
The seond ohomology of urrent algebras of general Lie algebras

Karl-Hermann Neeb

Fahbereih Mathematik

Tehnishe Universit�at Darmstadt

Shlossgartenstr. 7

64285 Darmstadt

Germany

neeb�mathematik.tu-darmstadt.de

Friedrih Wagemann

Laboratoire de Math�ematiques Jean Leray

Fault�e des Sienes et Tehniques

Universit�e de Nantes

2, rue de la Houssini�ere

44322 Nantes edex 3

Frane

wagemann�math.univ-nantes.fr

November 10, 2005

Abstrat

Let A be a unital ommutative assoiative algebra over a �eld of harateristi zero, k be a Lie

algebra, and z a vetor spae, onsidered as a trivial module of the Lie algebra g := A 
 k. In this

paper we give a desription of the ohomology spae H

2

(g; z) in terms of well aessible data asso-

iated to A and k. We also disuss the topologial situation, where A and k are loally onvex algebras.
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AMS-Class: 17B56, 17B65

Introdution

Let A be a unital ommutative assoiative algebra over a �eld K of harateristi zero and k be a K -Lie

algebra. Then the tensor produt g := A
 k is a Lie algebra with respet to the braket

[a
 x; a

0


 x

0

℄ := aa

0


 [x; x

0

℄:

Let z be a vetor spae, onsidered as a trivial g-module. The main point of the present paper is to

give a desription of the set H

2

(g; z) of ohomology lasses of z-valued 2-oyles on the Lie algebra g in

terms of data assoiated to A and k whih is as expliit as possible.

We onsider z-valued 2-ohains on g as linear funtions f : �

2

(g)! z. Suh a funtion is a 2-oyle

if and only if it vanishes on the subspae B

2

(g) of 2-boundaries, whih is the image of the linear map

� : �

3

(g)! �

2

(g); x ^ y ^ z 7! [x; y℄ ^ z + [y; z℄ ^ x+ [z; x℄ ^ y:

In view of the Jaobi identity, B

2

(g) is ontained in the subspae Z

2

(g) of 2-yles, i.e., the kernel of the

linear map b

g

: �

2

(g)! g; x ^ y 7! [x; y℄: The quotient spae

H

2

(g) := Z

2

(g)=B

2

(g)

1



is the seond homology spae of g.

A 2-oyle f is a oboundary if it is of the form f(x; y) = d

g

`(x; y) := �`([x; y℄) for some linear map

` : g ! z. We write B

2

(g; z) for the set of 2-oboundaries and Z

2

(g; z) for the set of 2-oyles. This

means that a oboundary vanishes on Z

2

(g). If, onversely, a 2-oyle vanishes on Z

2

(g), then there

exists a linear map � : im(b

g

) = [g; g℄ ! z with f = �b

�

g

�, and any linear extension ` of � to all of g

yields f = d

g

`. This leads to the following desription of the seond z-valued ohomology group

H

2

(g; z) := Z

2

(g; z)=B

2

(g; z)

�

=

Lin(H

2

(g); z) ,! Lin(Z

2

(g); z):

From this piture it is lear that we obtain a good desription of H

2

(g; z) if we have an aessible

desription of the spae Z

2

(g) and its subspae B

2

(g), hene of the quotient spae H

2

(g). Our goal is a

desription of this spae and the oyles in terms of aessible data attahed to the ommutative algebra

A and the Lie algebra k. Indeed, the �rst step, arried out in Setion 2, is to show that the diret sum

deomposition

�

2

(g)

�

=

(�

2

(A)
 S

2

(k)) � (A
 �

2

(k))� (I

A


 �

2

(k)); (1)

where I

A

� S

2

(A) is the kernel of the multipliation map, indues a orresponding deomposition of the

spae of 2-yles

Z

2

(g)

�

=

(�

2

(A)
 S

2

(k)) � (A
 Z

2

(k))� (I

A


 �

2

(k)): (2)

We think of a oyle f 2 Z

2

(g; z) as represented by three linear maps

f

1

: �

2

(A) 
 S

2

(k)! z; f

2

: A
 �

2

(k)! z; and f

3

: I

A


 �

2

(k)! z; (3)

satisfying f = f

1

� f

2

� f

3

on Z

2

(g) in the sense of (1). Sine two oyles de�ne the same ohomology

lass if and only if they oinide on the subspae Z

2

(g) of �

2

(g), the ohomology lass [f ℄ 2 H

2

(g; z) is

represented by the triple (f

1

; f

0

2

; f

3

), where f

0

2

:= f

2

j

A
Z

2

(k)

. Conversely, three linear maps f

1

; f

2

and

f

3

as in (3) de�ne a oyle if and only if f := f

1

� f

2

� f

3

vanishes on B

2

(g). The main result of the

present paper is Theorem 3.1 whih makes this ondition more expliit as follows:

(a) The alternating linear map

e

f

1

: A � A ! Sym

2

(k; z) de�ned by

e

f

1

(a; b)(x; y) := f

1

(a ^ b 
 x _ y)

has values in the set Sym

2

(k; z)

k

of invariant symmetri bilinear maps and f

1

vanishes on T

0

(A)
 (k_ k

0

),

where

T

0

(A) := spanfab ^ + b ^ a+ a ^ b� ab ^ 1 : a; b;  2 Ag

and k

0

:= [k; k℄ denotes the ommutator algebra of k.

(b) For the map

e

f

2

: A! Alt

2

(k; z) de�ned by

e

f

2

(a)(x; y) := f

2

(a _ 1
 x ^ y); we have

d

k

(

e

f

2

(a))(x; y; z) = �

e

f

2

(a)(�(x ^ y ^ z)) =

e

f

1

(a;1)([x; y℄; z) for all a 2 A; x; y; z 2 k;

with the Lie algebra di�erential d

k

: C

2

(k; z) = Alt

2

(k; z)! Z

3

(k; z).

() f

3

vanishes on I

A


 (k� k

0

).

Note that these onditions imply that the two maps f

1

� f

2

and f

3

are also oyles, whereas f

1

and

f

2

are oyles if and only if f

1

vanishes on (A ^ 1) 
 (k _ k

0

), whih, in view of (b), means that

e

f

2

(A)

vanishes on B

2

(k), i.e.,

e

f

2

has values in the spae Z

2

(k; z) of z-valued 2-oyles on k. Coyles of the form

f

1

� f

2

, where f

1

and f

2

are not oyles, are alled oupled. All oboundaries are of the form f = f

2

(f

1

= f

3

= 0), so that the ohomology lass of a oupled oyle ontains only oupled oyles.

2



We show that g posesses non-zero oupled 2-oyles if and only if the image of the universal derivation

d

A

: A! 


1

(A) is non-trivial and k possesses a symmetri invariant bilinear form � for whih the 3-oyle

�(�)(x; y; z) := �([x; y℄; z) is a non-zero oboundary. The map �: Sym

2

(k)

k

! Z

3

(k) is alled the Cartan

map. Calling an invariant symmetri bilinear form � 2 Sym

2

(k)

k

exat if �(�) is a oboundary, this means

that k possesses exat invariant bilinear forms � with �(�) non-zero. Note that this is not the ase if k is

�nite-dimensional semisimple, so that there are no oupled oyles in this ase.

Our approah leads us to an exat sequene of the form

f0g ! H

2

(g=g

0

)�

�

A
H

2

(k))

�

����!H

2

(g)

	

����!Lin((


1

(A); d

A

(A)); (Z

3

(k)

�

; B

3

(k)

�

))! f0g;

whih is the main result of Setion 4. Here we use for two pairs (X;X

0

) and (Y; Y

0

) of linear spaes with

X � X

0

and Y � Y

0

the notation

Lin((X;X

0

); (Y; Y

0

)) := ff 2 Lin(X

0

; Y

0

) : f(X) � Y g;

and put Z

3

(k)

�

:= im(�) � Z

3

(k) and B

3

(k)

�

:= B

3

(k) \ im(�): From the exat sequene it follows that

a ruial part of the desription of H

2

(g) lies in an understanding of the spaes Z

3

(k)

�

and B

3

(k)

�

. In

an appendix we show that the Cartan map � indues a map  : Sym

2

(k)

k

! H

3

(k), whih is part of an

exat sequene

f0g ! H

2

(k)! H

1

(k; k

�

)! Sym

2

(k)

k



����!H

3

(k)! H

2

(k; k

�

)! H

1

(k; Sym

2

(k)); (4)

whih implies that for the spae Sym

2

(k)

k

ex

= ker of exat invariant forms we have

Sym

2

(k)

k

ex

�

=

H

1

(k; k

�

)=H

2

(k) and im()

�

=

Sym

2

(k)

k

= Sym

2

(k)

k

ex

�

=

Z

3

(k)

�

=B

3

(k)

�

:

In Setion 5, we give an example of a non-trivial oupled 2-oyle and in Setion 6 we explain how

our results an be used for the analysis of ontinuous oyles if K 2 fR ; C g and A and k are loally

onvex spaes with ontinuous algebra strutures. Then g = A
k arries the struture of a loally onvex

Lie algebra, and we are interested in the spae H

2



(g; z) of ohomology lasses of ontinuous 2-oyles

with values in a loally onvex spae z modulo those oboundaries oming from ontinuous linear maps

g ! z. The main diÆulty in applying the algebrai results in the topologial ontext with an in�nite

dimensional Lie algebra k is the possible disontinuity of a linear map h : g! z bounding an algebraially

trivial 2-oyle.

If k is a �nite dimensional semi-simple Lie algebra and A a topologial algebra, then the ontinuous

seond ohomology spae H

2



(g;K ) has been determined in [Ma02℄ as Z

1



(A;K ) 
 Sym

2

(k;K )

k

, where

Z

1



(A;K ) denotes the spae of ontinuous K -valued yli 1-oyles on A. As any exat form vanishes

on a semi-simple Lie algebra, there are no oupled oyles in this ase.

The main previous ontributions to the investigations of H

2

(g) for g = A 
 k and arbitrary k and A

are the artiles by Haddi [Ha92℄ and Zusmanovih [Zus94℄. Both o�er a desription of H

2

(g) in terms

of (sub- or quotient) spaes. Haddi [Ha92℄ uses the projetion s

2

: H

2

(g) ! H

2

((�

�

(g)

k

; �)) of H

2

(g) to

the homology of the quotient omplex of k-oinvariants and omputes kernel and okernel of this map.

The okernel of s

2

is isomorphi to g

0

=[g; g

0

℄, and the kernel is isomorphi to (A
H

2

(k; k

0

))�D(A; k; k

0

),

H

2

(k; k

0

) is the kernel of the projetion p

2

: H

2

(k) ! H

2

(k=k

0

) (the subspae of essential homology), and

D(A; k; k

0

) is the subspae of H

2

(g) generated by yles of the form ax ^ y + ay ^ x for x or y 2 k

0

and

a 2 A, whih lies in �

2

(A) 
 S

2

(k) (in our notation). Furthermore he uses a non-anonial splitting to

identify the homology of the oinvariants H

2

((�

�

(g)

k

; �)) with (


1

(A)=d

A

(A)
B

k;k

0

)� �

2

(g=g

0

), where

3



B

k;k

0

is the image of k _ k

0

in the spae of k-oinvariants of symmetri 2-tensors on k. He thus obtains an

exat sequene

0! A
H

2

(k; k

0

)�D(A; k; k

0

)! H

2

(g)

s

2

����!


1

(A)=d

A

(A) 
B

k;k

0

� �

2

(g=g

0

)! g

0

=[g; g

0

℄! 0:

It is instrutive to ompare this sequene with our exat ohomology sequene desribe above.

Zusmanovih [Zus94℄ uses as an extra data a free presentation of k and dedues one of g. He desribes

the subspae of essential homology H

ess

2

(g) = ker(p

2

: H

2

(g) ! H

2

(g=g

0

)) by the Hopf formula in terms

of the presentation. In this way he identi�es the di�erent terms in the exat sequene given by the 5-term

exat sequene of the Hohshild{Serre spetral sequene for the subalgebra g

0

� g (using non-anonial

splittings). His desription yields

H

2

(g) ' (A
H

2

(k)) � (


1

(A)=d

A

(A) 
B(k))� (�

2

(k=k

0

)
 I

A

)� (S

2

(k=k

0

)
 T (A));

where B(k) is the spae of k-oinvariants in S

2

(k), and T (A) � �

2

(A) is spanned by the elements ab^ +

a ^ b+ b ^ a for a; b;  2 A.

The main advantage of our approah is that is does not require any auxiliary data and provides a

quite expliit desription of oyles representing the di�erent types of ohomology lasses. In partiular,

this diret approah lead us to the interesting new lass of oupled oyles. In subsequent work, we

plan to use the methods developed in [Ne02℄ to study global entral extensions of Lie groups G whose

Lie algebras are of the form g = A
 k de�ned by oupled Lie algebra oyles. For algebras of the type

A = C

1



(M;R ), i.e., ompatly supported smooth funtions on a manifold M , this has been arried out

in [MN03℄ and [Ne04℄.

Thanks: We are greatful to M. Bordemann for a stimulating email exhange and for pointing out

the relation to the exat sequene (4), part of whih is due to him.

Notation

In the following we write elements of g = A
 k simply as ax := a
x to simplify notation. Elements of A

are mostly denoted a; b; ; : : : or a; a

0

; a

00

; : : : and elements of k are denoted x; y; z; : : : or x; x

0

; x

00

; : : :. We

write k

0

:= [k; k℄ for the ommutator algebra of k and observe that g

0

= A
 k

0

is the ommutator algebra

of g.

We also write C

p

(g) := C

p

(g;K ), Z

p

(g) := Z

p

(g;K ), B

p

(g) := B

p

(g;K ), and H

p

(g) := H

p

(g;K ) for

the spaes of Lie algebra p-ohains, oyles, oboundaries and ohomology lasses with values in the

trivial module K . We likewise write Sym

2

(k) := Sym

2

(k;K ) for the spae of K -valued symmetri bilinear

forms on k.

1 Several approahes to the universal di�erential module of A

In this setion we review di�erent onstrutions of the universal di�erential module 


1

(A). The relation-

ship between these onstrutions will play a ruial role in the following.

An important objet attahed to the algebra A is its universal di�erential module 


1

(A). This is an

A-module with a derivation d

A

: A! 


1

(A) whih is universal in the sense that for any other A-module

M and any derivation D : A!M , there exists a unique module morphism � : 


1

(A)!M of A-modules

with D = � Æ d

A

. From its universal property it is easy to derive that the universal di�erential module

is unique up to isomorphism, but there are many realizations, looking at �rst sight quite di�erent.

4



Let �

A

: A
A! A; a
 b 7! ab denote the multipliation of A. Then �

A

is an algebra morphism, so

that J

A

:= ker�

A

is an ideal of the ommutative algebra A
A. From the A-module struture on A
A

given by a:(b
 ) := ab
 , we thus derive an A-module struture on the quotient spae J

A

=J

2

A

, whih

also is a (non-unital) ommutative algebra. Let [x℄ denote the image of x 2 J

A

in J

A

=J

2

A

. Then

D : A! J

A

=J

2

A

; a 7! [1
 a� a
 1℄

is a derivation and it is not hard to verify that (J

A

=J

2

A

; D) has the universal property of (


1

(A); d

A

) (f.

[Ma02℄). We obviously have the diret deomposition A
A

�

=

(A 
 1)� J

A

, where the projetion onto

the subspae J

A

is given by

p : A
A! J

A

; a
 b 7! a
 b� ab
 1:

This implies that

J

A

= spanfa
 b� ab
 1 : a; b 2 Ag = (A
 1):spanf1
 b� b
 1 : b 2 Ag;

and thus

J

2

A

= spanf(a
 1)(1
 b� b
 1)(1
 � 
 1) : a; b;  2 Ag (5)

= spanfa
 b� ab
 � a
 b+ ab
 1 : a; b;  2 Ag:

Another way to onstrut 


1

(A) is by observing that eah linear map D : A ! M leads to a linear

map

e

D : A
A!M;a
 b 7! aDb; and that D is a derivation if and only if

ker

e

D � f1
 ab� a
 b� b
 a : a; b 2 Ag;

whih implies that ker

e

D ontains the A-submodule

B

1

(A) := spanf
 ab� a
 b� b
 a : a; b;  2 Ag = spanfab
 + a
 b� a
 b : a; b;  2 Ag;

of A
A. The quotient

HH

1

(A) := (A
A)=B

1

(A)

is alled the �rst Hohshild homology spae of A. From the preeding disussion it follows that the map

HH

1

(A)! 


1

(A); [a
 b℄ 7! ad

A

(b) (6)

is an isomorphism of A-modules beause the map D : A! HH

1

(A); a 7! [1
 a℄ is a derivation with the

universal property (f. [Lo98℄, Prop. 1.1.10). The link between the desription of 


1

(A) as HH

1

(A) and

J

A

=J

2

A

is given by the ommutative diagram

A
A

p

����! J

A

?

?

y

?

?

y

HH

1

(A)

'

����! J

A

=J

2

A

with the isomorphism '([a
 b℄) = aD(b) = [a
 b�ab
1℄. Note that the ommutativity of the diagram

implies that

J

2

A

= p(B

1

(A)): (7)

5



Let

T (A) := spanfab ^ + b ^ a+ a ^ b 2 �

2

(A) : a; b;  2 Ag

denote the image of the subspae B

1

(A) � A
A under the quotient map A
A! �

2

(A); a
 b 7! a^ b.

In view of ad

A

(b) + bd

A

(a) = d

A

(ab), the image of the subspae of symmetri tensors, whih we identify

with S

2

(A), in 


1

(A) oinides with d

A

(A), so that equation (6) immediately shows that the map

�

2

(A)=T (A)

�

=

(A
A)=(S

2

(A) +B

1

(A))! 


1

(A)=d

A

(A); [a ^ b℄ 7! [ad

A

(b)℄

indues a linear isomorphism. We shall see below that the �rst yli homology spae

HC

1

(A) := 


1

(A)=d

A

(A)

�

=

HH

1

(A)=[1
A℄ = �

2

(A)=T (A)

is of entral importane for Lie algebra 2-oyles on Lie algebras of the form A
 k.

Alternating bilinear maps f : A � A ! z for whih the orresponding map �

2

(A) ! z vanishes on

T (A) are alled yli 1-oyles, whih means that

f(a; b) + f(b; a) + f(; ab) = 0 for a; b;  2 A:

From the above, it follows that the spae Z

1

(A; z) of z-valued yli 1-oyles an be identi�ed with

Lin(HC

1

(A); z)

�

=

fL 2 Lin(


1

(A); z) : d

A

(A) � kerLg:

We de�ne two trilinear maps

T : A

3

! �

2

(A); (a; b; ) 7!

X

y:

ab ^  := ab ^ + b ^ a+ a ^ b

and

T

0

: A

3

! �

2

(A); T

0

(a; b; ) := T (a; b; )� ab ^ 1:

We also put T

0

(A) := span(im(T

0

)).

Lemma 1.1 The map



A

: �

2

(A)! 


1

(A); a ^ b 7! ad

A

(b)� bd

A

(a)

is surjetive and ker 

A

= T

0

(A).

Proof. That 

A

is surjetive follows from



A

(a ^ b+ 1 ^ ab) = ad

A

(b)� bd

A

(a) + d

A

(ab) = 2ad

A

(b):

For the determination of the kernel of 

A

, we use the realization of 


1

(A) as J

A

=J

2

A

. In this ase

d

A

(a) = [1
 a� a
 1℄, so that



A

(a ^ b) = [a
 b� ab
 1� b
 a+ ba
 1℄ = [a
 b� b
 a℄:

Therefore the kernel of 

A

is the intersetion �

2

(A) \ J

2

A

; where we onsider �

2

(A) as the subspae of

skew-symmetri tensors in A
A.

Writing A
A as �

2

(A)� S

2

(A), the ommutativity of the multipliation of A shows that

J

A

= �

2

(A)� I

A

holds for I

A

:= J

A

\ S

2

(A):

6



Sine the ip involution is an algebra isomorphism of A
A, we have

�

2

(A)�

2

(A) + S

2

(A)S

2

(A) � S

2

(A) and �

2

(A)S

2

(A) � �

2

(A):

This implies that

ker 

A

= �

2

(A) \ J

2

A

= I

A

� �

2

(A);

and that this subspae oinides with the image of J

2

A

under the projetion

� : A
A! �

2

(A); a
 b 7! a ^ b =

1

2

(a
 b� b
 a):

Finally, this leads with (5) to

ker 

A

= �(J

2

A

) = spanfa ^ b� ab ^ � a ^ b+ ab ^ 1 : a; b;  2 Ag = T

0

(A):

2 A deomposition of �

2

(g)

In this setion we turn to the identi�ation of the spae B

2

(g) of 2-oboundaries in Z

2

(g) in terms of our

threefold diret sum deomposition (2).

From the universal property of �

2

(g) we immediately obtain linear maps

p

+

: �

2

(g)! �

2

(A) 
 S

2

(k); ax ^ by 7! a ^ b
 x _ y

and

p

�

: �

2

(g)! S

2

(A) 
 �

2

(k); ax ^ by 7! a _ b
 x ^ y:

We likewise have linear maps

�

+

: �

2

(A)
 S

2

(k)! �

2

(g); a ^ b
 x _ y !

1

2

(ax ^ by + ay ^ bx)

and

�

�

: S

2

(A)
 �

2

(k)! �

2

(g); a _ b
 x ^ y !

1

2

(ax ^ by � ay ^ bx)

satisfying

p

+

Æ �

+

= id; p

�

Æ �

�

= id and �

+

p

+

+ �

�

p

�

= id

�

2

(g)

:

In this sense we have

�

2

(g)

�

=

�

�

2

(A)
 S

2

(k)

�

�

�

S

2

(A)
 �

2

(k)

�

;

and the projetions on the two summands are given by p

�

.

Reall the kernel J

A

of the multipliation map �

A

: A 
 A ! A. Sine A is ommutative, we then

have �

2

(A) � J

A

, so that

J

A

= �

2

(A)� I

A

with I

A

:= J

A

\ S

2

(A);

aording to the deomposition A
A

�

=

�

2

(A)� S

2

(A). The map

�

A

: A! S

2

(A); a 7! a _ 1

7



is a setion of the multipliation map �

A

, so that we obtain a diret sum deomposition

S

2

(A) = (A _ 1)� I

A

�

=

A� I

A

:

In view of this deomposition, we obtain a diret sum deomposition of �

2

(g):

�

2

(g)

�

=

(�

2

(A)
 S

2

(k)) � (A
 �

2

(k))� (I

A


 �

2

(k));

where the projetions p

1

; p

2

; p

3

on the three summands are given by

p

1

(ax ^ by) = p

+

(ax ^ by) = a ^ b
 x _ y;

p

2

(ax ^ by) = ab
 x ^ y; and p

3

(ax ^ by) = (a _ b� ab _ 1)
 x ^ y:

The following lemma provides the deomposition of Z

2

(g) whih is a entral tool in the following.

Lemma 2.1 The spae Z

2

(g) is adapted to the diret sum deomposition of �

2

(g):

Z

2

(g) = (�

2

(A)
 S

2

(k)) � (A
 Z

2

(k))� (I

A


 �

2

(k)):

Proof. Sine b

g

(ax ^ by) = ab[x; y℄ is symmetri in a; b and alternating in x; y, its kernel ontains

�

2

(A) 
 S

2

(k). The formula for b

g

also shows immediately that I

A


 �

2

(k) � ker b

g

, so that it remains

to observe that

Z

2

(g) \ (A
 �

2

(k)) = ker b

g

\ (A
 �

2

(k)) = A
 Z

2

(k)

beause b

g

(a _ 1
 x ^ y) =

1

2

b

g

(ax ^ y + x ^ ay) = a[x; y℄ = ab

k

(x ^ y):

In the following we write � mod B

2

(g) for ongruene of elements of �

2

(g) modulo B

2

(g).

Lemma 2.2 For a; b;  2 A and x; y; z 2 k we have

p

1

(�(ax ^ by ^ z)) � p

1

(abx ^ [y; z℄) � �p

2

(�(ax ^ by ^ z)) mod B

2

(g):

In partiular (p

1

+ p

2

)(B

2

(g)) � B

2

(g):

Proof. From

�(ax ^ by ^ z) = ab[x; y℄ ^ z + b[y; z℄ ^ ax+ a[z; x℄ ^ by

�(x ^ ay ^ bz) = a[x; y℄ ^ bz + ab[y; z℄ ^ x+ b[z; x℄ ^ ay

�(x ^ ay ^ bz) = a[x; y℄ ^ bz + ab[y; z℄ ^ x+ b[z; x℄ ^ ay

�(x ^ y ^ abz) = [x; y℄ ^ abz + ab[y; z℄ ^ x+ ab[z; x℄ ^ y

�(bx ^ ay ^ z) = ab[x; y℄ ^ z + a[y; z℄ ^ bx+ b[z; x℄ ^ ay

�(abx ^ y ^ z) = ab[x; y℄ ^ z + [y; z℄ ^ abx+ ab[z; x℄ ^ y

we derive

�(ax ^ by ^ z) + �(x ^ ay ^ bz)� �(x ^ ay ^ bz)� �(x ^ y ^ abz)

��(bx ^ ay ^ z) + �(abx ^ y ^ z)

= ab[x; y℄ ^ z + b[y; z℄^ ax+ a[z; x℄ ^ by � b[z; x℄ ^ ay � [x; y℄ ^ abz � a[y; z℄ ^ bx

�ab[y; z℄^ x+ [y; z℄ ^ abx

= 2ab ^ 
 [x; y℄ _ z + 2b ^ a
 [y; z℄ _ x+ 2a ^ b
 [z; x℄ _ y � 2ab ^ 1
 x _ [y; z℄

= 2p

1

(�(ax ^ by ^ z))� 2p

1

(abx ^ [y; z℄):

8



This proves the �rst ongruene.

Note that for a 2 A and x; y; z 2 k we have

�(ax ^ y ^ z) = a[x; y℄ ^ z + [y; z℄ ^ ax+ a[z; x℄ ^ y;

whih implies that

a[x; y℄ ^ z + a[z; x℄ ^ y � ax ^ [y; z℄ mod B

2

(g): (8)

Summing over all yli permutations of (x; y; z); leads to

2

X

y:

a[x; y℄ ^ z =

X

y:

ax ^ [y; z℄ mod B

2

(g): (9)

From the relation (8) we get

2p

1

(abx ^ [y; z℄) = ab[y; z℄ ^ x+ abx ^ [y; z℄ �

X

y:

ab[y; z℄ ^ x =

X

y:

ab[x; y℄ ^ z:

In view of

p

2

(�(ax ^ by ^ z)) = p

2

(ab[x; y℄ ^ z + b[y; z℄ ^ ax+ a[z; x℄ ^ by)

= ab
 ([x; y℄ ^ z + [y; z℄ ^ x+ [z; x℄ ^ y)

= ab
 �(x ^ y ^ z); (10)

relation (9) yields

2p

2

(�(ax ^ by ^ z)) =

X

y:

ab[x; y℄ ^ z �

X

y:

abz ^ [x; y℄ �

X

y:

ab[x; y℄ ^ z � 2

X

y:

ab[x; y℄ ^ z

= �

X

y:

ab[x; y℄ ^ z � �2p

1

(�(ax ^ by ^ z)):

In view of the preeding lemma, the projetion p

1

+ p

2

of �

2

(g) onto the subspae

�

2

(A) 
 S

2

(k)�A
 �

2

(k)

preserves B

2

(g). This also implies that id�p

1

� p

2

= p

3

preserves B

2

(g), and we derive that

B

2

(g) = B

2

(g) \

�

�

2

(A)
 S

2

(k)�A
 �

2

(k))�B

2

(g) \ (I

A


 �

2

(k)):

The following lemma provides re�ned information.

Lemma 2.3 (1) �

2

(A)
k:S

2

(k)+T

0

(A)
k_k

0

� B

2

(g) and p

1

(B

2

(g)) = �

2

(A)
k:S

2

(k)+T (A)
k_k

0

.

(2) p

2

(B

2

(g)) = A
B

2

(k).

(3) I

A


 (k ^ k

0

) = p

3

(B

2

(g)) � B

2

(g).

9



Proof. (2) follows immediately from formula (10).

(1) That �

2

(A)
 k:S

2

(k) is ontained in B

2

(g) follows immediately from

�(ax ^ by ^ z)� �(bx ^ ay ^ z)

= ab[x; y℄ ^ z + b[y; z℄ ^ ax+ a[z; x℄ ^ by � ab[x; y℄ ^ z � a[y; z℄ ^ bx� b[z; x℄ ^ ay

= b[y; z℄ ^ ax+ a[z; x℄ ^ by � a[y; z℄ ^ bx� b[z; x℄ ^ ay

= 2b ^ a
 [y; z℄ _ x+ 2a ^ b
 [z; x℄ _ y

= 2a ^ b
 ([z; x℄ _ y � [y; z℄ _ x)

= 2a ^ b
 z:(x _ y):

Therefore the desription of p

1

(B

2

(g)) = im(p

1

Æ �) follows from

p

1

(�(ax ^ by ^ z)) = p

1

(ab[x; y℄ ^ z + b[y; z℄ ^ ax+ a[z; x℄ ^ by)

= ab ^ 
 [x; y℄ _ z + b ^ a
 [y; z℄ _ x+ a ^ b
 [z; x℄ _ y

� (ab ^ + b ^ a+ a ^ b)
 [x; y℄ _ z mod �

2

(A) 
 k:S

2

(k)

= T (a; b; )
 [x; y℄ _ z:

In (10), we have seen that

p

2

(�(ax ^ by ^ z)) = ab
 �(x ^ y ^ z);

and this implies that

p

2

(�(abx ^ y ^ z)) = ab
 �(x ^ y ^ z);

whih leads to

�(ax ^ by ^ z)� �(abx ^ y ^ z) 2 ker p

2

:

In view of

T (a; b; )� T (ab;1; ) = T (a; b; )� (ab ^ +  ^ ab+ ab ^ 1) = T (a; b; )� ab ^ 1 = T

0

(a; b; )

and Lemma 2.2, the following element is ontained in B

2

(g):

p

1

(�(ax ^ by ^ z)� �(abx ^ y ^ z)) 2

�

T (a; b; )� T (ab;1; )

�


 [x; y℄ _ z +�

2

(A)
 k:S

2

(k)

� T

0

(a; b; )
 [x; y℄ _ z +B

2

(g);

and now Lemma 2.2 implies that T

0

(A)
 k

0

_ k � B

2

(g).

(3) First we note that

p

3

(�(ax ^ by ^ z)) = p

3

(ab[x; y℄ ^ z + b[y; z℄ ^ ax+ a[z; x℄ ^ by)

= (ab _ 1� ab _ 1)
 [x; y℄ ^ z + (b _ a� ab _ 1)
 [y; z℄ ^ x+ (a _ b� ab _ 1)
 [z; x℄ ^ y

= (a _ b� ab _ 1)
 ([y; z℄ ^ x+ [z; x℄ ^ y): (11)

Sine p

3

preserves B

2

(g) (Lemma 2.2), this expressions lies in B

2

(g). Using the same formula for all

yli permutations of x; y; z and adding all three terms, we see that

2(a _ b� ab _ 1)


X

y:

[x; y℄ ^ z 2 B

2

(g):

10



This also implies that

(a _ b� ab _ 1)
 [x; y℄ ^ z = (a _ b� ab _ 1)


�

X

y:

[x; y℄ ^ z � ([y; z℄ ^ x+ [z; x℄ ^ y)

�

2 B

2

(g):

Next we note that I

A

is spanned by elements of the form a_ b� ab_ 1; beause a_ b 7! a_ b� ab_ 1

is the projetion of S

2

(A) onto I

A

with kernel A

�

=

A _ 1. Therefore B

2

(g) ontains I

A


 k

0

^ k. On the

other hand, (11) shows that p

3

(B

2

(g)) is learly ontained in I

A


 k

0

^ k.

Theorem 2.4 With the linear map

F : A
 �

3

(k)! �

2

(g); a
 (x ^ y ^ z) 7! (a ^ 1
 [x; y℄ _ z) + a
 �(x ^ y ^ z)

we get the following desription of B

2

(g):

B

2

(g) = �

2

(A)
 k:S

2

(k) + T

0

(A)
 k _ k

0

+ im(F ) + I

A


 (k ^ k

0

):

Proof. The desription of the position of B

2

(g) given in Lemma 2.3 is already quite detailed. It shows

in partiular that the part of B

2

(g) lying in �

2

(A)
 S

2

(k)�A
 Z

2

(k) ontains

T

0

(A) 
 k _ k

0

+�

2

(A)
 k:S

2

(k)

and is ontained in

A
B

2

(k)�T (A)
 k_ k

0

+�

2

(A)
 k:S

2

(k) = A
B

2

(k)� (A^1)
 k_ k

0

+T

0

(A)
 k_ k

0

+�

2

(A)
 k:S

2

(k):

Further Lemma 2.3 (1) implies that

F (a; x ^ y ^ z) 2 (p

1

+ p

2

)(�(ax ^ y ^ z)) + (�

2

(A)
 k:S

2

(k));

beause

p

1

(�(ax ^ y ^ z)) � a ^ 1
 [x; y℄ _ z mod �

2

(A)
 k:S

2

(k)

and

p

2

(�(ax ^ y ^ z)) = a
 �(x ^ y ^ z):

We thus dedue that Im(F ) � B

2

(g). Now the theorem follows.

3 The desription of the 2-oyles

As explained in the introdution, we think of the elements of H

2

(g; z) as linear maps f : Z

2

(g) ! z

vanishing on the subspae B

2

(g). We further write 2-oyles as f = f

1

+ f

2

+ f

3

, aording to the

deomposition in Lemma 2.1, where

f

1

: �

2

(A)
 S

2

(k)! z; f

2

: A
 �

2

(k)! z and f

3

: I

A


 �

2

(k)! z:

We then think of f

1

as an alternating bilinear map

e

f

1

: A � A ! Sym

2

(k; z), of f

2

as a linear map

e

f

2

: A! Lin(�

2

(k); z), and of f

3

as a symmetri bilinear map

e

f

3

: I

A

! Alt

2

(k; z):

11



The ondition, that three suh maps

e

f

1

;

e

f

2

;

e

f

3

ombine to a 2-oyle

f : Z

2

(g)! z; a^a

0


x_x

0

+(b_1)
 y ^ y

0

+ 
 (z ^ z

0

) 7!

e

f

1

(a; a

0

)(x; x

0

)+

e

f

2

(b)(y; y

0

)+

e

f

3

()(z; z

0

);

is that f vanishes on B

2

(g). To make this ondition more expliit, we de�ne the Cartan map

�: Lin(k _ k

0

; z)

k

! Z

3

(k; z); �(�)(x; y; z) := �([x; y℄; z):

That �(�) is alternating follows from

�(�)(x; z; y) = �([x; z℄; y) = �(y; [x; z℄) = �([y; x℄; z) = ��(�)(x; y; z)

and the fat that the symmetri group S

3

is generated by the transpositions (1 2) and (2 3). That the

image of � onsists of 3-oyles follows from

(d

k

�(�))(x

0

; x

1

; x

2

; x

3

) = ��([[x

0

; x

1

℄; x

2

℄; x

3

) + �([[x

0

; x

2

℄; x

1

℄; x

3

)� �([[x

0

; x

3

℄; x

1

℄; x

2

)

��([[x

1

; x

2

℄; x

0

℄; x

3

) + �([[x

1

; x

3

℄; x

0

℄; x

2

)� �([[x

2

; x

3

℄; x

0

℄; x

1

)

= �(�[[x

0

; x

1

℄; x

2

℄ + [[x

0

; x

2

℄; x

1

℄� [[x

1

; x

2

℄; x

0

℄; x

3

)

+�(�[[x

0

; x

3

℄; x

1

℄ + [[x

1

; x

3

℄; x

0

℄; x

2

)� �(x

2

; [x

3

; [x

0

; x

1

℄℄)

= �(�[[x

0

; x

3

℄; x

1

℄ + [[x

1

; x

3

℄; x

0

℄� [x

3

; [x

0

; x

1

℄℄; x

2

) = 0:

For the following theorem we observe that the Lie algebra di�erential d

k

: C

2

(k; z) = Alt

2

(k; z) !

Z

3

(k; z) fators through the surjetive map Alt

2

(k; z)!! Lin(Z

2

(k); z); whose kernel are the 2-oboundaries.

Theorem 3.1 (Desription of oyles) The funtion f = f

1

+f

2

+f

3

as above is a 2-oyle if and only

if the following onditions are satis�ed:

(a) im(

e

f

1

) � Sym

2

(k; z)

k

.

(b)

e

f

1

(T

0

(A)) vanishes on k� k

0

.

() d

k

(

e

f

2

(a)) = �(

e

f

1

(a;1)) for eah a 2 A.

(d)

e

f

3

(I

A

) vanishes on k� k

0

.

Proof. The linear map f is a 2-oyle if and only if it vanishes on B

2

(g). In view of Theorem 2.4,

B

2

(g) is the sum of four subspaes, so that we get four onditions.

Condition (a) means that f vanishes on �

2

(A) 
 k:S

2

(k), and ondition (b) that it vanishes on the

subspae T

0

(A) 
 k _ k

0

.

That f vanishes on the image of F , means that

�(

e

f

1

(a;1))(x; y; z) =

e

f

1

(a;1)([x; y℄; z) = �

e

f

2

(a)(�(x ^ y ^ z)) = (d

k

e

f

2

(a))(x; y; z)

for a 2 A and x; y; z 2 k, whih is ().

Finally, (d) means that f vanishes on I

A


 k ^ k

0

.
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Corollary 3.2 f = f

1

+ f

2

+ f

3

is a oyle if and only if f

1

+ f

2

and f

3

are oyles.

Corollary 3.3 A funtion of one of the three types f = f

i

, i = 1; 2; 3, is a 2-oyle if and only if the

following onditions are satis�ed:

(i = 1) im(

e

f

1

) � Sym

2

(k; z)

k

and the indued map A�A! Lin(k _ k

0

; z)

k

is a yli 1-oyle.

(i = 2)

e

f

2

(A) � Z

2

(k; z).

(i = 3)

e

f

3

(I

A

) vanishes on k� k

0

.

Proof. That f = f

i

is a 2-oyle is equivalent to f vanishing on p

i

(B

2

(g)), so that Lemma 2.3 leads

to the stated haraterizations.

Remark 3.4 A speial lass of oyles are those of the form f = f

1

, vanishing on g� g

0

. The oyles

of the form f = f

3

also vanish on the ommutator algebra, and the sums of these two types exhaust the

image of the injetive pull-bak map H

2

(g=g

0

; z)

�

=

Alt

2

(g=g

0

; z)! H

2

(g; z):

Corollary 3.5 For eah oyle f = f

1

+ f

2

+ f

3

there exists a deomposition f

1

= f

0

1

+ f

1

1

, where

f

0

1

(g; g

0

) = f0g; im(

e

f

1

1

) � Sym

2

(k; z)

k

and T

0

(A) � ker

e

f

1

1

:

Proof. Conditions (a) and (b) in Theorem 3.1 only refer to the restrition f

1

1

of f

1

to the subspae

�

2

(A)
 (k_ k

0

) of �

2

(A)
S

2

(k). This has the following interesting onsequene. We have a short exat

sequene

f0g ! Sym

2

(k=k

0

; z)! Sym

2

(k; z)

k

! Lin(k _ k

0

; z)

k

! f0g;

where the surjetivity of the map Sym

2

(k; z)

k

! Lin(k _ k

0

; z)

k

follows from the fat that any symmetri

bilinear extension of an element of Lin(k _ k

0

; z)

k

is invariant. Any splitting of this sequene extends f

1

1

to an alternating bilinear map

e

f

1

1

: A�A! Sym

2

(k; z)

k

with

e

f

1

1

(a; b)(x; y) =

e

f

1

(a; b)(x; y) for a; b 2 A; x 2 k; y 2 k

0

and suh that T

0

(A) � ker

e

f

1

1

. Then

�(

e

f

1

1

(a;1)) = �(

e

f

1

(a;1)) for a 2 A;

so that f

1

1

+ f

2

+ f

3

also is a oyle by Theorem 3.1. We onlude that f

0

1

:= f

1

� f

1

1

is a oyle

vanishing on g� g

0

. This proves the assertion.

Proposition 3.6 (Desription of oboundaries) A oyle f = f

1

+ f

2

+ f

3

is a oboundary if and only

if f

1

= f

3

= 0 and there exists a linear map ` : A! Lin(k; z) with d

g

` = f

2

, i.e.,

e

f

2

(a) = d

k

(`(a)) for all a 2 A:

Proof. That f is a oboundary means that it vanishes on Z

2

(g). Aording to Lemma 2.1, this

implies that f

1

= f

3

= 0. Sine the braket map b

g

: �

2

(g) ! g is alternating in k and symmetri in A,

all oboundaries are of the form f = f

2

.

13



We all oyles of the form f

1

+ f

2

for whih f

1

is not a oyle oupled. The following theorem

haraterizes the pairs (A; k) for whih A
 k possesses oupled oyles. In Setion 5 below we shall also

give a onrete example of a Lie algebra k satisfying this ondition.

Theorem 3.7 The Lie algebra g = A 
 k possesses oupled oyles if and only if d

A

(A) 6= f0g and k

possesses a symmetri invariant bilinear form � for whih �(�) 2 Z

3

(k) is a non-zero oboundary.

If this is not the ase, then eah oyle f 2 Z

2

(g) is a sum

f = f

1

+ f

2

+ f

3

= f

0

1

+ f

1

1

+ f

2

+ f

3

:

of four oyles, where

(a) f

0

1

vanishes on g� g

0

.

(b)

e

f

1

1

2 Z

1

(A; Sym

2

(k; z)

k

) is a yli 1-oyle.

()

e

f

2

(A) � Z

2

(k; z).

(d) f

3

vanishes on g� g

0

.

Proof. First let f = f

1

+ f

2

be a oupled oyle on g. Then we have �(

e

f

1

(A;1)) 6= f0g. Composing

with a suitable linear funtional � : z ! K with

� Æ �(

e

f

1

(A;1)) = �((� Æ f

1

)e(A;1)) 6= f0g;

we may w.l.o.g. assume that z = K . Then there exists an a 2 A with

d

k

(

e

f

2

(a)) = �(

e

f

1

(a;1)) 6= 0:

Now � :=

e

f

1

(a;1) 2 Sym

2

(k)

k

is an invariant symmetri bilinear form for whih �(�) is exat and

non-zero. Then a 2 T (A) n T

0

(A); so that 0 6= d

A

(a) in 


1

(A) (Theorem 3.1).

If, onversely, d

A

(A) 6= f0g and � is an invariant symmetri bilinear form on k for whih �(�) is a

non-zero oboundary, then we pik � 2 C

2

(k) = Alt

2

(k) with d

k

� = �(�). We now de�ne linear maps

e

f

1

:= 

A


 � : �

2

(A)! Sym

2

(k;


1

(A))

k

;

e

f

1

(a ^ b)(x; y) := �(x; y) � (ad

A

(b)� bd

A

(a))

and

e

f

2

:= �d

A


 � : A! C

2

(k;


1

(A));

e

f

2

(a)(x; y) := ��(x; y) � d

A

(a):

We laim that the orresponding map f = f

1

+ f

2

is a 2-oyle by verifying the onditions in

Theorem 3.1. Condition (a) is obviously satis�ed, and (b) follows from T

0

(A) = ker 

A

(Lemma 1.1).

Further f

3

= 0, and () follows from

d

k

e

f

2

(a) = �(d

k

�) � d

A

(a) = ��(�)d

A

(a) = �(

e

f

1

(a;1)):

That f

1

is not a oyle, i.e., that f is oupled, means that

e

f

1

(A^1)(k� k

0

) 6= f0g, whih is equivalent

to d

A

(A) 6= f0g and �(�) = � 6= 0: This ompletes the proof of the �rst part of the theorem.

For the seond part we assume that either d

A

(A)

�

=

T

0

(A)=T (A) vanishes, whih means that T

0

(A) =

T (A), or that for eah exat invariant bilinear form � on k we have �(�) = 0. Then for eah oyle

f = f

0

1

+f

1

1

+f

2

+f

3

as in Corollary 3.5, either

e

f

1

1

vanishes on T (A) (if d

A

(A) vanishes) or

e

f

2

(A) � Z

2

(k; z)

(if for all exat forms on k the 3-oyle �(�) vanishes). Both onditions imply that f

1

1

and f

2

are oyles.

Hene the assertion follows from Corollary 3.3.
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Corollary 3.8 If H

1

(k; k

�

) = f0g, then g = A
 k has no oupled oyles.

Proof. From the exat sequene in Proposition 7.2 below, it follows that the Cartan map  : Sym

2

(k)

k

!

H

3

(k); � 7! [�(�)℄ is injetive, and this implies that eah exat invariant form vanishes.

The following proposition desribes the universal oyle for g in terms of our threefold diret sum

deomposition.

Proposition 3.9 (A universal oyle) Let p

k

: �

2

(k) ! Z

2

(k) denote a linear projetion onto Z

2

(k).

Then the linear map

e

f

u

:= p

1

� (id

A


p

k

)� p

3

: �

2

(g)! Z

2

(g)

maps B

2

(g) into itself, hene indues a 2-oyle

f

u

: �

2

(g)! H

2

(g) = Z

2

(g)=B

2

(g):

It is universal in the sense that the map for eah spae z the map

Lin(H

2

(g); z)! H

2

(g; z); ' 7! ' Æ f

u

is a linear bijetion.

Proof. That

e

f

u

is a linear projetion onto Z

2

(g) follows from Lemma 2.1. The remainder follows

from the fat that H

2

(g; z) ! Lin(Z

2

(g); z); [f ℄ 7! f j

Z

2

(g)

is injetive onto the set of all maps vanishing

on B

2

(g).

4 The struture of the seond ohomology spae

In this setion we use the results of the present setion to give a quite expliit desription of the spae

H

2

(g) in terms of data assoiated diretly to g and A.

Lemma 4.1 Assoiating with eah linear map

e

f

2

: A ! Z

2

(k) the orresponding oyle f

2

2 Z

2

(g), we

obtain, together with the natural pullbak map H

2

(g=g

0

)! H

2

(g), an injetion

H

2

(g=g

0

)� Lin(A;H

2

(k))

�

����!H

2

(g)

whose image onsists of all lasses of oyles of the form f

0

1

+ f

2

+ f

3

.

Proof. The image of the pullbak map onsists of those ohomology lasses represented by oyles

vanishing on g�g

0

, whih are the oyles of the form f

0

1

+f

3

. Sine the spae of these oyles intersets

B

2

(g) trivially, the spae H

2

(g=g

0

) injets into H

2

(g) (Remark 3.4 and Prop. 3.6).

Next we reall that the oyles of the form f = f

2

: A 
 �

2

(k) ! K orrespond to linear maps

e

f

2

: A ! Z

2

(k) (whih means that f

2

vanishes on A 
 B

2

(k)), and that suh a map is a oboundary if

and only if im(

e

f

2

)(A) � B

2

(k), beause this implies the existene of a linear map ` : A ! Lin(k) with

e

f

2

(a) = d

k

(`(a)) for all a 2 A. The latter ondition means that f

2

vanishes on A 
 Z

2

(k), so that the

ohomology lasses orrespond to elements in

Lin(A
 Z

2

(k)=(A
B

2

(k));K )

�

=

Lin(A
 (Z

2

(k)=B

2

(k));K )

�

=

Lin(A
H

2

(k);K )

�

=

Lin(A;H

2

(k)):
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Given a oyle f = f

1

+ f

2

+ f

3

in Z

2

(g), we obtain the map � Æ

e

f

1

: �

2

(A) ! Z

3

(k); whose kernel

ontains T

0

(A), so that it indues a linear map

f

[

: 


1

(A)

�

=

�

2

(A)=T

0

(A)! Z

3

(k); a � d

A

(b)� b � d

A

(a) 7! �(

e

f

1

(a; b));

mapping the subspae d

A

(A) � 


1

(A) into the subspae B

3

(k) (Theorem 3.1). In view of

f

[

(d

A

(a)) = ��(

e

f

1

(a;1)) = �d

k

(

e

f

2

(a)); (12)

the range of eah map � Æ

e

f

1

lies in the subspae Z

3

(k)

�

:= im(�) � Z

3

(k) and

f

[

(d

A

(A)) � B

3

(k)

�

:= B

3

(k) \ im(�):

We thus obtain a map

	: H

2

(g)! Lin((


1

(A); d

A

(A)); (Z

3

(k)

�

; B

3

(k)

�

)); [f ℄ 7! [� Æ

e

f

1

℄;

where for pairs (X;X

0

) and (Y; Y

0

) of linear spaes with X � X

0

and Y � Y

0

we write

Lin((X;X

0

); (Y; Y

0

)) := ff 2 Lin(X

0

; Y

0

) : f(X) � Y g:

Theorem 4.2 The sequene

f0g ! H

2

(g=g

0

)�

�

A
H

2

(k))

�

����!H

2

(g)

	

����!Lin((


1

(A); d

A

(A)); (Z

3

(k)

�

; B

3

(k)

�

))! f0g

is exat.

Proof. We have already seen in Lemma 4.1 that � is injetive.

The kernel of 	 onsists of all oyles f = f

1

+ f

2

+ f

3

for whih � Æ

e

f

1

= 0. This is equivalent to

e

f

1

(�

2

(A)) vanishing on k _ k

0

, whih means that f

1

vanishes on g � g

0

, i.e., f

1

= f

0

1

. This shows that

ker	 = im�.

To see that 	 is surjetive, let � 2 Lin((


1

(A); d

A

(A)); (Z

3

(k)

�

; B

3

(k)

�

)) and observe that there exists

a linear map

f

[

: 


1

(A)! Sym

2

(k)

k

with � Æ f

[

= �;

and a linear map � : d

A

(A)! C

2

(k) with

d

k

(�(d

A

(a))) = �(d

A

(a)) for all a 2 A:

For

e

f

1

: �

2

(A)! Sym

2

(k)

k

;

e

f

1

(a; b) := f

[

(a � d

A

(b)� b � d

A

(a)) and

e

f

2

: A! C

2

(k); a 7! ��(d

A

(a))

we then have

d

k

(

e

f

2

(a)) = �d

k

(�(d

A

(a))) = ��(d

A

(a)) = ��(f

[

(d

A

(a))) = �(

e

f

1

(a;1));

so that the orresponding maps f

1

and f

2

sum up to a 2-oyle f := f

1

+ f

2

satisfying 	([f ℄) = �.
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The quotient Z

3

(k)

�

=B

3

(k)

�

an be identi�ed with the image of the map

 : Sym

2

(k)

k

! H

3

(k); � 7! [�(�)℄

disussed in the appendix below. From the exatness of the sequene in Proposition 7.2, it follows that

the spae Sym

2

(k)

k

ex

:= ker  of exat invariant bilinear forms satis�es

Sym

2

(k)

k

ex

�

=

H

1

(k; k

�

)=H

2

(k): (13)

We also note that for a quadrati Lie algebra, i.e., a �nite-dimensional Lie algebra k with an invariant

non-degenerate symmetri bilinear form �

0

, the spae out(k) := der(k)= ad k of outer derivations satis�es

H

1

(k; k

�

)

�

=

H

1

(k; k)

�

=

der(k)= ad k = out(k);

and that the subspae H

2

(k) � H

1

(k; k

�

) onsists of those lasses [D℄ of derivations D whih are skew-

symmetri with respet to �

0

.

We further have ker�

�

=

Sym

2

(k=k

0

), so that

B

3

(k)

�

�

=

Sym

2

(k)

k

ex

= Sym

2

(k=k

0

) and Z

3

(k)

�

�

=

Sym

2

(k)

k

= Sym

2

(k=k

0

):

To obtain an expliit desription of H

2

(g), it is therefore neessary to have a good desription of the

spae Sym

2

(k)

k

of invariant quadrati forms on k and its subspae of exat forms.

Problem 4.3 Let k be a �nite-dimensional K -Lie algebra. We onsider the spae S := Sym

2

(k)

k

of

invariant symmetri bilinear forms on k.

Let n :=

T

frad(�) : � 2 Sg denote the ommon radial of all invariant symmetri bilinear forms on k.

Fix an element � 2 S of maximal rank. Then n � rad(�), but is there some � for whih we have equality?

In the following remark we ollet some information that is useful to determine the spae Z

3

(k)

�

.

Remark 4.4 Suppose that (k; �

0

) is a quadrati Lie algebra, i.e., �

0

is a non-degenerate invariant sym-

metri bilinear form on k. Then there exists for eah invariant symmetri bilinear form � 2 Sym(k)

k

a

uniquely determined endomorphism A

�

2 End(k) with

�(x; y) = �

0

(A

�

:x; y) for x; y 2 k:

Now the invariane of � implies that A

�

is ontained in the entroid

Cent(k) := fA 2 End(k) : (8x 2 k) [A; adx℄ = 0g:

The entroid of k is an assoiative subalgebra of End(k) on whih transposition A 7! A

>

with respet to

�

0

indues a linear antiautomorphism, satisfying

�

0

(A:x; y) = �

0

(x;A

>

:y) = �

0

(A

>

:y; x) for all x; y 2 k:

It follows in partiular that for A 2 Cent(k) the invariant bilinear form �

A

(x; y) := �

0

(A:x; y) is symmetri

if and only if A

>

= A. This leads to a linear bijetion

Cent(k)

+

:= fA 2 Cent(k) : A

>

= Ag ! Sym

2

(k)

k

; A 7! �

A

:
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For A

>

= �A the invariant form �

A

is alternating, whih implies that �

A

vanishes on k� k

0

, and this

implies that

A(k) � (k

0

)

?

= z(k) and A(k

0

) = f0g:

Conversely, any A 2 End(k) with k

0

� kerA and im(A) � z(k) satis�es A Æ adx = adx Æ A = 0 for all

x 2 k, hene is ontained in the entroid. We put

Cent

0

(k) := fA 2 End(k) : k

0

� kerA; im(A) � z(k)g

and observe that Cent

0

(k) E Cent(k) is an ideal of the assoiative algebra Cent(k) beause

Cent

0

(k) = fA 2 Cent(k) : Aj

k

0

= 0g

is the kernel of the restrition homomorphism Cent(k)! End(k

0

).

If A 2 Cent

0

(k), then

�

0

(A

>

:[k; k℄; k) = �

0

([k; k℄; A:k) � �

0

(k

0

; z(k)) = f0g;

so that A

>

2 Cent

0

(k). Hene the ideal Cent

0

(k) is invariant under transposition. We have already seen

that Cent

0

(k) ontains all skew-symmetri elements of Cent(k), so that the involution indued on the

quotient algebra

Cent

red

(k) := Cent(k)=Cent

0

(k) ,! End(k

0

)

is trivial, whih implies that this algebra is ommutative.

We onlude that

Cent(k)

+

:= fA 2 Cent(k) : A

>

= Ag

�

=

Sym

2

(k)

k

and that

Cent

0

(k)

+

:= fA 2 Cent

0

(k) : A

>

= Ag

�

=

Sym

2

(k=k

0

):

Therefore

Z

3

(k)

�

= im(�)

�

=

Cent(k)

+

=Cent

0

(k)

+

�

=

Cent

red

(k)

arries the struture of an assoiative ommutative algebra.

In [MR93℄, Th. 2.3, Medina and Revoy desribe the struture of the assoiative algebra Cent(k) for a

Lie algebra k whose enter Z(k) is ontained in k

0

: The algebra Cent(k) has a deomposition with respet

to orthogonal indeomposable idempotents e

1

; : : : ; e

r

with

P

i

e

i

= id

k

, so that k is the diret produt of

the ideals k

i

:= e

i

k. Moreover, the algebra Cent(k

i

) ' e

i

Cent(k)e

i

is a loal ring, and we have

Cent(k) =

r

M

i;j=1

Cent

ij

; where Cent

ij

:= e

i

Cent(k)e

j

�

=

Lin(k

j

=k

0

j

; Z(k

i

))

as linear spaes, and

Cent

0

(k) =

�

r

M

i=1

Cent

0

(k

i

)

�

�

�

M

i 6=j

Cent

ij

�

:

If, in addition, k arries a non-degenerate quadrati from �

0

, then Th. 2.5 lo.it. implies that the

deomposition of k as a diret sum of ideals k

i

is orthogonal and the idempotents e

i

are symmetri with

respet to �

0

. We onlude in partiular that

Cent

red

(k) = Cent(k)=Cent

0

(k)

�

=

r

M

i=1

Cent

red

(k

i

):
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5 An example

This setion is devoted to a onrete example of a Lie algebra g = A
 k whih has oupled oyles.

Let h be the 3-dimensional Heisenberg algebra h with generators x, y and  and the only non-trivial

relation [x; y℄ = . Then pass to the extension k = hoKD of h by a derivation D like for aÆne algebras.

Expliitly, we take D(x) = x, D(y) = �y and D() = 0 (f. [MP95℄, p.98, Ex. 6). The Lie algebra k is

4-dimensional, and has an invariant bilinear symmetri form �, as any Lie algebra with symmetrizable

Cartan matrix (f. [MP95℄, Prop. 4, p. 362). We all k the split osillator algebra over K .

Remark 5.1 Let us ompute the dimensions of the spaes of ohains, oyles and ohomology spaes:

degree p 0 1 2 3 4

dimC

p

(k) 1 4 6 4 1

dimH

p

(k) 1 1 0 1 1

dimB

p

(k) 0 0 3 3 0

dimZ

p

(k) 1 1 3 4 1

In the preeding table the dimension of the ohomology spaes is omputed as follows: dimH

0

(k) = 1

by de�nition. As k=[k; k℄ = KD, dimH

1

(k) = 1. By unimodularity (f. [Mi04℄, De�nition 4.3), k satis�es

Poinar�e duality, so that the dimensions in degree 3 and 4 follow. But the Euler harateristi of a �nite

dimensional Lie algebra vanishes [Go55℄, whih implies that H

2

(k) = f0g.

The dimensions of the boundary spaes are lear in degree 0 and 1. In degree 2, there remain 3

dimensions as the di�erene of dimC

1

(k) and dimZ

1

(k). In the same way, we get the dimensions of B

p

(k)

for p = 3; 4. Finally, dimZ

p

(k) is the sum of dimB

p

(k) and dimH

p

(k).

Observe that [k; k℄ = h and [h; h℄ = R , so that k is solvable, but [k; h℄ = h, so that k is not nilpotent.

We laim that eah invariant bilinear form � is exat, whih gives rise to oupled oyles (in the

sense of Setion 3): If 0 6= � 2 C

4

(k), then the fat that k is unimodular implies that all 3-ohains i

h

�,

h 2 k, are 3-oyles. If h 2 [k; k℄ = h, then i

h

� is exat, so that i

D

� yields a basis of the one-dimensional

spae H

3

(k). Sine 0 6= (i

D

�)(x; y; ) = �(D; x; y; ) and for eah invariant symmetri bilinear form � we

have �([x; y℄; ) = �(x; [y; ℄) = 0, we see that �(�) 2 spanfi

h

� : h 2 hg = B

3

(k). Hene eah invariant

symmetri bilinear form is exat.

Remark 5.2 We now turn to the spae Sym

2

(k)

k

: Any invariant symmetri bilinear form � satis�es

�(; x) = �([x; y℄; x) = ��([y; x℄; x) = ��(y; [x; x℄) = 0:

�(; y) = �([x; y℄; y) = �(x; [y; y℄) = 0:

�(; ) = �([x; y℄; ) = �(x; [y; ℄) = 0:

�(d; x) = �(d; [d; x℄) = �([d; d℄; x) = 0:

�(d; y) = ��(d; [d; y℄) = ��([d; d℄; y) = 0:

�(d; ) = �(d; [x; y℄) = �([d; x℄; y) = �(x; y):

�(x; x) = �(x; [d; x℄) = ��(x; [x; d℄) = ��([x; x℄; d) = 0:
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�(y; y) = ��(y; [d; y℄) = �(y; [y; d℄) = �([y; y℄; d) = 0:

We immediately onlude that the spae of invariant symmetri bilinear forms is at most 2-dimensional

and that eah suh form � is determined by �(d; ) = �(x; y) and �(d; d) (note that d is not a ommutator).

Let us denote by �

1

the (invariant symmetri bilinear) with �

1

(d; d) = 1 and �

1

(x; y) = 0 and �

2

the

invariant symmetri bilinear form with �

2

(x; y) = �

2

(d; ) = 1 and �

2

(d; d) = 0. Then �

2

oinides with

the invariant form � introdued above and �

1

; �

2

form basis of Sym

2

(k)

k

. Combining with the observation

in the preeding remark and Setion 4, we get

K

2

�

=

Sym

2

(k)

k

�

=

Sym

2

(k)

k

ex

�

=

H

1

(k; k

�

)

�

=

H

1

(k; k)

�

=

out(k):

For the redued entroid we thus get

Cent

red

(k) = Sym

2

(k)

k

= Sym

2

(k = [k; k℄) = K [�

2

℄:

We further get Z

3

(k)

�

= B

3

(k)

�

�

=

K .

For any algebra A and g = A
 k the exat sequene in Theorem 4.2 now turns into a sequene of the

form

f0g ! H

2

(g=g

0

)

�

=

�

2

(A)

�

����!H

2

(g)! Lin(


1

(A); Z

3

(k)

�

)

�

=




1

(A)

�

! f0g:

Therefore the essential part of H

2

(g) is isomorphi to the dual spae of 


1

(A). From the onstrution in

the proof of Theorem 4.2 it follows that the oupled oyles orrespond to the elements of 


1

(A)

�

not

vanishing on the subspae d

A

(A).

6 The topologial setting

In this setion we explain how the algebrai results from the preeding setion an be used in the topo-

logial setting. Atually these appliations were our original motivation to study the work of Haddi and

Zusmanovih.

We now assume that K = R or C . Let A be a unital ommutative loally onvex assoiative K -algebra

and k a loally onvex K -Lie algebra. We endow g = A
 k with the projetive tensor produt topology,

turning it into a loally onvex spae with the universal property that for eah loally onvex spae z

a bilinear map ' : A � k ! z is ontinuous if and only if the orresponding linear map e' : A 
 k ! z is

ontinuous. Then the Lie braket on g is ontinuous beause the quadrilinear map

A� k�A� k! A
 k; (a; x; a

0

; x

0

) 7! aa

0


 [x; x

0

℄

is ontinuous and the ontinuous quadrilinear maps orrespond to the ontinuous linear maps on (A 


k)
 (A
 k).

In the topologial ontext, we onsider for a loally onvex spae z the spae Z

2



(g; z) of ontinuous

oyles and the subspae B

2



(g; z) of all oboundaries of the form d

g

`, where ` : g ! z is a ontinuous

linear map. In the topologial ontext, the relation between the spae

H

2



(g; z) := Z

2



(g; z)=B

2



(g; z)

and the spae of all linear maps from

H

2;

(g) := Z

2

(g)=B

2

(g)! z
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is more ompliated than in the algebrai setup ([Ne02b℄). To de�ne the topologial version of H

2

(g), we

have to use the losure of B

2

(g) to obtain a Hausdor� topology on the quotient spae. We always have

a natural map

H

2



(g; z)! Lin(H

2;

(g); z);

but in general there is no reason for this map to be injetive or surjetive. Therefore the homology spae

is muh less interesting in the topologial setting, and it often is easier to work diretly with oyles and

oboundaries whih is made possible by our results in Setion III.

The ip involution on g
 g, endowed with the projetive tensor produt topology, is ontinuous, so

that the kernel of the quotient map g
g! �

2

(g); x
y 7! x^y is losed, whih leads to a loally onvex

topology on �

2

(g). Further the braket map b

g

: �

2

(g)! g is ontinuous beause it is indued from the

ontinuous braket map, whih shows that its kernel Z

2

(g) is losed.

One easily veri�es that the maps p

�

and �

�

from Setion 2 are ontinuous, and likewise that the

maps

A! A
A; a 7! a
 1 and A! S

2

(A); a 7! a _ 1

are ontinuous. Therefore Lemma 2.1 yields a topologial deomposition of the losed subspae Z

2

(g) of

�

2

(g):

Z

2

(g) = (�

2

(A)
 S

2

(k)) � (A
 Z

2

(k))� (I

A


 �

2

(k)):

This implies that any ontinuous oyle f : g� g! z de�nes three ontinuous maps

f

1

: �

2

(A)
 S

2

(k)! z; f

2

: A
 �

2

(k)! z and f

3

: I

A


 �

2

(k)! z:

Conversely, three suh ontinuous linear maps ombine to a ontinuous 2-oyle of g if and only if they

satisfy the onditions from Theorem 3.1.

If a ontinuous oyle f = f

1

+ f

2

+ f

3

is in B

2



(g; z), then it vanishes on Z

2

(g), whih implies

f

1

= f

3

= 0 and that f

2

is a ontinuous oboundary, i.e., there exists a ontinuous linear map ` : g ! z

with

f(ax; by) = f

2

(ax; by) =

e

f

2

(ab)(x; y) = `(ab[x; y℄) for all a; b 2 A; x; y 2 k:

Clearly, this implies that

e

f

2

(A) � B

2



(k; z). If, onversely,

e

f

2

(A) � B

2



(k; z), then there exists a linear map

h : A ! Lin(k; z) with d

k

h(a) =

e

f

2

(a) for all a 2 A, but it is not lear whether the orresponding map

e

h : A� k ! z will be ontinuous. Therefore the exatness ondition is quite subtle.

If k is �nite-dimensional, then the situation simpli�es signi�antly. Then B

2



(k; z) = B

2

(k; z) and if

Lin(�; �) stands for \ontinuous linear maps", then

Lin(A
 �

2

(k); z)

�

=

�

2

(k)

�


 Lin(A; z);

so that we may onsider f

2

as a 2-oyle in Z

2

(k;Lin(A; z)). If this map vanishes on B

2

(k), then there

exists a linear map h : k ! Lin(A; z) with

f

2

(x; y)(a) = h([x; y℄)(a); x; y 2 k; a 2 A:

Then the map ` : A� k ! z; (a; x) 7! h(x)(a) is ontinuous and satis�es f

2

= �d

g

`. We thus get

B

2

(k;Lin(A; z))

�

=

B

2



(g; z):

We ollet the previous remarks in the following theorem whih is analoguous to Theorem 4.2. It deter-

mines the struture of the seond ontinuous ohomology spae for urrent algebras. Let us denote by




1



(A) = J

A

= J

2

A

the loally onvex module of K�ahler di�erentials for the loally onvex ommutative

assoiative algebra A.
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Theorem 6.1 Let k be a �nite dimensional Lie algebra over K . Then the sequene

f0g ! H

2



(g=g

0

)�

�

A
H

2

(k))

�

����!H

2



(g)

	

����!Lin((


1



(A); d

A

(A)); (Z

3

(k)

�

; B

3

(k)

�

))! f0g

is exat.

Proof. First we note that the short exat sequene 0! k

0

! k! k=k

0

! 0 of �nite-dimensional vetor

spaes splits. Sine g

0

= A 
 k

0

is losed in g, it follows that the short exat sequene 0 ! g

0

! g !

g=g

0

! 0 also splits topologially. As we have observed above, Theorem 3.7 and its orollaries remain

true in the topologial setting. For Corollary 3.5 we use the topologial splitting of k

0

in k. We have

also seen above that the orresponding desription of the oboundaries remains valid, beause k is �nite

dimensional. Further, the topologial splitting of g

0

implies that Lemma 4.1 remains true. This implies

the injetivity of �.

That ker	 = im� is shown as in the proof of Theorem 4.2. Finally, the surjetivity of 	 follows from

the fat that f

[

and � an be hosen as ontinuous maps, beause of the existene of (ontinuous) linear

right inverses of surjetive linear maps to �nite dimensional vetor spaes.

Example 6.2 We onsider the speial ase where M is a ompat manifold and A = C

1

(M;R ) the

Fr�ehet algebra of all smooth real-valued funtions on M . Aording to [Ma02℄ or [Co85℄, the universal

topologial di�erential module of A is given by 


1



(A)

�

=




1

(M;R ), the spae of smooth R -valued 1-forms

on M , and the de Rham-di�erential d : C

1

(M;R ) ! 


1

(M;R ) is a universal ontinuous derivation. It

follows in partiular that the spae d

A

(A) is the spae of exat 1-forms, whih is non-zero.

Now let k be a �nite-dimensional real Lie algebra and

g := A
 k

�

=

C

1

(M; k):

Up to oyles vanishing on g � g

0

, all ontinuous ohomology lasses in H

2



(g) are then represented by

sums f = f

1

+ f

2

, where

f

1

: A�A! Sym

2

(k)

k

is an alternating ontinuous linear map for whih there is a ontinuous linear map

f

[

1

: 


1

(M;R ) ! Sym

2

(k)

k

with

e

f

1

(a; b) = f

[

1

(a � d(b)� b � d(a));

and

d

k

(

e

f

2

(a)) = ��(f

[

1

(da)) for all a 2 A:

We interprete the ontinuous linear map f

[

1

as a Sym

2

(k)

k

-valued urrent on M . It is a losed urrent

if and only if it vanishes on exat forms. Typial examples of suh urrents arise from pairs (�; �), where

� : [0; 1℄!M is a pieewise smooth path and � 2 Sym

2

(k)

k

ex

via

f

[

1

(�) :=

�

Z

�

�

�

� �;

but these examples satisfy  Æ f

[

1

= 0.
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7 Appendix: A useful exat sequene

The following setion is very muh based on information and hints we got from M. Bordemann ([Bo97℄).

De�nition 7.1 Let k be a Lie algebra and a a k-module. We denote the ation as k � a ! a by

(x; a) 7! x:a. On the spae C

p

(k; a) of a-valued Lie algebra ohains we have a natural ation of k

denoted by

(L

x

!)(x

1

; : : : ; x

p

) = x:!(x

1

; : : : ; x

p

)�

p

X

i=1

!(x

1

; : : : ; x

i�1

; [x; x

i

℄; x

i+1

; : : : ; x

p

):

The Lie algebra di�erential d

k

: C

p

(k; a)! C

p+1

(k; a) is given by

(d

k

!)(x

0

; : : : ; x

p

) :=

p

X

j=0

(�1)

j

x

j

:!(x

0

; : : : ; bx

j

; : : : ; x

p

)

+

X

i<j

(�1)

i+j

!([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

); (14)

where bx

j

indiates omission of x

j

.

For p; q 2 N

0

we onsider the injetion

e

T

p

: C

p+q

(k; a)! C

p

(k; C

q

(k; a)); (

e

T

p

f)(x

1

; : : : ; x

p

)(y

1

; : : : ; y

q

) := f(x

1

; : : : ; x

p

; y

1

; : : : ; y

q

):

From the ation of k on the spaes C

q

(k; a) we obtain Lie algebra di�erentials

d

0

k

: C

p

(k; C

q

(k; a))! C

p+1

(k; C

q

(k; a))

and we also have

d

00

k

: C

p

(k; C

q

(k; a))! C

p

(k; C

q+1

(k; a)); ! 7! d

k

Æ !

satisfying on C

p+q

(k; a) the identity

e

T

p+1

Æ d

k

= d

0

k

Æ

e

T

p

+ (�1)

p+1

d

00

k

Æ

e

T

p+1

: (15)

(f. [Ne05b℄, Lemma A.1).

Speializing to the trivial module a = K , we obtain in partiular the maps

e

T

p�1

: C

p

(k)! C

p�1

(k; C

1

(k)=B

1

(k)) = C

p�1

(k; k

�

);

whih, in view of equation (15), ommute with the respetive Lie algebra di�erentials beause d

00

k

Æ

e

T

p

vanishes on C

p

(k;K ). Hene they indue linear maps

�

p

: H

p

(k)! H

p�1

(k; k

�

); [!℄ 7! [

e

T

p�1

(!)℄:

For the k-module k

�

the subspae d

k

k

�

of C

1

(k; k

�

) onsists of maps whose assoiated bilinear map is

alternating. We thus have a well-de�ned map

S : C

1

(k; k

�

)=B

1

(k; k

�

)! Sym

2

(k)
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whih is a morphism of k-modules. We now obtain maps

e

�

p

= S Æ

e

T

p�1

: C

p

(k; k

�

)! C

p�1

(k; Sym

2

(k))

satisfying

e

�

p

Æ d

k

= S Æ

e

T

p�1

Æ d

k

= S Æ (d

0

k

Æ

e

T

p�2

) = d

0

k

Æ S Æ

e

T

p�2

= d

0

k

Æ

e

�

p�1

: (16)

Hene

e

�

p

indues a linear map

�

p

: H

p

(k; k

�

)! H

p�1

(k; Sym

2

(k)):

From the onstrution we immediately get

e

�

p

Æ e�

p+1

= 0, whih leads to �

p

Æ �

p+1

= 0.

Proposition 7.2 For any Lie algebra k we obtain with (�) := [�(�)℄ an exat sequene

f0g ! H

2

(k)

�

2

����!H

1

(k; k

�

)

�

1

����! Sym

2

(k)

k



����!H

3

(k)

�

3

����!H

2

(k; k

�

)

�

2

����!H

1

(k; Sym

2

(k)):

Proof. To see that for eah oyle ! 2 Z

1

(k; k

�

) the symmetri bilinear form �

1

(!) is invariant, we

note that

�

1

(!)([x; y℄; z) = !([x; y℄)(z) + !(z)([x; y℄);

and if ! is a oyle, this an be written as

�

1

(!)([x; y℄; z) = (x:!(y))(z)� (y:!(x))(z) + !(z)([x; y℄) = !(y)([z; x℄) + !(x)([y; z℄) + !(z)([x; y℄);

showing that this trilinear form is alternating, and hene that �

1

(!) is invariant.

Exatness in H

2

(k): We only have to show that �

2

is injetive. If ! 2 Z

2

(k) satis�es �

2

(!) = d

k

�

for some � 2 k

�

, then

!(x; y) = (d

k

�)(x)(y) = (x:�)(y) = ��([x; y℄);

whih implies that ! is a 2-oboundary.

Exatness in H

1

(k; k

�

): Clearly �

1

Æ �

2

= 0. If, onversely, �

1

([!℄) = 0, then ! : k ! k

�

is a linear

map whose assoiated bilinear form e!(x; y) := !(x)(y) is alternating. In this situation we have

de!(x; y; z) = �!([x; y℄)(z)� !([y; z℄)(x)� !([z; x℄)(y) = �!([x; y℄)(z) + !(x)([y; z℄) + !(y)([z; x℄)

=

�

� !([x; y℄)� y:!(x) + x:!(y)

�

(z) = (d

k

!)(x; y)(z): (17)

We onlude that e! is a oyle if and only if ! is one, and from that we derive that ker�

1

= im�

2

.

Exatness in Sym

2

(k)

k

: Next we show that  Æ �

1

= 0. So let ! 2 Z

1

(k; k

�

) and write e! = !

+

+ !

�

,

where !

+

is symmetri and !

�

is alternating. Then

(�

1

(!))(x; y; z) = !([x; y℄)(z) + !(z)([x; y℄) = !(y)([z; x℄) + !(x)([y; z℄) + !(z)([x; y℄); (18)

and the losedness of ! also shows that

P

y:

!([x; y℄)(z) = 2

P

y:

!(x)([y; z℄); whih leads to

(�

1

(!))(x; y; z) =

X

y:

!([x; y℄)(z)� !(z)([x; y℄) = 2

X

y:

!

�

([x; y℄; z) = �2d

k

!

�

(x; y; z):

Hene (�

1

(!)) is always exat, so that  Æ �

1

vanishes on the level of ohomology spaes.
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To see that ker  � im�

1

, suppose that � is an exat invariant bilinear form and � 2 C

2

(k) satis�es

d� = ��(�) = �(�). Then !(x)(y) := �(x; y) + �(x; y) de�nes a linear map ! : k! k

�

with

(d

k

!)(x; y)(z) = (x:!(y)� y:!(x)� !([x; y℄))(z)

= !(y)([z; x℄) + !(x)([y; z℄)� !([x; y℄)(z)

= �([x; y℄; z) + �(y; [z; x℄) + �(x; [y; z℄)� �([x; y℄; z)

= �([x; y℄; z) + d

k

�(x; y; z) = (�(�) + d

k

�)(x; y; z) = 0: (19)

From the preeding alulation we also see by putting � = 0, that the linear map e� : k ! k

�

de�ned

by an invariant symmetri bilinear form � is a 1-oyle if and only if �(�) vanishes.

Exatness in H

3

(k): Sine B

1

(k) � k

�

vanishes, the transfer formula for di�erentials implies that an

alternating trilinear form ! on k is a 3-oyle if and only if the orresponding alternating bilinear form

�

3

(!) is a 2-oyle. Therefore the image of �

3

onsists of those ohomology lasses having a representing

oyle whose assoiated trilinear form is alternating.

For � 2 Sym

2

(k)

k

, the orresponding 3-oyle �(�) and the orresponding linear map e� : k ! k

�

, we

have

�

3

(�(�))(x; y) = �([x; y℄; �) = �(de�)(x)(y)

beause

de�(x; y)(z) = (x:e�(y))(z)� (y:e�(x))(z) � e�([x; y℄)(z)

= ��(y; [x; z℄) + �(x; [y; z℄)� �([x; y℄; z) = �([x; y℄; z): (20)

We onlude that �

3

(�(�)) is exat, so that �

3

Æ  indues the trivial map Sym

2

(k)

k

! H

2

(k; k

�

).

Let f 2 C

1

(k; k

�

) and write

e

f(a; b) = f(a)(b). We then have

df(x; y)(z) = (x:f(y)� y:f(x)� f([x; y℄))(z) = f(y)([z; x℄) + f(x)([y; z℄)� f([x; y℄)(z)

= f(y)([z; x℄)� (y:

e

f)(x; z): (21)

This map is alternating in (x; y), and it is alternating in (x; z) if and only if y:

e

f is alternating. Writing

e

f =

e

f

+

+

e

f

�

for the deomposition of

e

f into symmetri and alternating omponents, this is equivalent

to y:

e

f

+

= 0. We onlude that df(x; y)(z) is alternating if and only if

e

f

+

is invariant.

To verify the exatness in H

3

(k), we now assume that ! 2 Z

3

(k) satis�es �

3

(!) 2 B

2

(k; k

�

), i.e.,

�

3

([!℄) = 0. Then there exists an f 2 C

1

(k; k

�

) with �

3

(!) = d

k

f , and the preeding paragraph implies

that

e

f

+

is an invariant symmetri bilinear form on k satisfying

�

3

(!) = d

k

f = ��(

e

f

+

) + d

k

f

�

;

where f = f

+

+f

�

orresponds to the deomposition

e

f =

e

f

+

+

e

f

�

. We onlude that [�

3

(!)℄ = �[�(

e

f

+

)℄,

whih implies exatness in H

3

(k).

Exatness in H

2

(k; k

�

): We laim that ker�

2

= im�

3

. To verify this laim, pik ! 2 Z

2

(k; k

�

) for

whih �

2

(!) is exat, i.e., there exists a symmetri bilinear form � 2 Sym

2

(k) with �

2

(!) = d

k

�, i.e., for

x; y; z 2 k we have

!(x; y)(z) + !(x; z)(y) = (x:�)(y; z) = ��([x; y℄; z)� �(y; [x; z℄):

Let e� 2 C

1

(k; k

�

) and write � for the orresponding bilinear map on k with �(x; y) = e�(x)(y). Then

de�(x; y)(z) = (x:e�(y)� y:e�(x)� e�([x; y℄))(z) = ��(y; [x; z℄) + �(x; [y; z℄)� �([x; y℄; z):
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Therefore

�

2

(d

k

e�)(x)(y; z) = e�(y)([z; x℄)� e�([x; y℄)(z) + e�(z)([y; x℄)� e�([x; z℄; y)

= 2(e�

+

([y; x℄)(z) + e�

+

([z; x℄)(y)) = 2(x:�

+

)(y; z); (22)

and this leads to

�

2

(d

k

e�) = 2d

k

�

+

= d

k

(�

1

(�)):

Sine �

1

(C

1

(k; k

�

)) = Sym

2

(k), we �nd some e� 2 C

1

(k; k

�

) with �

1

(e�) = �, and then

�

2

(! � d

k

�) = d

k

�� d

k

�

+

= 0;

so that for !

0

:= ! � d

k

� 2 Z

2

(k; k

�

) the orresponding trilinear map is alternating. This means that

[!℄ = [!

0

℄ 2 im�

3

.
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