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Abstra
t

Let A be a unital 
ommutative asso
iative algebra over a �eld of 
hara
teristi
 zero, k be a Lie

algebra, and z a ve
tor spa
e, 
onsidered as a trivial module of the Lie algebra g := A 
 k. In this

paper we give a des
ription of the 
ohomology spa
e H

2

(g; z) in terms of well a

essible data asso-


iated to A and k. We also dis
uss the topologi
al situation, where A and k are lo
ally 
onvex algebras.
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Introdu
tion

Let A be a unital 
ommutative asso
iative algebra over a �eld K of 
hara
teristi
 zero and k be a K -Lie

algebra. Then the tensor produ
t g := A
 k is a Lie algebra with respe
t to the bra
ket

[a
 x; a

0


 x

0

℄ := aa

0


 [x; x

0

℄:

Let z be a ve
tor spa
e, 
onsidered as a trivial g-module. The main point of the present paper is to

give a des
ription of the set H

2

(g; z) of 
ohomology 
lasses of z-valued 2-
o
y
les on the Lie algebra g in

terms of data asso
iated to A and k whi
h is as expli
it as possible.

We 
onsider z-valued 2-
o
hains on g as linear fun
tions f : �

2

(g)! z. Su
h a fun
tion is a 2-
o
y
le

if and only if it vanishes on the subspa
e B

2

(g) of 2-boundaries, whi
h is the image of the linear map

� : �

3

(g)! �

2

(g); x ^ y ^ z 7! [x; y℄ ^ z + [y; z℄ ^ x+ [z; x℄ ^ y:

In view of the Ja
obi identity, B

2

(g) is 
ontained in the subspa
e Z

2

(g) of 2-
y
les, i.e., the kernel of the

linear map b

g

: �

2

(g)! g; x ^ y 7! [x; y℄: The quotient spa
e

H

2

(g) := Z

2

(g)=B

2

(g)

1



is the se
ond homology spa
e of g.

A 2-
o
y
le f is a 
oboundary if it is of the form f(x; y) = d

g

`(x; y) := �`([x; y℄) for some linear map

` : g ! z. We write B

2

(g; z) for the set of 2-
oboundaries and Z

2

(g; z) for the set of 2-
o
y
les. This

means that a 
oboundary vanishes on Z

2

(g). If, 
onversely, a 2-
o
y
le vanishes on Z

2

(g), then there

exists a linear map � : im(b

g

) = [g; g℄ ! z with f = �b

�

g

�, and any linear extension ` of � to all of g

yields f = d

g

`. This leads to the following des
ription of the se
ond z-valued 
ohomology group

H

2

(g; z) := Z

2

(g; z)=B

2

(g; z)

�

=

Lin(H

2

(g); z) ,! Lin(Z

2

(g); z):

From this pi
ture it is 
lear that we obtain a good des
ription of H

2

(g; z) if we have an a

essible

des
ription of the spa
e Z

2

(g) and its subspa
e B

2

(g), hen
e of the quotient spa
e H

2

(g). Our goal is a

des
ription of this spa
e and the 
o
y
les in terms of a

essible data atta
hed to the 
ommutative algebra

A and the Lie algebra k. Indeed, the �rst step, 
arried out in Se
tion 2, is to show that the dire
t sum

de
omposition

�

2

(g)

�

=

(�

2

(A)
 S

2

(k)) � (A
 �

2

(k))� (I

A


 �

2

(k)); (1)

where I

A

� S

2

(A) is the kernel of the multipli
ation map, indu
es a 
orresponding de
omposition of the

spa
e of 2-
y
les

Z

2

(g)

�

=

(�

2

(A)
 S

2

(k)) � (A
 Z

2

(k))� (I

A


 �

2

(k)): (2)

We think of a 
o
y
le f 2 Z

2

(g; z) as represented by three linear maps

f

1

: �

2

(A) 
 S

2

(k)! z; f

2

: A
 �

2

(k)! z; and f

3

: I

A


 �

2

(k)! z; (3)

satisfying f = f

1

� f

2

� f

3

on Z

2

(g) in the sense of (1). Sin
e two 
o
y
les de�ne the same 
ohomology


lass if and only if they 
oin
ide on the subspa
e Z

2

(g) of �

2

(g), the 
ohomology 
lass [f ℄ 2 H

2

(g; z) is

represented by the triple (f

1

; f

0

2

; f

3

), where f

0

2

:= f

2

j

A
Z

2

(k)

. Conversely, three linear maps f

1

; f

2

and

f

3

as in (3) de�ne a 
o
y
le if and only if f := f

1

� f

2

� f

3

vanishes on B

2

(g). The main result of the

present paper is Theorem 3.1 whi
h makes this 
ondition more expli
it as follows:

(a) The alternating linear map

e

f

1

: A � A ! Sym

2

(k; z) de�ned by

e

f

1

(a; b)(x; y) := f

1

(a ^ b 
 x _ y)

has values in the set Sym

2

(k; z)

k

of invariant symmetri
 bilinear maps and f

1

vanishes on T

0

(A)
 (k_ k

0

),

where

T

0

(A) := spanfab ^ 
+ b
 ^ a+ 
a ^ b� ab
 ^ 1 : a; b; 
 2 Ag

and k

0

:= [k; k℄ denotes the 
ommutator algebra of k.

(b) For the map

e

f

2

: A! Alt

2

(k; z) de�ned by

e

f

2

(a)(x; y) := f

2

(a _ 1
 x ^ y); we have

d

k

(

e

f

2

(a))(x; y; z) = �

e

f

2

(a)(�(x ^ y ^ z)) =

e

f

1

(a;1)([x; y℄; z) for all a 2 A; x; y; z 2 k;

with the Lie algebra di�erential d

k

: C

2

(k; z) = Alt

2

(k; z)! Z

3

(k; z).

(
) f

3

vanishes on I

A


 (k� k

0

).

Note that these 
onditions imply that the two maps f

1

� f

2

and f

3

are also 
o
y
les, whereas f

1

and

f

2

are 
o
y
les if and only if f

1

vanishes on (A ^ 1) 
 (k _ k

0

), whi
h, in view of (b), means that

e

f

2

(A)

vanishes on B

2

(k), i.e.,

e

f

2

has values in the spa
e Z

2

(k; z) of z-valued 2-
o
y
les on k. Co
y
les of the form

f

1

� f

2

, where f

1

and f

2

are not 
o
y
les, are 
alled 
oupled. All 
oboundaries are of the form f = f

2

(f

1

= f

3

= 0), so that the 
ohomology 
lass of a 
oupled 
o
y
le 
ontains only 
oupled 
o
y
les.

2



We show that g posesses non-zero 
oupled 2-
o
y
les if and only if the image of the universal derivation

d

A

: A! 


1

(A) is non-trivial and k possesses a symmetri
 invariant bilinear form � for whi
h the 3-
o
y
le

�(�)(x; y; z) := �([x; y℄; z) is a non-zero 
oboundary. The map �: Sym

2

(k)

k

! Z

3

(k) is 
alled the Cartan

map. Calling an invariant symmetri
 bilinear form � 2 Sym

2

(k)

k

exa
t if �(�) is a 
oboundary, this means

that k possesses exa
t invariant bilinear forms � with �(�) non-zero. Note that this is not the 
ase if k is

�nite-dimensional semisimple, so that there are no 
oupled 
o
y
les in this 
ase.

Our approa
h leads us to an exa
t sequen
e of the form

f0g ! H

2

(g=g

0

)�

�

A
H

2

(k))

�

����!H

2

(g)

	

����!Lin((


1

(A); d

A

(A)); (Z

3

(k)

�

; B

3

(k)

�

))! f0g;

whi
h is the main result of Se
tion 4. Here we use for two pairs (X;X

0

) and (Y; Y

0

) of linear spa
es with

X � X

0

and Y � Y

0

the notation

Lin((X;X

0

); (Y; Y

0

)) := ff 2 Lin(X

0

; Y

0

) : f(X) � Y g;

and put Z

3

(k)

�

:= im(�) � Z

3

(k) and B

3

(k)

�

:= B

3

(k) \ im(�): From the exa
t sequen
e it follows that

a 
ru
ial part of the des
ription of H

2

(g) lies in an understanding of the spa
es Z

3

(k)

�

and B

3

(k)

�

. In

an appendix we show that the Cartan map � indu
es a map 
 : Sym

2

(k)

k

! H

3

(k), whi
h is part of an

exa
t sequen
e

f0g ! H

2

(k)! H

1

(k; k

�

)! Sym

2

(k)

k




����!H

3

(k)! H

2

(k; k

�

)! H

1

(k; Sym

2

(k)); (4)

whi
h implies that for the spa
e Sym

2

(k)

k

ex

= ker
 of exa
t invariant forms we have

Sym

2

(k)

k

ex

�

=

H

1

(k; k

�

)=H

2

(k) and im(
)

�

=

Sym

2

(k)

k

= Sym

2

(k)

k

ex

�

=

Z

3

(k)

�

=B

3

(k)

�

:

In Se
tion 5, we give an example of a non-trivial 
oupled 2-
o
y
le and in Se
tion 6 we explain how

our results 
an be used for the analysis of 
ontinuous 
o
y
les if K 2 fR ; C g and A and k are lo
ally


onvex spa
es with 
ontinuous algebra stru
tures. Then g = A
k 
arries the stru
ture of a lo
ally 
onvex

Lie algebra, and we are interested in the spa
e H

2




(g; z) of 
ohomology 
lasses of 
ontinuous 2-
o
y
les

with values in a lo
ally 
onvex spa
e z modulo those 
oboundaries 
oming from 
ontinuous linear maps

g ! z. The main diÆ
ulty in applying the algebrai
 results in the topologi
al 
ontext with an in�nite

dimensional Lie algebra k is the possible dis
ontinuity of a linear map h : g! z bounding an algebrai
ally

trivial 2-
o
y
le.

If k is a �nite dimensional semi-simple Lie algebra and A a topologi
al algebra, then the 
ontinuous

se
ond 
ohomology spa
e H

2




(g;K ) has been determined in [Ma02℄ as Z

1




(A;K ) 
 Sym

2

(k;K )

k

, where

Z

1




(A;K ) denotes the spa
e of 
ontinuous K -valued 
y
li
 1-
o
y
les on A. As any exa
t form vanishes

on a semi-simple Lie algebra, there are no 
oupled 
o
y
les in this 
ase.

The main previous 
ontributions to the investigations of H

2

(g) for g = A 
 k and arbitrary k and A

are the arti
les by Haddi [Ha92℄ and Zusmanovi
h [Zus94℄. Both o�er a des
ription of H

2

(g) in terms

of (sub- or quotient) spa
es. Haddi [Ha92℄ uses the proje
tion s

2

: H

2

(g) ! H

2

((�

�

(g)

k

; �)) of H

2

(g) to

the homology of the quotient 
omplex of k-
oinvariants and 
omputes kernel and 
okernel of this map.

The 
okernel of s

2

is isomorphi
 to g

0

=[g; g

0

℄, and the kernel is isomorphi
 to (A
H

2

(k; k

0

))�D(A; k; k

0

),

H

2

(k; k

0

) is the kernel of the proje
tion p

2

: H

2

(k) ! H

2

(k=k

0

) (the subspa
e of essential homology), and

D(A; k; k

0

) is the subspa
e of H

2

(g) generated by 
y
les of the form ax ^ y + ay ^ x for x or y 2 k

0

and

a 2 A, whi
h lies in �

2

(A) 
 S

2

(k) (in our notation). Furthermore he uses a non-
anoni
al splitting to

identify the homology of the 
oinvariants H

2

((�

�

(g)

k

; �)) with (


1

(A)=d

A

(A)
B

k;k

0

)� �

2

(g=g

0

), where

3



B

k;k

0

is the image of k _ k

0

in the spa
e of k-
oinvariants of symmetri
 2-tensors on k. He thus obtains an

exa
t sequen
e

0! A
H

2

(k; k

0

)�D(A; k; k

0

)! H

2

(g)

s

2

����!


1

(A)=d

A

(A) 
B

k;k

0

� �

2

(g=g

0

)! g

0

=[g; g

0

℄! 0:

It is instru
tive to 
ompare this sequen
e with our exa
t 
ohomology sequen
e des
ribe above.

Zusmanovi
h [Zus94℄ uses as an extra data a free presentation of k and dedu
es one of g. He des
ribes

the subspa
e of essential homology H

ess

2

(g) = ker(p

2

: H

2

(g) ! H

2

(g=g

0

)) by the Hopf formula in terms

of the presentation. In this way he identi�es the di�erent terms in the exa
t sequen
e given by the 5-term

exa
t sequen
e of the Ho
hs
hild{Serre spe
tral sequen
e for the subalgebra g

0

� g (using non-
anoni
al

splittings). His des
ription yields

H

2

(g) ' (A
H

2

(k)) � (


1

(A)=d

A

(A) 
B(k))� (�

2

(k=k

0

)
 I

A

)� (S

2

(k=k

0

)
 T (A));

where B(k) is the spa
e of k-
oinvariants in S

2

(k), and T (A) � �

2

(A) is spanned by the elements ab^ 
+


a ^ b+ b
 ^ a for a; b; 
 2 A.

The main advantage of our approa
h is that is does not require any auxiliary data and provides a

quite expli
it des
ription of 
o
y
les representing the di�erent types of 
ohomology 
lasses. In parti
ular,

this dire
t approa
h lead us to the interesting new 
lass of 
oupled 
o
y
les. In subsequent work, we

plan to use the methods developed in [Ne02℄ to study global 
entral extensions of Lie groups G whose

Lie algebras are of the form g = A
 k de�ned by 
oupled Lie algebra 
o
y
les. For algebras of the type

A = C

1




(M;R ), i.e., 
ompa
tly supported smooth fun
tions on a manifold M , this has been 
arried out

in [MN03℄ and [Ne04℄.

Thanks: We are greatful to M. Bordemann for a stimulating email ex
hange and for pointing out

the relation to the exa
t sequen
e (4), part of whi
h is due to him.

Notation

In the following we write elements of g = A
 k simply as ax := a
x to simplify notation. Elements of A

are mostly denoted a; b; 
; : : : or a; a

0

; a

00

; : : : and elements of k are denoted x; y; z; : : : or x; x

0

; x

00

; : : :. We

write k

0

:= [k; k℄ for the 
ommutator algebra of k and observe that g

0

= A
 k

0

is the 
ommutator algebra

of g.

We also write C

p

(g) := C

p

(g;K ), Z

p

(g) := Z

p

(g;K ), B

p

(g) := B

p

(g;K ), and H

p

(g) := H

p

(g;K ) for

the spa
es of Lie algebra p-
o
hains, 
o
y
les, 
oboundaries and 
ohomology 
lasses with values in the

trivial module K . We likewise write Sym

2

(k) := Sym

2

(k;K ) for the spa
e of K -valued symmetri
 bilinear

forms on k.

1 Several approa
hes to the universal di�erential module of A

In this se
tion we review di�erent 
onstru
tions of the universal di�erential module 


1

(A). The relation-

ship between these 
onstru
tions will play a 
ru
ial role in the following.

An important obje
t atta
hed to the algebra A is its universal di�erential module 


1

(A). This is an

A-module with a derivation d

A

: A! 


1

(A) whi
h is universal in the sense that for any other A-module

M and any derivation D : A!M , there exists a unique module morphism � : 


1

(A)!M of A-modules

with D = � Æ d

A

. From its universal property it is easy to derive that the universal di�erential module

is unique up to isomorphism, but there are many realizations, looking at �rst sight quite di�erent.

4



Let �

A

: A
A! A; a
 b 7! ab denote the multipli
ation of A. Then �

A

is an algebra morphism, so

that J

A

:= ker�

A

is an ideal of the 
ommutative algebra A
A. From the A-module stru
ture on A
A

given by a:(b
 
) := ab
 
, we thus derive an A-module stru
ture on the quotient spa
e J

A

=J

2

A

, whi
h

also is a (non-unital) 
ommutative algebra. Let [x℄ denote the image of x 2 J

A

in J

A

=J

2

A

. Then

D : A! J

A

=J

2

A

; a 7! [1
 a� a
 1℄

is a derivation and it is not hard to verify that (J

A

=J

2

A

; D) has the universal property of (


1

(A); d

A

) (
f.

[Ma02℄). We obviously have the dire
t de
omposition A
A

�

=

(A 
 1)� J

A

, where the proje
tion onto

the subspa
e J

A

is given by

p : A
A! J

A

; a
 b 7! a
 b� ab
 1:

This implies that

J

A

= spanfa
 b� ab
 1 : a; b 2 Ag = (A
 1):spanf1
 b� b
 1 : b 2 Ag;

and thus

J

2

A

= spanf(a
 1)(1
 b� b
 1)(1
 
� 

 1) : a; b; 
 2 Ag (5)

= spanfa
 b
� ab
 
� a

 b+ ab

 1 : a; b; 
 2 Ag:

Another way to 
onstru
t 


1

(A) is by observing that ea
h linear map D : A ! M leads to a linear

map

e

D : A
A!M;a
 b 7! aDb; and that D is a derivation if and only if

ker

e

D � f1
 ab� a
 b� b
 a : a; b 2 Ag;

whi
h implies that ker

e

D 
ontains the A-submodule

B

1

(A) := spanf

 ab� 
a
 b� 
b
 a : a; b; 
 2 Ag = spanfab
 
+ a

 b� a
 b
 : a; b; 
 2 Ag;

of A
A. The quotient

HH

1

(A) := (A
A)=B

1

(A)

is 
alled the �rst Ho
hs
hild homology spa
e of A. From the pre
eding dis
ussion it follows that the map

HH

1

(A)! 


1

(A); [a
 b℄ 7! ad

A

(b) (6)

is an isomorphism of A-modules be
ause the map D : A! HH

1

(A); a 7! [1
 a℄ is a derivation with the

universal property (
f. [Lo98℄, Prop. 1.1.10). The link between the des
ription of 


1

(A) as HH

1

(A) and

J

A

=J

2

A

is given by the 
ommutative diagram

A
A

p

����! J

A

?

?

y

?

?

y

HH

1

(A)

'

����! J

A

=J

2

A

with the isomorphism '([a
 b℄) = aD(b) = [a
 b�ab
1℄. Note that the 
ommutativity of the diagram

implies that

J

2

A

= p(B

1

(A)): (7)

5



Let

T (A) := spanfab ^ 
+ b
 ^ a+ 
a ^ b 2 �

2

(A) : a; b; 
 2 Ag

denote the image of the subspa
e B

1

(A) � A
A under the quotient map A
A! �

2

(A); a
 b 7! a^ b.

In view of ad

A

(b) + bd

A

(a) = d

A

(ab), the image of the subspa
e of symmetri
 tensors, whi
h we identify

with S

2

(A), in 


1

(A) 
oin
ides with d

A

(A), so that equation (6) immediately shows that the map

�

2

(A)=T (A)

�

=

(A
A)=(S

2

(A) +B

1

(A))! 


1

(A)=d

A

(A); [a ^ b℄ 7! [ad

A

(b)℄

indu
es a linear isomorphism. We shall see below that the �rst 
y
li
 homology spa
e

HC

1

(A) := 


1

(A)=d

A

(A)

�

=

HH

1

(A)=[1
A℄ = �

2

(A)=T (A)

is of 
entral importan
e for Lie algebra 2-
o
y
les on Lie algebras of the form A
 k.

Alternating bilinear maps f : A � A ! z for whi
h the 
orresponding map �

2

(A) ! z vanishes on

T (A) are 
alled 
y
li
 1-
o
y
les, whi
h means that

f(a; b
) + f(b; 
a) + f(
; ab) = 0 for a; b; 
 2 A:

From the above, it follows that the spa
e Z

1

(A; z) of z-valued 
y
li
 1-
o
y
les 
an be identi�ed with

Lin(HC

1

(A); z)

�

=

fL 2 Lin(


1

(A); z) : d

A

(A) � kerLg:

We de�ne two trilinear maps

T : A

3

! �

2

(A); (a; b; 
) 7!

X


y
:

ab ^ 
 := ab ^ 
+ b
 ^ a+ 
a ^ b

and

T

0

: A

3

! �

2

(A); T

0

(a; b; 
) := T (a; b; 
)� ab
 ^ 1:

We also put T

0

(A) := span(im(T

0

)).

Lemma 1.1 The map




A

: �

2

(A)! 


1

(A); a ^ b 7! ad

A

(b)� bd

A

(a)

is surje
tive and ker 


A

= T

0

(A).

Proof. That 


A

is surje
tive follows from




A

(a ^ b+ 1 ^ ab) = ad

A

(b)� bd

A

(a) + d

A

(ab) = 2ad

A

(b):

For the determination of the kernel of 


A

, we use the realization of 


1

(A) as J

A

=J

2

A

. In this 
ase

d

A

(a) = [1
 a� a
 1℄, so that




A

(a ^ b) = [a
 b� ab
 1� b
 a+ ba
 1℄ = [a
 b� b
 a℄:

Therefore the kernel of 


A

is the interse
tion �

2

(A) \ J

2

A

; where we 
onsider �

2

(A) as the subspa
e of

skew-symmetri
 tensors in A
A.

Writing A
A as �

2

(A)� S

2

(A), the 
ommutativity of the multipli
ation of A shows that

J

A

= �

2

(A)� I

A

holds for I

A

:= J

A

\ S

2

(A):

6



Sin
e the 
ip involution is an algebra isomorphism of A
A, we have

�

2

(A)�

2

(A) + S

2

(A)S

2

(A) � S

2

(A) and �

2

(A)S

2

(A) � �

2

(A):

This implies that

ker 


A

= �

2

(A) \ J

2

A

= I

A

� �

2

(A);

and that this subspa
e 
oin
ides with the image of J

2

A

under the proje
tion

� : A
A! �

2

(A); a
 b 7! a ^ b =

1

2

(a
 b� b
 a):

Finally, this leads with (5) to

ker 


A

= �(J

2

A

) = spanfa ^ b
� ab ^ 
� a
 ^ b+ ab
 ^ 1 : a; b; 
 2 Ag = T

0

(A):

2 A de
omposition of �

2

(g)

In this se
tion we turn to the identi�
ation of the spa
e B

2

(g) of 2-
oboundaries in Z

2

(g) in terms of our

threefold dire
t sum de
omposition (2).

From the universal property of �

2

(g) we immediately obtain linear maps

p

+

: �

2

(g)! �

2

(A) 
 S

2

(k); ax ^ by 7! a ^ b
 x _ y

and

p

�

: �

2

(g)! S

2

(A) 
 �

2

(k); ax ^ by 7! a _ b
 x ^ y:

We likewise have linear maps

�

+

: �

2

(A)
 S

2

(k)! �

2

(g); a ^ b
 x _ y !

1

2

(ax ^ by + ay ^ bx)

and

�

�

: S

2

(A)
 �

2

(k)! �

2

(g); a _ b
 x ^ y !

1

2

(ax ^ by � ay ^ bx)

satisfying

p

+

Æ �

+

= id; p

�

Æ �

�

= id and �

+

p

+

+ �

�

p

�

= id

�

2

(g)

:

In this sense we have

�

2

(g)

�

=

�

�

2

(A)
 S

2

(k)

�

�

�

S

2

(A)
 �

2

(k)

�

;

and the proje
tions on the two summands are given by p

�

.

Re
all the kernel J

A

of the multipli
ation map �

A

: A 
 A ! A. Sin
e A is 
ommutative, we then

have �

2

(A) � J

A

, so that

J

A

= �

2

(A)� I

A

with I

A

:= J

A

\ S

2

(A);

a

ording to the de
omposition A
A

�

=

�

2

(A)� S

2

(A). The map

�

A

: A! S

2

(A); a 7! a _ 1

7



is a se
tion of the multipli
ation map �

A

, so that we obtain a dire
t sum de
omposition

S

2

(A) = (A _ 1)� I

A

�

=

A� I

A

:

In view of this de
omposition, we obtain a dire
t sum de
omposition of �

2

(g):

�

2

(g)

�

=

(�

2

(A)
 S

2

(k)) � (A
 �

2

(k))� (I

A


 �

2

(k));

where the proje
tions p

1

; p

2

; p

3

on the three summands are given by

p

1

(ax ^ by) = p

+

(ax ^ by) = a ^ b
 x _ y;

p

2

(ax ^ by) = ab
 x ^ y; and p

3

(ax ^ by) = (a _ b� ab _ 1)
 x ^ y:

The following lemma provides the de
omposition of Z

2

(g) whi
h is a 
entral tool in the following.

Lemma 2.1 The spa
e Z

2

(g) is adapted to the dire
t sum de
omposition of �

2

(g):

Z

2

(g) = (�

2

(A)
 S

2

(k)) � (A
 Z

2

(k))� (I

A


 �

2

(k)):

Proof. Sin
e b

g

(ax ^ by) = ab[x; y℄ is symmetri
 in a; b and alternating in x; y, its kernel 
ontains

�

2

(A) 
 S

2

(k). The formula for b

g

also shows immediately that I

A


 �

2

(k) � ker b

g

, so that it remains

to observe that

Z

2

(g) \ (A
 �

2

(k)) = ker b

g

\ (A
 �

2

(k)) = A
 Z

2

(k)

be
ause b

g

(a _ 1
 x ^ y) =

1

2

b

g

(ax ^ y + x ^ ay) = a[x; y℄ = ab

k

(x ^ y):

In the following we write � mod B

2

(g) for 
ongruen
e of elements of �

2

(g) modulo B

2

(g).

Lemma 2.2 For a; b; 
 2 A and x; y; z 2 k we have

p

1

(�(ax ^ by ^ 
z)) � p

1

(ab
x ^ [y; z℄) � �p

2

(�(ax ^ by ^ 
z)) mod B

2

(g):

In parti
ular (p

1

+ p

2

)(B

2

(g)) � B

2

(g):

Proof. From

�(ax ^ by ^ 
z) = ab[x; y℄ ^ 
z + b
[y; z℄ ^ ax+ a
[z; x℄ ^ by

�(
x ^ ay ^ bz) = a
[x; y℄ ^ bz + ab[y; z℄ ^ 
x+ b
[z; x℄ ^ ay

�(x ^ a
y ^ bz) = a
[x; y℄ ^ bz + ab
[y; z℄ ^ x+ b[z; x℄ ^ a
y

�(
x ^ y ^ abz) = 
[x; y℄ ^ abz + ab[y; z℄ ^ 
x+ ab
[z; x℄ ^ y

�(b
x ^ ay ^ z) = ab
[x; y℄ ^ z + a[y; z℄ ^ b
x+ b
[z; x℄ ^ ay

�(ab
x ^ y ^ z) = ab
[x; y℄ ^ z + [y; z℄ ^ ab
x+ ab
[z; x℄ ^ y

we derive

�(ax ^ by ^ 
z) + �(
x ^ ay ^ bz)� �(x ^ a
y ^ bz)� �(
x ^ y ^ abz)

��(b
x ^ ay ^ z) + �(ab
x ^ y ^ z)

= ab[x; y℄ ^ 
z + b
[y; z℄^ ax+ a
[z; x℄ ^ by � b[z; x℄ ^ a
y � 
[x; y℄ ^ abz � a[y; z℄ ^ b
x

�ab
[y; z℄^ x+ [y; z℄ ^ ab
x

= 2ab ^ 

 [x; y℄ _ z + 2b
 ^ a
 [y; z℄ _ x+ 2a
 ^ b
 [z; x℄ _ y � 2ab
 ^ 1
 x _ [y; z℄

= 2p

1

(�(ax ^ by ^ 
z))� 2p

1

(ab
x ^ [y; z℄):

8



This proves the �rst 
ongruen
e.

Note that for a 2 A and x; y; z 2 k we have

�(ax ^ y ^ z) = a[x; y℄ ^ z + [y; z℄ ^ ax+ a[z; x℄ ^ y;

whi
h implies that

a[x; y℄ ^ z + a[z; x℄ ^ y � ax ^ [y; z℄ mod B

2

(g): (8)

Summing over all 
y
li
 permutations of (x; y; z); leads to

2

X


y
:

a[x; y℄ ^ z =

X


y
:

ax ^ [y; z℄ mod B

2

(g): (9)

From the relation (8) we get

2p

1

(ab
x ^ [y; z℄) = ab
[y; z℄ ^ x+ ab
x ^ [y; z℄ �

X


y
:

ab
[y; z℄ ^ x =

X


y
:

ab
[x; y℄ ^ z:

In view of

p

2

(�(ax ^ by ^ 
z)) = p

2

(ab[x; y℄ ^ 
z + b
[y; z℄ ^ ax+ 
a[z; x℄ ^ by)

= ab

 ([x; y℄ ^ z + [y; z℄ ^ x+ [z; x℄ ^ y)

= ab

 �(x ^ y ^ z); (10)

relation (9) yields

2p

2

(�(ax ^ by ^ 
z)) =

X


y
:

ab
[x; y℄ ^ z �

X


y
:

ab
z ^ [x; y℄ �

X


y
:

ab
[x; y℄ ^ z � 2

X


y
:

ab
[x; y℄ ^ z

= �

X


y
:

ab
[x; y℄ ^ z � �2p

1

(�(ax ^ by ^ 
z)):

In view of the pre
eding lemma, the proje
tion p

1

+ p

2

of �

2

(g) onto the subspa
e

�

2

(A) 
 S

2

(k)�A
 �

2

(k)

preserves B

2

(g). This also implies that id�p

1

� p

2

= p

3

preserves B

2

(g), and we derive that

B

2

(g) = B

2

(g) \

�

�

2

(A)
 S

2

(k)�A
 �

2

(k))�B

2

(g) \ (I

A


 �

2

(k)):

The following lemma provides re�ned information.

Lemma 2.3 (1) �

2

(A)
k:S

2

(k)+T

0

(A)
k_k

0

� B

2

(g) and p

1

(B

2

(g)) = �

2

(A)
k:S

2

(k)+T (A)
k_k

0

.

(2) p

2

(B

2

(g)) = A
B

2

(k).

(3) I

A


 (k ^ k

0

) = p

3

(B

2

(g)) � B

2

(g).

9



Proof. (2) follows immediately from formula (10).

(1) That �

2

(A)
 k:S

2

(k) is 
ontained in B

2

(g) follows immediately from

�(ax ^ by ^ z)� �(bx ^ ay ^ z)

= ab[x; y℄ ^ z + b[y; z℄ ^ ax+ a[z; x℄ ^ by � ab[x; y℄ ^ z � a[y; z℄ ^ bx� b[z; x℄ ^ ay

= b[y; z℄ ^ ax+ a[z; x℄ ^ by � a[y; z℄ ^ bx� b[z; x℄ ^ ay

= 2b ^ a
 [y; z℄ _ x+ 2a ^ b
 [z; x℄ _ y

= 2a ^ b
 ([z; x℄ _ y � [y; z℄ _ x)

= 2a ^ b
 z:(x _ y):

Therefore the des
ription of p

1

(B

2

(g)) = im(p

1

Æ �) follows from

p

1

(�(ax ^ by ^ 
z)) = p

1

(ab[x; y℄ ^ 
z + b
[y; z℄ ^ ax+ 
a[z; x℄ ^ by)

= ab ^ 

 [x; y℄ _ z + b
 ^ a
 [y; z℄ _ x+ 
a ^ b
 [z; x℄ _ y

� (ab ^ 
+ b
 ^ a+ 
a ^ b)
 [x; y℄ _ z mod �

2

(A) 
 k:S

2

(k)

= T (a; b; 
)
 [x; y℄ _ z:

In (10), we have seen that

p

2

(�(ax ^ by ^ 
z)) = ab

 �(x ^ y ^ z);

and this implies that

p

2

(�(abx ^ y ^ 
z)) = ab

 �(x ^ y ^ z);

whi
h leads to

�(ax ^ by ^ 
z)� �(abx ^ y ^ 
z) 2 ker p

2

:

In view of

T (a; b; 
)� T (ab;1; 
) = T (a; b; 
)� (ab ^ 
+ 
 ^ ab+ ab
 ^ 1) = T (a; b; 
)� ab
 ^ 1 = T

0

(a; b; 
)

and Lemma 2.2, the following element is 
ontained in B

2

(g):

p

1

(�(ax ^ by ^ 
z)� �(abx ^ y ^ 
z)) 2

�

T (a; b; 
)� T (ab;1; 
)

�


 [x; y℄ _ z +�

2

(A)
 k:S

2

(k)

� T

0

(a; b; 
)
 [x; y℄ _ z +B

2

(g);

and now Lemma 2.2 implies that T

0

(A)
 k

0

_ k � B

2

(g).

(3) First we note that

p

3

(�(ax ^ by ^ z)) = p

3

(ab[x; y℄ ^ z + b[y; z℄ ^ ax+ a[z; x℄ ^ by)

= (ab _ 1� ab _ 1)
 [x; y℄ ^ z + (b _ a� ab _ 1)
 [y; z℄ ^ x+ (a _ b� ab _ 1)
 [z; x℄ ^ y

= (a _ b� ab _ 1)
 ([y; z℄ ^ x+ [z; x℄ ^ y): (11)

Sin
e p

3

preserves B

2

(g) (Lemma 2.2), this expressions lies in B

2

(g). Using the same formula for all


y
li
 permutations of x; y; z and adding all three terms, we see that

2(a _ b� ab _ 1)


X


y
:

[x; y℄ ^ z 2 B

2

(g):

10



This also implies that

(a _ b� ab _ 1)
 [x; y℄ ^ z = (a _ b� ab _ 1)


�

X


y
:

[x; y℄ ^ z � ([y; z℄ ^ x+ [z; x℄ ^ y)

�

2 B

2

(g):

Next we note that I

A

is spanned by elements of the form a_ b� ab_ 1; be
ause a_ b 7! a_ b� ab_ 1

is the proje
tion of S

2

(A) onto I

A

with kernel A

�

=

A _ 1. Therefore B

2

(g) 
ontains I

A


 k

0

^ k. On the

other hand, (11) shows that p

3

(B

2

(g)) is 
learly 
ontained in I

A


 k

0

^ k.

Theorem 2.4 With the linear map

F : A
 �

3

(k)! �

2

(g); a
 (x ^ y ^ z) 7! (a ^ 1
 [x; y℄ _ z) + a
 �(x ^ y ^ z)

we get the following des
ription of B

2

(g):

B

2

(g) = �

2

(A)
 k:S

2

(k) + T

0

(A)
 k _ k

0

+ im(F ) + I

A


 (k ^ k

0

):

Proof. The des
ription of the position of B

2

(g) given in Lemma 2.3 is already quite detailed. It shows

in parti
ular that the part of B

2

(g) lying in �

2

(A)
 S

2

(k)�A
 Z

2

(k) 
ontains

T

0

(A) 
 k _ k

0

+�

2

(A)
 k:S

2

(k)

and is 
ontained in

A
B

2

(k)�T (A)
 k_ k

0

+�

2

(A)
 k:S

2

(k) = A
B

2

(k)� (A^1)
 k_ k

0

+T

0

(A)
 k_ k

0

+�

2

(A)
 k:S

2

(k):

Further Lemma 2.3 (1) implies that

F (a; x ^ y ^ z) 2 (p

1

+ p

2

)(�(ax ^ y ^ z)) + (�

2

(A)
 k:S

2

(k));

be
ause

p

1

(�(ax ^ y ^ z)) � a ^ 1
 [x; y℄ _ z mod �

2

(A)
 k:S

2

(k)

and

p

2

(�(ax ^ y ^ z)) = a
 �(x ^ y ^ z):

We thus dedu
e that Im(F ) � B

2

(g). Now the theorem follows.

3 The des
ription of the 2-
o
y
les

As explained in the introdu
tion, we think of the elements of H

2

(g; z) as linear maps f : Z

2

(g) ! z

vanishing on the subspa
e B

2

(g). We further write 2-
o
y
les as f = f

1

+ f

2

+ f

3

, a

ording to the

de
omposition in Lemma 2.1, where

f

1

: �

2

(A)
 S

2

(k)! z; f

2

: A
 �

2

(k)! z and f

3

: I

A


 �

2

(k)! z:

We then think of f

1

as an alternating bilinear map

e

f

1

: A � A ! Sym

2

(k; z), of f

2

as a linear map

e

f

2

: A! Lin(�

2

(k); z), and of f

3

as a symmetri
 bilinear map

e

f

3

: I

A

! Alt

2

(k; z):

11



The 
ondition, that three su
h maps

e

f

1

;

e

f

2

;

e

f

3


ombine to a 2-
o
y
le

f : Z

2

(g)! z; a^a

0


x_x

0

+(b_1)
 y ^ y

0

+ 

 (z ^ z

0

) 7!

e

f

1

(a; a

0

)(x; x

0

)+

e

f

2

(b)(y; y

0

)+

e

f

3

(
)(z; z

0

);

is that f vanishes on B

2

(g). To make this 
ondition more expli
it, we de�ne the Cartan map

�: Lin(k _ k

0

; z)

k

! Z

3

(k; z); �(�)(x; y; z) := �([x; y℄; z):

That �(�) is alternating follows from

�(�)(x; z; y) = �([x; z℄; y) = �(y; [x; z℄) = �([y; x℄; z) = ��(�)(x; y; z)

and the fa
t that the symmetri
 group S

3

is generated by the transpositions (1 2) and (2 3). That the

image of � 
onsists of 3-
o
y
les follows from

(d

k

�(�))(x

0

; x

1

; x

2

; x

3

) = ��([[x

0

; x

1

℄; x

2

℄; x

3

) + �([[x

0

; x

2

℄; x

1

℄; x

3

)� �([[x

0

; x

3

℄; x

1

℄; x

2

)

��([[x

1

; x

2

℄; x

0

℄; x

3

) + �([[x

1

; x

3

℄; x

0

℄; x

2

)� �([[x

2

; x

3

℄; x

0

℄; x

1

)

= �(�[[x

0

; x

1

℄; x

2

℄ + [[x

0

; x

2

℄; x

1

℄� [[x

1

; x

2

℄; x

0

℄; x

3

)

+�(�[[x

0

; x

3

℄; x

1

℄ + [[x

1

; x

3

℄; x

0

℄; x

2

)� �(x

2

; [x

3

; [x

0

; x

1

℄℄)

= �(�[[x

0

; x

3

℄; x

1

℄ + [[x

1

; x

3

℄; x

0

℄� [x

3

; [x

0

; x

1

℄℄; x

2

) = 0:

For the following theorem we observe that the Lie algebra di�erential d

k

: C

2

(k; z) = Alt

2

(k; z) !

Z

3

(k; z) fa
tors through the surje
tive map Alt

2

(k; z)!! Lin(Z

2

(k); z); whose kernel are the 2-
oboundaries.

Theorem 3.1 (Des
ription of 
o
y
les) The fun
tion f = f

1

+f

2

+f

3

as above is a 2-
o
y
le if and only

if the following 
onditions are satis�ed:

(a) im(

e

f

1

) � Sym

2

(k; z)

k

.

(b)

e

f

1

(T

0

(A)) vanishes on k� k

0

.

(
) d

k

(

e

f

2

(a)) = �(

e

f

1

(a;1)) for ea
h a 2 A.

(d)

e

f

3

(I

A

) vanishes on k� k

0

.

Proof. The linear map f is a 2-
o
y
le if and only if it vanishes on B

2

(g). In view of Theorem 2.4,

B

2

(g) is the sum of four subspa
es, so that we get four 
onditions.

Condition (a) means that f vanishes on �

2

(A) 
 k:S

2

(k), and 
ondition (b) that it vanishes on the

subspa
e T

0

(A) 
 k _ k

0

.

That f vanishes on the image of F , means that

�(

e

f

1

(a;1))(x; y; z) =

e

f

1

(a;1)([x; y℄; z) = �

e

f

2

(a)(�(x ^ y ^ z)) = (d

k

e

f

2

(a))(x; y; z)

for a 2 A and x; y; z 2 k, whi
h is (
).

Finally, (d) means that f vanishes on I

A


 k ^ k

0

.
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Corollary 3.2 f = f

1

+ f

2

+ f

3

is a 
o
y
le if and only if f

1

+ f

2

and f

3

are 
o
y
les.

Corollary 3.3 A fun
tion of one of the three types f = f

i

, i = 1; 2; 3, is a 2-
o
y
le if and only if the

following 
onditions are satis�ed:

(i = 1) im(

e

f

1

) � Sym

2

(k; z)

k

and the indu
ed map A�A! Lin(k _ k

0

; z)

k

is a 
y
li
 1-
o
y
le.

(i = 2)

e

f

2

(A) � Z

2

(k; z).

(i = 3)

e

f

3

(I

A

) vanishes on k� k

0

.

Proof. That f = f

i

is a 2-
o
y
le is equivalent to f vanishing on p

i

(B

2

(g)), so that Lemma 2.3 leads

to the stated 
hara
terizations.

Remark 3.4 A spe
ial 
lass of 
o
y
les are those of the form f = f

1

, vanishing on g� g

0

. The 
o
y
les

of the form f = f

3

also vanish on the 
ommutator algebra, and the sums of these two types exhaust the

image of the inje
tive pull-ba
k map H

2

(g=g

0

; z)

�

=

Alt

2

(g=g

0

; z)! H

2

(g; z):

Corollary 3.5 For ea
h 
o
y
le f = f

1

+ f

2

+ f

3

there exists a de
omposition f

1

= f

0

1

+ f

1

1

, where

f

0

1

(g; g

0

) = f0g; im(

e

f

1

1

) � Sym

2

(k; z)

k

and T

0

(A) � ker

e

f

1

1

:

Proof. Conditions (a) and (b) in Theorem 3.1 only refer to the restri
tion f

1

1

of f

1

to the subspa
e

�

2

(A)
 (k_ k

0

) of �

2

(A)
S

2

(k). This has the following interesting 
onsequen
e. We have a short exa
t

sequen
e

f0g ! Sym

2

(k=k

0

; z)! Sym

2

(k; z)

k

! Lin(k _ k

0

; z)

k

! f0g;

where the surje
tivity of the map Sym

2

(k; z)

k

! Lin(k _ k

0

; z)

k

follows from the fa
t that any symmetri


bilinear extension of an element of Lin(k _ k

0

; z)

k

is invariant. Any splitting of this sequen
e extends f

1

1

to an alternating bilinear map

e

f

1

1

: A�A! Sym

2

(k; z)

k

with

e

f

1

1

(a; b)(x; y) =

e

f

1

(a; b)(x; y) for a; b 2 A; x 2 k; y 2 k

0

and su
h that T

0

(A) � ker

e

f

1

1

. Then

�(

e

f

1

1

(a;1)) = �(

e

f

1

(a;1)) for a 2 A;

so that f

1

1

+ f

2

+ f

3

also is a 
o
y
le by Theorem 3.1. We 
on
lude that f

0

1

:= f

1

� f

1

1

is a 
o
y
le

vanishing on g� g

0

. This proves the assertion.

Proposition 3.6 (Des
ription of 
oboundaries) A 
o
y
le f = f

1

+ f

2

+ f

3

is a 
oboundary if and only

if f

1

= f

3

= 0 and there exists a linear map ` : A! Lin(k; z) with d

g

` = f

2

, i.e.,

e

f

2

(a) = d

k

(`(a)) for all a 2 A:

Proof. That f is a 
oboundary means that it vanishes on Z

2

(g). A

ording to Lemma 2.1, this

implies that f

1

= f

3

= 0. Sin
e the bra
ket map b

g

: �

2

(g) ! g is alternating in k and symmetri
 in A,

all 
oboundaries are of the form f = f

2

.
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We 
all 
o
y
les of the form f

1

+ f

2

for whi
h f

1

is not a 
o
y
le 
oupled. The following theorem


hara
terizes the pairs (A; k) for whi
h A
 k possesses 
oupled 
o
y
les. In Se
tion 5 below we shall also

give a 
on
rete example of a Lie algebra k satisfying this 
ondition.

Theorem 3.7 The Lie algebra g = A 
 k possesses 
oupled 
o
y
les if and only if d

A

(A) 6= f0g and k

possesses a symmetri
 invariant bilinear form � for whi
h �(�) 2 Z

3

(k) is a non-zero 
oboundary.

If this is not the 
ase, then ea
h 
o
y
le f 2 Z

2

(g) is a sum

f = f

1

+ f

2

+ f

3

= f

0

1

+ f

1

1

+ f

2

+ f

3

:

of four 
o
y
les, where

(a) f

0

1

vanishes on g� g

0

.

(b)

e

f

1

1

2 Z

1

(A; Sym

2

(k; z)

k

) is a 
y
li
 1-
o
y
le.

(
)

e

f

2

(A) � Z

2

(k; z).

(d) f

3

vanishes on g� g

0

.

Proof. First let f = f

1

+ f

2

be a 
oupled 
o
y
le on g. Then we have �(

e

f

1

(A;1)) 6= f0g. Composing

with a suitable linear fun
tional � : z ! K with

� Æ �(

e

f

1

(A;1)) = �((� Æ f

1

)e(A;1)) 6= f0g;

we may w.l.o.g. assume that z = K . Then there exists an a 2 A with

d

k

(

e

f

2

(a)) = �(

e

f

1

(a;1)) 6= 0:

Now � :=

e

f

1

(a;1) 2 Sym

2

(k)

k

is an invariant symmetri
 bilinear form for whi
h �(�) is exa
t and

non-zero. Then a 2 T (A) n T

0

(A); so that 0 6= d

A

(a) in 


1

(A) (Theorem 3.1).

If, 
onversely, d

A

(A) 6= f0g and � is an invariant symmetri
 bilinear form on k for whi
h �(�) is a

non-zero 
oboundary, then we pi
k � 2 C

2

(k) = Alt

2

(k) with d

k

� = �(�). We now de�ne linear maps

e

f

1

:= 


A


 � : �

2

(A)! Sym

2

(k;


1

(A))

k

;

e

f

1

(a ^ b)(x; y) := �(x; y) � (ad

A

(b)� bd

A

(a))

and

e

f

2

:= �d

A


 � : A! C

2

(k;


1

(A));

e

f

2

(a)(x; y) := ��(x; y) � d

A

(a):

We 
laim that the 
orresponding map f = f

1

+ f

2

is a 2-
o
y
le by verifying the 
onditions in

Theorem 3.1. Condition (a) is obviously satis�ed, and (b) follows from T

0

(A) = ker 


A

(Lemma 1.1).

Further f

3

= 0, and (
) follows from

d

k

e

f

2

(a) = �(d

k

�) � d

A

(a) = ��(�)d

A

(a) = �(

e

f

1

(a;1)):

That f

1

is not a 
o
y
le, i.e., that f is 
oupled, means that

e

f

1

(A^1)(k� k

0

) 6= f0g, whi
h is equivalent

to d

A

(A) 6= f0g and �(�) = � 6= 0: This 
ompletes the proof of the �rst part of the theorem.

For the se
ond part we assume that either d

A

(A)

�

=

T

0

(A)=T (A) vanishes, whi
h means that T

0

(A) =

T (A), or that for ea
h exa
t invariant bilinear form � on k we have �(�) = 0. Then for ea
h 
o
y
le

f = f

0

1

+f

1

1

+f

2

+f

3

as in Corollary 3.5, either

e

f

1

1

vanishes on T (A) (if d

A

(A) vanishes) or

e

f

2

(A) � Z

2

(k; z)

(if for all exa
t forms on k the 3-
o
y
le �(�) vanishes). Both 
onditions imply that f

1

1

and f

2

are 
o
y
les.

Hen
e the assertion follows from Corollary 3.3.
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Corollary 3.8 If H

1

(k; k

�

) = f0g, then g = A
 k has no 
oupled 
o
y
les.

Proof. From the exa
t sequen
e in Proposition 7.2 below, it follows that the Cartan map 
 : Sym

2

(k)

k

!

H

3

(k); � 7! [�(�)℄ is inje
tive, and this implies that ea
h exa
t invariant form vanishes.

The following proposition des
ribes the universal 
o
y
le for g in terms of our threefold dire
t sum

de
omposition.

Proposition 3.9 (A universal 
o
y
le) Let p

k

: �

2

(k) ! Z

2

(k) denote a linear proje
tion onto Z

2

(k).

Then the linear map

e

f

u

:= p

1

� (id

A


p

k

)� p

3

: �

2

(g)! Z

2

(g)

maps B

2

(g) into itself, hen
e indu
es a 2-
o
y
le

f

u

: �

2

(g)! H

2

(g) = Z

2

(g)=B

2

(g):

It is universal in the sense that the map for ea
h spa
e z the map

Lin(H

2

(g); z)! H

2

(g; z); ' 7! ' Æ f

u

is a linear bije
tion.

Proof. That

e

f

u

is a linear proje
tion onto Z

2

(g) follows from Lemma 2.1. The remainder follows

from the fa
t that H

2

(g; z) ! Lin(Z

2

(g); z); [f ℄ 7! f j

Z

2

(g)

is inje
tive onto the set of all maps vanishing

on B

2

(g).

4 The stru
ture of the se
ond 
ohomology spa
e

In this se
tion we use the results of the present se
tion to give a quite expli
it des
ription of the spa
e

H

2

(g) in terms of data asso
iated dire
tly to g and A.

Lemma 4.1 Asso
iating with ea
h linear map

e

f

2

: A ! Z

2

(k) the 
orresponding 
o
y
le f

2

2 Z

2

(g), we

obtain, together with the natural pullba
k map H

2

(g=g

0

)! H

2

(g), an inje
tion

H

2

(g=g

0

)� Lin(A;H

2

(k))

�

����!H

2

(g)

whose image 
onsists of all 
lasses of 
o
y
les of the form f

0

1

+ f

2

+ f

3

.

Proof. The image of the pullba
k map 
onsists of those 
ohomology 
lasses represented by 
o
y
les

vanishing on g�g

0

, whi
h are the 
o
y
les of the form f

0

1

+f

3

. Sin
e the spa
e of these 
o
y
les interse
ts

B

2

(g) trivially, the spa
e H

2

(g=g

0

) inje
ts into H

2

(g) (Remark 3.4 and Prop. 3.6).

Next we re
all that the 
o
y
les of the form f = f

2

: A 
 �

2

(k) ! K 
orrespond to linear maps

e

f

2

: A ! Z

2

(k) (whi
h means that f

2

vanishes on A 
 B

2

(k)), and that su
h a map is a 
oboundary if

and only if im(

e

f

2

)(A) � B

2

(k), be
ause this implies the existen
e of a linear map ` : A ! Lin(k) with

e

f

2

(a) = d

k

(`(a)) for all a 2 A. The latter 
ondition means that f

2

vanishes on A 
 Z

2

(k), so that the


ohomology 
lasses 
orrespond to elements in

Lin(A
 Z

2

(k)=(A
B

2

(k));K )

�

=

Lin(A
 (Z

2

(k)=B

2

(k));K )

�

=

Lin(A
H

2

(k);K )

�

=

Lin(A;H

2

(k)):
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Given a 
o
y
le f = f

1

+ f

2

+ f

3

in Z

2

(g), we obtain the map � Æ

e

f

1

: �

2

(A) ! Z

3

(k); whose kernel


ontains T

0

(A), so that it indu
es a linear map

f

[

: 


1

(A)

�

=

�

2

(A)=T

0

(A)! Z

3

(k); a � d

A

(b)� b � d

A

(a) 7! �(

e

f

1

(a; b));

mapping the subspa
e d

A

(A) � 


1

(A) into the subspa
e B

3

(k) (Theorem 3.1). In view of

f

[

(d

A

(a)) = ��(

e

f

1

(a;1)) = �d

k

(

e

f

2

(a)); (12)

the range of ea
h map � Æ

e

f

1

lies in the subspa
e Z

3

(k)

�

:= im(�) � Z

3

(k) and

f

[

(d

A

(A)) � B

3

(k)

�

:= B

3

(k) \ im(�):

We thus obtain a map

	: H

2

(g)! Lin((


1

(A); d

A

(A)); (Z

3

(k)

�

; B

3

(k)

�

)); [f ℄ 7! [� Æ

e

f

1

℄;

where for pairs (X;X

0

) and (Y; Y

0

) of linear spa
es with X � X

0

and Y � Y

0

we write

Lin((X;X

0

); (Y; Y

0

)) := ff 2 Lin(X

0

; Y

0

) : f(X) � Y g:

Theorem 4.2 The sequen
e

f0g ! H

2

(g=g

0

)�

�

A
H

2

(k))

�

����!H

2

(g)

	

����!Lin((


1

(A); d

A

(A)); (Z

3

(k)

�

; B

3

(k)

�

))! f0g

is exa
t.

Proof. We have already seen in Lemma 4.1 that � is inje
tive.

The kernel of 	 
onsists of all 
o
y
les f = f

1

+ f

2

+ f

3

for whi
h � Æ

e

f

1

= 0. This is equivalent to

e

f

1

(�

2

(A)) vanishing on k _ k

0

, whi
h means that f

1

vanishes on g � g

0

, i.e., f

1

= f

0

1

. This shows that

ker	 = im�.

To see that 	 is surje
tive, let � 2 Lin((


1

(A); d

A

(A)); (Z

3

(k)

�

; B

3

(k)

�

)) and observe that there exists

a linear map

f

[

: 


1

(A)! Sym

2

(k)

k

with � Æ f

[

= �;

and a linear map � : d

A

(A)! C

2

(k) with

d

k

(�(d

A

(a))) = �(d

A

(a)) for all a 2 A:

For

e

f

1

: �

2

(A)! Sym

2

(k)

k

;

e

f

1

(a; b) := f

[

(a � d

A

(b)� b � d

A

(a)) and

e

f

2

: A! C

2

(k); a 7! ��(d

A

(a))

we then have

d

k

(

e

f

2

(a)) = �d

k

(�(d

A

(a))) = ��(d

A

(a)) = ��(f

[

(d

A

(a))) = �(

e

f

1

(a;1));

so that the 
orresponding maps f

1

and f

2

sum up to a 2-
o
y
le f := f

1

+ f

2

satisfying 	([f ℄) = �.
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The quotient Z

3

(k)

�

=B

3

(k)

�


an be identi�ed with the image of the map


 : Sym

2

(k)

k

! H

3

(k); � 7! [�(�)℄

dis
ussed in the appendix below. From the exa
tness of the sequen
e in Proposition 7.2, it follows that

the spa
e Sym

2

(k)

k

ex

:= ker 
 of exa
t invariant bilinear forms satis�es

Sym

2

(k)

k

ex

�

=

H

1

(k; k

�

)=H

2

(k): (13)

We also note that for a quadrati
 Lie algebra, i.e., a �nite-dimensional Lie algebra k with an invariant

non-degenerate symmetri
 bilinear form �

0

, the spa
e out(k) := der(k)= ad k of outer derivations satis�es

H

1

(k; k

�

)

�

=

H

1

(k; k)

�

=

der(k)= ad k = out(k);

and that the subspa
e H

2

(k) � H

1

(k; k

�

) 
onsists of those 
lasses [D℄ of derivations D whi
h are skew-

symmetri
 with respe
t to �

0

.

We further have ker�

�

=

Sym

2

(k=k

0

), so that

B

3

(k)

�

�

=

Sym

2

(k)

k

ex

= Sym

2

(k=k

0

) and Z

3

(k)

�

�

=

Sym

2

(k)

k

= Sym

2

(k=k

0

):

To obtain an expli
it des
ription of H

2

(g), it is therefore ne
essary to have a good des
ription of the

spa
e Sym

2

(k)

k

of invariant quadrati
 forms on k and its subspa
e of exa
t forms.

Problem 4.3 Let k be a �nite-dimensional K -Lie algebra. We 
onsider the spa
e S := Sym

2

(k)

k

of

invariant symmetri
 bilinear forms on k.

Let n :=

T

frad(�) : � 2 Sg denote the 
ommon radi
al of all invariant symmetri
 bilinear forms on k.

Fix an element � 2 S of maximal rank. Then n � rad(�), but is there some � for whi
h we have equality?

In the following remark we 
olle
t some information that is useful to determine the spa
e Z

3

(k)

�

.

Remark 4.4 Suppose that (k; �

0

) is a quadrati
 Lie algebra, i.e., �

0

is a non-degenerate invariant sym-

metri
 bilinear form on k. Then there exists for ea
h invariant symmetri
 bilinear form � 2 Sym(k)

k

a

uniquely determined endomorphism A

�

2 End(k) with

�(x; y) = �

0

(A

�

:x; y) for x; y 2 k:

Now the invarian
e of � implies that A

�

is 
ontained in the 
entroid

Cent(k) := fA 2 End(k) : (8x 2 k) [A; adx℄ = 0g:

The 
entroid of k is an asso
iative subalgebra of End(k) on whi
h transposition A 7! A

>

with respe
t to

�

0

indu
es a linear antiautomorphism, satisfying

�

0

(A:x; y) = �

0

(x;A

>

:y) = �

0

(A

>

:y; x) for all x; y 2 k:

It follows in parti
ular that for A 2 Cent(k) the invariant bilinear form �

A

(x; y) := �

0

(A:x; y) is symmetri


if and only if A

>

= A. This leads to a linear bije
tion

Cent(k)

+

:= fA 2 Cent(k) : A

>

= Ag ! Sym

2

(k)

k

; A 7! �

A

:
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For A

>

= �A the invariant form �

A

is alternating, whi
h implies that �

A

vanishes on k� k

0

, and this

implies that

A(k) � (k

0

)

?

= z(k) and A(k

0

) = f0g:

Conversely, any A 2 End(k) with k

0

� kerA and im(A) � z(k) satis�es A Æ adx = adx Æ A = 0 for all

x 2 k, hen
e is 
ontained in the 
entroid. We put

Cent

0

(k) := fA 2 End(k) : k

0

� kerA; im(A) � z(k)g

and observe that Cent

0

(k) E Cent(k) is an ideal of the asso
iative algebra Cent(k) be
ause

Cent

0

(k) = fA 2 Cent(k) : Aj

k

0

= 0g

is the kernel of the restri
tion homomorphism Cent(k)! End(k

0

).

If A 2 Cent

0

(k), then

�

0

(A

>

:[k; k℄; k) = �

0

([k; k℄; A:k) � �

0

(k

0

; z(k)) = f0g;

so that A

>

2 Cent

0

(k). Hen
e the ideal Cent

0

(k) is invariant under transposition. We have already seen

that Cent

0

(k) 
ontains all skew-symmetri
 elements of Cent(k), so that the involution indu
ed on the

quotient algebra

Cent

red

(k) := Cent(k)=Cent

0

(k) ,! End(k

0

)

is trivial, whi
h implies that this algebra is 
ommutative.

We 
on
lude that

Cent(k)

+

:= fA 2 Cent(k) : A

>

= Ag

�

=

Sym

2

(k)

k

and that

Cent

0

(k)

+

:= fA 2 Cent

0

(k) : A

>

= Ag

�

=

Sym

2

(k=k

0

):

Therefore

Z

3

(k)

�

= im(�)

�

=

Cent(k)

+

=Cent

0

(k)

+

�

=

Cent

red

(k)


arries the stru
ture of an asso
iative 
ommutative algebra.

In [MR93℄, Th. 2.3, Medina and Revoy des
ribe the stru
ture of the asso
iative algebra Cent(k) for a

Lie algebra k whose 
enter Z(k) is 
ontained in k

0

: The algebra Cent(k) has a de
omposition with respe
t

to orthogonal inde
omposable idempotents e

1

; : : : ; e

r

with

P

i

e

i

= id

k

, so that k is the dire
t produ
t of

the ideals k

i

:= e

i

k. Moreover, the algebra Cent(k

i

) ' e

i

Cent(k)e

i

is a lo
al ring, and we have

Cent(k) =

r

M

i;j=1

Cent

ij

; where Cent

ij

:= e

i

Cent(k)e

j

�

=

Lin(k

j

=k

0

j

; Z(k

i

))

as linear spa
es, and

Cent

0

(k) =

�

r

M

i=1

Cent

0

(k

i

)

�

�

�

M

i 6=j

Cent

ij

�

:

If, in addition, k 
arries a non-degenerate quadrati
 from �

0

, then Th. 2.5 lo
.
it. implies that the

de
omposition of k as a dire
t sum of ideals k

i

is orthogonal and the idempotents e

i

are symmetri
 with

respe
t to �

0

. We 
on
lude in parti
ular that

Cent

red

(k) = Cent(k)=Cent

0

(k)

�

=

r

M

i=1

Cent

red

(k

i

):

18



5 An example

This se
tion is devoted to a 
on
rete example of a Lie algebra g = A
 k whi
h has 
oupled 
o
y
les.

Let h be the 3-dimensional Heisenberg algebra h with generators x, y and 
 and the only non-trivial

relation [x; y℄ = 
. Then pass to the extension k = hoKD of h by a derivation D like for aÆne algebras.

Expli
itly, we take D(x) = x, D(y) = �y and D(
) = 0 (
f. [MP95℄, p.98, Ex. 6). The Lie algebra k is

4-dimensional, and has an invariant bilinear symmetri
 form �, as any Lie algebra with symmetrizable

Cartan matrix (
f. [MP95℄, Prop. 4, p. 362). We 
all k the split os
illator algebra over K .

Remark 5.1 Let us 
ompute the dimensions of the spa
es of 
o
hains, 
o
y
les and 
ohomology spa
es:

degree p 0 1 2 3 4

dimC

p

(k) 1 4 6 4 1

dimH

p

(k) 1 1 0 1 1

dimB

p

(k) 0 0 3 3 0

dimZ

p

(k) 1 1 3 4 1

In the pre
eding table the dimension of the 
ohomology spa
es is 
omputed as follows: dimH

0

(k) = 1

by de�nition. As k=[k; k℄ = KD, dimH

1

(k) = 1. By unimodularity (
f. [Mi04℄, De�nition 4.3), k satis�es

Poin
ar�e duality, so that the dimensions in degree 3 and 4 follow. But the Euler 
hara
teristi
 of a �nite

dimensional Lie algebra vanishes [Go55℄, whi
h implies that H

2

(k) = f0g.

The dimensions of the boundary spa
es are 
lear in degree 0 and 1. In degree 2, there remain 3

dimensions as the di�eren
e of dimC

1

(k) and dimZ

1

(k). In the same way, we get the dimensions of B

p

(k)

for p = 3; 4. Finally, dimZ

p

(k) is the sum of dimB

p

(k) and dimH

p

(k).

Observe that [k; k℄ = h and [h; h℄ = R 
, so that k is solvable, but [k; h℄ = h, so that k is not nilpotent.

We 
laim that ea
h invariant bilinear form � is exa
t, whi
h gives rise to 
oupled 
o
y
les (in the

sense of Se
tion 3): If 0 6= � 2 C

4

(k), then the fa
t that k is unimodular implies that all 3-
o
hains i

h

�,

h 2 k, are 3-
o
y
les. If h 2 [k; k℄ = h, then i

h

� is exa
t, so that i

D

� yields a basis of the one-dimensional

spa
e H

3

(k). Sin
e 0 6= (i

D

�)(x; y; 
) = �(D; x; y; 
) and for ea
h invariant symmetri
 bilinear form � we

have �([x; y℄; 
) = �(x; [y; 
℄) = 0, we see that �(�) 2 spanfi

h

� : h 2 hg = B

3

(k). Hen
e ea
h invariant

symmetri
 bilinear form is exa
t.

Remark 5.2 We now turn to the spa
e Sym

2

(k)

k

: Any invariant symmetri
 bilinear form � satis�es

�(
; x) = �([x; y℄; x) = ��([y; x℄; x) = ��(y; [x; x℄) = 0:

�(
; y) = �([x; y℄; y) = �(x; [y; y℄) = 0:

�(
; 
) = �([x; y℄; 
) = �(x; [y; 
℄) = 0:

�(d; x) = �(d; [d; x℄) = �([d; d℄; x) = 0:

�(d; y) = ��(d; [d; y℄) = ��([d; d℄; y) = 0:

�(d; 
) = �(d; [x; y℄) = �([d; x℄; y) = �(x; y):

�(x; x) = �(x; [d; x℄) = ��(x; [x; d℄) = ��([x; x℄; d) = 0:
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�(y; y) = ��(y; [d; y℄) = �(y; [y; d℄) = �([y; y℄; d) = 0:

We immediately 
on
lude that the spa
e of invariant symmetri
 bilinear forms is at most 2-dimensional

and that ea
h su
h form � is determined by �(d; 
) = �(x; y) and �(d; d) (note that d is not a 
ommutator).

Let us denote by �

1

the (invariant symmetri
 bilinear) with �

1

(d; d) = 1 and �

1

(x; y) = 0 and �

2

the

invariant symmetri
 bilinear form with �

2

(x; y) = �

2

(d; 
) = 1 and �

2

(d; d) = 0. Then �

2


oin
ides with

the invariant form � introdu
ed above and �

1

; �

2

form basis of Sym

2

(k)

k

. Combining with the observation

in the pre
eding remark and Se
tion 4, we get

K

2

�

=

Sym

2

(k)

k

�

=

Sym

2

(k)

k

ex

�

=

H

1

(k; k

�

)

�

=

H

1

(k; k)

�

=

out(k):

For the redu
ed 
entroid we thus get

Cent

red

(k) = Sym

2

(k)

k

= Sym

2

(k = [k; k℄) = K [�

2

℄:

We further get Z

3

(k)

�

= B

3

(k)

�

�

=

K .

For any algebra A and g = A
 k the exa
t sequen
e in Theorem 4.2 now turns into a sequen
e of the

form

f0g ! H

2

(g=g

0

)

�

=

�

2

(A)

�

����!H

2

(g)! Lin(


1

(A); Z

3

(k)

�

)

�

=




1

(A)

�

! f0g:

Therefore the essential part of H

2

(g) is isomorphi
 to the dual spa
e of 


1

(A). From the 
onstru
tion in

the proof of Theorem 4.2 it follows that the 
oupled 
o
y
les 
orrespond to the elements of 


1

(A)

�

not

vanishing on the subspa
e d

A

(A).

6 The topologi
al setting

In this se
tion we explain how the algebrai
 results from the pre
eding se
tion 
an be used in the topo-

logi
al setting. A
tually these appli
ations were our original motivation to study the work of Haddi and

Zusmanovi
h.

We now assume that K = R or C . Let A be a unital 
ommutative lo
ally 
onvex asso
iative K -algebra

and k a lo
ally 
onvex K -Lie algebra. We endow g = A
 k with the proje
tive tensor produ
t topology,

turning it into a lo
ally 
onvex spa
e with the universal property that for ea
h lo
ally 
onvex spa
e z

a bilinear map ' : A � k ! z is 
ontinuous if and only if the 
orresponding linear map e' : A 
 k ! z is


ontinuous. Then the Lie bra
ket on g is 
ontinuous be
ause the quadrilinear map

A� k�A� k! A
 k; (a; x; a

0

; x

0

) 7! aa

0


 [x; x

0

℄

is 
ontinuous and the 
ontinuous quadrilinear maps 
orrespond to the 
ontinuous linear maps on (A 


k)
 (A
 k).

In the topologi
al 
ontext, we 
onsider for a lo
ally 
onvex spa
e z the spa
e Z

2




(g; z) of 
ontinuous


o
y
les and the subspa
e B

2




(g; z) of all 
oboundaries of the form d

g

`, where ` : g ! z is a 
ontinuous

linear map. In the topologi
al 
ontext, the relation between the spa
e

H

2




(g; z) := Z

2




(g; z)=B

2




(g; z)

and the spa
e of all linear maps from

H

2;


(g) := Z

2

(g)=B

2

(g)! z
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is more 
ompli
ated than in the algebrai
 setup ([Ne02b℄). To de�ne the topologi
al version of H

2

(g), we

have to use the 
losure of B

2

(g) to obtain a Hausdor� topology on the quotient spa
e. We always have

a natural map

H

2




(g; z)! Lin(H

2;


(g); z);

but in general there is no reason for this map to be inje
tive or surje
tive. Therefore the homology spa
e

is mu
h less interesting in the topologi
al setting, and it often is easier to work dire
tly with 
o
y
les and


oboundaries whi
h is made possible by our results in Se
tion III.

The 
ip involution on g
 g, endowed with the proje
tive tensor produ
t topology, is 
ontinuous, so

that the kernel of the quotient map g
g! �

2

(g); x
y 7! x^y is 
losed, whi
h leads to a lo
ally 
onvex

topology on �

2

(g). Further the bra
ket map b

g

: �

2

(g)! g is 
ontinuous be
ause it is indu
ed from the


ontinuous bra
ket map, whi
h shows that its kernel Z

2

(g) is 
losed.

One easily veri�es that the maps p

�

and �

�

from Se
tion 2 are 
ontinuous, and likewise that the

maps

A! A
A; a 7! a
 1 and A! S

2

(A); a 7! a _ 1

are 
ontinuous. Therefore Lemma 2.1 yields a topologi
al de
omposition of the 
losed subspa
e Z

2

(g) of

�

2

(g):

Z

2

(g) = (�

2

(A)
 S

2

(k)) � (A
 Z

2

(k))� (I

A


 �

2

(k)):

This implies that any 
ontinuous 
o
y
le f : g� g! z de�nes three 
ontinuous maps

f

1

: �

2

(A)
 S

2

(k)! z; f

2

: A
 �

2

(k)! z and f

3

: I

A


 �

2

(k)! z:

Conversely, three su
h 
ontinuous linear maps 
ombine to a 
ontinuous 2-
o
y
le of g if and only if they

satisfy the 
onditions from Theorem 3.1.

If a 
ontinuous 
o
y
le f = f

1

+ f

2

+ f

3

is in B

2




(g; z), then it vanishes on Z

2

(g), whi
h implies

f

1

= f

3

= 0 and that f

2

is a 
ontinuous 
oboundary, i.e., there exists a 
ontinuous linear map ` : g ! z

with

f(ax; by) = f

2

(ax; by) =

e

f

2

(ab)(x; y) = `(ab[x; y℄) for all a; b 2 A; x; y 2 k:

Clearly, this implies that

e

f

2

(A) � B

2




(k; z). If, 
onversely,

e

f

2

(A) � B

2




(k; z), then there exists a linear map

h : A ! Lin(k; z) with d

k

h(a) =

e

f

2

(a) for all a 2 A, but it is not 
lear whether the 
orresponding map

e

h : A� k ! z will be 
ontinuous. Therefore the exa
tness 
ondition is quite subtle.

If k is �nite-dimensional, then the situation simpli�es signi�
antly. Then B

2




(k; z) = B

2

(k; z) and if

Lin(�; �) stands for \
ontinuous linear maps", then

Lin(A
 �

2

(k); z)

�

=

�

2

(k)

�


 Lin(A; z);

so that we may 
onsider f

2

as a 2-
o
y
le in Z

2

(k;Lin(A; z)). If this map vanishes on B

2

(k), then there

exists a linear map h : k ! Lin(A; z) with

f

2

(x; y)(a) = h([x; y℄)(a); x; y 2 k; a 2 A:

Then the map ` : A� k ! z; (a; x) 7! h(x)(a) is 
ontinuous and satis�es f

2

= �d

g

`. We thus get

B

2

(k;Lin(A; z))

�

=

B

2




(g; z):

We 
olle
t the previous remarks in the following theorem whi
h is analoguous to Theorem 4.2. It deter-

mines the stru
ture of the se
ond 
ontinuous 
ohomology spa
e for 
urrent algebras. Let us denote by




1




(A) = J

A

= J

2

A

the lo
ally 
onvex module of K�ahler di�erentials for the lo
ally 
onvex 
ommutative

asso
iative algebra A.
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Theorem 6.1 Let k be a �nite dimensional Lie algebra over K . Then the sequen
e

f0g ! H

2




(g=g

0

)�

�

A
H

2

(k))

�

����!H

2




(g)

	

����!Lin((


1




(A); d

A

(A)); (Z

3

(k)

�

; B

3

(k)

�

))! f0g

is exa
t.

Proof. First we note that the short exa
t sequen
e 0! k

0

! k! k=k

0

! 0 of �nite-dimensional ve
tor

spa
es splits. Sin
e g

0

= A 
 k

0

is 
losed in g, it follows that the short exa
t sequen
e 0 ! g

0

! g !

g=g

0

! 0 also splits topologi
ally. As we have observed above, Theorem 3.7 and its 
orollaries remain

true in the topologi
al setting. For Corollary 3.5 we use the topologi
al splitting of k

0

in k. We have

also seen above that the 
orresponding des
ription of the 
oboundaries remains valid, be
ause k is �nite

dimensional. Further, the topologi
al splitting of g

0

implies that Lemma 4.1 remains true. This implies

the inje
tivity of �.

That ker	 = im� is shown as in the proof of Theorem 4.2. Finally, the surje
tivity of 	 follows from

the fa
t that f

[

and � 
an be 
hosen as 
ontinuous maps, be
ause of the existen
e of (
ontinuous) linear

right inverses of surje
tive linear maps to �nite dimensional ve
tor spa
es.

Example 6.2 We 
onsider the spe
ial 
ase where M is a 
ompa
t manifold and A = C

1

(M;R ) the

Fr�e
het algebra of all smooth real-valued fun
tions on M . A

ording to [Ma02℄ or [Co85℄, the universal

topologi
al di�erential module of A is given by 


1




(A)

�

=




1

(M;R ), the spa
e of smooth R -valued 1-forms

on M , and the de Rham-di�erential d : C

1

(M;R ) ! 


1

(M;R ) is a universal 
ontinuous derivation. It

follows in parti
ular that the spa
e d

A

(A) is the spa
e of exa
t 1-forms, whi
h is non-zero.

Now let k be a �nite-dimensional real Lie algebra and

g := A
 k

�

=

C

1

(M; k):

Up to 
o
y
les vanishing on g � g

0

, all 
ontinuous 
ohomology 
lasses in H

2




(g) are then represented by

sums f = f

1

+ f

2

, where

f

1

: A�A! Sym

2

(k)

k

is an alternating 
ontinuous linear map for whi
h there is a 
ontinuous linear map

f

[

1

: 


1

(M;R ) ! Sym

2

(k)

k

with

e

f

1

(a; b) = f

[

1

(a � d(b)� b � d(a));

and

d

k

(

e

f

2

(a)) = ��(f

[

1

(da)) for all a 2 A:

We interprete the 
ontinuous linear map f

[

1

as a Sym

2

(k)

k

-valued 
urrent on M . It is a 
losed 
urrent

if and only if it vanishes on exa
t forms. Typi
al examples of su
h 
urrents arise from pairs (�; �), where

� : [0; 1℄!M is a pie
ewise smooth path and � 2 Sym

2

(k)

k

ex

via

f

[

1

(�) :=

�

Z

�

�

�

� �;

but these examples satisfy 
 Æ f

[

1

= 0.
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7 Appendix: A useful exa
t sequen
e

The following se
tion is very mu
h based on information and hints we got from M. Bordemann ([Bo97℄).

De�nition 7.1 Let k be a Lie algebra and a a k-module. We denote the a
tion as k � a ! a by

(x; a) 7! x:a. On the spa
e C

p

(k; a) of a-valued Lie algebra 
o
hains we have a natural a
tion of k

denoted by

(L

x

!)(x

1

; : : : ; x

p

) = x:!(x

1

; : : : ; x

p

)�

p

X

i=1

!(x

1

; : : : ; x

i�1

; [x; x

i

℄; x

i+1

; : : : ; x

p

):

The Lie algebra di�erential d

k

: C

p

(k; a)! C

p+1

(k; a) is given by

(d

k

!)(x

0

; : : : ; x

p

) :=

p

X

j=0

(�1)

j

x

j

:!(x

0

; : : : ; bx

j

; : : : ; x

p

)

+

X

i<j

(�1)

i+j

!([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

); (14)

where bx

j

indi
ates omission of x

j

.

For p; q 2 N

0

we 
onsider the inje
tion

e

T

p

: C

p+q

(k; a)! C

p

(k; C

q

(k; a)); (

e

T

p

f)(x

1

; : : : ; x

p

)(y

1

; : : : ; y

q

) := f(x

1

; : : : ; x

p

; y

1

; : : : ; y

q

):

From the a
tion of k on the spa
es C

q

(k; a) we obtain Lie algebra di�erentials

d

0

k

: C

p

(k; C

q

(k; a))! C

p+1

(k; C

q

(k; a))

and we also have

d

00

k

: C

p

(k; C

q

(k; a))! C

p

(k; C

q+1

(k; a)); ! 7! d

k

Æ !

satisfying on C

p+q

(k; a) the identity

e

T

p+1

Æ d

k

= d

0

k

Æ

e

T

p

+ (�1)

p+1

d

00

k

Æ

e

T

p+1

: (15)

(
f. [Ne05b℄, Lemma A.1).

Spe
ializing to the trivial module a = K , we obtain in parti
ular the maps

e

T

p�1

: C

p

(k)! C

p�1

(k; C

1

(k)=B

1

(k)) = C

p�1

(k; k

�

);

whi
h, in view of equation (15), 
ommute with the respe
tive Lie algebra di�erentials be
ause d

00

k

Æ

e

T

p

vanishes on C

p

(k;K ). Hen
e they indu
e linear maps

�

p

: H

p

(k)! H

p�1

(k; k

�

); [!℄ 7! [

e

T

p�1

(!)℄:

For the k-module k

�

the subspa
e d

k

k

�

of C

1

(k; k

�

) 
onsists of maps whose asso
iated bilinear map is

alternating. We thus have a well-de�ned map

S : C

1

(k; k

�

)=B

1

(k; k

�

)! Sym

2

(k)
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whi
h is a morphism of k-modules. We now obtain maps

e

�

p

= S Æ

e

T

p�1

: C

p

(k; k

�

)! C

p�1

(k; Sym

2

(k))

satisfying

e

�

p

Æ d

k

= S Æ

e

T

p�1

Æ d

k

= S Æ (d

0

k

Æ

e

T

p�2

) = d

0

k

Æ S Æ

e

T

p�2

= d

0

k

Æ

e

�

p�1

: (16)

Hen
e

e

�

p

indu
es a linear map

�

p

: H

p

(k; k

�

)! H

p�1

(k; Sym

2

(k)):

From the 
onstru
tion we immediately get

e

�

p

Æ e�

p+1

= 0, whi
h leads to �

p

Æ �

p+1

= 0.

Proposition 7.2 For any Lie algebra k we obtain with 
(�) := [�(�)℄ an exa
t sequen
e

f0g ! H

2

(k)

�

2

����!H

1

(k; k

�

)

�

1

����! Sym

2

(k)

k




����!H

3

(k)

�

3

����!H

2

(k; k

�

)

�

2

����!H

1

(k; Sym

2

(k)):

Proof. To see that for ea
h 
o
y
le ! 2 Z

1

(k; k

�

) the symmetri
 bilinear form �

1

(!) is invariant, we

note that

�

1

(!)([x; y℄; z) = !([x; y℄)(z) + !(z)([x; y℄);

and if ! is a 
o
y
le, this 
an be written as

�

1

(!)([x; y℄; z) = (x:!(y))(z)� (y:!(x))(z) + !(z)([x; y℄) = !(y)([z; x℄) + !(x)([y; z℄) + !(z)([x; y℄);

showing that this trilinear form is alternating, and hen
e that �

1

(!) is invariant.

Exa
tness in H

2

(k): We only have to show that �

2

is inje
tive. If ! 2 Z

2

(k) satis�es �

2

(!) = d

k

�

for some � 2 k

�

, then

!(x; y) = (d

k

�)(x)(y) = (x:�)(y) = ��([x; y℄);

whi
h implies that ! is a 2-
oboundary.

Exa
tness in H

1

(k; k

�

): Clearly �

1

Æ �

2

= 0. If, 
onversely, �

1

([!℄) = 0, then ! : k ! k

�

is a linear

map whose asso
iated bilinear form e!(x; y) := !(x)(y) is alternating. In this situation we have

de!(x; y; z) = �!([x; y℄)(z)� !([y; z℄)(x)� !([z; x℄)(y) = �!([x; y℄)(z) + !(x)([y; z℄) + !(y)([z; x℄)

=

�

� !([x; y℄)� y:!(x) + x:!(y)

�

(z) = (d

k

!)(x; y)(z): (17)

We 
on
lude that e! is a 
o
y
le if and only if ! is one, and from that we derive that ker�

1

= im�

2

.

Exa
tness in Sym

2

(k)

k

: Next we show that 
 Æ �

1

= 0. So let ! 2 Z

1

(k; k

�

) and write e! = !

+

+ !

�

,

where !

+

is symmetri
 and !

�

is alternating. Then


(�

1

(!))(x; y; z) = !([x; y℄)(z) + !(z)([x; y℄) = !(y)([z; x℄) + !(x)([y; z℄) + !(z)([x; y℄); (18)

and the 
losedness of ! also shows that

P


y
:

!([x; y℄)(z) = 2

P


y
:

!(x)([y; z℄); whi
h leads to


(�

1

(!))(x; y; z) =

X


y
:

!([x; y℄)(z)� !(z)([x; y℄) = 2

X


y
:

!

�

([x; y℄; z) = �2d

k

!

�

(x; y; z):

Hen
e 
(�

1

(!)) is always exa
t, so that 
 Æ �

1

vanishes on the level of 
ohomology spa
es.
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To see that ker 
 � im�

1

, suppose that � is an exa
t invariant bilinear form and � 2 C

2

(k) satis�es

d� = ��(�) = �
(�). Then !(x)(y) := �(x; y) + �(x; y) de�nes a linear map ! : k! k

�

with

(d

k

!)(x; y)(z) = (x:!(y)� y:!(x)� !([x; y℄))(z)

= !(y)([z; x℄) + !(x)([y; z℄)� !([x; y℄)(z)

= �([x; y℄; z) + �(y; [z; x℄) + �(x; [y; z℄)� �([x; y℄; z)

= �([x; y℄; z) + d

k

�(x; y; z) = (�(�) + d

k

�)(x; y; z) = 0: (19)

From the pre
eding 
al
ulation we also see by putting � = 0, that the linear map e� : k ! k

�

de�ned

by an invariant symmetri
 bilinear form � is a 1-
o
y
le if and only if �(�) vanishes.

Exa
tness in H

3

(k): Sin
e B

1

(k) � k

�

vanishes, the transfer formula for di�erentials implies that an

alternating trilinear form ! on k is a 3-
o
y
le if and only if the 
orresponding alternating bilinear form

�

3

(!) is a 2-
o
y
le. Therefore the image of �

3


onsists of those 
ohomology 
lasses having a representing


o
y
le whose asso
iated trilinear form is alternating.

For � 2 Sym

2

(k)

k

, the 
orresponding 3-
o
y
le �(�) and the 
orresponding linear map e� : k ! k

�

, we

have

�

3

(�(�))(x; y) = �([x; y℄; �) = �(de�)(x)(y)

be
ause

de�(x; y)(z) = (x:e�(y))(z)� (y:e�(x))(z) � e�([x; y℄)(z)

= ��(y; [x; z℄) + �(x; [y; z℄)� �([x; y℄; z) = �([x; y℄; z): (20)

We 
on
lude that �

3

(�(�)) is exa
t, so that �

3

Æ 
 indu
es the trivial map Sym

2

(k)

k

! H

2

(k; k

�

).

Let f 2 C

1

(k; k

�

) and write

e

f(a; b) = f(a)(b). We then have

df(x; y)(z) = (x:f(y)� y:f(x)� f([x; y℄))(z) = f(y)([z; x℄) + f(x)([y; z℄)� f([x; y℄)(z)

= f(y)([z; x℄)� (y:

e

f)(x; z): (21)

This map is alternating in (x; y), and it is alternating in (x; z) if and only if y:

e

f is alternating. Writing

e

f =

e

f

+

+

e

f

�

for the de
omposition of

e

f into symmetri
 and alternating 
omponents, this is equivalent

to y:

e

f

+

= 0. We 
on
lude that df(x; y)(z) is alternating if and only if

e

f

+

is invariant.

To verify the exa
tness in H

3

(k), we now assume that ! 2 Z

3

(k) satis�es �

3

(!) 2 B

2

(k; k

�

), i.e.,

�

3

([!℄) = 0. Then there exists an f 2 C

1

(k; k

�

) with �

3

(!) = d

k

f , and the pre
eding paragraph implies

that

e

f

+

is an invariant symmetri
 bilinear form on k satisfying

�

3

(!) = d

k

f = ��(

e

f

+

) + d

k

f

�

;

where f = f

+

+f

�


orresponds to the de
omposition

e

f =

e

f

+

+

e

f

�

. We 
on
lude that [�

3

(!)℄ = �[�(

e

f

+

)℄,

whi
h implies exa
tness in H

3

(k).

Exa
tness in H

2

(k; k

�

): We 
laim that ker�

2

= im�

3

. To verify this 
laim, pi
k ! 2 Z

2

(k; k

�

) for

whi
h �

2

(!) is exa
t, i.e., there exists a symmetri
 bilinear form � 2 Sym

2

(k) with �

2

(!) = d

k

�, i.e., for

x; y; z 2 k we have

!(x; y)(z) + !(x; z)(y) = (x:�)(y; z) = ��([x; y℄; z)� �(y; [x; z℄):

Let e� 2 C

1

(k; k

�

) and write � for the 
orresponding bilinear map on k with �(x; y) = e�(x)(y). Then

de�(x; y)(z) = (x:e�(y)� y:e�(x)� e�([x; y℄))(z) = ��(y; [x; z℄) + �(x; [y; z℄)� �([x; y℄; z):
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Therefore

�

2

(d

k

e�)(x)(y; z) = e�(y)([z; x℄)� e�([x; y℄)(z) + e�(z)([y; x℄)� e�([x; z℄; y)

= 2(e�

+

([y; x℄)(z) + e�

+

([z; x℄)(y)) = 2(x:�

+

)(y; z); (22)

and this leads to

�

2

(d

k

e�) = 2d

k

�

+

= d

k

(�

1

(�)):

Sin
e �

1

(C

1

(k; k

�

)) = Sym

2

(k), we �nd some e� 2 C

1

(k; k

�

) with �

1

(e�) = �, and then

�

2

(! � d

k

�) = d

k

�� d

k

�

+

= 0;

so that for !

0

:= ! � d

k

� 2 Z

2

(k; k

�

) the 
orresponding trilinear map is alternating. This means that

[!℄ = [!

0

℄ 2 im�

3

.
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