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Abstrat

We establish a neessary and suÆient riterion for the Fredholmness

of a general loally ompat band-dominated operator A on L

p

(R) and

derive a formula for its Fredholm index in terms of the limit operators of

A. The results are applied to operators of onvolution type with almost

periodi symbol.

1 Introdution

Throughout this paper, let 1 < p < 1, and for eah Banah spae X, let L(X)

stand for the Banah algebra of all bounded linear operators on X, K(X) for the

losed ideal of the ompat operators, B

X

for the losed unit ball of X, and X

�

for the Banah dual spae of X.

For eah funtion ' 2 BUC, the algebra of the bounded and uniformly ontin-

uous funtions on the real line R, and for eah t > 0, set '

t

(x) := '(tx) and write

'I for the operator on L

p

(R) of multipliation by '. An operator A 2 L

p

(R) is

alled band-dominated if

lim

t!0

kA'

t

I � '

t

Ak = 0

for eah funtion ' 2 BUC. The set B

p

of all band-dominated operators forms

a losed subalgebra of L

p

(R). In this paper we will exlusively deal with band-

dominated operators of the form I +K where I is the identity operator and K is

loally ompat (whih means that 'A and A'I are ompat for eah funtion

' 2 BUC with bounded support). We write L

p

for the set of all loally ompat

band-dominated operators on L

p

(R).

The announed Fredholm riterion and the index formula will be formulated

in terms of limit operators. To introdue this notion, we will need the shift

operators

U

k

: L

p

(R) ! L

p

(R); (U

k

f)(x) := f(x� k)

where k 2 Z. Given a sequene h : N ! Z tending to in�nity we all the operator

A

h

2 L(L

p

(R)) a limit operator of A 2 L(L

p

(R)) with respet to h if

lim

m!1

k(U

�h(m)

AU

h(m)

� A

h

)'Ik = 0
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and

lim

m!1

k'(U

�h(m)

AU

h(m)

� A

h

)k = 0

for eah funtion ' 2 BUC with bounded support. The set of all limit operators

of a given operator A 2 L(L

p

(R)) is alled the operator spetrum of A and denoted

by �

op

(A). The operator spetrum splits into two omponents �

+

(A) [ �

�

(A)

whih ollet the limit operators of A with respet to sequenes h tending to +1

and to �1, respetively.

An operator A 2 L(L

p

(R)) is said to be rih or to possess a rih operator

spetrum if every sequene h tending to in�nity possesses a subsequene g for

whih the limit operator A

g

exists. The sets of all rih operators in B

p

and L

p

will be denoted by B

$

p

and L

$

p

.

Let �

+

and �

�

stand for the harateristi funtions of the sets R

+

and

R

�

of the non-negative and negative real numbers, respetively. The operators

�

+

K�

�

I and �

�

K�

+

I are ompat for eah operator K 2 L

p

. Indeed, let " > 0

be arbitrarily given. Sine K is band-dominated, there is a ontinuous funtion

f whih is 1 on [0; 1) and 0 on (�1; �n

"

℄ with suÆiently large n

"

suh that

kfK �KfIk < ". Thus,

k�

+

K�

�

I � �

+

Kf�

�

Ik = k�

+

(fK �Kf)�

�

Ik < ":

The operator �

+

Kf�

�

I is ompat sine f�

�

has a bounded support and K is

loally ompat. Sine further " an be hosen arbitrarily small, the ompatness

of �

+

K�

�

I follows. The ompatness of �

�

K�

+

I an be heked analogously.

This simple observation implies that, for a Fredholm operator of the form

A = I + K with K 2 L

p

, the operators �

+

A�

+

I and �

�

A�

�

I, onsidered as

ating on L

p

(R

+

) and L

p

(R

�

), are Fredholm operators again. We all

ind

+

A := ind (�

+

A�

+

I) and ind

�

A := ind (�

�

A�

�

I)

the plus- and the minus-index of A. Reall in this onnetion that a bounded

linear operator A on a Banah spae X is said to be Fredholm if its kernel kerA

and its okernel okerA := X=imA are linear spaes of �nite dimension, and that

in this ase the integer

indA := dimkerA� dimokerA

is alled the Fredholm index of A.

Here is the main result of the present paper.

Theorem 1 Let A = I +K with K 2 L

$

p

.

(a) The operator A is Fredholm on L

p

(R) if and only if all limit operators of A

are invertible and if the norms of their inverses are uniformly bounded.

(b) If A is Fredholm, then for arbitrary operators B

+

2 �

+

(A) and B

�

2 �

�

(A),

ind

+

B

+

= ind

+

A and ind

�

B

�

= ind

�

A (1)
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and, onsequently,

indA = ind

+

B

+

+ ind

�

B

�

: (2)

This result has a series of predeessors. One of the simplest lasses of band-

dominated and loally ompat operators on L

p

(R) is onstituted by the operators

of onvolution by L

1

(R)-funtions and by the restritions of these operators to the

half line, the lassial Wiener-Hopf operators. The theory of the onvolution type

operators on the half line originates from the fundamental papers by Krein and

Gohberg/Krein [7, 4℄ where the Fredholm theory for these operators is established

and an index formula is derived. See also the monograph [3℄ by Gohberg/Feldman

for an axiomati approah to this irle of questions. For onvolution type op-

erators with variable oeÆients whih stabilize at in�nite, a Fredholm riterion

and an index formula have been obtained by Karapetiants/Samko in [5℄; see also

their monograph [6℄.

In [12, 13℄, there is developed the limit operator approah to study Fredholm

properties of general band-dominated operators on spaes l

p

of vetor-valued

sequenes. In [10℄ we demonstrated that this approah also applies to operators

of onvolution type ating on L

p

spaes if a suitable disretization reduing L

p

-

to l

p

-spaes is performed. (To be preisely: If the sequenes in l

p

take their values

in an in�nite dimensional Banah spae, then we derived in [13℄ a riterion for

a generalized form of Fredholmness, alled P-Fredholmness; see below. But the

results of [10℄ refer to ommon Fredholmness.) The long standing problem to

determine the Fredholm index of a band-dominated operator in terms of its limit

operators, too, has been �nally solved in [11℄ for band-dominated operators on

the spae l

2

with salar-valued sequenes. All mentioned results an be also found

in the monograph [14℄. The index formula has been generalized to l

p

-spaes in

[15℄. In the present paper we will undertake a further generalization to band-

dominated operators with ompat entries ating on l

p

-spaes of vetor-valued

funtions. Thereby these results will get the right form to beome appliable

to loally ompat band-dominated operators on L

p

-spaes (and thus, to prove

assertion (b) of the theorem).

The paper is organized as follows. We start with realling some basi fats

on sequenes of ompat operators. For the reader's onveniene, the proofs

are inluded. The main work will be done in Setion 3 where we will derive

the Fredholm riterion and the index formula for band-dominated operators on

l

p

with ompat entries. In Setion 4, these results will be applied to loally

ompat band-dominated operators on L

p

whih mainly requires to onstrut a

suitable disretization mapping. Some appliations will be disussed in the �nal

setion.

This work had been supported by the CONACYT projet 43432. The authors

are grateful for this support.
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2 Sequenes of ompat operators

Let X be a omplex Banah spae whih enjoys the following symmetri approx-

imation property (sap): There is a sequene (�

N

)

N�1

of projetions (= idempo-

tents) �

N

2 L(X) of �nite rank suh that �

N

! I and �

�

N

! I

�

strongly as

N !1. Evident examples of Banah spaes with sap are the separable Hilbert

spaes, the spaes l

p

(Z

K

) and the spaes L

p

[a; b℄. It is also lear that if X is a

reexive Banah spae with sap, then X

�

has sap, too, and the orresponding

projetions an be hosen as �

�

N

.

De�nition 2 A sequene (K

n

) of operators in L(X) is said to be

(a) relatively ompat if the norm losure of fK

n

: n 2 Ng is ompat in L(X);

(b) olletively ompat if the set [

n2N

K

n

B

X

is relatively ompat in X;

() uniformly left (right, two-sided) approximable if, for eah " > 0 there is an

N

0

suh that, for eah n 2 N and eah N � N

0

,

kK

n

� �

N

K

n

k < " (kK

n

�K

n

�

N

k < "; kK

n

� �

N

K

n

�

N

k < "):

Note that the uniform left approximability of (K

n

) is equivalent to

lim

N!1

sup

n2N

kK

n

� �

N

K

n

k = 0:

Proposition 3 Let X be a Banah spae with sap. The following onditions are

equivalent for a sequene (K

n

) of ompat operators on X :

(a) (K

n

) is relatively ompat;

(b) (K

n

) and (K

�

n

) are olletively ompat;

() (K

n

) is uniformly left and uniformly right approximable;

(d) (K

n

) is uniformly two-sided approximable.

Proof. (a) ) (b): Let (x

n

) be a sequene in [

n

K

n

B

X

. For eah n 2 N , hoose

r(n) 2 N and y

n

2 B

X

suh that x

n

= K

r(n)

y

n

. By hypothesis (a), the sequene

(K

r(n)

) has a onvergent subsequene (K

r(n

k

)

). Let K denote the limit of that

subsequene. Then

kx

n

k

�Ky

n

k

k = kK

r(n

k

)

y

n

k

�Ky

n

k

k � kK

r(n

k

)

�Kk ! 0: (3)

Sine K is ompat and ky

n

k

k � 1, the sequene (K

r(n

k

)

) has a onvergent subse-

quene. From (3) we onlude that then the sequene (x

n

k

) (hene, the sequene

(x

n

)) has a onvergent subsequene, too. This yields the olletive ompatness

of the sequene (K

n

). Sine (K

�

n

) is relatively ompat whenever (K

n

) is rela-

tively ompat, the olletive ompatness of (K

�

n

) follows in the same way.

(b)) (): We will show that the olletive ompatness of (K

n

) implies the uni-

form left approximability of that sequene. We will not make use of the strong
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onvergene of �

N

to I

�

in this part of the proof. So is beomes evident that then

also the olletive ompatness of (K

�

n

) implies the uniform left approximability

of (K

�

n

) with respet to the sequene (�

�

N

) whih is equivalent to the uniform

right approximability of (K

n

).

Contrary to what we want to show, assume that (K

n

) is not uniformly left

approximable. Then there are an " > 0, a monotonially inreasing sequene

(N(r))

r�1

and operators K

n(r)

2 fK

n

: n 2 Ng suh that

k(I � �

N(r)

)K

n(r)

k � " for all r 2 N :

Choose x

n(r)

2 B

X

suh that

k(I � �

N(r)

)K

n(r)

x

n(r)

k � "=2 for all r 2 N : (4)

By hypothesis (b), the sequene (K

n(r)

x

n(r)

) has a onvergent subsequene. Let

x

0

denote its limit. We onlude from (4) that k(I � �

N(r)

)x

0

k � "=4 for all

suÆiently large r. Letting r go to in�nity, we arrive at a ontradition.

()) (d): This impliation follows immediately from

kK

n

� �

N

K

n

�

N

k � kK

n

� �

N

K

n

k+ k�

N

K

n

� �

N

K

n

�

N

k

� kK

n

� �

N

K

n

k+ k�

N

k kK

n

�K

n

�

N

k

and from the uniform boundedness of the projetions �

N

due to the Banah-

Steinhaus theorem.

(d)) (a): We onsider a subsequene of (K

n

) whih we write as (K

n

)

n2N

0

with

an in�nite subset N

0

of N . Sine the projetions �

N

have �nite rank, there are

an in�nite subset N

1

of N

0

suh that the sequene (�

1

K

n

�

1

)

n2N

1

onverges, an

in�nite subset N

2

of N

1

suh that the sequene (�

2

K

n

�

2

)

n2N

2

onverges, et.

Thus, for eah N � 1, one �nds an in�nite subset N

N

of N

N�1

suh that the

sequene (�

N

K

n

�

N

)

n2N

N

onverges. Let k(n) denote the nth number in N

N

(ordered with respet to the relation <) and set

^

K

n

:= K

k(n)

. Clearly, (

^

K

n

)

n�1

is a subsequene of eah of the sequenes (K

n

)

n2N

N

up to �nitely many entries.

Thus, for eah N 2 N , the sequene (�

N

^

K

n

�

N

)

n�1

onverges. Now we have

^

K

n

�

^

K

m

= (

^

K

n

� �

N

^

K

n

�

N

)� (

^

K

m

� �

N

^

K

m

�

N

) + �

N

(

^

K

n

�

^

K

m

)�

N

:

Let " > 0. By hypothesis (d), there is an N suh that

k

^

K

n

� �

N

^

K

n

�

N

k < "=3

for all n 2 N. Fix this N , and hoose n

0

suh that

k�

N

(

^

K

n

�

^

K

m

)�

N

k < "=3

for all m; n � n

0

whih is possible due to the onvergene of the sequene

(�

N

^

K

n

�

N

)

n�1

. Hene, k

^

K

n

�

^

K

m

k < " for all m; n � n

0

. This implies the

onvergene of the sequene (

^

K

n

) and, thus, the relative ompatness of (K

n

).
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3 The Fredholm index of disrete band-domi-

nated operators with ompat entries

Let X be a omplex Banah spae with sap. By E := l

p

(Z; X) we denote the

Banah spae of all sequenes x : Z! X with

kxk

p

E

:=

X

n2Z

kx

n

k

p

X

<1:

For k 2 Z, let V

k

: l

p

(Z; X) ! l

p

(Z; X) stand for the shift operator (V

k

x)

n

:=

x

n�k

. In what follows, we will have to onsider shift operators on di�erent spaes

l

p

(Z; X). In order to indiate the underlying spae we will sometimes also write

V

k;X

for the shift operator V

k

on l

p

(Z; X). Further, for eah non-negative integer

n, let the projetion operators P

n

: l

p

(Z; X)! l

p

(Z; X) be de�ned by

(P

n

x)

k

:=

�

x

k

if jkj � n

0 if jkj > n;

and set Q

n

:= I � P

n

and P := (P

n

)

n�0

. Sometimes we will also write P

n;X

in

plae of P

n

in order to indiate the underlying spae.

Eah operator A 2 L(E) an be represented in the obvious way by a two-

sided in�nite matrix with entries in L(X) (in analogy with the representation

of an operator on l

p

(Z) := l

p

(Z; C ) with respet to the standard basis). The

operator A 2 L(E) is alled a band operator if its matrix representation (A

ij

) is

a band matrix, i.e., if there is a k 2 N suh that A

ij

= 0 if ji � jj � k. The

losure of the set of all band operators on E is a losed subalgebra of L(E) whih

we denote by A

E

. The elements of A

E

will be alled band-dominated operators.

By C

E

we denote the losed ideal of A

E

whih onsists of all band-dominated

operators whih have only ompat entries in their matrix representation.

Following the terminology introdued in [14℄, an operator K 2 L(E) is alled

P-ompat if

lim

n!1

kKQ

n

k = lim

n!1

kQ

n

Kk = 0:

We denote the set of all P-ompat operators by K(E; P), and we write L(E; P)

for the set of all operators A 2 L(E) for whih both AK and KA are P-ompat

whenever K is P-ompat. Then L(E; P) is a losed subalgebra of L(E) whih

ontains K(E; P) as a losed ideal.

De�nition 4 An operator A 2 L(E; P) is alled P-Fredholm if the oset A +

K(E; P) is invertible in the quotient algebra L(E; P)=K(E; P), i.e., if there exist

an operator B 2 L(E; P) and operators K; L 2 K(E; P) suh that BA = I +K

and AB = I + L.

This de�nition is equivalent to the following one: An operator A 2 L(E; P) is

P-Fredholm if and only if there exist an m 2 N and operators L

m

; R

m

2 L(E; P)
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suh that

L

m

AQ

m

= Q

m

AR

m

= Q

m

:

Thus, P-Fredholmness is often referred to as loal invertibility at in�nity. If X

has �nite dimension, then the notions P-Fredholmness and Fredholmness are

synonymous.

All band-dominated operators belong to L(E; P). This an be easily heked

for the two basi types of band-dominated operators: the shift operators and

the operators of multipliation by a funtion in l

1

(Z; L(X)), and it follows for

general band-dominated operators sine L(E; P) is a losed algebra. Hene,

it makes sense to speak about their P-Fredholmness. A riterion for the P-

Fredholmness of a band-dominated operator A an be given in terms of the limit

operators of A. These are, in analogy with the notions from Setion 1, de�ned as

follows. Let A 2 L(E), and let h : N ! Z be a sequene whih tends to in�nity.

An operator A

h

2 L(E) is alled a limit operator of A with respet to the sequene

h if

lim

n!1

kP

k

(V

�h(n)

AV

h(n)

� A

h

)k = lim

n!1

k(V

�h(n)

AV

h(n)

� A

h

)P

k

k = 0

for every k 2 N . The set of all limit operators of A will be denoted by �

op

(A)

and is alled the operator spetrum of A again. An operator A 2 L(E) is said

to be rih or to possess a rih operator spetrum if eah sequene h whih tends

to in�nity possesses a subsequene g for whih the limit operator A

g

exists. We

refer to the rih operators in A

E

as rih band-dominated operators and write A

$

E

and C

$

E

for the Banah algebra of the rih band-dominated operators and for its

losed ideal onsisting of the rih operators in C

E

.

The following is the main result on P-Fredholmness of rih band-dominated

operators. Its proof is in [14℄, Theorem 2.2.1.

Theorem 5 An operator A 2 A

$

E

is P-Fredholm if and only if eah of its limit

operators is invertible and if the norms of their inverses are uniformly bounded,

i.e.,

supfk(A

h

)

�1

k : A

h

2 �

op

(A)g <1:

In ase X = C , P-Fredholmness oinides with ommon Fredholmness. In this

ase one an also express the Fredholm index of a Fredholm band-dominated

operator in terms of the (loal) indies of its limit operators. To ite these results

from [11, 15℄, let P : l

p

(Z; X)! l

p

(Z; X) refer to the projetion operator

(Px)

k

:=

�

x

k

if k � 0

0 if k < 0;

and set Q := I � P . If neessary, we will write also P

X

in plae of P . Then,

for eah band-dominated operator on l

p

(Z; C ), the operators PAQ and QAP are

ompat. This is obvious for band operators in whih ase PAQ and QAP are

7



of �nite rank, and it follows for general band-dominated operators by an obvious

approximation argument. Consequently, the operators A�(PAP+Q)(P+QAQ)

and A�(P+QAQ)(PAP+Q) are ompat, whih implies that a band-dominated

operator on l

p

(Z; C ) is Fredholm if and only if both operators PAP + Q and

P +QAQ are Fredholm and that

indA = ind (PAP +Q) + ind (P +QAQ):

In this ase we all

ind

+

A := ind (PAP +Q) and ind

�

A := ind (P +QAQ)

the plus- and the minus-index of A. Finally, let �

op

(A) = �

+

(A) [ �

�

(A), the

latter omponents olleting the limit operators of A with respet to sequenes

h tending to +1 and to �1, respetively, and note that in ase X = C all

band-dominated operators are rih.

Theorem 6 Let X = C , and let A be a Fredholm band-dominated operator on

l

p

(Z). Then, for arbitrary operators B

+

2 �

+

(A) and B

�

2 �

�

(A),

ind

+

B

+

= ind

+

A and ind

�

B

�

= ind

�

A (5)

and, onsequently,

indA = ind

+

B

+

+ ind

�

B

�

: (6)

In partiular, all operators in �

+

(A) have the same plus-index, and all operators

in �

�

(A) have the same minus-index.

It is the goal of the present setion to generalize the assertion of Theorem 6

to operators ating on E = l

p

(Z; X) with a general Banah spae X with sap

whih are of the form I +K with K 2 C

$

E

. A �rst observation is that for these

operators P-Fredholmness and ommon Fredholmness oinide.

Proposition 7 An operator in I+C

E

is Fredholm if and only if it is P-Fredholm.

Proof. We laim that

C

E

\K(E; P) = K(E): (7)

The inlusion K(E) � C

E

is evident, and the inlusion K(E) � K(E; P) holds

sine the projetions P

n

and P

�

n

onverge strongly to the identity operators on E

and E

�

, respetively. Thus, K(E) � C

E

\K(E; P). For the reverse inlusion, let

K 2 C

E

\K(E; P). Sine K 2 C

E

, one has P

n

K 2 K(E) for every n, and sine

K 2 K(E; P), one has kK � P

n

Kk ! 0. Thus, K 2 K(E), whih veri�es (7).

Sine K(E) � K(E; P) by (7), every Fredholm operator in L(E; P) is P-

Fredholm. For the reverse impliation, let A := I + K with K 2 C

E

be a

P-Fredholm operator. Then there are operators B 2 L(E; P) and L 2 K(E; P)

suh that BA = I � L. Set R := I �KB. Then

RA� I = A� I �KBA = K �KBA = K(I �BA) = KL:

8



Sine KL 2 C

E

\K(E; P) is ompat by (7), the operator R is a left Fredholm

regularizer for A. Similarly one heks that A possesses a right Fredholm regu-

larizer. Thus, the operator A is Fredholm.

Combining Proposition 7 with Theorem 5 one gets the following.

Corollary 8 Let A := I + K with K 2 C

$

E

. Then the operator A is Fredholm

if and only if eah of its limit operators is invertible and if the norms of their

inverses are uniformly bounded.

We will make use of the following lemma several times.

Lemma 9 Every band-dominated operator in C

E

(resp. in C

$

E

) is the norm limit

of a sequene of band operators C

E

(resp. in C

$

E

).

This an be proved in exatly the way as we derived Theorem 2.1.18 in [14℄ whih

states that every rih band-dominated operators is the norm limit of a sequene

of rih band operators.

As a �rst onsequene of the C

E

-version of Lemma 9 we onlude that PAQ and

QAP are ompat operators for eah operator A 2 I+C

E

. Indeed, this is obvious

for A being a band operators in whih ase PAQ and QAP have only a �nite

number of non-vanishing entries, and these are ompat. The ase of general

A follows by an obvious approximation argument. Consequently, the operators

A� (PAP +Q)(P +QAQ) and A� (P +QAQ)(PAP +Q) are ompat, whih

implies that an operator A 2 I + C

E

is Fredholm if and only if both operators

PAP +Q and P +QAQ are Fredholm. In this ase, the integers

ind

+

A := ind (PAP +Q) and ind

�

A := ind (P +QAQ)

are alled the plus- and the minus-index of A. Clearly,

indA = ind

+

A + ind

�

A: (8)

Finally, let �

op

(A) = �

+

(A) [ �

�

(A) in analogy with the ase X = C .

Here is the announed result for the indies of Fredholm operators in I + C

$

E

.

Theorem 10 Let A 2 I + C

$

E

be a Fredholm operator. Then, for arbitrary oper-

ators B

+

2 �

+

(A) and B

�

2 �

�

(A),

ind

+

B

+

= ind

+

A and ind

�

B

�

= ind

�

A (9)

and, onsequently,

indA = ind

+

B

+

+ ind

�

B

�

: (10)

The remainder of this setion is devoted to the proof of Theorem 10. We will

verify this theorem by reduing its assertion step by step until we will arrive at

operators on l

p

(Z; C ) (with salar entries) for whih the result is known (Theorem

6). The �rst step of the redution proedure is based on the following observation.

9



Proposition 11 Let F be a dense subset of the set of all Fredholm operators in

I + C

$

E

. If the assertion of Theorem 10 holds for all operators in F , then it holds

for all Fredholm operators in I + C

$

E

.

Proof. Let A be a Fredholm operator in I + C

$

E

, and let B 2 �

+

(A). We will

show that

ind

+

B = ind

+

A; (11)

whih settles the plus-assertion of (9). The minus-assertion follows similarly, and

(9) implies (10) via (8).

To prove (11), hoose a sequene (A

n

) of operators in F whih onverges

to A in the operator norm, and let h be a sequene tending to +1 suh that

B = A

h

. Employing Cantor's diagonal method, we onstrut a subsequene g of

h for whih all limit operators (A

n

)

g

exist. For the details of this onstrution,

onsult the proof of Proposition 1.2.6 in [14℄. From Proposition 1.2.2 (e) in [14℄

we onlude that kB � (A

n

)

g

k = kA

g

� (A

n

)

g

k ! 0. Now one has

ind

+

(A

n

)

g

= ind

+

A

n

for all n 2 N

and this implies (11) by letting n go to in�nity due to the ontinuity of the index.

Our hoie of the set F is as follows. The C

$

E

-version of Lemma 9 allows one

to approximate eah band-dominated operator A = I + K with K 2 C

$

E

by a

sequene of band operators A

n

:= I+K

n

with K

n

2 C

$

E

. Eah band operator K

n

an be written as a sum

K

n

=

X

k2Z

K

(k)

n

V

k

(12)

with only �nitely many non-vanishing items. The oeÆients K

(k)

n

in (12) are

operators of multipliation by sequenes of ompat operators on X, and these

multipliation operators are rih whenever K

n

is rih. From Theorem 2.1.16

in [14℄ we know that a multipliation operator is rih if and only if the set of

its entries is relatively ompat in L(X). So we onlude from the equivalene

between (a) and (d) in Proposition 3 that eah oeÆient K

(k)

n

in (12) an be

approximated as losely as desired by a sequene (K

(k)

n;N

)

N2N

of multipliation

operators the entries of whih map im�

N

into itself and at on im (I

X

� �

N

) as

the zero operator. Thus, one an approximate the operator A = I +K as losely

as desired by band operators A

n;N

= I + K

n;N

where the entries of K

n;N

map

im�

N

into itself and at as the zero operator on im (I

X

� �

N

). We denote the

set of all operators K

n;N

of this form by C

E;N

. Note that the operators in C

E;N

are automatially rih.

Further, if A = I + K is a Fredholm operator, then the operators A

n;N

=

I +K

n;N

are Fredholm for all suÆiently large n and N . Thus, we an hoose F

10



as the set of all Fredholm operators I +K

n;N

with K

n;N

2 C

E;N

. By Proposition

11, it remains to prove Theorem 10 for these operators.

We agree upon writing X

N

in plae of im�

N

if we want to onsider im�

N

as

a Banah spae in its own right, not as a subspae of X. Further we introdue

the mappings

R : l

p

(Z; X)! l

p

(Z; X

N

); (x

n

) 7! (�

N

x

n

)

where �

N

x

n

is onsidered as an element of X

N

, and

L : l

p

(Z; X

N

)! l

p

(Z; X); (x

n

) 7! (x

n

)

where the x

n

on the right-hand side are onsidered as elements of X. Clearly,

RL is the identity operator on l

p

(Z; X

N

), whereas LR is the projetion

� : l

p

(Z; X)! l

p

(Z; X); (x

n

) 7! (�

N

x

n

);

now with the �

N

x

n

being onsidered as elements of X. We are going to show

that the operators A = I + K

n;N

as well as their limit operators behave well

under the mapping A 7! RAL.

Proposition 12 Let A = I +K

n;N

with K

n;N

2 C

E;N

.

(a) If A is a Fredholm operator on l

p

(Z; X), then RAL is a Fredholm operator

on l

p

(Z; X

N

), and the Fredholm indies of A and RAL oinide.

(b) If the limit operator of A with respet to a sequene h : N ! Z exists, then

the limit operator of RAL with respet to h exists, too, and (RAL)

h

= RA

h

L.

Proof. Sine A is Fredholm, there are operators B; T on l

p

(Z; X) with T om-

pat suh that

BA = I + T: (13)

For x 2 kerA one gets x+ Tx = 0, whene x 2 imT . Hene, dimkerA � rankT

for eah pair (B; T ) suh that (13) holds. One an hoose the pair (B; T ) even

in suh a way that dimkerA = rankT . For write X as a diret sum kerA�X

0

and let P

kerA

refer to the projetion from X onto kerA parallel to X

0

. Then

A(I � P

kerA

) : im (I � P

kerA

)! imA

is an invertible operator. Let B denote its inverse. Then BA(I � P

kerA

) =

I � P

kerA

and

BA = I � P

kerA

+BAP

kerA

= I � (I � BA)P

kerA

:

Clearly, rank (I�BA)P

kerA

� dimkerA. Thus, one an indeed assume that (13)

holds with dimkerA = rankT . From (13) we get

RBAL = RL+RTL = I +RTL;

11



and sine L = �L and A ommutes with �, we obtain

RBLRAL = I +RTL: (14)

In the same way, AB = I+T

0

with T

0

ompat implies thatRALRBL = I+RT

0

L

with RT

0

L ompat. Hene, RAL is Fredholm, and (14) moreover shows that

dimkerRAL � rankRTL � rankT = dimkerA:

For the reverse estimate, let B; T be operators on l

p

(Z; X

N

) with BRAL = I+T

and dimkerRAL = rankT . Then LBRALR = LR + LTR, whene

(LBR� + I � �)A = I + LTR

(take into aount that A� = �A = A� (I � �)). This identity shows that

dimkerA � rankLTR � rankT = dimkerRAL;

whene �nally dimkerA = dimkerRAL. In the same way one gets dimkerA

�

=

dimker (RAL)

�

. Sine dimkerA

�

= dim imA for eah Fredholm operator A, we

arrive at assertion (a).

(b) Let A

h

be a limit operator of A. Then, by de�nition,

k(A

h

� V

�h(n);X

AV

h(n);X

)P

k;X

k ! 0 for eah k 2 N:

Thus,

kR(A

h

� V

�h(n); X

AV

h(n); X

)P

k;X

Lk ! 0 for eah k 2 N :

Sine the projetion � ommutes with eah of the operators P

k;X

, V

h(n); X

and

A, and sine

RV

h(n); X

L = V

h(n);X

N

and RP

k;X

L = P

k;X

N

;

one onludes that

k(RA

h

L� V

�h(n);X

N

RALV

h(n); X

N

)P

k;X

N

k ! 0 for eah k 2 N :

Similarly one obtains

kP

k;X

N

(RA

h

L� V

�h(n); X

N

RALV

h(n); X

N

)k ! 0 for eah k 2 N :

Thus, RA

h

L is the limit operator of RAL with respet to the sequene h.

Sine the projetions P and � also ommute, it is an immediate onsequene of

the preeding proposition and its proof that

ind

+

A = ind

+

RAL

and

ind

+

A

h

= ind

+

RA

h

L = ind

+

(RAL)

h

for eah limit operator A

h

2 �

+

(A). Thus, the assertion of Theorem 6 will follow

one we have proved this theorem for band-dominated operators on l

p

(Z; X

N

) in

plae of l

p

(Z; X).

12



Proposition 13 The assertion of Theorem 10 holds for all Fredholm band-domi-

nated operators on l

p

(Z; X

N

) (with �xed N 2 N).

Proof. Let d <1 be the dimension of X

N

, and let e

1

; : : : ; e

d

be a basis of X

N

.

Then there are positive onstants C

1

; C

2

suh that

C

1

k(x

1

; : : : ; x

d

)k

l

p

� kx

1

e

1

+ : : :+ x

d

e

d

k

X

N

� C

2

k(x

1

; : : : ; x

d

)k

l

p

(15)

for eah vetor (x

1

; : : : ; x

d

) 2 C

d

. De�ne J : l

p

(Z; X

N

)! l

p

(Z; C ) by

(Jx)

nd+r

:= (x

n

)

r

; 0 � r � d� 1

where (x

n

)

r

refers to the rth oordinate of the nth entry x

n

2 X

N

of the sequene

x. It follows from (15) that

C

1

kJxk

l

p

(Z;C )

� kxk

l

p

(Z;X

N

)

� C

2

kJxk

l

p

(Z;C )

;

i.e., J is a topologial isomorphism from l

p

(Z; X

N

) onto l

p

(Z; C ). The de�nition

of J implies that if A is a Fredholm band operator on l

p

(Z; X

N

), then JAJ

�1

is a Fredholm band operator on l

p

(Z; C ), and onversely. Moreover, indA =

indJAJ

�1

in this ase. This identity holds for the plus- and minus-indies as

well, sine JP

X

N

J

�1

= P

C

. Moreover, one has

JV

n;X

N

J

�1

= V

dn; C

and JP

k;X

N

J

�1

= P

dk; C

for all n 2 Z and k 2 N . These equalities imply that if A

h

is the limit operator

of the band-dominated operator A 2 l

p

(Z; X

N

) with respet to the sequene

h, then JA

h

J

�1

is the limit operator of JAJ

�1

with respet to the sequene

dh : N ! Z; m 7! dh(m), i.e.,

(JAJ

�1

)

dh

= JA

h

J

�1

:

Summarizing, we obtain

ind

+

A = ind

+

JAJ

�1

and

ind

+

A

h

= ind

+

JA

h

J

�1

= ind

+

(JAJ

�1

)

dh

for eah Fredholm band-dominated operator A on l

p

(Z; X

N

) and for eah of its

limit operators A

h

2 �

+

(A). Sine dh tends to +1 whenever h does, one has

(JAJ

�1

)

dh

2 �

+

(JAJ

�1

), and from Theorem 6 we infer that ind

+

JAJ

�1

=

ind

+

(JAJ

�1

)

dh

. Thus, ind

+

A = ind

+

A

h

for eah Fredholm band-dominated

operator A on l

p

(Z; X

N

) and for eah of its limit operators A

h

2 �

+

(A). The

minus-ounterpart of this assertion follows analogously. This proves the proposi-

tion and �nishes the proof of Theorem 10.
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4 The Fredholm index of loally ompat band-

dominated operators on L

p

(R )

This setion is devoted to the proof of Theorem 1. As in the disrete ase, the

limit operators approah provides us with a riterion for the

^

P-Fredholmness

of an operator rather than for its ommon Fredholmness. Here,

^

P = (

^

P

n

)

n�0

where

^

P

n

: L

p

(R) ! L

p

(R) is the operator of multipliation by the harateristi

funtion of the interval [�n; n℄, i.e.,

(

^

P

n

f)(x) =

�

f(x) if x 2 [�n; n℄

0 else;

and

^

P-ompatness and

^

P-Fredholmness are de�ned literally as in the disrete

ase. The following proposition an be proved as its disrete ounterpart Propo-

sition 7.

Proposition 14 An operator A 2 L(L

p

(R)) of the form A = I+K with K 2 L

p

is Fredholm if and only if it is

^

P-Fredholm.

We will now prove Theorem 1 via a suitable disretization. Let �

0

denote the har-

ateristi funtion of the interval [0; 1℄. The mappingG : L

p

(R) ! l

p

(Z; L

p

[0; 1℄)

whih sends the funtion f 2 L

p

(R) to the sequene

Gf = ((Gf)

n

)

n2Z

where (Gf)

n

:= �

0

U

�n

f

is a bijetive isometry the inverse of whih maps the sequene x = (x

n

)

n2Z

to the

funtion

G

�1

x =

X

n2Z

U

n

x

n

�

0

;

the series onverging in L

p

(R). Thus, the mapping

� : L(L

p

(R)) ! L(l

p

(Z; L

p

[0; 1℄)); A 7! GAG

�1

is an isometri algebra isomorphism. It is shown in Proposition 3.1.4 in [14℄ that

�(A

h

) = (�(A))

h

for eah limit operator A

h

of an operator A 2 B

p

, whereas Proposition 3.1.6 in [14℄

states that � maps B

$

p

onto A

$

E

with E = l

p

(Z; L

p

[0; 1℄). Further, if A 2 L

p

(R)

is a loally ompat operator, then the entries of the matrix representation of its

disretization �(A) are ompat operators. Thus, � maps L

$

p

into I+C

$

E

. Finally,

one evidently has

indA = ind�(A)

for eah operator A 2 L(L

p

(R)), and the Banah spae L

p

[0; 1℄ has the sap as

already mentioned. Thus, the assertions of Theorem 1 follow immediately from

their disrete ounterparts Corollary 8 and Theorem 10.
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5 Appliations

As an appliation of Theorem 1, we are going to examine the Fredholm properties

of operators of the form I + K with K 2 K

p

(BUC). The latter stands for the

smallest losed subalgebra of L(L

p

(R)) whih ontains all operators of the form

aCbI where a; b 2 BUC and where C is a Fourier onvolution operator with

L

1

-kernel k. Thus,

(Cf)(x) = (k � f)(x) =

Z

R

k(x� y)f(y) dy; x 2 R:

In Proposition 3.3.6 in [14℄ it is veri�ed that

K

p

(BUC) � L

$

p

:

Hene, Theorem 1 applies to operators in K

p

(BUC), and it yields the following.

Theorem 15 Let A 2 L(L

p

(R)) be a onvolution type operator of the form I+K

with K 2 K

p

(BUC). Then

(a) A is Fredholm if and only if all of its limit operators are invertible, and if the

norms of their inverses are uniformly bounded.

(b) if A is Fredholm then, for arbitrary limit operators B

�

2 �

�

(A),

indA = ind

+

B

+

+ ind

�

B

�

:

One annot say muh about the limit operators of a general operator A 2 I +

K

p

(BUC). It is only lear that they belong to I + K

p

(BUC) again. Thus, the

omputation of the plus- and minus indies of the limit operators of onvolution

type operators will remain a serious problem in general. In what follows we

will disuss some instanes where this omputation an be easily done (slowly

osillating oeÆients) or is at least manageable (slowly osillating plus periodi

oeÆients).

Let SO stand for the set of all funtions f 2 BUC whih are slowly osillating

in the sense that

lim

t!�1

sup

h2[0; 1℄

jf(t)� f(t+ h)j = 0:

This set forms a C

�

-subalgebra of BUC. Let K

p

(SO) stand for the smallest

losed subalgebra of K

p

(BUC) whih ontains all operators of the form aCbI

where a; b 2 SO and where C is a Fourier onvolution with L

1

-kernel. Further,

we write PER for the C

�

-subalgebra of BUC whih onsists of all ontinuous

funtions of period 1 on R. By K

p

(PER; SO) we denote the smallest losed

subalgebra of K

p

(BUC) whih ontains all operators of the form aCbI where now

a; b 2 PER + SO and where C is again a Fourier onvolution with L

1

-kernel.

Similarly, K

p

(PER) refers to the smallest losed subalgebra of K

p

(BUC) whih

ontains all operators aCbI with a; b 2 PER and with a Fourier onvolution C

with L

1

-kernel.
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Lemma 16 The limit operators of operators in K

p

(SO) are operators of Fourier

onvolution with L

1

-kernel, and all limit operators of operators in K

p

(PER; SO)

belong to K

p

(PER).

Proof. Operators of onvolution are shift invariant with respet to arbitrary

shifts, and operators of multipliations by funtions in PER are invariant with

respet to integer shifts. Hene, operators of this form as well as there sums and

produts possess exatly one limit operator, namely the operator itself. Further,

as it has been pointed out in Proposition 3.3.9 in [14℄, all limit operators of

operators of multipliation by slowly osillating funtions are onstant multiples

of the identity operator, whene the assertion.

Hene, the determination of the index of a Fredholm operator in I + K

p

(SO)

requires the omputation of the plus- and the minus index of an operator of the

form I+C where C is a Fourier onvolution with kernel k 2 L

1

(R). Equivalently,

one has to determine the ommon Fredholm index of operators of the form I +

�

�

C�

�

I. The operator I+�

+

C�

+

I is the Wiener-Hopf operator with generating

funtion 1+a where a is the Fourier transform of the kernel k of C. After reetion

at the origin, the operator I + �

�

C�

�

I also beomes a Wiener-Hopf operator.

The Fredholm property of Wiener-Hopf operators of this type is well under-

stood (see [1, 3, 7℄). Sine

lim

x!+1

a(x) = lim

x!�1

a(x) = 0;

one an onsider 1+a as a ontinuous funtion on the one-point ompati�ation

_

R of the real line, whih is also alled the symbol of the operator. It turns out

that the Wiener-Hopf operator with symbol 1 + a is Fredholm if and only if the

funtion 1 + a does not vanish on

_

R , and that in this ase its Fredholm index is

the negative winding number of the losed urve 1+a(

_

R) around the origin. This

solves the problem of omputing the Fredholm index of an operator in I+K

p

(SO)

ompletely and in an easy way.

Let us now turn over to the setting of operators in I + K

p

(PER; SO). Here

we are left with the problem to determine the Fredholm index of operators of the

form �

+

(I +K)�

+

I on L

p

(R

+

) where K 2 K

p

(PER). The proofs of Theorems

1 and 10 given above o�er a way to perform this alulation. The deisive point

is that, due to the periodiity, the operator

�(�

+

(I +K)�

+

I) 2 L(l

p

(Z

+

; L

p

[0; 1℄)) (16)

is a band-dominated Toeplitz operator the entries of whih are of the form I +

ompat if they are loated on the main diagonal, whereas they are ompat when

loated outside the main diagonal. Reall that a Toeplitz operator on l

p

(Z

+

; X)

is an operator with matrix representation (A

i�j

)

i; j2Z

+

, i.e., the entries of the

matrix are onstant along eah diagonal whih is parallel to the main diagonal.

16



If now I +K is Fredholm on L

p

(R), then the Toeplitz operator (16) is Fred-

holm, too, and it has the same index. Employing the redution proedure used in

the proof of Theorem 10, one an further approximate the Toeplitz operator (16)

by a Toeplitz operator on l

p

(Z

+

; C

N

) with band struture whih is also Fredholm

and has the same index as the original operator I+K. Thus, we are left with the

determination of the index of a ommon Toeplitz operator T (g) on l

p

(Z

+

; C

N

)

where eah entry g

ij

of the generating funtion g : T ! C

N�N

is a trigonometri

polynomial. This operator an be identi�ed with an operator matrix (T (g

ij

))

N

i; j=1

where eah T (g

ij

) is a Toeplitz band operator on l

p

(Z

+

; C ) = l

p

(Z

+

). As it is well

known (see, e.g., Theorem 6.12 in [1℄), this operator is Fredholm if and only if the

ommon Toeplitz operator (with salar-valued polynomial generating funtion)

T (det g) is Fredholm, and the indies of these operators oinide. Moreover, the

index of T (det g) is equal to the negative winding number of the funtion det g

with respet to the origin.

For a general aount on matrix funtions and the Toeplitz and Wiener-Hopf

operators generated by them, we refer to the monographs [2℄ and [9℄. For general

results about relations between the Fredholmness of a blok operator and its

determinant one should onsult Chapter 1 in [8℄.

A similar approah is possible for operators in I + K

p

(PER

Z

; SO) where

PER

Z

stands for the set of all funtions with integer period. After disretization

and approximation as above, one �nally arrives at a blok Toeplitz operator in

plae of (16) whih again an be redued to a matrix of Toeplitz operators on

l

p

(Z

+

).

The results of Theorems 1, 10 and 15 an be ompleted by an observation

made in [15℄ for the ase of band-dominated operators on l

p

(Z; C ). This ob-

servation onerns the independene of the Fredholm index on p. To make this

statement preise we have to explain what is meant by a band-dominated oper-

ator whih ats on di�erent l

p

-spaes (notie that the lass of all band operators

is independent of p whereas the algebra A

E

of all band-dominated operators

depends on the parameter p of E = l

p

(Z; X) heavily).

Every in�nite matrix (a

ij

)

i; j2Z

indues an operator A on the Banah spae



00

(Z; X) of all funtions x : Z! X with ompat support by

i 7! (Ax)

i

:=

X

j2Z

a

ij

x

j

:

We say that A extends to a bounded linear operator on l

p

(Z; X) or that A ats on

l

p

(Z; X) if Ax 2 l

p

(Z; X) for eah x 2 

00

(Z; X) and if there is a onstant C suh

that kAxk

p

� Ckxk

p

for eah x 2 

00

(Z; X). If A extends to a band-dominated

operator on both l

p

(Z; X) and l

r

(Z; X), then we say that A is a band-dominated

operator on l

p

(Z; X) and l

r

(Z; X). Otherwise stated: we onsider two band-

dominated operators B and C ating on l

p

(Z; X) and l

r

(Z; X), respetively, as

idential, and we denote them by the same letter, if their matrix representations

oinide.

17



Proposition 17 Let A 2 I + C

$

E

be a Fredholm band-dominated operator both

on E = l

p

(Z; X) and on E = l

r

(Z; X) with 1 < r < p < 1. Then A is

a Fredholm band-dominated operator on eah spae l

s

(Z; X) with r < s < p,

and the Fredholm index ind

s

A of A, onsidered as an operator on l

s

(Z; X), is

independent of s 2 [r; p℄.

The proof follows exatly the line of the proof of Theorem 10, �nally reduing

the assertion of the proposition to the ase X = C whih is treated in [15℄. It

should be also mentioned that Proposition 17 remains valid for band-dominated

operators on L

p

(Z

N

; X) with N a positive integer whih also follows from [15℄.

In ombination with Theorems 1 and 15 one gets the following orollary.

Corollary 18 (a) Let A 2 I + L

$

q

be a Fredholm band-dominated operator both

for q = p and for q = r with 1 < r < p < 1. Then A is a Fredholm band-

dominated operator on eah spae L

s

(R) with r < s < p, and the Fredholm index

ind

s

A of A, onsidered as an operator on L

s

(R), is independent of s 2 [r; p℄.

(b) Let A 2 I +K

q

(BUC) be a Fredholm onvolution type operator both for q = p

and for q = r with 1 < r < p < 1. Then A is a Fredholm onvolution type

operator on eah spae L

s

(R) with r < s < p, and the Fredholm index ind

s

A of

A, onsidered as an operator on L

s

(R), is independent of s 2 [r; p℄.
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