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Abstrat

We onsider the sequene of the �nite setions R

n

AR

n

of a band-

dominated operator A on l

2

(Z) with almost periodi oeÆients. Our

main result says that if the ompressions of A onto Z

+

and Z

�

are in-

vertible, then there is a distinguished subsequene of (R

n

AR

n

) whih is

stable. Moreover, this subsequene proves to be fratal, whih allows us

to establish the onvergene in the Hausdor� metri of the singular values

and pseudoeigenvalues of the �nite setion matries.

1 Introdution

Given a non-empty subset I of the set Z of the integers, let l

2

(I) stand for the

Hilbert spae of all sequenes (x

n

)

n2I

of omplex numbers with

P

n2I

jx

n

j

2

<1.

We identify l

2

(I) with a losed subspae of l

2

(Z) in the natural way, and we write

P

I

for the orthogonal projetion from l

2

(Z) onto l

2

(I).

The set of the non-negative integers will be denoted by Z

+

, and we write P

in plae of P

Z

+

and Q in plae of the omplementary projetion I � P . Thus,

Q = P

Z

�

where Z

�

refers to the set of all negative integers. For k 2 Z, de�ne

the shift operator

U

k

: l

2

(Z)! l

2

(Z); (x

n

) 7! (y

n

) with y

n

= x

n�k

:

Further, eah funtion a 2 l

1

(Z) indues a multipliation operator

a : l

2

(Z)! l

2

(Z); (x

n

) 7! (a

n

x

n

):

Notie that the shifted multipliation operator U

�k

aU

k

is a multipliation oper-

ator again:

(U

�k

aU

k

x)

n

= (aU

k

x)

n+k

= a

n+k

x

n

:

De�nition 1.1 A funtion a 2 l

1

(Z) is alled almost periodi if the set of all

multipliation operators U

�k

aU

k

with k 2 Z is relatively ompat in the norm

topology of L(l

2

(Z)) or, equivalently, in the norm topology of l

1

(Z). We denote
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the set of all almost periodi funtions on Z by AP (Z), and we write A

AP

(Z) for

the norm losure in L(l

2

(Z)) of the set of all operators

A =

K

X

k=�K

a

k

U

k

with a

k

2 AP (Z):

The operators in A

AP

(Z) are alled band-dominated operators with almost peri-

odi oeÆients.

Is is easy to see that AP (Z) andA

AP

(Z) are C

�

-subalgebras of l

1

(Z) andA

AP

(Z),

respetively.

For eah positive integer n, set

P

n

:= P

f0; 1; :::; n�1g

and R

n

:= P

f�n;�n+1; :::; n�1g

:

The projetions R

n

onverge

�

-strongly to the identity operator on l

2

(Z), and

the projetions P

n

onverge

�

-strongly to the identity operator on l

2

(Z

+

) when

onsidered as ating on l

2

(Z

+

) and to the projetion P when onsidered as ating

on l

2

(Z). For eah operator A 2 A

AP

(Z), we onsider the sequenes (R

n

AR

n

)

and (P

n

PAPP

n

) of its �nite setions. These sequenes onverge

�

-strongly to A

and PAP , respetively. Hene, they an be viewed as approximation methods

for these operators. The �nite setions sequenes (R

n

AR

n

) resp. (P

n

PAPP

n

)

are said to be stable if the operators R

n

AR

n

: imR

n

! imR

n

resp. P

n

PAPP

n

:

imP

n

! imP

n

are invertible for suÆiently large n and if the norms of their

inverses are uniformly bounded.

The stability of the �nite setion method for band-dominated operators with

arbitrary l

1

-oeÆients has been studied in [11, 12℄. The ruial observation

employed there is that the stability of the sequene (R

n

AR

n

) is equivalent to the

Fredholmness of an assoiated band-dominated operator whih an be treated

by means of the limit operators method. The resulting riterion says that the

sequene (R

n

AR

n

) is stable if and only if the operator PAP is invertible and

if a whole family of so-alled limit operators assoiated with that sequene is

uniformly invertible. Similarly, the stability of (P

n

PAPP

n

) is equivalent to the

invertibility of PAP plus the uniform invertibility of an assoiated limit operator

family. The preise statements an be found in [11, 12, 14℄.

In the present paper we will show if A 2 A

AP

(Z) and if the operators PAP

and QAQ are invertible then one an always �nd a subsequene of (R

n

AR

n

) resp.

of (P

n

PAPP

n

) whih is stable. Moreover, this subsequene an be e�etively

determined in many situations. Thus, the uniform invertibility of the (in general,

in�nite) family of limit operators is replaed by the invertibility of the single

operator QAQ.

The motivation to onsider suitable subsequenes of (R

n

AR

n

) omes from

a speial lass of band-dominated operators with almost periodi oeÆients:

the blok Laurent operators with ontinuous generating funtion. These are the
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operators on l

2

(Z) with matrix representation (a

i�j

)

i; j2Z

with respet to the

standard basis of l

2

(Z) where a

j

is the jth Fourier oeÆient of a ontinuous

funtion a : T ! C

l�l

,

a

j

:=

1

2�

Z

2�

0

a(e

it

)e

�ijt

dt:

The blok Laurent operator with generating funtion a will be denoted by L(a).

Sine every ontinuous funtion on T an be uniformly approximated by a poly-

nomial, blok Laurent operators with ontinuous generating funtion are band-

dominated operators with l-periodi (hene, almost periodi) oeÆients. If L(a)

is a blok Laurent operator, then the operator

T (a) := PL(a)P : l

2

(Z

+

)! l

2

(Z

+

)

is alled the assoiated blok Toeplitz operator with generating funtion a.

Let, for simpliity, l = 2 and write the jth Fourier oeÆient a

j

of the on-

tinuous funtion a : T ! C

2�2

as

a

j

=

�

a

j

00

a

j

01

a

j

10

a

j

11

�

:

Then the standard �nite setions sequene (P

n

PAPP

n

) for the blok Toeplitz

operator A = T (a) starts with

( a

0

00

) ;

�

a

0

00

a

0

01

a

0

10

a

0

11

�

;

0

�

a

0

00

a

0

01

a

�1

00

a

0

10

a

0

11

a

�1

10

a

1

00

a

1

01

a

0

00

1

A

;

0

B

B

�

a

0

00

a

0

01

a

�1

00

a

�1

01

a

0

10

a

0

11

a

�1

10

a

�1

11

a

1

00

a

1

01

a

0

00

a

0

01

a

1

10

a

1

11

a

0

10

a

0

11

1

C

C

A

; : : :

These �nite setions do not ompletely reet the 2�2-blok struture of the oper-

ator T (a). It is thus muh more natural to onsider the subsequene (P

2n

PAPP

2n

)

of (P

n

PAPP

n

) whih starts with

�

a

0

00

a

0

01

a

0

10

a

0

11

�

;

0

B

B

�

a

0

00

a

0

01

a

�1

00

a

�1

01

a

0

10

a

0

11

a

�1

10

a

�1

11

a

1

00

a

1

01

a

0

00

a

0

01

a

1

10

a

1

11

a

0

10

a

0

11

1

C

C

A

; : : :

where eah �nite setion is a 2 � 2-blok Toeplitz matrix, too. In fat, it is

the sequene (P

ln

PT (a)PP

ln

) whih is usually referred to as the �nite setions

sequene for the l � l-blok Toeplitz operator T (a) rather than the sequene

(P

n

PT (a)PP

n

) itself. The stability of the sequene (P

ln

PT (a)PP

ln

) for a blok

Toeplitz operator T (a) with ontinuous generating funtion is well understood

(see [7, 4, 5℄, for instane). It is stable if and only if the operators PL(a)P

and QL(a)Q are invertible. The same results holds for the stability of the �-

nite setions sequene (R

ln

L(a)R

ln

), simply beause the operators R

ln

L(a)R

ln
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and P

2ln

PT (a)PP

2ln

possess the same matrix representation with respet to the

standard basis of l

2

(Z).

The paper is organized as follows. We start with some simple observations

onerning band-dominated operators with almost periodi oeÆients and their

limit operators. Thereby we will learn how to hoose a distinguished subsequene

of the sequenes (R

n

AR

n

) and (P

n

PAPP

n

) suh that the above mentioned results

hold. Then we will prove the stability results. We will not derive them from

the stability theorem for the �nite setions method for general band-dominated

operators from [11, 12, 14℄. Rather we prefer to show that these results follow in

a ompletely elementary way from basi properties of band-dominated operators

with almost periodi oeÆients, in the very same manner as the stability of

the �nite setions method for Toeplitz operators with (salar-valued) ontinuous

generating funtions has been proved in [9℄, Theorem 4.45 (see also [2℄ and Setion

1.3.3 in [8℄).

We will have oasion to observe that many properties of band-dominated

operators with almost periodi oeÆients are unexpeted lose to those of blok

Laurent operators with ontinuous generating funtion (= band-dominated op-

erators with periodi oeÆients). Thus, for readers whih are familiar with

Toeplitz and Hankel operators, it might be helpful to introdue the following

notations for every band-dominated operator A:

T (A) := PAP;

e

A := JAJ; and H(A) := PAQJ

where J stands for the ip operator

J : l

2

(Z)! l

2

(Z); (x

n

) 7! (y

n

) with y

n

:= x

�n�1

:

Then one has

T (

e

A) = PJAJP = JQAQJ and H(

e

A) = PJAJQJ = JQAP;

and equalities like PABP = PAPBP + PAQBP an be written as

T (AB) = T (A)T (B) +H(A)H(

e

B)

whih reminds of a basi identity relating Toeplitz and Hankel operators.

Finally we would like to mention that the results of this paper an be trans-

ferred to l

p

-spaes over Z and Z

+

with 1 < p <1 without great e�ort. For spe-

tral and pseudospetral approximation on suh spaes see [3℄ and [13℄, whereas

the splitting property of the singular values is treated in [15℄.

2 Limit operators of band-dominated operators

with almost periodi oeÆients

We start with realling the de�nition of a limit operator of a given operator. Let

H refer to the set of all sequenes h : Z

+

! Z whih tend to in�nity.
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De�nition 2.1 An operator A

h

2 L(l

2

(Z)) is alled a strong limit operator of

the operator A 2 L(l

2

(Z)) with respet to the sequene h 2 H if

U

�h(k)

AU

h(k)

! A

h

as k !1 (1)

�

-strongly. The sets of all strong limit operators of a given operator A will be

denoted by �

op; s

(A), and we refer to this set as the strong operator spetrum

of A. Further, let H

A; s

stand for the set of all sequenes h 2 H suh that (1)

holds with respet to the

�

-strong topology. Analogously, we all A

h

a norm limit

operator of A if (1) holds with respet to norm onvergene, and we introdue the

related norm operator spetrum �

op; n

(A) of A and the orresponding lass H

A;n

.

In [10, 11, 12, 14℄ we have exlusively worked with limit operators in the

�

-strong

sense (simply beause the norm operator spetrum proved to be to small to be

of any use in general). But for band-dominated operators with almost periodi

oeÆients, one an work in the norm topology as well.

Lemma 2.2 For A 2 A

AP

(Z), one has �

op; s

(A) = �

op; n

(A).

Proof. The inlusion � is obvious. The reverse inlusion holds for operators of

multipliation by an almost periodi funtion due to the de�nition of the lass

AP (Z). Then it holds also for band operators with almost periodi oeÆients.

For the proof in the general ase, approximate the operator A in the norm topol-

ogy by a sequene (A

n

) of band operators with almost periodi oeÆients. Let

g

0

:= h 2 H

A; s

. Then there is a subsequene g

1

of g

0

whih belongs toH

A

1

; n

. Fur-

ther, there is a subsequene g

2

of g

1

with g

2

2 H

A

2

; n

. We proeed in this way and

�nd, for every positive integer k, a subsequene g

k

of g

k�1

with g

k

2 H

A

k

; n

. The

sequene g de�ned by g(k) := g

k

(k) is a subsequene of eah sequene g

k

. Thus,

all limit operators (A

k

)

g

exist with respet to norm onvergene. Then also the

limit operator A

g

exists with respet to norm onvergene, whene A

h

2 �

op; n

(A).

It follows in partiular that H

A;n

is not empty if A 2 A

AP

(Z).

Lemma 2.3 Let A 2 A

AP

(Z) and h 2 H

A;n

. Then (A

h

)

�h

= A.

This follows immediately from

kU

h(n)

A

h

U

�h(n)

� Ak = kA

h

� U

�h(n)

AU

h(n)

k ! 0:

Lemma 2.4 If A 2 A

AP

(Z), then A 2 �

op; n

(A).

Proof. Let h be any sequene in H

A; n

. We de�ne a sequene (n

k

)

k�1

as follows.

Let n

1

= 0. If n

k

is already de�ned for some k � 1, then we hoose n

k+1

> n

k

suh that

jh(n

k+1

)� h(n

k

)j � k + 1 (2)
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whih is possible sine h 2 H. Set g(k) := h(n

k

)� h(n

k+1

). Then

kU

�g(k)

AU

g(k)

� Ak

= kU

h(n

k+1

)

U

�h(n

k

)

AU

h(n

k

)

U

�h(n

k+1

)

� Ak

� kU

h(n

k+1

)

(U

�h(n

k

)

AU

h(n

k

)

� A

h

)U

�h(n

k+1

)

k+ kU

h(n

k+1

)

A

h

U

�h(n

k+1

)

� Ak

� kU

�h(n

k

)

AU

h(n

k

)

� A

h

k+ kU

h(n

k+1

)

A

h

U

�h(n

k+1

)

� Ak ! 0

as k !1. Thus, limU

�g(k)

AU

g(k)

= A in the norm. Sine ondition (2) ensures

that g 2 H, we have g 2 H

A;n

and A

g

= A.

In ase of l � l-blok Laurent operators (= band-dominated operators with l-

periodi oeÆients) this result is obvious: the sequene g(k) := lk belongs to

H

L(a); n

and L(a)

g

= L(a).

3 Band-dominated operators with almost peri-

odi oeÆients on l

2

(Z

+

)

Here we onsider ompressions of band-dominated operators with almost periodi

oeÆients onto l

2

(Z

+

). Notie that the ompression of an operator of multipli-

ation by an almost periodi funtion a to l

2

(Z

+

) (onsidered as a subspae of

l

2

(Z)) is no longer almost periodi unless the trivial ase a = 0.

De�nition 3.1 Let A 2 A

AP

(Z). The we all PAP a band-dominated opera-

tor with AP oeÆients on l

2

(Z

+

). The smallest losed subalgebra of L(l

2

(Z

+

))

whih ontains all band-dominated operators with AP oeÆients on l

2

(Z

+

) will

be denoted by A

AP

(Z

+

).

Evidently, A

AP

(Z

+

) is a C

�

-subalgebra of L(l

2

(Z

+

)).

Lemma 3.2 For A 2 A

AP

(Z), one has kAk = kPAPk.

In ase of periodi oeÆients, this simply says that kL(a)k = kT (a)k.

Proof. Choose a sequene h 2 H

A;n

whih onverges to +1 and for whih

A

h

= A. (Starting with a suitable sequene h in the proof of Lemma 2.4 one

easily gets a sequene with these properties.) Then h 2 H

P; s

and P

h

= I. Hene,

h 2 H

PAP; s

and (PAP )

h

= A

h

= A. This implies the assertion sine

kAk = kA

h

k = k(PAP )

h

k � kPAPk � kAk

where we have used the elementary estimate kB

h

k � kBk for limit operators

(Proposition 1.2.2 in [12℄).

Corollary 3.3 Let B; C 2 A

AP

(Z). If PBP = PCP , then B = C.
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This follows from Lemma 3.2 with A := B�C. One an onsider the statement of

the preeding orollary as a rigidity property of band-dominated operators with

AP oeÆients: The restrition of an operator A 2 A

AP

(Z) onto l

2

(Z

+

) an be

extended to an operator in A

AP

(Z) in exatly one manner. The extension of a

Toeplitz operator T (a) is just the Laurent operator L(a).

Lemma 3.4 Let A 2 A

AP

(Z). Then

(a) kAk � kA+Kk for eah ompat operator K 2 L(l

2

(Z));

(b) kPAPk � kPAP +Kk for eah ompat operator K 2 L(l

2

(Z

+

)).

Proof. Let h be as in the proof of Lemma 3.2, and let K be ompat. Then, in

both ases, h 2 H

K;n

and K

h

= 0. Thus,

kAk = kA

h

k = k(A+K)

h

k � kA+Kk

and, by Lemma 3.2,

kPAPk = kAk = kA

h

k = k(PAP +K)

h

k � kPAP +Kk

whih implies assertions (a) and (b), respetively.

Lemma 3.5 One has

A

AP

(Z

+

) = fPAP +K : A 2 A

AP

(Z); K 2 L(l

2

(Z

+

)) ompatg; (3)

and eah operator B 2 A

AP

(Z

+

) an be written as PAP +K with A 2 A

AP

(Z)

and K ompat in a unique way.

The well known analogue of (3) for Toeplitz operators ([8℄, Theorem 1.51) is

A

C

(Z

+

) = fT (a) +K : a 2 C(T); K ompatg

where A

C

(Z

+

) stands for the smallest losed subalgebra of L(l

2

(Z

+

)) whih on-

tains all Toeplitz operators with ontinuous generating funtion (= all restritions

of band-dominated operators with onstant oeÆients to l

2

(Z

+

)).

Proof. Denote the right-hand side of (3) by A

0

for a moment. The inlusion

A

0

� A

AP

(Z

+

) holds sine PAP 2 A

AP

(Z

+

) by de�nition and sine K 2 A

C

(Z

+

)

as mentioned above. For the reverse inlusion notie that the operator

PAPBP � PABP = �PAQBP

is ompat for eah pair of band-dominated operators A; B (for the operator

PAQ is of �nite rank if A is a band operator). Hene, all �nite sums of prod-

uts

P

i

Q

j

PA

ij

P with band-dominated operators A

ij

belong to A

0

, and the

impliation A

AP

(Z

+

) � A

0

will follow one we have shown that A

0

is losed.

7



Let (PA

n

P + K

n

) be a Cauhy sequene in A

0

. By Lemma 3.2 and Lemma

3.4 (b),

kA

n

� A

m

k = kP (A

n

� A

m

)Pk � k(PA

n

P +K

n

)� (PA

m

P +K

m

)k:

Thus, (A

n

) is a Cauhy sequene in A

AP

(Z). Let A 2 A

AP

(Z) denote its limit.

Then PA

n

P onverges to PAP in the norm, whih implies that (K

n

) is a Cauhy

sequene, too. Its limitK is ompat. So we �nally get that PA

n

P+K

n

onverges

in the norm to PAP +K whih obviously is in A

0

.

Lemma 3.6 Let A 2 A

AP

(Z). Then A is invertible if and only if PAP is a

Fredholm operator on l

2

(Z

+

).

In partiular, the blok Laurent operator L(a) with ontinuous generating fun-

tion a is invertible if and only if the Toeplitz operator T (a) is Fredholm.

Proof. If PAP is a Fredholm operator, then every strong limit operator (PAP )

h

of PAP is invertible (Proposition 1.2.9 in [12℄). Choosing a sequene h suh that

(PAP )

h

= A gives the invertibility of A. The reverse impliation holds for arbi-

trary band-dominated operators A sine PAQ and QAP are ompat.

4 Distinguished �nite setions methods

De�nition 4.1 Let A 2 A

AP

(Z). By a distinguished sequene for A we mean

a monotonially inreasing sequene h : Z

+

! Z

+

whih belongs to H

A;n

and

for whih A

h

= A. If h is a distinguished sequene for A, then the sequenes

(P

h(n)

PAPP

h(n)

) and (R

h(n)

AR

h(n)

) are alled the assoiated distinguished �nite

setions methods for PAP and A, respetively.

Theorem 4.2 Let A 2 A

AP

(Z) and let h be a distinguished sequene for A. Let

further L be a ompat operator on l

2

(Z

+

). Then the sequene (P

h(n)

(PAP +

L)P

h(n)

) is stable if and only if the operators PAP + L and QAQ are invertible.

Of ourse, this result implies the well known riterion for the stability of the

�nite setions method (P

ln

T (a)P

ln

) for the blok Toeplitz operator T (a) with

ontinuous funtion a : T ! C

l�l

: This method is stable if and only if the

Toeplitz operator T (a) = PL(a)P itself and the assoiated Toeplitz operator

T (~a) = JQL(a)QJ with ~a(t) := a(1=t) is invertible.

In what follows we will several times make use of the following elementary

lemma.

Lemma 4.3 (Kozak) Let X be a linear spae, P a projetion, Q := I � P and

A an invertible linear operator on X. Then the operator PAP j

imP

is invertible

if and only if the operator QA

�1

Qj

imQ

is invertible, and

(PAP )

�1

P = PA

�1

P � PA

�1

Q(QA

�1

Q)

�1

QA

�1

P: (4)

8



Proof of Theorem 4.2. First we show that if PAP+L and QAQ are invertible,

then the distinguished �nite setions sequene (P

h(n)

(PAP + L)P

h(n)

) is stable.

The invertibility of PAP + L implies those of A by Lemma 3.6, and the

invertibility of QAQ implies those of PA

�1

P by Kozak's lemma. Thus one has

P = PAA

�1

P = PAPA

�1

P + PAQA

�1

P

and

PAP + L = (PA

�1

P )

�1

� PAQA

�1

P (PA

�1

P )

�1

=: (PA

�1

P )

�1

+ L�K (5)

where K := PAQA

�1

P (PA

�1

P )

�1

is ompat due to the ompatness of PAQ.

We laim that the �nite setions method (P

h(n)

(PA

�1

P )

�1

P

h(n)

) for the op-

erator (PA

�1

P )

�1

is stable if the operator QAQ is invertible. By Kozak's lemma

again, the sequene (P

h(n)

(PA

�1

P )

�1

P

h(n)

) is stable if and only if the sequene

(Q

h(n)

PA

�1

PQ

h(n)

) with Q

n

:= I � P

n

: l

2

(Z

+

) ! l

2

(Z

+

) is stable, i.e., if the

operators

Q

h(n)

PA

�1

PQ

h(n)

j

imQ

h(n)

are invertible for suÆiently large n and if the norms of their inverses are uni-

formly bounded. This happens if and only if the operators

U

�h(n)

Q

h(n)

PA

�1

PQ

h(n)

U

h(n)

j

im(U

�h(n)

Q

h(n)

U

h(n)

)

= U

�h(n)

Q

h(n)

U

h(n)

U

�h(n)

A

�1

U

h(n)

U

�h(n)

Q

h(n)

U

h(n)

j

imP

= PU

�h(n)

A

�1

U

h(n)

P j

imP

(6)

are invertible for suÆiently large n and if the norms of their inverses are uni-

formly bounded. Sine h is a distinguished sequene for A, one has

kU

�h(n)

AU

h(n)

� Ak ! 0

whih implies

kU

�h(n)

A

�1

U

h(n)

� A

�1

k ! 0:

Hene, (6) onverges in the norm to PA

�1

P . Sine this operator is invertible as

mentioned above, the operators in (6) are invertible for suÆiently large n, and

their inverses are uniformly bounded. This proves the laim.

Now (5) gives

P

h(n)

(PAP + L)P

h(n)

= P

h(n)

(PA

�1

P )

�1

P

h(n)

+ P

h(n)

(L�K)P

h(n)

;

i.e., the sequene (P

h(n)

(PAP +L)P

h(n)

) we are interested in is a ompat pertur-

bation of the stable sequene (P

h(n)

(PA

�1

P )

�1

P

h(n)

). Sine (PA

�1

P )

�1

+L�K =

PAP + L is an invertible operator by hypothesis, the perturbation theorem for

approximation methods (Corollary 1.22 in [8℄) implies the stability of the �nite

setions method (P

h(n)

(PAP + L)P

h(n)

).

9



Conversely, we have to show that the stability of that sequene implies the

invertibility of the operators PAP +L and QAQ. This follows in a standard way

from

P

h(n)

(PAP + L)P

h(n)

! PAP + L

�

-strongly

and

U

�h(n)

P

h(n)

(PAP + L)P

h(n)

U

h(n)

! QAQ

�

-strongly

whih holds for every distinguished sequene h.

Next we onsider the �nite setion method for operators in A

AP

(Z). We will

need one more simple lemma.

Lemma 4.4 Let A 2 A

AP

(Z), and let h be a sequene in H

A;n

with A

h

= A.

Then 2h and �h are sequenes in H

A;n

with A

2h

= A and A

�h

= A.

This follows easily from

kU

�2h(n)

AU

2h(n)

� Ak

� kU

�2h(n)

AU

2h(n)

� U

�h(n)

AU

h(n)

k+ kU

�h(n)

AU

h(n)

� Ak

� 2 kU

�h(n)

AU

h(n)

� Ak ! 0

and

kU

h(n)

AU

�h(n)

� Ak = kU

h(n)

(A� U

�h(n)

AU

h(n)

)U

�h(n)

k

� kA� U

�h(n)

AU

h(n)

k ! 0:

Theorem 4.5 Let A 2 A

AP

(Z), and let h be a distinguished sequene for A.

Furthermore, let L be a ompat operator on l

2

(Z). Then the sequene (R

h(n)

(A+

L)R

h(n)

) is stable if and only if the operators A+L, PAP and QAQ are invertible.

In ase L = 0, the invertibility of A + L = A follows from the invertibility of

PAP due to Lemma 3.6. Hene, in this ase, the stability of the �nite setion

method is equivalent to the invertibility of PAP and QAQ.

Proof. The ruial observation is that

kU

h(n)

R

h(n)

AR

h(n)

U

�h(n)

� P

2h(n)

PAPP

2h(n)

k

= kP

2h(n)

U

h(n)

AU

�h(n)

P

2h(n)

� P

2h(n)

PAPP

2h(n)

k

� kU

h(n)

AU

�h(n)

� Ak ! 0

by the preeding lemma. The same lemma states furthermore that 2h is a

distinguished sequene for A. Thus, if PAP and QAQ are invertible, then

(P

2h(n)

PAPP

2h(n)

) is a stable sequene by Theorem 4.2. Sine

(P

2h(n)

PAPP

2h(n)

) and (U

h(n)

R

h(n)

AR

h(n)

U

�h(n)

)

10



di�er by a sequene whih tends to zero in the norm, the latter sequene is

stable, too. But then, learly, the sequene (R

h(n)

AR

h(n)

) is stable. Sine A+ L

is invertible by hypothesis, the stability of the ompatly perturbed sequene

(R

h(n)

(A + L)R

h(n)

) follows via the perturbation theorem (Corollary 1.22 in [8℄)

again. The reverse impliation in Theorem 4.5 follows as in the proof of Theorem

4.2.

In the following examples we are going to make the previous onstrutions more

expliit.

Example A: Multipliation operators. For eah real number � 2 [0; 1), the

funtion

a : Z! C ; n 7! e

2�i�n

(7)

is almost periodi. Indeed, for every integer k, U

�k

aU

k

is the operator of multi-

pliation by the funtion a

k

with a

k

(n) = a(n + k) = e

2�i�k

a(n), i.e.,

U

�k

aU

k

= e

2�i�k

a: (8)

Let (U

�k(n)

aU

k(n)

) by any sequene in fU

�k

aU

k

: k 2 Zg. Due to the ompatness

of T, there are a subsequene (e

2�i�k(n(r))

)

r�1

of (e

2�i�k(n)

)

n�1

and a real number

� suh that

e

2�i�k(n(r))

! e

2�i�

as r !1:

Thus, the funtions a

k(n(r))

= e

2�i�k(n(r))

a onverge uniformly to e

2�i�

a, whene

the almost periodiity of a. For the operator spetrum of the operator aI one

�nds

�

op; s

(aI) = �

op; n

(aI) =

(

fe

2�il=q

a : l = 1; 2; : : : ; qg if � = 2p=q 2 Q ;

fe

it

a : t 2 Rg if � 62 Q ;

Here, p and q are relatively prime integers with q > 0. Indeed, the inlusion �

follows immediately from (8). The reverse inlusion is evident in ase � 2 Q . If

� 62 Q , then it follows from a theorem by Kroneker whih states that the set of

all numbers e

2�i�k

with integer k lies dense in the unit irle T.

In ase � = p=q 2 Q , the sequene a is q-periodi, and h(n) = qn is a

distingiushed sequene for the multipliation operator aI. To get a distinguished

sequene h for aI in ase � 62 Q , too, one has to ensure that

lim

n!1

e

2�i�h(n)

= 1

(p. (8)). For develop � 2 (0; 1) into a ontinued fration

� = lim

n!1

1

b

1

+

1

b

2

+

1

.

.

.

b

n�1

+

1

b

n

11



with uniquely determined positive integers b

i

. Write this ontinued fration as

p

n

=q

n

with positive and relatively prime integers p

n

; q

n

. These integers satisfy

the reursions

p

n

= a

n

p

n�1

+ p

n�2

; q

n

= a

n

q

n�1

+ q

n�2

(9)

with p

0

= 0; p

1

= 1; q

0

= 1 and q

1

= a

1

, and one has for all n � 1

�

�

�

�

��

p

n

q

n

�

�

�

�

<

1

q

n

q

n+1

<

1

q

2

n

: (10)

These fats an be found in any book on ontinued frations. From (10) we

onlude that

j�q

n

� p

n

j � q

n

�

�

�

�

��

p

n

q

n

�

�

�

�

�

1

q

n

! 0;

whene

e

2�i�q

n

= e

2�i(�q

n

�p

n

)

! 1:

Sine moreover q

1

< q

2

< : : : due to the reursion (9), this shows that the

sequene h(n) := q

n

belongs to H

A;n

and that A

h

= A, i.e. h is a distinguished

sequene for the operator aI with a as in (7).

Example B: Almost Mathieu operators. These are the operators H

�;�; �

:

l

2

(Z)! l

2

(Z) given by

(H

�; �; �

x)

n

:= x

n+1

+ x

n�1

+ �x

n

os 2�(n�+ �)

with real parameters �; � and �. Thus, H

�;�; �

is a band operator with almost

periodi oeÆients, and

H

�; �; �

= U

�1

+ U

1

+ aI with a(n) = � os 2�(n� + �):

For a treatment of the spetral theory of Almost Mathieu operators see [1℄. As

in Example A one gets

U

�k

H

�;�; �

U

k

= U

�1

+ U

1

+ a

k

I

with

a

k

(n) = a(n+ k) = � os 2�((n+ k)� + �)

= �(os 2�(n�+ �) os 2�k�� sin 2�(n� + �) sin 2�k�): (11)

We will only onsider the non-periodi ase, i.e., we let � 2 (0; 1) be irrational. As

in the previous example, we write � as a ontinued fration with nth approximant

p

n

=q

n

suh that (10) holds. Then

os 2��q

n

= os 2�(�q

n

� p

n

) = os 2�q

n

(�� p

n

=q

n

)! os 0 = 1

12



and, similarly, sin 2��q

n

! 0. Further we infer from (11) that

j(a

q

n

)� a)(n)j � j�j j1� os 2��q

n

j+ j�j j sin��q

n

j:

Hene, a

q

n

! a uniformly. Thus, h(n) := q

n

de�nes a distinguished sequene for

the Almost Mathieu operator H

�;�; �

. Notie that this sequene depends on the

parameter � only. Theorems 4.2 and 4.5 imply the following.

Corollary 4.6 Let A := H

�; �; �

be an Almost Mathieu operator and h a distin-

guished sequene for A. Then the following onditions are equivalent:

(a) the distinguished �nite setions method (P

h(n)

PAPP

h(n)

) for PAP is stable;

(b) the distinguished �nite setions method (R

h(n)

AR

h(n)

) for A is stable;

() the operators PAP and QAQ are invertible.

If � = 0, then the Almost Mathieu operator A = H

�;�; 0

is ip invariant, i.e.,

JAJ = A. So we observe in this ase that the third ondition in Corollary 4.6 is

equivalent to the invertibility of PAP alone.

For a di�erent approah to the numerial treatment of Almost Mathieu and

other operators in irrational rotation algebras see [6℄.

5 The algebra of the �nite setions method

In what follows we �x a strongly monotonially inreasing sequene h : Z

+

! Z

+

.

De�ne

A

AP;h

(Z) := fA 2 A

AP

(Z) : h 2 H

A;n

and A

h

= Ag:

Thus, an operator A 2 A

AP

(Z) belongs to A

AP;h

(Z) if and only if h is a dis-

tinguished sequene for PAP . By (a slightly improved version of) Lemma 2.4,

every operator A 2 A

AP

(Z) belongs to one of the sets A

AP;h

(Z) with a suitably

hosen sequene h.

It is easy to hek that A

AP;h

(Z) is a C

�

-subalgebra of L(l

2

(Z)) whih is

moreover shift invariant, i.e., U

�k

AU

k

belongs to this algebra for eah k 2 Z

whenever A does. It is also lear that all Laurent operators with ontinuous and

omplex-valued generating funtion belong to eah of the algebras A

AP;h

(Z).

Let A

AP;h

(Z

+

) refer to the smallest losed subalgebra of L(l

2

(Z

+

)) whih

ontains all operators PAP with A 2 A

AP;h

(Z). For instane, all Toeplitz opera-

tors with ontinuous and omplex-valued generating funtion lie in this algebra.

Hene, A

AP;h

(Z

+

) also ontains all ompat operators, and one an show as in

Lemma 3.5 that

A

AP;h

(Z

+

) = fPAP +K : A 2 A

AP;h

(Z); K 2 L(l

2

(Z

+

)) ompatg: (12)

Let F

h

stand for the set of all bounded sequenes (A

n

) of matriesA

n

2 C

h(n)�h(n)

.

Provided with pointwise de�ned operations and the supremum norm, F

h

beomes

13



a C

�

-algebra. As earlier, we will identify the matries A

n

with operators ating

on imP

h(n)

. Finally, we let S

AP;h

(Z

+

) denote the smallest losed subalgebra of

F

h

whih ontains all sequenes (P

h(n)

PAPP

h(n)

) with operators A 2 A

AP;h

(Z).

The following result desribes this algebra ompletely. For, introdue

W

n

: l

2

(Z

+

)! l

2

(Z

+

); (x

n

)

n�0

7! (x

n�1

; x

n�2

; : : : : x

0

; 0; 0; : : :):

Theorem 5.1 The algebra S

AP; h

(Z

+

) onsists exatly of all sequenes of the

form

(P

h(n)

PAPP

h(n)

+ P

h(n)

KP

h(n)

+W

h(n)

LW

h(n)

+ C

h(n)

) (13)

with A 2 A

AP;h

(Z), K; L 2 L(l

2

(Z

+

)) ompat and kC

h(n)

k ! 0 as n!1, and

eah sequene in S

AP;h

(Z

+

) an be written in the form (13) in a unique way.

The Toeplitz analogue of Theorem 5.1 is well known (Theorem 1.53 in [8℄, for

instane): the smallest losed subalgebra S

C

(Z

+

) of F

id

whih ontains all se-

quenes (P

n

T (a)P

n

) with a ontinuous funtion a : T ! C onsists exatly of all

sequenes of the form

(P

n

T (a)P

n

+ P

n

KP

n

+W

n

LW

n

+ C

n

)

where a is ontinuous, K and L are ompat, and (C

n

) is a sequene tending to

zero in the norm.

Proof of Theorem 5.1. First let A and B be arbitrary band-dominated oper-

ators and n a positive integer. Then

P

n

PAPP

n

P

n

PBPP

n

= P

n

PAPBPP

n

� P

n

PAPQ

n

PBPP

n

= P

n

PABPP

n

� P

n

PAQBPP

n

� P

n

PAPQ

n

PBPP

n

: (14)

Sine

PQ

n

P = U

n

PU

�n

; PW

n

PJ = PU

n

Q; JPW

n

P = QU

�n

P (15)

we obtain

P

n

PAPQ

n

PBPP

n

= W

n

J JPW

n

P AU

n

PU

�n

B PW

n

PJ JW

n

= W

n

JQU

�n

P AU

n

PU

�n

B PU

n

QJW

n

: (16)

Further we onlude from

W

n

JQQ

�n

Q = 0 and QU

n

QJW

n

= 0

and from (16) that

P

n

PAPQ

n

PBPP

n

=W

n

JQU

�n

AU

n

PU

�n

B U

n

QJW

n

:

14



Together with (14) this gives

P

n

PAPP

n

P

n

PBPP

n

= P

n

PABPP

n

� P

n

PAQBPP

n

�W

n

JQU

�n

AU

n

PU

�n

B U

n

QJW

n

= P

n

PABPP

n

+ P

n

KP

n

�W

n

JQ U

�n

AU

n

PU

�n

BU

n

QJW

n

(17)

with a ompat operator K = �PAQBP . Now let espeially A; B 2 A

AP;h

(Z)

and replae n in (17) by h(n). Sine

kU

�h(n)

AU

h(n)

PU

�h(n)

BU

h(n)

� APBk ! 0;

we obtain from (17) the identity

P

h(n)

PAPP

h(n)

P

h(n)

PBPP

h(n)

= P

h(n)

PABPP

h(n)

+ P

h(n)

KP

h(n)

+W

h(n)

LW

h(n)

+ C

h(n)

with ompat operators K and L := �JQAPBQJ and with

kC

h(n)

k = kW

h(n)

JQ(U

�h(n)

AU

h(n)

PU

�h(n)

BU

h(n)

� APB)QJW

h(n)

k ! 0:

Thus, the (non-losed) dense subalgebra of S

AP;h

(Z

+

) whih is generated by all

sequenes of the form (P

h(n)

PAPP

h(n)

) with A 2 A

AP;h

(Z) is ontained in the

set S

0

of all sequenes of the form (13). The inlusion S

AP;h

(Z

+

) � S

0

will follow

one we have shown that S

0

is losed.

For this goal, notie that for eah sequene A = (A

n

) 2 S

0

with

A

n

:= P

h(n)

PAPP

h(n)

+ P

h(n)

KP

h(n)

+W

h(n)

LW

h(n)

+ C

h(n)

the sequenes (A

n

P

h(n)

) and (W

h(n)

A

n

W

h(n)

) onverge

�

-strongly to W (A) :=

PAP +K and

f

W (A) := JQAQJ + L = PJAJP + L, respetively. The �rst of

these assertions is evident. The seond one follows sine, by (15),

W

h(n)

PAPW

h(n)

= JJW

h(n)

PAPW

h(n)

JJ = JQU

�h(n)

PAPU

h(n)

QJ ! JQAQJ

�

-strongly. By the Banah-Steinhaus theorem, the linear mappings W and

f

W

are ontinuous. Thus, if (A

k

) is a Cauhy sequene in S

0

, then (W (A

k

)) =

(PA

k

P +K

k

) is a Cauhy sequene in A

AP;h

(Z

+

). As in the proof of Lemma 3.5

one onludes that this sequene onverges to an operator PAP + K with A 2

A

AP;h

(Z) and with a ompat operator K. Further, (

f

W (A

k

)) = (PJA

k

JP +L

k

)

is a Cauhy sequene, too. Sine kPJA

k

JP�PJAJPk ! 0 as we have just seen,

(L

k

) is a Cauhy sequene whih onverges to a ompat operator L. Moreover,

standard arguments show that the set of all sequenes in F

h

whih tend to zero

in the norm is losed in F

h

. This �nally shows that the sequene (A

k

) onverges

in the norm of F

h

to a sequene of the form

A := (P

h(n)

PAPP

h(n)

+ P

h(n)

KP

h(n)

+W

h(n)

LW

h(n)

+ C

h(n)

)
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with kC

h(n)

k ! 0 whih learly belongs to S

0

. Thus, S

0

is losed.

For the reverse impliation S

0

� S

AP;h

(Z

+

) we have to show that

(P

h(n)

KP

h(n)

+W

h(n)

LW

h(n)

+ C

h(n)

) 2 S

AP;h

(Z

+

)

for arbitrary ompat operators K and L and arbitrary zero sequenes (C

h(n)

).

But this is lear sine all �nite setions sequenes for Toeplitz operators with

ontinuous and omplex-valued generating funtion belong to S

AP;h

(Z

+

), hene,

S

C

(Z

+

) � S

AP;h

(Z

+

), and sine all sequenes of the form (P

n

KP

n

+W

n

LW

n

+C

n

)

with ompat operators K; L and with a zero sequene (C

n

) belong to S

C

(Z

+

)

as mentioned above.

In the preeding proof, we have de�ned linear mappingsW and

f

W on S

0

. Due to

the oinidene of S

0

with S

AP;h

(Z

+

) these mappings are de�ned on the algebra

S

AP;h

(Z

+

), and it is easy to see that they at as

�

-homomorphisms from this

algebra into A

AP;h

(Z

+

).

As in proof of Theorem 1.54 in [8℄, a twie appliation of the perturbation

theorem gives the following stability result for sequenes in S

AP; h

(Z

+

).

Theorem 5.2 A sequene A = (A

n

) 2 S

AP;h

(Z

+

) is stable if and only if the two

operators W (A) and

f

W (A) are invertible.

Corollary 5.3 The algebra S

AP;h

(Z

+

)=G is

�

-isomorphi to the C

�

-subalgebra

of L(l

2

(Z

+

)) � L(l

2

(Z

+

)) whih onsists of all pairs (W (A);

f

W (A)) with A 2

S

AP;h

(Z

+

).

Indeed, sine W (G) = 0 for eah sequene G 2 G, the mapping

S

AP; h

(Z

+

)=G ! L(l

2

(Z

+

))� L(l

2

(Z

+

)); A+ G 7! (W (A);

f

W (A))

is orretly de�ned. It turns out that this mapping is a

�

-homomorphism whih,

by Theorem 5.2, preserves spetra. Elementary C

�

-arguments show that then

this mapping is an isomorphism.

6 Spetral approximation

Another orollary to Theorem 5.2 states that the algebra S

AP; h

(Z

+

) is fratal in

the following sense. Let again F stand for the algebra of all matrix sequenes

with dimension funtion Æ. For eah strongly monotonially inreasing sequene

� : Z

+

! Z

+

, let F

�

refer to the algebra of all matrix sequenes with dimension

funtion Æ Æ �. There is a natural

�

-homomorphism R

�

: F ! F

�

given by

R

�

: (A

n

) 7! (A

�(n)

);

thus, A

�(n)

is a Æ(�(n))� Æ(�(n))-matrix.
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De�nition 6.1 A C

�

-subalgebra A of F with G � A is alled fratal if, for every

strongly monotonially inreasing sequene � : Z

+

! Z

+

, there is a mapping

�

�

: R

�

A! F=G suh that

�

�

(R

�

A) = A+ G for eah sequene A 2 A:

Thus, the oset A+ G 2 A=G an be reonstruted from eah subsequene of A.

Theorem 6.2 The subalgebra S

AP; h

(Z

+

) of F is fratal.

This follows immediately from Corollary 5.3 in ombination with Theorem 1.69

in [8℄.

Fratal subalgebras of F are distinguished by the exellent onvergene prop-

erties of their elements. For a general aount on this topi, see the third hapter

of [8℄. Here we will mention only a few fats whih arise immediately from Corol-

lary 5.3 and the general results provided in [8℄.

For eah element A on a unital C

�

-algebra, let �(A) refer to the spetrum of

A and �

sing

(A) to the set of all square roots of the points in �(A

�

A). Thus, for

an n� n-matrix A, �

sing

(A) is just the set of the singular values of that matrix.

Corollary 6.3 Let A := (A

n

) 2 S

AP;h

(Z

+

) be a self-adjoint sequene. Then the

spetra �(A

n

) onverge in the Hausdor� metri to the spetrum of the oset A+G

in S

AP;h

(Z

+

)=G whih, on its hand, oinides with �(W (A)) [ �(

f

W (A)).

Corollary 6.4 Let A := (A

n

) 2 S

AP; h

(Z

+

). Then the sets of the singular values

�

sing

(A

n

) onverge in the Hausdor� metri to �

sing

(A+G) in S

AP;h

(Z

+

)=G whih

is equal to �

sing

(W (A)) [ �

sing

(

f

W (A)).

Let " > 0. The "-pseudospetrum �

(")

(A) of an element A of a C

�

-algebra with

identity element I is the set of all � 2 C for whih either A� �I is not invertible

or k(A� �I)

�1

k � 1=".

Corollary 6.5 Let " > 0 and A := (A

n

) 2 S

AP;h

(Z

+

). Then the "-pseudospetra

�

(")

(A

n

) onverge in the Hausdor� metri to �

(")

(A+ G) in S

AP;h

(Z

+

)=G whih

oinides with �

(")

(W (A)) [ �

(")

(

f

W (A)).

Another onsequene of Corollary 5.3 is related with Fredholm sequenes and

the splitting phenomenon of their singular values. Given an n � n-matrix A,

let 0 � �

1

(A) � �

2

(A) � : : : � �

n

(A) = kAk refer to the singular values of

A, ounted with respet to their multipliity. A sequene A = (A

n

) 2 F is a

Fredholm sequene if there is a non-negative integer k suh that

lim inf

n!1

�

k+1

(A

n

) > 0;

and the smallest number k with this property is the �-number of A. We denote

it by �(A).
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Corollary 6.6 A sequene A := (A

n

) 2 S

AP;h

(Z

+

) is Fredholm if and only if

its strong limit W (A) is a Fredholm operator. In this ase,

f

W (A) is a Fredholm

operator, too,

�(A) = dim kerW (A) + dim ker

f

W (A); (18)

and, moreover, lim

n!1

�

�(A)

(A

n

) = 0.

The �rst part of the assertion holds for general band-dominated operators; see

Theorem 5.7 (b) in [14℄. The identity (18) and the �nal assertion follow from

Theorem 6.12 in [8℄.
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