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On the 
lassi�
ation of rational quantum tori

and their automorphism groups

Karl-Hermann Neeb

Abstra
t. An n -dimensional quantum torus is a twisted group algebra of the group Z

n

. It is


alled rational if all invertible 
ommutators are roots of unity. In the present note we 
lassify all

rational n -dimensional quantum tori over any �eld. Moreover, we show that for n=2 the natural

exa
t sequen
e des
ribing the automorphism group of the quantum torus splits over any �eld.
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Introdu
tion

Let K be a �eld and � an abelian group. A �-quantum torus is a �-graded K -algebra

A =

L


2�

A




, for whi
h all grading spa
es are one-dimensional and all non-zero elements in

these spa
es are invertible. For any basis (Æ




)


2�

of su
h an algebra with Æ




2 A




, we have

Æ




Æ




0

= f(
; 


0

)Æ


+


0

, where f : � � � ! K

�

is a group 
o
y
le. In this sense �-quantum tori

are the same as twisted group algebras in the terminology of [OP95℄. Quantum tori arise very

naturally in non-
ommutative geometry as non-
ommutative algebras whi
h are still very 
lose

to 
ommutative ones (
f. [GVF01℄).

For � = Z

n

, we also speak of n-dimensional quantum tori. Important spe
ial examples

arise for n = 2 and f(
; 


0

) = q




1




0

2

, whi
h leads to an algebra A

q

with two generators u

1

= Æ

(1;0)

and u

2

= Æ

(0;1)

, satisfying the 
ommutator relation

u

1

u

2

= qu

2

u

1

:

Finite-dimensional quantum tori and their Jordan analogs also play a key role in the stru
ture

theory of in�nite-dimensional Lie algebras be
ause they are the natural 
oordinate stru
tures of

extended aÆne Lie algebras ([BGK96℄, [AABGP97℄).

The �rst problem we address in this note is the 
lassi�
ation of the �nite-dimensional

rational quantum tori, i.e., quantum tori with grading group � = Z

n

, for whi
h f takes values

in the torsion group of K

�

. This problem is solved 
ompletely in Se
tion III, where we give

a 
lassi�
ation of rational quantum tori over arbitrary �elds. We �rst show that any rational

n-dimensional quantum torus A 
an be written as a tensor produ
t

(1) A

�

=

A

q

1


 � � � 
A

q

s


 K [Z℄

n�2s

;

where the roots of unity q

1

; : : : ; q

s

satisfy 1 < ord(q

s

) � : : : � ord(q

1

): Two n-dimensional

rational quantum tori given, as above, by the data (q

1

; : : : ; q

s

) and (q

0

1

; : : : ; q

0

s

0

) are isomorphi
 if

and only if s = s

0

and ord(q

i

) = ord(q

0

i

) for i = 1; : : : ; s . Under the assumption that the �eld K

is algebrai
ally 
losed of 
hara
teristi
 zero, the tensor produ
t de
omposition (1) has also been

obtained in [ABFP05℄.

For any Z

n

-quantum torus A , its group of automorphisms is an abelian extension des
ribed

by a short exa
t sequen
e

(2) 1! Hom(Z

n

;K

�

)! Aut(A)! Aut(Z

n

; �)! 1;
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where �:Z

n

� Z

n

! K

�

; (
; 


0

) 7! Æ




Æ




0

Æ

�1




Æ

�1




0

is the alternating biadditive map determined

by the 
ommutator map of the unit group A

�

, and Aut(Z

n

; �) � GL

n

(Z)

�

=

Aut(Z

n

) is the

subgroup preserving � . The se
ond main result of this note is that for n = 2 the sequen
e

(2) always splits. In this 
ase A

�

=

A

q

for some q 2 K

�

, and Aut(Z

2

; �) = GL

2

(Z) if q

2

= 1

and Aut(Z

2

; �) = SL

2

(Z) otherwise. The statement of this result (in 
ase q is not a root of

unity) 
an also be found in [KPS94, Th. 1.5℄, but without any argument for the splitting of

the exa
t sequen
e (2). A

ording to [OP95, p.430℄, the determination of the automorphism

groups of general quantum tori seems to be a hopeless problem, but we think that our splitting

result stimulates some hope that more expli
it des
riptions might be possible if the range of the


ommutator map is suÆ
iently well-behaved.

We thank B. Allison and A. Pianzola for stimulating dis
ussions on the subje
t matter of

this paper and A. Pianzola for pointing out the referen
e [OP95℄.

Notation

Throughout this paper K denotes an arbitrary �eld. We write A

�

for the unit group of a

unital K -algebra A .

Let � and Z be abelian groups, both written additively. A fun
tion f : ���! Z is 
alled

a 2-
o
y
le if

f(
; 


0

) + f(
 + 


0

; 


00

) = f(
; 


0

+ 


00

) + f(


0

; 


00

)

holds for 
; 


0

; 


00

2 �. The set of all 2-
o
y
les is an additive group Z

2

(�; Z) with respe
t to

pointwise addition. The fun
tions of the form h(
) � h(
 + 


0

) + h(


0

) are 
alled 
obound-

aries. They form a subgroup B

2

(�; Z) � Z

2

(�; Z), and the quotient group H

2

(�; Z) :=

Z

2

(�; Z)=B

2

(�; Z) is 
alled the se
ond 
ohomology group of � with values in Z . It 
lassi-

�es 
entral extensions of � by Z up to equivalen
e. Here we assign to f 2 Z

2

(�; Z) the 
entral

extension Z �

f

�, whi
h is the set Z � �, endowed with the group multipli
ation

(0:1) (z; 
)(z

0

; 


0

) = (z + z

0

+ f(
; 


0

); 
 + 


0

) z; z

0

2 Z; 
; 


0

2 �:

We also write Ext(�; Z)

�

=

H

2

(�; Z) for the group of all 
entral extensions of � by Z ,

and Ext

ab

(�; Z) for the subgroup 
orresponding to the abelian extensions of the group � by Z ,

whi
h 
orrespond to symmetri
 2-
o
y
les.

We 
all a biadditive map ���! Z vanishing on the diagonal alternating and denote the

set of these maps by Alt

2

(�; Z). A fun
tion q: �! Z is 
alled a quadrati
 form if the map

�

q

: �� �! Z; (
; 


0

) 7! q(
 + 


0

)� q(
)� q(


0

)

is biadditive. Note that we do not require here that q(n
) = n

2

q(
) holds for n 2 Z and 
 2 �.

For n 2 N we write Z[n℄ := fz 2 Z:nz = 0g for the n-torsion subgroup of Z .

I. The 
orresponden
e between quantum tori and 
entral extensions

De�nition I.1. Let � be an abelian group. A unital asso
iative K -algebra A is said to be

a �-quantum torus if it is �-graded, A =

L


2�

A




; with one-dimensional grading spa
es A




,

and ea
h non-zero element of A




is invertible.*

For �

�

=

Z

d

we 
all a �-quantum torus also a d-dimensional quantum torus.

* In [OP95℄, these algebras are 
alled twisted group algebras.
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Remark I.2. In ea
h �-quantum torus A the set A

�

h

:=

S


2�

K

�

Æ




of homogeneous units

(
alled trivial units in [OP95℄) is a subgroup 
ontaining K

�

1

�

=

K

�

in its 
enter. We thus obtain

a 
entral extension

1! K

�

! A

�

h

! �! 1

of abelian groups.

It is instru
tive to see how this 
an be made more expli
it in terms of 
o
y
les, whi
h shows

in parti
ular that ea
h 
entral extension of � by K

�

arises as A

�

h

for some �-quantum torus A .

Let A be a �-quantum torus and pi
k non-zero elements Æ




2 A




, so that (Æ




)


2�

is a

basis of A . Then ea
h Æ




is an invertible element of A , so that we get

(1:1) Æ




Æ




0

= f(
; 


0

)Æ


+


0

for 
; 


0

2 �;

where f 2 Z

2

(�;K

�

) is a 2-
o
y
le for whi
h A

�

h

�

=

K

�

�

f

� (
f. (0.1)).

Conversely, starting with a 
o
y
le f 2 Z

2

(�;K

�

), we de�ne a multipli
ation on the ve
tor

spa
e A :=

L


2�

K Æ




with basis (Æ




)


2�

by Æ




Æ




0

:= f(
; 


0

)Æ


+


0

: Then the 
o
y
le property

implies that we get a unital asso
iative algebra, and it is 
lear from the 
onstru
tion that it is a

�-quantum torus.

De�nition I.3. There are two natural equivalen
e relations between quantum tori. The

�nest one is the notion of graded equivalen
e: Two �-quantum tori A and B are 
alled graded

equivalent if there is an algebra isomorphism ':A! B with '(A




) = B




for all 
 2 �.

A slightly weaker notion is graded isomorphy: Two �-quantum tori A and B are 
alled

graded isomorphi
 if there is an isomorphism ':A! B and an automorphism '

�

2 Aut(�) with

'(A




) = B

'

�

(
)

for all 
 2 �.

The following theorem redu
es the 
orresponding 
lassi�
ation problems to purely group

theoreti
 ones.

Theorem I.4. The graded equivalen
e 
lasses of �-quantum tori are in one-to-one 
orrespon-

den
e with the extensions of the group � by the multipli
ative group K

�

, hen
e parametrized by

the 
ohomology group H

2

(�;K

�

) .

The graded isomorphy 
lasses of �-quantum tori are parametrized by the set

H

2

(�;K

�

)=Aut(�)

of orbits of the group Aut(�) in the 
ohomology group H

2

(�;K

�

) , where the a
tion is given on

the level of 
o
y
les by  :f := ( 

�1

)

�

f = f Æ ( 

�1

�  

�1

) .

Proof. If ':A ! B is a graded equivalen
e of �-quantum tori, then the restri
tion to the

group A

�

h

of homogeneous units leads to the 
ommutative diagram

K

�

! A

�

h

! �

?

?

y

id

K

�

?

?

y

'

?

?

y

id

�

K

�

! B

�

h

! �:

This means that the 
entral extensions A

�

h

and B

�

h

of � by K

�

are equivalent. If, 
onversely,

these extensions are equivalent, then any equivalen
e ':A

�

h

! B

�

h

extends linearly to a graded

equivalen
e A ! B . Now the observation from Remark I.2 implies that the graded equivalen
e


lasses of �-quantum tori are parametrized by the 
ohomology group H

2

(�;K

�

)

�

=

Ext(�;K

�

).

If ':A! B is a graded isomorphism of �-quantum tori, then the diagram

K

�

! A

�

h

! �

?

?

y

id

K

�

?

?

y

'

?

?

y

'

�

K

�

! B

�

h

! �


ommutes, whi
h means that the 
orresponding 
entral extensions A

�

h

and B

�

h

are 
ontained

in the same orbit of Aut(�) on Ext(�;K

�

)

�

=

H

2

(�;K

�

) (we leave the easy veri�
ation to the

reader). Conversely, any isomorphism ':A

�

h

! B

�

h

of 
entral extensions extends linearly to an

isomorphism of algebras A! B .
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II. Central extensions of abelian groups

In this se
tion � and Z are abelian groups, written additively. We shall derive some general

fa
ts on the set of equivalen
e 
lasses Ext(�; Z)

�

=

H

2

(�; Z) of 
entral extensions of � by Z . In

Se
tions III and IV below we shall apply these to the spe
ial 
ase Z = K

�

for a �eld K .

Remark II.1. Let Z ,!

b

�

q

��!� be a 
entral extension of the abelian group � by the abelian

group Z and

b

�:

b

��

b

�! Z; (x; y) 7! [x; y℄ := xyx

�1

y

�1

the 
ommutator map of

b

�. Its values lie in Z be
ause � is abelian. We then have

�

b

�(x; y) =

b

�(x; y)

�1

=

b

�(y; x)

and

b

�(xx

0

; y) = xx

0

y(x

0

)

�1

x

�1

y

�1

= x � (x

0

y(x

0

)

�1

y

�1

) � (yx

�1

y

�1

) = x �

b

�(x

0

; y) � (yx

�1

y

�1

)

= xyx

�1

y

�1

b

�(x

0

; y) =

b

�(x; y) +

b

�(x

0

; y):

We 
on
lude that

b

� is a skew-symmetri
 biadditive map (
f. [OP95, p.430℄). Moreover, the


ommutator map is 
onstant on the �bers of the map q , hen
e fa
tors through a biadditive map

� 2 Alt

2

(�; Z).

Next we write

b

� as Z�

f

� with a 2-
o
y
le f 2 Z

2

(�; Z). For the map �: �!

b

�; 
 7! (0; 
)

we then have �(
)�(


0

) = �(
 + 


0

)f(
; 


0

); whi
h leads to

f(
; 


0

) =

b

�(�(
); �(


0

)) = �(
)�(


0

)

�

�(


0

)�(
)

�

�1

= �(
 + 


0

)f(
; 


0

)

�

�(
 + 


0

)f(


0

; 
)

�

�1

= f(
; 


0

)f(


0

; 
)

�1

= f(
; 


0

)� f(


0

; 
):

Therefore the map �

f

2 Alt

2

(�; Z) de�ned by

(2:1) �

f

(
; 


0

) := f(
; 


0

)� f(


0

; 
)


an be identi�ed with the 
ommutator map of

b

�.

Note that the 
ommutator map �

f

only depends on the 
ohomology 
lass [f ℄ 2 H

2

(�; Z).

We thus obtain a group homomorphism

�:H

2

(�; Z)! Alt

2

(�; Z); [f ℄ 7! �

f

:

Remark II.2. Ea
h biadditive map f : �� �! Z is a 
o
y
le, but not ea
h 
ohomology 
lass

in H

2

(�; Z) has a biadditive representative. A typi
al examples is the 
lass 
orresponding to the

exa
t sequen
e 0! mZ! Z! Z=mZ! 0 .

Proposition II.3. For abelian groups � and Z we have an exa
t sequen
e

0! Ext

ab

(�; Z)! Ext(�; Z)

�

=

H

2

(�; Z)

�

��!Alt

2

(�; Z);

des
ribing the kernel of the map � . The 
okernel of � is an elementary abelian 2-group.

Proof. For the exa
tness of the sequen
e, we only have to observe that an extension

b

� of �

by Z is an abelian group if and only if the 
ommutator map of

b

� is trivial (
f. Remark II.1).

To see that the 
okernel of � is an elementary abelian 2-group, we note that ea
h element

f 2 Alt

2

(�; Z) is biadditive, hen
e in parti
ular a 
o
y
le (Remark II.2), and with (2.1) we

see that �([f ℄) = �

f

= 2f: This shows that 2Alt

2

(�; Z) � im(�); i.e., that 
oker(�) is an

elementary abelian 2-group.

For the following proposition we re
all that, as a 
onsequen
e of the Well-Ordering Theorem,

ea
h set I 
arries a total order.
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Proposition II.4. Let � =

L

i2I

�

i

be a dire
t sum of 
y
li
 groups �

i

�

=

Z=m

i

Z, m

i

2 N

0

.

Further let � be a total order on I . Then the map

�:H

2

(�; Z)! Alt

2

(�; Z); [f ℄ 7! �

f

is surje
tive and splits, so that

(2:2) H

2

(�; Z)

�

=

Ext

ab

(�; Z)�Alt

2

(�; Z)

�

=

Y

i<j

Z[l
m(m

i

;m

j

)℄�

Y

jm

i

j<1

Z=m

i

Z;

where we put l
m(m; 0) := m for m 2 N

0

.

If, in addition, � is free, then � is an isomorphism, H

2

(�; Z)

�

=

Z

f(i;j)2I

2

:i<jg

; and ea
h


ohomology 
lass has a biadditive representative.

Proof. To see that � is surje
tive, let � 2 Alt

2

(�; Z). If 


i

is a generator of �

i

, we have

�(n


i

;m


i

) = nm�(


i

; 


i

) = 0 for n;m 2 Z , so that � vanishes on �

i

��

i

. We de�ne a biadditive

map f

�

: �� �! Z by

f

�

(


i

; 


j

) :=

�

�(


i

; 


j

) for i > j, 


i

2 �

i

; 


j

2 �

j

,

0 for i � j, 


i

2 �

i

; 


j

2 �

j

.

Then f

�

is biadditive, hen
e a 2-
o
y
le (Remark II.2), and �(f

�

) = � .

Clearly, the assignment � 7! f

�

de�nes an inje
tive homomorphism Alt

2

(�; Z)! H

2

(�; Z),

splitting �. We know from Proposition II.3, that ker� = Ext

ab

(�; Z).

We next observe that

Alt(�; Z)

�

=

Y

i<j

Hom(�

i


 �

j

; Z);

and �

i


 �

j

�

=

Z= l
m(m

i

;m

j

)Z; whi
h leads to

Hom(�

i


 �

j

; Z)

�

=

Z[l
m(m

i

;m

j

)℄:

On the other hand,

Ext

ab

(�; Z)

�

=

Y

i2I

Ext

ab

(�

i

; Z)

�

=

Y

jm

i

j<1

Z=m

i

Z

(
f. [Fu70℄), whi
h leads to (2.2).

If, in addition, � is free, then m

i

= 0 for ea
h i 2 I , and the assertion follows from

Ext

ab

(�; Z) = 0 .

Problem II. Find a pair (�; Z) of abelian groups for whi
h the map �:H

2

(�; Z)! Alt

2

(�; Z)

is not surje
tive.

III. The Normal form of rational quantum tori

In this se
tion we write � := Z

n

for the free abelian group of rank n . For an abelian group

Z we write Alt

n

(Z) for the set of alternating (n � n)-matri
es with entries in Z , i.e., a

ii

= 0

for ea
h i and a

ij

= �a

ji

for i 6= j . This is an abelian group with respe
t to matrix addition.

Clearly the map Alt

2

(�; Z) ! Alt

n

(Z); f 7! (f(e

i

; e

j

))

i;j=1;:::;n

is an isomorphism of

abelian groups, so that Alt

n

(Z)

�

=

H

2

(�; Z) by Proposition II.4. Writing �

A

2 Alt

2

(�; Z)

for the alternating form �

A

(�; �) := �

>

A� determined by the alternating matrix A , we have

for g 2 GL

n

(Z)

�

=

Aut(�) the relation

�

A

(g:�; g:�) = �g

>

Ag�;
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so that the orbits of the natural a
tion of Aut(�)

�

=

GL

n

(Z) on the set of alternating forms


orrespond to the orbits of the a
tion of GL

n

(Z) on Alt

n

(Z) by

(3:1) g:A := gAg

>

;

where we we multiply matri
es in M

n

(Z) with matri
es in M

n

(Z) in the obvious fashion. We


on
lude that

(3:2) H

2

(�; Z)=Aut(�)

�

=

Alt

n

(Z)=GL

n

(Z)


an be identi�ed with the set of GL

n

(Z)-orbits in Alt

n

(Z).

If n = n

1

+ : : :+ n

r

is a partition of n and A

i

2M

n

i

(Z), then we write

A

1

�A

2

� : : :�A

r

:= diag(A

1

; : : : ; A

r

);

for the blo
k diagonal matrix with entries A

1

; : : : ; A

r

.

The following theorem 
lassi�es the orbits of GL

n

(Z) in Alt

n

(Z) for 
y
li
 groups Z . Note

that ea
h 
y
li
 group Z has a ring stru
ture, so that we may write ajb for bZ � aZ .

Theorem III.1. Suppose that Z is a 
y
li
 group and A 2 Alt

n

(Z) . Then the GL

n

(Z)-orbit

of A 
ontains a unique matrix of the skew normal form

�

0 h

1

�h

1

0

�

�

�

0 h

2

�h

2

0

�

� : : :�

�

0 h

s

�h

s

0

�

� 0

n�2s

;

where h

1

jh

2

j � � � jh

s

.

Proof. Let q:Z! Z be a surje
tive homomorphism and q

n

:M

n

(Z)! M

n

(Z) the indu
ed

surje
tive homomorphism of additive matrix groups whi
h is equivariant with respe
t to the

a
tion (3.1) of GL

n

(Z) on both groups. Sin
e A 2 M

n

(Z) is a matrix with vanishing diagonal

and a

ij

= �a

ji

, there exists a matrix

e

A 2 Alt

n

(Z) with q

n

(

e

A) = A .

As Z is a prin
ipal ideal ring, the Theorem on the Skew Normal Form ([New72,

Thms. IV.1,IV.2℄) implies the existen
e of g 2 GL

n

(Z) with

g

>

e

Ag =

�

0

e

h

1

�

e

h

1

0

�

�

�

0

e

h

2

�

e

h

2

0

�

� : : :�

�

0

e

h

t

�

e

h

t

0

�

� 0

n�2t

and

e

h

1

j

e

h

2

j � � � j

e

h

t

. We then have

g:A = q

n

(g

>

e

Ag) =

�

0 h

1

�h

1

0

�

�

�

0 h

2

�h

2

0

�

� : : :�

�

0 h

s

�h

s

0

�

� 0

n�2s

;

where h

j

:= q(

e

h

j

) satis�es h

1

jh

2

j � � � jh

s

and s is maximal with h

s

6= 0. Note that this implies

that h

j

6= 0 for all j � s .

For B 2 M

n

(Z) and g 2 GL

n

(Z) we have q

n

(g) 2 GL

n

(Z) and g:B = q

n

(g)Bq

n

(g)

>

, so

that all matri
es in the same GL

n

(Z)-orbit are equivalent in the sense that they are 
ontained in

the same double 
osets of GL

n

(Z) in M

n

(Z). For 1 � j � n the determinantal divisor d

j

(B) is

de�ned as the greatest 
ommon divisor of all minors of size j of B ; 
onsidered as an orbit of the

multipli
ation a
tion of the unit group Z

�

of (Z; �) on Z . A

ording to [New72, Th. II.8℄, the

determinantal divisors d

j

are 
onstant on the GL

n

(Z)-double 
osets in M

n

(Z), hen
e invariants

of the GL

n

(Z)-a
tion on Alt

2

(Z). Now the assertion follows from

h

1

= d

1

(B) = d

2

(B)=d

1

(B); : : : ; h

s

= d

2s�1

(B)=d

2s�2

(B) = d

2s

(B)=d

2s�1

(B)

and d

j

(B) = 0 for j > 2s .
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De�nition III.2. (a) We 
all a �-quantum torus rational if the set of all 
ommutators in

A

�

= A

�

h

(
f. Proposition A.1) 
onsists of roots of unity in K .

(b) For ea
h q 2 K

�

we write A

q

for the Z

2

-quantum torus 
orresponding to the biadditive


o
y
le f :Z

2

�Z

2

! K

�

determined by

f(e

1

; e

1

) = f(e

2

; e

2

) = f(e

2

; e

1

) = 1 and f(e

1

; e

2

) = q:

Then the algebra A

q

has generators u

1

= Æ

e

1

and u

2

= Æ

e

2

satisfying

(3:3) u

1

u

2

= qu

2

u

1

:

The quantum torus A

q

is rational if and only if q is a root of unity.

Theorem III.3. (Classi�
ation of rational quantum tori) Let K be any �eld. For ea
h rational

Z

n

-quantum torus over K there exists an s 2 N

0

with 2s � n and roots of unity q

1

; : : : ; q

s

2 K

�

with ord(q

s

) � : : : � ord(q

1

); su
h that

A

�

=

A

q

1


A

q

2


 : : :
A

q

s


 K [Z

n�2s

℄:

Two n-dimensional rational quantum tori given, as above, by the data (q

1

; : : : ; q

s

) and

(q

0

1

; : : : ; q

0

s

0

) are isomorphi
 if and only if s = s

0

and ord(q

i

) = ord(q

0

i

) for i = 1; : : : ; s .

Proof. We know from Theorem I.4 and (3.2) that the �-quantum tori over K are 
lassi�ed

by the orbits of Aut(�)

�

=

GL

n

(Z) in H

2

(�;K

�

)

�

=

Alt

2

(�;K

�

). In this pi
ture the rational

quantum tori 
orrespond to alternating forms f 2 Alt

2

(�;K

�

) on � whose values are roots of

unity. Sin
e the group Z generated by the image of f is generated by the �nite set f(e

i

; e

j

),

i; j = 1; : : : ; n , it is a �nite subgroup of K

�

, hen
e 
y
li
 (
f. [La93, Th. IV.1.9℄). Therefore

Theorem III.1 applies, and we see A is isomorphi
 to a quantum torus de�ned by a biadditive


o
y
le f : �� �! Z � K

�

satisfying

f(e

1

; e

2

) = q

1

; f(e

3

; e

4

) = q

2

and f(e

2s�1

; e

2s

) = q

s

and f(e

i

; e

j

) = 1 for all other pairs (i; j), where q

1

jq

2

j : : : jq

s

holds in the 
y
li
 group Z , viewed

as a ring. This means that hq

s

i � : : : � hq

1

i , or, equivalently, ord(q

s

) � : : : � ord(q

1

). The

quantum torus A

f

�

=

A de�ned by f then satis�es

A

f

�

=

A

q

1


A

q

2


 : : :
A

q

s


 K [Z

n�2s

℄:

That two su
h quantum tori are isomorphi
 if and only if s = s

0

and ord(q

i

) = ord(q

0

i

) for

i = 1; : : : ; s , follows from Theorem I.4, 
ombined with Theorem III.1, be
ause the order of an

element q 2 Z determines the subgroup hqi it generates uniquely, and vi
e versa.

IV. Graded automorphisms of quantum tori

In this se
tion we brie
y dis
uss the group of automorphisms of a general quantum torus,

but our main result only 
on
erns the 2-dimensional 
ase: For A = A

q

and the 
orresponding al-

ternating form � on Z

2

, the group Aut(A) it is a semi-dire
t produ
t Hom(Z

2

;K

�

)oAut(Z

2

; �):

De�nition IV.1. Let A be a �-quantum torus. We write Aut

gr

(A) for the group of

graded automorphisms of A , i.e., all those automorphisms ' 2 Aut(A) for whi
h there exists an

automorphism '

�

2 Aut(�) with '(A




) = A

'

�

(
)

for all 
 2 �.

Note that Proposition A.1 in the appendix implies that if � is torsion free, then all units

are homogeneous, whi
h implies that ea
h automorphism of A is graded.
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Remark IV.2. We �x a basis (Æ




)


2�

of A and suppose that f 2 Z

2

(�; Z) is the 
orre-

sponding 
o
y
le determined by (1.1). Then for ea
h graded automorphism ' of A there is an

automorphism '

�

2 Aut(�) and a fun
tion �: �! K

�

su
h

(4:1) '(Æ




) = �(
)Æ

'

�

(
)

; 
 2 �:

Conversely, for a pair (�; '

�

) of a fun
tion �: �! K

�

and an automorphism '

�

2 Aut(�) the

pres
ription '(Æ




) := �(
)Æ

'

�

(
)

de�nes an automorphism of A if and only if

(4:2)

('

�

�

f)(
; 


0

)

f(
; 


0

)

=

�(
 + 


0

)

�(
)�(


0

)

for all 
; 


0

2 �:

Note that if f is biadditive, then '

�

�

f=f is biadditive, so that � is a 
orresponding K

�

-

valued quadrati
 form. If f and '

�

are given, then a � satisfying (4.2) exists if and only if

['

�

�

f ℄ = [f ℄ holds in H

2

(�; Z).

Lemma IV.3. The image of the map

Q: Aut

gr

(A)! Aut(�); ' 7! '

�

is the group

Aut(�)

[f ℄

:= f 2 Aut(�): [ 

�

f ℄ = [f ℄g;

whi
h is 
ontained in

Aut(�; �

f

) := f 2 Aut(�): 

�

�

f

= �

f

g;

where �

f

(
; 


0

) =

f(
;


0

)

f(


0

;
)

. If, in addition, � is free, then Aut(�)

[f ℄

= Aut(�; �

f

):

Proof. Let '

�

2 Aut(�). In view of Remark IV.2, the existen
e of ' 2 Aut

gr

(A) with

Q(') = '

�

is equivalent to the existen
e of � satisfying (4.2), whi
h is equivalent to ['

�

�

f ℄ = [f ℄

in H

2

(�;K

�

). Sin
e (4.2) implies that '

�

�

f=f is symmetri
, we have '

�

�

�

f

= �

'

�

�

f

= �

f

:

If, in addition, � is free, then Proposition II.4 entails that '

�

�

�

f

= �

f

is equivalent to

['

�

�

f ℄ = [f ℄ in H

2

(�;K

�

) (
f. [OP95, Lemma 3.3(iii)℄).

From (4.2) we derive in parti
ular that (�;1) de�nes an automorphism of A if and only if

� 2 Hom(�;K

�

), so that we obtain the exa
t sequen
e

(4:3) 1! Hom(�;K

�

)! Aut

gr

(A)! Aut(�)

[f ℄

! 1

(
f. [OP95, Lemma 3.3(iii)℄). We 
all the automorphisms of the form (�;1) s
alar.

Remark IV.4. If the map � from Proposition II.4 is not inje
tive, then the groups Aut(�; �

f

)

and Aut(�)

[f ℄

need not 
oin
ide, but with Proposition II.3 we obtain a 1-
o
y
le

I : Aut(�; �

f

)! Ext

ab

(�;K

�

);  7! [ 

�

f � f ℄

satisfying Aut(�)

[f ℄

= I

�1

(0):

In the remainder of this se
tion we restri
t our attention to the 
ase, where � = Z

n

is a free

abelian group of rank n , whi
h implies that Aut(�)

[f ℄

= Aut(�; �

f

) and that Aut(A) = Aut

gr

(A)

(Corollary A.2).

Remark IV.5. (a) For n = 1, ea
h alternating biadditive map � on � vanishes, so that

Aut(�; �) = Aut(�)

�

=

f� id

�

g .

(b) For ea
h alternating form �: �� �! K

�

we have � id

�

2 Aut(�; �).

(
) In [OP95℄ it is shown that if the subgroup him(�)i of K

�

generated by the image of �

is free of rank

�

n

2

�

, then Aut(�; �

f

) = f� id

�

g .

Moreover, for n = 3 and him(�)i free of rank 2, [OP95, Prop. 3.7℄ implies the existen
e of

a basis 


1

; 


2

; 


3

2 � with �(


1

; 


2

) = 1 and

Aut(�; �)

�

=

f� 2 Aut(�): (9a; b 2 Z; " 2 f�1g) �(


1

) = 


"

1

; �(


2

) = 


"

2

; �(


3

) = 


a

1




b

2




"

3

g

�

=

Z

2

o f� id

Z

2

g:
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We now take a 
loser look at the 
ase n = 2. Any alternating form � 2 Alt

2

(Z

2

;K

�

) is

uniquely determined by q := �(e

1

; e

2

), whi
h implies �(
; 


0

) = q




1




0

2

�


2




0

1

: We may therefore

assume that a 
orresponding bimultipli
ative 
o
y
le f satis�es f(
; 


0

) = q




1




0

2

, whi
h leads to

the quantum torus A

q

with two generators u

i

= Æ

e

i

satisfying u

1

u

2

= qu

2

u

1

, as de�ned in the

introdu
tion.

We start with two simple observations:

Lemma IV.6. Aut(Z

2

; �) =

�

SL

2

(Z) for q

2

6= 1

GL

2

(Z) for q

2

= 1.

Proof. Clearly SL

2

(Z)� Aut(Z

2

; �) � GL

2

(Z). The map g

0

(
) = (


2

; 


1

) satis�es GL

2

(Z)

�

=

SL

2

(Z)o hg

0

i , and we have

g

�

0

�(e

1

; e

2

)

�(e

1

; e

2

)

=

�(e

2

; e

1

)

�(e

1

; e

2

)

= q

�2

:

Example IV.7. (a) On Z

2

the map �(
) := 


1




2

is a quadrati
 form with

�(
 + 


0

)� �(
)� �(


0

) = 


1




0

2

+ 


2




0

1

:

(b) On Z the map �(n) :=

�

n

2

�

is a quadrati
 form with

�(n+ n

0

)� �(n)� �(n

0

) =

(n+ n

0

)(n+ n

0

� 1)� n(n� 1)� n

0

(n

0

� 1)

2

=

nn

0

+ n

0

n

2

= nn

0

:

From SL

2

(Z)� Aut(Z

2

; �), it follows in parti
ular that ea
h matrix

g =

�

a b


 d

�

2 SL

2

(Z)


an be lifted to an automorphism of A

q

. To determine a 
orresponding quadrati
 form �:Z

2

!

K

�

, we have to solve the equation (4.2):

(g

�

f)(
; 


0

)

f(
; 


0

)

=

�(
 + 


0

)

�(
)�(


0

)

:

The form g

�

f=f is determined by its values on the pairs (e

1

; e

1

); (e

1

; e

2

) and (e

2

; e

2

):

(g

�

f=f)(e

1

; e

1

) = f(g:e

1

; g:e

1

) = q

a


; (g

�

f=f)(e

1

; e

2

) = f(g:e

1

; g:e

2

)q

�1

= q

ad�1

and

(g

�

f=f)(e

2

; e

2

) = f(g:e

2

; g:e

2

) = q

bd

:

This means that

(g

�

f=f)(
; 


0

) = q

a



1




0

1

+(ad�1)(


1




0

2

+


0

1




2

)+bd


2




0

2

:

Before we turn to lifting the full groups Aut(Z

2

; �) to an automorphism group of A , we

dis
uss 
ertain spe
i�
 elements of �nite order separately.

Remark IV.8. (a) For the 
entral element z = �1 2 SL

2

(Z), any lift bz 2 Aut(A

q

) is of the

form

bz:Æ




= r




1

s




2

� Æ

�


for some r; s 2 K

�

;

and any su
h element satis�es bz

2

:Æ




= r




1

s




2

� bz:Æ

�


= r




1

�


1

s




2

�


2

� Æ




= Æ




: Hen
e ea
h lift bz

of z is an element of order 2.

(b) The matri
es

g

1

:=

�

0 1

�1 0

�

and g

2

:=

�

1 1

�1 0

�
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satisfy g

2

1

= z = g

3

2

, whi
h leads to ord(g

1

) = 4 and ord(g

2

) = 6. From the pre
eding paragraph

we 
on
lude that for any lift bg

j

of g

j

, j = 1; 2, we have bg

4

1

= 1 = bg

6

2

:

In view of

(g

�

1

f=f)(
; 


0

) = q

�(


1




0

2

+


0

1




2

)

;

a lift eg

1

of g

1

is given by eg

1

:Æ




= q

�


1




2

Æ

g

1

:


(Example IV.7(a)). We then have

eg

2

1

:Æ




= q

�


1




2

eg

1

:Æ

(


2

;�


1

)

= q

�


1




2

q




2




1

:Æ

�


= Æ

�


:

Any other lift bg

1

of g

1

is of the form

bg

1

:Æ

g

= r




1

1

s




2

1

q

�


1




2

Æ

g

1

:


for two elements r

1

; s

1

2 K

�

. The square of this element is given by

(4:4) bg

2

1

:Æ

g

= r




1

1

s




2

1

bg

1

eg

1

:Æ




= r




1

+


2

1

s




2

�


1

1

eg

2

1

:Æ




=

�

r

1

s

1

�




1

(r

1

s

1

)




2

� Æ

�


:

For the matrix g

2

we have

(g

�

2

f=f)(
; 


0

) = q

�


1




0

1

�(


1




0

2

+


0

1




2

)

;

so that we obtain a lift eg

2

of g

2

by eg

2

:Æ




= q

�

(




1

2

)

�


1




2

Æ

(


1

+


2

;�


1

)

(Example IV.7(b)). Hen
e

ea
h lift bg

2

of g

2

is of the form

bg

2

:Æ

g

= r




1

2

s




2

2

q

�

(




1

2

)

�


1




2

Æ

(


1

+


2

;�


1

)

;

for some r

2

; s

2

2 K

�

. In view of g

2

2

=

�

0 1

�1 �1

�

; we get with Example IV.7(b):

eg

3

2

:Æ




= q

�

(




1

2

)

�


1




2

eg

2

2

:Æ




1

+


2

;�


1

= q

�

(




1

2

)

�


1




2

q

�

(




1

+


2

2

)

+(


1

+


2

)


1

eg

2

:Æ




2

;�


1

�


2

= q

�2

(




1

2

)

�

(




2

2

)

�


1




2

+


2

1

q

�

(




2

2

)

+(


1

+


2

)


2

Æ

�


= q

�


1

(


1

�1)�


2

(


2

�1)+


2

1

+


2

2

Æ

�


= q




1

+


2

Æ

�


:

This further leads to

bg

3

2

:Æ




= r




1

2

s




2

2

bg

2

2

eg

2

:Æ




= r

2


1

+


2

2

s

�


1

+


2

2

bg

2

eg

2

2

:Æ




= r

2


1

+2


2

2

s

�2


1

2

eg

3

2

:Æ




= r

2(


1

+


2

)

2

s

�2


1

2

q




1

+


2

:Æ

�


=

�

r

2

2

s

2

2

q

�




1

(r

2

2

q)




2

Æ

�


:(4:5)

(
) If, in addition, q

2

= 1, then Aut(�; �

f

) = Aut(�)

�

=

GL

2

(Z) (Remark IV.8). For the

involution

g

0

:=

�

0 1

1 0

�

we have GL

2

(Z) = SL

2

(Z)o hg

0

i; and the elements g

0

; g

1

; g

2

satisfy

(4:6) g

0

g

1

g

0

= g

�1

1

= g

3

and g

0

g

2

g

0

= g

5

2

= g

�1

2

:

To lift g

0

to an automorphism of A

q

, we �rst note that q

2

= 1 implies that

(g

�

0

f=f)(
; 


0

) = q




2




0

1

�


1




0

2

;= q




2




0

1

+


1




0

2

;

whi
h shows that ea
h lift bg

0

of g

0

is of the form bg

0

:Æ




= r




1

0

s




2

0

q




1




2

Æ

(


2

;


1

)

for some r

0

; s

0

2 K

�

.

In view of

bg

2

0

:Æ




= r




1

0

s




2

0

q




1




2

bg

0

:Æ

(


2

;


1

)

= r




1

+


2

0

s




2

+


1

0

q

2


1




2

Æ




= (r

0

s

0

)




1

+


2

Æ




;

bg

2

0

= 1 is equivalent to r

0

s

0

= 1: If this 
ondition is satis�ed, then bg

0

:Æ




= r




1

�


2

0

q




1




2

Æ

(


2

;


1

)

:

Before we state the following theorem, we re
all that for any split abelian extension

1! A!

b

G

q

��!G! 1

of a group G by some (abelian) G-module A , the set of all splittings is parametrized by the

group

Z

1

(G;A) = ff :G! A: (8x; y 2 G) f(xy) = f(x) + x:f(y)g

of A-valued 1-
o
y
les. This parametrization is obtained by 
hoosing a homomorphi
 se
tion

�

0

:G!

b

G and then observing that any other se
tion �:G!

b

G is of the form � = f ��

0

, where

f 2 Z

1

(G;A).



11 quantor.tex 10.11.2005

Theorem IV.9. For ea
h element q 2 K

�

and �(
; 


0

) = q




1




0

2

�


2




0

1

the exa
t sequen
e

1! Hom(Z

2

;K

�

)! Aut(A

q

)! Aut(Z

2

; �)! 1

splits. For q

2

= 1 , the homomorphisms �: GL

2

(Z) ! Aut(A

q

) splitting the sequen
e are

parametrized by the abelian group

Z

1

(GL

2

(Z);Hom(Z

2

;K

�

))

�

=

f(r

0

; r

1

; r

2

) 2 (K

�

)

3

: r

2

4

r

2

0

= r

2

1

g;

and for q

2

6= 1 , the homomorphisms �: SL

2

(Z)! Aut(A

q

) splitting the sequen
e are parametrized

by

Z

1

(SL

2

(Z);Hom(Z

2

;K

�

))

�

=

(K

�

)

2

� fz 2 K

�

: z

2

= 1g:

Proof. First we 
onsider the 
ase q

2

6= 1, where Aut(Z

2

; �) = SL

2

(Z) (Remark IV.8). We

shall use the des
ription of the lifts of g

1

; g

2

given in Remark IV.8. Sin
e SL

2

(Z) is presented

by the relations

g

4

1

= g

6

2

= 1; g

2

1

= g

3

2

([Ha00, p.51℄), Remark IV.8 implies that a pair of elements (bg

1

; bg

2

) lifting (g

1

; g

2

) leads to a lift

SL

2

(Z)! Aut(A

q

) if and only if bg

2

1

= bg

3

2

. Comparing (4.4) and (4.5), we see that bg

2

1

= bg

3

2

is

equivalent to

r

1

s

1

=

r

2

2

s

2

2

q and r

1

s

1

= r

2

2

q;

whi
h is equivalent to

(4:8) s

2

1

= s

2

2

and s

1

=

r

2

2

q

r

1

;

These equations have the simple solution r

1

= q; r

2

= s

1

= s

2

= 1; showing that the a
tion of

the group SL

2

(Z) on � lifts to an a
tion on A

q

. Moreover, for ea
h pair (r

1

; r

2

), the set of all

solutions is determined by the 
hoi
e of sign in s

2

:= �s

1

, whi
h is va
uous if 
har(K ) = 2.

Next we 
onsider the 
ase q

2

= 1. We assume that the lift bg

0

of g

0

satis�es bg

2

0

= 1 (
f.

Remark IV.8(
)). Now the relation bg

0

bg

1

bg

0

= bg

�1

1

is equivalent to (bg

0

bg

1

)

2

= 1 . We 
al
ulate

bg

0

bg

1

:Æ




= r




1

1

s




2

1

q

�


1




2

bg

0

:Æ

(


2

;�


1

)

= (r

0

r

1

)




1

(r

0

s

1

)




2

Æ

(�


1

;


2

)

to get

(bg

0

bg

1

)

2

:Æ




= (r

0

r

1

)




1

(r

0

s

1

)




2

bg

0

bg

1

:Æ

(�


1

;


2

)

= (r

0

s

1

)

2


2

Æ




:

Hen
e bg

0

bg

1

bg

0

= bg

�1

1

is equivalent to

(4:9) r

2

0

s

2

1

= 1:

To see when bg

0

bg

2

bg

0

= bg

�1

2

holds, we �rst observe that

bg

�1

2

:Æ




= r




2

2

s

�


1

�


2

2

q

(

�


2

2

)

�


2

(


1

+


2

)

Æ

(�


2

;


1

+


2

)

:

Further

bg

0

bg

2

:Æ




= r




1

2

s




2

2

q

�

(




1

2

)

�


1




2

bg

0

:Æ

(


1

+


2

;�


1

)

= (r

2

0

r

2

)




1

(r

0

s

2

)




2

q

(




1

2

)

+


1




2

+(


1

+


2

)


1

� Æ

(�


1

;


1

+


2

)

= (r

2

0

r

2

)




1

(r

0

s

2

)




2

q

(




1

2

)

+


2

1

� Æ

(�


1

;


1

+


2

)

= (r

2

0

r

2

q)




1

(r

0

s

2

)




2

q

(




1

2

)

� Æ

(�


1

;


1

+


2

)

be
ause q

2

= 1 implies q

n

2

= q

n

= q

�n

for ea
h n 2 Z .

On the other hand, we have

bg

�1

2

bg

0

:Æ




= r




1

0

r

�


2

0

q




1




2

bg

�1

2

:Æ

(


2

;


1

)

= r




1

0

r

�


2

0

q




1




2

r




1

2

s

�


2

�


1

2

q

(

�


1

2

)

�


1

(


1

+


2

)

Æ

(�


1

;


1

+


2

)

= (r

0

r

2

s

�1

2

)




1

(r

0

s

2

)

�


2

q

(

�


1

2

)

�


2

1

Æ

(�


1

;


1

+


2

)

= (r

0

r

2

s

�1

2

)




1

(r

0

s

2

)

�


2

q

�

(




1

2

)

Æ

(�


1

;


1

+


2

)

= (r

0

r

2

s

�1

2

)




1

(r

0

s

2

)

�


2

q

(




1

2

)

Æ

(�


1

;


1

+


2

)

:
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Therefore bg

0

bg

2

bg

0

= bg

�1

2

is equivalent to

r

0

r

2

s

�1

2

= r

2

0

r

2

q and (r

0

s

2

)

2

= 1;

whi
h is equivalent to

(4:10) r

0

s

2

= q;

be
ause this relation implies (r

0

s

2

)

2

= q

2

= 1.

We 
on
lude that the numbers r

0

; r

1

; r

2

; s

1

; s

2

whi
h determine bg

0

; bg

1

; bg

2

de�ne a lift of

GL

2

(Z) to Aut(A

q

) if and only if the equations (4.8), (4.9) and (4.10) are satis�ed:

s

2

1

= s

2

2

; s

1

=

r

2

2

q

r

1

; r

2

0

s

2

1

= 1; and r

0

s

2

= q:

If r

0

; r

1

and r

2

are given, we determine s

1

and s

2

by s

1

:=

r

2

2

q

r

1

and s

2

:=

q

r

0

: Then

s

2

1

s

2

2

=

r

4

2

r

2

0

r

2

1

= r

2

0

s

2

1

;

so that we obtain only the relation r

2

4

r

2

0

= r

2

1

for r

0

; r

1

; r

2

. This 
ompletes the proof.

Remark IV.10. (a) From the proof of the pre
eding theorem, we see that we obtain the

parti
ularly simple solution

r

0

= r

1

= r

2

= 1; s

1

= s

2

= q:

(b) For 
harK = 2 the equation q

2

= 1 has the unique solution q = 1, so that A

q

�

=

K [Z

2

℄ ,

and the a
tion of GL

2

(Z) has a 
anoni
al lift to an a
tion on A

q

.

Problem IV.1. Does the sequen
e (4.3) always split? We have seen above, that this is true for

� = Z

2

. If the answer is no, it would be of some interest to understand the 
ohomology groups

H

2

(Aut(�)

[f ℄

;Hom(�;K

�

))

parametrizing the possible abelian extensions of Aut(�)

[f ℄

by the module Hom(�;K

�

).

Problem IV.2. Let � 2 Alt

2

(Z

n

; Z), where Z is a 
y
li
 group. Determine the stru
ture of

the group Aut(Z

n

; �). It should have a semidire
t produ
t stru
ture, where the normal subgroup

is something like a Heisenberg group and the quotient is the automorphism group of Z

n

= rad(�),

endowed with the indu
ed non-degenerate form. Can this group be des
ribed in a 
onventient

way by generators and relations? Maybe the results in [Is03℄ 
an be used to deal with degenerate


o
y
les.

A. The group of units if � is torsion free

The following result is used in [OP95, Lemma 3.1℄ without referen
e. Here we provide a

detailed proof.

Proposition A.1. If the group � is torsion free and A a �-quantum torus, then A

�

= A

�

h

,

i.e., ea
h unit of A is graded.

Proof. Let a 2 A

�

be a unit and write a =

P




a




Æ




in terms of some graded basis. We do

the same with its inverse a

�1

=

P




(a

�1

)




Æ




, and observe that the set

supp(a) := f
 2 �: a




6= 0g
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is �nite. The same holds for supp(a

�1

), so that both sets generate a free subgroup F of �.

Then A

F

:= spanfÆ




: 
 2 Fg is an F -quantum torus with a 2 A

�

F

. We may therefore assume

that � = Z

d

for some d 2 N

0

.

We prove by indu
tion on k 2 f0; : : : ; dg that the subalgebra

A

k

:= spanfÆ




: 
 2 Z

k

� f0gg

has no zero-divisors and that all its units are homogeneous. This holds trivially for k = 0.

Let u

i

:= Æ

e

i

, where e

1

; : : : ; e

d

is the 
anoni
al basis of Z

d

. We write 0 6= x 2 A as a �nite

sum

P

k

1

k=k

0

x

k

u

k

d

with x

k

2 A

d�1

and x

k

0

and x

k

1

non-zero. Likewise we write 0 6= y 2 A as

P

m

1

m=m

0

y

m

u

m

d

with y

m

2 A

d�1

and y

m

0

and y

m

1

non-zero. Then the lowest degree term with

respe
t to u

d

in xy is

x

k

0

u

k

0

d

y

m

0

u

m

0

d

= x

k

0

�

u

k

0

d

y

m

0

u

�k

0

d

�

u

k

0

+m

0

d

;

and the indu
tion hypothesis implies x

k

0

u

k

0

d

y

m

0

u

�k

0

d

6= 0 be
ause 
onjugation with u

d

preserves

the subalgebra A

d�1

. This implies that xy 6= 0.

Now assume that x 2 A is a unit and y = x

�1

. Sin
e A

d�1

has no zero-divisors,

x

k

0

u

k

0

d

y

m

0

u

�k

0

d

2 A

d�1

n f0g

leads to k

0

+m

0

= 0. A similar 
onsideration for the highest order term implies k

1

+m

1

= 0,

whi
h leads to k

0

= k

1

and m

0

= m

1

. Now we 
an argue by indu
tion.

Corollary A.2. ([OP95, Lemma 3.1℄) If the group � is torsion free, then ea
h automorphism

of A is graded, i.e., Aut(A) = Aut

gr

(A): (
f. Def. IV.1)
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