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Abstrat

LetM be a non-ompat, �nite-dimensional manifold of positive dimension, E 6= f0g

be a loally onvex spae, and C

1



(M;E) be the spae of ompatly supported smooth

E-valued maps onM . We desribe disontinuous mappings C

1



(M;E) ! C

1



(M;R)

whose restrition to C

1

K

(M;E) := f 2 C

1

(M;E) : j

MnK

= 0g is smooth, for eah

ompat subset K of M .

Subjet lassi�ation: 46A13, 46F05, 46M40, 58B10

Introdution

Let E

1

� E

2

� � � � be an asending sequene of loally onvex spaes whih does not

beome stationary, and suh that E

n+1

indues the given topology on E

n

, for eah n. It is

a well-known phenomenon that the topology on E :=

S

n2N

E

n

making E the diret limit

of the spaes E

n

in the ategory of loally onvex spaes (and ontinuous linear maps) an

be properly oarser than the topology making E the diret limit of its subspaes E

n

in the

ategory of topologial spaes. For example, this phenomenon ours whenever eah E

n

is an in�nite-dimensional Fr�ehet spae (f. [13, Prop. 4.26 (ii)℄). In partiular, the loally

onvex diret limit topology on the spae C

1



(R) = lim

�!

C

1

[�n;n℄

(R) of test funtions is prop-

erly oarser than the topology of diret limit topologial spae (f. also [3, p. 506℄).

So, for abstrat reasons, disontinuous mappings on the spae of test funtions C

1



(R)

are known to exist whose restrition to C

1

[�n;n℄

(R) is ontinuous for eah n 2 N . In this

artile, we desribe suh a mapping expliitly, whose restrition to C

1

[�n;n℄

(R) is not only

ontinuous but atually smooth (Proposition 2.2). More generally, for every �-ompat,

non-ompat, �nite-dimensional smooth manifoldM of positive dimension and loally on-

vex spae E 6= f0g, we onstrut a disontinuous map f : C

1



(M;E) ! C

1



(M;R) whose

restrition to C

1

K

(M;E) is smooth, for eah ompat subset K of M . An analogous result

is obtained for the spae C

1



(M;E) of ompatly supported smooth setions in a bundle

of loally onvex spaes E !M over M , with non-trivial �bre (Theorem 3.2).

Further developments. The preeding result is useful for the investigation of diret limit

properties of in�nite-dimensional Lie groups. As shown in [11℄, it entails that there are dis-

ontinuous (and hene non-smooth) mappings on the Lie group Di�



(M) =

S

K

Di�

K

(M)

of ompatly supported smooth di�eomorphisms of M (as in [14℄ or [10℄), whose restri-

tion to Di�

K

(M) := f� 2 Di�(M) : �j

MnK

= id

MnK

g is smooth, for eah ompat subset

K �M . A similar pathology ours for the Lie group C

1



(M;G) =

S

K

C

1

K

(M;G) of om-

patly supported smooth maps with values in a non-disrete �nite-dimensional Lie group

(as in [5℄). In this way, we obtain one half of the following table, whih desribes whether

Di�



(M) = lim

�!

Di�

K

(M) and C

1



(M;G) = lim

�!

C

1

K

(M;G) holds in the ategories shown:

1



ategory n group C

1



(M;G) Di�



(M)

Lie groups yes yes

topologial groups yes yes

smooth manifolds no no

topologial spaes no no

For the proof, see [11℄ (f. also [18℄ for related results).

The present onstrutions of pathologial mappings are omplemented by investigations

in [8℄{[10℄ (f. also [7℄). In these artiles, a mild additional property is introdued whih

ensures that a map f : C

1



(M;E) ! C

1



(N;F ) between spaes of test funtions (or

ompatly supported setions) satisfying this property (an \almost loal" map) is indeed

smooth if and only if it is smooth on C

1

K

(M;E) for eah K. In ontrast to these mappings,

the pathologial examples presented here are extremely non-loal.

In the �nal setion, we desribe examples of disontinuous bilinear mappings whih are

ontinuous (and hene analyti) on eah step of a direted sequene of subspaes.

1 Preliminaries

In this artile, we are working in the setting of in�nite-dimensional di�erential alulus

known as Keller's C

1



-theory, based on smooth maps in the sense of Mihal-Bastiani (see

[4℄, [12℄, [14℄, [16℄ for further information).

De�nition 1.1 Let E, F be loally onvex spaes and f : U ! F be a mapping, de�ned

on an open subset U of E. We say that f is of lass C

0

if f is ontinuous. If f is a

ontinuous map suh that the two-sided diretional derivatives

df(x; v) = lim

t!0

1

t

(f(x+ tv)� f(x))

exist for all (x; v) 2 U � E, and the map df : U � E ! F so de�ned is ontinuous, then

f is said to be of lass C

1

. Reursively, given k 2 N we all f a mapping of lass C

k+1

if it is of lass C

1

and df is of lass C

k

on the open subset U � E of E � E. We set

d

k+1

f := d(d

k

f) = d

k

(df) : U � E

2

k+1

�1

! F in this ase. The funtion f is alled smooth

(or of lass C

1

) if it is of lass C

k

for eah k 2 N

0

.

De�nition 1.2 Let M be a �nite-dimensional, �-ompat smooth manifold and E be a

loally onvex topologial vetor spae. We equip the vetor spae C

1

(M;E) of E-valued

smooth mappings  on M with the topology of uniform onvergene of �

�

( Æ �

�1

) on

ompat subsets of V , for eah hart � : M � U ! V � R

d

of M and multi-index � 2 N

d

0

(where d := dim(M)). Given a ompat subset K � M , we equip the vetor subspae

C

1

K

(M;E) := f 2 C

1

(M;E) : j

MnK

= 0g of C

1

(M;E) with the indued topology.

2



We give C

1



(M;E) :=

S

K

C

1

K

(M;E) = lim

�!

C

1

K

(M;E) the loally onvex diret limit

topology. We abbreviate C

1



(M) := C

1



(M;R), C

1

(M) := C

1

(M;R), and C

1

K

(M) :=

C

1

K

(M;R). Further details an be found, e.g., in [5℄.

2 Example of a disontinuous mapping on C

1



(R)

We show that the map f : C

1



(R) ! C

1



(R),  7!  Æ  � (0) is disontinuous, although

its restrition to C

1

[�n;n℄

(R) is smooth, for eah n 2 N .

The following fat is essential for our onstrutions. It follows from [13, Cor. 3.13℄ and is

also a speial ase of [8, Prop. 11.3℄. For the onveniene of the reader, we o�er a diret,

elementary proof as an appendix.

Lemma 2.1 The omposition map

�: C

1

(R

n

;R

m

)� C

1

(M;R

n

)! C

1

(M;R

m

) ; �(; �) :=  Æ �

is smooth, for eah �nite-dimensional, �-ompat smooth manifold M and m;n 2 N

0

. 2

For the following proof, reall that the sets

V(k; e) :=

�

 2 C

1



(R) : (8n 2 Z) (8j 2 f0; : : : ; k

n

g) (8x 2 [n�

1

2

; n+

1

2

℄) j

(j)

(x)j < "

n

	

form a basis of open zero-neighbourhoods for the topology on C

1



(R), where k = (k

n

) 2

(N

0

)

Z

and e = ("

n

) 2 (R

+

)

Z

(f. [17, x II.1℄; see [5, Prop. 4.8℄).

Proposition 2.2 f : C

1



(R) ! C

1



(R),  7!  Æ  � (0) has the following properties:

(a) The restrition of f to a map C

1

[�n;n℄

(R) ! C

1



(R) is smooth (and hene ontinuous),

for eah n 2 N.

(b) f is disontinuous at  = 0.

Proof. (a) Fix n 2 N ; we have to show that f j

C

1

[�n;n℄

(R)

: C

1

[�n;n℄

(R) ! C

1



(R) is smooth.

The image of this map being ontained in the losed vetor subspae C

1

[�n;n℄

(R) of C

1



(R),

whih also is a losed vetor subspae of C

1

(R) (with the same indued topology), it

suÆes to show that the map C

1

[�n;n℄

(R) ! C

1

(R),  7!  Æ  � (0) is smooth (see [9,

Prop. 1.9℄ or [1, La. 10.1℄). Now  7! (0) being a ontinuous linear (and thus smooth)

map, it suÆes to show that C

1

[�n;n℄

(R) ! C

1

(R),  7!  Æ  is smooth. This readily

follows from Lemma 2.1.

(b) Consider the zero-neighbourhood V := V((jnj)

n2Z

; (1)

n2Z

) in C

1



(R). Let k =

(k

n

) 2 (N

0

)

Z

and e = ("

n

) 2 (R

+

)

Z

be arbitrary. We show that f(V(k; e)) 6� V . Sine

f(0) = 0, this entails that f is disontinuous at  = 0. It is easy to onstrut a funtion

h 2 C

1



(R) suh that supp(h) � ℄�

1

2

;

1

2

[ and h(x) = x

k

0

+1

for all x 2 [�

1

4

;

1

4

℄. Then

rh 2 V(k; e) for some r > 0. For m 2 N , we de�ne h

m

2 C

1



(R) via

h

m

(x) :=

r

m

k

0

h(mx):

3



Then supp(h

m

) � ℄�

1

2m

;

1

2m

[ and thus h

m

2 V(k; e) sine, for all j = 0; : : : ; k

0

and x 2

[�

1

2

;

1

2

℄, we have jh

(j)

m

(x)j =

rm

j

m

k

0

jh

(j)

(mx)j < "

0

. We now hoose n 2 N suh that n � k

0

+2.

It is easy to onstrut a funtion  2 C

1



(R) suh that  (x) = x � n for x in some

neighbourhood of n in R, and supp( ) � ℄n �

1

2

; n +

1

2

[. Then � := s �  2 V(k; e)

for suitable s > 0. Choosing s small enough, we may assume that im(�) � [�1; 1℄.

The supports of � and h

m

being disjoint, we easily dedue from �; h

m

2 V(k; e) that

also 

m

:= � + h

m

2 V(k; e). Then 

m

(0) = 0, and sine im(�) � [�1; 1℄, we have

f(

m

)(x) = (h

m

Æ �)(x) for all x 2 W := ℄n�

1

2

; n+

1

2

[. For x 2 W suÆiently lose to n,

we have �(x) = s � (x � n) 2 [�

1

4m

;

1

4m

℄ and thus f(

m

)(x) = r � m � s

k

0

+1

� (x � n)

k

0

+1

,

whene f(

m

)

(k

0

+1)

(n) = r �m � s

k

0

+1

� (k

0

+ 1)! . Thus f(

m

) 62 V for all m 2 N suh that

r �m � s

k

0

+1

� (k

0

+1)! � 1, and so f(V(k; e)) 6�V . As k and e were arbitrary, (b) follows. 2

Note that supp(f()) � supp() here, for all  2 C

1



(R).

Remark 2.3 Although the map f from Proposition 2.2 is disontinuous and thus not

smooth in the Mihal-Bastiani sense, it is easily seen to be smooth in the sense of onvenient

di�erential alulus (as any map f on a \regular" ountable strit diret limit E = lim

�!

E

n

of omplete loally onvex spaes, all of whose restritions f j

E

n

are smooth).

1

3 Disontinuous mappings on C

1



(M;E)

In this setion, we generalize our disussion of C

1



(R) from Setion 2 to the spaes

C

1



(M;E) = lim

�!

C

1

K

(M;E) of ompatly supported smooth mappings on a �-ompat

�nite-dimensional smooth manifold M with values in a loally onvex spae E. We show:

Proposition 3.1 If E 6= f0g, the manifold M is non-ompat, and dim(M) > 0, then

there exists a mapping f : C

1



(M;E)! C

1



(M;R) suh that

(a) The restrition of f to C

1

K

(M;E) is smooth, for eah ompat subset K of M .

(b) f is disontinuous at 0.

In partiular, the loally onvex diret limit topology on C

1



(M;E) = lim

�!

C

1

K

(M;E) is prop-

erly oarser than the topology making C

1



(M;E) the diret limit of the spaes C

1

K

(M;E)

in the ategory of topologial spaes.

Instead of proving this proposition diretly, we establish an analogous result for spaes

of setions in bundles of loally onvex spaes, whih is no harder to prove. Noting that

the funtion spae C

1



(M;E) is topologially isomorphi to the spae C

1



(M;M � E) of

ompatly supported smooth setions in the trivial bundle pr

M

: M � E ! M , learly

Proposition 3.1 is overed by the ensuing disussions for vetor bundles. For bakground

material onerning bundles of loally onvex spaes and the assoiated spaes of setions,

the reader is referred to [9℄ (or also [8, Appendix F℄).

1

Regularity means that every bounded subset of E is ontained and bounded in some E

n

.

4



For the present purposes, we reall: if � : E ! M is a smooth bundle of loally onvex

spaes over the �nite-dimensional, �-ompat smooth manifold M , with typial �bre the

loally onvex spae F , then one onsiders on the spae C

1

(M;E) of all smooth setions

the initial topology with respet to the family of mappings

�

 

: C

1

(M;E)! C

1

(U; F ); �

 

(�) := �

 

:= pr

F

Æ  Æ �j

�

�1

(U)

U

;

whih take a smooth setion � to its loal representation �

 

: U ! F with respet to

the loal trivialization  : �

�1

(U) ! U � F of E. Given a ompat subset K � M , the

subspae C

1

K

(M;E) � C

1

(M;E) of setions vanishing o� K is equipped with the indued

topology, and C

1



(M;E) :=

S

K

C

1

K

(M;E) = lim

�!

C

1

K

(M;E) is given the loally onvex

diret limit topology.

Theorem 3.2 Let M be a �-ompat, non-ompat, �nite-dimensional smooth manifold

of dimension dim(M) > 0, and � : E ! M be a smooth bundle of loally onvex spaes

over M , whose typial �bre is a loally onvex topologial vetor spae F 6= f0g. Then

there exists a disontinuous mapping f : C

1



(M;E) ! C

1



(M;R) whose restrition to

C

1

K

(M;E) is smooth, for eah ompat subset K of M .

Proof. Let d := dim(M). Sine M is non-ompat, there exists a sequene (U

n

)

n2N

0

of

mutually disjoint oordinate neighbourhoods U

n

�M di�eomorphi to R

d

suh that loal

trivializations  

n

: �

�1

(U

n

)! U

n

�F of E exist, and suh that every ompat subset ofM

meets only �nitely many of the sets U

n

. We de�ne

�

 

n

: C

1



(M;E)! C

1

(U

n

; F ); �

 

n

(�) := �

 

n

:= pr

F

Æ  

n

Æ �j

�

�1

(U

n

)

U

n

:

By de�nition of the topology on C

1



(M;E), the linear maps �

 

n

are ontinuous. For

eah n 2 N

0

, let �

n

: U

n

! R

d

be a C

1

-di�eomorphism; de�ne x

n

:= �

�1

n

(0). We

hoose a funtion h 2 C

1



(R

d

;R) suh that hj

[�1;1℄

d
= 1; we de�ne h

n

2 C

1



(M;R) via

h

n

(x) := h(�

n

(x)) if x 2 U

n

, h

n

(x) := 0 if x 2 M nU

n

. Let K

n

:= supp(h

n

) � U

n

. We

hoose a ontinuous linear funtional 0 6= � 2 F

0

, and pik v 2 F suh that �(v) = 1. Note

that A :=

S

n2N

K

n

is losed in M , the sequene (K

n

)

n2N

of ompat sets being loally

�nite. Let � : R � F ! F be the salar multipliation. The eventual de�nition of the

mapping f we are looking for will involve the map �: E !M � R, de�ned via

�j

�

�1

(U

n

)

:= (�j

�

�1

(U

n

)

; � Æ � Æ ((h

n

Æ �)j

�

�1

(U

n

)

; pr

F

Æ  

n

)) (1)

for n 2 N , and �j

En�

�1

(A)

:= (�j

En�

�1

(A)

; 0). Note that � is well-de�ned as the funtion

in Equation (1) oinides with (�; 0) on the set

S

n2N

�

�1

(U

n

nA). Also note that � is a

�bre-preserving mapping from E into the trivial bundle M �R. Furthermore, it is readily

veri�ed that � is a smooth. By [9, Thm. 5.9℄ (or [8, Rem.F.25 (a)℄), the pushforward

C

1



(M;�): C

1



(M;E)! C

1



(M;M � R); � 7! � Æ �

is smooth. For later use, we introdue the ontinuous linear map

� := �

id

M�R

: C

1



(M;M � R) ! C

1

(M;R) :

5



Let � : R ! R

d

denote the embedding t 7! (t; 0; : : : ; 0). The mapping f to be onstruted

will also involve the map 	: C

1



(M;E)! C

1

(R;R) de�ned via

	 := C

1

(R; �) Æ C

1

(�

�1

0

Æ �; F ) Æ �

 

0

;

where the pullbak C

1

(�

�1

0

Æ �; F ) : C

1

(U

n

; F ) ! C

1

(R; F ),  7!  Æ �

�1

0

Æ � and the

pushforward C

1

(R; �) : C

1

(R; F ) ! C

1

(R;R),  7! � Æ  are ontinuous linear mappings

and thus smooth, by [5, La. 3.3, La. 3.7℄. Being a omposition of smooth maps, 	 is smooth.

We now de�ne the desired map f : C

1



(M;E)! C

1



(M;R) via

f := � Æ (	;� Æ C

1



(M;�)) � � Æ ev

x

0

Æ �

 

0

(o-restrited from C

1

(M;R) to C

1



(M;R)), where

�: C

1

(R;R) � C

1

(M;R) ! C

1

(M;R); �(; �) :=  Æ �

denotes omposition, and ev

x

0

: C

1

(U

0

; F ) ! F the evaluation map  7! (x

0

). Here

� Æ ev

x

0

Æ �

 

0

is a ontinuous linear map and thus smooth. Expliitly, for � 2 C

1



(M;E)

f(�)(x) =

�

� Æ �

 

0

Æ �

�1

0

Æ �

�

�

�

�

h

n

(x) �

 

n

(x)

��

= �

�

�

 

0

�

�

�1

0

(h

n

(x) � �(�

 

n

(x)); 0)

�

�

� �(�

 

0

(x

0

))

if x 2 U

n

(n 2 N), whereas f(�)(x) = 0 if x 2M nA.

Claim: The restrition of f to C

1

K

(M;E) is smooth, for eah ompat subset K of M .

To see this, note that f(C

1

K

(M;E) � C

1

K

(M;R), where C

1

K

(M;R) is a losed vetor

subspae of C

1

(M;R) and C

1



(M;R). Thus, it suÆes to show that f j

C

1

K

(M;E)

is smooth

as a map into C

1

(M;R) ([9, Prop. 1.9℄, or [1, La. 10.1℄). But this follows from the Chain

Rule, as � is smooth by Lemma 2.1 and also the other onstituents of f are smooth.

Claim: f is disontinuous at the zero-setion � = 0. To see this, onsider the set V

of all  2 C

1



(M;R) suh that, for all n 2 N and multi-indies � 2 N

d

0

of order j�j � n,

we have j�

�

( Æ �

�1

n

)(0)j < 1. It is easily veri�ed that V is a symmetri, onvex zero-

neighbourhood in C

1



(M;R). Let U be any onvex zero-neighbourhood in C

1



(M;E); we

laim that f(U) 6� V . To see this, set L

n

:= �

�1

n

([�1; 1℄

d

) for n 2 N

0

. Then

�

n

: C

1

L

n

(M;E)! C

1

[�1;1℄

d

(R

d

; F ); � 7! �

 

n

Æ �

�1

n

is a topologial isomorphism (f. [9, La. 3.9, La. 3.10℄ or [8, La. F.9, La. F.15℄) whose in-

verse gives rise to a topologial embedding j

n

: C

1

[�1;1℄

d

(R

d

; F ) ! C

1



(M;E). The lin-

ear mapping � : R ! F , t 7! tv gives rise to a ontinuous linear map C

1

[�1;1℄

d

(R

d

; �) :

C

1

[�1;1℄

d

(R

d

;R) ! C

1

[�1;1℄

d

(R

d

; F ),  7! � Æ . Then W

n

:= (j

n

Æ C

1

[�1;1℄

d

(R

d

; �))

�1

(

1

2

U) is a

onvex zero-neighbourhood in C

1

[�1;1℄

d

(R

d

;R). Thus, there exists k

n

2 N

0

and "

n

> 0 suh

thatW

k

n

;"

n

� W

n

, where W

k

n

;"

n

is the set of all  2 C

1

[�1;1℄

d

(R

d

;R) suh that supfj�

�

(x)j :

6



x 2 [�1; 1℄

d

g < "

n

for all � 2 N

d

0

suh that j�j � k

n

. We let g 2 C

1

[�1;1℄

d

(R

d

;R) be a fun-

tion suh that g(y

1

; : : : ; y

d

) = y

k

0

+1

1

for all y = (y

1

; : : : ; y

d

) 2 [�

1

2

;

1

2

℄

d

. Then rg 2 W

k

0

;"

0

for some r > 0. It is lear from the de�nition of W

k

0

;"

0

that then also 

m

2 W

k

0

;"

0

for all

m 2 N , where



m

: R

d

! R ; 

m

(y

1

; : : : ; y

d

) :=

r

m

k

0

g(my

1

; y

2

; : : : ; y

d

) :

Thus �

m

:= j

0

(� Æ 

m

) 2

1

2

U .

Let ` := k

0

+1; we easily �nd � 2 W

k

`

;"

`

suh that, for suitable s > 0, we have �(y) = s�y

1

for y = (y

1

; : : : ; y

d

) in some zero-neighbourhood in R

d

. We de�ne � := j

`

(� Æ �) 2

1

2

U .

Then �

m

:= �

m

+ � 2 U by onvexity of U . Consider g

m

:= f(�

m

) Æ �

�1

`

: R

d

! R. For

y 2 [�1; 1℄

d

suÆiently lose to 0, we have �(y) = sy

1

and mj�(y)j �

1

2

. Thus

g

m

(y) = 

m

(�(y); 0; : : : ; 0) = r �m � s

k

0

+1

� y

k

0

+1

1

;

entailing that

�

k

0

+1

g

m

�y

k

0

+1

1

(0) = r �m � s

k

0

+1

� (k

0

+ 1)! . Hene f(�

m

) 62 V for eah m 2 N suh

that r �m � s

k

0

+1

� (k

0

+1)! � 1. We have shown that f(U) 6� V for any 0-neighbourhood U

in C

1



(M;E), although f(0) = 0. Thus f is disontinuous at � = 0. 2

4 Further examples

We desribe various pathologial bilinear mappings.

Proposition 4.1 Let K 2 fR; C g. The pointwise multipliation map

� : C

1

(R; K ) � C

1



(R; K ) ! C

1



(R; K ); �(; �) :=  � �

is a hypoontinuous bilinear (and thus sequentially ontinuous) mapping on the loally

onvex diret limit

C

1

(R; K ) � C

1



(R; K ) = lim

�!

(C

1

(R; K ) � C

1

[�n;n℄

(R; K )) ;

whose restrition to C

1

(R; K ) � C

1

[�n;n℄

(R; K ) is ontinuous bilinear and thus K -analyti,

for eah n 2 N. However, � is disontinuous.

Proof. Using the Leibniz Rule for the di�erentiation of produts of funtions, it is eas-

ily veri�ed that � is separately ontinuous.

2

The spaes C

1

(R; K ) and C

1



(R; K ) be-

ing barrelled, this entails that � is hypoontinuous and thus sequentially ontinuous [19,

Thm. 41.2℄. The restrition of � to C

1

(R; K ) � C

1

[�n;n℄

(R; K ) is a sequentially ontinuous

2

Alternatively, we an obtain the assertion as a speial ase of [9, Cor. 2.7℄ or [8, La. 4.5 (a) and

Prop. 4.19 (d)℄, ombined with the loally onvex diret limit property.

7



bilinear mapping on a produt of metrizable spaes and therefore ontinuous. To see that

� is disontinuous, onsider the zero-neighbourhood

W := f 2 C

1



(R; K ) : (8x 2 R) j(x)j < 1g

in C

1



(R; K ). If U is any zero-neighbourhood in C

1

(R; K ) and V any zero-neighbourhood

in C

1



(R; K ), then there exists a ompat subset K of R suh that

(8 2 C

1

(R; K )) j

K

= 0 )  2 U:

Pik any x

0

2 R nK. There is a funtion � 2 C

1



(R; K ) suh that �(x

0

) 6= 0 and supp(�) �

R nK. Then r� 2 V for some r > 0, and t� 2 U for all t 2 R. Choosing t �

1

r�j�(x

0

)j

2

, we

have (t�; r�) 2 U � V but j�(r�; t�)(x

0

)j = rtj�(x

0

)j

2

� 1, entailing that �(U � V ) 6� W .

Thus � is disontinuous at (0; 0). 2

Another instrutive example is the following (ompare also the examples in [2℄):

Example 4.2 Let E

1

� E

2

� � � � be a stritly asending sequene of Banah spaes, suh

that E

n+1

indues the given topology on E

n

. Set E := lim

�!

E

n

and F := E

0

b

. For example, we

an take E

n

:= L

2

[�n; n℄, in whih ase E = L

2

omp

(R) and F = L

2

lo

(R) = lim

 �

L

2

[�n; n℄.

Then A

n

:= F�E

n

�K�K is a Fr�ehet spae (and reexive in the example E

n

= L

2

[�n; n℄).

The evaluation map E

0

n

�E

n

! R being ontinuous as E

n

is a Banah spae, it is easy to

see that A

n

beomes a unital assoiative topologial algebra via

(�

1

; x

1

; z

1

; 

1

) � (�

2

; x

2

; z

2

; 

2

) :=

�



1

�

2

+ 

2

�

1

; 

1

x

2

+ 

2

x

1

; 

1

z

2

+�

1

(x

2

)+ z

1



2

; 

1



2

�

: (2)

The multipliation an be visualized by onsidering (�; x; z; )2A

n

as the 3-by-3 matrix

0

�

 � z

0  x

0 0 

1

A

:

The topologial algebras A

n

are very well-behaved: they have open groups of units, and

inversion is a K -analyti map. We an also use Formula (2) to de�ne a multipliation map

� : A�A! A turning the diret limit loally onvex spae A := F �E � K � K = lim

�!

A

n

into a unital, assoiative algebra. However, although the restrition of � to A

n

� A

n

is a

ontinuous bilinear map for eah n 2 N , � : A� A = lim

�!

(A

n

� A

n

) ! A is disontinuous

(sine the evaluation map E

0

b

�E ! R is disontinuous, the spae E not being normable).

We refer to [6, Setion 10℄ for more details.

Appendix: Proof of Lemma 2.1

We give a proof whih is as elementary as possible, by reduing the assertion to the ase

M = R

d

. First, letM be a �nite-dimensional, �-ompat smooth manifold, of dimension d.

We hoose an open over (U

j

)

j2J

of M and C

1

-di�eomorphisms �

j

: U

j

! R

d

. Then

� : C

1

(M;R

m

) !

Y

j2J

C

1

(R

d

;R

m

) =: P ; �() := ( Æ �

�1

j

)

j2J

8



is a topologial embedding onto a losed vetor subspae of the artesian produt P (f. [9,

La. 3.7℄). Therefore � is smooth if and only if �Æ� is smooth ([9, Prop. 1.9℄ or [1, La. 10.1℄),

if and only if eah omponent pr

j

Æ�Æ� is smooth [1, La. 10.3℄, where pr

j

: P ! C

1

(R

d

;R

m

)

is the projetion onto the j-oordinate. But

pr

j

(�(�))(; �) =  Æ � Æ �

�1

j

=

~

�

�

; C

1

(�

�1

j

;R

n

)(�)

�

for all  2 C

1

(R

n

;R

m

) and � 2 C

1

(M;R

n

), where

~

�: C

1

(R

n

;R

m

)� C

1

(R

d

;R

n

)! C

1

(R

d

;R

m

)

is the omposition map and C

1

(�

�1

j

;R

n

) : C

1

(M;R

n

) ! C

1

(R

d

;R

n

), � 7! � Æ �

�1

j

is

ontinuous linear and thus smooth, by [5, La. 3.7℄. Hene pr

j

Æ � Æ � (and thus �) will be

smooth if so is

~

�.

By the redution step just performed, it only remains to prove Lemma 2.1 for M = R

d

,

whih we assume now. We show by indution on k 2 N

0

that � is C

k

.

The ase k = 0. Let  2 C

1

(R

n

;R

m

), � 2 C

1

(R

d

;R

n

) and (

i

; �

i

)

i2N

be a sequene in

C

1

(R

n

;R

m

)� C

1

(R

d

;R

n

) onverging to (; �). We have to show that

Æ

i

:= �(

i

; �

i

)� �(; �) = 

i

Æ �

i

�  Æ �

= (

i

� ) Æ �

i

+ ( Æ �

i

�  Æ �) (3)

onverges to 0 in C

1

(R

d

;R

m

). To see this, we �rst hek onvergene in C

0

(R

d

;R

m

)

(equipped with the topology of uniform onvergene on ompat sets). Given a ompat

set K � R

d

, the set

S

i2N

�

i

(K) is bounded and hene has ompat losure L in R

d

. Now

the �rst term in (3) onverges uniformly to 0 on K sine 

i

�  ! 0 uniformly on L as

i!1. The seond term onverges uniformly to 0 on K sine j

L

is uniformly ontinuous

and �

i

! � uniformly on K. Using the Chain Rule, for eah �xed multi-index � 2 N

d

0

of

order � 1, we �nd polynomials P

�

2 R[(X



)

��

℄ in indeterminates X



, for multi-indies

� 2 N

n

0

of order j�j � j�j, suh that

�

�

Æ

i

=

X

j�j�j�j

((�

�



i

� �

�

) Æ �

i

) � P

�

((�



�

i

)

��

)

+

X

j�j�j�j

(�

�

 Æ �

i

) � (P

�

((�



�

i

)

��

)� P

�

((�



�)

��

))

+

X

j�j�j�j

(�

�

 Æ �

i

� �

�

 Æ �) � P

�

((�



�)

��

):

We easily dedue from this formula that �

�

Æ

i

onverges to 0 as i ! 1, uniformly on

ompat sets. We have shown that Æ

i

! 0 in C

1

(R

d

;R

m

). Thus � is ontinuous.

Indution step. Suppose that � is of lass C

k

, where k 2 N

0

. Given ; 

1

2 C

1

(R

n

;R

m

),

�; �

1

2 C

1

(R

d

;R

n

), we have

1

t

(�( + t

1

; � + t�

1

)� �(; �)) =

1

t

( Æ (� + t�

1

)�  Æ �) + 

1

Æ (� + t�

1

) (4)
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for 0 6= t 2 R. Given t 2 R, de�ne F

t

: R

d

! R

m

via

F

t

(x) :=

Z

1

0

H(x; st) ds ;

where H : R

d

� R ! R

m

, H(x; r) := d(�(x) + r�

1

(x); �

1

(x)). Clearly H is smooth. It is

easy to see that F

t

(x) ! F

0

(x) uniformly for x in a ompat set, as t ! 0. Furthermore,

di�erentiating under the integral sign we �nd that �

�

F

t

(x) =

R

1

0

�

(�;0)

H(x; st) ds for � 2

N

d

0

, whih onverges uniformly for x in a ompat set to �

�

F

0

(x) as t! 0. Sine

F

t

=

1

t

( Æ (� + t�

1

)�  Æ �)

for t 6= 0, by the Mean Value Theorem, we see that the �rst term on the right hand side

of (4) onverges to F

0

= (d) Æ (�; �

1

) =

e

�(d; (�; �

1

)) in C

1

(R

d

;R

m

) as t ! 0, where

e

�: C

1

(R

n

� R

n

;R

m

)� C

1

(R

d

;R

n

� R

n

)! C

1

(R

d

;R

m

) is the omposition map.

To takle the seond term, de�ne G

t

:= 

1

Æ (� + t�

1

) = �(

1

; � + t�

1

) for t 2 R. Sine

� is ontinuous by the above, we have G

t

! G

0

= 

1

Æ � in C

1

(R

d

;R

m

) as t ! 0. Thus

the seond term in Equation (4) onverges to 

1

Æ �.

Summing up, we have shown that d�(; �; 

1

; �

1

) exists, and is given by

d�(; �; 

1

; �

1

) =

e

�(d; (�; �

1

)) + �(

1

; �): (5)

The map C

1

(R

n

;R

m

)! C

1

(R

n

� R

n

;R

m

),  7! d is ontinuous linear (f. [5, La. 3.8℄),

and �,

e

� are C

k

, by indution. Hene Equation (5) shows that d� is C

k

. Thus � is C

k+1

,

as required.
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