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ABSTRACT. Replacing the Gaussian semigroup in the heat kernel estimates by
the Ornstein-Uhlenbeck semigroup on R%, we define the notion of Kolmogorov
kernel estimates. This allows us to show that under Dirichlet boundary con-
ditions Ornstein-Uhlenbeck operators are generators of consistent, positive,
(quasi-)contractive Cp-semigroups on LP(€2) for all 1 < p < oo and for every
domain Q C R%. For exterior domains with sufficiently smooth boundary a
result on the location of the spectrum of these operators is also given.

1. INTRODUCTION

Heat kernel estimates have proved to be a powerful tool for the analysis of elliptic
differential operators. Beside many other things, they allow the extension of a given
semigroup on LP° for some py to the whole scale of LP-spaces for 1 < p < oo in a
consistent way, transfering certain nice properties to all these semigroups, such as
analyticity, and yielding p-invariance of the spectrum.

Dealing with Ornstein-Uhlenbeck operators on LP(Q2) for unbounded domains
Q2 we evidently cannot expect to get heat kernel estimates, as the spectrum of
these operators in LP(R?) already depends heavily on p. Nevertheless, the well-
known representation for the Ornstein-Uhlenbeck semigroup on LP(R?) that is due
to A. N. Kolmogorov and given by

TW)f(2)= | ke(Pz—y)fly) dy = (ke * f)(ePa),

Rd
where the Kolmogorov kernel

_ 1 1 -1 : _ ! sB sB*
k) = (47T)%(det Qt)% o < 4Qt x:z:) with @ _/0 Qe ds
looks very similar to the heat semigroup. So it is a natural idea to consider Kol-
mogorov kernel estimates, by replacing the Gaussian semigroup by the Kolmogorov
semigroup (7'(t))¢>0, thus getting a majorising semigroup that is well adapted to
operators of the Ornstein-Uhlenbeck type. These estimates then allow us to extend
semigroups on LP° to the whole scale of LP for 1 < p < 0o, analogously to the case
of heat kernel bounds.

Having established this idea, in the sequel we apply it to Ornstein-Uhlenbeck
operators with Dirichlet boundary conditions in LP(2), where 1 < p < oo and {2 is
a domain in R¢. Ornstein-Uhlenbeck operators are differential operators, formally
given by

d
(Au)(z) = Z ¢i;DiDju(x) + Bz - Vu(z), (1)
ij=1
where Q = (gi;)f,—, € R is a symmetric and positive definite matrix and

B = (bi){,—, € R4\ {0}. They first appeared in stochastical analysis, describing
a Brownian motion with an additional drift. In this context one usually works in
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spaces of continuous functions on R? or in the spaces LP(R?,u), where p is the
invariant measure of the underlying process.

Recently, it became clear that an analytic treatment of these operators is of great
interest. For instance, looking at the Stokes equation in the exterior of a rotating
obstacle leads to operators of the Ornstein-Uhlenbeck type, see [13], [12] and [8].
Thus one is interested in their behaviour on LP(Q) with respect to the Lebesgue
measure for domains and especially exterior domains.

Passing from the invariant measure to the Lebesgue measure changes the proper-
ties of the operator completely. The spectrum is no longer contained in the negative
real axis, instead it contains a vertical line (cf. [14]), so the semigroup (T'(t))t>0
on LP(R?) is not analytic, as it is in LP(R?, u) (cf. [15]), and it even fails to be
eventually norm-continuous.

Whereas Ornstein-Uhlenbeck operators are well understood in LP(R?) (cf. [14],
[17], [16]) and for bounded domains, where they can be viewed as a perturbation of
lower order of the elliptic diffusion part, there are very few results for unbounded
domains. M. Geissert, H. Heck, M. Hieber and I. Wood showed in [9] that in the
case of an exterior domain ) with sufficiently smooth boundary, a realisation of
A on LP(2) generates a Cy-semigroup and G. da Prato and A. Lunardi treat the
case of L?-spaces of convex sets with respect to Neumann boundary conditions and
infinitesimally invariant measures in [4]. The Dirichlet problem in spaces of bounded
continuous functions on smooth domains is treated by S. Fornaro, G. Metafune and
E. Priola in [7]. An overview may be found in [3].

In this paper we show that for arbitrary domains 2 C R? a realisation of A
in L?(2) generates a (quasi-)contractive, positive Cp-semigroup, that has a Kol-
mogorov kernel estimate, see Theorem 3.2. In the sequel this allows us to define
consistent Ornstein-Uhlenbeck semigroups on LP(2) for 1 < p < oo that have
the same contractivity, positivity and domination properties. This immediately
gives an upper bound on the growth bound of the semigroups and implies that the
Ornstein-Uhlenbeck operator admits a bounded H*-calculus on LP(Q2) (Proposi-
tion 4.5).

In the special case of an exterior domain with sufficiently smooth boundary, it
turns out that the domain is

WyP(Q)NWP(Q)N{f € LP(Q) : Bz - Vf € LP(Q)}

and we even deduce in Theorem 5.2 that the same vertical line as in the case
of the whole space is contained in the spectrum of the operator, so the spectral
behaviour is the same as for the case ! = R?. This means that also in this case the
semigroup is not eventually norm-continuous. Nevertheless we can show that its
growth bound and the spectral bound of its generator coincide, which is no longer
clear by standard spectral theory for semigroups.

The paper is organised as follows. In section 2 we introduce the notion of Kol-
mogorov kernel estimates and prove their main implications. The generation result
for A in L?() is contained in section 3 and in section 4 we show that this semigroup
is positive and admits a Kolmogorov kernel estimate. Section 5 finally contains the
results for exterior domains.

Notations. Throughout this paper we use the following notation.

For a closed operator (A, D(A)) on some Banach space X we denote by o(A)
the spectrum, by o(A) the resolvent set and by R(\,4) = (A — A)~1, X € o(A),
the resolvent of A. Furthermore, the space of all bounded linear operators on X is
denoted by £(X).

As usual, for  C R? open, || ||, stands for the norm of the Lebesgue spaces
LP() whenever the set 2 is clear from the context. We write W*?(Q), or H*(Q) in
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the case p = 2, for the Sobolev spaces, C2°(2) for the space of all smooth functions
having compact support in Q and Wy ”(Q), or H}(Q), is the closure of C2°() in
the norm of W1*(Q2) or H!(Q2), respectively. Furthermore, if X is a function space,
X, stands for the cone of all positive functions in X.

Finally, B, (x¢) is the open ball of radius r with centre z¢ and, given a matrix
B € R we write tr(B) = Z‘;:l b;; for its trace.

2. KOLMOGOROV KERNEL ESTIMATES

Given a matrix B € R%*¢ \ {0} and a positive definite matrix @ € R¥*?, we
define the Kolmogorov semigroup (K,(t))¢>0, on LP(R?) by

(K@) = [ k(Pa—9)f)dy,  fe LR,

where the Kolmogorov kernel k; is given by

1 1 t .
ki(r) = ——————exp (——Q_lm . a:) with @ = / e*BQe’B” ds.
) = e g 4 o
It is well known (cf. [14]) that (K, (t))s>0 is a positive Cp-semigroup on LP(R?) for
every 1 < p < oo and it is straightforward by substitution and Young’s inequality
that for every f € LP(R?)

_ tx(B) tr(

15,070 = ([ s D0l as) " = kgl <& 5 @)

since ||k¢||y = 1. The generator Aga, of this semigroup is the Ornstein-Uhlenbeck
operator A given in (1) and G. Metafune, J. Priiss, A. Rhandi, and R. Schnaubelt
showed in [17] that its domain is

D(Agay,) = W*P(RY) N {f € LP(R?) : Bz - Vf € L*(R*)} (3)

for 1 < p < oo.
Now, let 2 C R? be an open set, 1 < p < oo and let (T'())¢>0 be a Co-semigroup
on LP(2) with generator A.

Definition 2.1. We say, that the semigroup (T'(t))i>0 on LP() satisfies a Kol-
mogorov kernel estimate, if there exist a matriz B € R¥*?\ {0}, a positive definite
matriz Q € R™>Y, M >0 and w € R, such that for all f € LP(Q) and all t > 0 we
have the pointwise estimate

IT(t)f] < Me“' K(8)| ],
where f denotes the trivial extension of f to RY.
For such semigroups we have the following result.

Proposition 2.2. Let Q@ C R? be open, 1 < p < 0o and let (T'(t))¢>0 be a Co-
semigroup on LP(Q) that satisfies a Kolmogorov kernel estimate for some matrix
B, a positive definite matriz Q@ and constants M and w. Then for 1 < g < oo there
exist consistent Co-semigroups (Tq(t))i>0 on L1(Q), such that T, =T and
_t(B)
T, (0)ll c(ray) < Mel™"a )t

for every t > 0. Furthermore, T, satisfies the same Kolmogorov kernel estimate
and if T is o positive semigroup, T, is also positive.
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Proof. Let g € LP(Q) N LY(Q2) and ¢t > 0. Then, by consistency of the semigroups
K, for 1 < ¢ < oo and (2), we have

iroal, = ( [ |T(t>g|q>3 <o ([ (t”g')q);

. _u(B)
= Me“!||K,(1)|gll, < Me =" g,

Thus we can extend the operator T'(t) continuously to an operator T,(t) on L?(€2),
obtaining Cyp-semigroups that are consistent by construction and that obey the
stated norm estimate by the above calculation.

For f € LY(2) N LP(Q2) the inequality

T, ()] < Me K, (1)|f]

is immediate by consistency. Thus Me“'K,(t)|f| — |T,(t)f| is positive for all these
functions and the Kolmogorov kernel estimates follow for arbitrary f € LY(2), since
L1(Q)4 is closed in L1(1).

Finally, the same closedness argument yields the positivity of T}, whenever T is
positive. O

For every 1 < ¢ < oo we denote the generator of (7,(t)):>0 by A,. The Kol-
mogorov kernel estimates also provide consistency results for these operators and
their resolvents. We collect them in the next proposition.

Proposition 2.3. Let 1 < g < oo. Then
(1) RO\ A f = RO\ AN S for all f € LYQ)NL7(Q), all 1 < r < oo and all
A € C with Re(A) > A := max(w — @,w - @)
(2) The set {f € D(A)NLYQ) : Af € LU(Q)} is contained in D(A,) and
Ayf = Af for all such f.

(3) [R(\, A f| < MR(\,w+ Aga )| f| for all f € LU(Q) and all A > w— "5,

Proof. (1) By Proposition 2.2 we know, that the growth bounds of T, and T,
are at most Ag. Taking A € C with Re(\) > Ao, this allows us to conclude
with the help of the Laplace transform

RO AT = [T @f di= [T e 0F &= ROLA)S

0

for every f € L7(Q2) N L"(Q2) by the consistency of the semigroups.
(2) Let f € D(A) N LY(Q2) with Af € L1(2). Then, choosing A > w + |tr(B)],
we have A € p(A) N o(A4,) and since (A — A)f € LP(2) N LI(Q), we get

F=RONA)A = A)f = RO A)(A— A)f € D(4,)

by part (1) of this proof. The above equality also yields A,f = Af.
(3) Let A>w— @. Then we may again use Laplace transform for R(\, A,)
and we obtain for f € L1(Q)

RO DS = | [T e a
1]
<M / e Mt I, (1) f] dt = MR(\w + Aga )|,
0

since T, also has a Kolmogorov kernel estimate by Proposition 2.2.
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In the special case that M = 1 in the kernel estimates, the operators 4, —
w + tr(B)/q generate contraction semigroups for all ¢ € (1,00). Since [tr(B)/q| <
[tr(B)] for all ¢ € (1, 00), the amount of the shift is bounded. Thus A, —w —|tr(B)],
1 < g < 00, is a family of generators of contraction semigroups on L4(f2). If in
addition the semigroup (T'(t)):>0 is positive, by Proposition 2.2 all the semigroups
are positive. This immediately yields a bounded H *°-calculus for their generators,
see [11].

Proposition 2.4. The operators Ay — w — |tr(B)| admit a bounded H™ -calculus
for every 1 < q < oo, whenever (T(t))i>0 is a positive semigroup satisfying a
Kolmogorov kernel estimate with M = 1.

3. THE ORNSTEIN-UHLENBECK SEMIGROUP ON L?((2)

In the following we want to use Kolmogorov kernel estimates to show that the
Ornstein-Uhlenbeck operator 4 is the generator of a positive Cp-semigroup on
LP(Q2) for every open and connected subset  of R?. As we already mentioned in
the introduction, the key is a generation result for the case p = 2 and Kolmogorov
kernel estimates. We will prove these two items in this and the following section.

We define the realisation of the Ornstein-Uhlenbeck operator in L?(Q) by

D(Aqs) = Hl(ﬂ) N{ue HL.(Q): Au € L*(Q)},

(Au)(x) = Z ¢ijDiDju(x) + Bz - Vu(z)

,j=1
:Zq”DDu sz]x]Du r€QCR,
3,j=1 i,j=1
where ) = (qij);%jzl € R¥*? is a symmetric and positive definite matrix and

B = (bij)¢;—, € R"™**\{0}. Note that this notation is consistent with the definition
of Aga, in (3). In fact, the domain in (3) is clearly contained in the domain given
here, so when we have shown in Proposition 3.5 that Ag » is dissipative, the equality
of the two domains follows by the following general observation.

Remark 3.1. Let B be the generator of a Cy-semigroup on some Banach space X
and let A D B be dissipative. Then we already have A = B. In fact, there exists
A > 0, such that A — B is surjective and A — A is injective by dissipativity. Thus
the claim follows by [6, IV. 1.21. (5)].

Now we can formulate our result for the case p = 2.

Theorem 3.2. Let © C R¢ be a domain. Then the operator Aq o generates a

positive Co-semigroup (T (t))e>0 on L*(Q) with || Ta2(t)|lcr2(0) < o= e for
allt > 0. Moreover for every A > —tr(B)/2 and every t > 0 we have the domination
properties

IR(\, A2) f| < R(X, Agas)|fl, fe L,
|Ta2(t) f| < TRd72(t)|f| =K,(t)|f], feL*Q),

where f denotes the extension of f by 0. In particular Tqs fulfills a Kolmogorov
kernel estimate with M =1 and w = 0.

In the following we use the notation

(Aogu)(z Z ¢i; DiDju(x and (Lu)(x) = Bz - Vu(x)

3,j=1
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for the diffusion and the drift part of A4, respectively. We start with a simple lemma,
that will be useful for many proofs.

Lemma 3.3. Let G C R? be open and u € H}(G) be a real-valued function. For
any ¢ € C>(RY) we have

/G(L’u)ugo: _tr(23) /Quzgo—%/ng,&p.

Proof. Since u € H (G), there is a sequence (u,)nen € C°(G) converging to u in
H'(G). Therefore, we have [ (Lu)up =lim, o [, Luntyp, since Bz is bounded
on the support of ¢. We get

/ Ly p :/ Bz - Vuyupp = —/ div(unchm)un
G G G

= —/ ﬁununcp—tr(B)/ uflcp—/ ul Lep.
a G G

Letting n tend to oo, we derive

/G(ﬁu)ucpz—tr(;})/Gu2cp—%/Gu2£<p.

O

Remark 3.4. To be precise, one has to check that integration by parts is allowed
in the proof of Lemma 3.3. This will be used again later on, so it might be useful
to note the following generalisation. For any open set (G, integration by parts is
possible if u € C°(G) and v € HL (G).

In this case, there is a compact set K C G with supp(u) C K°. Thenv € H*(K)
and by the definition of weak derivatives one gets for all 1 <7 <d

/Gu(Div) :/Ku(Div) = —/K(Diu)v: —/G(Diu)v.

In order to show that Ag » is a generator of a Cy-semigroup we will apply the
Lumer-Phillips theorem. So we first need dissipativity.

Proposition 3.5. The operator

tr(B)
2

A= AQ72 +

is dissipative in L(12).

Proof. Let f € D(Aq2) = D(A). Writing f = u + v for suitable real u,v € L*(),

we get
Re /Q (Af)T = /Q (Auu + /Q (Av)o,

so it suffices to show [, (Au)u < 0 for real-valued functions u. Note that u,v €
D(Agq 1), since the coefficients of A are real.

We choose € C°(R?) vanishing outside of By(0) with n|p, o) = 1 and define
N (x) = n(£) for m € N. Since (Au)u € L'(Q) we derive limy, o0 [, (Au)un, =
fQ(Au)u by the pointwise convergence of 7,, to 1 and Lebesgue’s Theorem.
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Next we choose a sequence (u,,)nen of C°-functions converging to u with respect
to the H!'-norm. Now, partial integration (as in Remark 3.4) yields

| (4020 @un @ ()
/ Z ¢ij DiDju(x)un (x)nm (z dm—l—/ Z bijxj Diu(x)un(2)nm (z) do

i,j=1 z]l

/Zq”Du VDt (2)nm (@ dw—/ Zq”Du z)up (@) Djnm (z) do

7]1 3,j=1

+ %/ Z bijzjDiu(x)un (x)nm (z) do — —/ Z bijzju(x)Diun (x)nm (v) de

Qij—l ij=1
tr(B)
/ 7]21 bijxjun(x)u(x)Dinm (z) do — T/Qu(a:)un(w)nm(a:) dz.

Note that, thanks to the bounded supports of the functions 7, and u,, all integrals
in the above calculations are well defined.
The H'-convergence of the sequence (uy,)nen yields

lim/quDu VD jun (2)nm (@ dx—/Zq”Du )Dju(x)nm (z) de

n—oo
i,j=1 i,j=1
and

nlgr;o/ Z bijxj Dyt (2)u(2)Nm da:—/ Z bijz;Diu(z)u(x)nm (z) de,

i,j=1 i,j=1

since &1, (z) is bounded. The other summands can be treated analogously, so we
derive

/ Au(z)u(z)ny,(z) de = lim [ (Au)(x)u, ()0, (z) dz

n— 00 Q
/ Z ¢ij Diu(z) D ju(z)ny, (x) de —/ Z ¢ij Diu(x)u(z)Djnm(x) dz
i,j=1 5,j=1
/mea:JDu Yu(z)Nm, m——/sz]m]Du Yu(z)nm (z) do
,j=1 4,j=1
——/ Z bijxju( )Dinm, (z) da.
i,j=1

Next, we want to pass to the limit m to oo, so we have to consider the terms
€T

containing derivatives of 7,,. The equality (Dinm)(z) = = (D;n)(£) implies
zjDing(x) = ﬂDm (E) =0 for m > 2,
m m m
and therefore all functions ; D;nm (), 1 < j < d, are bounded with
zj x
2 Ditim(@)] = |2 D ()] < 2]Vl
m m

and have support inside {z € R : m < |z| < 2m]}.
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Now let & > 0. Since u? € L*(2), there is a compact subset K. C Q with

2 6
U < ==
/Q\KE = 2[[Villeo

If we choose my large enough, we have K. Nsupp(z; Dinm) = 0 for all m > mg and

therefore
[ @ Do) az

This proves

/ u?(z)z; Dinm(z) dz| < €.
Q\K.

Tllgnoo/ Z bijzju(z)u(z)Dinm (x) de = 0.

3,j=1

L11Vn|| s, we also have

— m

Since || Dinm|lco <

lim / Z ¢ij Diu(z)u(z)Djnm () de =0,

m—r0o0
3,j=1

Finally we obtain dissipativity of A by

/Q(Au)u = lim [ (Aw)un, = / Z ¢i; Diu(z)Dju(x) de <0,

m—r0o0
Q i,j=1
as (Q is positive definite. O

In order to show that Agq » is a generator, it remains to be proven that A — A4 is
surjective for some fixed A > 0. This will be done by approximating the solution
u of the resolvent problem (A — A)u = f, f € L?(Q), with solutions of the same
problem on bounded and regular subdomains of (2.

By [5, I1.4, Lemma 1], there exists an increasing sequence (€,),en of bounded
subdomains of €2, that have a C?-boundary, such that Q = Unen 2n- Note that
the specific choice of this sequence is not important, since by dissipativity of A a
solution of the resolvent problem is unique, whenever it exists.

Since the coefficients of £ are bounded on bounded sets, by standard perturba-
tion theory, the operator A+ tr(B)/2 generates a Cp-semigroup on L?(2,,) for every
n € N, when we equip it with the domain D = H}(Q,) N H*(Q,). As D(Aq, 2)
contains D, we get D(Ag2) = D again by Remark 3.1.

This coinciding of the domains even gives us some more precious information.
Since the generator Aq, » + tr(B)/2 is dissipative it even generates a contraction
semigroup on L?(f2,) for every n € N. Thus the bounds on the resolvent do not
depend on n, which will be important in the following.

Fixing A > 0 and f € L*(Q) that means we find a unique solution u,, € Hj(Q,,)N

H?(%Qy,) for the problem Au,, — Aq, sup — tr(f) up = fla, for every n € N with

B
) T,
independently of the domain €2,,.

As by [1, Lemma 3.22], the trivial extension of u, is an element of H!(R?) and
hence of H}(2), we may regard (u,)nen as a sequence in Hg (2). The next lemma
will show that even the gradients of the functions u,, are bounded independently
of the chosen domain, which does not follow by elliptic regularity alone.

1
XHf”L?(Q); (4)

||un||L2(Qn) = HR< )

L2(Qn)
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Lemma 3.6. Let G C R? be a bounded domain with C*-boundary and u € H} (G)N

H?(G) be a solution of A\u — Ag o2u — @u = g for some A > 0. Then

2, 1
IVullz < \/;HQ Z[[1gl2-

Proof. Let u = v + iw with real-valued v,w € H}(G) N H*(G). Then
| D%u||3 = / D*uDuy = / (D*v +iD%w)(D*v — iD“w) = ||D%v||3 + || D“w||3
a e
for any multiindex o with |a| < 2. For the function v we calculate by Lemma 3.3

/G Q}VoQEvy = /G QVovo = — /G (Aov)

:/G (AU—AG,QU— tr(f)v> v—/\/va+/G(£v)v+ tr(QB) /va
:/C;’(/\’IJ—AG’Q’U—#'U>'U—/\/G’U'U

tr(B)

= /G Re(g)R <A, Aga+ —5 ) Re(g) — A HR <A, Ago + tr(QB)> Re(g)

2

2
We conclude by (4)

1,1 . 1,52
IVoll3 = 1Q2(Q= V)l < lQ ZIIZXIIRe(g)H%-

Repeating the same calculations for w, we obtain

122 ‘ 102 12
IVulls < 1@ %[ SIRe(9)I3 + [1Q I T Itm(g)l|3 = 1@ #[* SIlgll5-

Now we can prove the main result of this section.

Proposition 3.7. Let O C R? be a domain. Then Aq» is the generator of a
Co-semigroup (To»(t))i>0 on L*(Q2) with || T2 (t)|| < o=t

Proof. It only remains to be shown that for a fixed A > 0 and for every f € L*(2)
there exists a function u € H(Q)N{v € HZ (Q) : Av € L*(Q)} with Au— Au = f.

We consider the sequence (uy)nen of trivial extensions of the solutions on €2,
mentioned above. In view of Lemma 3.6, it is bounded in H}(f2), so there exists
a weakly convergent subsequence (u,, )ren. We denote its limit by u and show in
the following that wu is the desired solution.

As a first step, we will prove that u € H2 (). Fix two compact sets K1, K> C Q
with K; C K3. Then, by construction, Ky C Q,, for sufficiently large k. The
coefficients of A are bounded on Ks, so [10, Theorem 9.11], implies that there is a
constant C' depending on K3, K3 and the bound of the coefficients on K,, such that
[wn |2 (51) < C ([t ll2 + || fll2), so there exists a weakly convergent subsequence
(Uny, Jien in H?(K}). Let v denote its limit. Since the sequence (Uny, | Ky )1en also
converges weakly to u|k, in L?(K7), we derive v = u|k, from the uniqueness of
weak limits in L?(K;). This shows u € HZ ().

In order to finish the proof, it remains to show Au — Au = f. Let g € C*(Q)
and fix a compactum K with supp(g) € K°. Then K C Q,, for k large enough.
Let (un,, )ien be again a weakly convergent subsequence of (un, )ken on H?(K) and
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A* be the formal adjoint of A. Then we conclude
Jou=au=g= [ Gu=tu-pg= [ Gug-udtg- )
Q K K

=lim [ (Aup, g — tn, A*g— fg) = lim / (Aty,, — Auy, — f)g=0.
K 1 1 =00 K 1 1

l—00

Thus the assertion follows by the fundamental theorem of variational calculus.
O

4. DOMINATION AND POSITIVITY OF THE SEMIGROUP

The aim of this section is to prove Kolmogorov kernel estimates for the semigroup
(Ta,2(t))e>0 obtained in Proposition 3.7. While doing so, we also obtain positivity
of the semigroup. Our method is inspired by the proof of the heat kernel estimates
for the Dirichlet Laplacian, cf. [2].

Lemma 4.1. Let @ C R? be a domain, A\ > —tr(B)/2 and let u € D(Aqp),
ve HY(Q)N{f € H:.(Q) : Af € L*(Q)} be real-valued functions, such that v > 0.
Then the inequality (A — A)u < (A — A)v a.e. implies u < v a.e.

Proof. As in the proof of Proposition 3.5, we choose a positive n € C>°(R?) van-
ishing outside of B»(0) with n|p, (o) = 1 and define n,,(x) = n(.>) for m € N,
By hypotheses, we have

AMu—v)—Ag(u—v) — L(u—v) <0, ae.

so we obtain

d
/\/Q(u — V)P — Y /quDiDj(u = 0)PNm — /Q Bz - V(u = v)nme <0

i,j=1

for all m € N and all positive ¢ € C°(€2). By integration by parts, cf. Remark 3.4,
we conclude that

d d
A/ (= v)pnm + / 4i;Dj(u — v) Dignm + / qijDj(u — v)pDinm
Q Q Q

i1 ij=1
- / Bz - V(u—v)nne < 0.
Q

for all m € N. Now, this last inequality is even valid for all ¢ € H}(Q)4 by density.

In the following we show, that (u—v)* € H} (). In order to do so, we choose a
sequence (u,) C C°(Q2), that converges to u in H'(£2). Then the function (u, —v)*
is in H(Q)4 for every n € N and since v > 0, we get supp((u,, —v)") C supp(u,).
Thus (u, — v)* has compact support in 2, which implies (u,, — v)" € Hg(Q)4.
This finally yields (u —v)™ € H}(Q)4, as H3(2) is a closed subspace of H*().

Putting ¢ = (u — v)™ in the above inequality and observing that then all the
integrals vanish on the set {u < v}, we get

A =0+ [ =0 Qw00

- /Q Bz -V(u—v)"(u—v)tn, + Z /Q ¢i;jDj(u—v)" (u—v)"Diny <0.

,j=1
Now Lemma 3.3 yields for the third integral

_ tr(B) 2 2
| Be oy w=oytn, = =52 [ (=0 = | Be- (=)’
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As all the limits for m — oo on the left hand side exist (cf. proof of Proposition 3.5),
this implies

B [
—/QBa:-V(U—U)—F(U_U)—F— 9 /Q(( )+)

We derive the inequality

<A+ @)/Q((u—v)+)2+/QV(u—u)+QV(u—v)+ <0.

Since @ is positive definite and A > —tr(B)/2, this can only be true, if both integrals
are zero, in particular, we get ||(u —v)"||12(q) = 0, which implies u < v a.e. O

Setting v = 0, as an immediate corollary, we get the following positivity result
for A.

Corollary 4.2. Let A > —tr(B)/2 and let w € D(Aq2) be a real-valued function.
Then

A-—Au<0ae = u<0ae and
A=-—Au>0ae = u>0a.e

The next step is to show that the resolvent and the semigroup react monotonely,
when the domain 2 is enlarged. As a byproduct of the proof, we also deduce the
positivity of the semigroup and the resolvent.

Proposition 4.3. Let Q;,Q C R? be domains and let Q; C Qs. Then for every
f € L)y, for every X > —tr(B)/2 and every t > 0, we have

(1) 0< R(A, Ao, 2)f < R(A, Ag, o) f,
(2) 0<Tq,2(t)f < To,2()f
almost everywhere. Here f denotes the extension of f by 0.

Proof. (1) Put u := R(\, Aq, 2)f and v := R(\, Ag, 2)f. Then, both u and
v are real-valued. Indeed, for u = w1 + ius, we have f = (A — Ag, 2)u =
(A—Ag, 2)ur +i(A—Ag, 2)us, where (A\—Ag, 2)u;, j = 1,2, are real-valued
functions. This implies (A— Ag, 2)us = 0, and, by injectivity of (A—Agq, 2),
even us = 0. The argument for v is the same.

Since u € D(Aq, ), v € D(Aqg,») and f and f are positive we get
u,v > 0 a.e. by Corollary 4.2. It remains to show u < v. As (A — A)u =
f=0OA—-Av a.e in Q, we have in particular (A — A)u < (A — A)v.
Furthermore, we know that v € D(Agq, ») and the restriction of v to € is
in HY(Q)n{f € H2.() : Af € L*(Q1)}. Thus we may apply Lemma 4.1,
in order to get u < v a.e. in ;.

(2) Since R(A, Ag;2) = %(I — %Aghz)_l, j = 1,2, the first part of the proof
yields }
0<(I—sAqg,2) " f<(I—5s40,2)7"f
for all 0 < s < 2/|tr(B)| or for every s > 0 if tr(B) = 0. Thus we have the
same for every power k € N:

0< (I—sdq,2) "f<(I-sdqg,2) *f.

Now let t > 0. Then, if k is large enough, we have t/k < 2/|tr(B)| and
t 1 t k7
0< (1= £ A0,2) " f < (I = £ A0, 2) 7",

Passing to the limit for £ — oo, the claim follows (cf. [6, Corollary II1.5.5]).
d

For arbitrary f € L*(Q), we get:
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Corollary 4.4. If Q; and Qs are as in Proposition 4.3, we have for every f €
L2(2), for every A > —tr(B)/2 and every t > 0

(1) [Ta,2(Of] < T, 2OIf,
(2) |R(>‘7AQ1,2)f| < R(A7A92,2)|f|

Proof. Looking at the special case Q2 = R? we see that the semigroup (T, 2(t))t>0
is dominated by the semigroup (Tga»(t))¢>0, which is given by positive, regular
integral kernel operators. It is a classical result (cf. [18, IV. §9]), that in this
situation also the operators Tq, »(t), t > 0, are given by regular integral kernels
K, that are positive, since T, 2(t) are positive operators. Thus

T, 2()f] = ; Ki(,y)f(y) dy‘ </ Koy f ()] dy = T, 2 (1) f]
1 1
< To, 2(1)|f]|
by Proposition 4.3. Now, the resolvent estimate follows as in the proof of Proposi-
tion 2.3 (3). O

Setting Q2 = R? in Corollary 4.4, we have finally completed the proof of Theo-
rem 3.2.

Now we have shown that A » satisfies a Kolmogorov kernel estimate with M =1
and w = 0, so the results stated in Chapter 2 hold true. We collect them in the
following theorem.

Theorem 4.5. Let @ C R? be a domain. Then (Tq p(t))i>0, 1 < p < 00, is a family
of consistent, positive Co-semigroups on LP () with ||Tq ()|l z(Lr (@) < o™ for
all 1 <p<ooandallt>0. For every A\ > —tr(B)/p and every t > 0 we have the

domination properties
|R(X, Aap) fI < R(A, Aga )| f], f e Lr(q),
Tap(D)f] < Trap (01 F] = (ke % |F)(eP-), f € LP(9),
where f denotes the extension of f by 0. Moreover, the operators Aqp — |tr(B)|
admit a bounded H> -calculus for every 1 < p < oo and we have
(1) R(A\,Aqp)f = R(A\, Aq,q)f forall f € LP(Q)NLI(Q), all 1 < p,q < 00 and
all X € C with Re()) > max(—HE2) ),

q
(2) The set {f € D(Aqp2) NLP(Q) : Agaf € LP()} is contained in D(Aq p)
and Aq pf = Aqof for all such f and 1 < p < oco.

5. THE SPECTRUM OF Agq;, ON EXTERIOR DOMAINS

We finally turn our attention to the special case of an exterior domain, i.e.
Q =R?\ K for some compact set K C R? with C*!-boundary. Scaling the set K
down to {0}, we show that the spectral behaviour of Ag , is the same as in the case
2 = R?. That means that the spectrum of the drift operator £ on R?, i.e. the whole
vertical line —tr(B)/p+iR (or in the case tr(B) = 0 at least an unbounded subgroup
of it) is contained in 0(Aq ). This implies that the semigroup (T ,(t))t>0 is not
eventually norm-continuous. Nevertheless, we have that the spectral bound of Ag
and the growth bound of Ty, , coincide and s(Aq p) = wo(Ta,p) = —tr(B)/p. Before
we can formulate this theorem, we have to introduce the realisation Lga, of £ in
LP(R?):

D(Lga,) = {u € LP(R?) : Lu € LP(R?)}, Lga,u= Lu,

where Lu is understood in the sense of distributions.

We collect the information on the operators Lga , that we need in the following
in the next proposition. For proofs, see [14].
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Proposition 5.1. Let 1 < p < co. Then the following holds:
(1) The operator Lya, is the generator of a Co-semigroup (S(t))i>o0 on LF(R?),
given by (S(t)f)(z) = f(e!Bx), x € RY, for every f € LP(R?).
(2) Iftr(B) #0, then 0(Lga,) = —tr(B)/p + iR.
(3) If tr(B) =0, then o(Lga,) is an additive subgroup of iR, that is not {0}.

Now the result that we want to prove in this section can be formulated as follows.

Theorem 5.2. Let K C R? be compact with a C''-boundary and Q = R? \ K.
Then for every 1 < p < co we have

D(Aq,) = Wy () NW>P(Q) N {f € LP(Q) : Lf € LP(Q)}. (5)
Furthermore we have the inclusion o(Lga ) C 0(Aq,p) and s(Aq,p) = wo(Ta,p) =
—tr(B)/p.

Note, that the whole picture changes completely for bounded domains as the
semigroup then becomes analytic. It remains however an open question, whether
Theorem 5.2 is still valid for more general unbounded domains.

Remark 5.3. If Q is an exterior domain with C'*-boundary, we already know
from [9] that the Ornstein-Uhlenbeck operator equipped with the domain W * ()N
W2r(Q)N{f e Lr(Q): Lf € LP(N)} generates a Co-semigroup for every 1 < p <
oo. For the following results, it is necessary to check that Aq ) coincides with this
operator, which we will denote by flp. For p = 2, the inclusion D(Ay) C D(Aq,2)
is clear, so we get D(Ay) = D(Aq.2) by Remark 3.1.

The construction of the semigroups in [9] now immediately yields consistency.
From this we deduce that the semigroups generated by A, and Ag, and hence
their generators coincide for 1 < p < oo.

In the following we often identify functions f € C°(R?\{0}) with their extension
by £(0) = 0 and thus view C°(R?\ {0}) as a subspace of C>°(R?). The importance
of the space C2°(R? \ {0}) for the following is due to the following lemma.

Lemma 5.4. The subspace C°(R* \ {0}) C D(Lga,,) is a core for Lga,,.

Proof. Let f € C>°(R?\{0}) and ¢ > 0. Then 0 ¢ supp(f). In view of the linearity,
bijectivity and continuity of the map z +— e~*Px, we conclude that supp(S(t)f) =
e *Bsupp(f) is a compact set not containing 0, hence S(t)f € C(R? \ {0}) for
every t > 0. Moreover, C2°(R?\ {0}) is dense in LP(R?), so the lemma follows from
[6, Proposition 1.1.7]. O

Now, if @ = R? \ K for some compact set K C R? with C'*!-boundary, for every
k € N we set

Qk::{mE]Rd:ka:eQ}:]Rd\%K

and consider the operator

d
1
A = ﬁ Z qijDiDj -l-,C,

i,j=1
with domain
D(A;) = Wol’p(ﬂk) N W27”(Qk) N{feLP(Q):LfeLP(Q)}

for some given p € (1, 00).

By Remark 5.3 we have D(Ax) = D(Aq, p), so Theorem 4.5 implies that {\ €
C:Re(A) > —@} C o(Ay) for all k € N. Thus we may compare the resolvents of
Ay, with the resolvent of Ag ), = A, for all these A. This yields the following result.
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Lemma 5.5. We have [|[R(X, Ax)||z(Lr () = 1B, Aap)llc(e()) for every k € N
and every A € C with Re(X\) > —@.

Proof. We consider the map
Vit LP(Q) = LP(Q), Vi(f)(z) = k¥ f(kz).
The transformation formula yields that Vj, is an isometry, whose inverse is given by
Vo)) = kb f (%;::) |
For f € W2P(Q2) we get by the chain rule Vi (f) € W2P(Q;) and
Vi LAV = kP Ve A f (k)

vt |k ( Z k2qi;DiD; f (kz) + Z bijka;D; f(]m))]

4,j=1 3,j=1

=V, !k (Z ¢ijDiD; f (kx) + Z bijka;D; f(lm))] = Af.

3,j=1 3,j=1

If f € W, P(), there is a sequence f,, € C2°(9), which converges to f in W1P(1).
Then the sequence (Vi fn)nen is in C2°(Q) with supp(Vi f) = %supp(f,) and it
converges to Vi f in WP(Qy). Again, the transformation formula implies £V} f €
LP(Qy). For V7' one can argue analogously. So Vj, induces a bijection from
W2P(Q) N WP () N {f € LP(R) : Lf € LP(N)} to WP(Q) N WP () N{f €
LP(Q) : Lf € LP(Q)}. In fact, we have Ag ,f = V' AR Vi f for all f € D(Aq,),
and (A — Agp)f = A=V, AeVi) f = Vo (A — Ak) Vi f. Now we get R(\, Agp) =
(A = Ap)~'Vi. We conclude

IR\ Agp) fllp = 1V (0 = Ak) " Vafllp = IV O = A) " Vil

<V M lewr@), e @en IO = Ak) e @ Vi Fllp
<R Al zcze @ 1 llp-

The reverse inequality follows analogously. d

Having this equality in hand, we may finally show that the resolvents of Ag , obey
the inequality [|R(\, Lga,p)l oz, @) < IR\ Aap)llec, @) for Re(A) > —HEL
Since o(Lga,) C —tr(B)/p + iR by Proposition 5.1, we can approximate every
p € 0(Lgay,) by A € o(Aq,p). The above inequality then implies the divergence of
IR(A, Aap)llcinr (o)) for X = p. This yields 0(Lga,) C 0(Aqp). So we have shown

_u(B) < s(Aap) <wo(Tayp) < —tr(B),

p p
which implies the equality stated in Theorem 5.2.

Proposition 5.6. For Re()\) > —# we have
IR(A, Lrap)llcire ey < [IR(A, Aap)llcne )
Proof. Let g € C°(R? \ {0}). Then g € D(Ay) for k large enough. It follows

— 0
p

d
Z qi;DiDjg

,j=1

1
e
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for k — 0o. Now we consider f = (A — L)g, g € C>°(R? \ {0}). For k large enough
we have f € D(Ay). Then for n > k we get with the previous Lemma

IR(X, An)f — RO\, Lga,) fllp = IR\, Ap)(X — Lgay)g — gl
=||RA, An) (A= An)g — (A= Ap)g + (X = Lgay)g) — gl
=[|R(A, An)(An = Lray)glly < |ROA, Aep)llcpr @) [[(An — Lrap)gllp,

so R(\, An)f — R(A, Lgay)f converges to 0 in LP(Q2). Then for each € > 0 and
f € (A= Lpa,)C(R? \ {0}) there exists a k with

1B, Lrap) fllp < IR, AR) Fllp + € < RO Aap)llewe @ 1l + &

Thus we have

IR, Lgap) fllp < 1RO Aap)llecze @ 1 fllp

for all f € (A — Lpa,,)C°(R* \ {0}). Since C°(R? \ {0}) is a core for Lga, by
Lemma 5.4, the assertion follows. a
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