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Abstract

We consider the model for blood flow, which takes into account the platelets
activation, cf. [2]. Platelets are very sensitive to chemical and mechanical
inputs, thus the viscosity of a material may change very rapidly. This phe-
nomenon can be described with help of discontinuos Cauchy stress tensor. We
will formulate the problem also in terms of maximal monotone operators.

1 Introduction

The list of non-Newtonian1 phenomena exhibited by incompressible liquids usually
includes: (i) shear thinning/shear thickening and/or pressure thickening (these are
responses when the generalized viscosity decreases/ increases with increasing shear
rate and/or increases with increasing pressure); (ii) the presence of normal stress
differences at a simple shear flow (the response closely connected with the effects
as rod-climbing, die swell, etc.), (iii) viscoelastic responses as stress relaxation and
non-linear creep, and (iv) the presence of yield stress. The last of these responses
can be described as follows:

if |TTT| ≤ τ ∗ then DDD(v) = 0,

if |TTT| > τ ∗ then DDD(v) 6= 0 and TTT = f(DDD(v)).
(1.1)

Here, v is the velocity, DDD(v) the symmetric part of the velocity gradient ∇v, TTT

denotes the Cauchy stress, τ ∗ is the threshold value for the magnitude of TTT and f
stands for any constitutive equation. Note that we can alternatively rewrite (1.1) as

if DDD(v) = 0 then |TTT| ≤ τ ∗

if DDD(v) 6= 0 then |TTT| > τ ∗ and TTT = f(DDD(v)).
(1.2)

The presence of yield stress is a controversial phenomenon since it contradicts to
standard understanding of what is meant by a fluid, which is a material that cannot

1A fluid is said to be Newtonian if its behaviour is described by the Navier-Stokes equations.
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sustain the shear stress. Thus the fluid, by its definition, is such a material that
starts to flow immediately after the shear stress is applied while (1.2) requires that
Cauchy stress oversees the critical value before the flow starts. We can however
argue that for small magnitude of the stress, no flow is visible within the time scale
of normal observation2, consequently, we can view the model with the yield stress,
which is also an example of models with discontinuous Cauchy stress, as a possible
and reasonable approximation of more realistic fluid response. We refer to Málek
and Rajagopal [14] for a discussion of these issues. In this article, we deal with the
following “generalization” of the constitutive equation (1.2). For a given d∗ > 0, we
have

if |DDD(v)| < d∗ then TTT = TTT1(DDD(v)) = ν1(|DDD(v)|2)DDD(v),

if |DDD(v)| > d∗ then TTT = TTT2(DDD(v)) = ν2(|DDD(v)|2)DDD(v),

if |DDD(v)| = d∗ then TTT = ν∗DDD(v)

(1.3)

where ν∗ ∈ [min{ν−
1 , ν+

2 }, max{ν−
1 , ν+

2 }] with ν−
1 := lim

|ξ|→d∗−
ν1(|ξ|

2)|ξ| and ν+
2 :=

lim
|ξ|→d∗+

ν2(|ξ|
2)|ξ|.

We justify the model (1.3) using arguments similar to the yield stress phe-
nomenon. Once the shear rate reaches a certain critical value d∗, this critical shear
rate initiates series of chemical reactions that, within a very short time interval
change the viscosity of the material dramatically. Since this change is significant
and also very quick, it seems acceptable to capture this feature by the constitutive
equation of the form (1.3). Note that if νi in (1.3) is of the form

νi(|ξ|
2) = νoi|ξ|

ri−2, (i = 1, 2)

where νoi > 0 and ri ∈ (1,∞) are model characteristics, we talk about power-law
fluid response, and (1.3) then describes the change of one power-law response to
another. In this paper, we consider TTT1,TTT2 from (1.3) so that they generalize the
power-law constitutive equations in the following sense. We assume that there are
fixed parameters r, q ∈ (1,∞), positive constants c1, c2, c4, c5 and arbitrary constants
c3, c6 such that for all ξ ∈ R

d2

we have

|TTT1(ξ)| ≤ c1(1 + |ξ|)r−1,

|TTT2(ξ)| ≤ c4(1 + |ξ|)q−1,
and

TTT1(ξ) · ξ ≥ c2|ξ|
r − c3,

TTT2(ξ) · ξ ≥ c5|ξ|
q − c6.

(1.4)

In addition, we assume that TTT1,TTT2 are strictly monotone, i.e., for i = 1, 2 we have

(TTTi(ξ) −TTTi(ζ)) · (ξ − ζ) > 0 ∀ ξ, ζ ∈ R
d2

, ξ 6= ζ. (1.5)

The motivation for considering the simplified cartoon given in (1.3) comes from
the recent article [2], where Anand and Rajagopal discuss and model the influence of

2The flow of glacier, sand, or any other densely packed granular material (modeled as a single
continuum) can serve as a good example.
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platelets activation on the blood rheology. Despite the fact that platelets form only
small amount of blood, they are extremely sensitive to chemicals and mechanical
changes as well. At high shear rate (or high shear stresses) platelets release carried
chemical species and a set of chemical reactions is triggered. It results in formation
of platelets aggregates that exhibit significantly different characteristics than blood
before the platelet activation process started. In [2] Anand and Rajagopal propose
a constitutive equation for blood, in the framework of rate-type (viscoelastic) in-
compressible fluid-like materials, that is capable of incorporating platelet activation
resulting into distinctly different material moduli (i.e. the viscosity, relaxation times,
etc.) before and after the activation.

The constitutive equation (1.3) simplifies the model proposed by Anand and
Rajagopal in several aspects. First of all, we completely neglect the elastic response
exhibited by blood due to the presence of red blood cells, white blood cells, platelets
and proteins in plasma. On the other hand, the model (1.3) includes shear thinning
phenomenon exhibited by blood in particular in zones with platelets aggregates.
Second, we eliminated the possibility of damaging the platelets aggregates in a later
time instant. Finally, no chemical reactions that would take place around critical
time are included into the model.

Our goal is to establish the mathematical theory for the steady and unsteady
flows of fluids with discontinuous constitutive equation for the Cauchy stress of the
form (1.3). In this article we provide the first approach to study such problems
and using the tools as Young measures, maximal monotone operators, compact
embeddings and energy equality we prove the existence of solution to the problem
in consideration.

The scheme of the article is as follows: In Section 2 we formulate the governing
equations, boundary conditions and the precise assumptions on the structure (prop-
erties) of the constitutive functions TTT1,TTT2 appearing in (1.3). We also discuss the
relation of the problem to the problem of non-standard growth and we survey known
mathematical literature on the related problems. Section 3 recalls various theorems
and auxiliary assertions that are important in the analysis of the model performed
in subsequent sections. In Section 4, we prove the existence of weak solutions in the
steady case. Section 5 is devoted to measure-valued solutions in unsteady case. We
also observe the solutions satisfy some kind of energy inequality and equality. All
these results lead to Section 6, which contains the main result - the existence of weak
solutions in unsteady case. Finally Section 7 provides the uniform integrability of a
sequence of approximate solutions.
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2 Assumptions, problem formulation and main

results

It is convenient to reformulate the problem using the language of maximal monotone
operators. For this purpose, we first introduce several notation. Set

U1 = {η ∈ Rd2

: |η| < d∗}, U2 = {η ∈ Rd2

: |η| > d∗},

where d∗ is the point of discontinuity appearing in the formulation (1.3). Next, we
introduce TTT : R

d2

→ R
d2

(see Figure 1) setting

TTT(ξ) =

{
TTT1(ξ) for ξ ∈ U 1,

TTT2(ξ) for ξ ∈ U2.
(2.6)

Note, that the coercivness and growth properties (1.4) of TTT1 and TTT2 imply

|TTT(ξ)| ≤ c̃1(1 + |ξ|)q−1 and TTT(ξ) · ξ ≥ c̃2|ξ|
q − c̃3. (2.7)

Indeed, |TTT1(ξ)| ≤ c1(1 + |ξ|)r−1 ≤ c1(1 + d∗)r−1 ≤ c1(1 + d∗)r−1(1 + |ξ|)q and
TTT1(ξ) · (ξ) ≥ c2|ξ|

r − c3 ≥ −c3 ≥ |ξ|q − (c3 + d∗)q.

shear rate shear rate

TTT1,TTT2

TTT1

TTT2
TTT

TTTmax

Figure 1: The graphs of TTT1,TTT2,TTT and TTTmax

The growth and coercivness properties (2.7) of TTT are sufficient to establish the
existence of measure-valued solution for the considered problem. To prove existence
of “weak” solution we require that TTT is in addition strictly monotone. This means
we assume that

(TTT(ξ) −TTT(ζ)) · (ξ − ζ) > 0 ∀ ξ, ζ ∈ R
d2

, ξ 6= ζ. (2.8)

Note, that if TTT1 = (ε1 + |DDD(v)|2)
r−2

2 DDD(v) and TTT2 = (ε2 + |DDD(v)|2)
q−2

2 DDD(v) then TTT

constructed as in (2.6) is strictly monotone provided that TTT1(DDD) ≤ TTT2(DDD) for DDD

satisfying |DDD| = d∗.
It is useful to reformulate the problem expressed in terms of discontinuous func-

tions as a set-valued problem. To do this, we assume that for DDD(v) = d∗ the value
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of the Cauchy stress tensor is not a single point but it takes values that can be
parametrized by the interval

[
min{ν−

1 , ν+
2 }, max{ν−

1 , ν+
2 }

]
. Thus, we introduce a

set-valued operator defined as

TTT
max(DDD(v)) =

{
TTT(DDD(v)) for |DDD(v)| 6= d∗,[
min{ν−

1 , ν+
2 }, max{ν−

1 , ν+
2 }

]
DDD(v) for |DDD(v)| = d∗,

(2.9)

where TTT is defined above, cf. Figure 1.
Note that TTT is a selection of TTT

max and thus if TTT is strictly monotone, then
also TTTmax is strictly monotone, i.e., then for all DDD1,DDD2 with DDD1 6= DDD2 and all SSS1 ∈
TTTmax(DDD1), SSS2 ∈ TTTmax(DDD2),

(SSS2 − SSS1) · (DDD2 −DDD1) > 0.

Let T denote the graph of TTTmax. We say that T is a graph of a maximal monotone
operator if there is no other monotone operator, whose graph contains strictly T .
We say that T is strictly maximal monotone graph if for all (DDD1,SSS1) ∈ T and
(DDD2,SSS2) ∈ T with DDD1 6= DDD2 it holds

(SSS2 − SSS1) · (DDD2 −DDD1) > 0.

The examples illustrating the difference between monotone and maximal monotone
mappings are provided on Figure 2.

(1) (2)

|DDD||DDD|

TTT(DDD)TTT(DDD)

Figure 2: (1) - monotone map, (2) - maximal monotone map

Let us now consider what kind of behaviour of the viscosity leads to maximal
strictly monotone graphs. Of course when the viscosity profile is strictly monotone
as (1) in Figure 3, then surely TTT is strictly monotone. But we can admit also a
decreasing viscosity satisfying the condition ν ′(ξ) · ξ + ν(ξ) ≥ 0 for all ξ ∈ R+ and
with a positive jump, i.e., ν+

2 ≥ ν+
1 .

We are in the position to give the precise formulation of the considered problems.
Let Ω ⊆ R

d be a bounded, open set. We say that the velocity field v = (v1, ..., vd)
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(2)(1)
|DDD||DDD|

ν(|DDD|)ν(|DDD|)

Figure 3: Possible viscosity profiles

and the pressure p describe steady flows of the incompressible fluid3 obeying the
constitutive equation (1.3) if

divSSS = div (v ⊗ v) + ∇p − b, div v = 0,

(DDD(v(x)),SSS(x)) ∈ T a.e. in Ω, v|∂Ω = 0.
(2.10)

Here, b = (b1, ..., bd) are given body forces, and v ⊗ v is the second order tensor
(dyadic product) with the components (v ⊗ v)ij = vivj .

Similarly, v and p capture unsteady flows if

divSSS = vt + div (v ⊗ v) + ∇p − b, div v = 0,

(DDD(v(t, x)),SSS(t, x)) ∈ T a.e. in QT ,

v(0, x) = v0, v|∂Ω = 0,

(2.11)

where v0 = (v01, ..., v0d) is a given initial velocity; QT denotes I × Ω with I =
(0, T ), T > 0. Our goal is to establish the existence results for both problems. We
will prove that if TTT is q−coercive and of (q−1)−growth, then there is a weak solution
to both problems if q satisfies the following conditions

• q > 3d
d+2

for time-independent problem,

• q > 3d+2
d+2

for evolutionary problem.

We use Young measures as a convenient tool to show such results. As a by-
product we obtain the existence of measure-valued solution; this step of the proof
does not require to assume that TTT is monotone. For time-dependent problem we
formulate this result separately (see Theoerem 5.1). One of the adavantages to use
Young measures here consists in the fact that it allows to construct the solution
directly for Galerkin approximations.

3We consider a homogeneous fluid with the uniform (constant) density ρ∗ > 0. Eq. (2.10)
represents the balance of linear momentum divided by ρ∗; SSS and p thus denotes the viscous part
of the Cauchy stress and the pressure after this rescaling.
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By D(Ω) we will understand the space of all C∞-functions with compact support
in Ω and V = {u : u ∈ D(Ω), div u = 0}. By W

1,q
0,div(Ω) we mean the closure of

V with respect to the norm ‖u‖1,q =
(∫

Ω
|∇u|qdx

) 1

q , L2
div(Ω) means the closure

of V w.r.t. the standard L2−norm and W
s,2
0,div(Ω)− the closure of V w.r.t. the

W s,2− norm. Moroever, D(−∞, T ;V) is the space of all C∞-functions with compact
support from (−∞, T ) to V.

3 A generalization of Theorem on Young Mea-

sures

Consider TTT defined in (2.6) for explicit consideration in this section.4 We use B(x0, r)
to denote the ball of R

d with a centre in x0 and radius r. Let η ∈ C∞
0 (Rd) be

a radially symmetric function with support in B(0, 1) and
∫

Rd η dx = 1. We put
ηε(x) = 1

εd2 η
(

x
ε

)
.

Next, we set
TTT

ε = TTT ∗ ηε. (3.12)

We show below that if TTT is strictly monotone, q-coercive and of (q − 1)-growth then
TTTε preserves these properties. More precisely, we have the following assertion

Lemma 3.1 Let TTTε be from (3.12) and TTT fulfills (2.7), (2.8). Then

(i) for every ξ1, ξ2 ∈ R
d2

, ξ1 6= ξ2 it holds

[TTTε(ξ1) −TTT
ε(ξ2)] · [ξ1 − ξ2] > 0,

and for all ξ ∈ R
d2

there are positive constants c′1, c
′
2 and an arbitrary constant c′3

(all of them independent of ε < 1) such that

(ii) |TTTε(ξ)| ≤ c′1(1 + |ξ|)q−1,

(iii) TTTε(ξ) · ξ ≥ c′2|ξ|
q − c′3.

Proof: (i)

[TTTε(ξ1) −TTT
ε(ξ2)] · [ξ1 − ξ2] =

∫

Rd2

[TTT(ξ1 − ζ) −TTT(ξ2 − ζ)]ηε(ζ)dζ · [ξ1 − ξ2]

=

∫

Rd2

[TTT(ξ1 − ζ) −TTT(ξ2 − ζ)] · [(ξ1 − ζ) − (ξ2 − ζ)]ηε(ζ)dζ.

4We could however take any selection, i.e., a single-valued function, S = S(DDD(v)) satisfying

(DDD,S(DDD)) ∈ T for all DDD ∈ R
d
2

where T is a maximal monotone graph defined in Section 2.
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Since TTT is strictly monotone, then the integral with respect to nonnegative proba-
bility measure is positive.
(ii)

|TTTε(ξ)| = |

∫

Rd2

TTT(ζ)ηε(ξ − ζ)dζ| ≤ sup
ζ∈B(ξ,ε)

|TTT(ζ)| ≤ c sup
ζ∈B(ξ,ε)

(1 + |ζ|)q

≤ c(1 + ε + |ξ|)q ≤ c̃(1 + |ξ|)q.

(iii) First estimate

TTT
ε(ξ) · ξ =

∫

Rd2

TTT(ξ − ζ)ηε(ζ) · (ξ − ζ)dζ +

∫

Rd2

TTT(ξ − ζ)ηε(ζ) · ζdζ

≥

∫

Rd2

(c2|ξ − ζ|q − c3)η
ε(ζ)dζ + Iε ≥ (c2||ξ| − |ε||q − c3) + Iε.

(3.13)

Also

|Iε| ≤

∫

Rd2

c1(1 + |ξ − ζ|)q−1ηε(ζ) · ζdζ ≤ εc1(1 + |ξ|)q−1 ≤ εc1(1 +
q

q − 1
|ξ|)q−1

≤ εc1(1 + |ξ|)
q

q−1
·(q−1) ≤ εc1 + εc1|ξ|

q

(3.14)

To continue estimate (3.13) we consider two cases. Let first |ξ| ≥ 2, then since ε ≤ 1

(c2(|ξ| − |ε|)q − c3) ≥ (c2(|ξ| − 1)q − c3) ≥
c2

2q
|ξ|q − c3. (3.15)

In the case |ξ| < 2 we have to notice that (|ξ| − 1)q is bounded from below thus we
can adjust the constant c3 such that

(c2(|ξ| − 1)q − c3) ≥ c · 2q − c̃3 ≥ c|ξ|q − c̃3. (3.16)

Combining (3.14)-(3.16) yields the assertion.

We recall without proofs the following fact, which is the special case of Theorem
2.1 from [12], that can be considered as a generalization of the so-called Fundamental
Theorem on Young Measures (see [3, 13]) to discontinuous nonlinearities.

Theorem 3.2 Assume Ω ⊂ R
m to be an open set of a finite measure. Let Ul ⊂ R

k,

where l ∈ J− the finite set of indeces, be a family of open sets such that

R
k =

⋃

l∈J

Ul, Un ∩ Ul = ∅ for n 6= l.

Let zε : Ω → R
k be a sequence of measurable functions, and

νε,l
x = (δzε(x) ∗ ηε)|U l

.

Then there exists a subsequence (still denoted) by zε and a family of weak -∗ mea-
surable maps νl : Ω → M(Rk), such that the measure νx =

∑
l ν

l
x is nonnegative,

supp(νl
x) ⊂ U l, and
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i) ‖νx‖M(Rk) ≤ 1 for almost all x ∈ Ω;

ii) νε,l ∗
⇀ νl in L∞

w (Ω,M(Rk)).

iii) If for some measurable E ⊂ Ω and some 1 < p < ∞ the sequence (|zε|p) is
relatively weakly compact in L1(E), then

‖νx‖M(Rd) = 1 a.e. in E;

iv) if (iii) holds, then for every function F : R
k → R

n satisfying growth condition

|F (ξ)| ≤ C(1 + |ξ|p) for all ξ ∈ R
k

and such that F |Ul
has for every l a Carathéodory extension on the set Ul

denoted by F l, we have:

(ηε ∗ F )(zε(·)) ⇀ F , F (x) =
∑

l∈J

∫

U l

F l(ξ) dνl
x(ξ)

in L1(E).

v) if νx = δz(x) a.e. in E, then zε(x) → z(x) in measure on E.

We will also need the lower semicontinuity condition.

Lemma 3.3 Let the assumptions of Theorem 3.2 be satisfied. Then for every func-
tion h : R

k → R+ such that h|Ul
has for every l a continuous extension on the set

U l denoted by hl, it holds

lim inf
ε→0

∫

Ω

(ηε ∗ h)(zε(x)) dx ≥

∫

Ω

∑

l∈J

∫

U l

hl(ξ)dνl
x(ξ)dx.

Proof:
Notice first that according to Theorem 3.2 (ii) νε,l ∗

⇀ νl in L∞
w (Ω,M(Rk)). Further-

more, if (gM) is an increasing sequence of cut-off functions from C∞
0 (Rd2

) such that
gM → 1 as |M | → ∞, Theorem 3.2 and monotone convergence theorem imply

∫

Ω

(ηε ∗ h)(zε(x)) dx =

∫

Ω

∑

l∈J

∫

U l

hl(ξ)dνε,l
x (ξ) dx

≥

∫

Ω

∑

l∈J

∫

U l

hl(ξ)gM(ξ)dνε,l
x (ξ) dx

ε→0
−−→

∫

Ω

∑

l∈J

∫

U l

hl(ξ)gM(ξ)dνl
x(ξ) dx

|M |→∞
−−−−→

∫

Ω

∑

l∈J

∫

U l

hl(ξ)dνl
x(ξ) dx.
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4 Steady solutions

Theorem 4.1 Let q ≥ 3d
d+2

. Given b ∈ (W 1,q
0,div(Ω))∗ there exists a function v ∈

W
1,q
0,div(Ω) and a measurable selection SSS ∈ Lq′(Ω) such that

1. (DDD(v(x)),SSS(x)) ∈ T a.e. in Ω.

2. For all ϕ ∈ V:
∫

Ω

SSS ·DDD(ϕ) dx =

∫

Ω

(v ⊗ v · ∇ϕ + b · ϕ) dx. (4.17)

4.1 Proof of Theorem 4.1

The approximation follows analogously

divTTT
ε = div (vε ⊗ vε) + ∇pε − b,

div vε = 0, vε
|∂Ω = 0.

(4.18)

In the next step we do Galerkin approximation. Let {ωr}
∞
r=1 be an orthonormal

basis of L2
div(Ω). We define vn =

n∑
r=1

cn
r ωr , vn ∈ V n = span {ω1, ..., ωn}, cn

r ∈ R, as

a solution to
∫

Ω

(TTT
1

n (DDD(vn)) ·DDD(ωr) + vn ⊗ vn · ∇ωr)dx = 〈b, ωr〉 (4.19)

for all 1 ≤ r ≤ n, where we have chosen ε(n) = 1
n
. Existence of approximated

solutions follows from the corollary of Brouwer’s Fixed Point Theorem, cf. [9, p. 493].
Multiplying equations (4.19) by cn

r and summing over r we obtain
∫

Ω

TTT
1

n (DDD(vn)) ·DDD(vn) dx = 〈b, vn〉. (4.20)

The growth conditions and Korn’s inequality (cf. [13, p. 196]) imply

‖vn‖q
1,q ≤ c(‖b‖q′

−1,q′ + |Ω|). (4.21)

Letting n → ∞ at least for a subsequence it holds

vn ⇀ v in W
1,q
0,div(Ω). (4.22)

Moreover, notice that W 1,q(Ω) →֒→֒ L2(Ω) if q > 2d
d+2

. This provides that

vn → v in L2(Ω). (4.23)

The strong convergence yields
∫

Ω

vn ⊗ vn · ∇ϕ →

∫

Ω

v ⊗ v · ∇ϕ for all ϕ ∈ D(Ω). (4.24)
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Moreover,
∫

Ω

|TTT
1

n (DDD(vn))|q
′

dx ≤ c1

∫

Ω

(1 + |DDD(vn)|)(q−1)q′dx = c1

∫

Ω

(1 + |DDD(vn)|)q.

Hence we conclude existence of a subsequence and some SSS ∈ Lq′(Ω) such that

TTT
1

n (DDD(vn)) ⇀ SSS in Lq′(Ω). (4.25)

For the moment we can state the limit identity for all ϕ ∈ V
∫

Ω

SSS ·DDD(ϕ) dx =

∫

Ω

(v ⊗ v · ∇ϕ − b · ϕ) dx. (4.26)

Notice that, since V is dense in W
1,q
0,div(Ω) and for q ≥ 3d

d+2
, all the integrals are well

defined with ϕ ∈ W
1,q
0,div(Ω), thus for these q the limit identity (4.26) also holds for

all ϕ ∈ W
1,q
0,div(Ω).

For later use, let n → ∞ in (4.20). Then

lim
n→∞

∫

Ω

TTT
1

n (DDD(vn)) ·DDD(vn)dx =

∫

Ω

b · v dx.

Using now (4.26) tested with ϕ = v we claim

lim
n→∞

∫

Ω

TTT
1

n (DDD(vn)) ·DDD(vn)dx =

∫

Ω

SSS ·DDD(v)dx. (4.27)

For the limit passage in the Cauchy stress tensor, consider the Young measure
µx associated with the sequence (∇vn). By µi

x : Ω → M(Rd2

) we will understand
the measures generated by (∇vn) for the sets Ui, i = 1, 2, namely the weak∗ limits

of the sequences (δ{∇vn(x)} ∗ η
1

n )|U i
.

Set for i = 1, 2 and for ξ,DDD(v) ∈ R
d2

hi(ξ) =

[
TTTi

(
ξ + ξT

2

)
−TTT(DDD(v))

]
·

[
ξ + ξT

2
−DDD(v)

]
.

Since µi
x are nonnegative, the monotonicity of TTT provides also that

∫

Ω

[∫

U1

h1(x, ξ)dµ1
x(ξ) +

∫

U2

h2(x, ξ)dµ2
x(ξ)

]
dx ≥ 0. (4.28)

By Theorem 3.2 µx = µ1
x + µ2

x. The sequence (∇vn) is bounded in Lq(Ω), thus it is
weakly relatively compact in L1(Ω), which provides that µx is a probability measure,
compare Theorem 3.2 (iv). This allows to conclude

DDD(v(x))
a.e.
=

∫

Rd2

ξ + ξT

2
dµx(ξ) (4.29)

11



and to compute the above integral

∫

Ω

[∫

U1

h1(x, ξ)dµ1
x(ξ) +

∫

U2

h2(x, ξ)dµ2
x(ξ)

]
dx

=

∫

Ω

[∫

U1

TTT1

(
ξ + ξT

2

)
·
ξ + ξT

2
dµ1

x(ξ) +

∫

U2

TTT2

(
ξ + ξT

2

)
·
ξ + ξT

2
dµ2

x(ξ)

]
dx

−

∫

Ω

[∫

U1

TTT1

(
ξ + ξT

2

)
dµ1

x(ξ) +

∫

U2

TTT2

(
ξ + ξT

2

)
dµ2

x(ξ)

]
·DDD(v)dx

−

∫

Ω

TTT(DDD(v)) ·

(∫

Rd2

ξ + ξT

2
dµx(ξ) −DDD(v)

)
dx.

(4.30)
The latter term vanishes thanks to (4.29). Theorem 3.2 (iv) and (4.25) provide that

SSS =

∫

U1

TTT1

(
ξ + ξT

2

)
dµ1

x(ξ) +

∫

U2

TTT2

(
ξ + ξT

2

)
dµ2

x(ξ). (4.31)

Combining (4.28), (4.30) and (4.31) yields

∫

Ω

[∫

U1

TTT1

(
ξ + ξT

2

)
·
ξ + ξT

2
dµ1

x(ξ) +

∫

U2

TTT2

(
ξ + ξT

2

)
·
ξ + ξT

2
dµ2

x(ξ)

]
dx

≥

∫

Ω

SSS ·DDD(v) dx.

(4.32)
In the following we will show the opposite inequality, namely

∫

Ω

[∫

U1

TTT1

(
ξ + ξT

2

)
·
ξ + ξT

2
dµ1

x(ξ) +

∫

U2

TTT2

(
ξ + ξT

2

)
·
ξ + ξT

2
dµ2

x(ξ)

]
dx

≤

∫

Ω

SSS ·DDD(v) dx.

(4.33)
The monotonicity of TTT implies TTT(DDD(vn)) ·DDD(vn) is nonnegative, thus Lemma 3.3 can
be applied to conclude

lim inf
n→∞

∫

Ω

(η
1

n ∗ (TTT · Id))(DDD(vn))dx

≥

∫

Ω

[∫

U1

TTT1

(
ξ + ξT

2

)
·
ξ + ξT

2
dµ1

x(ξ) +

∫

U2

TTT2

(
ξ + ξT

2

)
·
ξ + ξT

2
dµ2

x(ξ)

]
dx.

To use this information first we need to show that

lim inf
n→∞

∫

Ω

(η
1

n ∗ (TTT · Id))(DDD(vn))dx = lim inf
n→∞

∫

Ω

TTT
1

n (DDD(vn)) ·DDD(vn)dx. (4.34)

12



To see this we first observe (compare with commutator estimate introduced by Lions
and DiPerna [7, Lemma II.1].

TTT
1

n (DDD(vn)) ·DDD(vn) − (η
1

n ∗ (TTT · Id))(DDD(vn))

=

∫

Rd2

[
T (DDD(vn) − ζ)η

1

n (ζ) ·DDD(vn) − η
1

n (ζ)TTT(DDD(vn) − ζ) · (DDD(vn) − ζ)
]

dζ

=

∫

Rd2

η
1

n (ζ)TTT(DDD(vn) − ζ) · ζ dζ = g(DDD(vn)).

Recall that supp η
1

n ⊂ B(0, 1
n
), which together with growth conditions enables to

estimate the last term as follows
∣∣∣
∫

Rd2

η
1

n (ζ)TTT(DDD(vn) − ζ) · ζ dζ
∣∣∣ ≤ εc̃3

∫

Rd2

η
1

n (ζ)(1 + |DDD(vn) − ζ|)q−1dζ

≤ εc̃3(1 + |DDD(vn)| + 1
n
)q−1.

Since (1 + |DDD(vn)|+ ε)q−1 is bounded in Lq′(Ω), thus
∫
Ω
|g(DDD(vn)|dx → 0 as n → ∞

and (4.34) holds. Then

lim inf
n→∞

∫

Ω

TTT
1

n (DDD(vn)) ·DDD(vn)dx

≥

∫

Ω

[∫

U1

TTT1

(
ξ + ξT

2

)
·
ξ + ξT

2
dµ1

x(ξ) +

∫

U2

TTT2

(
ξ + ξT

2

)
·
ξ + ξT

2
dµ2

x(ξ)

]
dx.

(4.35)

Recall (4.27), which together with (4.35) leads to (4.33). Thus (4.32) and (4.33)
imply ∫

Ω

[∫

U1

h1(x, ξ)dµ1
x(ξ) +

∫

U2

h2(x, ξ)dµ2
x(ξ)

]
dx = 0.

Since µi
x are nonnegative measures and µx is a probability measure, then at least

one of µi has to be non-zero measure. Moreover monotonicity of T implies that
hi(ξ) are strictly positive for all ξ 6= ∇v, which follows that supp µx = {∇v(x)}.
Hence µx = δ{∇v(x)} a.e. in Ω and for almost all x ∈ Ω holds

SSS =λ

∫

U1

TTT1

(
ξ + ξT

2

)
dδ{∇v(x)}(ξ) + (1 − λ)

∫

U2

TTT2

(
ξ + ξT

2

)
dδ{∇v(x)}(ξ)

=λTTT1(DDD(v)) + (1 − λ)TTT2(DDD(v))

where λ ∈ [0, 1]. For all those DDD(v), for which TTT is single-valued λ ∈ {0, 1} and
since (DDD(v),TTTi(DDD(v))) ∈ T for i = 1, 2, obviously also (DDD(v(x)),SSS(x)) belongs to T .
Whereas in other case since both the points (DDD(v),TTT1(DDD(v))) and (DDD(v),TTT2(DDD(v)))
belong to the vertical part of the graph and that any interval is a convex set, then
also (DDD(v(x)),SSS(x)) ∈ T .
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5 Measure-valued solutions

In the present section we skip the assumption on monotonicity of T . The graph T
is now only piecewise monotone.

Theorem 5.1 Let q ≥ 2d
d+2

and let v0 ∈ L2
div(Ω), b ∈ Lq′(I, (W 1,q

0 (Ω))′). Then there
exists a measure-valued solution (v, µ), i.e.,

v ∈ L∞(I; L2(Ω)) ∩ Lq(I; W 1,q
0,div(Ω))

µ ∈ L∞(QT ;M(Rd2

))

and for all ϕ ∈ D(−∞, T ;V)

∫

QT

∑

l∈J

∫

U l

TTTl

(
ξ + ξT

2

)
dµt,x(ξ) ·DDD(ϕ) dxdt

=

∫

QT

[v · ϕt − v ⊗ v · ∇ϕ − b · ϕ] dxdt −

∫

Ω

v0 · ϕ(0)dx

(5.36)

is satisfied. Moreover

∇v =

∫

Rd2

ξdµt,x(ξ) a.e. in Ω (5.37)

and for all t ∈ I

‖v(t)‖2
2 +

∫

Qt

∑

l∈J

∫

U l

TTTl

(
ξ + ξT

2

)
·

(
ξ + ξT

2

)
dµt,x(ξ) dxdτ

≤ ‖vn
0‖

2
2 +

∫ t

0

〈b, vn〉dτ,

(5.38)

where Qt = (0, t) × Ω.

If q ≥ 3d+2
d+2

then the energy equality holds

‖v(t)‖2
2 +

∫

QT

∑

l∈J

∫

U l

TTTl

(
ξ + ξT

2

)
dµt,x(ξ) ·DDD(v) dxdt

=

∫

QT

b · v dxdt + ‖v0‖
2
2.

(5.39)

Proof:

Let {ωr}
∞
r=1 be an orthonormal basis of L2

div(Ω). We define vn(t) =
n∑

r=1

cn
r (t)ωr,

vn ∈ V n = span{ω1, ..., ωn} as a solution to
∫

Ω

(
d

dt
vn · ωr + TTT

1

n (DDD(vn)) ·DDD(ωr) + vn ⊗ vn · ∇ωr

)
dx = 〈b, ωr〉,

vn(0) = P nv0,

(5.40)

14



for all 1 ≤ r ≤ n and P n is the continuous orthogonal projector of L2(Ω) onto V n.
Multiplying equations (5.40) by cn

r (t) and summing over r we obtain

1

2

d

dt
‖vn(t)‖2

2 +

∫

Ω

TTT
1

n (DDD(vn)) ·DDD(vn) dx = 〈b, vn〉. (5.41)

The coercivity conditions, Korn’s and Young’s inequality imply that

1

2

d

dt
‖vn(t)‖2

2 + c‖∇vn‖q
q ≤ c(‖b‖q′

−1,q′ + |Ω|).

Integrating over (0, t), with t ∈ I yields the uniform estimates

‖vn‖L∞(I;L2(Ω)) ≤ c,

‖vn‖Lq(I;W 1,q

0,div
(Ω)) ≤ c.

(5.42)

The above imply that at least for a subsequence

vn ∗
⇀ v in L∞(I; L2(Ω)),

vn ⇀ v in Lq(I; W 1,q
0,div(Ω)).

The existence of approximate solutions follows in a standard way, compare [13].
Also we recall the uniform estimate for time derivative

‖vt‖Lq′(I;(W s,2

0,div
(Ω))∗) ≤ c. (5.43)

Since W
1,q
0,div(Ω) →֒→֒ L2

div(Ω) →֒ (W s,2
0,div(Ω))∗, thus the Aubin-Lions lemma [13,

p. 36] yields
vn → v in Lq(I; L2(Ω)), (5.44)

which provides the limit passage

∫

QT

vn ⊗ vn · ϕ dxdt →

∫

QT

v ⊗ v · ϕ dxdt.

The growth conditions (cf. Lemma 3.1) provide that (TTT
1

n (DDD(vn))) is bounded in

Lq′(QT ), thus there exists a subsequence of (TTT
1

n (DDD(vn))) and some SSS ∈ Lq′(QT )
such that

TTT
1

n (DDD(vn)) ⇀ SSS in Lq′(QT ). (5.45)

According to Theorem 3.2 there exists a family of measures µl with supp µl
t,x ⊂ U l

such that µt,x =
∑

l µ
l
t,x and µ ∈ L∞(Ω;M(Rd2

)). Theorem 3.2 (iii) allows to
conclude that

SSS =
∑

l∈J

∫

U l

TTTl

(
ξ + ξT

2

)
dµl

t,x(ξ) (5.46)
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for almost all (t, x) ∈ QT and also

∇v =

∫

Rd2

ξ dµt,x(ξ),

which proves (5.36) and (5.37).
To prove (5.38) we integrate (5.41) over (0, t) with t ∈ I to obtain

‖vn(t)‖2
2 +

∫

Qt

TTT
1

n (DDD(vn)) ·DDD(vn)dxdτ = ‖vn
0‖

2
2 +

∫ t

0

〈b, vn〉dτ. (5.47)

Before we let n → ∞ let us observe some properties of solutions. Notice that the
strong convergence (5.44) implies

vn(t) → v(t) in L2(Ω) for a.a. t ∈ I.

Considering an arbitrarty t ∈ I and a sequence (tk) with t = limk→∞ tk, see [18, pp.
67-68] for details, one can show that

vn(t) ⇀ v(t) in L2(Ω) for all t ∈ I, (5.48)

hence
lim inf
n→∞

‖vn(t)‖2 ≥ ‖v(t)‖2 for all t ∈ I. (5.49)

However TTT is not monotone any more, but still the term TTT(DDD(vn)) · TTT(DDD(vn)) is
nonnegative5. Next, repeating the argumentation used in Section 4 (cf. (4.34)) and
Lemma 3.3 we claim

lim inf
n→∞

∫

Qt

TTT
1

n (DDD(vn)) ·DDD(vn)dxdτ ≥

∫

Qt

∑

l∈J

∫

U l

TTTl(ξ) · ξdµl
t,x(ξ) dxdτ. (5.50)

Thus finally letting n → ∞ in (5.47) we finish the proof of (5.38). To prove (5.39)
let us rewrite (5.36) as follows

∫

Qt

vt · ϕ dxdτ =

∫

Qt

(v ⊗ v · ∇ϕ − SSS ·DDD(ϕ) − b · ϕ)dxdτ (5.51)

for all ϕ ∈ D(−∞, T ;V). Notice that for q ≥ 3d+2
d+2

the r.h.s. is a linear bounded

functional on Lq(I; W 1,q
0,div(Ω)), cf. Málek et al. [13, Lemma 2.44 p. 220] for detailed

estimates. Thus vt is an element of Lq′(I; (W 1,q
0,div(Ω))∗), which provides that (5.51)

holds for all ϕ ∈ Lq(I; W 1,q
0,div(Ω)). This conclusion was necessary to be allowed to test

(5.51) with a solution v. Since v ∈ Lq(I; W 1,q
0,div(Ω)) and vt ∈ Lq′(I; (W 1,q

0,div(Ω))∗),
then for all 0 ≤ s ≤ t ≤ T it holds (cf. [19, Prop. 1.5.8.])

∫ t

s

〈vt, v〉dτ =
1

2
‖v(t)‖2

2 −
1

2
‖v(s)‖2

2.

5Notice that TTT(DDD(vn)) ·DDD(vn) = νl(|DDD(vn)|2)DDD(vn) ·DDD(vn) = νl(|DDD(vn)|2)|DDD(vn)|2 ≥ 0.
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Hence in particular

1

2
‖v(t)‖2

2 +

∫

Qt

SSS ·DDD(v) dxdτ =
1

2
‖v0‖

2
2 +

∫

Qt

〈b, v〉dxdτ, (5.52)

which together with (5.46) completes the proof.

6 Unsteady flows. Weak solutions

Theorem 6.1 Let q ≥ 3d+2
d+2

. Given b ∈ Lq′(I; (W 1,q
0,div(Ω))∗) and v0 ∈ L2

div(Ω)

there exists a function v ∈ L∞(I; L2(Ω)) ∩ Lq(I; W 1,q
0,div(Ω)) and a selection SSS ∈

Lq′(I; Lq′(Ω)) such that

1. (DDD(v(t, x)),SSS(t, x)) ∈ T a.e. in QT .

2. For all ϕ ∈ D(−∞, T ;V) :

∫

QT

SSS ·DDD(ϕ)dxdt =

∫

QT

(v · ϕt + v ⊗ v · ∇ϕ + b · ϕ) dxdt −

∫

Ω

v0 · ϕ(0)dx.

(6.53)

Proof of Theorem 6.1 To show that measure-valued solutions are weak solutions
we will prove that the Young measure µt,x is a dirac. Let there SSS be the limit of the
Cauchy stress tensor as in (5.45).

Let n → ∞ in (5.47), then with use of the lower semicontinuity of the norm
(5.49) we conclude

lim sup
n→∞

∫

QT

TTT
1

n (DDD(vn)) ·DDD(vn)dxdt ≤

∫

I

〈b, v〉dt −
1

2
‖v(T )‖2

2 +
1

2
‖v0‖

2
2.

Applying energy equality (5.52) leads to

lim sup
n→∞

∫

QT

TTT
1

n (DDD(vn)) ·DDD(vn)dxdt ≤

∫

QT

SSS ·DDD(v)dxdt. (6.54)

We will proceed similarly to the proof of steady case. Set again for ξ,DDD(v) ∈ R
d2

hl(ξ) =

[
TTTl

(
ξ + ξT

2

)
−TTT(DDD(v))

]
·

[
ξ + ξT

2
−DDD(v)

]
.

Thus ∫

QT

∑

l∈J

∫

Ul

hl(ξ)dµl
t,x(ξ)dxdt ≥ 0. (6.55)
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The sequence (∇vn) is bounded in Lq(QT ), thus the tightness condition is satisfied,
which provides that µt,x is a probability measure. This allows to compute the above
integral

∫

QT

∑

l∈J

∫

U l

hl(t, x, ξ)dµl
t,x(ξ)dxdt

=

∫

QT

∑

l∈J

∫

U l

TTTl

(
ξ + ξT

2

)
·
ξ + ξT

2
dµl

t,x(ξ)dxdt

−

∫

QT

∑

l∈J

∫

U l

TTT

(
ξ + ξT

2

)
dµl

t,x(ξ) ·DDD(v)dxdt.

(6.56)

Combining (6.55), (6.56) and (5.46) yields

∫

QT

∑

l∈J

∫

U l

TTTl

(
ξ + ξT

2

)
·
ξ + ξT

2
dµl

t,x(ξ) dxdt ≥

∫

QT

SSS ·DDD(v) dxdt. (6.57)

Analogously to (4.35) we can claim that

lim inf
n→∞

∫

QT

TTT
1

n (DDD(vn)) ·DDD(vn)dxdt ≥

∫

QT

∑

l∈J

∫

U l

TTTl

(
ξ + ξT

2

)
·
ξ + ξT

2
dµl

t,x(ξ) dxdt.

(6.58)
Thus (6.54) and (6.58) lead to

∫

QT

∑

l∈J

∫

U l

TTTl

(
ξ + ξT

2

)
·
ξ + ξT

2
dµl

t,x(ξ) dxdt ≤

∫

QT

SSS ·DDD(v) dxdt. (6.59)

Hence (6.57) and (6.59) imply

∑

l∈J

∫

U l

hl(t, x, ξ)dµl
t,x(ξ) = 0.

Since µl
t,x are nonnegative measures and T is strictly monotone then supp µt,x =

{∇v(t, x)} which implies µt,x = δ{∇v(t,x)} a.e. in QT . Thus for almost all (t, x) ∈ QT

SSS =
∑

l∈J

λl

∫

U l

TTTl

(
ξ + ξT

2

)
dδ{∇v(t,x)}(ξ), (6.60)

where
∑

l λl = 1, λl ≥ 0. For all those DDD(v), for which TTT is single-valued λl ∈ {0, 1}
and since (DDD(v),TTTl(DDD(v))) ∈ T for l ∈ J , obviously also (DDD(v(x)),SSS(x)) belongs to
T . Whereas in other case since all the points (DDD(v),TTTl(DDD(v))) belong to the vertical
part of the graph and that any interval is a convex set, then also (DDD(v(x)),SSS(x)) ∈ T ,

which completes the proof.

18



7 Uniform integrability

We will show the following property of solutions

Lemma 7.1 Let vn be a sequence of solutions to approximate problem (5.40) and
v the solution to (2.11). Then

DDD(vn) → DDD(v) in Lq(QT ).

7.1 Biting convergence

We recall the definition of the biting convergence and well known Biting Lemma.
Then we formulate Lemma 7.3 with a simple proof due to [6] and will be the tool
for the proof of Lemma 7.1.

Definition 7.1 A bounded sequence (zε) in L1(Ω) converges weakly in biting sense

to a function z ∈ L1(Ω), written zε b
→ z in Ω, provided there exists a sequence (Ek)

of measurable subsets of Ω, satisfying limk→∞ |Ek| = 0, such that for each k

zε ⇀ z in L1(Ω \ Ek).

Lemma 7.2 (Biting lemma) Let Ω ⊂ R
n be bounded measurable, and let (zε) be

a bounded sequence in L1(Ω). Then there exists a function z ∈ L1(Ω) such that at
least for a subsequence

zε b
→ z in Ω.

Lemma 7.3 Let gn b
→ g, gn, g ∈ L1(Ω), gn ≥ 0, lim

n→∞

∫
Ω

gndx =
∫
Ω

g. Then

gn ⇀ g in L1(Ω).

Proof:
Let Ek be the family of sets described by Definition 7.1. By assumption

gn ⇀ g in L1(Ω \ Ek) ∀k ∈ N,

which follows

lim
n→∞

∫

Ω\Ek

gn dx =

∫

Ω\Ek

g dx.

Fix k. Then

lim
n→∞

∫

Ek

gn dx = lim
n→∞

∫

Ω

gn dx − lim
n→∞

∫

Ω\Ek

gn dx

=

∫

Ω

g dx −

∫

Ω\Ek

g dx =

∫

Ek

g dx.
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Take an arbitrary ϕ ∈ L∞(Ω).

lim
n→∞

∫

Ω

(gn − g)ϕ dx = lim
n→∞

∫

Ω\Ek

(gn − g)ϕ dx + lim
n→∞

∫

Ek

(gn − g)ϕ dx.

The first term on the r.h.s. converges to zero by assumption. To show the conver-
gence of the second term observe that obviously

lim
k→∞

∫

EK

gϕ dx = 0

lim
k→∞

lim
n→∞

∫

EK

gnϕ dx ≤ lim
k→∞

lim
n→∞

‖gn‖L1(Ek)‖ϕ‖L∞(Ek) = lim
k→∞

‖g‖L1(Ek)‖ϕ‖L∞(Ek) = 0

7.2 Proof of Lemma 7.1

Theorem 3.2 (v) implies

DDD(vn) → DDD(v) in measure.

Combinig Lemma 3.3 and (6.54) we conclude

lim
n→∞

∫

QT

TTT
1

n (DDD(vn)) ·DDD(vn) dxdt =

∫

QT

SSS ·DDD(v) dxdt.

The sequence (|DDD(vn)|q) is bounded in L1(QT ). Thus Lemma 7.2 implies that it
is weakly relatively compact on the set QT \ Ek. Theorem 3.2 (iv) applied to the

function TTT
1

n (DDD(vn)) ·DDD(vn) in analogous way to (4.34) implies

TTT
1

n (DDD(vn)) ·DDD(vn)
b
→

∑

l∈J

∫

U l

TTTl

(
ξ + ξT

2

)
·
ξ + ξT

2
dµt,x(ξ).

Using that µt,x is a dirac measure and (6.60) provides

∑

l∈J

∫

U l

TTTl

(
ξ + ξT

2

)
·
ξ + ξT

2
dµt,x(ξ)

=
∑

l∈J

λl(x)

∫

U l

TTTl

(
ξ + ξT

2

)
·
ξ + ξT

2
dδ{∇v(t,x)}(ξ) = SSS ·DDD(v)

with λl(x) ≥ 0 and
∑

l λl(x) = 1. Finally Lemma 7.3 implies that the sequence

(TTT
1

n (DDD(vn) · DDD(vn)) is weakly precompact in L1(QT ), thus by Dunford-Pettis the-
orem it is uniformly integrable. Due to the coercivity condition also the sequence
(|DDD(vn)|q) is uniformly integrable. Using Vitali’s Theorem yields that DDD(vn) → DDD(v)
in Lq(QT ), which completes the proof.
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Charles Univeristy in Prague. They would like to express gratitude to Josef Málek
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[10] J. Frehse, J. Málek, Problems due to the no-slip boundary in incompress-
ible fluid dynamics, in: Geometric Analysis and Nonlinear Partial Differential
Equations (eds. S. Hildebrandt, H. Karcher), Springer 2003
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