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Abstract

This paper summarizes the structure and analysis of subdivision surfaces
and characterizes the inherent similarities and differences to parametric spline
surfaces. Besides presenting well known results in a unified way, we introduce
new ideas for analyzing schemes with a linearly dependent generating system,
and a significantly simplified test for the injectivity of the characteristic map.

1 Introduction

For a graphics designer, subdivision is a recipe for generating a finer and finer se-
quence of polyhedra that converges to a visually smooth limit surface after a few
iteration steps (Figure 1). While this intuitive view accounts to a large extent for the
success of subdivision in applications, it fails to provide a framework explaining the
unique analytical structure of subdivision surfaces vis-a-vis other representations. In
particular, this view, which was predominant in the early subdivision literature, fails
to characterize the inherent similarities and differences to standard parametric spline
surfaces.

Figure 1: Four steps of Catmull-Clark subdivision (from [88]).
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Figure 2: Refinement schemes (initial meshes top, refined meshes bottom). We focus
on schemes of type pQ4 and dQ4 that result in quadrilateral patches; the analysis
and structure of other subdivision schemes is analoguous.

To highlight the similarities, we use the term ‘spline’ in a much generalized sense.
In the following, a spline is any function consisting of a finite or even infinite number
of pieces, each of which is defined on an indexed copy of a standard domain. This def-
inition covers in particular linear combinations of B-splines or box-splines. We focus
on piecewise continuous functions defined on a union of unit squares; the analysis of
spline surfaces over other, say triangular standard domains (see Figure 2), is analo-
gous and need not be developed separately. To characterize continuity of a spline, its
domain is endowed with the topological structure of a two-dimensional manifold. This
avoids a more involved characterization by means of matching smoothness conditions
for abutting patches.

To highlight the differences between spline surfaces and subdivision surfaces, we
focus on the neighborhood of extraordinary points, e.g. points where n # 4 quadri-
lateral domains join. Here, the surface has the structure of a union of spline rings,
i.e. circular annuli formed by matching up the boundaries of the spline patches (see
Figure 5,right). (The word ‘ring’ will not lead to confusion since no rings in the alge-
braic sense will be considered in this paper.) The infinite sequence of nested surface
rings no longer shares all properties of the underlying splines. For example, since
these rings contract ad infinitum, it is necessary to use, in the limit, a differential
geometric characterization of smoothness: smoothness is measured in a natural local
coordinate system. Injectivity with respect to this coordinate system is crucial but not
always present in subdivision schemes; and the lack of second-order differentiability
with respect to the coordinate system presents a challenge for characterizing shape.
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Sources. This article is the summary of a book on the structural analysis of subdi-
vision surfaces [78], which is currently in preparation. At the end of each section, we
give some bibliographical notes pointing to the most relevant and first-time references,
without claiming completeness. In addition to the citations given in the article, we
also include some further suggested reading on the topic in the list of references.

Notation. We use greek letters for objects in R? and maps into R? such as planar
curves and reparametrizations. Bold face is used, in particular, for points and func-
tions in the embedding space R?, d > 2. These points are understood as row vectors
so that, following established practice in the literature, we apply n x n subdivision
matrices from the left to a vector of n control points in R?. As in Matlab, elements
in a row of a matrix or vector are separated by a comma, while rows are separated by
a semicolon. For example,

1 2 3
1, 2, 3; 4,5, 6] = {4 5 6}'
Acknowledgement. We would like to thank Malcolm Sabin for many fruitful dis-
cussions and for providing his list of references.
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Figure 3: (left) Domain manifold ¥ x Zj and (right) spline manifold x.

2 Spline surfaces near extraordinary points

To investigate surfaces with n quadrilateral pieces joining at a point, we define the
unit interval in R and the unit square in R2?, respectively:

U:=1[0,1] and X:=UxU.

Then the domain S,
S:=¥x%,, %Z,:=7Z modn,

of a spline x : S — R? consists of n indexed copies of 3. Points in 3 and S are
typically denoted

o= (s,t)ex, s=(o,j)=I(st,j)€S.

The restriction of x to a single unit square with index j is called a patch and denoted
in
x:8 3 (0,j) — x;(0) € R

Now, pairs of edges of the unit squares are set equal according to
0,u,7) = (u,0,j+1), wel, j€ZL,.
The common origin of all patch domains is
0°:=(0,0)=---=(0,n—1),

see Figure 3. The superscript ”c” for ”center” is used to tell the origin 0° of S apart
from the origin 0 of 3. By identifying edges of adjacent unit squares, the domain S
becomes a simply connected topological space. Thus, there is a well-defined notion
of continuity for splines. Due to the identification (0,u,j) = (u,0,j + 1), the patches
have to satisfy the consistency conditions

Xj(07 U) = Xj-l—l(U; 0)7 ] € Zn;

and, in particular,

x:=x(0°) =x0(0) =--- =x, 1(0)
is called the center of x. Subsequently, patches are always assumed to be continuous.
Together with the consistency conditions, this implies that the spline x : S — R¢
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Figure 4: A normal continuous surface that is not single-sheeted.

is a continuous map. We will be interested in several choices of the dimension d
of the image space. For d = 3, x is a spline surface, and this is the case we are
eventually interested in. For d = 2, we obtain planar splines which are used for
analytical purposes. Especially, the characteristic map to be defined later is of that
type. Finally, for d = 1, we obtain real valued splines. We will use such splines
to define generating systems for finite dimensional spline spaces in R*, just as B-
splines are used to model standard tensor product spline surfaces. Next, we consider
smoothness.

Definition 2.1 A continuous spline x : S — R? is called Cf, if all patches x; are C*-
functions on X\{0}, and if the corresponding cross boundary derivatives at common
edges are equal up to sign, i.e.,

0vx(0,u) = (-1)"0;xj4+1(u,0), v=0,...,k ue(0,1] (1)
The space of all C*-splines in R? is denoted CF (S, RY).

Crucially, the central point is excluded from all smoothness conditions since, for u = 0,
consistency implies, for n # 4 that either the partial derivatives of all patches vanish at
the origin, or that the projection of x to the tangent plane at the origin is not injective.
In the first case of a singular parametrization, the geometrical smoothness of the spline
does not follow from the analytical smoothness of the parametrization; in the second
case x cannot be a smooth surface in the sense of manifolds. As a consequence,
we do not impose smoothness conditions at the center a priori. In essence, the rest
of the paper deals with the challenge of reconciling the lack of smoothness in the
parametrization of x with the geometric smoothness of its image. As a first step, we
define normal continuity in the following way:

Definition 2.2 A spline surface x € C§(S,R?) is called normal continuous at the
center, if the limit

c .__ :
n¢ = Sll%lc n(s)

of the Gauss map
n(s) :=a(s)/[la(s)[l, n(s) =n(e,j) = dx; x Ix;

exists and 1s unique. In this case, n® is called the central normal, and the plane
through x¢ perpendicular to n® is called the central tangent plane.



It is easily shown that for a normal continuous spline surface x € Ck(S,R?), the
Gauss map extended by n(0°) := n¢ is a spline in C§'(S, S?), where S? is the unit
sphere in R*. Normal continuity is not sufficient for a spline surface to be smooth in
the sense of manifolds since the projection of x into the central tangent plane may
not be injective. To address this problem, we choose two orthonormal vectors t{, t§
in the central tangent plane and collect them in a (2 x 3)-matrix T°. Then we define
the projection & of x to that plane by

€:S3>s— (x(s) —x%) - T e R% (2)
Here and subsequently, a dot denotes multiplication by the transpose,
A -B:=AB"

x is called single-sheeted if € is injective when restricted to a sufficiently small neigh-
borhood S’ of the origin. In this case, we can use the inverse function s = s(§) to
define the central height function h on the set 2 := £(S') C R? by

h:Z 2¢€& (x(s(€)) —x°)-n°€R. (3)
With these settings, points on the spline surface near the center can be written as
x(s) =x“+ €T+ h(€)n°, seS, €&

and the geometrical smoothness of x at the center is just the analytical smoothness
of h at the origin. If x € C3(S,R?), then h is continuous on E' and continuously
differentiable on E'\{0}. If, moreover, x is normal continuous, then one can show
using the mean value theorem that h is also differentiable at the origin. Both value

and gradient vanish there,
h(0) =0, Dh(0)=0. (4)

Definition 2.3 A spline surface x € C§(S,R?) is called C¥ if it is single-sheeted, and
if the central height function is r-times differentiable at the origin. The space of all
Ck_splines is denoted C*(S,R?).

One should keep in mind that the superscript k refers to the smoothness of the
parametrization, while the subscript r refers to the smoothness of the central height
function at the origin. Strictly speaking, x can be a smooth manifold even if it is nei-
ther normal continuous in the sense of Definition 2.2 nor single-sheeted in the sense
of Definition 2.3. As an example, consider the ‘flat’ spline x with patches

x0(&) =+ =x,-1(&) = rsin(1/r) [cos 4y, sindyp, 0],

where & = r(cos @, sin ¢). The normal vector, computed as the normalized cross prod-
uct of partial derivatives, alternates between [0, 0, 1] and [0, 0, —1]; and the projection
of x to the zy-plane is not injective. Nevertheless, the image of x is simply a part of
the zy-plane, hence a smooth manifold. We accept that such highly degenerate cases
are not contained in the spaces CF(S, R?).



Bibliographic Notes.

e The focus on spline surfaces consisting of quadrilateral patches is motivated by
the Catmull-Clark-algorithm [9], the Doo-Sabin-algorithm [24], or the tensor-
product four-point scheme [42,47]. A completely analogous theory can be de-
veloped for triangular patches, as obtained for instance by Loop’s scheme [52],
the butterfly scheme [31], or v/3-subdivision [45].

e Viewing the domain S as a topological space appears natural. Nevertheless, it
was not explicitly introduced prior to [77,98].

e An example for a surface which is normal continuous, but not single-sheeted can
be found in [73].

e The conditions (1) are not necessary for a smooth join of the patches. Rather,
it suffices to require coincidence of geometric quantities such as normal vectors,
principal curvatures and directions, etc., at common edges. For a survey on the
concept of so-called geometric continuity see, for instance, [58].

e The example of a degenerate parametrization of smooth manifolds elaborates
on a remark in [99].

3 Subdivision surfaces defined

So far we have derived a general framework for splines near extraordinary points.
Now we specialize it to the subdivision setting. In practice, subdivision surfaces are
obtained by iterated refinement of control meshes. This refinement process enlarges
the regular parts of the mesh, and scales down the central n-sided region near the
extraordinary vertex. Since the limit surface corresponding to the regular parts of
a mesh can at least in principle be determined explicitly, iterative refinement corre-
sponds to the generation of a sequence of larger and larger parts of the final limit
surface. Equally, one can represent the limit surface x as the union of the initially
known regular part x° and a sequence of ring-shaped parts x™,m € N, which are
added by subsequent refinement steps. Skipping the details, this process corresponds
to a partition of the domains ¥ and S in the following way. Let

»0:=10,2]%\[0,1)?, ™ :=2""% S8 := %" X Z,, m € Ny,

then
»=J=z"vo, s=[]Js uor,
meN meN

see Figure 5. Splines x € C¥(S,R?) are partitioned accordingly. For m € N and
J € Ly, the segment x7* is defined by
X" 50— x(2 "),
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Figure 5: (left) Domain S\0¢ for (right) the union x\x° of spline rings.

and the spline ring x™ is defined by
x": 8 58— x(27™s),

where we used the convention that a scalar factor applies only to the continuous
variables of s,
as = a(s,t,j) := (as,at,j), a€R

The space of all C*-spline rings is denoted by
C*(S%, RY).

The segment x7* corresponds to the restriction of the patch x; to the set 3™, and the
spline ring x™ corresponds to the restriction of the spline x to the set S™, i.e.,

xj'(27) = x;(E™), x™(8%) =x(S™),

j
where re-scaling facilitates the use of a common domain for all m. This implies
x;(X) = U xME)UxS, x(S) = U x™(S%) U x°©.
meN meN

The partition of a spline into spline rings and segments leads to the notion of subdi-
vision. It refers to a special way of representing splines rather than to a new class of
objects.

Definition 3.1 x € C§(S,R?) represented as

x™(2"s) if s € S™

X:S35s+— )
{xc if s=0°

15 called a spline in subdivision form. Ford = 3, x is also called a subdivision surface.



Expressing a spline in subdivision form is a straightforward segmentation process.
This point of view becomes relevant if we proceed in the opposite direction and assume
that the sequence of spline rings x™ is generated iteratively by some algorithm. Then
the task is to analyze properties of the spline obtained by gluing all these pieces
together. The following lemma characterizes the relation between spline rings and
splines.

Lemma 3.2 A sequence (X™),, of spline rings constitutes a spline x € C§(S,R?) if
and only if

e all segments are k-times continuously differentiable,

X € CH(=0,RY), (5)

e all pairs of neighboring segments X', X7, | satisfy
977 (0,1+u) = (=1)"0/x}, (1 +u,0), ueUl, (6)

m-+1

e all pairs of consecutive segments X", X;

satisfy

OUx (1, u) = 27 0x1(2, 2u)
oYX (u, 1) = 2"0yx" 1 (2u,2), uwel, (7)

o there exists x° € R? such that for any sequence s™ € S°

X :Wllgr;ox (s™). (8)

We omit the details of the proof, which essentially reduces to an application of the
chain rule. The following theorem summarizes conditions for normal continuity and
single-sheetedness.

Theorem 3.3 Let x™ be a sequence of spline rings satisfying all conditions of Lemma 3.2
and X the corresponding spline. Then

e x is normal continuous if and only if there exists n° € S? such that for any
sequence s™ € SY

n° = lim n™(s™),
m—»00

where the spline rings of the Gauss map n are denoted by n™.

o x is OF, if and only if it is normal continuous and if there exists my € N such
that

n®-n™ >0 for all m > mgy, and



the planar spline ring §,,,, = (Xm, —x°) - T corresponding to the projection
€ as defined in (2) is injective on the outer boundary of its domain

0, 8% := {(s,t,j) € S* : max(s,t) = 2}.

While the proof of the first part is straightforward, the second part is nontrivial and
requires techniques of differential topology. For details, we refer to [78].

All subdivision algorithms currently in use and a large class of generalizations
are characterized by the fact that all spline rings generated by them lie in a common
space which is the d-fold Cartesian product of a finite-dimensional space of real-valued
functions. For instance, for the Doo-Sabin algorithm as described in Section 7, the
spline rings are C'' and consist of n segments of three biquadratic pieces each. The
dimension of this space is therefore 9dn. In general,

G:: I:gO?"'7gZ:|7 gleok(SOJR)J ézOJ"'JZJ

is a row-vector of scalar-valued spline rings and we assume that they form a partition
of unity,

D aqls)=1, ses. (9)

The spline space spanned by these functions is denoted

l
C*(S% R, G) := {deqg Tq € Rd} c C*(S° R),

£=0

and G is called the generating system of C*(S°, R?, ). In many applications, G is
linearly independent. This is explicitly not assumed here so that the analysis covers
cases like generalized box spline subdivision or matrix subdivision schemes.

C*(S° R?, G) is a linear function space of dimension < d(/+1). We endow it with
the max-norm

1™ [|oo = max [x™(s)],
seso

where | - | denotes the Euclidean norm in R?. Limits of sequences of spline rings are
always understood with respect to this norm. The coefficients qf* € R? of a spline
ring

»
S
Il
M-

9097

~
Il

0

are its control points. Collecting them in an ((£+ 1) x d)-matrix Q™ := [q};. . .; a;'],
we obtain
x"(s) = x" (o) = G(s)Q™, s=(o,j)c S,

j
or, omitting arguments, simply x™ = GQ™.
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Figure 6: (left) Control points Q (dots) and (right) refined control points AQ (o) for
Doo-Sabin subdivision [24]. The corresponding spline rings are shaded grey.

Bibliographic Notes.

e The idea of representing a subdivision surface as a union of spline rings dates
back to [71,73]. Early attempts to analyze smoothness [3,4] were based on
investigating sequences of finer and finer meshes converging to the subdivision
surface. This approach, however, ultimately fails to capture important aspects
of smoothness.

e Examples of subdivision surfaces which are not generated by a finite set of
functions are, for instance, variational subdivision [41,43] or schemes based on
geometrical procedures as in [32].

4 Subdivision algorithms

From an abstract point of view, a subdivision algorithm is a rule to compute sequences
of spline rings from an initial set of control points. Here, we focus on the following
special case: a (linear stationary) subdivision algorithm (A,G) is characterized by a
square matrix A with all rows summing to 1 and a generating system G of according
dimension. For a given set Q of control points, also referred to as initial data, the
sequence of spline rings is computed by iterated application of the matrix A,

Q" = A™Q, x™ =GA™Q.

Since the rows of A, as well as the functions in GG, sum to 1, the representation of
the spline rings ™ is affine invariant. That is, applying an affine transformation to
the initial control points Q is equivalent to applying this transformation to the spline
rings x™, and hence to the complete spline x.

The analysis of a subdivision algorithm can be split into three parts. First, the
smoothness of the generating system has to be determined by verifying (5) and (6).
Second, the contact conditions (7) between neighboring and consecutive segments
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have to be verified. Typically, this task is readily accomplished. Third, and this is
the focus of this work, continuity and smoothness properties at the center have to be
determined.

We start with continuity as defined by (8). Since the rows of A sum to one, Ay := 1
is the eigenvalue corresponding to the eigenvector e := [1,...,1]%, i.e., Ae = e. To

ensure (8), i.e.

C

lim x™ = x°,

m—ro0

it seems natural to demand that this eigenvalue be dominant. However, in general,
this is by no means necessary. The reason for this is that the generating system need
not be linearly independent. For example, assume that A has eigenvalues \g = 1,
A = 2and p = 1/2 corresponding to the eigenvectors e, v and w, respectively. Let Q =
vp~+eq+wr for some points p, q,r € R?\{0}. Then Q™ = A™Q = 2™vp+eq+2~"wr
is certainly divergent. But if v happens to be annihilated by G, i.e. Gv = 0, then
x"=GQ™ =q+ 27"Gwr — q =: x° is convergent. We say that v is an ineffective
etgenvector.

This shows that, in general, it is not possible to relate spectral properties of A to
smoothness properties of the generated surfaces in a straightforward way. To address
this issue in a consistent fashion, we proceed as follows. We define the linear spaces

N:={veR™:Gv=0}, M,:= ﬂ A™N.
meN
That is, M, consists of all vectors that do not escape the nullspace of G when A is
applied. Further, two matrices A, A are called G-equivalent if they generate identical

sequences of control points, i.e., if GA™ = GA™ for all m € Ny. Then the following
holds:

Lemma 4.1 (Removal of ineffective eigenvectors) a) For given (A, Q), let TI, :
R — M; be a projection on M with Ilye = 0, and 11, := Id —Il, its complement.
Then the matrices A =11, A and A are G-equivalent, and M, = {0}.

b) If My = {0}, then A does not have ineffective eigenvectors. That is, if Av =
Av # 0 then Guv # 0.

Proof a) Since Ge = 1 by (9), we have e ¢ My, and a projection of the desired
form exists. By definition, AM4 = M4 and AM ; = M ;. Hence,

AMj+ My) = M + g AMy + T AMy = M + M.

Since M j; is the largest A-invariant subspace of N, My C M - Further M; C ker Ac
ker A and AMy = My so that My = {0}. Finally, Ade = [I,Ae = e. It remains
to show that A and A are equivalent. To this end, we consider G(A™ — A™) =
G((A — Il A)™ — flm) —: GA. The matrix A is the sum of products of matrices A
and Il all of which include the factor II,. With AHO = HOAHO, it is clear that A can
be represented in the form A = ITyA’. Therefore G(A™ — A™) = GI A’ = 0.

b) If Av = Av # 0, then for all m € N we have Gv = A™"GA™v = 0. Hence,
A™y € N and v € My contradicting My = {0}. O
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The property My = {0}, which is trivial for linearly independent G, can now
be assumed for the general setting without loss of generality. The following theorem
crucially depends on this property.

Theorem 4.2 Let (A, G) be a subdivision algorithm with Ma = {0}. Then the con-
tinuity condition
x‘ = lim x™
m—o0

is satisfied for any set Q of initial data if and only if the eigenvalue \g = 1 of A is
strictly dominant, i.e., if || < 1 for all other eigenvalues X of A.

Proof Let Ay = 1 be strictly dominant. With ¢ = 1A the left eigenvector to Ag
normalized by é'e = 1, we can decompose Q in the form Q = eé'Q + R, where R is
a linear combination of generalized eigenvectors of A corresponding to eigenvalues \;
with |A;] < r for some constant < 1. Hence, using Ge = 1, we obtain convergence
according to

X" =GA"Q =&TQ + o(r™) — T Q =: x".

If Ay = 1 is not strictly dominant, we have to distinguish two cases. If A\j = 1 has
geometric multiplicity 1, but algebraic multiplicity > 1, then there exists a generalized
eigenvector v with Av = v +e. We set q := [1,...,1] and Q := vq to obtain the
divergent sequence

x" =GA"Q = GA™vq = G(v + me)q = GQ + mq.

Otherwise, there exists an eigenvector v, which is linearly independent of e, to an
eigenvalue A\ with [A] > 1. We set q := [1,...,1], Q := Revq, and A =: |Ale® to
obtain

x™ = GA™Q = |A|" Re(e"™ Guq).

Since Gv # 0, this expression can converge to a constant x¢ only if |[A] =1 and ¢t = 0,
i.e., if the eigenvalue A = Ay = 1 is at least double, and if Gv =: @ € R is constant.
In this case, v' := ae — v is an ineffective eigenvector because Av' = v' # 0 and
Gv' = G(ae — v) = 0 contradicting Lemma 4.1. O

The results obtained so far suggest confining our considerations to subdivision schemes
with M4 = {0} and a strictly dominant eigenvalue A\g = 1. The next definition
accounts for that.

Definition 4.3 Let (A, G) be a subdivision scheme with the following properties:
o The generating system is C*, i.e., G € CF(SO, RIH).
e The conditions (7) are satisfied.

e A has no ineffective eigenvectors, i.e., My = {0}.
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o The eigenvalue A\g = 1 to the eigenvector e = Ae is strictly dominant.
Then (A, G) is called a Ck-scheme, and A is called the subdivision matrix.

We recall our convention that the superscript k refers to the smoothness of the
parametrization, while the subscript 0 indicates continuity at the center. We summa-
rize our previous findings in the following theorem:

Theorem 4.4 Let (A, G) be a Cf-scheme and é = €A the dominant left eigenvector
normalized by ée = 1. Then, for any Q, the spline rings x™ := GA™Q together with
the center x° := éQ constitute a C¥-spline.

We continue by defining B-spline-like functions for subdivision algorithms. Denote
the unit vectors in R+ by e, ..., ez and define the row-vector B = [by, ..., b;] of
real-valued splines b, € CF(S,R) by

be(s) := (10)

G(2ms)A™e, if se€S™
éeg if s=0°

Then, by linearity of subdivision, the relation between arbitrary initial data Q and
the corresponding spline x can simply be written as

x = BQ. (11)
Let us briefly discuss some properties of the functions in B. They
e span the the space of splines generated by the subdivision algorithm (A, G).

e form a partition of unity since

ee =1 it s=0°

i:be(s) _ {G(2m5)Ame —G@ms)e=1 if seS™

£=0

e are linearly independent, if the generating system G is linearly independent. To
show this, it suffices to consider the initial spline ring xy = GQ = GQ, which,
for linearly independent (G, vanishes if and only if Q = 0.

e satisfy the scaling relation
B(27™™s) = B(s)A™, s€8S, meN,.

This can be proven as follows. For s € 8™, (10) yields B(s) = G(2™'s)A™.
For m € Ny, it is 27™s € S™" | and accordingly B(2™™s) = G(2™'s)A™™.
Comparison of the two equations, which hold for any m’ € N, verifies the claim.

14



The functions in B are important for many applications like solving interpolation or
approximation problems for subdivision surfaces. In view of (11), the similarity with
B-splines in the standard setting is evident. The only conceptional differences concern
possible linear dependencies and a lack of parametric smoothness at the center. We
will focus on geometric smoothness properties in the next sections.

Bibliographic Notes.

e Dominance of the eigenvector A\ = 1 was always considered a necessary con-
dition for subdivision algorithms. The intriguing phenomenon of ineffective
eigenvectors was first discussed in [77]. An example which shows that requiring
linear independence of the generating system implies a loss of generality can be
found in [78].

e A constructive procedure to efficiently compute a subdivision matrix A from a
given matrix A can be found in [78].

e The representation (11) of a subdivision surface as a finite linear combination
of control points q; and functions b, is most useful for computational purposes.
For instance, it was used in [19] to compute subdivision surfaces which minimize
a certain fairness functional while interpolating a given set of points.

e There exists a well-developed theory for the analysis of subdivision curves and
surfaces when the domain manifold S is homeomorphic to the plane, see for
instance [10,28,44,53,54].

e The linear independence and (lack of) local linear independence of subdivision
functions has been analyzed in detail in [65].

5 (F-schemes and the characteristic map

In this section, we derive necessary and sufficient conditions for normal continuity and
single-sheetedness of subdivision surfaces. As already mentioned above, the spectrum
of A is crucial for the properties of a subdivision scheme. We sort the eigenvalues \;
of A in descending order,

To simplify the exposition, we focus on a subclass of subdivision algorithms that
covers all cases of practical relevance.

Definition 5.1 A Ck-scheme (A, G) according to Definition 4.3 is called a standard
scheme, of £ > 1, and

e A has a double subdominant eigenvalue A, i.e.,

1>)\Z:)\1:)\2>|)\3|,
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e there exist two linearly independent eigenvectors vy, vy to A, i.e.,

Av = Av, v = vy, 0]

Such an eigenstructure is not really special, but typical for schemes with certain
natural symmetry properties, as discussed in Section 6. Let A =: V.JV ! denote the
Jordan decomposition of the subdivision matrix of a standard scheme. Then V =
le,v1,v, V] and J = diag(1,\, A, J). We define the eigencoefficients P = [po;. .. pj]
and the eigenfunctions F = [fo, ..., f7] by

P.=V1Q, F:=GV.

With pp = ¢'Q = x° the center and f; = Ge = 1 the 1-function we obtain the
representation

X" = GA™Q = FJ™P = x° + \"(fip1 + fop2) + o(A™).

To efficiently deal with such asymptotic expansions, we introduce an equivalence re-
lation for sequences of functions with coinciding leading terms. We write

" E b iff o — b = o(c™),

where o(c™)/¢™ converges uniformly to zero as m — oo. For example, a™ < ¢ means
that a™ converges to a. For vector-valued expressions, the equivalence relation is
understood component-wise. For simplicity, < s mostly replaced by the symbol =
with the understanding that the dot refers to the lowest order term specified explicitly
on the right hand side of a relation. Hence, the expansion of the sequence of spline
rings above now simply reads x™ = x¢ + A™(fip; + f2p2), meaning that the omitted
remainder term decays faster than \™. In the following, the two-dimensional spline
ring built from the subdominant eigenfunctions f, fo plays a central role.

Definition 5.2 For a standard scheme (A, G) with subdominant eigenvectors v =
[v1,v2] and eigenfunctions F = [1, fi, fa, ..., f7] the characteristic map is defined by

Y= Gv = [f1, f] € C*(S",R%, G).
With this definition, the sequence of spline rings becomes
x™ = x°+ A" p[p1; pal-

Convergence towards the center x¢ is evident. In order to compute normal vectors,
we define the cross product of vectors in R? as usual, and for vectors in R? as the real
number @ x B := det(a, 3). Accordingly, for spline rings in R? or R*, we define the
differential operator D := 0y x 0; and obtain

Dx™ = 0,x™ x Opx™ = \2™ "D (p1 X P2),
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where, by definition,
Dip = 05 f1 0uf2 — O1f1 05 [

is the Jacobian determinant of the characteristic map. It is easily shown that "D €
CF1(S% R?) if ¢ € C*(S°, R?). In order to distinguish degenerate cases, we say that
the initial data Q are generic, if any three of the eigencoefficients py, .. ., p; are linearly
independent. In this section, it would be sufficient to demand only p; X ps # 0; the
generality of the definition anticipates the requirements in the next sections. We say
that a subdivision scheme is normal continuous or single-sheeted, if so are all surfaces
generated from generic initial data.

Theorem 5.3 A standard scheme is

e normal continuous with central normal

P1 X P2

n‘ = sign("Dyp) ————,
( ) IP1 X P2

if the characteristic map is regqular, i.e., if "D # 0.
e not normal continuous, if "D changes sign.
Proof The first part of the statement follows immediately from n™ := *Dx™/|"Dx™|
and the observation that 1/*D% is continuous, hence uniformly bounded, on the

compact domain S°. To proof the second part, let us assume that *Dp(s;) Dp(ss) <
0 for some arguments s;,s, € S’. Here, we obtain

P1 X P2

n"'(s;) = sign("D(s;)) L X pal’

i€ {1,2},
and see that n™ cannot converge to a constant limit since |[n™(s;) —n™(s9)| =2. O

The conditions of this theorem are almost comprehensive. Only the exceptional case,
where "D has zeros without changing sign remains open. Here, the behavior of “Dx™
depends on higher order eigencoefficients and cannot be determined a priori. Now,
the issue of single-sheetedness has to be addressed, and again, the characteristic map
provides necessary and sufficient conditions.

Theorem 5.4 A standard Ck-scheme with a regular characteristic map p is
e single-sheeted and moreover C¥, if 4 is injective.

e not single sheeted, if 1 restricted to the interior of S° is not injective.
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Proof Let @ be regular and injective. Then we know that x is normal continuous
with n” = n° = sign("D(s;))(p1 X p2)/|p1 X p2|- Hence, n® - n™ = 1, and in
particular n® - n™ > 0 for m sufficiently large. Next, we consider a rescaled sequence
of projections of spline rings,

ém = ATEM =L, L:=[p;;ps) - T".

For generic initial data, ¥ L is injective because the (2 x 2)-matrix L has full rank.
Since the set of regular injective mappings is open with respect to the C'-norm, we
conclude that & and eventually & is injective for m sufficiently large. Thus, all
conditions of Theorem 3.3 are fulfilled, and x is C¥. Similar arguments show that also
non-injectivity of @ at interior points is inherited by & and £™. O

Again, the theorem is almost comprehensive. Only the exceptional case, when
restricted to the boundary of its domain is not injective, remains open. Theorems 5.3
and 5.4 suggest to focus on standard schemes with a regular and injective characteristic
map. The following definition accounts for that observation.

Definition 5.5 A standard C¥-scheme (A, G) with a characteristic map v that is
regular and injective is called a standard C¥-scheme. 1 is called normalized if

¥(2,2,0) = (1,0) and Dt > 0.

As we have shown, CF-schemes generate C¥-splines from generic initial data. The
notion of normalization is introduced to select from the variety of possible charac-
teristic maps a special class of representatives which is convenient for the forthcom-
ing considerations. We prepare our discussion of that issue by the following obser-
vation. For initial data Q := [vy,vy] the corresponding two-dimensional spline is
x = Bv € C¥(S,R?), where the spline rings are just scaled copies of the characteristic
map, x™ = A™1p. By (7), this implies for the segments 1),
¢j(17 U) = A¢](27 2“’)
¢j(u7 1) = A¢](2u7 2)7 (12)
and in general
O5p;(1,u) = A 27074 (2, 2u)
O ;(u,1) = 1270/ (2u,2), 0<v <k (13)
Now, we can prove that normalization is always possible if the characteristic map is
regular and injective.

Lemma 5.6 Let '(Z = Fv be the characteristic map of a standard Ck-scheme with
s :=sign(2,2,0) and [a,b] :== ¥(2,2,0). Then [a,b] # [0,0], and

- 1 a —sb
’l,b = FV, V = VR, R = m |:b sa]

defines a normalized characteristic map of the scheme.
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Proof By (13) and injectivity, ¢(1,1,0) = Ap(2,2,0) # 1(2,2,0). Hence, [a,b] #
[0,0], and R is well defined. Since R has full rank, the columns of v are linearly
independent eigenvectors of A to A implying that ¢» = F'v = 9 R is a characteristic
map as well as ¢. In particular, ¥ is regular and injective. We find (2,2,0) =

$(2,2,0)R = [1,0], and

- Dp(2,2,0)|
Dap (2,2 ="D1(2,2.0)det R = —| L2
¢( ) 70) w( ) 70) € R a2 +b2

> 0.
Since "D is continuous and has no zeros, “D1p > 0 follows showing that 1 is nor-
malized. O

Bibliographic Notes.

e As pointed out in [63], shift and flip invariance (see Section 6) of a Cf-scheme
imply a double subdominant Jordan block. For instance, for n = 3, simplest
subdivision [62] yields an 6-fold subdominant eigenvalue A; = 1/4, with two
Jordan blocks of size 2 and two Jordan blocks of size 1. Still, C*-smoothness is
guaranteed. The analysis of this more general setting is only slightly more diffi-
cult, but requires considerably complex notation. The standard case discussed
here covers most algorithms currently in use.

e Complete lists of possible leading eigenvalues campatible with CF-schemes are
provided in [77,98].

e The concept of the characteristic map was introduced in [73]. In some sense, it
is related to the natural configuration defined in [92].

e In [73], it is shown that regularity and injectivity of the characteristic map are
sufficient for smoothness. Necessity was proven in [63].

e An elegant computational way to verify regularity of the characteristic map even
for non-polynomial schemes is described in [99].

6 Symmetry and Fourier analysis

We continue the analysis of schemes with standard symmetry properties. According
to the partition of splines into segments, vectors Q of control points can typically be
partitioned into blocks Q = [Qy; . . .; Q,—1], where all blocks Q; have equal structure
and size { := ({4 1)/n. If, as for the Catmull-Clark scheme, a central control point
is common to all blocks, one can use n identical copies of it to achieve the desired
structure. Shift invariance of a subdivision scheme refers to the fact that the shape
of a subdivision surface does not depend on the special choice of the starting point
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when indexing the blocks of a given set of initial data Q. More precisely, with E the
identity matrix of dimension /, let

o o0 - 0 FE
E 0 -+ 0 0
S =

o0 --- E O
denote the n-block shift matrix. A subdivision scheme (A, G) is called shift invariant,
if

AS=SA and G(,j)=G(,j+1)S, j€ELy,

In this case, for any Q and Q = S*Q, the segments of the splines x := BQ and

X = BQ differ, just as the blocks Q; = Qj; of the initial data, only by an index
shift:

Flip invariance of a subdivision scheme refers to the fact that the shape of a
subdivision surface does not depend on the orientation when indexing a given set of
initial control points Q. More precisely, a subdivision scheme (A, G) is called flip
invariant, if there exists a matrix R with R = R~! such that

AR=RA and G(s,t,j)=G(t,s —j)R, (s,t,5) €S’ (14)

In this case, for any Q and Q = RQ, the splines x := BQ and X := BQ differ only
by a flip (s,t,7) — (¢, s,—j) of arguments,

x;j(s,t) = G(s,t,7)A"Q =G(t,s,—j)RA"Q = G(t,s,—j)A"RQ = x_;(t, 5).
From now on, we focus on schemes which respect both invariance principles.

Definition 6.1 A subdivision scheme is called symmetric, if it s both shift and flip
mnovariant.

Let us continue by discussing the implications of symmetry on the eigenstructure of
A. SA = AS implies a block-circulant structure for the subdivision matrix,

Ay Apy 0 Ay
. 41 40 . 42
Aoy Apa oo A

The key tool for handling such matrices is the Discrete Fourier Transform (DFT).
With
w, = exp(27mi/n),
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the primitive n-th root of unity we define the Fourier block matriz W as the Kronecker
product of £ and the Fourier matrix, i.e.

E w'E w*E -+ wlE
W= (w,""E)jpez, = | E w, B w,*E - wiE
£ wE  wiE - w;lE_

It is easily verified by inspection that the inverse of W is given by

B 1 . 1
W ! = ﬁ (’wg]kE)j’kezn = E W.

The DFT of the matrix A is defined by A= WAW=! and a standard computation
shows that X X X

A= di&g(Ao, Ceey An—l)
is block diagonal with entries obtained by applying the Fourier matrix to the first
block column of A,

Ag Ag
=W : . thatis A= Z w;jkAj.
An—l An—l J€Ln

By definition, A and A are similar, and in particular, they have equal eigenvalues.
More precisely, if \' is an eigenvalue of A, then there exists an index k € Z,, such that
N is an eigenvalue of Aj. The set of all such indices is called the Fourier index of \'
and denoted

FN) = {k € Z, : det(4;, — NE) = 0}.

For the dominant eigenvalue \g = 1 of A, we obtain F(1) = {0}. Now we consider
the double subdominant eigenvalue X of a standard scheme. If k € F()), then

det(Ay — AE) = det(A,_x — A\E) =0

since A is real and the diagonal blocks /Alk and fln,k are complex conjugate (unless
k=0 or k=n—k). Hence, the Fourier index of A has the form F = {k,n — k} for
some k € Zy,. If Ayo = A0, then the corresponding complex eigenvector of A is given
by

do,k0 w,%
~ k -
51 XY 1 ’U)n’U
v=W"1 ’ == : : (15)
. n .
67171,]9’{) w7(1n—1)kA

The eigenfunction corresponding to v is just a complex version of the characteristic
map .
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Figure 7: Characteristic map with Fourier index (left) F(A) = {1,n — 1} and (right)
F(A) ={2,n—2}.

Definition 6.2 Let v be the complex eigenvector of a symmetric standard CF-scheme
(A, G) to the subdominant eigenvalue \ as defined above. Then the complex charac-
teristic map of the scheme is defined as the spline ring

f:=GveC*S’CQ).

This definition is justified as follows: The real and imaginary part of v are the real
eigenvectors vy, vy as introduced in Definition 5.1. Hence,

[ =G +ivy) = fi +ify and ¥ = Gvi, v = [Re f,Im f].
Further, with *D f := Im(0, f 0, f),
Df = Dy

Due to the close relation between ) and f, also f will shortly be referred to as the
characteristic map of the scheme. Using (15), we obtain for the segments of the
characteristic map

1 e 1 )
fi== ) Gl iwlo == > Gyl 0w
LELn LELy,
wik N .
= TR Z Go(-, 0w o = wi* f,.

This means that, due to shift invariance, all segments can be obtained from the
first one by rotation. This observation leads immediately to a result concerning the
appropriate Fourier index of the subdominant eigenvalue.

Theorem 6.3 The characteristic map of a symmetric standard scheme can be injec-

tive only if F(A) ={1,n —1}.

The proof is based on computing the winding number of curves in the image of f
depending on k. Instead of going through the technical details, we refer to Figure 7,
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which gives a good impression of the consequences of a wrong Fourier index. In the
following, we will always assume that the complex eigenvector v according to (15)
corresponds to the index £ = 1. The index n — 1 leads to the complex conjugate
eigenvector .

For a normalized characteristic map, flip invariance is exploited as follows: AR =
RA implies that also Rv is an eigenvector of A to A, i.e., Rv = av + bv for some
complex constants a,b. On one hand, by (14),

1=G(2,2,00v =G(2,2,0)Rv = a + b.
On the other hand, v and v are also eigenvectors of the shift matrix. With Sv = w, v
and ST = w, v, we obtain
1=G(2,2,0)v = G(2,2,00SRSv = w, %a + b.

The two conditions a + b = w, ?a + b = 1 have the unique solution a = 0,b = 1, i.e.,
Rv = 7. Hence,

fo(s,t) = G(s,t,0)v = G(t,s,0)Rv = G(t,s,0)T = fo(t,s).
We summarize our findings concerning symmetry properties of the characteristic map

as follows:

Theorem 6.4 Let f = Gv be the normalized characteristic map of a symmetric stan-
dard scheme (A,G) derived via (15) from the eigenvector v of the block Ay to the
subdominant eigenvalue X\. Then, for j € Z,,

fi(s,t) = w fols,t) = wi folt, s) = f-;(t, s). (16)
The theorem tells us that the complete information on the characteristic map is es-

sentially contained in one half of the first segment. More precisely, we define the half
domain

Xh={(s,t) € Z:5 < t},
and the half segment f, as the restriction of the segment fjy to this set. Obviously,

X N ><th(S,lf) if s <t
Df(s’t’j)_{foh(t,S) ifs >t

Thus, it suffices to verify "D f;, > 0 to ensure regularity of the complete characteristic
map. Since in a concrete setting "D f,, can be evaluated either numerically or even
analytically, the required check of sign is typically easy to accomplish. By contrast,
verifying injectivity seems to be a much harder task, and in most known proofs for
specific algorithms, much effort is spent on that issue. The following theorem provides
a significant simplification of the injectivity test.

Theorem 6.5 Let (A,G) be a symmetric standard scheme with Fourier index F =
{1,n — 1}, and assume that the half segment fy, of the complex characteristic map f
1s normalized and reqular. Then f is reqular and injective if and only if all real points
on the curve v1(u) := fu(u,1),u € U, are positive:

n(U)NRy = 0.
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Figure 8: (left) Domain halfsegment Xy, and (right) spline image f,(Xy).

Proof As already shown above, f is regular if and only if f; is regular. If f is
injective and fy(u, 1) € Ry, then, by Theorem 6.4, f,(u,1) = f(1,u,0) = f(u,1,0) =
f(u,1,0). This implies v = 1, and with (12), the contradiction 0 > f(1,1,0) =
Af(2,2,0) = A > 0 follows. If all real points in v, (U) are positive, we argue as
follows:

First, we show that in this case also all real points in the image f,(3}) are posi-
tive. To this end, we denote the four boundary segments of 3y, by 013, ..., 0,3, see
Figure 8, left. The restrictions of fi, to these sets yield four boundary curves which
we parametrize over U = [0, 1] by

7l(u) = fh(ual)a ’)/2(16) = fh(1+u71+u)
73(”) = fh(2_2u72)7 74(”) = fh(072_u)7
see Figure 8,right. By (12), the curves 7, and 73 are related according to ~;(u) =

Ay3(1 —w). By (16), y2(u) = fo(1 +u,1 +u) = fo(1 +u,1+4 u) is real. Since f is
regular, 74, = Dfy[1;1] # 0. The endpoints are v5(0) = A, 72(1) = 1. Hence, we
conclude that 7, (u) is strictly monotone increasing and positive for all u € U. Also
by (16),

ya(u) = fo(0,2—u) = fo(2 —u,0) = f1(0,2 — u) = wy' fo(0,2 — v) = wnya(u).

This is possible only if 74(u) lies on a straight line with angle either argys(u) = 7/n
or argv4(u) = ™+ m/n for all u € U. As before, one shows that |y4(u)]| is strictly
monotone, and that v4(u) # 0 for all w € U. Hence, 74(U) does not contain real
points. By assumption, 71 (U) NRy = (), and the same is true for v3(U) = v, (U)/A.
Together, we have shown that all real points on the image of the boundary of 3 are
positive, i.e., f(0%) NRy; = 0. Since, by the inverse function theorem, for a regular
map the boundary of the image is a subset of the image of the boundary, we conclude
that f,(Zn) NRy =0

Second, we show that the minimum and maximum of the angle arg f, (o) are at-
tained if and only if 0 € 053 and 0,3, respectively. Using the findings of the first part
of the proof, we see that arg f,, € (—m, ) is well defined so that the search for extrema
actually makes sense. Now, let o € argmin arg f,, be an argument corresponding to the
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minimal angle. As before, we conclude that o has to lie on the boundary of 3. If o
does not lie in 9,32 U0, % then there exists u € (0, 1) such that argy, (u) = arg y3(1—u)
is minimal. Moreover, the tangents satisfy 7](u) = —Av5(1 — u) # 0. That is, the
tangents point into opposite directions, while the image of f, always lies on the left
hand side of the boundary curve. Hence, there exists a point & in the neighborhood
either of [u, 1] or of [2 —2u, 2] with arg f,(6) < arg f,(o) contradicting the minimality
assumption. Analogously, one shows that argmaxarg fi, C 0,3 U 04%. Since the im-
age of f, lies on the left hand side of the curve vy, which is oriented from left to right
on the positive real axis, we see that there exist positive angles so that arg~y, = 0
cannot be maximal. Hence, minarg f, = argy, = 0, and maxarg f, = argy, = 7/n.

Third, we show that f;, is injective. Since the image f,(X}) does not contain the
origin, there exists r € N such that A" < |fy(o)| <A77 for all o € 3j,. We define the
domain Xj := U}y« 2" Xy and the map

froSr oo = A"f(270) if 2"0 €%,

consisting of scaled copies of f,. This map is smooth and regular since consecutive
parts satisfy contact conditions up to order &k analogously to (13). The four boundary
curves vi,...,7; of fi are defined as shown in Figure 8,right. Now, we consider the
function

v:Cozm {oeX: fi(lo) =2} €N

assigning the number of pre-images to points in the complex plane. Since fy is con-

tinuous, v is upper semi-continuous. Since fy, is regular, v is lower semi-continuous at

all points not contained in the image fi (3} ) of the boundary. From the results above

it follows immediately that v(7,(0)) = 1. Further, by definition of r, the curves 7] or

7% do not intersect fi,(X}). Hence, v is continuous and equal to one on fi,(X},).
Fourth, we show that f is injective. From

wl fu(s,t) ifs <t
wl fu(t,s) ift<s

it follows
0,7/n]+2jr/n  ifs<t

argf(s,t,j) S {[—W/Tl, O] _|_2]7r/n if ¢ <s.

For (s,t,j) # (¢',t',7"), equal angles and moduli are only possible if j/ = j + 1 and
(s,t) = (t',s") € 42y, or j/ = j and (s,t) = (¢',t') € 0,%;, but these points are
identified in S°. 0

Typically, the check for intersections of the curve v; with the non-positive real line is
easy to accomplish since, in case of injectivity, the angle of v, varies between 0 and
m/n, so that the two sets are not even close. We demonstrate the procedure in the
next section at hand of the Doo-Sabin algorithm.
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Figure 9: Mesh refinement of the Doo-Sabin algorithm.

Bibliographic Notes.

e The relevance of the Discrete Fourier Transform for the analysis of subdivision
matrices was already recognized in [24].

e Symmetry properties of the characteristic map and their relation to its Fourier
index are discussed in [63].

e In [99], an alternate criterion for injectivity of a regular characteristic map is
given. It is based on the winding number of its boundary curve.

7 An example: The Doo-Sabin algorithm

The Doo-Sabin algorithm generalizes subdivision (uniform knot insertion) of biquadratic
tensor-product B-splines. For each n-gon of the original mesh, a new, smaller n-gon
is created and connected with its neighbors as depicted in Figure 9. Figure 10 shows
the mask for generating a new n-gon from an old one for the regular case n = 4 (left)
and the general case (middle). The standard weights suggested by Doo and Sabin
in [24] are
~ Gjo0 3+ 2cos(2mj/n)

aj ==+ n . (17)
Each of the n segments x7", j € Zj, of the mth spline ring generated by the Doo-Sabin
algorithm consists of three biquadratic B-spline patches. Accordingly, we can split
the control points Q™ into n groups of nine control points, each, ordered as shown in
Figure 10 (right). Since the scheme is symmetric, we can apply DFT as in Section 6
to obtain

ag 0 O
Ay = A AV o],
120 42,1
Az g2 g
where G, = Y, w,/*a; are the entries of the DFT of the vector [ag, .. .,ap 1] of inner

weights. The sub-matrices 1212‘7 do not depend on the special choice of weights or on
the index k. Rather, they contain information on the subdivision rules in the tensor
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Figure 10: Regular refinement rule (left), general refinement rule (middle), and label-
ing of the control points (right) of the Doo-Sabin algorithm.

product case. For instance,

31, w:=16wk.
3

3
N 1
11

A, =16 3

w

o = O

The weights a; are assumed to sum to one, i.e., ap = 1, and to be symmetric according
to a; = ay_j, i.e., G = d,_y is real. The eigenvalues of Ay are ay, 1/4, 1/8, 1/16, 0 so
that the subdominant eigenvalue must be A := a; = a,,—1 € (1/4,1). Using a computer

~

algebra system, one can determine the complex eigenvector v of A; corresponding to
A explicitly:
- 2A(16A—1)(8A—1)(4A—1) 2
6A(16A—1)(6A—142w5 A)

18A(32A2 —1+4cp \)
6A(16A—1)(6A—142wy, A)

(16X—1) (12)\2+18)\73+w7n(4)\2+12)\71))

S5
I

6\ (32)\2+64)\712+cn(20)\+1)7i5n(16)\71))
64X3+512)2 — 46 —8+36¢, A(2A+1)
61 (32/\2 —|—64/\—12+cn(20/\+1)+isn(16/\—1))

| (16)\—1)(12/\2+18/\—3+wn(4/\2+12)\—1)) i

where w, = ¢, +1s,. In particular, for the original Doo-Sabin weights in (17), we have
A = 1/2 and, rearranging the entries of ¢ in a (3 x 3)-matrix according to Figure 10,
right,

[@5 Ug @7] "21+14w_n 28 + 2w,, + 9w, 35+ 12¢, 1
L@Q U3 @SJ =3 Ll4+7w—n 21 + 6¢,, 28+2w_n+9wnJ.

V1 Uy ’lA)g 7 14 + 7wn 21 + 14wn

By elementary computations, one can determine the Bernstein-Bézier-form of all three
biquadratic patches forming the first segment of the complex characteristic map f.
For A € (1/4,1), the minimum of the real parts of all Bernstein-Bézier coefficients is
positive. Hence, by the convex hull property, the condition v, (U) N Ry = () is always
satisfied. In particular, for A = 1/2, we obtain the minimal value minRev,(U) =
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Re f(0,1,0) = 21 4 21¢, > 0. It remains to show regularity of the characteristic
map. The Jacobian determinant "D f consists of three bicubic patches, which can also
be expressed explicitly in Bernstein-Bézier-form. A careful analysis shows that all
coefficients are positive if

p(A) := 128X3(1 — ) — 7TA — 2+ 9A¢, > 0.

Again by the convex hull property, we conclude "Df > 0 if p(\) > 0. In particular,
for A = 1/2, we obtain p(1/2) = 3/2(7 + 3¢,) > 0 proving that the Doo-Sabin in
its standard form is a C-scheme. Surprisingly, there is an upper bound Ay, (n) with
p(A) <0 for 1 > X > Agp(n). For such A, "D f actually reveals a change of sign, and
the corresponding algorithm cannot be C}. Fortunately, the upper bounds are quite
close to 1, so that they do not impose severe restrictions when designing variants on
the standard Doo-Sabin algorithm. More precisely, the lowest upper bound occurs for

n =3,
V187 1 275563 1
)\Sup(n) Z )\Sup(3) = 7 COS g arctan W + g ~ 0.8773.

The asymptotic behavior for n — oo is

2

) s
Asup(n) =1- W
Summarizing, we have shown the following:
Theorem 7.1 Letayg,...,a,_1 be the Fourier coefficients of a symmetric set of weights

for the generalized Doo-Sabin algorithm. Then a standard scheme is obtained if
A= a; = a,_1 satisfies the condition

1>\ > max{1/4, |as|, ..., |an_o|}.

The scheme is CF if p(A) > 0, and not C¥ if p(A\) < 0. In particular, the scheme is
C¥ when choosing the standard weights.

Bibliographic Notes.
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analyzed.

e Today, all relevant algorithms have been thoroughly analyzed. For instance,
simplest subdivision in [62], Loop’s scheme in [93], v/3-subdivision in [45], and
the butterfly scheme in [100].

e A quite universal algorithm for numerical verification has been provided in [99].
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Figure 11: Characteristic map for n = 3 and subdominant eigenvalue (left) A = 0.5
and (right) A = 0.95.

8 Conditions for C§-schemes

As we have shown, C*-subdivision schemes are well understood and relatively easy
to construct. By contrast, the development of schemes providing regularity of higher
order is subject to very restrictive conditions on the eigenvalues and eigen-functions.
In this section, we derive these conditions and discuss some of their consequences.

While the central point x¢ and the central normal n® are determined by the eigen-
coefficients pg and p;, ps related to the dominant and subdominant eigenvalue \y = 1
and \; = Ay = A, curvature properties rely on the next smaller eigenvalue and the
corresponding eigenfunctions. Let us assume that (A, G) is a standard Cz-scheme
with eigenvalues

L>A> pi=|A3] =+ = [Ag] > [Agin]

and, for the sake of simplicity, a full set of eigenvectors vs,...,v; to the eigenvalues
with modulus p. The general case of non-trivial Jordan blocks is slightly more com-
plicated from a purely technical point of view without providing further insight. Then
the second order expansion of x reads

X" =GVJ"W Q= FJ"P = x° + \"[p;; po] + p"r™ (18)
with .
q
"= Za;"fqpq, ag = Ag/ . (19)
q=3

The sequences a;" have modulus 1 and account for the oscillating behavior of A" in
the case when )\, is negative or complex.

For the rest of this section, the initial data are always assumed to be generic. Then,
by definition of a C%-scheme, the central height function A is twice differentiable at
the origin. With H the symmetric (2 x 2)-matrix of second derivatives of h at the

origin, also called the central Hessian, we obtain, using (4), the Taylor expansion
1
hE) = SEHE + ol €.
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The mth spline ring of the projection € according to (2) is
€"(s) = (x™(s) —x°) - T = \"L, L:=[pi;p2)-T" (20)
where the (2 x 2)-matrix L has full rank. Since [py;p2| - n® = 0, the central height

function according to (3) is h(€™(s)) = p™r™(s) - n°. Hence, after dividing (20) by
A2™ we obtain the condition

o"r™ - = YLHL YT +o(1+ ™), o0:=pu/)?, (21)

which has to be satisfied for an appropriate choice of H. By Lemma 4.1, the eigenfunc-
tions f, are non-zero implying that also r™ - n° is in general non-zero. We distinguish
three cases for the crucial ratio o:

o If p < 1, then H = 0 follows independent of the chosen data. This case of an
enforced flat spot at the center will be referred to as trivial curvature continuity.

e If p =1, then the right hand side of (21) converges to a constant, and a simple
argument shows that r” - n° can be constant only if a3 = --- = a5 = 1.

e If o > 1, then the left hand side of (21) diverges faster than the right hand side,
and asymptotic equality of the sequences is impossible.

Together, it follows that non-trivial curvature continuity is possible, although by no
means guaranteed, only if

N=p=X ==
We call p the subsubdominant eigenvalue, and elaborate on that case now. Passing to
the limit, (21) reduces to

q
> fipg=vLHL"$", p,:=p,-n" (22)
q=3
One can easily show that for any set of coefficients ps,...,p; and arbitrary ¢ > 0
there exist generic initial data Q° such that the corresponding coefficients p3, ..., pg
differ by less than . By continuity, we conclude that (22) holds for any choice of
coefficients. In particular, for any ¢ = 3,...,q, we can set p, := d,, to obtain

fe=yYLHL™Y" = af} +bf3 +cfifo

for certain constants a, b, c. This means that all subsubdominant eigenfunctions must
lie in the space of homogeneous quadratic polynomials in the two subdominant eigen-
functions. We summarize our findings as follows:

Theorem 8.1 Let (A,G) be a standard C2-scheme which is non-trivial in the sense
that the central Hessian does not necessarily vanish. Then the subsubdominant eigen-
value p satisfies

)\2:/1,:)\3:...:)\q> |)‘q+1|7
and the subsubdominant eigenfunctions fs, ..., fz satisfy
fZ S Span{ff;f;;flfé}- (23)
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It is not too difficult to construct subdivision schemes that have the desirable distri-
bution of eigenvalues. By contrast, the conditions on the eigenfunctions are extremely
restrictive and the major obstacle to remove when trying to construct C%-schemes.
Let us consider an implication on the important special case of piecewise polynomial
subdivision surfaces. We define the bi-degree deg f of a spline ring f € C*(S°, R, G)
as the maximal bi-degree of the polynomial pieces of f. For vector-valued spline rings,
the bi-degree is the maximum over all components.

Theorem 8.2 Let (A, G) be a standard C%-scheme, and assume that the generating
system consists of piecewise polynomials. If the scheme is flexible in the sense that
there exist generic initial data such that the corresponding subdivision surface has
positive Gaussian curvature at the center, then either n =4 or

deg G > 2k + 2. (24)

Proof First, we show deg1 > k if n # 4. Suppose that deg1 < k. Then patches
1 of the characteristic map are not piecewise polynomial functions, but in fact single
polynomials, which we now consider to be extended from X" to all of R?. By means
of the conditions (6), each patch ¥ j+1 1s completely determined by its predecessor %,
and we have
Yi(s,t) =,(~t,s), j €Ly

Repeated use of this equation yields ¥, ., = ;. For the regular case n = 4 this is just
fine, but otherwise it implies that the characteristic map is not injective contradicting
Definition 5.5.

Positive Gaussian curvature means that det H > 0. Hence, H is positive or nega-
tive definite. For generic initial data, L has full rank implying that LH L™ is positive
or negative definite as well. We easily conclude for the degree of the scheme

deg G = deg(yLHL ") = 2degp > 2k + 2

since cancellation of the leading coefficients is impossible. U
Since k > 2 for a scheme generating curvature continuous surfaces, we see that the
simplest C%-scheme has degree 6. Further, no scheme generalizing uniform B-spline

subdivision, like the Catmull-Clark-scheme, comes into question because here deg G =
k+1<2k+ 2.

Bibliographic Notes.

e The case ;. < A?, which yields vanishing principal curvatures at the center, is
discussed in [68]

e The importance of u = \? for C¥ has already been observed in [24].

e Necessity of (23) is proven in [74], and in [67], it could be shown that it is also
sufficient. In the same paper, similar conditions for C*-schemes are specified.
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e In [74], it is pointed out that the degree estimate (24) relies on the piecewise
polynomial structure of the surfaces rather than on properties of the subdivision
algorithm. Thus, it applies even to non-stationary or non-linear schemes as long
as they live up to certain symmetry properties.

e Generalizations of the degree estimate based on the concept of flexibility can be
found in [69].

e (C%-algorithms, and even general C*-algorithms are constructed in [66,76]. How-
ever, they are less elegant than the popular C*-schemes and rarely used in prac-
tice.

9 Curvature analysis

In this section we discuss the limit behavior of curvature at the center. The results
are useful to understand certain artifacts in subdivision surfaces, and provide insight
for the construction of ameliorated schemes.

To conveniently analyze a subdivision surface x with eigencoefficients P = V~1Q,
we introduce a local coordinate system in R® such that the center x¢ =: 0 is the origin,
and the unit vectors are

e; :=pi/|p1|, e:=n°xe;, e3;:=n"

It is chosen such that the central tangent plane is spanned by e; and e,. That is, the

matrix T¢ according to (2) is given by T := [e;;e3]. As in Section 8, we assume
L>A>p= |3l == || > | Ag1l
and a full set of eigenvectors vs, . .., vz. The second order expansion of the spline rings

according to (18) reads,

x" = A"ap[py; po] + p "™
where r" is defined by (19). With « the angle between p; and ps, the first two
components of X are asymptotically given by

m c - \m — . ¢ — |p1| 0
X" TC = XN™pL, L:=[py;ps] - TC= Ip2|cosa |po|sinal’ (25)

while the third component is

Assume that an eigenvalue A\, with |\, | = p is not positive. Then the sign of r™-n°is
incessantly changing as m — oo if pg, -n° is large compared with the other coefficients
p,-n%q€{3,...,4}\{e}. Schemes revealing such an oscillating behavior should be
discarded, so that we focus now on the case of coinciding positive subsubdominant
eigenvalues.
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Definition 9.1 A standard C*-scheme with k > 2 and eigenvalues
A>p=2A="= N> [Ags1] (26)
is called a (A, p)-scheme.

For a (A, u)-scheme, the real-valued spline rings r'™ - n® are independent of m, and we
define

q
he = rm.nc:qupq.nc € C*(s",R). (27)

q=3

Together, we find the expansion
X™ = (XL, uhE] = L, b diag(A™, A, ). (28)

This means that, asymptotically, the spline rings x™ are just scaled copies of the
surface (¢ L, h¢]. For the forthcoming investigation of curvature and shape properties,
this surface plays a most important role.

Definition 9.2 The central surface z¢ corresponding to the spline x = BQ generated
by a (A, p)-scheme is defined by

z¢ = [¢°, h] € C*(S",R?), o° =L,

where the (2 x 2)-matriz L and the real-valued spline ring h¢ are given by (25) and
(27), respectively.

It is important to notice that unlike the characteristic map, the central surface depends
on the initial data. Using 0, := 0y, 3> := 0;, and the differential operators

|0 - _|D
|

the fundamental forms of a subdivision surface can be expressed conveniently.

Theorem 9.3 For a (A, p)-scheme and generic initial data, the first fundamental
form of the spline ring X™ and its inverse are given by

=X\ (I™)~t=x 7?1 [ i= DyC - Dyt (29)

With I¢ and II¢ the first and second fundamental form of the central surface z¢, the
second fundamental form of Xx™ s

det I¢
o =p™m, II:=\/ II°. 30
K ’ det I (30)
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Proof The first formula follows immediately from [ = Dx™ - Dx™, Dx™ =
A™ Dap® T, and T - T¢ = Id. To compute the inverse, we note that

det T = (Dy°)* = (Dp)*(det L)* = (Dap)? [y x pal’.

For generic initial data, the cross product does not vanish, while ("D)? > ¢ > 0
for some constant ¢ by regularity of ¢, compactness of the domain, and continuity of
"Dp. Hence,

(det I™)~t = X\=*"(det I)~!

and the formula for (I"™) ! follows easily.
From (28), we conclude

det Di,ij = )\Zmum det Di,jZC,
and (30) is obtained by comparing the definitions

det D; ;x™ ¢ det D ;z°

vdet I™ ’ W vdet I¢ '

I =
U

It is important to notice that the second fundamental form of x™ and the central
surface z¢ differ only be a scalar factor. For that reason, their shape properties
are closely related. With the help of the fundamental forms we can compute the
Weingarten map, which in turn determines the asymptotic behavior of the principal
curvatures and directions. We recall that the Weingarten map (also known as the
shape operator) is defined as the differential of the normal map. Its eigenvalues are the
principal curvatures, while its left eigenvectors in the parameter domain are mapped
to the principal directions by the Jacobian of the surface parametrization.

Theorem 9.4 For a (A, pu)-scheme and generic initial data, the Weingarten map W™
of x™ 1s

— P
0= 5.
Let Q) be the matriz of normalized left eigenvectors and K the diagonal matriz of
etgenvalues of W,

Wm=og™"W, W:=II", (31)

W =Q 'KQ. (32)

The diagonal matriz of principal curvatures K™ := diag(k!", k5') of X™ is given by

K™ ="K, (33)
while the principal directions P™ := [pT"; p5'] converge to the e ey-plane:
P"=P, P:=(QDy°TC. (34)
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Proof With respect to the parameter domain, the Weingarten map is given by
Wm .= II'"™ (I"™)~', and (31) follows from (29) and (30). The principal curvatures
KT, k5 are the eigenvalues of W™, and that implies (33). The matrix Q™ of normalized
left eigenvectors of W™ converges according to Q™ = (). Further, by (28), Dx™ =
A" Dap° T, Hence, using appropriate scaling, the principal directions of x™ are P™ =
AT"QDx,, = @ D TC, as stated. OJ

As in the preceding section, we see that the ratio o plays a central role for the limit
behavior of curvature.

Theorem 9.5 For a (\, pu)-scheme and generic initial data, the principal curvatures
near the center behave according to the ratio o.

e If 0 <1, then both principal curvatures converge to 0.

e If o = 1, then both principal curvatures are bounded and at least one of them
does not converge to 0.

o If o> 1, then at least one principal curvature diverges.

Proof In view of (33), it remains to show that K # 0 for generic initial data. If
K =0, then W =0and II = II° = 0. The second fundamental form I7° of z° vanishes
only if z¢ is planar. This is the case if and only if A° and % are linearly dependent,
i.e., if there are constants a, b, ¢ € R which do not vanish simultaneously, such that

ah® + [b; c] = 0.

Let s = (s,t,7) be an arbitrary point on the outer boundary of the domain S°,
i.e., max{s,t} = 2. Then, by (12), ¥(27's) = A (s). Analogously, since h¢ is an
eigenfunction to u, one can show h¢(27's) = uh®(s). Hence,

ah®(s) + ¥ (s)[b;c] =0
aph®(s) + Ap(s)[b;c] = 0.

This implies 9(s)[b;c] = 0. Let us assume that [b;¢|] = [0;0]. Then a # 0 and
h¢ = 0. By Lemma 4.1, the eigenfunctions fs,..., f; to p are linearly independent so
that all coefficients p, - n° in the definition (27) of h° must vanish. This contradicts
the assumption that the initial data are generic. Now, we assume [b;c] # [0;0]. In
this case, all outer boundary points 1 (s) lie on the straight line xb + yc = 0. Since
¥(27s) = A\ (s), also all inner boundary points lie on the same straight line. Since
1 is regular, the boundary of the image is a subset of the image of the boundary,
which is part of a straight line. Hence, the complete image of ¥ must be part of a
straight line; but this is impossible for a regular map. O
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In the last section, we have derived a necessary condition for C%-schemes. Now, we
are able to show that this condition is also sufficient.

Theorem 9.6 A (A, p)-scheme is C% if and only if p = N\? and the subsubdominant
etgenfunctions fs, ..., fz satisfy

fl € Span{f%a f227 fle}‘

Proof In Theorem 8.1, we have shown that the given conditions are necessary. Now,
let us assume that they are satisfied. Then there exists a symmetric (2 x 2)-matrix S
with constant entries such that

1
hC:§¢CS.¢C.

It is easily verified by inspection that
I = DY° - Dy°, Il = Dp°S - Dip°.

Hence, by (31), W = II [ 7' = Dvy°S (Dv°)~!. That is, the eigenvalues of S and W
coincide and are constant. More precisely, if S = RKR™! for a diagonal matrix K,
then

W=Q'KQ, Q:=(D¢R)".

Comparison with (32) shows that the principal curvatures converge according to K™ =
K. By (34), also the principal directions converge to a constant limit:

P™ = Q Dy T = R™' T

U

We conclude our discussion of the limit behavior of curvature by specifying limit ex-
ponents for LP-integrability. More precisely, for 1 < p < oo, we say that a subdivision

surface is Hip, if it is C¥, and if the principal curvatures are LP-integrable when

restricted to a sufficiently small neighborhood of the center.

Theorem 9.7 For a (A, p)-scheme and generic initial data, the generated subdivision
surface is

° nyoo, if o <1.
o Hj, for allp < —2log\/logo, if 0 > 1.

In particular, for any o, the surface is H§,2.
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Proof For o < 1, the principal curvatures are bounded, as stated. For p > 1, we
choose mg so large that I™ is regular for all m > my. Then, with the surface element

dx™ = v/det I"™ dsdt = \?>™+/det Idsdt, the surface integral of the pth power of the
principal curvatures of the mth spline ring is

/ K™ Pdx™ = "N K, K =) / Kj+/det I; dsdt,
xm 30

J€ELn

where K; and I; denote the jth segment of K and I, respectively. Summing over all

m > myg, we obtain
S mip gom - (PA2)MK
Z/xm'K pr = E2TE

m=mg

which is finite for p < —2log A/ log o. Since ¢ < AL, the upper bound is always > 2.
O

Bibliographic Notes.

e A first careful analysis of curvature in a vicinity of the center was given in [59],
and bounds on their oscillation were specified in [60].

e The concept of the central surface and its relation to the limit behavior of
curvature was introduced in [64]. Applications of the theory are discussed in [40].

e The basic limit behavior of principal curvatures according to Theorem 9.5 was
observed in [24,52,64].

e [P-regularity of principal curvatures was investigated in [79]. The results of The-
orem 9.7 are crucial for using subdivision surfaces in the finite element analysis
of higher order problems as in [12,13].

e The central surface provides further information on the local shape of a subdivi-
sion surface near the center. The analysis in [64] shows that the subsubdominant
eigenvalue 1 must be at least triple with Fourier index {0,2,n — 2} C F(u) in
order to avoid severe restrictions on what type of shapes can be modeled.

o If F(u) ={0,2,n — 2}, [40] defines a chart that characterizes, for a subdivision
algorithm and for the full gamut of input data, the shape of resulting surfaces.

10 Conclusion

Subdivision surfaces are remarkably similar to spline surfaces. Their distinct character
reveals itself in the neighborhood of extraordinary points where n # 4 quadrilateral
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patches join. This paper summarizes the structure of subdivision surfaces near ex-
traordinary points. It adds two new building blocks to the foundations by clarifying
the role of linearly dependent generating systems and simplifying the test for injec-
tivity of the characteristic map.
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