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Abstract

We consider the sequence of the finite sections R,AR, of a band-
dominated operator A on [%(Z) with almost periodic coefficients. Our
main result says that if the compressions of A onto ZT and Z~ are in-
vertible, then there is a distinguished subsequence of (R, AR,) which is
stable. Moreover, this subsequence proves to be fractal, which allows us
to establish the convergence in the Hausdorff metric of the singular values
and pseudoeigenvalues of the finite section matrices.

1 Introduction

Given a non-empty subset I of the set Z of the integers, let [?(I) stand for the
Hilbert space of all sequences (p,)ner of complex numbers with > |z, [* < oco.
We identify [?(I) with a closed subspace of [?(Z) in the natural way, and we write
Py for the orthogonal projection from [(Z) onto I*(I).

The set of the non-negative integers will be denoted by Z*, and we write P
in place of Pz+ and @ in place of the complementary projection I — P. Thus,
) = Py- where Z~ refers to the set of all negative integers. For k € Z, define
the shift operator

Uk : lz(Z) - lz(Z)a (‘Tn) = (yn) with Yn = Tn—k-
Further, each function a € (°°(Z) induces a multiplication operator
a:l*(Z) — 1*(Z), (z,)+w (anzy).

Notice that the shifted multiplication operator U_,alUy is a multiplication oper-
ator again:
(U_kaUpx)y = (aUp)psk = GnikZn.

Definition 1.1 A function a € [*°(Z) is called almost periodic if the set of all
multiplication operators U_rpaUy with k € 7Z s relatively compact in the norm
topology of L(I*(Z)) or, equivalently, in the norm topology of *°(Z). We denote
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the set of all almost periodic functions on Z by AP(Z), and we write Axp(Z) for
the norm closure in L(I1*(Z)) of the set of all operators

K
A=) aUy witha, € AP(Z).

k=—K

The operators in Asp(Z) are called band-dominated operators with almost peri-
odic coefficients.

[s is easy to see that AP(Z) and A sp(Z) are C*-subalgebras of [*°(Z) and A4p(Z),
respectively.
For each positive integer n, set

Po:= P, ny and Ry = Prp i1, n-1)-

*

The projections R, converge *-strongly to the identity operator on [?(Z), and
the projections P, converge *-strongly to the identity operator on [*(Z") when
considered as acting on [?(Z™") and to the projection P when considered as acting
on [*(Z). For each operator A € A,p(Z), we consider the sequences (R,AR,)
and (P,PAPP,) of its finite sections. These sequences converge *-strongly to A
and PAP, respectively. Hence, they can be viewed as approximation methods
for these operators. The finite sections sequences (R,AR,,) resp. (P,PAPP,)
are said to be stable if the operators R,AR,, : im R, — im R,, resp. P,PAPP, :
im P, — im P, are invertible for sufficiently large n and if the norms of their
inverses are uniformly bounded.

The stability of the finite section method for band-dominated operators with
arbitrary [*°-coefficients has been studied in [11, 12]. The crucial observation
employed there is that the stability of the sequence (R, AR,) is equivalent to the
Fredholmness of an associated band-dominated operator which can be treated
by means of the limit operators method. The resulting criterion says that the
sequence (R,AR,) is stable if and only if the operator PAP is invertible and
if a whole family of so-called limit operators associated with that sequence is
uniformly invertible. Similarly, the stability of (P,PAPP,) is equivalent to the
invertibility of PAP plus the uniform invertibility of an associated limit operator
family. The precise statements can be found in [11, 12, 14].

In the present paper we will show if A € A p(Z) and if the operators PAP
and QQAQ are invertible then one can always find a subsequence of (R, AR,,) resp.
of (P,PAPP,) which is stable. Moreover, this subsequence can be effectively
determined in many situations. Thus, the uniform invertibility of the (in general,
infinite) family of limit operators is replaced by the invertibility of the single
operator QAQ.

The motivation to consider suitable subsequences of (R,AR,) comes from
a special class of band-dominated operators with almost periodic coefficients:
the block Laurent operators with continuous generating function. These are the



operators on [*(Z) with matrix representation (a;_;); jez with respect to the
standard basis of [*(Z) where a; is the jth Fourier coefficient of a continuous

function a : T — C*,
1 2

aj: a(e)e " dt.

2m Jo
The block Laurent operator with generating function a will be denoted by L(a).
Since every continuous function on T can be uniformly approximated by a poly-
nomial, block Laurent operators with continuous generating function are band-
dominated operators with [-periodic (hence, almost periodic) coefficients. If L(a)
is a block Laurent operator, then the operator

T(a) := PL(a)P : *(Z") — (")

is called the associated block Toeplitz operator with generating function a.
Let, for simplicity, [ = 2 and write the jth Fourier coefficient a; of the con-
tinuous function @ : T — C?>*? as

J J

_ [ Qo Qo1
G=\ )

10 911

Then the standard finite sections sequence (P,PAPP,) for the block Toeplitz
operator A = T'(a) starts with

0 0 1 1

A a0 gl Qoo Aoy Ggp Aoy

a0 00 Qo1 Qoo DN

(a0) 00 Qo1 B 10 @11 Ay 11
00 ) > RONESIR 10 @11 G |, al gl g0 0 g e

10 d11 1 1 0 00 o1 00 01

a a a
00 o1 00 al gl g0 0
10 011 10 11

These finite sections do not completely reflect the 2 x 2-block structure of the oper-
ator T'(a). It is thus much more natural to consider the subsequence (Po, PAP Py,)
of (P,PAPP,) which starts with

0

0

Qoo Qo1 Qg0 Qo1
<a80 agl) a(l)O a(l)l afol aﬁl
a[1)0 a[1)1 , aéo a’(l)l ago a81 ’

a%o ah a?o a(1)1

where each finite section is a 2 x 2-block Toeplitz matrix, too. In fact, it is
the sequence (P, PT(a)PPy;,) which is usually referred to as the finite sections
sequence for the [ x I[-block Toeplitz operator T'(a) rather than the sequence
(P,PT(a)PP,) itself. The stability of the sequence (P, PT(a)PP,,) for a block
Toeplitz operator T'(a) with continuous generating function is well understood
(see [7, 4, 5], for instance). It is stable if and only if the operators PL(a)P
and QL(a)@ are invertible. The same results holds for the stability of the fi-
nite sections sequence (Ry,L(a)Ry,), simply because the operators Ry, L(a)Ry,
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and Py, PT (a) P Py, possess the same matrix representation with respect to the
standard basis of I*(Z).

The paper is organized as follows. We start with some simple observations
concerning band-dominated operators with almost periodic coefficients and their
limit operators. Thereby we will learn how to choose a distinguished subsequence
of the sequences (R, AR,,) and (P, PAPP,) such that the above mentioned results
hold. Then we will prove the stability results. We will not derive them from
the stability theorem for the finite sections method for general band-dominated
operators from [11, 12, 14]. Rather we prefer to show that these results follow in
a completely elementary way from basic properties of band-dominated operators
with almost periodic coefficients, in the very same manner as the stability of
the finite sections method for Toeplitz operators with (scalar-valued) continuous
generating functions has been proved in [9], Theorem 4.45 (see also [2] and Section
1.3.3 in [8]).

We will have occasion to observe that many properties of band-dominated
operators with almost periodic coefficients are unexpected close to those of block
Laurent operators with continuous generating function (= band-dominated op-
erators with periodic coefficients). Thus, for readers which are familiar with
Toeplitz and Hankel operators, it might be helpful to introduce the following
notations for every band-dominated operator A:

T(A) := PAP, A:=JAJ, and H(A):=PAQJ
where J stands for the flip operator
T P(Z) = P(Z),  (wn) = (y) with gy =21,
Then one has
T(A) = PJAJP = JQAQJ and H(A) = PJAJQJ = JQAP,
and equalities like PABP = PAPBP + PAQBP can be written as
T(AB) = T(A)T(B) 4+ H(A)H(B)

which reminds of a basic identity relating Toeplitz and Hankel operators.

Finally we would like to mention that the results of this paper can be trans-
ferred to [P-spaces over Z and Z™ with 1 < p < oo without great effort. For spec-
tral and pseudospectral approximation on such spaces see [3] and [13], whereas
the splitting property of the singular values is treated in [15].

2 Limit operators of band-dominated operators
with almost periodic coeflicients

We start with recalling the definition of a limit operator of a given operator. Let
H refer to the set of all sequences h : Z* — Z which tend to infinity.
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Definition 2.1 An operator A, € L(I*(Z)) is called a strong limit operator of
the operator A € L(I*(Z)) with respect to the sequence h € H if

U—h(k)AUh(k) — Ah as k — oo (1)

*-strongly. The sets of all strong limit operators of a given operator A will be
denoted by oy s(A), and we refer to this set as the strong operator spectrum
of A. Further, let Ha s stand for the set of all sequences h € H such that (1)
holds with respect to the *-strong topology. Analogously, we call Ay a norm limit
operator of A if (1) holds with respect to norm convergence, and we introduce the
related norm operator spectrum o,, ,(A) of A and the corresponding class Ha, .

In [10, 11, 12, 14] we have exclusively worked with limit operators in the *-strong
sense (simply because the norm operator spectrum proved to be to small to be
of any use in general). But for band-dominated operators with almost periodic
coefficients, one can work in the norm topology as well.

Lemma 2.2 For A € Asp(Z), one has o,y s(A) = opp,n(A).

Proof. The inclusion D is obvious. The reverse inclusion holds for operators of
multiplication by an almost periodic function due to the definition of the class
AP(Z). Then it holds also for band operators with almost periodic coefficients.
For the proof in the general case, approximate the operator A in the norm topol-
ogy by a sequence (A,,) of band operators with almost periodic coefficients. Let
go := h € H4 5. Then there is a subsequence g; of gy which belongs to H 4, ,. Fur-
ther, there is a subsequence g, of g; with go € Ha,,,. We proceed in this way and
find, for every positive integer £, a subsequence g of gy_1 with g, € Ha, ,. The
sequence g defined by g(k) := gx(k) is a subsequence of each sequence gi. Thus,
all limit operators (Ay), exist with respect to norm convergence. Then also the
limit operator A, exists with respect to norm convergence, whence A, € o, ,(A).
|

It follows in particular that H 4 , is not empty if A € Ayp(Z).
Lemma 2.3 Let A € Ayp(Z) and h € Hy,,. Then (Ap)_p = A.

This follows immediately from
1UnmyAnU -nmy — All = [[An = U_pn) AUpwl| — 0.
Lemma 2.4 If A€ Asp(Z), then A € 0, n(A).

Proof. Let h be any sequence in H 4 ,. We define a sequence (n;),>1 as follows.
Let ny = 0. If ny is already defined for some k > 1, then we choose ng.1 > ng
such that

|h(r41) — h(ne)| >k + 1 (2)
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which is possible since h € H. Set g(k) := h(ng) — h(ng41). Then

1U—g() AUg(x) — Al
= Uhtnis) U=n(ne) AUn (i) U=n(ns) — All
1Un s 1) U (n) AUy — AU wni)ll + 1Unni ) AU - nngsr) — All

<
< ||U—h(nk)AUh(nk) — Ah” + ||Uh( )AhU_h( ) — AH — 0

Nk41 Ng41

as k — oo. Thus, lim U_y4) AUy = A in the norm. Since condition (2) ensures
that g € H, we have g € H4 , and Ay = A. [

In case of | x [-block Laurent operators (= band-dominated operators with [-
periodic coefficients) this result is obvious: the sequence g(k) := Ik belongs to
Hi(a),n and L(a), = L(a).

3 Band-dominated operators with almost peri-
odic coefficients on [*(Z")

Here we consider compressions of band-dominated operators with almost periodic
coefficients onto [*(Z"). Notice that the compression of an operator of multipli-
cation by an almost periodic function a to [*(Z") (considered as a subspace of
[*(Z)) is no longer almost periodic unless the trivial case a = 0.

Definition 3.1 Let A € Aup(Z). The we call PAP a band-dominated opera-
tor with AP coefficients on [?(Z%). The smallest closed subalgebra of L(I*(Z7))
which contains all band-dominated operators with AP coefficients on I*(Z") will

be denoted by Aap(ZT).

Evidently, Ap(Z7") is a C*-subalgebra of L(I*(Z")).

Lemma 3.2 For A € Asp(Z), one has ||A|| = ||PAP||.

In case of periodic coefficients, this simply says that ||L(a)|| = ||T(a)]|-

Proof. Choose a sequence h € H, , which converges to +oo and for which
A, = A. (Starting with a suitable sequence h in the proof of Lemma 2.4 one
easily gets a sequence with these properties.) Then h € Hp s and P, = I. Hence,
h € Hpap,s and (PAP), = A, = A. This implies the assertion since

[All = [[An]] = [[(PAP)|| < [PAP]| < [[A]

where we have used the elementary estimate ||By|| < ||B|| for limit operators
(Proposition 1.2.2 in [12]). ]

Corollary 3.3 Let B, C € Asp(Z). If PBP = PCP, then B =C.



This follows from Lemma 3.2 with A := B—C'". One can consider the statement of
the preceding corollary as a rigidity property of band-dominated operators with
AP coefficients: The restriction of an operator A € A,p(Z) onto [*(Z") can be
extended to an operator in A,p(Z) in exactly one manner. The extension of a
Toeplitz operator T'(a) is just the Laurent operator L(a).

Lemma 3.4 Let A € Asp(Z). Then
(a) ||A]| £ |]JA+ K| for each compact operator K € L(1*(Z));
(b) ||PAP|| < ||PAP + K|| for each compact operator K € L(I*(Z7)).

Proof. Let h be as in the proof of Lemma 3.2, and let K be compact. Then, in
both cases, h € Hg,, and K} = 0. Thus,

[A] = 1 Anll = [[(A + K)wll < [|A+ K]
and, by Lemma 3.2,
IPAP| = [[A[] = |Anl| = [[(PAP + K)|| < [[PAP + K|
which implies assertions (a) and (b), respectively. m

Lemma 3.5 One has
Aap(ZT) = {PAP+ K : A € Aap(Z), K € L(I*(Z")) compact}, (3)

and each operator B € Aap(Z*) can be written as PAP + K with A € Asp(Z)
and K compact in a unique way.

The well known analogue of (3) for Toeplitz operators ([8], Theorem 1.51) is
Ac(Z) ={T(a) + K : a € C(T), K compact}

where A¢(Z7) stands for the smallest closed subalgebra of L(I*(Z")) which con-
tains all Toeplitz operators with continuous generating function (= all restrictions
of band-dominated operators with constant coefficients to (*(Z1)).

Proof. Denote the right-hand side of (3) by A’ for a moment. The inclusion
A" C Asp(Z7) holds since PAP € A,p(Z7) by definition and since K € Ac(Z")
as mentioned above. For the reverse inclusion notice that the operator

PAPBP — PABP = —-PAQBP

is compact for each pair of band-dominated operators A, B (for the operator
PAQ is of finite rank if A is a band operator). Hence, all finite sums of prod-
ucts >, [[; PA;; P with band-dominated operators A;; belong to A’, and the
implication A4p(Z*) C A" will follow once we have shown that A’ is closed.
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Let (PA,P + K,) be a Cauchy sequence in A’. By Lemma 3.2 and Lemma
3.4 (b),

[An = Al = |P(An = Ap) Pl| < [(PALP + Kp) = (PARP + Kp)|-

Thus, (Ay) is a Cauchy sequence in A,p(Z). Let A € Asp(Z) denote its limit.
Then PA,, P converges to PAP in the norm, which implies that (K,,) is a Cauchy
sequence, too. Its limit K is compact. So we finally get that PA, P+ K,, converges
in the norm to PAP + K which obviously is in A’ n

Lemma 3.6 Let A € Aup(Z). Then A is invertible if and only if PAP is a
Fredholm operator on I*(Z7).

In particular, the block Laurent operator L(a) with continuous generating func-
tion a is invertible if and only if the Toeplitz operator T'(a) is Fredholm.

Proof. If PAP is a Fredholm operator, then every strong limit operator (PAP)y,
of PAP is invertible (Proposition 1.2.9 in [12]). Choosing a sequence h such that
(PAP);, = A gives the invertibility of A. The reverse implication holds for arbi-
trary band-dominated operators A since PAQ) and QAP are compact. n

4 Distinguished finite sections methods

Definition 4.1 Let A € A,p(Z). By a distinguished sequence for A we mean
a monotonically increasing sequence h : Z+ — Z* which belongs to Ha ., and
for which A, = A. If h is a distinguished sequence for A, then the sequences
(Ph)PAPPyyy) and (RpmyARnpy) are called the associated distinguished finite
sections methods for PAP and A, respectively.

Theorem 4.2 Let A € Aap(Z) and let h be a distinguished sequence for A. Let
further L be a compact operator on I*(Z%). Then the sequence (Pyny(PAP +
L)Pymy) is stable if and only if the operators PAP + L and QAQ are invertible.

Of course, this result implies the well known criterion for the stability of the
finite sections method (P,,T(a)P,,) for the block Toeplitz operator T'(a) with
continuous function a : T — C*!: This method is stable if and only if the
Toeplitz operator T'(a) = PL(a)P itself and the associated Toeplitz operator
T(a) = JQL(a)QJ with a(t) := a(1/t) is invertible.

In what follows we will several times make use of the following elementary
lemma.

Lemma 4.3 (Kozak) Let X be a linear space, P a projection, Q := I — P and
A an invertible linear operator on X. Then the operator PAP|imp is invertible
if and only if the operator QA Qlim o is invertible, and

(PAP)"'P = PA'P — PA'Q(QA'Q) 'QA'P. (4)



Proof of Theorem 4.2. First we show that if PAP+ L and QAQ are invertible,

then the distinguished finite sections sequence (Py(n)(PAP + L)Pyy,)) is stable.
The invertibility of PAP + L implies those of A by Lemma 3.6, and the

invertibility of QAQ implies those of PA~'P by Kozak’s lemma. Thus one has

P =PAA'P=PAPA 'P+ PAQA'P
and
PAP 4+ L = (PA'P)' — PAQA 'P(PA'P) ' = (PA'P) '+ L - K (5)

where K := PAQA'P(PA'P)~! is compact due to the compactness of PAQ.
We claim that the finite sections method (P, (PA 'P) ' Py,)) for the op-
erator (PA~1P)~1 is stable if the operator QAQ is invertible. By Kozak’s lemma
again, the sequence (P, (PA™'P)™!'Pyy,)) is stable if and only if the sequence
(Qn(my PA~' PQp(my) with 0. =T P, 2(Z*) — 2(Z7) is stable, ie., if the
operators
Qnin) PA™ PQun)lim @1y

are invertible for sufficiently large n and if the norms of their inverses are uni-
formly bounded. This happens if and only if the operators

—h(n)Qh PA?IPQh )|im(U h(n)Qh(n)Uh(n))
= U_ Qh U_ ( )A Uh Qh |1H1P
= PU, A~ 1Uh () Plim p (6)

are invertible for sufficiently large n and if the norms of their inverses are uni-
formly bounded. Since h is a distinguished sequence for A, one has

U AUy — Al = 0

which implies
||U_h(n)A_1Uh(n) — A_1|| — 0.

Hence, (6) converges in the norm to PA™'P. Since this operator is invertible as
mentioned above, the operators in (6) are invertible for sufficiently large n, and
their inverses are uniformly bounded. This proves the claim.

Now (5) gives

Puny(PAP + L)Pyy = Pyny(PA™'P) ™' Poguy + Pugny (L — K) Py,

i.e., the sequence (Py(n)(PAP+ L)P,,)) we are interested in is a compact pertur-
batlon of the stable sequence (P, (PA™"P)~'Py(,). Since (PA™'P)"'+L—K =
PAP + L is an invertible operator by hypothesis, the perturbation theorem for
approximation methods (Corollary 1.22 in [8]) implies the stability of the finite
sections method (Pyn)(PAP + L)Pyn)).
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Conversely, we have to show that the stability of that sequence implies the
invertibility of the operators PAP + L and QQAQ). This follows in a standard way

from
Pny(PAP + L)Pyny — PAP+ L “-strongly

and
U—_n(n)Pain)(PAP + L) PynyUpn) = QAQ  *-strongly
which holds for every distinguished sequence h. -

Next we consider the finite section method for operators in Ayp(Z). We will
need one more simple lemma.

Lemma 4.4 Let A € Aup(Z), and let h be a sequence in Ha, ,, with A, = A.
Then 2h and —h are sequences in Ha , with Ay, = A and A_), = A.

This follows easily from

||U,2h yAUsn(ny — Al
< ||U,2h AU% — U n) AUnmy | + Uy AUpny — Al

and

NUhn)AU_pn) — Al = | Unn)(A = U—pn) AUn(n)) U ||
< [lA = Unmy AUn || = 0-

Theorem 4.5 Let A € Aap(Z), and let h be a distinguished sequence for A.

Furthermore, let L be a compact operator on I>(Z). Then the sequence (Rp(,y(A+
L)Ry)) is stable if and only if the operators A+L, PAP and QAQ are invertible.

In case L = 0, the invertibility of A + L = A follows from the invertibility of
PAP due to Lemma 3.6. Hence, in this case, the stability of the finite section
method is equivalent to the invertibility of PAP and QAQ.

Proof. The crucial observation is that

1 Uy ARh U n) — Pan(ny PAP Py |
= ||P2h AU, ) Ponny = Ponn)PAP Pop ||

by the preceding lemma. The same lemma states furthermore that 2A is a
distinguished sequence for A. Thus, if PAP and QA(Q are invertible, then
(Pan(n)PAP Py ) is a stable sequence by Theorem 4.2. Since

(Pgh PAPP% )) and (Uh(n)Rh(n)ARh(n)Ufh(n))
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differ by a sequence which tends to zero in the norm, the latter sequence is
stable, too. But then, clearly, the sequence (Rj,)ARyn)) is stable. Since A+ L
is invertible by hypothesis, the stability of the compactly perturbed sequence
(Rh(n)(A + L)Rp () follows via the perturbation theorem (Corollary 1.22 in [8])
again. The reverse implication in Theorem 4.5 follows as in the proof of Theorem
4.2. |

In the following examples we are going to make the previous constructions more
explicit.

Example A: Multiplication operators. For each real number « € [0, 1), the
function .
a:Z— C, nre™on (7)

is almost periodic. Indeed, for every integer k, U_raUj is the operator of multi-
plication by the function aj with ay(n) = a(n + k) = e*™*q(n), i.e.,

U_pal, = e*™%q, (8)

Let (U_gmyaUk(n)) by any sequence in {U_ralUy, : k € Z}. Due to the compactness
of T, there are a subsequence (e*7@k(n(r)) _, of (e?™@k(M)) -, and a real number

[ such that

2miak(n(r)) 2mif3

— €
2miak(n(r))

€ asr — OQ.

Thus, the functions ay,)) = e a converge uniformly to e*™a, whence
the almost periodicity of a. For the operator spectrum of the operator al one
finds

Oop,s(al) = 0pp n(al) = {

{emillag:1=1,2, ..., q} if a=2p/qeqQ,
{e'"a:t e R} if a¢Q

Here, p and ¢ are relatively prime integers with ¢ > 0. Indeed, the inclusion C
follows immediately from (8). The reverse inclusion is evident in case a € Q. If
a & Q, then it follows from a theorem by Kronecker which states that the set of
all numbers e?™®* with integer k lies dense in the unit circle T.

In case « = p/q € Q, the sequence a is g-periodic, and h(n) = gn is a
distingiushed sequence for the multiplication operator al. To get a distinguished
sequence h for al in case a € QQ, too, one has to ensure that
2miah(n) _ 1

lim e
n—oo

(cp. (8)). For develop a € (0, 1) into a continued fraction
. 1
a = lim

n—00 ]_

by +

by +
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with uniquely determined positive integers b;. Write this continued fraction as
Pn/qn with positive and relatively prime integers p,, ¢,. These integers satisfy
the recursions

Pn = AQpPn-1+ Pn2, n = QpQn -1+ qn 2 (9)
with po =0, p1 =1, o =1 and ¢; = ay, and one has for all n > 1
1 1

Pn <=
qndn+1 4y

o — —
4n

<

(10)

These facts can be found in any book on continued fractions. From (10) we
conclude that

|aCIn_pn| SQn O‘_& < i_>07
an an
whence
2miatn — 2ri(atn—pn) _
Since moreover ¢; < ¢ < ... due to the recursion (9), this shows that the
sequence h(n) := g, belongs to H, , and that A, = A, i.e. his a distinguished
sequence for the operator al with a as in (7). ]

Example B: Almost Mathieu operators. These are the operators H, ) g :
I*(Z) — [*(Z) given by

(Ha, 2, 0%)p = Tpt1 + Tn_1 + Axp cos 21 (na+ 0)

with real parameters o, A and . Thus, H, ) ¢ is a band operator with almost
periodic coefficients, and

Hoyo=U_1+U +al  with  a(n)= Acos2n(na+6).

For a treatment of the spectral theory of Almost Mathieu operators see [1]. As
in Example A one gets

U_rHo),oUp =U_1 + Uy +apd
with

ag(n) = a(n+k) = Acos2m((n+k)a+0)
= A(cos2m(na + 0) cos 2rka — sin 2w (na + 0) sin 27kar).  (11)

We will only consider the non-periodic case, i.e., we let a € (0, 1) be irrational. As

in the previous example, we write « as a continued fraction with nth approximant
Pn/qn such that (10) holds. Then

cos 2maq, = cos 21 (aqy, — pp) = €08 27y (v — pp/qn) — cos0 =1

12



and, similarly, sin 2rag, — 0. Further we infer from (11) that
[(ag,) — a)(n)] < A1 = cos2mag,| + |\ | sinTagy,|.

Hence, a4, — a uniformly. Thus, h(n) := ¢, defines a distinguished sequence for
the Almost Mathieu operator H,, ) ¢. Notice that this sequence depends on the
parameter o only. Theorems 4.2 and 4.5 imply the following.

Corollary 4.6 Let A := H, ¢ be an Almost Mathieu operator and h a distin-
guished sequence for A. Then the following conditions are equivalent:

(a) the distinguished finite sections method (Pyn)PAP Pyyy) for PAP is stable;
(b) the distinguished finite sections method (Rym)ARpm) for A is stable;
(c) the operators PAP and QAQ are invertible.

If @ = 0, then the Almost Mathieu operator A = H, ) o is flip invariant, i.e.,
JAJ = A. So we observe in this case that the third condition in Corollary 4.6 is
equivalent to the invertibility of PAP alone.

For a different approach to the numerical treatment of Almost Mathieu and
other operators in irrational rotation algebras see [6].

5 The algebra of the finite sections method

In what follows we fix a strongly monotonically increasing sequence h : Z* — Z™*.
Define
AApyh(Z) = {A S .AAP(Z) ch e /HAyn and A, = A}.

Thus, an operator A € Aup(Z) belongs to Aap ,(Z) if and only if h is a dis-
tinguished sequence for PAP. By (a slightly improved version of) Lemma 2.4,
every operator A € A,p(Z) belongs to one of the sets A,p ,(Z) with a suitably
chosen sequence h.

It is easy to check that A,p (Z) is a C*-subalgebra of L(I*(Z)) which is
moreover shift invariant, i.e., U AUy belongs to this algebra for each k € Z
whenever A does. It is also clear that all Laurent operators with continuous and
complex-valued generating function belong to each of the algebras Ap ,(Z).

Let Aap n(Z") refer to the smallest closed subalgebra of L(I*(Z")) which
contains all operators PAP with A € A,p ,(Z). For instance, all Toeplitz opera-
tors with continuous and complex-valued generating function lie in this algebra.
Hence, Aap 1(Z7") also contains all compact operators, and one can show as in
Lemma 3.5 that

Aapn(ZT) = {PAP+ K : A€ Aapn(Z), K € L(I*(Z")) compact}.  (12)

Let F, stand for the set of all bounded sequences (A,,) of matrices A, € CHm>xk(n)
Provided with pointwise defined operations and the supremum norm, F; becomes
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a C*-algebra. As earlier, we will identify the matrices A, with operators acting
on im Py,y. Finally, we let Syp ,(Z*) denote the smallest closed subalgebra of
Fp, which contains all sequences (Pyn)PAP Pyy)) with operators A € Ap (Z).
The following result describes this algebra completely. For, introduce

W : l2(Z+) — 12(Z+), (xn)nZO — (ZL‘n_l, Tp_2, ....Tg, 0,0, .. )

Theorem 5.1 The algebra Sap,n(Z*) consists exactly of all sequences of the

form
(Phin)PAP Py 4 Pun) K Py + Whin) LWhn) + Chny) (13)

with A € Aapn(Z), K, L € L(I>(Z7")) compact and ||Chmyl| — 0 as n — oo, and
each sequence in Sap (Z*1) can be written in the form (13) in a unique way.

The Toeplitz analogue of Theorem 5.1 is well known (Theorem 1.53 in [8], for
instance): the smallest closed subalgebra S¢(Z™1) of Fiq which contains all se-
quences (P,T'(a)P,) with a continuous function a : T — C consists exactly of all
sequences of the form

(P, T(a)P, + PyKP, + W, LW, + C,,)

where a is continuous, K and L are compact, and (C},) is a sequence tending to
zero in the norm.

Proof of Theorem 5.1. First let A and B be arbitrary band-dominated oper-
ators and n a positive integer. Then

P,PAPP, P,PBPP,
= P,PAPBPP, — P,PAPQ,PBPP,
= P,PABPP, - P,PAQBPP, — P,PAPQ,PBPPF,. (14)

Since
PQ,.P=U,PU_,, PWwW,PJ = PU,Q, JPW,P=QU_,P (15)
we obtain

P,PAPQ,PBPP, = W,J JPW,P AU,PU_,B PW,PJ JW,
= W,JQU ,P AU,PU ,B PU,QJW,. (16)

Further we conclude from
W,JQQ_,Q =0 and QU,QJW, =0
and from (16) that

P,PAPQ,PBPP, =W,JQU_, AU,PU_,B U,QJW,,.
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Together with (14) this gives

P,PAPP, P,PBPP,
= P,PABPP, - P,PAQBPP, —W,JQU_,, AU,PU_,B U,QJW,
= P,PABPP,+ P,KP, - W,JQU ,AU,PU_,BU, QJW, (17)

with a compact operator K = —PAQBP. Now let especially A, B € Ap 1(Z)
and replace n in (17) by h(n). Since

||U_ AUh( )PU_h(n)BUh(n) — APBH — 0,
we obtain from (17) the identity

) PAP Py PonyPBP Py
Ph PABPPh (n) T Ph( )KPh + Wh LWh(n) + Ch(n)

with compact operators K and L := —JQAPB(Q.J and with
|Chmy [l = [IWhin) ] QUU-n ) AUn(n) PU-n(r) BUp(n) = AP B)QJ Wiy || — 0.

Thus, the (non-closed) dense subalgebra of Sip ,(Z*1) which is generated by all
sequences of the form (Pym)PAPPym)) with A € Aap(Z) is contained in the
set S’ of all sequences of the form (13) The inclusion Syp,(Z") C S’ will follow
once we have shown that S’ is closed.

For this goal, notice that for each sequence A = (4,) € 8§’ with

A, = Ph(n)PAPPh(n) + Ph(n)KPh(n) + Wh( )LWh + Ch

the sequences (A, Ppy,)) and (Wy) A, Whn)) converge *-strongly to W(A) :=
PAP + K and W(A) := JQAQJ + L = PJAJP + L, respectively. The first of
these assertions is evident. The second one follows since, by (15),

Wiy PAPW ) = JIWiiy PAPWy JJ = JQU 4myPAPUW QT — JQAQJ

*-strongly. By the Banach-Steinhaus theorem, the linear mappings W and w
are continuous. Thus, if (Ax) is a Cauchy sequence in &', then (W(Ay)) =
(PA,P + K) is a Cauchy sequence in Asp ,(Z7). As in the proof of Lemma 3.5
one concludes that this sequence converges to an operator PAP + K with A €
Aap,n(Z) and with a compact operator K. Further, (W (Ay)) = (PJAgJP + Ly)
is a Cauchy sequence, too. Since ||PJAyJP—PJAJP|| — 0 as we have just seen,
(Lg) is a Cauchy sequence which converges to a compact operator L. Moreover,
standard arguments show that the set of all sequences in JF;, which tend to zero
in the norm is closed in Fj,. This finally shows that the sequence (Aj) converges
in the norm of Fj, to a sequence of the form

A= (Ph(n)PAPPh(n) + Ph(n)KPh(n) + Wh( )LWh + Ch )

15



with ||Che|| = 0 which clearly belongs to S’. Thus, &' is closed.
For the reverse implication 8" C Syp ,(Z") we have to show that

(Pan) K Puny + Wan) LWy + Chn)) € Sap,n(Z7)

for arbitrary compact operators K and L and arbitrary zero sequences (Ch)).
But this is clear since all finite sections sequences for Toeplitz operators with
continuous and complex-valued generating function belong to Sap »(Z™), hence,
Sc(Z*) C Sap,n(Z7), and since all sequences of the form (P, K P,+W, LW, +C,)
with compact operators K, L and with a zero sequence (C),) belong to Sc(Z™")
as mentioned above. [

In the preceding proof, we have defined linear mappings W and W on S'. Due to
the coincidence of 8" with Sap,,(Z") these mappings are defined on the algebra
Sapn(Z7), and it is easy to see that they act as *-homomorphisms from this
algebra into Aap ,(Z7).

As in proof of Theorem 1.54 in [8], a twice application of the perturbation
theorem gives the following stability result for sequences in Sap ,(Z7).

Theorem 5.2 A sequence A = (A,) € Sap,n(Z7) is stable if and only if the two
operators W (A) and W (A) are invertible.

Corollary 5.3 The algebra Sapn(Z7)/G is *-isomorphic to the C*-subalgebra
of L(I*(Z*)) x L(I*(Z")) which consists of all pairs (W(A), W(A)) with A €
Sapn(Z7).

Indeed, since W (G) = 0 for each sequence G € G, the mapping
Sapn(Z)/G = LIXZY) x LIA(ZY)), A+G— (W(A), W(A))

is correctly defined. It turns out that this mapping is a *-homomorphism which,
by Theorem 5.2, preserves spectra. Elementary C*-arguments show that then
this mapping is an isomorphism.

6 Spectral approximation

Another corollary to Theorem 5.2 states that the algebra Sap,,(Z7) is fractal in
the following sense. Let again F stand for the algebra of all matrix sequences
with dimension function §. For each strongly monotonically increasing sequence
n:Z*t — Z7", let F, refer to the algebra of all matrix sequences with dimension
function ¢ o n. There is a natural *~homomorphism R, : F — F, given by

Ry (An) = (Ayw));

thus, A, ) is a 6(n(n)) x d(n(n))-matrix.
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Definition 6.1 A C*-subalgebra A of F with G C A is called fractal if, for every
strongly monotonically increasing sequence n : Z+t — ZT, there is a mapping

7y« RyA — F/G such that
T (R,A)=A+G for each sequence A € A.
Thus, the coset A+ G € A/G can be reconstructed from each subsequence of A.

Theorem 6.2 The subalgebra Sap n(Z7) of F is fractal.

This follows immediately from Corollary 5.3 in combination with Theorem 1.69
in [8].

Fractal subalgebras of F are distinguished by the excellent convergence prop-
erties of their elements. For a general account on this topic, see the third chapter
of [8]. Here we will mention only a few facts which arise immediately from Corol-
lary 5.3 and the general results provided in [8].

For each element A on a unital C*-algebra, let o(A) refer to the spectrum of
A and oyn4(A) to the set of all square roots of the points in 0(A*A). Thus, for
an n X n-matrix A, ogng(A) is just the set of the singular values of that matrix.

Corollary 6.3 Let A := (A,) € Sapn(Z7) be a self-adjoint sequence. Then the
spectra o(A,) converge in the Hausdorff metric to the spectrum of the coset A+G

in Sap,n(Z1)/G which, on its hand, coincides with o(W(A)) Uo(W(A)).

Corollary 6.4 Let A := (A,) € Sapn(Z"). Then the sets of the singular values
Osing(An) converge in the Hausdorff metric to 04ing(A+G) in Sap,n(Z7)/G which
is equal t0 Osing(W(A)) U 0ging (W (A)).

Let ¢ > 0. The e-pseudospectrum o*)(A) of an element A of a C*-algebra with
identity element [ is the set of all A € C for which either A — AI is not invertible
or [[(A—=X)7Y| > 1/e.

Corollary 6.5 Lete > 0 and A := (A,) € Sapn(Z7"). Then the c-pseudospectra
o) (A,) converge in the Hausdorff metric to o) (A + G) in Sap.n(Z)/G which
coincides with o (W (A)) U o® (W (A)).

Another consequence of Corollary 5.3 is related with Fredholm sequences and
the splitting phenomenon of their singular values. Given an n X n-matrix A,
let 0 < 01(A) < 02(A) < ... < 0,(A) = ||A]| refer to the singular values of
A, counted with respect to their multiplicity. A sequence A = (A,) € F is a
Fredholm sequence if there is a non-negative integer k£ such that

lim iIolfO'k_Fl(An) > 0,

n—

and the smallest number £ with this property is the a-number of A. We denote
it by a(A).
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Corollary 6.6 A sequence A = (A,) € Sapn(Z7T) is Fredholm if and only if

its strong limit W(A) is a Fredholm operator. In this case, W(A) is a Fredholm
operator, too,

a(A) = dim ker W(A) + dim ker W (A), (18)

and, moreover, lim, o 0a(a)(An) = 0.

The first part of the assertion holds for general band-dominated operators; see
Theorem 5.7 (b) in [14]. The identity (18) and the final assertion follow from
Theorem 6.12 in [8].
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