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Abstra
t

LetM be a non-
ompa
t, �nite-dimensional manifold of positive dimension, E 6= f0g

be a lo
ally 
onvex spa
e, and C

1




(M;E) be the spa
e of 
ompa
tly supported smooth

E-valued maps onM . We des
ribe dis
ontinuous mappings C

1




(M;E) ! C

1




(M;R)

whose restri
tion to C

1

K

(M;E) := f
 2 C

1

(M;E) : 
j

MnK

= 0g is smooth, for ea
h


ompa
t subset K of M .

Subje
t 
lassi�
ation: 46A13, 46F05, 46M40, 58B10

Introdu
tion

Let E

1

� E

2

� � � � be an as
ending sequen
e of lo
ally 
onvex spa
es whi
h does not

be
ome stationary, and su
h that E

n+1

indu
es the given topology on E

n

, for ea
h n. It is

a well-known phenomenon that the topology on E :=

S

n2N

E

n

making E the dire
t limit

of the spa
es E

n

in the 
ategory of lo
ally 
onvex spa
es (and 
ontinuous linear maps) 
an

be properly 
oarser than the topology making E the dire
t limit of its subspa
es E

n

in the


ategory of topologi
al spa
es. For example, this phenomenon o

urs whenever ea
h E

n

is an in�nite-dimensional Fr�e
het spa
e (
f. [13, Prop. 4.26 (ii)℄). In parti
ular, the lo
ally


onvex dire
t limit topology on the spa
e C

1




(R) = lim

�!

C

1

[�n;n℄

(R) of test fun
tions is prop-

erly 
oarser than the topology of dire
t limit topologi
al spa
e (
f. also [3, p. 506℄).

So, for abstra
t reasons, dis
ontinuous mappings on the spa
e of test fun
tions C

1




(R)

are known to exist whose restri
tion to C

1

[�n;n℄

(R) is 
ontinuous for ea
h n 2 N . In this

arti
le, we des
ribe su
h a mapping expli
itly, whose restri
tion to C

1

[�n;n℄

(R) is not only


ontinuous but a
tually smooth (Proposition 2.2). More generally, for every �-
ompa
t,

non-
ompa
t, �nite-dimensional smooth manifoldM of positive dimension and lo
ally 
on-

vex spa
e E 6= f0g, we 
onstru
t a dis
ontinuous map f : C

1




(M;E) ! C

1




(M;R) whose

restri
tion to C

1

K

(M;E) is smooth, for ea
h 
ompa
t subset K of M . An analogous result

is obtained for the spa
e C

1




(M;E) of 
ompa
tly supported smooth se
tions in a bundle

of lo
ally 
onvex spa
es E !M over M , with non-trivial �bre (Theorem 3.2).

Further developments. The pre
eding result is useful for the investigation of dire
t limit

properties of in�nite-dimensional Lie groups. As shown in [11℄, it entails that there are dis-


ontinuous (and hen
e non-smooth) mappings on the Lie group Di�




(M) =

S

K

Di�

K

(M)

of 
ompa
tly supported smooth di�eomorphisms of M (as in [14℄ or [10℄), whose restri
-

tion to Di�

K

(M) := f� 2 Di�(M) : �j

MnK

= id

MnK

g is smooth, for ea
h 
ompa
t subset

K �M . A similar pathology o

urs for the Lie group C

1




(M;G) =

S

K

C

1

K

(M;G) of 
om-

pa
tly supported smooth maps with values in a non-dis
rete �nite-dimensional Lie group

(as in [5℄). In this way, we obtain one half of the following table, whi
h des
ribes whether

Di�




(M) = lim

�!

Di�

K

(M) and C

1




(M;G) = lim

�!

C

1

K

(M;G) holds in the 
ategories shown:

1




ategory n group C

1




(M;G) Di�




(M)

Lie groups yes yes

topologi
al groups yes yes

smooth manifolds no no

topologi
al spa
es no no

For the proof, see [11℄ (
f. also [18℄ for related results).

The present 
onstru
tions of pathologi
al mappings are 
omplemented by investigations

in [8℄{[10℄ (
f. also [7℄). In these arti
les, a mild additional property is introdu
ed whi
h

ensures that a map f : C

1




(M;E) ! C

1




(N;F ) between spa
es of test fun
tions (or


ompa
tly supported se
tions) satisfying this property (an \almost lo
al" map) is indeed

smooth if and only if it is smooth on C

1

K

(M;E) for ea
h K. In 
ontrast to these mappings,

the pathologi
al examples presented here are extremely non-lo
al.

In the �nal se
tion, we des
ribe examples of dis
ontinuous bilinear mappings whi
h are


ontinuous (and hen
e analyti
) on ea
h step of a dire
ted sequen
e of subspa
es.

1 Preliminaries

In this arti
le, we are working in the setting of in�nite-dimensional di�erential 
al
ulus

known as Keller's C

1




-theory, based on smooth maps in the sense of Mi
hal-Bastiani (see

[4℄, [12℄, [14℄, [16℄ for further information).

De�nition 1.1 Let E, F be lo
ally 
onvex spa
es and f : U ! F be a mapping, de�ned

on an open subset U of E. We say that f is of 
lass C

0

if f is 
ontinuous. If f is a


ontinuous map su
h that the two-sided dire
tional derivatives

df(x; v) = lim

t!0

1

t

(f(x+ tv)� f(x))

exist for all (x; v) 2 U � E, and the map df : U � E ! F so de�ned is 
ontinuous, then

f is said to be of 
lass C

1

. Re
ursively, given k 2 N we 
all f a mapping of 
lass C

k+1

if it is of 
lass C

1

and df is of 
lass C

k

on the open subset U � E of E � E. We set

d

k+1

f := d(d

k

f) = d

k

(df) : U � E

2

k+1

�1

! F in this 
ase. The fun
tion f is 
alled smooth

(or of 
lass C

1

) if it is of 
lass C

k

for ea
h k 2 N

0

.

De�nition 1.2 Let M be a �nite-dimensional, �-
ompa
t smooth manifold and E be a

lo
ally 
onvex topologi
al ve
tor spa
e. We equip the ve
tor spa
e C

1

(M;E) of E-valued

smooth mappings 
 on M with the topology of uniform 
onvergen
e of �

�

(
 Æ �

�1

) on


ompa
t subsets of V , for ea
h 
hart � : M � U ! V � R

d

of M and multi-index � 2 N

d

0

(where d := dim(M)). Given a 
ompa
t subset K � M , we equip the ve
tor subspa
e

C

1

K

(M;E) := f
 2 C

1

(M;E) : 
j

MnK

= 0g of C

1

(M;E) with the indu
ed topology.

2



We give C

1




(M;E) :=

S

K

C

1

K

(M;E) = lim

�!

C

1

K

(M;E) the lo
ally 
onvex dire
t limit

topology. We abbreviate C

1




(M) := C

1




(M;R), C

1

(M) := C

1

(M;R), and C

1

K

(M) :=

C

1

K

(M;R). Further details 
an be found, e.g., in [5℄.

2 Example of a dis
ontinuous mapping on C

1




(R)

We show that the map f : C

1




(R) ! C

1




(R), 
 7! 
 Æ 
 � 
(0) is dis
ontinuous, although

its restri
tion to C

1

[�n;n℄

(R) is smooth, for ea
h n 2 N .

The following fa
t is essential for our 
onstru
tions. It follows from [13, Cor. 3.13℄ and is

also a spe
ial 
ase of [8, Prop. 11.3℄. For the 
onvenien
e of the reader, we o�er a dire
t,

elementary proof as an appendix.

Lemma 2.1 The 
omposition map

�: C

1

(R

n

;R

m

)� C

1

(M;R

n

)! C

1

(M;R

m

) ; �(
; �) := 
 Æ �

is smooth, for ea
h �nite-dimensional, �-
ompa
t smooth manifold M and m;n 2 N

0

. 2

For the following proof, re
all that the sets

V(k; e) :=

�


 2 C

1




(R) : (8n 2 Z) (8j 2 f0; : : : ; k

n

g) (8x 2 [n�

1

2

; n+

1

2

℄) j


(j)

(x)j < "

n

	

form a basis of open zero-neighbourhoods for the topology on C

1




(R), where k = (k

n

) 2

(N

0

)

Z

and e = ("

n

) 2 (R

+

)

Z

(
f. [17, x II.1℄; see [5, Prop. 4.8℄).

Proposition 2.2 f : C

1




(R) ! C

1




(R), 
 7! 
 Æ 
 � 
(0) has the following properties:

(a) The restri
tion of f to a map C

1

[�n;n℄

(R) ! C

1




(R) is smooth (and hen
e 
ontinuous),

for ea
h n 2 N.

(b) f is dis
ontinuous at 
 = 0.

Proof. (a) Fix n 2 N ; we have to show that f j

C

1

[�n;n℄

(R)

: C

1

[�n;n℄

(R) ! C

1




(R) is smooth.

The image of this map being 
ontained in the 
losed ve
tor subspa
e C

1

[�n;n℄

(R) of C

1




(R),

whi
h also is a 
losed ve
tor subspa
e of C

1

(R) (with the same indu
ed topology), it

suÆ
es to show that the map C

1

[�n;n℄

(R) ! C

1

(R), 
 7! 
 Æ 
 � 
(0) is smooth (see [9,

Prop. 1.9℄ or [1, La. 10.1℄). Now 
 7! 
(0) being a 
ontinuous linear (and thus smooth)

map, it suÆ
es to show that C

1

[�n;n℄

(R) ! C

1

(R), 
 7! 
 Æ 
 is smooth. This readily

follows from Lemma 2.1.

(b) Consider the zero-neighbourhood V := V((jnj)

n2Z

; (1)

n2Z

) in C

1




(R). Let k =

(k

n

) 2 (N

0

)

Z

and e = ("

n

) 2 (R

+

)

Z

be arbitrary. We show that f(V(k; e)) 6� V . Sin
e

f(0) = 0, this entails that f is dis
ontinuous at 
 = 0. It is easy to 
onstru
t a fun
tion

h 2 C

1




(R) su
h that supp(h) � ℄�

1

2

;

1

2

[ and h(x) = x

k

0

+1

for all x 2 [�

1

4

;

1

4

℄. Then

rh 2 V(k; e) for some r > 0. For m 2 N , we de�ne h

m

2 C

1




(R) via

h

m

(x) :=

r

m

k

0

h(mx):

3



Then supp(h

m

) � ℄�

1

2m

;

1

2m

[ and thus h

m

2 V(k; e) sin
e, for all j = 0; : : : ; k

0

and x 2

[�

1

2

;

1

2

℄, we have jh

(j)

m

(x)j =

rm

j

m

k

0

jh

(j)

(mx)j < "

0

. We now 
hoose n 2 N su
h that n � k

0

+2.

It is easy to 
onstru
t a fun
tion  2 C

1




(R) su
h that  (x) = x � n for x in some

neighbourhood of n in R, and supp( ) � ℄n �

1

2

; n +

1

2

[. Then � := s �  2 V(k; e)

for suitable s > 0. Choosing s small enough, we may assume that im(�) � [�1; 1℄.

The supports of � and h

m

being disjoint, we easily dedu
e from �; h

m

2 V(k; e) that

also 


m

:= � + h

m

2 V(k; e). Then 


m

(0) = 0, and sin
e im(�) � [�1; 1℄, we have

f(


m

)(x) = (h

m

Æ �)(x) for all x 2 W := ℄n�

1

2

; n+

1

2

[. For x 2 W suÆ
iently 
lose to n,

we have �(x) = s � (x � n) 2 [�

1

4m

;

1

4m

℄ and thus f(


m

)(x) = r � m � s

k

0

+1

� (x � n)

k

0

+1

,

when
e f(


m

)

(k

0

+1)

(n) = r �m � s

k

0

+1

� (k

0

+ 1)! . Thus f(


m

) 62 V for all m 2 N su
h that

r �m � s

k

0

+1

� (k

0

+1)! � 1, and so f(V(k; e)) 6�V . As k and e were arbitrary, (b) follows. 2

Note that supp(f(
)) � supp(
) here, for all 
 2 C

1




(R).

Remark 2.3 Although the map f from Proposition 2.2 is dis
ontinuous and thus not

smooth in the Mi
hal-Bastiani sense, it is easily seen to be smooth in the sense of 
onvenient

di�erential 
al
ulus (as any map f on a \regular" 
ountable stri
t dire
t limit E = lim

�!

E

n

of 
omplete lo
ally 
onvex spa
es, all of whose restri
tions f j

E

n

are smooth).

1

3 Dis
ontinuous mappings on C

1




(M;E)

In this se
tion, we generalize our dis
ussion of C

1




(R) from Se
tion 2 to the spa
es

C

1




(M;E) = lim

�!

C

1

K

(M;E) of 
ompa
tly supported smooth mappings on a �-
ompa
t

�nite-dimensional smooth manifold M with values in a lo
ally 
onvex spa
e E. We show:

Proposition 3.1 If E 6= f0g, the manifold M is non-
ompa
t, and dim(M) > 0, then

there exists a mapping f : C

1




(M;E)! C

1




(M;R) su
h that

(a) The restri
tion of f to C

1

K

(M;E) is smooth, for ea
h 
ompa
t subset K of M .

(b) f is dis
ontinuous at 0.

In parti
ular, the lo
ally 
onvex dire
t limit topology on C

1




(M;E) = lim

�!

C

1

K

(M;E) is prop-

erly 
oarser than the topology making C

1




(M;E) the dire
t limit of the spa
es C

1

K

(M;E)

in the 
ategory of topologi
al spa
es.

Instead of proving this proposition dire
tly, we establish an analogous result for spa
es

of se
tions in bundles of lo
ally 
onvex spa
es, whi
h is no harder to prove. Noting that

the fun
tion spa
e C

1




(M;E) is topologi
ally isomorphi
 to the spa
e C

1




(M;M � E) of


ompa
tly supported smooth se
tions in the trivial bundle pr

M

: M � E ! M , 
learly

Proposition 3.1 is 
overed by the ensuing dis
ussions for ve
tor bundles. For ba
kground

material 
on
erning bundles of lo
ally 
onvex spa
es and the asso
iated spa
es of se
tions,

the reader is referred to [9℄ (or also [8, Appendix F℄).

1

Regularity means that every bounded subset of E is 
ontained and bounded in some E

n

.

4



For the present purposes, we re
all: if � : E ! M is a smooth bundle of lo
ally 
onvex

spa
es over the �nite-dimensional, �-
ompa
t smooth manifold M , with typi
al �bre the

lo
ally 
onvex spa
e F , then one 
onsiders on the spa
e C

1

(M;E) of all smooth se
tions

the initial topology with respe
t to the family of mappings

�

 

: C

1

(M;E)! C

1

(U; F ); �

 

(�) := �

 

:= pr

F

Æ  Æ �j

�

�1

(U)

U

;

whi
h take a smooth se
tion � to its lo
al representation �

 

: U ! F with respe
t to

the lo
al trivialization  : �

�1

(U) ! U � F of E. Given a 
ompa
t subset K � M , the

subspa
e C

1

K

(M;E) � C

1

(M;E) of se
tions vanishing o� K is equipped with the indu
ed

topology, and C

1




(M;E) :=

S

K

C

1

K

(M;E) = lim

�!

C

1

K

(M;E) is given the lo
ally 
onvex

dire
t limit topology.

Theorem 3.2 Let M be a �-
ompa
t, non-
ompa
t, �nite-dimensional smooth manifold

of dimension dim(M) > 0, and � : E ! M be a smooth bundle of lo
ally 
onvex spa
es

over M , whose typi
al �bre is a lo
ally 
onvex topologi
al ve
tor spa
e F 6= f0g. Then

there exists a dis
ontinuous mapping f : C

1




(M;E) ! C

1




(M;R) whose restri
tion to

C

1

K

(M;E) is smooth, for ea
h 
ompa
t subset K of M .

Proof. Let d := dim(M). Sin
e M is non-
ompa
t, there exists a sequen
e (U

n

)

n2N

0

of

mutually disjoint 
oordinate neighbourhoods U

n

�M di�eomorphi
 to R

d

su
h that lo
al

trivializations  

n

: �

�1

(U

n

)! U

n

�F of E exist, and su
h that every 
ompa
t subset ofM

meets only �nitely many of the sets U

n

. We de�ne

�

 

n

: C

1




(M;E)! C

1

(U

n

; F ); �

 

n

(�) := �

 

n

:= pr

F

Æ  

n

Æ �j

�

�1

(U

n

)

U

n

:

By de�nition of the topology on C

1




(M;E), the linear maps �

 

n

are 
ontinuous. For

ea
h n 2 N

0

, let �

n

: U

n

! R

d

be a C

1

-di�eomorphism; de�ne x

n

:= �

�1

n

(0). We


hoose a fun
tion h 2 C

1




(R

d

;R) su
h that hj

[�1;1℄

d
= 1; we de�ne h

n

2 C

1




(M;R) via

h

n

(x) := h(�

n

(x)) if x 2 U

n

, h

n

(x) := 0 if x 2 M nU

n

. Let K

n

:= supp(h

n

) � U

n

. We


hoose a 
ontinuous linear fun
tional 0 6= � 2 F

0

, and pi
k v 2 F su
h that �(v) = 1. Note

that A :=

S

n2N

K

n

is 
losed in M , the sequen
e (K

n

)

n2N

of 
ompa
t sets being lo
ally

�nite. Let � : R � F ! F be the s
alar multipli
ation. The eventual de�nition of the

mapping f we are looking for will involve the map �: E !M � R, de�ned via

�j

�

�1

(U

n

)

:= (�j

�

�1

(U

n

)

; � Æ � Æ ((h

n

Æ �)j

�

�1

(U

n

)

; pr

F

Æ  

n

)) (1)

for n 2 N , and �j

En�

�1

(A)

:= (�j

En�

�1

(A)

; 0). Note that � is well-de�ned as the fun
tion

in Equation (1) 
oin
ides with (�; 0) on the set

S

n2N

�

�1

(U

n

nA). Also note that � is a

�bre-preserving mapping from E into the trivial bundle M �R. Furthermore, it is readily

veri�ed that � is a smooth. By [9, Thm. 5.9℄ (or [8, Rem.F.25 (a)℄), the pushforward

C

1




(M;�): C

1




(M;E)! C

1




(M;M � R); � 7! � Æ �

is smooth. For later use, we introdu
e the 
ontinuous linear map

� := �

id

M�R

: C

1




(M;M � R) ! C

1

(M;R) :

5



Let � : R ! R

d

denote the embedding t 7! (t; 0; : : : ; 0). The mapping f to be 
onstru
ted

will also involve the map 	: C

1




(M;E)! C

1

(R;R) de�ned via

	 := C

1

(R; �) Æ C

1

(�

�1

0

Æ �; F ) Æ �

 

0

;

where the pullba
k C

1

(�

�1

0

Æ �; F ) : C

1

(U

n

; F ) ! C

1

(R; F ), 
 7! 
 Æ �

�1

0

Æ � and the

pushforward C

1

(R; �) : C

1

(R; F ) ! C

1

(R;R), 
 7! � Æ 
 are 
ontinuous linear mappings

and thus smooth, by [5, La. 3.3, La. 3.7℄. Being a 
omposition of smooth maps, 	 is smooth.

We now de�ne the desired map f : C

1




(M;E)! C

1




(M;R) via

f := � Æ (	;� Æ C

1




(M;�)) � � Æ ev

x

0

Æ �

 

0

(
o-restri
ted from C

1

(M;R) to C

1




(M;R)), where

�: C

1

(R;R) � C

1

(M;R) ! C

1

(M;R); �(
; �) := 
 Æ �

denotes 
omposition, and ev

x

0

: C

1

(U

0

; F ) ! F the evaluation map 
 7! 
(x

0

). Here

� Æ ev

x

0

Æ �

 

0

is a 
ontinuous linear map and thus smooth. Expli
itly, for � 2 C

1




(M;E)

f(�)(x) =

�

� Æ �

 

0

Æ �

�1

0

Æ �

�

�

�

�

h

n

(x) �

 

n

(x)

��

= �

�

�

 

0

�

�

�1

0

(h

n

(x) � �(�

 

n

(x)); 0)

�

�

� �(�

 

0

(x

0

))

if x 2 U

n

(n 2 N), whereas f(�)(x) = 0 if x 2M nA.

Claim: The restri
tion of f to C

1

K

(M;E) is smooth, for ea
h 
ompa
t subset K of M .

To see this, note that f(C

1

K

(M;E) � C

1

K

(M;R), where C

1

K

(M;R) is a 
losed ve
tor

subspa
e of C

1

(M;R) and C

1




(M;R). Thus, it suÆ
es to show that f j

C

1

K

(M;E)

is smooth

as a map into C

1

(M;R) ([9, Prop. 1.9℄, or [1, La. 10.1℄). But this follows from the Chain

Rule, as � is smooth by Lemma 2.1 and also the other 
onstituents of f are smooth.

Claim: f is dis
ontinuous at the zero-se
tion � = 0. To see this, 
onsider the set V

of all 
 2 C

1




(M;R) su
h that, for all n 2 N and multi-indi
es � 2 N

d

0

of order j�j � n,

we have j�

�

(
 Æ �

�1

n

)(0)j < 1. It is easily veri�ed that V is a symmetri
, 
onvex zero-

neighbourhood in C

1




(M;R). Let U be any 
onvex zero-neighbourhood in C

1




(M;E); we


laim that f(U) 6� V . To see this, set L

n

:= �

�1

n

([�1; 1℄

d

) for n 2 N

0

. Then

�

n

: C

1

L

n

(M;E)! C

1

[�1;1℄

d

(R

d

; F ); � 7! �

 

n

Æ �

�1

n

is a topologi
al isomorphism (
f. [9, La. 3.9, La. 3.10℄ or [8, La. F.9, La. F.15℄) whose in-

verse gives rise to a topologi
al embedding j

n

: C

1

[�1;1℄

d

(R

d

; F ) ! C

1




(M;E). The lin-

ear mapping � : R ! F , t 7! tv gives rise to a 
ontinuous linear map C

1

[�1;1℄

d

(R

d

; �) :

C

1

[�1;1℄

d

(R

d

;R) ! C

1

[�1;1℄

d

(R

d

; F ), 
 7! � Æ 
. Then W

n

:= (j

n

Æ C

1

[�1;1℄

d

(R

d

; �))

�1

(

1

2

U) is a


onvex zero-neighbourhood in C

1

[�1;1℄

d

(R

d

;R). Thus, there exists k

n

2 N

0

and "

n

> 0 su
h

thatW

k

n

;"

n

� W

n

, where W

k

n

;"

n

is the set of all 
 2 C

1

[�1;1℄

d

(R

d

;R) su
h that supfj�

�


(x)j :

6



x 2 [�1; 1℄

d

g < "

n

for all � 2 N

d

0

su
h that j�j � k

n

. We let g 2 C

1

[�1;1℄

d

(R

d

;R) be a fun
-

tion su
h that g(y

1

; : : : ; y

d

) = y

k

0

+1

1

for all y = (y

1

; : : : ; y

d

) 2 [�

1

2

;

1

2

℄

d

. Then rg 2 W

k

0

;"

0

for some r > 0. It is 
lear from the de�nition of W

k

0

;"

0

that then also 


m

2 W

k

0

;"

0

for all

m 2 N , where




m

: R

d

! R ; 


m

(y

1

; : : : ; y

d

) :=

r

m

k

0

g(my

1

; y

2

; : : : ; y

d

) :

Thus �

m

:= j

0

(� Æ 


m

) 2

1

2

U .

Let ` := k

0

+1; we easily �nd � 2 W

k

`

;"

`

su
h that, for suitable s > 0, we have �(y) = s�y

1

for y = (y

1

; : : : ; y

d

) in some zero-neighbourhood in R

d

. We de�ne � := j

`

(� Æ �) 2

1

2

U .

Then �

m

:= �

m

+ � 2 U by 
onvexity of U . Consider g

m

:= f(�

m

) Æ �

�1

`

: R

d

! R. For

y 2 [�1; 1℄

d

suÆ
iently 
lose to 0, we have �(y) = sy

1

and mj�(y)j �

1

2

. Thus

g

m

(y) = 


m

(�(y); 0; : : : ; 0) = r �m � s

k

0

+1

� y

k

0

+1

1

;

entailing that

�

k

0

+1

g

m

�y

k

0

+1

1

(0) = r �m � s

k

0

+1

� (k

0

+ 1)! . Hen
e f(�

m

) 62 V for ea
h m 2 N su
h

that r �m � s

k

0

+1

� (k

0

+1)! � 1. We have shown that f(U) 6� V for any 0-neighbourhood U

in C

1




(M;E), although f(0) = 0. Thus f is dis
ontinuous at � = 0. 2

4 Further examples

We des
ribe various pathologi
al bilinear mappings.

Proposition 4.1 Let K 2 fR; C g. The pointwise multipli
ation map

� : C

1

(R; K ) � C

1




(R; K ) ! C

1




(R; K ); �(
; �) := 
 � �

is a hypo
ontinuous bilinear (and thus sequentially 
ontinuous) mapping on the lo
ally


onvex dire
t limit

C

1

(R; K ) � C

1




(R; K ) = lim

�!

(C

1

(R; K ) � C

1

[�n;n℄

(R; K )) ;

whose restri
tion to C

1

(R; K ) � C

1

[�n;n℄

(R; K ) is 
ontinuous bilinear and thus K -analyti
,

for ea
h n 2 N. However, � is dis
ontinuous.

Proof. Using the Leibniz Rule for the di�erentiation of produ
ts of fun
tions, it is eas-

ily veri�ed that � is separately 
ontinuous.

2

The spa
es C

1

(R; K ) and C

1




(R; K ) be-

ing barrelled, this entails that � is hypo
ontinuous and thus sequentially 
ontinuous [19,

Thm. 41.2℄. The restri
tion of � to C

1

(R; K ) � C

1

[�n;n℄

(R; K ) is a sequentially 
ontinuous

2

Alternatively, we 
an obtain the assertion as a spe
ial 
ase of [9, Cor. 2.7℄ or [8, La. 4.5 (a) and

Prop. 4.19 (d)℄, 
ombined with the lo
ally 
onvex dire
t limit property.
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bilinear mapping on a produ
t of metrizable spa
es and therefore 
ontinuous. To see that

� is dis
ontinuous, 
onsider the zero-neighbourhood

W := f
 2 C

1




(R; K ) : (8x 2 R) j
(x)j < 1g

in C

1




(R; K ). If U is any zero-neighbourhood in C

1

(R; K ) and V any zero-neighbourhood

in C

1




(R; K ), then there exists a 
ompa
t subset K of R su
h that

(8
 2 C

1

(R; K )) 
j

K

= 0 ) 
 2 U:

Pi
k any x

0

2 R nK. There is a fun
tion � 2 C

1




(R; K ) su
h that �(x

0

) 6= 0 and supp(�) �

R nK. Then r� 2 V for some r > 0, and t� 2 U for all t 2 R. Choosing t �

1

r�j�(x

0

)j

2

, we

have (t�; r�) 2 U � V but j�(r�; t�)(x

0

)j = rtj�(x

0

)j

2

� 1, entailing that �(U � V ) 6� W .

Thus � is dis
ontinuous at (0; 0). 2

Another instru
tive example is the following (
ompare also the examples in [2℄):

Example 4.2 Let E

1

� E

2

� � � � be a stri
tly as
ending sequen
e of Bana
h spa
es, su
h

that E

n+1

indu
es the given topology on E

n

. Set E := lim

�!

E

n

and F := E

0

b

. For example, we


an take E

n

:= L

2

[�n; n℄, in whi
h 
ase E = L

2


omp

(R) and F = L

2

lo


(R) = lim

 �

L

2

[�n; n℄.

Then A

n

:= F�E

n

�K�K is a Fr�e
het spa
e (and re
exive in the example E

n

= L

2

[�n; n℄).

The evaluation map E

0

n

�E

n

! R being 
ontinuous as E

n

is a Bana
h spa
e, it is easy to

see that A

n

be
omes a unital asso
iative topologi
al algebra via

(�

1

; x

1

; z

1

; 


1

) � (�

2

; x

2

; z

2

; 


2

) :=

�




1

�

2

+ 


2

�

1

; 


1

x

2

+ 


2

x

1

; 


1

z

2

+�

1

(x

2

)+ z

1




2

; 


1




2

�

: (2)

The multipli
ation 
an be visualized by 
onsidering (�; x; z; 
)2A

n

as the 3-by-3 matrix

0

�


 � z

0 
 x

0 0 


1

A

:

The topologi
al algebras A

n

are very well-behaved: they have open groups of units, and

inversion is a K -analyti
 map. We 
an also use Formula (2) to de�ne a multipli
ation map

� : A�A! A turning the dire
t limit lo
ally 
onvex spa
e A := F �E � K � K = lim

�!

A

n

into a unital, asso
iative algebra. However, although the restri
tion of � to A

n

� A

n

is a


ontinuous bilinear map for ea
h n 2 N , � : A� A = lim

�!

(A

n

� A

n

) ! A is dis
ontinuous

(sin
e the evaluation map E

0

b

�E ! R is dis
ontinuous, the spa
e E not being normable).

We refer to [6, Se
tion 10℄ for more details.

Appendix: Proof of Lemma 2.1

We give a proof whi
h is as elementary as possible, by redu
ing the assertion to the 
ase

M = R

d

. First, letM be a �nite-dimensional, �-
ompa
t smooth manifold, of dimension d.

We 
hoose an open 
over (U

j

)

j2J

of M and C

1

-di�eomorphisms �

j

: U

j

! R

d

. Then

� : C

1

(M;R

m

) !

Y

j2J

C

1

(R

d

;R

m

) =: P ; �(
) := (
 Æ �

�1

j

)

j2J
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is a topologi
al embedding onto a 
losed ve
tor subspa
e of the 
artesian produ
t P (
f. [9,

La. 3.7℄). Therefore � is smooth if and only if �Æ� is smooth ([9, Prop. 1.9℄ or [1, La. 10.1℄),

if and only if ea
h 
omponent pr

j

Æ�Æ� is smooth [1, La. 10.3℄, where pr

j

: P ! C

1

(R

d

;R

m

)

is the proje
tion onto the j-
oordinate. But

pr

j

(�(�))(
; �) = 
 Æ � Æ �

�1

j

=

~

�

�


; C

1

(�

�1

j

;R

n

)(�)

�

for all 
 2 C

1

(R

n

;R

m

) and � 2 C

1

(M;R

n

), where

~

�: C

1

(R

n

;R

m

)� C

1

(R

d

;R

n

)! C

1

(R

d

;R

m

)

is the 
omposition map and C

1

(�

�1

j

;R

n

) : C

1

(M;R

n

) ! C

1

(R

d

;R

n

), � 7! � Æ �

�1

j

is


ontinuous linear and thus smooth, by [5, La. 3.7℄. Hen
e pr

j

Æ � Æ � (and thus �) will be

smooth if so is

~

�.

By the redu
tion step just performed, it only remains to prove Lemma 2.1 for M = R

d

,

whi
h we assume now. We show by indu
tion on k 2 N

0

that � is C

k

.

The 
ase k = 0. Let 
 2 C

1

(R

n

;R

m

), � 2 C

1

(R

d

;R

n

) and (


i

; �

i

)

i2N

be a sequen
e in

C

1

(R

n

;R

m

)� C

1

(R

d

;R

n

) 
onverging to (
; �). We have to show that

Æ

i

:= �(


i

; �

i

)� �(
; �) = 


i

Æ �

i

� 
 Æ �

= (


i

� 
) Æ �

i

+ (
 Æ �

i

� 
 Æ �) (3)


onverges to 0 in C

1

(R

d

;R

m

). To see this, we �rst 
he
k 
onvergen
e in C

0

(R

d

;R

m

)

(equipped with the topology of uniform 
onvergen
e on 
ompa
t sets). Given a 
ompa
t

set K � R

d

, the set

S

i2N

�

i

(K) is bounded and hen
e has 
ompa
t 
losure L in R

d

. Now

the �rst term in (3) 
onverges uniformly to 0 on K sin
e 


i

� 
 ! 0 uniformly on L as

i!1. The se
ond term 
onverges uniformly to 0 on K sin
e 
j

L

is uniformly 
ontinuous

and �

i

! � uniformly on K. Using the Chain Rule, for ea
h �xed multi-index � 2 N

d

0

of

order � 1, we �nd polynomials P

�

2 R[(X




)


��

℄ in indeterminates X




, for multi-indi
es

� 2 N

n

0

of order j�j � j�j, su
h that

�

�

Æ

i

=

X

j�j�j�j

((�

�




i

� �

�


) Æ �

i

) � P

�

((�




�

i

)


��

)

+

X

j�j�j�j

(�

�


 Æ �

i

) � (P

�

((�




�

i

)


��

)� P

�

((�




�)


��

))

+

X

j�j�j�j

(�

�


 Æ �

i

� �

�


 Æ �) � P

�

((�




�)


��

):

We easily dedu
e from this formula that �

�

Æ

i


onverges to 0 as i ! 1, uniformly on


ompa
t sets. We have shown that Æ

i

! 0 in C

1

(R

d

;R

m

). Thus � is 
ontinuous.

Indu
tion step. Suppose that � is of 
lass C

k

, where k 2 N

0

. Given 
; 


1

2 C

1

(R

n

;R

m

),

�; �

1

2 C

1

(R

d

;R

n

), we have

1

t

(�(
 + t


1

; � + t�

1

)� �(
; �)) =

1

t

(
 Æ (� + t�

1

)� 
 Æ �) + 


1

Æ (� + t�

1

) (4)
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for 0 6= t 2 R. Given t 2 R, de�ne F

t

: R

d

! R

m

via

F

t

(x) :=

Z

1

0

H(x; st) ds ;

where H : R

d

� R ! R

m

, H(x; r) := d
(�(x) + r�

1

(x); �

1

(x)). Clearly H is smooth. It is

easy to see that F

t

(x) ! F

0

(x) uniformly for x in a 
ompa
t set, as t ! 0. Furthermore,

di�erentiating under the integral sign we �nd that �

�

F

t

(x) =

R

1

0

�

(�;0)

H(x; st) ds for � 2

N

d

0

, whi
h 
onverges uniformly for x in a 
ompa
t set to �

�

F

0

(x) as t! 0. Sin
e

F

t

=

1

t

(
 Æ (� + t�

1

)� 
 Æ �)

for t 6= 0, by the Mean Value Theorem, we see that the �rst term on the right hand side

of (4) 
onverges to F

0

= (d
) Æ (�; �

1

) =

e

�(d
; (�; �

1

)) in C

1

(R

d

;R

m

) as t ! 0, where

e

�: C

1

(R

n

� R

n

;R

m

)� C

1

(R

d

;R

n

� R

n

)! C

1

(R

d

;R

m

) is the 
omposition map.

To ta
kle the se
ond term, de�ne G

t

:= 


1

Æ (� + t�

1

) = �(


1

; � + t�

1

) for t 2 R. Sin
e

� is 
ontinuous by the above, we have G

t

! G

0

= 


1

Æ � in C

1

(R

d

;R

m

) as t ! 0. Thus

the se
ond term in Equation (4) 
onverges to 


1

Æ �.

Summing up, we have shown that d�(
; �; 


1

; �

1

) exists, and is given by

d�(
; �; 


1

; �

1

) =

e

�(d
; (�; �

1

)) + �(


1

; �): (5)

The map C

1

(R

n

;R

m

)! C

1

(R

n

� R

n

;R

m

), 
 7! d
 is 
ontinuous linear (
f. [5, La. 3.8℄),

and �,

e

� are C

k

, by indu
tion. Hen
e Equation (5) shows that d� is C

k

. Thus � is C

k+1

,

as required.
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