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Abstra
t

We investigate weaker than usual 
onstitutive assumptions in linear Cosserat theory

still providing for existen
e and uniqueness and show a 
ontinuous dependen
e result for

Cosserat 
ouple modulus �




! 0. This result is needed when using Cosserat elasti
ity not

as a physi
al model but as a numeri
al regularization devi
e.

Thereafter it is shown that the usually adopted material restri
tions of uniform pos-

itivity for a linear Cosserat model 
annot be 
onsistent with experimental �ndings for


ontinuous solids. The analyti
al solutions for both the torsion and the bending prob-

lem in general predi
t an unbounded sti�ness for ever thinner samples. This unphysi
al

behaviour 
an only be avoided for spe
i�
 
hoi
es of parameters in the 
urvature energy ex-

pression. However, these 
hoi
es do not satisfy the usual 
onstitutive restri
tions. We show

that the possibly remaining linear elasti
 Cosserat problem is nevertheless well-posed but

that it is impossible to determine the appearing 
urvature modulus independent of bound-

ary 
onditions. This puts a serious doubt on the use of the linear elasti
 Cosserat model

(or the geometri
ally exa
t model with �




> 0) for the physi
ally 
onsistent des
ription of


ontinuous solids like poly
rystals in the framework of elasto-plasti
ity.

The problem 
an be avoided in geometri
ally exa
t Cosserat models if the Cosserat


ouple modulus �




is set to zero.
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1 Introdu
tion

This note establishes well-posedness of the linear elasti
 Cosserat model in parameter ranges

hitherto not 
onsidered and it reveals an in
onsisten
y of the usually adopted uniform positivity

of the free-energy for the linear elasti
 Cosserat model with experimental �ndings for 
ontinuous

solids like poly
rystals.

General 
ontinuum models involving independent rotations have been introdu
ed by

the Cosserat brothers [9℄ at the beginning of the last 
entury. Their nonlinear, geometri
ally

exa
t development has been largely forgotten for de
ades only to be redis
overed in a linearized

setting in the early sixties [54, 29, 1, 21, 19, 59, 60, 31, 46, 58, 61℄. At that time theoreti
al

investigations on non-
lassi
al extended 
ontinuum theories were the main motivation [40℄.

Sin
e then, the original Cosserat 
on
ept has been generalized in various dire
tions, notably

by Eringen and his 
oworkers who extended the Cosserat 
on
ept to in
lude also mi
roinertia

e�e
ts and to rename it subsequently into mi
ropolar theory. For an overview of these so


alled mi
ro
ontinuum theories we refer to [20, 18, 6, 5, 7, 32, 45, 53℄.

The Cosserat model in
ludes in a natural way size e�e
ts, i.e. small samples behave


omparatively sti�er than large samples. These e�e
ts have re
ently re
eived new attention

in 
onjun
tion with nano-devi
es. From a 
omputational point of view, theories with size-

e�e
t are in
reasingly used to regularize non-wellposed situations, e.g. shear-banding in

elasto-plasti
ity without hardening [39, 15, 57, 11, 13, 12℄. It has been shown by the author that

in�nitesimal elasto-plasti
ity augmented with (elasti
) Cosserat e�e
ts indeed leads to a well-

posed problem [51℄. The mathemati
al analysis establishing well-posedness for the in�nitesimal

strain, Cosserat elasti
 solid is presented in [34, 16, 33, 26, 27℄ and in [38, 36, 37℄ for so 
alled

linear mi
rostret
h models. This analysis is based on the uniform positivity of the free

energy of the Cosserat solid, whi
h in turn implies that the Cosserat 
ouple modulus �




is

stri
tly positive. The author has extended the existen
e results for both the Cosserat model

and the more general mi
romorphi
 models to the geometri
ally exa
t, �nite-strain 
ase, see

e.g. [52, 49, 50℄.

The important problem of the determination of Cosserat material parameters for 
ontinu-

ous solids with random mi
rostru
ture must still be 
onsidered an open problem while the use

of a Cosserat model for the simpli�ed 
omputation of man-made grid frameworks is su

essful in

the sense that parameters for the "homogenized" Cosserat model, repla
ing the grid-framework,


an be expli
itly 
al
ulated.

Over the years, a variety of boundary value problems have been solved in terms of analyti
al

expressions whi
h are then used for the determination of material 
onstants in the in�nitesimal

linear Cosserat model, see [35℄. Notably, the solution of the pure torsion problem with pres
ribed

torque at the end fa
es has been given in [24, 23, 55℄ and used in [24, 23, 2, 44℄ to determine the

length s
ales of various materials. Similarly, an analyti
al solution for the pure bending problem

is available [56℄. These formulas will be investigated w.r.t. their behaviour for slender or thin

spe
imens. A series of experiments with spe
imens of di�erent slenderness is usually performed
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in order to determine the Cosserat parameters [23, 44℄. We observe an unphysi
al unbounded

sti�ening behaviour for slender spe
imens whi
h seems to make it impossible to arrive at


onsistent values for these parameters: the value for the parameters will depend strongly on

the smallest investigated spe
imen size. This in
onsisten
y may be in part responsible for

the fa
t that 1. (linear) Cosserat parameters for 
ontinuous solids have never gained general

a

eptan
e even in the "Cosserat 
ommunity" and 2. that the linear elasti
 Cosserat model has

never been really a

epted by a majority of applied s
ientists as a useful model to des
ribe size

e�e
ts in 
ontinuous solids.

It is of importan
e to note that this in
onsisten
y is not ne
essarily en
ountered in the

geometri
ally exa
t Cosserat model. Indeed, the geometri
ally exa
t Cosserat model with true

rotations R 2 SO(3;R) instead of in�nitesimal mi
rorotations A 2 so(3;R) has been shown

to admit minimizers in [48℄ also for zero Cosserat 
ouple modulus �




= 0 in whi
h 
ase the

previously dis
ussed unbounded sti�ness for ever smaller spe
imens does not appear. The au-

thor believes that the geometri
ally exa
t Cosserat model with �




= 0 
an do justi
e to the

Cosserat approa
h as a viable physi
al model for a 
ontinuous solid whi
h in
orporates length

s
ale e�e
ts. A zero Cosserat 
ouple modulus �




= 0 implies that the Cau
hy-stress

tensor is symmetri
 to �rst order and length s
ale e�e
ts are of se
ond order. This

is a

eptable for a 
ontinuous solid.

In view of the far rea
hing 
onsequen
es of our development and the 
ertainly 
ontroversial

nature of the result that �




must be zero, it is ne
essary to 
learly distinguish between the

di�erent possible �elds of appli
ation of the Cosserat model and to indi
ate pre
isely to whi
h


ase our result relates:

1. The Cosserat model as a physi
ally 
onsistent des
ription of a 
ontinuous solid with size

e�e
ts. As an example we may 
onsider a poly
rystalline nano-
opper wire with di�erent

grain sizes. Clearly, the body of interest is not homogeneous, but we think of the material

as �lling the whole spa
e. It is possible to investigate experimentally spe
imens of very

small size [22℄. The Cosserat model should be able to re
e
t this situation. Whether this

is true is partly the 
on
ern of this 
ontribution and our answer will be negative for the

linear elasti
 Cosserat model and the geometri
ally exa
t Cosserat model with �




> 0.

2. The Cosserat model as a homogenized repla
ement for man made grid-stru
tures or for

materials with periodi
 mi
rostru
ture. This is possible. The 
orresponding moduli 
an

sometimes ab initio be 
al
ulated. The periodi
ity 
ell provides e.g. a lower bound for

the length s
ale. We are not 
on
erned with this appli
ation.

3. The Cosserat model as a homogenized repla
ement for man made foams [14, 41, 52℄ or

bones [55, 2, 44℄. Foams and bones are 
ertainly not 
ontinuous solids: the smallest

possible size whi
h the Cosserat model should be able to re
e
t is given by the 
ell size.

Considering the Cosserat model then for spe
imen-sizes below the 
ell size does not make

sense. We do not 
onsider this appli
ation here.

4. The Cosserat model as a homogenized model for rigid spheres in 
onta
t, e.g. sand and

other granular materials [8, 3℄. The Cosserat parameters are linked to properties of the

spheres and notably �




> 0 is related to the "sliding sti�ness" between the parti
les at

their 
onta
t zones while the 
urvature parameters are related to "rolling sti�ness" and

"twisting sti�ness" [8℄. Sliding gives rise to fri
tion and fri
tion is generally a dissipative

me
hanism. Whether there 
an be elasti
 energy storage due to inter-parti
le rotation is

at least questionable. We do not 
onsider this appli
ation here.

5. The Cosserat model as a lo
alization limiter and approximation to non-wellposed situ-

ations [39, 15, 57, 11, 13, 12℄. Here, one is not really interested in the introdu
ed size

e�e
t but in the regularizing power of the Cosserat model. If applied to 
ontinuous solids,

sti�ening e�e
ts are not ne
essarily wel
ome. We are partly 
on
erned with this topi
 in

this 
ontribution.

It should be 
lear that the di�erent appli
ations demand di�erent sets of 
onstitutive parame-

ters. An investigation into this problem, however, seems not to have been done.

This 
ontribution is organized as follows: �rst, we re
all the linear elasti
 stati
 isotropi


Cosserat model in variational form and dis
uss weaker 
onditions than the uniform positivity

3



of the strain and 
urvature energy whi
h lead to a well-posed boundary value problem. We

show that under these weaker 
onditions solutions still depend 
ontinuously on �




even for

�




! 0. This result rigourously justi�es the use of the Cosserat model as an approximation to


lassi
al elasti
ity or its use as lo
alization limiter in elasto-plasti
ity.

Se
ond, we re
all one aspe
t of the well known analyti
al solution formulas, namely the 
om-

parative sti�ness of the linear Cosserat response over the 
lassi
al response. It is shown that in

order to avoid an unbounded 
omparative sti�ness for ever thinner samples in torsion (possible

limit for 
ontinuous solids), one has to satisfy an additional 
ondition on the 
oeÆ
ients of the

Cosserat 
urvature energy. This 
ondition is in 
on
i
t with uniform positivity. Pro
eeding

similarly for the pure bending of a 
ir
ular tube and the bending of a 
urved thin beam, the

imposed restri
tions on the 
urvature parameter lead to an unusual 
urvature expression in-


luding only the spheri
al part of the 
ouple-stress tensor.

1

It is shown that this remaining

Cosserat model is still well-posed in a very weak Sobolev spa
e. However, mi
ropolar response

is not a
tivated for any inhomogeneous boundary value problem: the determination of the (one)

remaining 
urvature parameter 
an only be obtained under 
ertain boundary 
onditions on the

mi
rorotations, sin
e otherwise the 
lassi
al elasti
ity solution is re
overed. This fa
t ex
ludes

that this parameter 
an be a material parameter.

2

Altogether, this development puts a serious

doubt on the use of a linear elasti
 Cosserat model for the physi
al 
onsistent des
ription of


ontinuous solids. The notation is found in the appendix.

2 The linear elasti
 isotropi
 Cosserat model revisited

2.1 The linear elasti
 Cosserat model in variational form

For the displa
ement u : 
 � R

3

7! R

3

and the skew-symmetri
 in�nitesimal mi
roro-

tation A : 
 � R

3

7! so(3;R) we 
onsider the two-�eld minimization problem

I(u;A) =

Z




W

mp

(") +W


urv

(r axl(A))� hf; ui � hM;Ai dV (2.1)

�

Z

�

S

hf

S

; ui � hM

S

; Ai dS 7! min : w.r.t. (u;A);

under the 
onstitutive requirements and boundary 
onditions

3

" = ru�A; A

j

�

= A

d

2 so(3;R); u

j

�

= u

d

;

W

mp

(") = � k sym "k

2

+ �




k skew "k

2

+

�

2

tr [sym "℄

2

strain energy

= � k symruk

2

+ �




k skew(ru�A)k

2

+

�

2

tr [symru℄

2

(2.3)

= � k dev symruk

2

+ �




k skew(ru�A)k

2

+

2�+ 3�

6

tr [symru℄

2

= � k symruk

2

+

�




2

k 
urlu� 2 axlAk

2

R

3

+

�

2

(Div u)

2

;

� := axl(A) 2 R

3

; k = r� ; k 
url�k

2

R

3

= 4k axl skewr�k

2

R

3

= 2k skewr�k

2

M

3�3

;

W


urv

(r�) =


 + �

2

k symr�k

2

+


 � �

2

k skewr�k

2

+

�

2

tr [r�℄

2


urvature energy

=


 + �

2

k dev symr�k

2

+


 � �

2

k skewr�k

2

+

3�+ (� + 
)

6

tr [r�℄

2

=




2

kr�k

2

+

�

2

hr�;r�

T

i+

�

2

tr [r�℄

2

1

whi
h remains indeterminate in the indeterminate 
ouple stress model of Mindlin.

2

A material parameter is by de�nition independent of boundary 
onditions.

3

More detailed than stri
tly ne
essary in order to a

ommodate the di�erent representations in the literature.

Note that axlA� � = A:� for all � 2 R

3

, su
h that

axl

0

�

0 � �

�� 0 


�� �
 0

1

A

:=

0

�

�


�

��

1

A

; A

ij

= "

ijk

� axl(A)

k

; (2.2)

where "

ijk

is the totally antisymmetri
 permutation tensor. Here, A:� denotes the appli
ation of the matrix A

to the ve
tor � and a� b is the usual 
ross-produ
t.

4



=


 + �

2

k symr�k

2

+


 � �

4

k 
url�k

2

R

3

+

�

2

(Div �)

2

:

Here, f;M are volume for
e and volume 
ouples, respe
tively; f

s

;M

S

are surfa
e tra
tions

and surfa
e 
ouples at �

S

� �
, respe
tively, while u

d

; A

d

are Diri
hlet boundary 
onditions

for displa
ement and in�nitesimal mi
rorotation at � � �
. The strain energy W

mp

and the


urvature energy W


urv

are the most general quadrati
 forms in the non-symmetri
 strain

" = ru � A and the mi
ropolar 
urvature k = r axl(A) (
urvature-twist tensor) in the

isotropi
, 
entro-symmetri
 
ase. The parameters �; �[MPa℄ are the 
lassi
al Lam�e moduli

and �; �; 
 are additional mi
ropolar moduli with dimension [Pa �m

2

℄ = [N℄ of a for
e. In

other 
ontributions of the author, it is preferred to write �; �; 
 � �L

2




�

0

; �L

2




�

0

; �L

2







0

with


orresponding non-dimensional parameters �

0

; �

0

; 


0

and a material length s
ale L




> 0 [m℄.

The additional parameter �




� 0[MPa℄ in the strain energy is the Cosserat 
ouple mod-

ulus. For �




= 0 the two �elds of displa
ement and mi
rorotations de
ouple and one is left

formally with 
lassi
al linear elasti
ity for the displa
ement u. The author is not aware of a

rigourous mathemati
al study of the limit behaviour as �




! 0. In the 
ase of a pure Neumann

problem, the resulting system of de
oupled equations may not have enough equations to provide

for a unique equilibrium solution if �




= 0. For the torsion problem, this "pathologi
al" situa-

tion has been presented in [42℄. Nevertheless, in this situation, the minimizer of the variational

problem remains unique and 
oin
ides with the 
lassi
al elasti
ity solution.

2.2 The linear elasti
 Cosserat balan
e equations: hyperelasti
ity

Taking free variations of the energy in (2.1) w.r.t. both displa
ement u 2 R

3

and in�nitesimal

mi
rorotationA 2 so(3;R), one arrives at the equilibrium system (the Euler-Lagrange equations

of (2.1))

Div � = f ; �Divm = 2�




� axl skew "+ axl skew(M) ; " = ru�A;

� = 2� � sym "+ 2�




� skew "+ � � tr ["℄ � 11 = (�+ �




) � "+ (�� �




) � "

T

+ � � tr ["℄ � 11 ;

m = 
r�+ �r�

T

+ � tr [r�℄ � 11; � = axl(A) ; (2.4)

A

j

�

= A

d

2 so(3;R); u

j

�

= u

d

; �:~n

j

�

S

= f

S

; m:~n

j

�

S

=

1

2

axl(skew(M

S

)) ;

�:~n

j

�
n(�

S

[�)

= 0 ; m:~n

j

�
n(�

S

[�)

= 0 :

Here, m is the 
ouple stress tensor. For 
omparison, in [18, p.111℄ or [2, 44, 24℄ the elasti


moduli in our notation are de�ned to be � = �

�

+

�

2

; �




=

�

2

.

4

But in this last de�nition (see

[10℄), �

�


annot be regarded as one of the 
lassi
al Lam�e 
onstants.
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2.3 The linear elasti
 Cosserat balan
e equations: non-variational


ase

By splitting the Cosserat 
ouple modulus �




into di�erent parameters �

a




and �

b




in the balan
e

of linear and angular momentum equation, the variational 
hara
ter is lost and one must solve

a

ordingly

Div � = f ; �Divm = 2�

b




� axl skew "+ axl skew(M) ; " = ru�A;

� = 2� � sym "+ 2�

a




� skew "+ � � tr ["℄ � 11 ;

m = 
r�+ �r�

T

+ � tr [r�℄ � 11; � = axl(A) ; (2.5)

A

j

�

= A

d

2 so(3;R); u

j

�

= u

d

; �:~n

j

�

S

= f

S

; m:~n

j

�

S

=

1

2

axl(skew(M

S

)) :

4

In [36, 18℄ the Cau
hy stress tensor � is de�ned as � = (�

�

+ �) "+ �

�

"

T

+ � tr ["℄ � 11 with given 
onstants

�

�

; �; � and one must identify �

�

+ � = �+ �




; �

�

= �� �




.

5

A simple de�nition of the Lam�e 
onstants in mi
ropolar elasti
ity is that they should 
oin
ide with the


lassi
al Lam�e 
onstants for symmetri
 situations. Equivalently, they are obtained by the 
lassi
al formula

� =

E

2(1+�)

; � =

E�

(1+�)(1�2�)

, where E and � are uniquely determined from uniform tra
tion where Cosserat

e�e
ts are absent.

6

Unfortunately, while authors are 
onsistent in their usage of material parameters, one should be 
areful

when identifying the a
tually used parameters with his own usage. The di�erent representations in (2.3) might

be useful for this purpose.

5



This form of equation may be more suitable for 
ertain limit problems. For example one may


onsider �

a




! 0 while �

b




= � = 
onst, espe
ially in a geometri
ally exa
t 
ontext where �

a




= 0

still provides for a se
ond order 
oupling between mi
rorotations and deformations..

2.4 The indeterminate 
ouple stress model

This model is formally obtained by setting �




= 1, whi
h enfor
es the 
onstraint 
urlu =

2axlA [46, 59℄. For the displa
ement u : 
 � R

3

7! R

3

we 
onsider therefore the one-�eld

minimization problem

I(u) =

Z




W

mp

(ru) +W


urv

(r 
urlu)� hf; ui �

1

2

haxl(M); 
urlui dV (2.6)

�

Z

�

S

hf

S

; ui �

1

2

haxl(M

S

); 
urlui dS 7! min : w.r.t. u;

under the 
onstitutive requirements and boundary 
onditions

W

mp

(") = � k symruk

2

+

�

2

tr [symru℄

2

; u

j

�

= u

d

; 
urlu

j

�

= (
urlu)

d

2 R

3

;

W


urv

(r 
urlu) =


 + �

8

k symr 
urluk

2

+


 � �

8

k skewr 
urluk

2

: (2.7)

In this limit model, the 
urvature parameter �, related to the spheri
al part of the 
ouple stress

tensor m remains indeterminate, sin
e Div axlA = Div

1

2


urlu = 0. We remark the intri
ate

relation between �




!1 and the indetermina
y of �.

3 Constitutive restri
tions and well-posedness for Cosserat

hyperelasti
ity

3.1 Pointwise positivity of the mi
ropolar energy

For a mathemati
al treatment in the hyperelasti
 
ase we may require that for arbitrary nonzero

"; k 2 M

3�3

one has the lo
al positivity 
ondition

8 "; k 6= 0 : W

mp

(") > 0 ; W


urv

(k) > 0 : (3.1)

This 
ondition is most often invoked as the basis of uniqueness proofs in stati
 mi
ropolar

elasti
ity, see e.g. [34, 33, 18, 17℄. By splitting " in its deviatori
 and volumetri
 part, i.e.

writing

" = dev sym "+ skew "+

1

3

tr ["℄ � 11 (3.2)

and inserting this into W

mp

one gets

W

mp

(") = � k dev sym "k

2

+ �




k skew "k

2

+

2�+ 3�

6

tr ["℄

2

: (3.3)

Sin
e all three 
ontributions in (3.2) 
an be 
hosen independent of ea
h other, one obtains from

(3.1) the positive-de�niteness 
ondition

� > 0 ; 2�+ 3� > 0 ; �




> 0 ;


 + � > 0 ; (
 + �) + 3� > 0 ; 
 � � > 0 ; (
 > 0) ; (3.4)

where the argument pertaining to the 
urvature energy W


urv

is exa
tly similar, 
f. [36, (2.9)℄.

In e�e
t, one ensures uniform 
onvexity of the integrand w.r.t "; k. This lo
al positivity


ondition ex
ludes, however, 
lassi
al linear elasti
ity, sin
e �




> 0 introdu
es the Cosserat

e�e
ts to �rst order.

7

By a thermodynami
al argument [18℄ one may similarly infer the non-negativity of

the energy (material stability), leading to

� � 0 ; 2�+ 3� � 0 ; �




� 0 ;


 + � � 0 ; (
 + �) + 3� � 0 ; 
 � � � 0 ; (
 � 0) ; (3.5)

7

In the geometri
ally exa
t 
ase �




= 0 would lead to a se
ond order 
oupling only.

6



whi
h allows for 
lassi
al linear elasti
ity but whi
h 
ondition alone is not strong enough to

guarantee existen
e and uniqueness of the 
orresponding boundary value problem. Nevertheless,

all 
onstitutive restri
tions on a linear Cosserat solid must at least be 
onsistent with (3.5) from

a purely physi
al point of view.

8

3.2 Coer
ivity of the mi
ropolar energy

What one really needs for a mathemati
al treatment of the mixed boundary value problem in the

variational 
ontext, is, however, a 
oer
ivity 
ondition, in the sense that a bounded energy

I implies a bound on the displa
ement u and the in�nitesimal mi
rorotation A in appropriate

Sobolev spa
es. More pre
isely, for H

1

-
oer
ivity it must hold that

I(u;A) � K

1

<1 ) u 2 H

1;2

(
;R

3

); A 2 H

1;2

(
; so(3;R)) : (3.6)

In the 
ase of Diri
hlet boundary 
onditions for u and A on some part of the boundary � � �


with non-vanishing two-dimensional Hausdor� measure this 
oer
ivity requirement may

hold e.g. if one of the following four set of 
onditions is satis�ed:

� > 0 ; 2�+ 3� > 0 ; �




� 0 ;


 + � > 0 ; (
 + �) + 3� > 0 ; 
 � � � 0 ; (
 > 0) (3.7)

� � 0 ; �




> 0 ; � > 0


 + � � 0 ; 
 � � > 0 ; � > 0 ; (
 > 0) (3.8)

� > 0 ; 2�+ 3� > 0 ; �




� 0 ;


 + � � 0 ; 
 � � > 0 ; � > 0 ; (
 > 0) (3.9)

� � 0 ; �




> 0 ; � > 0


 + � > 0 ; (
 + �) + 3� > 0 ; 
 � � � 0 ; (
 > 0) : (3.10)

We disregard 
onditions (3.8) and (3.10) sin
e they would ex
lude linear elasti
ity from the onset

and they need Diri
hlet 
onditions everywhere on the boundary u

j

�




to provide for 
oer
ivity.

Conditions (3.7) and (3.9) do not ex
lude 
lassi
al linear elasti
ity, sin
e the Cosserat


ouple modulus �




may be set to zero. For (3.7) and (3.9) the integrand is therefore 
onvex in

"; k but not uniformly 
onvex. Nonetheless, (3.7) or (3.9) is enough to provide for uniqueness in

the stati
 
ase (details subsequently, (3.9) needs spe
ial boundary 
onditions for A). The task

is then to de
ide whether (3.7) or (3.9) is more appropriate. Sin
e (3.7) provides for 
oer
ivity

in the most general 
ase as far as boundary 
onditions are 
on
erned it seems to be appropriate.

Nevertheless, the di�erent 
onstitutive assumptions must be 
onfronted with experiments.

In terms of the non-dimensional polar ratio 	 =

�+


�+�+


one has

	 :=

� + 


�+ � + 


=

3(� + 
)

3(�+ � + 
)

=

3(� + 
)

3�+ (� + 
) + 2(� + 
)

; (3.11)

whi
h leads with (3.7) to the restri
tion 0 < 	 <

3

2

while (3.9) imposes 0 � 	 < 1.

3.3 Uniqueness for �




� 0 and 
oer
itive 
urvature in 
ase (3.7)

Let us see why the linear Cosserat model still has unique solutions even for �




= 0 in 
ase of

(3.7). The uniqueness under the mu
h stronger assumption (3.4) is a well known fa
t.

In order to show uniqueness, it is suÆ
ient to look at the se
ond derivative of the energy I

w.r.t. u and A. It is easy to see that for in
rements ~u 2 C

1

(
;R

3

) and

~

A 2 C

1

(
; so(3;R)),

8

For � =

�

2(�+�)

=

�

2�+3���


ondition (3.5) implies the well-known bound �1 � � �

1

2

, while (3.7) and

(3.9) require �1 < � <

1

2

, but (3.8) and (3.10) would impose 0 � � �

1

2

.

7



respe
ting the Diri
hlet-boundary 
onditions, i.e. ~u

j

�

= 0 and

~

A

j

�

= 0 one has

D

2

(u;A)

I(u;A):[(~u;

~

A); (~u;

~

A)℄

=

Z




2� k symr~uk

2

+ 2�




k skewr~u�

~

Ak

2

+ � tr [symr~u℄

2

+ (� + 
) k symr axl

~

Ak

2

+ (
 � �) k skewr axl

~

Ak

2

+ � tr

h

r axl

~

A

i

2

dV : (3.12)

For �




= 0; � > 0 and 
oer
itive 
urvature expression, i.e. assuming (3.7)

2

one obtains for some


onstant 


1

> 0 depending on (3.7)

2

the estimate

D

2

(u;A)

I(u;A):[(~u;

~

A); (~u;

~

A)℄ �

Z




2� k symr~uk

2

+ 


1

k symr axl

~

Ak

2

dV : (3.13)

Using Korn's �rst inequality for both ~u and axl

~

A one gets with some positive 
onstant 


K

> 0,

depending on the domain 


D

2

(u;A)

I(u;A):[(~u;

~

A); (~u;

~

A)℄ � 


K

�

k~uk

2

H

1;2

(
;R

3

)

+ k axl

~

Ak

2

H

1;2

(
;R

3

)

�

= 


K

�

k~uk

2

H

1;2

(
;R

3

)

+

1

2

k

~

Ak

2

H

1;2

(
;so(3;R))

�

: (3.14)

This shows uniform positivity of the se
ond derivative. The energy I is stri
tly 
onvex, the

minimizers are unique.

3.4 Uniqueness for �




� 0 and 
oer
itive 
urvature in 
ase (3.9)

Let us investigate �rst the 
ase where Diri
hlet 
onditions for A are pres
ribed on the entire

boundary �
. In 
ase of 
ondition (3.9) the same 
al
ulations as before lead to

D

2

(u;A)

I(u;A):[(~u;

~

A); (~u;

~

A)℄ �

Z




2� k symr~uk

2

+ 


1

k skewr axl

~

Ak

2

+ � tr

h

r axl

~

A

i

2

dV

=

Z




2� k symr~uk

2

+




1

2

k 
url[axl

~

A℄k

2

+ �

�

Div[axl

~

A℄

�

2

dV

� 


K

k~uk

2

H

1;2

(
;R

3

)

+ 


GR

k

~

Ak

2

H

1;2

(
;so(3;R))

; (3.15)

where we have made use of Korn's �rst inequality for the �rst term in ~u and the fa
t that the

operators 
url and Div together 
ontrol the total gradient, see [28, p.36℄, i.e. the inequality

9C > 0 8� 2 C

1

0

(
;R

3

) :

Z




k 
url�(x)k

2

R

3

+ (Div �(x))

2

dV � C k�k

2

H

1;2

(
;R

3

)

; (3.16)

holds for smooth fun
tions with 
ompa
t support C

1

0

(
;R

3

). Here we see that �




= 0 is per-

mitted provided that axl

~

A = 0 on �
 identi
ally.

In 
ase of 
ondition (3.9) with �




> 0 it is possible to relax the requirement on the boundary


ondition for the mi
rorotations. It suÆ
es to pres
ribe the normal 
omponent haxlA;~ni =

B(x) on �
, while the tangential 
omponents of axlA may be arbitrary. Now we 
ompute

D

2

(u;A)

I(u;A):[(~u;

~

A); (~u;

~

A)℄

=

Z




2� k symr~uk

2

+ �




k 
urlu� 2 axl

~

Ak

2

+ � tr [symr~u℄

2

+

(
 � �)

2

k 
url axl

~

Ak

2

+ � tr

h

r axl

~

A

i

2

dV

=

Z




2� k symr~uk

2

+ �




k 
url ~uk

2

� 4�




h
url ~u; axl

~

Ai+ 4�




k axl

~

Ak

2

+ � tr [symr~u℄

2

+

(
 � �)

2

k 
url axl

~

Ak

2

+ � tr

h

r axl

~

A

i

2

dV

�

Z




2� k symr~uk

2

� �




j1�

2

"

j kr~uk

2

+ �




(4� 2")k axl

~

Ak

2

+ � tr [symr~u℄

2

+

(
 � �)

2

k 
url axl

~

Ak

2

+ � tr

h

r axl

~

A

i

2

dV

� (2� 


K

� �




j1�

2

"

j) k~uk

2

H

1;2

(
;R

3

)

+ 


GR

k

~

Ak

2

H

1;2

(
;so(3;R))

; (3.17)

8



where, with haxl

~

A;~ni

j

�


= 0 and for some 0 < " < 2 we made use of the following inequality

for axl

~

A 2 R

3

Theorem 3.1

Let 
 � R

3

be a bounded, open region with a C

1;1

-boundary �
. Then

9C

+

> 0 : 8� 2 C

1

(
;R

3

) :

k�k

2

H

1;2

(
;R

3

)

� C

+

�

k�k

2

L

2

(
)

+ k 
url�k

2

L

2

(
)

+ kDiv �k

2

L

2

(
)

+ kh�; ~nik

2

H

1

2

(�
)

�

(3.18)

Proof. See [28, p.56,Cor.3.7℄. �

3.5 Continuous dependen
e for �




� 0 and (3.7).

Apparently, there is no result in the literature whi
h shows 
ontinuous dependen
e on the

parameter �




in 
ase of (3.7). This is, however, 
ru
ial in those 
ases where one wants to use

the Cosserat model as a regularizing model for otherwise 
lassi
al situations by letting �




! 0.

The 
ontinuous dependen
e result for the 
ase (3.4) i.e. �




� 


+

> 0 is, again, well-established,

even in the mi
rostret
h 
ase [36℄.

In order to show 
ontinuous dependen
e of the solution as �




! 0 we 
onsider two solutions,


orresponding to �

1




6= �

2




and to the same boundary data, di�erent volume for
e and zero

volume 
ouples. For simpli
ity of exposition only we assume � = 
 > 0 and � = � = 0. The

equations satis�ed, respe
tively, are then

Div

�

2� symru

1

+ 2�

1




skew(ru

1

�A

1

)

�

= f

1

;

Div

�

2� symru

2

+ 2�

2




skew(ru

2

�A

2

)

�

= f

2

;

�Div

�

2� symr axlA

1

�

= 2�

1




axl skew(ru

1

�A

1

) ;

�Div

�

2� symr axlA

2

�

= 2�

2




axl skew(ru

2

�A

2

) : (3.19)

For the di�eren
es, û = u

1

� u

2

and

^

A = A

1

�A

2

we obtain the two equations

Div

2

4

2� symrû+ 2�

1




skew(rû�

^

A)

| {z }

=:�̂

3

5

=

^

f + 2 (�

2




� �

1




)Div

�

skew(ru

2

�A

2

)

�

;

Div

h

2� symr axl

^

A

i

= �2�

1




axl skew(rû�

^

A) + 2 (�

2




� �

1




) axl skew(ru

2

�A

2

) ; (3.20)

with

^

f = f

1

� f

2

. Multiplying the �rst equation with the di�eren
e û and using the produ
t

rule shows for �̂ := 2� symrû+ 2�

1




skew(rû�

^

A)

�h�̂;rûi+Div

�

�

T

:û

�

= h

^

f; ûi � 2(�

2




� �

1




)hskew(ru

2

�A

2

);rûi

+ 2(�

2




� �

1




)Div

�

�

skew(ru

2

�A

2

)

�

T

:û

�

: (3.21)

After integration, using the divergen
e-theorem and applying the boundary 
onditions (natural

boundary 
onditions for � on the free boundary �

N

) one is left with

�

Z




h�̂;rûi dV =

Z




h

^

f; ûi � 2(�

2




� �

1




)hskew(ru

2

�A

2

);rûi dV

+ 2(�

2




� �

1




)

Z

�

N

hskew(ru

2

�A

2

):~n; ûi dS ; (3.22)

where �

N

= �
 n �. Further on we assume that �

N

= ;. Then we have

Z




h�̂;rûi dV =

Z




�h

^

f; ûi+ 2(�

2




� �

1




)hskew(ru

2

�A

2

);rûi dV : (3.23)

Be
ause

h�̂;rûi = h2� symrû+ 2�

1




skew(rû�

^

A);rûi

= h2� symrû+ 2�

1




skew(rû�

^

A);rû�

^

Ai+ h2� symrû+ 2�

1




skew(rû�

^

A);

^

Ai

= 2� k symrûk

2

+ 2�

1




k skew(rû�

^

A)k

2

+ 2�

1




hskew(rû�

^

A);

^

Ai ; (3.24)

9



multipli
ation of (3.20)

2

with axl

^

A 2 R

3

and taking into a

ount that hX;Y i

M

3�3

= 2haxlX; axlY i

R

3

for X;Y 2 so(3;R) shows that

2�

1




hskew(rû�

^

A);

^

Ai = �2hDiv

h

2� symr axl

^

A

i

; axl

^

Ai

+ 2 (�

2




� �

1




)hskew(ru

2

�A

2

);

^

Ai : (3.25)

Inserting this relation into the former yields

h�̂;rûi = 2� k symrûk

2

+ 2�

1




k skew(rû�

^

A)k

2

� 2hDiv

h

2� symr axl

^

A

i

; axl

^

Ai

+ 2 (�

2




� �

1




)hskew(ru

2

�A

2

);

^

Ai : (3.26)

Hen
e with the boundary 
onditions on

^

A we obtain from the divergen
e theorem that

Z




h�̂;rûi =

Z




2� k symrûk

2

+ 2�

1




k skew(rû�

^

A)k

2

+ 4� k symr axl

^

Ak

2

+ 2 (�

2




� �

1




)hskew(ru

2

�A

2

);

^

Ai dV : (3.27)

Combining (3.23) with (3.27) and using H�olders-inequality shows the estimate

2� k symrûk

2

L

2

(
)

+ 2�

1




k skew(rû�

^

A)k

2

L

2

(
)

+ 4�k symr axl

^

Ak

2

L

2

(
)

� k

^

fk

L

2

(
)

kûk

L

2

(
)

+ 2(�

2




� �

1




)k skew(ru

2

�A

2

)k

L

2

(
)

krû�

^

Ak

L

2

(
)

: (3.28)

Korn's �rst inequality shows that there exists a 
onstant 


K

= 


K

(
;�) > 0 su
h that

2� 


K

kûk

2

H

1;2

(
)

+ 2�

1




k skew(rû�

^

A)k

2

L

2

(
)

+ 4� 


K

k axl

^

Ak

2

H

1;2

(
)

� k

^

fk

L

2

(
)

kûk

L

2

(
)

+ 2(�

2




� �

1




)k skew(ru

2

�A

2

)k

L

2

(
)

krû�

^

Ak

L

2

(
)

(3.29)

Now we use Young's inequality on the right hand side to obtain for some " > 0

2� 


K

kûk

2

H

1;2

(
)

+ 2�

1




k skew(rû�

^

A)k

2

L

2

(
)

+ 4� 


K

k axl

^

Ak

2

H

1;2

(
)

� k

^

fk

L

2

(
)

kûk

L

2

(
)

+

(�

2




� �

1




)

"

k skew(ru

2

�A

2

)k

2

L

2

(
)

+ "krû�

^

Ak

2

L

2

(
)

(3.30)

� k

^

fk

L

2

(
)

kûk

L

2

(
)

+

(�

2




� �

1




)

"

k skew(ru

2

�A

2

)k

2

L

2

(
)

+ 2"

�

krûk

2

L

2

(
)

+ k

^

Ak

2

L

2

(
)

�

� k

^

fk

L

2

(
)

kûk

H

1;2

(
)

+

(�

2




� �

1




)

"

k skew(ru

2

�A

2

)k

2

L

2

(
)

+ 2" kûk

2

H

1;2

(
)

+ 2" k

^

Ak

2

H

1;2

(
)

:

Hen
e

(2� 


K

� ")kûk

2

H

1;2

(
)

+ 2�

1




k skew(rû�

^

A)k

2

L

2

(
)

+ 2(2� 


K

� ") k axl

^

Ak

2

H

1;2

(
)

� k

^

fk

L

2

(
)

kûk

H

1;2

(
)

+

(�

2




� �

1




)

"

k skew(ru

2

�A

2

)k

2

L

2

(
)

� k

^

fk

L

2

(
)

kûk

H

1;2

(
)

+

2(�

2




� �

1




)

"

kru

2

k

2

L

2

(
)

+

2(�

2




� �

1




)

"

kA

2

k

2

L

2

(
)

: (3.31)

Now use again Korn's inequality for both terms u

2

; A

2

to obtain for positiveK

1

;K

2

the estimate

(independent of �

2




� 0)

kru

2

k

2

L

2

(
)

� K

1

I(u

2

; A

2

) +K

2

; kA

2

k

2

L

2

(
)

� K

1

I(u

2

; A

2

) +K

2

: (3.32)

Combining (3.31) with (3.32) we get

(2� 


K

� ")kûk

2

H

1;2

(
)

+ 2�

1




k skew(rû�

^

A)k

2

L

2

(
)

+ 2(2� 


K

� ") k axl

^

Ak

2

H

1;2

(
)

� k

^

fk

L

2

(
)

kûk

H

1;2

(
)

+

4(�

2




� �

1




)

"

�

K

1

I(u

2

; A

2

) +K

2

�

: (3.33)

In fa
t, I(u

2

; A

2

) � K(
) <1, independent of �

2




� 0, therefore, we may write

(2� 


K

� ")kûk

2

H

1;2

(
)

+ 2�

1




k skew(rû�

^

A)k

2

L

2

(
)

+ 2(2� 


K

� ") k axl

^

Ak

2

H

1;2

(
)

� k

^

fk

L

2

(
)

kûk

H

1;2

(
)

+

(�

2




� �

1




)

"

K(
) : (3.34)
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Now it is possible to spe
ify " > 0 su
h that simultaneously 2� 


k

� " > 0 ; 2� 


K

� " > 0. The

previous quadrati
 inequality implies then that

kûk

H

1;2

(
)

�

k

^

fk

L

2

(
)

(2� 


K

� ")

+

s

k

^

fk

2

L

2

(
)

4(2� 


K

� ")

2

+

(�

2




� �

1




)

"(2� 


K

� ")

K(
) : (3.35)

Reinserting this estimate into (3.34) allows us to 
on
lude a similar estimate for the di�eren
e

^

A. The estimate is uniform with respe
t to non-negative �

1




; �

2




and 
an therefore be extended

to in
lude �




= 0. Note that if �




! 0 this does not imply that A

�




! skewru; rather, if the

boundary 
ondition A

d

is 
onstant, then A

�




! A

d

.

Altogether this shows that the linear elasti
 Cosserat problem is a well-posed system and

provided pure Diri
hlet-boundary 
onditions are spe
i�ed, the limit �




! 0 exists and 
oin
ides

with 
lassi
al linear elasti
ity as far as displa
ements are 
on
erned. In this sense, the Cosserat

model with �




> 0 
an be viewed as an approximation to 
lassi
al linear elasti
ity and the

Cosserat model is in itself mathemati
ally sound, also under the weaker 
onditions

(3.7) and (3.9).

4 Physi
al restri
tions imposed by bounded sti�ness

Now we turn our attention to the physi
al aspe
ts of the problem of determining material

parameters. We investigate the question whether the linear elasti
 Cosserat model 
an be


onsidered to be a physi
ally 
onsistent des
ription for a 
ontinuous solid showing size-e�e
ts.

We assume the 
ontinuous solid to be available in any small size we 
an think of (this possibility

is 
ertainly in
luded in the very de�nition of a 
ontinuous solid). This assumption ex
ludes

e.g. man made grid-stru
tures, foams and bones but in
ludes e.g. poly
rystalline material. For

the investigation we study simple boundary value problems for whi
h analyti
al solutions are

available. The 
hosen boundary 
onditions for the mi
rorotations are of stress type su
h that

sti�ening behaviour due only to boundary layer phenomena 
an be ex
luded [14℄.

4.1 The torsion problem

In a thought experiment we subje
t the hypotheti
al 
ontinuous solid �rst to torsion for every

slenderness we 
hoose. Similar real experiments with metal wires of diameters in the nano-

range have been performed and analyzed in [22℄, however, within the elasto-plasti
 setting. In

[30℄ these torsional experiments have been studied numeri
ally again in a geometri
ally exa
t


ontext, based on the elasti
 moduli � = 46:000MPa; �




=

3

46

� ; � = 69:000MPa ; � = 
 =

0:01N ; � = 0.

4.1.1 An aspe
t of the solution for the pure torsion problem

In [24, 23℄ the analyti
al solution for pure torsion of a 
ir
ular 
ylinder with radius a > 0 and

length L > 0 is developed under the assumption of translational symmetry in axial dire
tion

(the 
lassi
al solution is equally axisymmetri
). For our purpose it is suÆ
ient to look at the

non-dimensional quantity 


t

, whi
h 
ompares the 
lassi
al response with the 
orresponding

mi
ropolar result.

The 
lassi
al relation between torque Q [N �m℄ and twist per unit length

�

L

[1=m℄ is given

by

Q = � J 


t

�

�

L

; 


t

� 1 ; (4.1)

where � > 0 is the 
lassi
al shear modulus 
oin
iding with the 
orresponding Lam�e 
onstant

while J =

� a

4

2

is the polar moment of inertia of the 
ir
ular 
ross se
tion.

Performing the appropriate non-dimensionalization, it 
an be seen that in any theory with-

out size-e�e
ts one has [22℄

Q

a

3

[MPa℄ = h

�

�

L

a

�

; (4.2)
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a 06

x = q.a/L

Q a [MPa]/ 3

lin
e
a
r 
s
o
lu

ti
o
n

h(a, )x

x = q.a/L

Q a [MPa]/ 3

h(a, )x

Figure 1: Idealized response 
urves with size-e�e
ts in torsion. Normalized torque

Q

a

3

versus

non-dimensional shear � =

�

L

a at the outer radius. Left: response 
urves with unbounded

sti�ness as a! 0. Bounded sti�ness implies that the left pi
ture is unphysi
al. Right: sti�ness

in
rease with bounded sti�ness as a! 0. For linear models, only tangents in 0 are relevant.

where h : R ! R has no expli
it dependen
e on the radius a > 0.

Q

a

3

is a stress-like normalized

torque and

�

L

a is the non-dimensional shear at the outer radius. In the linear 
ase it holds that

h(�) = �

�

2

�.

In any experiment with size-e�e
ts, the fun
tion h will display this size e�e
t by expli
itly

depending also on the radius a > 0 and we expe
t that for smaller radius a the larger h(a; �) as

a fun
tion of � with h(a; 0) = 0; a � 0. This in
rease of the response fun
tion is a 
ommonpla
e

observation for many materials. The sti�ness of the material is de�ned as the slope of h at

given a � 0 for � = 0 i.e.

sti�ness = [�

�

h(a; �)℄

j

�=0

: (4.3)

Hen
e, in general, the sti�ness is also a fun
tion of the radius a. In the 
lassi
al linear elasti



ase �

�

h(a; �)

j

�=0

= �

�

2

is independent of a. We expe
t also that sti�ness in
reases for smaller

a > 0, i.e. [�

�

h(a

2

; �)℄

j

�=0

� [�

�

h(a

1

; �)℄

j

�=0

for a

2

� a

1

. However, for any small dimensions

we investigate, we expe
t bounded sti�ness sin
e the 
onstitutive substru
ture is never rigid.

This means

9K > 0 : sup

a�0

[�

�

h(a; �)℄

j

�=0

� K : (4.4)

Now we turn to the linear mi
ropolar model with size-e�e
ts and 
onsider the generated sti�ness

depending on the radius a. Sin
e the model is linear, we need only to look at the 
orresponding

fa
tor 


t

in (4.1).

In the mi
ropolar 
ase one must note that the ma
ros
opi
 resultant net torque is the sum

of the torque due to 
lassi
al torques (the 
lassi
al part) Q


lass

and the 
ontribution of the

mi
ropolar 
ouples Q


p

. A

ording to [24, 23℄ it holds in the linear mi
ropolar 
ase

Q


lass

+Q


p

= Q = � J 


t

�

�

L

; 


t

= 1 + 6

�

`

t

a

�

2

�

�

1�

4

3

	 �

�

(p a)

1�	 �

�

(p a)

�

; (4.5)

where

	 :=

� + 


�+ � + 


; non-dimensional polar ratio ;

`

2

t

:=

�

� + 


2�

�

+ �

�

=

� + 


2

1

�

; "
hara
teristi
 length for torsion" ; (4.6)

�

(�) :=

I

1

(�)

� I

0

(�)

; p

2

:=

2�

�+ � + 


; � := 2�




;

I

1

(�); I

0

(�) modi�ed Bessel fun
tions of the �rst kind ;

N

2

:=

�




�+ �




=

�

2 (�

�

+ �)

; Cosserat 
oupling number, 0 � N � 1 :
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Under 
ondition (3.7) or (3.9) the de�nitions in the solution formula make sense, i.e. `

2

t

� 0 is

ensured and sin
e 3�+�+ 
 � 0 it follows also that �+�+ 
 > 0.

9

Whether or not the model

shows bounded sti�ness depends solely on the fa
tor 


t

.

If we 
onsider uniformly s
aled spe
imens of the same material, i.e. all dimensions are

redu
ed by the same fa
tor 0 < r � 1, then this indu
es the transformations `

t

! r `

t

; a !

r a; 	 = 
onst:; p a = 
onst: and we see that the sti�ness �


t

is here invariant in uniform

s
alings. Therefore, in the linear theory, "smaller" is not ne
essarily "sti�er" if boundary layer

e�e
ts are not 
onsidered.

4.1.2 The response under pure torsion for small radius a! 0

We are interested in what happens to 


t

in (4.5), if we let a ! 0. From a physi
al point of

view the sti�ness for smaller radius should be larger than the 
lassi
al one but the sti�ness

should 
ertainly remain bounded sin
e the heterogeneity of the mi
rostru
ture of the physi
al

body 
an never be perfe
tly rigid.

In order to investigate this question, we need �rst to examine the behaviour of the fun
tion

�

in (4.6). Let us re
all a property of the modi�ed Bessel fun
tion of the �rst kind. The series

representation of the modi�ed Bessel fun
tion of the �rst kind is given by

I

n

(�) =

�

�

2

�

n

1

X

k=0

�

�

2

�

2k

k! �(n+ k + 1)

; n 2 N

0

: (4.7)

It holds therefore that for small � > 0

I

n

(�) �

1

�(n+ 1)

�

�

2

�

n

) I

1

(�) �

1

�(2)

�

2

; I

0

(�) � 1 ; (4.8)

where �(x) := (x� 1)!; x 2 N is the Gamma-fun
tion. This implies

lim

�!0

�

(�) = lim

�!0

I

1

(�)

� I

0

(�)

�

�

2

� � 1

=

1

2

: (4.9)

More pre
isely, using the series representation, one obtains that for small �

�

(�) =

I

1

(�)

� I

0

(�)

�

1

2

0

B

�

1 +

�

�

2

�

2

1

2

+ : : :

1 +

�

�

2

�

2

+ : : :

1

C

A

�

1

2

�

1�

�

2

8

�

: (4.10)

Hen
e, for a! 0 at �xed p > 0 we obtain

lim

a!0

�

1�

4

3

	

�

(p a)

1�	

�

(p a)

�

=

1�

4

3

	

1

2

1�	

1

2

: (4.11)

For 


t

to remain bounded as a! 0 under 
ondition (3.7) (re
all that then �+
 > 0) `

t

> 0),

it is therefore ne
essary and suÆ
ient that

lim

a!0

�

1�

4

3

	

�

(p a)

1�	

�

(p a)

�

=

1�

4

3

	

1

2

1�	

1

2

= 0 , 	 =

3

2

: (4.12)

Regarding the result 	 =

3

2

we note that this value does not belong to the parameter-range

permitted in (3.7) (the 
oer
ivity 
ondition implies 	 <

3

2

) leading to a well-posed boundary

value problem.

10

In this sense, experimental �ndings regarding thinner and thinner samples in

9

In size-experiments this solution formula is usually used to determine � and � + 
. However, information

on � is only obtained if one assumes � + 
 > 0. The author is not aware of an analyti
al solution to a simple

boundary value problem whi
h allows to determine � dire
tly.

10

Also foams and bones are not a 
ontinuous solid and the argument regarding thinner and thinner samples

does therefore not stri
tly apply, in [41, 44℄ the value 	 =

3

2

has been 
hosen in order to a

ommodate bounded

sti�ness with experimental �ndings. For a synta
ti
 foam [41℄ � = 
 has been taken for a best �t. In this


ase, the 
urvature energy looks like W


urv

(r�) = 
 k dev symr�k

2

with 
 > 0. It is 
lear that this does

not provide 
oer
ivity in H

1;2

(
) for the mi
rorotations but it would still be possible to de�ne a Hilbert-spa
e

H(dev) � L

2

(
) with norm k�k

2

+ k dev symr�k

2

and 
arry out the analysis in this spa
e. The question of

possible pres
ription of boundary values for � is not immediately 
lear. For a polyurethane foam [41℄ � 6= 


and the 
urvature energy looks like W


urv

(r�) =

�+


2

k dev symr�k

2

+


��

4

k 
url�k

2

. This last 
urvature

energy still allows to des
ribe tangential values of mi
rorotations, sin
e the 
url part is present [28, p.34℄ but

H

1

-
oer
ivity is again lost.

13



torsion (showing bounded sti�ness) 
annot be 
onsistently des
ribed as a linear elasti
 Cosserat

solid within 
ondition (3.7).

If, however, 
ondition (3.9) is adopted, then � + 
 = 0 may be 
hosen, implying `

t

= 0

and 


t

remains not only bounded as a! 0, but 
oin
ides identi
ally with the 
lassi
al result.

Therefore, bounded sti�ness in torsion and the possibility to des
ribe size-e�e
ts within the

linear Cosserat model is only possible by taking the problemati
 value 	 =

3

2

.

4.1.3 The response under pure torsion for �




! 0

At given `

t

> 0 and radius a > 0 we now investigate the limit behaviour for Cosserat 
ouple

modulus �




! 0. If �




! 0 then also p! 0 and vi
e-versa. Hen
e we need again the result for

�

(�) for small �. Based on the expansion (4.10) we obtain for small p > 0




t

= 1 + 6

�

`

t

a

�

2

�

�

1�

4

3

	 �

�

(p a)

1�	 �

�

(p a)

�

� 1 + 6

�

`

t

a

�

2

�

 

1�

4

3

	 �

1

2

(1�

p

2

a

2

8

)

1�	 �

1

2

(1�

p

2

a

2

8

)

!

; (4.13)

whi
h, for 	 =

3

2

shows that




t

� 1 + 3 `

2

t

p

2

= 1 + 3

� + 


2�

4�




�+ � + 


= 1 + 3	

2�




�

= 1 + 9

�




�

: (4.14)

Hen
e, �




! 0 and 	 =

3

2

lead to 


t

� 1 in the limit, as in 
lassi
al linear elasti
ity.

If, however, 	 <

3

2

then we 
onsider 	 =

3

2

� �. In terms of the di�eren
e � > 0 we obtain

for small p to leading order




t

� 1 +

�

`

t

a

�

2

�

16 �

1 + 2 �

: (4.15)

Hen
e, as �




! 0 but `

t

> 0; a > 0 we observe that 


t

! 


0

t

> 1. This shows a departure

from 
lassi
al elasti
ity. The result is not in 
on
i
t with the development in se
tion (3.5) for

�




! 0 sin
e there other boundary 
onditions have been investigated than those used in the

derivation of the analyti
al solution.

4.1.4 The response under pure torsion for �




> 0; a > 0 but �; �; 
 ! 0

Finally, for torsion we investigate the 
ase of vanishing internal length, i.e. �; �; 
 ! 0 at the

same rate. This implies that 	 = 
onst: and `

t

! 0. Moreover, p ! 0. It is easy to see that

�

(�)! 0 as � !1. Hen
e in this limit the leading order behaviour is given by




t

� 1 +

�

`

t

a

�

2

� 1 ; (4.16)

and for `

t

! 0 we re
over 
lassi
al linear elasti
ity without further restri
tions.

4.2 The pure bending problem of a 
ylinder with 
ir
ular 
ross-se
tion

4.2.1 The analyti
al solution

An analyti
al solution formula for the bending of a mi
ropolar 
ir
ular 
ylinder under opposite


ompressive axial loads with radius a > 0 and length L > 0 has been obtained in [56℄. Similarly

as in the torsion 
ase, we fo
us on the relative sti�ness fa
tor 
ompared to 
lassi
al elasti
ity.
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A

ording to [56℄ it holds that




b

= 1 +

8N

2

� + 1

0

B

�

1�

�

�




�

2

(Æ a)

2

+

��

�




�

+ �

�

2

�(Æ a) + 8N

2

(1� �)

1

C

A

;

�(�) = �

2

� I

0

(�)� I

1

(�)

� I

0

(�) � 2 I

1

(�)

; (4.17)

Æ

2

=

� (2�

�

+ �)


 (�

�

+ �)

=

4�




�


 (�+ �




)

=

4N

2

�




=

N

2

`

2

b

;

`

2

b

=




2 (2�

�

+ �)

=




4�

; "
hara
teristi
 length for bending" ;

N

2

:=

�




�+ �




=

�

2 (�

�

+ �)

; Cosserat 
oupling number, 0 � N � 1 ;

I

1

(�); I

0

(�) modi�ed Bessel fun
tions of the �rst kind ;

� =

�

2�

�

+ 2�+ �

=

�

2 (�+ �)

; 
lassi
al Poisson ratio:

We note that under 
ondition (3.7) and (3.9) the terms in the solution formula still make sense,

as 
 > 0.

11

4.2.2 The response under pure bending for small radius a! 0

For positive Cosserat 
ouple modulus �




> 0 and non-vanishing length s
ale `

b

> 0 we are

interested in the behaviour of 


b

as a ! 0. Sin
e Æ = 
onst: we 
onsider � := Æ a and 
larify

�rst the behaviour of �(�) as � ! 0. It holds that

� I

0

(�)� I

1

(�) = �

"

1 +

�

�

2

�

2

+ : : :

#

�

�

2

"

1 +

�

�

2

�

2

1

2

+ : : :

#

= � +

�

3

4

+ : : :�

�

2

�

�

4

�

2

4

+ : : : �

�

2

; (4.18)

� I

0

(�)� 2I

1

(�) = �

"

1 +

�

�

2

�

2

+ : : :

#

� 2

�

2

"

1 +

�

�

2

�

2

1

2

+ : : :

#

= � +

�

3

4

+ : : :� � �

�

3

8

+ : : : �

�

3

8

;

) �(�) � �

2

�

2

�

3

8

! 4 as � ! 0 :

This implies




b

= 1 +

8N

2

� + 1

0

B

�

1�

�

�




�

2

(Æ a)

2

+

��

�




�

+ �

�

2

�(Æ a) + 8N

2

(1� �)

1

C

A

= 1 +

8N

2

� + 1

0

B

�

1�

�

�




�

2

N

2

�

`

b

a

�

2

+

��

�




�

+ �

�

2

�(Æ a) + 8N

2

(1� �)

1

C

A

; letting Æ a! 0) (4.19)

� 1 +

8

� + 1

"

1�

�

�




�

2

#

�

`

b

a

�

2

+

8N

2

(� + 1)

��

�




�

+ �

�

2

4 + 8N

2

(1� �)

= 1 +

8

(� + 1) 4�

�

(
 � �)(
 + �)


 a

2

�

+

8N

2

(� + 1)

��

�




�

+ �

�

2

4 + 8N

2

(1� �)

:

Hen
e, for 


b

to remain bounded as a! 0 (and 
 > 0) one must have

(
 + �) (
 � �) � 0 : (4.20)

11

This experiment does not provide information on � and information on � is only obtained if 
 > 0.
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Sin
e both fa
tors must be positive anyway (3.5) it follows that either (
+�) = 0 or (
��) = 0.

In this 
ase, the Cosserat model still shows size e�e
ts in bending (provided 
 > 0) and bounded

sti�ness.

For (3.7) one has (
 � �) = 0. In this 
ase then to leading order for a! 0




b

= 1 + 8N

2

� + 1

4 + 8N

2

(1� �)

= 1 +

2N

2

1 + 2N

2

(1� �)

(� + 1) : (4.21)

Adopting, however, (3.9) one has (
 + �) = 0, in whi
h 
ase




b

= 1 +

8N

2

� + 1

(� � 1)

2

4 + 8N

2

(1� �)

= 1 +

2N

2

1 + 2N

2

(1� �)

(� � 1)

2

� + 1

; (4.22)

as leading order behaviour for a! 0.

In size-experiments, assuming that �




> 0 these last two formulas for 


b

would allow us

�rst to de
ide whether 
 + � or 
 � � are zero for � 6= 0 and se
ond to determine �




viz N

2

independent of length s
ale parameters sin
e � and � are already determined from 
lassi
al

tension experiments.

4.2.3 The response under pure bending for �




! 0

Similarly, one observes that for �




! 0 and a > 0 it holds that




b

= 1 +

8

� + 1

"

1�

�

�




�

2

#

�

`

b

a

�

2

; (4.23)

and one re
overs 
lassi
al elasti
ity with


b

� 1 either by assuming �

2

= 


2

i.e (
+�) (
��) = 0

or letting simultaneously `

b

! 0.

4.2.4 The response under pure bending for �




> 0; a > 0 but �; �; 
 ! 0

We assume again a �xed rate for �; �; 
 ! 0, hen
e

�




remains 
onstant, while Æ ! 1 and

`

b

! 0. Analyzing (4.19) implies with �(�) !1 as � !1 that to leading order




b

� 1 +

8

� + 1

 

1�

�

�




�

2

!

�

`

b

a

�

2

: (4.24)

For `

b

! 0 we have in the limit 


b

� 1 without any restri
tions.

4.3 Bending of a semi
ir
ular ring

In [25℄ the problem of a semi
ir
ular ring with re
tangular 
ross-se
tion of edge length h > 0

bent by transverse radial shear resultants P has been treated and 
ompared with the 
lassi
al

response. For the derivation of the three-dimensional solution in polar 
oordinates the plane-

stress distribution is assumed whi
h is 
onsistent with the 
lassi
al result. While analyti
al

solution formulas are obtained, these are to long to be re
orded here in their entity. In any


ase, they involve the modi�ed Bessel fun
tions of the �rst and se
ond kind. The authors [25℄

de�ne two 
hara
teristi
 length for this problem given as

`

2

1

=

2


E

; `

2

2

=




4N

2

�

=

`

2

b

N

2

; E > 0 
lassi
al Young's modulus : (4.25)

Let a be the inner ring diameter. The 
lassi
al result for the radial displa
ement u

r

at the

edges is given by

u

r

(�; r)

j

�=0;�

=

� P

E

1 + �

2

1� �

2

+ (1 + �

2

) ln �

; �

2

=

�

1 +

h

a

�

2

: (4.26)

Considering

h

a

! 0 and using the ln-expansion, the leading order 
lassi
al result

12

is seen to be

u

r

(�; r)

j

�=0;�

�

3� P

E

a

3

h

3

: (4.27)

12

The smaller h or the larger P , the larger the radial displa
ement u

r

.
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The 
orresponding leading order mi
ropolar result for

h

a

! 0 reads, however,

u

r

(�; r)

j

�=0;�

�

3� P

E

a

3

h

3

1

1 + 6

�

`

1

h

�

2

: (4.28)

If one assumes that 
 > 0 (`

1

> 0) then the leading order mi
ropolar behaviour will di�er by

several orders of magnitude as h ! 0 from the 
lassi
al response. This is not a

eptable and


an only be avoided by taking 
 = 0.

The authors of the analyti
al solution have been aware of this feature. In their dis
ussion of

the result they write [25, p.503℄: "The thin ring displa
ement ... exhibits the same 
hara
ter-

isti
 sti�ening by mi
ropolar e�e
ts as that found for other stru
tural elements. Ma
ros
opi


homogeneity 
onsiderations require that

`

1

h

� 1 sin
e any lengths asso
iated with mi
ropolar

e�e
ts should be small 
ompared to physi
al dimensions of the ring. In
reases of a few per
ent

in sti�ness over the 
lassi
al value are all that 
an be anti
ipated (to o

ur in experiments)."

Bra
ket my addition.

4.4 Bending of a re
tangular plate by lateral edge moments

An analyti
al solution formula for the 
ylindri
al bending of a thin mi
ropolar re
tangular plate

by lateral edge moments has been obtained in [24, 23℄. The 
lassi
al formula 
onne
ting the

uniform lateral edge moments M

x

and the 
orresponding in�nitesimal 
urvature

�

2

u

3

(x;y;z)

�x

2

for

small displa
ements u

3

in thi
kness dire
tion reads

M

x

= �D


b

�

2

u

3

(x; y; z)

�x

2

; 


b

� 1 ;

D =

E

(1� �

2

)

h

3

12

; 
lassi
al bending sti�ness ;

� =

�

2�

�

+ 2�+ �

=

�

2 (�+ �)

; 
lassi
al Poisson ratio; (4.29)

E > 0 ; 
lassi
al Young's modulus; h > 0 ; thi
kness of the plate :

Similarly as before, we fo
us on the relative sti�ness fa
tor 
ompared to 
lassi
al elasti
ity. For

the linear elasti
 Cosserat solid, formula (4.29) holds also but with 


b

= 1 repla
ed by




b

= 1 +

12 
 (1� �

2

)

E h

2

: (4.30)

We note again that under 
ondition (3.7) and (3.9) the terms in the solution formula make sense,

as 
 > 0. It should be observed that (4.30) is independent of the Cosserat 
ouple modulus �




whi
h 
an be understood by the underlying assumption of pure bending. For a 
ontinuous solid

material, it is possible to 
onsider the thi
kness h being ever smaller. If we want to ensure a

bounded relative sti�ness 


b

as the thi
kness h! 0, the only way to obtain this is by setting


 = 0.

4.5 Stress 
on
entration along a 
ylindri
al hole

In [18, p.222℄ or [17, p.238℄ the analyti
al solution for the stress distribution around a 
ylindri
al

hole with radius r > 0 of an in�nite plate is re
alled. The stress 
on
entration fa
tor K

t

whi
h


lassi
ally is K

t

= 3 turns for the linear Cosserat model into

K

t

=

3 + F

1

1 + F

1

� 3 ; F

1

= 8 (1� �)N

2

1

4 +

r

2




2

+ 2

r




K

0

(

r




)

K

1

(

r




)

; 


2

=


 (�

�

+ �)

� (2�

�

+ �)

=

`

2

b

N

2

;

K

0

(�); K

1

(�) modi�ed Bessel fun
tions of the se
ond kind : (4.31)

In the genuine mi
ropolar 
ase, the stress intensities are somewhat weakened: the Cosserat

solid has the ability to distribute the stresses more smoothly. We note that the stress intensity

fa
tor is independent of �+ 
. For `

b

! 0 or N

2

! 0 it is easy to see that F

1

! 0 and we have

the 
lassi
al limit, as expe
ted.

17



In order to investigate what happens for arbitrary small holes r ! 0, we observe that for

small � ! 0 the leading order behaviour of the Bessel-fun
tions is given as

K

0

(�) � ln

2




+

1

�

; K

1

(�) �

1

2

�(1)

2

�

; 


+

1

: Euler's 
onstant : (4.32)

Hen
e, F

1

! 2 (1� �)N

2

as r ! 0 while `

b

> 0. Therefore, arbitrary small holes give rise to

a non-
lassi
al stress intensity fa
tor if N

2

> 0. However, this is not in prin
iple in 
on
i
t

with our physi
al understanding for a 
ontinuous solid sin
e the absolute dimensions of the hole

radius for an in�nitely extended medium 
annot have a spe
i�
 in
uen
e.

5 The remaining linear elasti
 Cosserat solid

Gathering the results implied so far by the stipulation of bounded sti�ness for �




> 0 and

arbitrary thin samples we have

1. torsion of a 
ylinder: � + 
 = 0 or 	 =

�+


�+�+


=

3

2

.

2. bending of a 
ylinder: (� + 
) (
 � �) = 0.

3. bending of a 
urved bar and bending of a thin plate: 
 = 0.

The only 
onsistent 
hoi
e with these three 
onditions is � = 
 = 0. Sin
e I have not found an

analyti
al solution restri
ting the value for � we 
an still assume � > 0. Altogether, we are left

with the variational problem

I(u;A) =

Z




W (ru;A)� hf; ui � hM;Ai dV

�

Z

�

S

hf

S

; ui � haxl(skewM

S

); ~ni � haxlA;~ni dS 7! min : w.r.t. (u;A); (5.1)

" = ru�A; u

j

�

= u

d

;

8 � 2H

1

2

(�) :

Z

�

�(x)

�

haxlA;~ni � haxlA

d

; ~ni

�

dS = 0 ;

W (ru;A) = � k symruk

2

+

�




2

k 
urlu� 2 axlAk

2

R

3

+

�

2

(Div u)

2

+

�

2

�

Div axlA

�

2

:

�:~n

j

�

S

= f

S

; m:~n

j

�

S

= � [Div axlA℄ � ~n = haxl(skew(M

S

)); ~ni~n ;

�:~n

j

�
n(�

S

[�)

= 0 ; m:~n

j

�
n(�

S

[�)

= � [Div axlA℄ � ~n = 0 :

Interestingly enough, we are still able to prove existen
e: the fun
tional is quadrati
 and there-

fore 
onvex, it is also 
oer
itive in the spa
e H

1;2

(
;R

3

)�H(Div;
; so(3;R)). Here,

H(Div;
; so(3;R)) := f� 2 L

2

(
;R

3

) j Div � 2 L

2

(
)g ; (5.2)

is a Hilbert-spa
e [28, p.27℄. This is enough to show existen
e in this spa
e by weak lower

semi
ontinuity arguments. In the spa
e H(Div;
; so(3;R)) it is (only) possible to pres
ribe

weakly the normal 
omponents of axlA, i.e. haxlA;~ni on �

N

in the appropriate sense as

duality pairing where ~n is the unit outer normal on �

N

.

The 
ru
ial question we have to answer is whether for smooth fun
tions u; � 2 C

1

(
;R

3

)

with u

j

�

= 0 (no additional boundary 
ondition on the axial ve
tor �) there exists a positive


onstant 


K

su
h that

Z




k symru(x)k

2

M

3�3

+ k 
urlu(x)� �(x)k

2

R

3

+ tr [ru(x)℄

2

+ jDiv �(x)j

2

dV

� 


K

�

kuk

2

H

1;2

(
;R

3

)

+ k�k

2

L

2

(
;R

3

)

+ kDiv�k

2

L

2

(
)

�

: (5.3)

It is easy to see that if the left hand side is zero, then the right hand side is also zero by using

Korn's �rst inequality on u. Then the usual 
ontradi
tion argument together with weak lower

semi
ontinuity (see e.g. [47, Th.4.10℄) shows that the inequality must be true. This shows the

uniform 
onvexity of the problem in the spa
e H

1;2

(
;R

3

)�H(Div;
; so(3;R)). It implies that
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the minimizer exists and is unique and provides also for 
ontinuous dependen
e in this spa
e.

It is also possible to 
onsider a di�erent boundary 
ondition

13

for axlA at � instead of the

Diri
hlet 
ondition for the normal 
omponent. This 
ondition introdu
es a 
oupling between

the two otherwise independent �elds (u;A), whi
h we 
all ultra weak 
onsistent 
oupling


ondition, namely in the appropriate weak sense as duality pairing

8 � 2 H

1

2

(�) :

Z

�

�(x)

�

h2 axlA(x); ~ni � h
urlu(x); ~ni

�

dS = 0 : (5.4)

We note that h
urlu; ~ni has a meaning on the boundary �, sin
e trivially 
urlu 2 H(Div)

provided that 
urlu 2 L

2

(
), whi
h is guaranteed for bounded energy I in (5.1) by Korn's

�rst inequality. In smooth 
lassi
al situations one is tempted to assume the identi�
ation of

in�nitesimal 
ontinuum rotation and mi
rorotation

8x 2 
 : skewru(x) = A(x) , 
urlu(x)� 2 axlA(x) = 0 : (5.5)

In this sense, the ultra weak 
onsistent 
oupling 
ondition (5.4) requires 
lassi
al behaviour

on the Diri
hlet boundary � in a weakened sense and turned otherwise: it is 
onsistent with


lassi
al response and does not introdu
e non-
lassi
al e�e
ts through the boundary 
onditions

for the mi
rototations. It represents one 
ondition for the three entries of A.

14

Now 
onsider the minimization problem (5.1) without body 
ouples and surfa
e 
ouples, i.e.

M;M

S

= 0 and let either A be free everywhere on the boundary �
 or let A satisfy the

ultra weak 
onsistent 
oupling 
ondition on the Diri
hlet boundary �. The minimizer (u;A) 2

H

1;2

(
;R

3

)�H(Div;
; so(3;R)) to this problem exists but Amust 
omply with axlA =

1

2


urlu

in 
, sin
e this will yield zero 
urvature energy (Div

1

2


urlu = 0) and zero 
oupling energy

k 
urlu � 2 axlAk

2

= 0. This is true for arbitrary inhomogeneous response of u, e.g. implied

by 
onsidering inhomogeneous Diri
hlet boundary data for u or 
lassi
al inhomogeneous body

for
es. Hen
e, non-
lassi
al mi
ropolar e�e
ts are in general not related to inhomogeneous

response whatsoever in this model. In order to a
tivate mi
ropolar behaviour, we need other

boundary 
onditions for the mi
rorotation �eld A! Then the 
urvature parameter � will 
ome

into play, but it will be linked with the pres
ribed boundary 
ondition and the parameter �




> 0

a
ts as a weighting fa
tor for the in
uen
e of the non-
onsistent boundary 
ondition on the �nal

solution. This suggests that � is not a material parameter sin
e it will be diÆ
ult to

determine this parameter independent of the boundary 
ondition. The only possible

remaining linear Cosserat problem (5.1) ensuring bounded sti�ness is not a viable possibility

for the des
ription of a 
ontinuous solid showing size e�e
ts.

6 Con
lusion

That linear elasti
 Cosserat models may show singular sti�ening behaviour has already been

observed previously. In [43, p.17℄ we read "For some 
ombinations of elasti
 
onstants, the

apparent modulus tends to in�nity as the bar or plate size goes to zero. Large sti�ening e�e
ts

might be seen in 
omposite materials 
onsisting of very sti� �bers or laminae in a 
ompliant

matrix. However, in�nite sti�ening e�e
ts are unphysi
al. For very slender spe
imens, it is likely

that a 
ontinuum theory more general than Cosserat elasti
ity; or use of a dis
rete stru
tural

model, would be required to deal with the observed phenomena".

A possible explanation for the type of unphysi
al singular response in torsion and bending for

slender spe
imens under 
ondition (3.4) (notably �




> 0) 
onsists of the following interpretation:

Cosserat elasti
ity assumes a perfe
tly rigid substru
ture. For ever smaller samples, the rigid

13

This is not a 
onsequen
e of the previously studied boundary 
onditions.

14

An extension to the geometri
ally exa
t Cosserat model is straight forward. We require for the deformation

' : 
 7! R

3

and the mi
rorotation R : 
 7! SO(3;R); R = exp(A); A 2 so(3;R), the ultra weak 
onsistent


oupling 
ondition

8 � 2 H

1

2

(�) :

Z

�

�(x)

�

h2 axl(logR(x)); ~ni � h
url'(x); ~ni

�

dS = 0 : (5.6)

Whether this is "the" 
orre
t �nite-strain extension is not yet 
lear. Note that in a purely planar setting

h
url'(x); ~ni = 0, su
h that the axis of rotations R at the boundary must be perpendi
ular to the normal on

the boundary. This is automati
ally satis�ed by taking the axis of rotations parallel to e

3

.

19



"
ore" of the material is mainly responsible for the ma
ros
opi
 response. In torsion and

bending, this "
ore" does not have the possibility to remain rigid, hen
e the unbounded sti�ness.

All of the depi
ted problemati
 responses of a linear elasti
 Cosserat model arise in essen
e

in those 
ases, where geometri
al length s
ales of a spe
imen are taken to be smaller than the

assumed Cosserat length s
ales. Indeed, in [25, p.503℄ it has been observed that " ...thi
kness

should at least be an order of magnitude greater then the smaller of the two 
hara
teristi


mi
ropolar lengths to assure that ma
ros
opi
 homogeneity, assumed in the development of the

theory, is maintained."

The experimentally never observed singular sti�ening e�e
ts 
an always be mat
hed in the

linear Cosserat model by 
hosing �




> 0 small enough. In �tting of Cosserat parameters

for 
ontinuous solids therefore the smallness of �




is linked to the smallest experimentally

investigated spe
imen. Is it then surprising that the a
tually determined values for �




are

orders of magnitudes smaller than the shear modulus �?

However, the experimentalist Bell [4, p.161℄ notes "To be a material 
onstant of a given solid,

the numeri
al value, of 
ourse, must be independent of the size and shape of the spe
imen." This

statement 
ertainly applies to �




� 0 in the Cosserat model. But from the foregoing arguments

for the 
ontinuous solid the response would always depend on the investigated geometri
al size

of the spe
imen, 
ontradi
ting the latter statement of Bell.

This problemati
 response of the linear Cosserat solid under the usually adopted 
onstitutive


ondition (3.4) with �




> 0 should not be 
onstrued, however, as being an in
onsisten
y of

the general, geometri
ally exa
t Cosserat model. Indeed, in [48℄ it has been shown that it is

possible and physi
ally meaningful to 
onsider a geometri
ally exa
t Cosserat model, in whi
h

the Cosserat 
ouple modulus �




is set to zero. Su
h a 
hoi
e leads to a bounded sti�ness in

torsion (in terms of the above interpretation: the "
ore" 
an remain rigid in torsion and does

not lead to unbounded sti�ness sin
e the 
oupling with the displa
ement is one order weaker),

while smaller samples are still more rigid than larger samples. A linearization of su
h a model

leads to 
lassi
al linear elasti
ity.

Therefore, our way to resolve the apparent diÆ
ulty with sti�ening behaviour is simple but

unusual: the Cosserat 
ouple modulus �




� 0 is not a material parameter, it 
an be

set to zero; a linear elasti
 Cosserat model does not apply to any 
ontinuous solid

materials with arbitrary mi
rostru
ture.

We repeat that this statement does not 
on
ern man-made stru
ture-grid frameworks (or

foams and bones) modelled as a genuine Cosserat 
ontinuum: here the spa
ing of the grid

provides a natural lower bound for a length s
ale below whi
h nothing exists and for whi
h the

investigation of ever smaller samples does not make sense. If, on the other side, the aim of the

Cosserat model is to furnish a regularization s
heme, then one may take any 
omputationally


onvenient �




> 0 as a penalty parameter.

Otherwise, it remains to be seen whether by giving up the rigidity of the "
ore", i.e. 
onsid-

ering a mi
romorphi
 solid, one 
an avoid the singular sti�ening behaviour in an in�nitesimal


ontext while keeping with the uniform positivity assumption and �




> 0.
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Notation

Let 
 � R

3

be a bounded domain with Lips
hitz boundary �
 and let � be a smooth subset of �
 with non-

vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the s
alar produ
t on R

3

with

asso
iated ve
tor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3� 3 se
ond order tensors, written

with 
apital letters. The standard Eu
lidean s
alar produ
t on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

,

and thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the following we omit the index R

3

;M

3�3

.

The identity tensor on M

3�3

will be denoted by 11, so that tr [X℄ = hX; 11i. We set sym(X) =

1

2

(X

T

+ X)

and skew(X) =

1

2

(X � X

T

) su
h that X = sym(X) + skew(X). For X 2 M

3�3

we set for the deviatori


part devX = X �

1

3

tr [X℄ 11 2 sl(3) where sl(3) is the Lie-algebra of tra
eless matri
es. The Lie-algebra of

SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X℄ = 1g is given by the set so(3) := fX 2 M

3�3

jX

T

= �Xg

of all skew symmetri
 tensors. The 
anoni
al identi�
ation of so(3;R) and R

3

is denoted by axl(A) 2 R

3

for

A 2 so(3;R). Finally, w.r.t. abbreviates with respe
t to.
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