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Abstrat

This paper summarizes the struture and analysis of subdivision surfaes

and haraterizes the inherent similarities and di�erenes to parametri spline

surfaes. Besides presenting well known results in a uni�ed way, we introdue

new ideas for analyzing shemes with a linearly dependent generating system,

and a signi�antly simpli�ed test for the injetivity of the harateristi map.

1 Introdution

For a graphis designer, subdivision is a reipe for generating a �ner and �ner se-

quene of polyhedra that onverges to a visually smooth limit surfae after a few

iteration steps (Figure 1). While this intuitive view aounts to a large extent for the

suess of subdivision in appliations, it fails to provide a framework explaining the

unique analytial struture of subdivision surfaes vis-a-vis other representations. In

partiular, this view, whih was predominant in the early subdivision literature, fails

to haraterize the inherent similarities and di�erenes to standard parametri spline

surfaes.

Figure 1: Four steps of Catmull-Clark subdivision (from [88℄).
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Figure 2: Re�nement shemes (initial meshes top, re�ned meshes bottom). We fous

on shemes of type pQ4 and dQ4 that result in quadrilateral pathes; the analysis

and struture of other subdivision shemes is analoguous.

To highlight the similarities, we use the term `spline' in a muh generalized sense.

In the following, a spline is any funtion onsisting of a �nite or even in�nite number

of piees, eah of whih is de�ned on an indexed opy of a standard domain. This def-

inition overs in partiular linear ombinations of B-splines or box-splines. We fous

on pieewise ontinuous funtions de�ned on a union of unit squares; the analysis of

spline surfaes over other, say triangular standard domains (see Figure 2), is analo-

gous and need not be developed separately. To haraterize ontinuity of a spline, its

domain is endowed with the topologial struture of a two-dimensional manifold. This

avoids a more involved haraterization by means of mathing smoothness onditions

for abutting pathes.

To highlight the di�erenes between spline surfaes and subdivision surfaes, we

fous on the neighborhood of extraordinary points, e.g. points where n 6= 4 quadri-

lateral domains join. Here, the surfae has the struture of a union of spline rings,

i.e. irular annuli formed by mathing up the boundaries of the spline pathes (see

Figure 5,right). (The word `ring' will not lead to onfusion sine no rings in the alge-

brai sense will be onsidered in this paper.) The in�nite sequene of nested surfae

rings no longer shares all properties of the underlying splines. For example, sine

these rings ontrat ad in�nitum, it is neessary to use, in the limit, a di�erential

geometri haraterization of smoothness: smoothness is measured in a natural loal

oordinate system. Injetivity with respet to this oordinate system is ruial but not

always present in subdivision shemes; and the lak of seond-order di�erentiability

with respet to the oordinate system presents a hallenge for haraterizing shape.
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Contents. After de�ning splines, subdivision surfaes and algorithms, the paper

haraterizes inreasing levels of ontinuity and orrespondingly inreasing restritions

on admissible shemes. The table of ontents is as follows.

2. Spline surfaes near extraordinary points 4

3. Subdivision surfaes de�ned 7

4. Subdivision algorithms 11

5. C

k

1

-shemes and the harateristi map 15

6. Symmetry and Fourier analysis 19

7. An example: The Doo-Sabin algorithm 26

8. Conditions for C

k

2

-shemes 29

9. Curvature analysis 32

Soures. This artile is the summary of a book on the strutural analysis of subdi-

vision surfaes [78℄, whih is urrently in preparation. At the end of eah setion, we

give some bibliographial notes pointing to the most relevant and �rst-time referenes,

without laiming ompleteness. In addition to the itations given in the artile, we

also inlude some further suggested reading on the topi in the list of referenes.

Notation. We use greek letters for objets in R

2

and maps into R

2

suh as planar

urves and reparametrizations. Bold fae is used, in partiular, for points and fun-

tions in the embedding spae R

d

, d > 2. These points are understood as row vetors

so that, following established pratie in the literature, we apply n � n subdivision

matries from the left to a vetor of n ontrol points in R

d

. As in Matlab, elements

in a row of a matrix or vetor are separated by a omma, while rows are separated by

a semiolon. For example,

[1; 2; 3; 4; 5; 6℄ =

�

1 2 3

4 5 6

�

:

Aknowledgement. We would like to thank Malolm Sabin for many fruitful dis-

ussions and for providing his list of referenes.
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Figure 3: (left) Domain manifold �� Z

3

and (right) spline manifold x.

2 Spline surfaes near extraordinary points

To investigate surfaes with n quadrilateral piees joining at a point, we de�ne the

unit interval in R and the unit square in R

2

, respetively:

U := [0; 1℄ and � := U � U:

Then the domain S,

S := �� Z

n

; Z

n

:= Z mod n;

of a spline x : S ! R

d

onsists of n indexed opies of �. Points in � and S are

typially denoted

� = (s; t) 2 �; s = (�; j) = (s; t; j) 2 S:

The restrition of x to a single unit square with index j is alled a path and denoted

x

j

:

x : S 3 (�; j) 7! x

j

(�) 2 R

d

:

Now, pairs of edges of the unit squares are set equal aording to

(0; u; j) = (u; 0; j + 1); u 2 U; j 2 Z

n

:

The ommon origin of all path domains is

0



:= (0; 0) = � � � = (0; n� 1);

see Figure 3. The supersript "" for "enter" is used to tell the origin 0



of S apart

from the origin 0 of �. By identifying edges of adjaent unit squares, the domain S

beomes a simply onneted topologial spae. Thus, there is a well-de�ned notion

of ontinuity for splines. Due to the identi�ation (0; u; j) = (u; 0; j + 1), the pathes

have to satisfy the onsisteny onditions

x

j

(0; u) = x

j+1

(u; 0); j 2 Z

n

;

and, in partiular,

x



:= x(0



) = x

0

(0) = � � � = x

n�1

(0)

is alled the enter of x. Subsequently, pathes are always assumed to be ontinuous.

Together with the onsisteny onditions, this implies that the spline x : S ! R

d

4



PSfrag replaements

t



1

t



2

n



x

Figure 4: A normal ontinuous surfae that is not single-sheeted.

is a ontinuous map. We will be interested in several hoies of the dimension d

of the image spae. For d = 3, x is a spline surfae, and this is the ase we are

eventually interested in. For d = 2, we obtain planar splines whih are used for

analytial purposes. Espeially, the harateristi map to be de�ned later is of that

type. Finally, for d = 1, we obtain real valued splines. We will use suh splines

to de�ne generating systems for �nite dimensional spline spaes in R

3

, just as B-

splines are used to model standard tensor produt spline surfaes. Next, we onsider

smoothness.

De�nition 2.1 A ontinuous spline x : S! R

d

is alled C

k

0

, if all pathes x

j

are C

k

-

funtions on �nf0g, and if the orresponding ross boundary derivatives at ommon

edges are equal up to sign, i.e.,

�

�

s

x

j

(0; u) = (�1)

�

�

�

t

x

j+1

(u; 0); � = 0; : : : ; k; u 2 (0; 1℄: (1)

The spae of all C

k

-splines in R

d

is denoted C

k

0

(S;R

d

).

Cruially, the entral point is exluded from all smoothness onditions sine, for u = 0,

onsisteny implies, for n 6= 4 that either the partial derivatives of all pathes vanish at

the origin, or that the projetion of x to the tangent plane at the origin is not injetive.

In the �rst ase of a singular parametrization, the geometrial smoothness of the spline

does not follow from the analytial smoothness of the parametrization; in the seond

ase x annot be a smooth surfae in the sense of manifolds. As a onsequene,

we do not impose smoothness onditions at the enter a priori. In essene, the rest

of the paper deals with the hallenge of reoniling the lak of smoothness in the

parametrization of x with the geometri smoothness of its image. As a �rst step, we

de�ne normal ontinuity in the following way:

De�nition 2.2 A spline surfae x 2 C

1

0

(S;R

3

) is alled normal ontinuous at the

enter, if the limit

n



:= lim

s!0



n(s)

of the Gauss map

n(s) := ~n(s)=k~n(s)k; ~n(s) = ~n(�; j) := �

s

x

j

� �

t

x

j

exists and is unique. In this ase, n



is alled the entral normal, and the plane

through x



perpendiular to n



is alled the entral tangent plane.
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It is easily shown that for a normal ontinuous spline surfae x 2 C

k

0

(S;R

3

), the

Gauss map extended by n(0



) := n



is a spline in C

k�1

0

(S; S

2

), where S

2

is the unit

sphere in R

3

. Normal ontinuity is not suÆient for a spline surfae to be smooth in

the sense of manifolds sine the projetion of x into the entral tangent plane may

not be injetive. To address this problem, we hoose two orthonormal vetors t



1

; t



2

in the entral tangent plane and ollet them in a (2� 3)-matrix T



. Then we de�ne

the projetion � of x to that plane by

� : S 3 s 7! (x(s)� x



) �T



2 R

2

: (2)

Here and subsequently, a dot denotes multipliation by the transpose,

A �B := AB

T

:

x is alled single-sheeted if � is injetive when restrited to a suÆiently small neigh-

borhood S

0

of the origin. In this ase, we an use the inverse funtion s = s(�) to

de�ne the entral height funtion h on the set �

0

:= �(S

0

) � R

2

by

h : �

0

3 � 7! (x(s(�))� x



) � n



2 R: (3)

With these settings, points on the spline surfae near the enter an be written as

x(s) = x



+ �T



+ h(�)n



; s 2 S

0

; � 2 �

0

;

and the geometrial smoothness of x at the enter is just the analytial smoothness

of h at the origin. If x 2 C

1

0

(S;R

3

), then h is ontinuous on �

0

and ontinuously

di�erentiable on �

0

nf0g. If, moreover, x is normal ontinuous, then one an show

using the mean value theorem that h is also di�erentiable at the origin. Both value

and gradient vanish there,

h(0) = 0; Dh(0) = 0: (4)

De�nition 2.3 A spline surfae x 2 C

k

0

(S;R

3

) is alled C

k

r

if it is single-sheeted, and

if the entral height funtion is r-times di�erentiable at the origin. The spae of all

C

k

r

-splines is denoted C

k

r

(S;R

3

).

One should keep in mind that the supersript k refers to the smoothness of the

parametrization, while the subsript r refers to the smoothness of the entral height

funtion at the origin. Stritly speaking, x an be a smooth manifold even if it is nei-

ther normal ontinuous in the sense of De�nition 2.2 nor single-sheeted in the sense

of De�nition 2.3. As an example, onsider the `at' spline x with pathes

x

0

(�) = � � � = x

n�1

(�) = r sin(1=r) [os 4'; sin 4'; 0℄;

where � = r(os'; sin'). The normal vetor, omputed as the normalized ross prod-

ut of partial derivatives, alternates between [0; 0; 1℄ and [0; 0;�1℄; and the projetion

of x to the xy-plane is not injetive. Nevertheless, the image of x is simply a part of

the xy-plane, hene a smooth manifold. We aept that suh highly degenerate ases

are not ontained in the spaes C

k

r

(S;R

3

).
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Bibliographi Notes.

� The fous on spline surfaes onsisting of quadrilateral pathes is motivated by

the Catmull-Clark-algorithm [9℄, the Doo-Sabin-algorithm [24℄, or the tensor-

produt four-point sheme [42, 47℄. A ompletely analogous theory an be de-

veloped for triangular pathes, as obtained for instane by Loop's sheme [52℄,

the buttery sheme [31℄, or

p

3-subdivision [45℄.

� Viewing the domain S as a topologial spae appears natural. Nevertheless, it

was not expliitly introdued prior to [77, 98℄.

� An example for a surfae whih is normal ontinuous, but not single-sheeted an

be found in [73℄.

� The onditions (1) are not neessary for a smooth join of the pathes. Rather,

it suÆes to require oinidene of geometri quantities suh as normal vetors,

prinipal urvatures and diretions, et., at ommon edges. For a survey on the

onept of so-alled geometri ontinuity see, for instane, [58℄.

� The example of a degenerate parametrization of smooth manifolds elaborates

on a remark in [99℄.

3 Subdivision surfaes de�ned

So far we have derived a general framework for splines near extraordinary points.

Now we speialize it to the subdivision setting. In pratie, subdivision surfaes are

obtained by iterated re�nement of ontrol meshes. This re�nement proess enlarges

the regular parts of the mesh, and sales down the entral n-sided region near the

extraordinary vertex. Sine the limit surfae orresponding to the regular parts of

a mesh an at least in priniple be determined expliitly, iterative re�nement orre-

sponds to the generation of a sequene of larger and larger parts of the �nal limit

surfae. Equally, one an represent the limit surfae x as the union of the initially

known regular part x

0

and a sequene of ring-shaped parts x

m

; m 2 N ; whih are

added by subsequent re�nement steps. Skipping the details, this proess orresponds

to a partition of the domains � and S in the following way. Let

�

0

:= [0; 2℄

2

n[0; 1)

2

; �

m

:= 2

�m

�

0

; S

m

:= �

m

� Z

n

; m 2 N

0

;

then

� =

[

m2N

�

m

[ 0; S =

[

m2N

S

m

[ 0



;

see Figure 5. Splines x 2 C

k

0

(S;R

d

) are partitioned aordingly. For m 2 N and

j 2 Z

n

, the segment x

m

j

is de�ned by

x

m

j

: �

0

3 � 7! x

j

(2

�m

�);
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for (right) the union xnx



of spline rings.

and the spline ring x

m

is de�ned by

x

m

: S

0

3 s 7! x(2

�m

s);

where we used the onvention that a salar fator applies only to the ontinuous

variables of s,

as = a(s; t; j) := (as; at; j); a 2 R:

The spae of all C

k

-spline rings is denoted by

C

k

(S

0

;R

d

):

The segment x

m

j

orresponds to the restrition of the path x

j

to the set �

m

, and the

spline ring x

m

orresponds to the restrition of the spline x to the set S

m

, i.e.,

x

m

j

(�

0

) = x

j

(�

m

); x

m

(S

0

) = x(S

m

);

where re-saling failitates the use of a ommon domain for all m. This implies

x

j

(�) =

[

m2N

x

m

j

(�

0

) [ x



; x(S) =

[

m2N

x

m

(S

0

) [ x



:

The partition of a spline into spline rings and segments leads to the notion of subdi-

vision. It refers to a speial way of representing splines rather than to a new lass of

objets.

De�nition 3.1 x 2 C

k

0

(S;R

d

) represented as

x : S 3 s 7!

(

x

m

(2

m

s) if s 2 S

m

x



if s = 0



is alled a spline in subdivision form. For d = 3, x is also alled a subdivision surfae.
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Expressing a spline in subdivision form is a straightforward segmentation proess.

This point of view beomes relevant if we proeed in the opposite diretion and assume

that the sequene of spline rings x

m

is generated iteratively by some algorithm. Then

the task is to analyze properties of the spline obtained by gluing all these piees

together. The following lemma haraterizes the relation between spline rings and

splines.

Lemma 3.2 A sequene (x

m

)

m

of spline rings onstitutes a spline x 2 C

k

0

(S;R

d

) if

and only if

� all segments are k-times ontinuously di�erentiable,

x

m

j

2 C

k

(�

0

;R

d

); (5)

� all pairs of neighboring segments x

m

j

;x

m

j+1

satisfy

�

�

s

x

m

j

(0; 1 + u) = (�1)

�

�

�

t

x

m

j+1

(1 + u; 0); u 2 U; (6)

� all pairs of onseutive segments x

m

j

; x

m+1

j

satisfy

�

�

s

x

m

j

(1; u) = 2

�

�

�

s

x

m+1

j

(2; 2u)

�

�

t

x

m

j

(u; 1) = 2

�

�

�

t

x

m+1

j

(2u; 2); u 2 U; (7)

� there exists x



2 R

d

suh that for any sequene s

m

2 S

0

x



= lim

m!1

x

m

(s

m

): (8)

We omit the details of the proof, whih essentially redues to an appliation of the

hain rule. The following theorem summarizes onditions for normal ontinuity and

single-sheetedness.

Theorem 3.3 Let x

m

be a sequene of spline rings satisfying all onditions of Lemma 3.2

and x the orresponding spline. Then

� x is normal ontinuous if and only if there exists n



2 S

2

suh that for any

sequene s

m

2 S

0

n



= lim

m!1

n

m

(s

m

);

where the spline rings of the Gauss map n are denoted by n

m

.

� x is C

k

1

, if and only if it is normal ontinuous and if there exists m

0

2 N suh

that

n



� n

m

> 0 for all m � m

0

, and

9



the planar spline ring �

m

0

:= (x

m

0

�x



) �T



orresponding to the projetion

� as de�ned in (2) is injetive on the outer boundary of its domain

�

+

S

0

:= f(s; t; j) 2 S

0

: max(s; t) = 2g:

While the proof of the �rst part is straightforward, the seond part is nontrivial and

requires tehniques of di�erential topology. For details, we refer to [78℄.

All subdivision algorithms urrently in use and a large lass of generalizations

are haraterized by the fat that all spline rings generated by them lie in a ommon

spae whih is the d-fold Cartesian produt of a �nite-dimensional spae of real-valued

funtions. For instane, for the Doo-Sabin algorithm as desribed in Setion 7, the

spline rings are C

1

and onsist of n segments of three biquadrati piees eah. The

dimension of this spae is therefore 9dn. In general,

G := [g

0

; : : : ; g

�

`

℄; g

`

2 C

k

(S

0

;R); ` = 0; : : : ;

�

`;

is a row-vetor of salar-valued spline rings and we assume that they form a partition

of unity,

�

`

X

`=0

g

`

(s) = 1; s 2 S

0

: (9)

The spline spae spanned by these funtions is denoted

C

k

(S

0

;R

d

; G) :=

(

�

`

X

`=0

g

`

q

`

: q

`

2 R

d

)

� C

k

(S

0

;R);

and G is alled the generating system of C

k

(S

0

;R

d

; G). In many appliations, G is

linearly independent. This is expliitly not assumed here so that the analysis overs

ases like generalized box spline subdivision or matrix subdivision shemes.

C

k

(S

0

;R

d

; G) is a linear funtion spae of dimension � d(

�

`+1). We endow it with

the max-norm

kx

m

k

1

:= max

s2S

0

jx

m

(s)j;

where j � j denotes the Eulidean norm in R

d

. Limits of sequenes of spline rings are

always understood with respet to this norm. The oeÆients q

m

`

2 R

d

of a spline

ring

x

m

=

�

`

X

`=0

g

`

q

m

`

are its ontrol points. Colleting them in an ((

�

`+1)� d)-matrix Q

m

:= [q

m

0

; : : : ;q

m

�

`

℄,

we obtain

x

m

(s) = x

m

j

(�) = G(s)Q

m

; s = (�; j) 2 S

0

;

or, omitting arguments, simply x

m

= GQ

m

.
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Figure 6: (left) Control points Q (dots) and (right) re�ned ontrol points AQ (Æ) for

Doo-Sabin subdivision [24℄. The orresponding spline rings are shaded grey.

Bibliographi Notes.

� The idea of representing a subdivision surfae as a union of spline rings dates

bak to [71, 73℄. Early attempts to analyze smoothness [3, 4℄ were based on

investigating sequenes of �ner and �ner meshes onverging to the subdivision

surfae. This approah, however, ultimately fails to apture important aspets

of smoothness.

� Examples of subdivision surfaes whih are not generated by a �nite set of

funtions are, for instane, variational subdivision [41, 43℄ or shemes based on

geometrial proedures as in [32℄.

4 Subdivision algorithms

From an abstrat point of view, a subdivision algorithm is a rule to ompute sequenes

of spline rings from an initial set of ontrol points. Here, we fous on the following

speial ase: a (linear stationary) subdivision algorithm (A;G) is haraterized by a

square matrix A with all rows summing to 1 and a generating system G of aording

dimension. For a given set Q of ontrol points, also referred to as initial data, the

sequene of spline rings is omputed by iterated appliation of the matrix A,

Q

m

:= A

m

Q; x

m

= GA

m

Q:

Sine the rows of A, as well as the funtions in G, sum to 1, the representation of

the spline rings x

m

is aÆne invariant. That is, applying an aÆne transformation to

the initial ontrol points Q is equivalent to applying this transformation to the spline

rings x

m

, and hene to the omplete spline x.

The analysis of a subdivision algorithm an be split into three parts. First, the

smoothness of the generating system has to be determined by verifying (5) and (6).

Seond, the ontat onditions (7) between neighboring and onseutive segments
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have to be veri�ed. Typially, this task is readily aomplished. Third, and this is

the fous of this work, ontinuity and smoothness properties at the enter have to be

determined.

We start with ontinuity as de�ned by (8). Sine the rows of A sum to one, �

0

:= 1

is the eigenvalue orresponding to the eigenvetor e := [1; : : : ; 1℄

T

, i.e., Ae = e. To

ensure (8), i.e.

lim

m!1

x

m

= x



;

it seems natural to demand that this eigenvalue be dominant. However, in general,

this is by no means neessary. The reason for this is that the generating system need

not be linearly independent. For example, assume that A has eigenvalues �

0

= 1,

� = 2 and � = 1=2 orresponding to the eigenvetors e, v and w, respetively. LetQ =

vp+eq+wr for some points p;q; r 2 R

d

nf0g. ThenQ

m

= A

m

Q = 2

m

vp+eq+2

�m

wr

is ertainly divergent. But if v happens to be annihilated by G, i.e. Gv = 0, then

x

m

= GQ

m

= q + 2

�m

Gwr! q =: x



is onvergent. We say that v is an ine�etive

eigenvetor.

This shows that, in general, it is not possible to relate spetral properties of A to

smoothness properties of the generated surfaes in a straightforward way. To address

this issue in a onsistent fashion, we proeed as follows. We de�ne the linear spaes

N := fv 2 R

�

`+1

: Gv = 0g; M

A

:=

\

m2N

A

m

N:

That is, M

A

onsists of all vetors that do not esape the nullspae of G when A is

applied. Further, two matries A;

~

A are alled G-equivalent if they generate idential

sequenes of ontrol points, i.e., if GA

m

= G

~

A

m

for all m 2 N

0

. Then the following

holds:

Lemma 4.1 (Removal of ine�etive eigenvetors) a) For given (

~

A;G), let �

0

:

R

�

`+1

! M

~

A

be a projetion on M

~

A

with �

0

e = 0, and �

1

:= Id��

0

its omplement.

Then the matries A := �

1

~

A and

~

A are G-equivalent, and M

A

= f0g.

b) If M

A

= f0g, then A does not have ine�etive eigenvetors. That is, if Av =

�v 6= 0 then Gv 6= 0.

Proof a) Sine Ge = 1 by (9), we have e 62 M

~

A

, and a projetion of the desired

form exists. By de�nition, AM

A

= M

A

and

~

AM

~

A

=M

~

A

. Hene,

~

A(M

~

A

+M

A

) = M

~

A

+�

0

~

AM

A

+ �

1

~

AM

A

= M

~

A

+M

A

:

SineM

~

A

is the largest

~

A-invariant subspae of N , M

A

�M

~

A

. FurtherM

~

A

� ker

~

A �

kerA and AM

A

= M

A

so that M

A

= f0g. Finally, Ae = �

1

~

Ae = e. It remains

to show that A and

~

A are equivalent. To this end, we onsider G(A

m

�

~

A

m

) =

G

�

(

~

A � �

0

~

A)

m

�

~

A

m

�

=: G�. The matrix � is the sum of produts of matries

~

A

and �

0

all of whih inlude the fator �

0

. With

~

A�

0

= �

0

~

A�

0

, it is lear that � an

be represented in the form � = �

0

�

0

. Therefore G(A

m

�

~

A

m

) = G�

0

�

0

= 0.

b) If Av = �v 6= 0, then for all m 2 N we have Gv = �

�m

GA

m

v = 0. Hene,

A

m

v 2 N and v 2M

A

ontraditing M

A

= f0g. �

12



The property M

A

= f0g, whih is trivial for linearly independent G, an now

be assumed for the general setting without loss of generality. The following theorem

ruially depends on this property.

Theorem 4.2 Let (A;G) be a subdivision algorithm with M

A

= f0g. Then the on-

tinuity ondition

x



= lim

m!1

x

m

is satis�ed for any set Q of initial data if and only if the eigenvalue �

0

= 1 of A is

stritly dominant, i.e., if j�j < 1 for all other eigenvalues � of A.

Proof Let �

0

= 1 be stritly dominant. With ~e

T

= ~e

T

A the left eigenvetor to �

0

normalized by ~e

T

e = 1, we an deompose Q in the form Q = e~e

T

Q+R, where R is

a linear ombination of generalized eigenvetors of A orresponding to eigenvalues �

i

with j�

i

j < r for some onstant r < 1. Hene, using Ge = 1, we obtain onvergene

aording to

x

m

= GA

m

Q = ~e

T

Q + o(r

m

)! ~e

T

Q =: x



:

If �

0

= 1 is not stritly dominant, we have to distinguish two ases. If �

0

= 1 has

geometri multipliity 1, but algebrai multipliity> 1, then there exists a generalized

eigenvetor v with Av = v + e. We set q := [1; : : : ; 1℄ and Q := vq to obtain the

divergent sequene

x

m

= GA

m

Q = GA

m

vq = G(v +me)q = GQ+mq:

Otherwise, there exists an eigenvetor v, whih is linearly independent of e, to an

eigenvalue � with j�j � 1. We set q := [1; : : : ; 1℄; Q := Re vq, and � =: j�je

it

to

obtain

x

m

= GA

m

Q = j�j

m

Re(e

imt

Gvq):

Sine Gv 6= 0, this expression an onverge to a onstant x



only if j�j = 1 and t = 0,

i.e., if the eigenvalue � = �

0

= 1 is at least double, and if Gv =: � 2 R is onstant.

In this ase, v

0

:= �e � v is an ine�etive eigenvetor beause Av

0

= v

0

6= 0 and

Gv

0

= G(�e� v) = 0 ontraditing Lemma 4.1. �

The results obtained so far suggest on�ning our onsiderations to subdivision shemes

with M

A

= f0g and a stritly dominant eigenvalue �

0

= 1. The next de�nition

aounts for that.

De�nition 4.3 Let (A;G) be a subdivision sheme with the following properties:

� The generating system is C

k

, i.e., G 2 C

k

(S

0

;R

�

`+1

).

� The onditions (7) are satis�ed.

� A has no ine�etive eigenvetors, i.e., M

A

= f0g.

13



� The eigenvalue �

0

= 1 to the eigenvetor e = Ae is stritly dominant.

Then (A;G) is alled a C

k

0

-sheme, and A is alled the subdivision matrix.

We reall our onvention that the supersript k refers to the smoothness of the

parametrization, while the subsript 0 indiates ontinuity at the enter. We summa-

rize our previous �ndings in the following theorem:

Theorem 4.4 Let (A;G) be a C

k

0

-sheme and ~e = ~eA the dominant left eigenvetor

normalized by ~ee = 1. Then, for any Q, the spline rings x

m

:= GA

m

Q together with

the enter x



:= ~eQ onstitute a C

k

0

-spline.

We ontinue by de�ning B-spline-like funtions for subdivision algorithms. Denote

the unit vetors in R

�

`+1

by e

0

; : : : ; e

�

`

, and de�ne the row-vetor B = [b

0

; : : : ; b

�

`

℄ of

real-valued splines b

`

2 C

k

0

(S;R) by

b

`

(s) :=

(

G(2

m

s)A

m

e

`

if s 2 S

m

~ee

`

if s = 0



:

(10)

Then, by linearity of subdivision, the relation between arbitrary initial data Q and

the orresponding spline x an simply be written as

x = BQ: (11)

Let us briey disuss some properties of the funtions in B. They

� span the the spae of splines generated by the subdivision algorithm (A;G).

� form a partition of unity sine

�

`

X

`=0

b

`

(s) =

(

G(2

m

s)A

m

e = G(2

m

s)e = 1 if s 2 S

m

~ee = 1 if s = 0



:

� are linearly independent, if the generating system G is linearly independent. To

show this, it suÆes to onsider the initial spline ring x

0

= GQ = GQ

0

whih,

for linearly independent G, vanishes if and only if Q = 0.

� satisfy the saling relation

B(2

�m

s) = B(s)A

m

; s 2 S; m 2 N

0

:

This an be proven as follows. For s 2 S

m

0

, (10) yields B(s) = G(2

m

0

s)A

m

0

.

For m 2 N

0

, it is 2

�m

s 2 S

m+m

0

, and aordingly B(2

�m

s) = G(2

m

0

s)A

m+m

0

.

Comparison of the two equations, whih hold for any m

0

2 N , veri�es the laim.

14



The funtions in B are important for many appliations like solving interpolation or

approximation problems for subdivision surfaes. In view of (11), the similarity with

B-splines in the standard setting is evident. The only oneptional di�erenes onern

possible linear dependenies and a lak of parametri smoothness at the enter. We

will fous on geometri smoothness properties in the next setions.

Bibliographi Notes.

� Dominane of the eigenvetor �

0

= 1 was always onsidered a neessary on-

dition for subdivision algorithms. The intriguing phenomenon of ine�etive

eigenvetors was �rst disussed in [77℄. An example whih shows that requiring

linear independene of the generating system implies a loss of generality an be

found in [78℄.

� A onstrutive proedure to eÆiently ompute a subdivision matrix A from a

given matrix

~

A an be found in [78℄.

� The representation (11) of a subdivision surfae as a �nite linear ombination

of ontrol points q

`

and funtions b

`

is most useful for omputational purposes.

For instane, it was used in [19℄ to ompute subdivision surfaes whih minimize

a ertain fairness funtional while interpolating a given set of points.

� There exists a well-developed theory for the analysis of subdivision urves and

surfaes when the domain manifold S is homeomorphi to the plane, see for

instane [10, 28, 44, 53, 54℄.

� The linear independene and (lak of) loal linear independene of subdivision

funtions has been analyzed in detail in [65℄.

5 C

k

1

-shemes and the harateristi map

In this setion, we derive neessary and suÆient onditions for normal ontinuity and

single-sheetedness of subdivision surfaes. As already mentioned above, the spetrum

of A is ruial for the properties of a subdivision sheme. We sort the eigenvalues �

i

of A in desending order,

1 = �

0

> j�

1

j � j�

2

j � � � � j�

�

`

j:

To simplify the exposition, we fous on a sublass of subdivision algorithms that

overs all ases of pratial relevane.

De�nition 5.1 A C

k

0

-sheme (A;G) aording to De�nition 4.3 is alled a standard

sheme, if k � 1, and

� A has a double subdominant eigenvalue �, i.e.,

1 > � := �

1

= �

2

> j�

3

j;
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� there exist two linearly independent eigenvetors v

1

; v

2

to �, i.e.,

Av = �v; v = [v

1

; v

2

℄:

Suh an eigenstruture is not really speial, but typial for shemes with ertain

natural symmetry properties, as disussed in Setion 6. Let A =: V JV

�1

denote the

Jordan deomposition of the subdivision matrix of a standard sheme. Then V =

[e; v

1

; v

2

;

~

V ℄ and J = diag(1; �; �;

~

J). We de�ne the eigenoeÆients P = [p

0

; : : : ;p

�

`

℄

and the eigenfuntions F = [f

0

; : : : ; f

�

`

℄ by

P := V

�1

Q; F := GV:

With p

0

= ~e

T

Q = x



the enter and f

0

= Ge = 1 the 1-funtion we obtain the

representation

x

m

= GA

m

Q = FJ

m

P = x



+ �

m

(f

1

p

1

+ f

2

p

2

) + o(�

m

):

To eÆiently deal with suh asymptoti expansions, we introdue an equivalene re-

lation for sequenes of funtions with oiniding leading terms. We write

a

m



m

= b

m

i� a

m

� b

m

= o(

m

);

where o(

m

)=

m

onverges uniformly to zero as m!1. For example, a

m

1

= a means

that a

m

onverges to a. For vetor-valued expressions, the equivalene relation is

understood omponent-wise. For simpliity,



m

= is mostly replaed by the symbol

:

=

with the understanding that the dot refers to the lowest order term spei�ed expliitly

on the right hand side of a relation. Hene, the expansion of the sequene of spline

rings above now simply reads x

m

:

= x



+ �

m

(f

1

p

1

+ f

2

p

2

), meaning that the omitted

remainder term deays faster than �

m

. In the following, the two-dimensional spline

ring built from the subdominant eigenfuntions f

1

; f

2

plays a entral role.

De�nition 5.2 For a standard sheme (A;G) with subdominant eigenvetors v =

[v

1

; v

2

℄ and eigenfuntions F = [1; f

1

; f

2

; : : : ; f

�

`

℄ the harateristi map is de�ned by

 := Gv = [f

1

; f

2

℄ 2 C

k

(S

0

;R

2

; G):

With this de�nition, the sequene of spline rings beomes

x

m

:

= x



+ �

m

 [p

1

;p

2

℄:

Convergene towards the enter x



is evident. In order to ompute normal vetors,

we de�ne the ross produt of vetors in R

3

as usual, and for vetors in R

2

as the real

number �� � := det(�;�). Aordingly, for spline rings in R

2

or R

3

, we de�ne the

di�erential operator

�

D := �

s

� �

t

and obtain

�

Dx

m

= �

s

x

m

� �

t

x

m

:

= �

2m �

D (p

1

� p

2

);
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where, by de�nition,

�

D = �

s

f

1

�

t

f

2

� �

t

f

1

�

s

f

2

is the Jaobian determinant of the harateristi map. It is easily shown that

�

D 2

C

k�1

(S

0

;R

2

) if  2 C

k

(S

0

;R

2

). In order to distinguish degenerate ases, we say that

the initial dataQ are generi, if any three of the eigenoeÆients p

1

; : : : ;p

�

`

are linearly

independent. In this setion, it would be suÆient to demand only p

1

� p

2

6= 0; the

generality of the de�nition antiipates the requirements in the next setions. We say

that a subdivision sheme is normal ontinuous or single-sheeted, if so are all surfaes

generated from generi initial data.

Theorem 5.3 A standard sheme is

� normal ontinuous with entral normal

n



= sign(

�

D )

p

1

� p

2

jp

1

� p

2

j

;

if the harateristi map is regular, i.e., if

�

D 6= 0.

� not normal ontinuous, if

�

D hanges sign.

Proof The �rst part of the statement follows immediately from n

m

:=

�

Dx

m

=j

�

Dx

m

j

and the observation that 1=

�

D is ontinuous, hene uniformly bounded, on the

ompat domain S

0

. To proof the seond part, let us assume that

�

D (s

1

)

�

D (s

2

) <

0 for some arguments s

1

; s

2

2 S

0

. Here, we obtain

n

m

(s

i

)

:

= sign(

�

D (s

i

))

p

1

� p

2

jp

1

� p

2

j

; i 2 f1; 2g;

and see that n

m

annot onverge to a onstant limit sine jn

m

(s

1

)� n

m

(s

2

)j

:

= 2. �

The onditions of this theorem are almost omprehensive. Only the exeptional ase,

where

�

D has zeros without hanging sign remains open. Here, the behavior of

�

Dx

m

depends on higher order eigenoeÆients and annot be determined a priori. Now,

the issue of single-sheetedness has to be addressed, and again, the harateristi map

provides neessary and suÆient onditions.

Theorem 5.4 A standard C

k

0

-sheme with a regular harateristi map  is

� single-sheeted and moreover C

k

1

, if  is injetive.

� not single sheeted, if  restrited to the interior of S

0

is not injetive.
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Proof Let  be regular and injetive. Then we know that x is normal ontinuous

with n

m

:

= n



= sign(

�

D (s

i

))(p

1

� p

2

)=jp

1

� p

2

j. Hene, n



� n

m

:

= 1, and in

partiular n



� n

m

> 0 for m suÆiently large. Next, we onsider a resaled sequene

of projetions of spline rings,

~

�

m

:= �

�m

�

m

:

=  L; L := [p

1

;p

2

℄ �T



:

For generi initial data,  L is injetive beause the (2 � 2)-matrix L has full rank.

Sine the set of regular injetive mappings is open with respet to the C

1

-norm, we

onlude that

~

�

m

and eventually �

m

is injetive for m suÆiently large. Thus, all

onditions of Theorem 3.3 are ful�lled, and x is C

k

1

. Similar arguments show that also

non-injetivity of  at interior points is inherited by

~

�

m

and �

m

. �

Again, the theorem is almost omprehensive. Only the exeptional ase, when  

restrited to the boundary of its domain is not injetive, remains open. Theorems 5.3

and 5.4 suggest to fous on standard shemes with a regular and injetive harateristi

map. The following de�nition aounts for that observation.

De�nition 5.5 A standard C

k

0

-sheme (A;G) with a harateristi map  that is

regular and injetive is alled a standard C

k

1

-sheme.  is alled normalized if

 (2; 2; 0) = (1; 0) and

�

D > 0:

As we have shown, C

k

1

-shemes generate C

k

1

-splines from generi initial data. The

notion of normalization is introdued to selet from the variety of possible hara-

teristi maps a speial lass of representatives whih is onvenient for the forthom-

ing onsiderations. We prepare our disussion of that issue by the following obser-

vation. For initial data Q := [v

1

; v

2

℄ the orresponding two-dimensional spline is

x = Bv 2 C

k

0

(S;R

2

), where the spline rings are just saled opies of the harateristi

map, x

m

= �

m

 . By (7), this implies for the segments  

j

 

j

(1; u) = � 

j

(2; 2u)

 

j

(u; 1) = � 

j

(2u; 2); (12)

and in general

�

�

s

 

j

(1; u) = � 2

�

�

�

s

 (2; 2u)

�

�

t

 

j

(u; 1) = � 2

�

�

�

t

 (2u; 2); 0 � � � k: (13)

Now, we an prove that normalization is always possible if the harateristi map is

regular and injetive.

Lemma 5.6 Let

~

 = F~v be the harateristi map of a standard C

k

1

-sheme with

s := sign

~

 (2; 2; 0) and [a; b℄ :=

~

 (2; 2; 0). Then [a; b℄ 6= [0; 0℄, and

 := Fv; v := ~vR; R :=

1

a

2

+ b

2

�

a �sb

b sa

�

de�nes a normalized harateristi map of the sheme.
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Proof By (13) and injetivity,

~

 (1; 1; 0) = �

~

 (2; 2; 0) 6=

~

 (2; 2; 0). Hene, [a; b℄ 6=

[0; 0℄, and R is well de�ned. Sine R has full rank, the olumns of v are linearly

independent eigenvetors of A to � implying that  = Fv =

~

 R is a harateristi

map as well as

~

 . In partiular,  is regular and injetive. We �nd  (2; 2; 0) =

~

 (2; 2; 0)R = [1; 0℄, and

�

D (2; 2; 0) =

�

D

~

 (2; 2; 0) detR =

j

�

D

~

 (2; 2; 0)j

a

2

+ b

2

> 0:

Sine

�

D is ontinuous and has no zeros,

�

D > 0 follows showing that  is nor-

malized. �

Bibliographi Notes.

� As pointed out in [63℄, shift and ip invariane (see Setion 6) of a C

k

1

-sheme

imply a double subdominant Jordan blok. For instane, for n = 3, simplest

subdivision [62℄ yields an 6-fold subdominant eigenvalue �

1

= 1=4, with two

Jordan bloks of size 2 and two Jordan bloks of size 1. Still, C

k

1

-smoothness is

guaranteed. The analysis of this more general setting is only slightly more diÆ-

ult, but requires onsiderably omplex notation. The standard ase disussed

here overs most algorithms urrently in use.

� Complete lists of possible leading eigenvalues ampatible with C

k

1

-shemes are

provided in [77, 98℄.

� The onept of the harateristi map was introdued in [73℄. In some sense, it

is related to the natural on�guration de�ned in [92℄.

� In [73℄, it is shown that regularity and injetivity of the harateristi map are

suÆient for smoothness. Neessity was proven in [63℄.

� An elegant omputational way to verify regularity of the harateristi map even

for non-polynomial shemes is desribed in [99℄.

6 Symmetry and Fourier analysis

We ontinue the analysis of shemes with standard symmetry properties. Aording

to the partition of splines into segments, vetors Q of ontrol points an typially be

partitioned into bloks Q = [Q

0

; : : : ;Q

n�1

℄, where all bloks Q

j

have equal struture

and size

~

` := (

�

` + 1)=n. If, as for the Catmull-Clark sheme, a entral ontrol point

is ommon to all bloks, one an use n idential opies of it to ahieve the desired

struture. Shift invariane of a subdivision sheme refers to the fat that the shape

of a subdivision surfae does not depend on the speial hoie of the starting point
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when indexing the bloks of a given set of initial data Q. More preisely, with E the

identity matrix of dimension

~

`, let

S :=

2

6

6

6

4

0 0 � � � 0 E

E 0 � � � 0 0

.

.

.

0 0 � � � E 0

3

7

7

7

5

denote the n-blok shift matrix. A subdivision sheme (A;G) is alled shift invariant,

if

AS = SA and G(�; j) = G(�; j + 1)S; j 2 Z

n

:

In this ase, for any Q and

~

Q := S

k

Q, the segments of the splines x := BQ and

~x := B

~

Q di�er, just as the bloks Q

j

=

~

Q

j+k

of the initial data, only by an index

shift:

x

j

= G(�; j)A

m

Q = G(�; j + k)S

k

A

m

Q = G(�; j + k)A

m

S

k

Q = ~x

j+k

:

Flip invariane of a subdivision sheme refers to the fat that the shape of a

subdivision surfae does not depend on the orientation when indexing a given set of

initial ontrol points Q. More preisely, a subdivision sheme (A;G) is alled ip

invariant, if there exists a matrix R with R = R

�1

suh that

AR = RA and G(s; t; j) = G(t; s;�j)R; (s; t; j) 2 S

0

: (14)

In this ase, for any Q and

~

Q := RQ, the splines x := BQ and ~x := B

~

Q di�er only

by a ip (s; t; j)! (t; s;�j) of arguments,

x

j

(s; t) = G(s; t; j)A

m

Q = G(t; s;�j)RA

m

Q = G(t; s;�j)A

m

RQ = ~x

�j

(t; s):

From now on, we fous on shemes whih respet both invariane priniples.

De�nition 6.1 A subdivision sheme is alled symmetri, if it is both shift and ip

invariant.

Let us ontinue by disussing the impliations of symmetry on the eigenstruture of

A. SA = AS implies a blok-irulant struture for the subdivision matrix,

A =

2

6

6

6

4

A

0

A

n�1

� � � A

1

A

1

A

0

� � � A

2

.

.

.

.

.

.

.

.

.

.

.

.

A

n�1

A

n�2

� � � A

0

3

7

7

7

5

:

The key tool for handling suh matries is the Disrete Fourier Transform (DFT).

With

w

n

:= exp(2�i=n);
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the primitive n-th root of unity we de�ne the Fourier blok matrixW as the Kroneker

produt of E and the Fourier matrix, i.e.

W := (w

�jk

n

E)

j;k2Z

n

=

2

6

6

6

6

6

4

E E E � � � E

E w

�1

n

E w

�2

n

E � � � w

1

n

E

E w

�2

n

E w

�4

n

E � � � w

2

n

E

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

E w

1

n

E w

2

n

E � � � w

�1

n

E

3

7

7

7

7

7

5

:

It is easily veri�ed by inspetion that the inverse of W is given by

W

�1

=

1

n

(w

+jk

n

E)

j;k2Z

n

=

1

n

W:

The DFT of the matrix A is de�ned by

^

A := WAW

�1

, and a standard omputation

shows that

^

A = diag(

^

A

0

; : : : ;

^

A

n�1

)

is blok diagonal with entries obtained by applying the Fourier matrix to the �rst

blok olumn of A,

2

6

4

^

A

0

.

.

.

^

A

n�1

3

7

5

:=W

2

6

4

A

0

.

.

.

A

n�1

3

7

5

; that is

^

A

k

:=

X

j2Z

n

w

�jk

n

A

j

:

By de�nition, A and

^

A are similar, and in partiular, they have equal eigenvalues.

More preisely, if �

0

is an eigenvalue of A, then there exists an index k 2 Z

n

suh that

�

0

is an eigenvalue of

^

A

k

. The set of all suh indies is alled the Fourier index of �

0

and denoted

F(�

0

) := fk 2 Z

n

: det(

^

A

k

� �

0

E) = 0g:

For the dominant eigenvalue �

0

= 1 of A, we obtain F(1) = f0g. Now we onsider

the double subdominant eigenvalue � of a standard sheme. If k 2 F(�), then

det(

^

A

k

� �E) = det(

^

A

n�k

� �E) = 0

sine � is real and the diagonal bloks

^

A

k

and

^

A

n�k

are omplex onjugate (unless

k = 0 or k = n� k). Hene, the Fourier index of � has the form F = fk; n� kg for

some k 2 Z

n

. If

^

A

k

v̂ = �v̂, then the orresponding omplex eigenvetor of A is given

by

v = W

�1

2

6

6

6

4

Æ

0;k

v̂

Æ

1;k

v̂

.

.

.

Æ

n�1;k

v̂

3

7

7

7

5

=

1

n

2

6

6

6

4

w

0

n

v̂

w

k

n

v̂

.

.

.

w

(n�1)k

n

v̂

3

7

7

7

5

: (15)

The eigenfuntion orresponding to v is just a omplex version of the harateristi

map  .
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Figure 7: Charateristi map with Fourier index (left) F(�) = f1; n� 1g and (right)

F(�) = f2; n� 2g.

De�nition 6.2 Let v be the omplex eigenvetor of a symmetri standard C

k

1

-sheme

(A;G) to the subdominant eigenvalue � as de�ned above. Then the omplex hara-

teristi map of the sheme is de�ned as the spline ring

f := Gv 2 C

k

(S

0

; C ; G):

This de�nition is justi�ed as follows: The real and imaginary part of v are the real

eigenvetors v

1

; v

2

as introdued in De�nition 5.1. Hene,

f = G(v

1

+ iv

2

) = f

1

+ if

2

and  = G[v

1

; v

2

℄ = [Re f; Im f ℄:

Further, with

�

Df := Im(�

s

f �

t

f),

�

Df =

�

D :

Due to the lose relation between  and f , also f will shortly be referred to as the

harateristi map of the sheme. Using (15), we obtain for the segments of the

harateristi map

f

j

=

1

n

X

`2Z

n

G

`

(�; j)w

`k

n

v̂ =

1

n

X

`2Z

n

G

`�j

(�; 0)w

`k

n

v̂

=

w

jk

n

n

X

`2Z

n

G

`

(�; 0)w

`k

n

v̂ = w

jk

n

f

0

:

This means that, due to shift invariane, all segments an be obtained from the

�rst one by rotation. This observation leads immediately to a result onerning the

appropriate Fourier index of the subdominant eigenvalue.

Theorem 6.3 The harateristi map of a symmetri standard sheme an be inje-

tive only if F(�) = f1; n� 1g.

The proof is based on omputing the winding number of urves in the image of f

depending on k. Instead of going through the tehnial details, we refer to Figure 7,
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whih gives a good impression of the onsequenes of a wrong Fourier index. In the

following, we will always assume that the omplex eigenvetor v aording to (15)

orresponds to the index k = 1. The index n � 1 leads to the omplex onjugate

eigenvetor v.

For a normalized harateristi map, ip invariane is exploited as follows: AR =

RA implies that also Rv is an eigenvetor of A to �, i.e., Rv = av + bv for some

omplex onstants a; b. On one hand, by (14),

1 = G(2; 2; 0)v = G(2; 2; 0)Rv = a+ b:

On the other hand, v and v are also eigenvetors of the shift matrix. With Sv = w

�1

n

v

and Sv = w

n

v, we obtain

1 = G(2; 2; 0)v = G(2; 2; 0)SRSv = w

�2

n

a+ b:

The two onditions a + b = w

�2

n

a + b = 1 have the unique solution a = 0; b = 1, i.e.,

Rv = v. Hene,

f

0

(s; t) = G(s; t; 0)v = G(t; s; 0)Rv = G(t; s; 0)v = f

0

(t; s):

We summarize our �ndings onerning symmetry properties of the harateristi map

as follows:

Theorem 6.4 Let f = Gv be the normalized harateristi map of a symmetri stan-

dard sheme (A;G) derived via (15) from the eigenvetor v̂ of the blok

^

A

1

to the

subdominant eigenvalue �. Then, for j 2 Z

n

,

f

j

(s; t) = w

j

n

f

0

(s; t) = w

j

n

f

0

(t; s) = f

�j

(t; s): (16)

The theorem tells us that the omplete information on the harateristi map is es-

sentially ontained in one half of the �rst segment. More preisely, we de�ne the half

domain

�

h

:= f(s; t) 2 � : s � tg;

and the half segment f

h

as the restrition of the segment f

0

to this set. Obviously,

�

Df(s; t; j) =

(

�

Df

h

(s; t) if s � t

�

Df

h

(t; s) if s > t:

Thus, it suÆes to verify

�

Df

h

> 0 to ensure regularity of the omplete harateristi

map. Sine in a onrete setting

�

Df

h

an be evaluated either numerially or even

analytially, the required hek of sign is typially easy to aomplish. By ontrast,

verifying injetivity seems to be a muh harder task, and in most known proofs for

spei� algorithms, muh e�ort is spent on that issue. The following theorem provides

a signi�ant simpli�ation of the injetivity test.

Theorem 6.5 Let (A;G) be a symmetri standard sheme with Fourier index F =

f1; n� 1g, and assume that the half segment f

h

of the omplex harateristi map f

is normalized and regular. Then f is regular and injetive if and only if all real points

on the urve 

1

(u) := f

h

(u; 1); u 2 U , are positive:



1

(U) \ R

�

0

= ;:
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h

and (right) spline image f

h

(�

h

).

Proof As already shown above, f is regular if and only if f

h

is regular. If f is

injetive and f

h

(u; 1) 2 R

�

0

, then, by Theorem 6.4, f

h

(u; 1) = f(1; u; 0) = f(u; 1; 0) =

f(u; 1; 0). This implies u = 1, and with (12), the ontradition 0 > f(1; 1; 0) =

�f(2; 2; 0) = � > 0 follows. If all real points in 

1

(U) are positive, we argue as

follows:

First, we show that in this ase also all real points in the image f

h

(�

h

) are posi-

tive. To this end, we denote the four boundary segments of �

h

by �

1

�; : : : ; �

4

�, see

Figure 8, left. The restritions of f

h

to these sets yield four boundary urves whih

we parametrize over U = [0; 1℄ by



1

(u) := f

h

(u; 1); 

2

(u) := f

h

(1 + u; 1 + u)



3

(u) := f

h

(2� 2u; 2); 

4

(u) := f

h

(0; 2� u);

see Figure 8,right. By (12), the urves 

1

and 

3

are related aording to 

1

(u) =

�

3

(1 � u). By (16), 

2

(u) = f

0

(1 + u; 1 + u) = f

0

(1 + u; 1 + u) is real. Sine f is

regular, 

0

2

= Df

h

[1; 1℄ 6= 0. The endpoints are 

2

(0) = �; 

2

(1) = 1. Hene, we

onlude that 

2

(u) is stritly monotone inreasing and positive for all u 2 U . Also

by (16),



4

(u) = f

0

(0; 2� u) = f

0

(2� u; 0) = f

�1

(0; 2� u) = w

�1

n

f

0

(0; 2� u) = w

n



4

(u):

This is possible only if 

4

(u) lies on a straight line with angle either arg 

4

(u) = �=n

or arg 

4

(u) = � + �=n for all u 2 U . As before, one shows that j

4

(u)j is stritly

monotone, and that 

4

(u) 6= 0 for all u 2 U . Hene, 

4

(U) does not ontain real

points. By assumption, 

1

(U) \ R

�

0

= ;, and the same is true for 

3

(U) = 

1

(U)=�.

Together, we have shown that all real points on the image of the boundary of �

h

are

positive, i.e., f

h

(��

h

)\ R

�

0

= ;. Sine, by the inverse funtion theorem, for a regular

map the boundary of the image is a subset of the image of the boundary, we onlude

that f

h

(�

h

) \ R

�

0

= ;

Seond, we show that the minimum and maximum of the angle arg f

h

(�) are at-

tained if and only if � 2 �

2

� and �

4

�, respetively. Using the �ndings of the �rst part

of the proof, we see that arg f

h

2 (��; �) is well de�ned so that the searh for extrema

atually makes sense. Now, let � 2 argmin arg f

h

be an argument orresponding to the
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minimal angle. As before, we onlude that � has to lie on the boundary of �

h

. If �

does not lie in �

2

�[�

4

� then there exists u 2 (0; 1) suh that arg 

1

(u) = arg 

3

(1�u)

is minimal. Moreover, the tangents satisfy 

0

1

(u) = ��

0

3

(1 � u) 6= 0. That is, the

tangents point into opposite diretions, while the image of f

h

always lies on the left

hand side of the boundary urve. Hene, there exists a point ~� in the neighborhood

either of [u; 1℄ or of [2�2u; 2℄ with arg f

h

(~�) < arg f

h

(�) ontraditing the minimality

assumption. Analogously, one shows that argmaxarg f

h

� �

2

� [ �

4

�. Sine the im-

age of f

h

lies on the left hand side of the urve 

2

, whih is oriented from left to right

on the positive real axis, we see that there exist positive angles so that arg 

2

= 0

annot be maximal. Hene, min arg f

h

= arg 

2

= 0, and max arg f

h

= arg 

4

= �=n.

Third, we show that f

h

is injetive. Sine the image f

h

(�

h

) does not ontain the

origin, there exists r 2 N suh that �

r

< jf

h

(�)j � �

�r

for all � 2 �

h

. We de�ne the

domain �

r

h

:= [

jmj<r

2

m

�

h

and the map

f

r

h

: �

r

h

3 � 7! �

m

f

h

(2

m

�) if 2

m

� 2 �

h

onsisting of saled opies of f

h

. This map is smooth and regular sine onseutive

parts satisfy ontat onditions up to order k analogously to (13). The four boundary

urves 

r

1

; : : : ; 

r

4

of f

r

h

are de�ned as shown in Figure 8,right. Now, we onsider the

funtion

� : C 3 z 7! jf� 2 �

r

h

: f

r

h

(�) = zgj 2 N

0

assigning the number of pre-images to points in the omplex plane. Sine f

h

is on-

tinuous, � is upper semi-ontinuous. Sine f

h

is regular, � is lower semi-ontinuous at

all points not ontained in the image f

r

h

(�

r

h

) of the boundary. From the results above

it follows immediately that �(

2

(0)) = 1. Further, by de�nition of r, the urves 

r

1

or



r

3

do not interset f

h

(�

h

). Hene, � is ontinuous and equal to one on f

h

(�

h

).

Fourth, we show that f is injetive. From

f(s; t; j) =

(

w

j

n

f

h

(s; t) if s � t

w

j

n

f

h

(t; s) if t � s

it follows

arg f(s; t; j) 2

(

[0; �=n℄ + 2j�=n if s � t

[��=n; 0℄ + 2j�=n if t � s:

For (s; t; j) 6= (s

0

; t

0

; j

0

), equal angles and moduli are only possible if j

0

= j + 1 and

(s; t) = (t

0

; s

0

) 2 �

4

�

h

, or j

0

= j and (s; t) = (s

0

; t

0

) 2 �

2

�

h

, but these points are

identi�ed in S

0

. �

Typially, the hek for intersetions of the urve 

1

with the non-positive real line is

easy to aomplish sine, in ase of injetivity, the angle of 

1

varies between 0 and

�=n, so that the two sets are not even lose. We demonstrate the proedure in the

next setion at hand of the Doo-Sabin algorithm.
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Figure 9: Mesh re�nement of the Doo-Sabin algorithm.

Bibliographi Notes.

� The relevane of the Disrete Fourier Transform for the analysis of subdivision

matries was already reognized in [24℄.

� Symmetry properties of the harateristi map and their relation to its Fourier

index are disussed in [63℄.

� In [99℄, an alternate riterion for injetivity of a regular harateristi map is

given. It is based on the winding number of its boundary urve.

7 An example: The Doo-Sabin algorithm

The Doo-Sabin algorithm generalizes subdivision (uniform knot insertion) of biquadrati

tensor-produt B-splines. For eah n-gon of the original mesh, a new, smaller n-gon

is reated and onneted with its neighbors as depited in Figure 9. Figure 10 shows

the mask for generating a new n-gon from an old one for the regular ase n = 4 (left)

and the general ase (middle). The standard weights suggested by Doo and Sabin

in [24℄ are

a

j

:=

Æ

j;0

4

+

3 + 2 os(2�j=n)

4n

: (17)

Eah of the n segments x

m

j

; j 2 Z

n

, of themth spline ring generated by the Doo-Sabin

algorithm onsists of three biquadrati B-spline pathes. Aordingly, we an split

the ontrol points Q

m

into n groups of nine ontrol points, eah, ordered as shown in

Figure 10 (right). Sine the sheme is symmetri, we an apply DFT as in Setion 6

to obtain

^

A

k

=

0

�

â

k

0 0

^

A

1;0

k

^

A

1;1

k

0

^

A

2;0

k

^

A

2;1

k

0

1

A

;

where â

k

=

P

j

w

�jk

n

a

j

are the entries of the DFT of the vetor [a

0

; : : : ; a

n�1

℄ of inner

weights. The sub-matries

^

A

i;j

k

do not depend on the speial hoie of weights or on

the index k. Rather, they ontain information on the subdivision rules in the tensor
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produt ase. For instane,

^

A

1;1

k

=

1

16

2

4

3 0 w

3 1 3

w 0 3

3

5

; w := 16w

k

n

:

The weights a

j

are assumed to sum to one, i.e., â

0

= 1, and to be symmetri aording

to a

j

= a

n�j

, i.e., â

k

= â

n�k

is real. The eigenvalues of

^

A

k

are â

k

; 1=4; 1=8; 1=16; 0 so

that the subdominant eigenvalue must be � := â

1

= â

n�1

2 (1=4; 1). Using a omputer

algebra system, one an determine the omplex eigenvetor v̂ of

^

A

1

orresponding to

� expliitly:

v̂ =

2

6

6

6

6

6

6

6

6

6

4

2�(16��1)(8��1)(4��1)

6�(16��1)(6��1+2w

n

�)

18�(32�

2

�1+4

n

�)

6�(16��1)(6��1+2w

n

�)

(16��1)

�

12�

2

+18��3+w

n

(4�

2

+12��1)

�

6�

�

32�

2

+64��12+

n

(20�+1)�is

n

(16��1)

�

64�

3

+512�

2

�46��8+36

n

�(2�+1)

6�

�

32�

2

+64��12+

n

(20�+1)+is

n

(16��1)

�

(16��1)

�

12�

2

+18��3+w

n

(4�

2

+12��1)

�

3

7

7

7

7

7

7

7

7

7

5

;

where w

n

= 

n

+is

n

. In partiular, for the original Doo-Sabin weights in (17), we have

� = 1=2 and, rearranging the entries of v̂ in a (3� 3)-matrix aording to Figure 10,

right,

2

4

v̂

5

v̂

6

v̂

7

v̂

2

v̂

3

v̂

8

v̂

1

v̂

4

v̂

9

3

5

= 3

2

4

21 + 14w

n

28 + 2w

n

+ 9w

n

35 + 12

n

14 + 7w

n

21 + 6

n

28 + 2w

n

+ 9w

n

7 14 + 7w

n

21 + 14w

n

3

5

:

By elementary omputations, one an determine the Bernstein-B�ezier-form of all three

biquadrati pathes forming the �rst segment of the omplex harateristi map f .

For � 2 (1=4; 1), the minimum of the real parts of all Bernstein-B�ezier oeÆients is

positive. Hene, by the onvex hull property, the ondition 

1

(U) \ R

�

0

= ; is always

satis�ed. In partiular, for � = 1=2, we obtain the minimal value minRe 

1

(U) =

27



Re f(0; 1; 0) = 21 + 21

n

> 0. It remains to show regularity of the harateristi

map. The Jaobian determinant

�

Df onsists of three biubi pathes, whih an also

be expressed expliitly in Bernstein-B�ezier-form. A areful analysis shows that all

oeÆients are positive if

p(�) := 128�

2

(1� �)� 7�� 2 + 9�

n

> 0:

Again by the onvex hull property, we onlude

�

Df > 0 if p(�) > 0. In partiular,

for � = 1=2, we obtain p(1=2) = 3=2 (7 + 3

n

) > 0 proving that the Doo-Sabin in

its standard form is a C

1

1

-sheme. Surprisingly, there is an upper bound �

sup

(n) with

p(�) < 0 for 1 > � > �

sup

(n). For suh �,

�

Df atually reveals a hange of sign, and

the orresponding algorithm annot be C

1

1

. Fortunately, the upper bounds are quite

lose to 1, so that they do not impose severe restritions when designing variants on

the standard Doo-Sabin algorithm. More preisely, the lowest upper bound ours for

n = 3,

�

sup

(n) � �

sup

(3) =

p

187

24

os

 

1

3

artan

 

27

p

5563

1576

!!

+

1

3

� 0:8773:

The asymptoti behavior for n!1 is

�

sup

(n)

:

= 1�

�

2

7n

2

:

Summarizing, we have shown the following:

Theorem 7.1 Let â

0

; : : : ; â

n�1

be the Fourier oeÆients of a symmetri set of weights

for the generalized Doo-Sabin algorithm. Then a standard sheme is obtained if

� := â

1

= â

n�1

satis�es the ondition

1 > � > maxf1=4; jâ

2

j; : : : ; jâ

n�2

jg:

The sheme is C

k

1

if p(�) > 0, and not C

k

1

if p(�) < 0. In partiular, the sheme is

C

k

1

when hoosing the standard weights.
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Figure 11: Charateristi map for n = 3 and subdominant eigenvalue (left) � = 0:5

and (right) � = 0:95.

8 Conditions for C

k

2

-shemes

As we have shown, C

k

1

-subdivision shemes are well understood and relatively easy

to onstrut. By ontrast, the development of shemes providing regularity of higher

order is subjet to very restritive onditions on the eigenvalues and eigen-funtions.

In this setion, we derive these onditions and disuss some of their onsequenes.

While the entral point x



and the entral normal n



are determined by the eigen-

oeÆients p

0

and p

1

; p

2

related to the dominant and subdominant eigenvalue �

0

= 1

and �

1

= �

2

= �, urvature properties rely on the next smaller eigenvalue and the

orresponding eigenfuntions. Let us assume that (A;G) is a standard C

2

2

-sheme

with eigenvalues

1 > � > � := j�

3

j = � � � = j�

�q

j > j�

�q+1

j

and, for the sake of simpliity, a full set of eigenvetors v

3

; : : : ; v

�q

to the eigenvalues

with modulus �. The general ase of non-trivial Jordan bloks is slightly more om-

pliated from a purely tehnial point of view without providing further insight. Then

the seond order expansion of x

m

reads

x

m

= GV J

m

V

�1

Q = FJ

m

P

:

= x



+ �

m

 [p

1

;p

2

℄ + �

m

r

m

(18)

with

r

m

:=

�q

X

q=3

a

m

q

f

q

p

q

; a

q

:= �

q

=�: (19)

The sequenes a

m

q

have modulus 1 and aount for the osillating behavior of �

m

q

in

the ase when �

q

is negative or omplex.

For the rest of this setion, the initial data are always assumed to be generi. Then,

by de�nition of a C

2

2

-sheme, the entral height funtion h is twie di�erentiable at

the origin. With H the symmetri (2 � 2)-matrix of seond derivatives of h at the

origin, also alled the entral Hessian, we obtain, using (4), the Taylor expansion

h(�) =

1

2

�H�

T

+ o(j�j

2

):
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The mth spline ring of the projetion � aording to (2) is

�

m

(s) = (x

m

(s)� x



) �T



:

= �

m

 L; L := [p

1

;p

2

℄ �T



; (20)

where the (2 � 2)-matrix L has full rank. Sine [p

1

;p

2

℄ � n



= 0, the entral height

funtion aording to (3) is h(�

m

(s))

:

= �

m

r

m

(s) � n



. Hene, after dividing (20) by

�

2m

, we obtain the ondition

%

m

r

m

� n



=  LHL

T

 

T

+ o(1 + %

m

); % := �=�

2

; (21)

whih has to be satis�ed for an appropriate hoie ofH. By Lemma 4.1, the eigenfun-

tions f

q

are non-zero implying that also r

m

�n



is in general non-zero. We distinguish

three ases for the ruial ratio %:

� If % < 1, then H = 0 follows independent of the hosen data. This ase of an

enfored at spot at the enter will be referred to as trivial urvature ontinuity.

� If % = 1, then the right hand side of (21) onverges to a onstant, and a simple

argument shows that r

m

� n



an be onstant only if a

3

= � � � = a

�q

= 1.

� If % > 1, then the left hand side of (21) diverges faster than the right hand side,

and asymptoti equality of the sequenes is impossible.

Together, it follows that non-trivial urvature ontinuity is possible, although by no

means guaranteed, only if

�

2

= � = �

3

= � � � = �

�q

:

We all � the subsubdominant eigenvalue, and elaborate on that ase now. Passing to

the limit, (21) redues to

�q

X

q=3

f

q

p

q

=  LHL

T

 

T

; p

q

:= p

q

� n



: (22)

One an easily show that for any set of oeÆients p

3

; : : : ; p

�q

and arbitrary " > 0

there exist generi initial data Q

"

suh that the orresponding oeÆients p

"

3

; : : : ; p

"

�q

di�er by less than ". By ontinuity, we onlude that (22) holds for any hoie of

oeÆients. In partiular, for any ` = 3; : : : ; �q, we an set p

q

:= Æ

q;`

to obtain

f

`

=  LHL

T

 

T

= af

2

1

+ bf

2

2

+ f

1

f

2

for ertain onstants a; b; . This means that all subsubdominant eigenfuntions must

lie in the spae of homogeneous quadrati polynomials in the two subdominant eigen-

funtions. We summarize our �ndings as follows:

Theorem 8.1 Let (A;G) be a standard C

2

2

-sheme whih is non-trivial in the sense

that the entral Hessian does not neessarily vanish. Then the subsubdominant eigen-

value � satis�es

�

2

= � = �

3

= � � � = �

�q

> j�

�q+1

j;

and the subsubdominant eigenfuntions f

3

; : : : ; f

�q

satisfy

f

`

2 spanff

2

1

; f

2

2

; f

1

f

2

g: (23)
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It is not too diÆult to onstrut subdivision shemes that have the desirable distri-

bution of eigenvalues. By ontrast, the onditions on the eigenfuntions are extremely

restritive and the major obstale to remove when trying to onstrut C

k

2

-shemes.

Let us onsider an impliation on the important speial ase of pieewise polynomial

subdivision surfaes. We de�ne the bi-degree deg f of a spline ring f 2 C

k

(S

0

;R; G)

as the maximal bi-degree of the polynomial piees of f . For vetor-valued spline rings,

the bi-degree is the maximum over all omponents.

Theorem 8.2 Let (A;G) be a standard C

k

2

-sheme, and assume that the generating

system onsists of pieewise polynomials. If the sheme is exible in the sense that

there exist generi initial data suh that the orresponding subdivision surfae has

positive Gaussian urvature at the enter, then either n = 4 or

degG � 2k + 2: (24)

Proof First, we show deg > k if n 6= 4. Suppose that deg � k. Then pathes

 

j

of the harateristi map are not pieewise polynomial funtions, but in fat single

polynomials, whih we now onsider to be extended from �

0

to all of R

2

. By means

of the onditions (6), eah path  

j+1

is ompletely determined by its predeessor  

j

,

and we have

 

j+1

(s; t) =  

j

(�t; s); j 2 Z

n

:

Repeated use of this equation yields  

j+4

=  

j

. For the regular ase n = 4 this is just

�ne, but otherwise it implies that the harateristi map is not injetive ontraditing

De�nition 5.5.

Positive Gaussian urvature means that detH > 0. Hene, H is positive or nega-

tive de�nite. For generi initial data, L has full rank implying that LHL

T

is positive

or negative de�nite as well. We easily onlude for the degree of the sheme

degG = deg( LHL

T

 

T

) = 2 deg � 2k + 2

sine anellation of the leading oeÆients is impossible. �

Sine k � 2 for a sheme generating urvature ontinuous surfaes, we see that the

simplest C

k

2

-sheme has degree 6. Further, no sheme generalizing uniform B-spline

subdivision, like the Catmull-Clark-sheme, omes into question beause here degG =

k + 1 < 2k + 2.

Bibliographi Notes.

� The ase � < �

2

, whih yields vanishing prinipal urvatures at the enter, is

disussed in [68℄

� The importane of � = �

2

for C

k

2
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� In [74℄, it is pointed out that the degree estimate (24) relies on the pieewise

polynomial struture of the surfaes rather than on properties of the subdivision

algorithm. Thus, it applies even to non-stationary or non-linear shemes as long

as they live up to ertain symmetry properties.

� Generalizations of the degree estimate based on the onept of exibility an be

found in [69℄.

� C

k

2

-algorithms, and even general C

k

r

-algorithms are onstruted in [66,76℄. How-

ever, they are less elegant than the popular C

k

1

-shemes and rarely used in pra-

tie.

9 Curvature analysis

In this setion we disuss the limit behavior of urvature at the enter. The results

are useful to understand ertain artifats in subdivision surfaes, and provide insight

for the onstrution of ameliorated shemes.

To onveniently analyze a subdivision surfae x with eigenoeÆients P = V

�1

Q,

we introdue a loal oordinate system in R

3

suh that the enter x



=: 0 is the origin,

and the unit vetors are

e

1

:= p

1

=jp

1

j; e

2

:= n



� e

1

; e

3

:= n



:

It is hosen suh that the entral tangent plane is spanned by e

1

and e

2

. That is, the

matrix T



aording to (2) is given by T



:= [e

1

; e

2

℄. As in Setion 8, we assume

1 > � > � := j�

3

j = � � � = j�

�q

j > j�

�q+1

j

and a full set of eigenvetors v

3

; : : : ; v

�q

. The seond order expansion of the spline rings

aording to (18) reads,

x

m

:

= �

m

 [p

1

;p

2

℄ + �

m

r

m

where r

m

is de�ned by (19). With � the angle between p

1

and p

2

, the �rst two

omponents of x

m

are asymptotially given by

x

m

�T



:

= �

m

 L; L := [p

1

;p

2

℄ �T



=

�

jp

1

j 0

jp

2

j os� jp

2

j sin�

�

; (25)

while the third omponent is

x � n



:

= �

m

r

m

� n



:

Assume that an eigenvalue �

q

0

with j�

q

0

j = � is not positive. Then the sign of r

m

�n



is

inessantly hanging as m!1 if p

q

0

�n



is large ompared with the other oeÆients

p

q

� n



; q 2 f3; : : : ; �qgnfq

0

g. Shemes revealing suh an osillating behavior should be

disarded, so that we fous now on the ase of oiniding positive subsubdominant

eigenvalues.
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De�nition 9.1 A standard C

k

1

-sheme with k � 2 and eigenvalues

� > � = �

3

= � � � = �

�q

> j�

�q+1

j (26)

is alled a (�; �)-sheme.

For a (�; �)-sheme, the real-valued spline rings r

m

�n



are independent of m, and we

de�ne

h



:= r

m

� n



=

�q

X

q=3

f

q

p

q

� n



2 C

k

(S

0

;R): (27)

Together, we �nd the expansion

x

m

:

= [�

m

 L; �

m

h



℄ = [ L; h



℄ diag(�

m

; �

m

; �

m

): (28)

This means that, asymptotially, the spline rings x

m

are just saled opies of the

surfae [ L; h



℄. For the forthoming investigation of urvature and shape properties,

this surfae plays a most important role.

De�nition 9.2 The entral surfae z



orresponding to the spline x = BQ generated

by a (�; �)-sheme is de�ned by

z



:= [ 



; h



℄ 2 C

k

(S

0

;R

3

);  



:=  L;

where the (2 � 2)-matrix L and the real-valued spline ring h



are given by (25) and

(27), respetively.

It is important to notie that unlike the harateristi map, the entral surfae depends

on the initial data. Using �

1

:= �

s

; �

2

:= �

t

, and the di�erential operators

D :=

�

�

1

�

2

�

; D

i;j

:=

�

D

�

i

�

j

�

;

the fundamental forms of a subdivision surfae an be expressed onveniently.

Theorem 9.3 For a (�; �)-sheme and generi initial data, the �rst fundamental

form of the spline ring x

m

and its inverse are given by

I

m

:

= �

2m

I; (I

m

)

�1

:

= �

�2m

I

�1

; I := D 



�D 



: (29)

With I



and II



the �rst and seond fundamental form of the entral surfae z



, the

seond fundamental form of x

m

is

II

m

:

= �

m

II; II :=

r

det I



det I

II



: (30)
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Proof The �rst formula follows immediately from I

m

= Dx

m

� Dx

m

, Dx

m

:

=

�

m

D 



T



, and T



�T



= Id. To ompute the inverse, we note that

det I = (

�

D 



)

2

= (

�

D )

2

(detL)

2

= (

�

D )

2

jp

1

� p

2

j

2

:

For generi initial data, the ross produt does not vanish, while (

�

D )

2

�  > 0

for some onstant  by regularity of  , ompatness of the domain, and ontinuity of

�

D . Hene,

(det I

m

)

�1

:

= �

�4m

(det I)

�1

and the formula for (I

m

)

�1

follows easily.

From (28), we onlude

detD

i;j

x

m

:

= �

2m

�

m

detD

i;j

z



;

and (30) is obtained by omparing the de�nitions

II

m

i;j

=

detD

i;j

x

m

p

det I

m

; II



i;j

=

detD

i;j

z



p

det I



:

�

It is important to notie that the seond fundamental form of x

m

and the entral

surfae z



di�er only be a salar fator. For that reason, their shape properties

are losely related. With the help of the fundamental forms we an ompute the

Weingarten map, whih in turn determines the asymptoti behavior of the prinipal

urvatures and diretions. We reall that the Weingarten map (also known as the

shape operator) is de�ned as the di�erential of the normal map. Its eigenvalues are the

prinipal urvatures, while its left eigenvetors in the parameter domain are mapped

to the prinipal diretions by the Jaobian of the surfae parametrization.

Theorem 9.4 For a (�; �)-sheme and generi initial data, the Weingarten mapW

m

of x

m

is

W

m

:

= %

m

W; W := II I

�1

; % :=

�

�

2

: (31)

Let Q be the matrix of normalized left eigenvetors and K the diagonal matrix of

eigenvalues of W ,

W = Q

�1

KQ: (32)

The diagonal matrix of prinipal urvatures K

m

:= diag(�

m

1

; �

m

2

) of x

m

is given by

K

m

:

= %

m

K; (33)

while the prinipal diretions P

m

:= [p

m

1

;p

m

2

℄ onverge to the e

1

e

2

-plane:

P

m

:

= P; P := QD 



T



: (34)
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Proof With respet to the parameter domain, the Weingarten map is given by

W

m

:= II

m

(I

m

)

�1

, and (31) follows from (29) and (30). The prinipal urvatures

�

m

1

; �

m

2

are the eigenvalues ofW

m

, and that implies (33). The matrixQ

m

of normalized

left eigenvetors of W

m

onverges aording to Q

m

:

= Q. Further, by (28), Dx

m

:

=

�

m

D 



T



. Hene, using appropriate saling, the prinipal diretions of x

m

are P

m

=

�

�m

QDx

m

:

= QD T



, as stated. �

As in the preeding setion, we see that the ratio % plays a entral role for the limit

behavior of urvature.

Theorem 9.5 For a (�; �)-sheme and generi initial data, the prinipal urvatures

near the enter behave aording to the ratio %.

� If % < 1, then both prinipal urvatures onverge to 0.

� If % = 1, then both prinipal urvatures are bounded and at least one of them

does not onverge to 0.

� If % > 1, then at least one prinipal urvature diverges.

Proof In view of (33), it remains to show that K 6= 0 for generi initial data. If

K = 0, thenW = 0 and II = II



= 0. The seond fundamental form II



of z



vanishes

only if z



is planar. This is the ase if and only if h



and  are linearly dependent,

i.e., if there are onstants a; b;  2 R whih do not vanish simultaneously, suh that

ah



+ [b; ℄ = 0:

Let s = (s; t; j) be an arbitrary point on the outer boundary of the domain S

0

,

i.e., maxfs; tg = 2. Then, by (12),  (2

�1

s) = � (s). Analogously, sine h



is an

eigenfuntion to �, one an show h



(2

�1

s) = �h



(s). Hene,

ah



(s) + (s)[b; ℄ = 0

a�h



(s) + � (s)[b; ℄ = 0:

This implies  (s)[b; ℄ = 0. Let us assume that [b; ℄ = [0; 0℄. Then a 6= 0 and

h



= 0. By Lemma 4.1, the eigenfuntions f

3

; : : : ; f

�q

to � are linearly independent so

that all oeÆients p

q

� n



in the de�nition (27) of h



must vanish. This ontradits

the assumption that the initial data are generi. Now, we assume [b; ℄ 6= [0; 0℄. In

this ase, all outer boundary points  (s) lie on the straight line xb + y = 0. Sine

 (2

�1

s) = � (s), also all inner boundary points lie on the same straight line. Sine

 is regular, the boundary of the image is a subset of the image of the boundary,

whih is part of a straight line. Hene, the omplete image of  must be part of a

straight line; but this is impossible for a regular map. �
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In the last setion, we have derived a neessary ondition for C

k

2

-shemes. Now, we

are able to show that this ondition is also suÆient.

Theorem 9.6 A (�; �)-sheme is C

k

2

if and only if � = �

2

and the subsubdominant

eigenfuntions f

3

; : : : ; f

�q

satisfy

f

`

2 spanff

2

1

; f

2

2

; f

1

f

2

g:

Proof In Theorem 8.1, we have shown that the given onditions are neessary. Now,

let us assume that they are satis�ed. Then there exists a symmetri (2� 2)-matrix S

with onstant entries suh that

h



=

1

2

 



S � 



:

It is easily veri�ed by inspetion that

I = D 



�D 



; II = D 



S �D 



:

Hene, by (31), W = II I

�1

= D 



S (D 



)

�1

. That is, the eigenvalues of S and W

oinide and are onstant. More preisely, if S = RKR

�1

for a diagonal matrix K,

then

W = Q

�1

KQ; Q := (D R)

�1

:

Comparison with (32) shows that the prinipal urvatures onverge aording toK

m

:

=

K. By (34), also the prinipal diretions onverge to a onstant limit:

P

m

:

= QD T



= R

�1

T



:

�

We onlude our disussion of the limit behavior of urvature by speifying limit ex-

ponents for L

p

-integrability. More preisely, for 1 � p � 1, we say that a subdivision

surfae is H

k

2;p

, if it is C

k

1

, and if the prinipal urvatures are L

p

-integrable when

restrited to a suÆiently small neighborhood of the enter.

Theorem 9.7 For a (�; �)-sheme and generi initial data, the generated subdivision

surfae is

� H

k

2;1

, if % � 1.

� H

k

2;p

for all p < �2 log�= log %, if % > 1.

In partiular, for any %, the surfae is H

k

2;2

.
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Proof For % � 1, the prinipal urvatures are bounded, as stated. For % > 1, we

hoose m

0

so large that I

m

is regular for all m � m

0

. Then, with the surfae element

dx

m

=

p

det I

m

dsdt

:

= �

2m

p

det Idsdt, the surfae integral of the pth power of the

prinipal urvatures of the mth spline ring is

Z

x

m

jK

m

j

p

dx

m

:

= %

mp

�

2m

�

K;

�

K :=

X

j2Z

n

Z

�

0

K

j

p

det I

j

dsdt;

where K

j

and I

j

denote the jth segment of K and I, respetively. Summing over all

m � m

0

, we obtain

1

X

m=m

0

Z

x

m

jK

m

j

p

dx

m

:

=

(%

p

�

2

)

m

0

�

K

1� %

p

�

2

;

whih is �nite for p < �2 log�= log %. Sine % < �

�1

, the upper bound is always � 2.

�
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� A �rst areful analysis of urvature in a viinity of the enter was given in [59℄,

and bounds on their osillation were spei�ed in [60℄.

� The onept of the entral surfae and its relation to the limit behavior of

urvature was introdued in [64℄. Appliations of the theory are disussed in [40℄.

� The basi limit behavior of prinipal urvatures aording to Theorem 9.5 was

observed in [24, 52, 64℄.

� L

p

-regularity of prinipal urvatures was investigated in [79℄. The results of The-

orem 9.7 are ruial for using subdivision surfaes in the �nite element analysis

of higher order problems as in [12, 13℄.

� The entral surfae provides further information on the loal shape of a subdivi-

sion surfae near the enter. The analysis in [64℄ shows that the subsubdominant

eigenvalue � must be at least triple with Fourier index f0; 2; n� 2g � F(�) in

order to avoid severe restritions on what type of shapes an be modeled.

� If F(�) = f0; 2; n� 2g, [40℄ de�nes a hart that haraterizes, for a subdivision

algorithm and for the full gamut of input data, the shape of resulting surfaes.

10 Conlusion

Subdivision surfaes are remarkably similar to spline surfaes. Their distint harater

reveals itself in the neighborhood of extraordinary points where n 6= 4 quadrilateral
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pathes join. This paper summarizes the struture of subdivision surfaes near ex-

traordinary points. It adds two new building bloks to the foundations by larifying

the role of linearly dependent generating systems and simplifying the test for inje-

tivity of the harateristi map.
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