p

(M;V ) (M a smooth

manifold modeled on X , V a lo
ally 
onvex spa
e) dire
tly in lo
al 
oordinates, using formula

(2.4.8). Hint: For ea
h x 2M , the map

X

2

! Alt

p

(X;V ); (v; w) 7! d

2

1

!(x)(v; w)

(se
ond derivative with respe
t to the �rst argument of ! ) is symmetri
 (Lemma II.1.3).

Exer
ise II.11. Let X be a lo
ally 
onvex spa
e and p a 
ontinuous seminorm on X . Show

that

p = supf� 2 X

0

:� � pg:

Hint: Consider the 
losed 
onvex subset B := fx 2 X : p(x) � 1g . Then � j

B

� 1 is equivalent

to � � p and if p(x) > 1, then there exists a 
ontinuous linear fun
tional � 2 Y

0

with � j

B

� 1

and �(x) > 1 (Hahn{Bana
h Separation Theorem).

Exer
ise II.12. Let Y be a lo
ally 
onvex spa
e and 
: [a; b℄! Y a 
ontinuous 
urve. Assume

that the integral I(
) :=

R

b

a


(t) dt exists in the sense that there exists an element I 2 Y su
h

that �(I(
)) =

R

b

a

�(
(t)) dt holds for ea
h 
ontinuous linear fun
tional � 2 Y

0

. Show that:

(a) For ea
h 
ontinuous seminorm p on Y , we have

p

�

Z

b

a


(t) dt

�

�

Z

b

a

p(
(t)) dt:

Hint: Use Exer
ise II.11.

(b) The map I :C([a; b℄; Y )! Y is 
ontinuous, when C([a; b℄; Y ) is endowed with the topology

of uniform 
onvergen
e (whi
h 
oin
ides with the 
ompa
t open topology; 
f. Appendix B).

(
) If X is a topologi
al spa
e and 
:X � [a; b℄! Y a 
ontinuous map, then the map

X ! Y; x 7!

Z

b

a


(x; t) dt

is 
ontinuous.

Exer
ise II.13. Let X be a 
omplete metri
 topologi
al ve
tor spa
e (f.i. a Fr�e
het spa
e) and

Y � X a 
losed subspa
e. Show that the following are equivalent:

(1) There exists a 
losed subspa
e Z � X for whi
h the map S:Y � Z ! X; (y; z) 7! y + z is

bije
tive.

(2) There exists a 
losed subspa
e Z � X for whi
h the map S:Y � Z ! X is a topologi
al

isomorphism.

(3) There exists a 
ontinuous proje
tion p:X ! X with p(X) = Y .

Hint: Open Mapping Theorem.
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Exer
ise II.14. Let V be a K -ve
tor spa
e and g a K -Lie algebra, where K is a �eld of


hara
teristi
 zero. We write Alt

p

(V; g) for the linear spa
e of p-linear alternating maps V

p

! g

and put Alt

0

(V; g) := g and Alt

1

(V; g) := Lin(V; g). On the spa
e Alt(V; g) :=

L

p2N

0

Alt

p

(V; g),

we then de�ne a bilinear produ
t by

[�; �℄(v

1

; : : : ; v

p+q

) :=

1

p!q!

X

�2S

p+q

sgn(�)[�(v

�(1)

; : : : ; v

�(p)

); �(v

�(p+1)

; : : : ; v

�(p+q)

)℄

for � 2 Alt

p

(V; g) and � 2 Alt

q

(V; g). Show that this multipli
ation has the following properties

for � 2 Alt

p

(V; g), � 2 Alt

q

(V; g) and 
 2 Alt

r

(V; g):

(1) [�; �℄ = (�1)

pq+1

[�; �℄ .

(2) (�1)

pr

[[�; �℄; 
℄ + (�1)

qp

[[�; 
℄; �℄ + (�1)

qr

[[
; �℄; �℄ = 0 (graded Ja
obi identity).

(3) Alt(V; g) is a Lie superalgebra with respe
t to the 2-grading de�ned by

Alt(V; g) := Alt

even

(V; g)�Alt

odd

(V; g):

Exer
ise II.15. Let M be a smooth manifold and g a lo
ally 
onvex Lie algebra. Then the

produ
t on the spa
e 
(M; g) :=

L

p2N

0




p

(M; g), de�ned in Proposition II.4.1(3) satis�es for

� 2 


p

(M; g); � 2 


q

(M; g) and 
 2 


r

(M; g):

(1) [�; �℄ = (�1)

pq+1

[�; �℄ .

(2) (�1)

pr

[[�; �℄; 
℄ + (�1)

qp

[[�; 
℄; �℄ + (�1)

qr

[[
; �℄; �℄ = 0 (super Ja
obi identity).

(3) 
(M; g) is a Lie super-algebra with respe
t to the 2-grading de�ned by


(M; g) := 


even

(M; g)� 


odd

(M; g):

Hint: If M is an open subset of a lo
ally 
onvex spa
e, then we have the 
anoni
al embedding




p

(M; g) ,! Alt

p

(V(M); C

1

(M; g)) whi
h is 
ompatible with the produ
t, and Exer
ise II.14

applies.

Exer
ise II.16. Let f :M ! N be a smooth map between manifolds, �

TM

:TM ! M the

tangent bundle proje
tion and �

M

:M ! TM the zero se
tion. Show that

�

TN

Æ Tf = f Æ �

TM

and �

N

Æ f = Tf Æ �

M

:

Exer
ise II.17. Let M be a smooth manifold. Show that:

(a) For ea
h ve
tor �eld, the map C

1

(M;K ) ! C

1

(M;K ); f 7! L

X

f := X:f is a derivation.

(b) The map V(M)! der(C

1

(M;K )); X 7! L

X

from (a) is a homomorphism of Lie algebras.

(
) If M is an open subset of some lo
ally 
onvex spa
e, then the map under (b) is inje
tive.

Exer
ise II.18. Let M and N be smooth manifolds. The C

k

-topology on the set C

k

(M;N)

of smooth maps M ! N is the topology obtained from the embedding

C

k

(M;N) ,! C(T

k

M;T

k

N); f 7! T

k

f;

where the spa
e C(T

k

M;T

k

N) is endowed with the 
ompa
t open topology. Show that:

(1) If M = U is open in a lo
ally 
onvex spa
e E and N = F is a lo
ally 
onvex spa
e, then the

C

k

-topology on the spa
e C

k

(U; F ) 
oin
ides with the topology de�ned by the embedding

C

k

(U; F ) ,!

k

Y

j=0

C(U �E

j

; F ); f 7! (f; df; : : : ; d

k

f);

where ea
h fa
tor on the right hand side 
arries the 
ompa
t open topology.

(2) If M = U is open in E := K

n

and N = F is a lo
ally 
onvex spa
e, then the C

k

-topology

on the spa
e C

k

(U; F ) 
oin
ides with the topology de�ned by the seminorms

q

K;j

(f) := supf(q ÆD

j

f)(x):x 2 Kg;

for j � m , K � U 
ompa
t and q a 
ontinuous seminorm on F (
f. Example II.1.4). Hint:

Use that T

j

U

�

=

U � E

2

j

�1

and T

j

F

�

=

F

2

j

and des
ribe the 2

j

-
omponents of the map

T

j

f in terms of higher derivatives of f .
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Exer
ise II.19. If E and F are Bana
h spa
es and L(E;F ) is endowed with the operator

norm, then the subset Iso(E;F ) � L(E;F ) of all topologi
al isomorphisms E ! F is an open

subset.

Exer
ise II.20. Let M be a smooth 
ompa
t manifold. We endow the set C

1

(M;M) with

the C

1

-topology (
f. Exer
ise II.18). Show that:

(1) The set Di�

1

lo


(M) of all maps f 2 C

1

(M;M) for whi
h ea
h map df(x):T

x

(M)! T

f(x)

(N)

is a linear isomorphism (the set of lo
al di�eomorphisms) is open. Hint: GL

n

(K ) is open in

M

n

(K ) .

(2) If f :M !M is a lo
al di�eomorphism, then it is a 
overing map. It is a di�eomorphism if

and only if it is one-to-one.

(3)

�

For a lo
al di�eomorphism f , the number n(f) := jf

�1

(x)j does not depend on x and it

de�nes a 
ontinuous fun
tion Di�

1

lo


(M)! N . Hint: Let q:




M !M denote the orientation


over of M . Then f lifts to a map

b

f :




M !




M and n(f) = j deg(

b

f)j holds for the mapping

degree deg(

b

f) of

b

f whi
h 
an be de�ned by

b

f

�

� = deg(

b

f)� for a volume form � on




M .

(4)

�

Show that the set of all lo
al di�eomorphisms f with n(f) � 2 is 
losed in the C

1

-topology.

Hint: Use a Riemannian metri
 on M to see that for ea
h 
 2℄0; 1[, the set of all f with

kdf(x)vk � 
kvk for all x 2 M , v 2 T

x

(M), is 
losed and a neighborhood of ea
h g

with kdg(x)vk >




2

kvk for all x 2 M , 0 6= v 2 T

x

(M). For any sequen
e f

n

! f with

f

n

(x

n

) = f

n

(y

n

) and f

n

! f , we may assume that x

n

! x , y

n

! y . Show that if x

n

6= y

n

for all n , then x 6= y and f(x) = f(y).

(5) Show that the group Di�

1

(M) of C

1

-di�eomorphisms is an open subset of C

1

(M;M). Hint:

Use (3) or (4).

Exer
ise II.21. Let X

1

; : : : ; X

k

and Y be lo
ally 
onvex spa
es. Show that for a k -linear

map m:X

1

� : : :�X

k

! Y , the following are equivalent:

(1) m is 
ontinuous.

(2) m is 
ontinuous in (0; 0; : : : ; 0).

(3) m is 
ontinuous in some k -tuple (x

1

; : : : ; x

k

).

III. In�nite-dimensional Lie groups

In this se
tion, we give the de�nition of an in�nite-dimensional (lo
ally 
onvex) Lie group

and explain how its Lie algebra 
an be de�ned in su
h a way that it de�nes a fun
tor from the


ategory of Lie groups to the 
ategory of lo
ally 
onvex Lie algebras.

In our treatment of Lie groups, we basi
ally follow [Mil83℄, but we do not assume that the

model spa
e of a Lie group is 
omplete (
f. also [GN05℄).

Notation: Let G be a group and g 2 G . We write

�

g

:G! G; x 7! gx for the left multipli
ation by g ,

�

g

:G! G; x 7! xg for the right multipli
ation by g ,

m

G

:G�G! G; (x; y) 7! xy for the multipli
ation map, and

�

G

:G! G; x 7! x

�1

for the inversion.

In the following, K denotes either R or C .

III.1. In�nite-dimensional Lie groups and their Lie algebras

De�nition III.1.1. A lo
ally 
onvex Lie group G is a lo
ally 
onvex manifold endowed with

a group stru
ture su
h that the multipli
ation map and the inversion map are smooth. We shall

often write g := T

1

(G) for the tangent spa
e in 1 .
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A morphism of Lie groups is a smooth group homomorphism. In the following, we shall


all lo
ally 
onvex Lie groups simply Lie groups. We write LieGrp for the so obtained 
ategory

of Lie groups.

Example III.1.2. (Ve
tor groups) Ea
h lo
ally 
onvex spa
e V is an abelian Lie group with

respe
t to addition. In fa
t, we endow V with the obvious manifold stru
ture and observe that

addition and inversion are smooth maps.

Example III.1.3. (Unit groups of CIAs) Let A be a 
ontinuous inverse algebra over K and

A

�

its unit group. As an open subset of A , the group A

�


arries a natural manifold stru
ture.

The multipli
ation on A is bilinear and 
ontinuous, hen
e a smooth map (Remark II.2.7(b)).

Therefore the multipli
ation of A

�

is smooth.

It remains to see that the inversion �:A

�

! A

�

is smooth. Its 
ontinuity follows from the

assumption that A is a CIA. For a; b 2 A

�

, we have b

�1

� a

�1

= a

�1

(a� b)b

�1

; whi
h implies

that for t 2 K suÆ
iently 
lose to 0, we get

�(a+ th)� �(a) = (a+ th)

�1

� a

�1

= a

�1

(�th)(a+ th)

�1

= �ta

�1

h(a+ th)

�1

:

Therefore the 
ontinuity of � implies that � is everywhere di�erentiable with

d�(a)(h) = lim

t!0

1

t

(�(a+ th)� �(a)) = lim

t!0

�a

�1

h(a+ th)

�1

= �a

�1

ha

�1

:

Now the 
ontinuity of � implies that d�:A

�

�A! A is 
ontinuous, hen
e that � is a C

1

-map.

With the Chain Rule and the smoothness of the multipli
ation, this in turn implies that d� is a

C

1

-map, hen
e that � is C

2

. Iterating this argument, we 
on
lude that � is smooth.

Lemma III.1.4. Let G be a Lie group.

(a) The tangent map

Tm

G

:T (G�G)

�

=

TG� TG! TG; (v; w) 7! v � w := Tm

G

(v; w)

de�nes a Lie group stru
ture on TG with identity element 0 2 T

1

(G) = g and inversion T�

G

.

The 
anoni
al proje
tion �

TG

:TG! G is a morphism of Lie groups with kernel (g;+) and the

zero se
tion �:G! TG; g 7! 0

g

2 T

g

(G) is a homomorphism of Lie groups with �

TG

Æ � = id

G

.

(b) Identifying g 2 G with �(g) 2 TG , we write

(3:1:1) g:v := 0

g

� v; v:g := v � 0

g

for g 2 G; v 2 TG:

Then the map

�:G� g ! TG; (g; x) 7! g:x

is a di�eomorphism.

Proof. (a) Sin
e the multipli
ation map m

G

:G � G ! G is smooth, the same holds for its

tangent map

Tm

G

:T (G�G)

�

=

TG� TG! TG:

Let f1g denote the trivial group, "

G

:G ! f1g the 
onstant homomorphism and u

G

: f1g ! G

the group homomorphism representing the identity element. Then the group axioms for G are

en
oded in the relations

(1) m

G

Æ (m

G

� id) = m

G

Æ (id�m

G

) (asso
iativity),

(2) m

G

Æ (�

G

� id) = m

G

Æ (id��

G

) = "

G

(inversion), and

(3) m

G

Æ (u

G

� id) = m

G

Æ (id�u

G

) = id (unit element).

Using the fun
toriality of T , we see that these properties 
arry over to the 
orresponding maps

on TG and show that TG is a Lie group with multipli
ation Tm

G

, inversion T�

G

, and unit

element 0 = Tu

G

(0) 2 T

1

(G) = g .
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For the zero se
tion �:G ! TG , we have Tm

G

Æ (� � �) = � Æm

G

; whi
h means that it

is a morphism of Lie groups. That �

TG

is a morphism of Lie groups follows likewise from

�

TG

Æ Tm

G

= m

G

Æ (�

TG

� �

TG

)

(
f. Exer
ise II.16).

We have for v; v

0

2 g :

Tm

G

(g:v; g

0

:v

0

) = Tm

G

(g:v; g

0

:0) + Tm

G

(g:0; g

0

:v

0

) = (g:v):g

0

+ gg

0

:v

0

and in parti
ular Tm

G

(v; v

0

) = v + v

0

, showing that ker�

TG

�

=

(g;+).

That the smooth map � is a di�eomorphism follows from �

�1

(v) = (�

TG

(v); �

TG

(v)

�1

:v):

De�nition III.1.5. A ve
tor �eld X 2 V(G) is 
alled left invariant if

X Æ �

g

= T (�

g

) ÆX

holds for ea
h g 2 G if we 
onsider X as a se
tion X : G! TG of the tangent bundle TG . We

write V(G)

l

for the set of left invariant ve
tor �elds in V(G). The left invarian
e of a ve
tor �eld

X implies in parti
ular that for ea
h g 2 G , we have X(g) = g:X(1) in the sense of (3.1.1) in

Lemma III.1.4. For ea
h x 2 g , we have a unique left invariant ve
tor �eld x

l

2 V(G)

l

de�ned

by x

l

(g) := g:x , and the map

V(G)

l

! T

1

(G) = g; X 7! X(1)

is a linear bije
tion. If X;Y are left invariant, then they are �

g

-related to themselves, and

Lemma II.3.8 implies that their Lie bra
ket [X;Y ℄ inherits this property, hen
e that [X;Y ℄ 2

V(G)

l

. We thus obtain a unique Lie bra
ket [�; �℄ on g satisfying

(3:1:2) [x; y℄

l

= [x

l

; y

l

℄ for all x; y 2 g:

Lemma III.1.6. For ea
h g-
hart (';U) of G with 1 2 U and '(1) = 0 , the se
ond order

Taylor polynomial in (0; 0) of the multipli
ation x � y := '('

�1

(x)'

�1

(y)) is of the form

x+ y + b(x; y);

where b: g� g! g is a 
ontinuous bilinear map satisfying

(3:1:3) [x; y℄ = b(x; y)� b(y; x):

In parti
ular, the Lie bra
ket on g = T

1

(G) is 
ontinuous.

Proof. We 
onsider a 
hart ':V ! g of G , where V � G is an open 1-neighborhood and

'(1) = 0. Let W � V be an open symmetri
 1-neighborhood with WW � V . Then we have

on the open set '(W ) � g the smooth multipli
ation

x � y := '('

�1

(x)'

�1

(y)); x; y 2 '(W ):

From Tm(v; w) = v + w for v; w 2 T

1

(G) we immediately see that the se
ond order Taylor

polynomial of � has the form x+ y+ b(x; y); where b: g� g ! g is quadrati
 map, hen
e 
an be

written as

b(x; y) = �((x; y); (x; y))

for some 
ontinuous symmetri
 bilinear map �: (g � g)

2

! g (Lemma II.2.3(iv)). Comparing

Taylor expansions of x � 0 = 0 � x = x up to se
ond order implies that b(x; 0) = b(0; x) = 0, so

that

b(x; y) = �((x; 0); (0; y)) + �((0; y); (x; 0)):

It follows in parti
ular that b is bilinear.

For x 2 W , let �

x

:'(W ) ! g; y 7! x � y . Then the left invariant ve
tor �eld v

l


orresponding to v 2 g is given on '(W ) by v

l

(x) = d�

x

(0):v; and in 0 its �rst order Taylor

polynomial in 0 is v + b(x; v). Therefore, the Lie bra
ket on g satis�es

[v; w℄ = [v

l

; w

l

℄(0) = dw

l

(0):v

l

(0)� dv

l

(0):w

l

(0) = dw

l

(0):v � dv

l

(0):w = b(v; w)� b(w; v):

De�nition III.1.7. The lo
ally 
onvex Lie algebra L(G) := (g; [�; �℄) is 
alled the Lie algebra

of G .
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Proposition III.1.8. (Fun
toriality of the Lie algebra) If ':G ! H is a homomorphism of

Lie groups, then the tangent map

L(') := T

1

('):L(G)! L(H)

is a homomorphism of Lie algebras.

Proof. Let x; y 2 g and x

l

; y

l

be the 
orresponding left invariant ve
tor �elds. Then

' Æ �

g

= �

'(g)

Æ ' for ea
h g 2 G implies that

T' Æ x

l

= L(')(x)

l

Æ ' and T' Æ y

l

= L(')(y)

l

Æ ';

and therefore

T' Æ [x

l

; y

l

℄ = [L(')(x)

l

;L(')(y)

l

℄ Æ '

(Lemma II.3.8). Evaluating at 1 , we obtain L('):[x; y℄ = [L(')(x);L(')(y)℄:

Remark III.1.9. We obviously have L(id

G

) = id

L(G)

, and for two morphisms '

1

:G

1

! G

2

and '

2

:G

2

! G

3

of Lie groups, we have

L('

2

Æ '

1

) = L('

2

) Æ L('

1

);

as a 
onsequen
e of the Chain Rule.

The pre
eding lemma implies that the assignments G 7! L(G) and ' 7! L(') de�ne a

fun
tor

L:LieGrp! l
LieAlg

from the 
ategory LieGrp of (lo
ally 
onvex) Lie groups to the 
ategory l
LieAlg of lo
ally


onvex Lie algebras.

Sin
e ea
h fun
tor maps isomorphisms to isomorphisms, for ea
h isomorphism of Lie groups

':G! H , the map L(') is an isomorphism of lo
ally 
onvex Lie algebras.

De�nition III.1.10. A lo
ally 
onvex Lie algebra g is said to be integrable if there exists a

Lie group G with L(G)

�

=

g .

Although every �nite-dimensional Lie algebra is integrable, integrability of in�nite-dimen-

sional Lie algebras turns out to be a very subtle property. We shall dis
uss some interesting

examples in Se
tion VI below.

We now have a look at the Lie algebras of the Lie groups from Examples II.1.2/3.

Examples III.1.11. (a) If G is an abelian Lie group, then the map b: g � g ! g in

Lemma III.1.6 is symmetri
, whi
h implies that L(G) is abelian. This applies in parti
ular

to the additive Lie group (V;+) of a lo
ally 
onvex spa
e.

(b) Let A be a CIA. Then the map

':A

�

! A; x 7! x� 1

is a 
hart of A

�

satisfying '(1) = 0. In this 
hart, the group multipli
ation is given by

x � y := '('

�1

(x)'

�1

(y)) = (x+ 1)(y + 1)� 1 = x+ y + xy:

In the terminology of Lemma III.1.6, we then have b(x; y) = xy and therefore

[x; y℄ = xy � yx

is the 
ommutator bra
ket in the asso
iative algebra A .

Using the Lie group stru
tures on tangent bundles, we 
an now also deal with groups of

smooth maps and di�eomorphism groups.
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Example III.1.12. (Groups of smooth maps) Let M be a manifold (possibly in�nite-dimen-

sional) and K a Lie group with Lie algebra k . Then we obtain a natural topology on the group

G := C

1

(M;K) as follows.

The tangent bundle TK of K is a Lie group (Lemma III.1.4). Iterating this pro
edure,

we obtain a Lie group stru
ture on all higher tangent bundles T

n

K .

For ea
h n 2 N

0

, we thus obtain topologi
al groups C(T

n

M;T

n

K) by using the topology

of uniform 
onvergen
e on 
ompa
t subsets of T

n

M (Lemma B.3), whi
h 
oin
ides with the


ompa
t open topology (Proposition B.4). We also observe that for two smooth maps f

1

; f

2

:M !

K , the fun
toriality of T yields

T (f

1

� f

2

) = T (m

G

Æ (f

1

� f

2

)) = T (m

G

) Æ (Tf

1

� Tf

2

) = Tf

1

� Tf

2

:

Therefore the 
anoni
al in
lusion map

C

1

(M;K) ,!

Y

n2N

0

C(T

n

M;T

n

K); f 7! (T

n

f)

n2N

0

is a group homomorphism, so that the inverse image of the produ
t topology on the right hand

side is a group topology on C

1

(M;K). Therefore C

1

(M;K) always 
arries a natural stru
ture

of a topologi
al group, even if M and K are in�nite-dimensional.

Now we assume that M is 
ompa
t. Then these topologi
al groups 
an even be turned into

Lie groups modeled on the spa
e g := C

1

(M; k). The 
harts of G are obtained from those of

K as follows. If '

K

:U

K

! k is a 
hart of K , i.e., a di�eomorphism of an open subset U

K

� K

onto an open subset '(U

K

) of k , then the set U

G

:= ff 2 G: f(M) � U

K

g is an open subset of

G (
f. Appendix B). Assume, in addition, that 1 2 U

K

and '

K

(1) = 0. Then we use the map

'

G

:U

G

! g; f 7! '

K

Æ f

as a 
hart of a 1-neighborhood of G , and by 
ombining it with left translates, we obtain an atlas

of G de�ning a Lie group stru
ture (
f. Theorem II.2.1 below). For details we refer to [Gl01b℄,

resp., [GN05℄.

To 
al
ulate the Lie algebra of this group, we observe that for m 2 M , we have for the

multipli
ation in lo
al 
oordinates

(f �

G

g)(m) = '

G

�

'

�1

G

(f)'

�1

G

(g)

�

(m) = '

K

�

'

�1

K

(f(m))'

�1

K

(g(m))

�

= f(m) �

K

g(m) = f(m) + g(m) + b

k

(f(m); g(m)) + � � � :

In view of Lemma III.1.5, this implies that

�

b

g

(f; g)

�

(m) = b

k

(f(m); g(m)); and hen
e that

[f; g℄(m) = b

g

(f; g)(m)� b

g

(g; f)(m) = b

k

(f(m); g(m))� b

k

(g(m); f(m)) = [f(m); g(m)℄:

Therefore L(C

1

(M;K)) = C

1

(M; k), endowed with the pointwise de�ned Lie bra
ket.

Remark III.1.13. If M is a non-
ompa
t �nite-dimensional manifold, then one 
annot expe
t

the topologi
al groups C

1

(M;K) to be Lie groups. A typi
al example arises for M = N (a

0-dimensional manifold) and K = T := R=Z . Then C

1

(M;K)

�

=

T

N

is a topologi
al group for

whi
h no 1-neighborhood is 
ontra
tible, so that it 
arries no smooth manifold stru
ture.

Remark III.1.14. (The Lie algebra of a lo
al Lie group) There is also a natural notion of a

lo
al Lie group. The 
orresponding algebrai
 
on
ept is that of a lo
al group: Let G be a set

and D � G�G a subset on whi
h we are given a map

m

G

:D ! G; (x; y) 7! xy:

We say that the produ
t xy of two elements x; y 2 G is de�ned if (x; y) 2 D . The quadruple

(G;D;m

G

;1), where 1 is a distinguished element of G , is 
alled a lo
al group if the following


onditions are satis�ed:
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(1) Suppose that xy and yz are de�ned. If (xy)z or x(yz) is de�ned, then the other produ
t

is also de�ned and both are equal.

(2) For ea
h x 2 G , the produ
ts x1 and 1x are de�ned and equal to x .

(3) For ea
h x 2 G , there exists a unique element x

�1

2 G su
h that xx

�1

and x

�1

x are

de�ned and xx

�1

= x

�1

x = 1 .

(4) If xy is de�ned, then y

�1

x

�1

is de�ned.

If (G;D;m

G

;1) is a lo
al group and, in addition, G has a smooth manifold stru
ture, D

is open, and the maps

m

G

:D ! G; �

G

:G! G; x 7! x

�1

are smooth, then G , resp., (G;D;m

G

;1) is 
alled a lo
al Lie group.

Let G be a lo
al Lie group and g := T

1

(G). For ea
h x 2 g = T

1

(G), we then obtain a

left invariant ve
tor �eld x

l

(g) := g:x := 0

g

� x . One 
an show that the Lie bra
ket of two left

invariant ve
tor �elds is again left invariant and that we thus obtain a Lie algebra stru
ture on g

(Exer
ise III.1). Des
ribing the multipli
ation in a lo
al 
hart ':V ! g with '(1) = 0, we 
an

argue as in the proof of Lemma III.1.6 that its se
ond order Taylor polynomial is of the form

x+ y + b(x; y) with a 
ontinuous bilinear map b: g� g ! g satisfying

[x; y℄ = b(x; y)� b(y; x):

We 
on
lude that L(G) := L(G;D;m

G

;1) := (g; [�; �℄) is a lo
ally 
onvex Lie algebra. For more

details on lo
al Lie groups we refer to [GN05℄.

The adjoint representation

The adjoint a
tion is a 
ru
ial stru
ture element of a Lie group G . It is the representation

of G on L(G) obtained by taking derivatives in 1 for the 
onjugation a
tion of G on itself. In

this sense, it is a linearized pi
ture of the non-
ommutativity of G .

De�nition III.1.15. Let G be a Lie group. Then for ea
h g 2 G the map




g

:G! G; x 7! gxg

�1

;

is a smooth automorphism, hen
e indu
es a 
ontinuous linear automorphism

Ad(g) := L(


g

): g ! g:

We thus obtain an a
tion G� g ! g; (g; x) 7! Ad(g):x 
alled the adjoint a
tion of G on g .

If g

0

:= L(g;K ) denotes the topologi
al dual of g , then we also obtain a representation on

g

0

by Ad

�

(g):f := f Æ Ad(g)

�1

, 
alled the 
oadjoint a
tion. Sin
e we do not endow g

0

with a

topology, we will not spe
ify any smoothness or 
ontinuity properties of this a
tion.

Proposition III.1.16. The adjoint a
tion Ad:G � g ! g; (g; x) 7! Ad(g):x is smooth. The

operators

adx: g ! g; adx(y) := T Ad(x; 0

y

) satisfy adx(y) = [x; y℄:

Proof. The smoothness of the adjoint a
tion of G on g follows dire
tly from the smoothness

of the multipli
ation of the Lie group TG be
ause Ad(g):x = (g:x):g

�1

(Lemma III.1.4).

To 
al
ulate the linear maps adx: g ! g , we 
onsider a lo
al 
hart ':V ! g of G , where

V � G is an open 1-neighborhood and '(1) = 0.

For x 2 '(W ), we write �

1

(x) + �

2

(x) for the se
ond order Taylor polynomial of the

inversion map x 7! x

�1

, where �

1

is linear and �

2

is quadrati
. Comparing Taylor expansions

in 0 of

0 = x � x

�1

= x+ �

1

(x) + �

2

(x) + b(x; �

1

(x)) + : : :

(Lemma III.1.6), we get �

1

(x) = �x and �

2

(x) = �b(x;�x) = b(x; x). Therefore

(x � y) � x

�1

=

�

x+ y + b(x; y)

�

+

�

� x+ b(x; x)

�

+ b(x+ y;�x) + � � �

= y + b(x; y)� b(y; x) + � � �

by the Chain Rule for Taylor polynomials, and by taking the derivative w.r.t. x in 0 in the

dire
tion z , we eventually get ad z(y) = b(z; y)� b(y; z) = [z; y℄:
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The di�eomorphism group

Proposition III.1.17. Let G be a Lie group and �:M � G ! M; (m; g) 7! m:g a smooth

right a
tion of G on the smooth manifold M . Then the map T�:TM �TG! TM is a smooth

right a
tion of TG on TM . The assignment

_�: g ! V(M); with _�(x)(m) := d�(m;1)(0; x) = T�(0

m

; x)

is a homomorphism of Lie algebras.

Proof. That T� de�nes an a
tion of TG on TM follows in the same way as in Lemma III.1.4

above by applying T to the 
ommutative diagrams de�ning a right a
tion of a group.

To see that _� is a homomorphism of Lie algebras, we pi
k m 2 M and write '

m

:G !

M; g 7! m:g for the smooth orbit map of m . Then the equivarian
e of '

m

means that

'

m

Æ �

g

= '

m:g

. From this we derive

d'

m

(g)x

l

(g) = d'

m

(g)d�

g

(1)x = d'

m:g

(1)x = _�(x)(m:g);

i.e., the left invariant ve
tor �eld x

l

is '

m

-related to _�(x). Therefore Lemma II.3.8 implies that

_�([x; y℄)(m) = d'

m

(1)[x; y℄

l

(1) = d'

m

(1)[x

l

; y

l

℄(1) = [ _�(x); _�(x)℄(m):

Corollary III.1.18. If �:G�M !M is a smooth left aftion of G on M , then

_�: g ! V(M); with _�(x)(m) := �T�(x; 0

m

)

is a homomorphism of Lie algebras.

Proof. If � is a smooth left a
tion, then e�(m; g) := �(m; g

�1

) is a smooth right a
tion and

T e�(0

m

; x) = �T�(x; 0

m

) follows from the Chain Rule and d�

G

(1)x = �x .

Example III.1.19. Let M be a 
ompa
t manifold and g = V(M), the Lie algebra of smooth

ve
tor �elds on M . We now explain how the group Di�(M) 
an be turned into a Lie group,

modeled on g .

We shall see in Se
tion IV below that, although Di�(M) has a smooth exponential fun
tion,

it is not a lo
al di�eomorphism of a 0-neighborhood in g onto an identity neighborhood in G .

Therefore we 
annot use it to de�ne 
harts for G . But there is an easy way around this problem.

Let g be a Riemannian metri
 on M and Exp:TM ! M be its exponential fun
tion,

whi
h assigns to v 2 T

m

(M) the point 
(1), where 
: [0; 1℄ ! M is the geodesi
 segment with


(0) = m and 


0

(0) = v . We then obtain a smooth map

�:TM !M �M; v 7! (m;Exp v); v 2 T

m

(M):

There exists an open neighborhood U � TM of the zero se
tion su
h that � maps U di�eo-

morphi
ally onto an open neighborhood of the diagonal in M �M . Now

U

g

:= fX 2 V(M):X(M) � Ug

is an open subset of the Fr�e
het spa
e V(M), and we de�ne a map

':U

g

! C

1

(M;M); '(X)(m) := Exp(X(m)):

It is 
lear that '(0) = id

M

. One 
an show that after shrinking U

g

to a suÆ
iently small 0-

neighborhood in the C

1

-topology on V(M), we may a
hieve that '(U

g

) � Di�(M). To see that

Di�(M) 
arries a Lie group stru
ture for whi
h ' is a 
hart, one has to verify that the group
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operations are smooth in a 0-neighborhood when transfered to U

g

via ' , so that Theorem III.2.1

below applies. We thus obtain a Lie group stru
ture on Di�(M) (
f. [GN05℄).

From the smoothness of the map U

g

�M ! M; (X;m) 7! '(X)(m) = Exp(X(m)) it

follows that the 
anoni
al left a
tion �: Di�(M) �M ! M; (';m) 7! '(m) is smooth in an

identity neighborhood of Di�(M), and hen
e smooth, be
ause it is an a
tion by smooth maps.

The 
orresponding homomorphism of Lie algebras _�:L(Di�(M))! V(M) is given by

_�(X)(m) = �T�(X; 0

m

) = �(dExp)

0

m

(X(m)) = �X(m);

i.e., _� = � id

V(M)

. This leads to

L(Di�(M)) = (V(M); [�; �℄)

op

:

This \wrong" sign is 
aused by the fa
t that we 
onsider Di�(M) as a group a
ting on M

from the left. If we 
onsider it as a group a
ting on the right, we obtain the opposite multipli
ation

' �  :=  Æ ';

and

L(Di�(M)

op

)

�

=

(V(M); [�; �℄)

follows from Proposition III.1.17.

The tangent bundle of Di�(M) 
an be identi�ed with the set

T (Di�(M)) := fX 2 C

1

(M;TM):�

TM

ÆX 2 Di�(M)g;

where the map

�:T (Di�(M))! Di�(M); X 7! �

TM

ÆX

is the bundle proje
tion. Then

T

'

(Di�(M)) := �

�1

(') = fX 2 C

1

(M;TM):�

TM

ÆX = 'g

is the tangent spa
e in the di�eomorphism ' . The multipli
ation in the group T (Di�(M)) is

given by the formula

X � Y := �

T

2

M

Æ TX Æ Y;

where �

T

2

M

:T

2

M ! TM is the natural proje
tion. Note that

�

TM

Æ (X � Y ) = �

TM

Æ �

T

2

M

Æ TX Æ Y = �

TM

ÆX Æ �

TM

Æ Y

shows that � is a group homomorphism. Identifying ' 2 Di�(M) with the origin in T

'

(Di�(M)),

we get

X � ' = �

T

2

M

Æ TX Æ ' = X Æ ' and ' �X = �

T

2

M

Æ T' ÆX = T' ÆX:

In parti
ular, this leads to the formula

Ad('):X = T' ÆX Æ '

�1

for the adjoint a
tion of Di�(M) on T

0

(Di�(M)) = V(M).
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III.2. From lo
al data to global Lie groups

The following theorem is helpful to obtain Lie group stru
tures on groups.

Theorem III.2.1. Let G be a group and U = U

�1

a symmetri
 subset. We further assume

that U is a smooth manifold su
h that

(L1) there exists an open 1-neighborhood V � U with V

2

= V � V � U su
h that the group

multipli
ation m

V

:V � V ! U is smooth,

(L2) the inversion map �

U

:U ! U; u 7! u

�1

is smooth, and

(L3) for ea
h g 2 G there exists an open 1-neighborhood U

g

� U with 


g

(U

g

) � U and su
h that

the 
onjugation map 


g

:U

g

! U; x 7! gxg

�1

is smooth.

Then there exists a unique Lie group stru
ture on G for whi
h there exists an open 1-

neighborhood U

0

� U su
h that the in
lusion map U

0

! G indu
es a di�eomorphism onto an

open subset of G .

Proof. (
f. [Ch46, x14, Prop. 2℄ or [Ti83, p.14℄ for the �nite-dimensional 
ase) First we 
onsider

the �lter basis F 
onsisting of all 1-neighborhoods in U . In the terminology of Lemma B.2,

(L1) implies (U1), (L2) implies (U2), and (L3) implies (U3). Moreover, the assumption that U

is Hausdor� implies that

T

F = f1g . Therefore Lemma B.2 implies that G 
arries a unique

stru
ture of a (Hausdor�) topologi
al group for whi
h F is a basis of 1-neighborhoods.

After shrinking V and U , we may assume that there exists a di�eomorphism ':U !

'(U) � E , where E is a topologi
al K -ve
tor spa
e, '(U) an open subset, that V satis�es

V = V

�1

, V

4

� U , and that m

V

:V

2

� V

2

! U is smooth. For g 2 G , we 
onsider the maps

'

g

: gV ! E; '

g

(x) = '(g

�1

x)

whi
h are homeomorphisms of gV onto '(V ). We 
laim that ('

g

; gV )

g2G

is an E -atlas of G .

Let g

1

; g

2

2 G and put W := g

1

V \ g

2

V . If W 6= �, then g

�1

2

g

1

2 V V

�1

= V

2

. The

smoothness of the map

 := '

g

2

Æ '

�1

g

1

j

'

g

1

(W )

:'

g

1

(W )! '

g

2

(W )

given by

 (x) = '

g

2

('

�1

g

1

(x)) = '

g

2

(g

1

'

�1

(x)) = '(g

�1

2

g

1

'

�1

(x))

follows from the smoothness of the multipli
ation V

2

� V

2

! U . This proves that ('

g

; gU)

g2G

is an atlas of G . Moreover, the 
onstru
tion implies that all left translations of G are smooth

maps.

The 
onstru
tion also shows that for ea
h g 2 G , the 
onjugation 


g

:G ! G is smooth

in a neighborhood of 1 . Sin
e all left translations are smooth, and 


g

Æ �

x

= �




g

(x)

Æ 


g

; the

smoothness of 


g

in a neighborhood of x 2 G follows. Therefore all 
onjugations and hen
e also

all right multipli
ations are smooth. The smoothness of the inversion follows from its smoothness

on V and the fa
t that left and right multipli
ations are smooth. Finally the smoothness of the

multipli
ation follows from the smoothness in 1� 1 be
ause

m

G

(g

1

x; g

2

y) = g

1

xg

2

y = g

1

g

2




g

�1

2

(x)y = g

1

g

2

m

G

(


g

�1

2

(x); y):

The uniqueness of the Lie group stru
ture is 
lear, be
ause ea
h lo
ally di�eomorphi
 bije
tive

homomorphism between Lie groups is a di�eomorphism.

Remark III.2.2. Suppose that the group G in Theorem III.2.1 is generated by ea
h 1-

neighborhood V in U . Then 
ondition (L3) 
an be omitted. Indeed, the 
onstru
tion of the

Lie group stru
ture shows that for ea
h g 2 V , the 
onjugation 


g

:G ! G is smooth in a

neighborhood of 1 . Sin
e the set of all these g is a submonoid of G 
ontaining V , it 
ontains

V

n

for ea
h n 2 N , hen
e all of G be
ause G is generated by V . Therefore all 
onjugations are

smooth, and one 
an pro
eed as in the proof of Theorem III.2.1.
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Corollary III.2.3. Let G be a group and N E G a normal subgroup that 
arries a Lie group

stru
ture. Then there exists a Lie group stru
ture on G for whi
h N is an open subgroup if and

only if for ea
h g 2 G the restri
tion 


g

j

N

is a smooth automorphism of N .

Proof. If N is an open normal subgroup of the Lie group G , then 
learly all inner automor-

phisms of G restri
t to smooth automorphisms of N .

Suppose, 
onversely, that N is a normal subgroup of the group G whi
h is a Lie group and

that all inner automorphisms of G restri
t to smooth automorphisms of N . Then we 
an apply

Theorem III.2.1 with U = N and obtain a Lie group stru
ture on G for whi
h the in
lusion

N ! G is a lo
al di�eomorphism, hen
e a di�eomorphism onto an open subgroup of G .

For the following 
orollary we re
all that a surje
tive morphism ':G ! H of topologi
al

groups is 
alled a 
overing if it is an open map with dis
rete kernel.

Corollary III.2.4. Let ':G ! H be a 
overing of topologi
al groups. If G or H is a Lie

group, then the other group has a unique Lie group stru
ture for whi
h ' is a morphism of Lie

groups whi
h is a lo
al di�eomorphism.

Proof. Sin
e ' is a 
overing, it is a lo
al homeomorphism, so that there exists an open

symmetri
 1-neighborhood W � G su
h that '

W

:= ' j

W

:W ! '(W ) is a homeomorphism.

We only have to 
hoose W so small that we have WW

�1

\ ker' = f1g to ensure that '

W

is

inje
tive.

Suppose �rst that G is a Lie group. Then we apply Theorem III.2.1 with U := '(W ).

To verify (L1), we 
hoose W

1

� W open with W

1

W

1

� W and put V := '(W

1

), and for (L3)

we note that the surje
tivity of ' implies that for ea
h h 2 H , there is an element g 2 G

with '(g) = h . Now we 
hoose an open 1-neighborhood W

g

� W with 


g

(W

g

) � W and put

U

h

:= '(W

g

).

If, 
onversely, H is a Lie group, then we put U := W , as V we 
hoose any open 1-

neighborhood with V V � U , and as U

g

we may also 
hoose any open 1-neighborhood with




g

(U

g

) � U .

Corollary III.2.5. Let G be a Lie group.

(1) If N E G is a dis
rete subgroup, then the quotient G=N 
arries a unique Lie group stru
ture

for whi
h the quotient map q:G! G=N is a lo
al di�eomorphism.

(2) If G is 
onne
ted and q

G

:

e

G! G the universal 
overing group, then

e

G 
arries a unique Lie

group stru
ture for whi
h q

G

is a lo
al di�eomorphism.

Proof. (1) follows dire
tly from Corollary III.2.4, be
ause the quotient map G ! G=N is a


overing.

(2) We �rst have to 
onstru
t a topologi
al group stru
ture on the universal 
overing

spa
e

e

G . Pi
k an element

e

1 2 q

�1

G

(1). Then the multipli
ation map m

G

:G � G ! G lifts

uniquely to a 
ontinuous map em

G

:

e

G�

e

G!

e

G with em

G

(

e

1;

e

1) =

e

1 . To see that the multipli
ation

map em

G

is asso
iative, we observe that

q

G

Æ em

G

Æ (id

e

G

�em

G

) = m

G

Æ (q

G

� q

G

) Æ (id

e

G

�em

G

) = m

G

Æ (id

G

�m

G

) Æ (q

G

� q

G

� q

G

)

= m

G

Æ (m

G

� id

G

) Æ (q

G

� q

G

� q

G

) = q

G

Æ em

G

Æ (em

G

� id

e

G

);

so that the two 
ontinuous maps

em

G

Æ (id

e

G

�em

G

); em

G

Æ (em

G

� id

e

G

):

e

G

3

! G;

are lifts of the same map G

3

! G and both map (

e

1;

e

1;

e

1) to

e

1 . Hen
e the uniqueness of

lifts implies that em

G

is asso
iative. We likewise obtain that the unique lift e�

G

:

e

G !

e

G of the

inversion map �

G

:G! G with e�

G

(

e

1) =

e

1 satis�es

em

G

Æ (�

G

� id

e

G

) =

e

1 = em

G

Æ (id

e

G

��

G

):

Therefore em

G

de�nes on

e

G a topologi
al group stru
ture su
h that q

G

:

e

G ! G is a 
overing

morphism of topologi
al groups. Now Corollary III.2.4 applies.
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Remark III.2.6. If q

G

:

e

G ! G is the universal 
overing morphism of a 
onne
ted Lie group

G , then ker q

G

is a dis
rete normal subgroup of the 
onne
ted group

e

G , hen
e 
entral (Exer-


ise III.3). Left multipli
ations by elements of this group lead to de
k transformations of the


overing

e

G! G , and this shows that �

1

(G)

�

=

ker q

G

as groups.

Clearly, G

�

=

e

G= ker q

G

. If, 
onversely, � �

e

G is a dis
rete 
entral subgroup, then

e

G=�

is a Lie group with the same universal 
overing group as G . Two su
h groups

e

G=�

1

and

e

G=�

2

are isomorphi
 if and only if there exists a Lie group automorphism ' 2 Aut(

e

G) with

'(�

1

) = �

2

. Therefore the isomorphism 
lasses of Lie groups with the same universal 
overing

group G are parametrized by the orbits of the group Aut(

e

G) in the set S of dis
rete 
entral

subgroups of

e

G . Sin
e the normal subgroup Inn(

e

G) := f


g

: g 2

e

Gg of inner automorphisms

a
ts trivially on this set, the a
tion of Aut(

e

G) on S fa
tors through an a
tion of the group

Out(

e

G) := Aut(

e

G)= Inn(

e

G).

Sin
e ea
h automorphism ' 2 Aut(G) lifts to a unique automorphism e' 2 Aut(

e

G) (Exer-


ise!), we have a natural embedding Aut(G) ,! Aut(

e

G), and the image of this homomorphism


onsists of the stabilizer of the subgroup ker q

G

� Z(

e

G).

Exer
ises for Se
tion III

Exer
ise III.1. Let (G;D;m

G

;1) be a lo
al Lie group. Show that:

(1) For g; h; u 2 G with (g; h); (h; u); (gh; u) 2 D , we have

d�

g

(h) Æ d�

h

(u) = d�

gh

(u):

Hint: Show that �

g

Æ �

h

= �

gh

on a neighborhood of u .

(2) For the open set D

g

:= fh 2 G: (g; h) 2 Dg and the smooth map

�

g

:D

g

! G; h 7! gh

the ve
tor �eld de�ned by x

l

(u) := d�

u

(1):x satis�es the left invarian
e 
ondition

x

l

Æ �

g

= T (�

g

) Æ x

l

j

D

g

:

(3) Show that the set V(G)

l

of left invariant ve
tor �elds on G is a Lie subalgebra of the Lie

algebra V(G) and show that this leads to a Lie bra
ket on g = T

1

(G).

(4) The tangent bundle TG of G 
arries a lo
al Lie group stru
ture (TG; TD; Tm

G

; 0

1

).

(5) If ':G! H is a morphism of lo
al Lie groups, then L(') := d'(1) is a homomorphism of

Lie algebras.

(6) For x 2 G and (x; y); (y; x

�1

); (xy; x

�1

) 2 D , we put 


x

(y) := (xy)x

�1

and note that this

map is de�ned on some neighborhood of 1 . If (x; y) 2 D , then 


x

Æ 


y

= 


xy

holds on a

neighborhood of 1 .

(7) Ad:G! Aut(g); g 7! L(


g

) is a homomorphism of the lo
al group G to the group Aut(g).

Exer
ise III.2. Let G be an abelian group and N � G a subgroup 
arrying a Lie group

stru
ture. Then there exists a unique Lie group stru
ture on G for whi
h N is an open subgroup.

Hint: Corollary III.2.3.

Exer
ise III.3. Let G be a 
onne
ted topologi
al group and � E G a dis
rete normal

subgroup. Then � is 
entral.

Exer
ise III.4. Let A be a CIA and M a 
ompa
t smooth manifold. Show that C

1

(M;A) is

a CIA with respe
t to the natural topology on this algebra whi
h is obtained from the embedding

C

1

(M;A) ,!

Y

p2N

0

C(T

p

M;T

p

A);

where the right hand side 
arries the produ
t topology and on ea
h fa
tor the topology of 
ompa
t


onvergen
e (whi
h, in view of Appendix B, 
oin
ides with the 
ompa
t open topology).
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Exer
ise III.5. Let G be a Lie group and T

n

G , n 2 N , its iterated tangent bundles. Show

that:

(1) TG

�

=

(g;+)o

Ad

G .

(2) The adjoint a
tion of G on g indu
es an a
tion T Ad of TG

�

=

goG on Tg

�

=

g� g , given

by

(T Ad)(x; g)(v; w) = (Ad(g):v + [x;Ad(g):w℄;Ad(g):w):

(3) T

2

G

�

=

(g� g)o

T Ad

(goG): The multipli
ation in this group satis�es

(x

2

; x

1

; x

0

;1)(x

0

2

; x

0

1

; x

0

0

;1) = (x

2

+ x

0

2

+ [x

0

; x

0

1

℄; x

1

+ x

0

1

; x

0

+ x

0

0

):

(4) Generalize (3) to T

3

G .

(5) T

n

G

�

=

N oG , where N is a nilpotent Lie group di�eomorphi
 to g

2

n

�1

.

Exer
ise III.6. (a) Let m:G�G! G be a smooth asso
iative multipli
ation on the manifold

G with identity element 1 . Show that the di�erential in (1;1) is given by

dm(1;1):T

1

(G) � T

1

(G)! T

1

(G); (v; w) 7! v + w:

(b) Show that the smoothness of the inversion in the de�nition of a Bana
h{Lie group is redundant

be
ause the Inverse Fun
tion Theorem 
an be applied to the map

G�G! G�G; (x; y) 7! (x; xy)

whose di�erential in (1;1) is given by the map (v; w) 7! (v; v + w).

Exer
ise III.7. Let G be a Lie group with Lie algebra g and ':U

G

! g a lo
al 
hart with

'(1) = 0. Show that:

(1) For the lo
al multipli
ation x � y := '('

�1

(x)'

�1

(y)), the se
ond order Taylor polynomial

of x � y � x

�1

� y

�1

in (0; 0) is the Lie bra
ket [x; y℄ .

(2) Use (1) to show that for ea
h morphism of Lie groups ':G ! H , the map d'(1) is a

homomorphism of Lie algebras. Hint: Compare the se
ond order Taylor polynomials of

'(x) � '(y) � '(x)

�1

� '(y)

�1

and '(x � y � x

�1

� y

�1

) by using the Chain Rule for Taylor

polynomials.

Exer
ise III.8. Let G be a Lie group, V a lo
ally 
onvex spa
e and �:G� V ! V a smooth

linear a
tion of G on V . Then all ve
tor �elds _�(x), x 2 g , are linear, and we thus obtain a

representation of Lie algebras L(�): g ! gl(V ) with L(�)(x)v = � _�(x)(v).

Exer
ise III.9. Let G and N be Lie groups and ':G ! Aut(N) be a homomorphism su
h

that the map G � N ! N; (g; n) 7! '(g)(n) is smooth. Then the semi-dire
t produ
t group

N oG with the multipli
ation

(n; g)(n

0

; g

0

) := (n'(g)(n

0

); gg

0

)

is a Lie group with Lie algebra no

L(')

g , where L('): g ! der(n) is the derived representations

(
f. Exer
ise III.8).

IV. The Fundamental Theorem for Lie group-valued fun
tions

In this se
tion, we undertake a systemati
 study of Lie group-valued fun
tions. In the

same way as a smooth fun
tion f :M ! V on a 
onne
ted manifold M with values in a lo
ally


onvex spa
e V is determined by a value in one-point and the di�erential form df 2 


1

(M;V ),

we 
an asso
iate to a smooth fun
tion f :M ! G with values in a Lie group a smooth 1-form
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Æ(f) 2 


1

(M; g). We shall see that if M is 
onne
ted, then Æ(f) determines f up to left

multipli
ation by a 
onstant. Conversely, we 
an ask whi
h g-valued 1-forms � are integrable in

the sense that � = Æ(f) for some smooth fun
tion f :M ! G . For the spe
ial 
ase M = [0; 1℄,

this leads to the 
on
ept of a regular Lie group and �nally the Fundamental Theorem for Lie

group-valued fun
tions gives ne
essary and suÆ
ient 
onditions for � 2 


1

(M; g) to be integrable

in the sense that it is of the form Æ(f).

The main point of this setup is that g-valued 1-forms are mu
h simpler obje
ts than

Lie group-valued fun
tions. In parti
ular, ea
h Lie algebra homomorphism ':L(G) ! L(H)

de�nes an L(H)-valued 1-form on G whi
h is integrable if and only if there exists a Lie group

homomorphism  :G ! H with L( ) = ' . If G is 1-
onne
ted and H is regular, su
h a

homomorphism always exists.

IV.1. Logarithmi
 derivatives and their appli
ations

Equivariant di�erential forms and Lie algebra 
ohomology

De�nition IV.1.1. Let G be a Lie group and V a smooth lo
ally 
onvex G-module, i.e., V

is a lo
ally 
onvex spa
e and the a
tion map �

V

:G � V ! V; (g; v) 7! g:v is smooth. We write

�

V

(g)(v) := g:v for the 
orresponding 
ontinuous linear automorphisms of V .

We 
all a p-form � 2 


p

(G; V ) equivariant if we have for ea
h g 2 G the relation

�

�

g

� = �

V

(g) Æ �:

We write 


p

(G; V )

G

for the subspa
e of equivariant p-forms in 


p

(G; V ) and note that this is

the spa
e of G-�xed elements with respe
t to the a
tion given by g:� := �

V

(g) Æ (�

g

�1
)

�

� . *

If V is a trivial module, then an equivariant form is a left invariant V -valued form on G .

An equivariant p-form � is uniquely determined by the 
orresponding element �

1

2 C

p




(g; V ) =

Alt

p

(g; V ) (
f. Appendix C):

(4:1:1) �

g

(g:x

1

; : : : ; g:x

p

) = �

V

(g) Æ �

1

(x

1

; : : : ; x

p

)

for g 2 G; x

i

2 g .

Conversely, (4.1.1) provides for ea
h ! 2 C

p




(g; V ) a unique equivariant p-form !

eq

on G

with !

eq

1

= ! .

The following proposition shows that the 
omplex of equivariant di�erential forms is the

same as the Lie algebra 
omplex asso
iated to the g-module V .

Proposition IV.1.2. For ea
h ! 2 C

p




(g; V ) , we have d(!

eq

) = (d

g

!)

eq

. In parti
ular, the

evaluation map

ev

1

: 


p

(G; V )

G

! C

p




(g; V ); ! 7! !

1

de�nes an isomorphism from the 
hain 
omplex (


�

(G; V )

G

; d) of equivariant V -valued di�er-

ential forms on G to the 
ontinuous V -valued Lie algebra 
omplex (C

�




(g; V ); d

g

) .

Proof. (
f. [ChE48, Th. 10.1℄) For g 2 G , we have

�

�

g

d!

eq

= d�

�

g

!

eq

= d(�

V

(g) Æ !

eq

) = �

V

(g) Æ (d!

eq

);

showing that d!

eq

is equivariant.

* The 
omplex (


�

(G; V )

G

; d) of equivariant di�erential forms has been introdu
ed in the

�nite-dimensional setting by Chevalley and Eilenberg in [ChE48℄.
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For x 2 g , we write x

l

(g) := g:x for the 
orresponding left invariant ve
tor �eld on G . In

view of (4.1.1), it suÆ
es to 
al
ulate the value of d!

eq

on (p+1)-tuples of left invariant ve
tor

�elds in the identity element. From

!

eq

(x

1;l

; : : : ; x

p;l

)(g) = �

V

(g):!(x

1

; : : : ; x

p

);

we obtain

�

x

0;l

:!

eq

(x

1;l

; : : : ; x

p;l

)

�

(1) = x

0

:!(x

1

; : : : ; x

p

);

and therefore

�

d!

eq

(x

0;l

; : : : ; x

p;l

��

(1)

=

p

X

i=0

(�1)

i

x

i;l

:!

eq

(x

0;l

; : : : ; 
x

i;l

; : : : ; x

p;l

)(1)

+

X

i<j

(�1)

i+j

!

eq

([x

i;l

; x

j;l

℄; x

0;l

; : : : ; 
x

i;l

; : : : ; 
x

j;l

; : : : ; x

p;l

)(1)

=

p

X

i=0

(�1)

i

x

i

:!(x

0

; : : : ; bx

i

; : : : ; x

p

) +

X

i<j

(�1)

i+j

!([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

)

= (d

g

!)(x

0

; : : : ; x

p

):

This proves our assertion.

Maurer{Cartan forms and logarithmi
 derivatives

For the following de�nition, we re
all from Lemma III.1.4 that for ea
h Lie group G ,

the tangent bundle TG has a natural Lie group stru
ture 
ontaining G as the zero se
tion.

Restri
ting the multipli
ation of TG to G� TG , we obtain in parti
ular a smooth left a
tion of

G on TG whi
h we simply write (g; v) 7! g:v .

De�nition IV.1.3. (a) For v 2 T

g

(G), we de�ne �

G

(v) := g

�1

:v 2 g = T

1

(G) and note that

this de�nes a smooth 1-form �

G

2 


1

(G; g) be
ause the multipli
ation in the Lie group TG is

smooth. This form is 
alled the (left) Maurer{Cartan form of G . It is a left invariant g-valued

1-form on G .

(b) Let M be a smooth manifold and G a Lie group with Lie algebra L(G) = g . For an

element f 2 C

1

(M;G), we de�ne the (left) logarithmi
 derivative as the g-valued 1-form

Æ(f) := f

�

�

G

2 


1

(M; g):

For v 2 T

m

(M), this means that Æ(f)

m

(v) = f(m)

�1

:(df)

m

(v) = f(m)

�1

Tf(v):

We 
all � 2 


1

(M; g) G-integrable if there exists a smooth fun
tion f :M ! G with

Æ(f) = � .

(
) If M = I is an interval, then we identify 


1

(I; g) with C

1

(I; g) by identifying the

smooth fun
tion �: I ! g with the 1-form � � dt . In this sense, we 
an interprete for a smooth


urve 
: I ! G the logarithmi
 derivative Æ(
) = 


�

�

G

as a smooth 
urve in g . Expli
itly, we

have

Æ(
)(t) = 
(t)

�1

:


0

(t):

We re
all from De�nition II.4.1 that on the spa
e 


�

(M; g) of g-valued di�erential forms

on M we have a natural bra
ket




p

(M; g)� 


q

(M; g)! 


p+q

(M; g); (�; �) 7! [�; �℄

whi
h for �; � 2 


1

(M; g) satis�es for v; w 2 T

m

(M)

[�; �℄

m

(v; w) = [�

m

(v); �

m

(w)℄ � [�

m

(w); �

m

(v)℄ = 2[�

m

(v); �

m

(w)℄

(Exer
ise II.15).
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Lemma IV.1.4. (Produ
t and Quotient Rule) For smooth fun
tions f; g:M ! G , we have

(4:1:2) Æ(fg) = Æ(g) + Ad(g)

�1

:Æ(f);

where (Ad(g)

�1

:Æ(f))

m

:= Ad(g(m))

�1

Æ Æ(f)

m

. In parti
ular, we have

(4:1:3) Æ(f

�1

) = �Ad(f):Æ(f):

Proof. Clearly the pointwise produ
t is a smooth fun
tion fg:M ! G . With the Chain Rule

we obtain

d(fg)

m

= f(m):(dg)

m

+ (df)

m

:g(m);

and this leads to

Æ(fg)

m

= (fg)(m)

�1

:d(fg)

m

= g(m)

�1

:(dg)

m

+ g(m)

�1

f(m)

�1

:(df)

m

:g(m)

= Æ(g)

m

+Ad(g(m))

�1

Æ Æ(f)

m

;

whi
h is (4.1.2). Putting g = f

�1

, we obtain (4.1.3).

The following lemma provides a uniqueness result for the equation Æ(f) = � .

Lemma IV.1.5. (Uniqueness Lemma) If two smooth fun
tions f

1

; f

2

:M ! G have the same

left logarithmi
 derivative and M is 
onne
ted, then there exists g 2 G with f

1

= �

g

Æ f

2

.

Proof. We have to show that the fun
tion x 7! f

1

(x)f

2

(x)

�1

is lo
ally 
onstant, hen
e


onstant, be
ause M is 
onne
ted. First we obtain with Lemma IV.1.4

Æ(f

1

f

�1

2

) = Æ(f

�1

2

) + Ad(f

2

)Æ(f

1

) = Æ(f

�1

2

) + Ad(f

2

)Æ(f

2

) = Æ(f

2

f

�1

2

) = 0:

This implies that d(f

1

f

�1

2

) vanishes, and hen
e that f

1

f

�1

2

is lo
ally 
onstant.

For the existen
e of a solution of the equation Æ(f) = � , the following lemma provides a

ne
essary 
ondition.

Lemma IV.1.6. If � = Æ(f) for some f 2 C

1

(M;G) , then � satis�es the Maurer{Cartan

equation

(MC) d�+

1

2

[�; �℄ = 0:

Proof. We �rst show that �

G

satis�es the MC equation. For that, we observe that the

isomorphism of 
hain 
omplexes

ev

1

: 


p

(G; g)

G

! C

p




(g; g); ! 7! !

1

;


orresponding to the trivial a
tion of G on g is 
ompatible with the bra
ket de�ned on both

sides (
f. Exer
ise II.15). Sin
e �

G

= (id

g

)

eq

and

(d

g

id

g

)(x; y) = � id

g

([x; y℄) = �[x; y℄ = �

1

2

[id

g

; id

g

℄(x; y);

we derive

d

g

id

g

+

1

2

[id

g

; id

g

℄

in C

2




(g; g), and with Proposition IV.1.2 this leads to

d�

G

+

1

2

[�

G

; �

G

℄ = 0:

Therefore � = f

�

�

G

satis�es

d� = f

�

d�

G

= �

1

2

f

�

([�

G

; �

G

℄) = �

1

2

[f

�

�

G

; f

�

�

G

℄ = �

1

2

[�; �℄;

whi
h is the Maurer{Cartan equation for � .
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Remark IV.1.7. If M is one-dimensional, then ea
h g-valued 2-form on M vanishes, so that

[�; �℄ = 0 = d� for �; � 2 


1

(M; g). Therefore all 1-forms trivially satisfy the Maurer{Cartan

equation.

Proposition IV.1.8. Let G and H be Lie groups.

(1) If ':G! H is a morphism of Lie groups, then Æ(') = L(') Æ�

G

: For any smooth fun
tion

f :M ! G , we have Æ(' Æ f) = L(') Æ Æ(f) .

(2) If G is 
onne
ted and '

1

; '

2

: G ! H are morphisms of Lie groups with L('

1

) = L('

2

) ,

then '

1

= '

2

.

(3) Suppose that we are given a smooth a
tion of the 
onne
ted Lie group G on H by auto-

morphisms, so that we also obtain a smooth a
tion of G on h = L(H) . Then for a smooth

fun
tion f :G! H with f(1) = 1 the following are equivalent:

(a) Æ(f) is an equivariant h-valued 1-form on G .

(b) f(gx) = f(g) � g:f(x) for g; x 2 G , i.e., f is a 
rossed homomorphism.

Proof. (1) For g 2 G , we have ' Æ �

g

= �

'(g)

Æ ' , so that

Æ(')

g

= d(�

�1

'(g)

Æ ')

g

= d(' Æ �

�1

g

)

g

= (d')(1) Æ d�

�1

g

(g) = L(') Æ (�

G

)

g

:

For any smooth fun
tion f :M ! G , we now get

Æ(' Æ f) = f

�

'

�

�

H

= f

�

(L(') Æ �

G

) = L(') Æ f

�

�

G

= L(') Æ Æ(f):

(2) In view of (1), Æ('

1

) = Æ('

2

), so that the assertion follows from '

1

(1) = '

2

(1) and

Lemma IV.1.3.

(3) We write g:x = �

h

(g):x for the a
tion of G on h and g:h = �

H

(g):h for the a
tion of

G on H and note that L(�

H

(g)) = �

h

(g) holds for ea
h g 2 G .

Let g 2 G . Then the logarithmi
 derivative of �

�1

f(g)

Æ f Æ�

g

is �

�

g

Æ(f), and, in view of (1),

the logarithmi
 derivative of �

H

(g) Æ f is �

h

(g) Æ Æ(f). Sin
e both fun
tions map 1 to 1 , they


oin
ide if and only if their logarithmi
 derivatives 
oin
ide (Lemma IV.1.5). This implies (3).

Corollary IV.1.9. If G is a 
onne
ted Lie group, then kerAd = Z(G) .

Proof. Let 


g

(x) = gxg

�1

. In view of Proposition IV.1.8(2), for g 2 G the 
onditions




g

= id

G

and L(


g

) = Ad(g) = id

g

are equivalent. This implies the assertion.

Proposition IV.1.10. A 
onne
ted Lie group G is abelian if and only if its Lie algebra is

abelian.

Proof. That the Lie algebra of an abelian Lie group is abelian is a dire
t 
onsequen
e of

Lemma III.1.6, whi
h implies that in any 
hart the se
ond order Taylor polynomial of the

multipli
ation has the form x + y + b(x; y) with [x; y℄ = b(x; y) � b(y; x). If G is abelian,

then b is symmetri
, and therefore L(G) is abelian.

In view of the pre
eding 
orollary, we have to show that for ea
h g 2 G we have Ad(g) = 1 .

Let x 2 g and 
onsider a smooth 
urve 
: [0; 1℄ ! G with 
(0) = 1 and 
(1) = g . For

�(t) := Ad(
(t)):x , we then have by Proposition III.1.16

�

0

(t) = T Ad(
(t):Æ(
)(t); 0) = Ad(
(t)):[Æ(
)(t); x℄ = 0

for ea
h t , so that � is 
onstant. This implies that Ad(g):x = �(1) = �(0) = x .

Problem IV.1. Show that a 
onne
ted Lie group G is nilpotent/solvable if and only if its

Lie algebra g is nilpotent/solvable. A promising strategy should be to show that 
ertain 
om-

mutators vanishing for nilpotent/solvable Lie algebras 
an be expressed as derivatives of 
ertain


ommutator expressions in the group. Su
h an argument would imply thay nilpoten
e/solvability

of G entails the 
orresponding property of g .

If, 
onversely, g is nilpotent/solvable, then the adjoint representation has 
ertain properties

whi
h have to be \integrated" to the group.
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IV.2. Regular Lie groups and the Fundamental Theorem

If M = I = [0; 1℄, then the Maurer{Cartan equation is satis�ed by ea
h � 2 


1

(I; g)

�

=

C

1

(I; g), be
ause ea
h 2-form on I vanishes. The requirement that for ea
h smooth 
urve

� 2 C

1

(I; g), the ordinary di�erential equation




0

(t) = 
(t):�(t) for t 2 I;

has a solution depending smoothly on � leads to the 
on
ept of a regular Lie group.

De�nition IV.2.1. A Lie group G is 
alled regular if for ea
h � 2 C

1

(I; g) the initial value

problem (IVP)

(4:2:1) 
(0) = 1; Æ(
) = �;

has a solution 


�

2 C

1

(I;G) and the evolution map

evol

G

:C

1

(I; g)! G; � 7! 


�

(1)

is smooth.

For a regular Lie group G , we de�ne the exponential fun
tion

exp:L(G) = g ! G by exp(x) := 


x

(1) = evol

G

(x);

where x 2 g is 
onsidered as a 
onstant fun
tion I ! g . As a restri
tion of the smooth fun
tion

evol

G

, the exponential fun
tion is smooth.

For a general Lie group G , we 
all a smooth fun
tion exp

G

: g ! G an exponential fun
tion

for G if for ea
h x 2 g the 
urve 


x

(t) := exp(tx) is a solution of the IVP (4.2.1). A

ording to

Lemma IV.1.5, su
h a solution is unique whenever it exists. Therefore a Lie group has at most

one exponential fun
tion.

Remark IV.2.2. (a) As a dire
t 
onsequen
e of the existen
e of solutions to ordinary di�eren-

tial equations on open domains of Bana
h spa
es and their smooth dependen
e on parameters,

every Bana
h{Lie group is regular.

(b) Let A be a unital Bana
h algebra and A

�

its unit group. Sin
e A is a CIA, A

�

is a

Lie group. For x 2 A , the 
orresponding left invariant ve
tor �eld is given on A

�

by x

l

(a) = ax ,

and the unique solutions of the IVP (4.2.1) are given by 
(t) = exp(tx), where

exp

A

:A! A

�

; x 7!

1

X

k=0

1

k!

x

k

is the exponential fun
tion of A . This implies that exp

A

is a smooth exponential fun
tion of the

Lie group A .

This remains true for ea
h Ma
key 
omplete CIA A : For ea
h x 2 A , the exponential

series 
onverges and exp

A

de�nes a smooth exponential fun
tion of A

�

(
f. [Gl02b℄).

(
) Although it might be hard to verify it in 
on
rete situations, all \known" Lie groups

modeled on Ma
key 
omplete spa
es are regular. For example we do not know if all unit groups of

Ma
key 
omplete CIAs are regular, but we have just seen in (b) that they always have a smooth

exponential fun
tion.

If the model spa
e is no longer assumed to be Ma
key 
omplete, one obtains non-regular

Lie groups as follows (
f. [Gl02b, Se
t. 7℄): Let A � C([0; 1℄;R) denote the subalgebra of all

rational fun
tions, i.e., of all quotients p(x)=q(x), where q(x) is a polynomial without zero in

[0; 1℄. We endow A with the indu
ed norm kfk := sup

0�t�1

jf(t)j . If an element f 2 A is
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invertible in C([0; 1℄;R), then it has no zero in [0; 1℄, whi
h implies that it is also invertible in

A , i.e.,

A

�

= C([0; 1℄;R)

�

\A:

This shows that A

�

is open in A , and sin
e the Bana
h algebra C([0; 1℄;R) is a CIA, the

smoothness of the inversion is inherited by A , so that A is a CIA. Hen
e A

�

is a Lie group

(Example III.1.3).

If A

�

is regular, then it also has a smooth exponential fun
tion, and from Lemma IV.1.3

we derive that it is the restri
tion of the exponential fun
tion of C([0; 1℄;R)

�

to A , whi
h leads

to

exp

A

(f) = e

f

; t 7! e

f(t)

:

This 
ontradi
ts the observation that for the fun
tion f(t) = t , the fun
tion e

f

is not rational.

Therefore the Lie group A

�

does not have an exponential fun
tion, hen
e is not regular.

(d) If V is a lo
ally 
onvex spa
e, then (V;+) is a regular Lie group if and only if it is

Ma
key 
omplete be
ause this means that for ea
h smooth 
urve �: I ! V , there is a smooth


urve 


�

: I ! V with 


0

�

= � . Regularity is inherited by all abelian Lie groups of the form

Z = V=�, where � is a dis
rete subgroup of V (Exer
ise III.4) (
f. Corollary I.1.17 for the Lie

group stru
ture on V=�).

(e) If K is a Lie group with a smooth exponential fun
tion exp

K

: k ! K and M is a


ompa
t smooth manifold, then we obtain an exponential fun
tion of the group C

1

(M;K) by

exp

G

: g = C

1

(M; k)! G = C

1

(M;K); � 7! exp

K

Æ�:

The following theorem is an important tool to verify that given Lie groups are regular.

Theorem IV.2.3. Let

b

G be a Lie group extension of the Lie groups G and N , i.e., there

exists a surje
tive morphism q:

b

G! G with ker q

�

=

N , where

b

G 
arries the stru
ture of an N -

prin
ipal bundle. Then the group

b

G is regular if and only if the groups G and N are regular.

The Fundamental Theorem

Lemma IV.2.4. (Omori) If G is a regular Lie group, x 2 g and � 2 C

1

(I; g) , then the initial

value problem

(E1) �

0

(t) = [�(t); �(t)℄; �(0) = x

has a unique solution given by

(E2) �(t) = Ad(


�

(t))

�1

:x:

Proof. For 
(t) := 


�

(t), we get with Lemma IV.1.4

Æ(


�1

) = �Ad(
):Æ(
) = �Ad(
):�:

We de�ne � by (E2). Then � is a smooth 
urve with

�

0

(t) = Ad(
(t))

�1

[�Ad(
(t)):�(t); x℄ = [Ad(
(t))

�1

:x; �(t)℄ = [�(t); �(t)℄

(Proposition III.1.16).

Now let � be another solution of (E1) and 
onsider the 
urve

e

�(t) := Ad(
(t)):�(t):

Then

e

�(0) = �(0) = x , and Proposition III.1.16 leads to

e

�

0

(t) = Ad(
(t)):[Æ(
)(t); �(t)℄ + Ad(
(t)):�

0

(t) = Ad(
(t)):

�

[�(t); �(t)℄ + �

0

(t)

�

= 0:

Therefore

e

� is 
onstant equal to x , and we obtain �(t) = Ad(
(t))

�1

:

e

�(t) = Ad(
(t))

�1

:x =

�(t):
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Remark IV.2.5. Let G be regular. Then the map

S: I � C

1

(I; g)! C

1

(I; g); S(s; �)(t) = s�(st)

is smooth. For � 2 C

1

(I; g) and 


�;s

(t) := 


�

(st), 0 � s � 1, we have Æ(


�;s

)(t) = s�(st) =

S(s; �)(t): Therefore




�

(s) = evol

G

�

S(s; �)

�

;

so that the map

evol

G

ÆS: I � C

1

(I; g)! G; (s; �) 7! 


�

(s)

is smooth.

Remark IV.2.6. Now we 
onsider smooth fun
tions I

2

! G , where I = [0; 1℄ is the unit

interval and G is a regular Lie group. A smooth g-valued 1-form � 2 


1

(I

2

; g) 
an be written

as

� = v � dx+ w � dy with v; w 2 C

1

(I

2

; g):

To evaluate the Maurer{Cartan equation for � , we �rst observe that

1

2

[�; �℄

�

�

�x

;

�

�y

�

=

h

�

�

�

�x

�

; �

�

�

�y

�i

= [v; w℄ 2 C

1

(I

2

; g);

and obtain

d�+

1

2

[�; �℄ =

�v

�y

dy ^ dx+

�w

�x

dx ^ dy + [v; w℄dx ^ dy =

�

�w

�x

�

�v

�y

+ [v; w℄

�

dx ^ dy:

Therefore the MC equation for � is equivalent to the partial di�erential equation

(4:1:5)

�v

�y

�

�w

�x

= [v; w℄:

Suppose that the two smooth fun
tions v; w: I

2

! g satisfy (4.1.5). Then we de�ne a

smooth fun
tion f : I

2

! G by

f(x; 0) := 


v(�;0)

(x) and f(x; y) := f(x; 0) � 


w(x;�)

(y):

Sin
e the map I ! C

1

(I; g); x 7! w(x; �) is smooth (Exer
ise!), f is a smooth fun
tion. We

have

Æ(f) = bv � dx+ w � dy with bv(x; 0) = v(x; 0); x 2 I:

The Maurer{Cartan equation for Æ(f) reads

�bv

�y

�

�w

�x

= [bv; w℄; so that subtra
tion of this equation

from (4.1.5) leads to

�(v � bv)

�y

= [v � bv; w℄:

As (v � bv)(x; 0) = 0, the uniqueness assertion of Lemma IV.2.3, applied with �(t) := w(x; t),

implies that (v � bv)(x; y) = 0 for all x; y 2 I . We 
on
lude that v = bv , whi
h means that

Æ(f) = v � dx+ w � dy .

Lemma IV.2.7. Let U be an open 
onvex subset of the lo
ally 
onvex spa
e V , G a regular

Lie group and and � 2 


1

(U; g) satisfy the Maurer{Cartan equation. Then there exists a smooth

fun
tion f :U ! G satisfying Æ(f) = � .

Proof. We may w.l.o.g. assume that x

0

= 0 2 U . For x 2 U , we then 
onsider the smooth


urve

�

x

: I ! g; t 7! �(tx)(x):
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Then the map U ! C

1

(I; g) is smooth (Exer
ise), so that the fun
tion

f :U ! G; x 7! evol

G

(�

x

)

is smooth.

First we show that f(sx) = 


�

x

(s) holds for ea
h s 2 I . From Remark IV.2.4 we derive

that

S(s; �

x

)(t) = s�

x

(st) = �(stx)(sx) = �

sx

(t);

hen
e S(s; �

x

) = �

sx

; whi
h leads to f(sx) = 


�

x

(s).

For x; x+ h 2 U , we 
onsider the smooth map

': I � I ! U; (s; t) 7! t(x+ sh)

and the smooth fun
tion F := fÆ' . Then the pre
eding 
onsiderations imply F (s; 0) = f(0) = 1 ,

�F

�t

(s; t) =

d

dt

f(t(x+ sh)) =

d

dt




�

x+sh

(t) = F (s; t):�

x+sh

(t)

= F (s; t):�(t(x + sh))(x + sh) = F (s; t):('

�

�)

(s;t)

�

�

�t

�

:

As we have seen in Remark IV.2.5, these relations imply already that Æ(F ) = '

�

� holds on the

square I

2

. We therefore obtain

�

�s

f(x+ sh) =

�

�s

F (s; 1) = F (s; 1):�

x+sh

(h) = f(x+ sh):�

x+sh

(h);

and for s = 0, this leads to (df)

x

(h) = f(x):�

x

(h); whi
h means that Æ(f) = � .

The following theorem is a version of the Fundamental Theorem of 
al
ulus for fun
tions

with values in regular Lie groups.

Theorem IV.2.8. (Fundamental Theorem for Lie group valued fun
tions) Let M be a simply


onne
ted manifold and G a regular Lie group. Then � 2 


1

(M; g) is integrable if and only if

(MC) d�+

1

2

[�; �℄ = 0:

Proof. We have already seen in Lemma IV.1.6 that the MC equation is ne
essary for the

existen
e of a smooth fun
tion f :M ! G with Æ(f) = � .

We 
onsider the produ
t set P := M � G with the two proje
tion maps F :P ! G

and q:P ! M . We de�ne a topology on P as follows. For ea
h pair (U; f), 
onsisting of

an open subset U � M and a smooth fun
tion f :U ! G with Æ(f) = � j

U

, the graph

�(f; U) := f(x; f(x)):x 2 Ug is a subset of P . These sets form a basis for a topology � on P .

With respe
t to this topology, the mapping q:P ! M is a 
overing map. To see this, let

x 2 M . Sin
e M is a manifold, there exists a neighborhood U of x whi
h is di�eomorphi


to a 
onvex subset of a lo
ally 
onvex spa
e. In view of Lemmas IV.1.10 and IV.1.5, for ea
h

g 2 G and ea
h x 2 U , the equation Æ(f) = � j

U

has a unique solution f

g

with f

g

(x) = g .

Now q

�1

(U) = U � G =

S

g2G

�(f

g

; U) is a disjoint union of open subsets of P (here we use

the 
onne
tedness of U ), and therefore q is a 
overing. We 
on
lude that P 
arries a natural

manifold stru
ture, for whi
h q is a lo
al di�eomorphism. For this manifold stru
ture, the

fun
tion F :P ! G is smooth with Æ(F ) = q

�

� .

Now we �x a point x

0

2M and an element g 2 G . Then the 
onne
ted 
omponent




M of

(x; g) in P is a 
onne
ted 
overing manifold of M , hen
e di�eomorphi
 to M , so that we may

put f := F Æ (q j

b

M

)

�1

.



Monastir Summer S
hool: In�nite-Dimensional Lie Groups 49

Remark IV.2.9. (a) If M is a 
omplex manifold, G is a 
omplex regular Lie group and

� 2 


1

(M; g) is a holomorphi
 1-form, then for any smooth fun
tion f :M ! G with Æ(f) = � ,

the di�erential of f is 
omplex linear in ea
h point, so that f is holomorphi
. Conversely, the

left logarithmi
 derivative of any holomorphi
 fun
tion f is a holomorphi
 1-form.

If, in addition, M is a 
omplex 
urve, i.e., a one-dimensional 
omplex manifold, then for

ea
h holomorphi
 1-form � 2 


1

(M; g) the 2-forms d� and [�; �℄ are holomorphi
, whi
h im-

plies that they vanish, be
ause M is a one-dimensional. Therefore the Maurer{Cartan equation

is automati
ally satis�ed by all holomorphi
 1-forms.

One of the main points of the notion of regularity is provided by the following theorem.

Theorem IV.2.10. If H is a regular Lie group, G is a simply 
onne
ted Lie group, and

':L(G) ! L(H) is a 
ontinuous homomorphism of Lie algebras, then there exists a unique Lie

group homomorphism f :G! H with L(f) = ' .

Proof. This is Theorem 8.1 in [Mil83℄ (see also [KM97, Th. 40.3℄). The uniqueness assertion

follows from Proposition IV.1.5 and does not require the regularity of H .

On G , we 
onsider the smooth h-valued 1-form given by � := ' Æ �

G

. That it satis�es

the Maurer{Cartan equation follows from

d� = ' Æ d�

G

= �

1

2

' Æ [�

G

; �

G

℄ = �

1

2

[' Æ �

G

; ' Æ �

G

℄ = �

1

2

[�; �℄:

Therefore the Fundamental Theorem implies the existen
e of a unique smooth fun
tion f :G! H

with Æ(f) = � and f(1

G

) = 1

H

. In view of Proposition IV.1.8(3), the fun
tion f is a morphism

of Lie groups, and we 
learly have L(f) = �

1

= ' .

Corollary IV.2.11. If G

1

and G

2

are regular simply 
onne
ted Lie groups with isomorphi


Lie algebras, then G

1

and G

2

are isomorphi
.

The non-simply 
onne
ted 
ase

For a lo
ally 
onvex Lie algebra g , we write

Z

1

dR

(M; g) := f� 2 


1

(M; g): d�+

1

2

[�; �℄ = 0g

for the set of solutions of the MC equation. Note that if g is abelian, then Z

1

dR

(M; g) is the

spa
e of 
losed g-valued 1-forms, but that for non-abelian Lie algebras g , the set Z

1

dR

(M; g)

does not have any natural ve
tor spa
e stru
ture.

We are now looking for a suÆ
ient 
ondition on � 2 Z

1

dR

(M; g) to be G-integrable. In the

remainder of this se
tion, we shall assume that G is regular and that M is 
onne
ted, but not

that M is simply 
onne
ted. We �x a base point m

0

2M .

Let � 2 Z

1

dR

(M; g). If 
: I = [0; 1℄!M is a pie
ewise smooth loop, then 


�

� 2 


1

(I; g)

�

=

C

1

(I; g), so that evol

G

(


�

�) 2 G is de�ned, be
ause G is regular.

Lemma IV.2.12. If � satis�es the MC equation, then evol

G

(


�

�) does not 
hange under

homotopies with �xed endpoints and

per

m

0

�

:�

1

(M;m

0

)! G; [
℄ 7! evol

G

(


�

�)

is a group homomorphism.

Proof. Let q

M

:

f

M ! M denote a universal 
overing manifold of M and 
hoose a base

point em

0

2

f

M with q

M

(em

0

) = m

0

. Then the g-valued 1-form q

�

M

� on

f

M also satis�es

the Maurer{Cartan equation, so that the Fundamental Theorem for simply 
onne
ted manifolds
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(Theorem IV.2.7) implies the existen
e of a unique smooth fun
tion

e

f :

f

M ! G with Æ(

e

f) = q

�

M

�

and

e

f(em

0

) = 1 .

We write

�:�

1

(M;m

0

)�

f

M !

f

M; (d;m) 7! d:m = �

d

(m)

for the left a
tion of the fundamental group �

1

(M;m

0

) on

f

M . Then �

�

d

q

�

M

� = q

�

M

� for ea
h

d 2 �

1

(M;m

0

) implies the existen
e of a fun
tion

':�

1

(M;m

0

)! G with

e

f Æ �

d

= '(d) �

e

f; d 2 �

1

(M;m

0

);

be
ause

Æ(

e

f Æ �

d

) = �

�

d

q

�

M

� = q

�

M

� = Æ(

e

f):

For d

1

; d

2

2 �

1

(M;m

0

), we then have

e

f Æ �

d

1

d

2

=

e

f Æ �

d

1

Æ �

d

2

= ('(d

1

) �

e

f) Æ �

d

2

= '(d

1

) � (

e

f Æ �

d

2

) = '(d

1

)'(d

2

) �

e

f;

so that ' is a group homomorphism.

We now pi
k a 
ontinuous lift e
: I !

f

M with q

M

Æ e
 = 
 and observe that

Æ(

e

f Æ e
) = e


�

q

�

M

� = 


�

�;

whi
h entails that

'([
℄) =

e

f([
℄:em

0

) =

e

f(e
(1)) = evol(


�

�):

This 
ompletes the proof.

De�nition IV.2.13. For � 2 Z

1

dR

(M; g), the homomorphism

per

m

0

�

:�

1

(M;m

0

)! G with per

m

0

�

([
℄) = evol(


�

�)

for ea
h pie
ewise smooth loop 
: I ! M in m

0

is 
alled the period homomorphism of � with

respe
t to m

0

.

Clearly, the fun
tion

e

f in the proof of Lemma IV.2.12 fa
tors through a smooth fun
tion

on M if and only if the period homomorphism is trivial. This leads to the following version of

the fundamental theorem for manifolds whi
h are not simply 
onne
ted.

Theorem IV.2.14. (Fundamental Theorem; non-simply 
onne
ted 
ase) Let M be a 
on-

ne
ted manifold, m

0

2 M , G a regular Lie group and � 2 


1

(M; g) . There exists a smooth

fun
tion f :M ! G with � = Æ(f) if and only if � satis�es

d�+

1

2

[�; �℄ = 0 and per

m

0

�

= 1:

Exer
ises for Se
tion IV

Exer
ise IV.1. Let V be a Ma
key 
omplete spa
e and � � V a dis
rete subgroup. Show

that the quotient Lie group V=� is regular.

Exer
ise IV.2. Let M be a smooth manifold, H a regular Lie group and � 2 Z

1

dR

(M; h).

Show that:

(1) For any di�eomorphism ' 2 Di�(M), we have

per

m

0

�

('

�

�) = per

'(m

0

)

�

(�) Æ �

1

(';m

0

):�

1

(M;m

0

)! H:

(2) Let G be a Lie group, a
ting smoothly on M from the left by g:m = �

g

(m) and also on

H , resp., h , by automorphisms �

H

(g), resp., �

h

(g). We 
all � an equivariant form if

�

�

g

� = �

h

(g) Æ �

holds for ea
h g 2 G . Show that if � is equivariant, then

�

H

(g) Æ per

m

0

�

(�) = per

g:m

0

�

(�) Æ �

1

(�

g

;m

0

):�

1

(M;m

0

)! G:

If, in addition, m

0

is �xed by G and G is 
onne
ted, then

im(per

m

0

�

) � H

G

:
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V. Lo
ally exponential Lie groups and Lie subgroups

In this se
tion, we turn to Lie groups with an exponential fun
tion exp:L(G) ! G whi
h

is well-behaved in the sense that it maps a 0-neighborhood in L(G) di�eomorphi
ally onto a

1-neighborhood in G . We 
all su
h Lie groups lo
ally exponential.

The assumption of lo
al exponentiality has important stru
tural 
onsequen
es, the most

important ones of whi
h are that it permits us to develop a good theory of Lie subgroups and that

there even is a 
hara
terization of those subgroup for whi
h we may form Lie group quotients.

Unfortunately, not all regular Lie groups are lo
ally exponential. As an important example

we dis
uss the group Di�(S

1

) in some detail.

V.1. Lo
ally exponential Lie groups

De�nition V.1.1. We 
all a Lie group G lo
ally exponential if it has a smooth exponential

fun
tion exp: g = L(G) ! G and there exists an open 0-neighborhood U � g su
h that

exp j

U

:U ! exp(U) is a di�eomorphism onto an open 1-neighborhood of G . A Lie group

is 
alled exponential if it has an exponential fun
tion whi
h is a di�eomorphism g ! G .

Lemma V.1.2. If G is a Lie group with exponential fun
tion exp: g ! G , then

d exp(0) = id

g

:

Proof. For x 2 g , we have exp(x) = 


x

(1), where 


x

is a solution of the IVP


(0) = 1; Æ(
) = x:

This implies in parti
ular that exp(tx) = 


tx

(1) = 


x

(t) (Remark IV.2.4), and hen
e

(d exp)(0)(x) = 


0

x

(0) = x:

The pre
eding lemma is not as useful in the in�nite-dimensional 
ontext as it is in the �nite-

dimensional or Bana
h 
ontext. For Bana
h{Lie groups, it follows from the Inverse Fun
tion

Theorem that exp restri
ts to a di�eomorphism of some open 0-neighborhood in g to an open

1-neighborhood in G , so that we 
an use the exponential fun
tion to obtain 
harts around 1 . We

will see below that this 
on
lusion does not work for Fr�e
het{Lie groups, be
ause in this 
ontext

there is no general Inverse Fun
tion Theorem. This observation also implies that to integrate

Lie algebra homomorphisms to group homomorphisms, it is in general not enough to start with

the pres
ription �(exp

G

x) := exp

H

'(x) to prove Theorem IV.2.10, be
ause the image of exp

G

need not 
ontain an identity neighborhood in G (
f. Theorem V.1.6 below).

Remark V.1.3. (a) In view of Lemma V.1.2, the Inverse Fun
tion Theorem implies that ea
h

Bana
h{Lie group is lo
ally exponential. This also 
overs all �nite-dimensional Lie groups.

(b) Unit groups of Ma
key 
omplete CIAs are lo
ally exponential (
f. [Gl02b℄). In fa
t,

if A is a Ma
key 
omplete 
omplex CIA, then the fa
t that A

�

is open implies that for ea
h

a 2 A , the spe
trum Spe
(a) is a 
ompa
t subset (whi
h also is non-empty), and it is shown

in [Gl02b℄ that the holomorphi
 
al
ulus works as for Bana
h algebras. We only have to use

partially smooth 
ountours around spe
tra. We thus obtain an exponential fun
tion

exp

A

:A! A

�

; x 7!

1

2�i

I

�

e

�

(�1� x)

�1

d�;
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where � is a pie
ewise smooth 
ontour around Spe
(x). Then exp is a holomorphi
 fun
tion

A! A

�

.

Let �(a) := supfj�j:� 2 Spe
(a)g denote the spe
tral radius of a 2 A . Then


 := fa 2 A: �(a� 1) < 1g

is an open 1-neighborhood in A

�

, and with the 
omplex logarithm fun
tion

log: fz 2 C : j1� zj < 1g ! C

satisfying log(1) = 0, we get the holomorphi
 fun
tion

log

A

: 
! A; x 7!

1

2�i

I

�

log(�)(�1 � x)

�1

d�;

where � is a 
ontour around Spe
(x), lying in the open dis
 of radius 1 around 1. Now fun
tional


al
ulus implies that (log

A

Æ exp

A

)(x) = x for �(x) suÆ
iently small, and (exp

A

Æ log

A

)(x) = x

for ea
h x 2 
. We 
on
lude that the unit group A

�

is lo
ally exponential.

If A is a real CIA, then one uses the fa
t that its 
omplexi�
ation A

C

is a CIA to see that

log

A

C

(
 \A

�

) � A , and that log

A

:= log

A

C

j




is a smooth lo
al inverse to exp

A

:= exp

A

C

j

A

.

(
) If K is a lo
ally exponential Lie group and M is a 
ompa
t manifold, then the Lie

group G := C

1

(M;K) (Example III.1.12) is lo
ally exponential.

In fa
t, if exp

K

: k ! K is an exponential fun
tion of K , then

exp

G

: g = C

1

(M; k)! G = C

1

(M;K); � 7! exp

K

Æ�

is a smooth exponential fun
tion of G . Sin
e we may use the exponential fun
tion exp

K

: k ! K

to get a lo
al 
hart of K , the 
onstru
tion of the lo
al 
harts of G implies that G is lo
ally

exponential.

(d) Re
ent results of Ch. Wo
kel ([Wo03℄) imply that the pre
eding theorem generalizes

even to gauge groups: If K is lo
ally exponential and q:P !M is a smooth prin
ipal K -bundle

over the 
ompa
t manifold M , then Gau(P ) 
arries a natural Lie group stru
ture, turning it

into a lo
ally exponential Lie group. In fa
t, one shows that

gau(P ) := C

1

(P; k)

K

! C

1

(P;K)

K

�

=

Gau(P ); � 7! exp

K

Æ�

is a lo
al homeomorphism, and that it 
an be used to de�ne a Lie group stru
ture on Gau(P ).

(e) If g is a nilpotent lo
ally 
onvex Lie algebra, then we 
an use the BCH series x � y :=

x+ y +

1

2

[x; y℄ + � � � to de�ne a polynomial Lie group stru
ture (g; �) with L(g; �) = g .

More generally, if g = lim

 �

g

j

is a proje
tive limit of a family of nilpotent Lie algebras

(g

j

)

j2J

(a so-
alled pro-nilpotent Lie algebra), then the 
orresponding morphisms of Lie algebras

are also morphisms for the 
orresponding group stru
tures, so that (g; �) := lim

 �

(g

j

; �) de�nes

on the spa
e g a Lie group stru
ture with L(g; �) = g . We thus obtain an exponential Lie group

G = (g; �) with exp

G

= id

g

.

This 
onstru
tion 
an be used in many situations to see that 
ertain groups 
an be turned

into Lie groups. An important 
lass of examples arises as follows. Let V be a �nite-dimensional

K -ve
tor spa
e, let P

d

(V; V ) denote the spa
e of all polynomials fun
tions V ! V of degree d .

Then for ea
h n � 2, the spa
e g

n

:=

L

n

k=2

P

k

(V; V ) 
arries a natural Lie algebra stru
ture

given for f 2 P

i

(V; V ) and g 2 P

j

(V; V ) by

[f; g℄(x) :=

�

dg(x)f(x) � df(x)g(x) for i+ j � 1 � n

0 for i+ j � 1 > n.

This is a modi�
ation of the natural Lie bra
ket on the spa
e C

1

(V; V )

�

=

V(V ), obtained by


utting of all terms of degree > n . From

[P

i

(V; V ); P

j

(V; V )℄ � P

i+j�1

(V; V )



Monastir Summer S
hool: In�nite-Dimensional Lie Groups 53

it immediately follows that ea
h g

n

is a nilpotent Lie algebra. For n < m , we have natural

proje
tions

'

nm

: g

m

! g

n

;

whi
h are a
tually homomorphisms of Lie algebras. The proje
tive limit Lie algebra g := lim

 �

g

n


an be identi�ed with the spa
e of V -valued formal power series starting in degree 2.

A natural Lie group 
orresponding to g

n

is the set of all polynomial maps f :V ! V with

f � id

V

2 g

n

. The group stru
ture is given by 
omposition and then omitting all terms of order

> n :

f � g = (f Æ g)

�n

:

This turns G

n

into a nilpotent Lie group with Lie algebra g

n

. The 
orresponding exponential

fun
tion

exp

G

n

: g

n

! G

n

is given by \integrating" a ve
tor �eld X 2 g

n

modulo terms of order > n . Sin
e G

n

is

di�eomorphi
 to a ve
tor spa
e, its exponential fun
tion is a di�eomorphism g

n

! G

n

.

We 
an now form the proje
tive limit group G := lim

 �

G

n

whose manifold stru
ture is

obtained from the fa
t that it is an aÆne spa
e with translation group g . Sin
e the exponential

fun
tions are 
ompatible with the limiting pro
ess, we see that G is an exponential Lie group

with a pro-nilpotent Lie algebra. The group G 
an be de�ned with the set of all formal

di�eomorphisms of V �xing 0 and with �rst order term given by id

V

. Likewise, g 
an be

identi�ed with a Lie algebra of formal ve
tor �elds.

(f) We des
ribe a Fr�e
het{Lie group G whi
h is analyti
, for whi
h exp: g ! G is a di�eo-

morphism and analyti
, but exp

�1

is not an analyti
 map, and the 
orresponding multipli
ation

on g is not analyti
.

Let A�(R) denote the aÆne group of R , whi
h is isomorphi
 to R

2

, endowed with the

multipli
ation

(x; y)(x

0

; y

0

) = (x + e

y

x

0

; y + y

0

)

and the exponential map

exp:R

2

! R

2

; exp(x; y) =

�

e

y

� 1

y

x; y

�

;

whose inverse is given by

log:R

2

! R

2

; log(x; y) =

�

y

e

y

� 1

x; y

�

:

On the Lie algebra level, we have

[(x; y); (x

0

; y

0

)℄ = (yx

0

� y

0

x; 0):

This means that

ad(0; y)

n

:(x

0

; y

0

) = (y

n

x

0

; 0);

so that

P

1

n=1

ad(0; y)

n


onverges if and only if jyj < 1.

We put

G := A�(R)

N

�

=

(R

2

)

N

with the multipli
ation

(x

n

; y

n

)

n2N

(x

0

n

; y

0

n

)

n2N

:= (x

n

+ e

y

n

x

0

n

; y

n

+ y

0

n

)

n2N

:

We endow G with the manifold stru
ture we obtain by identifying it with the produ
t spa
e

(R

2

)

N

whi
h is a Fr�e
het spa
e (
f. Exer
ise II.8). This turns G into an analyti
 manifold. As
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the power series de�ning the multipli
ation 
onverges globally, the multipli
ation of G is analyti
,

and the same holds for the inversion map, be
ause in A�(R) we have

(x; y)

�1

= (�e

�y

x;�y):

Therefore G is an analyti
 Lie group.

The exponential map of G is given by

exp((x

n

; y

n

))

n

=

�

e

y

n

� 1

y

n

x

n

; y

n

�

;

and again we see that exp is analyti
 be
ause the 
orresponding power series 
onverges globally.

For the inverse fun
tion, we obtain

exp

�1

((x

n

; y

n

))

n

=

�

y

n

e

y

n

� 1

x

n

; y

n

�

;

but this map is not analyti
, be
ause the power series of the real analyti
 fun
tion y 7!

y

e

y

�1


onverges only on the interval from �2� to 2� , and the produ
t of in�nitely many su
h intervals

is not an open subset in g

�

=

(R

2

)

N

.

For the multipli
ation on the Lie algebra aff(R) obtained from the exponential 
hart, we

have

(x; y) � (x

0

; y

0

) = log(exp(x; y) exp(x

0

; y

0

)) = log

�

e

y

� 1

y

x+ e

y

e

y

0

� 1

y

0

x

0

; y + y

0

�

=

�

y + y

0

e

y+y

0

� 1

�

e

y

� 1

y

x+ e

y

e

y

0

� 1

y

0

x

0

�

; y + y

0

�

and in parti
ular

(0; y) � (1; 0) = log(e

y

; y) =

�

ye

y

e

y

� 1

; y

�

=

�

y

1� e

�y

; y

�

:

Therefore the argument form above also shows that the multipli
ation on the produ
t Lie algebra

g is not analyti
.

For the following results we refer to [GN05℄.

Theorem V.1.4. Ea
h 
ontinuous homomorphism ':G ! H between lo
ally exponential

groups is smooth.

Proof. (Idea) Using exponential 
harts, we obtain open 0-neighborhoods U

g

� g = L(G) and

U

h

� h = L(H) together with a 
ontinuous map  :U

g

! U

h

satisfying

 (x � y) =  (x) �  (y); x; y 2 U

g

:

Then one shows that

f(x) := lim

n!1

n (

1

n

x)


onverges for ea
h x 2 g , that f 
oin
ides on a 0-neighborhood with  , and that f is linear.

As f is 
ontinuous in a 0-neighborhood, it is smooth, and from exp

H

Æf = ' Æ exp

G

on a 0-

neighborhood in U

g

, we derive that ' is smooth.
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Theorem V.1.5. Let G and H be lo
ally exponential groups,  :L(G)! L(H) a 
ontinuous

homomorphism of Lie algebras, and assume that G is 
onne
ted and simply 
onne
ted. Then

there exists a unique morphism of Lie groups ':G! H with L(') =  .

Proof. (Idea) Let U

g

� g = L(G) be a 
onvex balan
ed 0-neighborhood mapped di�eomor-

phi
ally by the exponential fun
tion to an open subset of G .

First one shows that the lo
al Maurer{Cartan form on U

g

is given by

(�

g

)

x

:= (exp

�

�

G

)

x

=

Z

1

0

e

�t ad x

dt:

This implies that  

�

�

h

=  Æ �

g

on some 0-neighborhood in g . For the map f :U

G

! H; x 7!

exp

H

( (x)), this leads to

f

�

�

H

=  Æ �

G

;

showing that the h-valued 1-form  Æ �

G

is lo
ally integrable. Sin
e this form on G is left

invariant and G is simply 
onne
ted, it is globally integrable (for that one 
an argue as in the

proof of the Fundamental Theorem IV.2.7), so that we �nd a smooth fun
tion ':G ! H with

'(1) = 1 and Æ(') =  Æ�

G

. Now Proposition IV.1.8(3) implies that ' is a group homomorphism

with L(') = �

1

=  .

Corollary V.1.6. If G

1

and G

2

are lo
ally exponential simply 
onne
ted Lie groups with

isomorphi
 Lie algebras, then G

1

and G

2

are isomorphi
.

It is instru
tive to 
ompare the pre
eding 
orollary with Corollary IV.2.10, whi
h makes a

similar statement for regular Lie groups. Although all known Lie groups are regular, there is no

theorem saying that all lo
ally exponential groups are regular. That the 
onverse is false is 
lear

from the example G = Di�(S

1

), whi
h is regular but not lo
ally exponential.

Di�(S

1

) is not lo
ally exponential

Below we show that the exponential fun
tion

exp:V(S

1

)! Di�(S

1

)

is not a lo
al di�eomorphism by proving that every identity neighborhood of Di�(S

1

) 
ontains

elements whi
h do not lie on a one-parameter group, hen
e are not 
ontained in the image of

exp.

Let G := Di�

+

(S

1

) denote the group of orientation preserving di�eomorphisms of S

1

, i.e.,

the identity 
omponent of Di�(S

1

). To get a better pi
ture of this group, we �rst 
onstru
t its

universal 
overing group

e

G . Let

e

G := f' 2 Di�(R): (8x 2 R) '(x + 2�) = '(x); '

0

> 0g:

We 
onsider the map

q:R ! S

1

:= R=2�Z; x 7! x+ 2�Z

as the universal 
overing map of S

1

. Then every orientation preserving di�eomorphism  2

Di�

+

(S

1

) lifts to a di�eomorphism

e

 of R , 
ommuting with the translation a
tion of the group

2�Z

�

=

�

1

(S

1

), whi
h means that

e

 (x + 2�) =

e

 (x) + 2� for ea
h x 2 R . The di�eomorphism

e

 is uniquely determined by the 
hoi
e of an element in q

�1

( (q(0))). That  is orientation

preserving means that

e

 

0

> 0. Hen
e we have a surje
tive homomorphism

q

G

:

e

G! G; q

G

(')(q(x)) := q('(x))

with kernel isomorphi
 to Z .
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The Lie group stru
ture of

e

G is rather simple. It 
an be de�ned by a global 
hart. Let

C

1

2�

(R;R) denote the Fr�e
het spa
e of 2� -periodi
 smooth fun
tions on R , whi
h is 
onsidered

as a 
losed subspa
e of the Fr�e
het spa
e C

1

(R;R). In this spa
e,

U := f' 2 C

1

2�

(R;R):'

0

> �1g

is an open 
onvex subset, and the map

�:U !

e

G; �(f)(x) := x+ f(x)

is a bije
tion.

In fa
t, let f 2 U . Then �(f)(x+2�) = �(f)(x)+2� follows dire
tly from the requirement

that f is 2� -periodi
, and �(f)

0

> 0 follows from f

0

> �1. Therefore �(f) is stri
tly in
reasing,

hen
e a di�eomorphism of R onto the interval �(f)(R) . As the latter interval is invariant under

translation by 2� , we see that �(f) is surje
tive and therefore �(f) 2

e

G . Conversely, it is easy

to see that �

�1

( )(x) =  (x) � x yields an inverse of �. We de�ne the manifold stru
ture on

e

G by de
laring � to be a global 
hart. With respe
t to this 
hart, the group operations in

e

G

are given by

m(f; g)(x) := f(g(x) + x) � x and �(f)(x) = (f + id

R

)

�1

(x) � x;

whi
h 
an be shown dire
tly to be smooth maps. We thus obtain on

e

G the stru
ture of a Lie

group su
h that �:U !

e

G is a di�eomorphism. In parti
ular,

e

G is 
ontra
tible and therefore

simply 
onne
ted, so that the map q

G

:

e

G! G turns out to be the universal 
overing map of G .

Theorem V.1.7. Every identity neighborhood in Di�(S

1

) 
ontains elements not 
ontained in

the image of the exponential fun
tion.

Proof. First we 
onstru
t 
ertain elements in

e

G whi
h are 
lose to the identity. For 0 < " <

1

n

,

we 
onsider the fun
tion

f :R ! R; x 7! x+

�

n

+ " sin

2

(nx)

and observe that f 2

e

G follows from f

0

(x) = 1 + 2"n sin(nx) 
os(nx) = 1 + "n sin(2nx) > 0.

Step 1. For n large �xed and "! 0, we get elements in

e

G whi
h are arbitrarily 
lose to id

R

.

Step 2. q

G

(f) has a unique periodi
 orbit of order 2n on S

1

: Under q

G

(f), the point q(0) 2 S

1

is mapped to

�

n

et
., so that we obtain the orbit

q(0)! q(

�

n

)! q(

2�

n

)! : : :! q(

(2n�1)�

n

)! q(0):

For 0 < x

0

<

�

n

, we have for x

1

:= f(x

0

):

x

0

+

�

n

< x

1

<

2�

n

;

and for x

n

:= f(x

n�1

), the relations

0 < x

0

< x

1

�

�

n

< x

2

�

2�

n

< � � � <

�

n

:

Therefore x

k

�x

0

62 2�Z for ea
h k 2 N , and hen
e the orbit of q(x

0

) under q

G

(f) is not �nite.

This proves that q

G

(f) has a unique periodi
 orbit and that the order of this orbit is 2n .

Step 3. q

G

(f) 6= g

2

for all g 2 Di�(S

1

): We analyze the periodi
 orbits. Every periodi
 point of

g is a periodi
 point of g

2

and vi
e versa. If the period of x under g is odd, then the period of x

under g and g

2

is the same. If the period of x is 2m , then its orbit under g breaks up into two

orbits under g

2

, ea
h of order m . Therefore g

2


an never have a single periodi
 orbit of even

order, and this proves that q

G

(f) has no square root in Di�(S

1

). It follows in parti
ular that

q

G

(f) does not lie on any one-parameter subgroup, i.e., q

G

(f) 6= expX for ea
h X 2 V(M).
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Remark V.1.8. (a) If M is a 
ompa
t manifold, then one 
an show that the identity 
om-

ponent Di�(M)

0

of Di�(M) is a simple group (Epstein, Hermann and Thurston; see [Ep70℄).

Being normal in Di�(M)

0

, the subgroup hexpV(M)i 
oin
ides with Di�(M)

0

. Hen
e every

di�eomorphism homotopi
 to the identity is a �nite produ
t of exponentials.

(b) Although Di�(M)

0

is a simple Lie group, its Lie algebra V(M) is far from being simple.

For ea
h subset K � M , the set V

K

(M) of all ve
tor �elds supported in the set K is a Lie

algebra ideal whi
h is proper if K is not dense.

The stru
ture of abelian Lie groups

Proposition V.1.9. (Mi
hor{Tei
hmann, 1999) Let A be a 
onne
ted abelian Lie group

modeled on a Ma
key 
omplete spa
e a . Then A has a smooth exponential fun
tion if and only

if A

�

=

a=�

A

holds for a dis
rete subgroup �

A

of a .

Proof. For ea
h abelian Lie group of the form A = a=�

A

, the Lie algebra is L(A) = a and

the quotient map a ! A is a smooth exponential fun
tion.

Therefore it remains to see that the existen
e of a smooth exponential fun
tion implies that

A is of the form a=�

A

. First we 
laim that exp

A

is surje
tive. Sin
e the adjoint a
tion of A is

trivial (Corollary IV.1.9), Lemma IV.1.4 implies that exp: (a;+)! A is a group homomorphism,

hen
e a morphism of Lie groups. Let a 2 A and 
onsider a smooth path 
: [0; 1℄ ! A with


(0) = 1 and 
(1) = a . Then the logarithmi
 derivative � := Æ(
) is a smooth map [0; 1℄! a ,

and we 
onsider the smooth path

�(t) := exp

A

�

Z

t

0

�(s) ds

�

that also satis�es Æ(�) = � (Proposition IV.1.8(1)). Here we have used the Ma
key 
ompleteness

of a to ensure the existen
e of the Riemann integral of the smooth 
urve � . Now �(0) = 
(0) = 1

implies that

a = 
(1) = �(1) = exp

�

Z

1

0

�(s) ds

�

2 im(exp)

(Lemma IV.1.5).

Let q

A

:

e

A ! A denote a universal 
overing homomorphism with L(q

A

) = id

a

. Then the

exponential fun
tion of A lifts to a smooth exponential fun
tion exp

e

A

: a !

e

A with exp

A

=

q

A

Æ exp

e

A

. Sin
e

e

A is simply 
onne
ted, the Lie algebra homomorphism id

a

: a! a integrates to

a Lie group homomorphism L:

e

A! a with L(L) = id

a

(Theorem IV.2.10). We now have

L Æ exp

e

A

= exp

a

ÆL(L) = id

a

Æ id

a

= id

a

;

and hen
e exp

e

A

ÆL restri
ts to the identity on im(exp

e

A

) = a (apply the reasing above to

e

A),

whi
h also leads to

exp

e

A

ÆL = id

e

A

:

Hen
e

e

A

�

=

a as Lie groups, whi
h implies that exp

A

is a 
overing morphism and therefore that

�

A

:= ker(exp

A

) � a is dis
rete with A

�

=

a=�

A

.

V.2. Lie subgroups

It is a well known result in �nite-dimensional Lie theory that for ea
h subalgebra h of the

Lie algebra g of a �nite-dimensional Lie group G , there exists a Lie group H with Lie algebra

h together with an inje
tive morphism of Lie groups �:H ! G for whi
h L(�): h ! g is the
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in
lusion map. As a group H 
oin
ides with hexp hi , the analyti
 subgroup 
orresponding to h ,

and h 
an be re
overed from this subgroup as the set

fx 2 g: exp(Rx) � Hg:

This ni
e and simple theory of analyti
 subgroups is no longer valid in full generality for in�nite-

dimensional Lie groups, not even for lo
ally exponential ones. As we shall see below, it has to

be re�ned in several respe
ts.

Proposition V.2.1. Let G be a lo
ally exponential Lie group. For x; y 2 L(G) , we have the

Trotter Produ
t Formula

exp(x+ y) = lim

n!1

�

exp

�

x

n

�

exp

�

y

n

�

�

n

and the Commutator Formula

exp([x; y℄) = lim

n!1

�

exp

�

x

n

�

exp

�

y

n

�

exp

�

�

x

n

�

exp

�

�

y

n

�

�

n

2

:

As an immediate 
onsequen
e, we 
an assign to ea
h 
losed subgroup H � G a Lie

subalgebra of L(G):

Corollary V.2.2. For every 
losed subgroup H of the lo
ally exponential Lie group G the

subset

L(H) := fX 2 L(G): exp(RX) � Hg

is a 
losed Lie subalgebra of L(G) .

Sin
e the range of a morphism of Lie algebras need not be 
losed, it is quite restri
tive to


onsider only 
losed subgroups, resp., 
losed Lie subalgebras.

De�nition V.2.3. A 
losed subgroup H of a lo
ally exponential Lie group G is 
alled a Lie

subgroup if there exists an open 0-neighborhood V � L(G) su
h that exp j

V

is a di�eomorphism

onto an open subset exp(V ) of G and

exp(V \ L(H)) = (expV ) \H:

Remark V.2.4. (a) In [La99℄, S. Lang 
alls a subgroup H of a Bana
h{Lie group G a Lie

subgroup if H 
arries a Lie group stru
ture for whi
h there exists an immersion �:H ! G .

In view of the de�nition of an immersion, this 
on
ept requires the Lie algebra h = L(H) of

g = L(G) to be a 
losed subalgebra of g whi
h is 
omplemented in the sense that there exists a


losed ve
tor spa
e 
omplement. Conversely, it is shown in [La99℄ that for every 
omplemented


losed subalgebra h � g , there exists a Lie subgroup in this sense ([La99, Th. VI.5.4℄). For

a �nite-dimensional Lie group G , this 
on
ept des
ribes the analyti
 subgroups of G , be
ause

every subalgebra of a �nite-dimensional Lie algebra is 
losed and 
omplemented. As the dense

wind in the two-dimensional torus G = T

2

shows, subgroups of this type need not be 
losed. We

also note that the 
losed subspa
e




0

(N;R) � `

1

(N;R)

of sequen
es 
onverging to 0 is not 
omplemented (see [Wer95, Satz IV.6.5℄ for an elementary

proof), hen
e not a Lie subgroup in the sense of Lang.

(b) The most restri
tive 
on
ept of a Lie subgroup is the one used in [Bou89, Ch. 3℄. Here

a Lie subgroup H is required to be a submanifold, whi
h implies in parti
ular that it is lo
ally


losed and therefore 
losed. On the other hand, this implies that the quotient spa
e G=H has

a natural manifold stru
ture for whi
h the quotient map q:G! G=H is a submersion ([Bou89,

Ch. 3, x1.6, Prop. 11℄).
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(
) For �nite-dimensional Lie groups, 
losed subgroups are Lie subgroups, but for Bana
h{

Lie groups this is no longer true. What remains true is that lo
ally 
ompa
t subgroups (whi
h are

in parti
ular 
losed) are Lie subgroups (
f. [HoMo98, Th. 5.41(vi)℄). How bad 
losed subgroups

may behave is illustrated by the following example due to K. H. Hofmann: We 
onsider the real

Hilbert spa
e G := L

2

([0; 1℄;R) as a Bana
h{Lie group. Then the subgroup H := L

2

([0; 1℄;Z)

of all those fun
tions whi
h almost everywhere take values in Z is a 
losed subgroup. Sin
e the

one-parameter subgroups of G are of the form Rf , f 2 G , we have L(H) = f0g . On the other

hand, the group H is ar
wise 
onne
ted and even 
ontra
tible,be
ause the map F : [0; 1℄�H ! H

given by

F (t; f)(x) :=

�

f(x) 0 � x � t

0 t < x � 1

is 
ontinuous with F (1; f) = f and F (0; f) = 0.

The following proposition shows that Lie subgroups 
arry natural Lie group stru
tures.

Proposition V.2.5. Let G be a lo
ally exponential Lie group and H � G a Lie subgroup.

Then H 
arries a natural lo
ally exponential Lie group stru
ture su
h that L(H) is the Lie

algebra of H ,and the exponential map of H is given by the restri
tion

exp

H

= exp

G

j

L(H)

:L(H)! H:

Moreover, the in
lusion map �:H ! G is a morphism of Lie groups whi
h is a homeomorphism

onto its image, and L(�):L(H)! L(G) is the in
lusion map.

Proof. (Idea) The idea is to apply Theorem III.2.1 to the subgroup H where U = expV

holds for some suitable open symmetri
 subset V � L(H).

Proposition V.2.6. If ':G

0

! G is a morphism of lo
ally exponential Lie groups and H � G

is a Lie subgroup, then H

0

:= '

�1

(H) is a Lie subgroup. In parti
ular, ker' is a Lie subgroup

of G

0

.

Corollary V.2.7. If N E G is a normal subgroup of the lo
ally exponential Lie group G

su
h that the quotient group G=N 
arries a lo
ally exponential Lie group stru
ture for whi
h the

quotient map q:G! G=N is a morphism of Lie groups, then N is a Lie subgroup.

Theorem V.2.8. (Quotient Theorem for lo
ally exponential groups) Let N E G be a normal

Lie subgroup and n � g = L(G) its Lie algebra. Then the quotient group G=N is a lo
ally

exponential Lie group if and only if there exists a 0-neighborhood U � g su
h that the operator

�

g

(x) :=

Z

1

0

e

�t adx

dt

on g satis�es

�

g

(x)(n) = n for all x 2 U:

Corollary V.2.9. (Quotient Theorem for Bana
h{Lie groups) Let N E G be a 
losed subgroup

of the Bana
h{Lie group G . Then the quotient group G=N is a Bana
h{Lie group if and only

N is a normal Lie subgroup.

Proof. Sin
e g = L(G) is a Bana
h{Lie algebra, the ideal n = L(N) is invariant under all

operators

�

g

(x) =

Z

1

0

e

�t adx

dt =

1� e

� adx

adx

=

1

X

n=0

1

(n+ 1)!

(�1)

n

(adx)

n

:

For Spe
(adx) � B

2�

(0) (whi
h is the 
ase on some 0-neighborhood of g), this operator is

invertible, and its inverse 
an be expressed by a power series in adx . Therefore we also get

�

g

(x)

�1

(n) � n , whi
h implies �

g

(x)(n) = n .
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Algebrai
 subgroups

We will now dis
uss a very 
onvenient 
riterion whi
h in many 
on
rete 
ases 
an be used

to verify that a 
losed subgroup H of a Bana
h{Lie group is a Lie subgroup. To this end, we

will need the 
on
ept of a polynomial fun
tion and of an algebrai
 subgroup.

De�nition V.2.10. Let A be a Bana
h algebra. A subgroup G � A

�

is 
alled algebrai
 if

there exists a d 2 N

0

and a set F of Bana
h spa
e valued polynomial fun
tions on A � A of

degree � d su
h that

G = fg 2 A

�

: (8f 2 F) f(g; g

�1

) = 0g:

Theorem V.2.11. (Harris/Kaup) [Ne04
, Prop. IV.14℄ Every algebrai
 subgroup G � A

�

of

the unit group A

�

of a Bana
h algebra A is a Lie subgroup.

Proposition V.2.12. Let E be a Bana
h spa
e and F � E a 
losed subspa
e. Then

H := fg 2 GL(E): g:F � Fg

is a Lie subgroup of GL(E) .

Proof. Let V � g be an open 0-neighborhood su
h that exp j

V

:V ! expV is a di�eomor-

phism and k expx� 1k < 1 for all x 2 V . Then the inverse fun
tion

log:= (exp j

V

)

�1

: expV ! g

is given by the 
onvergent power series

log(g) =

1

X

n=1

(�1)

n+1

n

(g � 1)

n

(this requires a proof!). For g = expx 2 (expV ) \ H , we then obtain x:F � F dire
tly from

the power series.

Analyti
 subgroups

De�nition V.2.13. Let G be a Lie group with an exponential fun
tion, so that we obtain

for ea
h x 2 g := L(G) an automorphism e

adx

:= Ad(expx) 2 Aut(g). A subalgebra h � g is


alled stable if

e

adx

:h = Ad(expx):h = h for all x 2 h:

An ideal n E g is 
alled a stable ideal if

e

adx

:n = n for all x 2 g:

The following lemma shows that stability of kernel and range is a ne
essary reqirement for

the integrability of a homomorphism of Lie algebras.

Lemma V.2.14. If ':G! H is a morphism of Lie groups with an exponential fun
tion, then

im(L(')) is a stable subalgebra of L(H) , and ker(L(')) is a stable ideal of L(G) .

Proof. For � := L('), we have ' Æ exp

G

= exp

H

Æ�; whi
h leads to

�Æe

adx

= L(')ÆAd(expx) = L('Æ


expx

) = L(


'(expx)

Æ') = Ad(expL('):x)ÆL(') = e

ad�(x)

Æ�:

We 
on
lude in parti
ular that im(�) is a stable subalgebra and that ker� is a stable ideal.
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Example V.2.15. Let V := C

1

(R;R) and 
onsider the one-parameter group �:R ! GL(V ),

given by �(t)(f)(x) = f(x + t). Then R a
ts smoothly on V , so that we may form the


orresponding semidire
t produ
t group

G := V o

�

R:

This is a Lie group with a smooth exponential fun
tion given by

exp(v; t) =

�

Z

1

0

�(st):v ds; t

�

;

where

�

Z

1

0

�(st):v ds

�

(x) =

Z

1

0

v(x + st) ds:

The Lie algebra g has the 
orresponding semidire
t produ
t stru
ture g = V o

D

R with

Dv = v

0

, i.e.,

[(f; t); (g; s)℄ = (tg

0

� sf

0

; 0):

In g

�

=

V o R , we now 
onsider the subalgebra h := V

[0;1℄

o R , where

V

[0;1℄

:= ff 2 V : supp(f) � [0; 1℄g:

Then h 
learly is a 
losed subalgebra of g . It is not stable be
ause �(�t)V

[0;1℄

= V

[t;t+1℄

: The

subgroup of G generated by exp h 
ontains f0g o R , V

[0;1℄

, and hen
e all intervales V

[t;t+1℄

,

whi
h implies that hexp hi = C

1




(R) o R .

The pre
eding lemma implies that the in
lusion h ,! g does not integrate to a homomor-

phism ':H ! G of Lie group with an exponential fun
tion, for whi
h L(') is the in
lusion

h ,! g .

De�nition V.2.16. Let G be a lo
ally exponential Lie group. An analyti
 subgroup is an

inje
tive morphism �:H ! G of lo
ally exponential Lie groups for whi
h H is 
onne
ted and

the di�erential L(�) of � is inje
tive.

Remark V.2.17. If �:H ! G is an analyti
 subgroup, then the relation

(5:2:1) exp

G

ÆL(�) = � Æ exp

H

implies that

ker(L(�)) = L(ker �) = f0g;

so that L(�):L(H) ! L(G) is an inje
tive morphism of lo
ally exponential Lie algebras, whi
h

implies in parti
ular that h := im(L(�)) is a stable subalgebra of L(G) (Lemma V.2.14).

Moreover, (5.2.1) shows that the subgroup �(H) of G 
oin
ides, as a set, with the subgroup

hexp

G

hi of G generated by exp

G

h . Therefore an analyti
 subgroup 
an be viewed as a lo
ally

exponential Lie group stru
ture on the subgroup of G generated by exp

G

h .

De�nition V.2.18. A lo
ally 
onvex Lie algebra g is 
alled lo
ally exponential if there exists

a symmetri
 
onvex open 0-neighborhood U � g and an open subset D � U � U on whi
h we

have a smooth map

m

U

:D ! U; (x; y) 7! x � y

su
h that (U;D;m

U

; 0) is a lo
al Lie group with the additional property that

(E1)For x 2 U and jtj; jsj; jt+ sj � 1, we have (tx; sx) 2 D with

tx � sx = (t+ s)x:

(E2) The se
ond order term in the Taylor expansion of m

U

is b(x; y) =

1

2

[x; y℄:

Sin
e any lo
al Lie group (U;D;m

U

; 0) on an open subset of a lo
ally 
onvex spa
e V leads

to a Lie algebra stru
ture on V (Remark III.1.12), 
ondition (E2) only insures that g is the Lie

algebra of the lo
al group.
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Lemma V.2.19. The Lie algebra of a lo
ally exponential Lie group is lo
ally exponential.

Theorem V.2.20. (Analyti
 Subgroup Theorem) Let G be a lo
ally exponential Lie group

and g its Lie algebra. Then an inje
tive morphism �: h ! g of lo
ally 
onvex Lie algebras

integrates to an analyti
 subgroup if and only if h is a lo
ally exponential Lie algebra.

The 
ondition that a 
losed subalgebra h � g is lo
ally exponential is quite subtle. It

means that for x; y suÆ
iently 
lose to 0 in h , we have x � y 2 h . To verify this 
ondition,

one would like to show that the integral 
urve 
(t) := x � ty of the left invariant ve
tor �eld

y

l

through x does not leave the 
losed subspa
e h of g . This leads to the additional 
ondition

that d�

x

(0)(h) � h , whi
h, under the assumption that h is stable, means that the operator

�

g

(x) =

R

1

0

e

�t adx

dt satis�es �

g

(x)(h) = h for x 2 h suÆ
iently 
lose to 0 (Theorem V.2.8).

For a 
losed ideal n E g of the lo
ally exponential Lie algebra g , the 
orresponding 
ondition

�

g

(x)(n) = n for all x suÆ
iently 
lose 0 is suÆ
ient for n to be lo
ally exponential. This result

is used in the proof of the Quotient Theorem V.2.8.

Corollary V.2.21. (Analyti
 Subgroup Theorem for Bana
h{Lie groups) Let G be a lo
ally

exponential Lie group and g its Lie algebra. Then an inje
tive morphism �: h ! g of Bana
h

algebras always integrates to an analyti
 subgroup.

Proof. Using the BCH multipli
ation on a 0-neighborhood of h , it follows that h is lo
ally

exponential.

Remark V.2.22. If G is a Bana
h{Lie group and h � g := L(G) a 
losed separable subalgebra,

then the analyti
 subgroup H := hexp hi � G satis�es

L(H) = fx 2 g: exp(Rx) � Hg = h;

i.e., expRx � H implies x 2 h (Theorem 5.52 in [HoMo98℄).

For non-separable subalgebras h , this is no longer true in general, as the following 
oun-

terexample shows ([HoMo98, p.157℄): We 
onsider the abelian Lie group g := `

1

(R;R)�R , where

the group stru
ture is given by the addition. We write (e

r

)

r2R

for the 
anoni
al topologi
al basis

elements of `

1

(R;R). Then the subgroup D generated by the pairs (e

r

;�r), r 2 R , is 
losed

and dis
rete, so that G := g=D is an abelian Lie group. Now we 
onsider the 
losed subalgebra

h := `

1

(R;R) of g . As h+D = g , we have H := exp h = G , and therefore (0; 1) 2 L(H) n h:

Exer
ises for Se
tion V

Exer
ise V.1. Let V be a lo
ally 
onvex spa
e. Show that every 
ontinuous group homomor-

phism 
: (R;+) ! (V;+) 
an be written as 
(t) = tv for some v 2 E .

Exer
ise V.2. Let E be a Bana
h spa
e.

(1) If F is a 
losed subspa
e of E and H := fg 2 GL(E): g(F ) � Fg (
f. Proposition V.2.12),

then

L(H) = fY 2 L(E):Y (F ) � Fg:

(2) For ea
h v 2 E and H := fg 2 GL(E): g(v) = vg , we have

L(H) = fY 2 L(E):Y:v = 0g:

Exer
ise V.3. Let A be a Bana
h spa
e and m:A�A! A a 
ontinuous bilinear map. Then

the group

Aut(A;m) := fg 2 GL(A): (8a; b 2 A) m(g:a; g:b) = g:m(a; b)g

of automorphisms of the (not ne
essarily asso
iative) algebra (A;m) is a Lie group whose Lie

algebra is the spa
e

der(A;m) := fX 2 L(A): (8a; b 2 A)X:m(a; b) = m(X:a; b) +m(a;X:b)g

of derivations of (A;m). Hint: Theorem V.2.11.
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Exer
ise V.4. Let J be a set. For a tuple x = (x

j

)

j2J

2 (R

+

)

J

, we de�ne

X

j2J

x

j

:= sup

n

X

j2F

x

j

:F � J �nite

o

:

Show that

`

1

(J;R) :=

n

x = (x

j

)

j2J

:

X

j2J

jx

j

j <1

o

is a Bana
h spa
e with respe
t to the norm kxk

1

:=

P

j2J

jx

j

j: De�ne e

j

2 `

1

(J;R) by

(e

j

)

i

= Æ

ij

. Show that the subgroup � generated by fe

j

: j 2 Jg is dis
rete.

VI. More on integrability of Lie algebras

We re
all that a lo
ally 
onvex Lie algebra g is said to integrable if there exists some Lie

group G with L(G) = g (De�nition III.1.9).

Examples VI.1. If g is a �nite-dimensional Lie algebra, endowed with its unique lo
ally 
onvex

topology, then g is integrable. This is Lie's Third Theorem. One possibility to prove this is �rst

to use Ado's Theorem to �nd an embedding g ,! gl

n

(R) and then to endow the analyti
 subgroup

G := hexp gi � GL

n

(R) with a Lie group stru
ture su
h that L(G) = g (
f. Corollary V.2.20).

Proposition VI.2. Let G be a 
onne
ted 
omplex Lie group. Then ea
h 
losed ideal of L(G)

is invariant under Ad(G) .

Proof. Let a E g = L(G) be a 
losed ideal. Sin
e G is assumed to be 
onne
ted, it suÆ
es

to show that there exists a 1-neighborhood U � G with Ad(U):a � a . We may w.l.o.g. assume

that U is di�eomorphi
 to an open 
onvex 0-neighborhood in g . Then we �nd for every g 2 U

a 
onne
ted open subset V � C with 0; 1 2 V and a holomorphi
 map p:V ! G with p(0) = 1

and p(1) = g .

Let w

0

2 a and w(t) := Ad(p(t)):w

0

for t 2 V . We have to show that w(1) = Ad(g):w

0

2

a . For the right logarithmi
 derivative v := Ad(p):Æ(p):V ! g , we obtain the di�erential

equation

(6:1) w

0

(t) = Ad(p(t)):[p

�1

(t):p

0

(t); w

0

℄ = Ad(p(t)):[Æ(p)(t); w

0

℄ = [v(t); w(t)℄:

Sin
e the maps v and w are holomorphi
, their Taylor expansions 
onverge for t 
lose to 0:

v(t) =

1

X

n=0

v

n

t

n

and w(t) =

1

X

n=0

w

n

t

n

in g . Then the di�erential equation (6.1) for w 
an be written as

1

X

n=0

(n+ 1)w

n+1

t

n

= w

0

(t) = [v(t); w(t)℄ =

1

X

n=0

t

n

n

X

k=0

[v

k

; w

n�k

℄:

Comparing 
oeÆ
ients now leads to

w

n+1

=

1

n+ 1

n

X

k=0

[v

k

; w

n�k

℄;

so that we obtain indu
tively w

n

2 a for ea
h n 2 N . Sin
e a is 
losed, we get w(t) 2 a for t


lose to 0. Applying the same argument in other points t

0

2 V , we see that the set w

�1

(a) is

an open 
losed subset of V , and therefore that a(1) 2 a be
ause a(0) 2 a and V is 
onne
ted.
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Corollary VI.3. If g is a 
omplex Fr�e
het{Lie algebra 
ontaining a 
losed ideal whi
h is not

stable, then g is not integrable to a 
omplex Lie group with an exponential fun
tion.

Remark VI.4. The pre
eding proposition 
an be generalized to the larger 
lass of real analyti


Lie groups, where it 
an be used to 
on
lude that the Lie group Di�(M) does not possess an

analyti
 Lie group stru
ture. Indeed, for ea
h non-dense open subset K �M , the subspa
e

V(M)

K

:= fX 2 V(M):X j

K

= 0g

is a 
losed ideal of V(M) not invariant under Di�(M) be
ause Ad('):V(M)

K

= V(M)

'(K)

for

' 2 Di�(M).

Theorem VI.5. (Lempert) If M is a 
ompa
t manifold, then the Fr�e
het{Lie algebra V(M)

C

is not integrable to a regular 
omplex Lie group.

Proof. (Sket
h; see [Mil83℄) Let g := V(M)

C

and K � M be an open non-empty subset of

M whi
h is not dense. Then

i

K

:= fx 2 g:x j

K

= 0g

is a 
losed ideal of g .

Let G be a regular 
omplex Lie group with Lie algebra g and let q:

g

Di�(M) ! Di�(M)

0

denote the universal 
overing homomorphism of Di�(M)

0

. Then the in
lusion homomorphism

V(M) ,! g 
an be integrated to a Lie group homomorphism ':

g

Di�(M)! G . For g 2

g

Di�(M),

we then have

Ad('(g)):i

K

= i

'(g)(K)

;


ontradi
ting the invarian
e of i

K

under Ad(G) (Proposition VI.2).

Remark VI.6. (a) In [Omo81℄, Omori shows that for any non-
ompa
t smooth manifold M ,

the Lie algebra V(M) is not integrable.

(b) Theorem VI.5 holds without the regularity assumption, resulting in the fa
t that V(M)

C

is not integrable to any group G with an exponential fun
tion. The main point is that for any

su
h group G and X 2 V(M) � g , the one-parameter group exp(RX) a
ts on g pre
isely as

the 
orresponding one-parameter group of Di�(M). This argument requires a uniqeness lemma

for \smooth" maps with values in Aut(g), whi
h is far from being a Lie group (
f. [GN05℄).

Example VI.7. To 
onstru
t an example of a non-integrable Bana
h{Lie algebra, we pro
eed

as follows.

Let H be an in�nite-dimensional 
omplex Hilbert spa
e and U(H) its unitary group. This

is a Bana
h{Lie group with Lie algebra

L(U(H)) = u(H) := fX 2 L(H):X

�

= �Xg:

The 
enter of this Lie algebra is given by z(u(H)) = Ri1: We 
onsider the Bana
h{Lie algebra

g :=

�

u(H)� u(H)

�

=Ri(1;

p

21):

We 
laim that g is not integrable. Let us assume to the 
ontrary that G is a 
onne
ted Lie

group with Lie algebra g . Let

q: u(H)� u(H)! g

denote the quotient homomorphism. A

ording to Kuiper's Theorem, the group U(H) and

hen
e the group G

1

:= U(H)�U(H) is 
ontra
tible ([Ku65℄) and therefore in parti
ular simply


onne
ted. Hen
e there exists a unique Lie group homomorphism

f :G

1

! G with L(f) = q:

We then have exp

G

Æq = f Æexp

G

1

, and in parti
ular exp(ker q) � kerf: As Z(G

1

)

�

=

T

2

is a two-

dimensional torus and exp(ker q) is a dense one-parameter subgroup of Z(G

1

), the 
ontinuity of

f implies that Z(G

1

) � ker f and hen
e that z(g

1

) � kerL(f) = ker q , whi
h is a 
ontradi
tion.

The following theorem is an immediate 
onsequen
e of Corollary V.2.20.
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Theorem VI.8. (van Est{Korthagen, 1964) Let h and g be Bana
h{Lie algebras. If g is

integrable and ': h ,! g is inje
tive, then h is integrable.

Corollary VI.9. If g is a Bana
h{Lie algebra, then g= ad z(g)

�

=

ad g is integrable.

Proof. The adjoint representation ad: g ! der g fa
tors through an inje
tive homomorphism

g=z(g) ,! der g , and

der g := fD 2 L(g): (8x; y 2 g) D([x; y℄) = [D(x); y℄ + [x;D(y)℄g

is the Lie algebra of the Bana
h{Lie group Aut(g) (
f. Exer
ise V.3).

The following theorem generalizes Corollary VI.9. It requires more re�ned ma
hinery

be
ause for a lo
ally 
onvex Lie algebra g the group Aut(g) 
arries no natural Lie group stru
ture.

Nevertheless, the te
hnique of the proof is to endow the subgroup generated by e

ad g

, whi
h makes

sense for lo
ally exponential Lie algebras, with a Lie group stru
ture.

Theorem VI.10. For any lo
ally exponential Lie algebra g , the quotient g=z(g) is integrable

to a lo
ally exponential Lie group.

The pre
eding 
orollary redu
es the integrability problem for Bana
h{Lie algebras, and even

for lo
ally exponential Lie algebras, to the question when a 
entral extension of an integrable Lie

algebra is again integrable. In this 
ontext, a 
entral extension is a quotient morphism q:

b

g ! g

of Lie algebras for whi
h z := ker q is 
entral in

b

g . Now the question is the following: given a


onne
ted Lie group G with Lie algebra g , when is there a 
entral group extension Z ,!

b

G! G

\integrating" the 
orresponding Lie algebra extension? Without going too mu
h into details,

we 
ite the following theorem whi
h points into a dire
tion whi
h 
an be followed with su

ess

for general Lie groups (see [Ne02a℄). Earlier versions of the following theorem for Bana
h{Lie

algebras have been obtained by van Est and Korthagen in their systemati
 dis
ussion of the

non-integrability problem for Bana
h{Lie algebras in [EK64℄.

Theorem VI.11. Let G be a simply 
onne
ted lo
ally exponential Lie group with Lie algebra

g . Then one 
an asso
iate to ea
h 
entral Lie algebra extension z ,!

b

g! g a singular 
ohomology


lass 
 2 H

2

(G; z)

�

=

Hom(�

2

(G); z) whi
h we interpret as a period homomorphism

per




:�

2

(G)! z:

Then a 
orresponding 
entral extension Z ,!

b

G!! G exists for a Lie group Z with Lie algebra

z if and only if im(per




) � z is dis
rete.

Remark VI.12. (a) Let g be a lo
ally exponential Lie algebra and G

ad

a simply 
onne
ted Lie

group with Lie algebra g=z(g) (Theorem VI.9). Then the pre
eding theorem implies in parti
ular

that g is integrable if and only if the period homomorphism per

g

:�

2

(G

ad

)! z(g) asso
iated to

the 
entral extension ad: g ! g=z(g) has dis
rete image.

The problem with this 
hara
terization is that in general it might be quite hard to determine

the image of the period homomorphism.

(b) For any quotient morphism G ! G=N of Bana
h{Lie groups, Mi
hael's Sele
tion

Theorem ([Mi59℄) implies that G is a lo
ally trivial topologi
al N -prin
ipal bundle over G=N ,

whi
h implies the existen
e of a 
orresponding long exa
t homotopy sequen
e.

If g is an integrable Bana
h{Lie algebra and G is a simply 
onne
ted Bana
h{Lie group

with Lie algebra g , then the long exa
t homotopy sequen
e asso
iated to the homomorphism

q:G! G

ad

with kernel Z(G)

0

indu
es a surje
tive 
onne
ting homomorphism

�

2

(G

ad

)! �

1

(Z(G));

and by identifying the universal 
overing group of Z(G)

0

with (z(g);+), one 
an show that

this 
onne
ting homomorphism 
oin
ides with the period map. Its image is the group �

1

(Z(G)),


onsidered as a subgroup of z . With this pi
ture in mind, one may think that the non-integrability

on a Bana
h{Lie algebra g is 
aused by the non-existen
e of a Lie group Z with Lie algebra z(g)

and fundamental group im(per

g

).

(
) If g is �nite-dimensional, then G

ad

is also �nite-dimensional, and therefore �

2

(G

ad

)

vanishes by a theorem of E. Cartan ([Mi95, Th. 3.7℄). Hen
e the period homomorphism per

g

is

trivial for every �nite-dimensional Lie algebra g .
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Example VI.13. We 
onsider the Lie algebra

g :=

�

u(H)� u(H)

�

=Ri(1;

p

21)

from Example VI.7. Then z(g)

�

=

iR , and one 
an show that the image of the period map is

given by

2�i(Z+

p

2Z)� iR;

whi
h is not dis
rete.

Appendix A. Chara
ters of the algebra of smooth fun
tions

Theorem A.1. Let M be a �nite-dimensional smooth para
ompa
t manifold and A :=

C

1

(M;R) the unital Fr�e
het algebra of smooth fun
tions on M .

(1) If M is 
ompa
t, then ea
h maximal ideal of A is 
losed.

(2) Ea
h 
losed maximal ideal of A is the kernel of an evaluation homomorphism

Æ

p

:A! R; f 7! f(p) .

(3) Ea
h 
hara
ter �:A! R is an evaluation in some point p 2M .

Proof. (1) If M is 
ompa
t, then the unit group A

�

= C

1

(M;R

�

) is an open subset of A .

If I � A is a maximal ideal, then I interse
ts A

�

trivially, and sin
e A

�

is open, the same

holds for the 
losure I . Hen
e I also is a proper ideal, so that the maximality of I implies that

I is 
losed.

(2) Let I � A be a 
losed maximal ideal. If all fun
tions in I vanish in the point p 2M ,

then the maximality of I implies that I = ker Æ

p

. So we have to show that su
h a point exists.

Let us assume that this is not the 
ase. From that we shall derive the 
ontradi
tion I = A .

Let K � M be a 
ompa
t set. Then for ea
h p 2 K , there exists a fun
tion f

p

2 I with

f

p

(p) 6= 0. The family (f

�1

p

(R

�

))

p2K

is an open 
over of K , so that there exist p

1

; : : : ; p

n

2 K

with f

K

:=

P

j

f

2

p

j

> 0 on K .

If M is 
ompa
t, then we thus obtain a fun
tion f

M

2 I with no zeros, whi
h leads to

the 
ontradi
tion f

M

2 A

�

\ I . Suppose that M is non-
ompa
t. Then there exists a sequen
e

(M

n

)

n2N

of 
ompa
t subsets with M =

S

n

M

n

and M

n

�M

0

n+1

. Let f

n

2 I be a non-negative

fun
tion supported by M

n+1

nM

0

n�1

with f

n

> 0 on the 
ompa
t set M

n

nM

0

n�1

. Here the

requirement on the support 
an be a
hieved by multiplying with a smooth fun
tion supported

by M

n+1

nM

0

n�1

whi
h equals 1 on M

n

nM

0

n�1

. Then the series

P

n

f

n


onverges, be
ause on

ea
h set M

n

it is eventually 
onstant and ea
h 
ompa
t subset of M is 
ontained in some M

n

.

Now f :=

P

n

f

n

is a smooth fun
tion in I = I with f > 0. Hen
e f is invertible, whi
h is a


ontradi
tion.

(3) Let �:A ! R be a 
hara
ter. If f 2 A is non-negative, then for ea
h 
 > 0 we have

f + 
 = h

2

for some h 2 A

�

, and this implies that �(f)+ 
 = �(f + 
) = �(h)

2

� 0, whi
h leads

to �(f) � �
 , and 
onsequently �(f) � 0.

Now let F :M ! R be a smooth fun
tion for whi
h the sets F

�1

(℄ �1; 
℄) , 
 2 R , are


ompa
t. Su
h a fun
tion 
an easily be 
onstru
ted from a sequen
e (M

n

)

n2N

as above using a

smooth version of Urysohn's Lemma (Exer
ise).

We 
onsider the ideal I := ker� . If I has a zero, then I = ker Æ

p

for some p 2M and this

implies that � = Æ

p

. Hen
e we may assume that I has no zeros. Then the argument under (2)

provides for ea
h 
ompa
t subset K �M a 
ompa
tly supported fun
tion f

K

2 I with f

K

> 0

on K . If h 2 A is supported by K , we therefore �nd a � > 0 with �f

K

�h � 0, whi
h leads to

0 � �(�f

K

� h) = �(�h);

and hen
e to �(h) � 0. Repla
ing h by �h , we also get �(h) � 0 and hen
e �(h) = 0.

Therefore � vanishes on all 
ompa
tly supported fun
tions.
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For 
 > 0, we now pi
k f




2 I with f




> 0 on the 
ompa
t subset F

�1

(℄ �1; 
℄) and

f




� 0. Then there exists a � > 0 with �f




+F � 
 on F

�1

(℄�1; 
℄) . Now �f




+F � 
 holds

on all of M , and therefore

�(F ) = �(F + �f




) � 
:

Sin
e 
 > 0 was arbitrary, we arrive at a 
ontradi
tion.

Appendix B. The 
ompa
t open topology

In this appendix, we dis
uss some properties of the 
ompa
t open topology on the spa
e

C(X;Y ) of 
ontinuous maps between two topologi
al spa
es X and Y .

De�nition B.1. If X and Y are topologi
al spa
es, then the topology on C(X;Y ) generated

by the sets

W (K;O) := ff 2 C(X;Y ): f(K) � Og;

K � X 
ompa
t and O � Y open, is 
alled the 
ompa
t open topology.

The following lemma is extremely useful to 
onstru
t group topologies from a �lter basis of

identity neighborhoods. Here we shall use it to see that for a topologi
al group G , the 
ompa
t

open topology turns C(X;G) into a topologi
al group.

Lemma B.2. Let G be a group and F a �lter basis of subsets of G satisfying

(U0)

T

F = f1g .

(U1) (8U 2 F)(9V 2 F) V V � U:

(U2) (8U 2 F)(9V 2 F) V

�1

� U:

(U3) (8U 2 F)(8g 2 G)(9V 2 F) gV g

�1

� U:

Then there exists a unique group topology on G su
h that F is a basis of 1-neighborhoods in G .

This topology is given by fU � G: (8g 2 U)(9V 2 F) gV � Ug:

Proof. ([Bou88, Ch. III, x1.2, Prop. 1℄) Let

� := fU � G: (8g 2 U)(9V 2 F) gV � Ug:

First we show that � is a topology. Clearly �; G 2 � . Let (U

j

)

j2J

be a family of elements of

� and U :=

S

j2J

U

j

. For ea
h g 2 U , there exists a j

0

2 J with g 2 U

j

and a V 2 F with

gV � U

j

0

� U . Thus U 2 � , and we see that � is stable under arbitrary unions.

If U

1

; U

2

2 � and g 2 U

1

\ U

2

, then there exist V

1

; V

2

2 F with gV

i

� U

i

. Sin
e F is a

�lter basis, there exists V

3

2 F with V

3

� V

1

\ V

2

, and then gV

3

� U

1

\ U

2

. We 
on
lude that

U

1

\ U

2

2 � , and hen
e that � is a topology on G .

We 
laim that the interior of a subset U � G is given by

U

0

= U

1

:= fu 2 U : (9V 2 F) uV � Ug:

In fa
t, if there exists a V 2 F with uV � U , then we pi
k a W 2 F with WW � V and

obtain uWW � U , so that uW � U

1

. Hen
e U

1

is open, and it 
learly is the largest open subset


ontained in U , i.e., U

1

= U

0

. It follows in parti
ular that U is a neighborhood of g if and

only if g 2 U

0

, and we see in parti
ular that F is a basis of the neighborhood �lter of 1 . The

property

T

F = f1g implies that for x 6= y , there exists U 2 F with y

�1

x 62 U . For V 2 F

with V V � U and W 2 F with W

�1

� V , we then obtain y

�1

x 62WW

�1

, i.e., xW \yW = �.

Thus (G; �) is a Hausdor� spa
e.

To see that G is a topologi
al group, we have to verify that the map

f :G�G! G; (x; y) 7! xy

�1

is 
ontinuous. So let x; y 2 G , U 2 F and pi
k V 2 F with yV y

�1

� U and W 2 F with

WW

�1

� V . Then

f(xW; yW ) = xWW

�1

y

�1

= xy

�1

y(WW

�1

)y

�1

� xy

�1

yV y

�1

� xy

�1

U;

implies that f is 
ontinuous in (x; y).
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Lemma B.3. Let X be a non-empty topologi
al spa
e and G a topologi
al group. Then the

set C(X;G) of all 
ontinuous maps X ! G is a group with respe
t to pointwise multipli
ation.

The unit element of this group is the 
onstant fun
tion 1 . The system F of all sets W (K;U) �

C(X;G) , where K � X is 
ompa
t and U � G is an open 1-neighborhood, is a �lter basis, and

there exists a unique group topology on C(X;G) for whi
h F is a basis of 1-neighborhoods.

This topology is 
alled the topology of 
ompa
t 
onvergen
e or the topology of uniform


onvergen
e on 
ompa
t sets.

Proof. First we show that F is a �lter basis:

For ea
h x 2 X , the set W (fxg; G) is 
ontained in F , so that F is not empty. Sin
e

ea
h set W (K;U) 
ontains the 
onstant map 1 , it is non-empty. We further have W (K

1

; U

1

) \

W (K

2

; U

2

) � W (K

1

[ K

2

; U

1

\ U

2

). This proves that F is a �lter basis of subsets of G . We

now verify the 
onditions in Lemma B.2:

(U0): If f 2 C(X;G) is 
ontained in W (fxg; U) for all 1-neighborhoods U in G , it

follows from the fa
t that G is Hausdor� that f(x) = 1 , so that

T

F 
onsists only of the


onstant fun
tion 1 .

(U1): For ea
h W (K;U) 2 F , we �nd a 1-neighborhood V � G with V V � U . Then

W (K;V )W (K;V ) �W (K;U).

(U2): W (K;U)

�1

=W (K;U

�1

).

(U3): For f 2 C(X;G) and W (K;U) 2 F , we 
onsider the open set

E := f(x; g) 2 X �G: f(x)gf(x)

�1

2 Ug:

Then K � f1g � E and the 
ompa
tness of K imply the existen
e of a 1-neighborhood V in

G with K � V � E . Then fW (K;V )f

�1

�W (K;U).

Now Lemma B.2 shows that there exists a unique group topology on C(X;G) for whi
h F

is a basis of 1-neighborhoods.

Proposition B.4. For a topologi
al spa
e X and a topologi
al group G , the 
ompa
t open

topology 
oin
ides on C(X;G) with the topology of 
ompa
t 
onvergen
e for whi
h the sets

W (K;O) , K � X 
ompa
t and O an open 1-neighborhood in G , form a basis of identity

neighborhoods.

Proof. Step 1: The topology of 
ompa
t 
onvergen
e is �ner than the 
ompa
t open

topology be
ause ea
h set W (K;O) is open in the topology of 
ompa
t 
onvergen
e. In fa
t, for

f 2 W (K;O) the set f(K) � O � G is 
ompa
t, so that there exists a 1-neighborhood U � G

with f(K)U � O . This implies that f �W (K;U) �W (K;O), and hen
e that W (K;O) is open

in the topology of uniform 
onvergen
e on 
ompa
t subsets of X .

Step 2: Let f

0

2 C(X;G). We 
laim that ea
h set of the form f

0

W (K;V ) 
ontains a

neighborhood of f

0

in the 
ompa
t open topology.

Let W = W

�1

� G be an open 1-neighborhood. Sin
e f

0

is 
ontinuous, ea
h k 2 K has

a 
ompa
t neighborhood U

k

in K with f

0

(U

k

) � f

0

(k)W . The 
ompa
tness of K implies that

it is 
overed by �nitely many of the sets U

k

, so that there exist k

1

; : : : ; k

n

2 K with

K � U

k

1

[ : : : [ U

k

n

:

Then the sets Q

j

:= f

0

(U

k

j

)W are open in G with f

0

2 W (U

k

j

; Q

j

). Therefore P :=

T

n

j=1

W (U

k

j

; Q

j

) is a neighborhood of f

0

with respe
t to the 
ompa
t open topology. For

f 2 P and x 2 U

k

j

, we have f

0

(x) 2 Q

j

and f(x) 2 Q

j

, whi
h implies that

f

0

(x)

�1

f(x) 2 Q

�1

j

Q

j

�W

�1

f

0

(U

k

j

)

�1

f

0

(U

k

j

)W �W

�1

W

�1

f

0

(k

j

)

�1

f

0

(k

j

)WW �W

4

� V:

We 
on
lude that f 2 f

0

W (K;V ) and therefore P � f

0

W (K;V ). This 
ompletes the proof.
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Remark B.5. (a) If G is a �xed topologi
al group, then C(�; G) is a 
ontravariant fun
tor from

the 
ategory of Hausdor� topologi
al spa
es and 
ontinuous maps to the 
ategory of topologi
al

groups.

In fa
t, for ea
h 
ontinuous map f :X ! Y , we have a group homomorphism

f

�

= C(f;G):C(Y;G) ! C(X;G); � 7! � Æ f:

For ea
h 
ompa
t subset K � X and ea
h open subset O � G , we have

(f

�

)

�1

(W (K;O)) �W (f(K); O);

whi
h implies the 
ontinuity of C(f;G).

(b) If X is a �xed Hausdor� spa
e and ':G! H a morphism of topologi
al groups, then

the map

'

�

= C(X;'):C(X;G)! C(X;H); � 7! ' Æ �

is a group homomorphism. For ea
h 
ompa
t subset K � X and ea
h open subset O � H , we

have

('

�

)

�1

(W (K;O)) �W (K;'

�1

(O));

whi
h implies the 
ontinuity of C(X;').

Proposition B.6. Let X and Y be topologi
al spa
es. On C(X;Y ) , the 
ompa
t open

topology 
oin
ides with the graph topology, i.e., the topology generated by the sets of the form

C(X;Y )

U;K

:= ff 2 C(X;Y ): �(f j

K

) � Ug;

where U � X � Y is open, K � X is 
ompa
t, and �(f) � X � Y is the graph of f .

If, in addition, X is 
ompa
t, then a basis for the graph topology is given by the sets

C(X;Y )

U

:= ff 2 C(X;Y ): �(f) � Ug;

where U � X � Y is open.

Proof. Let f 2 C(X;Y ), K � X 
ompa
t and U � �(f j

K

) be an open subset of X�Y . Then

there exists for ea
h x 2 X a 
ompa
t neighborhood K

x

of x in K and an open neighborhood

U

f(x)

of f(x) in Y with K

x

� U

f(x)

� U and f(K

x

) � U

f(x)

. Covering K with �nitely many

sets K

x

i

, i = 1; : : : ; n , we see that

n

\

i=1

W (K

x

i

; U

f(x

i

)

) � C(X;Y )

U;K

:

This implies that ea
h set C(X;Y )

U;K

is open in the 
ompa
t open topology.

Conversely, let K � X be 
ompa
t and O � Y open. Then

W (K;O) = ff 2 C(X;Y ): �(f j

K

) � X �Og = C(X;Y )

X�O;K

is open in the graph topology. We 
on
lude that the graph topology 
oin
ides with the 
ompa
t

open topology.

Assume, in addition, that X is 
ompa
t. The system of the sets C(X;Y )

U

is stable under

interse
tions, hen
e a basis for the topology it generates. Ea
h set C(X;Y )

U

= C(X;Y )

U;X

is open in the graph topology. If, 
onversely, K � X is 
ompa
t and U � X � Y is open

with f 2 C(X;Y )

U;K

, then V :=

�

(X n K) � Y

�

[ U is an open subset of X � Y with

f 2 C(X;Y )

V

� C(X;Y )

U;K

. This 
ompletes the proof.



70 monas.tex January 9, 2006

Appendix C. Lie algebra 
ohomology

The 
ohomology of Lie algebras is the natural tool to understand how we 
an build new Lie

algebras

b

g from given Lie algebras g and a in su
h a way that a E

b

g and

b

g=a

�

=

g . An important

spe
ial 
ase of this situation arises if a is assumed to be abelian. We will see in parti
ular how

the abelian extensions of Lie algebras 
an be parametrized by a 
ertain 
ohomology spa
e.

Cohomology with values in topologi
al modules

Let K be a topologi
al �eld of 
hara
teristi
 zero (all �eld operations are assumed to be


ontinuous). A topologi
al Lie algebra g is a K -Lie algebra whi
h is a topologi
al ve
tor spa
e

for whi
h the Lie bra
ket is a 
ontinuous bilinear map. A topologi
al g-module is a g-module V

whi
h is a topologi
al ve
tor spa
e for whi
h the module stru
ture, viewed as a map g�V ! V ,

(x; v) 7! x:v is 
ontinuous. Note that every module V of a Lie algebra g over a �eld K be
omes

a topologi
al module if we endow K , g and V with the dis
rete topology. In this sense, all the

following applies in parti
ular to general modules of Lie algebra over �elds of 
hara
teristi
 zero.

De�nition C.1. Let V be a topologi
al module of the topologi
al Lie algebra g . For p 2 N

0

,

let C

p




(g; V ) denote the spa
e of 
ontinuous alternating maps g

p

! V , i.e., the Lie algebra

p-
o
hains with values in the module V . We write C

�

(g; V ) :=

L

p2N

0

C

p




(g; V ). Note that

C

1




(g; V ) = L(g; V ) is the spa
e of 
ontinuous linear maps g ! V . We use the 
onvention

C

0




(g; V ) = V . We then obtain a 
hain 
omplex with the di�erential

d

g

:C

p




(g; V )! C

p+1




(g; V )

given on f 2 C

p




(g; V ) by

(d

g

f)(x

0

; : : : ; x

p

) :=

p

X

j=0

(�1)

j

x

j

:f(x

0

; : : : ; bx

j

; : : : ; x

p

)

+

X

i<j

(�1)

i+j

f([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

);

where bx

j

indi
ates omission of x

j

. Note that the 
ontinuity of the bra
ket on g and the a
tion

on V imply that d

g

f is 
ontinuous and an element of C

p+1




(g; V ).

For elements of low degree, we have in parti
ular:

p = 0 : d

g

f(x) = x:f

p = 1 : d

g

f(x; y) = x:f(y)� y:f(x)� f([x; y℄)

p = 2 : d

g

f(x; y; z) = x:f(y; z)� y:f(x; z) + z:f(x; y)� f([x; y℄; z) + f([x; z℄; y)� f([y; z℄; x)

=

X


y
:

x:f(y; z)� f([x; y℄; z);

where we have used the notation

X


y
:


(x; y; z) := 
(x; y; z) + 
(y; z; x) + 
(z; x; y):

In this sense, the Ja
obi identity reads

P


y
:

[[x; y℄; z℄ = 0:

Below we shall show that d

2

g

= 0, so that the spa
e Z

p




(g; V ) := ker(d

g

j

C

p




(g;V )

) of p-


o
y
les 
ontains the spa
e B

p




(g; V ) := d

g

(C

p�1




(g; V )) of p-
oboundaries. The quotient

H

p




(g; V ) := Z

p




(g; V )=B

p




(g; V )

is the p-th 
ontinuous 
ohomology spa
e of g with values in the g-module V . We write [f ℄ :=

f +B

p




(g; V ) for the 
ohomology 
lass of the 
o
y
le f .
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On C

�




(g; V ), we have a natural representation of g , given for x 2 g and f 2 C

p




(g; V ) by

the Lie derivative

(L

x

f)(x

1

; : : : ; x

p

) = x:f(x

1

; : : : ; x

p

)�

p

X

j=1

f(x

1

; : : : ; [x; x

j

℄; : : : ; x

p

)

= x:f(x

1

; : : : ; x

p

) +

p

X

j=1

(�1)

j

f([x; x

j

℄; x

1

; : : : ; bx

j

; : : : ; x

p

):

We further have for ea
h x 2 g an insertion map

i

x

:C

p




(g; V )! C

p�1




(g; V );

�

i

x

:f

�

(x

1

; : : : ; x

p�1

) = f(x; x

1

; : : : ; x

p�1

);

where we de�ne i

x

to be 0 on C

0




(g; V )

�

=

V .

Lemma C.2. For x; y 2 g , we have the following identities:

(1) L

x

= d

g

Æ i

x

+ i

x

Æ d

g

(Cartan formula).

(2) [L

x

; i

y

℄ = i

[x;y℄

.

(3) [L

x

; d

g

℄ = 0 .

(4) d

2

g

= 0 .

(5) L

x

(Z

p




(g; V )) � B

p




(g; V ) . In parti
ular, the natural g-a
tion on H

p




(g; V ) is trivial.

Proof. (1) Using the insertion map i

x

0

, we 
an rewrite the formula for the 
oboundary

operator as

�

i

x

0

:d

g

f

�

(x

1

; : : : ; x

p

) = x

0

:f(x

1

; : : : ; x

p

)�

p

X

j=1

(�1)

j�1

x

j

:f(x

0

; : : : ; bx

j

; : : : ; x

p

)

+

p

X

j=1

(�1)

j

f([x

0

; x

j

℄; x

1

; : : : ; bx

j

; : : : ; x

p

)

+

X

1�i<j

(�1)

i+j

f([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

)

=x

0

:f(x

1

; : : : ; x

p

)�

p

X

j=1

(�1)

j�1

x

j

:f(x

0

; : : : ; bx

j

; : : : ; x

p

)

�

p

X

j=1

f(x

1

; : : : ; x

j�1

; [x

0

; x

j

℄; x

j+1

; : : : ; x

p

)

�

X

1�i<j

(�1)

i+j

f(x

0

; [x

i

; x

j

℄; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

)

=(L

x

0

f)(x

1

; : : : ; x

p

)� d

g

�

i

x

0

f

�

(x

1

; : : : ; x

p

):

This proves our assertion.

(2) The expli
it formula for L

x

implies that for y = x

1

, we have i

y

L

x

= L

x

i

y

� i

[x;y℄

:

(3),(4) Let ':C

�




(g; V ) ! C

�




(g; V ) be a linear map for whi
h there exists an " 2 f�1g

with ' Æ i

x

= "i

x

Æ' for all x 2 g and a k 2 N with '(C

p




(g; V )) � C

p+k




(g; V ) for ea
h p 2 N

0

.

We 
laim that ' = 0. Sin
e the operators i

x

:C

p




(g; V ) ! C

p�1




(g; V ), x 2 g , separate the

points, it suÆ
es to show that i

x

Æ' = "'Æ i

x

vanishes for ea
h x 2 g . On C

0




(g; V ), this follows

from the de�nition of i

x

, and on C

p




(g; V ), p 2 N , we obtain it by indu
tion.

Now we prove (3). From (2) we get

L

[x;y℄

= [L

x

;L

y

℄ = [d

g

Æ i

x

;L

y

℄ + [i

x

Æ d

g

;L

y

℄

= [d

g

;L

y

℄ Æ i

x

+ d

g

Æ i

[x;y℄

+ i

[x;y℄

Æ d

g

+ i

x

Æ [d

g

;L

y

℄

= [d

g

;L

y

℄ Æ i

x

+ L

[x;y℄

+ i

x

Æ [d

g

;L

y

℄;
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so that ' := [d

g

;L

y

℄ anti
ommutes with the operators i

x

(" = �1 and k = 1). Therefore the

argument in the pre
eding paragraph shows that ' vanishes, whi
h is (3).

To obtain (4), we 
onsider the operator ' = d

2

g

. Combining (3) with the Cartan Formula,

we get

(C:2) 0 = [d

g

;L

x

℄ = d

2

g

Æ i

x

� i

x

Æ d

2

g

;

so that the argument above applies with " = 1 and k = 2. This proves that d

2

g

= 0.

(5) follows immediately from the Cartan formula (1).

De�nition C.3. A linear subspa
e W of a topologi
al ve
tor spa
e V is 
alled (topologi
ally)

split if it is 
losed and there is a 
ontinuous linear map �:V=W ! V for whi
h the map

W � V=W ! V; (w; x) 7! w + �(x)

is an isomorphism of topologi
al ve
tor spa
es. Note that the 
losedness of W guarantees that

the quotient topology turns V=W into a Hausdor� spa
e whi
h is a topologi
al ve
tor spa
e

with respe
t to the indu
ed ve
tor spa
e stru
ture. A 
ontinuous linear map f :V !W between

topologi
al ve
tor spa
es is said to be (topologi
ally) split if the subspa
es ker(f) � V and

im(f) �W are topologi
ally split.

Remark C.4. Let g be a Lie algebra and

0! V

1

�

��!V

2

�

��!V

3

! 0

be a topologi
ally split short exa
t sequen
e of g-modules. Identifying V

1

with �(V

1

) � V

2

,

we then obtain inje
tive maps �

p

:C

p




(g; V

1

) ! C

p




(g; V

2

) and surje
tive maps �

p

:C

p




(g; V

2

) !

C

p




(g; V

3

) whi
h lead a short exa
t sequen
e

0! C

�




(g; V

1

)

�

�

��!C

�




(g; V

2

)

�

�

��!C

�




(g; V

3

)! 0

of 
o
hain 
omplexes. These maps 
an be 
ombined to a long exa
t sequen
e

0! H

0




(g; V

1

)! H

0




(g; V

2

)! H

0




(g; V

3

)! H

1




(g; V

1

)! H

1




(g; V

2

)! H

1




(g; V

3

)! : : : ;

where, for p 2 N

0

, the 
onne
ting map

Æ:H

p




(g; V

3

)! H

p+1

(g; V

1

)

is de�ned by Æ([f ℄) = [d

g

e

f ℄ , where

e

f 2 C

p

(g; V

2

) satis�es � Æ

e

f = f , whi
h implies that

im(d

g

e

f) � V

1

if f is a 
o
y
le.

AÆne a
tions of Lie algebras and 1-
o
y
les

De�nition C.5. Let g be a (topologi
al) Lie algebra and n another (topologi
al) Lie algebra,

whi
h is a (topologi
al) g-module on whi
h g a
ts by derivations. A linear map f : g ! n is


alled a 
rossed homomorphism if

f([x; y℄) = x:f(y)� y:f(x) + [f(x); f(y)℄

holds for x; y 2 g . With respe
t to the bra
ket on C

�

(g; n), this is the Maurer Cartan equation

d

g

f +

1

2

[f; f ℄ = 0

(
f. Exer
ise II.14).

If V := n is abelian, hen
e simply a g-module, then the 
rossed homomorphisms are the

1-
o
y
les. The elements of the subspa
e B

1

(g; V ) (the 1-
oboundaries) are 
alled prin
ipal


rossed homomorphisms.

In the following, we write aff(V ) = V o gl(V ) for the aÆne Lie algebra of V , where

gl(V ) := L(V ), endowed with the 
ommutator bra
ket. A 
ontinuous aÆne a
tion of a Lie

algebra g on V is a homomorphism �: g ! aff(V ) satisfying the following 
ontinuity 
ondition:

We asso
iate to ea
h pair (v;A) 2 aff(V ) the aÆne map x 7! A:x+ v and we require the map

g� V ! V; (x; v) 7! �(x):v

to be 
ontinuous.
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Proposition C.6. Let (�; V ) be a topologi
al g-module. An element f 2 C

1




(g; V ) is in

Z

1




(g; V ) if and only if the map

�

f

= (f; �): g ! aff(V )

�

=

V o gl(V ); x 7!

�

f(x); �(x)

�

is a homomorphism of Lie algebras. The spa
e H

1




(g; V ) parametrizes the e

adV

-
onjuga
y 
lasses

of 
ontinuous aÆne a
tions of g on V whose 
orresponding linear a
tion 
oin
ides with � .

The 
oboundaries 
orrespond to those aÆne a
tions whi
h are 
onjugate to a linear a
tion,

i.e., whi
h have a �xed point. The relation f = �d

g

v is equivalent to �

f

(x):v = 0 for all x 2 g .

Proof. The �rst assertion is easily 
he
ked. For v 2 V , we 
onsider the automorphism

of aff(V ) given by �

v

= e

ad v

= 1 + ad v . Then �

v

(w; x) = (w � x:v; x), showing that

�

v

Æ �

f

= �

f�d

g

v

; where d

g

v(x) = x:v . Thus two aÆne a
tions �

f

and �

f

0

are 
onjugate under

some �

v

if and only if the 
ohomology 
lasses of f and f

0


oin
ide. In this sense, H

1




(g; V )

parametrizes the e

adV

-
onjuga
y 
lasses of aÆne a
tions of g on V whose 
orresponding linear

a
tion 
oin
ides with � , and the 
oboundaries 
orrespond to those aÆne a
tions whi
h are


onjugate to a linear a
tion. Moreover, it is 
lear that an aÆne a
tion �

f

is linearizable, i.e.,


onjugate to a linear a
tion, if and only if there exists a �xed point v 2 V , i.e., �

f

(x):v = 0 holds

for all x 2 g . This 
ondition means that f = �d

g

v .

Abelian extensions and 2-
o
y
les

De�nition C.7. Let g and n be topologi
al Lie algebras. A topologi
ally split short exa
t

sequen
e

n ,!

b

g !! g

is 
alled a (topologi
ally split) extension of g by n . We identify n with its image in

b

g , and write

b

g as a dire
t sum

b

g = n � g of topologi
al ve
tor spa
es. Then n is a topologi
ally split ideal

and the quotient map q:

b

g! g 
orresponds to (n; x) 7! x . If n is abelian, then the extension is


alled abelian.

Two extensions n ,!

b

g

1

!! g and n ,!

b

g

2

!! g are 
alled equivalent if there exists a

morphism ':

b

g

1

!

b

g

2

of topologi
al Lie algebras su
h that the diagram

n ,!

b

g

1

!! g

?

?

y

id

n

?

?

y

'

?

?

y

id

g

n ,!

b

g

2

!! g


ommutes. It is easy to see that this implies that ' is an isomorphism of topologi
al Lie algebras,

hen
e de�nes an equivalen
e relation. We write Ext(g; n) for the set of equivalen
e 
lasses of

extensions of g by n .

We 
all an extension q:

b

g ! g with ker q = n trivial, or say that the extension splits, if

there exists a 
ontinuous Lie algebra homomorphism �: g !

b

g with q Æ� = id

g

. In this 
ase, the

map

no

S

g !

b

g; (n; x) 7! n+ �(x)

is an isomorphism, where the semi-dire
t sum is de�ned by the homomorphism

S: g ! der(n); S(x)(n) := [�(x); n℄:

De�nition C.8. Let a be a topologi
al g-module. To ea
h 
ontinuous 2-
o
y
le ! 2 Z

2




(g; a),

we asso
iate a topologi
al Lie algebra a�

!

g as the topologi
al produ
t ve
tor spa
e a�g endowed

with the Lie bra
ket

[(a; x); (a

0

; x

0

)℄ := (x:a

0

� x

0

:a+ !(x; x

0

); [x; x

0

℄):

The quotient map q: a�

!

g ! g; (a; x) 7! x is a 
ontinuous homomorphism of Lie algebras with

kernel a , hen
e de�nes an a-extension of g . The map �: g ! a�

!

g; x 7! (0; x) is a 
ontinuous

linear se
tion of q .
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Proposition C.9. Let (a; �

a

) be a topologi
al g-module and write Ext

�

a

(g; a) for the set of

all equivalen
e 
lasses of a-extensions

b

g of g for whi
h the adjoint a
tion of

b

g on a indu
es the

given g-module stru
ture on a . Then the map

Z

2




(g; a)! Ext

�

a

(g; a); ! 7! [a�

!

g℄

fa
tors through a bije
tion

H

2




(g; a)! Ext

�

a

(g; a); [!℄ 7! [a�

!

g℄:

Proof. Suppose that q:

b

g! g is an a-extension of g for whi
h the indu
ed g-module stru
ture

on a 
oin
ides with �

a

. Let �: g !

b

g be a 
ontinuous linear se
tion, so that q Æ � = id

g

. Then

!(x; y) := [�(x); �(y)℄ � �([x; y℄)

has values in the subspa
e a = ker q of

b

g and the map

a� g !

b

g; (a; x) 7! a+ �(x)

de�nes an isomorphism of topologi
al Lie algebras a�

!

g !

b

g .

It is easy to verify that a �

!

g � a �

�

g if and only if ! � � 2 B

2




(g; a). Therefore the

quotient spa
e H

2




(g; a) 
lassi�es the equivalen
e 
lasses of a-extensions of g by the assignment

[!℄ 7! [a�

!

g℄ .
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