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Abstrat. Replaing the Gaussian semigroup in the heat kernel estimates by

the Ornstein-Uhlenbek semigroup on R

d

, we de�ne the notion of Kolmogorov

kernel estimates. This allows us to show that under Dirihlet boundary on-

ditions Ornstein-Uhlenbek operators are generators of onsistent, positive,

(quasi-)ontrative C

0

-semigroups on L

p

(
) for all 1 � p < 1 and for every

domain 
 � R

d

. For exterior domains with suÆiently smooth boundary a

result on the loation of the spetrum of these operators is also given.

1. Introdution

Heat kernel estimates have proved to be a powerful tool for the analysis of ellipti

di�erential operators. Beside many other things, they allow the extension of a given

semigroup on L

p

0

for some p

0

to the whole sale of L

p

-spaes for 1 � p < 1 in a

onsistent way, transfering ertain nie properties to all these semigroups, suh as

analytiity, and yielding p-invariane of the spetrum.

Dealing with Ornstein-Uhlenbek operators on L

p

(
) for unbounded domains


 we evidently annot expet to get heat kernel estimates, as the spetrum of

these operators in L

p

(R

d

) already depends heavily on p. Nevertheless, the well-

known representation for the Ornstein-Uhlenbek semigroup on L

p

(R

d

) that is due

to A. N. Kolmogorov and given by

T (t)f(x) =

Z

R

d

k

t

(e

tB

x� y)f(y) dy = (k

t

� f)(e

tB

x);

where the Kolmogorov kernel

k

t

(x) =

1

(4�)

d

2

(detQ

t

)

1

2

exp

�

�

1

4

Q

�1

t

x � x

�

with Q

t

=

Z

t

0

e

sB

Qe

sB

?

ds

looks very similar to the heat semigroup. So it is a natural idea to onsider Kol-

mogorov kernel estimates, by replaing the Gaussian semigroup by the Kolmogorov

semigroup (T (t))

t�0

, thus getting a majorising semigroup that is well adapted to

operators of the Ornstein-Uhlenbek type. These estimates then allow us to extend

semigroups on L

p

0

to the whole sale of L

p

for 1 � p <1, analogously to the ase

of heat kernel bounds.

Having established this idea, in the sequel we apply it to Ornstein-Uhlenbek

operators with Dirihlet boundary onditions in L

p

(
), where 1 � p <1 and 
 is

a domain in R

d

. Ornstein-Uhlenbek operators are di�erential operators, formally

given by

(Au)(x) =

d

X

i;j=1

q

ij

D

i

D

j

u(x) +Bx � ru(x); (1)

where Q = (q

ij

)

d

i;j=1

2 R

d�d

is a symmetri and positive de�nite matrix and

B = (b

ij

)

d

i;j=1

2 R

d�d

nf0g. They �rst appeared in stohastial analysis, desribing

a Brownian motion with an additional drift. In this ontext one usually works in
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spaes of ontinuous funtions on R

d

or in the spaes L

p

(R

d

; �), where � is the

invariant measure of the underlying proess.

Reently, it beame lear that an analyti treatment of these operators is of great

interest. For instane, looking at the Stokes equation in the exterior of a rotating

obstale leads to operators of the Ornstein-Uhlenbek type, see [13℄, [12℄ and [8℄.

Thus one is interested in their behaviour on L

p

(
) with respet to the Lebesgue

measure for domains and espeially exterior domains.

Passing from the invariant measure to the Lebesgue measure hanges the proper-

ties of the operator ompletely. The spetrum is no longer ontained in the negative

real axis, instead it ontains a vertial line (f. [14℄), so the semigroup (T (t))

t�0

on L

p

(R

d

) is not analyti, as it is in L

p

(R

d

; �) (f. [15℄), and it even fails to be

eventually norm-ontinuous.

Whereas Ornstein-Uhlenbek operators are well understood in L

p

(R

d

) (f. [14℄,

[17℄, [16℄) and for bounded domains, where they an be viewed as a perturbation of

lower order of the ellipti di�usion part, there are very few results for unbounded

domains. M. Geissert, H. Hek, M. Hieber and I. Wood showed in [9℄ that in the

ase of an exterior domain 
 with suÆiently smooth boundary, a realisation of

A on L

p

(
) generates a C

0

-semigroup and G. da Prato and A. Lunardi treat the

ase of L

2

-spaes of onvex sets with respet to Neumann boundary onditions and

in�nitesimally invariant measures in [4℄. The Dirihlet problem in spaes of bounded

ontinuous funtions on smooth domains is treated by S. Fornaro, G. Metafune and

E. Priola in [7℄. An overview may be found in [3℄.

In this paper we show that for arbitrary domains 
 � R

d

a realisation of A

in L

2

(
) generates a (quasi-)ontrative, positive C

0

-semigroup, that has a Kol-

mogorov kernel estimate, see Theorem 3.2. In the sequel this allows us to de�ne

onsistent Ornstein-Uhlenbek semigroups on L

p

(
) for 1 � p < 1 that have

the same ontrativity, positivity and domination properties. This immediately

gives an upper bound on the growth bound of the semigroups and implies that the

Ornstein-Uhlenbek operator admits a bounded H

1

-alulus on L

p

(
) (Proposi-

tion 4.5).

In the speial ase of an exterior domain with suÆiently smooth boundary, it

turns out that the domain is

W

1;p

0

(
) \W

2;p

(
) \ ff 2 L

p

(
) : Bx � rf 2 L

p

(
)g

and we even dedue in Theorem 5.2 that the same vertial line as in the ase

of the whole spae is ontained in the spetrum of the operator, so the spetral

behaviour is the same as for the ase 
 = R

d

. This means that also in this ase the

semigroup is not eventually norm-ontinuous. Nevertheless we an show that its

growth bound and the spetral bound of its generator oinide, whih is no longer

lear by standard spetral theory for semigroups.

The paper is organised as follows. In setion 2 we introdue the notion of Kol-

mogorov kernel estimates and prove their main impliations. The generation result

for A in L

2

(
) is ontained in setion 3 and in setion 4 we show that this semigroup

is positive and admits a Kolmogorov kernel estimate. Setion 5 �nally ontains the

results for exterior domains.

Notations. Throughout this paper we use the following notation.

For a losed operator (A;D(A)) on some Banah spae X we denote by �(A)

the spetrum, by %(A) the resolvent set and by R(�;A) = (� � A)

�1

; � 2 %(A),

the resolvent of A. Furthermore, the spae of all bounded linear operators on X is

denoted by L(X).

As usual, for 
 � R

d

open, k � k

p

stands for the norm of the Lebesgue spaes

L

p

(
) whenever the set 
 is lear from the ontext. We writeW

k;p

(
), or H

k

(
) in
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the ase p = 2, for the Sobolev spaes, C

1



(
) for the spae of all smooth funtions

having ompat support in 
 and W

1;p

0

(
), or H

1

0

(
), is the losure of C

1



(
) in

the norm of W

1;p

(
) or H

1

(
), respetively. Furthermore, if X is a funtion spae,

X

+

stands for the one of all positive funtions in X .

Finally, B

r

(x

0

) is the open ball of radius r with entre x

0

and, given a matrix

B 2 R

d�d

, we write tr(B) =

P

d

j=1

b

jj

for its trae.

2. Kolmogorov kernel estimates

Given a matrix B 2 R

d�d

n f0g and a positive de�nite matrix Q 2 R

d�d

, we

de�ne the Kolmogorov semigroup (K

p

(t))

t�0

, on L

p

(R

d

) by

�

K

p

(t)f

�

(x) =

Z

R

d

k

t

(e

tB

x� y)f(y) dy; f 2 L

p

(R

d

);

where the Kolmogorov kernel k

t

is given by

k

t

(x) =

1

(4�)

d

2

(detQ

t

)

1

2

exp

�

�

1

4

Q

�1

t

x � x

�

with Q

t

=

Z

t

0

e

sB

Qe

sB

?

ds:

It is well known (f. [14℄) that (K

p

(t))

t�0

is a positive C

0

-semigroup on L

p

(R

d

) for

every 1 � p < 1 and it is straightforward by substitution and Young's inequality

that for every f 2 L

p

(R

d

)

kK

p

(t)fk

p

=

�

Z

R

d

�

�

(k

t

� f)(e

tB

x)

�

�

p

dx

�

1

p

= e

�

tr(B)

p

t

kk

t

� fk

p

� e

�

tr(B)

p

t

kfk

p

; (2)

sine kk

t

k

1

= 1. The generator A

R

d

;p

of this semigroup is the Ornstein-Uhlenbek

operator A given in (1) and G. Metafune, J. Pr�uss, A. Rhandi, and R. Shnaubelt

showed in [17℄ that its domain is

D(A

R

d

;p

) =W

2;p

(R

d

) \ ff 2 L

p

(R

d

) : Bx � rf 2 L

p

(R

d

)g (3)

for 1 < p <1.

Now, let 
 � R

d

be an open set, 1 � p <1 and let (T (t))

t�0

be a C

0

-semigroup

on L

p

(
) with generator A.

De�nition 2.1. We say, that the semigroup (T (t))

t�0

on L

p

(
) satis�es a Kol-

mogorov kernel estimate, if there exist a matrix B 2 R

d�d

n f0g, a positive de�nite

matrix Q 2 R

d�d

, M � 0 and ! 2 R, suh that for all f 2 L

p

(
) and all t � 0 we

have the pointwise estimate

jT (t)f j �Me

!t

K

p

(t)j

~

f j;

where

~

f denotes the trivial extension of f to R

d

.

For suh semigroups we have the following result.

Proposition 2.2. Let 
 � R

d

be open, 1 � p < 1 and let (T (t))

t�0

be a C

0

-

semigroup on L

p

(
) that satis�es a Kolmogorov kernel estimate for some matrix

B, a positive de�nite matrix Q and onstants M and !. Then for 1 � q <1 there

exist onsistent C

0

-semigroups (T

q

(t))

t�0

on L

q

(
), suh that T

p

= T and

kT

q

(t)k

L(L

q

(
))

�Me

(!�

tr(B)

q

)t

for every t � 0. Furthermore, T

q

satis�es the same Kolmogorov kernel estimate

and if T is a positive semigroup, T

q

is also positive.
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Proof. Let g 2 L

p

(
) \ L

q

(
) and t � 0. Then, by onsisteny of the semigroups

K

q

for 1 � q <1 and (2), we have

kT (t)gk

q

=

�

Z




jT (t)gj

q

�

1

q

�Me

!t

�

Z

R

d

(K

p

(t)j~gj)

q

�

1

q

=Me

!t

kK

q

(t)j~gjk

q

�Me

(!�

tr(B)

q

)t

kgk

q

:

Thus we an extend the operator T (t) ontinuously to an operator T

q

(t) on L

q

(
),

obtaining C

0

-semigroups that are onsistent by onstrution and that obey the

stated norm estimate by the above alulation.

For f 2 L

q

(
) \ L

p

(
) the inequality

jT

q

(t)f j �Me

!t

K

q

(t)j

~

f j

is immediate by onsisteny. Thus Me

!t

K

q

(t)j

~

f j � jT

q

(t)f j is positive for all these

funtions and the Kolmogorov kernel estimates follow for arbitrary f 2 L

q

(
), sine

L

q

(
)

+

is losed in L

q

(
).

Finally, the same losedness argument yields the positivity of T

q

, whenever T is

positive. �

For every 1 � q < 1 we denote the generator of (T

q

(t))

t�0

by A

q

. The Kol-

mogorov kernel estimates also provide onsisteny results for these operators and

their resolvents. We ollet them in the next proposition.

Proposition 2.3. Let 1 � q <1. Then

(1) R(�;A

q

)f = R(�;A

r

)f for all f 2 L

q

(
) \ L

r

(
), all 1 � r < 1 and all

� 2 C with Re(�) > �

0

:= max(! �

tr(B)

q

; ! �

tr(B)

r

).

(2) The set ff 2 D(A) \ L

q

(
) : Af 2 L

q

(
)g is ontained in D(A

q

) and

A

q

f = Af for all suh f .

(3) jR(�;A

q

)f j �MR(�; !+A

R

d

;q

)j

~

f j for all f 2 L

q

(
) and all � > !�

tr(B)

q

.

Proof. (1) By Proposition 2.2 we know, that the growth bounds of T

q

and T

r

are at most �

0

. Taking � 2 C with Re(�) > �

0

, this allows us to onlude

with the help of the Laplae transform

R(�;A

q

)f =

Z

1

0

e

��t

T

q

(t)f dt =

Z

1

0

e

��t

T

r

(t)f dt = R(�;A

r

)f

for every f 2 L

q

(
) \ L

r

(
) by the onsisteny of the semigroups.

(2) Let f 2 D(A) \ L

q

(
) with Af 2 L

q

(
). Then, hoosing � > ! + jtr(B)j,

we have � 2 %(A) \ %(A

q

) and sine (��A)f 2 L

p

(
) \ L

q

(
), we get

f = R(�;A)(� �A)f = R(�;A

q

)(��A)f 2 D(A

q

)

by part (1) of this proof. The above equality also yields A

q

f = Af .

(3) Let � > !�

tr(B)

q

. Then we may again use Laplae transform for R(�;A

q

)

and we obtain for f 2 L

q

(
)

jR(�;A

q

)f j =

�

�

�

�

Z

1

0

e

��t

T

q

(t)f dt

�

�

�

�

�M

Z

1

0

e

��t

e

!t

K

q

(t)j

~

f j dt =MR(�; ! +A

R

d

;q

)j

~

f j;

sine T

q

also has a Kolmogorov kernel estimate by Proposition 2.2.

�
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In the speial ase that M = 1 in the kernel estimates, the operators A

q

�

! + tr(B)=q generate ontration semigroups for all q 2 (1;1). Sine jtr(B)=qj �

jtr(B)j for all q 2 (1;1), the amount of the shift is bounded. Thus A

q

�!�jtr(B)j,

1 < q < 1, is a family of generators of ontration semigroups on L

q

(
). If in

addition the semigroup (T (t))

t�0

is positive, by Proposition 2.2 all the semigroups

are positive. This immediately yields a bounded H

1

-alulus for their generators,

see [11℄.

Proposition 2.4. The operators A

q

� ! � jtr(B)j admit a bounded H

1

-alulus

for every 1 < q < 1, whenever (T (t))

t�0

is a positive semigroup satisfying a

Kolmogorov kernel estimate with M = 1.

3. The Ornstein-Uhlenbek semigroup on L

2

(
)

In the following we want to use Kolmogorov kernel estimates to show that the

Ornstein-Uhlenbek operator A is the generator of a positive C

0

-semigroup on

L

p

(
) for every open and onneted subset 
 of R

d

. As we already mentioned in

the introdution, the key is a generation result for the ase p = 2 and Kolmogorov

kernel estimates. We will prove these two items in this and the following setion.

We de�ne the realisation of the Ornstein-Uhlenbek operator in L

2

(
) by

D(A


;2

) = H

1

0

(
) \ fu 2 H

2

lo

(
) : Au 2 L

2

(
)g;

(Au)(x) =

d

X

i;j=1

q

ij

D

i

D

j

u(x) +Bx � ru(x)

=

d

X

i;j=1

q

ij

D

i

D

j

u(x) +

d

X

i;j=1

b

ij

x

j

D

i

u(x); x 2 
 � R

d

;

where Q = (q

ij

)

d

i;j=1

2 R

d�d

is a symmetri and positive de�nite matrix and

B = (b

ij

)

d

i;j=1

2 R

d�d

nf0g. Note that this notation is onsistent with the de�nition

of A

R

d

;2

in (3). In fat, the domain in (3) is learly ontained in the domain given

here, so when we have shown in Proposition 3.5 that A


;2

is dissipative, the equality

of the two domains follows by the following general observation.

Remark 3.1. Let B be the generator of a C

0

-semigroup on some Banah spae X

and let A � B be dissipative. Then we already have A = B. In fat, there exists

� > 0, suh that � � B is surjetive and � � A is injetive by dissipativity. Thus

the laim follows by [6, IV. 1.21. (5)℄.

Now we an formulate our result for the ase p = 2.

Theorem 3.2. Let 
 � R

d

be a domain. Then the operator A


;2

generates a

positive C

0

-semigroup (T


;2

(t))

t�0

on L

2

(
) with kT


;2

(t)k

L(L

2

(
))

� e

�

tr(B)

2

t

for

all t � 0. Moreover for every � > �tr(B)=2 and every t � 0 we have the domination

properties

jR(�;A


;2

)f j � R(�;A

R

d

;2

)j

~

f j; f 2 L

2

(
);

jT


;2

(t)f j � T

R

d

;2

(t)j

~

f j = K

2

(t)j

~

f j; f 2 L

2

(
);

where

~

f denotes the extension of f by 0. In partiular T


;2

ful�lls a Kolmogorov

kernel estimate with M = 1 and ! = 0.

In the following we use the notation

(A

0

u)(x) =

d

X

i;j=1

q

ij

D

i

D

j

u(x) and (Lu)(x) = Bx � ru(x)
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for the di�usion and the drift part of A, respetively. We start with a simple lemma,

that will be useful for many proofs.

Lemma 3.3. Let G � R

d

be open and u 2 H

1

0

(G) be a real-valued funtion. For

any ' 2 C

1



(R

d

) we have

Z

G

(Lu)u' = �

tr(B)

2

Z




u

2

'�

1

2

Z




u

2

L':

Proof. Sine u 2 H

1

0

(G), there is a sequene (u

n

)

n2N

� C

1



(G) onverging to u in

H

1

(G). Therefore, we have

R

G

(Lu)u' = lim

n!1

R

G

Lu

n

u

n

', sine Bx is bounded

on the support of '. We get

Z

G

Lu

n

u

n

' =

Z

G

Bx � ru

n

u

n

' = �

Z

G

div

�

u

n

'Bx

�

u

n

= �

Z

G

Lu

n

u

n

'� tr(B)

Z

G

u

2

n

'�

Z

G

u

2

n

L':

Letting n tend to 1, we derive

Z

G

(Lu)u' = �

tr(B)

2

Z

G

u

2

'�

1

2

Z

G

u

2

L':

�

Remark 3.4. To be preise, one has to hek that integration by parts is allowed

in the proof of Lemma 3.3. This will be used again later on, so it might be useful

to note the following generalisation. For any open set G, integration by parts is

possible if u 2 C

1



(G) and v 2 H

1

lo

(G).

In this ase, there is a ompat set K � G with supp(u) � K

Æ

. Then v 2 H

1

(K)

and by the de�nition of weak derivatives one gets for all 1 � i � d

Z

G

u(D

i

v) =

Z

K

u(D

i

v) = �

Z

K

(D

i

u)v = �

Z

G

(D

i

u)v:

In order to show that A


;2

is a generator of a C

0

-semigroup we will apply the

Lumer-Phillips theorem. So we �rst need dissipativity.

Proposition 3.5. The operator

A := A


;2

+

tr(B)

2

is dissipative in L

2

(
).

Proof. Let f 2 D(A


;2

) = D(A). Writing f = u+ iv for suitable real u; v 2 L

2

(
),

we get

Re

Z




(Af)f =

Z




(Au)u+

Z




(Av)v;

so it suÆes to show

R




(Au)u � 0 for real-valued funtions u. Note that u; v 2

D(A


;2

), sine the oeÆients of A are real.

We hoose � 2 C

1



(R

d

) vanishing outside of B

2

(0) with �j

B

1

(0)

= 1 and de�ne

�

m

(x) = �(

x

m

) for m 2 N. Sine (Au)u 2 L

1

(
) we derive lim

m!1

R




(Au)u�

m

=

R




(Au)u by the pointwise onvergene of �

m

to 1 and Lebesgue's Theorem.
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Next we hoose a sequene (u

n

)

n2N

of C

1



-funtions onverging to u with respet

to the H

1

-norm. Now, partial integration (as in Remark 3.4) yields

Z




(A


;2

u)(x)u

n

(x)�

m

(x) dx

=

Z




d

X

i;j=1

q

ij

D

i

D

j

u(x)u

n

(x)�

m

(x) dx+

Z




d

X

i;j=1

b

ij

x

j

D

i

u(x)u

n

(x)�

m

(x) dx

=�

Z




d

X

i;j=1

q

ij

D

i

u(x)D

j

u

n

(x)�

m

(x) dx�

Z




d

X

i;j=1

q

ij

D

i

u(x)u

n

(x)D

j

�

m

(x) dx

+

1

2

Z




d

X

i;j=1

b

ij

x

j

D

i

u(x)u

n

(x)�

m

(x) dx�

1

2

Z




d

X

i;j=1

b

ij

x

j

u(x)D

i

u

n

(x)�

m

(x) dx

�

1

2

Z




d

X

i;j=1

b

ij

x

j

u

n

(x)u(x)D

i

�

m

(x) dx�

tr(B)

2

Z




u(x)u

n

(x)�

m

(x) dx:

Note that, thanks to the bounded supports of the funtions �

m

and u

n

, all integrals

in the above alulations are well de�ned.

The H

1

-onvergene of the sequene (u

n

)

n2N

yields

lim

n!1

Z




d

X

i;j=1

q

ij

D

i

u(x)D

j

u

n

(x)�

m

(x) dx =

Z




d

X

i;j=1

q

ij

D

i

u(x)D

j

u(x)�

m

(x) dx

and

lim

n!1

Z




d

X

i;j=1

b

ij

x

j

D

i

u

n

(x)u(x)�

m

(x) dx =

Z




d

X

i;j=1

b

ij

x

j

D

i

u(x)u(x)�

m

(x) dx;

sine x

j

�

m

(x) is bounded. The other summands an be treated analogously, so we

derive

Z




Au(x)u(x)�

m

(x) dx = lim

n!1

Z




(Au)(x)u

n

(x)�

m

(x) dx

=�

Z




d

X

i;j=1

q

ij

D

i

u(x)D

j

u(x)�

m

(x) dx�

Z




d

X

i;j=1

q

ij

D

i

u(x)u(x)D

j

�

m

(x) dx

+

1

2

Z




d

X

i;j=1

b

ij

x

j

D

i

u(x)u(x)�

m

(x) dx�

1

2

Z




d

X

i;j=1

b

ij

x

j

D

i

u(x)u(x)�

m

(x) dx

�

1

2

Z




d

X

i;j=1

b

ij

x

j

u(x)u(x)D

i

�

m

(x) dx:

Next, we want to pass to the limit m to 1, so we have to onsider the terms

ontaining derivatives of �

m

. The equality (D

i

�

m

)(x) =

1

m

(D

i

�)(

x

m

) implies

x

j

D

i

�

m

(x) =

x

j

m

D

i

�

�

x

m

�

= 0 for

jxj

m

> 2;

and therefore all funtions x

j

D

i

�

m

(x), 1 � j � d, are bounded with

jx

j

D

i

�

m

(x)j =

�

�

�

x

j

m

D

i

�

�

x

m

�

�

�

�

< 2kr�k

1

and have support inside fx 2 R

d

: m � jxj � 2mg.
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Now let " > 0. Sine u

2

2 L

1

(
), there is a ompat subset K

"

� 
 with

Z


nK

"

u

2

�

"

2kr�k

1

:

If we hoose m

0

large enough, we have K

"

\ supp(x

j

D

i

�

m

) = ; for all m � m

0

and

therefore

�

�

�

�

Z




u

2

(x)x

j

D

i

�

m

(x) dx

�

�

�

�

=

�

�

�

�

�

Z


nK

"

u

2

(x)x

j

D

i

�

m

(x) dx

�

�

�

�

�

� ":

This proves

lim

m!1

Z




d

X

i;j=1

b

ij

x

j

u(x)u(x)D

i

�

m

(x) dx = 0:

Sine kD

i

�

m

k

1

�

1

m

kr�k

1

, we also have

lim

m!1

Z




d

X

i;j=1

q

ij

D

i

u(x)u(x)D

j

�

m

(x) dx = 0;

Finally we obtain dissipativity of A by

Z




(Au)u = lim

m!1

Z




(Au)u�

m

= �

Z




d

X

i;j=1

q

ij

D

i

u(x)D

j

u(x) dx � 0;

as Q is positive de�nite. �

In order to show that A


;2

is a generator, it remains to be proven that ��A is

surjetive for some �xed � > 0. This will be done by approximating the solution

u of the resolvent problem (� � A)u = f , f 2 L

2

(
), with solutions of the same

problem on bounded and regular subdomains of 
.

By [5, II.4, Lemma 1℄, there exists an inreasing sequene (


n

)

n2N

of bounded

subdomains of 
, that have a C

2

-boundary, suh that 
 =

S

n2N




n

. Note that

the spei� hoie of this sequene is not important, sine by dissipativity of A a

solution of the resolvent problem is unique, whenever it exists.

Sine the oeÆients of L are bounded on bounded sets, by standard perturba-

tion theory, the operator A+tr(B)=2 generates a C

0

-semigroup on L

2

(


n

) for every

n 2 N, when we equip it with the domain D = H

1

0

(


n

) \ H

2

(


n

). As D(A




n

;2

)

ontains D, we get D(A


;2

) = D again by Remark 3.1.

This oiniding of the domains even gives us some more preious information.

Sine the generator A




n

;2

+ tr(B)=2 is dissipative it even generates a ontration

semigroup on L

2

(


n

) for every n 2 N. Thus the bounds on the resolvent do not

depend on n, whih will be important in the following.

Fixing � > 0 and f 2 L

2

(
) that means we �nd a unique solution u

n

2 H

1

0

(


n

)\

H

2

(


n

) for the problem �u

n

�A




n

;2

u

n

�

tr(B)

2

u

n

= f j




n

for every n 2 N with

ku

n

k

L

2

(


n

)

=









R

�

�;A




n

;2

+

tr(B)

2

�

f

�

�




n









L

2

(


n

)

�

1

�

kfk

L

2

(
)

; (4)

independently of the domain 


n

.

As by [1, Lemma 3.22℄, the trivial extension of u

n

is an element of H

1

(R

d

) and

hene of H

1

0

(
), we may regard (u

n

)

n2N

as a sequene in H

1

0

(
). The next lemma

will show that even the gradients of the funtions u

n

are bounded independently

of the hosen domain, whih does not follow by ellipti regularity alone.
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Lemma 3.6. Let G � R

d

be a bounded domain with C

2

-boundary and u 2 H

1

0

(G)\

H

2

(G) be a solution of �u�A

G;2

u�

tr(B)

2

u = g for some � > 0. Then

kruk

2

�

r

2

�

kQ

�

1

2

kkgk

2

:

Proof. Let u = v + iw with real-valued v; w 2 H

1

0

(G) \H

2

(G). Then

kD

�

uk

2

2

=

Z

G

D

�

uD

�

u =

Z

G

(D

�

v + iD

�

w)(D

�

v � iD

�

w) = kD

�

vk

2

2

+ kD

�

wk

2

2

for any multiindex � with j�j � 2. For the funtion v we alulate by Lemma 3.3

Z

G

Q

1

2

rvQ

1

2

rv =

Z

G

Qrvrv = �

Z

G

(A

0

v)v

=

Z

G

�

�v �A

G;2

v �

tr(B)

2

v

�

v � �

Z

G

vv +

Z

G

(Lv)v +

tr(B)

2

Z

G

vv

=

Z

G

�

�v �A

G;2

v �

tr(B)

2

v

�

v � �

Z

G

vv

=

Z

G

Re(g)R

�

�;A

G;2

+

tr(B)

2

�

Re(g)� �









R

�

�;A

G;2

+

tr(B)

2

�

Re(g)









2

2

:

We onlude by (4)

krvk

2

2

= kQ

�

1

2

(Q

1

2

rv)k

2

2

� kQ

�

1

2

k

2

2

�

kRe(g)k

2

2

:

Repeating the same alulations for w, we obtain

kruk

2

2

� kQ

�

1

2

k

2

2

�

kRe(g)k

2

2

+ kQ

�

1

2

k

2

2

�

kIm(g)k

2

2

= kQ

�

1

2

k

2

2

�

kgk

2

2

:

�

Now we an prove the main result of this setion.

Proposition 3.7. Let 
 � R

d

be a domain. Then A


;2

is the generator of a

C

0

-semigroup (T


;2

(t))

t�0

on L

2

(
) with kT


;2

(t)k � e

�

tr(B)

2

t

.

Proof. It only remains to be shown that for a �xed � > 0 and for every f 2 L

2

(
)

there exists a funtion u 2 H

1

0

(
)\fv 2 H

2

lo

(
) : Av 2 L

2

(
)g with �u�Au = f .

We onsider the sequene (u

n

)

n2N

of trivial extensions of the solutions on 


n

mentioned above. In view of Lemma 3.6, it is bounded in H

1

0

(
), so there exists

a weakly onvergent subsequene (u

n

k

)

k2N

. We denote its limit by u and show in

the following that u is the desired solution.

As a �rst step, we will prove that u 2 H

2

lo

(
). Fix two ompat sets K

1

;K

2

� 


with K

1

� K

Æ

2

. Then, by onstrution, K

2

� 


n

k

for suÆiently large k. The

oeÆients of A are bounded on K

2

, so [10, Theorem 9.11℄, implies that there is a

onstant C depending onK

1

, K

2

and the bound of the oeÆients onK

2

, suh that

ku

n

k

k

H

2

(K

1

)

� C(ku

n

k

k

2

+ kfk

2

), so there exists a weakly onvergent subsequene

(u

n

k

l

)

l2N

in H

2

(K

1

). Let v denote its limit. Sine the sequene (u

n

k

l

j

K

1

)

l2N

also

onverges weakly to uj

K

1

in L

2

(K

1

), we derive v = uj

K

1

from the uniqueness of

weak limits in L

2

(K

1

). This shows u 2 H

2

lo

(
).

In order to �nish the proof, it remains to show �u � Au = f . Let g 2 C

1



(
)

and �x a ompatum K with supp(g) � K

Æ

. Then K � 


n

k

for k large enough.

Let (u

n

k

l

)

l2N

be again a weakly onvergent subsequene of (u

n

k

)

k2N

on H

2

(K) and
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A

?

be the formal adjoint of A. Then we onlude

Z




(�u�Au� f)g =

Z

K

(�u�Au� f)g =

Z

K

(�ug � uA

?

g � fg)

= lim

l!1

Z

K

(�u

n

k

l

g � u

n

k

l

A

?

g � fg) = lim

l!1

Z

K

(�u

n

k

l

�Au

n

k

l

� f)g = 0:

Thus the assertion follows by the fundamental theorem of variational alulus.

�

4. Domination and positivity of the semigroup

The aim of this setion is to prove Kolmogorov kernel estimates for the semigroup

(T


;2

(t))

t�0

obtained in Proposition 3.7. While doing so, we also obtain positivity

of the semigroup. Our method is inspired by the proof of the heat kernel estimates

for the Dirihlet Laplaian, f. [2℄.

Lemma 4.1. Let 
 � R

d

be a domain, � > �tr(B)=2 and let u 2 D(A


;2

),

v 2 H

1

(
)\ ff 2 H

2

lo

(
) : Af 2 L

2

(
)g be real-valued funtions, suh that v � 0.

Then the inequality (��A)u � (��A)v a.e. implies u � v a.e.

Proof. As in the proof of Proposition 3.5, we hoose a positive � 2 C

1



(R

d

) van-

ishing outside of B

2

(0) with �j

B

1

(0)

= 1 and de�ne �

m

(x) = �(

x

m

) for m 2 N.

By hypotheses, we have

�(u� v)�A

0

(u� v)�L(u� v) � 0; a.e.

so we obtain

�

Z




(u� v)'�

m

�

d

X

i;j=1

Z




q

ij

D

i

D

j

(u� v)'�

m

�

Z




Bx � r(u� v)�

m

' � 0

for all m 2 N and all positive ' 2 C

1



(
). By integration by parts, f. Remark 3.4,

we onlude that

�

Z




(u� v)'�

m

+

d

X

i;j=1

Z




q

ij

D

j

(u� v)D

i

'�

m

+

d

X

i;j=1

Z




q

ij

D

j

(u� v)'D

i

�

m

�

Z




Bx � r(u� v)�

m

' � 0:

for all m 2 N. Now, this last inequality is even valid for all ' 2 H

1

0

(
)

+

by density.

In the following we show, that (u�v)

+

2 H

1

0

(
)

+

. In order to do so, we hoose a

sequene (u

n

) � C

1



(
), that onverges to u in H

1

(
). Then the funtion (u

n

�v)

+

is in H

1

(
)

+

for every n 2 N and sine v � 0, we get supp((u

n

� v)

+

) � supp(u

n

).

Thus (u

n

� v)

+

has ompat support in 
, whih implies (u

n

� v)

+

2 H

1

0

(
)

+

.

This �nally yields (u� v)

+

2 H

1

0

(
)

+

, as H

1

0

(
) is a losed subspae of H

1

(
).

Putting ' = (u � v)

+

in the above inequality and observing that then all the

integrals vanish on the set fu � vg, we get

�

Z




�

(u� v)

+

�

2

�

m

+

Z




r(u� v)

+

Qr(u� v)

+

�

m

�

Z




Bx � r(u� v)

+

(u� v)

+

�

m

+

n

X

i;j=1

Z




q

ij

D

j

(u� v)

+

(u� v)

+

D

i

�

m

� 0:

Now Lemma 3.3 yields for the third integral

Z




Bx �r(u�v)

+

(u�v)

+

�

m

= �

tr(B)

2

Z




�

(u�v)

+

�

2

�

m

�

Z




Bx �r�

m

�

(u�v)

+

�

2

:
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As all the limits form!1 on the left hand side exist (f. proof of Proposition 3.5),

this implies

�

Z




Bx � r(u� v)

+

(u� v)

+

=

tr(B)

2

Z




�

(u� v)

+

�

2

:

We derive the inequality

�

�+

tr(B)

2

�

Z




�

(u� v)

+

�

2

+

Z




r(u� v)

+

Qr(u� v)

+

� 0:

Sine Q is positive de�nite and � > �tr(B)=2, this an only be true, if both integrals

are zero, in partiular, we get k(u�v)

+

k

L

2

(
)

= 0, whih implies u � v a.e. �

Setting v = 0, as an immediate orollary, we get the following positivity result

for A.

Corollary 4.2. Let � > �tr(B)=2 and let u 2 D(A


;2

) be a real-valued funtion.

Then

(��A)u � 0 a.e. =) u � 0 a.e. and

(��A)u � 0 a.e. =) u � 0 a.e.

The next step is to show that the resolvent and the semigroup reat monotonely,

when the domain 
 is enlarged. As a byprodut of the proof, we also dedue the

positivity of the semigroup and the resolvent.

Proposition 4.3. Let 


1

;


2

� R

d

be domains and let 


1

� 


2

. Then for every

f 2 L

2

(


1

)

+

, for every � > �tr(B)=2 and every t � 0, we have

(1) 0 � R(�;A




1

;2

)f � R(�;A




2

;2

)

~

f ,

(2) 0 � T




1

;2

(t)f � T




2

;2

(t)

~

f

almost everywhere. Here

~

f denotes the extension of f by 0.

Proof. (1) Put u := R(�;A




1

;2

)f and v := R(�;A




2

;2

)

~

f . Then, both u and

v are real-valued. Indeed, for u = u

1

+ iu

2

, we have f = (� � A




1

;2

)u =

(��A




1

;2

)u

1

+i(��A




1

;2

)u

2

, where (��A




1

;2

)u

j

, j = 1; 2, are real-valued

funtions. This implies (��A




1

;2

)u

2

= 0, and, by injetivity of (��A




1

;2

),

even u

2

= 0. The argument for v is the same.

Sine u 2 D(A




1

;2

), v 2 D(A




2

;2

) and f and

~

f are positive we get

u; v � 0 a.e. by Corollary 4.2. It remains to show u � v. As (� � A)u =

f = (� � A)v a .e. in 


1

, we have in partiular (� � A)u � (� � A)v.

Furthermore, we know that u 2 D(A




1

;2

) and the restrition of v to 


1

is

inH

1

(


1

)\ff 2 H

2

lo

(


1

) : Af 2 L

2

(


1

)g. Thus we may apply Lemma 4.1,

in order to get u � v a.e. in 


1

.

(2) Sine R(�;A




j

;2

) =

1

�

(I �

1

�

A




j

;2

)

�1

, j = 1; 2, the �rst part of the proof

yields

0 � (I � sA




1

;2

)

�1

f � (I � sA




2

;2

)

�1

~

f

for all 0 < s < 2=jtr(B)j or for every s > 0 if tr(B) = 0. Thus we have the

same for every power k 2 N:

0 � (I � sA




1

;2

)

�k

f � (I � sA




2

;2

)

�k

~

f:

Now let t > 0. Then, if k is large enough, we have t=k < 2=jtr(B)j and

0 � (I �

t

k

A




1

;2

)

�k

f � (I �

t

k

A




2

;2

)

�k

~

f:

Passing to the limit for k !1, the laim follows (f. [6, Corollary III.5.5℄).

�

For arbitrary f 2 L

2

(


1

), we get:
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Corollary 4.4. If 


1

and 


2

are as in Proposition 4.3, we have for every f 2

L

2

(


1

), for every � > �tr(B)=2 and every t � 0

(1) jT




1

;2

(t)f j � T




2

;2

(t)j

~

f j,

(2) jR(�;A




1

;2

)f j � R(�;A




2

;2

)j

~

f j.

Proof. Looking at the speial ase 


2

= R

d

we see that the semigroup (T




1

;2

(t))

t�0

is dominated by the semigroup (T

R

d

;2

(t))

t�0

, whih is given by positive, regular

integral kernel operators. It is a lassial result (f. [18, IV. x9℄), that in this

situation also the operators T




1

;2

(t), t > 0, are given by regular integral kernels

K

t

, that are positive, sine T




1

;2

(t) are positive operators. Thus

jT




1

;2

(t)f j =

�

�

�

�

Z




1

K

t

(�; y)f(y) dy

�

�

�

�

�

Z




1

K

t

(�; y)jf(y)j dy = T




1

;2

(t)jf j

� T




2

;2

(t)j

~

f j

by Proposition 4.3. Now, the resolvent estimate follows as in the proof of Proposi-

tion 2.3 (3). �

Setting 


2

= R

d

in Corollary 4.4, we have �nally ompleted the proof of Theo-

rem 3.2.

Now we have shown that A


;2

satis�es a Kolmogorov kernel estimate withM = 1

and ! = 0, so the results stated in Chapter 2 hold true. We ollet them in the

following theorem.

Theorem 4.5. Let 
 � R

d

be a domain. Then (T


;p

(t))

t�0

, 1 � p <1, is a family

of onsistent, positive C

0

-semigroups on L

p

(
) with kT


;p

(t)k

L(L

p

(
))

� e

�

tr(B)

p

t

for

all 1 � p <1 and all t � 0. For every � > �tr(B)=p and every t > 0 we have the

domination properties

jR(�;A


;p

)f j � R(�;A

R

d

;p

)j

~

f j; f 2 L

p

(
);

jT


;p

(t)f j � T

R

d

;p

(t)j

~

f j = (k

t

� j

~

f j)(e

tB

�); f 2 L

p

(
);

where

~

f denotes the extension of f by 0. Moreover, the operators A


;p

� jtr(B)j

admit a bounded H

1

-alulus for every 1 < p <1 and we have

(1) R(�;A


;p

)f = R(�;A


;q

)f for all f 2 L

p

(
)\L

q

(
), all 1 � p; q <1 and

all � 2 C with Re(�) > max(�

tr(B)

p

;�

tr(B)

q

).

(2) The set ff 2 D(A


;2

) \ L

p

(
) : A


;2

f 2 L

p

(
)g is ontained in D(A


;p

)

and A


;p

f = A


;2

f for all suh f and 1 � p <1.

5. The spetrum of A


;p

on exterior domains

We �nally turn our attention to the speial ase of an exterior domain, i.e.


 = R

d

nK for some ompat set K � R

d

with C

1;1

-boundary. Saling the set K

down to f0g, we show that the spetral behaviour of A


;p

is the same as in the ase


 = R

d

. That means that the spetrum of the drift operator L on R

d

, i.e. the whole

vertial line �tr(B)=p+iR (or in the ase tr(B) = 0 at least an unbounded subgroup

of it) is ontained in �(A


;p

). This implies that the semigroup (T


;p

(t))

t�0

is not

eventually norm-ontinuous. Nevertheless, we have that the spetral bound of A


;p

and the growth bound of T


;p

oinide and s(A


;p

) = !

0

(T


;p

) = �tr(B)=p. Before

we an formulate this theorem, we have to introdue the realisation L

R

d

;p

of L in

L

p

(R

d

):

D(L

R

d

;p

) = fu 2 L

p

(R

d

) : Lu 2 L

p

(R

d

)g; L

R

d

;p

u = Lu;

where Lu is understood in the sense of distributions.

We ollet the information on the operators L

R

d

;p

that we need in the following

in the next proposition. For proofs, see [14℄.
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Proposition 5.1. Let 1 � p <1. Then the following holds:

(1) The operator L

R

d

;p

is the generator of a C

0

-semigroup (S(t))

t�0

on L

p

(R

d

),

given by (S(t)f)(x) = f(e

tB

x), x 2 R

d

, for every f 2 L

p

(R

d

).

(2) If tr(B) 6= 0, then �(L

R

d

;p

) = �tr(B)=p+ iR.

(3) If tr(B) = 0, then �(L

R

d

;p

) is an additive subgroup of iR, that is not f0g.

Now the result that we want to prove in this setion an be formulated as follows.

Theorem 5.2. Let K � R

d

be ompat with a C

1;1

-boundary and 
 = R

d

n K.

Then for every 1 < p <1 we have

D(A


;p

) =W

1;p

0

(
) \W

2;p

(
) \ ff 2 L

p

(
) : Lf 2 L

p

(
)g: (5)

Furthermore we have the inlusion �(L

R

d

;p

) � �(A


;p

) and s(A


;p

) = !

0

(T


;p

) =

�tr(B)=p.

Note, that the whole piture hanges ompletely for bounded domains as the

semigroup then beomes analyti. It remains however an open question, whether

Theorem 5.2 is still valid for more general unbounded domains.

Remark 5.3. If 
 is an exterior domain with C

1;1

-boundary, we already know

from [9℄ that the Ornstein-Uhlenbek operator equipped with the domainW

1;p

0

(
)\

W

2;p

(
) \ ff 2 L

p

(
) : Lf 2 L

p

(
)g generates a C

0

-semigroup for every 1 < p <

1. For the following results, it is neessary to hek that A


;p

oinides with this

operator, whih we will denote by

~

A

p

. For p = 2, the inlusion D(

~

A

2

) � D(A


;2

)

is lear, so we get D(

~

A

2

) = D(A


;2

) by Remark 3.1.

The onstrution of the semigroups in [9℄ now immediately yields onsisteny.

From this we dedue that the semigroups generated by

~

A

p

and A


;p

and hene

their generators oinide for 1 < p <1.

In the following we often identify funtions f 2 C

1



(R

d

nf0g) with their extension

by f(0) = 0 and thus view C

1



(R

d

nf0g) as a subspae of C

1



(R

d

). The importane

of the spae C

1



(R

d

n f0g) for the following is due to the following lemma.

Lemma 5.4. The subspae C

1



(R

d

n f0g) � D(L

R

d

;p

) is a ore for L

R

d

;p

.

Proof. Let f 2 C

1



(R

d

nf0g) and t > 0. Then 0 =2 supp(f). In view of the linearity,

bijetivity and ontinuity of the map x 7! e

�tB

x, we onlude that supp(S(t)f) =

e

�tB

supp(f) is a ompat set not ontaining 0, hene S(t)f 2 C

1



(R

d

n f0g) for

every t � 0. Moreover, C

1



(R

d

nf0g) is dense in L

p

(R

d

), so the lemma follows from

[6, Proposition I.1.7℄. �

Now, if 
 = R

d

nK for some ompat set K � R

d

with C

1;1

-boundary, for every

k 2 N we set




k

:= fx 2 R

d

: kx 2 
g = R

d

n

1

k

K

and onsider the operator

A

k

=

1

k

2

d

X

i;j=1

q

ij

D

i

D

j

+ L;

with domain

D(A

k

) =W

1;p

0

(


k

) \W

2;p

(


k

) \ ff 2 L

p

(


k

) : Lf 2 L

p

(


k

)g

for some given p 2 (1;1).

By Remark 5.3 we have D(A

k

) = D(A




k

;p

), so Theorem 4.5 implies that f� 2

C : Re(�) > �

tr(B)

p

g � %(A

k

) for all k 2 N. Thus we may ompare the resolvents of

A

k

with the resolvent of A


;p

= A

1

for all these �. This yields the following result.
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Lemma 5.5. We have kR(�;A

k

)k

L(L

p

(


k

))

= kR(�;A


;p

)k

L(L

p

(
))

for every k 2 N

and every � 2 C with Re(�) > �

tr(B)

p

.

Proof. We onsider the map

V

k

: L

p

(
)! L

p

(


k

); V

k

(f)(x) = k

d

p

f(kx):

The transformation formula yields that V

k

is an isometry, whose inverse is given by

V

�1

k

(f)(x) = k

�

d

p

f

�

1

k

x

�

:

For f 2W

2;p

(
) we get by the hain rule V

k

(f) 2W

2;p

(


k

) and

V

�1

k

A

k

V

k

f = k

d

p

V

�1

k

A

k

f(kx)

= V

�1

k

2

4

k

d

p

0

�

1

k

2

d

X

i;j=1

k

2

q

ij

D

i

D

j

f(kx) +

d

X

i;j=1

b

ij

kx

j

D

i

f(kx)

1

A

3

5

= V

�1

k

2

4

k

d

p

0

�

d

X

i;j=1

q

ij

D

i

D

j

f(kx) +

d

X

i;j=1

b

ij

kx

j

D

i

f(kx)

1

A

3

5

= Af:

If f 2W

1;p

0

(
), there is a sequene f

n

2 C

1



(
), whih onverges to f in W

1;p

(
).

Then the sequene (V

k

f

n

)

n2N

is in C

1



(


k

) with supp(V

k

f

n

) =

1

k

supp(f

n

) and it

onverges to V

k

f in W

1;p

(


k

). Again, the transformation formula implies LV

k

f 2

L

p

(


k

). For V

�1

k

one an argue analogously. So V

k

indues a bijetion from

W

2;p

(
) \W

1;p

0

(
) \ ff 2 L

p

(
) : Lf 2 L

p

(
)g to W

2;p

(


k

) \W

1;p

0

(


k

) \ ff 2

L

p

(


k

) : Lf 2 L

p

(


k

)g. In fat, we have A


;p

f = V

�1

k

A

k

V

k

f for all f 2 D(A


;p

),

and (��A


;p

)f = (�� V

�1

k

A

k

V

k

)f = V

�1

k

(��A

k

)V

k

f . Now we get R(�;A


;p

) =

V

�1

k

(��A

k

)

�1

V

k

. We onlude

kR(�;A


;p

)fk

p

= kV

�1

k

(��A

k

)

�1

V

k

fk

p

= kV

�1

k

(��A

k

)

�1

V

k

fk

p

� kV

�1

k

k

L(L

p

(
);L

p

(


k

))

k(��A

k

)

�1

k

L(L

p

(


k

))

kV

k

fk

p

� kR(�;A

k

)k

L(L

p

(


k

))

kfk

p

:

The reverse inequality follows analogously. �

Having this equality in hand, we may �nally show that the resolvents of A


;p

obey

the inequality kR(�; L

R

d

;p

)k

L(L

p

(R

d

))

� kR(�;A


;p

)k

L(L

p

(
))

for Re(�) > �

tr(B)

p

.

Sine �(L

R

d

;p

) � �tr(B)=p + iR by Proposition 5.1, we an approximate every

� 2 �(L

R

d

;p

) by � 2 %(A


;p

). The above inequality then implies the divergene of

kR(�;A


;p

)k

L(L

p

(
))

for �! �. This yields �(L

R

d

;p

) � �(A


;p

). So we have shown

�

tr(B)

p

� s(A


;p

) � !

0

(T


;p

) � �

tr(B)

p

;

whih implies the equality stated in Theorem 5.2.

Proposition 5.6. For Re(�) > �

tr(B)

p

we have

kR(�; L

R

d

;p

)k

L(L

p

(R

d

))

� kR(�;A


;p

)k

L(L

p

(
))

:

Proof. Let g 2 C

1



(R

d

n f0g). Then g 2 D(A

k

) for k large enough. It follows

kA

k

g � L

R

d

;p

gk

p

=









1

k

2

d

X

i;j=1

q

ij

D

i

D

j

g









p

�! 0
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for k !1. Now we onsider f = (��L)g, g 2 C

1



(R

d

n f0g). For k large enough

we have f 2 D(A

k

). Then for n � k we get with the previous Lemma

kR(�;A

n

)f �R(�; L

R

d

;p

)

~

fk

p

= kR(�;A

n

)(� � L

R

d

;p

)g � gk

p

=kR(�;A

n

)

�

(��A

n

)g � (��A

n

)g + (�� L

R

d

;p

)g

�

� gk

p

=kR(�;A

n

)(A

n

� L

R

d

;p

)gk

p

� kR(�;A


;p

)k

L(L

p

(
))

k(A

n

� L

R

d

;p

)gk

p

;

so R(�;A

n

)f � R(�; L

R

d

;p

)f onverges to 0 in L

p

(
). Then for eah " > 0 and

f 2 (�� L

R

d

;p

)C

1



(R

d

n f0g) there exists a k with

kR(�; L

R

d

;p

)fk

p

� kR(�;A

k

)fk

p

+ " � kR(�;A


;p

)k

L(L

p

(
))

kfk

p

+ ":

Thus we have

kR(�; L

R

d

;p

)fk

p

� kR(�;A


;p

)k

L(L

p

(
))

kfk

p

for all f 2 (� � L

R

d

;p

)C

1



(R

d

n f0g). Sine C

1



(R

d

n f0g) is a ore for L

R

d

;p

by

Lemma 5.4, the assertion follows. �
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