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Abstra
t

Approximate foveated images 
an be obtained from uniform images via

the approximation of some integral operators. In this paper it is shown that

these operators belong to a well studied operator algebra, and the problem

of restoration of the approximate uniform pre-images is 
onsidered. Under


ommon assumptions on smoothness of the integral operator kernels, ne
-

essary and suÆ
ient 
onditions are established for su
h pro
edure to be

feasible.

1 Introdu
tion

Foveated images are used in image pro
essing to redu
e information in the visual

�eld while preserving resolution at a given point { the fovea. Te
hni
ally, foveated

images 
an be obtained from uniform images in di�erent way, 
f. [2, 3, 7, 8, 10℄.

One of the approa
hes proposed is based on the use of integral operators

(T')(x) =

Z

+1

�1

k(t; x)'(t) dt (1)

with spe
ial kernels k, see [3℄. The fun
tion ' in (1) is the initial signal (uniform

image) and T' represents its foveated image. To implement this method, Chang,

Mallat and Yap [3℄ employed a wavelet approximation '

n

to the signal ' with

subsequent approximation of T'

n

. More pre
isely, their approa
h 
an be 
har-

a
terized as follows. Let g be a fun
tion on the real line R, and let ! = !


; �

(x),

x 2 R denote the fun
tion

!


; �

(x) := �jx� 
j; 
 2 R; � 2 R

+

n f0g:

For a given positive number m, one 
onsiders the linear operator Q

m

de�ned on

L

2

(R) by

(Q

m

f)(x) :=

�

f(x) if x 2 [�m; m℄

0 otherwise.
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Moreover, let P

n

denote the orthogonal proje
tion onto a subspa
e of L

2

(R)

generated by a wavelet basis. In [3℄, the following approximate foveated image

 

m

n

of the signal ' is 
onsidered:

 

m

n

(x) = (P

n

Q

m

TQ

m

P

n

')(x) (2)

where T is the operator (1) with kernel

k(x; t) :=

1

!


; �

(x)

g

�

t� x

!


; �

(x)

�

: (3)

In this setting, the parameter 
 represents the point of highest resolution and is


alled the fovea. The parameter � determines the speed at whi
h the resolution

falls o� when the distan
e from the fovea grows, 
f. [3℄.

Note that the operators P

n

Q

m

TQ

m

P

n

, n 2 N , 
an be viewed as Galerkin

approximations for the operator Q

m

TQ

m

. Sequen
es of Galerkin approximations

have been studied in 
onne
tion with di�erent problems of analysis and mathe-

mati
al physi
s. If the kernel k has the form (3), then the 
orresponding operator

T 
an be represented in a spe
ial way. Namely, if U




, 
 2 R, denotes the shift

operator

(U




f)(x) = f(x� 
); x 2 R;

then T 
an be rewritten as

T = U




T

g; �

U

�


(4)

where T

g; �

is the integral operator (1) with the fovea 
 = 0, i.e.

(T

g; �

f)(x) =

Z

+1

�1

f(t)

1

�jxj

g

�

t� x

�jxj

�

dt: (5)

Therefore, without loss of generality, we 
an restri
t our attention to the operator

T

g; �

only. Moreover, as we will see later, the operator T

g; �

belongs to a 
lass of

integral operators whi
h is quite well understood. This enables us to examine

the properties of the foveated image T' in more detail.

In the present paper we 
onsider the following problems. Assume that an

approximate foveated image  

m

n

is known. Is it possible to re
onstru
t its ap-

proximate uniform pre-image Q

m

P

n

'? It is obvious that, in general, the answer

to this question is negative. However, one 
an try to �nd 
onditions whi
h would

make su
h a re
onstru
tion feasible. Another relevant problem is that of the

quality of the approximate uniform images one obtains. More pre
isely, if '

n

,

n 2 N is an approximation for ', then what 
an be said about the errors '�'

n

,

at least for large n? In the present paper these problems are studied for the

Galerkin approximation. For the sake of simpli
ity, pie
ewise 
onstant splines

are used to approximate the uniform and foveated images, although other ap-

proximation spa
es 
an be used, too. Approximations based on splines of higher
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order are brie
y dis
ussed in the 
on
luding part of the paper. It is also worth

mentioning that the Galerkin s
heme 
an be repla
ed by other approximation

pro
edures, for example by 
ollo
ation, quadrature or qualo
ation, whi
h are

often more 
onvenient from a 
omputational point of view.

Throughout this paper, we let p and � be real parameters with 1 < p < 1

and 0 < � + 1=p < 1 and, given an interval I � R, we write L

p

(I; �) for the

Bana
h spa
e of all Lebesgue measurable fun
tions f : I ! C su
h that

kfk

p

= kfk

p

p;�; I

:=

Z

I

jf(t)j

p

jtj

�p

dt <1: (6)

As usual, the Bana
h dual L

p

(I; �)

�

of L

p

(I; �) will be identi�ed with L

q

(I; ��)

where 1=p+ 1=q = 1 with respe
t to the sesqui-linear form

hf; gi :=

Z

I

f(t)g(t) dt:

Given a linear spa
e X and a positive integer r, we denote by X

r

the linear spa
e

of 
olumn ve
tors of length r with 
omponents from X, and we let X

r�r

refer to

the linear spa
e of r � r matri
es with entries from X. Further, B(X) denotes

the Bana
h algebra of all bounded linear operators on the Bana
h spa
e X, and

imA stands for the range of the operator A 2 B(X).

2 Integral Operators of Mellin type

In this se
tion, we represent the operator T

g; �

de�ned by (5) in a spe
ial form

whi
h will prove to be helpful in what follows. In [3℄, T

g; �

has been studied on

the spa
e L

2

(R), whereas we will allow this operator to a
t on the weighted spa
e

L

p

(R; �).

It is 
onvenient in what follows to identify the spa
e L

p

(R; �) with the spa
e

L

p

2

(R

+

; �) whi
h 
onsists of all pairs (f

1

; f

2

)

T

with f

1

; f

2

2 L

p

(R

+

; �). If we

provide the spa
e L

p

2

(R

+

; �) with the norm

k(f

1

; f

2

)

T

k

p

:= kf

1

k

p

p; �;R

+

+ kf

2

k

p

p;�;R

+

;

then the mapping

� : L

p

(R; �)! L

p

2

(R

+

; �); �(f) : s 7! (f(s); f(�s))

T

(7)

be
omes an isometri
 bije
tion the inverse of whi
h a
ts via

(�

�1

[(f

1

; f

2

)

T

℄)(s) =

(

f

1

(s) if s 2 R

+

f

2

(�s) if s 2 R

�

:

(8)

3



Thus, the mapping

 

�

: B(L

p

(R; �))! B(L

p

2

(R

+

; �)); A 7! �A�

�1

is an isometri
 algebra isomorphism and, therefore, the properties of the operator

 

�

(A) 
ompletely re
e
t the 
orresponding properties of A and vi
e versa. There

are, however, some instan
es where the operator  

�

(A) has a ni
er stru
ture than

the operator A. In parti
ular, it will turn out in a moment that the entries of the

operator  

�

(A

g; �

) are Mellin 
onvolution operators, a 
lass of operators whi
h is

de�ned as follows.

Let M and M

�1

denote the dire
t and inverse Mellin transform, respe
tively,

i.e.

(Mf)(z) =

Z

+1

0

x

1=p+�+1�iz

f(x) dx; z 2 R

and

(M

�1

f)(x) =

1

2�

Z

+1

0

x

�1=p��+iz

f(z) dz; x 2 R

+

:

It is well known (see, e.g., [5℄, pp. 47-48) that if b is an L

p

(R)-Fourier multiplier,

then

M(b) :=MbM

�1

(9)

de�nes a bounded linear operator M(b) on L

p

(R

+

; �), the so-
alled Mellin op-

erator with symbol b. In 
ase the kernel fun
tion k := M

�1

b belongs to L

1

(R)

with respe
t to the measure ds=s, the Mellin operator (9) 
an be represented as

the integral operator

(M(b)f)(s) =

Z

+1

0

k(s=�)f(�)

d�

�

; s 2 R

+

: (10)

Proposition 2.1 Let the operator T

g; �

2 B(L

p

(R; �)) be de�ned by (5). Then

 

�

(T

g; �

) is the blo
k Mellin operator M(B

g; �

) with symbol B

g; �

= M

�1

G

g; �

where

G

g; �

(t) =

1

�t

0

B

�

g

�

1

�

�

1

t

� 1

�

�

g

�

1

�

�

�

1

t

� 1

�

�

g

�

1

�

�

1

t

+ 1

�

�

g

�

1

�

�

�

1

t

+ 1

�

�

1

C

A

; t 2 R: (11)

Proof. The operator T

g; �

�

�1

a
ts as follows:

(T

g; �

�

�1

[(f

1

; f

2

)

T

℄)(s)

=

1

�

Z

+1

0

f

1

(t)

t

jsj

g

�

t� s

�jsj

�

dt

t

+

1

�

Z

0

�1

f

2

(�t)

t

jsj

g

�

t� s

�jsj

�

dt

t

: (12)
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The se
ond term on the right-hand side of this equality 
an be rewritten as

1

�

Z

+1

0

f

2

(u)

u

jsj

g

�

�u� s

�jsj

�

du

u

:

Hen
e, by (7),

�

�

1

�

Z

0

�1

f

2

(�t)

�

t

j � j

�

g

�

t� �

�j � j

�

dt

t

�

(s)

=

0

B

B

�

1

�

Z

+1

0

f

2

(u)

�

u

s

�

g

�

1

�

�

�

u

s

� 1

�

�

du

u

1

�

Z

+1

0

f

2

(u)

�

u

s

�

g

�

1

�

�

�

u

s

+ 1

�

�

du

u

1

C

C

A

; s 2 R

+

: (13)

Performing analogous transformations for the �rst term on the right-hand side of

(12) we get

�T

g; �

�

�1

=

 

T

11

T

12

T

21

T

22

!

(14)

where ea
h of the operators T

rl

is a Mellin operator of the form (10) with a kernel

de�ned by the 
orresponding entry of the matrix (11).

3 Galerkin approximations of the foveated im-

ages

Let R = R [ f�1g be the 
ompa
ti�
ation of the real axis by the two points

�1, and let C(R) refer to the algebra of all 
omplex-valued fun
tions f whi
h

are 
ontinuous on R and possess �nite limits f(�1) at �1. Further, let

_

R =

R [ f1g refer to the one-point 
ompa
ti�
ation of the real axis, and let C(

_

R)


onsist of all 
omplex-valued fun
tions in C(R) for whi
h f(�1) = f(+1). We

denote this 
ommon value by f(1).

From now on we assume that the entries of the matrix B

g; �

have �nite total

variation on R and belong to C(R). These 
onditions imply the boundedness

of the operator T

g; �

on L

p

(R; �), 
f. [5℄. If, in addition, detB

g; �

(t) 6= 0 for all

t 2 R , then the operator T

g; �

is invertible, and its inverse is the Mellin operator

M(B

�1

g; �

). Note that the invertibility of the operator T

g; �

does not play any role if

one only 
onsiders the approximate foveated image  

m

n

. However, this 
ondition


annot be avoided if we want to restore the approximate uniform image Q

m

P

n

'.

Let � : R ! f0; 1g be the 
hara
teristi
 fun
tion of the interval [0; 1), and let

I denote one of the sets R or R

+

. For ea
h �xed natural number n, we 
onsider

the fun
tions

'

nj

(t) := �(nt� j); j 2 Z;
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and we denote by S

n

(I) the smallest 
losed subspa
e of L

p

(I; �) whi
h 
ontains

all fun
tions '

nj

, j 2 Z, whi
h have their support in I. Further we introdu
e the

Galerkin proje
tions P

I

n

: L

p

(I; �)! S

n

(I) by

P

I

n

f := n

X

k2Z\I

hf; '

nk

i'

nk

:

To simplify notations, we abbreviate P

R

n

to P

n

and P

R

+

n

to P

+

n

.

What we are interested in is approximations  

m

n

of the foveated image of the

signal ' 2 L

p

(R; �) of the form

 

m

n

:= P

n

Q

m

T

g; �

Q

m

P

n

': (15)

As already mentioned, su
h kind of approximate foveated images has been 
on-

sidered in [3℄ (based on a proje
tion onto a spa
e of wavelets in pla
e of the spline

proje
tion P

n

). Assume that  

m

n

is known. Are there any 
onditions whi
h allow

us to restore the approximate uniform image Q

m

P

n

' (provided the parameter �

and the smoothing fun
tion g are known)?

To put these questions into an appropriate 
ontext, we have to re
all some

notions from numeri
al analysis. Let X be a Bana
h spa
e, and let (L

n

)

n2N

be a

sequen
e of proje
tions on X whi
h 
onverges strongly to the identity operator.

As usual, strong 
onvergen
e of a sequen
e (A

n

)

n2N

to an operator A 2 B(X)

means that lim

n!1

A

n

x = Ax for every x 2 X. Consider an operator equation

Ax = y; x; y 2 X; A 2 B(X) (16)

and a sequen
e of its approximations

A

n

L

n

x

n

= L

n

y; x

n

2 imL

n

; A

n

2 B(imL

n

): (17)

Regarding the approximation operators A

n

, one usually assumes that equations

(17) are 
onsistent with equation (16) in the sense that the sequen
e (A

n

L

n

)


onverges strongly to the operator A.

De�nition 3.1 The approximation method (17) is stable if there is a number n

0

su
h that the operators A

n

: imL

n

! imL

n

are invertible for all n � n

0

and if

M := sup

n�n

0

kA

�1

n

k <1: (18)

Let the operator A be invertible and the approximation method (17) be stable,

and let x

�

and x

�

n

, n � n

0

, denote the solutions of equations (16) and (17),

respe
tively. Then one easily gets the error estimate

kx

�

� x

�

n

k �MkAx

�

� A

n

L

n

x

�

k+ kx

�

� L

n

x

�

k (19)

where M is de�ned by (18).
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4 Invertibility of P

n

T

g; �

P

n

We start our 
onsiderations with studying the stability of the following approxi-

mation method

P

n

T

g; �

P

n

'

n

= P

n

 ; n 2 N ; '

n

2 imP

n

(20)

where P

n

are the above de�ned proje
tions, and  is the foveated image of the

initial signal '. Here we assume that the user knows P

n

 and wants to restore

'

n

.

Proposition 4.1 Let B

g;�

2 C

2�2

(R), and let the entries of B

g;�

have �nite total

variation on R. Then the approximation method (20) is stable if and only if the

operator P

1

T

g; �

P

1

: S

1

(R) ! S

1

(R) is invertible.

Proof. Let l

p

(Z; �) refer to the set of all sequen
es (�

j

)

j2Z

of 
omplex numbers

su
h that

k(�

j

)k

p

:=

X

j2Z

j�

j

j

p

(1 + jjj)

�p

<1:

For every natural number n, we 
onsider the operators

E

n

: l

p

(Z; �)! S

n

(R); (�

j

)

j2Z

!

X

j2Z

�

j

'

nj

:

It is well-known (see, e.g., [1℄) that these operators possess 
ontinuous inverses

E

�n

:= E

�1

n

: S

n

(R) ! l

p

(Z; �) and that there is a 
onstant C su
h that

kE

n

k � C n

�(1=p+�)

and kE

�n

k � C n

1=p+�

: (21)

Hen
e, the operators

P

n

T

g; �

P

n

: S

n

(R) ! S

n

(R)

are invertible if and only if the 
orresponding operators

E

n

P

n

T

g; �

P

n

E

�n

: l

p

(Z; �)! l

p

(Z; �)

are so. Consider the matrix representation A

n

= (A

jk

)

j; k2Z

of the operator

E

n

P

n

T

g; �

P

n

E

�n

with respe
t to the standard basis of l

p

(Z; �). Straightforward


al
ulations yield

A

jk

=

n

�

Z

R

�(nx� j)

Z

R

1

jxj

g

�

1

�

�

t� x

jxj

��

�(nt� k) dt dx

=

1

�

Z

j+1

j

Z

k+1

k

1

jxj

g

�

1

�

�

t� x

jxj

��

dt dx: (22)
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Thus, the entries of the matri
es A

n

are independent of n. Therefore, the ap-

proximation method (20) is stable if and only if the operator E

1

P

1

T

g; �

P

1

E

�1

is


ontinuously invertible. Taking into a

ount the estimates (21), we get the 
laim.

Now we are going to 
onsider the operator E

1

P

1

T

g; �

P

1

E

�1

in more detail. As

was already mentioned, �T

g; �

�

�1

= M(B

g; �

) = (T

rl

)

2

r; l=1

where every T

rl

is a

Mellin 
onvolution operator on L

p

(R

+

; �) with symbol from C(R). It is easy to


he
k that for every n,

�P

n

�

�1

= diag (P

+

n

; P

+

n

):

Hen
e, E

1

P

1

T

g; �

P

1

E

�1


an be identi�ed with an operator D

g;�

= (D

rl

)

2

r; l=1

where

the operators D

rl

a
t on l

p

2

(N ; �). Moreover, a detailed analysis yields that ea
h

operator D

rl

belongs to an algebra whi
h is generated by Toeplitz operators.

So let us re
all brie
y what a Toeplitz operator is. Write T for the 
omplex

unit 
ir
le, let a 2 L

1

(T), and denote by a

k

the k th Fourier 
oeÆ
ient of a,

a

k

:=

1

2�

Z

2�

0

a(e

i�

)e

�ik�

d�; k 2 Z:

If the fun
tion a is pie
ewise 
ontinuous on T and has a �nite total variation,

then the operator whi
h a
ts on the �nitely supported sequen
es in l

p

(N ; �) via

(x

n

)

n2N

7! (y

n

)

n2N

with y

n

:=

X

k2N

a

n�k

x

k

extends by 
ontinuity to a bounded linear operator T (a) a
ting on all of l

p

(N ; �).

Thus, the matrix representation of T (a) with respe
t to the standard basis of

l

p

(N ; �) is given by

T (a) =

0

B

B

B

B

�

a

0

a

�1

a

�2

a

�3

� � �

a

1

a

0

a

�1

a

�2

� � �

a

2

a

1

a

0

a

�1

� � �

a

3

a

2

a

1

a

0

� � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

C

C

C

C

A

:

We let T

p

(�) stand for the smallest 
losed subalgebra of B(l

p

(N ; �)) whi
h 
on-

tains all Toeplitz operators T (a) with a generating fun
tion a having �nite total

variation on T, being 
ontinuous on Tnf1g, and possessing �nite one-sided limits

at 1 2 T. Thus, the pre
ise formulation of the above vague statement on D

g; �

is that this operator belongs to T

p

(�)

2�2

. A proof of this fa
t is in [5℄, Se
tions

2.2.3 and 2.4.3.

It is a serious problem to de
ide whether an operator in T

p

(�) is invertible.

But there is a very 
omfortable 
riterion for the Fredholmness of operators in

T

p

(�) whi
h we will re
all next. To ea
h Toeplitz operator A = T (a) where a is as
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above (i.e. it has �nite total variation, is 
ontinuous on Tnf1g, and possesses �nite

one-sided limits a(1� 0) taken with respe
t to the 
ounter-
lo
kwise orientation

of T) we asso
iate the fun
tion A

℄

: T � R ! C whi
h maps (t; z) into a(t) if

t 6= 1 and into

a(1 + 0) + a(1� 0)

2

�

a(1 + 0)� a(1� 0)

2


oth �(z + i(1=p+ �))

if t = 1. Thus, one makes the range of a to a 
losed 
urve in C by joining the

points a(1 � 0) by a 
ertain 
ir
ular ar
 depending on the parameter 1=p + �.

If now A 2 T

p

(�) is a �nite sum of produ
ts of Toeplitz operators A

ij

, then we

de�ne

A

℄

= (

XY

A

ij

)

℄

:=

XY

A

℄

ij

:

The mapping A 7! A

℄

is 
orre
tly de�ned, and it extends by 
ontinuity onto

all of T

p

(�). The fun
tion A

℄

is also 
alled the symbol of the operator A. The

relevan
e of the symbol A

℄

for the purpose of Fredholmness is as follows: The

operator A 2 T

p

(�) is Fredholm if and only if the point 0 does not belong to the

range of A

℄

. Moreover, if one provides the 
urve A

℄

(T � R) with the orientation

inherited by the 
ounter-
lo
kwise orientation of T, then the Fredholm index of

A 2 T

p

(�) is equal to the negative winding number of the 
urve A

℄

(T� R) with

respe
t to the origin.

In order to apply these results to the dis
retized operator D

g; �

we still need

another property of the algebra T

p

(�), namela it is 
ommutative modulo 
om-

pa
t operators. From this 
ommutativity we 
on
lude that the operator D

g; �

=

(D

rl

) 2 T

p

(�)

2�2

is Fredholm if and only the operator

det(D

rl

) := D

11

D

22

�D

12

D

21

2 T

p

(�)

is Fredholm, and that their indi
es 
oin
ide. Thus, D

g; �

is a Fredholm operator

if and only if 0 does not lie on the 
urve (D

℄

11

D

℄

22

�D

℄

12

D

℄

21

)(T � R), and in this


ase the index of D

g; �

is minus the winding number of that 
urve.

It remains to 
ompute the symbols of the operators D

rl

= E

1

P

1

M(b

rl

)P

1

E

�1

where b

rl

is the rlth 
omponent of the fun
tion B

g; �

. We write

b

rl

(z) = �

rl

+ �

rl


oth �(z + i(1=p+ �)) + n

rl

(z)

where �

rl

; �

rl

2 C are 
hosen su
h that n

rl

(�1) = 0. (Re
all that the limits of

the 
oth-fun
tion at in�nity are �1.) Then the symbol of D

rl

is equal to

(t; z) 7!

(

�

rl

+ �

rl

�(t) if t 6= 1

�

rl

� �

rl


oth �(z + i(1=p+ �)) + n

rl

(z) if t = 1

where

�(e

2�iy

) := �

sin

2

�y

�

2

X

m2Z

sgn (y +m)

(y +m)

2

(23)
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for y 2 (0; 1). A detailed 
omputation of these fun
tions 
an be found in [5℄,

Se
tions 2.2.3, 2.4 and 2.5.2. Geometri
ally, this 
ondition is quite simple again

sin
e the range of the restri
tion of this mapping onto (T n f1g)� R is just the

interval (�

rl

+ �

rl

; �

rl

� �

rl

).

5 Invertibility of P

n

Q

m

T

g; �

Q

m

P

n

We will now apply the methodology developed in the previous se
tion to obtain

results on the stability of the following approximation method

P

n

Q

m

T

g; �

Q

m

P

n

'

m

n

= P

n

Q

m

 ; m; n 2 N ; '

m

n

2 imP

n

(24)

where again P

n

and Q

m

are the above de�ned proje
tions and where  := T

g; �

'

is the foveated image of the initial signal. Thus, we assume P

n

Q

m

 to be known

to the user who wants to restore '

m

n

. Observe that the right hand sides of the

equations (24) 
an be repla
ed by the approximate foveated images  

m

n

de�ned

by (2) without 
hanging the asymptoti
 solvability properties of these equations.

This follows simply from the fa
t that the sequen
es (P

n

) and (Q

m

) of proje
tions


onverge strongly to the identity operator. Thus, the norms kP

n

Q

m

 �  

m

n

k

be
ome as small as desired if m and n are 
hosen large enough.

It turn out that the problem of stability of the approximation method (24)


an be redu
ed to the stability of a �nite se
tion method for the operator D

g;�

whi
h belongs to the Toeplitz algebra T

p

(�)

2�2

: Towards this end we provide

the spa
e l

p

2

(N ; �) with the norm k(f; g)k

p

:= kfk

p

+ kgk

p

. Then the mapping

(f; g) 7! h with

h(n) :=

�

f(n) if n � 0

g(�1� n) if n < 0

is an isometry from l

p

2

(N ; �) onto l

p

(Z; �). Analogously, the spa
e L

p

2

([0; 1℄; �)

is identi�ed with L

p

([�1; 1℄; �)

For l 2 N , de�ne proje
tions R

l

on l

p

(N ; �) by

R

l

: (x

n

)

n2N

7! (y

n

)

n2N

with y

n

:=

�

x

n

if n < l

0 if n � l:

Sin
e P

n

Q

m

= Q

m

P

n

, the 
al
ulations from the previous se
tion immediately

yield that the operator P

n

Q

m

T

g; �

Q

m

P

n

is invertible if and only if the operator

E

n

P

n

Q

m

T

g; �

Q

m

P

n

E

�n

= E

n

Q

m

E

�n

E

n

P

n

T

g; �

P

n

E

�n

E

n

Q

m

E

�n

= E

n

Q

m

E

�n

E

1

P

1

T

g; �

P

1

E

�1

E

n

Q

m

E

�n

and, thus, the operator

�

R

mn

0

0 R

mn

��

D

11

D

12

D

21

D

22

��

R

mn

0

0 R

mn

�

=

�

R

mn

D

11

R

mn

R

mn

D

12

R

mn

R

mn

D

21

R

mn

R

mn

D

22

R

mn

�

(25)
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is invertible. Consequently, the stability of the approximation method (24) is

equivalent to the stability of the �nite se
tion method for the operator D

g; �

2

T

p

(�)

2�2

whi
h has

�

R

l

0

0 R

l

��

D

11

D

12

D

21

D

22

��

R

l

0

0 R

l

�

(26)

as its system matri
es. The �nite se
tion method for a large 
lass of operators

in
luding the operators (D

rl

) from (26) has been studied in [5℄, Se
tions 4.1.1 {

4.1.3. A 
hara
terization of the stability of the approximation method (26) 
an

be dedu
ed from these general results. Note that formally, we only get a sub-

sequen
e of the sequen
e of the �nite se
tion method. But, as has been shown

in [6℄, the sequen
e formed by the matri
es in (26) and its subsequen
e formed

by the matri
es in (25) are simultaneously stable or not. Moreover, the �nite

se
tion method for operators in the Toeplitz algebra is an example of a fra
tal

approximation method; roughly speaking fra
tality means that every in�nite sub-

sequen
e of the sequen
e of the approximation matri
es allows one to restore the


omplete sequen
e up to a sequen
e whi
h tends to zero in the norm. Thus, every

subsequen
e 
ontains the same "asymptoti
 information" as the whole sequen
e.

For more fa
ettes of this fas
inating topi
 see [6℄.

Summarizing these results we arrive at the following theorem.

Theorem 5.1 Let B

g;�

2 C

2�2

(R), and let the entries of B

g;�

have �nite total

variation on R. The approximation method (24) stable if and only if

(a) the operator D

g;�

is invertible on l

p

2

(N ; �),

(b) the operator (T (�

rl

� �

rl

�))

2

r; l=1

is invertible on l

p

2

(N ; 0), and

(
) the operator (�

[0; 1℄

T

rl

�

[0; 1℄

I)

2

r; l=1

is invertible on L

p

2

([0; 1℄; �).

6 An example

We will illustrate the obtained results by an example of a very spe
ial kind. Let

the fun
tion g be given by

g(t) =

1

�it

; t 2 R: (27)

We are aware of the fa
t that this is not a smoothing fun
tion as 
onsidered in [3℄.

But for this fun
tion, several 
onditions mentioned previously take a simple and

e�e
tive form. Thus, it seems to be a good 
andidate to illustrate our approa
h

to foveation operators.

If g is spe
i�ed as above, then the operator T

g; �

does no longer depend on �,

and we denote it by T

g

. It turns out that T

g

: L

p

(R; �) ! L

p

(R; �) is just the

singular integral operator S

R

a
ting by

(S

R

f)(x) =

1

�i

Z

+1

�1

f(t)

t� x

dt:

11



For good (say H�older 
ontinuous) fun
tions, this integral exists in the Cau
hy

prin
ipal value sense, and it 
an be extended by 
ontinuity to all of L

p

(R; �).

The 
orresponding matrix G

g

has the form

G

g

(t) =

1

�i

0

B

B

�

1

1� t

�

1

1 + t

1

1 + t

1

t� 1

1

C

C

A

; t 2 R

+

:

Consider the matrix B

g

(z) :=MG

g

(z). We determine its entries. Using formulae

3.238.1 and 3.238.2 of [4℄ one obtains for z 2 R

b

11

(z) =

1

�i

Z

+1

0

x

1=p+��1�iz

1� x

dz = 
oth(�(z + i(1=p+ �)):

Analogously, by 3.194.4 of [4℄,

b

21

(z) =

1

�i

Z

+1

0

x

1=p+��1�iz

1 + x

dz =

1

sinh(�(z + i(1=p+ �))

:

Hen
e,

B

g

(z) =

 


oth(�(z + i(1=p+ �)) �1= sinh(�(z + i(1=p+ �))

1= sinh(�(z + i(1=p+ �)) � 
oth(�(z + i(1=p+ �))

!

: (28)

From this representation, some basi
 properties of the singular integral operator


an be derived almost at on
e. For example, the entries of the matrix B

g

are


ontinuous and have �nite total variation on R, and their limits at �1 are

B

g

(+1) =

 

1 0

0 �1

!

; B

g

(�1) =

 

�1 0

0 1

!

:

Therefore, S

R

is a bounded operator on L

p

(R; �). Noti
e in this 
onne
tion that

the 
ontinuity 
onditions for the operator T

g

given in [3℄, Theorem 1, are too

restri
tive. The fun
tion g used above is neither bounded nor belongs to L

1

(R)

as required in [3℄, but nevertheless the operator S

R

= T

g

is bounded on L

p

(R; �).

As another appli
ation of (28), we examine the invertibility of S

R

. As already

mentioned, this operator is invertible if and only if the determinant of B

g

does

not vanish on R. Sin
e

detB

g

(z) =

1� 
osh

2

(�(z + i(1=p+ �))

sinh

2

(�(z + i(1=p+ �))

= �1;

the operator S

R

is invertible on ea
h of the spa
es L

p

(R; �) with 1 < p <1 and

0 < 1=p + � < 1. Its inverse operator 
an be written as a blo
k Mellin operator

12



the Mellin symbol at z 2 R of whi
h is equal to

1

detB

g

(z)

 

� 
oth(�(z + i(1=p+ �)) 1= sinh(�(z + i(1=p+ �))

�1= sinh(�(z + i(1=p+ �)) 
oth(�(z + i(1=p+ �))

!

=

 


oth(�(z + i(1=p+ �)) �1= sinh(�(z + i(1=p+ �))

1= sinh(�(z + i(1=p+ �)) � 
oth(�(z + i(1=p+ �))

!

: (29)

Comparing (28) and (29), we obtain

S

�1

R

= S

R

: (30)

Of 
ourse, all these results are well known and 
an be proved without having

re
ourse to Mellin te
hniques. But they illustrate these te
hniques quite well.

Due to the simple stru
ture of the operator T

g

= S

R

, it is more 
onvenient to

study the invertibility of the Galerkin approximations P

n

S

R

P

n

and P

n

Q

m

S

R

Q

m

P

n

dire
tly and without doubling the dimension. The point is that the operator

E

n

P

n

S

R

P

n

E

�n

is again independent of n and that this operator 
oin
ides with

the Laurent operator L(�) on l

p

(Z; �). By de�nition, the Laurent operator L(a)

with generating fun
tion a 2 L

1

(T) is given via its matrix representation

L(a) =

0

B

B

B

B

B

B

B

B

B

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a

0

a

�1

a

�2

a

�3

.

.

.

.

.

.

a

1

a

0

a

�1

a

�2

.

.

.

.

.

.

a

2

a

1

a

0

a

�1

.

.

.

.

.

.

a

3

a

2

a

1

a

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

C

C

C

C

C

C

C

C

C

A

with respe
t to the standard basis of l

p

(Z; �). As in the Toeplitz operator 
ase, a

suÆ
ient 
ondition for the boundedness of this operator is that the fun
tion a is

pie
ewise 
ontinuous and has a �nite total variation. A basi
 di�eren
e between

Toeplitz and Laurent operators with pie
ewise 
ontinuous generating fun
tions is

that L(a)L(b) = L(ab) (whereas the 
orresponding result for Toeplitz operators

is de�nitely wrong in general). Consequently, the Laurent operators generate

a 
ommutative algebra, whereas the Toeplitz operator algebra T

p

(�) is merely


ommutative modulo 
ompa
t operators. This implies that the Laurent operator

L(a) is invertible if and only if the fun
tion a is invertible in L

1

(T).

Sin
e the essential range of � is the interval [�1; 1℄, the operators P

n

S

R

P

n

=

E

�n

L(�)E

n


annot be invertible. For that reason, we repla
e the kernel fun
tion

(27) by

g(t) = a+ b

1

�it

; t 2 R (31)
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with 
omplex 
onstants a and b. Then T

g

= aI + bS

R

and E

n

P

n

S

R

P

n

E

�n

=

L(a + b�), and the latter operator be
omes invertible if a and b are suitably


hosen. At this point, it is suÆ
ient to require that 0 does not lie on the segment

joining a� b to a+ b.

Proposition 6.1 Let the kernel fun
tion g be given by (31). Then the sequen
e

(P

n

T

g

P

n

) is stable if and only if 0 62 [a� b; a+ b℄.

What happens with the operators P

n

Q

m

T

g

Q

m

P

n

? Their invertibility 
orresponds

to the stability of the �nite se
tions sequen
e R

0

n

L(a)R

0

n

where the proje
tions

R

0

m

on l

p

(Z; �) are de�ned by

R

0

m

: (x

n

)

n2Z

7! (y

n

)

n2Z

with y

n

:=

�

x

n

if �m � n � m� 1

0 else:

Evidently, the matrix R

0

n

L(a)R

0

n


an be identi�ed with R

2n

T (a)R

2n

. Thus, the

�nite se
tion method for the Laurent operator L(a) 
orresponds to (a subsequen
e

of) the �nite se
tion method for the Toeplitz operator T (a). The stability of the

�nite se
tion method for that Toeplitz operator is well understood. The following

result is a 
orollary of a more general theorem of [5℄. A dire
t proof whi
h works

in 
ase the generating fun
tion of the Toeplitz operator has exa
tly one point of

dis
ontinuity 
an be found in [9℄.

Proposition 6.2 Let 
 be a pie
ewise 
ontinuous fun
tion with �nite total vari-

ation. Then the �nite se
tion method applies to the Toeplitz operator T (
) on

l

p

(N ; �) if and only if the operator T (
) is invertible on l

p

(N ; �) and if the oper-

ator T (~
) with ~
(y) := 
(1=y) is invertible on l

p

(N ; 0).

For the kernel fun
tion g as in (31), the appli
ability of the �nite se
tion method

to T (a+b�) is equivalent to the invertibility of T (a+b�) on l

p

(N ; �) and of T (a�

b�) on l

p

(N ; 0). The invertibility of the �rst mentioned operator is equivalent to

the fa
t that the point 0 does not lie in the region whi
h is bounded by

[a+ b; a� b℄ [ fa+ b 
oth �(z + i(1=p+ �)) : z 2 Rg;

whereas the invertibility of the se
ond operator is equivalent to the fa
t that 0 is

not 
ontained in the region bounded by

[a� b; a + b℄ [ fa� b 
oth �(z + i=p) : z 2 Rg:

Both regions are bounded by a union of a straight line with a 
ir
ular ar
.

7 Splines of Higher Order

The Galerkin approximations 
onsidered so far have been based on the �rst order

splines, viz. the splines generated by the 
hara
teristi
 fun
tion N

(1)

:= �

[0;1)

.
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The use of higher order splines might give a better approximation for both uni-

form and foveated signals. Of 
ourse the repla
ement of the basis fun
tions leads

to di�erent approximation operators, so the stability problem must be studied

on
e again. Thereby, it turns out that the operators whi
h arise if one is using

splines of higher order to approximate the foveated images again belong to the

Toeplitz algebra T

p

(�)

2�2

we already met. Therefore, the study of the stabil-

ity problem for su
h operator sequen
es one 
an again based upon the approa
h

presented in se
tions 4 and 5. Let us brie
y 
omment on the amendments whi
h

have to be made in this situation.

For a given d � 2, the d-th order 
ardinal B-spline N

(d)

is de�ned re
ursively

by

N

(d)

(t) :=

Z

1

0

N

(d�1)

(t� s) ds:

The following important properties of the 
ardinal splines N

(d)

are well known:

1. The support of N

(d)

is the interval [0; d℄.

2. N

(d)

(t) > 0 for all t 2 (0; d).

3. N

(d)

(�t + d) = N

(d)

(t) for every t 2 R.

Let us �x a positive integer n and introdu
e fun
tions '

nj

, j 2 Z by

'

nj

(t) :=

(

N

(d)

(nt� j) if j � 0

N

(d)

(nt� j � d+ 1) if j < 0:

Let S

d

n

(R

+

) be the smallest 
losed subspa
e of L

p

(R

+

; �) whi
h 
ontains all fun
-

tions '

nj

, j = 0; 1; : : :, and let S

d

n

(R) be the smallest 
losed subspa
e of L

p

(R; �)

whi
h 
ontains all fun
tions '

nj

, j 2 Z. In analogy to the previous analysis in


ase d = 1, one 
an introdu
e the Galerkin proje
tions

e

P

I

n

: L

p

(I; �)! S

d

n

(I) by

e

P

I

n

f := n

X

k2Z

hf; '

nk

i'

nk

; (32)

and rewrite equation (15) with the proje
tions onto the spa
es S

n

(I) = S

(1)

n

(I)

repla
ed by proje
tions

e

P

I

n

. Again, the operators

e

E

n

: l

p

(Z; �)! S

d

n

(R); (�

j

)

j2Z

!

X

j2Z

�

j

'

nj

are 
ontinuously invertible with inverses

e

E

�n

, and

k

e

E

n

k � C n

�(1=p+�)

; k

e

E

�n

k � C n

1=p+�
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with a 
ertain 
onstant C. Repeating and modifying the arguments of Se
tion 4

one obtains that the approximation method whi
h is the analog of the method

(15) but based on the spline N

(d)

with d � 2, is stable if and only if the operator

e

E

1

e

P

1

T

g; �

e

P

1

e

E

�1

: l

p

(Z; �)! l

p

(Z; �)

is invertible. The entries

e

A

jk

of the matrix representation of that operator with

respe
t to the standard basis of l

p

(Z; �) 
an be 
al
ulated by formulas similar to

(22). For example, if j � 0 and k � 0, then

e

A

jk

=

1

�

Z

j+d

j

N

(d)

(x� j)

Z

k+d

k

1

jxj

g

�

1

�

�

t� x

jxj

��

N

(d)

(t� k) dt dx:

An additional analysis shows that the operator

e

E

1

e

P

1

T

g; �

e

P

1

e

E

�1


an be identi�ed

with an operator

e

D

g;�

= (

e

D

rl

)

2

r; l=1

in the algebra T

p

(�)

2�2

where the symbol of

the operator

e

D

rl

is

(t; z) 7!

(

�

rl

+ �

rl

e�(t) if t 6= 1

�

rl

� �

rl


oth �(z + i(1=p+ �)) + 
(d)n

rl

(z) if t = 1

with �

rl

and �

rl

as before,

e�(e

2�iy

) := �

sin

2d

�y

�

2d

X

m2Z

sgn (y +m)

(y +m)

2d

for y 2 (0; 1)

and


(d) =

�

Z

d

0

N

(d)

(t) dt

�

2

:

Further steps lead to results analogous to those of Se
tion 5. Thus Theorem 5.1


an be reformulated with the 
orresponding repla
ement of the operator D

g;�

by

e

D

g;�

.

Con
luding Remarks

Our analysis shows that the use of the operator (1) does not only allow to 
reate

and transmit foveated images. It o�ers also the possibility to restore their ap-

proximate uniform pre-images. Moreover, if the kernel k of the integral operator

(1) gives rise to a stable approximation method, then the quality of su
h restored

uniform pre-images 
an be quite satisfa
tory as estimate (19) shows.

As was also pointed out, one might use other numeri
al pro
edures to approx-

imate foveated images. For example, one 
an apply pro
edures based on meshes

having higher density around the points of interest. Another possibility is to use

16



wavelets instead of splines. The Galerkin pro
edures 
onsidered in the present

paper 
an also be repla
ed by other numeri
al methods, for example by quadra-

ture or by 
ollo
ation methods. Of 
ourse, ea
h new approa
he will require an

additional analysis for the stability of the employed numeri
al pro
edures. How-

ever, in many 
ases, these approximation pro
edures for the operator (1) 
an

be asso
iated with well understood operator algebras, whi
h allows one to �nd


riteria of their stability.
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