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Abstra
t. Repla
ing the Gaussian semigroup in the heat kernel estimates by

the Ornstein-Uhlenbe
k semigroup on R

d

, we de�ne the notion of Kolmogorov

kernel estimates. This allows us to show that under Diri
hlet boundary 
on-

ditions Ornstein-Uhlenbe
k operators are generators of 
onsistent, positive,

(quasi-)
ontra
tive C

0

-semigroups on L

p

(
) for all 1 � p < 1 and for every

domain 
 � R

d

. For exterior domains with suÆ
iently smooth boundary a

result on the lo
ation of the spe
trum of these operators is also given.

1. Introdu
tion

Heat kernel estimates have proved to be a powerful tool for the analysis of ellipti


di�erential operators. Beside many other things, they allow the extension of a given

semigroup on L

p

0

for some p

0

to the whole s
ale of L

p

-spa
es for 1 � p < 1 in a


onsistent way, transfering 
ertain ni
e properties to all these semigroups, su
h as

analyti
ity, and yielding p-invarian
e of the spe
trum.

Dealing with Ornstein-Uhlenbe
k operators on L

p

(
) for unbounded domains


 we evidently 
annot expe
t to get heat kernel estimates, as the spe
trum of

these operators in L

p

(R

d

) already depends heavily on p. Nevertheless, the well-

known representation for the Ornstein-Uhlenbe
k semigroup on L

p

(R

d

) that is due

to A. N. Kolmogorov and given by

T (t)f(x) =

Z

R

d

k

t

(e

tB

x� y)f(y) dy = (k

t

� f)(e

tB

x);

where the Kolmogorov kernel

k

t

(x) =

1

(4�)

d

2

(detQ

t

)

1

2

exp

�

�

1

4

Q

�1

t

x � x

�

with Q

t

=

Z

t

0

e

sB

Qe

sB

?

ds

looks very similar to the heat semigroup. So it is a natural idea to 
onsider Kol-

mogorov kernel estimates, by repla
ing the Gaussian semigroup by the Kolmogorov

semigroup (T (t))

t�0

, thus getting a majorising semigroup that is well adapted to

operators of the Ornstein-Uhlenbe
k type. These estimates then allow us to extend

semigroups on L

p

0

to the whole s
ale of L

p

for 1 � p <1, analogously to the 
ase

of heat kernel bounds.

Having established this idea, in the sequel we apply it to Ornstein-Uhlenbe
k

operators with Diri
hlet boundary 
onditions in L

p

(
), where 1 � p <1 and 
 is

a domain in R

d

. Ornstein-Uhlenbe
k operators are di�erential operators, formally

given by

(Au)(x) =

d

X

i;j=1

q

ij

D

i

D

j

u(x) +Bx � ru(x); (1)

where Q = (q

ij

)

d

i;j=1

2 R

d�d

is a symmetri
 and positive de�nite matrix and

B = (b

ij

)

d

i;j=1

2 R

d�d

nf0g. They �rst appeared in sto
hasti
al analysis, des
ribing

a Brownian motion with an additional drift. In this 
ontext one usually works in
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spa
es of 
ontinuous fun
tions on R

d

or in the spa
es L

p

(R

d

; �), where � is the

invariant measure of the underlying pro
ess.

Re
ently, it be
ame 
lear that an analyti
 treatment of these operators is of great

interest. For instan
e, looking at the Stokes equation in the exterior of a rotating

obsta
le leads to operators of the Ornstein-Uhlenbe
k type, see [13℄, [12℄ and [8℄.

Thus one is interested in their behaviour on L

p

(
) with respe
t to the Lebesgue

measure for domains and espe
ially exterior domains.

Passing from the invariant measure to the Lebesgue measure 
hanges the proper-

ties of the operator 
ompletely. The spe
trum is no longer 
ontained in the negative

real axis, instead it 
ontains a verti
al line (
f. [14℄), so the semigroup (T (t))

t�0

on L

p

(R

d

) is not analyti
, as it is in L

p

(R

d

; �) (
f. [15℄), and it even fails to be

eventually norm-
ontinuous.

Whereas Ornstein-Uhlenbe
k operators are well understood in L

p

(R

d

) (
f. [14℄,

[17℄, [16℄) and for bounded domains, where they 
an be viewed as a perturbation of

lower order of the ellipti
 di�usion part, there are very few results for unbounded

domains. M. Geissert, H. He
k, M. Hieber and I. Wood showed in [9℄ that in the


ase of an exterior domain 
 with suÆ
iently smooth boundary, a realisation of

A on L

p

(
) generates a C

0

-semigroup and G. da Prato and A. Lunardi treat the


ase of L

2

-spa
es of 
onvex sets with respe
t to Neumann boundary 
onditions and

in�nitesimally invariant measures in [4℄. The Diri
hlet problem in spa
es of bounded


ontinuous fun
tions on smooth domains is treated by S. Fornaro, G. Metafune and

E. Priola in [7℄. An overview may be found in [3℄.

In this paper we show that for arbitrary domains 
 � R

d

a realisation of A

in L

2

(
) generates a (quasi-)
ontra
tive, positive C

0

-semigroup, that has a Kol-

mogorov kernel estimate, see Theorem 3.2. In the sequel this allows us to de�ne


onsistent Ornstein-Uhlenbe
k semigroups on L

p

(
) for 1 � p < 1 that have

the same 
ontra
tivity, positivity and domination properties. This immediately

gives an upper bound on the growth bound of the semigroups and implies that the

Ornstein-Uhlenbe
k operator admits a bounded H

1

-
al
ulus on L

p

(
) (Proposi-

tion 4.5).

In the spe
ial 
ase of an exterior domain with suÆ
iently smooth boundary, it

turns out that the domain is

W

1;p

0

(
) \W

2;p

(
) \ ff 2 L

p

(
) : Bx � rf 2 L

p

(
)g

and we even dedu
e in Theorem 5.2 that the same verti
al line as in the 
ase

of the whole spa
e is 
ontained in the spe
trum of the operator, so the spe
tral

behaviour is the same as for the 
ase 
 = R

d

. This means that also in this 
ase the

semigroup is not eventually norm-
ontinuous. Nevertheless we 
an show that its

growth bound and the spe
tral bound of its generator 
oin
ide, whi
h is no longer


lear by standard spe
tral theory for semigroups.

The paper is organised as follows. In se
tion 2 we introdu
e the notion of Kol-

mogorov kernel estimates and prove their main impli
ations. The generation result

for A in L

2

(
) is 
ontained in se
tion 3 and in se
tion 4 we show that this semigroup

is positive and admits a Kolmogorov kernel estimate. Se
tion 5 �nally 
ontains the

results for exterior domains.

Notations. Throughout this paper we use the following notation.

For a 
losed operator (A;D(A)) on some Bana
h spa
e X we denote by �(A)

the spe
trum, by %(A) the resolvent set and by R(�;A) = (� � A)

�1

; � 2 %(A),

the resolvent of A. Furthermore, the spa
e of all bounded linear operators on X is

denoted by L(X).

As usual, for 
 � R

d

open, k � k

p

stands for the norm of the Lebesgue spa
es

L

p

(
) whenever the set 
 is 
lear from the 
ontext. We writeW

k;p

(
), or H

k

(
) in
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the 
ase p = 2, for the Sobolev spa
es, C

1




(
) for the spa
e of all smooth fun
tions

having 
ompa
t support in 
 and W

1;p

0

(
), or H

1

0

(
), is the 
losure of C

1




(
) in

the norm of W

1;p

(
) or H

1

(
), respe
tively. Furthermore, if X is a fun
tion spa
e,

X

+

stands for the 
one of all positive fun
tions in X .

Finally, B

r

(x

0

) is the open ball of radius r with 
entre x

0

and, given a matrix

B 2 R

d�d

, we write tr(B) =

P

d

j=1

b

jj

for its tra
e.

2. Kolmogorov kernel estimates

Given a matrix B 2 R

d�d

n f0g and a positive de�nite matrix Q 2 R

d�d

, we

de�ne the Kolmogorov semigroup (K

p

(t))

t�0

, on L

p

(R

d

) by

�

K

p

(t)f

�

(x) =

Z

R

d

k

t

(e

tB

x� y)f(y) dy; f 2 L

p

(R

d

);

where the Kolmogorov kernel k

t

is given by

k

t

(x) =

1

(4�)

d

2

(detQ

t

)

1

2

exp

�

�

1

4

Q

�1

t

x � x

�

with Q

t

=

Z

t

0

e

sB

Qe

sB

?

ds:

It is well known (
f. [14℄) that (K

p

(t))

t�0

is a positive C

0

-semigroup on L

p

(R

d

) for

every 1 � p < 1 and it is straightforward by substitution and Young's inequality

that for every f 2 L

p

(R

d

)

kK

p

(t)fk

p

=

�

Z

R

d

�

�

(k

t

� f)(e

tB

x)

�

�

p

dx

�

1

p

= e

�

tr(B)

p

t

kk

t

� fk

p

� e

�

tr(B)

p

t

kfk

p

; (2)

sin
e kk

t

k

1

= 1. The generator A

R

d

;p

of this semigroup is the Ornstein-Uhlenbe
k

operator A given in (1) and G. Metafune, J. Pr�uss, A. Rhandi, and R. S
hnaubelt

showed in [17℄ that its domain is

D(A

R

d

;p

) =W

2;p

(R

d

) \ ff 2 L

p

(R

d

) : Bx � rf 2 L

p

(R

d

)g (3)

for 1 < p <1.

Now, let 
 � R

d

be an open set, 1 � p <1 and let (T (t))

t�0

be a C

0

-semigroup

on L

p

(
) with generator A.

De�nition 2.1. We say, that the semigroup (T (t))

t�0

on L

p

(
) satis�es a Kol-

mogorov kernel estimate, if there exist a matrix B 2 R

d�d

n f0g, a positive de�nite

matrix Q 2 R

d�d

, M � 0 and ! 2 R, su
h that for all f 2 L

p

(
) and all t � 0 we

have the pointwise estimate

jT (t)f j �Me

!t

K

p

(t)j

~

f j;

where

~

f denotes the trivial extension of f to R

d

.

For su
h semigroups we have the following result.

Proposition 2.2. Let 
 � R

d

be open, 1 � p < 1 and let (T (t))

t�0

be a C

0

-

semigroup on L

p

(
) that satis�es a Kolmogorov kernel estimate for some matrix

B, a positive de�nite matrix Q and 
onstants M and !. Then for 1 � q <1 there

exist 
onsistent C

0

-semigroups (T

q

(t))

t�0

on L

q

(
), su
h that T

p

= T and

kT

q

(t)k

L(L

q

(
))

�Me

(!�

tr(B)

q

)t

for every t � 0. Furthermore, T

q

satis�es the same Kolmogorov kernel estimate

and if T is a positive semigroup, T

q

is also positive.



4 ROBERT HALLER-DINTELMANN, JULIAN WIEDL

Proof. Let g 2 L

p

(
) \ L

q

(
) and t � 0. Then, by 
onsisten
y of the semigroups

K

q

for 1 � q <1 and (2), we have

kT (t)gk

q

=

�

Z




jT (t)gj

q

�

1

q

�Me

!t

�

Z

R

d

(K

p

(t)j~gj)

q

�

1

q

=Me

!t

kK

q

(t)j~gjk

q

�Me

(!�

tr(B)

q

)t

kgk

q

:

Thus we 
an extend the operator T (t) 
ontinuously to an operator T

q

(t) on L

q

(
),

obtaining C

0

-semigroups that are 
onsistent by 
onstru
tion and that obey the

stated norm estimate by the above 
al
ulation.

For f 2 L

q

(
) \ L

p

(
) the inequality

jT

q

(t)f j �Me

!t

K

q

(t)j

~

f j

is immediate by 
onsisten
y. Thus Me

!t

K

q

(t)j

~

f j � jT

q

(t)f j is positive for all these

fun
tions and the Kolmogorov kernel estimates follow for arbitrary f 2 L

q

(
), sin
e

L

q

(
)

+

is 
losed in L

q

(
).

Finally, the same 
losedness argument yields the positivity of T

q

, whenever T is

positive. �

For every 1 � q < 1 we denote the generator of (T

q

(t))

t�0

by A

q

. The Kol-

mogorov kernel estimates also provide 
onsisten
y results for these operators and

their resolvents. We 
olle
t them in the next proposition.

Proposition 2.3. Let 1 � q <1. Then

(1) R(�;A

q

)f = R(�;A

r

)f for all f 2 L

q

(
) \ L

r

(
), all 1 � r < 1 and all

� 2 C with Re(�) > �

0

:= max(! �

tr(B)

q

; ! �

tr(B)

r

).

(2) The set ff 2 D(A) \ L

q

(
) : Af 2 L

q

(
)g is 
ontained in D(A

q

) and

A

q

f = Af for all su
h f .

(3) jR(�;A

q

)f j �MR(�; !+A

R

d

;q

)j

~

f j for all f 2 L

q

(
) and all � > !�

tr(B)

q

.

Proof. (1) By Proposition 2.2 we know, that the growth bounds of T

q

and T

r

are at most �

0

. Taking � 2 C with Re(�) > �

0

, this allows us to 
on
lude

with the help of the Lapla
e transform

R(�;A

q

)f =

Z

1

0

e

��t

T

q

(t)f dt =

Z

1

0

e

��t

T

r

(t)f dt = R(�;A

r

)f

for every f 2 L

q

(
) \ L

r

(
) by the 
onsisten
y of the semigroups.

(2) Let f 2 D(A) \ L

q

(
) with Af 2 L

q

(
). Then, 
hoosing � > ! + jtr(B)j,

we have � 2 %(A) \ %(A

q

) and sin
e (��A)f 2 L

p

(
) \ L

q

(
), we get

f = R(�;A)(� �A)f = R(�;A

q

)(��A)f 2 D(A

q

)

by part (1) of this proof. The above equality also yields A

q

f = Af .

(3) Let � > !�

tr(B)

q

. Then we may again use Lapla
e transform for R(�;A

q

)

and we obtain for f 2 L

q

(
)

jR(�;A

q

)f j =

�

�

�

�

Z

1

0

e

��t

T

q

(t)f dt

�

�

�

�

�M

Z

1

0

e

��t

e

!t

K

q

(t)j

~

f j dt =MR(�; ! +A

R

d

;q

)j

~

f j;

sin
e T

q

also has a Kolmogorov kernel estimate by Proposition 2.2.

�
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In the spe
ial 
ase that M = 1 in the kernel estimates, the operators A

q

�

! + tr(B)=q generate 
ontra
tion semigroups for all q 2 (1;1). Sin
e jtr(B)=qj �

jtr(B)j for all q 2 (1;1), the amount of the shift is bounded. Thus A

q

�!�jtr(B)j,

1 < q < 1, is a family of generators of 
ontra
tion semigroups on L

q

(
). If in

addition the semigroup (T (t))

t�0

is positive, by Proposition 2.2 all the semigroups

are positive. This immediately yields a bounded H

1

-
al
ulus for their generators,

see [11℄.

Proposition 2.4. The operators A

q

� ! � jtr(B)j admit a bounded H

1

-
al
ulus

for every 1 < q < 1, whenever (T (t))

t�0

is a positive semigroup satisfying a

Kolmogorov kernel estimate with M = 1.

3. The Ornstein-Uhlenbe
k semigroup on L

2

(
)

In the following we want to use Kolmogorov kernel estimates to show that the

Ornstein-Uhlenbe
k operator A is the generator of a positive C

0

-semigroup on

L

p

(
) for every open and 
onne
ted subset 
 of R

d

. As we already mentioned in

the introdu
tion, the key is a generation result for the 
ase p = 2 and Kolmogorov

kernel estimates. We will prove these two items in this and the following se
tion.

We de�ne the realisation of the Ornstein-Uhlenbe
k operator in L

2

(
) by

D(A


;2

) = H

1

0

(
) \ fu 2 H

2

lo


(
) : Au 2 L

2

(
)g;

(Au)(x) =

d

X

i;j=1

q

ij

D

i

D

j

u(x) +Bx � ru(x)

=

d

X

i;j=1

q

ij

D

i

D

j

u(x) +

d

X

i;j=1

b

ij

x

j

D

i

u(x); x 2 
 � R

d

;

where Q = (q

ij

)

d

i;j=1

2 R

d�d

is a symmetri
 and positive de�nite matrix and

B = (b

ij

)

d

i;j=1

2 R

d�d

nf0g. Note that this notation is 
onsistent with the de�nition

of A

R

d

;2

in (3). In fa
t, the domain in (3) is 
learly 
ontained in the domain given

here, so when we have shown in Proposition 3.5 that A


;2

is dissipative, the equality

of the two domains follows by the following general observation.

Remark 3.1. Let B be the generator of a C

0

-semigroup on some Bana
h spa
e X

and let A � B be dissipative. Then we already have A = B. In fa
t, there exists

� > 0, su
h that � � B is surje
tive and � � A is inje
tive by dissipativity. Thus

the 
laim follows by [6, IV. 1.21. (5)℄.

Now we 
an formulate our result for the 
ase p = 2.

Theorem 3.2. Let 
 � R

d

be a domain. Then the operator A


;2

generates a

positive C

0

-semigroup (T


;2

(t))

t�0

on L

2

(
) with kT


;2

(t)k

L(L

2

(
))

� e

�

tr(B)

2

t

for

all t � 0. Moreover for every � > �tr(B)=2 and every t � 0 we have the domination

properties

jR(�;A


;2

)f j � R(�;A

R

d

;2

)j

~

f j; f 2 L

2

(
);

jT


;2

(t)f j � T

R

d

;2

(t)j

~

f j = K

2

(t)j

~

f j; f 2 L

2

(
);

where

~

f denotes the extension of f by 0. In parti
ular T


;2

ful�lls a Kolmogorov

kernel estimate with M = 1 and ! = 0.

In the following we use the notation

(A

0

u)(x) =

d

X

i;j=1

q

ij

D

i

D

j

u(x) and (Lu)(x) = Bx � ru(x)
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for the di�usion and the drift part of A, respe
tively. We start with a simple lemma,

that will be useful for many proofs.

Lemma 3.3. Let G � R

d

be open and u 2 H

1

0

(G) be a real-valued fun
tion. For

any ' 2 C

1




(R

d

) we have

Z

G

(Lu)u' = �

tr(B)

2

Z




u

2

'�

1

2

Z




u

2

L':

Proof. Sin
e u 2 H

1

0

(G), there is a sequen
e (u

n

)

n2N

� C

1




(G) 
onverging to u in

H

1

(G). Therefore, we have

R

G

(Lu)u' = lim

n!1

R

G

Lu

n

u

n

', sin
e Bx is bounded

on the support of '. We get

Z

G

Lu

n

u

n

' =

Z

G

Bx � ru

n

u

n

' = �

Z

G

div

�

u

n

'Bx

�

u

n

= �

Z

G

Lu

n

u

n

'� tr(B)

Z

G

u

2

n

'�

Z

G

u

2

n

L':

Letting n tend to 1, we derive

Z

G

(Lu)u' = �

tr(B)

2

Z

G

u

2

'�

1

2

Z

G

u

2

L':

�

Remark 3.4. To be pre
ise, one has to 
he
k that integration by parts is allowed

in the proof of Lemma 3.3. This will be used again later on, so it might be useful

to note the following generalisation. For any open set G, integration by parts is

possible if u 2 C

1




(G) and v 2 H

1

lo


(G).

In this 
ase, there is a 
ompa
t set K � G with supp(u) � K

Æ

. Then v 2 H

1

(K)

and by the de�nition of weak derivatives one gets for all 1 � i � d

Z

G

u(D

i

v) =

Z

K

u(D

i

v) = �

Z

K

(D

i

u)v = �

Z

G

(D

i

u)v:

In order to show that A


;2

is a generator of a C

0

-semigroup we will apply the

Lumer-Phillips theorem. So we �rst need dissipativity.

Proposition 3.5. The operator

A := A


;2

+

tr(B)

2

is dissipative in L

2

(
).

Proof. Let f 2 D(A


;2

) = D(A). Writing f = u+ iv for suitable real u; v 2 L

2

(
),

we get

Re

Z




(Af)f =

Z




(Au)u+

Z




(Av)v;

so it suÆ
es to show

R




(Au)u � 0 for real-valued fun
tions u. Note that u; v 2

D(A


;2

), sin
e the 
oeÆ
ients of A are real.

We 
hoose � 2 C

1




(R

d

) vanishing outside of B

2

(0) with �j

B

1

(0)

= 1 and de�ne

�

m

(x) = �(

x

m

) for m 2 N. Sin
e (Au)u 2 L

1

(
) we derive lim

m!1

R




(Au)u�

m

=

R




(Au)u by the pointwise 
onvergen
e of �

m

to 1 and Lebesgue's Theorem.
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Next we 
hoose a sequen
e (u

n

)

n2N

of C

1




-fun
tions 
onverging to u with respe
t

to the H

1

-norm. Now, partial integration (as in Remark 3.4) yields

Z




(A


;2

u)(x)u

n

(x)�

m

(x) dx

=

Z




d

X

i;j=1

q

ij

D

i

D

j

u(x)u

n

(x)�

m

(x) dx+

Z




d

X

i;j=1

b

ij

x

j

D

i

u(x)u

n

(x)�

m

(x) dx

=�

Z




d

X

i;j=1

q

ij

D

i

u(x)D

j

u

n

(x)�

m

(x) dx�

Z




d

X

i;j=1

q

ij

D

i

u(x)u

n

(x)D

j

�

m

(x) dx

+

1

2

Z




d

X

i;j=1

b

ij

x

j

D

i

u(x)u

n

(x)�

m

(x) dx�

1

2

Z




d

X

i;j=1

b

ij

x

j

u(x)D

i

u

n

(x)�

m

(x) dx

�

1

2

Z




d

X

i;j=1

b

ij

x

j

u

n

(x)u(x)D

i

�

m

(x) dx�

tr(B)

2

Z




u(x)u

n

(x)�

m

(x) dx:

Note that, thanks to the bounded supports of the fun
tions �

m

and u

n

, all integrals

in the above 
al
ulations are well de�ned.

The H

1

-
onvergen
e of the sequen
e (u

n

)

n2N

yields

lim

n!1

Z




d

X

i;j=1

q

ij

D

i

u(x)D

j

u

n

(x)�

m

(x) dx =

Z




d

X

i;j=1

q

ij

D

i

u(x)D

j

u(x)�

m

(x) dx

and

lim

n!1

Z




d

X

i;j=1

b

ij

x

j

D

i

u

n

(x)u(x)�

m

(x) dx =

Z




d

X

i;j=1

b

ij

x

j

D

i

u(x)u(x)�

m

(x) dx;

sin
e x

j

�

m

(x) is bounded. The other summands 
an be treated analogously, so we

derive

Z




Au(x)u(x)�

m

(x) dx = lim

n!1

Z




(Au)(x)u

n

(x)�

m

(x) dx

=�

Z




d

X

i;j=1

q

ij

D

i

u(x)D

j

u(x)�

m

(x) dx�

Z




d

X

i;j=1

q

ij

D

i

u(x)u(x)D

j

�

m

(x) dx

+

1

2

Z




d

X

i;j=1

b

ij

x

j

D

i

u(x)u(x)�

m

(x) dx�

1

2

Z




d

X

i;j=1

b

ij

x

j

D

i

u(x)u(x)�

m

(x) dx

�

1

2

Z




d

X

i;j=1

b

ij

x

j

u(x)u(x)D

i

�

m

(x) dx:

Next, we want to pass to the limit m to 1, so we have to 
onsider the terms


ontaining derivatives of �

m

. The equality (D

i

�

m

)(x) =

1

m

(D

i

�)(

x

m

) implies

x

j

D

i

�

m

(x) =

x

j

m

D

i

�

�

x

m

�

= 0 for

jxj

m

> 2;

and therefore all fun
tions x

j

D

i

�

m

(x), 1 � j � d, are bounded with

jx

j

D

i

�

m

(x)j =

�

�

�

x

j

m

D

i

�

�

x

m

�

�

�

�

< 2kr�k

1

and have support inside fx 2 R

d

: m � jxj � 2mg.
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Now let " > 0. Sin
e u

2

2 L

1

(
), there is a 
ompa
t subset K

"

� 
 with

Z


nK

"

u

2

�

"

2kr�k

1

:

If we 
hoose m

0

large enough, we have K

"

\ supp(x

j

D

i

�

m

) = ; for all m � m

0

and

therefore

�

�

�

�

Z




u

2

(x)x

j

D

i

�

m

(x) dx

�

�

�

�

=

�

�

�

�

�

Z


nK

"

u

2

(x)x

j

D

i

�

m

(x) dx

�

�

�

�

�

� ":

This proves

lim

m!1

Z




d

X

i;j=1

b

ij

x

j

u(x)u(x)D

i

�

m

(x) dx = 0:

Sin
e kD

i

�

m

k

1

�

1

m

kr�k

1

, we also have

lim

m!1

Z




d

X

i;j=1

q

ij

D

i

u(x)u(x)D

j

�

m

(x) dx = 0;

Finally we obtain dissipativity of A by

Z




(Au)u = lim

m!1

Z




(Au)u�

m

= �

Z




d

X

i;j=1

q

ij

D

i

u(x)D

j

u(x) dx � 0;

as Q is positive de�nite. �

In order to show that A


;2

is a generator, it remains to be proven that ��A is

surje
tive for some �xed � > 0. This will be done by approximating the solution

u of the resolvent problem (� � A)u = f , f 2 L

2

(
), with solutions of the same

problem on bounded and regular subdomains of 
.

By [5, II.4, Lemma 1℄, there exists an in
reasing sequen
e (


n

)

n2N

of bounded

subdomains of 
, that have a C

2

-boundary, su
h that 
 =

S

n2N




n

. Note that

the spe
i�
 
hoi
e of this sequen
e is not important, sin
e by dissipativity of A a

solution of the resolvent problem is unique, whenever it exists.

Sin
e the 
oeÆ
ients of L are bounded on bounded sets, by standard perturba-

tion theory, the operator A+tr(B)=2 generates a C

0

-semigroup on L

2

(


n

) for every

n 2 N, when we equip it with the domain D = H

1

0

(


n

) \ H

2

(


n

). As D(A




n

;2

)


ontains D, we get D(A


;2

) = D again by Remark 3.1.

This 
oin
iding of the domains even gives us some more pre
ious information.

Sin
e the generator A




n

;2

+ tr(B)=2 is dissipative it even generates a 
ontra
tion

semigroup on L

2

(


n

) for every n 2 N. Thus the bounds on the resolvent do not

depend on n, whi
h will be important in the following.

Fixing � > 0 and f 2 L

2

(
) that means we �nd a unique solution u

n

2 H

1

0

(


n

)\

H

2

(


n

) for the problem �u

n

�A




n

;2

u

n

�

tr(B)

2

u

n

= f j




n

for every n 2 N with

ku

n

k

L

2

(


n

)

=













R

�

�;A




n

;2

+

tr(B)

2

�

f

�

�




n













L

2

(


n

)

�

1

�

kfk

L

2

(
)

; (4)

independently of the domain 


n

.

As by [1, Lemma 3.22℄, the trivial extension of u

n

is an element of H

1

(R

d

) and

hen
e of H

1

0

(
), we may regard (u

n

)

n2N

as a sequen
e in H

1

0

(
). The next lemma

will show that even the gradients of the fun
tions u

n

are bounded independently

of the 
hosen domain, whi
h does not follow by ellipti
 regularity alone.
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Lemma 3.6. Let G � R

d

be a bounded domain with C

2

-boundary and u 2 H

1

0

(G)\

H

2

(G) be a solution of �u�A

G;2

u�

tr(B)

2

u = g for some � > 0. Then

kruk

2

�

r

2

�

kQ

�

1

2

kkgk

2

:

Proof. Let u = v + iw with real-valued v; w 2 H

1

0

(G) \H

2

(G). Then

kD

�

uk

2

2

=

Z

G

D

�

uD

�

u =

Z

G

(D

�

v + iD

�

w)(D

�

v � iD

�

w) = kD

�

vk

2

2

+ kD

�

wk

2

2

for any multiindex � with j�j � 2. For the fun
tion v we 
al
ulate by Lemma 3.3

Z

G

Q

1

2

rvQ

1

2

rv =

Z

G

Qrvrv = �

Z

G

(A

0

v)v

=

Z

G

�

�v �A

G;2

v �

tr(B)

2

v

�

v � �

Z

G

vv +

Z

G

(Lv)v +

tr(B)

2

Z

G

vv

=

Z

G

�

�v �A

G;2

v �

tr(B)

2

v

�

v � �

Z

G

vv

=

Z

G

Re(g)R

�

�;A

G;2

+

tr(B)

2

�

Re(g)� �













R

�

�;A

G;2

+

tr(B)

2

�

Re(g)













2

2

:

We 
on
lude by (4)

krvk

2

2

= kQ

�

1

2

(Q

1

2

rv)k

2

2

� kQ

�

1

2

k

2

2

�

kRe(g)k

2

2

:

Repeating the same 
al
ulations for w, we obtain

kruk

2

2

� kQ

�

1

2

k

2

2

�

kRe(g)k

2

2

+ kQ

�

1

2

k

2

2

�

kIm(g)k

2

2

= kQ

�

1

2

k

2

2

�

kgk

2

2

:

�

Now we 
an prove the main result of this se
tion.

Proposition 3.7. Let 
 � R

d

be a domain. Then A


;2

is the generator of a

C

0

-semigroup (T


;2

(t))

t�0

on L

2

(
) with kT


;2

(t)k � e

�

tr(B)

2

t

.

Proof. It only remains to be shown that for a �xed � > 0 and for every f 2 L

2

(
)

there exists a fun
tion u 2 H

1

0

(
)\fv 2 H

2

lo


(
) : Av 2 L

2

(
)g with �u�Au = f .

We 
onsider the sequen
e (u

n

)

n2N

of trivial extensions of the solutions on 


n

mentioned above. In view of Lemma 3.6, it is bounded in H

1

0

(
), so there exists

a weakly 
onvergent subsequen
e (u

n

k

)

k2N

. We denote its limit by u and show in

the following that u is the desired solution.

As a �rst step, we will prove that u 2 H

2

lo


(
). Fix two 
ompa
t sets K

1

;K

2

� 


with K

1

� K

Æ

2

. Then, by 
onstru
tion, K

2

� 


n

k

for suÆ
iently large k. The


oeÆ
ients of A are bounded on K

2

, so [10, Theorem 9.11℄, implies that there is a


onstant C depending onK

1

, K

2

and the bound of the 
oeÆ
ients onK

2

, su
h that

ku

n

k

k

H

2

(K

1

)

� C(ku

n

k

k

2

+ kfk

2

), so there exists a weakly 
onvergent subsequen
e

(u

n

k

l

)

l2N

in H

2

(K

1

). Let v denote its limit. Sin
e the sequen
e (u

n

k

l

j

K

1

)

l2N

also


onverges weakly to uj

K

1

in L

2

(K

1

), we derive v = uj

K

1

from the uniqueness of

weak limits in L

2

(K

1

). This shows u 2 H

2

lo


(
).

In order to �nish the proof, it remains to show �u � Au = f . Let g 2 C

1




(
)

and �x a 
ompa
tum K with supp(g) � K

Æ

. Then K � 


n

k

for k large enough.

Let (u

n

k

l

)

l2N

be again a weakly 
onvergent subsequen
e of (u

n

k

)

k2N

on H

2

(K) and
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A

?

be the formal adjoint of A. Then we 
on
lude

Z




(�u�Au� f)g =

Z

K

(�u�Au� f)g =

Z

K

(�ug � uA

?

g � fg)

= lim

l!1

Z

K

(�u

n

k

l

g � u

n

k

l

A

?

g � fg) = lim

l!1

Z

K

(�u

n

k

l

�Au

n

k

l

� f)g = 0:

Thus the assertion follows by the fundamental theorem of variational 
al
ulus.

�

4. Domination and positivity of the semigroup

The aim of this se
tion is to prove Kolmogorov kernel estimates for the semigroup

(T


;2

(t))

t�0

obtained in Proposition 3.7. While doing so, we also obtain positivity

of the semigroup. Our method is inspired by the proof of the heat kernel estimates

for the Diri
hlet Lapla
ian, 
f. [2℄.

Lemma 4.1. Let 
 � R

d

be a domain, � > �tr(B)=2 and let u 2 D(A


;2

),

v 2 H

1

(
)\ ff 2 H

2

lo


(
) : Af 2 L

2

(
)g be real-valued fun
tions, su
h that v � 0.

Then the inequality (��A)u � (��A)v a.e. implies u � v a.e.

Proof. As in the proof of Proposition 3.5, we 
hoose a positive � 2 C

1




(R

d

) van-

ishing outside of B

2

(0) with �j

B

1

(0)

= 1 and de�ne �

m

(x) = �(

x

m

) for m 2 N.

By hypotheses, we have

�(u� v)�A

0

(u� v)�L(u� v) � 0; a.e.

so we obtain

�

Z




(u� v)'�

m

�

d

X

i;j=1

Z




q

ij

D

i

D

j

(u� v)'�

m

�

Z




Bx � r(u� v)�

m

' � 0

for all m 2 N and all positive ' 2 C

1




(
). By integration by parts, 
f. Remark 3.4,

we 
on
lude that

�

Z




(u� v)'�

m

+

d

X

i;j=1

Z




q

ij

D

j

(u� v)D

i

'�

m

+

d

X

i;j=1

Z




q

ij

D

j

(u� v)'D

i

�

m

�

Z




Bx � r(u� v)�

m

' � 0:

for all m 2 N. Now, this last inequality is even valid for all ' 2 H

1

0

(
)

+

by density.

In the following we show, that (u�v)

+

2 H

1

0

(
)

+

. In order to do so, we 
hoose a

sequen
e (u

n

) � C

1




(
), that 
onverges to u in H

1

(
). Then the fun
tion (u

n

�v)

+

is in H

1

(
)

+

for every n 2 N and sin
e v � 0, we get supp((u

n

� v)

+

) � supp(u

n

).

Thus (u

n

� v)

+

has 
ompa
t support in 
, whi
h implies (u

n

� v)

+

2 H

1

0

(
)

+

.

This �nally yields (u� v)

+

2 H

1

0

(
)

+

, as H

1

0

(
) is a 
losed subspa
e of H

1

(
).

Putting ' = (u � v)

+

in the above inequality and observing that then all the

integrals vanish on the set fu � vg, we get

�

Z




�

(u� v)

+

�

2

�

m

+

Z




r(u� v)

+

Qr(u� v)

+

�

m

�

Z




Bx � r(u� v)

+

(u� v)

+

�

m

+

n

X

i;j=1

Z




q

ij

D

j

(u� v)

+

(u� v)

+

D

i

�

m

� 0:

Now Lemma 3.3 yields for the third integral

Z




Bx �r(u�v)

+

(u�v)

+

�

m

= �

tr(B)

2

Z




�

(u�v)

+

�

2

�

m

�

Z




Bx �r�

m

�

(u�v)

+

�

2

:
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As all the limits form!1 on the left hand side exist (
f. proof of Proposition 3.5),

this implies

�

Z




Bx � r(u� v)

+

(u� v)

+

=

tr(B)

2

Z




�

(u� v)

+

�

2

:

We derive the inequality

�

�+

tr(B)

2

�

Z




�

(u� v)

+

�

2

+

Z




r(u� v)

+

Qr(u� v)

+

� 0:

Sin
e Q is positive de�nite and � > �tr(B)=2, this 
an only be true, if both integrals

are zero, in parti
ular, we get k(u�v)

+

k

L

2

(
)

= 0, whi
h implies u � v a.e. �

Setting v = 0, as an immediate 
orollary, we get the following positivity result

for A.

Corollary 4.2. Let � > �tr(B)=2 and let u 2 D(A


;2

) be a real-valued fun
tion.

Then

(��A)u � 0 a.e. =) u � 0 a.e. and

(��A)u � 0 a.e. =) u � 0 a.e.

The next step is to show that the resolvent and the semigroup rea
t monotonely,

when the domain 
 is enlarged. As a byprodu
t of the proof, we also dedu
e the

positivity of the semigroup and the resolvent.

Proposition 4.3. Let 


1

;


2

� R

d

be domains and let 


1

� 


2

. Then for every

f 2 L

2

(


1

)

+

, for every � > �tr(B)=2 and every t � 0, we have

(1) 0 � R(�;A




1

;2

)f � R(�;A




2

;2

)

~

f ,

(2) 0 � T




1

;2

(t)f � T




2

;2

(t)

~

f

almost everywhere. Here

~

f denotes the extension of f by 0.

Proof. (1) Put u := R(�;A




1

;2

)f and v := R(�;A




2

;2

)

~

f . Then, both u and

v are real-valued. Indeed, for u = u

1

+ iu

2

, we have f = (� � A




1

;2

)u =

(��A




1

;2

)u

1

+i(��A




1

;2

)u

2

, where (��A




1

;2

)u

j

, j = 1; 2, are real-valued

fun
tions. This implies (��A




1

;2

)u

2

= 0, and, by inje
tivity of (��A




1

;2

),

even u

2

= 0. The argument for v is the same.

Sin
e u 2 D(A




1

;2

), v 2 D(A




2

;2

) and f and

~

f are positive we get

u; v � 0 a.e. by Corollary 4.2. It remains to show u � v. As (� � A)u =

f = (� � A)v a .e. in 


1

, we have in parti
ular (� � A)u � (� � A)v.

Furthermore, we know that u 2 D(A




1

;2

) and the restri
tion of v to 


1

is

inH

1

(


1

)\ff 2 H

2

lo


(


1

) : Af 2 L

2

(


1

)g. Thus we may apply Lemma 4.1,

in order to get u � v a.e. in 


1

.

(2) Sin
e R(�;A




j

;2

) =

1

�

(I �

1

�

A




j

;2

)

�1

, j = 1; 2, the �rst part of the proof

yields

0 � (I � sA




1

;2

)

�1

f � (I � sA




2

;2

)

�1

~

f

for all 0 < s < 2=jtr(B)j or for every s > 0 if tr(B) = 0. Thus we have the

same for every power k 2 N:

0 � (I � sA




1

;2

)

�k

f � (I � sA




2

;2

)

�k

~

f:

Now let t > 0. Then, if k is large enough, we have t=k < 2=jtr(B)j and

0 � (I �

t

k

A




1

;2

)

�k

f � (I �

t

k

A




2

;2

)

�k

~

f:

Passing to the limit for k !1, the 
laim follows (
f. [6, Corollary III.5.5℄).

�

For arbitrary f 2 L

2

(


1

), we get:
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Corollary 4.4. If 


1

and 


2

are as in Proposition 4.3, we have for every f 2

L

2

(


1

), for every � > �tr(B)=2 and every t � 0

(1) jT




1

;2

(t)f j � T




2

;2

(t)j

~

f j,

(2) jR(�;A




1

;2

)f j � R(�;A




2

;2

)j

~

f j.

Proof. Looking at the spe
ial 
ase 


2

= R

d

we see that the semigroup (T




1

;2

(t))

t�0

is dominated by the semigroup (T

R

d

;2

(t))

t�0

, whi
h is given by positive, regular

integral kernel operators. It is a 
lassi
al result (
f. [18, IV. x9℄), that in this

situation also the operators T




1

;2

(t), t > 0, are given by regular integral kernels

K

t

, that are positive, sin
e T




1

;2

(t) are positive operators. Thus

jT




1

;2

(t)f j =

�

�

�

�

Z




1

K

t

(�; y)f(y) dy

�

�

�

�

�

Z




1

K

t

(�; y)jf(y)j dy = T




1

;2

(t)jf j

� T




2

;2

(t)j

~

f j

by Proposition 4.3. Now, the resolvent estimate follows as in the proof of Proposi-

tion 2.3 (3). �

Setting 


2

= R

d

in Corollary 4.4, we have �nally 
ompleted the proof of Theo-

rem 3.2.

Now we have shown that A


;2

satis�es a Kolmogorov kernel estimate withM = 1

and ! = 0, so the results stated in Chapter 2 hold true. We 
olle
t them in the

following theorem.

Theorem 4.5. Let 
 � R

d

be a domain. Then (T


;p

(t))

t�0

, 1 � p <1, is a family

of 
onsistent, positive C

0

-semigroups on L

p

(
) with kT


;p

(t)k

L(L

p

(
))

� e

�

tr(B)

p

t

for

all 1 � p <1 and all t � 0. For every � > �tr(B)=p and every t > 0 we have the

domination properties

jR(�;A


;p

)f j � R(�;A

R

d

;p

)j

~

f j; f 2 L

p

(
);

jT


;p

(t)f j � T

R

d

;p

(t)j

~

f j = (k

t

� j

~

f j)(e

tB

�); f 2 L

p

(
);

where

~

f denotes the extension of f by 0. Moreover, the operators A


;p

� jtr(B)j

admit a bounded H

1

-
al
ulus for every 1 < p <1 and we have

(1) R(�;A


;p

)f = R(�;A


;q

)f for all f 2 L

p

(
)\L

q

(
), all 1 � p; q <1 and

all � 2 C with Re(�) > max(�

tr(B)

p

;�

tr(B)

q

).

(2) The set ff 2 D(A


;2

) \ L

p

(
) : A


;2

f 2 L

p

(
)g is 
ontained in D(A


;p

)

and A


;p

f = A


;2

f for all su
h f and 1 � p <1.

5. The spe
trum of A


;p

on exterior domains

We �nally turn our attention to the spe
ial 
ase of an exterior domain, i.e.


 = R

d

nK for some 
ompa
t set K � R

d

with C

1;1

-boundary. S
aling the set K

down to f0g, we show that the spe
tral behaviour of A


;p

is the same as in the 
ase


 = R

d

. That means that the spe
trum of the drift operator L on R

d

, i.e. the whole

verti
al line �tr(B)=p+iR (or in the 
ase tr(B) = 0 at least an unbounded subgroup

of it) is 
ontained in �(A


;p

). This implies that the semigroup (T


;p

(t))

t�0

is not

eventually norm-
ontinuous. Nevertheless, we have that the spe
tral bound of A


;p

and the growth bound of T


;p


oin
ide and s(A


;p

) = !

0

(T


;p

) = �tr(B)=p. Before

we 
an formulate this theorem, we have to introdu
e the realisation L

R

d

;p

of L in

L

p

(R

d

):

D(L

R

d

;p

) = fu 2 L

p

(R

d

) : Lu 2 L

p

(R

d

)g; L

R

d

;p

u = Lu;

where Lu is understood in the sense of distributions.

We 
olle
t the information on the operators L

R

d

;p

that we need in the following

in the next proposition. For proofs, see [14℄.
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Proposition 5.1. Let 1 � p <1. Then the following holds:

(1) The operator L

R

d

;p

is the generator of a C

0

-semigroup (S(t))

t�0

on L

p

(R

d

),

given by (S(t)f)(x) = f(e

tB

x), x 2 R

d

, for every f 2 L

p

(R

d

).

(2) If tr(B) 6= 0, then �(L

R

d

;p

) = �tr(B)=p+ iR.

(3) If tr(B) = 0, then �(L

R

d

;p

) is an additive subgroup of iR, that is not f0g.

Now the result that we want to prove in this se
tion 
an be formulated as follows.

Theorem 5.2. Let K � R

d

be 
ompa
t with a C

1;1

-boundary and 
 = R

d

n K.

Then for every 1 < p <1 we have

D(A


;p

) =W

1;p

0

(
) \W

2;p

(
) \ ff 2 L

p

(
) : Lf 2 L

p

(
)g: (5)

Furthermore we have the in
lusion �(L

R

d

;p

) � �(A


;p

) and s(A


;p

) = !

0

(T


;p

) =

�tr(B)=p.

Note, that the whole pi
ture 
hanges 
ompletely for bounded domains as the

semigroup then be
omes analyti
. It remains however an open question, whether

Theorem 5.2 is still valid for more general unbounded domains.

Remark 5.3. If 
 is an exterior domain with C

1;1

-boundary, we already know

from [9℄ that the Ornstein-Uhlenbe
k operator equipped with the domainW

1;p

0

(
)\

W

2;p

(
) \ ff 2 L

p

(
) : Lf 2 L

p

(
)g generates a C

0

-semigroup for every 1 < p <

1. For the following results, it is ne
essary to 
he
k that A


;p


oin
ides with this

operator, whi
h we will denote by

~

A

p

. For p = 2, the in
lusion D(

~

A

2

) � D(A


;2

)

is 
lear, so we get D(

~

A

2

) = D(A


;2

) by Remark 3.1.

The 
onstru
tion of the semigroups in [9℄ now immediately yields 
onsisten
y.

From this we dedu
e that the semigroups generated by

~

A

p

and A


;p

and hen
e

their generators 
oin
ide for 1 < p <1.

In the following we often identify fun
tions f 2 C

1




(R

d

nf0g) with their extension

by f(0) = 0 and thus view C

1




(R

d

nf0g) as a subspa
e of C

1




(R

d

). The importan
e

of the spa
e C

1




(R

d

n f0g) for the following is due to the following lemma.

Lemma 5.4. The subspa
e C

1




(R

d

n f0g) � D(L

R

d

;p

) is a 
ore for L

R

d

;p

.

Proof. Let f 2 C

1




(R

d

nf0g) and t > 0. Then 0 =2 supp(f). In view of the linearity,

bije
tivity and 
ontinuity of the map x 7! e

�tB

x, we 
on
lude that supp(S(t)f) =

e

�tB

supp(f) is a 
ompa
t set not 
ontaining 0, hen
e S(t)f 2 C

1




(R

d

n f0g) for

every t � 0. Moreover, C

1




(R

d

nf0g) is dense in L

p

(R

d

), so the lemma follows from

[6, Proposition I.1.7℄. �

Now, if 
 = R

d

nK for some 
ompa
t set K � R

d

with C

1;1

-boundary, for every

k 2 N we set




k

:= fx 2 R

d

: kx 2 
g = R

d

n

1

k

K

and 
onsider the operator

A

k

=

1

k

2

d

X

i;j=1

q

ij

D

i

D

j

+ L;

with domain

D(A

k

) =W

1;p

0

(


k

) \W

2;p

(


k

) \ ff 2 L

p

(


k

) : Lf 2 L

p

(


k

)g

for some given p 2 (1;1).

By Remark 5.3 we have D(A

k

) = D(A




k

;p

), so Theorem 4.5 implies that f� 2

C : Re(�) > �

tr(B)

p

g � %(A

k

) for all k 2 N. Thus we may 
ompare the resolvents of

A

k

with the resolvent of A


;p

= A

1

for all these �. This yields the following result.



14 ROBERT HALLER-DINTELMANN, JULIAN WIEDL

Lemma 5.5. We have kR(�;A

k

)k

L(L

p

(


k

))

= kR(�;A


;p

)k

L(L

p

(
))

for every k 2 N

and every � 2 C with Re(�) > �

tr(B)

p

.

Proof. We 
onsider the map

V

k

: L

p

(
)! L

p

(


k

); V

k

(f)(x) = k

d

p

f(kx):

The transformation formula yields that V

k

is an isometry, whose inverse is given by

V

�1

k

(f)(x) = k

�

d

p

f

�

1

k

x

�

:

For f 2W

2;p

(
) we get by the 
hain rule V

k

(f) 2W

2;p

(


k

) and

V

�1

k

A

k

V

k

f = k

d

p

V

�1

k

A

k

f(kx)

= V

�1

k

2

4

k

d

p

0

�

1

k

2

d

X

i;j=1

k

2

q

ij

D

i

D

j

f(kx) +

d

X

i;j=1

b

ij

kx

j

D

i

f(kx)

1

A

3

5

= V

�1

k

2

4

k

d

p

0

�

d

X

i;j=1

q

ij

D

i

D

j

f(kx) +

d

X

i;j=1

b

ij

kx

j

D

i

f(kx)

1

A

3

5

= Af:

If f 2W

1;p

0

(
), there is a sequen
e f

n

2 C

1




(
), whi
h 
onverges to f in W

1;p

(
).

Then the sequen
e (V

k

f

n

)

n2N

is in C

1




(


k

) with supp(V

k

f

n

) =

1

k

supp(f

n

) and it


onverges to V

k

f in W

1;p

(


k

). Again, the transformation formula implies LV

k

f 2

L

p

(


k

). For V

�1

k

one 
an argue analogously. So V

k

indu
es a bije
tion from

W

2;p

(
) \W

1;p

0

(
) \ ff 2 L

p

(
) : Lf 2 L

p

(
)g to W

2;p

(


k

) \W

1;p

0

(


k

) \ ff 2

L

p

(


k

) : Lf 2 L

p

(


k

)g. In fa
t, we have A


;p

f = V

�1

k

A

k

V

k

f for all f 2 D(A


;p

),

and (��A


;p

)f = (�� V

�1

k

A

k

V

k

)f = V

�1

k

(��A

k

)V

k

f . Now we get R(�;A


;p

) =

V

�1

k

(��A

k

)

�1

V

k

. We 
on
lude

kR(�;A


;p

)fk

p

= kV

�1

k

(��A

k

)

�1

V

k

fk

p

= kV

�1

k

(��A

k

)

�1

V

k

fk

p

� kV

�1

k

k

L(L

p

(
);L

p

(


k

))

k(��A

k

)

�1

k

L(L

p

(


k

))

kV

k

fk

p

� kR(�;A

k

)k

L(L

p

(


k

))

kfk

p

:

The reverse inequality follows analogously. �

Having this equality in hand, we may �nally show that the resolvents of A


;p

obey

the inequality kR(�; L

R

d

;p

)k

L(L

p

(R

d

))

� kR(�;A


;p

)k

L(L

p

(
))

for Re(�) > �

tr(B)

p

.

Sin
e �(L

R

d

;p

) � �tr(B)=p + iR by Proposition 5.1, we 
an approximate every

� 2 �(L

R

d

;p

) by � 2 %(A


;p

). The above inequality then implies the divergen
e of

kR(�;A


;p

)k

L(L

p

(
))

for �! �. This yields �(L

R

d

;p

) � �(A


;p

). So we have shown

�

tr(B)

p

� s(A


;p

) � !

0

(T


;p

) � �

tr(B)

p

;

whi
h implies the equality stated in Theorem 5.2.

Proposition 5.6. For Re(�) > �

tr(B)

p

we have

kR(�; L

R

d

;p

)k

L(L

p

(R

d

))

� kR(�;A


;p

)k

L(L

p

(
))

:

Proof. Let g 2 C

1




(R

d

n f0g). Then g 2 D(A

k

) for k large enough. It follows

kA

k

g � L

R

d

;p

gk

p

=













1

k

2

d

X

i;j=1

q

ij

D

i

D

j

g













p

�! 0
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for k !1. Now we 
onsider f = (��L)g, g 2 C

1




(R

d

n f0g). For k large enough

we have f 2 D(A

k

). Then for n � k we get with the previous Lemma

kR(�;A

n

)f �R(�; L

R

d

;p

)

~

fk

p

= kR(�;A

n

)(� � L

R

d

;p

)g � gk

p

=kR(�;A

n

)

�

(��A

n

)g � (��A

n

)g + (�� L

R

d

;p

)g

�

� gk

p

=kR(�;A

n

)(A

n

� L

R

d

;p

)gk

p

� kR(�;A


;p

)k

L(L

p

(
))

k(A

n

� L

R

d

;p

)gk

p

;

so R(�;A

n

)f � R(�; L

R

d

;p

)f 
onverges to 0 in L

p

(
). Then for ea
h " > 0 and

f 2 (�� L

R

d

;p

)C

1




(R

d

n f0g) there exists a k with

kR(�; L

R

d

;p

)fk

p

� kR(�;A

k

)fk

p

+ " � kR(�;A


;p

)k

L(L

p

(
))

kfk

p

+ ":

Thus we have

kR(�; L

R

d

;p

)fk

p

� kR(�;A


;p

)k

L(L

p

(
))

kfk

p

for all f 2 (� � L

R

d

;p

)C

1




(R

d

n f0g). Sin
e C

1




(R

d

n f0g) is a 
ore for L

R

d

;p

by

Lemma 5.4, the assertion follows. �
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