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1 Introdution

Turbulent ows our in many natural and industrial proesses. Desribing them

requires a good simulation. The wide range of sales of ow strutures, whih

are typial for turbulent ows, prevent us from solving numerially the Navier-

Stokes equations. Therefore turbulene models yield the equations whih an be

numerially approximated thanks to reduing the number of operations needed to

ompute the solutions. One of the approahes reently very popular is Large Eddy

Simulation (LES). The LES tehnique bases on hoosing the sales for whih the

exat solution is omputed diretly - the part denoting the large ow strutures

(large sales, resolved) and the sales for whih the solution is modelled (small sales,

subgrid). Therefore the quantity desribing the ow, the veloity u; is deomposed

into the mean part �u and turbulent utuations u

0

, i.e., u = �u+u

0

. The utuations

are �rst smoothed out and then modelled. The seletion of sales depends mostly

on the omputational possibilities of the hardware. The disretization sheme bases

on hoosing a omputational mesh. Obviously all ow strutures of size smaller

than the mesh width will not be seen. Mathematially the sale hoie is done by

�ltering, i.e., onvoluting the quantities with some appropriate funtion - �lter.
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Only the large sales are omputed as aurately as possible. In view of the real-

life appliations it seems aeptable to desribe turbulent ows with this approah.

Usually the behavior of large eddies is important and more signi�ant than all

the small eddies. However for determining this ow we also have to onsider the

interation between the large and small eddies and the one only among the small

eddies. All these interations inuene the behavior of the big eddies.

Di�erent �lters based on onvolutions an be used. Usually the onvolution is done

with respet to spae variables, i.e.,

�u(t; x) = u � '

Æ

(t; x) =

Z

R

3

u(t; y)'

Æ

(x� y)dy;

where the index Æ denotes the �lter width (so-alled ut-o� length) and '

Æ

is the

�lter. The �lter is assumed to be a funtion of total mass one. In ase of a bounded

domain 
 � R

3

the problem of �ltering near the boundary and of the boundary

values of �u ours. Choosing periodi boundary onditions in the previously on-

sidered ase (f. [

�

Sw05℄) eliminated this diÆulty. To provide that the �ltering,

i.e., the onvolution is well de�ned in bounded domains, the funtions (u; p) ould

be extended to the whole R

3

. The other possibility, whih we hoose in a present

paper, is to onsider the �lter with a non-onstant width Æ(x) with Æ(x)! 0 when

x approahes the boundary. The preise desription of the �lters is ontained in

Setion 1.1.2. Suh hoie of the �lter is also onvenient in view of denoting the

boundary onditions �u. Note that when u = 0 on �
, onsequently also �u = 0 on

�
, whih may fail in ase of other kind of �lters. For more details on �ltering see

[Sag01, Ald90℄.

The equations for evolution of the �ltered quantities are derived from the Navier

Stokes Equations. By onvoluting them with a �lter one obtains

�u

t

+ div (u
 u)� ���u +r�p =

�

f;

div �u = 0;

where u is a veloity, p a pressure, � a positive onstant visosity and f an external

fore. Beause of the nonlinearity in the equations the sales annot be onsidered

separately. Furthermore, looking for solutions representing the resolved sales, the

interations with the subgrid sales have to be taken into onsideration. Therefore

we express the onvoluted onvetive term as a di�erene of the onvetive term in

terms of �u and of a so-alled subgrid stress tensor � = �u
 �u�u
 u representing the

ontribution of small sales into the system. There has to be added some onstitutive

relation losing the system. In LES we �nd a wide range of losure models for the

tensor � . The most lassial one whih is still often used is the Smagorinsky model

where

� = (Æ)

2

jD�ujD�u;
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and  > 0 is onstant, Du is the symmetri part of the veloity gradient ru, i.e.,

Du = (D

ij

u)

3

i;j=1

; D

ij

u =

1

2

�

�u

i

�x

j

+

�u

j

�x

i

�

: This leads to the following initial boundary

value problem

�u

t

+ div (�u
 �u)� div (Æ

2

jD�ujD�u)� ���u+r�p =

�

f;

div �u = 0;

�u(0; x) = �u

0

(x); �u

j�


= 0:

(1)

Existene and uniqueness to (1) have been shown with use of Galerkin approxima-

tion and monotone operator methods. For lassial results in this �eld we refer to

[Lio69, Lad70℄. The Smagorinsky model with boundary onditions arising from a

boundary-layer modelling has been studied by [Par92℄.

The Smagorinsky model has a lot of disadvantages, see [Joh03℄ for details. In

order to adapt it better to loal ow strutures a dynamial proedure is applied

- the Germano model. f. [GPMC91℄, later modi�ed by [Lil92℄. Instead of �nding

one onstant  for the whole ow, we want to �nd this oeÆient dynamially. The

idea bases on applying a seond �lter (test �lter) to the Navier-Stokes equations.

Denoting the width of the �rst �lter (grid �lter) by Æ

1

, the test �lter '

Æ

2

must have

a di�erent width Æ

2

, with Æ

2

> Æ

1

usually hosen Æ

2

= 2Æ

1

. Applying this seond

�lter extrats a test �eld from the resolved sales. The idea is the following: The

smallest resolved sales are sampled to give information for modelling the subgrid

sales (notation: ~u = u�'

Æ

2

). The next step is to use the so-alledGermano identity:

L = T � ~� ; (2)

where � and T are the subgrid tensors

� = �u
 �u� u
 u and T =

~

�u


~

�u�

^

u
 u (3)

and

L =

~

�u


~

�u�

^

�u
 �u

is a Leonard tensor. The Germano identity is simply obtained by applying the test

�lter to the �rst identity of (3) and subtrating it from the seond. The tensor L

an be omputed from the resolved �eld sine it is assoiated with sales of motion

between the grid and test sales. In the next step both subgrid tensors are modelled

in a similar way as in Smagorinsky's model. The ruial simpli�ation is that they

will be modelled with the same  = (t; x), i.e.,

� = 2Æ

2

1

jD�ujD�u in T = 2Æ

2

2

jD

~

�ujD

~

�u: (4)

Notie that in plae of 

2

from Smagorinsky's model we now used . The goal is

to allow for the possibility of negative values orresponding to baksatter, i.e., the

transfer of energy from subgrid sales to large sales. Substituting (4) into (2)

L = 2Æ

2

2

jD

~

�ujD

~

�u�

�

^

2Æ

2

1

jD�ujD�u

�
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(the �ltering � applies to the whole term in brakets) and assuming the additional

simpli�ation

^

(Æ

2

1

jD�ujD�u) = 

�

^

Æ

2

1

jD�ujD�u

�

(note that:  = (t; x) is allowed!) the following equation is obtained

L = 2M with M = Æ

2

2

jD

~

�ujD

~

�u�

^

Æ

2

1

jD�ujD�u:

The above equation is in fat an overdetermined system of six equations for the

oeÆient . Therefore, the error Q = jL� 2M j

2

is minimized by the least squares

method, i.e.,

�Q

�

= 0, yielding

 =

1

2

L �M

M �M

; (5)

here L � M =

3

P

i;j=1

l

ij

m

ij

: This  is substituted into the Smagorinsky system (1).

Then v = �u and q = �p de�ne a solution to the model equations

v

t

+ div (v 
 v)� div (jDvjDv)� ��v +rq =

�

f;

div v = 0;

v(0; x) = v

0

(x); v

j�


= 0:

For more details on modelling we refer to [GPMC91, Lil92, Jim95, Sag01, Joh03℄.

The above proedure an produe negative values of . This has been oneived

as an advantage, allowing to desribe the baksatter. Nevertheless, the negative

values of  may lead to numerial instabilities. Also numerial tests show that  an

vary strongly. In pratie, the nominator and denominator of , f. (5), are averaged

to ompute a smoother funtion (see [Sag01℄ for details).

We have analyzed the behaviour of the funtion  more preisely. To de�ne  at

those points, where the denominator beomes zero, it must be possible to estimate

somehow the matrix L with help of the matrix M. We have found a ounterexample,

whih presents the situation, when M = 0 but L 6= 0 . This was a motivation to

some neessary modi�ations of the turbulent term for the mathematial analysis.

Its properties are learly assembled in Setion 1.1.1. We will not propose any new

formula for , but only desribe in general the mathematial assumptions we put.

1.1 Filtering and properties of the turbulent term

In the following the subset of symmetri matries in R

n�n

will be denoted by

S

n

: Let D(
) be the spae of all C

1

-funtions with ompat support in 
. By

D(�1; T ;V) we mean the spae of all C

1

-funtions with ompat support from

(�1; T ) to V. We will also work in spaes of divergene-free funtions. Then
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V = fu : u 2 D(
); div u = 0g, V is the losure of V with respet to the norm

kuk

V

=

�R




jruj

3

dx

�

1

3

; H is the losure of V with respet to the standard L

2

� norm.

To simplify the notation, funtion spaes for vetor valued funtions are denoted in

the same way as funtion spaes for salar funtions. Moreover, we use (throughout

the whole paper) Einstein's summation onvention, i.e., a

i

b

i

:=

P

3

i=1

a

i

b

i

.

1.1.1 Properties of the turbulent term

By the turbulent term we mean the operator

(y)jDvjDv

with the notation for nonloal (�ltered) variables

y = (~v;fvv;

f

Dv;

^

jDvjDv):

The properties of the operator  are the following:

(C1)  : R

3

� S

3

� S

3

� S

3

�! R is a ontinuous funtion with respet to y.

(C2)  satis�es the ondition

0 < � � (y) � � <1: (6)

For later use we assemble also the properties of the operator � 7! j�j� for � 2 S

3

.

There exists a salar funtion U 2 C

2

(S

3

); U(�) =

1

3

j�j

3

suh that for all �; � 2 S

3

and i; j = 1; 2; 3

�U(�)

��

ij

= j�j�

ij

(7)

�

2

U(�)

��

mn

��

rs

�

mn

�

rs

� j�jj�j

2

: (8)

Moreover j�j� is strongly monotone, i.e. there exists a positive onstant K

1

suh

that

(j�j�

ij

� j�j�

ij

) � (�

ij

� �

ij

) � K

1

j� � �j

3

(9)

for all �; � 2 S

3

. Obviously, the strong monotoniity implies the strit monotoniity,

i.e.,

(j�j�

ij

� j�j�

ij

) � (�

ij

� �

ij

) > 0 (10)

for all �; � 2 S

3

; � 6= �.
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1.1.2 Filtering tehnique

In bounded domains the de�nition of the �ltering is rather deliate. Filters are non-

negative C

1

-funtions of ompat support ontained in 
. The support shrinks to

a one-point set near the boundary. Nevertheless, the mass of the �lter remains one;

thus the �lters tend to Dira Æ�distributions on the boundary. To be more preise,

let ' 2 C

1

0

(
) with supp' � B

1

be non-negative suh that

R




'(y)dy = 1; '(x) =

'(�x): Let Æ(x) = dist(x; �
): Then we de�ne the �lter '

Æ(x)

by

'

Æ(x)

(y) =

1

Æ(x)

3

'

�

y

Æ(x)

�

: (11)

For a desription of the appliation of �lters with nonuniform �lter width in

numerial analysis we refer to [Ven95℄.

In LES for time-dependent equations the �ltering is usually done only with re-

spet to spae variables. Nevertheless, the general de�nition of the �lter (f. [Sag01,

p. 9℄) admits also spae-time �ltering. In that ase, also the problem of �ltering

near the initial value ours. We will solve it in a similar way to the �ltering near

the boundary. However, to �nd the solution in time � , we only want to onsider

times 0 � t � � . Therefore, let '

t

2 L

1

((0; T )) be a non-negative funtion with

R

T

0

'

t

(�)d� = 1: Moreover, let '

t

(�) have ompat support in [0; 1). The time- and

spae-dependent �lter '

Æ(t;x)

is de�ned by

'

Æ(t;x)

(�; y) = '

t

Æ(t)

(�)'

x

Æ(x)

(y); '

t

Æ(t)

(�) =

1

Æ(t)

'

t

�

�

Æ(t)

�

; Æ(t) = t

and '

x

Æ(x)

orresponds to '

Æ(x)

de�ned by (11). Given the spae-time ylinder Q

T

=

(0; T )� 
 we understand by �ltering the proess

~v(t; x) =

Z

Q

T

v(�; y)'

Æ(t;x)

(t� �; x� y)d�dy:

RemarkOn a level of modelling, the ommutation of onvoluting and di�erentiation

is assumed. This property obviously holds for the �lters with onstant width. For

the ase of non-uniform �lters used here this may fail. On the wider study of the

so-alled ommutation error we refer to [BGJ04, BJ04, DJL04℄. In the following the

ommutation error will be negleted.

1.2 Main results

Let 
 � R

3

be a bounded domain with a suÆiently smooth boundary �
. We are

looking for a veloity v : Q

T

�! R

3

and a pressure q : Q

T

�! R solving in 
 the

system

v

t

+ v � rv � div [(y)jDvjDv℄� ��v +rq = f;

div v = 0;

v(0; x) = v

0

(x);

(12)
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with boundary onditions

v(t; x) = 0 on (0; T )� �
: (13)

As before, y = (~v;fvv;

f

Dv;

^

jDvjDv):

De�nition 1.1 Given f 2 L

3

2

(0; T ;V

0

) and v

0

2 H a funtion

v 2 L

3

(0; T ;V ) \ L

1

(0; T ;H)

is a weak solution to problem (12), (13) if the equation

Z




T

Z

0

(�v�

t

+ v � rv �+ (y)jDvjDv �D�+ �rv � r�) dtdx

=

Z




v

0

�dx+

T

Z

0

hf; �idt

is satis�ed for all � 2 D(�1; T ;V):

Theorem 1.1 (Existene) Let v

0

2 H, f 2 L

3

2

(0; T ;V

0

) and let the funtion 

satisfy onditions (C1)-(C2). Then, for all T > 0, there exists a weak solution in

the sense of De�nition 1.1 to problem (12), (13).

Moreover, we will show, that the sequene of approximate solutions onverges

strongly in L

3

(0; T ;V ). This result will be formulated in Theorem 3.1.

2 Proof of Theorem 1.1

Let y

n

= (

e

v

n

;

℄

v

n

v

n

;

g

Dv

n

;

^

jDv

n

jDv

n

) and let f!

r

g

1

r=1

be an orthonormal basis of H

onsisting of eigenvetors of the Stokes operator. Let V

n

= spanf!

1

; :::; !

n

g. For

u 2 H de�ne a projetion

P

n

u =

n

X

r=1

(u; !

r

)!

r

: H ! V

n

Notie that there exists k = k(
) > 0 suh that (f. [MNR93, MNRR96℄)

kP

n

uk

W

2;2

(
)

� kkuk

W

2;2

(
)

:
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We de�ne v

n

(t) =

n

P

r=1

�

n

r

(t)!

r

; v

n

2 V

n

as a solution to

(

d

dt

v

n

; !

r

) + h(y

n

)jDv

n

jDv

n

; D!

r

i+ �(rv

n

;r!

r

) + b(v

n

; v

n

; !

r

) = hf; !

r

i

v

n

(0) = P

n

v

0

(14)

for all 1 � r � n: We use the notation for a trilinear form

b(u; v; w) :=

Z




u

j

�v

i

�x

j

w

i

dx:

Notie that for divergene-free funtions: b(u; v; v) = 0.

Before establishing existene of solutions to the approximated problem let us

prove some a priori estimates. Multiplying equations (14) by �

n

r

and summing over

r we obtain

1

2

d

dt

kv

n

k

2

H

+

Z




(y

n

)jDv

n

j

3

dx + �krv

n

k

2

L

2

(
)

= hf; v

n

i:

Estimating the l.h.s. with help of Korn's inequality (f. [Fu94℄) and (6) yields

Z




(y

n

)jDv

n

j

3

dx � �

Z




jDv

n

j

3

dx � k

�

kv

n

k

3

W

1;3

(
)

� k

�

kv

n

k

3

V

:

We estimate the r.h.s. with Young's inequality

jhf; v

n

ij � kfk

V

0

kv

n

k

V

�

k

�

2

kv

n

k

3

V

+

k

2

kfk

3

2

V

0

;

to obtain after integrating over (0; T )

kv

n

(s)k

2

H

+ k

�

s

Z

0

kv

n

k

3

V

dt+ �

s

Z

0

krv

n

k

2

L

2

(
)

dt � k

T

Z

0

kfk

3

2

V

0

dt+ kv

n

0

k

2

H

8s: (15)

This allows to onlude that

v

n

is bounded in L

1

(0; T ;H) \ L

3

(0; T ;V ):

Let us now analyze v

n

t

. Due to equation (14) we obtain after estimating all the other

terms of the equation that

v

n

t

is bounded in L

3

2

(0; T ; (W

2;2

(
) \ V )

0

):
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For its proof take an arbitrary � 2 L

3

(0; T ;W

2;2

(
)\V ) with k�k

L

3

(0;T ;W

2;2

(
)\V )

� 1

and estimate (v

n

t

; �) : Notie that (v

n

t

; �) = (v

n

t

; P

n

�) : Hene, due to equation (14),

the four integrals below are �nite. First,

T

Z

0

Z




jv

n

� rv

n

P

n

�jdxdt =

T

Z

0

Z




jv

n


 v

n

� rP

n

�jdxdt

�

T

Z

0

kv

n

k

2

L

4

(
)

krP

n

�k

L

2

(
)

dt � k

T

Z

0

kv

n

k

2

V

krP

n

�k

W

1;2

(
)

dt

� k

T

Z

0

kv

n

k

2

V

kP

n

�k

W

2;2

(
)

dt � k

T

Z

0

kv

n

k

2

V

k�k

W

2;2

(
)

dt

kv

n

k

2

L

3

(0;T ;V )

k�k

L

3

(0;T ;W

2;2

(
))

� k;

and

T

Z

0

Z




jrv

n

� rP

n

�jdxdt �

T

Z

0

krv

n

k

L

3

(
)

krP

n

�k

L

3

2

(
)

dt

� k

T

Z

0

krv

n

k

L

3

(
)

kP

n

�k

W

2;2

(
)

dt � k

T

Z

0

krv

n

k

L

3

(
)

k�k

W

2;2

(
)

dt

� kkv

n

k

L

3

2

(0;T ;V )

k�k

L

3

(0;T ;W

2;2

(
))

� kkv

n

k

L

3

(0;T ;V )

� k:

Moreover,

T

Z

0

jhf; P

n

�ijdt �

T

Z

0

kfk

V

0

kP

n

�k

V

dt � k

T

Z

0

kfk

V

0

kP

n

�k

W

2;2

(
)

dt

� k

T

Z

0

kfk

V

0

k�k

W

2;2

(
)

dt � kkfk

L

3

2

(0;T ;V

0

)

k�k

L

3

(0;T ;W

2;2

(
))

� k;

and, �nally

T

Z

0

Z




�

�

�

(y

n

)jDv

n

jDv

n

� rP

n

�

�

�

�

dxdt � �

T

Z

0

Z




jDv

n

j

2

jrP

n

�j dxdt

� k

T

Z

0

Z




jrv

n

j

2

jrP

n

�j dxdt � k

T

Z

0

krv

n

k

2

L

3

(
)

krP

n

�k

L

3

(
)

dt

� kkv

n

k

2

L

3

(0;T ;V )

k�k

L

3

(0;T ;W

2;2

(
))

� kv

n

k

2

L

3

(0;T ;V )

� k:

Theorem 2.1 For given f 2 L

3

2

(0; T ;V

0

) and v

0

2 H equation (14) possesses an

absolutely ontinuous solution v

n

on (0; T ):

9



Proof

Let �

n

= (�

n

1

; :::; �

n

r

) and let n be �xed. We an rewrite the system (14) in the form

d

dt

�

n

r

(t) = F

r

(t; �

n

(t); y

n

)

�

n

r

(0) = (u

0

; !

r

)

(16)

where 1 � r � n; F (�) = (F

1

(�); :::; F

n

(�)) and

F

r

(t; �

n

(t); y

n

) = (f; !

r

)� �

n

i

(t)�

n

k

(t)

Z




!

j

i

�!

l

k

�x

j

!

l

r

dx� ��

n

r

(t)kr!

r

k

2

L

2

��

n

i

(t)

Z




(y

n

)j�

n

k

(t)D!

k

jD

lm

!

i

D

lm

!

r

dx

with

y

n

=

0

�

^

n

X

i=1

�

n

i

!

i

;

^

n

X

i=1

�

n

i

!

i

n

X

j=1

�

n

j

!

j

;

^

n

X

i=1

�

n

i

D!

i

;

^

j

n

X

i=1

�

n

i

D!

i

j

n

X

j=1

�

n

j

D!

j

1

A

:

Remembering that Æ(t) = t; let us rewrite all �ltered terms by hanging the variables

in the time-�ltering, i.e.,

g

�

n

i

!

i

(t; x) =

1

Z

0

'

t

(s)�

n

i

(t� ts)ds

Z




'

x

Æ(x)

(x� y)!

i

(y)dy;

^

�

n

i

!

i

�

n

j

!

j

(t; x) =

1

Z

0

'

t

(s)�

n

i

(t� ts)�

n

j

(t� ts)ds

Z




'

x

Æ(x)

(x� y)!

i

(y)!

j

(y)dy;

^

�

n

i

D!

i

(t; x) =

1

Z

0

'

t

(s)�

n

i

(t� ts)ds

Z




'

x

Æ(x)

(x� y)D!

i

(y)dy;

^

j�

n

i

D!

i

j�

n

j

D!

j

(t; x) =

=

1

Z

0

Z




'

t

(s)'

x

Æ(x)

(x� y)j�

n

i

(t� ts)D!

i

(y)j�

n

j

(t� ts)D!

j

(y)dyds:

To �nd the value of �

n

at time t = t

1

we need the information on the values of �

n

in all 0 � t � t

1

. Let �

t

2 C([0; 1℄;R

n

) be de�ned by �

t

(s) = �(t(1� s)); 0 � s � 1:

Taking into aount all �ltered terms it will be more onvenient to speify the

dependene of F on �

n

as

F (t; �

n

(t); y

n

) =: F(t; �

n

(t); �

n

t

):

10



Therefore let desribe the dependene on �ltered terms with help of some funtion

C, namely C(�

n

t

) = (y

n

) and then

F

r

(t; �

n

(t); �

n

t

) = (f; !

r

)� �

n

i

(t)�

n

k

(t)

Z




!

j

i

�!

l

k

�x

j

!

l

r

dx� ��

n

r

(t)kr!

r

k

2

L

2

��

n

i

(t)

Z




C(�

n

t

)j�

n

k

(t)D!

k

jD

lm

!

i

D

lm

!

r

dx:

First step: t

0

= 0.

Consider �rst loal existene of solutions. Let there be given t

0

and a suh that

t 2 (t

0

; t

0

+ a): The onstant a = minf

1

(2K

1

+1)

3

;

1

2(K

2

+K

3

+K

4

)

g; where the onstants

K

i

will be explained in the following estimates. Notie that the K

i

's depend on n

and on the initial data �

n

(t

0

) and are independent of t. Let also j�

n

(t)��

n

(t

0

)j � 1;

where for t

0

= 0 we de�ned �

n

(t

0

) in (16). Observe for eah 1 � r � n the following

estimates:

t

0

+a

Z

t

0

j(f; !

r

)jd� �

0

�

t

0

+a

Z

t

0

j(f; !

r

)j

3

2

d�

1

A

2

3

0

�

t

0

+a

Z

t

0

1 d�

1

A

1

3

� kfk

L

3

2

(0;T ;V

0

)

k!

r

k

V

� a

1

3

= K

1

� a

1

3

(17)

and

t

0

+a

Z

t

0

�

�

�

�

n

i

(�)�

n

k

(�)

Z




!

j

i

�!

l

k

�x

j

!

l

r

dx

�

�

�

d� � max

1�i�n

kr!

i

k

3

L

2

t

0

+a

Z

t

0

j�

n

j

2

d�

� (j�

n

(t

0

)j+ 1)

2

max

1�i�n

kr!

i

k

3

L

2

� a = K

2

� a

(18)

and

�

t

0

+a

Z

t

0

�

�

�

�

n

(�)kr!

r

k

2

L

2

�

�

�

d� � �(j�

n

(t

0

)j+ 1)kr!

r

k

2

L

2

t

0

+a

Z

t

0

1 d� = K

3

� a: (19)

Moreover, sine C is bounded from above by �,

t

0

+a

Z

t

0

�

�

�

�

n

i

(�)

Z




C(�

n

�

)j�

n

k

(�)D!

k

jD

lm

!

i

D

lm

!

r

dx

�

�

�

d�

� �

t

0

+a

Z

t

0

j�

n

(t)j

2

Z




jD!

r

j

3

dx d� � �(j�

n

(t

0

)j+ 1)

2

kD!

r

k

3

L

3

t

0

+a

Z

t

0

1 d�

� � (j�

n

(t

0

)j+ 1)

2

kD!

r

k

3

L

3

� a = K

4

� a:

(20)

Thus we an onlude that

t

0

+a

Z

t

0

jF(�; �

n

(�); �

n

�

)jd� � 1: (21)
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We replae (16) by the integral equation

�

n

(t) = �

n

(t

0

) +

Z

t

t

0

F(�; �

n

(�); �

n

�

)d�

and de�ne the operator S by

S(�

n

) = �

n

(t

0

) +

Z

t

t

0

F(�; �

n

(�); �

n

�

)d�:

Then (16) is equivalent to the �xed point problem

�

n

= S(�

n

); �

n

2 B � X

where

X = C([t

0

; t

0

+ a℄); k�k

X

= max

t2[t

0

;t

0

+a℄

j�(t)j;

B = f�

n

2 X : k�

n

� �

n

(t

0

)k

X

� 1g:

First, see that S(�

n

) � B for �

n

2 B, namely

jS(�

n

)� �

n

(t

0

)j �

Z

t

0

+a

t

0

jF(�; �

n

(�); �

n

�

)jd�

(21)

� 1:

Aiming to prove ompatness of the operator S, we show that S(�

n

) is uniformly

bounded on B, i.e. for all t 2 [t

0

; t

0

+ a℄ and �

n

2 B

jS(�

n

(t))j � j�

n

(t

0

)j+

Z

t

t

0

jF(�; �

n

(�); �

n

�

)jd� � j�

n

(t

0

)j+ 1:

Moreover, S(B) is equiontinuous, namely, with a slight generalization of estimates

(17)-(20) we an show that for all t

1

; t

2

2 [t

0

; t

0

+ a℄ and �

n

2 B if jt

1

� t

2

j �

min

�

�

"

2K

1

+1

�

3

;

"

2(K

2

+K

3

+K

4

)

�

; then

jS(�

n

(t

1

))� S(�

n

(t

2

))j =

�

�

�

Z

t

1

t

0

F(�; �

n

(�); �

n

�

)d� �

Z

t

2

t

0

F(�; �

n

(�); �

n

�

)d�

�

�

�

�

�

�

�

Z

t

2

t

1

F(�; �

n

(�); �

n

�

)d�

�

�

�

� K

1

jt

1

� t

2

j

1

3

+ (K

2

+K

3

+K

4

)jt

1

� t

2

j � ":

(22)

Hene by the Asoli-Arzel�a Theorem the set S(B) is relatively ompat in X. To

onlude the ompatness of the operator S we only have to notie that S is on-

tinuous. Therefore let �

n

j

! �

n

uniformly in [t

0

; t

0

+ a℄ as j !1. Notie, sine C is

a ontinuous funtion of �

n

t

, that F is also ontinuous w.r.t. �

n

and �

n

t

. Hene we

an onlude with help of the dominated onvergene theorem that

S(�

n

j

(t))� S(�

n

(t)) =

t

Z

t

0

[F(�; �

n

j

(�); �

n

�;j

)� F(�; �

n

(�); �

n

�

)℄ d�

12



onverges poinwise to 0. Moreover, (22) provides the uniform onvergene, thus S

is ontinuous. Finally, as B is a nonempty, losed, bounded and onvex subset of

X and the operator S is ompat, due to the Shauder Fixed Point Theorem there

exists a solution to the equation �

n

= S(�

n

) for t 2 [t

0

; t

0

+ a℄.

Seond step. Global existene of solutions.

To obtain the global existene of solutions we will repeat the above proedure in

further time intervals. Notie that the onstrution of solutions in the interval

(t

0

; t

0

+ a) for t

0

6= 0 uses also the values of �

n

from the interval (0; t

0

). These

quantities do not inuene the estimates (17)- (19). They only appear in estimate

(20) as arguments of the funtion C. But sine C is uniformly bounded by �, the

proof follows the same lines.

Due to orthonormality of f!

r

g in H the a priori estimates, f. (15), assure

that �

n

(t) is uniformly bounded. Thus also the initial data for further existene

problems are bounded implying that the value of the onstants K

i

will not inrease;

onsequently, the length of existene intervals a will not derease. Hene the proof

an be done in a �nite number of steps.

The equation (16) yields that for t 2 (0; T ) the solution is absolutely ontinuous.

Using the information on the boundedness of the sequene (v

n

) we an extrat

a subsequene, still denoted by v

n

, suh that

v

n

* v in L

3

(0; T ;V ); (23)

v

n

�

* v in L

1

(0; T ;H); (24)

v

n

t

* v

t

in L

3

2

(0; T ; (W

2;2

(
) \ V )

0

): (25)

Sine V �� H � (W

2;2

(
) \ V )

0

, due to (23) and (25), using Aubin-Lions Lemma

(f. [MNRR96℄) we onlude that

v

n

�! v in L

3

(0; T ;H) and a:e: in Q

T

: (26)

This strong onvergene is needed to show that

T

Z

0

b(v

n

; v

n

; �)dt �!

T

Z

0

b(v; v; �)dt:

It is obtained as follows:

T

Z

0

Z




(v

n

rv

n

� vrv)�dxdt

=

T

Z

0

Z




(v

n

� v)rv

n

�dxdt+

T

Z

0

Z




v(rv

n

�rv)�dxdt:

13



Aording to H�older's inequality the �rst integral an be estimated by

�

�

�

T

Z

0

Z




(v

n

� v)rv

n

�dxdt

�

�

�

�

T

Z

0

kv

n

� vk

L

2

(
)

krv

n

k

L

3

(
)

k�k

L

6

(
)

dt

� kv

n

� vk

L

3

(0;T ;H)

kv

n

k

L

3

(0;T ;V )

k�k

L

3

(0;T ;L

6

(
))

:

And due to the strong onvergene (26) this integral onverges to zero. The onver-

gene of the seond integral to zero is ahieved by the weak onvergene of gradients.

Finally, due to (23), there exist

�

A; � 2 L

3

2

(Q

T

) suh that

(y

n

)jDv

n

jDv

n

*

�

A in L

3

2

(Q

T

) (27)

and

jDv

n

jDv

n

* � in L

3

2

(Q

T

): (28)

Hene we an state the limit identity

T

Z

0

Z




�

v

t

� �+ v � rv � �+

�

A �D�+ �rv � r�

�

dxdt =

T

Z

0

hf; �idt (29)

for all � 2 D(�1; T ;V):

For later use we will show that the strong energy equality holds. To this aim

we need to show that (29) holds for all � 2 L

3

(0; T ;V ): We observe the following

estimates

T

Z

0

Z




jv � rv � �jdxdt �

T

Z

0

kvk

L

3

(
)

krvk

L

3

(
)

k�k

L

3

(
)

dt � k

T

Z

0

kvk

2

V

k�k

V

dt

� kkvk

2

L

3

(0;T ;V )

k�k

L

3

(0;T ;V )

(30)

and

T

Z

0

Z




j

�

A �D�jdxdt �

T

Z

0

k

�

Ak

L

3

2

(
)

kD�k

L

3

(
)

dt � kk

�

Ak

L

3

2

(Q

T

)

k�k

L

3

(0;T ;V )

: (31)

Moreover

T

Z

0

Z




jrv � r�jdxdt �

T

Z

0

krvk

L

3

2

(
)

kr�k

L

3

(
)

dt � k

Z

T

0

kvk

V

k�k

V

dt

� kkrvk

L

3

(0;T ;V )

k�k

L

3

(0;T ;V )

(32)

and

T

Z

0

jhf; �ijdt �

T

Z

0

kfk

V

0

k�k

V

dt � kfk

L

3

2

(0;T ;V

0

)

k�k

L

3

(0;T ;V )

: (33)
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Colleting (30)-(33) allows to onlude that

F(�) �

T

Z

0

0

�

b(v; v; �) +

Z




�

A �D�dx+ �(rv;r�)� hf; �i

1

A

dt (34)

is a linear bounded funtional on L

3

(0; T ;V ): From (29) it holds

F(�) =

T

Z

0

Z




v

t

�dxdt: (35)

Thus v

t

belongs to L

3

2

(0; T ;V

0

) = (L

3

(0; T ;V ))

0

; whih provides that (29) holds for

all � 2 L

3

(0; T ;V ): This allows to test (29) against the solution v to obtain

T

Z

0

Z




�

v

t

� v +

�

A �Dv + �rv � rv

�

dxdt =

T

Z

0

hf; vidt: (36)

Finally due to Proposition A.9, sine v 2 L

3

(0; T ;V ) and v

t

2 L

3

2

(0; T ;V

0

) then for

all 0 � s � t � T it holds

t

Z

s

hv

t

(�); v(�)id� =

1

2

kv(t)k

2

H

�

1

2

kv(s)k

2

H

(37)

and hene

1

2

kv(T )k

2

H

+

T

Z

0

Z




�

A �Dvdxd� + �

T

Z

0

krvk

2

H

d� =

1

2

kv

0

k

2

H

+

T

Z

0

hf; vid�: (38)

Next, we will formulate a lemma onerning onvergene of �ltered terms.

Lemma 2.2 Let the sequene (v

n

)

n2N

onverge weakly to v in L

3

(0; T ;V ) and let

� 2 L

3

2

(Q

T

) be as in (28). Then, for n ! 1, the following sequenes onverge

almost everywhere in Q

T

:

e

v

n

�! ev;

g

v

n

v

n

�! fvv;

g

Dv

n

�!

f

Dv:

We an extrat a further subsequene of (v

n

) suh that

^

jDv

n

jDv

n

�! e� a:e: in Q

T

:

15



Proof

Sine v

n

is bounded in L

3

(0; T ;V ), then also, for a subsequene, Dv

n

* Dv in

L

3

(Q

T

), and v

n

* v

n

in L

3

(Q

T

); hene

Z

Q

T

v

n

�dyd� !

Z

Q

T

v�dyd� 8� 2 L

3

2

(Q

T

):

We hoose as a test funtion �(�; y) = '

Æ(t;x)

(t��; x�y) with parameters (t; x) 2 Q

T

,

where '

Æ(t;x)

is a �lter. The �lters are obviously in L

3

2

(Q

T

) exept for the points

x 2 �
 or t = 0. However, sine Q

T

is open,

Z

Q

T

v

n

(�; y)'(t� �; x� y)dyd� !

Z

Q

T

v(�; y)'(t� �; x� y)dyd� for a: a: (t; x) 2 Q

T

;

whih is equivalent to

e

v

n

! ~v a: e: in Q

T

: (39)

In the same way from the information on the symmetri part of the gradients we

onlude that

g

Dv

n

!

f

Dv a: e: in Q

T

: (40)

To analyze the limit of the sequene

℄

v

n

v

n

we dedue from the strong onvergene

of the sequene v

n

in L

2

(Q

T

) also the strong onvergene of v

n

v

n

to vv in L

1

(Q

T

).

Of ourse the strong onvergene implies the weak onvergene. Thus, following

analogous arguments as above, we get that

℄

v

n

v

n

!fvv a: e: in Q

T

: (41)

The onvergene (28) implies for the �ltered terms

^

jDv

n

jDv

n

! ~� a: e: in Q

T

whih ompletes the proof of Lemma 2.2.

For the passage to the limit in the turbulent term we apply Lemma A.1 to the

operator

A(y; z) = (y)jzjz : (R

3

� S

3

� S

3

� S

3

)� S

3

! S

3

:

Again let

y = (ev;fvv;

f

Dv;

^

jDvjDv); y

n

= (

e

v

n

;

℄

v

n

v

n

;

g

Dv

n

;

^

jDv

n

jDv

n

); z

n

= Dv

n

:

The funtion A does not depend diretly on (t; x) and is ontinuous w.r.t. all other

variables, whih provides that the assumption (i) of Lemma A.1 is ful�lled. Next:
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(ii) For all s 2 R

21

and �

1

; �

2

2 S

3

; �

1

6= �

2

; by (10)

((s)j�

1

j�

1

� (s)j�

2

j�

2

) � (�

1

� �

2

) = (s) (j�

1

j�

1

� j�

2

j�

2

) � (�

1

� �

2

) > 0:

(iii) From the assumptions (C1)� (C2) it holds

(s)j�j� � � � �j�j

3

and

�

�

�

(s)j�j�

�

�

�

� �j�j

2

:

The assumption (iv) holds by Lemma 2.2, with �y = (ev;fvv;

f

Dv; e�), namely

y

n

! �y a: e: in Q

T

:

Due to (23) and (27) the assumption (v) is satis�ed. We only have to hek the

assumption (vi). To this aim we will prove the following laim

Claim

v

n

(t) * v(t) in H for all t 2 [0; T ℄: (42)

Proof of the laim

From (26) it holds

v

n

(t)! v(t) in H for a:a: t 2 [0; T ℄; (43)

in partiular,

v

n

(t)* v(t) in H for all t 2 [0; T ℄ n E; (44)

where E is a set of measure zero. Let us �rst show that

v

n

(t)* v(t) in (W

2;2

(
) \ V )

0

for all t 2 [0; T ℄: (45)

Thus onsider t 2 E. For eah suh t hoose (t

k

) � (0; T ) n E suh that t

k

! t as

k!1. Then for all � 2 W

2;2

(
) \ V

jhv

n

(t)� v(t); �i

(W

2;2

\V )

0

;W

2;2

\V

j � jhv

n

(t)� v

n

(t

k

); �i

(W

2;2

\V )

0

;W

2;2

\V

j

+jhv

n

(t

k

)� v(t

k

); �i

(W

2;2

\V )

0

;W

2;2

\V

j+ jhv(t

k

)� v(t); �i

(W

2;2

\V )

0

;W

2;2

\V

j

= I

1

+ I

2

+ I

3

:

(46)

Consider �rst the term I

1

. Sine v

n

is bounded in L

3

(0; T ;V ) and v

n

t

is bounded in

L

3

2

(0; T ; (W

2;2

(
)\V )

0

) thus v

n

is bounded inW

1;

3

2

(0; T ; (W

2;2

(
)\V )

0

). Aording

to Morrey's Theorem (f. [Eva98, p. 266℄) W

1;

3

2

� C

0;

1

3

; thus

kv

n

(t

1

)� v

n

(t

2

)k

(W

2;2

\V )

0

� mjt

1

� t

2

j

1

3

for all t

1

; t

2

2 [0; T ℄:

17



This assures that (v

n

) is an equiontinuous family of funtions. Thus

I

1

� mjt� t

k

j

1

3

:

Moreover (44) with the embedding L

2

(
) � (W

2;2

(
)\ V )

0

implies that for n!1

and all t

k

2 (0; T ) n E

v

n

(t

k

) * v(t

k

) in (W

2;2

(
) \ V )

0

and hene lim

n!1

I

2

= 0. Thus letting n!1 in (46) yields

lim

n!1

jhv

n

(t)�v(t); �i

(W

2;2

\V )

0

;W

2;2

\V

j � mjt� t

k

j

1

3

+ jhv(t

k

)�v(t); �i

(W

2;2

\V )

0

;W

2;2

\V

j:

Aording to Proposition A.9 we have v 2 C([0; T ℄;H) � C([0; T ℄; (W

2;2

(
) \ V )

0

)

and hene v is weakly ontinuous with values in (W

2;2

(
) \ V )

0

. Therefore letting

k!1 allows to onlude that lim

k!1

I

3

= 0 and

lim

n!1

hv

n

(t)� v(t); �i

(W

2;2

\V )

0

;W

2;2

\V

= 0 (47)

whih proves (45).

Sine the embedding (W

2;2

(
) \ V ) � H is dense and (v

n

) is bounded in

L

1

(0; T ;H); we onlude that

(v

n

(t); �)! (v(t); �) for all � 2 H; t 2 [0; T ℄;

hene (42) is proved.

From (14) it holds

Z

Q

T

(y

n

)jDv

n

jDv

n

�Dv

n

dxdt =

1

2

kv

n

0

k

2

H

�

1

2

kv

n

(T )k

2

H

� �krv

n

k

2

L

2

(Q

T

)

+

T

Z

0

hf; v

n

idt:

Letting n ! 1 and using the lower semiontinuity of the norm w.r.t. the weak

onvergene (42) we obtain

lim sup

n!1

Z

Q

T

(y

n

)jDv

n

jDv

n

�Dv

n

dxdt

�

1

2

kv

0

k

2

H

�

1

2

kv(T )k

2

H

� �krvk

2

L

2

(Q

T

)

+

T

Z

0

hf; vidt:

Inserting the energy equality (38) into the r.h.s. yields

lim sup

n!1

Z

Q

T

(y

n

)jDv

n

jDv

n

�Dv

n

dxdt �

Z

Q

T

�

A �Dv dxdt;

18



whih is exatly the desired inequality for assumption (vi). Now Lemma A.1 implies

that Dv

n

! Dv in measure, and thus for a subsequene

Dv

n

! Dv a: e: in Q

T

:

Hene jDv

n

jDv

n

! jDvjDv a.e. in Q

T

whih together with (28) implies that � =

jDvjDv a.e. in Q

T

. Thus

�y = y and y

n

! y a.e. in Q

T

:

Conerning the turbulent term we onlude that

(y

n

)jDv

n

jDv

n

! (y)jDvjDv a.e. in Q

T

:

As (y

n

)jDv

n

jDv

n

is bounded in L

3

2

(Q

T

) we apply Lemma A.8 and get that

(y

n

)jDv

n

jDv

n

* (y)jDvjDv in L

3

2

(Q

T

):

This onvergene ompletes the proof of the theorem.

3 Compatness of solutions

In this short setion we will observe additional property of solutions, whih is for-

mulated in the forthoming theorem.

Theorem 3.1 Let all the assuptions of Theorem 1.1 be satis�ed and let (v

n

) be a

sequene of solutions to approximate problem (14) and v the solution to (12). Then

v

n

! v in L

3

(0; T ;V ): (48)

Proof

Sine in the proof of Theorem 1.1 we showed that all the assumptions of Lemma

A.1 are satis�ed, then we an also apply Lemma A.2, whih proves (48).

Appendix

A Main tehnial lemmas

The urrent setion ontains two lemmas, whih reall the result shown in [G

�

S05℄.

Nevertheless, for ompletness of the paper, we provide also their proofs.

In the following C

0

(R

d

) denotes the losure of the spae of ontinuous funtions

on R

d

with ompat support with respet to the k � k

1

-norm. Its dual spae an be

identi�ed with M(R

d

); the spae of signed Radon measures with �nite mass. The

related duality pairing is given by

h�; fi =

Z

R

d

f(�) d�(�):
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Lemma A.1 Let 
 � R

d

0

be a measurable set of �nite measure and let A(x; s; �) :


� R

m

� R

d

�! R

d

be an operator satisfying the following onditions:

(i) A(x; s; �) is a Carath�eodory funtion (measurable w.r.t. x and ontinuous

w.r.t. (s; �)).

(ii) For all x 2 
; s 2 R

m

and �

1

; �

2

2 R

d

; �

1

6= �

2

;

[A(x; s; �

1

)� A(x; s; �

2

)℄ � [�

1

� �

2

℄ > 0:

(iii) There exist positive onstants 

1

; 

2

suh that for p > 1 it holds

A(x; s; �) � � � 

1

j�j

p

and jA(x; s; �)j � 

2

j�j

p�1

:

Let y

n

: 
! R

m

and z

n

: 
! R

d

be sequenes of measurable funtions suh that

(iv) y

n

! �y a.e. in 
;

(v) z

n

* z in L

p

(
) and A(x; y

n

; z

n

)*

�

A in L

p

p�1

(
);

(vi)

lim sup

n!1

Z




A(x; y

n

; z

n

) � z

n

dx �

Z




�

A � z dx:

Then there exists a subsequene of (z

n

) suh that

z

n

! z in measure:

Proof

We apply Lemma A.5 to the funtion A(x; y

n

; z

n

) �z

n

. The oerivity ondition from

assumption (iii) of the theorem assures that the negative part of this funtion is

equal to zero; thus it is ertainly weakly relatively ompat in L

1

(
): This allows to

onlude that

lim sup

n!1

Z




A(x; y

n

; z

n

) � z

n

dx �

Z




Z

R

m

�R

d

A(x; s; �) � � d�

x

(s; �)dx (49)

where �

x

is the Young measure generated by the sequene (y

n

; z

n

). However aord-

ing to Lemma A.6, we are able to haraterize this Young measure more preisely.

The sequene y

n

onverges to �y a.e., and a subsequene of z

n

generates a Young mea-

sure �

x

. Then the Young measure �

x

generated by this pair satis�es �

x

= Æ

�y(x)


 �

x

.

Therefore, due to Fubini's theorem

Z




Z

R

m

�R

d

A(x; s; �) � � d�

x

(s; �)dx =

Z




Z

R

d

A(x; �y(x); �) � � d�

x

(�)dx: (50)
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In the same way we obtain

Z




Z

R

m

�R

d

A(x; s; �) d�

x

(s; �)dx =

Z




Z

R

d

A(x; �y(x); �) d�

x

(�)dx: (51)

Sine the sequene jA(x; y

n

; z

n

)j is bounded in L

p

p�1

(
), it is weakly relatively om-

pat in L

1

(
). Thus we an use Lemma A.5 again, whih allows to onlude that the

weak limit

�

A(x) =

R

R

d

A(x; s; �)d�

x

(s; �). From Corollary A.4, taking q = 1; g = id;

we an onlude that z

n

* z =

R

R

d

�d�

x

(�) in L

p

(
). Then the assumption (vi) an

be formulated as follows

lim sup

n!1

A(x; y

n

; z

n

)z

n

dx �

Z




Z

R

d

A(x; �y(x); �)d�

x

(�)

Z

R

d

�

0

d�

x

(�

0

)dx: (52)

Thus, from (49), (50) and (52), the following inequality holds

Z




Z

R

d

A(x; �y(x); �) d�

x

(�) �

Z

R

d

�

0

d�

x

(�

0

) dx �

Z




Z

R

d

A(x; �y(x); �) � � d�

x

(�) dx: (53)

The above inequality will be used soon. Next, we an dedue from the monotoniity

of A w.r.t. the last variable that

Z




Z

R

d

h(x; �)d�

x

(�)dx � 0; (54)

where h is de�ned by

h(x; �) :=

�

A(x; �y(x); �)� A(x; �y(x);

R

R

d

�

0

d�

x

(�

0

))

�

�

�

� �

R

R

d

�

0

d�

x

(�

0

)

�

:

Sine the sequene (z

n

) is bounded in L

p

, then the tightness ondition is satis�ed

and k�

x

k

M(R

d

)

= 1: Simple alulations imply that

Z




Z

R

d

h(x; �)d�

x

(�)dx

=

Z




Z

R

d

A(x; �y(x); �) � �d�

x

(�)dx�

Z




Z

R

d

A(x; �y(x); �)d�

x

(�) �

Z

R

d

�

0

d�

x

(�

0

)dx;

whih, together with (53), assures that

Z




Z

R

d

h(x; �)d�

x

(�)dx � 0: (55)
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Then, (54) and (55) imply that

R

R

d

h(x; �)d�

x

(�) = 0 for a.a. x 2 
. Moreover, sine

�

x

� 0 is a probability measure and A(x; s; �) is strongly monotone, we onlude that

suppf�

x

g

a:e:

=

�

Z

R

d

�

0

d�

x

(�

0

)

�

;

where the right-hand side is equal to z(x), whih is the weak limit of the sequene

(z

n

). Finally we onlude that �

x

= Æ

z(x)

a.e.. A diret appliation of Lemma A.7

implies that

z

n

! z in measure:

Proposition A.2 With the assumptions of Lemma A.1 there exists a subsequene

of (z

n

) suh that

z

n

! z in L

p

(
):

Proof

Sine z

n

onverges in measure, then at least for a subsequene z

n

! z a.e.. Using

the information that �

x

= Æ

z(x)

together with Lemma A.5 and assumption (vi) yields

lim sup

n!1

Z




A(x; y

n

; z

n

) � z

n

dx �

Z




A(x; �y; z)zdx � lim inf

n!1

Z




A(x; y

n

; z

n

) � z

n

dx:

Hene the limit exists and

lim

n!1

Z




A(x; y

n

; z

n

) � z

n

dx =

Z




A(x; �y; z)z dx:

We an set a

n

= A(x; y

n

; z

n

) � z

n

, a = A(x; �y; z)z and laim that

a

n

� 0; a 2 L

1

(
);

Z




a

n

dx!

Z




a dx; a

n

! a a:e: in 
:

Notiing that

Z




ja

n

� aj dx =

Z




(a

n

� a) dx+ 2

Z

fx:a

n

�ag

(a� a

n

) dx

we onlude by Lebesgue's Dominated Convergene Theorem that

A(x; y

n

; z

n

)z

n

! A(x; �y; z)z in L

1

(
):

Thus, by Vitali's Theorem, the sequene A(x; y

n

; z

n

)z

n

is uniformly integrable. Due

to the oerivity ondition also the sequene jz

n

j

p

is uniformly integrable. Using

again Vitali's Theorem yields that z

n

! z in L

p

(
); whih ompletes the proof.
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Some fats onerning Young measures

For the proof of fundamental theorem on Young measures we refer the reader to

[Bal89, M�u99℄.

Theorem A.3 (Fundamental theorem on Young measures) Let 
 � R

d

be

a measurable set of �nite measure and let z

j

: 
! R

d

be a sequene of measurable

funtions. Then there exists a subsequene z

j

k

and a weakly* measurable map � :


!M(R

d

) suh that the following holds:

(i) �

x

� 0; k�

x

k

M(R

d

)

=

R

R

d

d�

x

� 1 for a:a: x 2 
:

(ii) For all g 2 C

0

(R

d

)

g(z

j

k

)

�

* �g in L

1

(
)

where

�g(x) = h�

x

; gi:

(iii) Let K � R

d

be ompat. Then

supp �

x

� K if dist(z

j

k

; K)! 0 in measure.

(iv) Additionally k�

x

k

M(R

d

)

= 1 for a.a. x 2 
 if and only if the 'tightness ondi-

tion' is satis�ed, i.e.

lim

M!1

sup

k

jfjz

j

k

j � Mgj = 0:

(v) If the tightness ondition is satis�ed and moreover if A � 
 is measurable,

g 2 C(R

d

) and g(z

j

k

) is relatively weakly ompat in L

1

(A); then

g(z

j

k

) * �g in L

1

(A); �g(x) = h�

x

; gi:

(vi) If the tightness ondition is satis�ed, then in (iii) one an replae 'if ' by 'if

and only if '.

Remark The map � : 
 ! M(R

d

) is alled the Young measure generated by the

sequene z

j

k

. Every (weakly* measurable map) � : 
!M(R

d

) that satis�es (i) is

generated by some sequene z

k

.

Remark If, for some s > 0 and all j 2 N holds

R




jz

j

j

s

� k then the tightness

ondition is satis�ed.

The straightforward onsequene of the assertion (v) is the following orollary.
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Corollary A.4 [M�u99, Remark 5, p. 33℄ Let 
; z

j

k

; � be as in Theorem A.3, with

(z

j

) bounded in L

p

(
). Then for all g 2 C(R

d

) satisfying the growth ondition

jg(�)j � k(1 + j�j)

q

8� 2 R

d

for some 0 < q < p

it holds

g(z

j

k

) * �g in L

p

q

(
);

�g(x)

a:e

= h�

x

; gi:

Lemma A.5 [M�u99, Cor. 3.3℄ Suppose that the sequene of maps z

j

: 
 ! R

d

generates the Young measure �. Let f : 
�R

d

! R be a Carath�eodory funtion and

let us also assume that the negative part f

�

(x; z

j

(x)) is weakly relatively ompat in

L

1

(
). Then

lim inf

j!1

Z




f(x; z

j

(x))dx �

Z




Z

R

d

f(x; �)d�

x

(�):

If, in addition, the sequene of funtions x 7! jf j(x; z

j

(x)) is weakly relatively om-

pat in L

1

(
); then

f(�; z

j

(�))*

Z

R

d

f(x; �)d�

x

(�) in L

1

(
):

Remark In an obvious way the seond part of the above theorem an be extended

to vetor valued funtions f .

Lemma A.6 [M�u99, Cor. 3.4℄ Let u

j

: 
 ! R

d

; v

j

: 
 ! R

d

0

be measurable

and suppose that u

j

! u a.e. while v

j

generates the Young measure �. Then the

sequene of pairs (u

j

; v

j

) : 
! R

d+d

0

generates the Young measure x 7! Æ

u(x)


 �

x

.

Lemma A.7 [M�u99, Cor. 3.2℄ Suppose that a sequene z

j

of measurable funtions

from 
 to R

d

generates the Young measure � : 
!M(R

d

): Then

z

j

! z in measure if and only if �

x

= Æ

z(x)

a:e::

Other preliminaries

Lemma A.8 Let 
 be an open bounded subset of R

d

, let g

n

; g be the funtions from

L

p

(
), with 1 < p <1, suh that kg

n

k

L

p

(
)

� ; g

n

! g a.e. in 
. Then

g

n

* g in L

p

(
):
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For the proof see [Lio69, Lemma 1.3, p. 12℄. The assertion of Lemma A.8 is also

true if the sequene (g

n

) onverges loally in measure, see [Els02, p. 264℄.

Before stating the next proposition (f. [Zei90a, Prop. 23.23, p. 422℄) we introdue

the notion of an evolution triple 'V � H � V

0

' as follows: V is a real, separable,

and reexive Banah spae, H is a real, separable Hilbert spae with the dense and

ontinuous embedding V � H: Then set W

1

p

(0; T ;V;H) = fu 2 L

p

(0; T ;V ) : u

t

2

L

q

(0; T ;V

0

)g, where 1 < p < 1; p

�1

+ q

�1

= 1: By (�; �)

H

we mean the salar

produt in H and by h�; �i

V

the dual pairing between V and V

0

.

Proposition A.9 Let 'V � H � V

0

' be an evolution triple, and let 1 < p <

1; p

�1

+ q

�1

= 1; 0 < T <1: Then the following hold:

(i) The set of all funtions u 2 L

p

(0; T ;V ) that have generalized derivative u

t

2

L

q

(0; T ;V

0

) forms a real Banah spae with the norm

kuk

W

1

p

= kuk

L

p

(0;T ;V )

+ ku

t

k

L

q

(0;T ;V

0

)

:

(ii) The embedding

W

1

p

(0; T ;V;H) � C([0; T ℄;H)

is ontinuous.

(iii) For all u; v 2 W

1

p

(0; T ;V;H) and arbitrary t; s, 0 � s � t � T; the following

generalized integration by parts formula holds:

(u(t); v(t))

H

� (u(s); v(s))

H

=

t

Z

s

hu

t

(�); v(�)i

V

+ hv

t

(�); u(�)i

V

d�: (56)
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