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Abstrat

Approximate foveated images an be obtained from uniform images via

the approximation of some integral operators. In this paper it is shown that

these operators belong to a well studied operator algebra, and the problem

of restoration of the approximate uniform pre-images is onsidered. Under

ommon assumptions on smoothness of the integral operator kernels, ne-

essary and suÆient onditions are established for suh proedure to be

feasible.

1 Introdution

Foveated images are used in image proessing to redue information in the visual

�eld while preserving resolution at a given point { the fovea. Tehnially, foveated

images an be obtained from uniform images in di�erent way, f. [2, 3, 7, 8, 10℄.

One of the approahes proposed is based on the use of integral operators

(T')(x) =

Z

+1

�1

k(t; x)'(t) dt (1)

with speial kernels k, see [3℄. The funtion ' in (1) is the initial signal (uniform

image) and T' represents its foveated image. To implement this method, Chang,

Mallat and Yap [3℄ employed a wavelet approximation '

n

to the signal ' with

subsequent approximation of T'

n

. More preisely, their approah an be har-

aterized as follows. Let g be a funtion on the real line R, and let ! = !

; �

(x),

x 2 R denote the funtion

!

; �

(x) := �jx� j;  2 R; � 2 R

+

n f0g:

For a given positive number m, one onsiders the linear operator Q

m

de�ned on

L

2

(R) by

(Q

m

f)(x) :=

�

f(x) if x 2 [�m; m℄

0 otherwise.
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Moreover, let P

n

denote the orthogonal projetion onto a subspae of L

2

(R)

generated by a wavelet basis. In [3℄, the following approximate foveated image

 

m

n

of the signal ' is onsidered:

 

m

n

(x) = (P

n

Q

m

TQ

m

P

n

')(x) (2)

where T is the operator (1) with kernel

k(x; t) :=

1

!

; �

(x)

g

�

t� x

!

; �

(x)

�

: (3)

In this setting, the parameter  represents the point of highest resolution and is

alled the fovea. The parameter � determines the speed at whih the resolution

falls o� when the distane from the fovea grows, f. [3℄.

Note that the operators P

n

Q

m

TQ

m

P

n

, n 2 N , an be viewed as Galerkin

approximations for the operator Q

m

TQ

m

. Sequenes of Galerkin approximations

have been studied in onnetion with di�erent problems of analysis and mathe-

matial physis. If the kernel k has the form (3), then the orresponding operator

T an be represented in a speial way. Namely, if U



,  2 R, denotes the shift

operator

(U



f)(x) = f(x� ); x 2 R;

then T an be rewritten as

T = U



T

g; �

U

�

(4)

where T

g; �

is the integral operator (1) with the fovea  = 0, i.e.

(T

g; �

f)(x) =

Z

+1

�1

f(t)

1

�jxj

g

�

t� x

�jxj

�

dt: (5)

Therefore, without loss of generality, we an restrit our attention to the operator

T

g; �

only. Moreover, as we will see later, the operator T

g; �

belongs to a lass of

integral operators whih is quite well understood. This enables us to examine

the properties of the foveated image T' in more detail.

In the present paper we onsider the following problems. Assume that an

approximate foveated image  

m

n

is known. Is it possible to reonstrut its ap-

proximate uniform pre-image Q

m

P

n

'? It is obvious that, in general, the answer

to this question is negative. However, one an try to �nd onditions whih would

make suh a reonstrution feasible. Another relevant problem is that of the

quality of the approximate uniform images one obtains. More preisely, if '

n

,

n 2 N is an approximation for ', then what an be said about the errors '�'

n

,

at least for large n? In the present paper these problems are studied for the

Galerkin approximation. For the sake of simpliity, pieewise onstant splines

are used to approximate the uniform and foveated images, although other ap-

proximation spaes an be used, too. Approximations based on splines of higher
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order are briey disussed in the onluding part of the paper. It is also worth

mentioning that the Galerkin sheme an be replaed by other approximation

proedures, for example by olloation, quadrature or qualoation, whih are

often more onvenient from a omputational point of view.

Throughout this paper, we let p and � be real parameters with 1 < p < 1

and 0 < � + 1=p < 1 and, given an interval I � R, we write L

p

(I; �) for the

Banah spae of all Lebesgue measurable funtions f : I ! C suh that

kfk

p

= kfk

p

p;�; I

:=

Z

I

jf(t)j

p

jtj

�p

dt <1: (6)

As usual, the Banah dual L

p

(I; �)

�

of L

p

(I; �) will be identi�ed with L

q

(I; ��)

where 1=p+ 1=q = 1 with respet to the sesqui-linear form

hf; gi :=

Z

I

f(t)g(t) dt:

Given a linear spae X and a positive integer r, we denote by X

r

the linear spae

of olumn vetors of length r with omponents from X, and we let X

r�r

refer to

the linear spae of r � r matries with entries from X. Further, B(X) denotes

the Banah algebra of all bounded linear operators on the Banah spae X, and

imA stands for the range of the operator A 2 B(X).

2 Integral Operators of Mellin type

In this setion, we represent the operator T

g; �

de�ned by (5) in a speial form

whih will prove to be helpful in what follows. In [3℄, T

g; �

has been studied on

the spae L

2

(R), whereas we will allow this operator to at on the weighted spae

L

p

(R; �).

It is onvenient in what follows to identify the spae L

p

(R; �) with the spae

L

p

2

(R

+

; �) whih onsists of all pairs (f

1

; f

2

)

T

with f

1

; f

2

2 L

p

(R

+

; �). If we

provide the spae L

p

2

(R

+

; �) with the norm

k(f

1

; f

2

)

T

k

p

:= kf

1

k

p

p; �;R

+

+ kf

2

k

p

p;�;R

+

;

then the mapping

� : L

p

(R; �)! L

p

2

(R

+

; �); �(f) : s 7! (f(s); f(�s))

T

(7)

beomes an isometri bijetion the inverse of whih ats via

(�

�1

[(f

1

; f

2

)

T

℄)(s) =

(

f

1

(s) if s 2 R

+

f

2

(�s) if s 2 R

�

:

(8)
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Thus, the mapping

 

�

: B(L

p

(R; �))! B(L

p

2

(R

+

; �)); A 7! �A�

�1

is an isometri algebra isomorphism and, therefore, the properties of the operator

 

�

(A) ompletely reet the orresponding properties of A and vie versa. There

are, however, some instanes where the operator  

�

(A) has a nier struture than

the operator A. In partiular, it will turn out in a moment that the entries of the

operator  

�

(A

g; �

) are Mellin onvolution operators, a lass of operators whih is

de�ned as follows.

Let M and M

�1

denote the diret and inverse Mellin transform, respetively,

i.e.

(Mf)(z) =

Z

+1

0

x

1=p+�+1�iz

f(x) dx; z 2 R

and

(M

�1

f)(x) =

1

2�

Z

+1

0

x

�1=p��+iz

f(z) dz; x 2 R

+

:

It is well known (see, e.g., [5℄, pp. 47-48) that if b is an L

p

(R)-Fourier multiplier,

then

M(b) :=MbM

�1

(9)

de�nes a bounded linear operator M(b) on L

p

(R

+

; �), the so-alled Mellin op-

erator with symbol b. In ase the kernel funtion k := M

�1

b belongs to L

1

(R)

with respet to the measure ds=s, the Mellin operator (9) an be represented as

the integral operator

(M(b)f)(s) =

Z

+1

0

k(s=�)f(�)

d�

�

; s 2 R

+

: (10)

Proposition 2.1 Let the operator T

g; �

2 B(L

p

(R; �)) be de�ned by (5). Then

 

�

(T

g; �

) is the blok Mellin operator M(B

g; �

) with symbol B

g; �

= M

�1

G

g; �

where

G

g; �

(t) =

1

�t

0

B

�

g

�

1

�

�

1

t

� 1

�

�

g

�

1

�

�

�

1

t

� 1

�

�

g

�

1

�

�

1

t

+ 1

�

�

g

�

1

�

�

�

1

t

+ 1

�

�

1

C

A

; t 2 R: (11)

Proof. The operator T

g; �

�

�1

ats as follows:

(T

g; �

�

�1

[(f

1

; f

2

)

T

℄)(s)

=

1

�

Z

+1

0

f

1

(t)

t

jsj

g

�

t� s

�jsj

�

dt

t

+

1

�

Z

0

�1

f

2

(�t)

t

jsj

g

�

t� s

�jsj

�

dt

t

: (12)
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The seond term on the right-hand side of this equality an be rewritten as

1

�

Z

+1

0

f

2

(u)

u

jsj

g

�

�u� s

�jsj

�

du

u

:

Hene, by (7),

�

�

1

�

Z

0

�1

f

2

(�t)

�

t

j � j

�

g

�

t� �

�j � j

�

dt

t

�

(s)

=

0

B

B

�

1

�

Z

+1

0

f

2

(u)

�

u

s

�

g

�

1

�

�

�

u

s

� 1

�

�

du

u

1

�

Z

+1

0

f

2

(u)

�

u

s

�

g

�

1

�

�

�

u

s

+ 1

�

�

du

u

1

C

C

A

; s 2 R

+

: (13)

Performing analogous transformations for the �rst term on the right-hand side of

(12) we get

�T

g; �

�

�1

=

 

T

11

T

12

T

21

T

22

!

(14)

where eah of the operators T

rl

is a Mellin operator of the form (10) with a kernel

de�ned by the orresponding entry of the matrix (11).

3 Galerkin approximations of the foveated im-

ages

Let R = R [ f�1g be the ompati�ation of the real axis by the two points

�1, and let C(R) refer to the algebra of all omplex-valued funtions f whih

are ontinuous on R and possess �nite limits f(�1) at �1. Further, let

_

R =

R [ f1g refer to the one-point ompati�ation of the real axis, and let C(

_

R)

onsist of all omplex-valued funtions in C(R) for whih f(�1) = f(+1). We

denote this ommon value by f(1).

From now on we assume that the entries of the matrix B

g; �

have �nite total

variation on R and belong to C(R). These onditions imply the boundedness

of the operator T

g; �

on L

p

(R; �), f. [5℄. If, in addition, detB

g; �

(t) 6= 0 for all

t 2 R , then the operator T

g; �

is invertible, and its inverse is the Mellin operator

M(B

�1

g; �

). Note that the invertibility of the operator T

g; �

does not play any role if

one only onsiders the approximate foveated image  

m

n

. However, this ondition

annot be avoided if we want to restore the approximate uniform image Q

m

P

n

'.

Let � : R ! f0; 1g be the harateristi funtion of the interval [0; 1), and let

I denote one of the sets R or R

+

. For eah �xed natural number n, we onsider

the funtions

'

nj

(t) := �(nt� j); j 2 Z;
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and we denote by S

n

(I) the smallest losed subspae of L

p

(I; �) whih ontains

all funtions '

nj

, j 2 Z, whih have their support in I. Further we introdue the

Galerkin projetions P

I

n

: L

p

(I; �)! S

n

(I) by

P

I

n

f := n

X

k2Z\I

hf; '

nk

i'

nk

:

To simplify notations, we abbreviate P

R

n

to P

n

and P

R

+

n

to P

+

n

.

What we are interested in is approximations  

m

n

of the foveated image of the

signal ' 2 L

p

(R; �) of the form

 

m

n

:= P

n

Q

m

T

g; �

Q

m

P

n

': (15)

As already mentioned, suh kind of approximate foveated images has been on-

sidered in [3℄ (based on a projetion onto a spae of wavelets in plae of the spline

projetion P

n

). Assume that  

m

n

is known. Are there any onditions whih allow

us to restore the approximate uniform image Q

m

P

n

' (provided the parameter �

and the smoothing funtion g are known)?

To put these questions into an appropriate ontext, we have to reall some

notions from numerial analysis. Let X be a Banah spae, and let (L

n

)

n2N

be a

sequene of projetions on X whih onverges strongly to the identity operator.

As usual, strong onvergene of a sequene (A

n

)

n2N

to an operator A 2 B(X)

means that lim

n!1

A

n

x = Ax for every x 2 X. Consider an operator equation

Ax = y; x; y 2 X; A 2 B(X) (16)

and a sequene of its approximations

A

n

L

n

x

n

= L

n

y; x

n

2 imL

n

; A

n

2 B(imL

n

): (17)

Regarding the approximation operators A

n

, one usually assumes that equations

(17) are onsistent with equation (16) in the sense that the sequene (A

n

L

n

)

onverges strongly to the operator A.

De�nition 3.1 The approximation method (17) is stable if there is a number n

0

suh that the operators A

n

: imL

n

! imL

n

are invertible for all n � n

0

and if

M := sup

n�n

0

kA

�1

n

k <1: (18)

Let the operator A be invertible and the approximation method (17) be stable,

and let x

�

and x

�

n

, n � n

0

, denote the solutions of equations (16) and (17),

respetively. Then one easily gets the error estimate

kx

�

� x

�

n

k �MkAx

�

� A

n

L

n

x

�

k+ kx

�

� L

n

x

�

k (19)

where M is de�ned by (18).
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4 Invertibility of P

n

T

g; �

P

n

We start our onsiderations with studying the stability of the following approxi-

mation method

P

n

T

g; �

P

n

'

n

= P

n

 ; n 2 N ; '

n

2 imP

n

(20)

where P

n

are the above de�ned projetions, and  is the foveated image of the

initial signal '. Here we assume that the user knows P

n

 and wants to restore

'

n

.

Proposition 4.1 Let B

g;�

2 C

2�2

(R), and let the entries of B

g;�

have �nite total

variation on R. Then the approximation method (20) is stable if and only if the

operator P

1

T

g; �

P

1

: S

1

(R) ! S

1

(R) is invertible.

Proof. Let l

p

(Z; �) refer to the set of all sequenes (�

j

)

j2Z

of omplex numbers

suh that

k(�

j

)k

p

:=

X

j2Z

j�

j

j

p

(1 + jjj)

�p

<1:

For every natural number n, we onsider the operators

E

n

: l

p

(Z; �)! S

n

(R); (�

j

)

j2Z

!

X

j2Z

�

j

'

nj

:

It is well-known (see, e.g., [1℄) that these operators possess ontinuous inverses

E

�n

:= E

�1

n

: S

n

(R) ! l

p

(Z; �) and that there is a onstant C suh that

kE

n

k � C n

�(1=p+�)

and kE

�n

k � C n

1=p+�

: (21)

Hene, the operators

P

n

T

g; �

P

n

: S

n

(R) ! S

n

(R)

are invertible if and only if the orresponding operators

E

n

P

n

T

g; �

P

n

E

�n

: l

p

(Z; �)! l

p

(Z; �)

are so. Consider the matrix representation A

n

= (A

jk

)

j; k2Z

of the operator

E

n

P

n

T

g; �

P

n

E

�n

with respet to the standard basis of l

p

(Z; �). Straightforward

alulations yield

A

jk

=

n

�

Z

R

�(nx� j)

Z

R

1

jxj

g

�

1

�

�

t� x

jxj

��

�(nt� k) dt dx

=

1

�

Z

j+1

j

Z

k+1

k

1

jxj

g

�

1

�

�

t� x

jxj

��

dt dx: (22)
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Thus, the entries of the matries A

n

are independent of n. Therefore, the ap-

proximation method (20) is stable if and only if the operator E

1

P

1

T

g; �

P

1

E

�1

is

ontinuously invertible. Taking into aount the estimates (21), we get the laim.

Now we are going to onsider the operator E

1

P

1

T

g; �

P

1

E

�1

in more detail. As

was already mentioned, �T

g; �

�

�1

= M(B

g; �

) = (T

rl

)

2

r; l=1

where every T

rl

is a

Mellin onvolution operator on L

p

(R

+

; �) with symbol from C(R). It is easy to

hek that for every n,

�P

n

�

�1

= diag (P

+

n

; P

+

n

):

Hene, E

1

P

1

T

g; �

P

1

E

�1

an be identi�ed with an operator D

g;�

= (D

rl

)

2

r; l=1

where

the operators D

rl

at on l

p

2

(N ; �). Moreover, a detailed analysis yields that eah

operator D

rl

belongs to an algebra whih is generated by Toeplitz operators.

So let us reall briey what a Toeplitz operator is. Write T for the omplex

unit irle, let a 2 L

1

(T), and denote by a

k

the k th Fourier oeÆient of a,

a

k

:=

1

2�

Z

2�

0

a(e

i�

)e

�ik�

d�; k 2 Z:

If the funtion a is pieewise ontinuous on T and has a �nite total variation,

then the operator whih ats on the �nitely supported sequenes in l

p

(N ; �) via

(x

n

)

n2N

7! (y

n

)

n2N

with y

n

:=

X

k2N

a

n�k

x

k

extends by ontinuity to a bounded linear operator T (a) ating on all of l

p

(N ; �).

Thus, the matrix representation of T (a) with respet to the standard basis of

l

p

(N ; �) is given by

T (a) =

0

B

B

B

B

�

a

0

a

�1

a

�2

a

�3

� � �

a

1

a

0

a

�1

a

�2

� � �

a

2

a

1

a

0

a

�1

� � �

a

3

a

2

a

1

a

0

� � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

C

C

C

C

A

:

We let T

p

(�) stand for the smallest losed subalgebra of B(l

p

(N ; �)) whih on-

tains all Toeplitz operators T (a) with a generating funtion a having �nite total

variation on T, being ontinuous on Tnf1g, and possessing �nite one-sided limits

at 1 2 T. Thus, the preise formulation of the above vague statement on D

g; �

is that this operator belongs to T

p

(�)

2�2

. A proof of this fat is in [5℄, Setions

2.2.3 and 2.4.3.

It is a serious problem to deide whether an operator in T

p

(�) is invertible.

But there is a very omfortable riterion for the Fredholmness of operators in

T

p

(�) whih we will reall next. To eah Toeplitz operator A = T (a) where a is as
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above (i.e. it has �nite total variation, is ontinuous on Tnf1g, and possesses �nite

one-sided limits a(1� 0) taken with respet to the ounter-lokwise orientation

of T) we assoiate the funtion A

℄

: T � R ! C whih maps (t; z) into a(t) if

t 6= 1 and into

a(1 + 0) + a(1� 0)

2

�

a(1 + 0)� a(1� 0)

2

oth �(z + i(1=p+ �))

if t = 1. Thus, one makes the range of a to a losed urve in C by joining the

points a(1 � 0) by a ertain irular ar depending on the parameter 1=p + �.

If now A 2 T

p

(�) is a �nite sum of produts of Toeplitz operators A

ij

, then we

de�ne

A

℄

= (

XY

A

ij

)

℄

:=

XY

A

℄

ij

:

The mapping A 7! A

℄

is orretly de�ned, and it extends by ontinuity onto

all of T

p

(�). The funtion A

℄

is also alled the symbol of the operator A. The

relevane of the symbol A

℄

for the purpose of Fredholmness is as follows: The

operator A 2 T

p

(�) is Fredholm if and only if the point 0 does not belong to the

range of A

℄

. Moreover, if one provides the urve A

℄

(T � R) with the orientation

inherited by the ounter-lokwise orientation of T, then the Fredholm index of

A 2 T

p

(�) is equal to the negative winding number of the urve A

℄

(T� R) with

respet to the origin.

In order to apply these results to the disretized operator D

g; �

we still need

another property of the algebra T

p

(�), namela it is ommutative modulo om-

pat operators. From this ommutativity we onlude that the operator D

g; �

=

(D

rl

) 2 T

p

(�)

2�2

is Fredholm if and only the operator

det(D

rl

) := D

11

D

22

�D

12

D

21

2 T

p

(�)

is Fredholm, and that their indies oinide. Thus, D

g; �

is a Fredholm operator

if and only if 0 does not lie on the urve (D

℄

11

D

℄

22

�D

℄

12

D

℄

21

)(T � R), and in this

ase the index of D

g; �

is minus the winding number of that urve.

It remains to ompute the symbols of the operators D

rl

= E

1

P

1

M(b

rl

)P

1

E

�1

where b

rl

is the rlth omponent of the funtion B

g; �

. We write

b

rl

(z) = �

rl

+ �

rl

oth �(z + i(1=p+ �)) + n

rl

(z)

where �

rl

; �

rl

2 C are hosen suh that n

rl

(�1) = 0. (Reall that the limits of

the oth-funtion at in�nity are �1.) Then the symbol of D

rl

is equal to

(t; z) 7!

(

�

rl

+ �

rl

�(t) if t 6= 1

�

rl

� �

rl

oth �(z + i(1=p+ �)) + n

rl

(z) if t = 1

where

�(e

2�iy

) := �

sin

2

�y

�

2

X

m2Z

sgn (y +m)

(y +m)

2

(23)
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for y 2 (0; 1). A detailed omputation of these funtions an be found in [5℄,

Setions 2.2.3, 2.4 and 2.5.2. Geometrially, this ondition is quite simple again

sine the range of the restrition of this mapping onto (T n f1g)� R is just the

interval (�

rl

+ �

rl

; �

rl

� �

rl

).

5 Invertibility of P

n

Q

m

T

g; �

Q

m

P

n

We will now apply the methodology developed in the previous setion to obtain

results on the stability of the following approximation method

P

n

Q

m

T

g; �

Q

m

P

n

'

m

n

= P

n

Q

m

 ; m; n 2 N ; '

m

n

2 imP

n

(24)

where again P

n

and Q

m

are the above de�ned projetions and where  := T

g; �

'

is the foveated image of the initial signal. Thus, we assume P

n

Q

m

 to be known

to the user who wants to restore '

m

n

. Observe that the right hand sides of the

equations (24) an be replaed by the approximate foveated images  

m

n

de�ned

by (2) without hanging the asymptoti solvability properties of these equations.

This follows simply from the fat that the sequenes (P

n

) and (Q

m

) of projetions

onverge strongly to the identity operator. Thus, the norms kP

n

Q

m

 �  

m

n

k

beome as small as desired if m and n are hosen large enough.

It turn out that the problem of stability of the approximation method (24)

an be redued to the stability of a �nite setion method for the operator D

g;�

whih belongs to the Toeplitz algebra T

p

(�)

2�2

: Towards this end we provide

the spae l

p

2

(N ; �) with the norm k(f; g)k

p

:= kfk

p

+ kgk

p

. Then the mapping

(f; g) 7! h with

h(n) :=

�

f(n) if n � 0

g(�1� n) if n < 0

is an isometry from l

p

2

(N ; �) onto l

p

(Z; �). Analogously, the spae L

p

2

([0; 1℄; �)

is identi�ed with L

p

([�1; 1℄; �)

For l 2 N , de�ne projetions R

l

on l

p

(N ; �) by

R

l

: (x

n

)

n2N

7! (y

n

)

n2N

with y

n

:=

�

x

n

if n < l

0 if n � l:

Sine P

n

Q

m

= Q

m

P

n

, the alulations from the previous setion immediately

yield that the operator P

n

Q

m

T

g; �

Q

m

P

n

is invertible if and only if the operator

E

n

P

n

Q

m

T

g; �

Q

m

P

n

E

�n

= E

n

Q

m

E

�n

E

n

P

n

T

g; �

P

n

E

�n

E

n

Q

m

E

�n

= E

n

Q

m

E

�n

E

1

P

1

T

g; �

P

1

E

�1

E

n

Q

m

E

�n

and, thus, the operator

�

R

mn

0

0 R

mn

��

D

11

D

12

D

21

D

22

��

R

mn

0

0 R

mn

�

=

�

R

mn

D

11

R

mn

R

mn

D

12

R

mn

R

mn

D

21

R

mn

R

mn

D

22

R

mn

�

(25)
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is invertible. Consequently, the stability of the approximation method (24) is

equivalent to the stability of the �nite setion method for the operator D

g; �

2

T

p

(�)

2�2

whih has

�

R

l

0

0 R

l

��

D

11

D

12

D

21

D

22

��

R

l

0

0 R

l

�

(26)

as its system matries. The �nite setion method for a large lass of operators

inluding the operators (D

rl

) from (26) has been studied in [5℄, Setions 4.1.1 {

4.1.3. A haraterization of the stability of the approximation method (26) an

be dedued from these general results. Note that formally, we only get a sub-

sequene of the sequene of the �nite setion method. But, as has been shown

in [6℄, the sequene formed by the matries in (26) and its subsequene formed

by the matries in (25) are simultaneously stable or not. Moreover, the �nite

setion method for operators in the Toeplitz algebra is an example of a fratal

approximation method; roughly speaking fratality means that every in�nite sub-

sequene of the sequene of the approximation matries allows one to restore the

omplete sequene up to a sequene whih tends to zero in the norm. Thus, every

subsequene ontains the same "asymptoti information" as the whole sequene.

For more faettes of this fasinating topi see [6℄.

Summarizing these results we arrive at the following theorem.

Theorem 5.1 Let B

g;�

2 C

2�2

(R), and let the entries of B

g;�

have �nite total

variation on R. The approximation method (24) stable if and only if

(a) the operator D

g;�

is invertible on l

p

2

(N ; �),

(b) the operator (T (�

rl

� �

rl

�))

2

r; l=1

is invertible on l

p

2

(N ; 0), and

() the operator (�

[0; 1℄

T

rl

�

[0; 1℄

I)

2

r; l=1

is invertible on L

p

2

([0; 1℄; �).

6 An example

We will illustrate the obtained results by an example of a very speial kind. Let

the funtion g be given by

g(t) =

1

�it

; t 2 R: (27)

We are aware of the fat that this is not a smoothing funtion as onsidered in [3℄.

But for this funtion, several onditions mentioned previously take a simple and

e�etive form. Thus, it seems to be a good andidate to illustrate our approah

to foveation operators.

If g is spei�ed as above, then the operator T

g; �

does no longer depend on �,

and we denote it by T

g

. It turns out that T

g

: L

p

(R; �) ! L

p

(R; �) is just the

singular integral operator S

R

ating by

(S

R

f)(x) =

1

�i

Z

+1

�1

f(t)

t� x

dt:

11



For good (say H�older ontinuous) funtions, this integral exists in the Cauhy

prinipal value sense, and it an be extended by ontinuity to all of L

p

(R; �).

The orresponding matrix G

g

has the form

G

g

(t) =

1

�i

0

B

B

�

1

1� t

�

1

1 + t

1

1 + t

1

t� 1

1

C

C

A

; t 2 R

+

:

Consider the matrix B

g

(z) :=MG

g

(z). We determine its entries. Using formulae

3.238.1 and 3.238.2 of [4℄ one obtains for z 2 R

b

11

(z) =

1

�i

Z

+1

0

x

1=p+��1�iz

1� x

dz = oth(�(z + i(1=p+ �)):

Analogously, by 3.194.4 of [4℄,

b

21

(z) =

1

�i

Z

+1

0

x

1=p+��1�iz

1 + x

dz =

1

sinh(�(z + i(1=p+ �))

:

Hene,

B

g

(z) =

 

oth(�(z + i(1=p+ �)) �1= sinh(�(z + i(1=p+ �))

1= sinh(�(z + i(1=p+ �)) � oth(�(z + i(1=p+ �))

!

: (28)

From this representation, some basi properties of the singular integral operator

an be derived almost at one. For example, the entries of the matrix B

g

are

ontinuous and have �nite total variation on R, and their limits at �1 are

B

g

(+1) =

 

1 0

0 �1

!

; B

g

(�1) =

 

�1 0

0 1

!

:

Therefore, S

R

is a bounded operator on L

p

(R; �). Notie in this onnetion that

the ontinuity onditions for the operator T

g

given in [3℄, Theorem 1, are too

restritive. The funtion g used above is neither bounded nor belongs to L

1

(R)

as required in [3℄, but nevertheless the operator S

R

= T

g

is bounded on L

p

(R; �).

As another appliation of (28), we examine the invertibility of S

R

. As already

mentioned, this operator is invertible if and only if the determinant of B

g

does

not vanish on R. Sine

detB

g

(z) =

1� osh

2

(�(z + i(1=p+ �))

sinh

2

(�(z + i(1=p+ �))

= �1;

the operator S

R

is invertible on eah of the spaes L

p

(R; �) with 1 < p <1 and

0 < 1=p + � < 1. Its inverse operator an be written as a blok Mellin operator

12



the Mellin symbol at z 2 R of whih is equal to

1

detB

g

(z)

 

� oth(�(z + i(1=p+ �)) 1= sinh(�(z + i(1=p+ �))

�1= sinh(�(z + i(1=p+ �)) oth(�(z + i(1=p+ �))

!

=

 

oth(�(z + i(1=p+ �)) �1= sinh(�(z + i(1=p+ �))

1= sinh(�(z + i(1=p+ �)) � oth(�(z + i(1=p+ �))

!

: (29)

Comparing (28) and (29), we obtain

S

�1

R

= S

R

: (30)

Of ourse, all these results are well known and an be proved without having

reourse to Mellin tehniques. But they illustrate these tehniques quite well.

Due to the simple struture of the operator T

g

= S

R

, it is more onvenient to

study the invertibility of the Galerkin approximations P

n

S

R

P

n

and P

n

Q

m

S

R

Q

m

P

n

diretly and without doubling the dimension. The point is that the operator

E

n

P

n

S

R

P

n

E

�n

is again independent of n and that this operator oinides with

the Laurent operator L(�) on l

p

(Z; �). By de�nition, the Laurent operator L(a)

with generating funtion a 2 L

1

(T) is given via its matrix representation

L(a) =

0

B

B

B

B

B

B

B

B

B

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a

0

a

�1

a

�2

a

�3

.

.

.

.

.

.

a

1

a

0

a

�1

a

�2

.

.

.

.

.

.

a

2

a

1

a

0

a

�1

.

.

.

.

.

.

a

3

a

2

a

1

a

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

C

C

C

C

C

C

C

C

C

A

with respet to the standard basis of l

p

(Z; �). As in the Toeplitz operator ase, a

suÆient ondition for the boundedness of this operator is that the funtion a is

pieewise ontinuous and has a �nite total variation. A basi di�erene between

Toeplitz and Laurent operators with pieewise ontinuous generating funtions is

that L(a)L(b) = L(ab) (whereas the orresponding result for Toeplitz operators

is de�nitely wrong in general). Consequently, the Laurent operators generate

a ommutative algebra, whereas the Toeplitz operator algebra T

p

(�) is merely

ommutative modulo ompat operators. This implies that the Laurent operator

L(a) is invertible if and only if the funtion a is invertible in L

1

(T).

Sine the essential range of � is the interval [�1; 1℄, the operators P

n

S

R

P

n

=

E

�n

L(�)E

n

annot be invertible. For that reason, we replae the kernel funtion

(27) by

g(t) = a+ b

1

�it

; t 2 R (31)

13



with omplex onstants a and b. Then T

g

= aI + bS

R

and E

n

P

n

S

R

P

n

E

�n

=

L(a + b�), and the latter operator beomes invertible if a and b are suitably

hosen. At this point, it is suÆient to require that 0 does not lie on the segment

joining a� b to a+ b.

Proposition 6.1 Let the kernel funtion g be given by (31). Then the sequene

(P

n

T

g

P

n

) is stable if and only if 0 62 [a� b; a+ b℄.

What happens with the operators P

n

Q

m

T

g

Q

m

P

n

? Their invertibility orresponds

to the stability of the �nite setions sequene R

0

n

L(a)R

0

n

where the projetions

R

0

m

on l

p

(Z; �) are de�ned by

R

0

m

: (x

n

)

n2Z

7! (y

n

)

n2Z

with y

n

:=

�

x

n

if �m � n � m� 1

0 else:

Evidently, the matrix R

0

n

L(a)R

0

n

an be identi�ed with R

2n

T (a)R

2n

. Thus, the

�nite setion method for the Laurent operator L(a) orresponds to (a subsequene

of) the �nite setion method for the Toeplitz operator T (a). The stability of the

�nite setion method for that Toeplitz operator is well understood. The following

result is a orollary of a more general theorem of [5℄. A diret proof whih works

in ase the generating funtion of the Toeplitz operator has exatly one point of

disontinuity an be found in [9℄.

Proposition 6.2 Let  be a pieewise ontinuous funtion with �nite total vari-

ation. Then the �nite setion method applies to the Toeplitz operator T () on

l

p

(N ; �) if and only if the operator T () is invertible on l

p

(N ; �) and if the oper-

ator T (~) with ~(y) := (1=y) is invertible on l

p

(N ; 0).

For the kernel funtion g as in (31), the appliability of the �nite setion method

to T (a+b�) is equivalent to the invertibility of T (a+b�) on l

p

(N ; �) and of T (a�

b�) on l

p

(N ; 0). The invertibility of the �rst mentioned operator is equivalent to

the fat that the point 0 does not lie in the region whih is bounded by

[a+ b; a� b℄ [ fa+ b oth �(z + i(1=p+ �)) : z 2 Rg;

whereas the invertibility of the seond operator is equivalent to the fat that 0 is

not ontained in the region bounded by

[a� b; a + b℄ [ fa� b oth �(z + i=p) : z 2 Rg:

Both regions are bounded by a union of a straight line with a irular ar.

7 Splines of Higher Order

The Galerkin approximations onsidered so far have been based on the �rst order

splines, viz. the splines generated by the harateristi funtion N

(1)

:= �

[0;1)

.

14



The use of higher order splines might give a better approximation for both uni-

form and foveated signals. Of ourse the replaement of the basis funtions leads

to di�erent approximation operators, so the stability problem must be studied

one again. Thereby, it turns out that the operators whih arise if one is using

splines of higher order to approximate the foveated images again belong to the

Toeplitz algebra T

p

(�)

2�2

we already met. Therefore, the study of the stabil-

ity problem for suh operator sequenes one an again based upon the approah

presented in setions 4 and 5. Let us briey omment on the amendments whih

have to be made in this situation.

For a given d � 2, the d-th order ardinal B-spline N

(d)

is de�ned reursively

by

N

(d)

(t) :=

Z

1

0

N

(d�1)

(t� s) ds:

The following important properties of the ardinal splines N

(d)

are well known:

1. The support of N

(d)

is the interval [0; d℄.

2. N

(d)

(t) > 0 for all t 2 (0; d).

3. N

(d)

(�t + d) = N

(d)

(t) for every t 2 R.

Let us �x a positive integer n and introdue funtions '

nj

, j 2 Z by

'

nj

(t) :=

(

N

(d)

(nt� j) if j � 0

N

(d)

(nt� j � d+ 1) if j < 0:

Let S

d

n

(R

+

) be the smallest losed subspae of L

p

(R

+

; �) whih ontains all fun-

tions '

nj

, j = 0; 1; : : :, and let S

d

n

(R) be the smallest losed subspae of L

p

(R; �)

whih ontains all funtions '

nj

, j 2 Z. In analogy to the previous analysis in

ase d = 1, one an introdue the Galerkin projetions

e

P

I

n

: L

p

(I; �)! S

d

n

(I) by

e

P

I

n

f := n

X

k2Z

hf; '

nk

i'

nk

; (32)

and rewrite equation (15) with the projetions onto the spaes S

n

(I) = S

(1)

n

(I)

replaed by projetions

e

P

I

n

. Again, the operators

e

E

n

: l

p

(Z; �)! S

d

n

(R); (�

j

)

j2Z

!

X

j2Z

�

j

'

nj

are ontinuously invertible with inverses

e

E

�n

, and

k

e

E

n

k � C n

�(1=p+�)

; k

e

E

�n

k � C n

1=p+�
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with a ertain onstant C. Repeating and modifying the arguments of Setion 4

one obtains that the approximation method whih is the analog of the method

(15) but based on the spline N

(d)

with d � 2, is stable if and only if the operator

e

E

1

e

P

1

T

g; �

e

P

1

e

E

�1

: l

p

(Z; �)! l

p

(Z; �)

is invertible. The entries

e

A

jk

of the matrix representation of that operator with

respet to the standard basis of l

p

(Z; �) an be alulated by formulas similar to

(22). For example, if j � 0 and k � 0, then

e

A

jk

=

1

�

Z

j+d

j

N

(d)

(x� j)

Z

k+d

k

1

jxj

g

�

1

�

�

t� x

jxj

��

N

(d)

(t� k) dt dx:

An additional analysis shows that the operator

e

E

1

e

P

1

T

g; �

e

P

1

e

E

�1

an be identi�ed

with an operator

e

D

g;�

= (

e

D

rl

)

2

r; l=1

in the algebra T

p

(�)

2�2

where the symbol of

the operator

e

D

rl

is

(t; z) 7!

(

�

rl

+ �

rl

e�(t) if t 6= 1

�

rl

� �

rl

oth �(z + i(1=p+ �)) + (d)n

rl

(z) if t = 1

with �

rl

and �

rl

as before,

e�(e

2�iy

) := �

sin

2d

�y

�

2d

X

m2Z

sgn (y +m)

(y +m)

2d

for y 2 (0; 1)

and

(d) =

�

Z

d

0

N

(d)

(t) dt

�

2

:

Further steps lead to results analogous to those of Setion 5. Thus Theorem 5.1

an be reformulated with the orresponding replaement of the operator D

g;�

by

e

D

g;�

.

Conluding Remarks

Our analysis shows that the use of the operator (1) does not only allow to reate

and transmit foveated images. It o�ers also the possibility to restore their ap-

proximate uniform pre-images. Moreover, if the kernel k of the integral operator

(1) gives rise to a stable approximation method, then the quality of suh restored

uniform pre-images an be quite satisfatory as estimate (19) shows.

As was also pointed out, one might use other numerial proedures to approx-

imate foveated images. For example, one an apply proedures based on meshes

having higher density around the points of interest. Another possibility is to use
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wavelets instead of splines. The Galerkin proedures onsidered in the present

paper an also be replaed by other numerial methods, for example by quadra-

ture or by olloation methods. Of ourse, eah new approahe will require an

additional analysis for the stability of the employed numerial proedures. How-

ever, in many ases, these approximation proedures for the operator (1) an

be assoiated with well understood operator algebras, whih allows one to �nd

riteria of their stability.
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