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Abstra
t

We 
onsider the problem of re
onstru
tion of input signals u from

output signals of time-varying �lters of the form

(Au)(x) =

X

j2Z

a

j

(x)u(x� j); x 2 Z;

under the assumption that

P

j2Z

ka

j

k

1

< 1. The proposed algo-

rithm of re
onstru
tion of signals is based on the theory of band-

dominated and pseudodi�eren
e operators as presented in the re
ent

monograph [12℄ and on the �nite se
tions method. The following


lasses of �lters are 
onsidered this paper: slowly time-varying �lters,

perturbations of periodi
 time-varying �lters, 
ausal time-varying �l-

ters, and �nite �lters a
ting on signals with a �nite number of values.

1 Introdu
tion

Signal pro
essing. We start with re
alling some basi
 de�nitions and fa
ts

from signal pro
essing theory. Standard referen
es to this �eld are [6, 7, 1, 16℄,

for instan
e.

A digital 
omplex signal (DCS for short) is a two-sided sequen
e u =

fu(x) : x 2 Zg of 
omplex numbers. In what follows we 
onsider DCS with

�nite energy, that is we suppose that the DCS u belongs to the Hilbert spa
e

l

2

of 
omplex-valued fun
tions on Z, provided with the s
alar produ
t

hu; vi :=

X

x2Z

u(x)v(x)
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and with asso
iated norm

kuk

2

=

 

X

x2Z

ju(x)j

2

!

1=2

<1:

A digital linear �lter is a linear mapping whi
h transforms a DCS u, 
alled

the input signal, to a DCS v = Au, the output signal. We will ex
lusively


onsider linear �lters, i.e., �lters whi
h a
t as a bounded linear operator on

l

2

.

An interesting but still easy to analyze 
lass of digital �lters is 
onstituted

by the time-invariant �lters. They are 
hara
terized by their invarian
e with

respe
t to shifts. More pre
isely, a digital �lter A is said to be invariant with

respe
t to shifts if

V

h

A = AV

h

for every h 2 Z;

where the shift operator V

h

: l

2

! l

2

a
ts via (V

h

u)(x) := u(x� h). One 
an

show that, for ea
h time-invariant digital �lter A, there is a uniquely deter-

mined bounded sequen
e (a

k

)

k2Z

of 
omplex numbers, 
alled the 
oeÆ
ients

of the �lter, su
h that

(Au)(x) =

X

k2Z

a

k

u(x� k) for x 2 Z: (1)

In what follows we will suppose that the Wiener 
ondition

X

k2Z

ja

k

j <1 (2)

holds. For time-invariant �lters (1), the problem of re
onstru
tion of the

input signal from a given output is solved by means of the dis
rete Fourier

transform

û(�) = (Fu)(�) :=

X

x2Z

u

k

e

�ix�

; � 2 R:

Note that for u 2 l

2

, the Fourier transform û is a 2�-periodi
 fun
tion with

Z

2�

0

jû(�)j

2

d� <1;

that the inverse Fourier transform F

�1

is given by

(F

�1

u)(x) =

1

2�

Z

2�

0

u(�)e

ix�

d�;
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and that Parseval's equality holds,

Z

2�

0

jû(�)j

2

d� = 2�

X

x2Z

ju(x)j

2

:

If A is a time-invariant �lter as in (1), set â(�) :=

P

x2Z

a

k

e

�ix�

for � 2 [0; 2�℄

and suppose that

inf

�2[0; 2�℄

jâ(�)j > 0: (3)

Then, indeed, the input signal u is obtained from the output v = Au via

u(x) =

1

2�

Z

2�

0

v̂(�)

â(�)

e

ix�

d�; x 2 Z: (4)

A natural generalization of time-invariant �lters are the time-varying �lters.

They are des
ribed by linear operators A of the form

(Au)(x) =

X

k2Z

a

k

(x)u(x� k) =

X

k2Z

a

k

(x)(V

k

u)(x); x 2 Z; (5)

where now the 
oeÆ
ients a

k

are sequen
es in l

1

, the Bana
h spa
e of all

bounded 
omplex-valued fun
tions on Z with norm

kak

1

:= sup

x2Z

ja(x)j:

For time-varying �lters, we will always suppose the Wiener type 
ondition

X

k2Z

ka

k

k

1

<1 (6)

whi
h obviously generalizes (2).

Evidently, for time-varying �lters, the problem of re
onstru
tion of the

input signal from the output signal is mu
h more involved than for time-

invariant �lters. In parti
ular, there is no expli
it formula for the dependen
e

of the input from the output signal. Thus, it is both ne
essary and natural

to 
onsider numeri
al methods to determine the input approximately. The

present paper is devoted to this 
ir
le of problems.
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Band-dominated operators. An operator of the form

(Au)(x) =

N

X

k=�N

a

k

(x)(V

k

u)(x); x 2 Z;

with 
oeÆ
ients a

k

2 l

1

is also 
alled a band operator. This name is moti-

vated by the fa
t that the matrix of A with respe
t to the standard basis of

l

2

has a �nite number of non-zero diagonals only. The 
losure of the set of

all band operators in the spa
e L(l

2

) of all bounded linear operators on l

2

is

denoted by A

2

. The operators in A

2

are 
alled band-dominated. It is easy to

see that the time-varying �lters (5) with 
ondition (6) and, in parti
ular, the

time-invariant �lters (1) with 
ondition (2) are band-dominated operators.

The Fredholm theory of band-dominated operators has been intensively

studied in the papers [10, 11, 9℄. A 
omprehensive a

ount on this topi
 
an

be found in the re
ently published monograph [12℄. The stability of 
ertain

proje
tion methods (in parti
ular, of the �nite se
tions method) for the ap-

proximate solution of the equation Au = v where A is a band-dominated

operator is studied in [10, 11, 13℄ and in [12℄.

If ea
h output v 2 l

2

is generated by a uniquely determined input, then

the operator A is invertible. Thus, the solution of the re
onstru
tion problem

for time-variable �lters A requires 
onditions for the invertibility of A on the

spa
e l

2

. Moreover, the invertibility of A is also a ne
essary 
ondition for the

appli
ability of proje
tion methods for the solution of the equation Au = v,

that is for the numeri
al re
onstru
tion of input signals.

About this paper. The main aims of the paper are:

(a) to 
onsider 
lasses of band-dominated operators whi
h are important

for signal pro
essing, and to give e�e
tive 
onditions of their invertibil-

ity,

(b) to derive 
onditions for the appli
ability of proje
tion methods for the

approximate solution of the problem of re
onstru
ting input signals.

The paper is organized as follows. In Se
tion 2 we re
all some auxiliary ma-

terial from the theory of band-dominated operators. All 
ited fa
ts 
an be

found in [12℄. In Se
tion 3 we embark upon stable approximation pro
edures

in order to re
onstru
t input signals of time-variable �lters. In parti
ular, we

will derive 
onditions for the appli
ability of the �nite se
tions method. Our
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approa
h to analyze these methods is is based on the 
al
ulus of pseudodif-

feren
e operators developed in [8℄, see also [12℄, Chapter 5. Spe
ial emphasis

is paid to periodi
 time-variable �lters and to slowly varying perturbations

of periodi
 �lters. Se
tion 4 is devoted to the problem of re
onstru
tion of

input signals in 
ausal time-varying �lters, and in the 
on
luding Se
tion 5

we 
onsider the re
onstru
tion of digital signals with a �nite number of values

for time-variable �lters. For these results, we have to employ the 
al
ulus of

pseudodi�erential operators on the �nite 
ommutative (
y
li
) group Z=dZ

where d 2 N .

This work had been supported by the CONACYT proje
t 43432. The

authors are grateful for this support.

2 Auxiliary fa
ts from the theory of band-

dominated operators

2.1 Fredholm theory and index of band-dominated op-

erators in the Wiener algebra W

Let (a

�

)

�2Z

be a sequen
e of fun
tions in l

1

satisfying the Wiener 
ondition

X

�2Z

ka

�

k

1

<1: (7)

Then the series

P

�2Z

a

�

V

�


onverges in the norm of L(l

2

) and, thus, it de�nes

a bounded linear operator on l

2

. We write W for the set of all operators

obtained in this way. Provided with the usual operations of the addition and

multipli
ation of operators and with the norm

kAk

W

:=

X

�2Z

ka

�

k

1

;

the set W be
omes a Bana
h algebra, the so-
alled Wiener algebra. By


onstru
tion, W � L(l

2

). Moreover, it is easy to see that W � A

2

, the

algebra of the band-dominated operators. One pe
uliarity of the algebra W

is its property of inverse 
losedness, whi
h is stated pre
isely as follows.

Proposition 1 . Let the operator A 2 W be invertible as an operator on l

2

.

Then A

�1

2 W .
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A bounded linear operator A a
ting on a Bana
h spa
e X is 
alled a Fredholm

operator if both its kernel kerA := fx 2 X : Ax = 0g and its 
okernel


okerA := X=A(X) are �nite-dimensional linear spa
es. Fredholmness of

A means that the equations Ax = 0 and A

�

y = 0 have only �nitely many

linearly independent solutions in the spa
es X and X

�

, respe
tively, and that

the equation Ax = f is solvable if and only if y

j

(f) = 0 for j = 1; : : : ; m,

where fy

1

; : : : ; y

m

g is a basis of kerA

�

. The integer

indA := dimkerA� dimkerA

�

is 
alled the index of the Fredholm operator A.

Let h : N ! Z be a sequen
e whi
h tends to in�nity, and let

A =

X

�2Z

a

�

V

�

2 W:

By using a Cantor diagonal argument, one 
an prove that the sequen
e h

possesses a subsequen
e g su
h that the limits

lim

k!1

a

�

(x+ g

k

) =: a

g

�

(x)

exist for all integers x and �. The operator

A

g

:=

X

�2Z

a

g

�

V

�

is 
alled the limit operator of A de�ned by (or with respe
t to) the sequen
e

g. It follows from ka

g

�

k

1

� ka

�

k

1

that all limit operators of A belong to

the Wiener algebra W again. Note also that A

g

is the strong limit on l

2

of

the operator-valued sequen
e (V

�g

k

AV

g

k

)

k2N

for k ! 1. We denote the set

of all limit operators of A 2 W by �

op

(A). Let furthermore �

�

op

(A) refer to

the set of all limit operators of A whi
h 
orrespond to sequen
es h tending

to �1. Evidently, �

op

(A) = �

+

op

(A) [ �

�

op

(A).

The following theorem summarizes 
riteria for the Fredholmness of oper-

ators in W .

Theorem 2 Let A 2 W . Then the following assertions are equivalent:

(a) A is a Fredholm operator on l

2

.

(b) All limit operators of A are invertible on l

2

.

(
) All limit operators of A are invertible on l

2

, and the norms of their in-

verses are uniformly bounded.
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Let P

+

denote the operator of multipli
ation by the 
hara
teristi
 fun
tion

of the set N

0

of the non-negative integers, and set P

�

:= I � P

+

. Note that

P

�

are orthogonal proje
tions on l

2

. We denote their ranges by l

2

�

:= P

�

(l

2

).

Theorem 3 Let the operator A 2 W satisfy one of the 
onditions of Theo-

rem 2. Then

(a) the operators P

+

AP

+

: l

2

+

! l

2

+

and P

�

AP

�

: l

2

�

! l

2

�

are Fredholm;

(b) for arbitrary limit operators A

h

2 �

+

op

(A) and A

g

2 �

�

op

(A), the operators

P

+

A

h

P

+

: l

2

+

! l

2

+

and P

�

A

g

P

�

: l

2

�

! l

2

�

are Fredholm;

(
) one has

indA = ind (P

+

AP

+

) + ind (P

�

AP

�

)

= ind (P

+

A

h

P

+

) + ind (P

�

A

g

P

�

):

Assertion (a) and the �rst equality in (
) follow easily from the (evident) 
om-

pa
tness of the operators P

+

AP

�

and P

�

AP

+

whi
h implies the 
ompa
tness

of the operators

A� (P

+

AP

+

+P

�

)(P

�

AP

�

+P

+

) and A� (P

�

AP

�

+P

+

)(P

+

AP

+

+P

�

):

If A is Fredholm, then ea
h limit operator of A is invertible by Theorem 2.

Thus, assertion (b) is an immediate 
onsequen
e of (a). The only serious

result in the pre
eding theorem is the se
ond equality in (
). This (in our

eyes) surprising identity has been derived in [9℄.

A fun
tion a 2 l

1

is 
alled slowly os
illating at in�nity if

lim

x!1

(a(x+ k)� a(x)) = 0

for every k 2 Z. We denote the subspa
e of l

1

of all slowly os
illating at

in�nity fun
tions by SO, and we write W

SO

for the subalgebra of W whi
h


onsists of all operators A =

P

�2Z

a

�

V

�

with 
oeÆ
ients a

�

in SO.

It is a remarkable property of operators A in W

SO

that their limit oper-

ators A

h

are ne
essarily of the form

A

h

=

X

�2Z

a

h

�

V

�

(8)

with 
onstant 
oeÆ
ients a

h

�

2 C . One easily 
he
ks that the operator (8) is

unitarily equivalent to the operator of multipli
ation by the fun
tion

^

A

h

(�) :=

X

�2Z

a

h

�

e

�i��

; � 2 [0; 2�℄:
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Thus, the operator (8) is invertible on l

2

is and only if

inf

�2[0; 2�℄

j

^

A

h

(�)j > 0: (9)

Moreover, 
ondition (9) implies that the operators P

�

A

h

P

�

: l

2

�

! l

2

�

are

Fredholm and that

ind (P

+

A

h

P

+

) = �wind (

^

A

h

); ind (P

�

A

h

P

�

) = wind (

^

A

h

)

where the winding number of the 2�-periodi
 and non-vanishing fun
tion

^

A

h

is de�ned by

wind (

^

A

h

) :=

1

2�

[arg

^

A

h

(�)℄

2�

�=0

:

Thus, spe
ifying Theorems 2 and 3 to operators with slowly os
illating 
oef-

�
ients yields the following.

Theorem 4 Let A 2 W

SO

. Then A : l

2

! l

2

is a Fredholm operator if

and only if 
ondition (9) holds for every limit operator A

h

. In this 
ase, the

Fredholm index of the A is given by

indA = �wind (

^

A

h

=

^

A

g

);

where A

h

is an arbitrary operator in �

+

op

(A) and A

g

an arbitrary operator in

�

�

op

(A).

2.2 The �nite se
tions method

Let A 2 L(l

2

) be an invertible operator. Then the equation Au = v

has a unique solution u for every fun
tion v 2 l

2

. Let P

N

be the opera-

tor of multipli
ation by the 
hara
teristi
 fun
tion of the dis
rete segment

[�N; N ℄

Z

:= fk 2 Z : jkj � Ng. Together with the equation Au = v, we


onsider the sequen
e of its �nite se
tions

P

N

AP

N

u

N

= P

N

v; N 2 N ; (10)

the solutions u

N

of whi
h are sought in imP

N

. The 
ru
ial questions are

whether the equations (10) possess unique solutions for suÆ
iently large N

and whether the sequen
e (u

N

) of these solutions 
onverges (in the norm of

l

2

) to the solution u of Au = v. If the answer to both questions is yes, then

the �nite se
tions method is said to be appli
able to the operator A.
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It is well-known (see for instan
e [2, 3, 4, 12℄) that the �nite se
tions

method is appli
able to the operator A : l

2

! l

2

if and only if this operator

is invertible and if the sequen
e (P

N

AP

N

)

N2N

is stable. The latter means that

the operators P

N

AP

N

: imP

N

! imP

N

are invertible for suÆ
iently large

N and that the norms of their inverses (P

N

AP

N

)

�1

are uniformly bounded.

This fa
t is usually referred to as Polski's theorem.

The following theorem provides a ne
essary and suÆ
ient 
riterion for

the appli
ability of the �nite se
tions method to operators in W .

Theorem 5 Consider A 2 W as an operator on l

2

. The �nite se
tions

method is appli
able to A if and only if

(a) the operator A is invertible on l

2

;

(b) for every limit operator A

h

2 �

+

op

(A), the operators P

�

A

h

P

�

: l

2

�

! l

2

�

are invertible;

(
) for every limit operator A

h

2 �

�

op

(A), the operators P

+

A

h

P

+

: l

2

+

! l

2

+

are invertible.

Theorem 5 takes a more simple form for operators in the algebra W

SO

.

Theorem 6 Let A 2 W

SO

. The �nite se
tions method is appli
able to A if

and only if:

(a) the operator A is invertible on l

2

, and

(b) the plus-index ind (P

+

AP

+

) of A is equal to zero.

Note that

ind (P

+

AP

+

) = �wind (

^

A

h

)

where A

h

is an arbitrary limit operator of A in �

+

op

(A). Thus, 
ondition (b)

in Theorem 6 
an be e�e
tively veri�ed in many instan
es. For proofs of

Theorems 5 and 6, 
onsult [5, 13℄.

3 Re
onstru
tion of signals in time-varying

�lters

3.1 Auxiliary fa
ts from the theory of pseudodi�eren
e

operators

We still have to re
all some fa
ts about pseudodi�erential operators. Stan-

dard referen
es to the theory of pseudodi�erential operators are [14, 15℄, for

9



instan
e.

De�nition 7 A fun
tion a : Z � R ! C belongs to the 
lass S if it is

2�-periodi
 with respe
t to the se
ond (real) variable and if

jaj

N

:= sup

(x; �)2Z�[0;2�℄;m�N

�

�

�

�

d

m

a(x; �)

d�

m

�

�

�

�

<1 (11)

for all N � 0. With ea
h fun
tion a 2 S, there is asso
iated a pseudodi�er-

en
e operator A = Op(a) whi
h a
ts on l

2

via

(Au)(x) =

1

2�

X

y2Z

Z

2�

0

a(x; �) û(�) e

ix�

d�; x 2 Z: (12)

The 
lass of all operators of this form is denoted by OPS.

The operator A = Op(a) is also 
alled the pseudodi�eren
e operator gener-

ated by a, and the fun
tion �

A

:= a is 
alled the symbol of this operator.

Pseudodi�eren
e operators 
an be 
onsidered as dis
rete analogs of the 
las-

si
al pseudodi�erential operators on R; in fa
t, they are pseudodi�erential

operators related with the dis
rete group Z.

Note that every time-varying �lter A of the form

(Au)(x) =

X

j2Z

a

j

(x)u(x� j); x 2 Z; (13)

where the a

j

2 l

1

satisfy

X

j2Z

jjj

k

ka

j

k

1

<1 for ea
h k 2 N

0

(14)

is a pseudodi�eren
e operator with symbol a 2 S de�ned by

a(x; �) :=

X

j2Z

a

j

(x)e

�ij�

:

It is easy to prove that an arbitrary operator A 2 OPS has a representation

(13) su
h that 
ondition (14) is satis�ed.

The Fredholm properties of pseudodi�eren
e operators have been studied

in [8℄ in terms of their limit operators; see also [12℄, Chapter 5. We re
all

some fa
ts from [8℄ whi
h will be used below.

10



Proposition 8 Let a 2 S. Then A := Op(a) is a bounded operator on l

2

,

and there is a 
onstant C independent of a su
h that

kAuk

2

� Cjaj

2

kuk

2

for every u 2 l

2

:

Proposition 9 Let A and B be pseudodi�eren
e operators with symbols a

and b in S. Then AB is a pseudodi�eren
e operator in OPS, and AB =

Op(
) where


(x; �) =

1

2�

X

k2Z

Z

2�

0

a(x; � + �) b(x+ y; �) e

�iy�

d�: (15)

Note that the series in (15) does not 
onverge in the 
ommon sense. It


onverges after a regularization by means of integration by parts,


(x; �) =

1

2�

X

y2Z

(1 + y

2

)

�1

Z

2�

0

�

(1 +

d

2

d�

2

) a(x; � + �)

�

b(x + y; �) e

�iy�

d�:

This formula implies the estimate

j
j

N

� Cjaj

N+2

jbj

N

for N 2 N

0

(16)

with a 
ertain 
onstant C independent of a and b.

It has been proved in [8℄ that a pseudodi�eren
e operator A 2 OPS is a

bounded operator on l

1

and that its symbol �

A


an be obtained by

�

A

(x; �) = e

�ix�

A(e

ix�

): (17)

Thus, a time-varying �lter A 
an be 
ompletely re
onstru
ted if its outputs

are known for all input signals of the form x 7! e

ix�

with � 2 [0; 2�℄.

3.2 Slowly time-varying �lters

Let a 2 S and k 2 N

0

. We introdu
e the os
illation !

1

k

(a) of a with respe
t

to the dis
rete (�rst) variable x by

!

1

k

(a) := sup

x2Z;y2Znf0g;�2[0;2�℄

k

X

j=0

�

�

�

j

�

a(x+ y; �)� �

j

�

a(x; �)

�

�

jyj

�1

:

11



Theorem 10 Let a 2 S with

inf

x2Z;�2[0;2�℄

ja(x; �)j > 0: (18)

It the os
illation !

1

2

(a) is small enough, then the operator Op(a) is invertible.

Proof. Condition (18) implies that a

�1

2 S. Hen
e, the operator B :=

Op(a

�1

) is well de�ned, and it belongs to OPS. Due to (15), the operator

BA is equal to Op(
) with 
 given by


(x; �) =

1

2�

X

k2Z

Z

2�

0

a

�1

(x; � + �) a(x+ y; �) e

�iy�

d�

+

a(x; �)

2�

X

y2Z

Z

2�

0

a

�1

(x; � + �) e

�iy�

d�

+

1

2�

X

y2Z

Z

2�

0

a

�1

(x; � + �) (a(x+ y; �)� a(x; �)) e

�iy�

d�

=: 1 + r(x; �)

where

r(x; �) =

1

2�

X

y2Z

Z

2�

0

a

�1

(x; � + �) (a(x+ y; �)� a(x; �)) e

�iy�

d� (19)

satis�es the estimate

jr(x; �)j �

!

1

0

(a)

2�

X

y2Z

jyj

(1 + y

2

)

2

Z

2�

0

Z

1

0

�

�

�

�

�

�

1 +

d

2

d�

2

�

2

a

�1

(x; � + �)

�

�

�

�

�

d� d�:

This estimate implies that

jr(x; �)j � C!

1

0

(a)jaj

4

with a 
onstant C independent of a. In the same way one 
an prove that

jrj

2

� C!

1

2

(a)jaj

6

:

It follows from Proposition 8 that kOp(r)k

L(l

2

)

< 1 if the os
illation !

1

2

(a) is

suÆ
iently small. Thus, by Neumann series, the operator

A

�1

:= (I +Op(r))

�1

Op(a

�1

) (20)

12



is a left inverse for A = Op(a). In the same way one gets that A is invert-

ible form the right-hand side for suÆ
iently small !

1

2

(a). This proves the

assertion.

Hen
e, we have redu
ed the problem of re
onstru
tion of the input signal

u 2 l

2

from the output Au = v 2 l

2

to the solution of the equation

u+Op(r)u = Op(a

�1

)v: (21)

The unique solution of this equation 
an be obtained by su

essive approxi-

mations: Set u

0

:= 0 and de�ne

u

n+1

:= �Op(r)u

n

+Op(a

�1

)v for n 2 N

0

:

Then the sequen
e (u

n

) tends to the input u in the norm of l

2

. The re
on-

stru
ted signal u is stable in l

2

in the sense that small (with respe
t to the

norm in l

2

) variations of the output signal 
orrespond to small variations

of the input signal. Formula (20) is an extension to slowly time-varying �l-

ters of the well-known formula (4) for the re
onstru
tion of input signals for

time-invariant �lters.

Let us next 
onsider the appli
ability of the �nite se
tions method to the

re
onstru
tion of signals in �lters A 2 OPS whi
h satisfy the 
onditions of

Theorem 10 and whi
h are slowly os
illating at in�nity.

Theorem 11 Let A 2 OPS \W

SO

be an operator for whi
h the 
onditions

of Theorem 10 hold. Moreover, let wind (

^

A

h

) = 0 for a 
ertain limit operator

A

h

2 �

+

op

(A) (and, 
onsequently, for all limit operators of A in �

+

op

(A)). Then

the �nite se
tions method

P

N

AP

N

u

N

= P

N

v; N 2 N

0

;

for the re
onstru
tion of the input signal u 2 l

2

from the output signal v = Au

is stable.

This follows immediately from Theorem 6 and from the invertibility of A

whi
h is guaranteed by Theorem 10.

3.3 Periodi
 time-varying �lters

Let d 2 N. We 
onsider d-periodi
 time-varying �lters, that is, �lters in W

of the form

(Au)(x) =

X

j2Z

a

j

(x) u(x� j); x 2 Z; (22)

13



with d-periodi
 
oeÆ
ients a

j

2 l

1

,

a

j

(x + d) = a

j

(x) for every x 2 Z:

Thus, d-periodi
 time-varying �lters 
an be viewed of as band-dominated

operators in W with periodi
 
oeÆ
ients. These operators form a 
losed

subalgebra W

per

d

of W . Let further l

2

d

denote the Hilbert spa
e of all ve
tor-

valued fun
tions u = (u

1

; u

2

; : : : ; u

d

) on Z with values in C

d

, provided with

the norm

kuk

l

2

d

:=

 

d

X

j=1

ku

j

k

2

!

1=2

:

Consider the mapping

T

d

: l

2

! l

2

d

; u 7! (u

1

; u

2

; : : : ; u

d

)

where

u

j

(y) := u(dy + j � 1) for y 2 Z and 1 � j � d:

For 1 � j � d, let Z

j

:= dZ+ j � 1 denote the jth residue 
lass modulo d.

Sin
e Z

j

\ Z

k

= ; for j 6= k and Z = [

d

j=1

Z

j

, the operator T

d

: l

2

! l

2

d

is a

bije
tive isometry, i.e., a unitary operator.

We examine the operator T

d

BT

�1

d

for several operators B on l

2

. If

B = aI is the operator of multipli
ation by a d-periodi
 fun
tion a, then

T

d

aT

�1

d

is the operator of multipli
ation by the 
onstant diagonal matrix

diag (a(1); : : : ; a(d)). Next let B = V

�1

. Writing T

d

u =: (u

1

; : : : ; u

d

) for

u 2 l

2

, one gets

T

d

V

�1

u = (u

2

; u

3

; : : : ; u

d

; V

�1

u

1

):

Thus, the operator T

d

V

�1

T

�1

d

a
ts on l

2

d

as the matrix operator

T

d

V

�1

T

�1

d

=

0

B

B

B

B

�

0 1 � � 0

0 � 1 � �

� � � � �

� � � � 1

V

�1

� � � 0

1

C

C

C

C

A

:

Consequently, if A is the operator given by (22), then the operator T

d

AT

�1

d

14



a
ts as

T

d

AT

�1

d

=

X

j2Z

diag (a

j

(1); : : : ; a

j

(d))

0

B

B

B

B

�

0 1 � � 0

0 � 1 � �

� � � � �

� � � � 1

V

�1

� � � 0

1

C

C

C

C

A

�j

:

The dis
rete Fourier transform maps this operator to the operator of mul-

tipli
ation by the 2�-periodi
 d � d-matrix valued fun
tion A : R ! L(C

d

)

given by

A(�) :=

X

j2Z

diag (a

j

(1); : : : ; a

j

(d))

0

B

B

B

B

�

0 1 � � 0

0 � 1 � �

� � � � �

� � � � 1

e

i�

� � � 0

1

C

C

C

C

A

�j

:

So we �nally arrive at the following theorem.

Theorem 12 Let A = Op(a) 2 W

per

d

. Then A is an invertible operator on

l

2

if and only if

detA(�) 6= 0 for ea
h � 2 [0; 2�℄: (23)

Thus, for a periodi
 �lter A, there is an evident and e�e
tive way to re
on-

stru
t the input signal u from a given output v by

u = T

�1

d

F

�1

�!y

A

�1

(�)F

y!�

T

d

v:

3.4 Slowly os
illating perturbations of periodi
 time-

varying �lters

Now we 
onsider �lters of the form (22) where the 
oeÆ
ients a

j

depend on

two variables x and y in su
h a way that the dependen
e on x is d-periodi


whereas that on y is slowly os
illating. More pre
isely, let

(Au)(x) =

X

j2Z

a

j

(x) u(x� j); x 2 Z; (24)

with 
oeÆ
ients of the form

a

j

(x) := ~a

j

(x; y)j

y=x

; x 2 Z;

15



where ea
h ~a

j

: Z�Z! C is a bounded fun
tion with ~a

j

(x+d; y) = ~a

j

(x; y)

for ea
h pair x; y 2 Z. Moreover, we assume that

X

j2Z

jjj

k

ka

j

k

1

<1

for every k 2 N

0

. We asso
iate the symbol

~a : Z� Z� [0; 2�℄! C ; (x; y; �) 7!

X

j2Z

~a

j

(x; y) e

ix�

with the operator A in (24), and we denote the os
illation of a with respe
t

to the (se
ond) variable y by !

2

k

(a), that is,

!

2

k

(a) := sup

x; y2Z;z2Znf0g;�2[0; 2�℄

k

X

j=0

�

�

�

j

�

a(x; y + z; �)� �

j

�

a(x; y; �)

�

�

jzj

�1

:

Note that the operator T

d

AT

�1

d

has the matrix representation

X

j2Z

diag (a

j

(1; x); : : : ; a

j

(d; x+ d))

0

B

B

B

B

�

0 1 � � 0

0 � 1 � �

� � � � �

� � � � 1

V

�1

� � � 0

1

C

C

C

C

A

�j

(25)

and that T

d

AT

�1

d

is a matrix pseudodi�eren
e operator with symbol A given

by

A(x; �) =

X

j2Z

diag (a

j

(1; x); : : : ; a

j

(d; x + d))

0

B

B

B

B

�

0 1 � � 0

0 � 1 � �

� � � � �

� � � � 1

e

�i�

� � � 0

1

C

C

C

C

A

�j

:

A slight modi�
ation of Theorem 10 for the 
ase of matrix-valued pseudod-

i�eren
e operators yields the following result.

Theorem 13 Let the symbol A of A satisfy

inf

x2Z;�2[0; 2�℄

j detA(x; �)j > 0:
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If the os
illation !

2

2

(a) is small enough, then the operator A is invertible on

l

2

, and its inverse admits a representation

A

�1

= T

�1

d

(I +Op(r))

�1

Op(A

�1

))T

d

with an operator Op(r) with kOp(r)k

L(l

2

d

)

< 1.

Theorem 13 o�ers a way to re
onstru
t input signals for slowly os
illating

perturbations of quasi time-invariant periodi
 �lters.

The following theorem establishes ne
essary and suÆ
ient 
onditions for

the stability of �nite se
tions method with respe
t to the sequen
e of proje
-

tors (P

dN

)

N2N

.

Theorem 14 Let A satisfy the 
onditions of Theorem 13. Then the �nite

se
tions method

P

dN

AP

dN

u

dN

= P

dN

v; N 2 N ; (26)

is stable if and only if:

(a) for every limit operator (T

d

AT

�1

d

)

h

2 �

+

op

(T

d

AT

�1

d

), the operator

P

+

(T

d

AT

�1

d

)

h

P

+

: P

+

(l

2

d

)! P

+

(l

2

d

)

is invertible;

(b) for every limit operator (T

d

AT

�1

d

)

h

2 �

�

op

(T

d

AT

�1

d

), the operator

P

�

(T

d

AT

�1

d

)

h

P

�

: P

�

(l

2

d

)! P

�

(l

2

d

)

is invertible.

4 Re
onstru
tion of signals in 
ausal �lters

In this se
tion we 
onsider dis
rete signals u : N

0

! C whi
h are de�ned

for non-negative values of time x. As usual, we 
all A a 
ausal �lter if

(Au)(x) = 0 for x < 0. We will des
ribe a 
lass of 
ausal �lters and 
onsider

the problem of re
onstru
tion of input signals for them.

17



4.1 Invertibility of 
ausal band-dominated operators

Let l

2

(N

0

) denote the Hilbert spa
e of all u : N

0

! C with norm

kuk

l

2

(N

0

)

:=

 

X

x2N

0

ju(x)j

2

!

1=2

<1;

and write l

1

(N

0

) for the Bana
h spa
e of all bounded 
omplex-valued fun
-

tions on N

0

with norm

kuk

l

1

(N

0

)

= sup

x2N

0

ju(x)j:

For � 2 R, let e

�

: N

0

! R denote the mapping x 7! e

��x

, and 
onsider the

weighted Hilbert spa
e l

2

(N

0

; e

�

) of all fun
tions u for whi
h e

�

u 2 l

2

(N

0

).

This spa
e is provided with the norm

kuk

l

2

(N

0

; e

�

)

= ke

�

uk

l

2

(N

0

)

:

We study band-dominated operators in W of the form

(Au)(x) = a

0

(x)u(x) +

x

X

j=1

a

j

(x) u(x� j); x 2 N

0

(27)

where a

j

2 l

1

(N

0

) and

kAk

W (N

0

)

:=

1

X

j=0

ka

j

k

l

1

(N

0

)

<1: (28)

The 
lass of all operators of this form is denoted by W (N

0

).

Proposition 15 Let A 2 W (N

0

) and � � 0. Then A is a bounded operator

on l

2

(N

0

; e

�

), and

kAk

L(l

2

(N

0

; e

�

))

� ka

0

k

l

1

(N

0

)

+ e

��

M

A

(29)

where

M

A

:=

1

X

j=1

ka

j

k

l

1

(N

0

)

:

18



Proof. Sin
e A is 
ausal, one has Au(x) = 0 for x � 0 if u(x) = 0 for x � 0.

It is also evident that kAk

L(l

2

(N

0

; e

�

))

= ke

�

Ae

��

Ik

L(l

2

(N

0

))

and that

e

�

Ae

��

I = a

0

I +

1

X

j=1

e

��j

a

j

V

j

:

Hen
e,

ke

�

Ae

��

Ik

L(l

2

(N

0

))

� ka

0

k

l

1

(N

0

)

+ e

��

M

A

;

whi
h implies estimate (29).

Theorem 16 Let A 2 W (N

0

) and

inf

x2N

0

ja

0

(x)j > 0: (30)

Then there exists an �

0

> 0 su
h that the operator A is invertible on ea
h of

the spa
es l

2

(N

0

; e

�

) with � � �

0

.

Proof. Set B :=

P

1

j=1

a

j

a

�1

0

V

j

. It follows from estimate (29) that

kBk

L(l

2

(N

0

; e

�

))

� e

��

1

X

j=1

ka

j

a

�1

0

k:

Hen
e, there exists an �

0

> 0 su
h that kBk

L(l

2

(N

0

; e

�

))

< 1 for all � � �

0

.

Be
ause of A = a

0

(I +B), this implies

A

�1

= (I +B)

�1

a

�1

0

I =

1

X

k=0

B

k

a

�1

0

I (31)

via Neumann series.

De�nition 17 A fun
tion a 2 l

1

(N

0

) is 
alled slowly os
illating at +1 if

lim

x!+1

(a(x + y)� a(x)) = 0 for ea
h y 2 N

0

:

Further we say that an operator A 2 W (N

0

) of the form (27) belongs to the


lass W

SO

(N

0

) if all of its 
oeÆ
ients a

j

, j 2 N

0

, are slowly os
illating at

+1.
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Consider the operator A 2 W

SO

(N

0

) as a
ting on the spa
e l

2

(N

0

; e

�

) for a


ertain � � 0. We asso
iate with A its symbol

�

A

(x; � + i�) :=

1

X

j=0

a

j

(x) e

ij(�+i�)

whi
h is de�ned for x 2 N

0

and � 2 R. Set � := �+ i�. It is evident that the

fun
tion (x; �) 7! �

A

(x; �) depends analyti
ally on � in the upper 
omplex

half-plane I� > 0, whereas it is 2�-periodi
 and 
ontinuous with respe
t to

� 2 R.

Theorem 18 Let A 2 W

SO

(N

0

). If 
ondition (30) holds, and if

lim

R!+1

inf

x>R; �2[0; 2�℄

j�

A

(x; � + i�)j > 0 (32)

for every � � 0, then the operator A : l

2

(N

0

)! l

2

(N

0

) is invertible.

Proof. Consider the family of operators

A

�

:= e

�

Ae

��

I =

1

X

j=0

a

j

e

��j

V

j

where � � 0. It is not hard to 
he
k that kA

�

k

W (N

0

)

� kAk

W (N

0

)

. Hen
e,

the operators A

�

belong to W

SO

(N

0

). Moreover, A

�

P

+

= P

+

A

�

P

+

due to


ausality. With A

�

: l

2

(N

0

) ! l

2

(N

0

), we asso
iate the band-dominated

operator B

�

= P

+

A

�

P

+

+ P

�

: l

2

! l

2

. It is evident that the operators A

�

and B

�

are Fredholm operators only simultaneously. Condition (32) implies

the invertibility of all limit operators in �

+

op

(B

�

) for every � � 0. Hen
e, A

�

is a Fredholm operator on l

2

(N

0

) for every � � 0. Moreover, the family of

operators A

�

depends 
ontinuously on � 2 [0; 1), and 
ondition (30) implies

the invertibility of the operators A

�

for � large enough. Sin
e the index is a


ontinuous (and integer-valued) fun
tion on the set of all Fredholm operators,

the index of A

�

is zero for all � � 0.

Next we will verify that A : l

2

(N

0

)! l

2

(N

0

) has a trivial kernel. Indeed,


onsider the equation Au = 0 for u 2 l

2

(N

0

). Then

0 = e

�

Au = e

�

Ae

��

e

�

u = A

�

e

�

u:

Choose � > 0 large enough su
h that A

�

be
omes an invertible operator on

l

2

(N

0

). Note that e

�

u 2 l

2

(N

0

) sin
e u 2 l

2

(N

0

) and � > 0. Hen
e, e

�

u = 0,

whi
h implies u = 0. Thus, the operator A 
onsidered as a
ting on l

2

(N

0

) is

a Fredholm operator with index zero and with the trivial kernel. Hen
e, A

is invertible.
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4.2 Finite se
tions of 
ausal time-varying �lters

We will use the notation [0; N ℄

Z

:= fn 2 N

0

: n � Ng for N 2 N . Let

P

N

: l

2

(N

0

)! imP

N

be the proje
tion

(P

N

u)(x) :=

�

u(x) if x 2 [0; N ℄

Z

;

0 if x > N:

Let further A be an operator of the form (27), and suppose that 
ondition

(28) holds. We 
onsider the problem of re
onstru
ting the �rst N values of

the input signal from the �rst N values of the output signal. In other words,

we 
onsider the solution of the system of linear equations P

N

AP

N

u

N

= P

N

v

with u

N

sought in imP

N

, whi
h is equivalent to the solution of the system

a

0

(x)u

N

(x) +

x

X

j=1

a

j

(x) u

N

(x� j) = v(x) for x 2 [0; N ℄

Z

: (33)

The system (33) is triangular. Thus, under the 
ondition inf

x2N

0

ja

0

(x)j > 0,

this system has a unique solution u

N

for every right-hand side v 2 l

2

(N

0

) and

every N 2 N , whi
h 
an be obtained by means of elementary elimination.

The operators P

N

AP

N

2 L(imP

N

) are invertible for every N 2 N, and

(P

N

AP

N

)

�1

= P

N

A

�1

P

N

: (34)

For the latter note that P

N

A = P

N

AP

N

as a 
onsequen
e of 
ausality, when
e

(P

N

AP

N

) (P

N

A

�1

P

N

) = P

N

AA

�1

P

N

= P

N

:

Thus, P

N

A

�1

P

N

is a right inverse for P

N

AP

N

2 L(imP

N

). Sin
e P

N

AP

N

a
ts on a �nite-dimensional spa
e, the operator P

N

A

�1

P

N

is also a left inverse

for P

N

AP

N

. Identity (34) implies

sup

N2N

k(P

N

AP

N

)

�1

k

L(imP

N

)

= sup

N2N

kP

N

A

�1

P

N

k

L(imP

N

)

� kA

�1

k

L(l

2

(N

0

))

:

This estimate yields the appli
ability of the �nite se
tions method for the

re
onstru
tion of the input signal in 
ausal �lters (see for instan
e [3, 2, 12℄).

Thus,

lim

N!1

ku

N

� uk

l

2

(N

0

)

= 0

where u

N

is the solution of equation (33) extended by zero outside the dis
rete

interval [0; N ℄

Z

.
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5 Re
onstru
tion of digital �nite signals in

time-varying �lters

This 
on
luding se
tion is devoted to the problem of re
onstru
tion of �nitely

supported digital input signals from known �nitely supported output signals.

We will 
onsider su
h signals as periodi
 sequen
es (u(x))

x2Z

with a period

d 2 N, i.e., we identify l

2

([1; d℄

Z

) with l

2

(Z=(dZ)). Let A be a time-varying

�lter of the form

(Au)(x) =

d�1

X

j=0

a

j

(x) (V

j

u)(x); x 2 Z; (35)

where the a

j

are d-periodi
 fun
tions and the V

j

are the shifts (V

j

u)(x) =

u(x� j), x 2 Z, a
ting 
y
li
ally on d-periodi
 sequen
es. We introdu
e the

dis
rete Fourier transform of a periodi
 sequen
e u by

û(�) = (Fu)(�) :=

d�1

X

x=0

u(x) 


�x�

d

; � 2 Z; (36)

where 


d

:= exp(2�i=d) is a primitive root of unit of degree d. It is well-

known that the inverse dis
rete Fourier transform a
ts via

u(x) = (F

�1

û)(x) =

1

d

d�1

X

�=0

û(�) 


x�

d

; x 2 Z; (37)

and that Parseval's equality

d�1

X

�=0

jû(�)j

2

= d

d�1

X

x=0

ju(x)j

2

holds (see, for instan
e, [1℄). Formulas (36) and (37) imply that

u(x) =

1

d

d�1

X

y=0

d�1

X

�=0

u(x+ y) 


�y�

d

(38)

and that

d

V

j

u(�) = 


�j�

d

û(�); � 2 Z; j = 0; 1; : : : ; d� 1:
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Let a : Z� Z ! C be a fun
tion whi
h is d-periodi
 with respe
t to both

variables. With a, we asso
iate the d-periodi
 pseudodi�eren
e operator

(whi
h is, in fa
t, a pseudodi�erential operator on the 
y
li
 group Z

d

:=

Z=(dZ))

(Au)(x) = (Op(a)u)(x) :=

d�1

X

�=0

a(x; �) û(�) 


x�

d

; x 2 Z; (39)

whi
h is de�ned on the d-periodi
 fun
tions. The fun
tion �

A

:= a is 
alled

the symbol of the operator A.

Note that the time-varying �lter (35) 
an be represented as a d-periodi


pseudodi�eren
e operator with symbol

�

A

(x; �) =

d�1

X

j=0

a(x) 


�j�

d

; (x; �) 2 Z� Z:

Let l

2

d

denote the spa
e of all d-periodi
 fun
tions u on Z with norm

kuk

l

2

d

:=

 

d�1

X

x=0

ju(x)j

2

!

1=2

:

Proposition 19 Let A = Op(a) be a d-periodi
 pseudodi�eren
e operator.

Then

kAk

L(l

2

d

)

�

 

d

d�1

X

x=0

d�1

X

�=0

ja(x; �)j

2

!

1=2

� d

3=2

max

x; �2[0; d�1℄

Z

ja(x; �)j: (40)

Estimate (40) is obtained by a dire
t 
al
ulation using Parseval's equality.

Proposition 20 Let A = Op(a) and B = Op(b) be d-periodi
 pseudodif-

feren
e operators. Then AB is a d-periodi
 pseudodi�eren
e operator with

symbol

�

AB

(x; �) =

1

d

d�1

X

y=0

d�1

X

�=0

a(x; � + �) b(x+ y; �) 


�y�

d

; x; � 2 Z: (41)
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Formula (41) for the symbol of the produ
t of two d-periodi
 pseudodi�eren
e

operators follows by straightforward 
al
ulation.

We denote by !

1

(�

A

) the os
illation of the fun
tion (x; �) 7! �

A

(x; �)

with respe
t to the (�rst) variable x 2 [0; d� 1℄

Z

, that is,

!

1

(�

A

) = max

x; y;�2[0; d�1℄

Z

j�

A

(x; �)� �

A

(y; �)j:

Theorem 21 Let the following 
onditions hold for the symbol of the d-

periodi
 pseudodi�eren
e operator A :

�

A

(x; �) 6= 0 for all x; � 2 [0; d� 1℄

Z

(42)

and

!

1

(�

A

) max

x2[0; d�1℄

Z

d�1

X

�=0

ja

�1

(x; �)j < d

�3=2

: (43)

Then A is an invertible operator on l

2

d

, and

A

�1

= (I + T )

�1

Op(a

�1

) (44)

where T is an operator with kTk

L(l

2

d

)

< 1.

Proof. Let B := Op(a

�1

). Employing (38), we obtain

�

BA

(x; �) =

1

d

d�1

X

y=0

d�1

X

�=0

a

�1

(x; � + �) a(x+ y; �) 


�y�

d

=

a(x; �)

d

d�1

X

y=0

d�1

X

�=0

a

�1

(x; � + �) 


�y�

d

+ t(x; �) =: 1 + t(x; �);

where

t(x; �) =

1

d

d�1

X

y=0

d�1

X

�=0

a

�1

(x; � + �) (a(x+ y; �)� a(x; �)) 


�y�

d

:

From estimate (40), we further 
on
lude

kTk

L(l

2

d

)

= kOp(t)k

L(l

2

d

)

� d

3=2

!

1

(�

A

) max

x2[0; d�1℄

Z

d�1

X

�=0

ja

�1

(x; �)j:
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Hen
e, BA = I + T with kTk

L(l

2

d

)

< 1 by 
ondition (43), and the operator

A

�1

= (I+T )

�1

Op(a

�1

) is a left inverse of A. Sin
e l

2

d

is a �nite-dimensional

spa
e, A

�1

is also a right inverse A, when
e the invertibility of A.

Thus, we've obtained an e�e
tive algorithm for the re
onstru
tion of input

signals. It follows from (44) that the input signal u is a solution of the

equation

u+ Tu = Op(a

�1

)v

where the fun
tion Op(a

�1

)v 
an be 
al
ulated by means of fast Fourier

transform algorithms (see for instan
e [1℄). Then u is 
al
ulated by means

of su

essive approximations, that is, we set u

0

:= 0 and de�ne u

n+1

:=

�Tu

n

+ Op(a

�1

)v for n 2 N

0

to obtain a sequen
e (u

n

) whi
h 
onverges to

the solution of the equation Op(a)u = v.
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