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Abstract

We consider the system of equations coming from turbulence modelled by
Large Eddy Simulation (LES) technique. The idea of this approach bases
on decomposing the velocity into a part containing large flow structures and
a part consisting of small scales. The equations for large scale quantities
are derived from the Navier Stokes equations with an additional constitutive
relation for a contribution of small eddies into the flow. The difficulties focus
on the nonlinear and nonlocal turbulent term.
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1 Introduction

Turbulent flows occur in many natural and industrial processes. Describing them
requires a good simulation. The wide range of scales of flow structures, which
are typical for turbulent flows, prevent us from solving numerically the Navier-
Stokes equations. Therefore turbulence models yield the equations which can be
numerically approximated thanks to reducing the number of operations needed to
compute the solutions. One of the approaches recently very popular is Large Eddy
Simulation (LES). The LES technique bases on choosing the scales for which the
exact solution is computed directly - the part denoting the large flow structures
(large scales, resolved) and the scales for which the solution is modelled (small scales,
subgrid). Therefore the quantity describing the flow, the velocity u, is decomposed
into the mean part @ and turbulent fluctuations «’, i.e., v = u+u’. The fluctuations
are first smoothed out and then modelled. The selection of scales depends mostly
on the computational possibilities of the hardware. The discretization scheme bases
on choosing a computational mesh. Obviously all flow structures of size smaller
than the mesh width will not be seen. Mathematically the scale choice is done by
filtering, i.e., convoluting the quantities with some appropriate function - filter.



Only the large scales are computed as accurately as possible. In view of the real-
life applications it seems acceptable to describe turbulent flows with this approach.
Usually the behavior of large eddies is important and more significant than all
the small eddies. However for determining this flow we also have to consider the
interaction between the large and small eddies and the one only among the small
eddies. All these interactions influence the behavior of the big eddies.

Different filters based on convolutions can be used. Usually the convolution is done
with respect to space variables, i.e.,

At z) = ux st 1) :/

u(t,y)ps(x — y)dy,
R3

where the index ¢ denotes the filter width (so-called cut-off length) and ;s is the
filter. The filter is assumed to be a function of total mass one. In case of a bounded
domain Q C R? the problem of filtering near the boundary and of the boundary
values of u occurs. Choosing periodic boundary conditions in the previously con-
sidered case (cf. [Sw05]) eliminated this difficulty. To provide that the filtering,
i.e., the convolution is well defined in bounded domains, the functions (u,p) could
be extended to the whole R®. The other possibility, which we choose in a present
paper, is to consider the filter with a non-constant width §(z) with 6(z) — 0 when
x approaches the boundary. The precise description of the filters is contained in
Section 1.1.2. Such choice of the filter is also convenient in view of denoting the
boundary conditions #. Note that when u = 0 on 02, consequently also # = 0 on
0€), which may fail in case of other kind of filters. For more details on filtering see
[Sag01, A1d90).

The equations for evolution of the filtered quantities are derived from the Navier
Stokes Equations. By convoluting them with a filter one obtains

iy +div(u®u) — vAu + Vp = f,
divu = 0,

where u is a velocity, p a pressure, v a positive constant viscosity and f an external
force. Because of the nonlinearity in the equations the scales cannot be considered
separately. Furthermore, looking for solutions representing the resolved scales, the
interactions with the subgrid scales have to be taken into consideration. Therefore
we express the convoluted convective term as a difference of the convective term in
terms of @ and of a so-called subgrid stress tensor 7 = 4 ® @ — u ® u representing the
contribution of small scales into the system. There has to be added some constitutive
relation closing the system. In LES we find a wide range of closure models for the
tensor 7. The most classical one which is still often used is the Smagorinsky model
where
T = (¢0)?|Du| D,



and ¢ > 0 is constant, Du is the symmetric part of the velocity gradient Vu, i.e.,

Du = (Diju)ijzl , Diju = § (g;fj + g—z;i) . This leads to the following initial boundary

value problem
i, + div (@ ® 1) — div (c6*|Da|Du) — vAu+Vp= f,
diva = 0, (1)

u(0,2) = up(x), upo = 0.

Existence and uniqueness to (1) have been shown with use of Galerkin approxima-
tion and monotone operator methods. For classical results in this field we refer to
[Lio69, Lad70]. The Smagorinsky model with boundary conditions arising from a
boundary-layer modelling has been studied by [Par92].

The Smagorinsky model has a lot of disadvantages, see [Joh03] for details. In
order to adapt it better to local flow structures a dynamical procedure is applied
- the Germano model. cf. [GPMC91], later modified by [Lil92]. Instead of finding
one constant ¢ for the whole flow, we want to find this coefficient dynamically. The
idea bases on applying a second filter (test filter) to the Navier-Stokes equations.
Denoting the width of the first filter (grid filter) by d;, the test filter @5, must have
a different width 0o, with d9 > d; usually chosen 0, = 26;. Applying this second
filter extracts a test field from the resolved scales. The idea is the following: The
smallest resolved scales are sampled to give information for modelling the subgrid
scales (notation: @& = u*ys,). The next step is to use the so-called Germano identity:

L=T-7% 2)

where 7 and 7" are the subgrid tensors

r=u®u—u®u and T=u®u—u®u (3)

and

L=u®u—-uQu
is a Leonard tensor. The Germano identity is simply obtained by applying the test
filter to the first identity of (3) and subtracting it from the second. The tensor L
can be computed from the resolved field since it is associated with scales of motion
between the grid and test scales. In the next step both subgrid tensors are modelled
in a similar way as in Smagorinsky’s model. The crucial simplification is that they
will be modelled with the same ¢ = ¢(t, z), i.e.,

T =2c¢6}|Du|Da in T = 2cd5|Da|Dii. (4)

Notice that in place of ¢? from Smagorinsky’s model we now used c. The goal is
to allow for the possibility of negative values corresponding to backscatter, i.e., the
transfer of energy from subgrid scales to large scales. Substituting (4) into (2)

L:mﬁumum—(%ﬁmmD@
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(the filtering ~ applies to the whole term in brackets) and assuming the additional
simplification

(¢6?| Da|Da) = ¢ <6f|Da|Du)

(note that: ¢ = ¢(t,x) is allowed!) the following equation is obtained

—_

L =2cM with M = 65|Du|Du — 82| Du|Da.

The above equation is in fact an overdetermined system of six equations for the
coefficient ¢. Therefore, the error @ = |L — 2c¢M|? is minimized by the least squares
method, i.e., %—8 = 0, yielding

1LL-M

3

here L - M = Y l;;m;;. This ¢ is substituted into the Smagorinsky system (1).
2,j=1

Then v = u and ¢ = p define a solution to the model equations

vy + div (v ® v) — div (¢|Dv|Dv) — vAv + Vq = f,
dive = 0,

v(0,2) = vo(x), vjgn = 0.

For more details on modelling we refer to [GPMC91, Lil92, Jim95, Sag01, Joh03].

The above procedure can produce negative values of c. This has been conceived
as an advantage, allowing to describe the backscatter. Nevertheless, the negative
values of ¢ may lead to numerical instabilities. Also numerical tests show that ¢ can
vary strongly. In practice, the nominator and denominator of ¢, cf. (5), are averaged
to compute a smoother function (see [Sag01] for details).

We have analyzed the behaviour of the function ¢ more precisely. To define ¢ at
those points, where the denominator becomes zero, it must be possible to estimate
somehow the matrix L with help of the matrix M. We have found a counterexample,
which presents the situation, when M = 0 but L # 0 . This was a motivation to
some necessary modifications of the turbulent term for the mathematical analysis.
Its properties are clearly assembled in Section 1.1.1. We will not propose any new
formula for ¢, but only describe in general the mathematical assumptions we put.

1.1 Filtering and properties of the turbulent term

In the following the subset of symmetric matrices in R"*" will be denoted by
S™. Let D(2) be the space of all C*°-functions with compact support in 2. By
D(—o00,T;V) we mean the space of all C*°-functions with compact support from
(—00,T) to V. We will also work in spaces of divergence-free functions. Then



V=A{u : uveDQ),divu = 0}, V is the closure of V with respect to the norm
1

lullv = (f;, |Vul?dz)® , H is the closure of V with respect to the standard L*— norm.

To simplify the notation, function spaces for vector valued functions are denoted in

the same way as function spaces for scalar functions. Moreover, we use (throughout

the whole paper) Einstein’s summation convention, i.e., a;b; := Z?:1 a;b;.

1.1.1 Properties of the turbulent term

By the turbulent term we mean the operator
c(y)|Dv|Dv

with the notation for nonlocal (filtered) variables

—

y = (3,00, Dv, |Dv|Dv).
The properties of the operator ¢ are the following:
(C1) ¢: R x S3x S® x S* — R is a continuous function with respect to y.

(C2) c satisfies the condition

0<a<cly) <p<oc. (6)

For later use we assemble also the properties of the operator n — |n|n for n € S®.
There exists a scalar function U € C*(S?), U(n) = 5|n|* such that for all n,{ € S?
and 7,7 =1,2,3

oU (n)

= |n|nis 7
. i (7)
82U(77) 2

Moreover |n|n is strongly monotone, i.e. there exists a positive constant K; such
that

(Inlnig = 1€1€i7) - (mg — &7) = Kaln — €J° (9)
for all n, £ € S3. Obviously, the strong monotonicity implies the strict monotonicity,
ie.,

(Inlmij — 1€1&j) - (mij — &) > 0 (10)
for all n,& € S3, n #&.



1.1.2 Filtering technique

In bounded domains the definition of the filtering is rather delicate. Filters are non-
negative C'*°-functions of compact support contained in 2. The support shrinks to
a one-point set near the boundary. Nevertheless, the mass of the filter remains one;
thus the filters tend to Dirac d—distributions on the boundary. To be more precise,
let ¢ € C§°(Q) with supp ¢ C By be non-negative such that [, p(y)dy =1, p(z) =
¢(—w). Let §(x) = dist(z, 0Q2). Then we define the filter @5, by

Ps(a) (y) = ﬁs@ (ﬁ) : (11)

For a description of the application of filters with nonuniform filter width in
numerical analysis we refer to [Ven95].

In LES for time-dependent equations the filtering is usually done only with re-
spect to space variables. Nevertheless, the general definition of the filter (cf. [Sag01,
p. 9]) admits also space-time filtering. In that case, also the problem of filtering
near the initial value occurs. We will solve it in a similar way to the filtering near
the boundary. However, to find the solution in time 7, we only want to consider
times 0 < t < 7. Therefore, let ' € L*((0,T)) be a non-negative function with
fOT ¢! (T)dT = 1. Moreover, let ¢'(7) have compact support in [0,1). The time- and
space-dependent filter s, is defined by

Cite) (T, Y) = P (1) P50y (), Py (7) = %@t <$> , o(t) =t

and ¢, corresponds t0 @(z) defined by (11). Given the space-time cylinder Q; =
(0,7) x © we understand by filtering the process

o(t,x) = / v(T,Y) sty (t — 7,0 — y)drdy.
T

Remark On a level of modelling, the commutation of convoluting and differentiation
is assumed. This property obviously holds for the filters with constant width. For
the case of non-uniform filters used here this may fail. On the wider study of the
so-called commutation error we refer to [BGJ04, BJ04, DJLO4]. In the following the
commutation error will be neglected.

1.2 Main results

Let  C R? be a bounded domain with a sufficiently smooth boundary 9. We are
looking for a velocity v : Qr — R? and a pressure ¢ : Q7 — R solving in € the

system
v+ v- Vo —div [c(y)|Dv|Dv] —vAv+Vq = f,

dive = 0, (12)

v(0,z) = wvo(x),



with boundary conditions

v(t,z) =0 on (0,7) x ON. (13)

As before, y = (9, vv, m, | Dv|Dw).
Definition 1.1 Given f € Lg(O,T; V') and vy € H a function
ve L*0,T;V)NL®(0,T; H)

is a weak solution to problem (12), (13) if the equation

T
// (—vgy +v-Vvo+c(y)|Dv|Dv- Do+ vVuv - Vo) dtde
Q0 .
= [ wods + [ (f,d)dt
[

is satisfied for all ¢ € D(—o0,T;V).

Theorem 1.1 (Existence) Let vy € H, f € L%(O,T; V') and let the function c
satisfy conditions (C1)-(C2). Then, for all T > 0, there erists a weak solution in
the sense of Definition 1.1 to problem (12), (13).

Moreover, we will show, that the sequence of approximate solutions converges
strongly in L*(0,T; V). This result will be formulated in Theorem 3.1.

2 Proof of Theorem 1.1

Let y" = (o, o"v", Dv™, |Dv*|Dv™) and let {w,}22, be an orthonormal basis of H
consisting of eigenvectors of the Stokes operator. Let V" = span{w,...,w™}. For
u € H define a projection

Py = Z(u,w,)w, cH—= V"

r=1

Notice that there exists k = k(€2) > 0 such that (c¢f. [MNR93, MNRR96))



We define v™(t) = Y A'(t)w,, v™ € V™ as a solution to
r=1

(Ev",wr) + (c(y")|Dv"|Dv", Dw,) + v(Vv", Vw,) + b(v",v", w,) = (f, w)

v"(0) = PMuy
for all 1 < r < n. We use the notation for a trilinear form

b(u,v,w) := /uj%wi dx.
j
Q

Notice that for divergence-free functions: b(u, v, v) = 0.

Before establishing existence of solutions to the approximated problem let us
prove some a priori estimates. Multiplying equations (14) by A and summing over
r we obtain

1d

i+ [ Do da Ve gy = (07

Q

Estimating the L.h.s. with help of Korn’s inequality (cf. [Fu94]) and (6) yields

[ eI P o> o [ Do do > ko s = Kol
Q Q

We estimate the r.h.s. with Young’s inequality

ko' k 3
[(Foo) < vl [l < 5l IS+ SIS
2 2

to obtain after integrating over (0,7)

s s T
3 n
0"+ ko [ 0" Rt v [ 190" et < b [ 7S e+ g v (1)
0 0 0

This allows to conclude that
v™ is bounded in L*>°(0,T; H) N L*(0,T;V).

Let us now analyze v}'. Due to equation (14) we obtain after estimating all the other
terms of the equation that

v s bounded in L2 (0,T; (W2(Q) N V).



For its proof take an arbitrary ¢ € L*(0,T; W**(Q)NV) with ||¢|| 30, rsm22(0)nv) < 1
and estimate (v}, ¢) . Notice that (v}, ¢) = (v}, P"¢) . Hence, due to equation (14),
the four integrals below are finite. First,

T T
// [o" - Vo P"¢|dzdt = // [v" @ v" - VP"¢|dxdt

0

/ 071019 P ot < / 971 IV 2" hwrae

<k /Ilv”llvllp"d)llwn t<k [ 0"Vl olwezdt

N o\ﬂo

||Un||L3 0T 19lleorwz@) <k

and

T T

//|Vv”-VP”¢|dxdt§/||Vv"||L3(Q)||VP”¢||L§(Q)dt

0 Q 0

T T

< k/||an||L3(Q)||Pn¢||W2’2(Q)dt < k/||VU"||L3(Q)||¢||w2q2(n)dt

< k||U"|| orw[Plzserwee@) < ko |y < k.
Moreover,

T T T

/|<f, Pe)ldt < /||f||v'||P”¢||vdt§ k’/||f||v'||Pn¢||W2*2(Q)dt

0 0 0

< k/ 1F v ll@llwee@dt < ENFI L3 o pon 19130 0w2200)) < K,
and, finally

// Y| Du"|Dv" - VP"¢
0 9

<k / [ 19 PPl dudt < & / 90" IV PP gt
0

0 Q

dzdt < B//|Dv”| |V P"¢| dxdt

< kl[o" 720 19l sy < V" a0y < k-

Theorem 2.1 For given [ € L%(O,T; V') and vy € H equation (14) possesses an
absolutely continuous solution v™ on (0,7T).

9



Proof
Let A" = (A7, ..., A") and let n be fixed. We can rewrite the system (14) in the form

,?t)\?( ) — Fr(ta )‘n(t)ayn)
(16)
)‘?(0) = (onwr)
where 1 <r <n, F() = (Fi(-),..., F,(+)) and

Bwk

Er (8, A1), y") = (fywr) — /\”(t)/\"(t) i e,

W Ldr — v (1) || Vw, |2
— A\ (t /c Y AR (t Dwk|Dlme Dy, w,dx
Q
with

—_

—~— e e
n n n n n n
i=1 i=1 j=1 i=1 i=1 j=1

Remembering that 0(t) = ¢, let us rewrite all filtered terms by changing the variables
in the time-filtering, i.e.,

1

Nwi(t,z) = / ()ALt — ts)ds / o (& — y)i()dy,

1

Nyt z) = / SNt — t)XI(t — ts)ds / G (& — )iy (),

1

)\“le (t,z) /go YNt — ts)ds/ ) (T — y) Dwi(y)dy,
0 Q

——

|)\?Dwi|)\?ij(t, r) =

[ [ #6eiate — DNt~ t5) D) N — t9)Des )y,

To find the value of A\ at time ¢ = ¢; we need the information on the values of A"
inall 0 <t <t Let A, € C([0,1];R") be defined by A\i(s) = A(t(1 —5)),0 < s < 1.
Taking into account all filtered terms it will be more convenient to specify the
dependence of F' on A" as

F(E ™M), y") = F(t, A1), \D).

10



Therefore let describe the dependence on filtered terms with help of some function
C, namely C(\}') = ¢(y") and then

!
FAEN0) = (Far) = XN [ wl5atde 20|Vl
J
Q
() / COM A () Dasy| Dy Dymioy .
Q

First step: ty = 0.
Consider first local existence of solutions. Let there be given ¢y and a such that
t € (to,to + a). The constant a = min{ om H)g, 2(KZ+[1(3+K )}, where the constants
K; will be explained in the following est1mates Notice that the K;’s depend on n
and on the initial data A\"(#) and are independent of ¢. Let also |A"(t) — A" (to)| < 1,
where for tg = 0 we defined A\"(¢y) in (16). Observe for each 1 < r < n the following
estimates:

to+a to+a % to+a %
[t < | [iganiar) | [ i -
to to ) to f
and
to+a to+a
/ A (T)AM(T /w —w dlL“dT < max ||le||L2 / I[2 dr
t (18)
0
(|)\”(t0)| +1)? IE&X ||le||Lz a=Ky-a
and
to+a to+a
v N Vw22 |dr < v(IA (to)] + 1)|| Vw3, / ldr = K3 - a. (19)
to to
Moreover, since C is bounded from above by [,
to+a
/ A7) / €N N () D] Dy Dicord] i
to Q
to+a to+a (20)
< [ WP [Dulfdrdr <500 @)+ V10w L [ 1ar
to Q to
< B (1A (to)| + 1)*[|Dwr |72 - a = Ky - a
Thus we can conclude that
to+a
/ | F (7, \"(7), \))|dT < 1. (21)

to

11



We replace (16) by the integral equation
t
A'(t) = A"(to) + | F(r,\"(7), A7)dr
to

and define the operator S by

SO = A(t) + / CF(r (), A

Then (16) is equivalent to the fixed point problem
A" =S(\"), AeBCX

where

X =C(lto,to +d]), [|A|lx = max [A()

teto,to+al
B={\"eX :[|\"=\"(ty)||x <1}
First, see that S(A") C B for A" € B, namely

Y

tota (21)
ISOM) = A"(t)] < / F(r AN (), A |dr < 1.

to

Aiming to prove compactness of the operator S, we show that S(A\") is uniformly
bounded on B, i.e. for all t € [ty,tp + a] and \" € B

[SAM ()] < [A"(to)] +/t [ F (7, A (1), A)dr < [A"(Ho)| + 1.

Moreover, S(B) is equicontinuous, namely, with a slight generalization of estimates
(17)-(20) we can show that for all ¢y,ty € [to,tp + a] and A" € B if |t; — to| <

3
: 13 13
min { (2K1+1> ' Kot Ka T K1) } , then

ISO(81)) — SO ()] = ‘/t F(r, XM (7), V) dr / Fr N (7), A dr

to
< ‘/ F(r, A"(1),\}) dT‘ < Kilth —t2|3 + (Ky+ K3+ Ky)|t; — ta] < e.
51

(22)
Hence by the Ascoli-Arzela Theorem the set S(B) is relatively compact in X. To
conclude the compactness of the operator S we only have to notice that S is con-
tinuous. Therefore let \? — A" uniformly in [ty, ¢y +a] as j — oc. Notice, since C is
a continuous function of A}, that F is also continuous w.r.t. A" and A}. Hence we
can conclude with help of the dominated convergence theorem that

t

S (1) =S(A\'(t) = /[f(T,A?( ), A7;) = F(1, A7), A7) dr

to

12



converges poinwise to 0. Moreover, (22) provides the uniform convergence, thus S
is continuous. Finally, as B is a nonempty, closed, bounded and convex subset of
X and the operator S is compact, due to the Schauder Fixed Point Theorem there
exists a solution to the equation A" = S(\") for t € [to,to + al.

Second step. Global existence of solutions.

To obtain the global existence of solutions we will repeat the above procedure in
further time intervals. Notice that the construction of solutions in the interval
(to,to + a) for ty # 0 uses also the values of A" from the interval (0,%;). These
quantities do not influence the estimates (17)- (19). They only appear in estimate
(20) as arguments of the function C. But since C is uniformly bounded by /3, the
proof follows the same lines.

Due to orthonormality of {w,} in H the a priori estimates, cf. (15), assure
that A™(¢) is uniformly bounded. Thus also the initial data for further existence
problems are bounded implying that the value of the constants K; will not increase;
consequently, the length of existence intervals a will not decrease. Hence the proof
can be done in a finite number of steps.

The equation (16) yields that for ¢ € (0,7") the solution is absolutely continuous.

]

Using the information on the boundedness of the sequence (v") we can extract
a subsequence, still denoted by »", such that

v" = v in L*(0,T;V), (23)
o™ v oin 10,75 H), (24)
o =, in L2(0,T; (W2(Q) N V). (25)

Since V.CC H C (W*%(2) NV, due to (23) and (25), using Aubin-Lions Lemma
(cf. [MNRRY6]) we conclude that

v — v in L*(0,T;H) and ae.in Q. (26)

This strong convergence is needed to show that

T

T
/b(v",v",¢)dt—>/b(v,v,qﬁ)dt.
0

0

It is obtained as follows:

St~

/ (V"Vou" —vVv) pdxdt
0

O/TQ/(U” - v)Vv”¢dxdt+jQ/U(vvn — Vo)pdadt.

13



According to Hoélder’s inequality the first integral can be estimated by

T T
[ [ —oveodedt] < [ 10" = ol 190" Lo ol
0 Q

< " = vllzsrm 10" | 3,0 |9l 20,7518 () -

And due to the strong convergence (26) this integral converges to zero. The conver-

gence of the second integral to zero is achieved by the weak convergence of gradients.
. . - 3

Finally, due to (23), there exist A, x € L2(Qr) such that

c(y")|Dv"|Dv* — A in L2(Qr) (27)
and ,
|Dv"|Dv"™ — x in L2(Qr). (28)

Hence we can state the limit identity

T
// v-p+v-Vv-¢o+A-Dop+vVu- V¢ da;dt / (29)
0

for all ¢ € D(—o0,T; V).

For later use we will show that the strong energy equality holds. To this aim
we need to show that (29) holds for all ¢ € L*(0,T;V). We observe the following
estimates

T T T
[ [ 10-9v-olasdt < [ ol ol 6o <k [ ol 8]
0 Q 0

< EllollZso.ra 0l sorvy
(30)
and
T

T
[ [ 1A Doldzat < [ 141,30 108Ny < KAl g Il (3D
0 Q 0

Moreover
T

T
/ / Vo Vldadt < / V0l IV ollait < [ ulvliglve g

0
< k||VU||L3 o.rv)| 8l 20,13

and
T

T
[solat< [1rIvlolvat < 1,5 g lolisorer — (39)
0

0

14



Collecting (30)-(33) allows to conclude that

T

F (o) E/ b(v,v,¢)+/A-D¢dm+V(VU,V¢)— (f, o) | dt (34)

0 Q

is a linear bounded functional on L3(0,7; V). From (29) it holds

F(g) = /T / vbdadt. (35)

Thus v, belongs to L2 (0,T; V") = (L*(0,T;V))’, which provides that (29) holds for
all ¢ € L3(0,T;V). This allows to test (29) against the solution v to obtain

T

//(vt-v+A-Dv+l/Vv-Vv) dmdtz/(f,u)dt. (36)
0 Q

0

Finally due to Proposition A.9, since v € L3(0,T;V) and v, € L%(O,T; V') then for
all 0 < s <t <7T it holds

[twle) o = Sl - 506 (37)

and hence
X T T X T
§||v(T)||%I+//A-DvdxdT+u/||Vv||%dT: §||v0||%[+/<f,v>d7. (38)
0 @ 0 0

Next, we will formulate a lemma concerning convergence of filtered terms.

Lemma 2.2 Let the sequence (v"),en converge weakly to v in L3(0,T;V) and let
X € L%(QT) be as in (28). Then, for n — oo, the following sequences converge
almost everywhere in Qr: _
vt — 0,
vt — U,
Dv* —s Du.

We can extract a further subsequence of (v™) such that

|Dv"|Dv — Y a.e. in Q.
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Proof
Since v™ is bounded in L3(0,T;V), then also, for a subsequence, Dv" — Duv in
L3(Qr), and v"™ — v™ in L*(Qr); hence

/ V" ddydT — / vpdydr Vo € LT(Qr).
Qr Qr

We choose as a test function ¢(7,y) = s, (t—7, x—y) with parameters (¢, z) € Qr,

where @s;4) is a filter. The filters are obviously in L%(QT) except for the points
x € 0N or t = 0. However, since Q7 is open,

/v”(T, )t — 1,2 —y)dydr — /U(T, y)p(t — 7,20 —y)dydr for a.a.(t,z) € Qr,
Qr Qr

which is equivalent to
V" =0 a.e.in Q. (39)

In the same way from the information on the symmetric part of the gradients we
conclude that - -
Dy" — Dv a.e.in Qr. (40)

To analyze the limit of the sequence v"v" we deduce from the strong convergence
of the sequence v™ in L?(Qr) also the strong convergence of v"v™ to vv in L'(Qr).
Of course the strong convergence implies the weak convergence. Thus, following
analogous arguments as above, we get that

v = U0 a.e.in Q. (41)

The convergence (28) implies for the filtered terms

—_—

|Dom|Dv™ — ¢ a.e.in Qp
which completes the proof of Lemma 2.2. [ ]

For the passage to the limit in the turbulent term we apply Lemma A.1 to the
operator

Ay, 2) = c(y)]z]z : (R* x S x $* x %) x §* — §°.
Again let

y = (¥,00, Dv, |Dv|Dv), 4" = (0", v"0", Do", |Dv?| Do), 2" = Du".

The function A does not depend directly on (¢,z) and is continuous w.r.t. all other
variables, which provides that the assumption (i) of Lemma A.1 is fulfilled. Next:
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(ZZ) For all s € R?! and £, € Sg, & 7£ &, by (10)
(c(8)|€1]61 — e(8)]62]&2) - (§1 — &2) = c(s) (|&1[€r — [€2lE2) - (&1 — &2) > 0.
(#77) From the assumptions (C'1) — (C2) it holds

c(s)|E€ - € > algf’

and

(s)l¢le| < BIEI*
The assumption (iv) holds by Lemma 2.2, with § = (v, vv, m, X), namely

y" =y a.e.in Q.

Due to (23) and (27) the assumption (v) is satisfied. We only have to check the
assumption (vi). To this aim we will prove the following claim

Claim
v"(t) = v(t) in H for all t € [0,T]. (42)
Proof of the claim
From (26) it holds
v™(t) = v(t) in H for a.a. t € [0,T7; (43)
in particular,
v"(t) = v(t) in H for all t € [0,T]\ E, (44)

where F is a set of measure zero. Let us first show that
v"™(t) — v(t) in (W*2(Q) N V) for all t € [0,T]. (45)

Thus consider ¢ € E. For each such ¢ choose (t;) C (0,7) \ E such that ¢, — ¢ as
k — oo. Then for all ¢ € W2(Q) NV

[(0"™(t) = v(t), By weeavy weeav] < [V (2) — 0" (tk), @) w2envy w2eav|
+[(0"(tk) — v(tk), D) w2envy weeav| + [(0(te) — v(t), B) w2eavy weeav]  (46)
- Il + 12 + 13.

Consider first the term I;. Since v™ is bounded in L*(0,7; V) and v} is bounded in
L2(0,T; (W22(Q)NV)') thus v™ is bounded in Wh2 (0, T; (W22(Q2)NV)'). According
to Morrey’s Theorem (cf. [Eva98, p. 266]) W2 c C%3; thus

[v™ (1) — v™(t2) [ w22y < mlty — to]3 for all ty,t, € [0, 7).
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This assures that (v™) is an equicontinuous family of functions. Thus
I < mlt — ty)5.

Moreover (44) with the embedding L?(Q2) C (W?22(Q) N V)’ implies that for n — oo
and all t, € (0,7)\ E

v"™ () — v(ty) in (W>2(Q) N V)

and hence lim I, = 0. Thus letting n — oo in (46) yields

n—00

: n 1
lim [(0"(t) —v(t), &) w2znvy weeav] < mit =t |3 + [(v(ts) —v(t), B)w2znvy weeav].

n—00

According to Proposition A.9 we have v € C([0,T]; H) C C([0,T]; W*?(Q) N V)"
and hence v is weakly continuous with values in (WW%2(Q2) N'V')'. Therefore letting

k — oo allows to conclude that klim I3 =0 and
— 00

lim <Un(t) - U(t), ¢>(W2ﬁ20V)’,W2’2ﬂV =0 (47)

n— 00

which proves (45).
Since the embedding (W?2?(Q) N V) C H is dense and (v") is bounded in
L*>(0,T; H), we conclude that

(0™(t), 8) = (v(t), ) forall ¢ € H, t € [0,T],

hence (42) is proved. n

From (14) it holds

T
[ Do Do D dade = Sl = S @ = T gy + [ (.0
Qr 0

Letting n — oo and using the lower semicontinuity of the norm w.r.t. the weak
convergence (42) we obtain

lim sup / c(y™)|Dv"|Dv™ - Dv™dxdt
n— 00

Qr

1

T
1
< Sllvollzr = 510z = vIVollZ g + /(fw)dt-
0

2
Inserting the energy equality (38) into the r.h.s. yields

lim sup / c(y"™)|Dv"|Dv"™ - Dv"dxdt < /A - Dv dzdt,
n—00

Qr Qr
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which is exactly the desired inequality for assumption (vi). Now Lemma A.1 implies
that Dv™ — Dwv in measure, and thus for a subsequence

Dv" — Dv a.e. in  Qr.

Hence |Dv"|Dv™ — |Dv|Dv a.e. in Q)p which together with (28) implies that xy =
|Dv|Dv a.e. in Qr. Thus

y=y and y" —y a.e. in Q.
Concerning the turbulent term we conclude that
c(y™)|Dv"|Dv"™ — c(y)|Dv|Dv a.e. in  Qr.
As ¢(y™)|Dv"| Dv™ is bounded in L2 (Qr) we apply Lemma A.8 and get that
c(y™)|Dv"|Dv" — c(y)|Dv|Dv in L2(Qr).

This convergence completes the proof of the theorem. ]

3 Compactness of solutions

In this short section we will observe additional property of solutions, which is for-
mulated in the forthcoming theorem.

Theorem 3.1 Let all the assuptions of Theorem 1.1 be satisfied and let (v™) be a
sequence of solutions to approzimate problem (14) and v the solution to (12). Then
" — v in L*(0,T;V). (48)

Proof
Since in the proof of Theorem 1.1 we showed that all the assumptions of Lemma
A.1 are satisfied, then we can also apply Lemma A.2, which proves (48).

Appendix

A Main technical lemmas

The current section contains two lemmas, which recall the result shown in [GS05].
Nevertheless, for completness of the paper, we provide also their proofs.

In the following Cy(R?) denotes the closure of the space of continuous functions
on R? with compact support with respect to the || - [|,o-norm. Its dual space can be
identified with M(R?), the space of signed Radon measures with finite mass. The
related duality pairing is given by

(., f) = / F(6) du(€).
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Lemma A.1 Let Q C R be a measurable set of finite measure and let Az, s,€) -
QxR x R — R? be an operator satisfying the following conditions:

(i) A(z,s,&) is a Carathéodory function (measurable w.r.t. = and continuous

w.r.t. (s,£)).
(i) For allx € Q, s € R™ and &,& € R, & # &,

[A(ZL‘, 5, 61) - A(.’L‘, 8752)] : [51 - 52] > 0.
(111) There exist positive constants ¢y, co such that for p > 1 it holds

Alw,s,6) &> aild]”  and  |A(z,5,8)] < el

Let y* : Q — R™ and 2" : Q — R¢ be sequences of measurable functions such that
(iv) y" — ¥ a.e. in Q,
(v) 2" = z in LP(Q) and A(z,y",z") — A in L7=1(1),

(vi)
limsup/A(:r,y”,z”)-z” dr < /A-zdm.

n—00
Q

Then there exists a subsequence of (2™) such that

Z" — 2 in measure.

Proof

We apply Lemma A.5 to the function A(x,y™, 2")-2". The coercivity condition from
assumption (ii7) of the theorem assures that the negative part of this function is
equal to zero; thus it is certainly weakly relatively compact in L'(€2). This allows to
conclude that

fimsup [ A,y oz [ [ Aws ) gl Ode (19

n—00
Q Q RmxR4
where i, is the Young measure generated by the sequence (y", 2™). However accord-
ing to Lemma A.6, we are able to characterize this Young measure more precisely.
The sequence y™ converges to 4 a.e., and a subsequence of 2™ generates a Young mea-
sure v,. Then the Young measure 11, generated by this pair satisfies ji, = d5(,) ® V5.
Therefore, due to Fubini’s theorem

| [ Awsg canoi= [ [ w0 g 60

2 Rm xRd Q Rd
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In the same way we obtain

//A:rsﬁdux dx—//Axy &) duy(€)dz. (51)

Q Rm xRd

Since the sequence |A(z,y™, z")| is bounded in L1 (), it is weakly relatively com-
pact in L'(€). Thus we can use Lemma A.5 again, which allows to conclude that the
weak limit A(z) = [u Az, s, §)dps(s, §). From Corollary A.4, taking ¢ = 1, g = id,
we can conclude that 2" — z = [, fdl/x(ﬁ) in LP(Q2). Then the assumption (vi) can
be formulated as follows

lim sup A(z, y", 2")2"dz < //A z,y(x dyx(f)/f'dyx(f')dx. (52)

n—00
Q Rd

Thus, from (49), (50) and (52), the following inequality holds
Az, g(z),&) dve (&) - | dvg (&) da > )-&dvg (&) dx.  (53)
/] Jenscrnz] [

The above inequality will be used soon. Next, we can deduce from the monotonicity
of A w.r.t. the last variable that

| [ #eoin@ar >0 (54)

Q Rd

where h is defined by

h(z,) = [Alx, §(x), &) = A@, §(2), fou dva(€)] - [€ = Jpa E'dra()]

Since the sequence (z") is bounded in L?, then the tightness condition is satisfied
and ||| p(rey = 1. Simple calculations imply that

| [ #eopivcas
Hi//A(x,gj(x),ﬁ)-§d1/$(§)dx—//A(@"ag(@“)af)d’/w(f)'/f'dl/z(fl)d@"

Q Rd Q Rd

which, together with (53), assures that

/ / W, ) (€)da: < 0. (55)

Q Rd
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Then, (54) and (55) imply that [, h(z, £)dv,(§) = 0 for a.a. € Q. Moreover, since
v, > 01is a probability measure and A(z, s, -) is strongly monotone, we conclude that

supp{v,} = {/Rd éf’de(éf')},

where the right-hand side is equal to z(x), which is the weak limit of the sequence
(2"). Finally we conclude that v, = d,() a.e.. A direct application of Lemma A.7
implies that

z" — z in measure.

Proposition A.2 With the assumptions of Lemma A.1 there exists a subsequence
of (2™) such that
2" =z in LP(Q).

Proof
Since z" converges in measure, then at least for a subsequence 2" — z a.e.. Using
the information that v, = 0.(,) together with Lemma A.5 and assumption (vi) yields

lim sup/A(a;,y", 2") -2 dx < /A(x,gj, 2)zdx < lim inf/A(x,y”, 2") - 2" dx.

n—00 n—00
Q Q

Hence the limit exists and

n—00
Q Q

lim [ A(z,y",2") 2" de = /A(.’L‘, U,z)zdx.

n

We can set a" = A(z,y™, 2") - 2", a = A(z, 7, 2)z and claim that

a® >0, acL'(), /a dx—>/ x, a"—a a.e. in Q.

Noticing that

/|a"—a|dx:/(a”—a)dx+2/ (a —a")dx
o Q {:an<a)

we conclude by Lebesgue’s Dominated Convergence Theorem that
Az, y", 2")2" — A(z,y,2)z in L'Y(Q).

Thus, by Vitali’s Theorem, the sequence A(z,y™, 2™)2™ is uniformly integrable. Due
to the coercivity condition also the sequence |2"|P is uniformly integrable. Using
again Vitali’s Theorem yields that 2" — z in L?(2), which completes the proof. m
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Some facts concerning Young measures

For the proof of fundamental theorem on Young measures we refer the reader to
[Bal89, Mii99].

Theorem A.3 (Fundamental theorem on Young measures) Let QO C R? be
a measurable set of finite measure and let 27 : Q@ — R be a sequence of measurable
functions. Then there exists a subsequence 2% and a weakly* measurable map v :

Q — M(R?) such that the following holds:

(i) Ve 20, |Vallmmay= [ dvy <1 for a.a. z €.
Rd

(ii) For all g € Co(R?)
g(29) = g in L®(Q)
where
9(z) = (vz, 9)-

(iii) Let K C R be compact. Then
supp v, C K if dist(z%%, K) — 0 in measure.

(iv) Additionally ||ve||pmme) = 1 for a.a. x € Q if and only if the ‘tightness condi-
tion’ is satisfied, i.e. .
lim sup |{|2’%| > M}| = 0.
M—oo

(v) If the tightness condition is satisfied and moreover if A C § is measurable,
g € C(RY) and g(z%%) is relatively weakly compact in L'(A), then
g(z") =g in L'(4), g(2)= (v, 9).

(vi) If the tightness condition is satisfied, then in (iii) one can replace "if " by ’if
and only if .

Remark The map v : Q@ — M(R?) is called the Young measure generated by the
sequence z/*. Every (weakly* measurable map) v : Q — M(R?) that satisfies (i) is
generated by some sequence z*.

Remark If, for some s > 0 and all j € N holds [, |27|* < k then the tightness
condition is satisfied.

The straightforward consequence of the assertion (v) is the following corollary.
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Corollary A.4 [Mii99, Remark 5, p. 33] Let Q, 2% v be as in Theorem A.3, with
(27) bounded in LP(Q2). Then for all g € C(R?) satisfying the growth condition

19(6)| < k(1 + €)1 VEERY for some 0<gq<p

1t holds

Lemma A.5 [Mi99, Cor. 8.3] Suppose that the sequence of maps 27 : Q — R¢
generates the Young measure v. Let f : QxR — R be a Carathéodory function and
let us also assume that the negative part f~(x, 2 (x)) is weakly relatively compact in

LY(Q). Then

j—o0

liminf/f(:r,zj(x))dxz//f(:r,)\)dyx()\).

If, in addition, the sequence of functions x v |f|(z, 2/ (x)) is weakly relatively com-
pact in L' (), then

F(a2()) = / fr Ndv() i L'(9).

Remark In an obvious way the second part of the above theorem can be extended
to vector valued functions f.

Lemma A.6 [Mi99, Cor. 8.4] Let w/ : Q — R?, v/ : Q — RY be measurable
and suppose that v/ — u a.e. while v! generates the Young measure v. Then the
sequence of pairs (ul,v7) : Q@ — R generates the Young measure x — Ou(z) ® Vg.

Lemma A.7 [Mii99, Cor. 3.2] Suppose that a sequence 27 of measurable functions
from Q to R? generates the Young measure v : Q — M(R?). Then

2 — 2 in measure if and only if v, = Oxz) G-€..

Other preliminaries

Lemma A.8 Let Q be an open bounded subset of RY, let g", g be the functions from
LP(Q2), with 1 < p < oo, such that ||g"||Lr@) < ¢, ¢" — g a.e. in Q. Then

g"—g in LP(Q).
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For the proof see [Lio69, Lemma 1.3, p. 12]. The assertion of Lemma A.8 is also
true if the sequence (g") converges locally in measure, see [Els02, p. 264].

Before stating the next proposition (cf. [Zei90a, Prop. 23.23, p. 422]) we introduce
the notion of an evolution triple 'V C H C V" as follows: V is a real, separable,
and reflexive Banach space, H is a real, separable Hilbert space with the dense and
continuous embedding V' C H. Then set W) (0,T;V, H) = {u € LP(0,T;V) : u; €
L0, T;V")}, where 1 < p < oo, p' + ¢! = 1. By (-,-)g we mean the scalar
product in H and by (-, -)y the dual pairing between V" and V".

Proposition A.9 Let V C H C V'’ be an evolution triple, and let 1 < p <
0o, pl+q =1, 0<T < oo. Then the following hold:

(i) The set of all functions v € LP(0,T;V) that have generalized derivative u; €
L9(0,T; V") forms a real Banach space with the norm

lullwy = [lulloomvy + [luellzao, )
(ii) The embedding
1 . .
W0, T;V, H) C C(0,T}; H)
1S continuous.

(1ii) For all u,v € Wpl(O,T; V,H) and arbitrary t,s, 0 < s < t < T, the following
generalized integration by parts formula holds:

t

(u(t), o)) — (u(s),v(s))n = /(ut(T),v(TDv +(vi(7), u(r))vdr.  (56)

S
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