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Abstra
t

This paper summarizes the stru
ture and analysis of subdivision surfa
es

and 
hara
terizes the inherent similarities and di�eren
es to parametri
 spline

surfa
es. Besides presenting well known results in a uni�ed way, we introdu
e

new ideas for analyzing s
hemes with a linearly dependent generating system,

and a signi�
antly simpli�ed test for the inje
tivity of the 
hara
teristi
 map.

1 Introdu
tion

For a graphi
s designer, subdivision is a re
ipe for generating a �ner and �ner se-

quen
e of polyhedra that 
onverges to a visually smooth limit surfa
e after a few

iteration steps (Figure 1). While this intuitive view a

ounts to a large extent for the

su

ess of subdivision in appli
ations, it fails to provide a framework explaining the

unique analyti
al stru
ture of subdivision surfa
es vis-a-vis other representations. In

parti
ular, this view, whi
h was predominant in the early subdivision literature, fails

to 
hara
terize the inherent similarities and di�eren
es to standard parametri
 spline

surfa
es.

Figure 1: Four steps of Catmull-Clark subdivision (from [88℄).
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Figure 2: Re�nement s
hemes (initial meshes top, re�ned meshes bottom). We fo
us

on s
hemes of type pQ4 and dQ4 that result in quadrilateral pat
hes; the analysis

and stru
ture of other subdivision s
hemes is analoguous.

To highlight the similarities, we use the term `spline' in a mu
h generalized sense.

In the following, a spline is any fun
tion 
onsisting of a �nite or even in�nite number

of pie
es, ea
h of whi
h is de�ned on an indexed 
opy of a standard domain. This def-

inition 
overs in parti
ular linear 
ombinations of B-splines or box-splines. We fo
us

on pie
ewise 
ontinuous fun
tions de�ned on a union of unit squares; the analysis of

spline surfa
es over other, say triangular standard domains (see Figure 2), is analo-

gous and need not be developed separately. To 
hara
terize 
ontinuity of a spline, its

domain is endowed with the topologi
al stru
ture of a two-dimensional manifold. This

avoids a more involved 
hara
terization by means of mat
hing smoothness 
onditions

for abutting pat
hes.

To highlight the di�eren
es between spline surfa
es and subdivision surfa
es, we

fo
us on the neighborhood of extraordinary points, e.g. points where n 6= 4 quadri-

lateral domains join. Here, the surfa
e has the stru
ture of a union of spline rings,

i.e. 
ir
ular annuli formed by mat
hing up the boundaries of the spline pat
hes (see

Figure 5,right). (The word `ring' will not lead to 
onfusion sin
e no rings in the alge-

brai
 sense will be 
onsidered in this paper.) The in�nite sequen
e of nested surfa
e

rings no longer shares all properties of the underlying splines. For example, sin
e

these rings 
ontra
t ad in�nitum, it is ne
essary to use, in the limit, a di�erential

geometri
 
hara
terization of smoothness: smoothness is measured in a natural lo
al


oordinate system. Inje
tivity with respe
t to this 
oordinate system is 
ru
ial but not

always present in subdivision s
hemes; and the la
k of se
ond-order di�erentiability

with respe
t to the 
oordinate system presents a 
hallenge for 
hara
terizing shape.
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hara
terizes in
reasing levels of 
ontinuity and 
orrespondingly in
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tions
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hemes. The table of 
ontents is as follows.
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hemes 29
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Sour
es. This arti
le is the summary of a book on the stru
tural analysis of subdi-

vision surfa
es [78℄, whi
h is 
urrently in preparation. At the end of ea
h se
tion, we

give some bibliographi
al notes pointing to the most relevant and �rst-time referen
es,

without 
laiming 
ompleteness. In addition to the 
itations given in the arti
le, we

also in
lude some further suggested reading on the topi
 in the list of referen
es.

Notation. We use greek letters for obje
ts in R

2

and maps into R

2

su
h as planar


urves and reparametrizations. Bold fa
e is used, in parti
ular, for points and fun
-

tions in the embedding spa
e R

d

, d > 2. These points are understood as row ve
tors

so that, following established pra
ti
e in the literature, we apply n � n subdivision

matri
es from the left to a ve
tor of n 
ontrol points in R

d

. As in Matlab, elements

in a row of a matrix or ve
tor are separated by a 
omma, while rows are separated by

a semi
olon. For example,

[1; 2; 3; 4; 5; 6℄ =

�

1 2 3

4 5 6

�

:

A
knowledgement. We would like to thank Mal
olm Sabin for many fruitful dis-


ussions and for providing his list of referen
es.
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Figure 3: (left) Domain manifold �� Z

3

and (right) spline manifold x.

2 Spline surfa
es near extraordinary points

To investigate surfa
es with n quadrilateral pie
es joining at a point, we de�ne the

unit interval in R and the unit square in R

2

, respe
tively:

U := [0; 1℄ and � := U � U:

Then the domain S,

S := �� Z

n

; Z

n

:= Z mod n;

of a spline x : S ! R

d


onsists of n indexed 
opies of �. Points in � and S are

typi
ally denoted

� = (s; t) 2 �; s = (�; j) = (s; t; j) 2 S:

The restri
tion of x to a single unit square with index j is 
alled a pat
h and denoted

x

j

:

x : S 3 (�; j) 7! x

j

(�) 2 R

d

:

Now, pairs of edges of the unit squares are set equal a

ording to

(0; u; j) = (u; 0; j + 1); u 2 U; j 2 Z

n

:

The 
ommon origin of all pat
h domains is

0




:= (0; 0) = � � � = (0; n� 1);

see Figure 3. The supers
ript "
" for "
enter" is used to tell the origin 0




of S apart

from the origin 0 of �. By identifying edges of adja
ent unit squares, the domain S

be
omes a simply 
onne
ted topologi
al spa
e. Thus, there is a well-de�ned notion

of 
ontinuity for splines. Due to the identi�
ation (0; u; j) = (u; 0; j + 1), the pat
hes

have to satisfy the 
onsisten
y 
onditions

x

j

(0; u) = x

j+1

(u; 0); j 2 Z

n

;

and, in parti
ular,

x




:= x(0




) = x

0

(0) = � � � = x

n�1

(0)

is 
alled the 
enter of x. Subsequently, pat
hes are always assumed to be 
ontinuous.

Together with the 
onsisten
y 
onditions, this implies that the spline x : S ! R

d
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Figure 4: A normal 
ontinuous surfa
e that is not single-sheeted.

is a 
ontinuous map. We will be interested in several 
hoi
es of the dimension d

of the image spa
e. For d = 3, x is a spline surfa
e, and this is the 
ase we are

eventually interested in. For d = 2, we obtain planar splines whi
h are used for

analyti
al purposes. Espe
ially, the 
hara
teristi
 map to be de�ned later is of that

type. Finally, for d = 1, we obtain real valued splines. We will use su
h splines

to de�ne generating systems for �nite dimensional spline spa
es in R

3

, just as B-

splines are used to model standard tensor produ
t spline surfa
es. Next, we 
onsider

smoothness.

De�nition 2.1 A 
ontinuous spline x : S! R

d

is 
alled C

k

0

, if all pat
hes x

j

are C

k

-

fun
tions on �nf0g, and if the 
orresponding 
ross boundary derivatives at 
ommon

edges are equal up to sign, i.e.,

�

�

s

x

j

(0; u) = (�1)

�

�

�

t

x

j+1

(u; 0); � = 0; : : : ; k; u 2 (0; 1℄: (1)

The spa
e of all C

k

-splines in R

d

is denoted C

k

0

(S;R

d

).

Cru
ially, the 
entral point is ex
luded from all smoothness 
onditions sin
e, for u = 0,


onsisten
y implies, for n 6= 4 that either the partial derivatives of all pat
hes vanish at

the origin, or that the proje
tion of x to the tangent plane at the origin is not inje
tive.

In the �rst 
ase of a singular parametrization, the geometri
al smoothness of the spline

does not follow from the analyti
al smoothness of the parametrization; in the se
ond


ase x 
annot be a smooth surfa
e in the sense of manifolds. As a 
onsequen
e,

we do not impose smoothness 
onditions at the 
enter a priori. In essen
e, the rest

of the paper deals with the 
hallenge of re
on
iling the la
k of smoothness in the

parametrization of x with the geometri
 smoothness of its image. As a �rst step, we

de�ne normal 
ontinuity in the following way:

De�nition 2.2 A spline surfa
e x 2 C

1

0

(S;R

3

) is 
alled normal 
ontinuous at the


enter, if the limit

n




:= lim

s!0




n(s)

of the Gauss map

n(s) := ~n(s)=k~n(s)k; ~n(s) = ~n(�; j) := �

s

x

j

� �

t

x

j

exists and is unique. In this 
ase, n




is 
alled the 
entral normal, and the plane

through x




perpendi
ular to n




is 
alled the 
entral tangent plane.
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It is easily shown that for a normal 
ontinuous spline surfa
e x 2 C

k

0

(S;R

3

), the

Gauss map extended by n(0




) := n




is a spline in C

k�1

0

(S; S

2

), where S

2

is the unit

sphere in R

3

. Normal 
ontinuity is not suÆ
ient for a spline surfa
e to be smooth in

the sense of manifolds sin
e the proje
tion of x into the 
entral tangent plane may

not be inje
tive. To address this problem, we 
hoose two orthonormal ve
tors t




1

; t




2

in the 
entral tangent plane and 
olle
t them in a (2� 3)-matrix T




. Then we de�ne

the proje
tion � of x to that plane by

� : S 3 s 7! (x(s)� x




) �T




2 R

2

: (2)

Here and subsequently, a dot denotes multipli
ation by the transpose,

A �B := AB

T

:

x is 
alled single-sheeted if � is inje
tive when restri
ted to a suÆ
iently small neigh-

borhood S

0

of the origin. In this 
ase, we 
an use the inverse fun
tion s = s(�) to

de�ne the 
entral height fun
tion h on the set �

0

:= �(S

0

) � R

2

by

h : �

0

3 � 7! (x(s(�))� x




) � n




2 R: (3)

With these settings, points on the spline surfa
e near the 
enter 
an be written as

x(s) = x




+ �T




+ h(�)n




; s 2 S

0

; � 2 �

0

;

and the geometri
al smoothness of x at the 
enter is just the analyti
al smoothness

of h at the origin. If x 2 C

1

0

(S;R

3

), then h is 
ontinuous on �

0

and 
ontinuously

di�erentiable on �

0

nf0g. If, moreover, x is normal 
ontinuous, then one 
an show

using the mean value theorem that h is also di�erentiable at the origin. Both value

and gradient vanish there,

h(0) = 0; Dh(0) = 0: (4)

De�nition 2.3 A spline surfa
e x 2 C

k

0

(S;R

3

) is 
alled C

k

r

if it is single-sheeted, and

if the 
entral height fun
tion is r-times di�erentiable at the origin. The spa
e of all

C

k

r

-splines is denoted C

k

r

(S;R

3

).

One should keep in mind that the supers
ript k refers to the smoothness of the

parametrization, while the subs
ript r refers to the smoothness of the 
entral height

fun
tion at the origin. Stri
tly speaking, x 
an be a smooth manifold even if it is nei-

ther normal 
ontinuous in the sense of De�nition 2.2 nor single-sheeted in the sense

of De�nition 2.3. As an example, 
onsider the `
at' spline x with pat
hes

x

0

(�) = � � � = x

n�1

(�) = r sin(1=r) [
os 4'; sin 4'; 0℄;

where � = r(
os'; sin'). The normal ve
tor, 
omputed as the normalized 
ross prod-

u
t of partial derivatives, alternates between [0; 0; 1℄ and [0; 0;�1℄; and the proje
tion

of x to the xy-plane is not inje
tive. Nevertheless, the image of x is simply a part of

the xy-plane, hen
e a smooth manifold. We a

ept that su
h highly degenerate 
ases

are not 
ontained in the spa
es C

k

r

(S;R

3

).
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Bibliographi
 Notes.

� The fo
us on spline surfa
es 
onsisting of quadrilateral pat
hes is motivated by

the Catmull-Clark-algorithm [9℄, the Doo-Sabin-algorithm [24℄, or the tensor-

produ
t four-point s
heme [42, 47℄. A 
ompletely analogous theory 
an be de-

veloped for triangular pat
hes, as obtained for instan
e by Loop's s
heme [52℄,

the butter
y s
heme [31℄, or

p

3-subdivision [45℄.

� Viewing the domain S as a topologi
al spa
e appears natural. Nevertheless, it

was not expli
itly introdu
ed prior to [77, 98℄.

� An example for a surfa
e whi
h is normal 
ontinuous, but not single-sheeted 
an

be found in [73℄.

� The 
onditions (1) are not ne
essary for a smooth join of the pat
hes. Rather,

it suÆ
es to require 
oin
iden
e of geometri
 quantities su
h as normal ve
tors,

prin
ipal 
urvatures and dire
tions, et
., at 
ommon edges. For a survey on the


on
ept of so-
alled geometri
 
ontinuity see, for instan
e, [58℄.

� The example of a degenerate parametrization of smooth manifolds elaborates

on a remark in [99℄.

3 Subdivision surfa
es de�ned

So far we have derived a general framework for splines near extraordinary points.

Now we spe
ialize it to the subdivision setting. In pra
ti
e, subdivision surfa
es are

obtained by iterated re�nement of 
ontrol meshes. This re�nement pro
ess enlarges

the regular parts of the mesh, and s
ales down the 
entral n-sided region near the

extraordinary vertex. Sin
e the limit surfa
e 
orresponding to the regular parts of

a mesh 
an at least in prin
iple be determined expli
itly, iterative re�nement 
orre-

sponds to the generation of a sequen
e of larger and larger parts of the �nal limit

surfa
e. Equally, one 
an represent the limit surfa
e x as the union of the initially

known regular part x

0

and a sequen
e of ring-shaped parts x

m

; m 2 N ; whi
h are

added by subsequent re�nement steps. Skipping the details, this pro
ess 
orresponds

to a partition of the domains � and S in the following way. Let

�

0

:= [0; 2℄

2

n[0; 1)

2

; �

m

:= 2

�m

�

0

; S

m

:= �

m

� Z

n

; m 2 N

0

;

then

� =

[

m2N

�

m

[ 0; S =

[

m2N

S

m

[ 0




;

see Figure 5. Splines x 2 C

k

0

(S;R

d

) are partitioned a

ordingly. For m 2 N and

j 2 Z

n

, the segment x

m

j

is de�ned by

x

m

j

: �

0

3 � 7! x

j

(2

�m

�);

7
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for (right) the union xnx




of spline rings.

and the spline ring x

m

is de�ned by

x

m

: S

0

3 s 7! x(2

�m

s);

where we used the 
onvention that a s
alar fa
tor applies only to the 
ontinuous

variables of s,

as = a(s; t; j) := (as; at; j); a 2 R:

The spa
e of all C

k

-spline rings is denoted by

C

k

(S

0

;R

d

):

The segment x

m

j


orresponds to the restri
tion of the pat
h x

j

to the set �

m

, and the

spline ring x

m


orresponds to the restri
tion of the spline x to the set S

m

, i.e.,

x

m

j

(�

0

) = x

j

(�

m

); x

m

(S

0

) = x(S

m

);

where re-s
aling fa
ilitates the use of a 
ommon domain for all m. This implies

x

j

(�) =

[

m2N

x

m

j

(�

0

) [ x




; x(S) =

[

m2N

x

m

(S

0

) [ x




:

The partition of a spline into spline rings and segments leads to the notion of subdi-

vision. It refers to a spe
ial way of representing splines rather than to a new 
lass of

obje
ts.

De�nition 3.1 x 2 C

k

0

(S;R

d

) represented as

x : S 3 s 7!

(

x

m

(2

m

s) if s 2 S

m

x




if s = 0




is 
alled a spline in subdivision form. For d = 3, x is also 
alled a subdivision surfa
e.
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Expressing a spline in subdivision form is a straightforward segmentation pro
ess.

This point of view be
omes relevant if we pro
eed in the opposite dire
tion and assume

that the sequen
e of spline rings x

m

is generated iteratively by some algorithm. Then

the task is to analyze properties of the spline obtained by gluing all these pie
es

together. The following lemma 
hara
terizes the relation between spline rings and

splines.

Lemma 3.2 A sequen
e (x

m

)

m

of spline rings 
onstitutes a spline x 2 C

k

0

(S;R

d

) if

and only if

� all segments are k-times 
ontinuously di�erentiable,

x

m

j

2 C

k

(�

0

;R

d

); (5)

� all pairs of neighboring segments x

m

j

;x

m

j+1

satisfy

�

�

s

x

m

j

(0; 1 + u) = (�1)

�

�

�

t

x

m

j+1

(1 + u; 0); u 2 U; (6)

� all pairs of 
onse
utive segments x

m

j

; x

m+1

j

satisfy

�

�

s

x

m

j

(1; u) = 2

�

�

�

s

x

m+1

j

(2; 2u)

�

�

t

x

m

j

(u; 1) = 2

�

�

�

t

x

m+1

j

(2u; 2); u 2 U; (7)

� there exists x




2 R

d

su
h that for any sequen
e s

m

2 S

0

x




= lim

m!1

x

m

(s

m

): (8)

We omit the details of the proof, whi
h essentially redu
es to an appli
ation of the


hain rule. The following theorem summarizes 
onditions for normal 
ontinuity and

single-sheetedness.

Theorem 3.3 Let x

m

be a sequen
e of spline rings satisfying all 
onditions of Lemma 3.2

and x the 
orresponding spline. Then

� x is normal 
ontinuous if and only if there exists n




2 S

2

su
h that for any

sequen
e s

m

2 S

0

n




= lim

m!1

n

m

(s

m

);

where the spline rings of the Gauss map n are denoted by n

m

.

� x is C

k

1

, if and only if it is normal 
ontinuous and if there exists m

0

2 N su
h

that

n




� n

m

> 0 for all m � m

0

, and

9



the planar spline ring �

m

0

:= (x

m

0

�x




) �T





orresponding to the proje
tion

� as de�ned in (2) is inje
tive on the outer boundary of its domain

�

+

S

0

:= f(s; t; j) 2 S

0

: max(s; t) = 2g:

While the proof of the �rst part is straightforward, the se
ond part is nontrivial and

requires te
hniques of di�erential topology. For details, we refer to [78℄.

All subdivision algorithms 
urrently in use and a large 
lass of generalizations

are 
hara
terized by the fa
t that all spline rings generated by them lie in a 
ommon

spa
e whi
h is the d-fold Cartesian produ
t of a �nite-dimensional spa
e of real-valued

fun
tions. For instan
e, for the Doo-Sabin algorithm as des
ribed in Se
tion 7, the

spline rings are C

1

and 
onsist of n segments of three biquadrati
 pie
es ea
h. The

dimension of this spa
e is therefore 9dn. In general,

G := [g

0

; : : : ; g

�

`

℄; g

`

2 C

k

(S

0

;R); ` = 0; : : : ;

�

`;

is a row-ve
tor of s
alar-valued spline rings and we assume that they form a partition

of unity,

�

`

X

`=0

g

`

(s) = 1; s 2 S

0

: (9)

The spline spa
e spanned by these fun
tions is denoted

C

k

(S

0

;R

d

; G) :=

(

�

`

X

`=0

g

`

q

`

: q

`

2 R

d

)

� C

k

(S

0

;R);

and G is 
alled the generating system of C

k

(S

0

;R

d

; G). In many appli
ations, G is

linearly independent. This is expli
itly not assumed here so that the analysis 
overs


ases like generalized box spline subdivision or matrix subdivision s
hemes.

C

k

(S

0

;R

d

; G) is a linear fun
tion spa
e of dimension � d(

�

`+1). We endow it with

the max-norm

kx

m

k

1

:= max

s2S

0

jx

m

(s)j;

where j � j denotes the Eu
lidean norm in R

d

. Limits of sequen
es of spline rings are

always understood with respe
t to this norm. The 
oeÆ
ients q

m

`

2 R

d

of a spline

ring

x

m

=

�

`

X

`=0

g

`

q

m

`

are its 
ontrol points. Colle
ting them in an ((

�

`+1)� d)-matrix Q

m

:= [q

m

0

; : : : ;q

m

�

`

℄,

we obtain

x

m

(s) = x

m

j

(�) = G(s)Q

m

; s = (�; j) 2 S

0

;

or, omitting arguments, simply x

m

= GQ

m

.
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Figure 6: (left) Control points Q (dots) and (right) re�ned 
ontrol points AQ (Æ) for

Doo-Sabin subdivision [24℄. The 
orresponding spline rings are shaded grey.
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k to [71, 73℄. Early attempts to analyze smoothness [3, 4℄ were based on

investigating sequen
es of �ner and �ner meshes 
onverging to the subdivision

surfa
e. This approa
h, however, ultimately fails to 
apture important aspe
ts

of smoothness.

� Examples of subdivision surfa
es whi
h are not generated by a �nite set of

fun
tions are, for instan
e, variational subdivision [41, 43℄ or s
hemes based on

geometri
al pro
edures as in [32℄.

4 Subdivision algorithms

From an abstra
t point of view, a subdivision algorithm is a rule to 
ompute sequen
es

of spline rings from an initial set of 
ontrol points. Here, we fo
us on the following

spe
ial 
ase: a (linear stationary) subdivision algorithm (A;G) is 
hara
terized by a

square matrix A with all rows summing to 1 and a generating system G of a

ording

dimension. For a given set Q of 
ontrol points, also referred to as initial data, the

sequen
e of spline rings is 
omputed by iterated appli
ation of the matrix A,

Q

m

:= A

m

Q; x

m

= GA

m

Q:

Sin
e the rows of A, as well as the fun
tions in G, sum to 1, the representation of

the spline rings x

m

is aÆne invariant. That is, applying an aÆne transformation to

the initial 
ontrol points Q is equivalent to applying this transformation to the spline

rings x

m

, and hen
e to the 
omplete spline x.

The analysis of a subdivision algorithm 
an be split into three parts. First, the

smoothness of the generating system has to be determined by verifying (5) and (6).

Se
ond, the 
onta
t 
onditions (7) between neighboring and 
onse
utive segments
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have to be veri�ed. Typi
ally, this task is readily a

omplished. Third, and this is

the fo
us of this work, 
ontinuity and smoothness properties at the 
enter have to be

determined.

We start with 
ontinuity as de�ned by (8). Sin
e the rows of A sum to one, �

0

:= 1

is the eigenvalue 
orresponding to the eigenve
tor e := [1; : : : ; 1℄

T

, i.e., Ae = e. To

ensure (8), i.e.

lim

m!1

x

m

= x




;

it seems natural to demand that this eigenvalue be dominant. However, in general,

this is by no means ne
essary. The reason for this is that the generating system need

not be linearly independent. For example, assume that A has eigenvalues �

0

= 1,

� = 2 and � = 1=2 
orresponding to the eigenve
tors e, v and w, respe
tively. LetQ =

vp+eq+wr for some points p;q; r 2 R

d

nf0g. ThenQ

m

= A

m

Q = 2

m

vp+eq+2

�m

wr

is 
ertainly divergent. But if v happens to be annihilated by G, i.e. Gv = 0, then

x

m

= GQ

m

= q + 2

�m

Gwr! q =: x




is 
onvergent. We say that v is an ine�e
tive

eigenve
tor.

This shows that, in general, it is not possible to relate spe
tral properties of A to

smoothness properties of the generated surfa
es in a straightforward way. To address

this issue in a 
onsistent fashion, we pro
eed as follows. We de�ne the linear spa
es

N := fv 2 R

�

`+1

: Gv = 0g; M

A

:=

\

m2N

A

m

N:

That is, M

A


onsists of all ve
tors that do not es
ape the nullspa
e of G when A is

applied. Further, two matri
es A;

~

A are 
alled G-equivalent if they generate identi
al

sequen
es of 
ontrol points, i.e., if GA

m

= G

~

A

m

for all m 2 N

0

. Then the following

holds:

Lemma 4.1 (Removal of ine�e
tive eigenve
tors) a) For given (

~

A;G), let �

0

:

R

�

`+1

! M

~

A

be a proje
tion on M

~

A

with �

0

e = 0, and �

1

:= Id��

0

its 
omplement.

Then the matri
es A := �

1

~

A and

~

A are G-equivalent, and M

A

= f0g.

b) If M

A

= f0g, then A does not have ine�e
tive eigenve
tors. That is, if Av =

�v 6= 0 then Gv 6= 0.

Proof a) Sin
e Ge = 1 by (9), we have e 62 M

~

A

, and a proje
tion of the desired

form exists. By de�nition, AM

A

= M

A

and

~

AM

~

A

=M

~

A

. Hen
e,

~

A(M

~

A

+M

A

) = M

~

A

+�

0

~

AM

A

+ �

1

~

AM

A

= M

~

A

+M

A

:

Sin
eM

~

A

is the largest

~

A-invariant subspa
e of N , M

A

�M

~

A

. FurtherM

~

A

� ker

~

A �

kerA and AM

A

= M

A

so that M

A

= f0g. Finally, Ae = �

1

~

Ae = e. It remains

to show that A and

~

A are equivalent. To this end, we 
onsider G(A

m

�

~

A

m

) =

G

�

(

~

A � �

0

~

A)

m

�

~

A

m

�

=: G�. The matrix � is the sum of produ
ts of matri
es

~

A

and �

0

all of whi
h in
lude the fa
tor �

0

. With

~

A�

0

= �

0

~

A�

0

, it is 
lear that � 
an

be represented in the form � = �

0

�

0

. Therefore G(A

m

�

~

A

m

) = G�

0

�

0

= 0.

b) If Av = �v 6= 0, then for all m 2 N we have Gv = �

�m

GA

m

v = 0. Hen
e,

A

m

v 2 N and v 2M

A


ontradi
ting M

A

= f0g. �

12



The property M

A

= f0g, whi
h is trivial for linearly independent G, 
an now

be assumed for the general setting without loss of generality. The following theorem


ru
ially depends on this property.

Theorem 4.2 Let (A;G) be a subdivision algorithm with M

A

= f0g. Then the 
on-

tinuity 
ondition

x




= lim

m!1

x

m

is satis�ed for any set Q of initial data if and only if the eigenvalue �

0

= 1 of A is

stri
tly dominant, i.e., if j�j < 1 for all other eigenvalues � of A.

Proof Let �

0

= 1 be stri
tly dominant. With ~e

T

= ~e

T

A the left eigenve
tor to �

0

normalized by ~e

T

e = 1, we 
an de
ompose Q in the form Q = e~e

T

Q+R, where R is

a linear 
ombination of generalized eigenve
tors of A 
orresponding to eigenvalues �

i

with j�

i

j < r for some 
onstant r < 1. Hen
e, using Ge = 1, we obtain 
onvergen
e

a

ording to

x

m

= GA

m

Q = ~e

T

Q + o(r

m

)! ~e

T

Q =: x




:

If �

0

= 1 is not stri
tly dominant, we have to distinguish two 
ases. If �

0

= 1 has

geometri
 multipli
ity 1, but algebrai
 multipli
ity> 1, then there exists a generalized

eigenve
tor v with Av = v + e. We set q := [1; : : : ; 1℄ and Q := vq to obtain the

divergent sequen
e

x

m

= GA

m

Q = GA

m

vq = G(v +me)q = GQ+mq:

Otherwise, there exists an eigenve
tor v, whi
h is linearly independent of e, to an

eigenvalue � with j�j � 1. We set q := [1; : : : ; 1℄; Q := Re vq, and � =: j�je

it

to

obtain

x

m

= GA

m

Q = j�j

m

Re(e

imt

Gvq):

Sin
e Gv 6= 0, this expression 
an 
onverge to a 
onstant x




only if j�j = 1 and t = 0,

i.e., if the eigenvalue � = �

0

= 1 is at least double, and if Gv =: � 2 R is 
onstant.

In this 
ase, v

0

:= �e � v is an ine�e
tive eigenve
tor be
ause Av

0

= v

0

6= 0 and

Gv

0

= G(�e� v) = 0 
ontradi
ting Lemma 4.1. �

The results obtained so far suggest 
on�ning our 
onsiderations to subdivision s
hemes

with M

A

= f0g and a stri
tly dominant eigenvalue �

0

= 1. The next de�nition

a

ounts for that.

De�nition 4.3 Let (A;G) be a subdivision s
heme with the following properties:

� The generating system is C

k

, i.e., G 2 C

k

(S

0

;R

�

`+1

).

� The 
onditions (7) are satis�ed.

� A has no ine�e
tive eigenve
tors, i.e., M

A

= f0g.
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� The eigenvalue �

0

= 1 to the eigenve
tor e = Ae is stri
tly dominant.

Then (A;G) is 
alled a C

k

0

-s
heme, and A is 
alled the subdivision matrix.

We re
all our 
onvention that the supers
ript k refers to the smoothness of the

parametrization, while the subs
ript 0 indi
ates 
ontinuity at the 
enter. We summa-

rize our previous �ndings in the following theorem:

Theorem 4.4 Let (A;G) be a C

k

0

-s
heme and ~e = ~eA the dominant left eigenve
tor

normalized by ~ee = 1. Then, for any Q, the spline rings x

m

:= GA

m

Q together with

the 
enter x




:= ~eQ 
onstitute a C

k

0

-spline.

We 
ontinue by de�ning B-spline-like fun
tions for subdivision algorithms. Denote

the unit ve
tors in R

�

`+1

by e

0

; : : : ; e

�

`

, and de�ne the row-ve
tor B = [b

0

; : : : ; b

�

`

℄ of

real-valued splines b

`

2 C

k

0

(S;R) by

b

`

(s) :=

(

G(2

m

s)A

m

e

`

if s 2 S

m

~ee

`

if s = 0




:

(10)

Then, by linearity of subdivision, the relation between arbitrary initial data Q and

the 
orresponding spline x 
an simply be written as

x = BQ: (11)

Let us brie
y dis
uss some properties of the fun
tions in B. They

� span the the spa
e of splines generated by the subdivision algorithm (A;G).

� form a partition of unity sin
e

�

`

X

`=0

b

`

(s) =

(

G(2

m

s)A

m

e = G(2

m

s)e = 1 if s 2 S

m

~ee = 1 if s = 0




:

� are linearly independent, if the generating system G is linearly independent. To

show this, it suÆ
es to 
onsider the initial spline ring x

0

= GQ = GQ

0

whi
h,

for linearly independent G, vanishes if and only if Q = 0.

� satisfy the s
aling relation

B(2

�m

s) = B(s)A

m

; s 2 S; m 2 N

0

:

This 
an be proven as follows. For s 2 S

m

0

, (10) yields B(s) = G(2

m

0

s)A

m

0

.

For m 2 N

0

, it is 2

�m

s 2 S

m+m

0

, and a

ordingly B(2

�m

s) = G(2

m

0

s)A

m+m

0

.

Comparison of the two equations, whi
h hold for any m

0

2 N , veri�es the 
laim.
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The fun
tions in B are important for many appli
ations like solving interpolation or

approximation problems for subdivision surfa
es. In view of (11), the similarity with

B-splines in the standard setting is evident. The only 
on
eptional di�eren
es 
on
ern

possible linear dependen
ies and a la
k of parametri
 smoothness at the 
enter. We

will fo
us on geometri
 smoothness properties in the next se
tions.

Bibliographi
 Notes.

� Dominan
e of the eigenve
tor �

0

= 1 was always 
onsidered a ne
essary 
on-

dition for subdivision algorithms. The intriguing phenomenon of ine�e
tive

eigenve
tors was �rst dis
ussed in [77℄. An example whi
h shows that requiring

linear independen
e of the generating system implies a loss of generality 
an be

found in [78℄.

� A 
onstru
tive pro
edure to eÆ
iently 
ompute a subdivision matrix A from a

given matrix

~

A 
an be found in [78℄.

� The representation (11) of a subdivision surfa
e as a �nite linear 
ombination

of 
ontrol points q

`

and fun
tions b

`

is most useful for 
omputational purposes.

For instan
e, it was used in [19℄ to 
ompute subdivision surfa
es whi
h minimize

a 
ertain fairness fun
tional while interpolating a given set of points.

� There exists a well-developed theory for the analysis of subdivision 
urves and

surfa
es when the domain manifold S is homeomorphi
 to the plane, see for

instan
e [10, 28, 44, 53, 54℄.

� The linear independen
e and (la
k of) lo
al linear independen
e of subdivision

fun
tions has been analyzed in detail in [65℄.

5 C

k

1

-s
hemes and the 
hara
teristi
 map

In this se
tion, we derive ne
essary and suÆ
ient 
onditions for normal 
ontinuity and

single-sheetedness of subdivision surfa
es. As already mentioned above, the spe
trum

of A is 
ru
ial for the properties of a subdivision s
heme. We sort the eigenvalues �

i

of A in des
ending order,

1 = �

0

> j�

1

j � j�

2

j � � � � j�

�

`

j:

To simplify the exposition, we fo
us on a sub
lass of subdivision algorithms that


overs all 
ases of pra
ti
al relevan
e.

De�nition 5.1 A C

k

0

-s
heme (A;G) a

ording to De�nition 4.3 is 
alled a standard

s
heme, if k � 1, and

� A has a double subdominant eigenvalue �, i.e.,

1 > � := �

1

= �

2

> j�

3

j;
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� there exist two linearly independent eigenve
tors v

1

; v

2

to �, i.e.,

Av = �v; v = [v

1

; v

2

℄:

Su
h an eigenstru
ture is not really spe
ial, but typi
al for s
hemes with 
ertain

natural symmetry properties, as dis
ussed in Se
tion 6. Let A =: V JV

�1

denote the

Jordan de
omposition of the subdivision matrix of a standard s
heme. Then V =

[e; v

1

; v

2

;

~

V ℄ and J = diag(1; �; �;

~

J). We de�ne the eigen
oeÆ
ients P = [p

0

; : : : ;p

�

`

℄

and the eigenfun
tions F = [f

0

; : : : ; f

�

`

℄ by

P := V

�1

Q; F := GV:

With p

0

= ~e

T

Q = x




the 
enter and f

0

= Ge = 1 the 1-fun
tion we obtain the

representation

x

m

= GA

m

Q = FJ

m

P = x




+ �

m

(f

1

p

1

+ f

2

p

2

) + o(�

m

):

To eÆ
iently deal with su
h asymptoti
 expansions, we introdu
e an equivalen
e re-

lation for sequen
es of fun
tions with 
oin
iding leading terms. We write

a

m




m

= b

m

i� a

m

� b

m

= o(


m

);

where o(


m

)=


m


onverges uniformly to zero as m!1. For example, a

m

1

= a means

that a

m


onverges to a. For ve
tor-valued expressions, the equivalen
e relation is

understood 
omponent-wise. For simpli
ity,




m

= is mostly repla
ed by the symbol

:

=

with the understanding that the dot refers to the lowest order term spe
i�ed expli
itly

on the right hand side of a relation. Hen
e, the expansion of the sequen
e of spline

rings above now simply reads x

m

:

= x




+ �

m

(f

1

p

1

+ f

2

p

2

), meaning that the omitted

remainder term de
ays faster than �

m

. In the following, the two-dimensional spline

ring built from the subdominant eigenfun
tions f

1

; f

2

plays a 
entral role.

De�nition 5.2 For a standard s
heme (A;G) with subdominant eigenve
tors v =

[v

1

; v

2

℄ and eigenfun
tions F = [1; f

1

; f

2

; : : : ; f

�

`

℄ the 
hara
teristi
 map is de�ned by

 := Gv = [f

1

; f

2

℄ 2 C

k

(S

0

;R

2

; G):

With this de�nition, the sequen
e of spline rings be
omes

x

m

:

= x




+ �

m

 [p

1

;p

2

℄:

Convergen
e towards the 
enter x




is evident. In order to 
ompute normal ve
tors,

we de�ne the 
ross produ
t of ve
tors in R

3

as usual, and for ve
tors in R

2

as the real

number �� � := det(�;�). A

ordingly, for spline rings in R

2

or R

3

, we de�ne the

di�erential operator

�

D := �

s

� �

t

and obtain

�

Dx

m

= �

s

x

m

� �

t

x

m

:

= �

2m �

D (p

1

� p

2

);
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where, by de�nition,

�

D = �

s

f

1

�

t

f

2

� �

t

f

1

�

s

f

2

is the Ja
obian determinant of the 
hara
teristi
 map. It is easily shown that

�

D 2

C

k�1

(S

0

;R

2

) if  2 C

k

(S

0

;R

2

). In order to distinguish degenerate 
ases, we say that

the initial dataQ are generi
, if any three of the eigen
oeÆ
ients p

1

; : : : ;p

�

`

are linearly

independent. In this se
tion, it would be suÆ
ient to demand only p

1

� p

2

6= 0; the

generality of the de�nition anti
ipates the requirements in the next se
tions. We say

that a subdivision s
heme is normal 
ontinuous or single-sheeted, if so are all surfa
es

generated from generi
 initial data.

Theorem 5.3 A standard s
heme is

� normal 
ontinuous with 
entral normal

n




= sign(

�

D )

p

1

� p

2

jp

1

� p

2

j

;

if the 
hara
teristi
 map is regular, i.e., if

�

D 6= 0.

� not normal 
ontinuous, if

�

D 
hanges sign.

Proof The �rst part of the statement follows immediately from n

m

:=

�

Dx

m

=j

�

Dx

m

j

and the observation that 1=

�

D is 
ontinuous, hen
e uniformly bounded, on the


ompa
t domain S

0

. To proof the se
ond part, let us assume that

�

D (s

1

)

�

D (s

2

) <

0 for some arguments s

1

; s

2

2 S

0

. Here, we obtain

n

m

(s

i

)

:

= sign(

�

D (s

i

))

p

1

� p

2

jp

1

� p

2

j

; i 2 f1; 2g;

and see that n

m


annot 
onverge to a 
onstant limit sin
e jn

m

(s

1

)� n

m

(s

2

)j

:

= 2. �

The 
onditions of this theorem are almost 
omprehensive. Only the ex
eptional 
ase,

where

�

D has zeros without 
hanging sign remains open. Here, the behavior of

�

Dx

m

depends on higher order eigen
oeÆ
ients and 
annot be determined a priori. Now,

the issue of single-sheetedness has to be addressed, and again, the 
hara
teristi
 map

provides ne
essary and suÆ
ient 
onditions.

Theorem 5.4 A standard C

k

0

-s
heme with a regular 
hara
teristi
 map  is

� single-sheeted and moreover C

k

1

, if  is inje
tive.

� not single sheeted, if  restri
ted to the interior of S

0

is not inje
tive.
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Proof Let  be regular and inje
tive. Then we know that x is normal 
ontinuous

with n

m

:

= n




= sign(

�

D (s

i

))(p

1

� p

2

)=jp

1

� p

2

j. Hen
e, n




� n

m

:

= 1, and in

parti
ular n




� n

m

> 0 for m suÆ
iently large. Next, we 
onsider a res
aled sequen
e

of proje
tions of spline rings,

~

�

m

:= �

�m

�

m

:

=  L; L := [p

1

;p

2

℄ �T




:

For generi
 initial data,  L is inje
tive be
ause the (2 � 2)-matrix L has full rank.

Sin
e the set of regular inje
tive mappings is open with respe
t to the C

1

-norm, we


on
lude that

~

�

m

and eventually �

m

is inje
tive for m suÆ
iently large. Thus, all


onditions of Theorem 3.3 are ful�lled, and x is C

k

1

. Similar arguments show that also

non-inje
tivity of  at interior points is inherited by

~

�

m

and �

m

. �

Again, the theorem is almost 
omprehensive. Only the ex
eptional 
ase, when  

restri
ted to the boundary of its domain is not inje
tive, remains open. Theorems 5.3

and 5.4 suggest to fo
us on standard s
hemes with a regular and inje
tive 
hara
teristi


map. The following de�nition a

ounts for that observation.

De�nition 5.5 A standard C

k

0

-s
heme (A;G) with a 
hara
teristi
 map  that is

regular and inje
tive is 
alled a standard C

k

1

-s
heme.  is 
alled normalized if

 (2; 2; 0) = (1; 0) and

�

D > 0:

As we have shown, C

k

1

-s
hemes generate C

k

1

-splines from generi
 initial data. The

notion of normalization is introdu
ed to sele
t from the variety of possible 
hara
-

teristi
 maps a spe
ial 
lass of representatives whi
h is 
onvenient for the forth
om-

ing 
onsiderations. We prepare our dis
ussion of that issue by the following obser-

vation. For initial data Q := [v

1

; v

2

℄ the 
orresponding two-dimensional spline is

x = Bv 2 C

k

0

(S;R

2

), where the spline rings are just s
aled 
opies of the 
hara
teristi


map, x

m

= �

m

 . By (7), this implies for the segments  

j

 

j

(1; u) = � 

j

(2; 2u)

 

j

(u; 1) = � 

j

(2u; 2); (12)

and in general

�

�

s

 

j

(1; u) = � 2

�

�

�

s

 (2; 2u)

�

�

t

 

j

(u; 1) = � 2

�

�

�

t

 (2u; 2); 0 � � � k: (13)

Now, we 
an prove that normalization is always possible if the 
hara
teristi
 map is

regular and inje
tive.

Lemma 5.6 Let

~

 = F~v be the 
hara
teristi
 map of a standard C

k

1

-s
heme with

s := sign

~

 (2; 2; 0) and [a; b℄ :=

~

 (2; 2; 0). Then [a; b℄ 6= [0; 0℄, and

 := Fv; v := ~vR; R :=

1

a

2

+ b

2

�

a �sb

b sa

�

de�nes a normalized 
hara
teristi
 map of the s
heme.
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Proof By (13) and inje
tivity,

~

 (1; 1; 0) = �

~

 (2; 2; 0) 6=

~

 (2; 2; 0). Hen
e, [a; b℄ 6=

[0; 0℄, and R is well de�ned. Sin
e R has full rank, the 
olumns of v are linearly

independent eigenve
tors of A to � implying that  = Fv =

~

 R is a 
hara
teristi


map as well as

~

 . In parti
ular,  is regular and inje
tive. We �nd  (2; 2; 0) =

~

 (2; 2; 0)R = [1; 0℄, and

�

D (2; 2; 0) =

�

D

~

 (2; 2; 0) detR =

j

�

D

~

 (2; 2; 0)j

a

2

+ b

2

> 0:

Sin
e

�

D is 
ontinuous and has no zeros,

�

D > 0 follows showing that  is nor-

malized. �

Bibliographi
 Notes.

� As pointed out in [63℄, shift and 
ip invarian
e (see Se
tion 6) of a C

k

1

-s
heme

imply a double subdominant Jordan blo
k. For instan
e, for n = 3, simplest

subdivision [62℄ yields an 6-fold subdominant eigenvalue �

1

= 1=4, with two

Jordan blo
ks of size 2 and two Jordan blo
ks of size 1. Still, C

k

1

-smoothness is

guaranteed. The analysis of this more general setting is only slightly more diÆ-


ult, but requires 
onsiderably 
omplex notation. The standard 
ase dis
ussed

here 
overs most algorithms 
urrently in use.

� Complete lists of possible leading eigenvalues 
ampatible with C

k

1

-s
hemes are

provided in [77, 98℄.

� The 
on
ept of the 
hara
teristi
 map was introdu
ed in [73℄. In some sense, it

is related to the natural 
on�guration de�ned in [92℄.

� In [73℄, it is shown that regularity and inje
tivity of the 
hara
teristi
 map are

suÆ
ient for smoothness. Ne
essity was proven in [63℄.

� An elegant 
omputational way to verify regularity of the 
hara
teristi
 map even

for non-polynomial s
hemes is des
ribed in [99℄.

6 Symmetry and Fourier analysis

We 
ontinue the analysis of s
hemes with standard symmetry properties. A

ording

to the partition of splines into segments, ve
tors Q of 
ontrol points 
an typi
ally be

partitioned into blo
ks Q = [Q

0

; : : : ;Q

n�1

℄, where all blo
ks Q

j

have equal stru
ture

and size

~

` := (

�

` + 1)=n. If, as for the Catmull-Clark s
heme, a 
entral 
ontrol point

is 
ommon to all blo
ks, one 
an use n identi
al 
opies of it to a
hieve the desired

stru
ture. Shift invarian
e of a subdivision s
heme refers to the fa
t that the shape

of a subdivision surfa
e does not depend on the spe
ial 
hoi
e of the starting point
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when indexing the blo
ks of a given set of initial data Q. More pre
isely, with E the

identity matrix of dimension

~

`, let

S :=

2

6

6

6

4

0 0 � � � 0 E

E 0 � � � 0 0

.

.

.

0 0 � � � E 0

3

7

7

7

5

denote the n-blo
k shift matrix. A subdivision s
heme (A;G) is 
alled shift invariant,

if

AS = SA and G(�; j) = G(�; j + 1)S; j 2 Z

n

:

In this 
ase, for any Q and

~

Q := S

k

Q, the segments of the splines x := BQ and

~x := B

~

Q di�er, just as the blo
ks Q

j

=

~

Q

j+k

of the initial data, only by an index

shift:

x

j

= G(�; j)A

m

Q = G(�; j + k)S

k

A

m

Q = G(�; j + k)A

m

S

k

Q = ~x

j+k

:

Flip invarian
e of a subdivision s
heme refers to the fa
t that the shape of a

subdivision surfa
e does not depend on the orientation when indexing a given set of

initial 
ontrol points Q. More pre
isely, a subdivision s
heme (A;G) is 
alled 
ip

invariant, if there exists a matrix R with R = R

�1

su
h that

AR = RA and G(s; t; j) = G(t; s;�j)R; (s; t; j) 2 S

0

: (14)

In this 
ase, for any Q and

~

Q := RQ, the splines x := BQ and ~x := B

~

Q di�er only

by a 
ip (s; t; j)! (t; s;�j) of arguments,

x

j

(s; t) = G(s; t; j)A

m

Q = G(t; s;�j)RA

m

Q = G(t; s;�j)A

m

RQ = ~x

�j

(t; s):

From now on, we fo
us on s
hemes whi
h respe
t both invarian
e prin
iples.

De�nition 6.1 A subdivision s
heme is 
alled symmetri
, if it is both shift and 
ip

invariant.

Let us 
ontinue by dis
ussing the impli
ations of symmetry on the eigenstru
ture of

A. SA = AS implies a blo
k-
ir
ulant stru
ture for the subdivision matrix,

A =

2

6

6

6

4

A

0

A

n�1

� � � A

1

A

1

A

0

� � � A

2

.

.

.

.

.

.

.

.

.

.

.

.

A

n�1

A

n�2

� � � A

0

3

7

7

7

5

:

The key tool for handling su
h matri
es is the Dis
rete Fourier Transform (DFT).

With

w

n

:= exp(2�i=n);
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the primitive n-th root of unity we de�ne the Fourier blo
k matrixW as the Krone
ker

produ
t of E and the Fourier matrix, i.e.

W := (w

�jk

n

E)

j;k2Z

n

=

2

6

6

6

6

6

4

E E E � � � E

E w

�1

n

E w

�2

n

E � � � w

1

n

E

E w

�2

n

E w

�4

n

E � � � w

2

n

E

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

E w

1

n

E w

2

n

E � � � w

�1

n

E

3

7

7

7

7

7

5

:

It is easily veri�ed by inspe
tion that the inverse of W is given by

W

�1

=

1

n

(w

+jk

n

E)

j;k2Z

n

=

1

n

W:

The DFT of the matrix A is de�ned by

^

A := WAW

�1

, and a standard 
omputation

shows that

^

A = diag(

^

A

0

; : : : ;

^

A

n�1

)

is blo
k diagonal with entries obtained by applying the Fourier matrix to the �rst

blo
k 
olumn of A,

2

6

4

^

A

0

.

.

.

^

A

n�1

3

7

5

:=W

2

6

4

A

0

.

.

.

A

n�1

3

7

5

; that is

^

A

k

:=

X

j2Z

n

w

�jk

n

A

j

:

By de�nition, A and

^

A are similar, and in parti
ular, they have equal eigenvalues.

More pre
isely, if �

0

is an eigenvalue of A, then there exists an index k 2 Z

n

su
h that

�

0

is an eigenvalue of

^

A

k

. The set of all su
h indi
es is 
alled the Fourier index of �

0

and denoted

F(�

0

) := fk 2 Z

n

: det(

^

A

k

� �

0

E) = 0g:

For the dominant eigenvalue �

0

= 1 of A, we obtain F(1) = f0g. Now we 
onsider

the double subdominant eigenvalue � of a standard s
heme. If k 2 F(�), then

det(

^

A

k

� �E) = det(

^

A

n�k

� �E) = 0

sin
e � is real and the diagonal blo
ks

^

A

k

and

^

A

n�k

are 
omplex 
onjugate (unless

k = 0 or k = n� k). Hen
e, the Fourier index of � has the form F = fk; n� kg for

some k 2 Z

n

. If

^

A

k

v̂ = �v̂, then the 
orresponding 
omplex eigenve
tor of A is given

by

v = W

�1

2

6

6

6

4

Æ

0;k

v̂

Æ

1;k

v̂

.

.

.

Æ

n�1;k

v̂

3

7

7

7

5

=

1

n

2

6

6

6

4

w

0

n

v̂

w

k

n

v̂

.

.

.

w

(n�1)k

n

v̂

3

7

7

7

5

: (15)

The eigenfun
tion 
orresponding to v is just a 
omplex version of the 
hara
teristi


map  .
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Figure 7: Chara
teristi
 map with Fourier index (left) F(�) = f1; n� 1g and (right)

F(�) = f2; n� 2g.

De�nition 6.2 Let v be the 
omplex eigenve
tor of a symmetri
 standard C

k

1

-s
heme

(A;G) to the subdominant eigenvalue � as de�ned above. Then the 
omplex 
hara
-

teristi
 map of the s
heme is de�ned as the spline ring

f := Gv 2 C

k

(S

0

; C ; G):

This de�nition is justi�ed as follows: The real and imaginary part of v are the real

eigenve
tors v

1

; v

2

as introdu
ed in De�nition 5.1. Hen
e,

f = G(v

1

+ iv

2

) = f

1

+ if

2

and  = G[v

1

; v

2

℄ = [Re f; Im f ℄:

Further, with

�

Df := Im(�

s

f �

t

f),

�

Df =

�

D :

Due to the 
lose relation between  and f , also f will shortly be referred to as the


hara
teristi
 map of the s
heme. Using (15), we obtain for the segments of the


hara
teristi
 map

f

j

=

1

n

X

`2Z

n

G

`

(�; j)w

`k

n

v̂ =

1

n

X

`2Z

n

G

`�j

(�; 0)w

`k

n

v̂

=

w

jk

n

n

X

`2Z

n

G

`

(�; 0)w

`k

n

v̂ = w

jk

n

f

0

:

This means that, due to shift invarian
e, all segments 
an be obtained from the

�rst one by rotation. This observation leads immediately to a result 
on
erning the

appropriate Fourier index of the subdominant eigenvalue.

Theorem 6.3 The 
hara
teristi
 map of a symmetri
 standard s
heme 
an be inje
-

tive only if F(�) = f1; n� 1g.

The proof is based on 
omputing the winding number of 
urves in the image of f

depending on k. Instead of going through the te
hni
al details, we refer to Figure 7,

22



whi
h gives a good impression of the 
onsequen
es of a wrong Fourier index. In the

following, we will always assume that the 
omplex eigenve
tor v a

ording to (15)


orresponds to the index k = 1. The index n � 1 leads to the 
omplex 
onjugate

eigenve
tor v.

For a normalized 
hara
teristi
 map, 
ip invarian
e is exploited as follows: AR =

RA implies that also Rv is an eigenve
tor of A to �, i.e., Rv = av + bv for some


omplex 
onstants a; b. On one hand, by (14),

1 = G(2; 2; 0)v = G(2; 2; 0)Rv = a+ b:

On the other hand, v and v are also eigenve
tors of the shift matrix. With Sv = w

�1

n

v

and Sv = w

n

v, we obtain

1 = G(2; 2; 0)v = G(2; 2; 0)SRSv = w

�2

n

a+ b:

The two 
onditions a + b = w

�2

n

a + b = 1 have the unique solution a = 0; b = 1, i.e.,

Rv = v. Hen
e,

f

0

(s; t) = G(s; t; 0)v = G(t; s; 0)Rv = G(t; s; 0)v = f

0

(t; s):

We summarize our �ndings 
on
erning symmetry properties of the 
hara
teristi
 map

as follows:

Theorem 6.4 Let f = Gv be the normalized 
hara
teristi
 map of a symmetri
 stan-

dard s
heme (A;G) derived via (15) from the eigenve
tor v̂ of the blo
k

^

A

1

to the

subdominant eigenvalue �. Then, for j 2 Z

n

,

f

j

(s; t) = w

j

n

f

0

(s; t) = w

j

n

f

0

(t; s) = f

�j

(t; s): (16)

The theorem tells us that the 
omplete information on the 
hara
teristi
 map is es-

sentially 
ontained in one half of the �rst segment. More pre
isely, we de�ne the half

domain

�

h

:= f(s; t) 2 � : s � tg;

and the half segment f

h

as the restri
tion of the segment f

0

to this set. Obviously,

�

Df(s; t; j) =

(

�

Df

h

(s; t) if s � t

�

Df

h

(t; s) if s > t:

Thus, it suÆ
es to verify

�

Df

h

> 0 to ensure regularity of the 
omplete 
hara
teristi


map. Sin
e in a 
on
rete setting

�

Df

h


an be evaluated either numeri
ally or even

analyti
ally, the required 
he
k of sign is typi
ally easy to a

omplish. By 
ontrast,

verifying inje
tivity seems to be a mu
h harder task, and in most known proofs for

spe
i�
 algorithms, mu
h e�ort is spent on that issue. The following theorem provides

a signi�
ant simpli�
ation of the inje
tivity test.

Theorem 6.5 Let (A;G) be a symmetri
 standard s
heme with Fourier index F =

f1; n� 1g, and assume that the half segment f

h

of the 
omplex 
hara
teristi
 map f

is normalized and regular. Then f is regular and inje
tive if and only if all real points

on the 
urve 


1

(u) := f

h

(u; 1); u 2 U , are positive:




1

(U) \ R

�

0

= ;:
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Figure 8: (left) Domain halfsegment �

h

and (right) spline image f

h

(�

h

).

Proof As already shown above, f is regular if and only if f

h

is regular. If f is

inje
tive and f

h

(u; 1) 2 R

�

0

, then, by Theorem 6.4, f

h

(u; 1) = f(1; u; 0) = f(u; 1; 0) =

f(u; 1; 0). This implies u = 1, and with (12), the 
ontradi
tion 0 > f(1; 1; 0) =

�f(2; 2; 0) = � > 0 follows. If all real points in 


1

(U) are positive, we argue as

follows:

First, we show that in this 
ase also all real points in the image f

h

(�

h

) are posi-

tive. To this end, we denote the four boundary segments of �

h

by �

1

�; : : : ; �

4

�, see

Figure 8, left. The restri
tions of f

h

to these sets yield four boundary 
urves whi
h

we parametrize over U = [0; 1℄ by




1

(u) := f

h

(u; 1); 


2

(u) := f

h

(1 + u; 1 + u)




3

(u) := f

h

(2� 2u; 2); 


4

(u) := f

h

(0; 2� u);

see Figure 8,right. By (12), the 
urves 


1

and 


3

are related a

ording to 


1

(u) =

�


3

(1 � u). By (16), 


2

(u) = f

0

(1 + u; 1 + u) = f

0

(1 + u; 1 + u) is real. Sin
e f is

regular, 


0

2

= Df

h

[1; 1℄ 6= 0. The endpoints are 


2

(0) = �; 


2

(1) = 1. Hen
e, we


on
lude that 


2

(u) is stri
tly monotone in
reasing and positive for all u 2 U . Also

by (16),




4

(u) = f

0

(0; 2� u) = f

0

(2� u; 0) = f

�1

(0; 2� u) = w

�1

n

f

0

(0; 2� u) = w

n




4

(u):

This is possible only if 


4

(u) lies on a straight line with angle either arg 


4

(u) = �=n

or arg 


4

(u) = � + �=n for all u 2 U . As before, one shows that j


4

(u)j is stri
tly

monotone, and that 


4

(u) 6= 0 for all u 2 U . Hen
e, 


4

(U) does not 
ontain real

points. By assumption, 


1

(U) \ R

�

0

= ;, and the same is true for 


3

(U) = 


1

(U)=�.

Together, we have shown that all real points on the image of the boundary of �

h

are

positive, i.e., f

h

(��

h

)\ R

�

0

= ;. Sin
e, by the inverse fun
tion theorem, for a regular

map the boundary of the image is a subset of the image of the boundary, we 
on
lude

that f

h

(�

h

) \ R

�

0

= ;

Se
ond, we show that the minimum and maximum of the angle arg f

h

(�) are at-

tained if and only if � 2 �

2

� and �

4

�, respe
tively. Using the �ndings of the �rst part

of the proof, we see that arg f

h

2 (��; �) is well de�ned so that the sear
h for extrema

a
tually makes sense. Now, let � 2 argmin arg f

h

be an argument 
orresponding to the
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minimal angle. As before, we 
on
lude that � has to lie on the boundary of �

h

. If �

does not lie in �

2

�[�

4

� then there exists u 2 (0; 1) su
h that arg 


1

(u) = arg 


3

(1�u)

is minimal. Moreover, the tangents satisfy 


0

1

(u) = ��


0

3

(1 � u) 6= 0. That is, the

tangents point into opposite dire
tions, while the image of f

h

always lies on the left

hand side of the boundary 
urve. Hen
e, there exists a point ~� in the neighborhood

either of [u; 1℄ or of [2�2u; 2℄ with arg f

h

(~�) < arg f

h

(�) 
ontradi
ting the minimality

assumption. Analogously, one shows that argmaxarg f

h

� �

2

� [ �

4

�. Sin
e the im-

age of f

h

lies on the left hand side of the 
urve 


2

, whi
h is oriented from left to right

on the positive real axis, we see that there exist positive angles so that arg 


2

= 0


annot be maximal. Hen
e, min arg f

h

= arg 


2

= 0, and max arg f

h

= arg 


4

= �=n.

Third, we show that f

h

is inje
tive. Sin
e the image f

h

(�

h

) does not 
ontain the

origin, there exists r 2 N su
h that �

r

< jf

h

(�)j � �

�r

for all � 2 �

h

. We de�ne the

domain �

r

h

:= [

jmj<r

2

m

�

h

and the map

f

r

h

: �

r

h

3 � 7! �

m

f

h

(2

m

�) if 2

m

� 2 �

h


onsisting of s
aled 
opies of f

h

. This map is smooth and regular sin
e 
onse
utive

parts satisfy 
onta
t 
onditions up to order k analogously to (13). The four boundary


urves 


r

1

; : : : ; 


r

4

of f

r

h

are de�ned as shown in Figure 8,right. Now, we 
onsider the

fun
tion

� : C 3 z 7! jf� 2 �

r

h

: f

r

h

(�) = zgj 2 N

0

assigning the number of pre-images to points in the 
omplex plane. Sin
e f

h

is 
on-

tinuous, � is upper semi-
ontinuous. Sin
e f

h

is regular, � is lower semi-
ontinuous at

all points not 
ontained in the image f

r

h

(�

r

h

) of the boundary. From the results above

it follows immediately that �(


2

(0)) = 1. Further, by de�nition of r, the 
urves 


r

1

or




r

3

do not interse
t f

h

(�

h

). Hen
e, � is 
ontinuous and equal to one on f

h

(�

h

).

Fourth, we show that f is inje
tive. From

f(s; t; j) =

(

w

j

n

f

h

(s; t) if s � t

w

j

n

f

h

(t; s) if t � s

it follows

arg f(s; t; j) 2

(

[0; �=n℄ + 2j�=n if s � t

[��=n; 0℄ + 2j�=n if t � s:

For (s; t; j) 6= (s

0

; t

0

; j

0

), equal angles and moduli are only possible if j

0

= j + 1 and

(s; t) = (t

0

; s

0

) 2 �

4

�

h

, or j

0

= j and (s; t) = (s

0

; t

0

) 2 �

2

�

h

, but these points are

identi�ed in S

0

. �

Typi
ally, the 
he
k for interse
tions of the 
urve 


1

with the non-positive real line is

easy to a

omplish sin
e, in 
ase of inje
tivity, the angle of 


1

varies between 0 and

�=n, so that the two sets are not even 
lose. We demonstrate the pro
edure in the

next se
tion at hand of the Doo-Sabin algorithm.
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Figure 9: Mesh re�nement of the Doo-Sabin algorithm.

Bibliographi
 Notes.

� The relevan
e of the Dis
rete Fourier Transform for the analysis of subdivision

matri
es was already re
ognized in [24℄.

� Symmetry properties of the 
hara
teristi
 map and their relation to its Fourier

index are dis
ussed in [63℄.

� In [99℄, an alternate 
riterion for inje
tivity of a regular 
hara
teristi
 map is

given. It is based on the winding number of its boundary 
urve.

7 An example: The Doo-Sabin algorithm

The Doo-Sabin algorithm generalizes subdivision (uniform knot insertion) of biquadrati


tensor-produ
t B-splines. For ea
h n-gon of the original mesh, a new, smaller n-gon

is 
reated and 
onne
ted with its neighbors as depi
ted in Figure 9. Figure 10 shows

the mask for generating a new n-gon from an old one for the regular 
ase n = 4 (left)

and the general 
ase (middle). The standard weights suggested by Doo and Sabin

in [24℄ are

a

j

:=

Æ

j;0

4

+

3 + 2 
os(2�j=n)

4n

: (17)

Ea
h of the n segments x

m

j

; j 2 Z

n

, of themth spline ring generated by the Doo-Sabin

algorithm 
onsists of three biquadrati
 B-spline pat
hes. A

ordingly, we 
an split

the 
ontrol points Q

m

into n groups of nine 
ontrol points, ea
h, ordered as shown in

Figure 10 (right). Sin
e the s
heme is symmetri
, we 
an apply DFT as in Se
tion 6

to obtain

^

A

k

=

0

�

â

k

0 0

^

A

1;0

k

^

A

1;1

k

0

^

A

2;0

k

^

A

2;1

k

0

1

A

;

where â

k

=

P

j

w

�jk

n

a

j

are the entries of the DFT of the ve
tor [a

0

; : : : ; a

n�1

℄ of inner

weights. The sub-matri
es

^

A

i;j

k

do not depend on the spe
ial 
hoi
e of weights or on

the index k. Rather, they 
ontain information on the subdivision rules in the tensor
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Figure 10: Regular re�nement rule (left), general re�nement rule (middle), and label-

ing of the 
ontrol points (right) of the Doo-Sabin algorithm.

produ
t 
ase. For instan
e,

^

A

1;1

k

=

1

16

2

4

3 0 w

3 1 3

w 0 3

3

5

; w := 16w

k

n

:

The weights a

j

are assumed to sum to one, i.e., â

0

= 1, and to be symmetri
 a

ording

to a

j

= a

n�j

, i.e., â

k

= â

n�k

is real. The eigenvalues of

^

A

k

are â

k

; 1=4; 1=8; 1=16; 0 so

that the subdominant eigenvalue must be � := â

1

= â

n�1

2 (1=4; 1). Using a 
omputer

algebra system, one 
an determine the 
omplex eigenve
tor v̂ of

^

A

1


orresponding to

� expli
itly:

v̂ =

2

6

6

6

6

6

6

6

6

6

4

2�(16��1)(8��1)(4��1)

6�(16��1)(6��1+2w

n

�)

18�(32�

2

�1+4


n

�)

6�(16��1)(6��1+2w

n

�)

(16��1)

�

12�

2

+18��3+w

n

(4�

2

+12��1)

�

6�

�

32�

2

+64��12+


n

(20�+1)�is

n

(16��1)

�

64�

3

+512�

2

�46��8+36


n

�(2�+1)

6�

�

32�

2

+64��12+


n

(20�+1)+is

n

(16��1)

�

(16��1)

�

12�

2

+18��3+w

n

(4�

2

+12��1)

�

3

7

7

7

7

7

7

7

7

7

5

;

where w

n

= 


n

+is

n

. In parti
ular, for the original Doo-Sabin weights in (17), we have

� = 1=2 and, rearranging the entries of v̂ in a (3� 3)-matrix a

ording to Figure 10,

right,

2

4

v̂

5

v̂

6

v̂

7

v̂

2

v̂

3

v̂

8

v̂

1

v̂

4

v̂

9

3

5

= 3

2

4

21 + 14w

n

28 + 2w

n

+ 9w

n

35 + 12


n

14 + 7w

n

21 + 6


n

28 + 2w

n

+ 9w

n

7 14 + 7w

n

21 + 14w

n

3

5

:

By elementary 
omputations, one 
an determine the Bernstein-B�ezier-form of all three

biquadrati
 pat
hes forming the �rst segment of the 
omplex 
hara
teristi
 map f .

For � 2 (1=4; 1), the minimum of the real parts of all Bernstein-B�ezier 
oeÆ
ients is

positive. Hen
e, by the 
onvex hull property, the 
ondition 


1

(U) \ R

�

0

= ; is always

satis�ed. In parti
ular, for � = 1=2, we obtain the minimal value minRe 


1

(U) =

27



Re f(0; 1; 0) = 21 + 21


n

> 0. It remains to show regularity of the 
hara
teristi


map. The Ja
obian determinant

�

Df 
onsists of three bi
ubi
 pat
hes, whi
h 
an also

be expressed expli
itly in Bernstein-B�ezier-form. A 
areful analysis shows that all


oeÆ
ients are positive if

p(�) := 128�

2

(1� �)� 7�� 2 + 9�


n

> 0:

Again by the 
onvex hull property, we 
on
lude

�

Df > 0 if p(�) > 0. In parti
ular,

for � = 1=2, we obtain p(1=2) = 3=2 (7 + 3


n

) > 0 proving that the Doo-Sabin in

its standard form is a C

1

1

-s
heme. Surprisingly, there is an upper bound �

sup

(n) with

p(�) < 0 for 1 > � > �

sup

(n). For su
h �,

�

Df a
tually reveals a 
hange of sign, and

the 
orresponding algorithm 
annot be C

1

1

. Fortunately, the upper bounds are quite


lose to 1, so that they do not impose severe restri
tions when designing variants on

the standard Doo-Sabin algorithm. More pre
isely, the lowest upper bound o

urs for

n = 3,

�

sup

(n) � �

sup

(3) =

p

187

24


os

 

1

3

ar
tan

 

27

p

5563

1576

!!

+

1

3

� 0:8773:

The asymptoti
 behavior for n!1 is

�

sup

(n)

:

= 1�

�

2

7n

2

:

Summarizing, we have shown the following:

Theorem 7.1 Let â

0

; : : : ; â

n�1

be the Fourier 
oeÆ
ients of a symmetri
 set of weights

for the generalized Doo-Sabin algorithm. Then a standard s
heme is obtained if

� := â

1

= â

n�1

satis�es the 
ondition

1 > � > maxf1=4; jâ

2

j; : : : ; jâ

n�2

jg:

The s
heme is C

k

1

if p(�) > 0, and not C

k

1

if p(�) < 0. In parti
ular, the s
heme is

C

k

1

when 
hoosing the standard weights.

Bibliographi
 Notes.

� Details of the analysis of the Doo-Sabin algorithms 
an be found in [63℄. In the

same paper, also the Catmull-Clark algorithm and possible generalizations are

analyzed.

� Today, all relevant algorithms have been thoroughly analyzed. For instan
e,

simplest subdivision in [62℄, Loop's s
heme in [93℄,

p

3-subdivision in [45℄, and

the butter
y s
heme in [100℄.

� A quite universal algorithm for numeri
al veri�
ation has been provided in [99℄.
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Figure 11: Chara
teristi
 map for n = 3 and subdominant eigenvalue (left) � = 0:5

and (right) � = 0:95.

8 Conditions for C

k

2

-s
hemes

As we have shown, C

k

1

-subdivision s
hemes are well understood and relatively easy

to 
onstru
t. By 
ontrast, the development of s
hemes providing regularity of higher

order is subje
t to very restri
tive 
onditions on the eigenvalues and eigen-fun
tions.

In this se
tion, we derive these 
onditions and dis
uss some of their 
onsequen
es.

While the 
entral point x




and the 
entral normal n




are determined by the eigen-


oeÆ
ients p

0

and p

1

; p

2

related to the dominant and subdominant eigenvalue �

0

= 1

and �

1

= �

2

= �, 
urvature properties rely on the next smaller eigenvalue and the


orresponding eigenfun
tions. Let us assume that (A;G) is a standard C

2

2

-s
heme

with eigenvalues

1 > � > � := j�

3

j = � � � = j�

�q

j > j�

�q+1

j

and, for the sake of simpli
ity, a full set of eigenve
tors v

3

; : : : ; v

�q

to the eigenvalues

with modulus �. The general 
ase of non-trivial Jordan blo
ks is slightly more 
om-

pli
ated from a purely te
hni
al point of view without providing further insight. Then

the se
ond order expansion of x

m

reads

x

m

= GV J

m

V

�1

Q = FJ

m

P

:

= x




+ �

m

 [p

1

;p

2

℄ + �

m

r

m

(18)

with

r

m

:=

�q

X

q=3

a

m

q

f

q

p

q

; a

q

:= �

q

=�: (19)

The sequen
es a

m

q

have modulus 1 and a

ount for the os
illating behavior of �

m

q

in

the 
ase when �

q

is negative or 
omplex.

For the rest of this se
tion, the initial data are always assumed to be generi
. Then,

by de�nition of a C

2

2

-s
heme, the 
entral height fun
tion h is twi
e di�erentiable at

the origin. With H the symmetri
 (2 � 2)-matrix of se
ond derivatives of h at the

origin, also 
alled the 
entral Hessian, we obtain, using (4), the Taylor expansion

h(�) =

1

2

�H�

T

+ o(j�j

2

):
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The mth spline ring of the proje
tion � a

ording to (2) is

�

m

(s) = (x

m

(s)� x




) �T




:

= �

m

 L; L := [p

1

;p

2

℄ �T




; (20)

where the (2 � 2)-matrix L has full rank. Sin
e [p

1

;p

2

℄ � n




= 0, the 
entral height

fun
tion a

ording to (3) is h(�

m

(s))

:

= �

m

r

m

(s) � n




. Hen
e, after dividing (20) by

�

2m

, we obtain the 
ondition

%

m

r

m

� n




=  LHL

T

 

T

+ o(1 + %

m

); % := �=�

2

; (21)

whi
h has to be satis�ed for an appropriate 
hoi
e ofH. By Lemma 4.1, the eigenfun
-

tions f

q

are non-zero implying that also r

m

�n




is in general non-zero. We distinguish

three 
ases for the 
ru
ial ratio %:

� If % < 1, then H = 0 follows independent of the 
hosen data. This 
ase of an

enfor
ed 
at spot at the 
enter will be referred to as trivial 
urvature 
ontinuity.

� If % = 1, then the right hand side of (21) 
onverges to a 
onstant, and a simple

argument shows that r

m

� n





an be 
onstant only if a

3

= � � � = a

�q

= 1.

� If % > 1, then the left hand side of (21) diverges faster than the right hand side,

and asymptoti
 equality of the sequen
es is impossible.

Together, it follows that non-trivial 
urvature 
ontinuity is possible, although by no

means guaranteed, only if

�

2

= � = �

3

= � � � = �

�q

:

We 
all � the subsubdominant eigenvalue, and elaborate on that 
ase now. Passing to

the limit, (21) redu
es to

�q

X

q=3

f

q

p

q

=  LHL

T

 

T

; p

q

:= p

q

� n




: (22)

One 
an easily show that for any set of 
oeÆ
ients p

3

; : : : ; p

�q

and arbitrary " > 0

there exist generi
 initial data Q

"

su
h that the 
orresponding 
oeÆ
ients p

"

3

; : : : ; p

"

�q

di�er by less than ". By 
ontinuity, we 
on
lude that (22) holds for any 
hoi
e of


oeÆ
ients. In parti
ular, for any ` = 3; : : : ; �q, we 
an set p

q

:= Æ

q;`

to obtain

f

`

=  LHL

T

 

T

= af

2

1

+ bf

2

2

+ 
f

1

f

2

for 
ertain 
onstants a; b; 
. This means that all subsubdominant eigenfun
tions must

lie in the spa
e of homogeneous quadrati
 polynomials in the two subdominant eigen-

fun
tions. We summarize our �ndings as follows:

Theorem 8.1 Let (A;G) be a standard C

2

2

-s
heme whi
h is non-trivial in the sense

that the 
entral Hessian does not ne
essarily vanish. Then the subsubdominant eigen-

value � satis�es

�

2

= � = �

3

= � � � = �

�q

> j�

�q+1

j;

and the subsubdominant eigenfun
tions f

3

; : : : ; f

�q

satisfy

f

`

2 spanff

2

1

; f

2

2

; f

1

f

2

g: (23)
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It is not too diÆ
ult to 
onstru
t subdivision s
hemes that have the desirable distri-

bution of eigenvalues. By 
ontrast, the 
onditions on the eigenfun
tions are extremely

restri
tive and the major obsta
le to remove when trying to 
onstru
t C

k

2

-s
hemes.

Let us 
onsider an impli
ation on the important spe
ial 
ase of pie
ewise polynomial

subdivision surfa
es. We de�ne the bi-degree deg f of a spline ring f 2 C

k

(S

0

;R; G)

as the maximal bi-degree of the polynomial pie
es of f . For ve
tor-valued spline rings,

the bi-degree is the maximum over all 
omponents.

Theorem 8.2 Let (A;G) be a standard C

k

2

-s
heme, and assume that the generating

system 
onsists of pie
ewise polynomials. If the s
heme is 
exible in the sense that

there exist generi
 initial data su
h that the 
orresponding subdivision surfa
e has

positive Gaussian 
urvature at the 
enter, then either n = 4 or

degG � 2k + 2: (24)

Proof First, we show deg > k if n 6= 4. Suppose that deg � k. Then pat
hes

 

j

of the 
hara
teristi
 map are not pie
ewise polynomial fun
tions, but in fa
t single

polynomials, whi
h we now 
onsider to be extended from �

0

to all of R

2

. By means

of the 
onditions (6), ea
h pat
h  

j+1

is 
ompletely determined by its prede
essor  

j

,

and we have

 

j+1

(s; t) =  

j

(�t; s); j 2 Z

n

:

Repeated use of this equation yields  

j+4

=  

j

. For the regular 
ase n = 4 this is just

�ne, but otherwise it implies that the 
hara
teristi
 map is not inje
tive 
ontradi
ting

De�nition 5.5.

Positive Gaussian 
urvature means that detH > 0. Hen
e, H is positive or nega-

tive de�nite. For generi
 initial data, L has full rank implying that LHL

T

is positive

or negative de�nite as well. We easily 
on
lude for the degree of the s
heme

degG = deg( LHL

T

 

T

) = 2 deg � 2k + 2

sin
e 
an
ellation of the leading 
oeÆ
ients is impossible. �

Sin
e k � 2 for a s
heme generating 
urvature 
ontinuous surfa
es, we see that the

simplest C

k

2

-s
heme has degree 6. Further, no s
heme generalizing uniform B-spline

subdivision, like the Catmull-Clark-s
heme, 
omes into question be
ause here degG =

k + 1 < 2k + 2.

Bibliographi
 Notes.

� The 
ase � < �

2

, whi
h yields vanishing prin
ipal 
urvatures at the 
enter, is

dis
ussed in [68℄

� The importan
e of � = �

2

for C

k

2

has already been observed in [24℄.

� Ne
essity of (23) is proven in [74℄, and in [67℄, it 
ould be shown that it is also

suÆ
ient. In the same paper, similar 
onditions for C

k

r

-s
hemes are spe
i�ed.
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� In [74℄, it is pointed out that the degree estimate (24) relies on the pie
ewise

polynomial stru
ture of the surfa
es rather than on properties of the subdivision

algorithm. Thus, it applies even to non-stationary or non-linear s
hemes as long

as they live up to 
ertain symmetry properties.

� Generalizations of the degree estimate based on the 
on
ept of 
exibility 
an be

found in [69℄.

� C

k

2

-algorithms, and even general C

k

r

-algorithms are 
onstru
ted in [66,76℄. How-

ever, they are less elegant than the popular C

k

1

-s
hemes and rarely used in pra
-

ti
e.

9 Curvature analysis

In this se
tion we dis
uss the limit behavior of 
urvature at the 
enter. The results

are useful to understand 
ertain artifa
ts in subdivision surfa
es, and provide insight

for the 
onstru
tion of ameliorated s
hemes.

To 
onveniently analyze a subdivision surfa
e x with eigen
oeÆ
ients P = V

�1

Q,

we introdu
e a lo
al 
oordinate system in R

3

su
h that the 
enter x




=: 0 is the origin,

and the unit ve
tors are

e

1

:= p

1

=jp

1

j; e

2

:= n




� e

1

; e

3

:= n




:

It is 
hosen su
h that the 
entral tangent plane is spanned by e

1

and e

2

. That is, the

matrix T




a

ording to (2) is given by T




:= [e

1

; e

2

℄. As in Se
tion 8, we assume

1 > � > � := j�

3

j = � � � = j�

�q

j > j�

�q+1

j

and a full set of eigenve
tors v

3

; : : : ; v

�q

. The se
ond order expansion of the spline rings

a

ording to (18) reads,

x

m

:

= �

m

 [p

1

;p

2

℄ + �

m

r

m

where r

m

is de�ned by (19). With � the angle between p

1

and p

2

, the �rst two


omponents of x

m

are asymptoti
ally given by

x

m

�T




:

= �

m

 L; L := [p

1

;p

2

℄ �T




=

�

jp

1

j 0

jp

2

j 
os� jp

2

j sin�

�

; (25)

while the third 
omponent is

x � n




:

= �

m

r

m

� n




:

Assume that an eigenvalue �

q

0

with j�

q

0

j = � is not positive. Then the sign of r

m

�n




is

in
essantly 
hanging as m!1 if p

q

0

�n




is large 
ompared with the other 
oeÆ
ients

p

q

� n




; q 2 f3; : : : ; �qgnfq

0

g. S
hemes revealing su
h an os
illating behavior should be

dis
arded, so that we fo
us now on the 
ase of 
oin
iding positive subsubdominant

eigenvalues.
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De�nition 9.1 A standard C

k

1

-s
heme with k � 2 and eigenvalues

� > � = �

3

= � � � = �

�q

> j�

�q+1

j (26)

is 
alled a (�; �)-s
heme.

For a (�; �)-s
heme, the real-valued spline rings r

m

�n




are independent of m, and we

de�ne

h




:= r

m

� n




=

�q

X

q=3

f

q

p

q

� n




2 C

k

(S

0

;R): (27)

Together, we �nd the expansion

x

m

:

= [�

m

 L; �

m

h




℄ = [ L; h




℄ diag(�

m

; �

m

; �

m

): (28)

This means that, asymptoti
ally, the spline rings x

m

are just s
aled 
opies of the

surfa
e [ L; h




℄. For the forth
oming investigation of 
urvature and shape properties,

this surfa
e plays a most important role.

De�nition 9.2 The 
entral surfa
e z





orresponding to the spline x = BQ generated

by a (�; �)-s
heme is de�ned by

z




:= [ 




; h




℄ 2 C

k

(S

0

;R

3

);  




:=  L;

where the (2 � 2)-matrix L and the real-valued spline ring h




are given by (25) and

(27), respe
tively.

It is important to noti
e that unlike the 
hara
teristi
 map, the 
entral surfa
e depends

on the initial data. Using �

1

:= �

s

; �

2

:= �

t

, and the di�erential operators

D :=

�

�

1

�

2

�

; D

i;j

:=

�

D

�

i

�

j

�

;

the fundamental forms of a subdivision surfa
e 
an be expressed 
onveniently.

Theorem 9.3 For a (�; �)-s
heme and generi
 initial data, the �rst fundamental

form of the spline ring x

m

and its inverse are given by

I

m

:

= �

2m

I; (I

m

)

�1

:

= �

�2m

I

�1

; I := D 




�D 




: (29)

With I




and II




the �rst and se
ond fundamental form of the 
entral surfa
e z




, the

se
ond fundamental form of x

m

is

II

m

:

= �

m

II; II :=

r

det I




det I

II




: (30)
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Proof The �rst formula follows immediately from I

m

= Dx

m

� Dx

m

, Dx

m

:

=

�

m

D 




T




, and T




�T




= Id. To 
ompute the inverse, we note that

det I = (

�

D 




)

2

= (

�

D )

2

(detL)

2

= (

�

D )

2

jp

1

� p

2

j

2

:

For generi
 initial data, the 
ross produ
t does not vanish, while (

�

D )

2

� 
 > 0

for some 
onstant 
 by regularity of  , 
ompa
tness of the domain, and 
ontinuity of

�

D . Hen
e,

(det I

m

)

�1

:

= �

�4m

(det I)

�1

and the formula for (I

m

)

�1

follows easily.

From (28), we 
on
lude

detD

i;j

x

m

:

= �

2m

�

m

detD

i;j

z




;

and (30) is obtained by 
omparing the de�nitions

II

m

i;j

=

detD

i;j

x

m

p

det I

m

; II




i;j

=

detD

i;j

z




p

det I




:

�

It is important to noti
e that the se
ond fundamental form of x

m

and the 
entral

surfa
e z




di�er only be a s
alar fa
tor. For that reason, their shape properties

are 
losely related. With the help of the fundamental forms we 
an 
ompute the

Weingarten map, whi
h in turn determines the asymptoti
 behavior of the prin
ipal


urvatures and dire
tions. We re
all that the Weingarten map (also known as the

shape operator) is de�ned as the di�erential of the normal map. Its eigenvalues are the

prin
ipal 
urvatures, while its left eigenve
tors in the parameter domain are mapped

to the prin
ipal dire
tions by the Ja
obian of the surfa
e parametrization.

Theorem 9.4 For a (�; �)-s
heme and generi
 initial data, the Weingarten mapW

m

of x

m

is

W

m

:

= %

m

W; W := II I

�1

; % :=

�

�

2

: (31)

Let Q be the matrix of normalized left eigenve
tors and K the diagonal matrix of

eigenvalues of W ,

W = Q

�1

KQ: (32)

The diagonal matrix of prin
ipal 
urvatures K

m

:= diag(�

m

1

; �

m

2

) of x

m

is given by

K

m

:

= %

m

K; (33)

while the prin
ipal dire
tions P

m

:= [p

m

1

;p

m

2

℄ 
onverge to the e

1

e

2

-plane:

P

m

:

= P; P := QD 




T




: (34)
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Proof With respe
t to the parameter domain, the Weingarten map is given by

W

m

:= II

m

(I

m

)

�1

, and (31) follows from (29) and (30). The prin
ipal 
urvatures

�

m

1

; �

m

2

are the eigenvalues ofW

m

, and that implies (33). The matrixQ

m

of normalized

left eigenve
tors of W

m


onverges a

ording to Q

m

:

= Q. Further, by (28), Dx

m

:

=

�

m

D 




T




. Hen
e, using appropriate s
aling, the prin
ipal dire
tions of x

m

are P

m

=

�

�m

QDx

m

:

= QD T




, as stated. �

As in the pre
eding se
tion, we see that the ratio % plays a 
entral role for the limit

behavior of 
urvature.

Theorem 9.5 For a (�; �)-s
heme and generi
 initial data, the prin
ipal 
urvatures

near the 
enter behave a

ording to the ratio %.

� If % < 1, then both prin
ipal 
urvatures 
onverge to 0.

� If % = 1, then both prin
ipal 
urvatures are bounded and at least one of them

does not 
onverge to 0.

� If % > 1, then at least one prin
ipal 
urvature diverges.

Proof In view of (33), it remains to show that K 6= 0 for generi
 initial data. If

K = 0, thenW = 0 and II = II




= 0. The se
ond fundamental form II




of z




vanishes

only if z




is planar. This is the 
ase if and only if h




and  are linearly dependent,

i.e., if there are 
onstants a; b; 
 2 R whi
h do not vanish simultaneously, su
h that

ah




+ [b; 
℄ = 0:

Let s = (s; t; j) be an arbitrary point on the outer boundary of the domain S

0

,

i.e., maxfs; tg = 2. Then, by (12),  (2

�1

s) = � (s). Analogously, sin
e h




is an

eigenfun
tion to �, one 
an show h




(2

�1

s) = �h




(s). Hen
e,

ah




(s) + (s)[b; 
℄ = 0

a�h




(s) + � (s)[b; 
℄ = 0:

This implies  (s)[b; 
℄ = 0. Let us assume that [b; 
℄ = [0; 0℄. Then a 6= 0 and

h




= 0. By Lemma 4.1, the eigenfun
tions f

3

; : : : ; f

�q

to � are linearly independent so

that all 
oeÆ
ients p

q

� n




in the de�nition (27) of h




must vanish. This 
ontradi
ts

the assumption that the initial data are generi
. Now, we assume [b; 
℄ 6= [0; 0℄. In

this 
ase, all outer boundary points  (s) lie on the straight line xb + y
 = 0. Sin
e

 (2

�1

s) = � (s), also all inner boundary points lie on the same straight line. Sin
e

 is regular, the boundary of the image is a subset of the image of the boundary,

whi
h is part of a straight line. Hen
e, the 
omplete image of  must be part of a

straight line; but this is impossible for a regular map. �
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In the last se
tion, we have derived a ne
essary 
ondition for C

k

2

-s
hemes. Now, we

are able to show that this 
ondition is also suÆ
ient.

Theorem 9.6 A (�; �)-s
heme is C

k

2

if and only if � = �

2

and the subsubdominant

eigenfun
tions f

3

; : : : ; f

�q

satisfy

f

`

2 spanff

2

1

; f

2

2

; f

1

f

2

g:

Proof In Theorem 8.1, we have shown that the given 
onditions are ne
essary. Now,

let us assume that they are satis�ed. Then there exists a symmetri
 (2� 2)-matrix S

with 
onstant entries su
h that

h




=

1

2

 




S � 




:

It is easily veri�ed by inspe
tion that

I = D 




�D 




; II = D 




S �D 




:

Hen
e, by (31), W = II I

�1

= D 




S (D 




)

�1

. That is, the eigenvalues of S and W


oin
ide and are 
onstant. More pre
isely, if S = RKR

�1

for a diagonal matrix K,

then

W = Q

�1

KQ; Q := (D R)

�1

:

Comparison with (32) shows that the prin
ipal 
urvatures 
onverge a

ording toK

m

:

=

K. By (34), also the prin
ipal dire
tions 
onverge to a 
onstant limit:

P

m

:

= QD T




= R

�1

T




:

�

We 
on
lude our dis
ussion of the limit behavior of 
urvature by spe
ifying limit ex-

ponents for L

p

-integrability. More pre
isely, for 1 � p � 1, we say that a subdivision

surfa
e is H

k

2;p

, if it is C

k

1

, and if the prin
ipal 
urvatures are L

p

-integrable when

restri
ted to a suÆ
iently small neighborhood of the 
enter.

Theorem 9.7 For a (�; �)-s
heme and generi
 initial data, the generated subdivision

surfa
e is

� H

k

2;1

, if % � 1.

� H

k

2;p

for all p < �2 log�= log %, if % > 1.

In parti
ular, for any %, the surfa
e is H

k

2;2

.
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Proof For % � 1, the prin
ipal 
urvatures are bounded, as stated. For % > 1, we


hoose m

0

so large that I

m

is regular for all m � m

0

. Then, with the surfa
e element

dx

m

=

p

det I

m

dsdt

:

= �

2m

p

det Idsdt, the surfa
e integral of the pth power of the

prin
ipal 
urvatures of the mth spline ring is

Z

x

m

jK

m

j

p

dx

m

:

= %

mp

�

2m

�

K;

�

K :=

X

j2Z

n

Z

�

0

K

j

p

det I

j

dsdt;

where K

j

and I

j

denote the jth segment of K and I, respe
tively. Summing over all

m � m

0

, we obtain

1

X

m=m

0

Z

x

m

jK

m

j

p

dx

m

:

=

(%

p

�

2

)

m

0

�

K

1� %

p

�

2

;

whi
h is �nite for p < �2 log�= log %. Sin
e % < �

�1

, the upper bound is always � 2.

�
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lusion

Subdivision surfa
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es. Their distin
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hara
ter

reveals itself in the neighborhood of extraordinary points where n 6= 4 quadrilateral
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pat
hes join. This paper summarizes the stru
ture of subdivision surfa
es near ex-

traordinary points. It adds two new building blo
ks to the foundations by 
larifying

the role of linearly dependent generating systems and simplifying the test for inje
-
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