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Abstra
t

We 
onsider the sequen
e of the �nite se
tions R

n

AR

n

of a band-

dominated operator A on l

2

(Z) with almost periodi
 
oeÆ
ients. Our

main result says that if the 
ompressions of A onto Z

+

and Z

�

are in-

vertible, then there is a distinguished subsequen
e of (R

n

AR

n

) whi
h is

stable. Moreover, this subsequen
e proves to be fra
tal, whi
h allows us

to establish the 
onvergen
e in the Hausdor� metri
 of the singular values

and pseudoeigenvalues of the �nite se
tion matri
es.

1 Introdu
tion

Given a non-empty subset I of the set Z of the integers, let l

2

(I) stand for the

Hilbert spa
e of all sequen
es (x

n

)

n2I

of 
omplex numbers with

P

n2I

jx

n

j

2

<1.

We identify l

2

(I) with a 
losed subspa
e of l

2

(Z) in the natural way, and we write

P

I

for the orthogonal proje
tion from l

2

(Z) onto l

2

(I).

The set of the non-negative integers will be denoted by Z

+

, and we write P

in pla
e of P

Z

+

and Q in pla
e of the 
omplementary proje
tion I � P . Thus,

Q = P

Z

�

where Z

�

refers to the set of all negative integers. For k 2 Z, de�ne

the shift operator

U

k

: l

2

(Z)! l

2

(Z); (x

n

) 7! (y

n

) with y

n

= x

n�k

:

Further, ea
h fun
tion a 2 l

1

(Z) indu
es a multipli
ation operator

a : l

2

(Z)! l

2

(Z); (x

n

) 7! (a

n

x

n

):

Noti
e that the shifted multipli
ation operator U

�k

aU

k

is a multipli
ation oper-

ator again:

(U

�k

aU

k

x)

n

= (aU

k

x)

n+k

= a

n+k

x

n

:

De�nition 1.1 A fun
tion a 2 l

1

(Z) is 
alled almost periodi
 if the set of all

multipli
ation operators U

�k

aU

k

with k 2 Z is relatively 
ompa
t in the norm

topology of L(l

2

(Z)) or, equivalently, in the norm topology of l

1

(Z). We denote
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the set of all almost periodi
 fun
tions on Z by AP (Z), and we write A

AP

(Z) for

the norm 
losure in L(l

2

(Z)) of the set of all operators

A =

K

X

k=�K

a

k

U

k

with a

k

2 AP (Z):

The operators in A

AP

(Z) are 
alled band-dominated operators with almost peri-

odi
 
oeÆ
ients.

Is is easy to see that AP (Z) andA

AP

(Z) are C

�

-subalgebras of l

1

(Z) andA

AP

(Z),

respe
tively.

For ea
h positive integer n, set

P

n

:= P

f0; 1; :::; n�1g

and R

n

:= P

f�n;�n+1; :::; n�1g

:

The proje
tions R

n


onverge

�

-strongly to the identity operator on l

2

(Z), and

the proje
tions P

n


onverge

�

-strongly to the identity operator on l

2

(Z

+

) when


onsidered as a
ting on l

2

(Z

+

) and to the proje
tion P when 
onsidered as a
ting

on l

2

(Z). For ea
h operator A 2 A

AP

(Z), we 
onsider the sequen
es (R

n

AR

n

)

and (P

n

PAPP

n

) of its �nite se
tions. These sequen
es 
onverge

�

-strongly to A

and PAP , respe
tively. Hen
e, they 
an be viewed as approximation methods

for these operators. The �nite se
tions sequen
es (R

n

AR

n

) resp. (P

n

PAPP

n

)

are said to be stable if the operators R

n

AR

n

: imR

n

! imR

n

resp. P

n

PAPP

n

:

imP

n

! imP

n

are invertible for suÆ
iently large n and if the norms of their

inverses are uniformly bounded.

The stability of the �nite se
tion method for band-dominated operators with

arbitrary l

1

-
oeÆ
ients has been studied in [11, 12℄. The 
ru
ial observation

employed there is that the stability of the sequen
e (R

n

AR

n

) is equivalent to the

Fredholmness of an asso
iated band-dominated operator whi
h 
an be treated

by means of the limit operators method. The resulting 
riterion says that the

sequen
e (R

n

AR

n

) is stable if and only if the operator PAP is invertible and

if a whole family of so-
alled limit operators asso
iated with that sequen
e is

uniformly invertible. Similarly, the stability of (P

n

PAPP

n

) is equivalent to the

invertibility of PAP plus the uniform invertibility of an asso
iated limit operator

family. The pre
ise statements 
an be found in [11, 12, 14℄.

In the present paper we will show if A 2 A

AP

(Z) and if the operators PAP

and QAQ are invertible then one 
an always �nd a subsequen
e of (R

n

AR

n

) resp.

of (P

n

PAPP

n

) whi
h is stable. Moreover, this subsequen
e 
an be e�e
tively

determined in many situations. Thus, the uniform invertibility of the (in general,

in�nite) family of limit operators is repla
ed by the invertibility of the single

operator QAQ.

The motivation to 
onsider suitable subsequen
es of (R

n

AR

n

) 
omes from

a spe
ial 
lass of band-dominated operators with almost periodi
 
oeÆ
ients:

the blo
k Laurent operators with 
ontinuous generating fun
tion. These are the
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operators on l

2

(Z) with matrix representation (a

i�j

)

i; j2Z

with respe
t to the

standard basis of l

2

(Z) where a

j

is the jth Fourier 
oeÆ
ient of a 
ontinuous

fun
tion a : T ! C

l�l

,

a

j

:=

1

2�

Z

2�

0

a(e

it

)e

�ijt

dt:

The blo
k Laurent operator with generating fun
tion a will be denoted by L(a).

Sin
e every 
ontinuous fun
tion on T 
an be uniformly approximated by a poly-

nomial, blo
k Laurent operators with 
ontinuous generating fun
tion are band-

dominated operators with l-periodi
 (hen
e, almost periodi
) 
oeÆ
ients. If L(a)

is a blo
k Laurent operator, then the operator

T (a) := PL(a)P : l

2

(Z

+

)! l

2

(Z

+

)

is 
alled the asso
iated blo
k Toeplitz operator with generating fun
tion a.

Let, for simpli
ity, l = 2 and write the jth Fourier 
oeÆ
ient a

j

of the 
on-

tinuous fun
tion a : T ! C

2�2

as

a

j

=

�

a

j

00

a

j

01

a

j

10

a

j

11

�

:

Then the standard �nite se
tions sequen
e (P

n

PAPP

n

) for the blo
k Toeplitz

operator A = T (a) starts with

( a

0

00

) ;

�

a

0

00

a

0

01

a

0

10

a

0

11

�

;

0

�

a

0

00

a

0

01

a

�1

00

a

0

10

a

0

11

a

�1

10

a

1

00

a

1

01

a

0

00

1

A

;

0

B

B

�

a

0

00

a

0

01

a

�1

00

a

�1

01

a

0

10

a

0

11

a

�1

10

a

�1

11

a

1

00

a

1

01

a

0

00

a

0

01

a

1

10

a

1

11

a

0

10

a

0

11

1

C

C

A

; : : :

These �nite se
tions do not 
ompletely re
e
t the 2�2-blo
k stru
ture of the oper-

ator T (a). It is thus mu
h more natural to 
onsider the subsequen
e (P

2n

PAPP

2n

)

of (P

n

PAPP

n

) whi
h starts with

�

a

0

00

a

0

01

a

0

10

a

0

11

�

;

0

B

B

�

a

0

00

a

0

01

a

�1

00

a

�1

01

a

0

10

a

0

11

a

�1

10

a

�1

11

a

1

00

a

1

01

a

0

00

a

0

01

a

1

10

a

1

11

a

0

10

a

0

11

1

C

C

A

; : : :

where ea
h �nite se
tion is a 2 � 2-blo
k Toeplitz matrix, too. In fa
t, it is

the sequen
e (P

ln

PT (a)PP

ln

) whi
h is usually referred to as the �nite se
tions

sequen
e for the l � l-blo
k Toeplitz operator T (a) rather than the sequen
e

(P

n

PT (a)PP

n

) itself. The stability of the sequen
e (P

ln

PT (a)PP

ln

) for a blo
k

Toeplitz operator T (a) with 
ontinuous generating fun
tion is well understood

(see [7, 4, 5℄, for instan
e). It is stable if and only if the operators PL(a)P

and QL(a)Q are invertible. The same results holds for the stability of the �-

nite se
tions sequen
e (R

ln

L(a)R

ln

), simply be
ause the operators R

ln

L(a)R

ln
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and P

2ln

PT (a)PP

2ln

possess the same matrix representation with respe
t to the

standard basis of l

2

(Z).

The paper is organized as follows. We start with some simple observations


on
erning band-dominated operators with almost periodi
 
oeÆ
ients and their

limit operators. Thereby we will learn how to 
hoose a distinguished subsequen
e

of the sequen
es (R

n

AR

n

) and (P

n

PAPP

n

) su
h that the above mentioned results

hold. Then we will prove the stability results. We will not derive them from

the stability theorem for the �nite se
tions method for general band-dominated

operators from [11, 12, 14℄. Rather we prefer to show that these results follow in

a 
ompletely elementary way from basi
 properties of band-dominated operators

with almost periodi
 
oeÆ
ients, in the very same manner as the stability of

the �nite se
tions method for Toeplitz operators with (s
alar-valued) 
ontinuous

generating fun
tions has been proved in [9℄, Theorem 4.45 (see also [2℄ and Se
tion

1.3.3 in [8℄).

We will have o

asion to observe that many properties of band-dominated

operators with almost periodi
 
oeÆ
ients are unexpe
ted 
lose to those of blo
k

Laurent operators with 
ontinuous generating fun
tion (= band-dominated op-

erators with periodi
 
oeÆ
ients). Thus, for readers whi
h are familiar with

Toeplitz and Hankel operators, it might be helpful to introdu
e the following

notations for every band-dominated operator A:

T (A) := PAP;

e

A := JAJ; and H(A) := PAQJ

where J stands for the 
ip operator

J : l

2

(Z)! l

2

(Z); (x

n

) 7! (y

n

) with y

n

:= x

�n�1

:

Then one has

T (

e

A) = PJAJP = JQAQJ and H(

e

A) = PJAJQJ = JQAP;

and equalities like PABP = PAPBP + PAQBP 
an be written as

T (AB) = T (A)T (B) +H(A)H(

e

B)

whi
h reminds of a basi
 identity relating Toeplitz and Hankel operators.

Finally we would like to mention that the results of this paper 
an be trans-

ferred to l

p

-spa
es over Z and Z

+

with 1 < p <1 without great e�ort. For spe
-

tral and pseudospe
tral approximation on su
h spa
es see [3℄ and [13℄, whereas

the splitting property of the singular values is treated in [15℄.

2 Limit operators of band-dominated operators

with almost periodi
 
oeÆ
ients

We start with re
alling the de�nition of a limit operator of a given operator. Let

H refer to the set of all sequen
es h : Z

+

! Z whi
h tend to in�nity.
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De�nition 2.1 An operator A

h

2 L(l

2

(Z)) is 
alled a strong limit operator of

the operator A 2 L(l

2

(Z)) with respe
t to the sequen
e h 2 H if

U

�h(k)

AU

h(k)

! A

h

as k !1 (1)

�

-strongly. The sets of all strong limit operators of a given operator A will be

denoted by �

op; s

(A), and we refer to this set as the strong operator spe
trum

of A. Further, let H

A; s

stand for the set of all sequen
es h 2 H su
h that (1)

holds with respe
t to the

�

-strong topology. Analogously, we 
all A

h

a norm limit

operator of A if (1) holds with respe
t to norm 
onvergen
e, and we introdu
e the

related norm operator spe
trum �

op; n

(A) of A and the 
orresponding 
lass H

A;n

.

In [10, 11, 12, 14℄ we have ex
lusively worked with limit operators in the

�

-strong

sense (simply be
ause the norm operator spe
trum proved to be to small to be

of any use in general). But for band-dominated operators with almost periodi



oeÆ
ients, one 
an work in the norm topology as well.

Lemma 2.2 For A 2 A

AP

(Z), one has �

op; s

(A) = �

op; n

(A).

Proof. The in
lusion � is obvious. The reverse in
lusion holds for operators of

multipli
ation by an almost periodi
 fun
tion due to the de�nition of the 
lass

AP (Z). Then it holds also for band operators with almost periodi
 
oeÆ
ients.

For the proof in the general 
ase, approximate the operator A in the norm topol-

ogy by a sequen
e (A

n

) of band operators with almost periodi
 
oeÆ
ients. Let

g

0

:= h 2 H

A; s

. Then there is a subsequen
e g

1

of g

0

whi
h belongs toH

A

1

; n

. Fur-

ther, there is a subsequen
e g

2

of g

1

with g

2

2 H

A

2

; n

. We pro
eed in this way and

�nd, for every positive integer k, a subsequen
e g

k

of g

k�1

with g

k

2 H

A

k

; n

. The

sequen
e g de�ned by g(k) := g

k

(k) is a subsequen
e of ea
h sequen
e g

k

. Thus,

all limit operators (A

k

)

g

exist with respe
t to norm 
onvergen
e. Then also the

limit operator A

g

exists with respe
t to norm 
onvergen
e, when
e A

h

2 �

op; n

(A).

It follows in parti
ular that H

A;n

is not empty if A 2 A

AP

(Z).

Lemma 2.3 Let A 2 A

AP

(Z) and h 2 H

A;n

. Then (A

h

)

�h

= A.

This follows immediately from

kU

h(n)

A

h

U

�h(n)

� Ak = kA

h

� U

�h(n)

AU

h(n)

k ! 0:

Lemma 2.4 If A 2 A

AP

(Z), then A 2 �

op; n

(A).

Proof. Let h be any sequen
e in H

A; n

. We de�ne a sequen
e (n

k

)

k�1

as follows.

Let n

1

= 0. If n

k

is already de�ned for some k � 1, then we 
hoose n

k+1

> n

k

su
h that

jh(n

k+1

)� h(n

k

)j � k + 1 (2)
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whi
h is possible sin
e h 2 H. Set g(k) := h(n

k

)� h(n

k+1

). Then

kU

�g(k)

AU

g(k)

� Ak

= kU

h(n

k+1

)

U

�h(n

k

)

AU

h(n

k

)

U

�h(n

k+1

)

� Ak

� kU

h(n

k+1

)

(U

�h(n

k

)

AU

h(n

k

)

� A

h

)U

�h(n

k+1

)

k+ kU

h(n

k+1

)

A

h

U

�h(n

k+1

)

� Ak

� kU

�h(n

k

)

AU

h(n

k

)

� A

h

k+ kU

h(n

k+1

)

A

h

U

�h(n

k+1

)

� Ak ! 0

as k !1. Thus, limU

�g(k)

AU

g(k)

= A in the norm. Sin
e 
ondition (2) ensures

that g 2 H, we have g 2 H

A;n

and A

g

= A.

In 
ase of l � l-blo
k Laurent operators (= band-dominated operators with l-

periodi
 
oeÆ
ients) this result is obvious: the sequen
e g(k) := lk belongs to

H

L(a); n

and L(a)

g

= L(a).

3 Band-dominated operators with almost peri-

odi
 
oeÆ
ients on l

2

(Z

+

)

Here we 
onsider 
ompressions of band-dominated operators with almost periodi



oeÆ
ients onto l

2

(Z

+

). Noti
e that the 
ompression of an operator of multipli-


ation by an almost periodi
 fun
tion a to l

2

(Z

+

) (
onsidered as a subspa
e of

l

2

(Z)) is no longer almost periodi
 unless the trivial 
ase a = 0.

De�nition 3.1 Let A 2 A

AP

(Z). The we 
all PAP a band-dominated opera-

tor with AP 
oeÆ
ients on l

2

(Z

+

). The smallest 
losed subalgebra of L(l

2

(Z

+

))

whi
h 
ontains all band-dominated operators with AP 
oeÆ
ients on l

2

(Z

+

) will

be denoted by A

AP

(Z

+

).

Evidently, A

AP

(Z

+

) is a C

�

-subalgebra of L(l

2

(Z

+

)).

Lemma 3.2 For A 2 A

AP

(Z), one has kAk = kPAPk.

In 
ase of periodi
 
oeÆ
ients, this simply says that kL(a)k = kT (a)k.

Proof. Choose a sequen
e h 2 H

A;n

whi
h 
onverges to +1 and for whi
h

A

h

= A. (Starting with a suitable sequen
e h in the proof of Lemma 2.4 one

easily gets a sequen
e with these properties.) Then h 2 H

P; s

and P

h

= I. Hen
e,

h 2 H

PAP; s

and (PAP )

h

= A

h

= A. This implies the assertion sin
e

kAk = kA

h

k = k(PAP )

h

k � kPAPk � kAk

where we have used the elementary estimate kB

h

k � kBk for limit operators

(Proposition 1.2.2 in [12℄).

Corollary 3.3 Let B; C 2 A

AP

(Z). If PBP = PCP , then B = C.

6



This follows from Lemma 3.2 with A := B�C. One 
an 
onsider the statement of

the pre
eding 
orollary as a rigidity property of band-dominated operators with

AP 
oeÆ
ients: The restri
tion of an operator A 2 A

AP

(Z) onto l

2

(Z

+

) 
an be

extended to an operator in A

AP

(Z) in exa
tly one manner. The extension of a

Toeplitz operator T (a) is just the Laurent operator L(a).

Lemma 3.4 Let A 2 A

AP

(Z). Then

(a) kAk � kA+Kk for ea
h 
ompa
t operator K 2 L(l

2

(Z));

(b) kPAPk � kPAP +Kk for ea
h 
ompa
t operator K 2 L(l

2

(Z

+

)).

Proof. Let h be as in the proof of Lemma 3.2, and let K be 
ompa
t. Then, in

both 
ases, h 2 H

K;n

and K

h

= 0. Thus,

kAk = kA

h

k = k(A+K)

h

k � kA+Kk

and, by Lemma 3.2,

kPAPk = kAk = kA

h

k = k(PAP +K)

h

k � kPAP +Kk

whi
h implies assertions (a) and (b), respe
tively.

Lemma 3.5 One has

A

AP

(Z

+

) = fPAP +K : A 2 A

AP

(Z); K 2 L(l

2

(Z

+

)) 
ompa
tg; (3)

and ea
h operator B 2 A

AP

(Z

+

) 
an be written as PAP +K with A 2 A

AP

(Z)

and K 
ompa
t in a unique way.

The well known analogue of (3) for Toeplitz operators ([8℄, Theorem 1.51) is

A

C

(Z

+

) = fT (a) +K : a 2 C(T); K 
ompa
tg

where A

C

(Z

+

) stands for the smallest 
losed subalgebra of L(l

2

(Z

+

)) whi
h 
on-

tains all Toeplitz operators with 
ontinuous generating fun
tion (= all restri
tions

of band-dominated operators with 
onstant 
oeÆ
ients to l

2

(Z

+

)).

Proof. Denote the right-hand side of (3) by A

0

for a moment. The in
lusion

A

0

� A

AP

(Z

+

) holds sin
e PAP 2 A

AP

(Z

+

) by de�nition and sin
e K 2 A

C

(Z

+

)

as mentioned above. For the reverse in
lusion noti
e that the operator

PAPBP � PABP = �PAQBP

is 
ompa
t for ea
h pair of band-dominated operators A; B (for the operator

PAQ is of �nite rank if A is a band operator). Hen
e, all �nite sums of prod-

u
ts

P

i

Q

j

PA

ij

P with band-dominated operators A

ij

belong to A

0

, and the

impli
ation A

AP

(Z

+

) � A

0

will follow on
e we have shown that A

0

is 
losed.
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Let (PA

n

P + K

n

) be a Cau
hy sequen
e in A

0

. By Lemma 3.2 and Lemma

3.4 (b),

kA

n

� A

m

k = kP (A

n

� A

m

)Pk � k(PA

n

P +K

n

)� (PA

m

P +K

m

)k:

Thus, (A

n

) is a Cau
hy sequen
e in A

AP

(Z). Let A 2 A

AP

(Z) denote its limit.

Then PA

n

P 
onverges to PAP in the norm, whi
h implies that (K

n

) is a Cau
hy

sequen
e, too. Its limitK is 
ompa
t. So we �nally get that PA

n

P+K

n


onverges

in the norm to PAP +K whi
h obviously is in A

0

.

Lemma 3.6 Let A 2 A

AP

(Z). Then A is invertible if and only if PAP is a

Fredholm operator on l

2

(Z

+

).

In parti
ular, the blo
k Laurent operator L(a) with 
ontinuous generating fun
-

tion a is invertible if and only if the Toeplitz operator T (a) is Fredholm.

Proof. If PAP is a Fredholm operator, then every strong limit operator (PAP )

h

of PAP is invertible (Proposition 1.2.9 in [12℄). Choosing a sequen
e h su
h that

(PAP )

h

= A gives the invertibility of A. The reverse impli
ation holds for arbi-

trary band-dominated operators A sin
e PAQ and QAP are 
ompa
t.

4 Distinguished �nite se
tions methods

De�nition 4.1 Let A 2 A

AP

(Z). By a distinguished sequen
e for A we mean

a monotoni
ally in
reasing sequen
e h : Z

+

! Z

+

whi
h belongs to H

A;n

and

for whi
h A

h

= A. If h is a distinguished sequen
e for A, then the sequen
es

(P

h(n)

PAPP

h(n)

) and (R

h(n)

AR

h(n)

) are 
alled the asso
iated distinguished �nite

se
tions methods for PAP and A, respe
tively.

Theorem 4.2 Let A 2 A

AP

(Z) and let h be a distinguished sequen
e for A. Let

further L be a 
ompa
t operator on l

2

(Z

+

). Then the sequen
e (P

h(n)

(PAP +

L)P

h(n)

) is stable if and only if the operators PAP + L and QAQ are invertible.

Of 
ourse, this result implies the well known 
riterion for the stability of the

�nite se
tions method (P

ln

T (a)P

ln

) for the blo
k Toeplitz operator T (a) with


ontinuous fun
tion a : T ! C

l�l

: This method is stable if and only if the

Toeplitz operator T (a) = PL(a)P itself and the asso
iated Toeplitz operator

T (~a) = JQL(a)QJ with ~a(t) := a(1=t) is invertible.

In what follows we will several times make use of the following elementary

lemma.

Lemma 4.3 (Kozak) Let X be a linear spa
e, P a proje
tion, Q := I � P and

A an invertible linear operator on X. Then the operator PAP j

imP

is invertible

if and only if the operator QA

�1

Qj

imQ

is invertible, and

(PAP )

�1

P = PA

�1

P � PA

�1

Q(QA

�1

Q)

�1

QA

�1

P: (4)

8



Proof of Theorem 4.2. First we show that if PAP+L and QAQ are invertible,

then the distinguished �nite se
tions sequen
e (P

h(n)

(PAP + L)P

h(n)

) is stable.

The invertibility of PAP + L implies those of A by Lemma 3.6, and the

invertibility of QAQ implies those of PA

�1

P by Kozak's lemma. Thus one has

P = PAA

�1

P = PAPA

�1

P + PAQA

�1

P

and

PAP + L = (PA

�1

P )

�1

� PAQA

�1

P (PA

�1

P )

�1

=: (PA

�1

P )

�1

+ L�K (5)

where K := PAQA

�1

P (PA

�1

P )

�1

is 
ompa
t due to the 
ompa
tness of PAQ.

We 
laim that the �nite se
tions method (P

h(n)

(PA

�1

P )

�1

P

h(n)

) for the op-

erator (PA

�1

P )

�1

is stable if the operator QAQ is invertible. By Kozak's lemma

again, the sequen
e (P

h(n)

(PA

�1

P )

�1

P

h(n)

) is stable if and only if the sequen
e

(Q

h(n)

PA

�1

PQ

h(n)

) with Q

n

:= I � P

n

: l

2

(Z

+

) ! l

2

(Z

+

) is stable, i.e., if the

operators

Q

h(n)

PA

�1

PQ

h(n)

j

imQ

h(n)

are invertible for suÆ
iently large n and if the norms of their inverses are uni-

formly bounded. This happens if and only if the operators

U

�h(n)

Q

h(n)

PA

�1

PQ

h(n)

U

h(n)

j

im(U

�h(n)

Q

h(n)

U

h(n)

)

= U

�h(n)

Q

h(n)

U

h(n)

U

�h(n)

A

�1

U

h(n)

U

�h(n)

Q

h(n)

U

h(n)

j

imP

= PU

�h(n)

A

�1

U

h(n)

P j

imP

(6)

are invertible for suÆ
iently large n and if the norms of their inverses are uni-

formly bounded. Sin
e h is a distinguished sequen
e for A, one has

kU

�h(n)

AU

h(n)

� Ak ! 0

whi
h implies

kU

�h(n)

A

�1

U

h(n)

� A

�1

k ! 0:

Hen
e, (6) 
onverges in the norm to PA

�1

P . Sin
e this operator is invertible as

mentioned above, the operators in (6) are invertible for suÆ
iently large n, and

their inverses are uniformly bounded. This proves the 
laim.

Now (5) gives

P

h(n)

(PAP + L)P

h(n)

= P

h(n)

(PA

�1

P )

�1

P

h(n)

+ P

h(n)

(L�K)P

h(n)

;

i.e., the sequen
e (P

h(n)

(PAP +L)P

h(n)

) we are interested in is a 
ompa
t pertur-

bation of the stable sequen
e (P

h(n)

(PA

�1

P )

�1

P

h(n)

). Sin
e (PA

�1

P )

�1

+L�K =

PAP + L is an invertible operator by hypothesis, the perturbation theorem for

approximation methods (Corollary 1.22 in [8℄) implies the stability of the �nite

se
tions method (P

h(n)

(PAP + L)P

h(n)

).

9



Conversely, we have to show that the stability of that sequen
e implies the

invertibility of the operators PAP +L and QAQ. This follows in a standard way

from

P

h(n)

(PAP + L)P

h(n)

! PAP + L

�

-strongly

and

U

�h(n)

P

h(n)

(PAP + L)P

h(n)

U

h(n)

! QAQ

�

-strongly

whi
h holds for every distinguished sequen
e h.

Next we 
onsider the �nite se
tion method for operators in A

AP

(Z). We will

need one more simple lemma.

Lemma 4.4 Let A 2 A

AP

(Z), and let h be a sequen
e in H

A;n

with A

h

= A.

Then 2h and �h are sequen
es in H

A;n

with A

2h

= A and A

�h

= A.

This follows easily from

kU

�2h(n)

AU

2h(n)

� Ak

� kU

�2h(n)

AU

2h(n)

� U

�h(n)

AU

h(n)

k+ kU

�h(n)

AU

h(n)

� Ak

� 2 kU

�h(n)

AU

h(n)

� Ak ! 0

and

kU

h(n)

AU

�h(n)

� Ak = kU

h(n)

(A� U

�h(n)

AU

h(n)

)U

�h(n)

k

� kA� U

�h(n)

AU

h(n)

k ! 0:

Theorem 4.5 Let A 2 A

AP

(Z), and let h be a distinguished sequen
e for A.

Furthermore, let L be a 
ompa
t operator on l

2

(Z). Then the sequen
e (R

h(n)

(A+

L)R

h(n)

) is stable if and only if the operators A+L, PAP and QAQ are invertible.

In 
ase L = 0, the invertibility of A + L = A follows from the invertibility of

PAP due to Lemma 3.6. Hen
e, in this 
ase, the stability of the �nite se
tion

method is equivalent to the invertibility of PAP and QAQ.

Proof. The 
ru
ial observation is that

kU

h(n)

R

h(n)

AR

h(n)

U

�h(n)

� P

2h(n)

PAPP

2h(n)

k

= kP

2h(n)

U

h(n)

AU

�h(n)

P

2h(n)

� P

2h(n)

PAPP

2h(n)

k

� kU

h(n)

AU

�h(n)

� Ak ! 0

by the pre
eding lemma. The same lemma states furthermore that 2h is a

distinguished sequen
e for A. Thus, if PAP and QAQ are invertible, then

(P

2h(n)

PAPP

2h(n)

) is a stable sequen
e by Theorem 4.2. Sin
e

(P

2h(n)

PAPP

2h(n)

) and (U

h(n)

R

h(n)

AR

h(n)

U

�h(n)

)

10



di�er by a sequen
e whi
h tends to zero in the norm, the latter sequen
e is

stable, too. But then, 
learly, the sequen
e (R

h(n)

AR

h(n)

) is stable. Sin
e A+ L

is invertible by hypothesis, the stability of the 
ompa
tly perturbed sequen
e

(R

h(n)

(A + L)R

h(n)

) follows via the perturbation theorem (Corollary 1.22 in [8℄)

again. The reverse impli
ation in Theorem 4.5 follows as in the proof of Theorem

4.2.

In the following examples we are going to make the previous 
onstru
tions more

expli
it.

Example A: Multipli
ation operators. For ea
h real number � 2 [0; 1), the

fun
tion

a : Z! C ; n 7! e

2�i�n

(7)

is almost periodi
. Indeed, for every integer k, U

�k

aU

k

is the operator of multi-

pli
ation by the fun
tion a

k

with a

k

(n) = a(n + k) = e

2�i�k

a(n), i.e.,

U

�k

aU

k

= e

2�i�k

a: (8)

Let (U

�k(n)

aU

k(n)

) by any sequen
e in fU

�k

aU

k

: k 2 Zg. Due to the 
ompa
tness

of T, there are a subsequen
e (e

2�i�k(n(r))

)

r�1

of (e

2�i�k(n)

)

n�1

and a real number

� su
h that

e

2�i�k(n(r))

! e

2�i�

as r !1:

Thus, the fun
tions a

k(n(r))

= e

2�i�k(n(r))

a 
onverge uniformly to e

2�i�

a, when
e

the almost periodi
ity of a. For the operator spe
trum of the operator aI one

�nds

�

op; s

(aI) = �

op; n

(aI) =

(

fe

2�il=q

a : l = 1; 2; : : : ; qg if � = 2p=q 2 Q ;

fe

it

a : t 2 Rg if � 62 Q ;

Here, p and q are relatively prime integers with q > 0. Indeed, the in
lusion �

follows immediately from (8). The reverse in
lusion is evident in 
ase � 2 Q . If

� 62 Q , then it follows from a theorem by Krone
ker whi
h states that the set of

all numbers e

2�i�k

with integer k lies dense in the unit 
ir
le T.

In 
ase � = p=q 2 Q , the sequen
e a is q-periodi
, and h(n) = qn is a

distingiushed sequen
e for the multipli
ation operator aI. To get a distinguished

sequen
e h for aI in 
ase � 62 Q , too, one has to ensure that

lim

n!1

e

2�i�h(n)

= 1

(
p. (8)). For develop � 2 (0; 1) into a 
ontinued fra
tion

� = lim

n!1

1

b

1

+

1

b

2

+

1

.

.

.

b

n�1

+

1

b

n

11



with uniquely determined positive integers b

i

. Write this 
ontinued fra
tion as

p

n

=q

n

with positive and relatively prime integers p

n

; q

n

. These integers satisfy

the re
ursions

p

n

= a

n

p

n�1

+ p

n�2

; q

n

= a

n

q

n�1

+ q

n�2

(9)

with p

0

= 0; p

1

= 1; q

0

= 1 and q

1

= a

1

, and one has for all n � 1

�

�

�

�

��

p

n

q

n

�

�

�

�

<

1

q

n

q

n+1

<

1

q

2

n

: (10)

These fa
ts 
an be found in any book on 
ontinued fra
tions. From (10) we


on
lude that

j�q

n

� p

n

j � q

n

�

�

�

�

��

p

n

q

n

�

�

�

�

�

1

q

n

! 0;

when
e

e

2�i�q

n

= e

2�i(�q

n

�p

n

)

! 1:

Sin
e moreover q

1

< q

2

< : : : due to the re
ursion (9), this shows that the

sequen
e h(n) := q

n

belongs to H

A;n

and that A

h

= A, i.e. h is a distinguished

sequen
e for the operator aI with a as in (7).

Example B: Almost Mathieu operators. These are the operators H

�;�; �

:

l

2

(Z)! l

2

(Z) given by

(H

�; �; �

x)

n

:= x

n+1

+ x

n�1

+ �x

n


os 2�(n�+ �)

with real parameters �; � and �. Thus, H

�;�; �

is a band operator with almost

periodi
 
oeÆ
ients, and

H

�; �; �

= U

�1

+ U

1

+ aI with a(n) = � 
os 2�(n� + �):

For a treatment of the spe
tral theory of Almost Mathieu operators see [1℄. As

in Example A one gets

U

�k

H

�;�; �

U

k

= U

�1

+ U

1

+ a

k

I

with

a

k

(n) = a(n+ k) = � 
os 2�((n+ k)� + �)

= �(
os 2�(n�+ �) 
os 2�k�� sin 2�(n� + �) sin 2�k�): (11)

We will only 
onsider the non-periodi
 
ase, i.e., we let � 2 (0; 1) be irrational. As

in the previous example, we write � as a 
ontinued fra
tion with nth approximant

p

n

=q

n

su
h that (10) holds. Then


os 2��q

n

= 
os 2�(�q

n

� p

n

) = 
os 2�q

n

(�� p

n

=q

n

)! 
os 0 = 1

12



and, similarly, sin 2��q

n

! 0. Further we infer from (11) that

j(a

q

n

)� a)(n)j � j�j j1� 
os 2��q

n

j+ j�j j sin��q

n

j:

Hen
e, a

q

n

! a uniformly. Thus, h(n) := q

n

de�nes a distinguished sequen
e for

the Almost Mathieu operator H

�;�; �

. Noti
e that this sequen
e depends on the

parameter � only. Theorems 4.2 and 4.5 imply the following.

Corollary 4.6 Let A := H

�; �; �

be an Almost Mathieu operator and h a distin-

guished sequen
e for A. Then the following 
onditions are equivalent:

(a) the distinguished �nite se
tions method (P

h(n)

PAPP

h(n)

) for PAP is stable;

(b) the distinguished �nite se
tions method (R

h(n)

AR

h(n)

) for A is stable;

(
) the operators PAP and QAQ are invertible.

If � = 0, then the Almost Mathieu operator A = H

�;�; 0

is 
ip invariant, i.e.,

JAJ = A. So we observe in this 
ase that the third 
ondition in Corollary 4.6 is

equivalent to the invertibility of PAP alone.

For a di�erent approa
h to the numeri
al treatment of Almost Mathieu and

other operators in irrational rotation algebras see [6℄.

5 The algebra of the �nite se
tions method

In what follows we �x a strongly monotoni
ally in
reasing sequen
e h : Z

+

! Z

+

.

De�ne

A

AP;h

(Z) := fA 2 A

AP

(Z) : h 2 H

A;n

and A

h

= Ag:

Thus, an operator A 2 A

AP

(Z) belongs to A

AP;h

(Z) if and only if h is a dis-

tinguished sequen
e for PAP . By (a slightly improved version of) Lemma 2.4,

every operator A 2 A

AP

(Z) belongs to one of the sets A

AP;h

(Z) with a suitably


hosen sequen
e h.

It is easy to 
he
k that A

AP;h

(Z) is a C

�

-subalgebra of L(l

2

(Z)) whi
h is

moreover shift invariant, i.e., U

�k

AU

k

belongs to this algebra for ea
h k 2 Z

whenever A does. It is also 
lear that all Laurent operators with 
ontinuous and


omplex-valued generating fun
tion belong to ea
h of the algebras A

AP;h

(Z).

Let A

AP;h

(Z

+

) refer to the smallest 
losed subalgebra of L(l

2

(Z

+

)) whi
h


ontains all operators PAP with A 2 A

AP;h

(Z). For instan
e, all Toeplitz opera-

tors with 
ontinuous and 
omplex-valued generating fun
tion lie in this algebra.

Hen
e, A

AP;h

(Z

+

) also 
ontains all 
ompa
t operators, and one 
an show as in

Lemma 3.5 that

A

AP;h

(Z

+

) = fPAP +K : A 2 A

AP;h

(Z); K 2 L(l

2

(Z

+

)) 
ompa
tg: (12)

Let F

h

stand for the set of all bounded sequen
es (A

n

) of matri
esA

n

2 C

h(n)�h(n)

.

Provided with pointwise de�ned operations and the supremum norm, F

h

be
omes

13



a C

�

-algebra. As earlier, we will identify the matri
es A

n

with operators a
ting

on imP

h(n)

. Finally, we let S

AP;h

(Z

+

) denote the smallest 
losed subalgebra of

F

h

whi
h 
ontains all sequen
es (P

h(n)

PAPP

h(n)

) with operators A 2 A

AP;h

(Z).

The following result des
ribes this algebra 
ompletely. For, introdu
e

W

n

: l

2

(Z

+

)! l

2

(Z

+

); (x

n

)

n�0

7! (x

n�1

; x

n�2

; : : : : x

0

; 0; 0; : : :):

Theorem 5.1 The algebra S

AP; h

(Z

+

) 
onsists exa
tly of all sequen
es of the

form

(P

h(n)

PAPP

h(n)

+ P

h(n)

KP

h(n)

+W

h(n)

LW

h(n)

+ C

h(n)

) (13)

with A 2 A

AP;h

(Z), K; L 2 L(l

2

(Z

+

)) 
ompa
t and kC

h(n)

k ! 0 as n!1, and

ea
h sequen
e in S

AP;h

(Z

+

) 
an be written in the form (13) in a unique way.

The Toeplitz analogue of Theorem 5.1 is well known (Theorem 1.53 in [8℄, for

instan
e): the smallest 
losed subalgebra S

C

(Z

+

) of F

id

whi
h 
ontains all se-

quen
es (P

n

T (a)P

n

) with a 
ontinuous fun
tion a : T ! C 
onsists exa
tly of all

sequen
es of the form

(P

n

T (a)P

n

+ P

n

KP

n

+W

n

LW

n

+ C

n

)

where a is 
ontinuous, K and L are 
ompa
t, and (C

n

) is a sequen
e tending to

zero in the norm.

Proof of Theorem 5.1. First let A and B be arbitrary band-dominated oper-

ators and n a positive integer. Then

P

n

PAPP

n

P

n

PBPP

n

= P

n

PAPBPP

n

� P

n

PAPQ

n

PBPP

n

= P

n

PABPP

n

� P

n

PAQBPP

n

� P

n

PAPQ

n

PBPP

n

: (14)

Sin
e

PQ

n

P = U

n

PU

�n

; PW

n

PJ = PU

n

Q; JPW

n

P = QU

�n

P (15)

we obtain

P

n

PAPQ

n

PBPP

n

= W

n

J JPW

n

P AU

n

PU

�n

B PW

n

PJ JW

n

= W

n

JQU

�n

P AU

n

PU

�n

B PU

n

QJW

n

: (16)

Further we 
on
lude from

W

n

JQQ

�n

Q = 0 and QU

n

QJW

n

= 0

and from (16) that

P

n

PAPQ

n

PBPP

n

=W

n

JQU

�n

AU

n

PU

�n

B U

n

QJW

n

:

14



Together with (14) this gives

P

n

PAPP

n

P

n

PBPP

n

= P

n

PABPP

n

� P

n

PAQBPP

n

�W

n

JQU

�n

AU

n

PU

�n

B U

n

QJW

n

= P

n

PABPP

n

+ P

n

KP

n

�W

n

JQ U

�n

AU

n

PU

�n

BU

n

QJW

n

(17)

with a 
ompa
t operator K = �PAQBP . Now let espe
ially A; B 2 A

AP;h

(Z)

and repla
e n in (17) by h(n). Sin
e

kU

�h(n)

AU

h(n)

PU

�h(n)

BU

h(n)

� APBk ! 0;

we obtain from (17) the identity

P

h(n)

PAPP

h(n)

P

h(n)

PBPP

h(n)

= P

h(n)

PABPP

h(n)

+ P

h(n)

KP

h(n)

+W

h(n)

LW

h(n)

+ C

h(n)

with 
ompa
t operators K and L := �JQAPBQJ and with

kC

h(n)

k = kW

h(n)

JQ(U

�h(n)

AU

h(n)

PU

�h(n)

BU

h(n)

� APB)QJW

h(n)

k ! 0:

Thus, the (non-
losed) dense subalgebra of S

AP;h

(Z

+

) whi
h is generated by all

sequen
es of the form (P

h(n)

PAPP

h(n)

) with A 2 A

AP;h

(Z) is 
ontained in the

set S

0

of all sequen
es of the form (13). The in
lusion S

AP;h

(Z

+

) � S

0

will follow

on
e we have shown that S

0

is 
losed.

For this goal, noti
e that for ea
h sequen
e A = (A

n

) 2 S

0

with

A

n

:= P

h(n)

PAPP

h(n)

+ P

h(n)

KP

h(n)

+W

h(n)

LW

h(n)

+ C

h(n)

the sequen
es (A

n

P

h(n)

) and (W

h(n)

A

n

W

h(n)

) 
onverge

�

-strongly to W (A) :=

PAP +K and

f

W (A) := JQAQJ + L = PJAJP + L, respe
tively. The �rst of

these assertions is evident. The se
ond one follows sin
e, by (15),

W

h(n)

PAPW

h(n)

= JJW

h(n)

PAPW

h(n)

JJ = JQU

�h(n)

PAPU

h(n)

QJ ! JQAQJ

�

-strongly. By the Bana
h-Steinhaus theorem, the linear mappings W and

f

W

are 
ontinuous. Thus, if (A

k

) is a Cau
hy sequen
e in S

0

, then (W (A

k

)) =

(PA

k

P +K

k

) is a Cau
hy sequen
e in A

AP;h

(Z

+

). As in the proof of Lemma 3.5

one 
on
ludes that this sequen
e 
onverges to an operator PAP + K with A 2

A

AP;h

(Z) and with a 
ompa
t operator K. Further, (

f

W (A

k

)) = (PJA

k

JP +L

k

)

is a Cau
hy sequen
e, too. Sin
e kPJA

k

JP�PJAJPk ! 0 as we have just seen,

(L

k

) is a Cau
hy sequen
e whi
h 
onverges to a 
ompa
t operator L. Moreover,

standard arguments show that the set of all sequen
es in F

h

whi
h tend to zero

in the norm is 
losed in F

h

. This �nally shows that the sequen
e (A

k

) 
onverges

in the norm of F

h

to a sequen
e of the form

A := (P

h(n)

PAPP

h(n)

+ P

h(n)

KP

h(n)

+W

h(n)

LW

h(n)

+ C

h(n)

)

15



with kC

h(n)

k ! 0 whi
h 
learly belongs to S

0

. Thus, S

0

is 
losed.

For the reverse impli
ation S

0

� S

AP;h

(Z

+

) we have to show that

(P

h(n)

KP

h(n)

+W

h(n)

LW

h(n)

+ C

h(n)

) 2 S

AP;h

(Z

+

)

for arbitrary 
ompa
t operators K and L and arbitrary zero sequen
es (C

h(n)

).

But this is 
lear sin
e all �nite se
tions sequen
es for Toeplitz operators with


ontinuous and 
omplex-valued generating fun
tion belong to S

AP;h

(Z

+

), hen
e,

S

C

(Z

+

) � S

AP;h

(Z

+

), and sin
e all sequen
es of the form (P

n

KP

n

+W

n

LW

n

+C

n

)

with 
ompa
t operators K; L and with a zero sequen
e (C

n

) belong to S

C

(Z

+

)

as mentioned above.

In the pre
eding proof, we have de�ned linear mappingsW and

f

W on S

0

. Due to

the 
oin
iden
e of S

0

with S

AP;h

(Z

+

) these mappings are de�ned on the algebra

S

AP;h

(Z

+

), and it is easy to see that they a
t as

�

-homomorphisms from this

algebra into A

AP;h

(Z

+

).

As in proof of Theorem 1.54 in [8℄, a twi
e appli
ation of the perturbation

theorem gives the following stability result for sequen
es in S

AP; h

(Z

+

).

Theorem 5.2 A sequen
e A = (A

n

) 2 S

AP;h

(Z

+

) is stable if and only if the two

operators W (A) and

f

W (A) are invertible.

Corollary 5.3 The algebra S

AP;h

(Z

+

)=G is

�

-isomorphi
 to the C

�

-subalgebra

of L(l

2

(Z

+

)) � L(l

2

(Z

+

)) whi
h 
onsists of all pairs (W (A);

f

W (A)) with A 2

S

AP;h

(Z

+

).

Indeed, sin
e W (G) = 0 for ea
h sequen
e G 2 G, the mapping

S

AP; h

(Z

+

)=G ! L(l

2

(Z

+

))� L(l

2

(Z

+

)); A+ G 7! (W (A);

f

W (A))

is 
orre
tly de�ned. It turns out that this mapping is a

�

-homomorphism whi
h,

by Theorem 5.2, preserves spe
tra. Elementary C

�

-arguments show that then

this mapping is an isomorphism.

6 Spe
tral approximation

Another 
orollary to Theorem 5.2 states that the algebra S

AP; h

(Z

+

) is fra
tal in

the following sense. Let again F stand for the algebra of all matrix sequen
es

with dimension fun
tion Æ. For ea
h strongly monotoni
ally in
reasing sequen
e

� : Z

+

! Z

+

, let F

�

refer to the algebra of all matrix sequen
es with dimension

fun
tion Æ Æ �. There is a natural

�

-homomorphism R

�

: F ! F

�

given by

R

�

: (A

n

) 7! (A

�(n)

);

thus, A

�(n)

is a Æ(�(n))� Æ(�(n))-matrix.

16



De�nition 6.1 A C

�

-subalgebra A of F with G � A is 
alled fra
tal if, for every

strongly monotoni
ally in
reasing sequen
e � : Z

+

! Z

+

, there is a mapping

�

�

: R

�

A! F=G su
h that

�

�

(R

�

A) = A+ G for ea
h sequen
e A 2 A:

Thus, the 
oset A+ G 2 A=G 
an be re
onstru
ted from ea
h subsequen
e of A.

Theorem 6.2 The subalgebra S

AP; h

(Z

+

) of F is fra
tal.

This follows immediately from Corollary 5.3 in 
ombination with Theorem 1.69

in [8℄.

Fra
tal subalgebras of F are distinguished by the ex
ellent 
onvergen
e prop-

erties of their elements. For a general a

ount on this topi
, see the third 
hapter

of [8℄. Here we will mention only a few fa
ts whi
h arise immediately from Corol-

lary 5.3 and the general results provided in [8℄.

For ea
h element A on a unital C

�

-algebra, let �(A) refer to the spe
trum of

A and �

sing

(A) to the set of all square roots of the points in �(A

�

A). Thus, for

an n� n-matrix A, �

sing

(A) is just the set of the singular values of that matrix.

Corollary 6.3 Let A := (A

n

) 2 S

AP;h

(Z

+

) be a self-adjoint sequen
e. Then the

spe
tra �(A

n

) 
onverge in the Hausdor� metri
 to the spe
trum of the 
oset A+G

in S

AP;h

(Z

+

)=G whi
h, on its hand, 
oin
ides with �(W (A)) [ �(

f

W (A)).

Corollary 6.4 Let A := (A

n

) 2 S

AP; h

(Z

+

). Then the sets of the singular values

�

sing

(A

n

) 
onverge in the Hausdor� metri
 to �

sing

(A+G) in S

AP;h

(Z

+

)=G whi
h

is equal to �

sing

(W (A)) [ �

sing

(

f

W (A)).

Let " > 0. The "-pseudospe
trum �

(")

(A) of an element A of a C

�

-algebra with

identity element I is the set of all � 2 C for whi
h either A� �I is not invertible

or k(A� �I)

�1

k � 1=".

Corollary 6.5 Let " > 0 and A := (A

n

) 2 S

AP;h

(Z

+

). Then the "-pseudospe
tra

�

(")

(A

n

) 
onverge in the Hausdor� metri
 to �

(")

(A+ G) in S

AP;h

(Z

+

)=G whi
h


oin
ides with �

(")

(W (A)) [ �

(")

(

f

W (A)).

Another 
onsequen
e of Corollary 5.3 is related with Fredholm sequen
es and

the splitting phenomenon of their singular values. Given an n � n-matrix A,

let 0 � �

1

(A) � �

2

(A) � : : : � �

n

(A) = kAk refer to the singular values of

A, 
ounted with respe
t to their multipli
ity. A sequen
e A = (A

n

) 2 F is a

Fredholm sequen
e if there is a non-negative integer k su
h that

lim inf

n!1

�

k+1

(A

n

) > 0;

and the smallest number k with this property is the �-number of A. We denote

it by �(A).

17



Corollary 6.6 A sequen
e A := (A

n

) 2 S

AP;h

(Z

+

) is Fredholm if and only if

its strong limit W (A) is a Fredholm operator. In this 
ase,

f

W (A) is a Fredholm

operator, too,

�(A) = dim kerW (A) + dim ker

f

W (A); (18)

and, moreover, lim

n!1

�

�(A)

(A

n

) = 0.

The �rst part of the assertion holds for general band-dominated operators; see

Theorem 5.7 (b) in [14℄. The identity (18) and the �nal assertion follow from

Theorem 6.12 in [8℄.
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