Approximate Foveated Images and
Reconstruction of their Uniform Pre-Images

V. D. Didenko, S. L. Lee, S. Roch, B. Silbermann

Abstract

Approximate foveated images can be obtained from uniform images via
the approximation of some integral operators. In this paper it is shown that
these operators belong to a well studied operator algebra, and the problem
of restoration of the approximate uniform pre-images is considered. Under
common assumptions on smoothness of the integral operator kernels, nec-
essary and sufficient conditions are established for such procedure to be
feasible.

1 Introduction

Foveated images are used in image processing to reduce information in the visual
field while preserving resolution at a given point — the fovea. Technically, foveated
images can be obtained from uniform images in different way, cf. [2, 3, 7, 8, 10].
One of the approaches proposed is based on the use of integral operators

T)w = [ Kot d 0

o0

with special kernels %, see [3]. The function ¢ in (1) is the initial signal (uniform
image) and T'¢ represents its foveated image. To implement this method, Chang,
Mallat and Yap [3] employed a wavelet approximation ¢, to the signal ¢ with
subsequent approximation of T'¢,. More precisely, their approach can be char-
acterized as follows. Let g be a function on the real line R, and let w = w, 3(z),
x € R denote the function

wy,p(x) = Plz =], yeR, R \{0}.

For a given positive number m, one considers the linear operator (), defined on
L*(R) by
f(z) ifz € [—m, m]

(@mf)(x) = { 0 otherwise.



Moreover, let P, denote the orthogonal projection onto a subspace of L?(R)
generated by a wavelet basis. In [3], the following approximate foveated image
Y of the signal ¢ is considered:

Un' (2) = (PaQumTQmP,)(x) (2)

where 7' is the operator (1) with kernel

(1) = — g(t_x>- (3)

wy, () we, 5(7)

In this setting, the parameter 7 represents the point of highest resolution and is
called the fovea. The parameter 5 determines the speed at which the resolution
falls off when the distance from the fovea grows, cf. [3].

Note that the operators P,Q,,T7QnF,, n € N, can be viewed as Galerkin
approximations for the operator @,,7Q),,. Sequences of Galerkin approximations
have been studied in connection with different problems of analysis and mathe-
matical physics. If the kernel & has the form (3), then the corresponding operator
T can be represented in a special way. Namely, if U,, v € R, denotes the shift
operator

U, )() = flx=7), zeR,

then T can be rewritten as

T =UyT,,pU (4)
where T, g is the integral operator (1) with the fovea v = 0, i.e.
oo 1 t—u
T, 5f)(x) = ft—g( )dt. 5

Therefore, without loss of generality, we can restrict our attention to the operator
Ty, g only. Moreover, as we will see later, the operator Ty g belongs to a class of
integral operators which is quite well understood. This enables us to examine
the properties of the foveated image T'¢ in more detail.

In the present paper we consider the following problems. Assume that an
approximate foveated image 1" is known. Is it possible to reconstruct its ap-
proximate uniform pre-image ), P, 7 It is obvious that, in general, the answer
to this question is negative. However, one can try to find conditions which would
make such a reconstruction feasible. Another relevant problem is that of the
quality of the approximate uniform images one obtains. More precisely, if ¢,
n € N is an approximation for ¢, then what can be said about the errors ¢ — ¢,
at least for large n? In the present paper these problems are studied for the
Galerkin approximation. For the sake of simplicity, piecewise constant splines
are used to approximate the uniform and foveated images, although other ap-
proximation spaces can be used, too. Approximations based on splines of higher



order are briefly discussed in the concluding part of the paper. It is also worth
mentioning that the Galerkin scheme can be replaced by other approximation
procedures, for example by collocation, quadrature or qualocation, which are
often more convenient from a computational point of view.

Throughout this paper, we let p and a be real parameters with 1 < p < oo
and 0 < o+ 1/p < 1 and, given an interval I C R, we write L?(I,«) for the
Banach space of all Lebesgue measurable functions f : I — C such that

VP = A, = / FOPI dt < 0. (6)

As usual, the Banach dual LP(I, «)* of LP(I, «) will be identified with LI(I, —«)
where 1/p+ 1/q =1 with respect to the sesqui-linear form

(f, 9) = /If(t)@ dt.

Given a linear space X and a positive integer r, we denote by X, the linear space
of column vectors of length » with components from X, and we let X" refer to
the linear space of r x r matrices with entries from X. Further, B(X) denotes
the Banach algebra of all bounded linear operators on the Banach space X, and
im A stands for the range of the operator A € B(X).

2 Integral Operators of Mellin type

In this section, we represent the operator T, g defined by (5) in a special form
which will prove to be helpful in what follows. In [3], T, s has been studied on
the space L?(R), whereas we will allow this operator to act on the weighted space
LP(R, «).

It is convenient in what follows to identify the space LP(R, «) with the space
LE(R", o) which consists of all pairs (fi, fo)? with fi, fo € LP(RT, o). If we
provide the space L5(R", «) with the norm

1(f1, f2)T||p = ||fi

P
p,a, Rt

mart TIf2
then the mapping

n: (R, o) = LY(RY, o), n(f) s (f(s), f(=3))" (7)
becomes an isometric bijection the inverse of which acts via
fi(s) if seRT

([ )] () = { o 3)
fo(=s) if seR".



Thus, the mapping
Uy BLP(R, @) = B(LHRT, ), A=Ay~

is an isometric algebra isomorphism and, therefore, the properties of the operator
Y, (A) completely reflect the corresponding properties of A and vice versa. There
are, however, some instances where the operator 1, (A) has a nicer structure than
the operator A. In particular, it will turn out in a moment that the entries of the
operator v, (A, 3) are Mellin convolution operators, a class of operators which is
defined as follows.

Let M and M ! denote the direct and inverse Mellin transform, respectively,
ie.

+o0
(Mf)(z) = / PP o g L e R
0
and

O =g [T e e rer

It is well known (see, e.g., [5], pp. 47-48) that if b is an LP(R)-Fourier multiplier,
then
M(b) := MbM* (9)

defines a bounded linear operator M(b) on LP(R*, «), the so-called Mellin op-
erator with symbol b. In case the kernel function & := M~'b belongs to L'(R)
with respect to the measure ds/s, the Mellin operator (9) can be represented as
the integral operator

(M) f)(s) = / Tk(s/0)f(0) 2, s e R (10)

Proposition 2.1 Let the operator T, 3 € B(LP(R, «)) be defined by (5). Then
Un(T,,p) is the block Mellin operator M(By,, z) with symbol By g = M G, s
where

, teR (11)

Proof. The operator T, gn ' acts as follows:

(Ty,5m7 ' [(f1, f2)" D (s)

=3 0+Oof1()|i| () 7+ / rn g () 02




The second term on the right-hand side of this equality can be rewritten as

1 [t U —u—s\ du
sl e ()

Hence, by (7),

(G e (7)o () ©) 0

i ()55 1) %

= oo " " B s € R". (13)
7 fﬂw(;)Q(%(‘;“))%

Performing analogous transformations for the first term on the right-hand side of

(12) we get
T o ( T Th ) (14)
Mg,8N =
I Ty
where each of the operators T;; is a Mellin operator of the form (10) with a kernel
defined by the corresponding entry of the matrix (11). n

3 Galerkin approximations of the foveated im-
ages

Let R = RU {£oco} be the compactification of the real axis by the two points
+o00, and let C'(R) refer to the algebra of all complex-valued functions f which
are continuous on R and possess finite limits f(£00) at £oo. Further, let R =
R U {oo} refer to the one-point compactification of the real axis, and let C(R)
consist of all complex-valued functions in C(R) for which f(—o0) = f(4+00). We
denote this common value by f(c0).

From now on we assume that the entries of the matrix B, g have finite total
variation on R and belong to C(R). These conditions imply the boundedness
of the operator T, g on LP(R, «), cf. [5]. If, in addition, det B, 5(t) # 0 for all
t € R, then the operator T, s is invertible, and its inverse is the Mellin operator
M(B;IB) Note that the invertibility of the operator 7, s does not play any role if
one only considers the approximate foveated image v". However, this condition
cannot be avoided if we want to restore the approximate uniform image @), P, .

Let x : R — {0, 1} be the characteristic function of the interval [0,1), and let
I denote one of the sets R or Rt. For each fixed natural number n, we consider
the functions

onj(t) == x(nt —j), JjE€Z,
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and we denote by S, (I) the smallest closed subspace of L?(I, ) which contains
all functions ¢y, 7 € Z, which have their support in I. Further we introduce the
Galerkin projections P! : LP(I, o) — S, (I) by

Pif:=n Y (fs onk)uk:

keznI

To simplify notations, we abbreviate P¥ to P, and PX" to P;.
What we are interested in is approximations 1" of the foveated image of the
signal ¢ € LP(R, «) of the form

%T = PanTg,BQmPnSO- (15)

As already mentioned, such kind of approximate foveated images has been con-
sidered in [3] (based on a projection onto a space of wavelets in place of the spline
projection P,). Assume that ¢! is known. Are there any conditions which allow
us to restore the approximate uniform image @Q,, P, ¢ (provided the parameter (3
and the smoothing function ¢g are known)?

To put these questions into an appropriate context, we have to recall some
notions from numerical analysis. Let X be a Banach space, and let (L, ),en be a
sequence of projections on X which converges strongly to the identity operator.
As usual, strong convergence of a sequence (A, ),en to an operator A € B(X)
means that lim, .., A,z = Az for every x € X. Consider an operator equation

Ar =y, =z,ye X, AeB(X) (16)
and a sequence of its approximations
A,L,x, = Lyy, x,€imlL,, A, € B(imlL,). (17)

Regarding the approximation operators A,,, one usually assumes that equations
(17) are consistent with equation (16) in the sense that the sequence (A,L;,)
converges strongly to the operator A.

Definition 3.1 The approzimation method (17) is stable if there is a number ny
such that the operators A, : im L,, — im L,, are invertible for all n > ngy and if

M = sup ||4,']] < co. (18)

n>ng

Let the operator A be invertible and the approximation method (17) be stable,
and let z* and x}, n > ng, denote the solutions of equations (16) and (17),
respectively. Then one easily gets the error estimate

|lo* — @k || < M||Az* — A,Lya*|| + [|&* — Lya*|| (19)

where M is defined by (18).



4 Invertibility of P, T, 3P,

We start our considerations with studying the stability of the following approxi-
mation method

where P, are the above defined projections, and 1 is the foveated image of the
initial signal ¢. Here we assume that the user knows P,1 and wants to restore

Pn-

Proposition 4.1 Let B, 3 € C***(R), and let the entries of B, 3 have finite total
variation on R. Then the approzimation method (20) is stable if and only if the
operator PyT, 3P, : S1(R) — Si(R) is invertible.

Proof. Let [P(Z, «) refer to the set of all sequences (&;);ez of complex numbers
such that

HENNP == 1&P(1+ 1) < o0.
JEZL

For every natural number n, we consider the operators

Ey:PP(Z, 0) = Su(R),  (&§)jez = Y &ionj-

JEZ

It is well-known (see, e.g., [1]) that these operators possess continuous inverses
E ,:=E;':5,(R) — [’(Z, a) and that there is a constant C such that

|E,|| < Cn~ P+ and  ||E_,|| < Cnl/rte, (21)

Hence, the operators
P, T, 3P, : Sy,(R) = S,(R)

are invertible if and only if the corresponding operators
E.P,T, sP,E_,: [P(Z,a) = IP(Z, a)

are so. Consider the matrix representation A, = (Ajx);kez of the operator
E,.P,T, 3P,E_, with respect to the standard basis of I?(Z, «). Straightforward
calculations yield

i = [0 ()
ST (1)) P




Thus, the entries of the matrices A, are independent of n. Therefore, the ap-
proximation method (20) is stable if and only if the operator £y P\ T, g P E_; is
continuously invertible. Taking into account the estimates (21), we get the claim.
]

Now we are going to consider the operator EyPT, sPiE_; in more detail. As
was already mentioned, 0Ty gn~" = M(By 3) = (T.);,—, where every T, is a
Mellin convolution operator on LP(R*, o) with symbol from C(R). It is easy to

check that for every n,
NPt = diag (P, Py).

Hence, Ey P Ty s P, E_ can be identified with an operator Dy 3 = (D,);, -, where
the operators D,; act on I5(N, «). Moreover, a detailed analysis yields that each
operator D,; belongs to an algebra which is generated by Toeplitz operators.

So let us recall briefly what a Toeplitz operator is. Write T for the complex
unit circle, let @ € L*(T), and denote by ax the k th Fourier coefficient of a,

1 2

a(e®)e *dp, ke Z.

ay ;= —
g 2m J,
If the function a is piecewise continuous on T and has a finite total variation,
then the operator which acts on the finitely supported sequences in [?(N, «) via

(xn)nEN = (yn)nEN with Yn = Zankak
keN

extends by continuity to a bounded linear operator T'(a) acting on all of (P(N, «).
Thus, the matrix representation of T'(a) with respect to the standard basis of
IP(N, «) is given by

apy a_1 a_9 Qa_3
a ay a—1 a2
T(a)=|a a a a
as Qg ay Qo

We let TP(a) stand for the smallest closed subalgebra of ®B(IP(N, «)) which con-
tains all Toeplitz operators T'(a) with a generating function a having finite total
variation on T, being continuous on T\ {1}, and possessing finite one-sided limits
at 1 € T. Thus, the precise formulation of the above vague statement on D, g
is that this operator belongs to T?(a)**2. A proof of this fact is in [5], Sections
2.2.3 and 2.4.3.

It is a serious problem to decide whether an operator in 7?7 («) is invertible.
But there is a very comfortable criterion for the Fredholmness of operators in
T?(«) which we will recall next. To each Toeplitz operator A = T'(a) where a is as

8



above (i.e. it has finite total variation, is continuous on T\ {1}, and possesses finite
one-sided limits a(1 £ 0) taken with respect to the counter-clockwise orientation
of T) we associate the function A* : T x R — C which maps (¢, 2) into a(t) if
t # 1 and into

a(1+0)+a(l—0) a(l+0)—a(l-0)
2 2
if t = 1. Thus, one makes the range of a to a closed curve in C by joining the

points a(1 £ 0) by a certain circular arc depending on the parameter 1/p + .
If now A € T?(«) is a finite sum of products of Toeplitz operators A;;, then we

define
= O T4 =>4

The mapping A — A* is correctly defined, and it extends by continuity onto
all of TP(«). The function A is also called the symbol of the operator A. The
relevance of the symbol A* for the purpose of Fredholmness is as follows: The
operator A € T?(«) is Fredholm if and only if the point 0 does not belong to the
range of A". Moreover, if one provides the curve A*(T x R) with the orientation
inherited by the counter-clockwise orientation of T, then the Fredholm index of
A € T?(a) is equal to the negative winding number of the curve A*(T x R) with
respect to the origin.

In order to apply these results to the discretized operator D, g we still need
another property of the algebra 77(«), namela it is commutative modulo com-
pact operators. From this commutativity we conclude that the operator D, g =
(D,;) € T?(a)**? is Fredholm if and only the operator

cothm(z+i(1/p + «))

det(D”) = D11D22 — D12D21 € Tp(a)

is Fredholm, and that their indices coincide. Thus, Dy 5 is a Fredholm operator
if and only if 0 does not lie on the curve (D¥ D%, — D!, D% )(T x R), and in this
case the index of Dy 3 is minus the winding number of that curve.

[t remains to compute the symbols of the operators D,y = Ey PLM (b)) P E
where b, is the rith component of the function B, g. We write

bri(2) = pp + vy cothm(z +i(1/p + @) + ny(2)

where fi,4, v,y € C are chosen such that n,;(£o0) = 0. (Recall that the limits of
the coth-function at infinity are +1.) Then the symbol of D, is equal to

(t ) N o + Vpy U(t) if ¢ 7é 1
, 2
prg — Vpy cothm(z +i(1/p+a)) +ny(z) if t=1

where

0(62”?’) — sin? 7ry Z sgn Jng + m (23)
y m

meZ



for y € (0,1). A detailed computation of these functions can be found in [5],
Sections 2.2.3, 2.4 and 2.5.2. Geometrically, this condition is quite simple again
since the range of the restriction of this mapping onto (T \ {1}) x R is just the
interval (fy + Vety frr — Vpt)-

5 Invertibility of P,Q,,T, sQuP,

We will now apply the methodology developed in the previous section to obtain
results on the stability of the following approximation method

PanTg,ﬂQmPn(P;n - Pani/), m, nec Na @;n € imP, (24)

where again P, and @), are the above defined projections and where ¢ := T} 3¢
is the foveated image of the initial signal. Thus, we assume P,Q),,% to be known
to the user who wants to restore ¢!". Observe that the right hand sides of the
equations (24) can be replaced by the approximate foveated images " defined
by (2) without changing the asymptotic solvability properties of these equations.
This follows simply from the fact that the sequences (P,) and (Q,,) of projections
converge strongly to the identity operator. Thus, the norms ||P,Q,% — ||
become as small as desired if m and n are chosen large enough.

It turn out that the problem of stability of the approximation method (24)
can be reduced to the stability of a finite section method for the operator D, g
which belongs to the Toeplitz algebra 77 («)?*2. Towards this end we provide
the space I5(N, «) with the norm ||(f, ¢)||? := ||f||” + ||g]|’. Then the mapping

(f, g) — h with
| f(n) if n>0
hn) := { g(=1—n) if n<0

is an isometry from I5(N, «) onto IP(Z, ). Analogously, the space L5(]0, 1], «)
is identified with LP([—1, 1], «)
For [ € N, define projections R; on [P(N, «) by

. T, if n<l
R : (lEn)neN = (yn)neN with gy, = { 0 if > L

Since P,Q,, = Q. FP,, the calculations from the previous section immediately
yield that the operator P,Q,, Ty, sQ Py is invertible if and only if the operator

EnPanTg,ﬂQmPnEfn = EanEannPnTg,ﬂPnEananEfn
= EanEanlpng,ﬂplEflEanEfn

and, thus, the operator
Rmn 0 Dll D12 Rmn 0 _ RmnDllRmn RmnDIZRmn
0 Rmn D21 D22 0 Rmn N RmnDZI Rmn RmnDQZRmn
(25)
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is invertible. Consequently, the stability of the approximation method (24) is
equivalent to the stability of the finite section method for the operator D, s €
T?(a)**% which has

EOERED
0 R Dy Doy 0 R

as its system matrices. The finite section method for a large class of operators
including the operators (D,;) from (26) has been studied in [5], Sections 4.1.1 —
4.1.3. A characterization of the stability of the approximation method (26) can
be deduced from these general results. Note that formally, we only get a sub-
sequence of the sequence of the finite section method. But, as has been shown
in [6], the sequence formed by the matrices in (26) and its subsequence formed
by the matrices in (25) are simultaneously stable or not. Moreover, the finite
section method for operators in the Toeplitz algebra is an example of a fractal
approximation method; roughly speaking fractality means that every infinite sub-
sequence of the sequence of the approximation matrices allows one to restore the
complete sequence up to a sequence which tends to zero in the norm. Thus, every
subsequence contains the same ”asymptotic information” as the whole sequence.
For more facettes of this fascinating topic see [6].

Summarizing these results we arrive at the following theorem.

Theorem 5.1 Let B, 3 € C?**(R), and let the entries of By have finite total
variation on R. The approximation method (24) stable if and only if

(a) the operator D, g is invertible on I5(N, «),

(b) the operator (T'(pr — vyo))? 1y is invertible on I5(N, 0), and

(¢) the operator (xpo, 1 Trixo,11)7. =, is invertible on L5([0, 1], ).

6 An example

We will illustrate the obtained results by an example of a very special kind. Let
the function g be given by

1
t)=—, teR 27
o(t) = —. (27)

We are aware of the fact that this is not a smoothing function as considered in [3].
But for this function, several conditions mentioned previously take a simple and
effective form. Thus, it seems to be a good candidate to illustrate our approach
to foveation operators.

If g is specified as above, then the operator T, s does no longer depend on /3,
and we denote it by 7,. It turns out that T, : L?(R, a) — LP(R, «) is just the
singular integral operator Sk acting by

sehw == [ M

T o t—X

11



For good (say Holder continuous) functions, this integral exists in the Cauchy
principal value sense, and it can be extended by continuity to all of LP(R, «).
The corresponding matrix G, has the form

1 1
ol 1—t 14t N
Gg(t)—g 1 1 , teR".
1+t t—1

Consider the matrix By(z) := MG 4(z). We determine its entries. Using formulae
3.238.1 and 3.238.2 of [4] one obtains for z € R

1 +o00 a;.l/p—l-a—l—iz

Analogously, by 3.194.4 of [4],

1+ dz = sinh(7 (2 +i(1/p + a))

1 +o0 xl/p-l—a—l—iz 1
bo1(2) = —/ _
0

¥

Hence,

( coth(r(z +i(1/p + a)) —1/sinh(7r(z+i(1/p+a))>
B,(z) = . (28)
1/sinh(r(z +i(1/p+a)) —coth(n(z+i(1/p+ a))

From this representation, some basic properties of the singular integral operator
can be derived almost at once. For example, the entries of the matrix B, are
continuous and have finite total variation on R, and their limits at oo are

1 0 -1 0
Bg(+oo>=<0 _1>, Bg<—oo>=( 0 1).

Therefore, Sg is a bounded operator on LP(R, «). Notice in this connection that
the continuity conditions for the operator T, given in [3], Theorem 1, are too
restrictive. The function g used above is neither bounded nor belongs to L'(R)
as required in [3], but nevertheless the operator Sg = T, is bounded on L?(R, «).

As another application of (28), we examine the invertibility of Sg. As already
mentioned, this operator is invertible if and only if the determinant of B, does
not vanish on R. Since

_ 1—cosh*(n(z +i(1/p+ ))

det By (=) = sl(nz i /pta) "

the operator Sg is invertible on each of the spaces LP(R, «) with 1 < p < oo and
0 < 1/p+ «a < 1. Its inverse operator can be written as a block Mellin operator

12



the Mellin symbol at z € R of which is equal to

. (—coth(w(z+i(1/p+a)) 1/sinh(7r(z+i(1/p+a))>

det By(z) —1/sinh(r(z +i(1/p+ @)  coth(m(z +i(1/p + o))

_ ( coth(m(z+i(1/p+«a)) —1/sinh(7(z+i(1/p+ «)) > )
1/sinh(7m(z +i(1/p+«)) —coth(m(z+i(1/p + ))
Comparing (28) and (29), we obtain
St = Sk. (30)

Of course, all these results are well known and can be proved without having
recourse to Mellin techniques. But they illustrate these techniques quite well.

Due to the simple structure of the operator 7, = Sg, it is more convenient to
study the invertibility of the Galerkin approximations P, Sg P, and P,,Q,, Sk Qm Py
directly and without doubling the dimension. The point is that the operator
E,P,SgP,E_, is again independent of n and that this operator coincides with
the Laurent operator L(o) on [P(Z, «). By definition, the Laurent operator L(a)
with generating function a € L*°(T) is given via its matrix representation

Qo a_1 a_g Qa_3
aq Qo a_1 QA_9
a9 aq ap a_q

a3 a2 a1 Qo

with respect to the standard basis of [P(Z, ). As in the Toeplitz operator case, a
sufficient condition for the boundedness of this operator is that the function a is
piecewise continuous and has a finite total variation. A basic difference between
Toeplitz and Laurent operators with piecewise continuous generating functions is
that L(a)L(b) = L(ab) (whereas the corresponding result for Toeplitz operators
is definitely wrong in general). Consequently, the Laurent operators generate
a commutative algebra, whereas the Toeplitz operator algebra 7?(«) is merely
commutative modulo compact operators. This implies that the Laurent operator
L(a) is invertible if and only if the function a is invertible in L>(T).

Since the essential range of o is the interval [—1, 1], the operators P,Sg P, =
E_,L(0)E, cannot be invertible. For that reason, we replace the kernel function
(27) by X

g(t):a+b%, teR (31)
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with complex constants a and b. Then T, = al + bSg and E, PSP, E_, =
L(a + bo), and the latter operator becomes invertible if @ and b are suitably
chosen. At this point, it is sufficient to require that 0 does not lie on the segment
joining a — b to a + b.

Proposition 6.1 Let the kernel function g be given by (31). Then the sequence
(P, T,P,) is stable if and only if 0 & [a — b, a + b].

What happens with the operators P,Q,,T,Q)mP,,? Their invertibility corresponds
to the stability of the finite sections sequence R! L(a)R], where the projections
R! on [P(Z, o) are defined by

) v, f —m<n<m-—1
R, (Tn)nez v (Un)nez  With g, == { 0 else.

Evidently, the matrix R! L(a)R!, can be identified with Ry,7(a)Ry,. Thus, the
finite section method for the Laurent operator L(a) corresponds to (a subsequence
of) the finite section method for the Toeplitz operator T'(a). The stability of the
finite section method for that Toeplitz operator is well understood. The following
result is a corollary of a more general theorem of [5]. A direct proof which works
in case the generating function of the Toeplitz operator has exactly one point of
discontinuity can be found in [9].

Proposition 6.2 Let ¢ be a piecewise continuous function with finite total vari-
ation. Then the finite section method applies to the Toeplitz operator T(c) on
IP(N, ) if and only if the operator T'(c) is invertible on IP(N, «) and if the oper-
ator T(¢) with é(y) := c¢(1/y) is invertible on (P(N, 0).

For the kernel function ¢ as in (31), the applicability of the finite section method
to T'(a+bo) is equivalent to the invertibility of T'(a+0bo) on IP(N, «) and of T'(a —
bo) on [P(N, 0). The invertibility of the first mentioned operator is equivalent to
the fact that the point 0 does not lie in the region which is bounded by

[a+b,a—blU{a+bcothm(z+i(l/p+a)):zeR},

whereas the invertibility of the second operator is equivalent to the fact that 0 is
not contained in the region bounded by

[a—b,a+bU{a—bcothm(z+i/p): 2z € R}

Both regions are bounded by a union of a straight line with a circular arc.

7 Splines of Higher Order

The Galerkin approximations considered so far have been based on the first order
splines, viz. the splines generated by the characteristic function N := X[0,1)-
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The use of higher order splines might give a better approximation for both uni-
form and foveated signals. Of course the replacement of the basis functions leads
to different approximation operators, so the stability problem must be studied
once again. Thereby, it turns out that the operators which arise if one is using
splines of higher order to approximate the foveated images again belong to the
Toeplitz algebra T?(a)?*? we already met. Therefore, the study of the stabil-
ity problem for such operator sequences one can again based upon the approach
presented in sections 4 and 5. Let us briefly comment on the amendments which
have to be made in this situation.

For a given d > 2, the d-th order cardinal B-spline N4 is defined recursively
by

ND(t) .= /1 N@D(t — 5)ds.
0
The following important properties of the cardinal splines N9 are well known:
1. The support of N4 is the interval [0, d].
2. N@(t) >0 for all t € (0,d).
3. ND(—t+d) = ND(t) for every t € R.
Let us fix a positive integer n and introduce functions ¢,;, j € Z by
N (nt — j5) if j>0
Puj(t) = { . o
Nt —j—d+1) if j<O.

Let S¢(R*) be the smallest closed subspace of LP(R*, o) which contains all func-
tions ¢4, j =0, 1, ..., and let S¢(R) be the smallest closed subspace of LP(R, «)
which contains all functions ¢,;, j € Z. In analogy to the previous analysis in

case d = 1, one can introduce the Galerkin projections P! : LP(I, ) — S%(I) by

ﬁ?{f ::nz<f7 S%k)%%k, (32)

keZ

and rewrite equation (15) with the projections onto the spaces S,(I) = S5 (I)
replaced by projections P!. Again, the operators

E,:P(Z, 0) > SAR),  (§)jez — Y &ipng
JEZ

are continuously invertible with inverses F_,,, and

Bl < Cn0r B, || < Cnt/rte
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with a certain constant C'. Repeating and modifying the arguments of Section 4
one obtains that the approximation method which is the analog of the method
(15) but based on the spline N with d > 2, is stable if and only if the operator

Elﬁng’ﬂﬁl_E,l . lp(Z, O[) — lp(Z, Oé)

is invertible. The entries A]k of the matrix representation of that operator with
respect to the standard basis of I?(Z, «) can be calculated by formulas similar to
(22). For example, if 7 > 0 and k£ > 0, then

~ 1 i B (1 (t—a
A== ND(z—j —g(= N@D(t — k) dt dz.
w=g [N [ e (5 () ) M- waa

An additional analys1s shows that the operator ElPng gPlE_l can be identified
with an operator Dg,g = (D”)” , in the algebra T?(«)?** where the symbol of

the operator D, is

(t ) L M + VTlg(t) if t#1
, 2
prt — U cothm(z+i(1/p+ a)) + c(d)ny(z) if t=1

with pu,;, and v,; as before,

o sm 7ry sgn y+m for y € (0 1)

2m’y)
(y +m) (y +m)2d

ole
meZ

= (/OdN(‘”(t) dt>2

Further steps lead to results analogous to those of Section 5. Thus Theorem 5.1
can be reformulated with the corresponding replacement of the operator D, s by

Dgyﬁ'

and

Concluding Remarks

Our analysis shows that the use of the operator (1) does not only allow to create
and transmit foveated images. It offers also the possibility to restore their ap-
proximate uniform pre-images. Moreover, if the kernel k£ of the integral operator
(1) gives rise to a stable approximation method, then the quality of such restored
uniform pre-images can be quite satisfactory as estimate (19) shows.

As was also pointed out, one might use other numerical procedures to approx-
imate foveated images. For example, one can apply procedures based on meshes
having higher density around the points of interest. Another possibility is to use
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wavelets instead of splines. The Galerkin procedures considered in the present
paper can also be replaced by other numerical methods, for example by quadra-
ture or by collocation methods. Of course, each new approache will require an
additional analysis for the stability of the employed numerical procedures. How-
ever, in many cases, these approximation procedures for the operator (1) can
be associated with well understood operator algebras, which allows one to find
criteria of their stability.
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