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Abstrat

We investigate weaker than usual onstitutive assumptions in linear Cosserat theory

still providing for existene and uniqueness and show a ontinuous dependene result for

Cosserat ouple modulus �



! 0. This result is needed when using Cosserat elastiity not

as a physial model but as a numerial regularization devie.

Thereafter it is shown that the usually adopted material restritions of uniform pos-

itivity for a linear Cosserat model annot be onsistent with experimental �ndings for

ontinuous solids. The analytial solutions for both the torsion and the bending prob-

lem in general predit an unbounded sti�ness for ever thinner samples. This unphysial

behaviour an only be avoided for spei� hoies of parameters in the urvature energy ex-

pression. However, these hoies do not satisfy the usual onstitutive restritions. We show

that the possibly remaining linear elasti Cosserat problem is nevertheless well-posed but

that it is impossible to determine the appearing urvature modulus independent of bound-

ary onditions. This puts a serious doubt on the use of the linear elasti Cosserat model

(or the geometrially exat model with �



> 0) for the physially onsistent desription of

ontinuous solids like polyrystals in the framework of elasto-plastiity.

The problem an be avoided in geometrially exat Cosserat models if the Cosserat

ouple modulus �



is set to zero.
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1 Introdution

This note establishes well-posedness of the linear elasti Cosserat model in parameter ranges

hitherto not onsidered and it reveals an inonsisteny of the usually adopted uniform positivity

of the free-energy for the linear elasti Cosserat model with experimental �ndings for ontinuous

solids like polyrystals.

General ontinuum models involving independent rotations have been introdued by

the Cosserat brothers [9℄ at the beginning of the last entury. Their nonlinear, geometrially

exat development has been largely forgotten for deades only to be redisovered in a linearized

setting in the early sixties [54, 29, 1, 21, 19, 59, 60, 31, 46, 58, 61℄. At that time theoretial

investigations on non-lassial extended ontinuum theories were the main motivation [40℄.

Sine then, the original Cosserat onept has been generalized in various diretions, notably

by Eringen and his oworkers who extended the Cosserat onept to inlude also miroinertia

e�ets and to rename it subsequently into miropolar theory. For an overview of these so

alled miroontinuum theories we refer to [20, 18, 6, 5, 7, 32, 45, 53℄.

The Cosserat model inludes in a natural way size e�ets, i.e. small samples behave

omparatively sti�er than large samples. These e�ets have reently reeived new attention

in onjuntion with nano-devies. From a omputational point of view, theories with size-

e�et are inreasingly used to regularize non-wellposed situations, e.g. shear-banding in

elasto-plastiity without hardening [39, 15, 57, 11, 13, 12℄. It has been shown by the author that

in�nitesimal elasto-plastiity augmented with (elasti) Cosserat e�ets indeed leads to a well-

posed problem [51℄. The mathematial analysis establishing well-posedness for the in�nitesimal

strain, Cosserat elasti solid is presented in [34, 16, 33, 26, 27℄ and in [38, 36, 37℄ for so alled

linear mirostreth models. This analysis is based on the uniform positivity of the free

energy of the Cosserat solid, whih in turn implies that the Cosserat ouple modulus �



is

stritly positive. The author has extended the existene results for both the Cosserat model

and the more general miromorphi models to the geometrially exat, �nite-strain ase, see

e.g. [52, 49, 50℄.

The important problem of the determination of Cosserat material parameters for ontinu-

ous solids with random mirostruture must still be onsidered an open problem while the use

of a Cosserat model for the simpli�ed omputation of man-made grid frameworks is suessful in

the sense that parameters for the "homogenized" Cosserat model, replaing the grid-framework,

an be expliitly alulated.

Over the years, a variety of boundary value problems have been solved in terms of analytial

expressions whih are then used for the determination of material onstants in the in�nitesimal

linear Cosserat model, see [35℄. Notably, the solution of the pure torsion problem with presribed

torque at the end faes has been given in [24, 23, 55℄ and used in [24, 23, 2, 44℄ to determine the

length sales of various materials. Similarly, an analytial solution for the pure bending problem

is available [56℄. These formulas will be investigated w.r.t. their behaviour for slender or thin

speimens. A series of experiments with speimens of di�erent slenderness is usually performed
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in order to determine the Cosserat parameters [23, 44℄. We observe an unphysial unbounded

sti�ening behaviour for slender speimens whih seems to make it impossible to arrive at

onsistent values for these parameters: the value for the parameters will depend strongly on

the smallest investigated speimen size. This inonsisteny may be in part responsible for

the fat that 1. (linear) Cosserat parameters for ontinuous solids have never gained general

aeptane even in the "Cosserat ommunity" and 2. that the linear elasti Cosserat model has

never been really aepted by a majority of applied sientists as a useful model to desribe size

e�ets in ontinuous solids.

It is of importane to note that this inonsisteny is not neessarily enountered in the

geometrially exat Cosserat model. Indeed, the geometrially exat Cosserat model with true

rotations R 2 SO(3;R) instead of in�nitesimal mirorotations A 2 so(3;R) has been shown

to admit minimizers in [48℄ also for zero Cosserat ouple modulus �



= 0 in whih ase the

previously disussed unbounded sti�ness for ever smaller speimens does not appear. The au-

thor believes that the geometrially exat Cosserat model with �



= 0 an do justie to the

Cosserat approah as a viable physial model for a ontinuous solid whih inorporates length

sale e�ets. A zero Cosserat ouple modulus �



= 0 implies that the Cauhy-stress

tensor is symmetri to �rst order and length sale e�ets are of seond order. This

is aeptable for a ontinuous solid.

In view of the far reahing onsequenes of our development and the ertainly ontroversial

nature of the result that �



must be zero, it is neessary to learly distinguish between the

di�erent possible �elds of appliation of the Cosserat model and to indiate preisely to whih

ase our result relates:

1. The Cosserat model as a physially onsistent desription of a ontinuous solid with size

e�ets. As an example we may onsider a polyrystalline nano-opper wire with di�erent

grain sizes. Clearly, the body of interest is not homogeneous, but we think of the material

as �lling the whole spae. It is possible to investigate experimentally speimens of very

small size [22℄. The Cosserat model should be able to reet this situation. Whether this

is true is partly the onern of this ontribution and our answer will be negative for the

linear elasti Cosserat model and the geometrially exat Cosserat model with �



> 0.

2. The Cosserat model as a homogenized replaement for man made grid-strutures or for

materials with periodi mirostruture. This is possible. The orresponding moduli an

sometimes ab initio be alulated. The periodiity ell provides e.g. a lower bound for

the length sale. We are not onerned with this appliation.

3. The Cosserat model as a homogenized replaement for man made foams [14, 41, 52℄ or

bones [55, 2, 44℄. Foams and bones are ertainly not ontinuous solids: the smallest

possible size whih the Cosserat model should be able to reet is given by the ell size.

Considering the Cosserat model then for speimen-sizes below the ell size does not make

sense. We do not onsider this appliation here.

4. The Cosserat model as a homogenized model for rigid spheres in ontat, e.g. sand and

other granular materials [8, 3℄. The Cosserat parameters are linked to properties of the

spheres and notably �



> 0 is related to the "sliding sti�ness" between the partiles at

their ontat zones while the urvature parameters are related to "rolling sti�ness" and

"twisting sti�ness" [8℄. Sliding gives rise to frition and frition is generally a dissipative

mehanism. Whether there an be elasti energy storage due to inter-partile rotation is

at least questionable. We do not onsider this appliation here.

5. The Cosserat model as a loalization limiter and approximation to non-wellposed situ-

ations [39, 15, 57, 11, 13, 12℄. Here, one is not really interested in the introdued size

e�et but in the regularizing power of the Cosserat model. If applied to ontinuous solids,

sti�ening e�ets are not neessarily welome. We are partly onerned with this topi in

this ontribution.

It should be lear that the di�erent appliations demand di�erent sets of onstitutive parame-

ters. An investigation into this problem, however, seems not to have been done.

This ontribution is organized as follows: �rst, we reall the linear elasti stati isotropi

Cosserat model in variational form and disuss weaker onditions than the uniform positivity
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of the strain and urvature energy whih lead to a well-posed boundary value problem. We

show that under these weaker onditions solutions still depend ontinuously on �



even for

�



! 0. This result rigourously justi�es the use of the Cosserat model as an approximation to

lassial elastiity or its use as loalization limiter in elasto-plastiity.

Seond, we reall one aspet of the well known analytial solution formulas, namely the om-

parative sti�ness of the linear Cosserat response over the lassial response. It is shown that in

order to avoid an unbounded omparative sti�ness for ever thinner samples in torsion (possible

limit for ontinuous solids), one has to satisfy an additional ondition on the oeÆients of the

Cosserat urvature energy. This ondition is in onit with uniform positivity. Proeeding

similarly for the pure bending of a irular tube and the bending of a urved thin beam, the

imposed restritions on the urvature parameter lead to an unusual urvature expression in-

luding only the spherial part of the ouple-stress tensor.

1

It is shown that this remaining

Cosserat model is still well-posed in a very weak Sobolev spae. However, miropolar response

is not ativated for any inhomogeneous boundary value problem: the determination of the (one)

remaining urvature parameter an only be obtained under ertain boundary onditions on the

mirorotations, sine otherwise the lassial elastiity solution is reovered. This fat exludes

that this parameter an be a material parameter.

2

Altogether, this development puts a serious

doubt on the use of a linear elasti Cosserat model for the physial onsistent desription of

ontinuous solids. The notation is found in the appendix.

2 The linear elasti isotropi Cosserat model revisited

2.1 The linear elasti Cosserat model in variational form

For the displaement u : 
 � R

3

7! R

3

and the skew-symmetri in�nitesimal miroro-

tation A : 
 � R

3

7! so(3;R) we onsider the two-�eld minimization problem

I(u;A) =

Z




W

mp

(") +W

urv

(r axl(A))� hf; ui � hM;Ai dV (2.1)

�

Z

�

S

hf

S

; ui � hM

S

; Ai dS 7! min : w.r.t. (u;A);

under the onstitutive requirements and boundary onditions

3

" = ru�A; A

j

�

= A

d

2 so(3;R); u

j

�

= u

d

;

W

mp

(") = � k sym "k

2

+ �



k skew "k

2

+

�

2

tr [sym "℄

2

strain energy

= � k symruk

2

+ �



k skew(ru�A)k

2

+

�

2

tr [symru℄

2

(2.3)

= � k dev symruk

2

+ �



k skew(ru�A)k

2

+

2�+ 3�

6

tr [symru℄

2

= � k symruk

2

+

�



2

k urlu� 2 axlAk

2

R

3

+

�

2

(Div u)

2

;

� := axl(A) 2 R

3

; k = r� ; k url�k

2

R

3

= 4k axl skewr�k

2

R

3

= 2k skewr�k

2

M

3�3

;

W

urv

(r�) =

 + �

2

k symr�k

2

+

 � �

2

k skewr�k

2

+

�

2

tr [r�℄

2

urvature energy

=

 + �

2

k dev symr�k

2

+

 � �

2

k skewr�k

2

+

3�+ (� + )

6

tr [r�℄

2

=



2

kr�k

2

+

�

2

hr�;r�

T

i+

�

2

tr [r�℄

2

1

whih remains indeterminate in the indeterminate ouple stress model of Mindlin.

2

A material parameter is by de�nition independent of boundary onditions.

3

More detailed than stritly neessary in order to aommodate the di�erent representations in the literature.

Note that axlA� � = A:� for all � 2 R

3

, suh that

axl

0

�

0 � �

�� 0 

�� � 0

1

A

:=

0

�

�

�

��

1

A

; A

ij

= "

ijk

� axl(A)

k

; (2.2)

where "

ijk

is the totally antisymmetri permutation tensor. Here, A:� denotes the appliation of the matrix A

to the vetor � and a� b is the usual ross-produt.
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=

 + �

2

k symr�k

2

+

 � �

4

k url�k

2

R

3

+

�

2

(Div �)

2

:

Here, f;M are volume fore and volume ouples, respetively; f

s

;M

S

are surfae trations

and surfae ouples at �

S

� �
, respetively, while u

d

; A

d

are Dirihlet boundary onditions

for displaement and in�nitesimal mirorotation at � � �
. The strain energy W

mp

and the

urvature energy W

urv

are the most general quadrati forms in the non-symmetri strain

" = ru � A and the miropolar urvature k = r axl(A) (urvature-twist tensor) in the

isotropi, entro-symmetri ase. The parameters �; �[MPa℄ are the lassial Lam�e moduli

and �; �;  are additional miropolar moduli with dimension [Pa �m

2

℄ = [N℄ of a fore. In

other ontributions of the author, it is preferred to write �; �;  � �L

2



�

0

; �L

2



�

0

; �L

2





0

with

orresponding non-dimensional parameters �

0

; �

0

; 

0

and a material length sale L



> 0 [m℄.

The additional parameter �



� 0[MPa℄ in the strain energy is the Cosserat ouple mod-

ulus. For �



= 0 the two �elds of displaement and mirorotations deouple and one is left

formally with lassial linear elastiity for the displaement u. The author is not aware of a

rigourous mathematial study of the limit behaviour as �



! 0. In the ase of a pure Neumann

problem, the resulting system of deoupled equations may not have enough equations to provide

for a unique equilibrium solution if �



= 0. For the torsion problem, this "pathologial" situa-

tion has been presented in [42℄. Nevertheless, in this situation, the minimizer of the variational

problem remains unique and oinides with the lassial elastiity solution.

2.2 The linear elasti Cosserat balane equations: hyperelastiity

Taking free variations of the energy in (2.1) w.r.t. both displaement u 2 R

3

and in�nitesimal

mirorotationA 2 so(3;R), one arrives at the equilibrium system (the Euler-Lagrange equations

of (2.1))

Div � = f ; �Divm = 2�



� axl skew "+ axl skew(M) ; " = ru�A;

� = 2� � sym "+ 2�



� skew "+ � � tr ["℄ � 11 = (�+ �



) � "+ (�� �



) � "

T

+ � � tr ["℄ � 11 ;

m = r�+ �r�

T

+ � tr [r�℄ � 11; � = axl(A) ; (2.4)

A

j

�

= A

d

2 so(3;R); u

j

�

= u

d

; �:~n

j

�

S

= f

S

; m:~n

j

�

S

=

1

2

axl(skew(M

S

)) ;

�:~n

j

�
n(�

S

[�)

= 0 ; m:~n

j

�
n(�

S

[�)

= 0 :

Here, m is the ouple stress tensor. For omparison, in [18, p.111℄ or [2, 44, 24℄ the elasti

moduli in our notation are de�ned to be � = �

�

+

�

2

; �



=

�

2

.

4

But in this last de�nition (see

[10℄), �

�

annot be regarded as one of the lassial Lam�e onstants.
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2.3 The linear elasti Cosserat balane equations: non-variational

ase

By splitting the Cosserat ouple modulus �



into di�erent parameters �

a



and �

b



in the balane

of linear and angular momentum equation, the variational harater is lost and one must solve

aordingly

Div � = f ; �Divm = 2�

b



� axl skew "+ axl skew(M) ; " = ru�A;

� = 2� � sym "+ 2�

a



� skew "+ � � tr ["℄ � 11 ;

m = r�+ �r�

T

+ � tr [r�℄ � 11; � = axl(A) ; (2.5)

A

j

�

= A

d

2 so(3;R); u

j

�

= u

d

; �:~n

j

�

S

= f

S

; m:~n

j

�

S

=

1

2

axl(skew(M

S

)) :

4

In [36, 18℄ the Cauhy stress tensor � is de�ned as � = (�

�

+ �) "+ �

�

"

T

+ � tr ["℄ � 11 with given onstants

�

�

; �; � and one must identify �

�

+ � = �+ �



; �

�

= �� �



.

5

A simple de�nition of the Lam�e onstants in miropolar elastiity is that they should oinide with the

lassial Lam�e onstants for symmetri situations. Equivalently, they are obtained by the lassial formula

� =

E

2(1+�)

; � =

E�

(1+�)(1�2�)

, where E and � are uniquely determined from uniform tration where Cosserat

e�ets are absent.

6

Unfortunately, while authors are onsistent in their usage of material parameters, one should be areful

when identifying the atually used parameters with his own usage. The di�erent representations in (2.3) might

be useful for this purpose.
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This form of equation may be more suitable for ertain limit problems. For example one may

onsider �

a



! 0 while �

b



= � = onst, espeially in a geometrially exat ontext where �

a



= 0

still provides for a seond order oupling between mirorotations and deformations..

2.4 The indeterminate ouple stress model

This model is formally obtained by setting �



= 1, whih enfores the onstraint urlu =

2axlA [46, 59℄. For the displaement u : 
 � R

3

7! R

3

we onsider therefore the one-�eld

minimization problem

I(u) =

Z




W

mp

(ru) +W

urv

(r urlu)� hf; ui �

1

2

haxl(M); urlui dV (2.6)

�

Z

�

S

hf

S

; ui �

1

2

haxl(M

S

); urlui dS 7! min : w.r.t. u;

under the onstitutive requirements and boundary onditions

W

mp

(") = � k symruk

2

+

�

2

tr [symru℄

2

; u

j

�

= u

d

; urlu

j

�

= (urlu)

d

2 R

3

;

W

urv

(r urlu) =

 + �

8

k symr urluk

2

+

 � �

8

k skewr urluk

2

: (2.7)

In this limit model, the urvature parameter �, related to the spherial part of the ouple stress

tensor m remains indeterminate, sine Div axlA = Div

1

2

urlu = 0. We remark the intriate

relation between �



!1 and the indeterminay of �.

3 Constitutive restritions and well-posedness for Cosserat

hyperelastiity

3.1 Pointwise positivity of the miropolar energy

For a mathematial treatment in the hyperelasti ase we may require that for arbitrary nonzero

"; k 2 M

3�3

one has the loal positivity ondition

8 "; k 6= 0 : W

mp

(") > 0 ; W

urv

(k) > 0 : (3.1)

This ondition is most often invoked as the basis of uniqueness proofs in stati miropolar

elastiity, see e.g. [34, 33, 18, 17℄. By splitting " in its deviatori and volumetri part, i.e.

writing

" = dev sym "+ skew "+

1

3

tr ["℄ � 11 (3.2)

and inserting this into W

mp

one gets

W

mp

(") = � k dev sym "k

2

+ �



k skew "k

2

+

2�+ 3�

6

tr ["℄

2

: (3.3)

Sine all three ontributions in (3.2) an be hosen independent of eah other, one obtains from

(3.1) the positive-de�niteness ondition

� > 0 ; 2�+ 3� > 0 ; �



> 0 ;

 + � > 0 ; ( + �) + 3� > 0 ;  � � > 0 ; ( > 0) ; (3.4)

where the argument pertaining to the urvature energy W

urv

is exatly similar, f. [36, (2.9)℄.

In e�et, one ensures uniform onvexity of the integrand w.r.t "; k. This loal positivity

ondition exludes, however, lassial linear elastiity, sine �



> 0 introdues the Cosserat

e�ets to �rst order.

7

By a thermodynamial argument [18℄ one may similarly infer the non-negativity of

the energy (material stability), leading to

� � 0 ; 2�+ 3� � 0 ; �



� 0 ;

 + � � 0 ; ( + �) + 3� � 0 ;  � � � 0 ; ( � 0) ; (3.5)

7

In the geometrially exat ase �



= 0 would lead to a seond order oupling only.

6



whih allows for lassial linear elastiity but whih ondition alone is not strong enough to

guarantee existene and uniqueness of the orresponding boundary value problem. Nevertheless,

all onstitutive restritions on a linear Cosserat solid must at least be onsistent with (3.5) from

a purely physial point of view.

8

3.2 Coerivity of the miropolar energy

What one really needs for a mathematial treatment of the mixed boundary value problem in the

variational ontext, is, however, a oerivity ondition, in the sense that a bounded energy

I implies a bound on the displaement u and the in�nitesimal mirorotation A in appropriate

Sobolev spaes. More preisely, for H

1

-oerivity it must hold that

I(u;A) � K

1

<1 ) u 2 H

1;2

(
;R

3

); A 2 H

1;2

(
; so(3;R)) : (3.6)

In the ase of Dirihlet boundary onditions for u and A on some part of the boundary � � �


with non-vanishing two-dimensional Hausdor� measure this oerivity requirement may

hold e.g. if one of the following four set of onditions is satis�ed:

� > 0 ; 2�+ 3� > 0 ; �



� 0 ;

 + � > 0 ; ( + �) + 3� > 0 ;  � � � 0 ; ( > 0) (3.7)

� � 0 ; �



> 0 ; � > 0

 + � � 0 ;  � � > 0 ; � > 0 ; ( > 0) (3.8)

� > 0 ; 2�+ 3� > 0 ; �



� 0 ;

 + � � 0 ;  � � > 0 ; � > 0 ; ( > 0) (3.9)

� � 0 ; �



> 0 ; � > 0

 + � > 0 ; ( + �) + 3� > 0 ;  � � � 0 ; ( > 0) : (3.10)

We disregard onditions (3.8) and (3.10) sine they would exlude linear elastiity from the onset

and they need Dirihlet onditions everywhere on the boundary u

j

�




to provide for oerivity.

Conditions (3.7) and (3.9) do not exlude lassial linear elastiity, sine the Cosserat

ouple modulus �



may be set to zero. For (3.7) and (3.9) the integrand is therefore onvex in

"; k but not uniformly onvex. Nonetheless, (3.7) or (3.9) is enough to provide for uniqueness in

the stati ase (details subsequently, (3.9) needs speial boundary onditions for A). The task

is then to deide whether (3.7) or (3.9) is more appropriate. Sine (3.7) provides for oerivity

in the most general ase as far as boundary onditions are onerned it seems to be appropriate.

Nevertheless, the di�erent onstitutive assumptions must be onfronted with experiments.

In terms of the non-dimensional polar ratio 	 =

�+

�+�+

one has

	 :=

� + 

�+ � + 

=

3(� + )

3(�+ � + )

=

3(� + )

3�+ (� + ) + 2(� + )

; (3.11)

whih leads with (3.7) to the restrition 0 < 	 <

3

2

while (3.9) imposes 0 � 	 < 1.

3.3 Uniqueness for �



� 0 and oeritive urvature in ase (3.7)

Let us see why the linear Cosserat model still has unique solutions even for �



= 0 in ase of

(3.7). The uniqueness under the muh stronger assumption (3.4) is a well known fat.

In order to show uniqueness, it is suÆient to look at the seond derivative of the energy I

w.r.t. u and A. It is easy to see that for inrements ~u 2 C

1

(
;R

3

) and

~

A 2 C

1

(
; so(3;R)),

8

For � =

�

2(�+�)

=

�

2�+3���

ondition (3.5) implies the well-known bound �1 � � �

1

2

, while (3.7) and

(3.9) require �1 < � <

1

2

, but (3.8) and (3.10) would impose 0 � � �

1

2

.

7



respeting the Dirihlet-boundary onditions, i.e. ~u

j

�

= 0 and

~

A

j

�

= 0 one has

D

2

(u;A)

I(u;A):[(~u;

~

A); (~u;

~

A)℄

=

Z




2� k symr~uk

2

+ 2�



k skewr~u�

~

Ak

2

+ � tr [symr~u℄

2

+ (� + ) k symr axl

~

Ak

2

+ ( � �) k skewr axl

~

Ak

2

+ � tr

h

r axl

~

A

i

2

dV : (3.12)

For �



= 0; � > 0 and oeritive urvature expression, i.e. assuming (3.7)

2

one obtains for some

onstant 

1

> 0 depending on (3.7)

2

the estimate

D

2

(u;A)

I(u;A):[(~u;

~

A); (~u;

~

A)℄ �

Z




2� k symr~uk

2

+ 

1

k symr axl

~

Ak

2

dV : (3.13)

Using Korn's �rst inequality for both ~u and axl

~

A one gets with some positive onstant 

K

> 0,

depending on the domain 


D

2

(u;A)

I(u;A):[(~u;

~

A); (~u;

~

A)℄ � 

K

�

k~uk

2

H

1;2

(
;R

3

)

+ k axl

~

Ak

2

H

1;2

(
;R

3

)

�

= 

K

�

k~uk

2

H

1;2

(
;R

3

)

+

1

2

k

~

Ak

2

H

1;2

(
;so(3;R))

�

: (3.14)

This shows uniform positivity of the seond derivative. The energy I is stritly onvex, the

minimizers are unique.

3.4 Uniqueness for �



� 0 and oeritive urvature in ase (3.9)

Let us investigate �rst the ase where Dirihlet onditions for A are presribed on the entire

boundary �
. In ase of ondition (3.9) the same alulations as before lead to

D

2

(u;A)

I(u;A):[(~u;

~

A); (~u;

~

A)℄ �

Z




2� k symr~uk

2

+ 

1

k skewr axl

~

Ak

2

+ � tr

h

r axl

~

A

i

2

dV

=

Z




2� k symr~uk

2

+



1

2

k url[axl

~

A℄k

2

+ �

�

Div[axl

~

A℄

�

2

dV

� 

K

k~uk

2

H

1;2

(
;R

3

)

+ 

GR

k

~

Ak

2

H

1;2

(
;so(3;R))

; (3.15)

where we have made use of Korn's �rst inequality for the �rst term in ~u and the fat that the

operators url and Div together ontrol the total gradient, see [28, p.36℄, i.e. the inequality

9C > 0 8� 2 C

1

0

(
;R

3

) :

Z




k url�(x)k

2

R

3

+ (Div �(x))

2

dV � C k�k

2

H

1;2

(
;R

3

)

; (3.16)

holds for smooth funtions with ompat support C

1

0

(
;R

3

). Here we see that �



= 0 is per-

mitted provided that axl

~

A = 0 on �
 identially.

In ase of ondition (3.9) with �



> 0 it is possible to relax the requirement on the boundary

ondition for the mirorotations. It suÆes to presribe the normal omponent haxlA;~ni =

B(x) on �
, while the tangential omponents of axlA may be arbitrary. Now we ompute

D

2

(u;A)

I(u;A):[(~u;

~

A); (~u;

~

A)℄

=

Z




2� k symr~uk

2

+ �



k urlu� 2 axl

~

Ak

2

+ � tr [symr~u℄

2

+

( � �)

2

k url axl

~

Ak

2

+ � tr

h

r axl

~

A

i

2

dV

=

Z




2� k symr~uk

2

+ �



k url ~uk

2

� 4�



hurl ~u; axl

~

Ai+ 4�



k axl

~

Ak

2

+ � tr [symr~u℄

2

+

( � �)

2

k url axl

~

Ak

2

+ � tr

h

r axl

~

A

i

2

dV

�

Z




2� k symr~uk

2

� �



j1�

2

"

j kr~uk

2

+ �



(4� 2")k axl

~

Ak

2

+ � tr [symr~u℄

2

+

( � �)

2

k url axl

~

Ak

2

+ � tr

h

r axl

~

A

i

2

dV

� (2� 

K

� �



j1�

2

"

j) k~uk

2

H

1;2

(
;R

3

)

+ 

GR

k

~

Ak

2

H

1;2

(
;so(3;R))

; (3.17)
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where, with haxl

~

A;~ni

j

�


= 0 and for some 0 < " < 2 we made use of the following inequality

for axl

~

A 2 R

3

Theorem 3.1

Let 
 � R

3

be a bounded, open region with a C

1;1

-boundary �
. Then

9C

+

> 0 : 8� 2 C

1

(
;R

3

) :

k�k

2

H

1;2

(
;R

3

)

� C

+

�

k�k

2

L

2

(
)

+ k url�k

2

L

2

(
)

+ kDiv �k

2

L

2

(
)

+ kh�; ~nik

2

H

1

2

(�
)

�

(3.18)

Proof. See [28, p.56,Cor.3.7℄. �

3.5 Continuous dependene for �



� 0 and (3.7).

Apparently, there is no result in the literature whih shows ontinuous dependene on the

parameter �



in ase of (3.7). This is, however, ruial in those ases where one wants to use

the Cosserat model as a regularizing model for otherwise lassial situations by letting �



! 0.

The ontinuous dependene result for the ase (3.4) i.e. �



� 

+

> 0 is, again, well-established,

even in the mirostreth ase [36℄.

In order to show ontinuous dependene of the solution as �



! 0 we onsider two solutions,

orresponding to �

1



6= �

2



and to the same boundary data, di�erent volume fore and zero

volume ouples. For simpliity of exposition only we assume � =  > 0 and � = � = 0. The

equations satis�ed, respetively, are then

Div

�

2� symru

1

+ 2�

1



skew(ru

1

�A

1

)

�

= f

1

;

Div

�

2� symru

2

+ 2�

2



skew(ru

2

�A

2

)

�

= f

2

;

�Div

�

2� symr axlA

1

�

= 2�

1



axl skew(ru

1

�A

1

) ;

�Div

�

2� symr axlA

2

�

= 2�

2



axl skew(ru

2

�A

2

) : (3.19)

For the di�erenes, û = u

1

� u

2

and

^

A = A

1

�A

2

we obtain the two equations

Div

2

4

2� symrû+ 2�

1



skew(rû�

^

A)

| {z }

=:�̂

3

5

=

^

f + 2 (�

2



� �

1



)Div

�

skew(ru

2

�A

2

)

�

;

Div

h

2� symr axl

^

A

i

= �2�

1



axl skew(rû�

^

A) + 2 (�

2



� �

1



) axl skew(ru

2

�A

2

) ; (3.20)

with

^

f = f

1

� f

2

. Multiplying the �rst equation with the di�erene û and using the produt

rule shows for �̂ := 2� symrû+ 2�

1



skew(rû�

^

A)

�h�̂;rûi+Div

�

�

T

:û

�

= h

^

f; ûi � 2(�

2



� �

1



)hskew(ru

2

�A

2

);rûi

+ 2(�

2



� �

1



)Div

�

�

skew(ru

2

�A

2

)

�

T

:û

�

: (3.21)

After integration, using the divergene-theorem and applying the boundary onditions (natural

boundary onditions for � on the free boundary �

N

) one is left with

�

Z




h�̂;rûi dV =

Z




h

^

f; ûi � 2(�

2



� �

1



)hskew(ru

2

�A

2

);rûi dV

+ 2(�

2



� �

1



)

Z

�

N

hskew(ru

2

�A

2

):~n; ûi dS ; (3.22)

where �

N

= �
 n �. Further on we assume that �

N

= ;. Then we have

Z




h�̂;rûi dV =

Z




�h

^

f; ûi+ 2(�

2



� �

1



)hskew(ru

2

�A

2

);rûi dV : (3.23)

Beause

h�̂;rûi = h2� symrû+ 2�

1



skew(rû�

^

A);rûi

= h2� symrû+ 2�

1



skew(rû�

^

A);rû�

^

Ai+ h2� symrû+ 2�

1



skew(rû�

^

A);

^

Ai

= 2� k symrûk

2

+ 2�

1



k skew(rû�

^

A)k

2

+ 2�

1



hskew(rû�

^

A);

^

Ai ; (3.24)

9



multipliation of (3.20)

2

with axl

^

A 2 R

3

and taking into aount that hX;Y i

M

3�3

= 2haxlX; axlY i

R

3

for X;Y 2 so(3;R) shows that

2�

1



hskew(rû�

^

A);

^

Ai = �2hDiv

h

2� symr axl

^

A

i

; axl

^

Ai

+ 2 (�

2



� �

1



)hskew(ru

2

�A

2

);

^

Ai : (3.25)

Inserting this relation into the former yields

h�̂;rûi = 2� k symrûk

2

+ 2�

1



k skew(rû�

^

A)k

2

� 2hDiv

h

2� symr axl

^

A

i

; axl

^

Ai

+ 2 (�

2



� �

1



)hskew(ru

2

�A

2

);

^

Ai : (3.26)

Hene with the boundary onditions on

^

A we obtain from the divergene theorem that

Z




h�̂;rûi =

Z




2� k symrûk

2

+ 2�

1



k skew(rû�

^

A)k

2

+ 4� k symr axl

^

Ak

2

+ 2 (�

2



� �

1



)hskew(ru

2

�A

2

);

^

Ai dV : (3.27)

Combining (3.23) with (3.27) and using H�olders-inequality shows the estimate

2� k symrûk

2

L

2

(
)

+ 2�

1



k skew(rû�

^

A)k

2

L

2

(
)

+ 4�k symr axl

^

Ak

2

L

2

(
)

� k

^

fk

L

2

(
)

kûk

L

2

(
)

+ 2(�

2



� �

1



)k skew(ru

2

�A

2

)k

L

2

(
)

krû�

^

Ak

L

2

(
)

: (3.28)

Korn's �rst inequality shows that there exists a onstant 

K

= 

K

(
;�) > 0 suh that

2� 

K

kûk

2

H

1;2

(
)

+ 2�

1



k skew(rû�

^

A)k

2

L

2

(
)

+ 4� 

K

k axl

^

Ak

2

H

1;2

(
)

� k

^

fk

L

2

(
)

kûk

L

2

(
)

+ 2(�

2



� �

1



)k skew(ru

2

�A

2

)k

L

2

(
)

krû�

^

Ak

L

2

(
)

(3.29)

Now we use Young's inequality on the right hand side to obtain for some " > 0

2� 

K

kûk

2

H

1;2

(
)

+ 2�

1



k skew(rû�

^

A)k

2

L

2

(
)

+ 4� 

K

k axl

^

Ak

2

H

1;2

(
)

� k

^

fk

L

2

(
)

kûk

L

2

(
)

+

(�

2



� �

1



)

"

k skew(ru

2

�A

2

)k

2

L

2

(
)

+ "krû�

^

Ak

2

L

2

(
)

(3.30)

� k

^

fk

L

2

(
)

kûk

L

2

(
)

+

(�

2



� �

1



)

"

k skew(ru

2

�A

2

)k

2

L

2

(
)

+ 2"

�

krûk

2

L

2

(
)

+ k

^

Ak

2

L

2

(
)

�

� k

^

fk

L

2

(
)

kûk

H

1;2

(
)

+

(�

2



� �

1



)

"

k skew(ru

2

�A

2

)k

2

L

2

(
)

+ 2" kûk

2

H

1;2

(
)

+ 2" k

^

Ak

2

H

1;2

(
)

:

Hene

(2� 

K

� ")kûk

2

H

1;2

(
)

+ 2�

1



k skew(rû�

^

A)k

2

L

2

(
)

+ 2(2� 

K

� ") k axl

^

Ak

2

H

1;2

(
)

� k

^

fk

L

2

(
)

kûk

H

1;2

(
)

+

(�

2



� �

1



)

"

k skew(ru

2

�A

2

)k

2

L

2

(
)

� k

^

fk

L

2

(
)

kûk

H

1;2

(
)

+

2(�

2



� �

1



)

"

kru

2

k

2

L

2

(
)

+

2(�

2



� �

1



)

"

kA

2

k

2

L

2

(
)

: (3.31)

Now use again Korn's inequality for both terms u

2

; A

2

to obtain for positiveK

1

;K

2

the estimate

(independent of �

2



� 0)

kru

2

k

2

L

2

(
)

� K

1

I(u

2

; A

2

) +K

2

; kA

2

k

2

L

2

(
)

� K

1

I(u

2

; A

2

) +K

2

: (3.32)

Combining (3.31) with (3.32) we get

(2� 

K

� ")kûk

2

H

1;2

(
)

+ 2�

1



k skew(rû�

^

A)k

2

L

2

(
)

+ 2(2� 

K

� ") k axl

^

Ak

2

H

1;2

(
)

� k

^

fk

L

2

(
)

kûk

H

1;2

(
)

+

4(�

2



� �

1



)

"

�

K

1

I(u

2

; A

2

) +K

2

�

: (3.33)

In fat, I(u

2

; A

2

) � K(
) <1, independent of �

2



� 0, therefore, we may write

(2� 

K

� ")kûk

2

H

1;2

(
)

+ 2�

1



k skew(rû�

^

A)k

2

L

2

(
)

+ 2(2� 

K

� ") k axl

^

Ak

2

H

1;2

(
)

� k

^

fk

L

2

(
)

kûk

H

1;2

(
)

+

(�

2



� �

1



)

"

K(
) : (3.34)
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Now it is possible to speify " > 0 suh that simultaneously 2� 

k

� " > 0 ; 2� 

K

� " > 0. The

previous quadrati inequality implies then that

kûk

H

1;2

(
)

�

k

^

fk

L

2

(
)

(2� 

K

� ")

+

s

k

^

fk

2

L

2

(
)

4(2� 

K

� ")

2

+

(�

2



� �

1



)

"(2� 

K

� ")

K(
) : (3.35)

Reinserting this estimate into (3.34) allows us to onlude a similar estimate for the di�erene

^

A. The estimate is uniform with respet to non-negative �

1



; �

2



and an therefore be extended

to inlude �



= 0. Note that if �



! 0 this does not imply that A

�



! skewru; rather, if the

boundary ondition A

d

is onstant, then A

�



! A

d

.

Altogether this shows that the linear elasti Cosserat problem is a well-posed system and

provided pure Dirihlet-boundary onditions are spei�ed, the limit �



! 0 exists and oinides

with lassial linear elastiity as far as displaements are onerned. In this sense, the Cosserat

model with �



> 0 an be viewed as an approximation to lassial linear elastiity and the

Cosserat model is in itself mathematially sound, also under the weaker onditions

(3.7) and (3.9).

4 Physial restritions imposed by bounded sti�ness

Now we turn our attention to the physial aspets of the problem of determining material

parameters. We investigate the question whether the linear elasti Cosserat model an be

onsidered to be a physially onsistent desription for a ontinuous solid showing size-e�ets.

We assume the ontinuous solid to be available in any small size we an think of (this possibility

is ertainly inluded in the very de�nition of a ontinuous solid). This assumption exludes

e.g. man made grid-strutures, foams and bones but inludes e.g. polyrystalline material. For

the investigation we study simple boundary value problems for whih analytial solutions are

available. The hosen boundary onditions for the mirorotations are of stress type suh that

sti�ening behaviour due only to boundary layer phenomena an be exluded [14℄.

4.1 The torsion problem

In a thought experiment we subjet the hypothetial ontinuous solid �rst to torsion for every

slenderness we hoose. Similar real experiments with metal wires of diameters in the nano-

range have been performed and analyzed in [22℄, however, within the elasto-plasti setting. In

[30℄ these torsional experiments have been studied numerially again in a geometrially exat

ontext, based on the elasti moduli � = 46:000MPa; �



=

3

46

� ; � = 69:000MPa ; � =  =

0:01N ; � = 0.

4.1.1 An aspet of the solution for the pure torsion problem

In [24, 23℄ the analytial solution for pure torsion of a irular ylinder with radius a > 0 and

length L > 0 is developed under the assumption of translational symmetry in axial diretion

(the lassial solution is equally axisymmetri). For our purpose it is suÆient to look at the

non-dimensional quantity 


t

, whih ompares the lassial response with the orresponding

miropolar result.

The lassial relation between torque Q [N �m℄ and twist per unit length

�

L

[1=m℄ is given

by

Q = � J 


t

�

�

L

; 


t

� 1 ; (4.1)

where � > 0 is the lassial shear modulus oiniding with the orresponding Lam�e onstant

while J =

� a

4

2

is the polar moment of inertia of the irular ross setion.

Performing the appropriate non-dimensionalization, it an be seen that in any theory with-

out size-e�ets one has [22℄

Q

a

3

[MPa℄ = h

�

�

L

a

�

; (4.2)
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x = q.a/L

Q a [MPa]/ 3

lin
e
a
r 
s
o
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ti
o
n

h(a, )x

x = q.a/L

Q a [MPa]/ 3

h(a, )x

Figure 1: Idealized response urves with size-e�ets in torsion. Normalized torque

Q

a

3

versus

non-dimensional shear � =

�

L

a at the outer radius. Left: response urves with unbounded

sti�ness as a! 0. Bounded sti�ness implies that the left piture is unphysial. Right: sti�ness

inrease with bounded sti�ness as a! 0. For linear models, only tangents in 0 are relevant.

where h : R ! R has no expliit dependene on the radius a > 0.

Q

a

3

is a stress-like normalized

torque and

�

L

a is the non-dimensional shear at the outer radius. In the linear ase it holds that

h(�) = �

�

2

�.

In any experiment with size-e�ets, the funtion h will display this size e�et by expliitly

depending also on the radius a > 0 and we expet that for smaller radius a the larger h(a; �) as

a funtion of � with h(a; 0) = 0; a � 0. This inrease of the response funtion is a ommonplae

observation for many materials. The sti�ness of the material is de�ned as the slope of h at

given a � 0 for � = 0 i.e.

sti�ness = [�

�

h(a; �)℄

j

�=0

: (4.3)

Hene, in general, the sti�ness is also a funtion of the radius a. In the lassial linear elasti

ase �

�

h(a; �)

j

�=0

= �

�

2

is independent of a. We expet also that sti�ness inreases for smaller

a > 0, i.e. [�

�

h(a

2

; �)℄

j

�=0

� [�

�

h(a

1

; �)℄

j

�=0

for a

2

� a

1

. However, for any small dimensions

we investigate, we expet bounded sti�ness sine the onstitutive substruture is never rigid.

This means

9K > 0 : sup

a�0

[�

�

h(a; �)℄

j

�=0

� K : (4.4)

Now we turn to the linear miropolar model with size-e�ets and onsider the generated sti�ness

depending on the radius a. Sine the model is linear, we need only to look at the orresponding

fator 


t

in (4.1).

In the miropolar ase one must note that the marosopi resultant net torque is the sum

of the torque due to lassial torques (the lassial part) Q

lass

and the ontribution of the

miropolar ouples Q

p

. Aording to [24, 23℄ it holds in the linear miropolar ase

Q

lass

+Q

p

= Q = � J 


t

�

�

L

; 


t

= 1 + 6

�

`

t

a

�

2

�

�

1�

4

3

	 �

�

(p a)

1�	 �

�

(p a)

�

; (4.5)

where

	 :=

� + 

�+ � + 

; non-dimensional polar ratio ;

`

2

t

:=

�

� + 

2�

�

+ �

�

=

� + 

2

1

�

; "harateristi length for torsion" ; (4.6)

�

(�) :=

I

1

(�)

� I

0

(�)

; p

2

:=

2�

�+ � + 

; � := 2�



;

I

1

(�); I

0

(�) modi�ed Bessel funtions of the �rst kind ;

N

2

:=

�



�+ �



=

�

2 (�

�

+ �)

; Cosserat oupling number, 0 � N � 1 :
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Under ondition (3.7) or (3.9) the de�nitions in the solution formula make sense, i.e. `

2

t

� 0 is

ensured and sine 3�+�+  � 0 it follows also that �+�+  > 0.

9

Whether or not the model

shows bounded sti�ness depends solely on the fator 


t

.

If we onsider uniformly saled speimens of the same material, i.e. all dimensions are

redued by the same fator 0 < r � 1, then this indues the transformations `

t

! r `

t

; a !

r a; 	 = onst:; p a = onst: and we see that the sti�ness �


t

is here invariant in uniform

salings. Therefore, in the linear theory, "smaller" is not neessarily "sti�er" if boundary layer

e�ets are not onsidered.

4.1.2 The response under pure torsion for small radius a! 0

We are interested in what happens to 


t

in (4.5), if we let a ! 0. From a physial point of

view the sti�ness for smaller radius should be larger than the lassial one but the sti�ness

should ertainly remain bounded sine the heterogeneity of the mirostruture of the physial

body an never be perfetly rigid.

In order to investigate this question, we need �rst to examine the behaviour of the funtion

�

in (4.6). Let us reall a property of the modi�ed Bessel funtion of the �rst kind. The series

representation of the modi�ed Bessel funtion of the �rst kind is given by

I

n

(�) =

�

�

2

�

n

1

X

k=0

�

�

2

�

2k

k! �(n+ k + 1)

; n 2 N

0

: (4.7)

It holds therefore that for small � > 0

I

n

(�) �

1

�(n+ 1)

�

�

2

�

n

) I

1

(�) �

1

�(2)

�

2

; I

0

(�) � 1 ; (4.8)

where �(x) := (x� 1)!; x 2 N is the Gamma-funtion. This implies

lim

�!0

�

(�) = lim

�!0

I

1

(�)

� I

0

(�)

�

�

2

� � 1

=

1

2

: (4.9)

More preisely, using the series representation, one obtains that for small �

�

(�) =

I

1

(�)

� I

0

(�)

�

1

2

0

B

�

1 +

�

�

2

�

2

1

2

+ : : :

1 +

�

�

2

�

2

+ : : :

1

C

A

�

1

2

�

1�

�

2

8

�

: (4.10)

Hene, for a! 0 at �xed p > 0 we obtain

lim

a!0

�

1�

4

3

	

�

(p a)

1�	

�

(p a)

�

=

1�

4

3

	

1

2

1�	

1

2

: (4.11)

For 


t

to remain bounded as a! 0 under ondition (3.7) (reall that then �+ > 0) `

t

> 0),

it is therefore neessary and suÆient that

lim

a!0

�

1�

4

3

	

�

(p a)

1�	

�

(p a)

�

=

1�

4

3

	

1

2

1�	

1

2

= 0 , 	 =

3

2

: (4.12)

Regarding the result 	 =

3

2

we note that this value does not belong to the parameter-range

permitted in (3.7) (the oerivity ondition implies 	 <

3

2

) leading to a well-posed boundary

value problem.

10

In this sense, experimental �ndings regarding thinner and thinner samples in

9

In size-experiments this solution formula is usually used to determine � and � + . However, information

on � is only obtained if one assumes � +  > 0. The author is not aware of an analytial solution to a simple

boundary value problem whih allows to determine � diretly.

10

Also foams and bones are not a ontinuous solid and the argument regarding thinner and thinner samples

does therefore not stritly apply, in [41, 44℄ the value 	 =

3

2

has been hosen in order to aommodate bounded

sti�ness with experimental �ndings. For a syntati foam [41℄ � =  has been taken for a best �t. In this

ase, the urvature energy looks like W

urv

(r�) =  k dev symr�k

2

with  > 0. It is lear that this does

not provide oerivity in H

1;2

(
) for the mirorotations but it would still be possible to de�ne a Hilbert-spae

H(dev) � L

2

(
) with norm k�k

2

+ k dev symr�k

2

and arry out the analysis in this spae. The question of

possible presription of boundary values for � is not immediately lear. For a polyurethane foam [41℄ � 6= 

and the urvature energy looks like W

urv

(r�) =

�+

2

k dev symr�k

2

+

��

4

k url�k

2

. This last urvature

energy still allows to desribe tangential values of mirorotations, sine the url part is present [28, p.34℄ but

H

1

-oerivity is again lost.

13



torsion (showing bounded sti�ness) annot be onsistently desribed as a linear elasti Cosserat

solid within ondition (3.7).

If, however, ondition (3.9) is adopted, then � +  = 0 may be hosen, implying `

t

= 0

and 


t

remains not only bounded as a! 0, but oinides identially with the lassial result.

Therefore, bounded sti�ness in torsion and the possibility to desribe size-e�ets within the

linear Cosserat model is only possible by taking the problemati value 	 =

3

2

.

4.1.3 The response under pure torsion for �



! 0

At given `

t

> 0 and radius a > 0 we now investigate the limit behaviour for Cosserat ouple

modulus �



! 0. If �



! 0 then also p! 0 and vie-versa. Hene we need again the result for

�

(�) for small �. Based on the expansion (4.10) we obtain for small p > 0




t

= 1 + 6

�

`

t

a

�

2

�

�

1�

4

3

	 �

�

(p a)

1�	 �

�

(p a)

�

� 1 + 6

�

`

t

a

�

2

�

 

1�

4

3

	 �

1

2

(1�

p

2

a

2

8

)

1�	 �

1

2

(1�

p

2

a

2

8

)

!

; (4.13)

whih, for 	 =

3

2

shows that




t

� 1 + 3 `

2

t

p

2

= 1 + 3

� + 

2�

4�



�+ � + 

= 1 + 3	

2�



�

= 1 + 9

�



�

: (4.14)

Hene, �



! 0 and 	 =

3

2

lead to 


t

� 1 in the limit, as in lassial linear elastiity.

If, however, 	 <

3

2

then we onsider 	 =

3

2

� �. In terms of the di�erene � > 0 we obtain

for small p to leading order




t

� 1 +

�

`

t

a

�

2

�

16 �

1 + 2 �

: (4.15)

Hene, as �



! 0 but `

t

> 0; a > 0 we observe that 


t

! 


0

t

> 1. This shows a departure

from lassial elastiity. The result is not in onit with the development in setion (3.5) for

�



! 0 sine there other boundary onditions have been investigated than those used in the

derivation of the analytial solution.

4.1.4 The response under pure torsion for �



> 0; a > 0 but �; �;  ! 0

Finally, for torsion we investigate the ase of vanishing internal length, i.e. �; �;  ! 0 at the

same rate. This implies that 	 = onst: and `

t

! 0. Moreover, p ! 0. It is easy to see that

�

(�)! 0 as � !1. Hene in this limit the leading order behaviour is given by




t

� 1 +

�

`

t

a

�

2

� 1 ; (4.16)

and for `

t

! 0 we reover lassial linear elastiity without further restritions.

4.2 The pure bending problem of a ylinder with irular ross-setion

4.2.1 The analytial solution

An analytial solution formula for the bending of a miropolar irular ylinder under opposite

ompressive axial loads with radius a > 0 and length L > 0 has been obtained in [56℄. Similarly

as in the torsion ase, we fous on the relative sti�ness fator ompared to lassial elastiity.
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Aording to [56℄ it holds that




b

= 1 +

8N

2

� + 1

0

B

�

1�

�

�



�

2

(Æ a)

2

+

��

�



�

+ �

�

2

�(Æ a) + 8N

2

(1� �)

1

C

A

;

�(�) = �

2

� I

0

(�)� I

1

(�)

� I

0

(�) � 2 I

1

(�)

; (4.17)

Æ

2

=

� (2�

�

+ �)

 (�

�

+ �)

=

4�



�

 (�+ �



)

=

4N

2

�



=

N

2

`

2

b

;

`

2

b

=



2 (2�

�

+ �)

=



4�

; "harateristi length for bending" ;

N

2

:=

�



�+ �



=

�

2 (�

�

+ �)

; Cosserat oupling number, 0 � N � 1 ;

I

1

(�); I

0

(�) modi�ed Bessel funtions of the �rst kind ;

� =

�

2�

�

+ 2�+ �

=

�

2 (�+ �)

; lassial Poisson ratio:

We note that under ondition (3.7) and (3.9) the terms in the solution formula still make sense,

as  > 0.

11

4.2.2 The response under pure bending for small radius a! 0

For positive Cosserat ouple modulus �



> 0 and non-vanishing length sale `

b

> 0 we are

interested in the behaviour of 


b

as a ! 0. Sine Æ = onst: we onsider � := Æ a and larify

�rst the behaviour of �(�) as � ! 0. It holds that

� I

0

(�)� I

1

(�) = �

"

1 +

�

�

2

�

2

+ : : :

#

�

�

2

"

1 +

�

�

2

�

2

1

2

+ : : :

#

= � +

�

3

4

+ : : :�

�

2

�

�

4

�

2

4

+ : : : �

�

2

; (4.18)

� I

0

(�)� 2I

1

(�) = �

"

1 +

�

�

2

�

2

+ : : :

#

� 2

�

2

"

1 +

�

�

2

�

2

1

2

+ : : :

#

= � +

�

3

4

+ : : :� � �

�

3

8

+ : : : �

�

3

8

;

) �(�) � �

2

�

2

�

3

8

! 4 as � ! 0 :

This implies




b

= 1 +

8N

2

� + 1

0

B

�

1�

�

�



�

2

(Æ a)

2

+

��

�



�

+ �

�

2

�(Æ a) + 8N

2

(1� �)

1

C

A

= 1 +

8N

2

� + 1

0

B

�

1�

�

�



�

2

N

2

�

`

b

a

�

2

+

��

�



�

+ �

�

2

�(Æ a) + 8N

2

(1� �)

1

C

A

; letting Æ a! 0) (4.19)

� 1 +

8

� + 1

"

1�

�

�



�

2

#

�

`

b

a

�

2

+

8N

2

(� + 1)

��

�



�

+ �

�

2

4 + 8N

2

(1� �)

= 1 +

8

(� + 1) 4�

�

( � �)( + �)

 a

2

�

+

8N

2

(� + 1)

��

�



�

+ �

�

2

4 + 8N

2

(1� �)

:

Hene, for 


b

to remain bounded as a! 0 (and  > 0) one must have

( + �) ( � �) � 0 : (4.20)

11

This experiment does not provide information on � and information on � is only obtained if  > 0.
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Sine both fators must be positive anyway (3.5) it follows that either (+�) = 0 or (��) = 0.

In this ase, the Cosserat model still shows size e�ets in bending (provided  > 0) and bounded

sti�ness.

For (3.7) one has ( � �) = 0. In this ase then to leading order for a! 0




b

= 1 + 8N

2

� + 1

4 + 8N

2

(1� �)

= 1 +

2N

2

1 + 2N

2

(1� �)

(� + 1) : (4.21)

Adopting, however, (3.9) one has ( + �) = 0, in whih ase




b

= 1 +

8N

2

� + 1

(� � 1)

2

4 + 8N

2

(1� �)

= 1 +

2N

2

1 + 2N

2

(1� �)

(� � 1)

2

� + 1

; (4.22)

as leading order behaviour for a! 0.

In size-experiments, assuming that �



> 0 these last two formulas for 


b

would allow us

�rst to deide whether  + � or  � � are zero for � 6= 0 and seond to determine �



viz N

2

independent of length sale parameters sine � and � are already determined from lassial

tension experiments.

4.2.3 The response under pure bending for �



! 0

Similarly, one observes that for �



! 0 and a > 0 it holds that




b

= 1 +

8

� + 1

"

1�

�

�



�

2

#

�

`

b

a

�

2

; (4.23)

and one reovers lassial elastiity with


b

� 1 either by assuming �

2

= 

2

i.e (+�) (��) = 0

or letting simultaneously `

b

! 0.

4.2.4 The response under pure bending for �



> 0; a > 0 but �; �;  ! 0

We assume again a �xed rate for �; �;  ! 0, hene

�



remains onstant, while Æ ! 1 and

`

b

! 0. Analyzing (4.19) implies with �(�) !1 as � !1 that to leading order




b

� 1 +

8

� + 1

 

1�

�

�



�

2

!

�

`

b

a

�

2

: (4.24)

For `

b

! 0 we have in the limit 


b

� 1 without any restritions.

4.3 Bending of a semiirular ring

In [25℄ the problem of a semiirular ring with retangular ross-setion of edge length h > 0

bent by transverse radial shear resultants P has been treated and ompared with the lassial

response. For the derivation of the three-dimensional solution in polar oordinates the plane-

stress distribution is assumed whih is onsistent with the lassial result. While analytial

solution formulas are obtained, these are to long to be reorded here in their entity. In any

ase, they involve the modi�ed Bessel funtions of the �rst and seond kind. The authors [25℄

de�ne two harateristi length for this problem given as

`

2

1

=

2

E

; `

2

2

=



4N

2

�

=

`

2

b

N

2

; E > 0 lassial Young's modulus : (4.25)

Let a be the inner ring diameter. The lassial result for the radial displaement u

r

at the

edges is given by

u

r

(�; r)

j

�=0;�

=

� P

E

1 + �

2

1� �

2

+ (1 + �

2

) ln �

; �

2

=

�

1 +

h

a

�

2

: (4.26)

Considering

h

a

! 0 and using the ln-expansion, the leading order lassial result

12

is seen to be

u

r

(�; r)

j

�=0;�

�

3� P

E

a

3

h

3

: (4.27)

12

The smaller h or the larger P , the larger the radial displaement u

r

.
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The orresponding leading order miropolar result for

h

a

! 0 reads, however,

u

r

(�; r)

j

�=0;�

�

3� P

E

a

3

h

3

1

1 + 6

�

`

1

h

�

2

: (4.28)

If one assumes that  > 0 (`

1

> 0) then the leading order miropolar behaviour will di�er by

several orders of magnitude as h ! 0 from the lassial response. This is not aeptable and

an only be avoided by taking  = 0.

The authors of the analytial solution have been aware of this feature. In their disussion of

the result they write [25, p.503℄: "The thin ring displaement ... exhibits the same harater-

isti sti�ening by miropolar e�ets as that found for other strutural elements. Marosopi

homogeneity onsiderations require that

`

1

h

� 1 sine any lengths assoiated with miropolar

e�ets should be small ompared to physial dimensions of the ring. Inreases of a few perent

in sti�ness over the lassial value are all that an be antiipated (to our in experiments)."

Braket my addition.

4.4 Bending of a retangular plate by lateral edge moments

An analytial solution formula for the ylindrial bending of a thin miropolar retangular plate

by lateral edge moments has been obtained in [24, 23℄. The lassial formula onneting the

uniform lateral edge moments M

x

and the orresponding in�nitesimal urvature

�

2

u

3

(x;y;z)

�x

2

for

small displaements u

3

in thikness diretion reads

M

x

= �D


b

�

2

u

3

(x; y; z)

�x

2

; 


b

� 1 ;

D =

E

(1� �

2

)

h

3

12

; lassial bending sti�ness ;

� =

�

2�

�

+ 2�+ �

=

�

2 (�+ �)

; lassial Poisson ratio; (4.29)

E > 0 ; lassial Young's modulus; h > 0 ; thikness of the plate :

Similarly as before, we fous on the relative sti�ness fator ompared to lassial elastiity. For

the linear elasti Cosserat solid, formula (4.29) holds also but with 


b

= 1 replaed by




b

= 1 +

12  (1� �

2

)

E h

2

: (4.30)

We note again that under ondition (3.7) and (3.9) the terms in the solution formula make sense,

as  > 0. It should be observed that (4.30) is independent of the Cosserat ouple modulus �



whih an be understood by the underlying assumption of pure bending. For a ontinuous solid

material, it is possible to onsider the thikness h being ever smaller. If we want to ensure a

bounded relative sti�ness 


b

as the thikness h! 0, the only way to obtain this is by setting

 = 0.

4.5 Stress onentration along a ylindrial hole

In [18, p.222℄ or [17, p.238℄ the analytial solution for the stress distribution around a ylindrial

hole with radius r > 0 of an in�nite plate is realled. The stress onentration fator K

t

whih

lassially is K

t

= 3 turns for the linear Cosserat model into

K

t

=

3 + F

1

1 + F

1

� 3 ; F

1

= 8 (1� �)N

2

1

4 +

r

2



2

+ 2

r



K

0

(

r



)

K

1

(

r



)

; 

2

=

 (�

�

+ �)

� (2�

�

+ �)

=

`

2

b

N

2

;

K

0

(�); K

1

(�) modi�ed Bessel funtions of the seond kind : (4.31)

In the genuine miropolar ase, the stress intensities are somewhat weakened: the Cosserat

solid has the ability to distribute the stresses more smoothly. We note that the stress intensity

fator is independent of �+ . For `

b

! 0 or N

2

! 0 it is easy to see that F

1

! 0 and we have

the lassial limit, as expeted.
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In order to investigate what happens for arbitrary small holes r ! 0, we observe that for

small � ! 0 the leading order behaviour of the Bessel-funtions is given as

K

0

(�) � ln

2



+

1

�

; K

1

(�) �

1

2

�(1)

2

�

; 

+

1

: Euler's onstant : (4.32)

Hene, F

1

! 2 (1� �)N

2

as r ! 0 while `

b

> 0. Therefore, arbitrary small holes give rise to

a non-lassial stress intensity fator if N

2

> 0. However, this is not in priniple in onit

with our physial understanding for a ontinuous solid sine the absolute dimensions of the hole

radius for an in�nitely extended medium annot have a spei� inuene.

5 The remaining linear elasti Cosserat solid

Gathering the results implied so far by the stipulation of bounded sti�ness for �



> 0 and

arbitrary thin samples we have

1. torsion of a ylinder: � +  = 0 or 	 =

�+

�+�+

=

3

2

.

2. bending of a ylinder: (� + ) ( � �) = 0.

3. bending of a urved bar and bending of a thin plate:  = 0.

The only onsistent hoie with these three onditions is � =  = 0. Sine I have not found an

analytial solution restriting the value for � we an still assume � > 0. Altogether, we are left

with the variational problem

I(u;A) =

Z




W (ru;A)� hf; ui � hM;Ai dV

�

Z

�

S

hf

S

; ui � haxl(skewM

S

); ~ni � haxlA;~ni dS 7! min : w.r.t. (u;A); (5.1)

" = ru�A; u

j

�

= u

d

;

8 � 2H

1

2

(�) :

Z

�

�(x)

�

haxlA;~ni � haxlA

d

; ~ni

�

dS = 0 ;

W (ru;A) = � k symruk

2

+

�



2

k urlu� 2 axlAk

2

R

3

+

�

2

(Div u)

2

+

�

2

�

Div axlA

�

2

:

�:~n

j

�

S

= f

S

; m:~n

j

�

S

= � [Div axlA℄ � ~n = haxl(skew(M

S

)); ~ni~n ;

�:~n

j

�
n(�

S

[�)

= 0 ; m:~n

j

�
n(�

S

[�)

= � [Div axlA℄ � ~n = 0 :

Interestingly enough, we are still able to prove existene: the funtional is quadrati and there-

fore onvex, it is also oeritive in the spae H

1;2

(
;R

3

)�H(Div;
; so(3;R)). Here,

H(Div;
; so(3;R)) := f� 2 L

2

(
;R

3

) j Div � 2 L

2

(
)g ; (5.2)

is a Hilbert-spae [28, p.27℄. This is enough to show existene in this spae by weak lower

semiontinuity arguments. In the spae H(Div;
; so(3;R)) it is (only) possible to presribe

weakly the normal omponents of axlA, i.e. haxlA;~ni on �

N

in the appropriate sense as

duality pairing where ~n is the unit outer normal on �

N

.

The ruial question we have to answer is whether for smooth funtions u; � 2 C

1

(
;R

3

)

with u

j

�

= 0 (no additional boundary ondition on the axial vetor �) there exists a positive

onstant 

K

suh that

Z




k symru(x)k

2

M

3�3

+ k urlu(x)� �(x)k

2

R

3

+ tr [ru(x)℄

2

+ jDiv �(x)j

2

dV

� 

K

�

kuk

2

H

1;2

(
;R

3

)

+ k�k

2

L

2

(
;R

3

)

+ kDiv�k

2

L

2

(
)

�

: (5.3)

It is easy to see that if the left hand side is zero, then the right hand side is also zero by using

Korn's �rst inequality on u. Then the usual ontradition argument together with weak lower

semiontinuity (see e.g. [47, Th.4.10℄) shows that the inequality must be true. This shows the

uniform onvexity of the problem in the spae H

1;2

(
;R

3

)�H(Div;
; so(3;R)). It implies that
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the minimizer exists and is unique and provides also for ontinuous dependene in this spae.

It is also possible to onsider a di�erent boundary ondition

13

for axlA at � instead of the

Dirihlet ondition for the normal omponent. This ondition introdues a oupling between

the two otherwise independent �elds (u;A), whih we all ultra weak onsistent oupling

ondition, namely in the appropriate weak sense as duality pairing

8 � 2 H

1

2

(�) :

Z

�

�(x)

�

h2 axlA(x); ~ni � hurlu(x); ~ni

�

dS = 0 : (5.4)

We note that hurlu; ~ni has a meaning on the boundary �, sine trivially urlu 2 H(Div)

provided that urlu 2 L

2

(
), whih is guaranteed for bounded energy I in (5.1) by Korn's

�rst inequality. In smooth lassial situations one is tempted to assume the identi�ation of

in�nitesimal ontinuum rotation and mirorotation

8x 2 
 : skewru(x) = A(x) , urlu(x)� 2 axlA(x) = 0 : (5.5)

In this sense, the ultra weak onsistent oupling ondition (5.4) requires lassial behaviour

on the Dirihlet boundary � in a weakened sense and turned otherwise: it is onsistent with

lassial response and does not introdue non-lassial e�ets through the boundary onditions

for the mirototations. It represents one ondition for the three entries of A.

14

Now onsider the minimization problem (5.1) without body ouples and surfae ouples, i.e.

M;M

S

= 0 and let either A be free everywhere on the boundary �
 or let A satisfy the

ultra weak onsistent oupling ondition on the Dirihlet boundary �. The minimizer (u;A) 2

H

1;2

(
;R

3

)�H(Div;
; so(3;R)) to this problem exists but Amust omply with axlA =

1

2

urlu

in 
, sine this will yield zero urvature energy (Div

1

2

urlu = 0) and zero oupling energy

k urlu � 2 axlAk

2

= 0. This is true for arbitrary inhomogeneous response of u, e.g. implied

by onsidering inhomogeneous Dirihlet boundary data for u or lassial inhomogeneous body

fores. Hene, non-lassial miropolar e�ets are in general not related to inhomogeneous

response whatsoever in this model. In order to ativate miropolar behaviour, we need other

boundary onditions for the mirorotation �eld A! Then the urvature parameter � will ome

into play, but it will be linked with the presribed boundary ondition and the parameter �



> 0

ats as a weighting fator for the inuene of the non-onsistent boundary ondition on the �nal

solution. This suggests that � is not a material parameter sine it will be diÆult to

determine this parameter independent of the boundary ondition. The only possible

remaining linear Cosserat problem (5.1) ensuring bounded sti�ness is not a viable possibility

for the desription of a ontinuous solid showing size e�ets.

6 Conlusion

That linear elasti Cosserat models may show singular sti�ening behaviour has already been

observed previously. In [43, p.17℄ we read "For some ombinations of elasti onstants, the

apparent modulus tends to in�nity as the bar or plate size goes to zero. Large sti�ening e�ets

might be seen in omposite materials onsisting of very sti� �bers or laminae in a ompliant

matrix. However, in�nite sti�ening e�ets are unphysial. For very slender speimens, it is likely

that a ontinuum theory more general than Cosserat elastiity; or use of a disrete strutural

model, would be required to deal with the observed phenomena".

A possible explanation for the type of unphysial singular response in torsion and bending for

slender speimens under ondition (3.4) (notably �



> 0) onsists of the following interpretation:

Cosserat elastiity assumes a perfetly rigid substruture. For ever smaller samples, the rigid

13

This is not a onsequene of the previously studied boundary onditions.

14

An extension to the geometrially exat Cosserat model is straight forward. We require for the deformation

' : 
 7! R

3

and the mirorotation R : 
 7! SO(3;R); R = exp(A); A 2 so(3;R), the ultra weak onsistent

oupling ondition

8 � 2 H

1

2

(�) :

Z

�

�(x)

�

h2 axl(logR(x)); ~ni � hurl'(x); ~ni

�

dS = 0 : (5.6)

Whether this is "the" orret �nite-strain extension is not yet lear. Note that in a purely planar setting

hurl'(x); ~ni = 0, suh that the axis of rotations R at the boundary must be perpendiular to the normal on

the boundary. This is automatially satis�ed by taking the axis of rotations parallel to e

3

.
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"ore" of the material is mainly responsible for the marosopi response. In torsion and

bending, this "ore" does not have the possibility to remain rigid, hene the unbounded sti�ness.

All of the depited problemati responses of a linear elasti Cosserat model arise in essene

in those ases, where geometrial length sales of a speimen are taken to be smaller than the

assumed Cosserat length sales. Indeed, in [25, p.503℄ it has been observed that " ...thikness

should at least be an order of magnitude greater then the smaller of the two harateristi

miropolar lengths to assure that marosopi homogeneity, assumed in the development of the

theory, is maintained."

The experimentally never observed singular sti�ening e�ets an always be mathed in the

linear Cosserat model by hosing �



> 0 small enough. In �tting of Cosserat parameters

for ontinuous solids therefore the smallness of �



is linked to the smallest experimentally

investigated speimen. Is it then surprising that the atually determined values for �



are

orders of magnitudes smaller than the shear modulus �?

However, the experimentalist Bell [4, p.161℄ notes "To be a material onstant of a given solid,

the numerial value, of ourse, must be independent of the size and shape of the speimen." This

statement ertainly applies to �



� 0 in the Cosserat model. But from the foregoing arguments

for the ontinuous solid the response would always depend on the investigated geometrial size

of the speimen, ontraditing the latter statement of Bell.

This problemati response of the linear Cosserat solid under the usually adopted onstitutive

ondition (3.4) with �



> 0 should not be onstrued, however, as being an inonsisteny of

the general, geometrially exat Cosserat model. Indeed, in [48℄ it has been shown that it is

possible and physially meaningful to onsider a geometrially exat Cosserat model, in whih

the Cosserat ouple modulus �



is set to zero. Suh a hoie leads to a bounded sti�ness in

torsion (in terms of the above interpretation: the "ore" an remain rigid in torsion and does

not lead to unbounded sti�ness sine the oupling with the displaement is one order weaker),

while smaller samples are still more rigid than larger samples. A linearization of suh a model

leads to lassial linear elastiity.

Therefore, our way to resolve the apparent diÆulty with sti�ening behaviour is simple but

unusual: the Cosserat ouple modulus �



� 0 is not a material parameter, it an be

set to zero; a linear elasti Cosserat model does not apply to any ontinuous solid

materials with arbitrary mirostruture.

We repeat that this statement does not onern man-made struture-grid frameworks (or

foams and bones) modelled as a genuine Cosserat ontinuum: here the spaing of the grid

provides a natural lower bound for a length sale below whih nothing exists and for whih the

investigation of ever smaller samples does not make sense. If, on the other side, the aim of the

Cosserat model is to furnish a regularization sheme, then one may take any omputationally

onvenient �



> 0 as a penalty parameter.

Otherwise, it remains to be seen whether by giving up the rigidity of the "ore", i.e. onsid-

ering a miromorphi solid, one an avoid the singular sti�ening behaviour in an in�nitesimal

ontext while keeping with the uniform positivity assumption and �



> 0.
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Notation

Let 
 � R

3

be a bounded domain with Lipshitz boundary �
 and let � be a smooth subset of �
 with non-

vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the salar produt on R

3

with

assoiated vetor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3� 3 seond order tensors, written

with apital letters. The standard Eulidean salar produt on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

,

and thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the following we omit the index R

3

;M

3�3

.

The identity tensor on M

3�3

will be denoted by 11, so that tr [X℄ = hX; 11i. We set sym(X) =

1

2

(X

T

+ X)

and skew(X) =

1

2

(X � X

T

) suh that X = sym(X) + skew(X). For X 2 M

3�3

we set for the deviatori

part devX = X �

1

3

tr [X℄ 11 2 sl(3) where sl(3) is the Lie-algebra of traeless matries. The Lie-algebra of

SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X℄ = 1g is given by the set so(3) := fX 2 M

3�3

jX

T

= �Xg

of all skew symmetri tensors. The anonial identi�ation of so(3;R) and R

3

is denoted by axl(A) 2 R

3

for

A 2 so(3;R). Finally, w.r.t. abbreviates with respet to.
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