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On the lassi�ation of rational quantum tori

and their automorphism groups

Karl-Hermann Neeb

Abstrat. An n -dimensional quantum torus is a twisted group algebra of the group Z

n

. It is

alled rational if all invertible ommutators are roots of unity. In the present note we lassify all

rational n -dimensional quantum tori over any �eld. Moreover, we show that for n=2 the natural

exat sequene desribing the automorphism group of the quantum torus splits over any �eld.
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Introdution

Let K be a �eld and � an abelian group. A �-quantum torus is a �-graded K -algebra

A =

L

2�

A



, for whih all grading spaes are one-dimensional and all non-zero elements in

these spaes are invertible. For any basis (Æ



)

2�

of suh an algebra with Æ



2 A



, we have

Æ



Æ



0

= f(; 

0

)Æ

+

0

, where f : � � � ! K

�

is a group oyle. In this sense �-quantum tori

are the same as twisted group algebras in the terminology of [OP95℄. Quantum tori arise very

naturally in non-ommutative geometry as non-ommutative algebras whih are still very lose

to ommutative ones (f. [GVF01℄).

For � = Z

n

, we also speak of n-dimensional quantum tori. Important speial examples

arise for n = 2 and f(; 

0

) = q



1



0

2

, whih leads to an algebra A

q

with two generators u

1

= Æ

(1;0)

and u

2

= Æ

(0;1)

, satisfying the ommutator relation

u

1

u

2

= qu

2

u

1

:

Finite-dimensional quantum tori and their Jordan analogs also play a key role in the struture

theory of in�nite-dimensional Lie algebras beause they are the natural oordinate strutures of

extended aÆne Lie algebras ([BGK96℄, [AABGP97℄).

The �rst problem we address in this note is the lassi�ation of the �nite-dimensional

rational quantum tori, i.e., quantum tori with grading group � = Z

n

, for whih f takes values

in the torsion group of K

�

. This problem is solved ompletely in Setion III, where we give

a lassi�ation of rational quantum tori over arbitrary �elds. We �rst show that any rational

n-dimensional quantum torus A an be written as a tensor produt

(1) A

�

=

A

q

1


 � � � 
A

q

s


 K [Z℄

n�2s

;

where the roots of unity q

1

; : : : ; q

s

satisfy 1 < ord(q

s

) � : : : � ord(q

1

): Two n-dimensional

rational quantum tori given, as above, by the data (q

1

; : : : ; q

s

) and (q

0

1

; : : : ; q

0

s

0

) are isomorphi if

and only if s = s

0

and ord(q

i

) = ord(q

0

i

) for i = 1; : : : ; s . Under the assumption that the �eld K

is algebraially losed of harateristi zero, the tensor produt deomposition (1) has also been

obtained in [ABFP05℄.

For any Z

n

-quantum torus A , its group of automorphisms is an abelian extension desribed

by a short exat sequene

(2) 1! Hom(Z

n

;K

�

)! Aut(A)! Aut(Z

n

; �)! 1;
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where �:Z

n

� Z

n

! K

�

; (; 

0

) 7! Æ



Æ



0

Æ

�1



Æ

�1



0

is the alternating biadditive map determined

by the ommutator map of the unit group A

�

, and Aut(Z

n

; �) � GL

n

(Z)

�

=

Aut(Z

n

) is the

subgroup preserving � . The seond main result of this note is that for n = 2 the sequene

(2) always splits. In this ase A

�

=

A

q

for some q 2 K

�

, and Aut(Z

2

; �) = GL

2

(Z) if q

2

= 1

and Aut(Z

2

; �) = SL

2

(Z) otherwise. The statement of this result (in ase q is not a root of

unity) an also be found in [KPS94, Th. 1.5℄, but without any argument for the splitting of

the exat sequene (2). Aording to [OP95, p.430℄, the determination of the automorphism

groups of general quantum tori seems to be a hopeless problem, but we think that our splitting

result stimulates some hope that more expliit desriptions might be possible if the range of the

ommutator map is suÆiently well-behaved.

We thank B. Allison and A. Pianzola for stimulating disussions on the subjet matter of

this paper and A. Pianzola for pointing out the referene [OP95℄.

Notation

Throughout this paper K denotes an arbitrary �eld. We write A

�

for the unit group of a

unital K -algebra A .

Let � and Z be abelian groups, both written additively. A funtion f : ���! Z is alled

a 2-oyle if

f(; 

0

) + f( + 

0

; 

00

) = f(; 

0

+ 

00

) + f(

0

; 

00

)

holds for ; 

0

; 

00

2 �. The set of all 2-oyles is an additive group Z

2

(�; Z) with respet to

pointwise addition. The funtions of the form h() � h( + 

0

) + h(

0

) are alled obound-

aries. They form a subgroup B

2

(�; Z) � Z

2

(�; Z), and the quotient group H

2

(�; Z) :=

Z

2

(�; Z)=B

2

(�; Z) is alled the seond ohomology group of � with values in Z . It lassi-

�es entral extensions of � by Z up to equivalene. Here we assign to f 2 Z

2

(�; Z) the entral

extension Z �

f

�, whih is the set Z � �, endowed with the group multipliation

(0:1) (z; )(z

0

; 

0

) = (z + z

0

+ f(; 

0

);  + 

0

) z; z

0

2 Z; ; 

0

2 �:

We also write Ext(�; Z)

�

=

H

2

(�; Z) for the group of all entral extensions of � by Z ,

and Ext

ab

(�; Z) for the subgroup orresponding to the abelian extensions of the group � by Z ,

whih orrespond to symmetri 2-oyles.

We all a biadditive map ���! Z vanishing on the diagonal alternating and denote the

set of these maps by Alt

2

(�; Z). A funtion q: �! Z is alled a quadrati form if the map

�

q

: �� �! Z; (; 

0

) 7! q( + 

0

)� q()� q(

0

)

is biadditive. Note that we do not require here that q(n) = n

2

q() holds for n 2 Z and  2 �.

For n 2 N we write Z[n℄ := fz 2 Z:nz = 0g for the n-torsion subgroup of Z .

I. The orrespondene between quantum tori and entral extensions

De�nition I.1. Let � be an abelian group. A unital assoiative K -algebra A is said to be

a �-quantum torus if it is �-graded, A =

L

2�

A



; with one-dimensional grading spaes A



,

and eah non-zero element of A



is invertible.*

For �

�

=

Z

d

we all a �-quantum torus also a d-dimensional quantum torus.

* In [OP95℄, these algebras are alled twisted group algebras.
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Remark I.2. In eah �-quantum torus A the set A

�

h

:=

S

2�

K

�

Æ



of homogeneous units

(alled trivial units in [OP95℄) is a subgroup ontaining K

�

1

�

=

K

�

in its enter. We thus obtain

a entral extension

1! K

�

! A

�

h

! �! 1

of abelian groups.

It is instrutive to see how this an be made more expliit in terms of oyles, whih shows

in partiular that eah entral extension of � by K

�

arises as A

�

h

for some �-quantum torus A .

Let A be a �-quantum torus and pik non-zero elements Æ



2 A



, so that (Æ



)

2�

is a

basis of A . Then eah Æ



is an invertible element of A , so that we get

(1:1) Æ



Æ



0

= f(; 

0

)Æ

+

0

for ; 

0

2 �;

where f 2 Z

2

(�;K

�

) is a 2-oyle for whih A

�

h

�

=

K

�

�

f

� (f. (0.1)).

Conversely, starting with a oyle f 2 Z

2

(�;K

�

), we de�ne a multipliation on the vetor

spae A :=

L

2�

K Æ



with basis (Æ



)

2�

by Æ



Æ



0

:= f(; 

0

)Æ

+

0

: Then the oyle property

implies that we get a unital assoiative algebra, and it is lear from the onstrution that it is a

�-quantum torus.

De�nition I.3. There are two natural equivalene relations between quantum tori. The

�nest one is the notion of graded equivalene: Two �-quantum tori A and B are alled graded

equivalent if there is an algebra isomorphism ':A! B with '(A



) = B



for all  2 �.

A slightly weaker notion is graded isomorphy: Two �-quantum tori A and B are alled

graded isomorphi if there is an isomorphism ':A! B and an automorphism '

�

2 Aut(�) with

'(A



) = B

'

�

()

for all  2 �.

The following theorem redues the orresponding lassi�ation problems to purely group

theoreti ones.

Theorem I.4. The graded equivalene lasses of �-quantum tori are in one-to-one orrespon-

dene with the extensions of the group � by the multipliative group K

�

, hene parametrized by

the ohomology group H

2

(�;K

�

) .

The graded isomorphy lasses of �-quantum tori are parametrized by the set

H

2

(�;K

�

)=Aut(�)

of orbits of the group Aut(�) in the ohomology group H

2

(�;K

�

) , where the ation is given on

the level of oyles by  :f := ( 

�1

)

�

f = f Æ ( 

�1

�  

�1

) .

Proof. If ':A ! B is a graded equivalene of �-quantum tori, then the restrition to the

group A

�

h

of homogeneous units leads to the ommutative diagram

K

�

! A

�

h

! �

?

?

y

id

K

�

?

?

y

'

?

?

y

id

�

K

�

! B

�

h

! �:

This means that the entral extensions A

�

h

and B

�

h

of � by K

�

are equivalent. If, onversely,

these extensions are equivalent, then any equivalene ':A

�

h

! B

�

h

extends linearly to a graded

equivalene A ! B . Now the observation from Remark I.2 implies that the graded equivalene

lasses of �-quantum tori are parametrized by the ohomology group H

2

(�;K

�

)

�

=

Ext(�;K

�

).

If ':A! B is a graded isomorphism of �-quantum tori, then the diagram

K

�

! A

�

h

! �

?

?

y

id

K

�

?

?

y

'

?

?

y

'

�

K

�

! B

�

h

! �

ommutes, whih means that the orresponding entral extensions A

�

h

and B

�

h

are ontained

in the same orbit of Aut(�) on Ext(�;K

�

)

�

=

H

2

(�;K

�

) (we leave the easy veri�ation to the

reader). Conversely, any isomorphism ':A

�

h

! B

�

h

of entral extensions extends linearly to an

isomorphism of algebras A! B .
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II. Central extensions of abelian groups

In this setion � and Z are abelian groups, written additively. We shall derive some general

fats on the set of equivalene lasses Ext(�; Z)

�

=

H

2

(�; Z) of entral extensions of � by Z . In

Setions III and IV below we shall apply these to the speial ase Z = K

�

for a �eld K .

Remark II.1. Let Z ,!

b

�

q

��!� be a entral extension of the abelian group � by the abelian

group Z and

b

�:

b

��

b

�! Z; (x; y) 7! [x; y℄ := xyx

�1

y

�1

the ommutator map of

b

�. Its values lie in Z beause � is abelian. We then have

�

b

�(x; y) =

b

�(x; y)

�1

=

b

�(y; x)

and

b

�(xx

0

; y) = xx

0

y(x

0

)

�1

x

�1

y

�1

= x � (x

0

y(x

0

)

�1

y

�1

) � (yx

�1

y

�1

) = x �

b

�(x

0

; y) � (yx

�1

y

�1

)

= xyx

�1

y

�1

b

�(x

0

; y) =

b

�(x; y) +

b

�(x

0

; y):

We onlude that

b

� is a skew-symmetri biadditive map (f. [OP95, p.430℄). Moreover, the

ommutator map is onstant on the �bers of the map q , hene fators through a biadditive map

� 2 Alt

2

(�; Z).

Next we write

b

� as Z�

f

� with a 2-oyle f 2 Z

2

(�; Z). For the map �: �!

b

�;  7! (0; )

we then have �()�(

0

) = �( + 

0

)f(; 

0

); whih leads to

f(; 

0

) =

b

�(�(); �(

0

)) = �()�(

0

)

�

�(

0

)�()

�

�1

= �( + 

0

)f(; 

0

)

�

�( + 

0

)f(

0

; )

�

�1

= f(; 

0

)f(

0

; )

�1

= f(; 

0

)� f(

0

; ):

Therefore the map �

f

2 Alt

2

(�; Z) de�ned by

(2:1) �

f

(; 

0

) := f(; 

0

)� f(

0

; )

an be identi�ed with the ommutator map of

b

�.

Note that the ommutator map �

f

only depends on the ohomology lass [f ℄ 2 H

2

(�; Z).

We thus obtain a group homomorphism

�:H

2

(�; Z)! Alt

2

(�; Z); [f ℄ 7! �

f

:

Remark II.2. Eah biadditive map f : �� �! Z is a oyle, but not eah ohomology lass

in H

2

(�; Z) has a biadditive representative. A typial examples is the lass orresponding to the

exat sequene 0! mZ! Z! Z=mZ! 0 .

Proposition II.3. For abelian groups � and Z we have an exat sequene

0! Ext

ab

(�; Z)! Ext(�; Z)

�

=

H

2

(�; Z)

�

��!Alt

2

(�; Z);

desribing the kernel of the map � . The okernel of � is an elementary abelian 2-group.

Proof. For the exatness of the sequene, we only have to observe that an extension

b

� of �

by Z is an abelian group if and only if the ommutator map of

b

� is trivial (f. Remark II.1).

To see that the okernel of � is an elementary abelian 2-group, we note that eah element

f 2 Alt

2

(�; Z) is biadditive, hene in partiular a oyle (Remark II.2), and with (2.1) we

see that �([f ℄) = �

f

= 2f: This shows that 2Alt

2

(�; Z) � im(�); i.e., that oker(�) is an

elementary abelian 2-group.

For the following proposition we reall that, as a onsequene of the Well-Ordering Theorem,

eah set I arries a total order.
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Proposition II.4. Let � =

L

i2I

�

i

be a diret sum of yli groups �

i

�

=

Z=m

i

Z, m

i

2 N

0

.

Further let � be a total order on I . Then the map

�:H

2

(�; Z)! Alt

2

(�; Z); [f ℄ 7! �

f

is surjetive and splits, so that

(2:2) H

2

(�; Z)

�

=

Ext

ab

(�; Z)�Alt

2

(�; Z)

�

=

Y

i<j

Z[lm(m

i

;m

j

)℄�

Y

jm

i

j<1

Z=m

i

Z;

where we put lm(m; 0) := m for m 2 N

0

.

If, in addition, � is free, then � is an isomorphism, H

2

(�; Z)

�

=

Z

f(i;j)2I

2

:i<jg

; and eah

ohomology lass has a biadditive representative.

Proof. To see that � is surjetive, let � 2 Alt

2

(�; Z). If 

i

is a generator of �

i

, we have

�(n

i

;m

i

) = nm�(

i

; 

i

) = 0 for n;m 2 Z , so that � vanishes on �

i

��

i

. We de�ne a biadditive

map f

�

: �� �! Z by

f

�

(

i

; 

j

) :=

�

�(

i

; 

j

) for i > j, 

i

2 �

i

; 

j

2 �

j

,

0 for i � j, 

i

2 �

i

; 

j

2 �

j

.

Then f

�

is biadditive, hene a 2-oyle (Remark II.2), and �(f

�

) = � .

Clearly, the assignment � 7! f

�

de�nes an injetive homomorphism Alt

2

(�; Z)! H

2

(�; Z),

splitting �. We know from Proposition II.3, that ker� = Ext

ab

(�; Z).

We next observe that

Alt(�; Z)

�

=

Y

i<j

Hom(�

i


 �

j

; Z);

and �

i


 �

j

�

=

Z= lm(m

i

;m

j

)Z; whih leads to

Hom(�

i


 �

j

; Z)

�

=

Z[lm(m

i

;m

j

)℄:

On the other hand,

Ext

ab

(�; Z)

�

=

Y

i2I

Ext

ab

(�

i

; Z)

�

=

Y

jm

i

j<1

Z=m

i

Z

(f. [Fu70℄), whih leads to (2.2).

If, in addition, � is free, then m

i

= 0 for eah i 2 I , and the assertion follows from

Ext

ab

(�; Z) = 0 .

Problem II. Find a pair (�; Z) of abelian groups for whih the map �:H

2

(�; Z)! Alt

2

(�; Z)

is not surjetive.

III. The Normal form of rational quantum tori

In this setion we write � := Z

n

for the free abelian group of rank n . For an abelian group

Z we write Alt

n

(Z) for the set of alternating (n � n)-matries with entries in Z , i.e., a

ii

= 0

for eah i and a

ij

= �a

ji

for i 6= j . This is an abelian group with respet to matrix addition.

Clearly the map Alt

2

(�; Z) ! Alt

n

(Z); f 7! (f(e

i

; e

j

))

i;j=1;:::;n

is an isomorphism of

abelian groups, so that Alt

n

(Z)

�

=

H

2

(�; Z) by Proposition II.4. Writing �

A

2 Alt

2

(�; Z)

for the alternating form �

A

(�; �) := �

>

A� determined by the alternating matrix A , we have

for g 2 GL

n

(Z)

�

=

Aut(�) the relation

�

A

(g:�; g:�) = �g

>

Ag�;
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so that the orbits of the natural ation of Aut(�)

�

=

GL

n

(Z) on the set of alternating forms

orrespond to the orbits of the ation of GL

n

(Z) on Alt

n

(Z) by

(3:1) g:A := gAg

>

;

where we we multiply matries in M

n

(Z) with matries in M

n

(Z) in the obvious fashion. We

onlude that

(3:2) H

2

(�; Z)=Aut(�)

�

=

Alt

n

(Z)=GL

n

(Z)

an be identi�ed with the set of GL

n

(Z)-orbits in Alt

n

(Z).

If n = n

1

+ : : :+ n

r

is a partition of n and A

i

2M

n

i

(Z), then we write

A

1

�A

2

� : : :�A

r

:= diag(A

1

; : : : ; A

r

);

for the blok diagonal matrix with entries A

1

; : : : ; A

r

.

The following theorem lassi�es the orbits of GL

n

(Z) in Alt

n

(Z) for yli groups Z . Note

that eah yli group Z has a ring struture, so that we may write ajb for bZ � aZ .

Theorem III.1. Suppose that Z is a yli group and A 2 Alt

n

(Z) . Then the GL

n

(Z)-orbit

of A ontains a unique matrix of the skew normal form

�

0 h

1

�h

1

0

�

�

�

0 h

2

�h

2

0

�

� : : :�

�

0 h

s

�h

s

0

�

� 0

n�2s

;

where h

1

jh

2

j � � � jh

s

.

Proof. Let q:Z! Z be a surjetive homomorphism and q

n

:M

n

(Z)! M

n

(Z) the indued

surjetive homomorphism of additive matrix groups whih is equivariant with respet to the

ation (3.1) of GL

n

(Z) on both groups. Sine A 2 M

n

(Z) is a matrix with vanishing diagonal

and a

ij

= �a

ji

, there exists a matrix

e

A 2 Alt

n

(Z) with q

n

(

e

A) = A .

As Z is a prinipal ideal ring, the Theorem on the Skew Normal Form ([New72,

Thms. IV.1,IV.2℄) implies the existene of g 2 GL

n

(Z) with

g

>

e

Ag =

�

0

e

h

1

�

e

h

1

0

�

�

�

0

e

h

2

�

e

h

2

0

�

� : : :�

�

0

e

h

t

�

e

h

t

0

�

� 0

n�2t

and

e

h

1

j

e

h

2

j � � � j

e

h

t

. We then have

g:A = q

n

(g

>

e

Ag) =

�

0 h

1

�h

1

0

�

�

�

0 h

2

�h

2

0

�

� : : :�

�

0 h

s

�h

s

0

�

� 0

n�2s

;

where h

j

:= q(

e

h

j

) satis�es h

1

jh

2

j � � � jh

s

and s is maximal with h

s

6= 0. Note that this implies

that h

j

6= 0 for all j � s .

For B 2 M

n

(Z) and g 2 GL

n

(Z) we have q

n

(g) 2 GL

n

(Z) and g:B = q

n

(g)Bq

n

(g)

>

, so

that all matries in the same GL

n

(Z)-orbit are equivalent in the sense that they are ontained in

the same double osets of GL

n

(Z) in M

n

(Z). For 1 � j � n the determinantal divisor d

j

(B) is

de�ned as the greatest ommon divisor of all minors of size j of B ; onsidered as an orbit of the

multipliation ation of the unit group Z

�

of (Z; �) on Z . Aording to [New72, Th. II.8℄, the

determinantal divisors d

j

are onstant on the GL

n

(Z)-double osets in M

n

(Z), hene invariants

of the GL

n

(Z)-ation on Alt

2

(Z). Now the assertion follows from

h

1

= d

1

(B) = d

2

(B)=d

1

(B); : : : ; h

s

= d

2s�1

(B)=d

2s�2

(B) = d

2s

(B)=d

2s�1

(B)

and d

j

(B) = 0 for j > 2s .
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De�nition III.2. (a) We all a �-quantum torus rational if the set of all ommutators in

A

�

= A

�

h

(f. Proposition A.1) onsists of roots of unity in K .

(b) For eah q 2 K

�

we write A

q

for the Z

2

-quantum torus orresponding to the biadditive

oyle f :Z

2

�Z

2

! K

�

determined by

f(e

1

; e

1

) = f(e

2

; e

2

) = f(e

2

; e

1

) = 1 and f(e

1

; e

2

) = q:

Then the algebra A

q

has generators u

1

= Æ

e

1

and u

2

= Æ

e

2

satisfying

(3:3) u

1

u

2

= qu

2

u

1

:

The quantum torus A

q

is rational if and only if q is a root of unity.

Theorem III.3. (Classi�ation of rational quantum tori) Let K be any �eld. For eah rational

Z

n

-quantum torus over K there exists an s 2 N

0

with 2s � n and roots of unity q

1

; : : : ; q

s

2 K

�

with ord(q

s

) � : : : � ord(q

1

); suh that

A

�

=

A

q

1


A

q

2


 : : :
A

q

s


 K [Z

n�2s

℄:

Two n-dimensional rational quantum tori given, as above, by the data (q

1

; : : : ; q

s

) and

(q

0

1

; : : : ; q

0

s

0

) are isomorphi if and only if s = s

0

and ord(q

i

) = ord(q

0

i

) for i = 1; : : : ; s .

Proof. We know from Theorem I.4 and (3.2) that the �-quantum tori over K are lassi�ed

by the orbits of Aut(�)

�

=

GL

n

(Z) in H

2

(�;K

�

)

�

=

Alt

2

(�;K

�

). In this piture the rational

quantum tori orrespond to alternating forms f 2 Alt

2

(�;K

�

) on � whose values are roots of

unity. Sine the group Z generated by the image of f is generated by the �nite set f(e

i

; e

j

),

i; j = 1; : : : ; n , it is a �nite subgroup of K

�

, hene yli (f. [La93, Th. IV.1.9℄). Therefore

Theorem III.1 applies, and we see A is isomorphi to a quantum torus de�ned by a biadditive

oyle f : �� �! Z � K

�

satisfying

f(e

1

; e

2

) = q

1

; f(e

3

; e

4

) = q

2

and f(e

2s�1

; e

2s

) = q

s

and f(e

i

; e

j

) = 1 for all other pairs (i; j), where q

1

jq

2

j : : : jq

s

holds in the yli group Z , viewed

as a ring. This means that hq

s

i � : : : � hq

1

i , or, equivalently, ord(q

s

) � : : : � ord(q

1

). The

quantum torus A

f

�

=

A de�ned by f then satis�es

A

f

�

=

A

q

1


A

q

2


 : : :
A

q

s


 K [Z

n�2s

℄:

That two suh quantum tori are isomorphi if and only if s = s

0

and ord(q

i

) = ord(q

0

i

) for

i = 1; : : : ; s , follows from Theorem I.4, ombined with Theorem III.1, beause the order of an

element q 2 Z determines the subgroup hqi it generates uniquely, and vie versa.

IV. Graded automorphisms of quantum tori

In this setion we briey disuss the group of automorphisms of a general quantum torus,

but our main result only onerns the 2-dimensional ase: For A = A

q

and the orresponding al-

ternating form � on Z

2

, the group Aut(A) it is a semi-diret produt Hom(Z

2

;K

�

)oAut(Z

2

; �):

De�nition IV.1. Let A be a �-quantum torus. We write Aut

gr

(A) for the group of

graded automorphisms of A , i.e., all those automorphisms ' 2 Aut(A) for whih there exists an

automorphism '

�

2 Aut(�) with '(A



) = A

'

�

()

for all  2 �.

Note that Proposition A.1 in the appendix implies that if � is torsion free, then all units

are homogeneous, whih implies that eah automorphism of A is graded.
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Remark IV.2. We �x a basis (Æ



)

2�

of A and suppose that f 2 Z

2

(�; Z) is the orre-

sponding oyle determined by (1.1). Then for eah graded automorphism ' of A there is an

automorphism '

�

2 Aut(�) and a funtion �: �! K

�

suh

(4:1) '(Æ



) = �()Æ

'

�

()

;  2 �:

Conversely, for a pair (�; '

�

) of a funtion �: �! K

�

and an automorphism '

�

2 Aut(�) the

presription '(Æ



) := �()Æ

'

�

()

de�nes an automorphism of A if and only if

(4:2)

('

�

�

f)(; 

0

)

f(; 

0

)

=

�( + 

0

)

�()�(

0

)

for all ; 

0

2 �:

Note that if f is biadditive, then '

�

�

f=f is biadditive, so that � is a orresponding K

�

-

valued quadrati form. If f and '

�

are given, then a � satisfying (4.2) exists if and only if

['

�

�

f ℄ = [f ℄ holds in H

2

(�; Z).

Lemma IV.3. The image of the map

Q: Aut

gr

(A)! Aut(�); ' 7! '

�

is the group

Aut(�)

[f ℄

:= f 2 Aut(�): [ 

�

f ℄ = [f ℄g;

whih is ontained in

Aut(�; �

f

) := f 2 Aut(�): 

�

�

f

= �

f

g;

where �

f

(; 

0

) =

f(;

0

)

f(

0

;)

. If, in addition, � is free, then Aut(�)

[f ℄

= Aut(�; �

f

):

Proof. Let '

�

2 Aut(�). In view of Remark IV.2, the existene of ' 2 Aut

gr

(A) with

Q(') = '

�

is equivalent to the existene of � satisfying (4.2), whih is equivalent to ['

�

�

f ℄ = [f ℄

in H

2

(�;K

�

). Sine (4.2) implies that '

�

�

f=f is symmetri, we have '

�

�

�

f

= �

'

�

�

f

= �

f

:

If, in addition, � is free, then Proposition II.4 entails that '

�

�

�

f

= �

f

is equivalent to

['

�

�

f ℄ = [f ℄ in H

2

(�;K

�

) (f. [OP95, Lemma 3.3(iii)℄).

From (4.2) we derive in partiular that (�;1) de�nes an automorphism of A if and only if

� 2 Hom(�;K

�

), so that we obtain the exat sequene

(4:3) 1! Hom(�;K

�

)! Aut

gr

(A)! Aut(�)

[f ℄

! 1

(f. [OP95, Lemma 3.3(iii)℄). We all the automorphisms of the form (�;1) salar.

Remark IV.4. If the map � from Proposition II.4 is not injetive, then the groups Aut(�; �

f

)

and Aut(�)

[f ℄

need not oinide, but with Proposition II.3 we obtain a 1-oyle

I : Aut(�; �

f

)! Ext

ab

(�;K

�

);  7! [ 

�

f � f ℄

satisfying Aut(�)

[f ℄

= I

�1

(0):

In the remainder of this setion we restrit our attention to the ase, where � = Z

n

is a free

abelian group of rank n , whih implies that Aut(�)

[f ℄

= Aut(�; �

f

) and that Aut(A) = Aut

gr

(A)

(Corollary A.2).

Remark IV.5. (a) For n = 1, eah alternating biadditive map � on � vanishes, so that

Aut(�; �) = Aut(�)

�

=

f� id

�

g .

(b) For eah alternating form �: �� �! K

�

we have � id

�

2 Aut(�; �).

() In [OP95℄ it is shown that if the subgroup him(�)i of K

�

generated by the image of �

is free of rank

�

n

2

�

, then Aut(�; �

f

) = f� id

�

g .

Moreover, for n = 3 and him(�)i free of rank 2, [OP95, Prop. 3.7℄ implies the existene of

a basis 

1

; 

2

; 

3

2 � with �(

1

; 

2

) = 1 and

Aut(�; �)

�

=

f� 2 Aut(�): (9a; b 2 Z; " 2 f�1g) �(

1

) = 

"

1

; �(

2

) = 

"

2

; �(

3

) = 

a

1



b

2



"

3

g

�

=

Z

2

o f� id

Z

2

g:
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We now take a loser look at the ase n = 2. Any alternating form � 2 Alt

2

(Z

2

;K

�

) is

uniquely determined by q := �(e

1

; e

2

), whih implies �(; 

0

) = q



1



0

2

�

2



0

1

: We may therefore

assume that a orresponding bimultipliative oyle f satis�es f(; 

0

) = q



1



0

2

, whih leads to

the quantum torus A

q

with two generators u

i

= Æ

e

i

satisfying u

1

u

2

= qu

2

u

1

, as de�ned in the

introdution.

We start with two simple observations:

Lemma IV.6. Aut(Z

2

; �) =

�

SL

2

(Z) for q

2

6= 1

GL

2

(Z) for q

2

= 1.

Proof. Clearly SL

2

(Z)� Aut(Z

2

; �) � GL

2

(Z). The map g

0

() = (

2

; 

1

) satis�es GL

2

(Z)

�

=

SL

2

(Z)o hg

0

i , and we have

g

�

0

�(e

1

; e

2

)

�(e

1

; e

2

)

=

�(e

2

; e

1

)

�(e

1

; e

2

)

= q

�2

:

Example IV.7. (a) On Z

2

the map �() := 

1



2

is a quadrati form with

�( + 

0

)� �()� �(

0

) = 

1



0

2

+ 

2



0

1

:

(b) On Z the map �(n) :=

�

n

2

�

is a quadrati form with

�(n+ n

0

)� �(n)� �(n

0

) =

(n+ n

0

)(n+ n

0

� 1)� n(n� 1)� n

0

(n

0

� 1)

2

=

nn

0

+ n

0

n

2

= nn

0

:

From SL

2

(Z)� Aut(Z

2

; �), it follows in partiular that eah matrix

g =

�

a b

 d

�

2 SL

2

(Z)

an be lifted to an automorphism of A

q

. To determine a orresponding quadrati form �:Z

2

!

K

�

, we have to solve the equation (4.2):

(g

�

f)(; 

0

)

f(; 

0

)

=

�( + 

0

)

�()�(

0

)

:

The form g

�

f=f is determined by its values on the pairs (e

1

; e

1

); (e

1

; e

2

) and (e

2

; e

2

):

(g

�

f=f)(e

1

; e

1

) = f(g:e

1

; g:e

1

) = q

a

; (g

�

f=f)(e

1

; e

2

) = f(g:e

1

; g:e

2

)q

�1

= q

ad�1

and

(g

�

f=f)(e

2

; e

2

) = f(g:e

2

; g:e

2

) = q

bd

:

This means that

(g

�

f=f)(; 

0

) = q

a

1



0

1

+(ad�1)(

1



0

2

+

0

1



2

)+bd

2



0

2

:

Before we turn to lifting the full groups Aut(Z

2

; �) to an automorphism group of A , we

disuss ertain spei� elements of �nite order separately.

Remark IV.8. (a) For the entral element z = �1 2 SL

2

(Z), any lift bz 2 Aut(A

q

) is of the

form

bz:Æ



= r



1

s



2

� Æ

�

for some r; s 2 K

�

;

and any suh element satis�es bz

2

:Æ



= r



1

s



2

� bz:Æ

�

= r



1

�

1

s



2

�

2

� Æ



= Æ



: Hene eah lift bz

of z is an element of order 2.

(b) The matries

g

1

:=

�

0 1

�1 0

�

and g

2

:=

�

1 1

�1 0

�
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satisfy g

2

1

= z = g

3

2

, whih leads to ord(g

1

) = 4 and ord(g

2

) = 6. From the preeding paragraph

we onlude that for any lift bg

j

of g

j

, j = 1; 2, we have bg

4

1

= 1 = bg

6

2

:

In view of

(g

�

1

f=f)(; 

0

) = q

�(

1



0

2

+

0

1



2

)

;

a lift eg

1

of g

1

is given by eg

1

:Æ



= q

�

1



2

Æ

g

1

:

(Example IV.7(a)). We then have

eg

2

1

:Æ



= q

�

1



2

eg

1

:Æ

(

2

;�

1

)

= q

�

1



2

q



2



1

:Æ

�

= Æ

�

:

Any other lift bg

1

of g

1

is of the form

bg

1

:Æ

g

= r



1

1

s



2

1

q

�

1



2

Æ

g

1

:

for two elements r

1

; s

1

2 K

�

. The square of this element is given by

(4:4) bg

2

1

:Æ

g

= r



1

1

s



2

1

bg

1

eg

1

:Æ



= r



1

+

2

1

s



2

�

1

1

eg

2

1

:Æ



=

�

r

1

s

1

�



1

(r

1

s

1

)



2

� Æ

�

:

For the matrix g

2

we have

(g

�

2

f=f)(; 

0

) = q

�

1



0

1

�(

1



0

2

+

0

1



2

)

;

so that we obtain a lift eg

2

of g

2

by eg

2

:Æ



= q

�

(



1

2

)

�

1



2

Æ

(

1

+

2

;�

1

)

(Example IV.7(b)). Hene

eah lift bg

2

of g

2

is of the form

bg

2

:Æ

g

= r



1

2

s



2

2

q

�

(



1

2

)

�

1



2

Æ

(

1

+

2

;�

1

)

;

for some r

2

; s

2

2 K

�

. In view of g

2

2

=

�

0 1

�1 �1

�

; we get with Example IV.7(b):

eg

3

2

:Æ



= q

�

(



1

2

)

�

1



2

eg

2

2

:Æ



1

+

2

;�

1

= q

�

(



1

2

)

�

1



2

q

�

(



1

+

2

2

)

+(

1

+

2

)

1

eg

2

:Æ



2

;�

1

�

2

= q

�2

(



1

2

)

�

(



2

2

)

�

1



2

+

2

1

q

�

(



2

2

)

+(

1

+

2

)

2

Æ

�

= q

�

1

(

1

�1)�

2

(

2

�1)+

2

1

+

2

2

Æ

�

= q



1

+

2

Æ

�

:

This further leads to

bg

3

2

:Æ



= r



1

2

s



2

2

bg

2

2

eg

2

:Æ



= r

2

1

+

2

2

s

�

1

+

2

2

bg

2

eg

2

2

:Æ



= r

2

1

+2

2

2

s

�2

1

2

eg

3

2

:Æ



= r

2(

1

+

2

)

2

s

�2

1

2

q



1

+

2

:Æ

�

=

�

r

2

2

s

2

2

q

�



1

(r

2

2

q)



2

Æ

�

:(4:5)

() If, in addition, q

2

= 1, then Aut(�; �

f

) = Aut(�)

�

=

GL

2

(Z) (Remark IV.8). For the

involution

g

0

:=

�

0 1

1 0

�

we have GL

2

(Z) = SL

2

(Z)o hg

0

i; and the elements g

0

; g

1

; g

2

satisfy

(4:6) g

0

g

1

g

0

= g

�1

1

= g

3

and g

0

g

2

g

0

= g

5

2

= g

�1

2

:

To lift g

0

to an automorphism of A

q

, we �rst note that q

2

= 1 implies that

(g

�

0

f=f)(; 

0

) = q



2



0

1

�

1



0

2

;= q



2



0

1

+

1



0

2

;

whih shows that eah lift bg

0

of g

0

is of the form bg

0

:Æ



= r



1

0

s



2

0

q



1



2

Æ

(

2

;

1

)

for some r

0

; s

0

2 K

�

.

In view of

bg

2

0

:Æ



= r



1

0

s



2

0

q



1



2

bg

0

:Æ

(

2

;

1

)

= r



1

+

2

0

s



2

+

1

0

q

2

1



2

Æ



= (r

0

s

0

)



1

+

2

Æ



;

bg

2

0

= 1 is equivalent to r

0

s

0

= 1: If this ondition is satis�ed, then bg

0

:Æ



= r



1

�

2

0

q



1



2

Æ

(

2

;

1

)

:

Before we state the following theorem, we reall that for any split abelian extension

1! A!

b

G

q

��!G! 1

of a group G by some (abelian) G-module A , the set of all splittings is parametrized by the

group

Z

1

(G;A) = ff :G! A: (8x; y 2 G) f(xy) = f(x) + x:f(y)g

of A-valued 1-oyles. This parametrization is obtained by hoosing a homomorphi setion

�

0

:G!

b

G and then observing that any other setion �:G!

b

G is of the form � = f ��

0

, where

f 2 Z

1

(G;A).
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Theorem IV.9. For eah element q 2 K

�

and �(; 

0

) = q



1



0

2

�

2



0

1

the exat sequene

1! Hom(Z

2

;K

�

)! Aut(A

q

)! Aut(Z

2

; �)! 1

splits. For q

2

= 1 , the homomorphisms �: GL

2

(Z) ! Aut(A

q

) splitting the sequene are

parametrized by the abelian group

Z

1

(GL

2

(Z);Hom(Z

2

;K

�

))

�

=

f(r

0

; r

1

; r

2

) 2 (K

�

)

3

: r

2

4

r

2

0

= r

2

1

g;

and for q

2

6= 1 , the homomorphisms �: SL

2

(Z)! Aut(A

q

) splitting the sequene are parametrized

by

Z

1

(SL

2

(Z);Hom(Z

2

;K

�

))

�

=

(K

�

)

2

� fz 2 K

�

: z

2

= 1g:

Proof. First we onsider the ase q

2

6= 1, where Aut(Z

2

; �) = SL

2

(Z) (Remark IV.8). We

shall use the desription of the lifts of g

1

; g

2

given in Remark IV.8. Sine SL

2

(Z) is presented

by the relations

g

4

1

= g

6

2

= 1; g

2

1

= g

3

2

([Ha00, p.51℄), Remark IV.8 implies that a pair of elements (bg

1

; bg

2

) lifting (g

1

; g

2

) leads to a lift

SL

2

(Z)! Aut(A

q

) if and only if bg

2

1

= bg

3

2

. Comparing (4.4) and (4.5), we see that bg

2

1

= bg

3

2

is

equivalent to

r

1

s

1

=

r

2

2

s

2

2

q and r

1

s

1

= r

2

2

q;

whih is equivalent to

(4:8) s

2

1

= s

2

2

and s

1

=

r

2

2

q

r

1

;

These equations have the simple solution r

1

= q; r

2

= s

1

= s

2

= 1; showing that the ation of

the group SL

2

(Z) on � lifts to an ation on A

q

. Moreover, for eah pair (r

1

; r

2

), the set of all

solutions is determined by the hoie of sign in s

2

:= �s

1

, whih is vauous if har(K ) = 2.

Next we onsider the ase q

2

= 1. We assume that the lift bg

0

of g

0

satis�es bg

2

0

= 1 (f.

Remark IV.8()). Now the relation bg

0

bg

1

bg

0

= bg

�1

1

is equivalent to (bg

0

bg

1

)

2

= 1 . We alulate

bg

0

bg

1

:Æ



= r



1

1

s



2

1

q

�

1



2

bg

0

:Æ

(

2

;�

1

)

= (r

0

r

1

)



1

(r

0

s

1

)



2

Æ

(�

1

;

2

)

to get

(bg

0

bg

1

)

2

:Æ



= (r

0

r

1

)



1

(r

0

s

1

)



2

bg

0

bg

1

:Æ

(�

1

;

2

)

= (r

0

s

1

)

2

2

Æ



:

Hene bg

0

bg

1

bg

0

= bg

�1

1

is equivalent to

(4:9) r

2

0

s

2

1

= 1:

To see when bg

0

bg

2

bg

0

= bg

�1

2

holds, we �rst observe that

bg

�1

2

:Æ



= r



2

2

s

�

1

�

2

2

q

(

�

2

2

)

�

2

(

1

+

2

)

Æ

(�

2

;

1

+

2

)

:

Further

bg

0

bg

2

:Æ



= r



1

2

s



2

2

q

�

(



1

2

)

�

1



2

bg

0

:Æ

(

1

+

2

;�

1

)

= (r

2

0

r

2

)



1

(r

0

s

2

)



2

q

(



1

2

)

+

1



2

+(

1

+

2

)

1

� Æ

(�

1

;

1

+

2

)

= (r

2

0

r

2

)



1

(r

0

s

2

)



2

q

(



1

2

)

+

2

1

� Æ

(�

1

;

1

+

2

)

= (r

2

0

r

2

q)



1

(r

0

s

2

)



2

q

(



1

2

)

� Æ

(�

1

;

1

+

2

)

beause q

2

= 1 implies q

n

2

= q

n

= q

�n

for eah n 2 Z .

On the other hand, we have

bg

�1

2

bg

0

:Æ



= r



1

0

r

�

2

0

q



1



2

bg

�1

2

:Æ

(

2

;

1

)

= r



1

0

r

�

2

0

q



1



2

r



1

2

s

�

2

�

1

2

q

(

�

1

2

)

�

1

(

1

+

2

)

Æ

(�

1

;

1

+

2

)

= (r

0

r

2

s

�1

2

)



1

(r

0

s

2

)

�

2

q

(

�

1

2

)

�

2

1

Æ

(�

1

;

1

+

2

)

= (r

0

r

2

s

�1

2

)



1

(r

0

s

2

)

�

2

q

�

(



1

2

)

Æ

(�

1

;

1

+

2

)

= (r

0

r

2

s

�1

2

)



1

(r

0

s

2

)

�

2

q

(



1

2

)

Æ

(�

1

;

1

+

2

)

:
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Therefore bg

0

bg

2

bg

0

= bg

�1

2

is equivalent to

r

0

r

2

s

�1

2

= r

2

0

r

2

q and (r

0

s

2

)

2

= 1;

whih is equivalent to

(4:10) r

0

s

2

= q;

beause this relation implies (r

0

s

2

)

2

= q

2

= 1.

We onlude that the numbers r

0

; r

1

; r

2

; s

1

; s

2

whih determine bg

0

; bg

1

; bg

2

de�ne a lift of

GL

2

(Z) to Aut(A

q

) if and only if the equations (4.8), (4.9) and (4.10) are satis�ed:

s

2

1

= s

2

2

; s

1

=

r

2

2

q

r

1

; r

2

0

s

2

1

= 1; and r

0

s

2

= q:

If r

0

; r

1

and r

2

are given, we determine s

1

and s

2

by s

1

:=

r

2

2

q

r

1

and s

2

:=

q

r

0

: Then

s

2

1

s

2

2

=

r

4

2

r

2

0

r

2

1

= r

2

0

s

2

1

;

so that we obtain only the relation r

2

4

r

2

0

= r

2

1

for r

0

; r

1

; r

2

. This ompletes the proof.

Remark IV.10. (a) From the proof of the preeding theorem, we see that we obtain the

partiularly simple solution

r

0

= r

1

= r

2

= 1; s

1

= s

2

= q:

(b) For harK = 2 the equation q

2

= 1 has the unique solution q = 1, so that A

q

�

=

K [Z

2

℄ ,

and the ation of GL

2

(Z) has a anonial lift to an ation on A

q

.

Problem IV.1. Does the sequene (4.3) always split? We have seen above, that this is true for

� = Z

2

. If the answer is no, it would be of some interest to understand the ohomology groups

H

2

(Aut(�)

[f ℄

;Hom(�;K

�

))

parametrizing the possible abelian extensions of Aut(�)

[f ℄

by the module Hom(�;K

�

).

Problem IV.2. Let � 2 Alt

2

(Z

n

; Z), where Z is a yli group. Determine the struture of

the group Aut(Z

n

; �). It should have a semidiret produt struture, where the normal subgroup

is something like a Heisenberg group and the quotient is the automorphism group of Z

n

= rad(�),

endowed with the indued non-degenerate form. Can this group be desribed in a onventient

way by generators and relations? Maybe the results in [Is03℄ an be used to deal with degenerate

oyles.

A. The group of units if � is torsion free

The following result is used in [OP95, Lemma 3.1℄ without referene. Here we provide a

detailed proof.

Proposition A.1. If the group � is torsion free and A a �-quantum torus, then A

�

= A

�

h

,

i.e., eah unit of A is graded.

Proof. Let a 2 A

�

be a unit and write a =

P



a



Æ



in terms of some graded basis. We do

the same with its inverse a

�1

=

P



(a

�1

)



Æ



, and observe that the set

supp(a) := f 2 �: a



6= 0g
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is �nite. The same holds for supp(a

�1

), so that both sets generate a free subgroup F of �.

Then A

F

:= spanfÆ



:  2 Fg is an F -quantum torus with a 2 A

�

F

. We may therefore assume

that � = Z

d

for some d 2 N

0

.

We prove by indution on k 2 f0; : : : ; dg that the subalgebra

A

k

:= spanfÆ



:  2 Z

k

� f0gg

has no zero-divisors and that all its units are homogeneous. This holds trivially for k = 0.

Let u

i

:= Æ

e

i

, where e

1

; : : : ; e

d

is the anonial basis of Z

d

. We write 0 6= x 2 A as a �nite

sum

P

k

1

k=k

0

x

k

u

k

d

with x

k

2 A

d�1

and x

k

0

and x

k

1

non-zero. Likewise we write 0 6= y 2 A as

P

m

1

m=m

0

y

m

u

m

d

with y

m

2 A

d�1

and y

m

0

and y

m

1

non-zero. Then the lowest degree term with

respet to u

d

in xy is

x

k

0

u

k

0

d

y

m

0

u

m

0

d

= x

k

0

�

u

k

0

d

y

m

0

u

�k

0

d

�

u

k

0

+m

0

d

;

and the indution hypothesis implies x

k

0

u

k

0

d

y

m

0

u

�k

0

d

6= 0 beause onjugation with u

d

preserves

the subalgebra A

d�1

. This implies that xy 6= 0.

Now assume that x 2 A is a unit and y = x

�1

. Sine A

d�1

has no zero-divisors,

x

k

0

u

k

0

d

y

m

0

u

�k

0

d

2 A

d�1

n f0g

leads to k

0

+m

0

= 0. A similar onsideration for the highest order term implies k

1

+m

1

= 0,

whih leads to k

0

= k

1

and m

0

= m

1

. Now we an argue by indution.

Corollary A.2. ([OP95, Lemma 3.1℄) If the group � is torsion free, then eah automorphism

of A is graded, i.e., Aut(A) = Aut

gr

(A): (f. Def. IV.1)

Referenes

[ABFP05℄ Allison, B. N., Berman, S., Faulkner, J. R., and A. Pianzola, Realization of

graded-simple algebras as loop algebras, submitted.

[AABGP97℄ Allison, B. N., Azam, S., Berman, S., Gao, Y., and A. Pianzola, \Extended

AÆne Lie Algebras and Their Root Systems," Memoirs of the Amer. Math.

So. 603, Providene R.I., 1997.

[BGK96℄ Berman, S., Gao, Y., and Y. S. Krylyuk, Quantum tori and the struture of

ellipti quasi-simple Lie algebras, J. Funt. Anal. 135 (1996), 339{389.

[Fu70℄ Fuhs, L., \In�nite Abelian Groups, Vol. I," Pure and Applied Math. 36, Aad.

Press, 1970.

[GVF01℄ Graia-Bondia, J. M., J. C. Vasilly, and H. Figueroa, \Elements of Non-ommu-

tative Geometry," Birkh�auser Advaned Texts, Birkh�auser Verlag, Basel, 2001.

[Ha00℄ de la Harpe, P., \Topis in Geometri Group Theory," Chiago Letures in

Math., The Univ. of Chiago Press, 2000.

[Is03℄ Ismagilov, R. S., The integral Heisenberg group as an in�nite amalgam of om-

mutative groups, Math. Notes 74:5 (2003), 630{636.

[Ja56℄ Jaobson, N., \Struture of Rings," Amer. Math. So. Coll. Publiations 37,

1956.

[KPS94℄ Kirkman, E., C. Proesi and L. Small, A q -analog of the Virasoro algebra,

Comm. Alg. 22:10 (1994), 3755{3774.

[La93℄ Lang, S., \Algebra," 3rd edn., Addison Wesley Publ. Comp., London, 1993.

[New72℄ Newman, M., \Integral Matries," Pure and Applied Math. 45, Aad. Press,

New York, 1972.

[OP95℄ Osborn, J. M., and D. S. Passman, Derivations of skew polynomial rings, J.

Algebra 176 (1995), 417{448.



14 On the lassi�ation of rational quantum tori and their automorphism groups 10.11.2005

Karl-Hermann Neeb

Tehnishe Universit�at Darmstadt

Shlossgartenstrasse 7

D-64289 Darmstadt

Deutshland

neeb�mathematik.tu-darmstadt.de


