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Abstra
t

We establish a ne
essary and suÆ
ient 
riterion for the Fredholmness

of a general lo
ally 
ompa
t band-dominated operator A on L

p

(R) and

derive a formula for its Fredholm index in terms of the limit operators of

A. The results are applied to operators of 
onvolution type with almost

periodi
 symbol.

1 Introdu
tion

Throughout this paper, let 1 < p < 1, and for ea
h Bana
h spa
e X, let L(X)

stand for the Bana
h algebra of all bounded linear operators on X, K(X) for the


losed ideal of the 
ompa
t operators, B

X

for the 
losed unit ball of X, and X

�

for the Bana
h dual spa
e of X.

For ea
h fun
tion ' 2 BUC, the algebra of the bounded and uniformly 
ontin-

uous fun
tions on the real line R, and for ea
h t > 0, set '

t

(x) := '(tx) and write

'I for the operator on L

p

(R) of multipli
ation by '. An operator A 2 L

p

(R) is


alled band-dominated if

lim

t!0

kA'

t

I � '

t

Ak = 0

for ea
h fun
tion ' 2 BUC. The set B

p

of all band-dominated operators forms

a 
losed subalgebra of L

p

(R). In this paper we will ex
lusively deal with band-

dominated operators of the form I +K where I is the identity operator and K is

lo
ally 
ompa
t (whi
h means that 'A and A'I are 
ompa
t for ea
h fun
tion

' 2 BUC with bounded support). We write L

p

for the set of all lo
ally 
ompa
t

band-dominated operators on L

p

(R).

The announ
ed Fredholm 
riterion and the index formula will be formulated

in terms of limit operators. To introdu
e this notion, we will need the shift

operators

U

k

: L

p

(R) ! L

p

(R); (U

k

f)(x) := f(x� k)

where k 2 Z. Given a sequen
e h : N ! Z tending to in�nity we 
all the operator

A

h

2 L(L

p

(R)) a limit operator of A 2 L(L

p

(R)) with respe
t to h if

lim

m!1

k(U

�h(m)

AU

h(m)

� A

h

)'Ik = 0
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and

lim

m!1

k'(U

�h(m)

AU

h(m)

� A

h

)k = 0

for ea
h fun
tion ' 2 BUC with bounded support. The set of all limit operators

of a given operator A 2 L(L

p

(R)) is 
alled the operator spe
trum of A and denoted

by �

op

(A). The operator spe
trum splits into two 
omponents �

+

(A) [ �

�

(A)

whi
h 
olle
t the limit operators of A with respe
t to sequen
es h tending to +1

and to �1, respe
tively.

An operator A 2 L(L

p

(R)) is said to be ri
h or to possess a ri
h operator

spe
trum if every sequen
e h tending to in�nity possesses a subsequen
e g for

whi
h the limit operator A

g

exists. The sets of all ri
h operators in B

p

and L

p

will be denoted by B

$

p

and L

$

p

.

Let �

+

and �

�

stand for the 
hara
teristi
 fun
tions of the sets R

+

and

R

�

of the non-negative and negative real numbers, respe
tively. The operators

�

+

K�

�

I and �

�

K�

+

I are 
ompa
t for ea
h operator K 2 L

p

. Indeed, let " > 0

be arbitrarily given. Sin
e K is band-dominated, there is a 
ontinuous fun
tion

f whi
h is 1 on [0; 1) and 0 on (�1; �n

"

℄ with suÆ
iently large n

"

su
h that

kfK �KfIk < ". Thus,

k�

+

K�

�

I � �

+

Kf�

�

Ik = k�

+

(fK �Kf)�

�

Ik < ":

The operator �

+

Kf�

�

I is 
ompa
t sin
e f�

�

has a bounded support and K is

lo
ally 
ompa
t. Sin
e further " 
an be 
hosen arbitrarily small, the 
ompa
tness

of �

+

K�

�

I follows. The 
ompa
tness of �

�

K�

+

I 
an be 
he
ked analogously.

This simple observation implies that, for a Fredholm operator of the form

A = I + K with K 2 L

p

, the operators �

+

A�

+

I and �

�

A�

�

I, 
onsidered as

a
ting on L

p

(R

+

) and L

p

(R

�

), are Fredholm operators again. We 
all

ind

+

A := ind (�

+

A�

+

I) and ind

�

A := ind (�

�

A�

�

I)

the plus- and the minus-index of A. Re
all in this 
onne
tion that a bounded

linear operator A on a Bana
h spa
e X is said to be Fredholm if its kernel kerA

and its 
okernel 
okerA := X=imA are linear spa
es of �nite dimension, and that

in this 
ase the integer

indA := dimkerA� dim
okerA

is 
alled the Fredholm index of A.

Here is the main result of the present paper.

Theorem 1 Let A = I +K with K 2 L

$

p

.

(a) The operator A is Fredholm on L

p

(R) if and only if all limit operators of A

are invertible and if the norms of their inverses are uniformly bounded.

(b) If A is Fredholm, then for arbitrary operators B

+

2 �

+

(A) and B

�

2 �

�

(A),

ind

+

B

+

= ind

+

A and ind

�

B

�

= ind

�

A (1)

2



and, 
onsequently,

indA = ind

+

B

+

+ ind

�

B

�

: (2)

This result has a series of prede
essors. One of the simplest 
lasses of band-

dominated and lo
ally 
ompa
t operators on L

p

(R) is 
onstituted by the operators

of 
onvolution by L

1

(R)-fun
tions and by the restri
tions of these operators to the

half line, the 
lassi
al Wiener-Hopf operators. The theory of the 
onvolution type

operators on the half line originates from the fundamental papers by Krein and

Gohberg/Krein [7, 4℄ where the Fredholm theory for these operators is established

and an index formula is derived. See also the monograph [3℄ by Gohberg/Feldman

for an axiomati
 approa
h to this 
ir
le of questions. For 
onvolution type op-

erators with variable 
oeÆ
ients whi
h stabilize at in�nite, a Fredholm 
riterion

and an index formula have been obtained by Karapetiants/Samko in [5℄; see also

their monograph [6℄.

In [12, 13℄, there is developed the limit operator approa
h to study Fredholm

properties of general band-dominated operators on spa
es l

p

of ve
tor-valued

sequen
es. In [10℄ we demonstrated that this approa
h also applies to operators

of 
onvolution type a
ting on L

p

spa
es if a suitable dis
retization redu
ing L

p

-

to l

p

-spa
es is performed. (To be pre
isely: If the sequen
es in l

p

take their values

in an in�nite dimensional Bana
h spa
e, then we derived in [13℄ a 
riterion for

a generalized form of Fredholmness, 
alled P-Fredholmness; see below. But the

results of [10℄ refer to 
ommon Fredholmness.) The long standing problem to

determine the Fredholm index of a band-dominated operator in terms of its limit

operators, too, has been �nally solved in [11℄ for band-dominated operators on

the spa
e l

2

with s
alar-valued sequen
es. All mentioned results 
an be also found

in the monograph [14℄. The index formula has been generalized to l

p

-spa
es in

[15℄. In the present paper we will undertake a further generalization to band-

dominated operators with 
ompa
t entries a
ting on l

p

-spa
es of ve
tor-valued

fun
tions. Thereby these results will get the right form to be
ome appli
able

to lo
ally 
ompa
t band-dominated operators on L

p

-spa
es (and thus, to prove

assertion (b) of the theorem).

The paper is organized as follows. We start with re
alling some basi
 fa
ts

on sequen
es of 
ompa
t operators. For the reader's 
onvenien
e, the proofs

are in
luded. The main work will be done in Se
tion 3 where we will derive

the Fredholm 
riterion and the index formula for band-dominated operators on

l

p

with 
ompa
t entries. In Se
tion 4, these results will be applied to lo
ally


ompa
t band-dominated operators on L

p

whi
h mainly requires to 
onstru
t a

suitable dis
retization mapping. Some appli
ations will be dis
ussed in the �nal

se
tion.

This work had been supported by the CONACYT proje
t 43432. The authors

are grateful for this support.
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2 Sequen
es of 
ompa
t operators

Let X be a 
omplex Bana
h spa
e whi
h enjoys the following symmetri
 approx-

imation property (sap): There is a sequen
e (�

N

)

N�1

of proje
tions (= idempo-

tents) �

N

2 L(X) of �nite rank su
h that �

N

! I and �

�

N

! I

�

strongly as

N !1. Evident examples of Bana
h spa
es with sap are the separable Hilbert

spa
es, the spa
es l

p

(Z

K

) and the spa
es L

p

[a; b℄. It is also 
lear that if X is a

re
exive Bana
h spa
e with sap, then X

�

has sap, too, and the 
orresponding

proje
tions 
an be 
hosen as �

�

N

.

De�nition 2 A sequen
e (K

n

) of operators in L(X) is said to be

(a) relatively 
ompa
t if the norm 
losure of fK

n

: n 2 Ng is 
ompa
t in L(X);

(b) 
olle
tively 
ompa
t if the set [

n2N

K

n

B

X

is relatively 
ompa
t in X;

(
) uniformly left (right, two-sided) approximable if, for ea
h " > 0 there is an

N

0

su
h that, for ea
h n 2 N and ea
h N � N

0

,

kK

n

� �

N

K

n

k < " (kK

n

�K

n

�

N

k < "; kK

n

� �

N

K

n

�

N

k < "):

Note that the uniform left approximability of (K

n

) is equivalent to

lim

N!1

sup

n2N

kK

n

� �

N

K

n

k = 0:

Proposition 3 Let X be a Bana
h spa
e with sap. The following 
onditions are

equivalent for a sequen
e (K

n

) of 
ompa
t operators on X :

(a) (K

n

) is relatively 
ompa
t;

(b) (K

n

) and (K

�

n

) are 
olle
tively 
ompa
t;

(
) (K

n

) is uniformly left and uniformly right approximable;

(d) (K

n

) is uniformly two-sided approximable.

Proof. (a) ) (b): Let (x

n

) be a sequen
e in [

n

K

n

B

X

. For ea
h n 2 N , 
hoose

r(n) 2 N and y

n

2 B

X

su
h that x

n

= K

r(n)

y

n

. By hypothesis (a), the sequen
e

(K

r(n)

) has a 
onvergent subsequen
e (K

r(n

k

)

). Let K denote the limit of that

subsequen
e. Then

kx

n

k

�Ky

n

k

k = kK

r(n

k

)

y

n

k

�Ky

n

k

k � kK

r(n

k

)

�Kk ! 0: (3)

Sin
e K is 
ompa
t and ky

n

k

k � 1, the sequen
e (K

r(n

k

)

) has a 
onvergent subse-

quen
e. From (3) we 
on
lude that then the sequen
e (x

n

k

) (hen
e, the sequen
e

(x

n

)) has a 
onvergent subsequen
e, too. This yields the 
olle
tive 
ompa
tness

of the sequen
e (K

n

). Sin
e (K

�

n

) is relatively 
ompa
t whenever (K

n

) is rela-

tively 
ompa
t, the 
olle
tive 
ompa
tness of (K

�

n

) follows in the same way.

(b)) (
): We will show that the 
olle
tive 
ompa
tness of (K

n

) implies the uni-

form left approximability of that sequen
e. We will not make use of the strong
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onvergen
e of �

N

to I

�

in this part of the proof. So is be
omes evident that then

also the 
olle
tive 
ompa
tness of (K

�

n

) implies the uniform left approximability

of (K

�

n

) with respe
t to the sequen
e (�

�

N

) whi
h is equivalent to the uniform

right approximability of (K

n

).

Contrary to what we want to show, assume that (K

n

) is not uniformly left

approximable. Then there are an " > 0, a monotoni
ally in
reasing sequen
e

(N(r))

r�1

and operators K

n(r)

2 fK

n

: n 2 Ng su
h that

k(I � �

N(r)

)K

n(r)

k � " for all r 2 N :

Choose x

n(r)

2 B

X

su
h that

k(I � �

N(r)

)K

n(r)

x

n(r)

k � "=2 for all r 2 N : (4)

By hypothesis (b), the sequen
e (K

n(r)

x

n(r)

) has a 
onvergent subsequen
e. Let

x

0

denote its limit. We 
on
lude from (4) that k(I � �

N(r)

)x

0

k � "=4 for all

suÆ
iently large r. Letting r go to in�nity, we arrive at a 
ontradi
tion.

(
)) (d): This impli
ation follows immediately from

kK

n

� �

N

K

n

�

N

k � kK

n

� �

N

K

n

k+ k�

N

K

n

� �

N

K

n

�

N

k

� kK

n

� �

N

K

n

k+ k�

N

k kK

n

�K

n

�

N

k

and from the uniform boundedness of the proje
tions �

N

due to the Bana
h-

Steinhaus theorem.

(d)) (a): We 
onsider a subsequen
e of (K

n

) whi
h we write as (K

n

)

n2N

0

with

an in�nite subset N

0

of N . Sin
e the proje
tions �

N

have �nite rank, there are

an in�nite subset N

1

of N

0

su
h that the sequen
e (�

1

K

n

�

1

)

n2N

1


onverges, an

in�nite subset N

2

of N

1

su
h that the sequen
e (�

2

K

n

�

2

)

n2N

2


onverges, et
.

Thus, for ea
h N � 1, one �nds an in�nite subset N

N

of N

N�1

su
h that the

sequen
e (�

N

K

n

�

N

)

n2N

N


onverges. Let k(n) denote the nth number in N

N

(ordered with respe
t to the relation <) and set

^

K

n

:= K

k(n)

. Clearly, (

^

K

n

)

n�1

is a subsequen
e of ea
h of the sequen
es (K

n

)

n2N

N

up to �nitely many entries.

Thus, for ea
h N 2 N , the sequen
e (�

N

^

K

n

�

N

)

n�1


onverges. Now we have

^

K

n

�

^

K

m

= (

^

K

n

� �

N

^

K

n

�

N

)� (

^

K

m

� �

N

^

K

m

�

N

) + �

N

(

^

K

n

�

^

K

m

)�

N

:

Let " > 0. By hypothesis (d), there is an N su
h that

k

^

K

n

� �

N

^

K

n

�

N

k < "=3

for all n 2 N. Fix this N , and 
hoose n

0

su
h that

k�

N

(

^

K

n

�

^

K

m

)�

N

k < "=3

for all m; n � n

0

whi
h is possible due to the 
onvergen
e of the sequen
e

(�

N

^

K

n

�

N

)

n�1

. Hen
e, k

^

K

n

�

^

K

m

k < " for all m; n � n

0

. This implies the


onvergen
e of the sequen
e (

^

K

n

) and, thus, the relative 
ompa
tness of (K

n

).
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3 The Fredholm index of dis
rete band-domi-

nated operators with 
ompa
t entries

Let X be a 
omplex Bana
h spa
e with sap. By E := l

p

(Z; X) we denote the

Bana
h spa
e of all sequen
es x : Z! X with

kxk

p

E

:=

X

n2Z

kx

n

k

p

X

<1:

For k 2 Z, let V

k

: l

p

(Z; X) ! l

p

(Z; X) stand for the shift operator (V

k

x)

n

:=

x

n�k

. In what follows, we will have to 
onsider shift operators on di�erent spa
es

l

p

(Z; X). In order to indi
ate the underlying spa
e we will sometimes also write

V

k;X

for the shift operator V

k

on l

p

(Z; X). Further, for ea
h non-negative integer

n, let the proje
tion operators P

n

: l

p

(Z; X)! l

p

(Z; X) be de�ned by

(P

n

x)

k

:=

�

x

k

if jkj � n

0 if jkj > n;

and set Q

n

:= I � P

n

and P := (P

n

)

n�0

. Sometimes we will also write P

n;X

in

pla
e of P

n

in order to indi
ate the underlying spa
e.

Ea
h operator A 2 L(E) 
an be represented in the obvious way by a two-

sided in�nite matrix with entries in L(X) (in analogy with the representation

of an operator on l

p

(Z) := l

p

(Z; C ) with respe
t to the standard basis). The

operator A 2 L(E) is 
alled a band operator if its matrix representation (A

ij

) is

a band matrix, i.e., if there is a k 2 N su
h that A

ij

= 0 if ji � jj � k. The


losure of the set of all band operators on E is a 
losed subalgebra of L(E) whi
h

we denote by A

E

. The elements of A

E

will be 
alled band-dominated operators.

By C

E

we denote the 
losed ideal of A

E

whi
h 
onsists of all band-dominated

operators whi
h have only 
ompa
t entries in their matrix representation.

Following the terminology introdu
ed in [14℄, an operator K 2 L(E) is 
alled

P-
ompa
t if

lim

n!1

kKQ

n

k = lim

n!1

kQ

n

Kk = 0:

We denote the set of all P-
ompa
t operators by K(E; P), and we write L(E; P)

for the set of all operators A 2 L(E) for whi
h both AK and KA are P-
ompa
t

whenever K is P-
ompa
t. Then L(E; P) is a 
losed subalgebra of L(E) whi
h


ontains K(E; P) as a 
losed ideal.

De�nition 4 An operator A 2 L(E; P) is 
alled P-Fredholm if the 
oset A +

K(E; P) is invertible in the quotient algebra L(E; P)=K(E; P), i.e., if there exist

an operator B 2 L(E; P) and operators K; L 2 K(E; P) su
h that BA = I +K

and AB = I + L.

This de�nition is equivalent to the following one: An operator A 2 L(E; P) is

P-Fredholm if and only if there exist an m 2 N and operators L

m

; R

m

2 L(E; P)

6



su
h that

L

m

AQ

m

= Q

m

AR

m

= Q

m

:

Thus, P-Fredholmness is often referred to as lo
al invertibility at in�nity. If X

has �nite dimension, then the notions P-Fredholmness and Fredholmness are

synonymous.

All band-dominated operators belong to L(E; P). This 
an be easily 
he
ked

for the two basi
 types of band-dominated operators: the shift operators and

the operators of multipli
ation by a fun
tion in l

1

(Z; L(X)), and it follows for

general band-dominated operators sin
e L(E; P) is a 
losed algebra. Hen
e,

it makes sense to speak about their P-Fredholmness. A 
riterion for the P-

Fredholmness of a band-dominated operator A 
an be given in terms of the limit

operators of A. These are, in analogy with the notions from Se
tion 1, de�ned as

follows. Let A 2 L(E), and let h : N ! Z be a sequen
e whi
h tends to in�nity.

An operator A

h

2 L(E) is 
alled a limit operator of A with respe
t to the sequen
e

h if

lim

n!1

kP

k

(V

�h(n)

AV

h(n)

� A

h

)k = lim

n!1

k(V

�h(n)

AV

h(n)

� A

h

)P

k

k = 0

for every k 2 N . The set of all limit operators of A will be denoted by �

op

(A)

and is 
alled the operator spe
trum of A again. An operator A 2 L(E) is said

to be ri
h or to possess a ri
h operator spe
trum if ea
h sequen
e h whi
h tends

to in�nity possesses a subsequen
e g for whi
h the limit operator A

g

exists. We

refer to the ri
h operators in A

E

as ri
h band-dominated operators and write A

$

E

and C

$

E

for the Bana
h algebra of the ri
h band-dominated operators and for its


losed ideal 
onsisting of the ri
h operators in C

E

.

The following is the main result on P-Fredholmness of ri
h band-dominated

operators. Its proof is in [14℄, Theorem 2.2.1.

Theorem 5 An operator A 2 A

$

E

is P-Fredholm if and only if ea
h of its limit

operators is invertible and if the norms of their inverses are uniformly bounded,

i.e.,

supfk(A

h

)

�1

k : A

h

2 �

op

(A)g <1:

In 
ase X = C , P-Fredholmness 
oin
ides with 
ommon Fredholmness. In this


ase one 
an also express the Fredholm index of a Fredholm band-dominated

operator in terms of the (lo
al) indi
es of its limit operators. To 
ite these results

from [11, 15℄, let P : l

p

(Z; X)! l

p

(Z; X) refer to the proje
tion operator

(Px)

k

:=

�

x

k

if k � 0

0 if k < 0;

and set Q := I � P . If ne
essary, we will write also P

X

in pla
e of P . Then,

for ea
h band-dominated operator on l

p

(Z; C ), the operators PAQ and QAP are


ompa
t. This is obvious for band operators in whi
h 
ase PAQ and QAP are

7



of �nite rank, and it follows for general band-dominated operators by an obvious

approximation argument. Consequently, the operators A�(PAP+Q)(P+QAQ)

and A�(P+QAQ)(PAP+Q) are 
ompa
t, whi
h implies that a band-dominated

operator on l

p

(Z; C ) is Fredholm if and only if both operators PAP + Q and

P +QAQ are Fredholm and that

indA = ind (PAP +Q) + ind (P +QAQ):

In this 
ase we 
all

ind

+

A := ind (PAP +Q) and ind

�

A := ind (P +QAQ)

the plus- and the minus-index of A. Finally, let �

op

(A) = �

+

(A) [ �

�

(A), the

latter 
omponents 
olle
ting the limit operators of A with respe
t to sequen
es

h tending to +1 and to �1, respe
tively, and note that in 
ase X = C all

band-dominated operators are ri
h.

Theorem 6 Let X = C , and let A be a Fredholm band-dominated operator on

l

p

(Z). Then, for arbitrary operators B

+

2 �

+

(A) and B

�

2 �

�

(A),

ind

+

B

+

= ind

+

A and ind

�

B

�

= ind

�

A (5)

and, 
onsequently,

indA = ind

+

B

+

+ ind

�

B

�

: (6)

In parti
ular, all operators in �

+

(A) have the same plus-index, and all operators

in �

�

(A) have the same minus-index.

It is the goal of the present se
tion to generalize the assertion of Theorem 6

to operators a
ting on E = l

p

(Z; X) with a general Bana
h spa
e X with sap

whi
h are of the form I +K with K 2 C

$

E

. A �rst observation is that for these

operators P-Fredholmness and 
ommon Fredholmness 
oin
ide.

Proposition 7 An operator in I+C

E

is Fredholm if and only if it is P-Fredholm.

Proof. We 
laim that

C

E

\K(E; P) = K(E): (7)

The in
lusion K(E) � C

E

is evident, and the in
lusion K(E) � K(E; P) holds

sin
e the proje
tions P

n

and P

�

n


onverge strongly to the identity operators on E

and E

�

, respe
tively. Thus, K(E) � C

E

\K(E; P). For the reverse in
lusion, let

K 2 C

E

\K(E; P). Sin
e K 2 C

E

, one has P

n

K 2 K(E) for every n, and sin
e

K 2 K(E; P), one has kK � P

n

Kk ! 0. Thus, K 2 K(E), whi
h veri�es (7).

Sin
e K(E) � K(E; P) by (7), every Fredholm operator in L(E; P) is P-

Fredholm. For the reverse impli
ation, let A := I + K with K 2 C

E

be a

P-Fredholm operator. Then there are operators B 2 L(E; P) and L 2 K(E; P)

su
h that BA = I � L. Set R := I �KB. Then

RA� I = A� I �KBA = K �KBA = K(I �BA) = KL:

8



Sin
e KL 2 C

E

\K(E; P) is 
ompa
t by (7), the operator R is a left Fredholm

regularizer for A. Similarly one 
he
ks that A possesses a right Fredholm regu-

larizer. Thus, the operator A is Fredholm.

Combining Proposition 7 with Theorem 5 one gets the following.

Corollary 8 Let A := I + K with K 2 C

$

E

. Then the operator A is Fredholm

if and only if ea
h of its limit operators is invertible and if the norms of their

inverses are uniformly bounded.

We will make use of the following lemma several times.

Lemma 9 Every band-dominated operator in C

E

(resp. in C

$

E

) is the norm limit

of a sequen
e of band operators C

E

(resp. in C

$

E

).

This 
an be proved in exa
tly the way as we derived Theorem 2.1.18 in [14℄ whi
h

states that every ri
h band-dominated operators is the norm limit of a sequen
e

of ri
h band operators.

As a �rst 
onsequen
e of the C

E

-version of Lemma 9 we 
on
lude that PAQ and

QAP are 
ompa
t operators for ea
h operator A 2 I+C

E

. Indeed, this is obvious

for A being a band operators in whi
h 
ase PAQ and QAP have only a �nite

number of non-vanishing entries, and these are 
ompa
t. The 
ase of general

A follows by an obvious approximation argument. Consequently, the operators

A� (PAP +Q)(P +QAQ) and A� (P +QAQ)(PAP +Q) are 
ompa
t, whi
h

implies that an operator A 2 I + C

E

is Fredholm if and only if both operators

PAP +Q and P +QAQ are Fredholm. In this 
ase, the integers

ind

+

A := ind (PAP +Q) and ind

�

A := ind (P +QAQ)

are 
alled the plus- and the minus-index of A. Clearly,

indA = ind

+

A + ind

�

A: (8)

Finally, let �

op

(A) = �

+

(A) [ �

�

(A) in analogy with the 
ase X = C .

Here is the announ
ed result for the indi
es of Fredholm operators in I + C

$

E

.

Theorem 10 Let A 2 I + C

$

E

be a Fredholm operator. Then, for arbitrary oper-

ators B

+

2 �

+

(A) and B

�

2 �

�

(A),

ind

+

B

+

= ind

+

A and ind

�

B

�

= ind

�

A (9)

and, 
onsequently,

indA = ind

+

B

+

+ ind

�

B

�

: (10)

The remainder of this se
tion is devoted to the proof of Theorem 10. We will

verify this theorem by redu
ing its assertion step by step until we will arrive at

operators on l

p

(Z; C ) (with s
alar entries) for whi
h the result is known (Theorem

6). The �rst step of the redu
tion pro
edure is based on the following observation.

9



Proposition 11 Let F be a dense subset of the set of all Fredholm operators in

I + C

$

E

. If the assertion of Theorem 10 holds for all operators in F , then it holds

for all Fredholm operators in I + C

$

E

.

Proof. Let A be a Fredholm operator in I + C

$

E

, and let B 2 �

+

(A). We will

show that

ind

+

B = ind

+

A; (11)

whi
h settles the plus-assertion of (9). The minus-assertion follows similarly, and

(9) implies (10) via (8).

To prove (11), 
hoose a sequen
e (A

n

) of operators in F whi
h 
onverges

to A in the operator norm, and let h be a sequen
e tending to +1 su
h that

B = A

h

. Employing Cantor's diagonal method, we 
onstru
t a subsequen
e g of

h for whi
h all limit operators (A

n

)

g

exist. For the details of this 
onstru
tion,


onsult the proof of Proposition 1.2.6 in [14℄. From Proposition 1.2.2 (e) in [14℄

we 
on
lude that kB � (A

n

)

g

k = kA

g

� (A

n

)

g

k ! 0. Now one has

ind

+

(A

n

)

g

= ind

+

A

n

for all n 2 N

and this implies (11) by letting n go to in�nity due to the 
ontinuity of the index.

Our 
hoi
e of the set F is as follows. The C

$

E

-version of Lemma 9 allows one

to approximate ea
h band-dominated operator A = I + K with K 2 C

$

E

by a

sequen
e of band operators A

n

:= I+K

n

with K

n

2 C

$

E

. Ea
h band operator K

n


an be written as a sum

K

n

=

X

k2Z

K

(k)

n

V

k

(12)

with only �nitely many non-vanishing items. The 
oeÆ
ients K

(k)

n

in (12) are

operators of multipli
ation by sequen
es of 
ompa
t operators on X, and these

multipli
ation operators are ri
h whenever K

n

is ri
h. From Theorem 2.1.16

in [14℄ we know that a multipli
ation operator is ri
h if and only if the set of

its entries is relatively 
ompa
t in L(X). So we 
on
lude from the equivalen
e

between (a) and (d) in Proposition 3 that ea
h 
oeÆ
ient K

(k)

n

in (12) 
an be

approximated as 
losely as desired by a sequen
e (K

(k)

n;N

)

N2N

of multipli
ation

operators the entries of whi
h map im�

N

into itself and a
t on im (I

X

� �

N

) as

the zero operator. Thus, one 
an approximate the operator A = I +K as 
losely

as desired by band operators A

n;N

= I + K

n;N

where the entries of K

n;N

map

im�

N

into itself and a
t as the zero operator on im (I

X

� �

N

). We denote the

set of all operators K

n;N

of this form by C

E;N

. Note that the operators in C

E;N

are automati
ally ri
h.

Further, if A = I + K is a Fredholm operator, then the operators A

n;N

=

I +K

n;N

are Fredholm for all suÆ
iently large n and N . Thus, we 
an 
hoose F

10



as the set of all Fredholm operators I +K

n;N

with K

n;N

2 C

E;N

. By Proposition

11, it remains to prove Theorem 10 for these operators.

We agree upon writing X

N

in pla
e of im�

N

if we want to 
onsider im�

N

as

a Bana
h spa
e in its own right, not as a subspa
e of X. Further we introdu
e

the mappings

R : l

p

(Z; X)! l

p

(Z; X

N

); (x

n

) 7! (�

N

x

n

)

where �

N

x

n

is 
onsidered as an element of X

N

, and

L : l

p

(Z; X

N

)! l

p

(Z; X); (x

n

) 7! (x

n

)

where the x

n

on the right-hand side are 
onsidered as elements of X. Clearly,

RL is the identity operator on l

p

(Z; X

N

), whereas LR is the proje
tion

� : l

p

(Z; X)! l

p

(Z; X); (x

n

) 7! (�

N

x

n

);

now with the �

N

x

n

being 
onsidered as elements of X. We are going to show

that the operators A = I + K

n;N

as well as their limit operators behave well

under the mapping A 7! RAL.

Proposition 12 Let A = I +K

n;N

with K

n;N

2 C

E;N

.

(a) If A is a Fredholm operator on l

p

(Z; X), then RAL is a Fredholm operator

on l

p

(Z; X

N

), and the Fredholm indi
es of A and RAL 
oin
ide.

(b) If the limit operator of A with respe
t to a sequen
e h : N ! Z exists, then

the limit operator of RAL with respe
t to h exists, too, and (RAL)

h

= RA

h

L.

Proof. Sin
e A is Fredholm, there are operators B; T on l

p

(Z; X) with T 
om-

pa
t su
h that

BA = I + T: (13)

For x 2 kerA one gets x+ Tx = 0, when
e x 2 imT . Hen
e, dimkerA � rankT

for ea
h pair (B; T ) su
h that (13) holds. One 
an 
hoose the pair (B; T ) even

in su
h a way that dimkerA = rankT . For write X as a dire
t sum kerA�X

0

and let P

kerA

refer to the proje
tion from X onto kerA parallel to X

0

. Then

A(I � P

kerA

) : im (I � P

kerA

)! imA

is an invertible operator. Let B denote its inverse. Then BA(I � P

kerA

) =

I � P

kerA

and

BA = I � P

kerA

+BAP

kerA

= I � (I � BA)P

kerA

:

Clearly, rank (I�BA)P

kerA

� dimkerA. Thus, one 
an indeed assume that (13)

holds with dimkerA = rankT . From (13) we get

RBAL = RL+RTL = I +RTL;

11



and sin
e L = �L and A 
ommutes with �, we obtain

RBLRAL = I +RTL: (14)

In the same way, AB = I+T

0

with T

0


ompa
t implies thatRALRBL = I+RT

0

L

with RT

0

L 
ompa
t. Hen
e, RAL is Fredholm, and (14) moreover shows that

dimkerRAL � rankRTL � rankT = dimkerA:

For the reverse estimate, let B; T be operators on l

p

(Z; X

N

) with BRAL = I+T

and dimkerRAL = rankT . Then LBRALR = LR + LTR, when
e

(LBR� + I � �)A = I + LTR

(take into a

ount that A� = �A = A� (I � �)). This identity shows that

dimkerA � rankLTR � rankT = dimkerRAL;

when
e �nally dimkerA = dimkerRAL. In the same way one gets dimkerA

�

=

dimker (RAL)

�

. Sin
e dimkerA

�

= dim imA for ea
h Fredholm operator A, we

arrive at assertion (a).

(b) Let A

h

be a limit operator of A. Then, by de�nition,

k(A

h

� V

�h(n);X

AV

h(n);X

)P

k;X

k ! 0 for ea
h k 2 N:

Thus,

kR(A

h

� V

�h(n); X

AV

h(n); X

)P

k;X

Lk ! 0 for ea
h k 2 N :

Sin
e the proje
tion � 
ommutes with ea
h of the operators P

k;X

, V

h(n); X

and

A, and sin
e

RV

h(n); X

L = V

h(n);X

N

and RP

k;X

L = P

k;X

N

;

one 
on
ludes that

k(RA

h

L� V

�h(n);X

N

RALV

h(n); X

N

)P

k;X

N

k ! 0 for ea
h k 2 N :

Similarly one obtains

kP

k;X

N

(RA

h

L� V

�h(n); X

N

RALV

h(n); X

N

)k ! 0 for ea
h k 2 N :

Thus, RA

h

L is the limit operator of RAL with respe
t to the sequen
e h.

Sin
e the proje
tions P and � also 
ommute, it is an immediate 
onsequen
e of

the pre
eding proposition and its proof that

ind

+

A = ind

+

RAL

and

ind

+

A

h

= ind

+

RA

h

L = ind

+

(RAL)

h

for ea
h limit operator A

h

2 �

+

(A). Thus, the assertion of Theorem 6 will follow

on
e we have proved this theorem for band-dominated operators on l

p

(Z; X

N

) in

pla
e of l

p

(Z; X).

12



Proposition 13 The assertion of Theorem 10 holds for all Fredholm band-domi-

nated operators on l

p

(Z; X

N

) (with �xed N 2 N).

Proof. Let d <1 be the dimension of X

N

, and let e

1

; : : : ; e

d

be a basis of X

N

.

Then there are positive 
onstants C

1

; C

2

su
h that

C

1

k(x

1

; : : : ; x

d

)k

l

p

� kx

1

e

1

+ : : :+ x

d

e

d

k

X

N

� C

2

k(x

1

; : : : ; x

d

)k

l

p

(15)

for ea
h ve
tor (x

1

; : : : ; x

d

) 2 C

d

. De�ne J : l

p

(Z; X

N

)! l

p

(Z; C ) by

(Jx)

nd+r

:= (x

n

)

r

; 0 � r � d� 1

where (x

n

)

r

refers to the rth 
oordinate of the nth entry x

n

2 X

N

of the sequen
e

x. It follows from (15) that

C

1

kJxk

l

p

(Z;C )

� kxk

l

p

(Z;X

N

)

� C

2

kJxk

l

p

(Z;C )

;

i.e., J is a topologi
al isomorphism from l

p

(Z; X

N

) onto l

p

(Z; C ). The de�nition

of J implies that if A is a Fredholm band operator on l

p

(Z; X

N

), then JAJ

�1

is a Fredholm band operator on l

p

(Z; C ), and 
onversely. Moreover, indA =

indJAJ

�1

in this 
ase. This identity holds for the plus- and minus-indi
es as

well, sin
e JP

X

N

J

�1

= P

C

. Moreover, one has

JV

n;X

N

J

�1

= V

dn; C

and JP

k;X

N

J

�1

= P

dk; C

for all n 2 Z and k 2 N . These equalities imply that if A

h

is the limit operator

of the band-dominated operator A 2 l

p

(Z; X

N

) with respe
t to the sequen
e

h, then JA

h

J

�1

is the limit operator of JAJ

�1

with respe
t to the sequen
e

dh : N ! Z; m 7! dh(m), i.e.,

(JAJ

�1

)

dh

= JA

h

J

�1

:

Summarizing, we obtain

ind

+

A = ind

+

JAJ

�1

and

ind

+

A

h

= ind

+

JA

h

J

�1

= ind

+

(JAJ

�1

)

dh

for ea
h Fredholm band-dominated operator A on l

p

(Z; X

N

) and for ea
h of its

limit operators A

h

2 �

+

(A). Sin
e dh tends to +1 whenever h does, one has

(JAJ

�1

)

dh

2 �

+

(JAJ

�1

), and from Theorem 6 we infer that ind

+

JAJ

�1

=

ind

+

(JAJ

�1

)

dh

. Thus, ind

+

A = ind

+

A

h

for ea
h Fredholm band-dominated

operator A on l

p

(Z; X

N

) and for ea
h of its limit operators A

h

2 �

+

(A). The

minus-
ounterpart of this assertion follows analogously. This proves the proposi-

tion and �nishes the proof of Theorem 10.
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4 The Fredholm index of lo
ally 
ompa
t band-

dominated operators on L

p

(R )

This se
tion is devoted to the proof of Theorem 1. As in the dis
rete 
ase, the

limit operators approa
h provides us with a 
riterion for the

^

P-Fredholmness

of an operator rather than for its 
ommon Fredholmness. Here,

^

P = (

^

P

n

)

n�0

where

^

P

n

: L

p

(R) ! L

p

(R) is the operator of multipli
ation by the 
hara
teristi


fun
tion of the interval [�n; n℄, i.e.,

(

^

P

n

f)(x) =

�

f(x) if x 2 [�n; n℄

0 else;

and

^

P-
ompa
tness and

^

P-Fredholmness are de�ned literally as in the dis
rete


ase. The following proposition 
an be proved as its dis
rete 
ounterpart Propo-

sition 7.

Proposition 14 An operator A 2 L(L

p

(R)) of the form A = I+K with K 2 L

p

is Fredholm if and only if it is

^

P-Fredholm.

We will now prove Theorem 1 via a suitable dis
retization. Let �

0

denote the 
har-

a
teristi
 fun
tion of the interval [0; 1℄. The mappingG : L

p

(R) ! l

p

(Z; L

p

[0; 1℄)

whi
h sends the fun
tion f 2 L

p

(R) to the sequen
e

Gf = ((Gf)

n

)

n2Z

where (Gf)

n

:= �

0

U

�n

f

is a bije
tive isometry the inverse of whi
h maps the sequen
e x = (x

n

)

n2Z

to the

fun
tion

G

�1

x =

X

n2Z

U

n

x

n

�

0

;

the series 
onverging in L

p

(R). Thus, the mapping

� : L(L

p

(R)) ! L(l

p

(Z; L

p

[0; 1℄)); A 7! GAG

�1

is an isometri
 algebra isomorphism. It is shown in Proposition 3.1.4 in [14℄ that

�(A

h

) = (�(A))

h

for ea
h limit operator A

h

of an operator A 2 B

p

, whereas Proposition 3.1.6 in [14℄

states that � maps B

$

p

onto A

$

E

with E = l

p

(Z; L

p

[0; 1℄). Further, if A 2 L

p

(R)

is a lo
ally 
ompa
t operator, then the entries of the matrix representation of its

dis
retization �(A) are 
ompa
t operators. Thus, � maps L

$

p

into I+C

$

E

. Finally,

one evidently has

indA = ind�(A)

for ea
h operator A 2 L(L

p

(R)), and the Bana
h spa
e L

p

[0; 1℄ has the sap as

already mentioned. Thus, the assertions of Theorem 1 follow immediately from

their dis
rete 
ounterparts Corollary 8 and Theorem 10.
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5 Appli
ations

As an appli
ation of Theorem 1, we are going to examine the Fredholm properties

of operators of the form I + K with K 2 K

p

(BUC). The latter stands for the

smallest 
losed subalgebra of L(L

p

(R)) whi
h 
ontains all operators of the form

aCbI where a; b 2 BUC and where C is a Fourier 
onvolution operator with

L

1

-kernel k. Thus,

(Cf)(x) = (k � f)(x) =

Z

R

k(x� y)f(y) dy; x 2 R:

In Proposition 3.3.6 in [14℄ it is veri�ed that

K

p

(BUC) � L

$

p

:

Hen
e, Theorem 1 applies to operators in K

p

(BUC), and it yields the following.

Theorem 15 Let A 2 L(L

p

(R)) be a 
onvolution type operator of the form I+K

with K 2 K

p

(BUC). Then

(a) A is Fredholm if and only if all of its limit operators are invertible, and if the

norms of their inverses are uniformly bounded.

(b) if A is Fredholm then, for arbitrary limit operators B

�

2 �

�

(A),

indA = ind

+

B

+

+ ind

�

B

�

:

One 
annot say mu
h about the limit operators of a general operator A 2 I +

K

p

(BUC). It is only 
lear that they belong to I + K

p

(BUC) again. Thus, the


omputation of the plus- and minus indi
es of the limit operators of 
onvolution

type operators will remain a serious problem in general. In what follows we

will dis
uss some instan
es where this 
omputation 
an be easily done (slowly

os
illating 
oeÆ
ients) or is at least manageable (slowly os
illating plus periodi



oeÆ
ients).

Let SO stand for the set of all fun
tions f 2 BUC whi
h are slowly os
illating

in the sense that

lim

t!�1

sup

h2[0; 1℄

jf(t)� f(t+ h)j = 0:

This set forms a C

�

-subalgebra of BUC. Let K

p

(SO) stand for the smallest


losed subalgebra of K

p

(BUC) whi
h 
ontains all operators of the form aCbI

where a; b 2 SO and where C is a Fourier 
onvolution with L

1

-kernel. Further,

we write PER for the C

�

-subalgebra of BUC whi
h 
onsists of all 
ontinuous

fun
tions of period 1 on R. By K

p

(PER; SO) we denote the smallest 
losed

subalgebra of K

p

(BUC) whi
h 
ontains all operators of the form aCbI where now

a; b 2 PER + SO and where C is again a Fourier 
onvolution with L

1

-kernel.

Similarly, K

p

(PER) refers to the smallest 
losed subalgebra of K

p

(BUC) whi
h


ontains all operators aCbI with a; b 2 PER and with a Fourier 
onvolution C

with L

1

-kernel.
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Lemma 16 The limit operators of operators in K

p

(SO) are operators of Fourier


onvolution with L

1

-kernel, and all limit operators of operators in K

p

(PER; SO)

belong to K

p

(PER).

Proof. Operators of 
onvolution are shift invariant with respe
t to arbitrary

shifts, and operators of multipli
ations by fun
tions in PER are invariant with

respe
t to integer shifts. Hen
e, operators of this form as well as there sums and

produ
ts possess exa
tly one limit operator, namely the operator itself. Further,

as it has been pointed out in Proposition 3.3.9 in [14℄, all limit operators of

operators of multipli
ation by slowly os
illating fun
tions are 
onstant multiples

of the identity operator, when
e the assertion.

Hen
e, the determination of the index of a Fredholm operator in I + K

p

(SO)

requires the 
omputation of the plus- and the minus index of an operator of the

form I+C where C is a Fourier 
onvolution with kernel k 2 L

1

(R). Equivalently,

one has to determine the 
ommon Fredholm index of operators of the form I +

�

�

C�

�

I. The operator I+�

+

C�

+

I is the Wiener-Hopf operator with generating

fun
tion 1+a where a is the Fourier transform of the kernel k of C. After re
e
tion

at the origin, the operator I + �

�

C�

�

I also be
omes a Wiener-Hopf operator.

The Fredholm property of Wiener-Hopf operators of this type is well under-

stood (see [1, 3, 7℄). Sin
e

lim

x!+1

a(x) = lim

x!�1

a(x) = 0;

one 
an 
onsider 1+a as a 
ontinuous fun
tion on the one-point 
ompa
ti�
ation

_

R of the real line, whi
h is also 
alled the symbol of the operator. It turns out

that the Wiener-Hopf operator with symbol 1 + a is Fredholm if and only if the

fun
tion 1 + a does not vanish on

_

R , and that in this 
ase its Fredholm index is

the negative winding number of the 
losed 
urve 1+a(

_

R) around the origin. This

solves the problem of 
omputing the Fredholm index of an operator in I+K

p

(SO)


ompletely and in an easy way.

Let us now turn over to the setting of operators in I + K

p

(PER; SO). Here

we are left with the problem to determine the Fredholm index of operators of the

form �

+

(I +K)�

+

I on L

p

(R

+

) where K 2 K

p

(PER). The proofs of Theorems

1 and 10 given above o�er a way to perform this 
al
ulation. The de
isive point

is that, due to the periodi
ity, the operator

�(�

+

(I +K)�

+

I) 2 L(l

p

(Z

+

; L

p

[0; 1℄)) (16)

is a band-dominated Toeplitz operator the entries of whi
h are of the form I +


ompa
t if they are lo
ated on the main diagonal, whereas they are 
ompa
t when

lo
ated outside the main diagonal. Re
all that a Toeplitz operator on l

p

(Z

+

; X)

is an operator with matrix representation (A

i�j

)

i; j2Z

+

, i.e., the entries of the

matrix are 
onstant along ea
h diagonal whi
h is parallel to the main diagonal.
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If now I +K is Fredholm on L

p

(R), then the Toeplitz operator (16) is Fred-

holm, too, and it has the same index. Employing the redu
tion pro
edure used in

the proof of Theorem 10, one 
an further approximate the Toeplitz operator (16)

by a Toeplitz operator on l

p

(Z

+

; C

N

) with band stru
ture whi
h is also Fredholm

and has the same index as the original operator I+K. Thus, we are left with the

determination of the index of a 
ommon Toeplitz operator T (g) on l

p

(Z

+

; C

N

)

where ea
h entry g

ij

of the generating fun
tion g : T ! C

N�N

is a trigonometri


polynomial. This operator 
an be identi�ed with an operator matrix (T (g

ij

))

N

i; j=1

where ea
h T (g

ij

) is a Toeplitz band operator on l

p

(Z

+

; C ) = l

p

(Z

+

). As it is well

known (see, e.g., Theorem 6.12 in [1℄), this operator is Fredholm if and only if the


ommon Toeplitz operator (with s
alar-valued polynomial generating fun
tion)

T (det g) is Fredholm, and the indi
es of these operators 
oin
ide. Moreover, the

index of T (det g) is equal to the negative winding number of the fun
tion det g

with respe
t to the origin.

For a general a

ount on matrix fun
tions and the Toeplitz and Wiener-Hopf

operators generated by them, we refer to the monographs [2℄ and [9℄. For general

results about relations between the Fredholmness of a blo
k operator and its

determinant one should 
onsult Chapter 1 in [8℄.

A similar approa
h is possible for operators in I + K

p

(PER

Z

; SO) where

PER

Z

stands for the set of all fun
tions with integer period. After dis
retization

and approximation as above, one �nally arrives at a blo
k Toeplitz operator in

pla
e of (16) whi
h again 
an be redu
ed to a matrix of Toeplitz operators on

l

p

(Z

+

).

The results of Theorems 1, 10 and 15 
an be 
ompleted by an observation

made in [15℄ for the 
ase of band-dominated operators on l

p

(Z; C ). This ob-

servation 
on
erns the independen
e of the Fredholm index on p. To make this

statement pre
ise we have to explain what is meant by a band-dominated oper-

ator whi
h a
ts on di�erent l

p

-spa
es (noti
e that the 
lass of all band operators

is independent of p whereas the algebra A

E

of all band-dominated operators

depends on the parameter p of E = l

p

(Z; X) heavily).

Every in�nite matrix (a

ij

)

i; j2Z

indu
es an operator A on the Bana
h spa
e




00

(Z; X) of all fun
tions x : Z! X with 
ompa
t support by

i 7! (Ax)

i

:=

X

j2Z

a

ij

x

j

:

We say that A extends to a bounded linear operator on l

p

(Z; X) or that A a
ts on

l

p

(Z; X) if Ax 2 l

p

(Z; X) for ea
h x 2 


00

(Z; X) and if there is a 
onstant C su
h

that kAxk

p

� Ckxk

p

for ea
h x 2 


00

(Z; X). If A extends to a band-dominated

operator on both l

p

(Z; X) and l

r

(Z; X), then we say that A is a band-dominated

operator on l

p

(Z; X) and l

r

(Z; X). Otherwise stated: we 
onsider two band-

dominated operators B and C a
ting on l

p

(Z; X) and l

r

(Z; X), respe
tively, as

identi
al, and we denote them by the same letter, if their matrix representations


oin
ide.

17



Proposition 17 Let A 2 I + C

$

E

be a Fredholm band-dominated operator both

on E = l

p

(Z; X) and on E = l

r

(Z; X) with 1 < r < p < 1. Then A is

a Fredholm band-dominated operator on ea
h spa
e l

s

(Z; X) with r < s < p,

and the Fredholm index ind

s

A of A, 
onsidered as an operator on l

s

(Z; X), is

independent of s 2 [r; p℄.

The proof follows exa
tly the line of the proof of Theorem 10, �nally redu
ing

the assertion of the proposition to the 
ase X = C whi
h is treated in [15℄. It

should be also mentioned that Proposition 17 remains valid for band-dominated

operators on L

p

(Z

N

; X) with N a positive integer whi
h also follows from [15℄.

In 
ombination with Theorems 1 and 15 one gets the following 
orollary.

Corollary 18 (a) Let A 2 I + L

$

q

be a Fredholm band-dominated operator both

for q = p and for q = r with 1 < r < p < 1. Then A is a Fredholm band-

dominated operator on ea
h spa
e L

s

(R) with r < s < p, and the Fredholm index

ind

s

A of A, 
onsidered as an operator on L

s

(R), is independent of s 2 [r; p℄.

(b) Let A 2 I +K

q

(BUC) be a Fredholm 
onvolution type operator both for q = p

and for q = r with 1 < r < p < 1. Then A is a Fredholm 
onvolution type

operator on ea
h spa
e L

s

(R) with r < s < p, and the Fredholm index ind

s

A of

A, 
onsidered as an operator on L

s

(R), is independent of s 2 [r; p℄.
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