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1 Introdution

This artile is a sequel to work begun in [21℄. There we have established the regularizing

power and well-posedness of a ertain geometrially linear Cosserat model [4℄ in

onjuntion with quasistati rate-independent elasto-plastiity. In this ontribution we

extend these results to over also the fully dynami ase.

For the relevane of the Cosserat model we refer to the introdution in [21℄. Readers

may also onsult [9, 8, 3℄ for the general miropolar approah or [26, 20, 2, 5, 6, 19, 22℄ for

its appliation to elasto-plastiity. Reently, Cosserat elasto-plastiity has been applied

in [16, 23, 24, 25, 27, 15, 10℄ and referenes therein.

Miropolar models are haraterized by an additional independent �eld of (in�nitesi-

mal) mirorotations A 2 so(3;R), oupled in some way to the displaement u. These new

degrees of freedom introdue in a natural way length sale e�ets into the model whih

are a onvenient way to regularize non-wellposed situations without ompromising the

physial relevane of the model.

In order to be suÆiently self-ontained we reapitulate briey the stati elasti mi-

ropolar model and its quasistati elasto-plasti extension as treated in [21℄. The qua-

sistati model is then extended in a straightforward manner to inlude the dynami e�ets

for both the standard displaement u and the new mirorotation A by writing down an

appropriate Lagrangian funtion.

Subsequently, we mathematially study the obtained dynami rate-independent ase

and show, by means of the Yosida approximation and a passage to the limit, that the

rate-independent problem admits a unique, global in-time solution for displaements and

mirorotations in standard Sobolev spaes under fairly mild assumptions on the data.

The notation is found in the appendix.

2 The Cosserat model

2.1 The in�nitesimal elasti Cosserat model

We begin by realling the in�nitesimal Cosserat approah. First, in the purely elasti

ase, an in�nitesimal Cosserat theory an be obtained by introduing the additive de-

omposition of the marosopi displaement gradient ru into in�nitesimal mirorota-

tion A 2 so(3;R) (in�nitesimal Cosserat rotation tensor) and in�nitesimal miropolar

streth tensor (or �rst Cosserat deformation tensor) " 2 M

3�3

with

ru = "+ A ; (2.1)

where " is not neessarily symmetri, suh that (2.1) is in general not the deompo-

sition of ru into in�nitesimal ontinuum streth sym(ru) and in�nitesimal ontinuum

rotation skew(ru).

In the quasistati ase, the Cosserat theory is then obtained from a variational priniple

[25, p.51℄ or [28℄ for the in�nitesimal displaement u : [0; T ℄�
 7! R

3

and the independent
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in�nitesimal mirorotation A : 
 7! so(3;R):

E(u;A) =

Z




W (ru;A;D

x

A)� hf; ui � hM;Aidx

�

Z

�

S

hN; uidS�

Z

�

C

hM



; AidS 7! min : w.r.t. (u;A); (2.2)

A

j

�

= A

d

; u

j

�

= u

d

(t; x) :

Here W represents the elasti energy density and 
 � R

3

is a domain with boundary �


and � � �
 is that part of the boundary, where Dirihlet onditions g

d

; A

d

for in�nitesi-

mal displaements and rotations, respetively, are presribed while �

S

� �
 is a part of

the boundary, where tration boundary onditions N are applied with � \ �

S

= ;. In

addition, �

C

� �
 is the part of the boundary where external surfae ouples M



are

applied with � \ �

C

= ;. The lassial volume fore is denoted by f and the additional

volume ouple by M . Variation of the ation E with respet to u yields the equation for

linearized balane of linear momentum and variation of E with respet to A yields the

linearized version of balane of angular momentum.

It remains to speify the analyti form of the energy density W . A linearized version of

material frame-indi�erene implies the redution W (ru;A;D

x

A) = W (";D

x

A), and for

in�nitesimal displaements u and small urvature D

x

A a quadrati ansatz is appropriate:

W (";D

x

A) =W

in�n

mp

(")+W

small

urv

(D

x

A) with an additive deomposition of the energy density

into mirostreth " and urvature parts. In the isotropi ase it is standard to assume for

the streth energy

W

in�n

mp

(") = � k symruk

2

+ �



k skew(ru)� Ak

2

+

�

2

tr [sym(ru)℄

2

; (2.3)

where the Cosserat ouple modulus �



� 0 [MPa℄ is an additional parameter, omple-

menting the two Lam�e onstants �; � > 0 [MPa℄. For the urvature term we assume

W

small

urv

(D

x

A) = �

L

2



2

�

�

5

k symD

x

Ak

2

+ �

6

k skewD

x

Ak

2

+ �

7

tr

�

D

x

A

�

2

�

: (2.4)

Here, L



> 0 with units of length introdues a spei� internal harateristi length

into the elasti formulation. In general one assumes �

5

> 0; �

6

; �

7

� 0.

We observe that if �



= 0, the in�nitesimal minimization problem (2.3) ompletely

deouples - the in�nitesimal mirorotations A have no inuene at all on the marosopi

behaviour of the in�nitesimal displaements and lassial in�nitesimal elastiity results.

1

1

Note that axlA� � = A:� for all � 2 R

3

, suh that

axl

0

�

0 � �

�� 0 

�� � 0

1

A

:=

0

�

�

�

��

1

A

; A

ij

= "

ijk

� axl(A)

k

; (2.5)

where "

ijk

is the totally antisymmetri permutation tensor. Here, A:� denotes the appliation of the

matrix A to the vetor � and a�b is the usual ross-produt. This indues the anonial identi�ation

of skew-symmetri matries so(3;R) with R

3

.
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In the limit of zero internal length sale L



= 0 and for �



> 0,

2

balane of angular

momentum reads

D

A

W

mp

(ru;A) 2 Sym, D

A

W

mp

(ru;A) = 0 ; (2.6)

and implies already that in�nitesimal ontinuum rotations and in�nitesimal mirorota-

tions oinide: skew(ru) = A, and this in turn is equivalent to the symmetry of the

in�nitesimal Cauhy stress � or the so alled Boltzmann axiom.

If we onsider �



> 0, it is standard to prove that the orresponding minimization

problem admits a unique minimizing pair (u;A) 2 H

1

(
;R

3

)�H

1

(
; so(3;R)). Existene

results of this type have been obtained e.g. in [7, 17, 12, 13℄ and in [21℄.

2.2 Non-dissipative extension to miropolar elasto-plastiity

Now we extend the formulation of miropolar elastiity to over in�nitesimal elasto-

plastiity as well. It is lear that there exists various ways of obtaining suh an extension,

for an overview of the ompeting models we refer to the instrutive survey artile [11℄.

Inidentally, the Cosserats themselves [4, p.5℄ already envisaged the appliation of their

general theory to plastiity and frature. Without restriting generality we base the fol-

lowing onsiderations on a simpli�ed urvature expression by setting �

5

= �

6

= 1; �

7

= 0.

The idea of a non-dissipative extension is simple. Consider the additive deomposi-

tion of the total miropolar streth into elasti and plasti parts

" = "

e

+ "

p

; (2.7)

and assume that mirorotational e�ets remain purely elasti: A

e

:= A. Now we replae

formally " in (2.3) with "

e

whih yields (note that kD

x

A

e

k

2

= 2kr axl(A

e

)k

2

)

E("

e

; A

e

) =

Z




� k sym "

e

k

2

+ �



k skew("

e

)k

2

+

�

2

tr ["

e

℄

2

+ �L

2



kr axl(A

e

)k

2

dx (2.8)

=

Z




� k"� sym "

p

k

2

+ �



k skew(ru� A

e

� "

p

)k

2

+

�

2

tr ["� "

p

℄

2

+ �L

2



kr axl(A

e

)k

2

dx

as thermodynami potential E , where " = symru is the symmetri part of the dis-

plaement gradient. We need to supply a onsistent ow rule for "

p

(note again that A

e

ats solely elastially). By hoosing

_"

p

(t) 2 f(T

E

); T

E

:= ��

"

p

W

in�n

mp

("

e

) = �

"

e

W

in�n

mp

("

e

) ; "

e

= "� "

p

; (2.9)

W

in�n

mp

("

e

) = � k sym "

e

k

2

+ �



k skew("

e

)k

2

+

�

2

tr ["

e

℄

2

;

with a onstitutive multifuntion f suh that hf(�);�i � 0; 8� 6= 0, the redued dissi-

pation inequality

d

dt

E("; A

e

; "

p

) � 0 (2.10)

2

Corresponding as well to the limit of arbitrary large samples, whih an be seen by a simple saling

argument.
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at �xed in time (ru;A

e

) is automatially satis�ed, thus ensuring the seond law of ther-

modynamis.

We assume that the multifuntion f takes trae free symmetri values only, i.e.

f(T

E

) 2 Sym(3) \ sl(3;R). This sets the in�nitesimal plasti spin skew("

p

) to zero

and restrits attention to inompressible plastiity as in lassial formulations of ideal

plastiity. Sine then "

p

2 Sym(3) we may identify "

p

= sym("

p

) = "

p

, formally as in

lassial ideal plastiity. In [21℄ we have shown that the ensuing quasistati elasto-plasti

model is well-posed.

2.3 In�nitesimal dynami elasto-plasti Cosserat model

The dynami in�nitesimal-strain system with non-dissipative Cosserat e�ets an be ob-

tained by augmenting the previous strain energy with suitable inertia terms for both the

displaement u and the elasti mirorotation A

e

. Without loss of generality we assume

heneforth for the density %(x) � 1. We assume the Lagrangian expression

T

Z

0

Z




1

2

ku

t

k

2

+ 2k axlA

e

t

k

2

+ hf; ui+ hM;A

e

i

�

�

�k"� "

p

k

2

+ �



k skew(ru� A

e

)k

2

+

�

2

tr ["℄

2

+ �L

2



kr axl(A

e

)k

2

�

dx

+

Z

�

S

hN; uidS +

Z

�

C

hM



; A

e

idS ds 7! stat : w.r.t. (u;A

e

) at �xed "

p

; (2.11)

together with the ow rule

_"

p

(t) 2 f(T

E

); T

E

= 2� ("� "

p

) ; (2.12)

and suitable initial and boundary values.

The orresponding system of dynami partial di�erential equations oupled with

the ow rule is given by (use that kA

e

k

2

= 2k axl(A

e

)k

2

for A

e

2 so(3;R))

Div � = u

tt

� f; x 2 
 ;

� = 2� ("� "

p

) + 2�



(skew(ru)� A

e

) + � tr ["℄ � 11 ; (2.13)

A

e

tt

� �

L

2



2

�axl(A

e

) = �



axl(skew(ru)� A

e

) +

1

2

axl(skew(M)) ;

_"

p

(t) 2 f(T

E

); T

E

= 2� ("� "

p

) ;

u

j

�

(t; x) = u

d

(t; x) ; A

e

j

�

= A

d

(t; x)

j

�

;

u(x; 0) = u

0

(x) ; _u(x; 0) = u

1

(x) ;

A

e

(x; 0) = A

0

(x) ;

_

A

e

(x; 0) = A

1

(x) ; "

p

(0) = "

0

p

;
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�:~nj

�

S

(t; x) = N; �:~nj

�
nf�[�

S

g

(t; x) = 0 ;

� L

2



r axl(A

e

):~nj

�

C

(t; x) = axl(skew(M



)); � L

2



r axl(A

e

):~nj

�
nf�[�

C

g

(t; x) = 0 ;

tr ["

p

(0)℄ = 0 ; "

p

(0) 2 Sym(3) :

3 Mathematial analysis of the dynami model

For brevity of notation we write in this part A instead of A

e

and l



instead of the positive

onstant �

L

2



2

. Moreover, we study pure Dirihlet boundary onditions, i.e. � = �
.

Seond time derivatives are written as �u. Thus we onsider the well-posedness of the

following nonlinear initial boundary-value problem

�u� Div � = f ;

� = 2� ("� "

p

) + 2�



(skew(ru)� A) + � tr ["℄ � 11 ;

�

A� l



�axl(A) = �



axl(skew(ru)� A) + g ; (3.14)

_"

p

2 f(T

E

) ; T

E

= 2� ("� "

p

) ;

u

j

�


= u

d

; A

j

�


= A

d

;

u(0) = u

0

; _u(0) = u

1

; A(0) = A

0

;

_

A(0) = A

1

; "

p

(0) = "

0

p

;

where f; g are given volume fore and volume ouple and u

d

; A

d

are given boundary

data and u

0

; u

1

; A

0

; A

1

; "

0

p

are given initial data. Moreover, we assume that the inelasti

onstitutive multifuntion f : D(f) � Sym(3) ! P(Sym(3)) is a maximal monotone

mapping ([1, De�nition 1 p. 140℄) satisfying 0 2 f(0). Here, for any set X the symbol

P(X) denotes the family of all subsets of X. The monotoniity assumption for f yields

that the onsidered model is thermodynamial admissible. Note, that the ow funtion

orresponding to lassial ideal plastiity possesses the same properties.

To prove that system (3.14) possesses global in time L

2

-solutions we approximate the

ow funtion f by single-valued, global Lipshitz funtions f

�

, alled in the literature

the Yosida approximation (see for example [1, Theorem 2, page 144℄). Thus, we �rst

onsider system (3.14) with f

�

instead of f and try to pass to the limit � ! 0

+

. Following

this idea, for all � > 0 we study the approximated initial boundary-value problem in the

form

�

u

�

� Div �

�

= f ;

�

�

= 2� ("

�

� "

�

p

) + 2�



(skew(ru

�

)� A

�

) + � tr ["

�

℄ � 11 ;

�

A

�

� l



�axl(A

�

) = ��



axl(A

�

) + �



axl(skew(ru

�

)) + g ; (3.15)

_"

�

p

= f

�

(T

�

E

) ; T

�

E

= 2� ("

�

� "

�

p

) ;

u

�

j

�


= u

d

; A

�

j

�


= A

d

;

u

�

(0) = u

0

;

_

u

�

(0) = u

1

; A

�

(0) = A

0

;

_

A

�

(0) = A

1

; "

�

p

(0) = "

0

p

:

The system (3.15) ontains only global Lipshitz nonlinearities, hene using the standard

�xed point method we obtain the following existene and uniqueness result:
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Theorem 3.1 (Global existene and uniqueness for approximated problem)

Let us assume that the given data possess the following regularity: for all times T > 0

f 2 C

1

([0; T ℄; L

2

(
;R

3

)) ; g 2 C

1

([0; T ℄; L

2

(
; so(3;R)))

u

d

2 C

1

([0; T ℄; H

1

2

(�
;R

3

)) ; A

d

2 C

1

([0; T ℄; H

3

2

(�
; so(3;R)))

and the initial data satisfy

u

0

; u

1

2 H

1

(
;R

3

) ; A

0

2 H

2

(
; so(3;R)) ; A

1

2 H

1

(
; so(3;R)) ; "

0

p

2 L

2

(
; Sym(3)) :

Moreover, suppose that the following ompatibility ondition holds

u

0

(x) = u

d

(x; 0) ; u

1

(x) = _u

d

(x; 0) ; A

0

(x) = A

d

(x; 0) ; A

1

(x) =

_

A

d

(x; 0) for x 2 �
 :

Then the approximated problem has a global in time, unique solution (u

�

; "

�

p

; A

�

) with

the regularity

u

�

2 C

1

([0; T ℄; H

1

(
;R

3

)) ; �u

�

2 C([0; T ℄; L

2

(
;R

3

)) ; "

�

p

2 C

1

([0; T ℄; L

2

(
; Sym(3))) ;

A

�

2 C([0; T ℄; H

2

(
; so(3;R))) ;

�

A

�

2 C([0; T ℄; L

2

(
; so(3;R))) :

Proof. The proof is a standard appliation of the Banah Fixed Point Theorem and an

therefore be omitted. For similar results the reader may onsult [18℄. �

Next, we are going to obtain some estimates for the approximated sequene (u

�

; "

�

p

; A

�

).

To do this we use the energy assoiated with the dynami problem (not the Lagrangian)

whih is de�ned by

E(u; "; "

p

; A)(t) :=

Z




�

1

2

k _uk

2

+ 2k axl(

_

A)k

2

+� k"� "

p

k

2

+

�

2

tr ["℄

2

+ �



k skew(ru)� Ak

2

+ 2l



kr axl(A)k

2

�

dx :

For � > 0 the energy funtion is elastially oerive whih means that

E(u; "; "

p

; A) + C

d

� C

E

(kuk

2

H

1

(
�(0;T ))

+ kAk

2

H

1

(
�(0;T ))

) ; (3.16)

where the onstant C

E

does not depend on u and A and the onstant C

d

depends on

boundary data of u and A only. The proof of this important property is based on the fat

that the operators url and Div together ontrol the total gradient, see [14, p.36℄, i.e. the

inequality

9C > 0 8� 2 C

1

0

(
;R

3

) :

Z




k url�(x)k

2

R

3

+ (Div�(x))

2

dx � C k�k

2

H

1;2

(
;R

3

)

; (3.17)

holds for smooth funtions with ompat support C

1

0

(
;R

3

). Observe that (Div u)

2

=

tr ["℄

2

and k urluk

2

R

3

= 4 k axl skew(ru)k

2

.

Let us denote by v

d

the time derivative of u

d

and by B

d

the time derivative of A

d

. In

ontrast to the quasistati ase we prove �rst energy estimates for the time derivatives

and from this result we onlude the boundedness of the energy on �nite time intervals.
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Theorem 3.2 (Energy estimate for time derivatives)

Suppose that the given data possess more time regularity than in the last theorem and

satisfy additionally: for all times T > 0

�v

d

2 L

2

((0; T );H

1

2

(�
;R

3

) ;

�

B

d

2 L

2

((0; T );H

1

2

(�
; so(3;R)) :

(3.18)

Moreover, assume that the initial data u

0

; u

1

; A

0

; A

1

; "

0

p

have the regularity required in

Theorem 3.1 and assume that the initial value of the redued Eshelby tensor T

E

(0) =

2� (

1

2

(ru

0

+ r

T

u

0

) � "

0

p

) belongs to the domain of the maximal monotone operator f.

Then there exists a positive onstant C(T ), independent of �, suh that

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t) � C(T ) for all t 2 [0; T ) :

Proof. For h > 0 let us denote by (u

�

h

(t); "

�

h

(t); "

�

p;h

(t); A

�

h

(t)) the shifted funtions (u

�

(t+

h); "

�

(t + h); "

�

p

(t + h); A

�

(t + h)) and alulate the energy evaluated on the di�erenes

(u

�

h

� u

�

; : : :). Then for the time derivative we have

_

E(u

�

h

� u

�

; "

�

h

� "

�

; "

�

p;h

� "

�

p

; A

�

h

� A

�

)(t) =

Z




h _u

�

h

� _u

�

; �u

�

h

� �u

�

i dx

+4

Z




haxl(

_

A

�

h

�

_

A

�

) ; axl(

�

A

�

h

�

�

A

�

)i dx +

Z




2� h"

�

h

� "

�

� "

�

p;h

+ "

�

p

; _"

�

h

� _"

�

� _"

�

p;h

+ _"

�

p

i dx

+2�



Z




hskew(ru

�

h

�ru

�

)� A

�

h

+ A

�

; skew(r _u

�

h

�r _u

�

)�

_

A

�

h

+

_

A

�

i dx

+�

Z




tr ["

�

h

� "

�

℄tr [ _"

�

h

� _"

�

℄ dx + 4l



Z




hr axl(A

�

h

� A

�

);r axl(

_

A

�

h

�

_

A

�

)i dx (3.19)

= �

Z




hT

�

E;h

� T

�

E

; _"

�

p;h

� _"

�

p

i dx +

Z




h�

�

h

� �

�

;r _u

�

h

�r _u

�

i dx

+

Z




h _u

�

h

� _u

�

; �u

�

h

� �u

�

i dx + 4

Z




haxl(

_

A

�

h

�

_

A

�

) ; axl(

�

A

�

h

�

�

A

�

)i dx

�4�



Z




haxl skew(ru

�

h

�ru

�

)� axl(A

�

h

� A

�

); axl(

_

A

�

h

�

_

A

�

)i dx

+4l



Z




hr axl(A

�

h

� A

�

);r axl(

_

A

�

h

�

_

A

�

)i dx ;

where T

�

E;h

(t) = T

�

E

(t + h) and �

�

h

(t) = �

�

(t + h). Using the monotoniity of f

�

we have

that the �rst integral on the right hand side of (3.19) is non-positive. Next, we integrate

by parts in the seond and in the last integral and use the equation of motion and the

8



equation for mirorotations. Hene, we onlude that

_

E(u

�

h

� u

�

; "

�

h

� "

�

; "

�

p;h

� "

�

p

; A

�

h

� A

�

)(t)

�

Z




hf

h

� f; _u

�

h

� _u

�

i dx + 4

Z




hg

h

� g; axl

_

A

�

h

� axl

_

A

�

i dx

+

Z

�


h(�

�

h

� �

�

):n; _u

d;h

� _u

d

i ds + 4l



Z

�


hr axl(A

�

h

� A

�

):n; axl(

_

A

d;h

�

_

A

d

i ds ; (3.20)

where f

h

(t) = f(t+h), g

h

(t) = g(t+h), u

d;h

(t) = u

d

(t+h) and A

d;h

(t) = A

d

(t+h). Next,

we integrate (3.20) in time and obtain

E(u

�

h

� u

�

; "

�

h

� "

�

; "

�

p;h

� "

�

p

; A

�

h

� A

�

)(t) � E(u

�

h

� u

�

; "

�

h

� "

�

; "

�

p;h

� "

�

p

; A

�

h

� A

�

)(0)

+

t

Z

0

Z




hf

h

� f; _u

�

h

� _u

�

i dx d� + 4

t

Z

0

Z




hg

h

� g; axl

_

A

�

h

� axl

_

A

�

i dx d�

+

t

Z

0

Z

�


h(�

�

h

� �

�

):n; _u

d;h

� _u

d

i ds d� + 4l



t

Z

0

Z

�


hr axl(A

�

h

� A

�

):n; axl(

_

A

d;h

�

_

A

d

i ds d� :

In the last two integrals on the right hand side of (3.21) we shift the di�erene operator

onto the given data. Next, we divide by h

2

and pass to the limit h ! 0

+

. Hene, we

arrive at the following inequality

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t) � E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(0) +

t

Z

0

Z




h

_

f; �u

�

i dx d� + 4

t

Z

0

Z




h _g; axl

�

A

�

i dx d�

�

t

Z

0

Z

�


h�

�

:n; �v

d

i ds d� �

Z

�


h�

�

(0):n; _v

d

(0)i ds +

Z

�


h�

�

(t):n; _v

d

(t)i ds

�4l



t

Z

0

Z

�


hr axl(A

�

):n; axl(

�

B

d

)i ds d� � 4l



Z

�


hr axl(A

�

)(0):n; axl(

_

B

d

)(0)i ds

+4l



Z

�


hr axl(A

�

)(t):n; axl(

_

B

d

)(t)i ds : (3.21)

The boundedness of the initial energy for time derivatives follows from the assumption

T

E

(0) 2 D(f). This implies that the sequene ff

�

(T

E

(0))g is bounded in L

2

(
; Sym(3)).

Next, we estimate all integral terms from the right hand side of (3.21).

�

�

�

�

�

�

t

Z

0

Z




h

_

f; �u

�

i dx d�

�

�

�

�

�

�

�

t

Z

0

k

_

fk

L

2

k�u

�

k

L

2

d� �

1

2

t

Z

0

k

_

fk

2

L

2

d� +

t

Z

0

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(�) d� :

(3.22)
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In the same manner we obtain

�

�

�

�

�

�

t

Z

0

Z




h _g; axl

�

A

�

i dx d�

�

�

�

�

�

�

�

1

2

t

Z

0

k _gk

2

L

2

d� +

1

4

t

Z

0

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(�) d� : (3.23)

To estimate the appearing boundary integrals we use the trae theorem in the spae

L

2

(Div).

�

�

�

�

�

�

t

Z

0

Z

�


h�

�

:n; �v

d

i ds d�

�

�

�

�

�

�

�

t

Z

0

k�

�

:nk

H

�

1

2

k�v

d

k

H

1

2

d�

� C

t

Z

0

(k�

�

k

L

2

+ kDiv�

�

k

L

2

)k�v

d

k

H

1

2

d� � C

t

Z

0

(k _�

�

k

L

2

+ k�

�

(0)k

L

2

)k�v

d

k

H

1

2

d�

+C

t

Z

0

(kfk

L

2

+ k�u

�

k

L

2

)k�v

d

k

H

1

2

d� � C

t

Z

0

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(�) d� + C

1

; (3.24)

where the positive onstant C does not depend on � and the onstant C

1

depends on

given data only. For the next boundary term we obtain

�

�

�

�

�

�

Z

�


h�

�

(t):n; _v

d

(t)i ds

�

�

�

�

�

�

� k�

�

:nk

H

�

1

2

k _v

d

k

H

1

2

� C(k�

�

k

L

2

+ kDiv�

�

k

L

2

)k _v

d

k

H

1

2

� C(k _�

�

k

L

2

+k�

�

(0)k

L

2

+kfk

L

2

+k�u

�

k

L

2

)k _v

d

k

H

1

2

� CE

1

2

( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t)+D; (3.25)

where the positive onstants C;D depend on given data only. The boundary integrals

ontaining mirorotations are estimated using the same idea. Note that by the evolution

equation for mirorotations we have Divr axl(A)

�

= l

�1



axl

�

A

�

� �



l

�1



axl(skew(ru) �

A)� l

�1



g and the two �rst terms on the right hand side of the last equality appear in the

energy funtion. Hene, we onlude that

�

�

�

�

�

�

t

Z

0

Z

�


hr axl(A

�

):n; axl(

�

B

d

)i ds d�

�

�

�

�

�

�

+

�

�

�

�

�

�

Z

�


hr axl(A

�

)(t):n; axl(

_

B

d

)(t)i ds

�

�

�

�

�

�

� C

t

Z

0

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(�) d� + C

1

E

1

2

( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t) + C

2

; (3.26)

where all positive onstants C;C

1

; C

2

do not depend on �. Inserting (3.22), (3.23), (3.24),

(3.25) and (3.26) into (3.21) we �nally arrive at the following inequality

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t) � C

1

E

1

2

( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t) + C

2

t

Z

0

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(�) d� + C

3

;

10



where C

1

; C

2

; C

3

do not depend on �. This inequality immediately implies that

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(t) � D

1

t

Z

0

E( _u

�

; _"

�

; _"

�

p

;

_

A

�

)(�) d� +D

2

;

where again the onstants D

1

; D

2

do not depend on �. Gronwall's inequality ompletes

the proof. �

The energy estimate for time derivatives yields that the sequene ( _�

�

;r

_

A

�

; �u

�

;

�

A

�

) is

L

1

(L

2

){bounded. This implies that the sequene (�

�

;rA

�

; _u

�

;

_

A

�

) is also L

1

(L

2

){

bounded. Note, that for example the equality �

�

(t) =

R

t

0

_�

�

(�) d� + �

�

(0) implies that

k�

�

k

L

2

�

R

t

0

k _�

�

k

L

2

+k�

�

(0)k

L

2

: Moreover, by the oerivity of the energy (3.16) we have

that the sequenes f _"

�

g and f _"

�

p

g are L

1

(L

2

){bounded. Hene, for a subsequene (again

denoted using the supersript �) we have: for all T > 0

�

�

�

* � in L

1

((0; T ); L

2

(
; Sym(3))) ;

_�

�

�

* _� in L

1

((0; T ); L

2

(
; Sym(3))) ;

A

�

�

* A in L

1

((0; T ); H

1

(
; so(3;R))) ;

�

A

�

�

*

�

A in L

1

((0; T ); L

2

(
; so(3;R))) ;

u

�

�

* u in L

1

((0; T ); H

1

(
;R

3

)) ;

�u

�

�

* �u in L

1

((0; T ); L

2

(
;R

3

)) ;

"

�

�

* " in L

1

((0; T ); L

2

(
; Sym(3))) ;

_"

�

�

* _" in L

1

((0; T ); L

2

(
; Sym(3))) ;

"

�

p

�

* "

p

in L

1

((0; T ); L

2

(
; Sym(3))) ;

_"

�

p

�

* _"

p

in L

1

((0; T ); L

2

(
; Sym(3)))

and the limit funtions satisfy

�u� Div � = f ;

� = 2� ("� "

p

) + 2�



(skew(ru)� A) + � tr ["℄ � 11 ;

�

A� l



�axl(A) = �



axl(skew(ru)� A) + g ; (3.27)

_"

p

= f

0

= weak � limf

�

(T

�

E

) ; T

E

= 2� ("� "

p

) ;

u

j

�


= u

d

; A

j

�


= A

d

;

u(0) = u

0

; _u(0) = u

1

; A(0) = A

0

;

_

A(0) = A

1

; "

p

(0) = "

0

p

:

To �nish the existene theory for our system we need only to prove that

f

0

(t; x) 2 f(T

E

(t; x)) a:e: in (0; T )� 
 : (3.28)

To do this we follow the standard idea whih is based on the following property: the

graph of a maximal monotone operator is weakly-strongly losed. Thus, we are going to

improve the weak onvergene of the sequene fT

�

E

g.

Theorem 3.3 (Strong onvergene of stresses)

Let us assume that the given data satisfy all requirements of Theorem 3.2. Then E(u

�

�

u

�

; "

�

� "

�

; "

�

p

� "

�

p

; A

�

� A

�

)(t)! 0 for �; � ! 0

+

uniformly on bounded time intervals.
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Proof. We use the standard energy method and alulate the time derivative of the energy

evaluated on the di�erenes of two approximation steps. Hene, we obtain

_

E(u

�

� u

�

; "

�

� "

�

; "

�

p

� "

�

p

; A

�

� A

�

)(t) =

Z




h _u

�

� _u

�

; �u

�

� �u

�

i dx

+4

Z




haxl(

_

A

�

�

_

A

�

) ; axl(

�

A

�

�

�

A

�

)i dx + 2�

Z




h"

�

� "

�

� "

�

p

+ "

�

p

; _"

�

� _"

�

� _"

�

p

+ _"

�

p

i dx

+�

Z




tr ["

�

� "

�

℄tr [ _"

�

� _"

�

℄ dx + 4l



Z




hr axl(A

�

� A

�

);r axl(

_

A

�

�

_

A

�

)i dx

+2�



Z




hskew(ru

�

�ru

�

)� A

�

+ A

�

; skew(r _u

�

�r _u

�

)�

_

A

�

+

_

A

�

i dx :

Using that the given data for both approximation steps are the same we onlude that

_

E(u

�

� u

�

; "

�

� "

�

; "

�

p

� "

�

p

; A

�

� A

�

)(t) = �

Z




hT

�

E

� T

�

E

; f

�

(T

�

E

)� f

�

(T

�

E

)i dx : (3.29)

Next, to estimate the right hand side of (3.29), we use the standard proedure from the

theory of maximal monotone operators (ompare with the proof of Theorem 1 p. 147 in

[1℄). This yields that

_

E(u

�

� u

�

; "

�

� "

�

; "

�

p

� "

�

p

; A

�

� A

�

)(t) � (� + �)C(T ) ;

where the positive onstant C(T ) does not depend on � and �. The last inequality om-

pletes immediately the proof. �

Theorem 3.3 implies that the sequene of stresses fT

�

E

g is a Cauhy sequene in the

spae L

1

((0; T );L

2

(
; Sym(3))). Hene, fT

�

E

g onverges strongly to T

E

. Moreover, by

the de�nition of the Yosida approximation we have f

�

(T

�

E

) 2 f(J

�

(T

�

E

)), where J

�

(T

�

E

) =

T

�

E

� �f

�

(T

�

E

) is the resolvent operator. We see that J

�

is a global Lipshitz operator and

therefore the sequene fJ

�

(T

�

E

)g onverges strongly to T

E

. Consequently, the sequene

(J

�

(T

�

E

); f

�

(T

�

E

)) is ontained in the graph of the maximal monotone operator f and on-

verges strongly-weakly to (T

e

; f

0

). Hene, the maximality of f yields that f

0

belongs to

the set f(T

E

) and the limit funtions (u; "; "

p

; A) satisfy (3.14). This �nishes the existene

part. �

Next, we study the uniqueness of solutions for system (3.14).

Theorem 3.4 (Uniqueness of solutions)

Let us assume that the given data f; u

d

; A

d

; "

0

p

satisfy all requirements of Theorem 3.2

Then the system (3.14) possesses a unique, global in time solution (u; "; "

p

; A).
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Proof. The proof is based on the energy method. Assume that (u

1

; "

1

; "

1

p

; A

1

) and

(u

2

; "

2

; "

2

p

; A

2

) are two solutions of (3.14) for the same given data. Then for the energy

funtion evaluated on di�erenes of these solutions we have

_

E(u

1

� u

2

; "

1

� "

2

; "

1

p

� "

2

p

; A

1

� A

2

)(t) =

Z




h _u

1

� _u

2

; �u

1

� �u

2

i dx

+4

Z




haxl(

_

A

1

�

_

A

2

) ; axl(

�

A

1

�

�

A

2

)i dx + 2�

Z




h"

1

� "

2

� "

1

p

+ "

2

p

; _"

1

� _"

2

� _"

1

p

+ _"

2

p

i dx

+�

Z




tr ["

�

� "

�

℄tr [ _"

�

� _"

�

℄ dx + 4l



Z




hr axl(A

1

� A

2

);r axl(

_

A

1

�

_

A

2

)i dx

+2�



Z




hskew(ru

1

�ru

2

)� A

1

+ A

2

; skew(r _u

1

�r _u

2

)�

_

A

1

+

_

A

2

i dx

= �

Z




hT

1

E

� T

2

E

; _"

1

p

� _"

2

p

i dx � 0 :

This implies that

E(u

1

� u

2

; "

1

� "

2

; "

1

p

� "

2

p

; A

1

� A

2

)(t) � E(u

1

� u

2

; "

1

� "

2

; "

1

p

� "

2

p

; A

1

� A

2

)(0) = 0

and the statement is a onsequene of the oeriveness of the energy funtion. �

At the end of this setion we formulate the existene and uniqueness theorem, whih we

have proved:

Theorem 3.5 (Existene for the dynamial model)

Suppose that the given data f; g; u

d

; A

d

satisfy: for all times T > 0

f 2 C

1

([0; T ℄; L

2

(
;R

3

)) ; g 2 C

1

([0; T ℄; L

2

(
;R

3

))

u

d

2 C

2

([0; T ℄; H

1

2

(�
;R

3

)) ; �

ttt

u

d

2 L

2

((0; T );H

1

2

(�
;R

3

) ;

A

d

2 C

2

([0; T ℄; H

3

2

(�
; so(3;R))) ; �

ttt

A

d

2 L

2

((0; T );H

1

2

(�
; so(3;R)) :

Moreover, assume that the initial data have the regularity

u

0

; u

1

2 H

1

(
;R

3

) ; A

0

2 H

2

(
; so(3;R)) ; A

1

2 H

1

(
; so(3;R)) ; "

0

p

2 L

2

(
; Sym(3))

and satisfy the ompatibility ondition

u

0

(x) = u

d

(x; 0) ; u

1

(x) = _u

d

(x; 0) ; A

0

(x) = A

d

(x; 0) ; A

1

(x) =

_

A

d

(x; 0) for x 2 �
 :

Additionally, suppose that the initial data is hosen suh that the initial value of the

redued Eshelby tensor T

E

(0) = 2� (

1

2

(ru

0

+ r

T

u

0

) � "

0

p

) belongs to the domain of the

maximal monotone operator f. Then the system (3.14) possesses a global in time, unique

solution (u; "; "

p

; A) with the regularity: for all times T > 0

u 2 H

1;1

((0; T ); H

1

(
;R

3

)) ; �u 2 L

1

((0; T ); L

2

(
;R

3

)) ;

A 2 L

1

((0; T ); H

2

(
; so(3;R))) ;

�

A 2 L

1

((0; T ); L

2

(
; so(3;R))) ;

"; "

p

2 H

1;1

((0; T ); L

2

(
; Sym(3))) :
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Notation

Let 
 � R

3

be a bounded domain with Lipshitz boundary �
 and let � be a smooth subset of �


with non-vanishing 2-dimensional Hausdor� measure. We denote by M

3�3

the set of real 3 � 3 seond

order tensors, written with apital letters. The standard Eulidean salar produt on M

3�3

is given

by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

(we use these

symbols indi�erently for tensors and vetors). The identity tensor on M

3�3

will be denoted by 11, so

that tr [X ℄ = hX; 11i. We let Sym and PSym denote the symmetri and positive de�nite symmetri

tensors respetively. We adopt the usual abbreviations of Lie-algebra theory, i.e. so(3;R) := fX 2

M

3�3

jX

T

= �Xg are skew symmetri seond order tensors and sl(3;R) := fX 2 M

3�3

jtr [X ℄ = 0g

are traeless tensors. We set sym(X) =

1

2

(X

T

+ X) and skew(X) =

1

2

(X � X

T

) suh that X =

sym(X) + skew(X). For X 2 M

3�3

we set for the deviatori part devX = X �

1

3

tr [X ℄ 11 2 sl(3;R).

For a seond order tensor X we let X:e

i

be the appliation of the tensor X to the olumn vetor e

i

and

we de�ne the third order tensor h = D

x

X(x) = (r(X(x):e

1

);r(X(x):e

2

);r(X(x):e

3

)) = (h

1

; h

2

; h

3

) 2

(M

3�3

)

3

. For h we set khk

2

=

P

3

i=1

kh

i

k

2

together with sym(h) := (sym h

1

; sym h

2

; sym h

3

) and tr [h℄ :=

(tr

�

h

1

�

; tr

�

h

2

�

; tr

�

h

3

�

) 2 R

3

. The �rst and seond di�erential of a salar valued funtion W (F ) are

written D

F

W (F ):H and D

2

F

W (F ):(H;H), respetively. Sometimes we use also �

X

W (X) to denote

the �rst derivative of W with respet to X . We employ the standard notation of Sobolev spaes, i.e.

L

2

(
); H

1;2

(
); H

1;2

Æ

(
), whih we use indi�erently for salar-valued funtions as well as for vetor-valued

and tensor-valued funtions.
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