
Reonstrution of input signals in time-varying

�lters

V. Rabinovih, S. Roh

Abstrat

We onsider the problem of reonstrution of input signals u from

output signals of time-varying �lters of the form

(Au)(x) =

X

j2Z

a

j

(x)u(x� j); x 2 Z;

under the assumption that

P

j2Z

ka

j

k

1

< 1. The proposed algo-

rithm of reonstrution of signals is based on the theory of band-

dominated and pseudodi�erene operators as presented in the reent

monograph [12℄ and on the �nite setions method. The following

lasses of �lters are onsidered this paper: slowly time-varying �lters,

perturbations of periodi time-varying �lters, ausal time-varying �l-

ters, and �nite �lters ating on signals with a �nite number of values.

1 Introdution

Signal proessing. We start with realling some basi de�nitions and fats

from signal proessing theory. Standard referenes to this �eld are [6, 7, 1, 16℄,

for instane.

A digital omplex signal (DCS for short) is a two-sided sequene u =

fu(x) : x 2 Zg of omplex numbers. In what follows we onsider DCS with

�nite energy, that is we suppose that the DCS u belongs to the Hilbert spae

l

2

of omplex-valued funtions on Z, provided with the salar produt

hu; vi :=

X

x2Z

u(x)v(x)
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and with assoiated norm

kuk

2

=

 

X

x2Z

ju(x)j

2

!

1=2

<1:

A digital linear �lter is a linear mapping whih transforms a DCS u, alled

the input signal, to a DCS v = Au, the output signal. We will exlusively

onsider linear �lters, i.e., �lters whih at as a bounded linear operator on

l

2

.

An interesting but still easy to analyze lass of digital �lters is onstituted

by the time-invariant �lters. They are haraterized by their invariane with

respet to shifts. More preisely, a digital �lter A is said to be invariant with

respet to shifts if

V

h

A = AV

h

for every h 2 Z;

where the shift operator V

h

: l

2

! l

2

ats via (V

h

u)(x) := u(x� h). One an

show that, for eah time-invariant digital �lter A, there is a uniquely deter-

mined bounded sequene (a

k

)

k2Z

of omplex numbers, alled the oeÆients

of the �lter, suh that

(Au)(x) =

X

k2Z

a

k

u(x� k) for x 2 Z: (1)

In what follows we will suppose that the Wiener ondition

X

k2Z

ja

k

j <1 (2)

holds. For time-invariant �lters (1), the problem of reonstrution of the

input signal from a given output is solved by means of the disrete Fourier

transform

û(�) = (Fu)(�) :=

X

x2Z

u

k

e

�ix�

; � 2 R:

Note that for u 2 l

2

, the Fourier transform û is a 2�-periodi funtion with

Z

2�

0

jû(�)j

2

d� <1;

that the inverse Fourier transform F

�1

is given by

(F

�1

u)(x) =

1

2�

Z

2�

0

u(�)e

ix�

d�;
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and that Parseval's equality holds,

Z

2�

0

jû(�)j

2

d� = 2�

X

x2Z

ju(x)j

2

:

If A is a time-invariant �lter as in (1), set â(�) :=

P

x2Z

a

k

e

�ix�

for � 2 [0; 2�℄

and suppose that

inf

�2[0; 2�℄

jâ(�)j > 0: (3)

Then, indeed, the input signal u is obtained from the output v = Au via

u(x) =

1

2�

Z

2�

0

v̂(�)

â(�)

e

ix�

d�; x 2 Z: (4)

A natural generalization of time-invariant �lters are the time-varying �lters.

They are desribed by linear operators A of the form

(Au)(x) =

X

k2Z

a

k

(x)u(x� k) =

X

k2Z

a

k

(x)(V

k

u)(x); x 2 Z; (5)

where now the oeÆients a

k

are sequenes in l

1

, the Banah spae of all

bounded omplex-valued funtions on Z with norm

kak

1

:= sup

x2Z

ja(x)j:

For time-varying �lters, we will always suppose the Wiener type ondition

X

k2Z

ka

k

k

1

<1 (6)

whih obviously generalizes (2).

Evidently, for time-varying �lters, the problem of reonstrution of the

input signal from the output signal is muh more involved than for time-

invariant �lters. In partiular, there is no expliit formula for the dependene

of the input from the output signal. Thus, it is both neessary and natural

to onsider numerial methods to determine the input approximately. The

present paper is devoted to this irle of problems.
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Band-dominated operators. An operator of the form

(Au)(x) =

N

X

k=�N

a

k

(x)(V

k

u)(x); x 2 Z;

with oeÆients a

k

2 l

1

is also alled a band operator. This name is moti-

vated by the fat that the matrix of A with respet to the standard basis of

l

2

has a �nite number of non-zero diagonals only. The losure of the set of

all band operators in the spae L(l

2

) of all bounded linear operators on l

2

is

denoted by A

2

. The operators in A

2

are alled band-dominated. It is easy to

see that the time-varying �lters (5) with ondition (6) and, in partiular, the

time-invariant �lters (1) with ondition (2) are band-dominated operators.

The Fredholm theory of band-dominated operators has been intensively

studied in the papers [10, 11, 9℄. A omprehensive aount on this topi an

be found in the reently published monograph [12℄. The stability of ertain

projetion methods (in partiular, of the �nite setions method) for the ap-

proximate solution of the equation Au = v where A is a band-dominated

operator is studied in [10, 11, 13℄ and in [12℄.

If eah output v 2 l

2

is generated by a uniquely determined input, then

the operator A is invertible. Thus, the solution of the reonstrution problem

for time-variable �lters A requires onditions for the invertibility of A on the

spae l

2

. Moreover, the invertibility of A is also a neessary ondition for the

appliability of projetion methods for the solution of the equation Au = v,

that is for the numerial reonstrution of input signals.

About this paper. The main aims of the paper are:

(a) to onsider lasses of band-dominated operators whih are important

for signal proessing, and to give e�etive onditions of their invertibil-

ity,

(b) to derive onditions for the appliability of projetion methods for the

approximate solution of the problem of reonstruting input signals.

The paper is organized as follows. In Setion 2 we reall some auxiliary ma-

terial from the theory of band-dominated operators. All ited fats an be

found in [12℄. In Setion 3 we embark upon stable approximation proedures

in order to reonstrut input signals of time-variable �lters. In partiular, we

will derive onditions for the appliability of the �nite setions method. Our
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approah to analyze these methods is is based on the alulus of pseudodif-

ferene operators developed in [8℄, see also [12℄, Chapter 5. Speial emphasis

is paid to periodi time-variable �lters and to slowly varying perturbations

of periodi �lters. Setion 4 is devoted to the problem of reonstrution of

input signals in ausal time-varying �lters, and in the onluding Setion 5

we onsider the reonstrution of digital signals with a �nite number of values

for time-variable �lters. For these results, we have to employ the alulus of

pseudodi�erential operators on the �nite ommutative (yli) group Z=dZ

where d 2 N .

This work had been supported by the CONACYT projet 43432. The

authors are grateful for this support.

2 Auxiliary fats from the theory of band-

dominated operators

2.1 Fredholm theory and index of band-dominated op-

erators in the Wiener algebra W

Let (a

�

)

�2Z

be a sequene of funtions in l

1

satisfying the Wiener ondition

X

�2Z

ka

�

k

1

<1: (7)

Then the series

P

�2Z

a

�

V

�

onverges in the norm of L(l

2

) and, thus, it de�nes

a bounded linear operator on l

2

. We write W for the set of all operators

obtained in this way. Provided with the usual operations of the addition and

multipliation of operators and with the norm

kAk

W

:=

X

�2Z

ka

�

k

1

;

the set W beomes a Banah algebra, the so-alled Wiener algebra. By

onstrution, W � L(l

2

). Moreover, it is easy to see that W � A

2

, the

algebra of the band-dominated operators. One peuliarity of the algebra W

is its property of inverse losedness, whih is stated preisely as follows.

Proposition 1 . Let the operator A 2 W be invertible as an operator on l

2

.

Then A

�1

2 W .
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A bounded linear operator A ating on a Banah spae X is alled a Fredholm

operator if both its kernel kerA := fx 2 X : Ax = 0g and its okernel

okerA := X=A(X) are �nite-dimensional linear spaes. Fredholmness of

A means that the equations Ax = 0 and A

�

y = 0 have only �nitely many

linearly independent solutions in the spaes X and X

�

, respetively, and that

the equation Ax = f is solvable if and only if y

j

(f) = 0 for j = 1; : : : ; m,

where fy

1

; : : : ; y

m

g is a basis of kerA

�

. The integer

indA := dimkerA� dimkerA

�

is alled the index of the Fredholm operator A.

Let h : N ! Z be a sequene whih tends to in�nity, and let

A =

X

�2Z

a

�

V

�

2 W:

By using a Cantor diagonal argument, one an prove that the sequene h

possesses a subsequene g suh that the limits

lim

k!1

a

�

(x+ g

k

) =: a

g

�

(x)

exist for all integers x and �. The operator

A

g

:=

X

�2Z

a

g

�

V

�

is alled the limit operator of A de�ned by (or with respet to) the sequene

g. It follows from ka

g

�

k

1

� ka

�

k

1

that all limit operators of A belong to

the Wiener algebra W again. Note also that A

g

is the strong limit on l

2

of

the operator-valued sequene (V

�g

k

AV

g

k

)

k2N

for k ! 1. We denote the set

of all limit operators of A 2 W by �

op

(A). Let furthermore �

�

op

(A) refer to

the set of all limit operators of A whih orrespond to sequenes h tending

to �1. Evidently, �

op

(A) = �

+

op

(A) [ �

�

op

(A).

The following theorem summarizes riteria for the Fredholmness of oper-

ators in W .

Theorem 2 Let A 2 W . Then the following assertions are equivalent:

(a) A is a Fredholm operator on l

2

.

(b) All limit operators of A are invertible on l

2

.

() All limit operators of A are invertible on l

2

, and the norms of their in-

verses are uniformly bounded.
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Let P

+

denote the operator of multipliation by the harateristi funtion

of the set N

0

of the non-negative integers, and set P

�

:= I � P

+

. Note that

P

�

are orthogonal projetions on l

2

. We denote their ranges by l

2

�

:= P

�

(l

2

).

Theorem 3 Let the operator A 2 W satisfy one of the onditions of Theo-

rem 2. Then

(a) the operators P

+

AP

+

: l

2

+

! l

2

+

and P

�

AP

�

: l

2

�

! l

2

�

are Fredholm;

(b) for arbitrary limit operators A

h

2 �

+

op

(A) and A

g

2 �

�

op

(A), the operators

P

+

A

h

P

+

: l

2

+

! l

2

+

and P

�

A

g

P

�

: l

2

�

! l

2

�

are Fredholm;

() one has

indA = ind (P

+

AP

+

) + ind (P

�

AP

�

)

= ind (P

+

A

h

P

+

) + ind (P

�

A

g

P

�

):

Assertion (a) and the �rst equality in () follow easily from the (evident) om-

patness of the operators P

+

AP

�

and P

�

AP

+

whih implies the ompatness

of the operators

A� (P

+

AP

+

+P

�

)(P

�

AP

�

+P

+

) and A� (P

�

AP

�

+P

+

)(P

+

AP

+

+P

�

):

If A is Fredholm, then eah limit operator of A is invertible by Theorem 2.

Thus, assertion (b) is an immediate onsequene of (a). The only serious

result in the preeding theorem is the seond equality in (). This (in our

eyes) surprising identity has been derived in [9℄.

A funtion a 2 l

1

is alled slowly osillating at in�nity if

lim

x!1

(a(x+ k)� a(x)) = 0

for every k 2 Z. We denote the subspae of l

1

of all slowly osillating at

in�nity funtions by SO, and we write W

SO

for the subalgebra of W whih

onsists of all operators A =

P

�2Z

a

�

V

�

with oeÆients a

�

in SO.

It is a remarkable property of operators A in W

SO

that their limit oper-

ators A

h

are neessarily of the form

A

h

=

X

�2Z

a

h

�

V

�

(8)

with onstant oeÆients a

h

�

2 C . One easily heks that the operator (8) is

unitarily equivalent to the operator of multipliation by the funtion

^

A

h

(�) :=

X

�2Z

a

h

�

e

�i��

; � 2 [0; 2�℄:
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Thus, the operator (8) is invertible on l

2

is and only if

inf

�2[0; 2�℄

j

^

A

h

(�)j > 0: (9)

Moreover, ondition (9) implies that the operators P

�

A

h

P

�

: l

2

�

! l

2

�

are

Fredholm and that

ind (P

+

A

h

P

+

) = �wind (

^

A

h

); ind (P

�

A

h

P

�

) = wind (

^

A

h

)

where the winding number of the 2�-periodi and non-vanishing funtion

^

A

h

is de�ned by

wind (

^

A

h

) :=

1

2�

[arg

^

A

h

(�)℄

2�

�=0

:

Thus, speifying Theorems 2 and 3 to operators with slowly osillating oef-

�ients yields the following.

Theorem 4 Let A 2 W

SO

. Then A : l

2

! l

2

is a Fredholm operator if

and only if ondition (9) holds for every limit operator A

h

. In this ase, the

Fredholm index of the A is given by

indA = �wind (

^

A

h

=

^

A

g

);

where A

h

is an arbitrary operator in �

+

op

(A) and A

g

an arbitrary operator in

�

�

op

(A).

2.2 The �nite setions method

Let A 2 L(l

2

) be an invertible operator. Then the equation Au = v

has a unique solution u for every funtion v 2 l

2

. Let P

N

be the opera-

tor of multipliation by the harateristi funtion of the disrete segment

[�N; N ℄

Z

:= fk 2 Z : jkj � Ng. Together with the equation Au = v, we

onsider the sequene of its �nite setions

P

N

AP

N

u

N

= P

N

v; N 2 N ; (10)

the solutions u

N

of whih are sought in imP

N

. The ruial questions are

whether the equations (10) possess unique solutions for suÆiently large N

and whether the sequene (u

N

) of these solutions onverges (in the norm of

l

2

) to the solution u of Au = v. If the answer to both questions is yes, then

the �nite setions method is said to be appliable to the operator A.
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It is well-known (see for instane [2, 3, 4, 12℄) that the �nite setions

method is appliable to the operator A : l

2

! l

2

if and only if this operator

is invertible and if the sequene (P

N

AP

N

)

N2N

is stable. The latter means that

the operators P

N

AP

N

: imP

N

! imP

N

are invertible for suÆiently large

N and that the norms of their inverses (P

N

AP

N

)

�1

are uniformly bounded.

This fat is usually referred to as Polski's theorem.

The following theorem provides a neessary and suÆient riterion for

the appliability of the �nite setions method to operators in W .

Theorem 5 Consider A 2 W as an operator on l

2

. The �nite setions

method is appliable to A if and only if

(a) the operator A is invertible on l

2

;

(b) for every limit operator A

h

2 �

+

op

(A), the operators P

�

A

h

P

�

: l

2

�

! l

2

�

are invertible;

() for every limit operator A

h

2 �

�

op

(A), the operators P

+

A

h

P

+

: l

2

+

! l

2

+

are invertible.

Theorem 5 takes a more simple form for operators in the algebra W

SO

.

Theorem 6 Let A 2 W

SO

. The �nite setions method is appliable to A if

and only if:

(a) the operator A is invertible on l

2

, and

(b) the plus-index ind (P

+

AP

+

) of A is equal to zero.

Note that

ind (P

+

AP

+

) = �wind (

^

A

h

)

where A

h

is an arbitrary limit operator of A in �

+

op

(A). Thus, ondition (b)

in Theorem 6 an be e�etively veri�ed in many instanes. For proofs of

Theorems 5 and 6, onsult [5, 13℄.

3 Reonstrution of signals in time-varying

�lters

3.1 Auxiliary fats from the theory of pseudodi�erene

operators

We still have to reall some fats about pseudodi�erential operators. Stan-

dard referenes to the theory of pseudodi�erential operators are [14, 15℄, for

9



instane.

De�nition 7 A funtion a : Z � R ! C belongs to the lass S if it is

2�-periodi with respet to the seond (real) variable and if

jaj

N

:= sup

(x; �)2Z�[0;2�℄;m�N

�

�

�

�

d

m

a(x; �)

d�

m

�

�

�

�

<1 (11)

for all N � 0. With eah funtion a 2 S, there is assoiated a pseudodi�er-

ene operator A = Op(a) whih ats on l

2

via

(Au)(x) =

1

2�

X

y2Z

Z

2�

0

a(x; �) û(�) e

ix�

d�; x 2 Z: (12)

The lass of all operators of this form is denoted by OPS.

The operator A = Op(a) is also alled the pseudodi�erene operator gener-

ated by a, and the funtion �

A

:= a is alled the symbol of this operator.

Pseudodi�erene operators an be onsidered as disrete analogs of the las-

sial pseudodi�erential operators on R; in fat, they are pseudodi�erential

operators related with the disrete group Z.

Note that every time-varying �lter A of the form

(Au)(x) =

X

j2Z

a

j

(x)u(x� j); x 2 Z; (13)

where the a

j

2 l

1

satisfy

X

j2Z

jjj

k

ka

j

k

1

<1 for eah k 2 N

0

(14)

is a pseudodi�erene operator with symbol a 2 S de�ned by

a(x; �) :=

X

j2Z

a

j

(x)e

�ij�

:

It is easy to prove that an arbitrary operator A 2 OPS has a representation

(13) suh that ondition (14) is satis�ed.

The Fredholm properties of pseudodi�erene operators have been studied

in [8℄ in terms of their limit operators; see also [12℄, Chapter 5. We reall

some fats from [8℄ whih will be used below.

10



Proposition 8 Let a 2 S. Then A := Op(a) is a bounded operator on l

2

,

and there is a onstant C independent of a suh that

kAuk

2

� Cjaj

2

kuk

2

for every u 2 l

2

:

Proposition 9 Let A and B be pseudodi�erene operators with symbols a

and b in S. Then AB is a pseudodi�erene operator in OPS, and AB =

Op() where

(x; �) =

1

2�

X

k2Z

Z

2�

0

a(x; � + �) b(x+ y; �) e

�iy�

d�: (15)

Note that the series in (15) does not onverge in the ommon sense. It

onverges after a regularization by means of integration by parts,

(x; �) =

1

2�

X

y2Z

(1 + y

2

)

�1

Z

2�

0

�

(1 +

d

2

d�

2

) a(x; � + �)

�

b(x + y; �) e

�iy�

d�:

This formula implies the estimate

jj

N

� Cjaj

N+2

jbj

N

for N 2 N

0

(16)

with a ertain onstant C independent of a and b.

It has been proved in [8℄ that a pseudodi�erene operator A 2 OPS is a

bounded operator on l

1

and that its symbol �

A

an be obtained by

�

A

(x; �) = e

�ix�

A(e

ix�

): (17)

Thus, a time-varying �lter A an be ompletely reonstruted if its outputs

are known for all input signals of the form x 7! e

ix�

with � 2 [0; 2�℄.

3.2 Slowly time-varying �lters

Let a 2 S and k 2 N

0

. We introdue the osillation !

1

k

(a) of a with respet

to the disrete (�rst) variable x by

!

1

k

(a) := sup

x2Z;y2Znf0g;�2[0;2�℄

k

X

j=0

�

�

�

j

�

a(x+ y; �)� �

j

�

a(x; �)

�

�

jyj

�1

:

11



Theorem 10 Let a 2 S with

inf

x2Z;�2[0;2�℄

ja(x; �)j > 0: (18)

It the osillation !

1

2

(a) is small enough, then the operator Op(a) is invertible.

Proof. Condition (18) implies that a

�1

2 S. Hene, the operator B :=

Op(a

�1

) is well de�ned, and it belongs to OPS. Due to (15), the operator

BA is equal to Op() with  given by

(x; �) =

1

2�

X

k2Z

Z

2�

0

a

�1

(x; � + �) a(x+ y; �) e

�iy�

d�

+

a(x; �)

2�

X

y2Z

Z

2�

0

a

�1

(x; � + �) e

�iy�

d�

+

1

2�

X

y2Z

Z

2�

0

a

�1

(x; � + �) (a(x+ y; �)� a(x; �)) e

�iy�

d�

=: 1 + r(x; �)

where

r(x; �) =

1

2�

X

y2Z

Z

2�

0

a

�1

(x; � + �) (a(x+ y; �)� a(x; �)) e

�iy�

d� (19)

satis�es the estimate

jr(x; �)j �

!

1

0

(a)

2�

X

y2Z

jyj

(1 + y

2

)

2

Z

2�

0

Z

1

0

�

�

�

�

�

�

1 +

d

2

d�

2

�

2

a

�1

(x; � + �)

�

�

�

�

�

d� d�:

This estimate implies that

jr(x; �)j � C!

1

0

(a)jaj

4

with a onstant C independent of a. In the same way one an prove that

jrj

2

� C!

1

2

(a)jaj

6

:

It follows from Proposition 8 that kOp(r)k

L(l

2

)

< 1 if the osillation !

1

2

(a) is

suÆiently small. Thus, by Neumann series, the operator

A

�1

:= (I +Op(r))

�1

Op(a

�1

) (20)

12



is a left inverse for A = Op(a). In the same way one gets that A is invert-

ible form the right-hand side for suÆiently small !

1

2

(a). This proves the

assertion.

Hene, we have redued the problem of reonstrution of the input signal

u 2 l

2

from the output Au = v 2 l

2

to the solution of the equation

u+Op(r)u = Op(a

�1

)v: (21)

The unique solution of this equation an be obtained by suessive approxi-

mations: Set u

0

:= 0 and de�ne

u

n+1

:= �Op(r)u

n

+Op(a

�1

)v for n 2 N

0

:

Then the sequene (u

n

) tends to the input u in the norm of l

2

. The reon-

struted signal u is stable in l

2

in the sense that small (with respet to the

norm in l

2

) variations of the output signal orrespond to small variations

of the input signal. Formula (20) is an extension to slowly time-varying �l-

ters of the well-known formula (4) for the reonstrution of input signals for

time-invariant �lters.

Let us next onsider the appliability of the �nite setions method to the

reonstrution of signals in �lters A 2 OPS whih satisfy the onditions of

Theorem 10 and whih are slowly osillating at in�nity.

Theorem 11 Let A 2 OPS \W

SO

be an operator for whih the onditions

of Theorem 10 hold. Moreover, let wind (

^

A

h

) = 0 for a ertain limit operator

A

h

2 �

+

op

(A) (and, onsequently, for all limit operators of A in �

+

op

(A)). Then

the �nite setions method

P

N

AP

N

u

N

= P

N

v; N 2 N

0

;

for the reonstrution of the input signal u 2 l

2

from the output signal v = Au

is stable.

This follows immediately from Theorem 6 and from the invertibility of A

whih is guaranteed by Theorem 10.

3.3 Periodi time-varying �lters

Let d 2 N. We onsider d-periodi time-varying �lters, that is, �lters in W

of the form

(Au)(x) =

X

j2Z

a

j

(x) u(x� j); x 2 Z; (22)

13



with d-periodi oeÆients a

j

2 l

1

,

a

j

(x + d) = a

j

(x) for every x 2 Z:

Thus, d-periodi time-varying �lters an be viewed of as band-dominated

operators in W with periodi oeÆients. These operators form a losed

subalgebra W

per

d

of W . Let further l

2

d

denote the Hilbert spae of all vetor-

valued funtions u = (u

1

; u

2

; : : : ; u

d

) on Z with values in C

d

, provided with

the norm

kuk

l

2

d

:=

 

d

X

j=1

ku

j

k

2

!

1=2

:

Consider the mapping

T

d

: l

2

! l

2

d

; u 7! (u

1

; u

2

; : : : ; u

d

)

where

u

j

(y) := u(dy + j � 1) for y 2 Z and 1 � j � d:

For 1 � j � d, let Z

j

:= dZ+ j � 1 denote the jth residue lass modulo d.

Sine Z

j

\ Z

k

= ; for j 6= k and Z = [

d

j=1

Z

j

, the operator T

d

: l

2

! l

2

d

is a

bijetive isometry, i.e., a unitary operator.

We examine the operator T

d

BT

�1

d

for several operators B on l

2

. If

B = aI is the operator of multipliation by a d-periodi funtion a, then

T

d

aT

�1

d

is the operator of multipliation by the onstant diagonal matrix

diag (a(1); : : : ; a(d)). Next let B = V

�1

. Writing T

d

u =: (u

1

; : : : ; u

d

) for

u 2 l

2

, one gets

T

d

V

�1

u = (u

2

; u

3

; : : : ; u

d

; V

�1

u

1

):

Thus, the operator T

d

V

�1

T

�1

d

ats on l

2

d

as the matrix operator

T

d

V

�1

T

�1

d

=

0

B

B

B

B

�

0 1 � � 0

0 � 1 � �

� � � � �

� � � � 1

V

�1

� � � 0

1

C

C

C

C

A

:

Consequently, if A is the operator given by (22), then the operator T

d

AT

�1

d

14



ats as

T

d

AT

�1

d

=

X

j2Z

diag (a

j

(1); : : : ; a

j

(d))

0

B

B

B

B

�

0 1 � � 0

0 � 1 � �

� � � � �

� � � � 1

V

�1

� � � 0

1

C

C

C

C

A

�j

:

The disrete Fourier transform maps this operator to the operator of mul-

tipliation by the 2�-periodi d � d-matrix valued funtion A : R ! L(C

d

)

given by

A(�) :=

X

j2Z

diag (a

j

(1); : : : ; a

j

(d))

0

B

B

B

B

�

0 1 � � 0

0 � 1 � �

� � � � �

� � � � 1

e

i�

� � � 0

1

C

C

C

C

A

�j

:

So we �nally arrive at the following theorem.

Theorem 12 Let A = Op(a) 2 W

per

d

. Then A is an invertible operator on

l

2

if and only if

detA(�) 6= 0 for eah � 2 [0; 2�℄: (23)

Thus, for a periodi �lter A, there is an evident and e�etive way to reon-

strut the input signal u from a given output v by

u = T

�1

d

F

�1

�!y

A

�1

(�)F

y!�

T

d

v:

3.4 Slowly osillating perturbations of periodi time-

varying �lters

Now we onsider �lters of the form (22) where the oeÆients a

j

depend on

two variables x and y in suh a way that the dependene on x is d-periodi

whereas that on y is slowly osillating. More preisely, let

(Au)(x) =

X

j2Z

a

j

(x) u(x� j); x 2 Z; (24)

with oeÆients of the form

a

j

(x) := ~a

j

(x; y)j

y=x

; x 2 Z;

15



where eah ~a

j

: Z�Z! C is a bounded funtion with ~a

j

(x+d; y) = ~a

j

(x; y)

for eah pair x; y 2 Z. Moreover, we assume that

X

j2Z

jjj

k

ka

j

k

1

<1

for every k 2 N

0

. We assoiate the symbol

~a : Z� Z� [0; 2�℄! C ; (x; y; �) 7!

X

j2Z

~a

j

(x; y) e

ix�

with the operator A in (24), and we denote the osillation of a with respet

to the (seond) variable y by !

2

k

(a), that is,

!

2

k

(a) := sup

x; y2Z;z2Znf0g;�2[0; 2�℄

k

X

j=0

�

�

�

j

�

a(x; y + z; �)� �

j

�

a(x; y; �)

�

�

jzj

�1

:

Note that the operator T

d

AT

�1

d

has the matrix representation

X

j2Z

diag (a

j

(1; x); : : : ; a

j

(d; x+ d))

0

B

B

B

B

�

0 1 � � 0

0 � 1 � �

� � � � �

� � � � 1

V

�1

� � � 0

1

C

C

C

C

A

�j

(25)

and that T

d

AT

�1

d

is a matrix pseudodi�erene operator with symbol A given

by

A(x; �) =

X

j2Z

diag (a

j

(1; x); : : : ; a

j

(d; x + d))

0

B

B

B

B

�

0 1 � � 0

0 � 1 � �

� � � � �

� � � � 1

e

�i�

� � � 0

1

C

C

C

C

A

�j

:

A slight modi�ation of Theorem 10 for the ase of matrix-valued pseudod-

i�erene operators yields the following result.

Theorem 13 Let the symbol A of A satisfy

inf

x2Z;�2[0; 2�℄

j detA(x; �)j > 0:

16



If the osillation !

2

2

(a) is small enough, then the operator A is invertible on

l

2

, and its inverse admits a representation

A

�1

= T

�1

d

(I +Op(r))

�1

Op(A

�1

))T

d

with an operator Op(r) with kOp(r)k

L(l

2

d

)

< 1.

Theorem 13 o�ers a way to reonstrut input signals for slowly osillating

perturbations of quasi time-invariant periodi �lters.

The following theorem establishes neessary and suÆient onditions for

the stability of �nite setions method with respet to the sequene of proje-

tors (P

dN

)

N2N

.

Theorem 14 Let A satisfy the onditions of Theorem 13. Then the �nite

setions method

P

dN

AP

dN

u

dN

= P

dN

v; N 2 N ; (26)

is stable if and only if:

(a) for every limit operator (T

d

AT

�1

d

)

h

2 �

+

op

(T

d

AT

�1

d

), the operator

P

+

(T

d

AT

�1

d

)

h

P

+

: P

+

(l

2

d

)! P

+

(l

2

d

)

is invertible;

(b) for every limit operator (T

d

AT

�1

d

)

h

2 �

�

op

(T

d

AT

�1

d

), the operator

P

�

(T

d

AT

�1

d

)

h

P

�

: P

�

(l

2

d

)! P

�

(l

2

d

)

is invertible.

4 Reonstrution of signals in ausal �lters

In this setion we onsider disrete signals u : N

0

! C whih are de�ned

for non-negative values of time x. As usual, we all A a ausal �lter if

(Au)(x) = 0 for x < 0. We will desribe a lass of ausal �lters and onsider

the problem of reonstrution of input signals for them.

17



4.1 Invertibility of ausal band-dominated operators

Let l

2

(N

0

) denote the Hilbert spae of all u : N

0

! C with norm

kuk

l

2

(N

0

)

:=

 

X

x2N

0

ju(x)j

2

!

1=2

<1;

and write l

1

(N

0

) for the Banah spae of all bounded omplex-valued fun-

tions on N

0

with norm

kuk

l

1

(N

0

)

= sup

x2N

0

ju(x)j:

For � 2 R, let e

�

: N

0

! R denote the mapping x 7! e

��x

, and onsider the

weighted Hilbert spae l

2

(N

0

; e

�

) of all funtions u for whih e

�

u 2 l

2

(N

0

).

This spae is provided with the norm

kuk

l

2

(N

0

; e

�

)

= ke

�

uk

l

2

(N

0

)

:

We study band-dominated operators in W of the form

(Au)(x) = a

0

(x)u(x) +

x

X

j=1

a

j

(x) u(x� j); x 2 N

0

(27)

where a

j

2 l

1

(N

0

) and

kAk

W (N

0

)

:=

1

X

j=0

ka

j

k

l

1

(N

0

)

<1: (28)

The lass of all operators of this form is denoted by W (N

0

).

Proposition 15 Let A 2 W (N

0

) and � � 0. Then A is a bounded operator

on l

2

(N

0

; e

�

), and

kAk

L(l

2

(N

0

; e

�

))

� ka

0

k

l

1

(N

0

)

+ e

��

M

A

(29)

where

M

A

:=

1

X

j=1

ka

j

k

l

1

(N

0

)

:

18



Proof. Sine A is ausal, one has Au(x) = 0 for x � 0 if u(x) = 0 for x � 0.

It is also evident that kAk

L(l

2

(N

0

; e

�

))

= ke

�

Ae

��

Ik

L(l

2

(N

0

))

and that

e

�

Ae

��

I = a

0

I +

1

X

j=1

e

��j

a

j

V

j

:

Hene,

ke

�

Ae

��

Ik

L(l

2

(N

0

))

� ka

0

k

l

1

(N

0

)

+ e

��

M

A

;

whih implies estimate (29).

Theorem 16 Let A 2 W (N

0

) and

inf

x2N

0

ja

0

(x)j > 0: (30)

Then there exists an �

0

> 0 suh that the operator A is invertible on eah of

the spaes l

2

(N

0

; e

�

) with � � �

0

.

Proof. Set B :=

P

1

j=1

a

j

a

�1

0

V

j

. It follows from estimate (29) that

kBk

L(l

2

(N

0

; e

�

))

� e

��

1

X

j=1

ka

j

a

�1

0

k:

Hene, there exists an �

0

> 0 suh that kBk

L(l

2

(N

0

; e

�

))

< 1 for all � � �

0

.

Beause of A = a

0

(I +B), this implies

A

�1

= (I +B)

�1

a

�1

0

I =

1

X

k=0

B

k

a

�1

0

I (31)

via Neumann series.

De�nition 17 A funtion a 2 l

1

(N

0

) is alled slowly osillating at +1 if

lim

x!+1

(a(x + y)� a(x)) = 0 for eah y 2 N

0

:

Further we say that an operator A 2 W (N

0

) of the form (27) belongs to the

lass W

SO

(N

0

) if all of its oeÆients a

j

, j 2 N

0

, are slowly osillating at

+1.
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Consider the operator A 2 W

SO

(N

0

) as ating on the spae l

2

(N

0

; e

�

) for a

ertain � � 0. We assoiate with A its symbol

�

A

(x; � + i�) :=

1

X

j=0

a

j

(x) e

ij(�+i�)

whih is de�ned for x 2 N

0

and � 2 R. Set � := �+ i�. It is evident that the

funtion (x; �) 7! �

A

(x; �) depends analytially on � in the upper omplex

half-plane I� > 0, whereas it is 2�-periodi and ontinuous with respet to

� 2 R.

Theorem 18 Let A 2 W

SO

(N

0

). If ondition (30) holds, and if

lim

R!+1

inf

x>R; �2[0; 2�℄

j�

A

(x; � + i�)j > 0 (32)

for every � � 0, then the operator A : l

2

(N

0

)! l

2

(N

0

) is invertible.

Proof. Consider the family of operators

A

�

:= e

�

Ae

��

I =

1

X

j=0

a

j

e

��j

V

j

where � � 0. It is not hard to hek that kA

�

k

W (N

0

)

� kAk

W (N

0

)

. Hene,

the operators A

�

belong to W

SO

(N

0

). Moreover, A

�

P

+

= P

+

A

�

P

+

due to

ausality. With A

�

: l

2

(N

0

) ! l

2

(N

0

), we assoiate the band-dominated

operator B

�

= P

+

A

�

P

+

+ P

�

: l

2

! l

2

. It is evident that the operators A

�

and B

�

are Fredholm operators only simultaneously. Condition (32) implies

the invertibility of all limit operators in �

+

op

(B

�

) for every � � 0. Hene, A

�

is a Fredholm operator on l

2

(N

0

) for every � � 0. Moreover, the family of

operators A

�

depends ontinuously on � 2 [0; 1), and ondition (30) implies

the invertibility of the operators A

�

for � large enough. Sine the index is a

ontinuous (and integer-valued) funtion on the set of all Fredholm operators,

the index of A

�

is zero for all � � 0.

Next we will verify that A : l

2

(N

0

)! l

2

(N

0

) has a trivial kernel. Indeed,

onsider the equation Au = 0 for u 2 l

2

(N

0

). Then

0 = e

�

Au = e

�

Ae

��

e

�

u = A

�

e

�

u:

Choose � > 0 large enough suh that A

�

beomes an invertible operator on

l

2

(N

0

). Note that e

�

u 2 l

2

(N

0

) sine u 2 l

2

(N

0

) and � > 0. Hene, e

�

u = 0,

whih implies u = 0. Thus, the operator A onsidered as ating on l

2

(N

0

) is

a Fredholm operator with index zero and with the trivial kernel. Hene, A

is invertible.
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4.2 Finite setions of ausal time-varying �lters

We will use the notation [0; N ℄

Z

:= fn 2 N

0

: n � Ng for N 2 N . Let

P

N

: l

2

(N

0

)! imP

N

be the projetion

(P

N

u)(x) :=

�

u(x) if x 2 [0; N ℄

Z

;

0 if x > N:

Let further A be an operator of the form (27), and suppose that ondition

(28) holds. We onsider the problem of reonstruting the �rst N values of

the input signal from the �rst N values of the output signal. In other words,

we onsider the solution of the system of linear equations P

N

AP

N

u

N

= P

N

v

with u

N

sought in imP

N

, whih is equivalent to the solution of the system

a

0

(x)u

N

(x) +

x

X

j=1

a

j

(x) u

N

(x� j) = v(x) for x 2 [0; N ℄

Z

: (33)

The system (33) is triangular. Thus, under the ondition inf

x2N

0

ja

0

(x)j > 0,

this system has a unique solution u

N

for every right-hand side v 2 l

2

(N

0

) and

every N 2 N , whih an be obtained by means of elementary elimination.

The operators P

N

AP

N

2 L(imP

N

) are invertible for every N 2 N, and

(P

N

AP

N

)

�1

= P

N

A

�1

P

N

: (34)

For the latter note that P

N

A = P

N

AP

N

as a onsequene of ausality, whene

(P

N

AP

N

) (P

N

A

�1

P

N

) = P

N

AA

�1

P

N

= P

N

:

Thus, P

N

A

�1

P

N

is a right inverse for P

N

AP

N

2 L(imP

N

). Sine P

N

AP

N

ats on a �nite-dimensional spae, the operator P

N

A

�1

P

N

is also a left inverse

for P

N

AP

N

. Identity (34) implies

sup

N2N

k(P

N

AP

N

)

�1

k

L(imP

N

)

= sup

N2N

kP

N

A

�1

P

N

k

L(imP

N

)

� kA

�1

k

L(l

2

(N

0

))

:

This estimate yields the appliability of the �nite setions method for the

reonstrution of the input signal in ausal �lters (see for instane [3, 2, 12℄).

Thus,

lim

N!1

ku

N

� uk

l

2

(N

0

)

= 0

where u

N

is the solution of equation (33) extended by zero outside the disrete

interval [0; N ℄

Z

.
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5 Reonstrution of digital �nite signals in

time-varying �lters

This onluding setion is devoted to the problem of reonstrution of �nitely

supported digital input signals from known �nitely supported output signals.

We will onsider suh signals as periodi sequenes (u(x))

x2Z

with a period

d 2 N, i.e., we identify l

2

([1; d℄

Z

) with l

2

(Z=(dZ)). Let A be a time-varying

�lter of the form

(Au)(x) =

d�1

X

j=0

a

j

(x) (V

j

u)(x); x 2 Z; (35)

where the a

j

are d-periodi funtions and the V

j

are the shifts (V

j

u)(x) =

u(x� j), x 2 Z, ating ylially on d-periodi sequenes. We introdue the

disrete Fourier transform of a periodi sequene u by

û(�) = (Fu)(�) :=

d�1

X

x=0

u(x) 

�x�

d

; � 2 Z; (36)

where 

d

:= exp(2�i=d) is a primitive root of unit of degree d. It is well-

known that the inverse disrete Fourier transform ats via

u(x) = (F

�1

û)(x) =

1

d

d�1

X

�=0

û(�) 

x�

d

; x 2 Z; (37)

and that Parseval's equality

d�1

X

�=0

jû(�)j

2

= d

d�1

X

x=0

ju(x)j

2

holds (see, for instane, [1℄). Formulas (36) and (37) imply that

u(x) =

1

d

d�1

X

y=0

d�1

X

�=0

u(x+ y) 

�y�

d

(38)

and that

d

V

j

u(�) = 

�j�

d

û(�); � 2 Z; j = 0; 1; : : : ; d� 1:
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Let a : Z� Z ! C be a funtion whih is d-periodi with respet to both

variables. With a, we assoiate the d-periodi pseudodi�erene operator

(whih is, in fat, a pseudodi�erential operator on the yli group Z

d

:=

Z=(dZ))

(Au)(x) = (Op(a)u)(x) :=

d�1

X

�=0

a(x; �) û(�) 

x�

d

; x 2 Z; (39)

whih is de�ned on the d-periodi funtions. The funtion �

A

:= a is alled

the symbol of the operator A.

Note that the time-varying �lter (35) an be represented as a d-periodi

pseudodi�erene operator with symbol

�

A

(x; �) =

d�1

X

j=0

a(x) 

�j�

d

; (x; �) 2 Z� Z:

Let l

2

d

denote the spae of all d-periodi funtions u on Z with norm

kuk

l

2

d

:=

 

d�1

X

x=0

ju(x)j

2

!

1=2

:

Proposition 19 Let A = Op(a) be a d-periodi pseudodi�erene operator.

Then

kAk

L(l

2

d

)

�

 

d

d�1

X

x=0

d�1

X

�=0

ja(x; �)j

2

!

1=2

� d

3=2

max

x; �2[0; d�1℄

Z

ja(x; �)j: (40)

Estimate (40) is obtained by a diret alulation using Parseval's equality.

Proposition 20 Let A = Op(a) and B = Op(b) be d-periodi pseudodif-

ferene operators. Then AB is a d-periodi pseudodi�erene operator with

symbol

�

AB

(x; �) =

1

d

d�1

X

y=0

d�1

X

�=0

a(x; � + �) b(x+ y; �) 

�y�

d

; x; � 2 Z: (41)
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Formula (41) for the symbol of the produt of two d-periodi pseudodi�erene

operators follows by straightforward alulation.

We denote by !

1

(�

A

) the osillation of the funtion (x; �) 7! �

A

(x; �)

with respet to the (�rst) variable x 2 [0; d� 1℄

Z

, that is,

!

1

(�

A

) = max

x; y;�2[0; d�1℄

Z

j�

A

(x; �)� �

A

(y; �)j:

Theorem 21 Let the following onditions hold for the symbol of the d-

periodi pseudodi�erene operator A :

�

A

(x; �) 6= 0 for all x; � 2 [0; d� 1℄

Z

(42)

and

!

1

(�

A

) max

x2[0; d�1℄

Z

d�1

X

�=0

ja

�1

(x; �)j < d

�3=2

: (43)

Then A is an invertible operator on l

2

d

, and

A

�1

= (I + T )

�1

Op(a

�1

) (44)

where T is an operator with kTk

L(l

2

d

)

< 1.

Proof. Let B := Op(a

�1

). Employing (38), we obtain

�

BA

(x; �) =

1

d

d�1

X

y=0

d�1

X

�=0

a

�1

(x; � + �) a(x+ y; �) 

�y�

d

=

a(x; �)

d

d�1

X

y=0

d�1

X

�=0

a

�1

(x; � + �) 

�y�

d

+ t(x; �) =: 1 + t(x; �);

where

t(x; �) =

1

d

d�1

X

y=0

d�1

X

�=0

a

�1

(x; � + �) (a(x+ y; �)� a(x; �)) 

�y�

d

:

From estimate (40), we further onlude

kTk

L(l

2

d

)

= kOp(t)k

L(l

2

d

)

� d

3=2

!

1

(�

A

) max

x2[0; d�1℄

Z

d�1

X

�=0

ja

�1

(x; �)j:
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Hene, BA = I + T with kTk

L(l

2

d

)

< 1 by ondition (43), and the operator

A

�1

= (I+T )

�1

Op(a

�1

) is a left inverse of A. Sine l

2

d

is a �nite-dimensional

spae, A

�1

is also a right inverse A, whene the invertibility of A.

Thus, we've obtained an e�etive algorithm for the reonstrution of input

signals. It follows from (44) that the input signal u is a solution of the

equation

u+ Tu = Op(a

�1

)v

where the funtion Op(a

�1

)v an be alulated by means of fast Fourier

transform algorithms (see for instane [1℄). Then u is alulated by means

of suessive approximations, that is, we set u

0

:= 0 and de�ne u

n+1

:=

�Tu

n

+ Op(a

�1

)v for n 2 N

0

to obtain a sequene (u

n

) whih onverges to

the solution of the equation Op(a)u = v.
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