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Abstract

We consider the problem of reconstruction of input signals u from
output signals of time-varying filters of the form

(Au)(z) =) aj(@)u(z - j), = €L,
JEZL
under the assumption that EjeZ lajlloc < o0. The proposed algo-
rithm of reconstruction of signals is based on the theory of band-
dominated and pseudodifference operators as presented in the recent
monograph [12] and on the finite sections method. The following
classes of filters are considered this paper: slowly time-varying filters,
perturbations of periodic time-varying filters, causal time-varying fil-
ters, and finite filters acting on signals with a finite number of values.

1 Introduction

Signal processing. We start with recalling some basic definitions and facts
from signal processing theory. Standard references to this field are [6, 7, 1, 16],
for instance.

A digital complex signal (DCS for short) is a two-sided sequence u =
{u(x) : x € Z} of complex numbers. In what follows we consider DCS with
finite energy, that is we suppose that the DCS u belongs to the Hilbert space
1% of complex-valued functions on Z, provided with the scalar product

(u, v) = Y u(z)ofa)



and with associated norm

1/2
Julla = (Z IU(:E)|2> < 00.

TEL

A digital linear filter is a linear mapping which transforms a DCS u, called
the input signal, to a DCS v = Au, the output signal. We will exclusively
consider linear filters, i.e., filters which act as a bounded linear operator on
12

An interesting but still easy to analyze class of digital filters is constituted
by the time-invariant filters. They are characterized by their invariance with
respect to shifts. More precisely, a digital filter A is said to be invariant with
respect to shifts if

VA=AV, forevery h € Z,

where the shift operator V}, : [? — [? acts via (V,u)(z) := u(z — h). One can
show that, for each time-invariant digital filter A, there is a uniquely deter-
mined bounded sequence (ay)rez of complex numbers, called the coefficients
of the filter, such that

(Au)(z) = Zaku(aj — k) forxzeZ. (1)
keZ
In what follows we will suppose that the Wiener condition
> Jag] < o0 (2)
k€Z

holds. For time-invariant filters (1), the problem of reconstruction of the
input signal from a given output is solved by means of the discrete Fourier
transform

W(€) = (Fu)(§) ==Y uge ™, £€R

TEZ

Note that for u € [, the Fourier transform 4 is a 27-periodic function with

27
/0 (&) de < oo,

that the inverse Fourier transform F~! is given by

(Flu)(z) = / " u(e)e de,

T or

2



and that Parseval’s equality holds,

/0 @) P de =203 Ju(a) .

TEL

If A is a time-invariant filter as in (1), set a(§) := Y, ., are "¢ for £ € [0, 2n]
and suppose that
inf |a(&)] > 0. (3)

£€[0,27]

Then, indeed, the input signal u is obtained from the output v = Au via

u(z :i 27”}(&) P T
@ =3[ Fgei rez (@)

A natural generalization of time-invariant filters are the time-varying filters.
They are described by linear operators A of the form

(Au)(z) = ap(@)ulz — k) =) a(@)(Viu)(z), =€, (5)

kEZ keZ

where now the coefficients a; are sequences in [*°, the Banach space of all
bounded complex-valued functions on Z with norm

lalloe := sup |a(z)].
TEL

For time-varying filters, we will always suppose the Wiener type condition

> llaxllso < o0 (6)

keZ

which obviously generalizes (2).

Evidently, for time-varying filters, the problem of reconstruction of the
input signal from the output signal is much more involved than for time-
invariant filters. In particular, there is no explicit formula for the dependence
of the input from the output signal. Thus, it is both necessary and natural
to consider numerical methods to determine the input approximately. The
present paper is devoted to this circle of problems.



Band-dominated operators. An operator of the form

N

(Au)(2) = Y (@) (Veu)(2), = €Z,

k=—N

with coefficients a, € [*° is also called a band operator. This name is moti-
vated by the fact that the matrix of A with respect to the standard basis of
I2 has a finite number of non-zero diagonals only. The closure of the set of
all band operators in the space £(I?) of all bounded linear operators on 2 is
denoted by As. The operators in A, are called band-dominated. 1t is easy to
see that the time-varying filters (5) with condition (6) and, in particular, the
time-invariant filters (1) with condition (2) are band-dominated operators.

The Fredholm theory of band-dominated operators has been intensively
studied in the papers [10, 11, 9]. A comprehensive account on this topic can
be found in the recently published monograph [12]. The stability of certain
projection methods (in particular, of the finite sections method) for the ap-
proximate solution of the equation Au = v where A is a band-dominated
operator is studied in [10, 11, 13] and in [12].

If each output v € [? is generated by a uniquely determined input, then
the operator A is invertible. Thus, the solution of the reconstruction problem
for time-variable filters A requires conditions for the invertibility of A on the
space [?. Moreover, the invertibility of A is also a necessary condition for the
applicability of projection methods for the solution of the equation Au = v,
that is for the numerical reconstruction of input signals.

About this paper. The main aims of the paper are:

(a) to consider classes of band-dominated operators which are important
for signal processing, and to give effective conditions of their invertibil-

ity,

(b) to derive conditions for the applicability of projection methods for the
approximate solution of the problem of reconstructing input signals.

The paper is organized as follows. In Section 2 we recall some auxiliary ma-
terial from the theory of band-dominated operators. All cited facts can be
found in [12]. In Section 3 we embark upon stable approximation procedures
in order to reconstruct input signals of time-variable filters. In particular, we
will derive conditions for the applicability of the finite sections method. Our
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approach to analyze these methods is is based on the calculus of pseudodif-
ference operators developed in [8], see also [12], Chapter 5. Special emphasis
is paid to periodic time-variable filters and to slowly varying perturbations
of periodic filters. Section 4 is devoted to the problem of reconstruction of
input signals in causal time-varying filters, and in the concluding Section 5
we consider the reconstruction of digital signals with a finite number of values
for time-variable filters. For these results, we have to employ the calculus of
pseudodifferential operators on the finite commutative (cyclic) group Z/dZ
where d € N.

This work had been supported by the CONACY'T project 43432. The
authors are grateful for this support.

2 Auxiliary facts from the theory of band-
dominated operators

2.1 Fredholm theory and index of band-dominated op-
erators in the Wiener algebra W

Let (aq)acz be a sequence of functions in [*° satisfying the Wiener condition

S el < oo. (7)

Q€L

Then the series Y~ ., aqa Vs converges in the norm of £(1%) and, thus, it defines
a bounded linear operator on /2. We write W for the set of all operators
obtained in this way. Provided with the usual operations of the addition and
multiplication of operators and with the norm

1Aw = llaalls,

Q€L

the set W becomes a Banach algebra, the so-called Wiener algebra. By
construction, W C L(I?). Moreover, it is easy to see that W C A, the
algebra of the band-dominated operators. One peculiarity of the algebra W
is its property of inverse closedness, which is stated precisely as follows.

Proposition 1 . Let the operator A € W be invertible as an operator on [%.
Then A=t e W.



A bounded linear operator A acting on a Banach space X is called a Fredholm
operator if both its kernel ker A := {z € X : Ax = 0} and its cokernel
coker A := X/A(X) are finite-dimensional linear spaces. Fredholmness of
A means that the equations Az = 0 and A*y = 0 have only finitely many
linearly independent solutions in the spaces X and X*, respectively, and that
the equation Az = f is solvable if and only if y;(f) =0 for j =1, ..., m,
where {y1, ..., Y} is a basis of ker A*. The integer

ind A := dimker A — dim ker A*

is called the index of the Fredholm operator A.
Let h : N — Z be a sequence which tends to infinity, and let

A:ZaaVaeVV.

Q€
By using a Cantor diagonal argument, one can prove that the sequence h
possesses a subsequence g such that the limits

lim aq(z + gi) =: a(x)
k—o0

exist for all integers  and «. The operator

A= "alV,

Q€L

is called the limit operator of A defined by (or with respect to) the sequence
g. It follows from ||a?||sc < ||aallso that all limit operators of A belong to
the Wiener algebra W again. Note also that AY is the strong limit on [? of
the operator-valued sequence (V_,, AV, )ren for £ — oo. We denote the set
of all limit operators of A € W by 0,,(A). Let furthermore o} (A) refer to
the set of all limit operators of A which correspond to sequences h tending

to too. Evidently, 0,,(A4) = op,(A) Uo,,(A).
The following theorem summarizes criteria for the Fredholmness of oper-
ators in W.

Theorem 2 Let A € W. Then the following assertions are equivalent:
(a) A is a Fredholm operator on (2.

(b) All limit operators of A are invertible on [*.

(¢) All limit operators of A are invertible on 1%, and the norms of their in-
verses are uniformly bounded.



Let P, denote the operator of multiplication by the characteristic function
of the set Ny of the non-negative integers, and set P_ := I — P,. Note that
P are orthogonal projections on /2. We denote their ranges by 12 := Py (I?).

Theorem 3 Let the operator A € W satisfy one of the conditions of Theo-
rem 2. Then
(a) the operators PLAP, : 12 — 12 and P_AP_:1*> — [ are Fredholm,

(b) for arbitrary limit operators A, € o, (A) and A, € 0,,(A), the operators
P AP, 12 — 12 and P_A,P_ : 1> — I are Fredholm;

(¢) one has

indA = ind(P;AP;)+ind (P_AP.)
= ind (PyApPy) +ind (P-A,P_).

Assertion (a) and the first equality in (c) follow easily from the (evident) com-
pactness of the operators P, AP and P_AP, which implies the compactness
of the operators

A— (P AP, +P )(P.AP +P,) and A—(P.AP +P,)(P,AP,+P.).

If A is Fredholm, then each limit operator of A is invertible by Theorem 2.
Thus, assertion (b) is an immediate consequence of (a). The only serious
result in the preceding theorem is the second equality in (¢). This (in our
eyes) surprising identity has been derived in [9].

A function a € [*° is called slowly oscillating at infinity if

wlggo(a(x +k)—a(x)=0

for every k € Z. We denote the subspace of [* of all slowly oscillating at
infinity functions by SO, and we write W*¢ for the subalgebra of W which
consists of all operators A = Zaez aqV, with coefficients a,, in SO.

It is a remarkable property of operators A in W*°© that their limit oper-
ators A" are necessarily of the form

Ab =3 "alv, (8)
Q€7

with constant coefficients o € C. One easily checks that the operator (8) is
unitarily equivalent to the operator of multiplication by the function

Ap(&) = ale”® £ €0, 27).

Q€



Thus, the operator (8) is invertible on [? is and only if

inf |A > 0. 9
nr[4,(9) o
Moreover, condition (9) implies that the operators Py APy : [2 — [2 are
Fredholm and that

ind (P, A"P,) = —wind (4,), ind(P_A"P_) = wind (4,)

where the winding number of the 27-periodic and non-vanishing function A,
is defined by

wind (4y) := ! [aYgAh(f)]zio-

2
Thus, specifying Theorems 2 and 3 to operators with slowly oscillating coef-
ficients yields the following.

Theorem 4 Let A € W59, Then A : 1> — 12 is a Fredholm operator if
and only if condition (9) holds for every limit operator Ay. In this case, the
Fredholm indez of the A is given by

ind A = —wind (4,/A,),

+

op(A) and Ay an arbitrary operator in

where Ay is an arbitrary operator in o

o, (A).

op

2.2 The finite sections method

Let A € L(I?) be an invertible operator. Then the equation Au = v
has a unique solution u for every function v € [2. Let Py be the opera-
tor of multiplication by the characteristic function of the discrete segment
[-N, Nz .= {k € Z : |k| < N}. Together with the equation Au = v, we
consider the sequence of its finite sections

PNAPNUN = PNU, N € N, (].O)

the solutions uy of which are sought in im Py. The crucial questions are
whether the equations (10) possess unique solutions for sufficiently large N
and whether the sequence (uy) of these solutions converges (in the norm of
I?) to the solution u of Au = v. If the answer to both questions is yes, then
the finite sections method is said to be applicable to the operator A.
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It is well-known (see for instance [2, 3, 4, 12]) that the finite sections
method is applicable to the operator A : [? — [? if and only if this operator
is invertible and if the sequence (Py APy ) yen is stable. The latter means that
the operators PyAPy : im Py — im Py are invertible for sufficiently large
N and that the norms of their inverses (PyAPy) ! are uniformly bounded.
This fact is usually referred to as Polski’s theorem.

The following theorem provides a necessary and sufficient criterion for
the applicability of the finite sections method to operators in W.

Theorem 5 Consider A € W as an operator on 2. The finite sections
method is applicable to A if and only if
(a) the operator A is invertible on [%;

(b) for every limit operator Ay, € o} (A), the operators P_A,P_ : I* — I*
are invertible;

(c) for every limit operator A, € o,,(A), the operators Py Ay Py : 13 — I3
are tnvertible.
Theorem 5 takes a more simple form for operators in the algebra W<¢,
Theorem 6 Let A € W39, The finite sections method is applicable to A if
and only if:
(a) the operator A is invertible on I*, and
(b) the plus-index ind (Py APy) of A is equal to zero.
Note that X

lnd (P+AP+) == —Wlnd (Ah)

where Ay, is an arbitrary limit operator of A in o (A). Thus, condition (b)

in Theorem 6 can be effectively verified in many instances. For proofs of
Theorems 5 and 6, consult [5, 13].

3 Reconstruction of signals in time-varying
filters

3.1 Auxiliary facts from the theory of pseudodifference
operators

We still have to recall some facts about pseudodifferential operators. Stan-
dard references to the theory of pseudodifferential operators are [14, 15], for

9



instance.

Definition 7 A function a : Z x R — C belongs to the class S if it is
27-periodic with respect to the second (real) variable and if

d"a(z, 5)‘

Jem < 00 (11)

la|n = sup
(2,6)€Zx[0,27], m<N

for all N > 0. With each function a € S, there is associated a pseudodiffer-
ence operator A = Op(a) which acts on [* via

27
= Z/ £)u() et de, x €. (12)
m

The class of all operators of this form is denoted by OPS.

The operator A = Op(a) is also called the pseudodifference operator gener-
ated by a, and the function o4 := a is called the symbol of this operator.
Pseudodifference operators can be considered as discrete analogs of the clas-
sical pseudodifferential operators on R; in fact, they are pseudodifferential
operators related with the discrete group Z.

Note that every time-varying filter A of the form

Z aj(x)u(x —j), =€, (13)
JEL
where the a; € [*° satisfy
> lilfllajllee < 00 for each k € Ny (14)
jez
is a pseudodifference operator with symbol a € S defined by
)= Y ajape e
JEL

It is easy to prove that an arbitrary operator A € OPS has a representation
(13) such that condition (14) is satisfied.

The Fredholm properties of pseudodifference operators have been studied
in [8] in terms of their limit operators; see also [12], Chapter 5. We recall
some facts from [8] which will be used below.

10



Proposition 8 Let a € S. Then A := Op(a) is a bounded operator on [?,
and there is a constant C' independent of a such that

|Aullo < Clala|lullz  for everyu € 2.

Proposition 9 Let A and B be pseudodifference operators with symbols a
and b in 8. Then AB is a pseudodifference operator in OPS, and AB =
Op(c) where

=53 [ ale bty e a9

keZ

Note that the series in (15) does not converge in the common sense. It
converges after a regularization by means of integration by parts,

1 o [T d? ,
_ — —3
o(w, €)= =D (1+") / [(1+d—n2)a(x,f+n) bz +y, &) e d.

2T
YyEZ

This formula implies the estimate
lely < Cla|ys2|b|ly for N € Ny (16)

with a certain constant C independent of a and b.
It has been proved in [8] that a pseudodifference operator A € OPS is a
bounded operator on [* and that its symbol o4 can be obtained by

oalz, &) = e A(eF). (17)
Thus, a time-varying filter A can be completely reconstructed if its outputs

are known for all input signals of the form x — ¢ with & € [0, 27].

3.2 Slowly time-varying filters

Let a € S and k € Ny. We introduce the oscillation wi(a) of a with respect
to the discrete (first) variable x by

k
wi(a) = sup > |olalz+y, &) - dlalx, O] lyl

z€Z,y€Z\{0},£€[0, 2x] =0

11



Theorem 10 Let a € S with
inf |a(z, §)| > 0. (18)

*€Z,€[0,27]
It the oscillation wi(a) is small enough, then the operator Op(a) is invertible.

Proof. Condition (18) implies that a=! € S. Hence, the operator B :=
Op(a™') is well defined, and it belongs to OPS. Due to (15), the operator

BA is equal to Op(c) with ¢ given by

e, &) — Z/” v, €4) ale +y, €)W dn

kEZ

©, & +n) e dn

or Z/ "0, €+ ) (a1, €) = ale. €) e dy

yeL
= 1+7r(z, &

where

v QWZ [Tt e a9 - atw ) an (19

( ) “Ha, £+ )

[r(x, )| < Cwy(a)lals

with a constant C' independent of a. In the same way one can prove that

satisfies the estimate

2

(e, ) < Ay W

dnde.
2T = 1+y

This estimate implies that

]2 < Cwy(a)lals.

It follows from Proposition 8 that ||Op(r)||zuz) < 1 if the oscillation wy(a) is
sufficiently small. Thus, by Neumann series, the operator

A ti= (I 4+ O0p(r)) 'Op(a™) (20)

12



is a left inverse for A = Op(a). In the same way one gets that A is invert-
ible form the right-hand side for sufficiently small wj(a). This proves the
assertion. ®

Hence, we have reduced the problem of reconstruction of the input signal
u € [? from the output Au = v € [? to the solution of the equation

u+ Op(r)u = Op(a ). (21)

The unique solution of this equation can be obtained by successive approxi-
mations: Set ug := 0 and define

Upy1 = —Op(r)u, + Opla™")v forn € Ny.

Then the sequence (u,) tends to the input u in the norm of [?. The recon-
structed signal u is stable in [* in the sense that small (with respect to the
norm in [?) variations of the output signal correspond to small variations
of the input signal. Formula (20) is an extension to slowly time-varying fil-
ters of the well-known formula (4) for the reconstruction of input signals for
time-invariant filters.

Let us next consider the applicability of the finite sections method to the
reconstruction of signals in filters A € OPS which satisfy the conditions of
Theorem 10 and which are slowly oscillating at infinity.

Theorem 11 Let A € OPSN W39 be an operator for which the conditions
of Theorem 10 hold. Moreover, let wind (/Alh) = 0 for a certain limit operator
Ay € o (A) (and, consequently, for all limit operators of A in o, (A)). Then
the finite sections method

PNAPNUN:PNU, NEN{),

for the reconstruction of the input signal u € 1% from the output signalv = Au
is stable.

This follows immediately from Theorem 6 and from the invertibility of A
which is guaranteed by Theorem 10.

3.3 Periodic time-varying filters

Let d € N. We consider d-periodic time-varying filters, that is, filters in W

of the form
(Au)(z) = a;(@)ulz —j), z€Z, (22)

JEL
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with d-periodic coefficients a; € [*°,
aj(x +d) = aj(x) for every x € Z.

Thus, d-periodic time-varying filters can be viewed of as band-dominated
operators in W with periodic coefficients. These operators form a closed
subalgebra W7 of W. Let further I3 denote the Hilbert space of all vector-

valued functions u = (uy, us, ..., ug) on Z with values in C%, provided with
the norm
J 1/2
lulliz = (Z ||uj||2> -
j=1

Consider the mapping
Ty 1P =15, wws (ug, ug, ..., ug)

where
Uj(y) =u(dy+j—1) foryeZandl1<j<d.

For 1 < j <d, let Z; := dZ + j — 1 denote the jth residue class modulo d.
Since Z; N Zy = () for j # k and Z = Uj_,Z;, the operator Ty : I* — I3 is a
bijective isometry, i.e., a unitary operator.

We examine the operator TyBT, ! for several operators B on [2. If
B = al is the operator of multiplication by a d-periodic function a, then
T,JlaTd’1 is the operator of multiplication by the constant diagonal matrix
diag (a(1), ..., a(d)). Next let B = V_;. Writing Tyu =: (uy, ..., ug) for
u € [%, one gets

TdV_lu = (U,Q, us, ..., Uqg, V_lul).

Thus, the operator TdV,lTﬂl_1 acts on [2 as the matrix operator

0 1 - -0
0 - 1

TV T = :
. |
Vi, - -« -0

Consequently, if A is the operator given by (22), then the operator TyAT;"

14



acts as

0 1 0\~
0 1
T AT =) diag(a;(1), ..., a;(d)) :
JEZ . . . . 1
Vo, - - -0

The discrete Fourier transform maps this operator to the operator of mul-
tiplication by the 2m-periodic d x d-matrix valued function A : R — L£(C?)
given by

0 1 0\ "’
0 1
A(€) = Zdiag (aj(1), ..., a;(d))
JETL . . . -1
e . . .0

So we finally arrive at the following theorem.

Theorem 12 Let A = Op(a) € Wi, Then A is an invertible operator on
12 if and only if
det A(§) #0  for each & € [0, 27]. (23)

Thus, for a periodic filter A, there is an evident and effective way to recon-
struct the input signal u from a given output v by

u="T;"F,}, AN Fy,eTyv.

§—y

3.4 Slowly oscillating perturbations of periodic time-
varying filters

Now we consider filters of the form (22) where the coefficients a; depend on
two variables z and y in such a way that the dependence on x is d-periodic
whereas that on y is slowly oscillating. More precisely, let

(Au)(z) =) aj(x)ulz - j), =€, (24)

=
with coefficients of the form

aj(x) = dj(‘ra y)|y:$7 T € Z,

15



where each @; : Z xZ — C is a bounded function with a;(z+d, y) = a;(x, y)
for each pair z, y € Z. Moreover, we assume that

Y 1illlaglloo < o0
JEL
for every k£ € Ny. We associate the symbol
a:ZLx7Zx|0,2n] =>C, (z,9,¢& |—>Za]xy it
JEZL

with the operator A in (24), and we denote the oscillation of a with respect
to the (second) variable y by wZ(a), that is,

k
wi(a) = sup Z‘ a(z, y+ 2, &) — Aalz, y, &) 2|7,

z,y€Z,2€Z\{0},£€[0,27] j:O

Note that the operator T,JlATgl_1 has the matrix representation

o 1 - -0\"

o - 1 - -
Zdiag (aj(1, z), ..., a;j(d, x + d)) S (25)
jEZ, . e ]

Vi, + « -0

and that TdATgl_1 is a matrix pseudodifference operator with symbol A given
by

0 1 0\’
0 1
= Zdiag (a;j(1, x), ..., aj(d, v+ d))
=/ . e ]
e . . .0

A slight modification of Theorem 10 for the case of matrix-valued pseudod-
ifference operators yields the following result.

Theorem 13 Let the symbol A of A satisfy

inf |det Az, §)| > 0.

z€Z,£€[0,27]

16



If the oscillation w3(a) is small enough, then the operator A is invertible on
12, and its inverse admits a representation

A =TI+ Op(r)) "Op(A )T,
with an operator Op(r) with [|Op(r)||zqz) < 1.

Theorem 13 offers a way to reconstruct input signals for slowly oscillating
perturbations of quasi time-invariant periodic filters.

The following theorem establishes necessary and sufficient conditions for
the stability of finite sections method with respect to the sequence of projec-

tors (Pyn)nen.

Theorem 14 Let A satisfy the conditions of Theorem 13. Then the finite
sections method
PinAPjnuiny = Pynv, N €N, (26)

is stable if and only if:
(a) for every limit operator (TyAT, "), € o (T,AT, ), the operator

P (TyAT; )Py 2 Po(13) — Py(13)

18 tnvertible;
(b) for every limit operator (T;AT; ")y € 0,,(T4AT; "), the operator

P (T AT )P P_(13) — P_(3)

1s 1nvertible.

4 Reconstruction of signals in causal filters

In this section we consider discrete signals u : Ny — C which are defined
for non-negative values of time x. As usual, we call A a causal filter if
(Au)(z) = 0 for z < 0. We will describe a class of causal filters and consider
the problem of reconstruction of input signals for them.
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4.1 Invertibility of causal band-dominated operators

Let %(Np) denote the Hilbert space of all u : Ny — C with norm
1/2
]2 : (Z |u(z ) < 00,
zENy

and write (*°(Ny) for the Banach space of all bounded complex-valued func-
tions on Ny with norm

[ullio ) = sup [u(z)].
€Ny

For n € R, let e, : Ny — R denote the mapping x — e™"*, and consider the
weighted Hilbert space [?(Ny, e,) of all functions u for which e,u € 1*(Ny).
This space is provided with the norm

||u||l2(NO:er/) = ||€77u||12(N0)'

We study band-dominated operators in W of the form
(Au)(z) = )+ Z aj(x)u(r —j), zeN (27)
where a; € [*(N) and
1Allw o) - leayllzw Ng) < 00, (28)

The class of all operators of this form is denoted by W (N).

Proposition 15 Let A € W(Ny) and n > 0. Then A is a bounded operator
on I*(Ny, e,), and

NAll @20, eq)) < ooy +€7"Ma (29)

where

Ma =" lajllimmy)-
7j=1

18



Proof. Since A is causal, one has Au(x) =0 for < 0 if u(x) = 0 for z < 0.
It is also evident that ||A|| a2y, e,)) = [lenAe_yI||za2v)) and that

epAe_pI = apl + Z e’"jajVj.

j=1

Hence,
lenAe_nI|ca2mo)) < llaolliomg) + € "Ma,

which implies estimate (29). m

Theorem 16 Let A € W(Ny) and

inf |ap(x)| > 0. (30)

€Ny

Then there exists an 1y > 0 such that the operator A is invertible on each of
the spaces I*(Ny, e,) with n > np.

Proof. Set B :=} 7, a;jag'V;. Tt follows from estimate (29) that

(e.0)
1Bl e, e <€D llajag -
j=1

Hence, there exists an 7 > 0 such that |[B||zu2,e,)) < 1 for all n > np.
Because of A = a¢(/ + B), this implies

AT =(I+B)ag'1 =) Brag'l (31)
k=0
via Neumann series. m

Definition 17 A function a € [*°(Ny) is called slowly oscillating at +oo if

lim (a(z+y) —a(x)) =0 foreachy e Ny.

T—+00

Further we say that an operator A € W(Ny) of the form (27) belongs to the
class W9(Ny) if all of its coefficients aj, j € Ny, are slowly oscillating at
+00.
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Consider the operator A € W59(Ny) as acting on the space [*(Ny, e,) for a
certain 1 > 0. We associate with A its symbol
al, € i) 1= 3 ) P
=0

which is defined for x € Ny and £ € R Set ( := £ +14n. It is evident that the
function (z, ¢) — oa(z, ¢) depends analytically on ¢ in the upper complex
half-plane J¢ > 0, whereas it is 27-periodic and continuous with respect to
EeR

Theorem 18 Let A € W59(Ny). If condition (30) holds, and if

li inf ] >0 32
Rﬁlrfoo x>R,I§ne[0,27r} o, &+ i) (32)

for every n > 0, then the operator A : 1>(Ny) — [*(Ny) is invertible.

Proof. Consider the family of operators

Ay, =eyAe_, ] = Z a; eV,
=0

where 7 > 0. It is not hard to check that ||A,|ww,) < ||A]lw,). Hence,
the operators A, belong to W9°(Ny). Moreover, A,P, = P, A, P, due to
causality. With A, : *(Ny) — [*(Ny), we associate the band-dominated
operator B, = P, A,P, + P_ : [* — [*. It is evident that the operators A,
and B, are Fredholm operators only simultaneously. Condition (32) implies
the invertibility of all limit operators in o, (B,) for every n > 0. Hence, 4,
is a Fredholm operator on I?(Np) for every n > 0. Moreover, the family of
operators A, depends continuously on 7 € [0, co), and condition (30) implies
the invertibility of the operators A, for n large enough. Since the index is a
continuous (and integer-valued) function on the set of all Fredholm operators,
the index of A, is zero for all n > 0.

Next we will verify that A : 1*(Ny) — [*(Np) has a trivial kernel. Indeed,
consider the equation Au = 0 for u € [*(Ny). Then

0 = e, Au = e, Ae_, e;u = A e, u.

Choose 77 > 0 large enough such that A, becomes an invertible operator on
I?(Ny). Note that e,u € I?(Ny) since u € I*(Ny) and 1 > 0. Hence, e,u = 0,
which implies v = 0. Thus, the operator A considered as acting on [*(Ny) is
a Fredholm operator with index zero and with the trivial kernel. Hence, A
is invertible. m

20



4.2 Finite sections of causal time-varying filters

We will use the notation [0, N]z := {n € Ny : n < N} for N € N. Let
Py : I?(Ny) — im Py be the projection

(Pau) (2) ;:{ ul) A € [0, N

Let further A be an operator of the form (27), and suppose that condition
(28) holds. We consider the problem of reconstructing the first N values of
the input signal from the first N values of the output signal. In other words,
we consider the solution of the system of linear equations Py APyuy = Pyv
with uy sought in im Py, which is equivalent to the solution of the system

ap(z)uy(z) + Zaj(a;) uny(z —j) =v(z) forxz € [0, Nz (33)

The system (33) is triangular. Thus, under the condition inf, ey, |ao(z)| > 0,

this system has a unique solution uy for every right-hand side v € I?(Ny) and

every N € N, which can be obtained by means of elementary elimination.
The operators PyAPy € L(im Py) are invertible for every N € N, and

(PyAPy) ' = PyA 'Py. (34)
For the latter note that Py A = Py APy as a consequence of causality, whence
(PyAPy) (PyA 'Py) = PyAA 'Py = Py.

Thus, PyA~!'Py is a right inverse for PyAPy € L(im Py). Since PyAPy
acts on a finite-dimensional space, the operator Py A~! Py is also a left inverse
for Py APy. Identity (34) implies

sup [|(PxAPN) ™| zm py) = sup [|PvA™ Pyl cim ) < 1A | caz o ))-
NeN NeN

This estimate yields the applicability of the finite sections method for the
reconstruction of the input signal in causal filters (see for instance [3, 2, 12]).
Thus,

Jim fluy = ullizgy) = 0

where uy is the solution of equation (33) extended by zero outside the discrete
interval [0, N|y.
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5 Reconstruction of digital finite signals in
time-varying filters

This concluding section is devoted to the problem of reconstruction of finitely
supported digital input signals from known finitely supported output signals.
We will consider such signals as periodic sequences (u(x))zez with a period
d € N, i.e., we identify (*([1, d]z) with [*(Z/(dZ)). Let A be a time-varying
filter of the form

s

(Au)(@) = 3 ay(x) (Vyu) (@), 7 € 2, (35)

0

<.
Il

where the a; are d-periodic functions and the V; are the shifts (Vju)(z) =
u(z — j), € Z, acting cyclically on d-periodic sequences. We introduce the
discrete Fourier transform of a periodic sequence u by

W(0) = (Fu)(©) = Y ulw) 1%, €c, (36)

=0

8

where 7,4 := exp(2mi/d) is a primitive root of unit of degree d. It is well-
known that the inverse discrete Fourier transform acts via

d—1
1
u(x) = (F~ = - Y a©) s, wex, (37)
£=0
and that Parseval’s equality
d—1 d—1
(&) =d ) |u(x)?
£=0 =0

holds (see, for instance, [1]). Formulas (36) and (37) imply that

d—1 d—1
uw(x +y) (38)
y=0 £=0

and that



Let a : Z x Z — C be a function which is d-periodic with respect to both
variables. With a, we associate the d-periodic pseudodifference operator

(which is, in fact, a pseudodifferential operator on the cyclic group Zy :=
Z/(dZ))

IS

-1

(Au)(2) = (Op(a)u)(z) == ) _alz, &) a(€) 7", = €Z, (39)

o~
Il

which is defined on the d-periodic functions. The function o4 := a is called
the symbol of the operator A.

Note that the time-varying filter (35) can be represented as a d-periodic
pseudodifference operator with symbol

U
—

oalw, &) =) a(r)y;”, (2,6) €L xL.

<.
Il
o

Let [2 denote the space of all d-periodic functions u on Z with norm

d—1 1/2
Jullez == (Z |U($)|2> :

Proposition 19 Let A = Op(a) be a d-periodic pseudodifference operator.

Then
d-1 d-1 1/2
Allzzy < | d a(z, &) <d*? max la(z, &) 40
|| Hw_( I §>|> <a max (e €l (40)

Estimate (40) is obtained by a direct calculation using Parseval’s equality.

Proposition 20 Let A = Op(a) and B = Op(b) be d-periodic pseudodif-
ference operators. Then AB is a d-periodic pseudodifference operator with
symbol

d—1 d-1

Tanle, € = 53 S alw E+n)ba+y, 07" wEEL (1)
y n

Il
o
Il
o
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Formula (41) for the symbol of the product of two d-periodic pseudodifference

operators follows by straightforward calculation.

We denote by w;(04) the oscillation of the function (x, &) — oa(x, &)

with respect to the (first) variable x € [0, d — 1]z, that is,

wioa) = max = loa(r, €)= oaly, €

Theorem 21 Let the following conditions hold for the symbol of the d-

periodic pseudodifference operator A:
O.A(xa 5) 7& 0 fOT’ alla:, 6 < [07 d— l]Z

and
d—1

-1 ~3/2
wiloa) max B ot (o m) <d

Then A is an invertible operator on 13, and
At =T+ 1) 'Opla™)
where 1" is an operator with ||T[zqz) < 1.

Proof. Let B := Op(a!). Employing (38), we obtain

(42)

(43)

(44)

1 d—1 d—1
opa(r, §) = 5 a”(z, E4+n)ale +y, )"

y=0 n=0

a’(x7€ —— -1 —yn

= — a (z, E+m) 7" +tz, &) = 1+t(z, &),
y=0 n=0
where
1 d—1 d—1
t(l’, 5) - 8 Zzail(xa §+ 77) (CL(.T + Y, 5) - a(x, 5)) %IW-

y=0 n=0

From estimate (40), we further conclude

d—1
ITlleqey = 108z < d*Pn(o)_max 3~ Ja*(z )l
) T]:0
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Hence, BA = I + T with ||T||z¢2) < 1 by condition (43), and the operator
At =(I+T) 'Op(a?) is a left inverse of A. Since (3 is a finite-dimensional
space, A~! is also a right inverse A, whence the invertibility of A. m
Thus, we’ve obtained an effective algorithm for the reconstruction of input
signals. It follows from (44) that the input signal u is a solution of the
equation
u+Tu = Opla™")v

where the function Op(a~')v can be calculated by means of fast Fourier
transform algorithms (see for instance [1]). Then wu is calculated by means
of successive approximations, that is, we set uy := 0 and define u,,; :=
—Tu, + Op(at)v for n € Ny to obtain a sequence (u,) which converges to
the solution of the equation Op(a)u = v.

References

[1] P. BREMAUD, Mathematical Principles of Signal Processing, Fourier
and Wavelet Analysis. — Springer-Verlag, New York, Berlin, Heidelberg
2002.

2] A. BOTTCHER, B. SILBERMANN, Introduction to Large Truncated
Toeplitz Matrices. — Springer-Verlag, Berlin, Heidelberg 1999.

3] I. GoHBERG, I. FELDMAN, Convolution Equations and Projection
Methods for Their Solution. — Nauka, Moskva 1971 (Russian, Engl.
transl.: Amer. Math. Soc. Transl. of Math. Monographs, Vol. 41, Prov-
idence, Rhode Island, 1974).

4] R. HAGEN, S. RocH, B. SILBERMANN, C*-Algebras and Numerical
Analysis. — Marcel Dekker, Inc., New York, Basel 2001.

[5] M. LINDNER, V. S. RABINOVICH, S. RoOCH, Finite sections of
band operators with slowly oscillating coefficients. — Linear Alg. Appl.
390(2004), 19 - 26.

6] A. V. OppENHEIM, R. W. SCHAFER, Digital Signal Processing. —
Prentice-Hall, Inc., 1975.

[7] A. PapouLls, Signal Analysis. — McGraw-Hill, New York 1984.

25



8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

V. S. RaBINOVICH, S. RoCH, Pseudodifference operators on weighted
spaces, and applications to discrete Schrodinger operators. — Acta Appl.

Math. 84(2004), 55 — 96.

V. S. RaBinovicH, S. RocH, J. ROE, Fredholm indices of band-
dominated operators. — Integral Equations Oper. Theory 49(2004), 2,
221 — 238.

V. S. RaBINOVICH, S. RocH, B. SILBERMANN, Fredholm theory and
finite section method for band-dominated operators. — Integral Equa-

tions Oper. Theory 30(1998), 4, 452 — 495.

V. S. RaBiNnovICH, S. ROoCH, B. SILBERMANN, Algebras of approxi-
mation sequences: Finite sections of band-dominated operators. — Acta

Appl. Math. 65(2001), 315 — 332.

V. S. RABINOVICH, S. ROCH, B. SILBERMANN, Limit Operators and
Their Applications in Operator Theory. — Operator Theory: Adv. and
Appl. 150, Birkhauser Verlag, Basel, Boston, Berlin 2004.

S. RocH, Finite sections of band-dominated operators. — Preprint 2355
TU Darmstadt, Juli 2004, 98 S., submitted to Memoirs AMS.

M. A. SHUBIN, Pseudodifferential Operators and Spectral Theory. —
Springer-Verlag, Berlin, Heidelberg, New York, Tokio 2001 (second ed.).

M. E. TAYLOR, Pseudodifferential Operators. — Princeton University
Press, Princeton, N. J., 1981.

M. VETTERLI, J. KOVACEVIC, Wavelets and Sub-Band Coding. —
Prentice-Hall: Englewood Cliffs, N. J., 1995.

Authors’ addresses:

V. S. Rabinovich, Instituto Politechnico National, ESIME-Zacatenco, Ed.1, 2-do
piso, Av.IPN, Mexico, D.F., 07738
E-mail: rabinov@maya.esimez.ipn.mx

S. Roch, Technische Universitdt Darmstadt, Fachbereich Mathematik, Schloss-
gartenstrasse 7, 64289 Darmstadt, Germany.
E-mail: roch@mathematik.tu-darmstadt.de

26



