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Abstract

We investigate the regularizing properties of generalized continua of micropolar
type for dynamic elasto-plasticity. To this end we propose an extension of classical
infinitesimal elasto-plasticity to include consistently non-dissipative micropolar ef-
fects and we show that the dynamic model allows for unique, global in-time solution
of the corresponding rate-independent initial boundary value problem. The method
of choice are the Yosida-approximation and a passage to the limit.
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1 Introduction

This article is a sequel to work begun in [21]. There we have established the regularizing
power and well-posedness of a certain geometrically linear Cosserat model [4] in
conjunction with quasistatic rate-independent elasto-plasticity. In this contribution we
extend these results to cover also the fully dynamic case.

For the relevance of the Cosserat model we refer to the introduction in [21]. Readers
may also consult [9, 8, 3] for the general micropolar approach or [26, 20, 2, 5, 6, 19, 22| for
its application to elasto-plasticity. Recently, Cosserat elasto-plasticity has been applied
in [16, 23, 24, 25, 27, 15, 10] and references therein.

Micropolar models are characterized by an additional independent field of (infinitesi-
mal) microrotations A € s0(3,R), coupled in some way to the displacement u. These new
degrees of freedom introduce in a natural way length scale effects into the model which
are a convenient way to regularize non-wellposed situations without compromising the
physical relevance of the model.

In order to be sufficiently self-contained we recapitulate briefly the static elastic mi-
cropolar model and its quasistatic elasto-plastic extension as treated in [21]. The qua-
sistatic model is then extended in a straightforward manner to include the dynamic effects
for both the standard displacement u and the new microrotation A by writing down an
appropriate Lagrangian function.

Subsequently, we mathematically study the obtained dynamic rate-independent case
and show, by means of the Yosida approximation and a passage to the limit, that the
rate-independent problem admits a unique, global in-time solution for displacements and
microrotations in standard Sobolev spaces under fairly mild assumptions on the data.
The notation is found in the appendix.

2 The Cosserat model

2.1 The infinitesimal elastic Cosserat model

We begin by recalling the infinitesimal Cosserat approach. First, in the purely elastic
case, an infinitesimal Cosserat theory can be obtained by introducing the additive de-
composition of the macroscopic displacement gradient Vu into infinitesimal microrota-
tion A € s0(3,R) (infinitesimal Cosserat rotation tensor) and infinitesimal micropolar
stretch tensor (or first Cosserat deformation tensor) £ € MP*? with

Vu=¢+4, (2.1)

where Z is not necessarily symmetric, such that (2.1) is in general not the decompo-
sition of Vu into infinitesimal continuum stretch sym(Vu) and infinitesimal continuum
rotation skew(Vu).

In the quasistatic case, the Cosserat theory is then obtained from a variational principle
[25, p.51] or [28] for the infinitesimal displacement u : [0, 7] x Q2 — R* and the independent



infinitesimal microrotation A : Q + s0(3, R):

E(u, A) :/W(W,Z, DA) — (f,u) — (M, A) dx

- / (N, u) dS — / (M., ) dS v min. wor.t. (u,7), (2.2)
s T'o
AL =4, wp=ug(t ).

Here W represents the elastic energy density and 2 C R? is a domain with boundary 0
and I' C 02 is that part of the boundary, where Dirichlet conditions g4, A4 for infinitesi-
mal displacements and rotations, respectively, are prescribed while I's C 02 is a part of
the boundary, where traction boundary conditions N are applied with ' NT'g = (. In
addition, I'c C 0N is the part of the boundary where external surface couples M, are
applied with ' N T'c = (0. The classical volume force is denoted by f and the additional
volume couple by M. Variation of the action & with respect to u yields the equation for
linearized balance of linear momentum and variation of £ with respect to A yields the
linearized version of balance of angular momentum.

It remains to specify the analytic form of the energy density W. A linearized version of
material frame-indifference implies the reduction W (Vu, A,D;A) = W(g,D,A), and for
infinitesimal displacements u and small curvature D, A a quadratic ansatz is appropriate:
W (g,DA) = Wiain(z) 4 Wimall(D, A) with an additive decomposition of the energy density

into microstretch € and curvature parts. In the isotropic case it is standard to assume for
the stretch energy

. — A
Wap" (€)= st | sym Vull” + pie || skew (Vu) — A|[* + 2 tr [sym(Va)]*, (2:3)

where the Cosserat couple modulus . > 0 [MPa] is an additional parameter, comple-
menting the two Lame constants g, A > 0 [MPa]. For the curvature term we assume
2

wemall(p A) = /JJ% <a5 || sym DAl + a || skew DyAJ]? + a7 tr [DXZ]2) : (2.4)
Here, L. > 0 with units of length introduces a specific internal characteristic length
into the elastic formulation. In general one assumes a; > 0, ag, a7 > 0.

We observe that if p. = 0, the infinitesimal minimization problem (2.3) completely
decouples - the infinitesimal microrotations A have no influence at all on the macroscopic
behaviour of the infinitesimal displacements and classical infinitesimal elasticity results.

'Note that axl A x £ = A.¢ for all £ € R®, such that

0 a f -y
axl | —« 0 Y = ﬂ 5 Zij = Eijk * axl(Z)k , (25)
-8 -y 0 —a

where €51, is the totally antisymmetric permutation tensor. Here, A.¢ denotes the application of the
matrix A to the vector £ and a X b is the usual cross-product. This induces the canonical identification
of skew-symmetric matrices so(3,R) with R?.



In the limit of zero internal length scale L. = 0 and for p. > 0,2 balance of angular
momentum reads

DWip(Vu, A) € Sym < DgWo,(Vu, A) =0, (2.6)

and implies already that infinitesimal continuum rotations and infinitesimal microrota-
tions coincide: skew(Vu) = A, and this in turn is equivalent to the symmetry of the
infinitesimal Cauchy stress o or the so called Boltzmann axiom.

If we consider p, > 0, it is standard to prove that the corresponding minimization
problem admits a unique minimizing pair (u, A) € H*(Q,R*) x H'(Q, 50(3,R)). Existence
results of this type have been obtained e.g. in [7, 17, 12, 13] and in [21].

2.2 Non-dissipative extension to micropolar elasto-plasticity

Now we extend the formulation of micropolar elasticity to cover infinitesimal elasto-
plasticity as well. It is clear that there exists various ways of obtaining such an extension,
for an overview of the competing models we refer to the instructive survey article [11].
Incidentally, the Cosserats themselves [4, p.5] already envisaged the application of their
general theory to plasticity and fracture. Without restricting generality we base the fol-
lowing considerations on a simplified curvature expression by setting as = ag =1, ay = 0.

The idea of a non-dissipative extension is simple. Consider the additive decomposi-
tion of the total micropolar stretch into elastic and plastic parts

E=%,+75,, (2.7)

and assume that microrotational effects remain purely elastic: A, = Z; Now we replace
formally £ in (2.3) with £, which yields (note that ||D A.||* = 2||V axl(A)]||?)

— A —
E(Ee, Ae) = //,(, | symZ||? + pe || skew (2, )[|* + B tr[Z.)* + p L? ||V axl(4,)[|?dx  (2.8)
Q

_ A _
— /,u le — symZ,|* + .|| skew(Vu — A, — 5,)||* + tr e =5 + nL?||Vaxl(4,)|? dx
o
as thermodynamic potential £, where ¢ = sym Vu is the symmetric part of the dis-

placement gradient. We need to supply a consistent flow rule for , (note again that A,
acts solely elastically). By choosing

&(t) € f(Ty), Tp=-0.,WiinE,) =a, WiinE,), z.=2-5, (29

. _ _ _ A
Wi " (Be) = poll symz.||” + pe || skew () [ + 5 tr 2]
with a constitutive multifunction f such that (f(E), ¥) >0, VX # 0, the reduced dissi-
pation inequality
d _

—5(8,148,5,,) <0 (2.10)
dt

2Corresponding as well to the limit of arbitrary large samples, which can be seen by a simple scaling
argument.




at fixed in time (Vu, 4,) is automatically satisfied, thus ensuring the second law of ther-
modynamics.

We assume that the multifunction f takes trace free symmetric values only, i.e.
f(TE) € Sym(3) N sl(3,R). This sets the infinitesimal plastic spin skew(,) to zero
and restricts attention to incompressible plasticity as in classical formulations of ideal
plasticity. Since then £, € Sym(3) we may identify £, = sym(g,) = ¢,, formally as in
classical ideal plasticity. In [21] we have shown that the ensuing quasistatic elasto-plastic
model is well-posed.

2.3 Infinitesimal dynamic elasto-plastic Cosserat model

The dynamic infinitesimal-strain system with non-dissipative Cosserat effects can be ob-
tained by augmenting the previous strain energy with suitable inertia terms for both the
displacement u and the elastic microrotation A,. Without loss of generality we assume
henceforth for the density o(x) = 1. We assume the Lagrangian expression

T
1 — _
[ [P+ 2ax TP 4 (g + (04,
0 Q

_ by _
= (ll = 2+ el sken(Fu = AP+ G e 4 L2V (AP ) i

+/(N,u> dS+/<Mc,Ze> dSds ~ stat. w.r.t. (u, A) at fixed g,, (2.11)

I's INe]

together with the flow rule
&(t) € f(Tw),  Te=2p(—5), (2.12)
and suitable initial and boundary values.

The corresponding system of dynamic partial differential equations coupled with
the flow rule is given by (use that ||A.||? = 2| axl(A.)||* for A, € s0(3,R))

Dive =uy — f, x€Q,

o =2u(e—¢gy) +2pu. (skew(Vu) — A,) + Atr[e] -1,  (2.13)



oitlps(t,x) = N, o.ii|po\rurgy (B, ) =0,
1 L2V ax1(A,).f|r,, (t, z) = axl(skew (M,)), p L2V axl(A.).@] s\ rurey (t, ) =0,

tr[e,(0)] =0, £,(0) € Sym(3).

3 Mathematical analysis of the dynamic model

For brevity of notation we write in this part A instead of A, and I, instead of the positive
constant u%‘%. Moreover, we study pure Dirichlet boundary conditions, i.e. T' = 0.
Second time derivatives are written as #%. Thus we consider the well-posedness of the
following nonlinear initial boundary-value problem

it —Dive = f,
o = 2u(e—¢gp)+2p.(skew(Vu) — A) + Atrfe] - 1L,

A— Aaxl(A) = p. axl(skew(Vu) — A) + g, (3.14)
& € f(TE) , Tp=2u(—¢),
Upg = Ud, Apg = Ad,

w(0) =u®, @w0)=u', A®0)=A°, A(0)=A", £,(0) = 62,

where f, g are given volume force and volume couple and u4, Ay are given boundary
data and u’,u', A°, A', ) are given initial data. Moreover, we assume that the inelastic
constitutive multifunction f : D(f) C Sym(3) — P(Sym(3)) is a maximal monotone
mapping ([1, Definition 1 p. 140]) satisfying 0 € f(O) Here, for any set X the symbol
P(X) denotes the family of all subsets of X. The monotonicity assumption for f yields
that the considered model is thermodynamical admissible. Note, that the flow function
corresponding to classical ideal plasticity possesses the same properties.

To prove that system (3.14) possesses global in time L?-solutions we approximate the
flow function f by single-valued, global Lipschitz functions fn’ called in the literature
the Yosida approximation (see for example [1, Theorem 2, page 144]). Thus, we first
consider system (3.14) with fn instead off and try to pass to the limit 7 — 0". Following
this idea, for all n > 0 we study the approximated initial boundary-value problem in the
form

u" — Dive" = f,
o = 2u(e" —&}) + 2 pe (skew (Vu") — A") + Atr[e"] - 1L,
An — [, Aaxl(A") = —p, axI(A") + p, axl(skew (Vu")) 4 ¢, (3.15)
e o= @0, Tp=2u(E"—<p),
Un = Ugq, Aﬂ = Ad s
o o

w(0) =u’, un(0)=u', A"0) =A%, An(0)=A", el(0)=e.

The system (3.15) contains only global Lipschitz nonlinearities, hence using the standard
fixed point method we obtain the following existence and uniqueness result:
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Theorem 3.1 (Global existence and uniqueness for approximated problem)
Let us assume that the given data possess the following regularity: for all times T > 0

feCH[0,T], L*(Q,R?%)), g € C'([0,T], L*(, 50(3,R)))
ug € CH([0, T, H2 (09, R*)), Ay € C'([0,T), H (0, 50(3,R)))
and the initial data satisfy
uut € HY(Q,R?), A% € H*(Q,50(3,R)), A" € H'(Q,50(3,R)), &) € L*(2, Sym(3)).
Moreover, suppose that the following compatibility condition holds
u(z) = ug(z,0),ul(z) = ig4(z,0), A°(x) = Ag(z,0), Al (z) = Ayg(x,0) for z € Q.

Then the approximated problem has a global in time, unique solution (u", e}, A") with
the regularity

u" e CY([0,T], H' (L, R?)) 4" € C([0,T], L*(2,R?)) e € C([0,T], L*(2, Sym(3))),
A" e C([0,T), H*(Q,50(3,R))), A" € C([0,T7], L*(£2, s0(3,R))).

Proof. The proof is a standard application of the Banach Fixed Point Theorem and can
therefore be omitted. For similar results the reader may consult [18]. n

Next, we are going to obtain some estimates for the approximated sequence (u”, ¢, A7).
To do this we use the energy associated with the dynamic problem (not the Lagrangian)
which is defined by

(s ) = [ (Gl + 2 axl(A) P
Q
bl =gyl + St [+ el skew (V) — AJP” 4+ 20 |7 axl(4)]?) dx.
For A > 0 the energy function is elastically coercive which means that
E(u,e,p,A) +Ca 2 CE(HUH?*{l(Qx(O,T)) + ||A||§{1(Q><(0,T))) ; (3.16)

where the constant Cy does not depend on u and A and the constant C; depends on
boundary data of v and A only. The proof of this important property is based on the fact
that the operators curl and Div together control the total gradient, see [14, p.36], i.e. the
inequality

3C >0V¢ e CP(LR?) / || curl ¢(x)[[3s + (Div ¢(2))* dx > C ||l 7p2(0ms)» (3:17)
Q

holds for smooth functions with compact support C§°(€2, R*). Observe that (Divu)? =
tr[e]” and || curlu|2s = 4 || axlskew (Vu)]|2.

Let us denote by v, the time derivative of u, and by By the time derivative of A;. In

contrast to the quasistatic case we prove first energy estimates for the time derivatives
and from this result we conclude the boundedness of the energy on finite time intervals.
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Theorem 3.2 (Energy estimate for time derivatives)
Suppose that the given data possess more time regularity than in the last theorem and
satisfy additionally: for all times T > 0

ig € L2((0,T); H2(9Q, R3) , By € L*((0,T); H2 (0, 50(3, R)) . (3.18)

Moreover, assume that the initial data u®,u', A%, A', ) have the regularity required in
Theorem 3.1 and assume that the initial value of the reduced Eshelby tensor Tp(0) =

1 (5(Vu® + VT'u®) — £9) belongs to the domain of the maximal monotone operator
Then there exists a positive constant C(T'), independent of 1), such that

E(u, e, en, AM)(t) < C(T) forall t€0,T).

Proof. For h > 0 let us denote by (u;(t),e}(t), e, ,(t), A} (t)) the shifted functions (u”(t+
h),e"(t + h),ep(t + h), A"(t + h)) and calculate the energy evaluated on the differences
(uj —u",...). Then for the time derivative we have

S(Uh — " 5h — 5",5;711 EZ,AZ — AN(t) = /(uz — ", UZ — i) dx
Q
+4/<aX1(AZ — An) s aXl(AZ — An)> dx + / 2}u <€Z _ 677 _ ((_:Z,h + ((_:Z, E,Z . E:'T] . (‘:Z,h + €Z> dx
0 )
e / (skew (Vuj, — Vu') — Aj + A7, skew (Vi) — Vi) — A} + A") dx
Q

+)\/tr e} —etr[e] — &7 dx + 4, / Vaxl(A] — A"), Vaxl(A] — A"))dx  (3.19)
Q
/Tgh Ty, épn—Em) dx+/a — o, Vi) — Va'y dx
Q
+/<uz—u’7 i — i) dx+4/axl (A7 — A") | ax](A] — AM)) dx
Q Q

—4uc/ (ax] skew (Vu]] — Vu") — axl(A] — A"), ax](A] — A7) dx

Q
lc/ (Vaxl(A] — A"), V axl(A] — A")) dx,
Q

where 77, , (t) = Ty(t + h) and 0})(t) = 0"(t + h). Using the monotonicity of fn we have
that the first integral on the right hand side of (3.19) is non-positive. Next, we integrate
by parts in the second and in the last integral and use the equation of motion and the



equation for microrotations. Hence, we conclude that

E(up —u" ef — e el — el Al — A")(t)

= /<fh — [y, —a") dX+4/(gh — g, axl A7 — ax] A") dx
Q Q
+ /<(O';Z - U").n, ud,h — U,d> ds + 4lc /<V axl(AZ — A").n, axl(Adyh - Ad> dS, (320)

0N o0

where fi,(t) = f(t+h), gn(t) = g(t+h), ugn(t) = ug(t+h) and Agp(t) = Aa(t+h). Next,
we integrate (3.20) in time and obtain

S(Uh—u" en—ele), —ep Al — AN(t) < E(uy —u' ef — &), — el Al — A")(0)

// — fou) —a"ydxdr +4 //(gh—g,axlAZ—axlA”>dxdT
0

¢
+ / /((UZ —o"n, Ugp — Ug) dsdr + 41, / /(V axl(A] — A").n, ax1(Agy, — Ag) dsdr .

0 00 0 090

In the last two integrals on the right hand side of (3.21) we shift the difference operator
onto the given data. Next, we divide by A% and pass to the limit A — 07. Hence, we
arrive at the following inequality

t t
E(i, 2, &1 An) (1) g5(u",éﬂ,ég,Aﬂ)(0)+//(f',wdxd¢+4//<g,ax1m>dxd¢
0 Q 0 Q

- / / (0", ) ds dr — / (07(0).n, 54(0)) ds + / (0" (t).n, Bal(t)) dis

0 00 0N 0N

—41, / / (V axl(A").n, axl(By)) ds dr — 41, / (V ax1(A")(0).n, ax1(By)(0)) ds

0 00 o

+4l, / (V axl(A")(t).n, axl(By)(t)) ds. (3.21)

The boundedness of the initial energy for time derivatives follows from the assumption
Tg(0) € D(f) This implies that the sequence {f (Tx(0))} is bounded in L?(Q2, Sym(3)).
Next, we estimate all integral terms from the rlght hand side of (3.21).

t t t t
[ [iamaxdr| < [1ilsiiedr <5 [178dr+ [eeng, inear.
0 Q 0 0 0

(3.22)



In the same manner we obtain
t . t . t
//(g,axl,émdxm < §/||g||§2 dr+1/8(u",é",éZ,A")(r) dr. (3.23)
0 Q 0 0

To estimate the appearing boundary integrals we use the trace theorem in the space
L*(Div).

t t
//(o".n,i)d> dsdr S/HU"-”HH-%H%HH% dr
0N 0
t

0

t
< C/(IIU”IIB + I Divall2)ltall 3 dr < C [ (16722 + lo”(0)[|2) |¥all 4 d7
0

0
t t

+C/(||f||L2 + ||il"||L2)||i5d||H% dr < C/E(u",é",éZ,A")(T) dr +C, (3.24)

0 0

where the positive constant C' does not depend on 7 and the constant C'; depends on
given data only. For the next boundary term we obtain

/(0"(15)-7% va(t)) ds| < llo"nll ,_yl[oall ;3 < Clo"l|> + || Divo||z2)[éall 4
onN
< C([lo"l2 + o (O) |2+ [ f 2+ 16" | 2) [ all 3 < CE= (07,7, €5, AT () + D, (3.25)

) )’ p)

where the positive constants C', D depend on given data only. The boundary integrals
containing microrotations are estimated using the same idea. Note that by the evolution
equation for microrotations we have DivV axl(4)" = 7' axl A" — p.l;! axl(skew (Vu) —
A) —I7'g and the two first terms on the right hand side of the last equality appear in the
energy function. Hence, we conclude that

/ / (V axl(A") 0, axl(B,)) ds dr| + / (V axl(A) (£).n, axl(By) (¢)) ds

0 90 [249)

»p)

t
< C/E(d",é",éZ,A")(T) dr + C1E2 (", & &N A")(t) + Cs (3.26)
0

where all positive constants C, C7, Cy do not depend on 7. Inserting (3.22), (3.23), (3.24),
(3.25) and (3.26) into (3.21) we finally arrive at the following inequality

’=p) )’ p) )T po

t
E(a N e AMY(t) < C1E7 (", €, €N, A" (¢) +02/5(m,s'" en A")(r)dr + Cs,
0
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where C', Cy, C3 do not depend on 7. This inequality immediately implies that

E(u", en,ez,A")( ) < Dl/E(u",e",eZ,A")( )dr + Ds,
where again the constants Dy, Dy do not depend on 7. Gronwall’s inequality completes
the proof. [ |

The energy estimate for time derivatives yields that the sequence (d",VA",i)ﬂ,A") is
L>(L?*)-bounded. This implies that the sequence (o, VA" 4", A") is also L°(L?)-
bounded. Note, that for example the equality o”(t fo " (1) dr + ¢"(0) implies that
o™z < fo |62 + ||e™(0)|| 2 - Moreover, by the coer01v1ty of the energy (3.16) we have
that the sequences {7} and {£]} are L>°(L*)-bounded. Hence, for a subsequence (again
denoted using the superscript 1) we have: for all T > 0

0" S o in LOO((O T), L*(2,Sym(3))),
o156 in L((0,T), L3, Sym(3)),
A" A in L®((0,T), HY(Q,50(3,R))),
AT A in L((0,T), L*(,50(3,R))),
u? = u in L®((0,T), HY(,R3)),

im i in Le((0,7), L*(, R?)),

e" e in L®((0,T), L*(€,Sym(3))),
gn g in L((0,7), L*(52, Sym(3))),
£ - g, in L=((0,7), Lz(Q Sym(3))),
er g, in LX((0,T), L3(Q, Sym(3))

and the limit functions satisfy

it —Dive = f,
o = 2u(e—¢p) +2p (skew(Vu) — A) + Are] - 1L,

A—ILAaxl(A) = p. axl(skew(Vu) —A) +g, (3.27)
Ep = fo = weak — lim f,](T,Z) . Tp=2u(e—¢p),
Uy — Ud, A\an = Aa,

w(0)=u’, a(0)=u', A0)=A", A(0)=4", £,(0)=¢b.
To finish the existence theory for our system we need only to prove that
Fo(t,x) € f(Tu(t,x)) aein (0,T)x Q. (3.28)

To do this we follow the standard idea which is based on the following property: the
graph of a maximal monotone operator is weakly-strongly closed. Thus, we are going to
improve the weak convergence of the sequence {T}}.

Theorem 3.3 (Strong convergence of stresses)
Let us assume that the given data satisfy all requirements of Theorem 3.2. Then & (u" —
u’,e" — ¥ el — ey, AT — A¥)(t) — 0 for n,v — 07 uniformly on bounded time intervals.

11



Proof. We use the standard energy method and calculate the time derivative of the energy
evaluated on the differences of two approximation steps. Hence, we obtain

E(u" —u¥ " — &, ep — ey AT — AY)(t) = /(u" — i — i) dx

Q
+4 /<ax1(A" — A7), axl(A" — AY)) dx + 2p /(a’? — eV — gl ek e — &Y — &l 4 V) dx
Q Q
—i—)\/tr [ — e”Jtr [" — £¥] dx + 4, /(V axl(A7 — A¥), V axl(A" — A)) dx
Q Q

+241c / (skew (Vu" — Vu") — A" + AY skew(Va" — Vi*) — A" 4+ A”) dx.

Q

Using that the given data for both approximation steps are the same we conclude that

E(ul —u¥ 2N — ¥ e et AT AV)(t) = /(Tg — 1§ - §L ) s (3.29)

Q

Next, to estimate the right hand side of (3.29), we use the standard procedure from the
theory of maximal monotone operators (compare with the proof of Theorem 1 p. 147 in
[1]). This yields that

E(u" — u”, e — e’ ) — ey, AT —AY)(t) < (n+v)C(T),

where the positive constant C'(T") does not depend on 1 and v. The last inequality com-
pletes immediately the proof. [ |

Theorem 3.3 implies that the sequence of stresses {77} is a Cauchy sequence in the
space L*°((0,7); L*(2;Sym(3))). Hence, {T}}} converges strongly to Tp. Moreover, by
the definition of the Yosida approximation we have fn(Tg) e f(J,(17)), where J,(T}) =
T} — nfﬂ(Tg) is the resolvent operator. We see that .J,, is a global Lipschitz operator and
therefore the sequence {J,(T%)} converges strongly to Tx. Consequently, the sequence
(Jy (T, fﬂ(Tg)) is contained in the graph of the maximal monotone operator f and con-
verges strongly-weakly to (7, fo). Hence, the maximality of f yields that fo belongs to

the set f(TE) and the limit functions (u, ¢, €,, A) satisfy (3.14). This finishes the existence
part. |

Next, we study the uniqueness of solutions for system (3.14).

Theorem 3.4 (Uniqueness of solutions)
Let us assume that the given data f, ud,Ad,eg satisfy all requirements of Theorem 3.2
Then the system (3.14) possesses a unique, global in time solution (u, ¢, €p, A).
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Proof. The proof is based on the energy method. Assume that (u',e',e;, A") and
(u?, e*,e2, A?) are two solutions of (3.14) for the same given data. Then for the energy
function evaluated on differences of these solutions we have

Elul —u? e — el 2 A A% (1) = /(ul _ a2, i — ) dx

Q
+4 /<ax1(A1 — A?), axi(A! — 4%)) dx + 2u/<51 —e? —elter et — & — g, +E0)dx
Q Q
+)\/tr [T — e¥]tr [ — €] dx + 4, /(V axl(A' — A%),V axl(A1 — A2)> dx
Q Q
20, / (skew (V! — Vu2) — AL 4 A2 skew(Vi! — Vi?) — A 4 A%) dx

Q

= —/(T,g—T;,s';—s‘;mxg 0.
Q
This implies that
Ew' —u? e —e gy —el Al = A*)(t) < E(u' —u? et =% ey —e2 A — A%)(0) =0

and the statement is a consequence of the coerciveness of the energy function. |

At the end of this section we formulate the existence and uniqueness theorem, which we
have proved:

Theorem 3.5 (Existence for the dynamical model)
Suppose that the given data f, g, uq, Aq satisfy: for all times T > 0

fe 0, T], L*(Q,R%)), g € C'([0,T], L*(Q,R?))
ug € C2([0,T], Hz (9, R3)) Auug € L2((0,T); H2 (09, R3),
Aq € C2([0,T), H2(09,50(3,R))), OuAq € L2((0,T); H2(99, 50(3,R)).
Moreover, assume that the initial data have the regularity
u’u' € H'(Q,R?), A° € H?(Q,50(3,R)), A' € H'(Q,50(3,R)), ¢) € L*(Q,Sym(3))
and satisfy the compatibility condition
uO(x) = ud(xa O) 7ul(x) = ud(xa 0) 7A0(‘T) = Ad(xa O) 7A1(x) = Ad(xa 0) fOT r € 0.

Additionally, suppose that the initial data is chosen such that the initial value of the
reduced Eshelby tensor T(0) = 241 (3(Vu® 4+ VTu®) — £J) belongs to the domain of the

maximal monotone operator f Then the system (3.14) possesses a global in time, unique
solution (u,¢,e,, A) with the regularity: for all times T > 0

we H-((0,T), H(Q,R?)) i € L°((0,T), L2(Q, R?))
Ae L®((0,T), H*(Q,50(3,R), A e L®((0,T), L*(%, 50(3,R))),
e 5, € HY((0,T), L*(%2, Sym(3))) .

13
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Notation

Let Q C R? be a bounded domain with Lipschitz boundary 9 and let T’ be a smooth subset of 9
with non-vanishing 2-dimensional Hausdorff measure. We denote by M2*? the set of real 3 x 3 second
order tensors, written with capital letters. The standard Euclidean scalar product on MB*3 is given
by (X,Y)ysxs = tr [XY7?], and thus the Frobenius tensor norm is || X||? = (X, X)ysxs (we use these
symbols indifferently for tensors and vectors). The identity tensor on M2*? will be denoted by 1, so
that tr [X] = (X,1). We let Sym and PSym denote the symmetric and positive definite symmetric
tensors respectively. We adopt the usual abbreviations of Lie-algebra theory, i.e. so(3,R) := {X €
ME*3 | XT = — X} are skew symmetric second order tensors and sl(3,R) := {X € M?*? |tr [X] = 0}
are traceless tensors. We set sym(X) = (X7 + X) and skew(X) = (X — X7T) such that X =
sym(X) + skew(X). For X € M**® we set for the deviatoric part dev X = X — 1 tr[X]1 € sl(3,R).
For a second order tensor X we let X.e; be the application of the tensor X to the column vector e; and
we define the third order tensor h = D, X (z) = (V(X(z).e1), V(X (2).e2), V(X (x).e3)) = (h',h% b3) €
(MB*3)3. For h we set ||h]|> = 327, [|h[|* together with sym(h) := (sym ', sym b, sym h?) and tr [h] :=
(tr [h*],tr [H?],tr [H3]) € R®. The first and second differential of a scalar valued function W (F) are
written DpW (F).H and D%W (F).(H, H), respectively. Sometimes we use also OxW (X) to denote
the first derivative of W with respect to X. We employ the standard notation of Sobolev spaces, i.e.
L2(Q), H 2(Q), H>*(Q), which we use indifferently for scalar-valued functions as well as for vector-valued
and tensor-valued functions.
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