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1 Introdu
tion

Turbulent 
ows o

ur in many natural and industrial pro
esses. Des
ribing them

requires a good simulation. The wide range of s
ales of 
ow stru
tures, whi
h

are typi
al for turbulent 
ows, prevent us from solving numeri
ally the Navier-

Stokes equations. Therefore turbulen
e models yield the equations whi
h 
an be

numeri
ally approximated thanks to redu
ing the number of operations needed to


ompute the solutions. One of the approa
hes re
ently very popular is Large Eddy

Simulation (LES). The LES te
hnique bases on 
hoosing the s
ales for whi
h the

exa
t solution is 
omputed dire
tly - the part denoting the large 
ow stru
tures

(large s
ales, resolved) and the s
ales for whi
h the solution is modelled (small s
ales,

subgrid). Therefore the quantity des
ribing the 
ow, the velo
ity u; is de
omposed

into the mean part �u and turbulent 
u
tuations u

0

, i.e., u = �u+u

0

. The 
u
tuations

are �rst smoothed out and then modelled. The sele
tion of s
ales depends mostly

on the 
omputational possibilities of the hardware. The dis
retization s
heme bases

on 
hoosing a 
omputational mesh. Obviously all 
ow stru
tures of size smaller

than the mesh width will not be seen. Mathemati
ally the s
ale 
hoi
e is done by

�ltering, i.e., 
onvoluting the quantities with some appropriate fun
tion - �lter.
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Only the large s
ales are 
omputed as a

urately as possible. In view of the real-

life appli
ations it seems a

eptable to des
ribe turbulent 
ows with this approa
h.

Usually the behavior of large eddies is important and more signi�
ant than all

the small eddies. However for determining this 
ow we also have to 
onsider the

intera
tion between the large and small eddies and the one only among the small

eddies. All these intera
tions in
uen
e the behavior of the big eddies.

Di�erent �lters based on 
onvolutions 
an be used. Usually the 
onvolution is done

with respe
t to spa
e variables, i.e.,

�u(t; x) = u � '

Æ

(t; x) =

Z

R

3

u(t; y)'

Æ

(x� y)dy;

where the index Æ denotes the �lter width (so-
alled 
ut-o� length) and '

Æ

is the

�lter. The �lter is assumed to be a fun
tion of total mass one. In 
ase of a bounded

domain 
 � R

3

the problem of �ltering near the boundary and of the boundary

values of �u o

urs. Choosing periodi
 boundary 
onditions in the previously 
on-

sidered 
ase (
f. [

�

Sw05℄) eliminated this diÆ
ulty. To provide that the �ltering,

i.e., the 
onvolution is well de�ned in bounded domains, the fun
tions (u; p) 
ould

be extended to the whole R

3

. The other possibility, whi
h we 
hoose in a present

paper, is to 
onsider the �lter with a non-
onstant width Æ(x) with Æ(x)! 0 when

x approa
hes the boundary. The pre
ise des
ription of the �lters is 
ontained in

Se
tion 1.1.2. Su
h 
hoi
e of the �lter is also 
onvenient in view of denoting the

boundary 
onditions �u. Note that when u = 0 on �
, 
onsequently also �u = 0 on

�
, whi
h may fail in 
ase of other kind of �lters. For more details on �ltering see

[Sag01, Ald90℄.

The equations for evolution of the �ltered quantities are derived from the Navier

Stokes Equations. By 
onvoluting them with a �lter one obtains

�u

t

+ div (u
 u)� ���u +r�p =

�

f;

div �u = 0;

where u is a velo
ity, p a pressure, � a positive 
onstant vis
osity and f an external

for
e. Be
ause of the nonlinearity in the equations the s
ales 
annot be 
onsidered

separately. Furthermore, looking for solutions representing the resolved s
ales, the

intera
tions with the subgrid s
ales have to be taken into 
onsideration. Therefore

we express the 
onvoluted 
onve
tive term as a di�eren
e of the 
onve
tive term in

terms of �u and of a so-
alled subgrid stress tensor � = �u
 �u�u
 u representing the


ontribution of small s
ales into the system. There has to be added some 
onstitutive

relation 
losing the system. In LES we �nd a wide range of 
losure models for the

tensor � . The most 
lassi
al one whi
h is still often used is the Smagorinsky model

where

� = (
Æ)

2

jD�ujD�u;
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and 
 > 0 is 
onstant, Du is the symmetri
 part of the velo
ity gradient ru, i.e.,

Du = (D

ij

u)

3

i;j=1

; D

ij

u =

1

2

�

�u

i

�x

j

+

�u

j

�x

i

�

: This leads to the following initial boundary

value problem

�u

t

+ div (�u
 �u)� div (
Æ

2

jD�ujD�u)� ���u+r�p =

�

f;

div �u = 0;

�u(0; x) = �u

0

(x); �u

j�


= 0:

(1)

Existen
e and uniqueness to (1) have been shown with use of Galerkin approxima-

tion and monotone operator methods. For 
lassi
al results in this �eld we refer to

[Lio69, Lad70℄. The Smagorinsky model with boundary 
onditions arising from a

boundary-layer modelling has been studied by [Par92℄.

The Smagorinsky model has a lot of disadvantages, see [Joh03℄ for details. In

order to adapt it better to lo
al 
ow stru
tures a dynami
al pro
edure is applied

- the Germano model. 
f. [GPMC91℄, later modi�ed by [Lil92℄. Instead of �nding

one 
onstant 
 for the whole 
ow, we want to �nd this 
oeÆ
ient dynami
ally. The

idea bases on applying a se
ond �lter (test �lter) to the Navier-Stokes equations.

Denoting the width of the �rst �lter (grid �lter) by Æ

1

, the test �lter '

Æ

2

must have

a di�erent width Æ

2

, with Æ

2

> Æ

1

usually 
hosen Æ

2

= 2Æ

1

. Applying this se
ond

�lter extra
ts a test �eld from the resolved s
ales. The idea is the following: The

smallest resolved s
ales are sampled to give information for modelling the subgrid

s
ales (notation: ~u = u�'

Æ

2

). The next step is to use the so-
alledGermano identity:

L = T � ~� ; (2)

where � and T are the subgrid tensors

� = �u
 �u� u
 u and T =

~

�u


~

�u�

^

u
 u (3)

and

L =

~

�u


~

�u�

^

�u
 �u

is a Leonard tensor. The Germano identity is simply obtained by applying the test

�lter to the �rst identity of (3) and subtra
ting it from the se
ond. The tensor L


an be 
omputed from the resolved �eld sin
e it is asso
iated with s
ales of motion

between the grid and test s
ales. In the next step both subgrid tensors are modelled

in a similar way as in Smagorinsky's model. The 
ru
ial simpli�
ation is that they

will be modelled with the same 
 = 
(t; x), i.e.,

� = 2
Æ

2

1

jD�ujD�u in T = 2
Æ

2

2

jD

~

�ujD

~

�u: (4)

Noti
e that in pla
e of 


2

from Smagorinsky's model we now used 
. The goal is

to allow for the possibility of negative values 
orresponding to ba
ks
atter, i.e., the

transfer of energy from subgrid s
ales to large s
ales. Substituting (4) into (2)

L = 2
Æ

2

2

jD

~

�ujD

~

�u�

�

^

2
Æ

2

1

jD�ujD�u

�
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(the �ltering � applies to the whole term in bra
kets) and assuming the additional

simpli�
ation

^

(
Æ

2

1

jD�ujD�u) = 


�

^

Æ

2

1

jD�ujD�u

�

(note that: 
 = 
(t; x) is allowed!) the following equation is obtained

L = 2
M with M = Æ

2

2

jD

~

�ujD

~

�u�

^

Æ

2

1

jD�ujD�u:

The above equation is in fa
t an overdetermined system of six equations for the


oeÆ
ient 
. Therefore, the error Q = jL� 2
M j

2

is minimized by the least squares

method, i.e.,

�Q

�


= 0, yielding


 =

1

2

L �M

M �M

; (5)

here L � M =

3

P

i;j=1

l

ij

m

ij

: This 
 is substituted into the Smagorinsky system (1).

Then v = �u and q = �p de�ne a solution to the model equations

v

t

+ div (v 
 v)� div (
jDvjDv)� ��v +rq =

�

f;

div v = 0;

v(0; x) = v

0

(x); v

j�


= 0:

For more details on modelling we refer to [GPMC91, Lil92, Jim95, Sag01, Joh03℄.

The above pro
edure 
an produ
e negative values of 
. This has been 
on
eived

as an advantage, allowing to des
ribe the ba
ks
atter. Nevertheless, the negative

values of 
 may lead to numeri
al instabilities. Also numeri
al tests show that 
 
an

vary strongly. In pra
ti
e, the nominator and denominator of 
, 
f. (5), are averaged

to 
ompute a smoother fun
tion (see [Sag01℄ for details).

We have analyzed the behaviour of the fun
tion 
 more pre
isely. To de�ne 
 at

those points, where the denominator be
omes zero, it must be possible to estimate

somehow the matrix L with help of the matrix M. We have found a 
ounterexample,

whi
h presents the situation, when M = 0 but L 6= 0 . This was a motivation to

some ne
essary modi�
ations of the turbulent term for the mathemati
al analysis.

Its properties are 
learly assembled in Se
tion 1.1.1. We will not propose any new

formula for 
, but only des
ribe in general the mathemati
al assumptions we put.

1.1 Filtering and properties of the turbulent term

In the following the subset of symmetri
 matri
es in R

n�n

will be denoted by

S

n

: Let D(
) be the spa
e of all C

1

-fun
tions with 
ompa
t support in 
. By

D(�1; T ;V) we mean the spa
e of all C

1

-fun
tions with 
ompa
t support from

(�1; T ) to V. We will also work in spa
es of divergen
e-free fun
tions. Then
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V = fu : u 2 D(
); div u = 0g, V is the 
losure of V with respe
t to the norm

kuk

V

=

�R




jruj

3

dx

�

1

3

; H is the 
losure of V with respe
t to the standard L

2

� norm.

To simplify the notation, fun
tion spa
es for ve
tor valued fun
tions are denoted in

the same way as fun
tion spa
es for s
alar fun
tions. Moreover, we use (throughout

the whole paper) Einstein's summation 
onvention, i.e., a

i

b

i

:=

P

3

i=1

a

i

b

i

.

1.1.1 Properties of the turbulent term

By the turbulent term we mean the operator


(y)jDvjDv

with the notation for nonlo
al (�ltered) variables

y = (~v;fvv;

f

Dv;

^

jDvjDv):

The properties of the operator 
 are the following:

(C1) 
 : R

3

� S

3

� S

3

� S

3

�! R is a 
ontinuous fun
tion with respe
t to y.

(C2) 
 satis�es the 
ondition

0 < � � 
(y) � � <1: (6)

For later use we assemble also the properties of the operator � 7! j�j� for � 2 S

3

.

There exists a s
alar fun
tion U 2 C

2

(S

3

); U(�) =

1

3

j�j

3

su
h that for all �; � 2 S

3

and i; j = 1; 2; 3

�U(�)

��

ij

= j�j�

ij

(7)

�

2

U(�)

��

mn

��

rs

�

mn

�

rs

� j�jj�j

2

: (8)

Moreover j�j� is strongly monotone, i.e. there exists a positive 
onstant K

1

su
h

that

(j�j�

ij

� j�j�

ij

) � (�

ij

� �

ij

) � K

1

j� � �j

3

(9)

for all �; � 2 S

3

. Obviously, the strong monotoni
ity implies the stri
t monotoni
ity,

i.e.,

(j�j�

ij

� j�j�

ij

) � (�

ij

� �

ij

) > 0 (10)

for all �; � 2 S

3

; � 6= �.
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1.1.2 Filtering te
hnique

In bounded domains the de�nition of the �ltering is rather deli
ate. Filters are non-

negative C

1

-fun
tions of 
ompa
t support 
ontained in 
. The support shrinks to

a one-point set near the boundary. Nevertheless, the mass of the �lter remains one;

thus the �lters tend to Dira
 Æ�distributions on the boundary. To be more pre
ise,

let ' 2 C

1

0

(
) with supp' � B

1

be non-negative su
h that

R




'(y)dy = 1; '(x) =

'(�x): Let Æ(x) = dist(x; �
): Then we de�ne the �lter '

Æ(x)

by

'

Æ(x)

(y) =

1

Æ(x)

3

'

�

y

Æ(x)

�

: (11)

For a des
ription of the appli
ation of �lters with nonuniform �lter width in

numeri
al analysis we refer to [Ven95℄.

In LES for time-dependent equations the �ltering is usually done only with re-

spe
t to spa
e variables. Nevertheless, the general de�nition of the �lter (
f. [Sag01,

p. 9℄) admits also spa
e-time �ltering. In that 
ase, also the problem of �ltering

near the initial value o

urs. We will solve it in a similar way to the �ltering near

the boundary. However, to �nd the solution in time � , we only want to 
onsider

times 0 � t � � . Therefore, let '

t

2 L

1

((0; T )) be a non-negative fun
tion with

R

T

0

'

t

(�)d� = 1: Moreover, let '

t

(�) have 
ompa
t support in [0; 1). The time- and

spa
e-dependent �lter '

Æ(t;x)

is de�ned by

'

Æ(t;x)

(�; y) = '

t

Æ(t)

(�)'

x

Æ(x)

(y); '

t

Æ(t)

(�) =

1

Æ(t)

'

t

�

�

Æ(t)

�

; Æ(t) = t

and '

x

Æ(x)


orresponds to '

Æ(x)

de�ned by (11). Given the spa
e-time 
ylinder Q

T

=

(0; T )� 
 we understand by �ltering the pro
ess

~v(t; x) =

Z

Q

T

v(�; y)'

Æ(t;x)

(t� �; x� y)d�dy:

RemarkOn a level of modelling, the 
ommutation of 
onvoluting and di�erentiation

is assumed. This property obviously holds for the �lters with 
onstant width. For

the 
ase of non-uniform �lters used here this may fail. On the wider study of the

so-
alled 
ommutation error we refer to [BGJ04, BJ04, DJL04℄. In the following the


ommutation error will be negle
ted.

1.2 Main results

Let 
 � R

3

be a bounded domain with a suÆ
iently smooth boundary �
. We are

looking for a velo
ity v : Q

T

�! R

3

and a pressure q : Q

T

�! R solving in 
 the

system

v

t

+ v � rv � div [
(y)jDvjDv℄� ��v +rq = f;

div v = 0;

v(0; x) = v

0

(x);

(12)
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with boundary 
onditions

v(t; x) = 0 on (0; T )� �
: (13)

As before, y = (~v;fvv;

f

Dv;

^

jDvjDv):

De�nition 1.1 Given f 2 L

3

2

(0; T ;V

0

) and v

0

2 H a fun
tion

v 2 L

3

(0; T ;V ) \ L

1

(0; T ;H)

is a weak solution to problem (12), (13) if the equation

Z




T

Z

0

(�v�

t

+ v � rv �+ 
(y)jDvjDv �D�+ �rv � r�) dtdx

=

Z




v

0

�dx+

T

Z

0

hf; �idt

is satis�ed for all � 2 D(�1; T ;V):

Theorem 1.1 (Existen
e) Let v

0

2 H, f 2 L

3

2

(0; T ;V

0

) and let the fun
tion 


satisfy 
onditions (C1)-(C2). Then, for all T > 0, there exists a weak solution in

the sense of De�nition 1.1 to problem (12), (13).

Moreover, we will show, that the sequen
e of approximate solutions 
onverges

strongly in L

3

(0; T ;V ). This result will be formulated in Theorem 3.1.

2 Proof of Theorem 1.1

Let y

n

= (

e

v

n

;

℄

v

n

v

n

;

g

Dv

n

;

^

jDv

n

jDv

n

) and let f!

r

g

1

r=1

be an orthonormal basis of H


onsisting of eigenve
tors of the Stokes operator. Let V

n

= spanf!

1

; :::; !

n

g. For

u 2 H de�ne a proje
tion

P

n

u =

n

X

r=1

(u; !

r

)!

r

: H ! V

n

Noti
e that there exists k = k(
) > 0 su
h that (
f. [MNR93, MNRR96℄)

kP

n

uk

W

2;2

(
)

� kkuk

W

2;2

(
)

:
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We de�ne v

n

(t) =

n

P

r=1

�

n

r

(t)!

r

; v

n

2 V

n

as a solution to

(

d

dt

v

n

; !

r

) + h
(y

n

)jDv

n

jDv

n

; D!

r

i+ �(rv

n

;r!

r

) + b(v

n

; v

n

; !

r

) = hf; !

r

i

v

n

(0) = P

n

v

0

(14)

for all 1 � r � n: We use the notation for a trilinear form

b(u; v; w) :=

Z




u

j

�v

i

�x

j

w

i

dx:

Noti
e that for divergen
e-free fun
tions: b(u; v; v) = 0.

Before establishing existen
e of solutions to the approximated problem let us

prove some a priori estimates. Multiplying equations (14) by �

n

r

and summing over

r we obtain

1

2

d

dt

kv

n

k

2

H

+

Z





(y

n

)jDv

n

j

3

dx + �krv

n

k

2

L

2

(
)

= hf; v

n

i:

Estimating the l.h.s. with help of Korn's inequality (
f. [Fu94℄) and (6) yields

Z





(y

n

)jDv

n

j

3

dx � �

Z




jDv

n

j

3

dx � k

�

kv

n

k

3

W

1;3

(
)

� k

�

kv

n

k

3

V

:

We estimate the r.h.s. with Young's inequality

jhf; v

n

ij � kfk

V

0

kv

n

k

V

�

k

�

2

kv

n

k

3

V

+

k

2

kfk

3

2

V

0

;

to obtain after integrating over (0; T )

kv

n

(s)k

2

H

+ k

�

s

Z

0

kv

n

k

3

V

dt+ �

s

Z

0

krv

n

k

2

L

2

(
)

dt � k

T

Z

0

kfk

3

2

V

0

dt+ kv

n

0

k

2

H

8s: (15)

This allows to 
on
lude that

v

n

is bounded in L

1

(0; T ;H) \ L

3

(0; T ;V ):

Let us now analyze v

n

t

. Due to equation (14) we obtain after estimating all the other

terms of the equation that

v

n

t

is bounded in L

3

2

(0; T ; (W

2;2

(
) \ V )

0

):
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For its proof take an arbitrary � 2 L

3

(0; T ;W

2;2

(
)\V ) with k�k

L

3

(0;T ;W

2;2

(
)\V )

� 1

and estimate (v

n

t

; �) : Noti
e that (v

n

t

; �) = (v

n

t

; P

n

�) : Hen
e, due to equation (14),

the four integrals below are �nite. First,

T

Z

0

Z




jv

n

� rv

n

P

n

�jdxdt =

T

Z

0

Z




jv

n


 v

n

� rP

n

�jdxdt

�

T

Z

0

kv

n

k

2

L

4

(
)

krP

n

�k

L

2

(
)

dt � k

T

Z

0

kv

n

k

2

V

krP

n

�k

W

1;2

(
)

dt

� k

T

Z

0

kv

n

k

2

V

kP

n

�k

W

2;2

(
)

dt � k

T

Z

0

kv

n

k

2

V

k�k

W

2;2

(
)

dt

kv

n

k

2

L

3

(0;T ;V )

k�k

L

3

(0;T ;W

2;2

(
))

� k;

and

T

Z

0

Z




jrv

n

� rP

n

�jdxdt �

T

Z

0

krv

n

k

L

3

(
)

krP

n

�k

L

3

2

(
)

dt

� k

T

Z

0

krv

n

k

L

3

(
)

kP

n

�k

W

2;2

(
)

dt � k

T

Z

0

krv

n

k

L

3

(
)

k�k

W

2;2

(
)

dt

� kkv

n

k

L

3

2

(0;T ;V )

k�k

L

3

(0;T ;W

2;2

(
))

� kkv

n

k

L

3

(0;T ;V )

� k:

Moreover,

T

Z

0

jhf; P

n

�ijdt �

T

Z

0

kfk

V

0

kP

n

�k

V

dt � k

T

Z

0

kfk

V

0

kP

n

�k

W

2;2

(
)

dt

� k

T

Z

0

kfk

V

0

k�k

W

2;2

(
)

dt � kkfk

L

3

2

(0;T ;V

0

)

k�k

L

3

(0;T ;W

2;2

(
))

� k;

and, �nally

T

Z

0

Z




�

�

�


(y

n

)jDv

n

jDv

n

� rP

n

�

�

�

�

dxdt � �

T

Z

0

Z




jDv

n

j

2

jrP

n

�j dxdt

� k

T

Z

0

Z




jrv

n

j

2

jrP

n

�j dxdt � k

T

Z

0

krv

n

k

2

L

3

(
)

krP

n

�k

L

3

(
)

dt

� kkv

n

k

2

L

3

(0;T ;V )

k�k

L

3

(0;T ;W

2;2

(
))

� kv

n

k

2

L

3

(0;T ;V )

� k:

Theorem 2.1 For given f 2 L

3

2

(0; T ;V

0

) and v

0

2 H equation (14) possesses an

absolutely 
ontinuous solution v

n

on (0; T ):

9



Proof

Let �

n

= (�

n

1

; :::; �

n

r

) and let n be �xed. We 
an rewrite the system (14) in the form

d

dt

�

n

r

(t) = F

r

(t; �

n

(t); y

n

)

�

n

r

(0) = (u

0

; !

r

)

(16)

where 1 � r � n; F (�) = (F

1

(�); :::; F

n

(�)) and

F

r

(t; �

n

(t); y

n

) = (f; !

r

)� �

n

i

(t)�

n

k

(t)

Z




!

j

i

�!

l

k

�x

j

!

l

r

dx� ��

n

r

(t)kr!

r

k

2

L

2

��

n

i

(t)

Z





(y

n

)j�

n

k

(t)D!

k

jD

lm

!

i

D

lm

!

r

dx

with

y

n

=

0

�

^

n

X

i=1

�

n

i

!

i

;

^

n

X

i=1

�

n

i

!

i

n

X

j=1

�

n

j

!

j

;

^

n

X

i=1

�

n

i

D!

i

;

^

j

n

X

i=1

�

n

i

D!

i

j

n

X

j=1

�

n

j

D!

j

1

A

:

Remembering that Æ(t) = t; let us rewrite all �ltered terms by 
hanging the variables

in the time-�ltering, i.e.,

g

�

n

i

!

i

(t; x) =

1

Z

0

'

t

(s)�

n

i

(t� ts)ds

Z




'

x

Æ(x)

(x� y)!

i

(y)dy;

^

�

n

i

!

i

�

n

j

!

j

(t; x) =

1

Z

0

'

t

(s)�

n

i

(t� ts)�

n

j

(t� ts)ds

Z




'

x

Æ(x)

(x� y)!

i

(y)!

j

(y)dy;

^

�

n

i

D!

i

(t; x) =

1

Z

0

'

t

(s)�

n

i

(t� ts)ds

Z




'

x

Æ(x)

(x� y)D!

i

(y)dy;

^

j�

n

i

D!

i

j�

n

j

D!

j

(t; x) =

=

1

Z

0

Z




'

t

(s)'

x

Æ(x)

(x� y)j�

n

i

(t� ts)D!

i

(y)j�

n

j

(t� ts)D!

j

(y)dyds:

To �nd the value of �

n

at time t = t

1

we need the information on the values of �

n

in all 0 � t � t

1

. Let �

t

2 C([0; 1℄;R

n

) be de�ned by �

t

(s) = �(t(1� s)); 0 � s � 1:

Taking into a

ount all �ltered terms it will be more 
onvenient to spe
ify the

dependen
e of F on �

n

as

F (t; �

n

(t); y

n

) =: F(t; �

n

(t); �

n

t

):

10



Therefore let des
ribe the dependen
e on �ltered terms with help of some fun
tion

C, namely C(�

n

t

) = 
(y

n

) and then

F

r

(t; �

n

(t); �

n

t

) = (f; !

r

)� �

n

i

(t)�

n

k

(t)

Z




!

j

i

�!

l

k

�x

j

!

l

r

dx� ��

n

r

(t)kr!

r

k

2

L

2

��

n

i

(t)

Z




C(�

n

t

)j�

n

k

(t)D!

k

jD

lm

!

i

D

lm

!

r

dx:

First step: t

0

= 0.

Consider �rst lo
al existen
e of solutions. Let there be given t

0

and a su
h that

t 2 (t

0

; t

0

+ a): The 
onstant a = minf

1

(2K

1

+1)

3

;

1

2(K

2

+K

3

+K

4

)

g; where the 
onstants

K

i

will be explained in the following estimates. Noti
e that the K

i

's depend on n

and on the initial data �

n

(t

0

) and are independent of t. Let also j�

n

(t)��

n

(t

0

)j � 1;

where for t

0

= 0 we de�ned �

n

(t

0

) in (16). Observe for ea
h 1 � r � n the following

estimates:

t

0

+a

Z

t

0

j(f; !

r

)jd� �

0

�

t

0

+a

Z

t

0

j(f; !

r

)j

3

2

d�

1

A

2

3

0

�

t

0

+a

Z

t

0

1 d�

1

A

1

3

� kfk

L

3

2

(0;T ;V

0

)

k!

r

k

V

� a

1

3

= K

1

� a

1

3

(17)

and

t

0

+a

Z

t

0

�

�

�

�

n

i

(�)�

n

k

(�)

Z




!

j

i

�!

l

k

�x

j

!

l

r

dx

�

�

�

d� � max

1�i�n

kr!

i

k

3

L

2

t

0

+a

Z

t

0

j�

n

j

2

d�

� (j�

n

(t

0

)j+ 1)

2

max

1�i�n

kr!

i

k

3

L

2

� a = K

2

� a

(18)

and

�

t

0

+a

Z

t

0

�

�

�

�

n

(�)kr!

r

k

2

L

2

�

�

�

d� � �(j�

n

(t

0

)j+ 1)kr!

r

k

2

L

2

t

0

+a

Z

t

0

1 d� = K

3

� a: (19)

Moreover, sin
e C is bounded from above by �,

t

0

+a

Z

t

0

�

�

�

�

n

i

(�)

Z




C(�

n

�

)j�

n

k

(�)D!

k

jD

lm

!

i

D

lm

!

r

dx

�

�

�

d�

� �

t

0

+a

Z

t

0

j�

n

(t)j

2

Z




jD!

r

j

3

dx d� � �(j�

n

(t

0

)j+ 1)

2

kD!

r

k

3

L

3

t

0

+a

Z

t

0

1 d�

� � (j�

n

(t

0

)j+ 1)

2

kD!

r

k

3

L

3

� a = K

4

� a:

(20)

Thus we 
an 
on
lude that

t

0

+a

Z

t

0

jF(�; �

n

(�); �

n

�

)jd� � 1: (21)

11



We repla
e (16) by the integral equation

�

n

(t) = �

n

(t

0

) +

Z

t

t

0

F(�; �

n

(�); �

n

�

)d�

and de�ne the operator S by

S(�

n

) = �

n

(t

0

) +

Z

t

t

0

F(�; �

n

(�); �

n

�

)d�:

Then (16) is equivalent to the �xed point problem

�

n

= S(�

n

); �

n

2 B � X

where

X = C([t

0

; t

0

+ a℄); k�k

X

= max

t2[t

0

;t

0

+a℄

j�(t)j;

B = f�

n

2 X : k�

n

� �

n

(t

0

)k

X

� 1g:

First, see that S(�

n

) � B for �

n

2 B, namely

jS(�

n

)� �

n

(t

0

)j �

Z

t

0

+a

t

0

jF(�; �

n

(�); �

n

�

)jd�

(21)

� 1:

Aiming to prove 
ompa
tness of the operator S, we show that S(�

n

) is uniformly

bounded on B, i.e. for all t 2 [t

0

; t

0

+ a℄ and �

n

2 B

jS(�

n

(t))j � j�

n

(t

0

)j+

Z

t

t

0

jF(�; �

n

(�); �

n

�

)jd� � j�

n

(t

0

)j+ 1:

Moreover, S(B) is equi
ontinuous, namely, with a slight generalization of estimates

(17)-(20) we 
an show that for all t

1

; t

2

2 [t

0

; t

0

+ a℄ and �

n

2 B if jt

1

� t

2

j �

min

�

�

"

2K

1

+1

�

3

;

"

2(K

2

+K

3

+K

4

)

�

; then

jS(�

n

(t

1

))� S(�

n

(t

2

))j =

�

�

�

Z

t

1

t

0

F(�; �

n

(�); �

n

�

)d� �

Z

t

2

t

0

F(�; �

n

(�); �

n

�

)d�

�

�

�

�

�

�

�

Z

t

2

t

1

F(�; �

n

(�); �

n

�

)d�

�

�

�

� K

1

jt

1

� t

2

j

1

3

+ (K

2

+K

3

+K

4

)jt

1

� t

2

j � ":

(22)

Hen
e by the As
oli-Arzel�a Theorem the set S(B) is relatively 
ompa
t in X. To


on
lude the 
ompa
tness of the operator S we only have to noti
e that S is 
on-

tinuous. Therefore let �

n

j

! �

n

uniformly in [t

0

; t

0

+ a℄ as j !1. Noti
e, sin
e C is

a 
ontinuous fun
tion of �

n

t

, that F is also 
ontinuous w.r.t. �

n

and �

n

t

. Hen
e we


an 
on
lude with help of the dominated 
onvergen
e theorem that

S(�

n

j

(t))� S(�

n

(t)) =

t

Z

t

0

[F(�; �

n

j

(�); �

n

�;j

)� F(�; �

n

(�); �

n

�

)℄ d�

12




onverges poinwise to 0. Moreover, (22) provides the uniform 
onvergen
e, thus S

is 
ontinuous. Finally, as B is a nonempty, 
losed, bounded and 
onvex subset of

X and the operator S is 
ompa
t, due to the S
hauder Fixed Point Theorem there

exists a solution to the equation �

n

= S(�

n

) for t 2 [t

0

; t

0

+ a℄.

Se
ond step. Global existen
e of solutions.

To obtain the global existen
e of solutions we will repeat the above pro
edure in

further time intervals. Noti
e that the 
onstru
tion of solutions in the interval

(t

0

; t

0

+ a) for t

0

6= 0 uses also the values of �

n

from the interval (0; t

0

). These

quantities do not in
uen
e the estimates (17)- (19). They only appear in estimate

(20) as arguments of the fun
tion C. But sin
e C is uniformly bounded by �, the

proof follows the same lines.

Due to orthonormality of f!

r

g in H the a priori estimates, 
f. (15), assure

that �

n

(t) is uniformly bounded. Thus also the initial data for further existen
e

problems are bounded implying that the value of the 
onstants K

i

will not in
rease;


onsequently, the length of existen
e intervals a will not de
rease. Hen
e the proof


an be done in a �nite number of steps.

The equation (16) yields that for t 2 (0; T ) the solution is absolutely 
ontinuous.

Using the information on the boundedness of the sequen
e (v

n

) we 
an extra
t

a subsequen
e, still denoted by v

n

, su
h that

v

n

* v in L

3

(0; T ;V ); (23)

v

n

�

* v in L

1

(0; T ;H); (24)

v

n

t

* v

t

in L

3

2

(0; T ; (W

2;2

(
) \ V )

0

): (25)

Sin
e V �� H � (W

2;2

(
) \ V )

0

, due to (23) and (25), using Aubin-Lions Lemma

(
f. [MNRR96℄) we 
on
lude that

v

n

�! v in L

3

(0; T ;H) and a:e: in Q

T

: (26)

This strong 
onvergen
e is needed to show that

T

Z

0

b(v

n

; v

n

; �)dt �!

T

Z

0

b(v; v; �)dt:

It is obtained as follows:

T

Z

0

Z




(v

n

rv

n

� vrv)�dxdt

=

T

Z

0

Z




(v

n

� v)rv

n

�dxdt+

T

Z

0

Z




v(rv

n

�rv)�dxdt:

13



A

ording to H�older's inequality the �rst integral 
an be estimated by

�

�

�

T

Z

0

Z




(v

n

� v)rv

n

�dxdt

�

�

�

�

T

Z

0

kv

n

� vk

L

2

(
)

krv

n

k

L

3

(
)

k�k

L

6

(
)

dt

� kv

n

� vk

L

3

(0;T ;H)

kv

n

k

L

3

(0;T ;V )

k�k

L

3

(0;T ;L

6

(
))

:

And due to the strong 
onvergen
e (26) this integral 
onverges to zero. The 
onver-

gen
e of the se
ond integral to zero is a
hieved by the weak 
onvergen
e of gradients.

Finally, due to (23), there exist

�

A; � 2 L

3

2

(Q

T

) su
h that


(y

n

)jDv

n

jDv

n

*

�

A in L

3

2

(Q

T

) (27)

and

jDv

n

jDv

n

* � in L

3

2

(Q

T

): (28)

Hen
e we 
an state the limit identity

T

Z

0

Z




�

v

t

� �+ v � rv � �+

�

A �D�+ �rv � r�

�

dxdt =

T

Z

0

hf; �idt (29)

for all � 2 D(�1; T ;V):

For later use we will show that the strong energy equality holds. To this aim

we need to show that (29) holds for all � 2 L

3

(0; T ;V ): We observe the following

estimates

T

Z

0

Z




jv � rv � �jdxdt �

T

Z

0

kvk

L

3

(
)

krvk

L

3

(
)

k�k

L

3

(
)

dt � k

T

Z

0

kvk

2

V

k�k

V

dt

� kkvk

2

L

3

(0;T ;V )

k�k

L

3

(0;T ;V )

(30)

and

T

Z

0

Z




j

�

A �D�jdxdt �

T

Z

0

k

�

Ak

L

3

2

(
)

kD�k

L

3

(
)

dt � kk

�

Ak

L

3

2

(Q

T

)

k�k

L

3

(0;T ;V )

: (31)

Moreover

T

Z

0

Z




jrv � r�jdxdt �

T

Z

0

krvk

L

3

2

(
)

kr�k

L

3

(
)

dt � k

Z

T

0

kvk

V

k�k

V

dt

� kkrvk

L

3

(0;T ;V )

k�k

L

3

(0;T ;V )

(32)

and

T

Z

0

jhf; �ijdt �

T

Z

0

kfk

V

0

k�k

V

dt � kfk

L

3

2

(0;T ;V

0

)

k�k

L

3

(0;T ;V )

: (33)
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Colle
ting (30)-(33) allows to 
on
lude that

F(�) �

T

Z

0

0

�

b(v; v; �) +

Z




�

A �D�dx+ �(rv;r�)� hf; �i

1

A

dt (34)

is a linear bounded fun
tional on L

3

(0; T ;V ): From (29) it holds

F(�) =

T

Z

0

Z




v

t

�dxdt: (35)

Thus v

t

belongs to L

3

2

(0; T ;V

0

) = (L

3

(0; T ;V ))

0

; whi
h provides that (29) holds for

all � 2 L

3

(0; T ;V ): This allows to test (29) against the solution v to obtain

T

Z

0

Z




�

v

t

� v +

�

A �Dv + �rv � rv

�

dxdt =

T

Z

0

hf; vidt: (36)

Finally due to Proposition A.9, sin
e v 2 L

3

(0; T ;V ) and v

t

2 L

3

2

(0; T ;V

0

) then for

all 0 � s � t � T it holds

t

Z

s

hv

t

(�); v(�)id� =

1

2

kv(t)k

2

H

�

1

2

kv(s)k

2

H

(37)

and hen
e

1

2

kv(T )k

2

H

+

T

Z

0

Z




�

A �Dvdxd� + �

T

Z

0

krvk

2

H

d� =

1

2

kv

0

k

2

H

+

T

Z

0

hf; vid�: (38)

Next, we will formulate a lemma 
on
erning 
onvergen
e of �ltered terms.

Lemma 2.2 Let the sequen
e (v

n

)

n2N


onverge weakly to v in L

3

(0; T ;V ) and let

� 2 L

3

2

(Q

T

) be as in (28). Then, for n ! 1, the following sequen
es 
onverge

almost everywhere in Q

T

:

e

v

n

�! ev;

g

v

n

v

n

�! fvv;

g

Dv

n

�!

f

Dv:

We 
an extra
t a further subsequen
e of (v

n

) su
h that

^

jDv

n

jDv

n

�! e� a:e: in Q

T

:

15



Proof

Sin
e v

n

is bounded in L

3

(0; T ;V ), then also, for a subsequen
e, Dv

n

* Dv in

L

3

(Q

T

), and v

n

* v

n

in L

3

(Q

T

); hen
e

Z

Q

T

v

n

�dyd� !

Z

Q

T

v�dyd� 8� 2 L

3

2

(Q

T

):

We 
hoose as a test fun
tion �(�; y) = '

Æ(t;x)

(t��; x�y) with parameters (t; x) 2 Q

T

,

where '

Æ(t;x)

is a �lter. The �lters are obviously in L

3

2

(Q

T

) ex
ept for the points

x 2 �
 or t = 0. However, sin
e Q

T

is open,

Z

Q

T

v

n

(�; y)'(t� �; x� y)dyd� !

Z

Q

T

v(�; y)'(t� �; x� y)dyd� for a: a: (t; x) 2 Q

T

;

whi
h is equivalent to

e

v

n

! ~v a: e: in Q

T

: (39)

In the same way from the information on the symmetri
 part of the gradients we


on
lude that

g

Dv

n

!

f

Dv a: e: in Q

T

: (40)

To analyze the limit of the sequen
e

℄

v

n

v

n

we dedu
e from the strong 
onvergen
e

of the sequen
e v

n

in L

2

(Q

T

) also the strong 
onvergen
e of v

n

v

n

to vv in L

1

(Q

T

).

Of 
ourse the strong 
onvergen
e implies the weak 
onvergen
e. Thus, following

analogous arguments as above, we get that

℄

v

n

v

n

!fvv a: e: in Q

T

: (41)

The 
onvergen
e (28) implies for the �ltered terms

^

jDv

n

jDv

n

! ~� a: e: in Q

T

whi
h 
ompletes the proof of Lemma 2.2.

For the passage to the limit in the turbulent term we apply Lemma A.1 to the

operator

A(y; z) = 
(y)jzjz : (R

3

� S

3

� S

3

� S

3

)� S

3

! S

3

:

Again let

y = (ev;fvv;

f

Dv;

^

jDvjDv); y

n

= (

e

v

n

;

℄

v

n

v

n

;

g

Dv

n

;

^

jDv

n

jDv

n

); z

n

= Dv

n

:

The fun
tion A does not depend dire
tly on (t; x) and is 
ontinuous w.r.t. all other

variables, whi
h provides that the assumption (i) of Lemma A.1 is ful�lled. Next:
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(ii) For all s 2 R

21

and �

1

; �

2

2 S

3

; �

1

6= �

2

; by (10)

(
(s)j�

1

j�

1

� 
(s)j�

2

j�

2

) � (�

1

� �

2

) = 
(s) (j�

1

j�

1

� j�

2

j�

2

) � (�

1

� �

2

) > 0:

(iii) From the assumptions (C1)� (C2) it holds


(s)j�j� � � � �j�j

3

and

�

�

�


(s)j�j�

�

�

�

� �j�j

2

:

The assumption (iv) holds by Lemma 2.2, with �y = (ev;fvv;

f

Dv; e�), namely

y

n

! �y a: e: in Q

T

:

Due to (23) and (27) the assumption (v) is satis�ed. We only have to 
he
k the

assumption (vi). To this aim we will prove the following 
laim

Claim

v

n

(t) * v(t) in H for all t 2 [0; T ℄: (42)

Proof of the 
laim

From (26) it holds

v

n

(t)! v(t) in H for a:a: t 2 [0; T ℄; (43)

in parti
ular,

v

n

(t)* v(t) in H for all t 2 [0; T ℄ n E; (44)

where E is a set of measure zero. Let us �rst show that

v

n

(t)* v(t) in (W

2;2

(
) \ V )

0

for all t 2 [0; T ℄: (45)

Thus 
onsider t 2 E. For ea
h su
h t 
hoose (t

k

) � (0; T ) n E su
h that t

k

! t as

k!1. Then for all � 2 W

2;2

(
) \ V

jhv

n

(t)� v(t); �i

(W

2;2

\V )

0

;W

2;2

\V

j � jhv

n

(t)� v

n

(t

k

); �i

(W

2;2

\V )

0

;W

2;2

\V

j

+jhv

n

(t

k

)� v(t

k

); �i

(W

2;2

\V )

0

;W

2;2

\V

j+ jhv(t

k

)� v(t); �i

(W

2;2

\V )

0

;W

2;2

\V

j

= I

1

+ I

2

+ I

3

:

(46)

Consider �rst the term I

1

. Sin
e v

n

is bounded in L

3

(0; T ;V ) and v

n

t

is bounded in

L

3

2

(0; T ; (W

2;2

(
)\V )

0

) thus v

n

is bounded inW

1;

3

2

(0; T ; (W

2;2

(
)\V )

0

). A

ording

to Morrey's Theorem (
f. [Eva98, p. 266℄) W

1;

3

2

� C

0;

1

3

; thus

kv

n

(t

1

)� v

n

(t

2

)k

(W

2;2

\V )

0

� mjt

1

� t

2

j

1

3

for all t

1

; t

2

2 [0; T ℄:
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This assures that (v

n

) is an equi
ontinuous family of fun
tions. Thus

I

1

� mjt� t

k

j

1

3

:

Moreover (44) with the embedding L

2

(
) � (W

2;2

(
)\ V )

0

implies that for n!1

and all t

k

2 (0; T ) n E

v

n

(t

k

) * v(t

k

) in (W

2;2

(
) \ V )

0

and hen
e lim

n!1

I

2

= 0. Thus letting n!1 in (46) yields

lim

n!1

jhv

n

(t)�v(t); �i

(W

2;2

\V )

0

;W

2;2

\V

j � mjt� t

k

j

1

3

+ jhv(t

k

)�v(t); �i

(W

2;2

\V )

0

;W

2;2

\V

j:

A

ording to Proposition A.9 we have v 2 C([0; T ℄;H) � C([0; T ℄; (W

2;2

(
) \ V )

0

)

and hen
e v is weakly 
ontinuous with values in (W

2;2

(
) \ V )

0

. Therefore letting

k!1 allows to 
on
lude that lim

k!1

I

3

= 0 and

lim

n!1

hv

n

(t)� v(t); �i

(W

2;2

\V )

0

;W

2;2

\V

= 0 (47)

whi
h proves (45).

Sin
e the embedding (W

2;2

(
) \ V ) � H is dense and (v

n

) is bounded in

L

1

(0; T ;H); we 
on
lude that

(v

n

(t); �)! (v(t); �) for all � 2 H; t 2 [0; T ℄;

hen
e (42) is proved.

From (14) it holds

Z

Q

T


(y

n

)jDv

n

jDv

n

�Dv

n

dxdt =

1

2

kv

n

0

k

2

H

�

1

2

kv

n

(T )k

2

H

� �krv

n

k

2

L

2

(Q

T

)

+

T

Z

0

hf; v

n

idt:

Letting n ! 1 and using the lower semi
ontinuity of the norm w.r.t. the weak


onvergen
e (42) we obtain

lim sup

n!1

Z

Q

T


(y

n

)jDv

n

jDv

n

�Dv

n

dxdt

�

1

2

kv

0

k

2

H

�

1

2

kv(T )k

2

H

� �krvk

2

L

2

(Q

T

)

+

T

Z

0

hf; vidt:

Inserting the energy equality (38) into the r.h.s. yields

lim sup

n!1

Z

Q

T


(y

n

)jDv

n

jDv

n

�Dv

n

dxdt �

Z

Q

T

�

A �Dv dxdt;
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whi
h is exa
tly the desired inequality for assumption (vi). Now Lemma A.1 implies

that Dv

n

! Dv in measure, and thus for a subsequen
e

Dv

n

! Dv a: e: in Q

T

:

Hen
e jDv

n

jDv

n

! jDvjDv a.e. in Q

T

whi
h together with (28) implies that � =

jDvjDv a.e. in Q

T

. Thus

�y = y and y

n

! y a.e. in Q

T

:

Con
erning the turbulent term we 
on
lude that


(y

n

)jDv

n

jDv

n

! 
(y)jDvjDv a.e. in Q

T

:

As 
(y

n

)jDv

n

jDv

n

is bounded in L

3

2

(Q

T

) we apply Lemma A.8 and get that


(y

n

)jDv

n

jDv

n

* 
(y)jDvjDv in L

3

2

(Q

T

):

This 
onvergen
e 
ompletes the proof of the theorem.

3 Compa
tness of solutions

In this short se
tion we will observe additional property of solutions, whi
h is for-

mulated in the forth
oming theorem.

Theorem 3.1 Let all the assuptions of Theorem 1.1 be satis�ed and let (v

n

) be a

sequen
e of solutions to approximate problem (14) and v the solution to (12). Then

v

n

! v in L

3

(0; T ;V ): (48)

Proof

Sin
e in the proof of Theorem 1.1 we showed that all the assumptions of Lemma

A.1 are satis�ed, then we 
an also apply Lemma A.2, whi
h proves (48).

Appendix

A Main te
hni
al lemmas

The 
urrent se
tion 
ontains two lemmas, whi
h re
all the result shown in [G

�

S05℄.

Nevertheless, for 
ompletness of the paper, we provide also their proofs.

In the following C

0

(R

d

) denotes the 
losure of the spa
e of 
ontinuous fun
tions

on R

d

with 
ompa
t support with respe
t to the k � k

1

-norm. Its dual spa
e 
an be

identi�ed with M(R

d

); the spa
e of signed Radon measures with �nite mass. The

related duality pairing is given by

h�; fi =

Z

R

d

f(�) d�(�):
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Lemma A.1 Let 
 � R

d

0

be a measurable set of �nite measure and let A(x; s; �) :


� R

m

� R

d

�! R

d

be an operator satisfying the following 
onditions:

(i) A(x; s; �) is a Carath�eodory fun
tion (measurable w.r.t. x and 
ontinuous

w.r.t. (s; �)).

(ii) For all x 2 
; s 2 R

m

and �

1

; �

2

2 R

d

; �

1

6= �

2

;

[A(x; s; �

1

)� A(x; s; �

2

)℄ � [�

1

� �

2

℄ > 0:

(iii) There exist positive 
onstants 


1

; 


2

su
h that for p > 1 it holds

A(x; s; �) � � � 


1

j�j

p

and jA(x; s; �)j � 


2

j�j

p�1

:

Let y

n

: 
! R

m

and z

n

: 
! R

d

be sequen
es of measurable fun
tions su
h that

(iv) y

n

! �y a.e. in 
;

(v) z

n

* z in L

p

(
) and A(x; y

n

; z

n

)*

�

A in L

p

p�1

(
);

(vi)

lim sup

n!1

Z




A(x; y

n

; z

n

) � z

n

dx �

Z




�

A � z dx:

Then there exists a subsequen
e of (z

n

) su
h that

z

n

! z in measure:

Proof

We apply Lemma A.5 to the fun
tion A(x; y

n

; z

n

) �z

n

. The 
oer
ivity 
ondition from

assumption (iii) of the theorem assures that the negative part of this fun
tion is

equal to zero; thus it is 
ertainly weakly relatively 
ompa
t in L

1

(
): This allows to


on
lude that

lim sup

n!1

Z




A(x; y

n

; z

n

) � z

n

dx �

Z




Z

R

m

�R

d

A(x; s; �) � � d�

x

(s; �)dx (49)

where �

x

is the Young measure generated by the sequen
e (y

n

; z

n

). However a

ord-

ing to Lemma A.6, we are able to 
hara
terize this Young measure more pre
isely.

The sequen
e y

n


onverges to �y a.e., and a subsequen
e of z

n

generates a Young mea-

sure �

x

. Then the Young measure �

x

generated by this pair satis�es �

x

= Æ

�y(x)


 �

x

.

Therefore, due to Fubini's theorem

Z




Z

R

m

�R

d

A(x; s; �) � � d�

x

(s; �)dx =

Z




Z

R

d

A(x; �y(x); �) � � d�

x

(�)dx: (50)
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In the same way we obtain

Z




Z

R

m

�R

d

A(x; s; �) d�

x

(s; �)dx =

Z




Z

R

d

A(x; �y(x); �) d�

x

(�)dx: (51)

Sin
e the sequen
e jA(x; y

n

; z

n

)j is bounded in L

p

p�1

(
), it is weakly relatively 
om-

pa
t in L

1

(
). Thus we 
an use Lemma A.5 again, whi
h allows to 
on
lude that the

weak limit

�

A(x) =

R

R

d

A(x; s; �)d�

x

(s; �). From Corollary A.4, taking q = 1; g = id;

we 
an 
on
lude that z

n

* z =

R

R

d

�d�

x

(�) in L

p

(
). Then the assumption (vi) 
an

be formulated as follows

lim sup

n!1

A(x; y

n

; z

n

)z

n

dx �

Z




Z

R

d

A(x; �y(x); �)d�

x

(�)

Z

R

d

�

0

d�

x

(�

0

)dx: (52)

Thus, from (49), (50) and (52), the following inequality holds

Z




Z

R

d

A(x; �y(x); �) d�

x

(�) �

Z

R

d

�

0

d�

x

(�

0

) dx �

Z




Z

R

d

A(x; �y(x); �) � � d�

x

(�) dx: (53)

The above inequality will be used soon. Next, we 
an dedu
e from the monotoni
ity

of A w.r.t. the last variable that

Z




Z

R

d

h(x; �)d�

x

(�)dx � 0; (54)

where h is de�ned by

h(x; �) :=

�

A(x; �y(x); �)� A(x; �y(x);

R

R

d

�

0

d�

x

(�

0

))

�

�

�

� �

R

R

d

�

0

d�

x

(�

0

)

�

:

Sin
e the sequen
e (z

n

) is bounded in L

p

, then the tightness 
ondition is satis�ed

and k�

x

k

M(R

d

)

= 1: Simple 
al
ulations imply that

Z




Z

R

d

h(x; �)d�

x

(�)dx

=

Z




Z

R

d

A(x; �y(x); �) � �d�

x

(�)dx�

Z




Z

R

d

A(x; �y(x); �)d�

x

(�) �

Z

R

d

�

0

d�

x

(�

0

)dx;

whi
h, together with (53), assures that

Z




Z

R

d

h(x; �)d�

x

(�)dx � 0: (55)
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Then, (54) and (55) imply that

R

R

d

h(x; �)d�

x

(�) = 0 for a.a. x 2 
. Moreover, sin
e

�

x

� 0 is a probability measure and A(x; s; �) is strongly monotone, we 
on
lude that

suppf�

x

g

a:e:

=

�

Z

R

d

�

0

d�

x

(�

0

)

�

;

where the right-hand side is equal to z(x), whi
h is the weak limit of the sequen
e

(z

n

). Finally we 
on
lude that �

x

= Æ

z(x)

a.e.. A dire
t appli
ation of Lemma A.7

implies that

z

n

! z in measure:

Proposition A.2 With the assumptions of Lemma A.1 there exists a subsequen
e

of (z

n

) su
h that

z

n

! z in L

p

(
):

Proof

Sin
e z

n


onverges in measure, then at least for a subsequen
e z

n

! z a.e.. Using

the information that �

x

= Æ

z(x)

together with Lemma A.5 and assumption (vi) yields

lim sup

n!1

Z




A(x; y

n

; z

n

) � z

n

dx �

Z




A(x; �y; z)zdx � lim inf

n!1

Z




A(x; y

n

; z

n

) � z

n

dx:

Hen
e the limit exists and

lim

n!1

Z




A(x; y

n

; z

n

) � z

n

dx =

Z




A(x; �y; z)z dx:

We 
an set a

n

= A(x; y

n

; z

n

) � z

n

, a = A(x; �y; z)z and 
laim that

a

n

� 0; a 2 L

1

(
);

Z




a

n

dx!

Z




a dx; a

n

! a a:e: in 
:

Noti
ing that

Z




ja

n

� aj dx =

Z




(a

n

� a) dx+ 2

Z

fx:a

n

�ag

(a� a

n

) dx

we 
on
lude by Lebesgue's Dominated Convergen
e Theorem that

A(x; y

n

; z

n

)z

n

! A(x; �y; z)z in L

1

(
):

Thus, by Vitali's Theorem, the sequen
e A(x; y

n

; z

n

)z

n

is uniformly integrable. Due

to the 
oer
ivity 
ondition also the sequen
e jz

n

j

p

is uniformly integrable. Using

again Vitali's Theorem yields that z

n

! z in L

p

(
); whi
h 
ompletes the proof.
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Some fa
ts 
on
erning Young measures

For the proof of fundamental theorem on Young measures we refer the reader to

[Bal89, M�u99℄.

Theorem A.3 (Fundamental theorem on Young measures) Let 
 � R

d

be

a measurable set of �nite measure and let z

j

: 
! R

d

be a sequen
e of measurable

fun
tions. Then there exists a subsequen
e z

j

k

and a weakly* measurable map � :


!M(R

d

) su
h that the following holds:

(i) �

x

� 0; k�

x

k

M(R

d

)

=

R

R

d

d�

x

� 1 for a:a: x 2 
:

(ii) For all g 2 C

0

(R

d

)

g(z

j

k

)

�

* �g in L

1

(
)

where

�g(x) = h�

x

; gi:

(iii) Let K � R

d

be 
ompa
t. Then

supp �

x

� K if dist(z

j

k

; K)! 0 in measure.

(iv) Additionally k�

x

k

M(R

d

)

= 1 for a.a. x 2 
 if and only if the 'tightness 
ondi-

tion' is satis�ed, i.e.

lim

M!1

sup

k

jfjz

j

k

j � Mgj = 0:

(v) If the tightness 
ondition is satis�ed and moreover if A � 
 is measurable,

g 2 C(R

d

) and g(z

j

k

) is relatively weakly 
ompa
t in L

1

(A); then

g(z

j

k

) * �g in L

1

(A); �g(x) = h�

x

; gi:

(vi) If the tightness 
ondition is satis�ed, then in (iii) one 
an repla
e 'if ' by 'if

and only if '.

Remark The map � : 
 ! M(R

d

) is 
alled the Young measure generated by the

sequen
e z

j

k

. Every (weakly* measurable map) � : 
!M(R

d

) that satis�es (i) is

generated by some sequen
e z

k

.

Remark If, for some s > 0 and all j 2 N holds

R




jz

j

j

s

� k then the tightness


ondition is satis�ed.

The straightforward 
onsequen
e of the assertion (v) is the following 
orollary.
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Corollary A.4 [M�u99, Remark 5, p. 33℄ Let 
; z

j

k

; � be as in Theorem A.3, with

(z

j

) bounded in L

p

(
). Then for all g 2 C(R

d

) satisfying the growth 
ondition

jg(�)j � k(1 + j�j)

q

8� 2 R

d

for some 0 < q < p

it holds

g(z

j

k

) * �g in L

p

q

(
);

�g(x)

a:e

= h�

x

; gi:

Lemma A.5 [M�u99, Cor. 3.3℄ Suppose that the sequen
e of maps z

j

: 
 ! R

d

generates the Young measure �. Let f : 
�R

d

! R be a Carath�eodory fun
tion and

let us also assume that the negative part f

�

(x; z

j

(x)) is weakly relatively 
ompa
t in

L

1

(
). Then

lim inf

j!1

Z




f(x; z

j

(x))dx �

Z




Z

R

d

f(x; �)d�

x

(�):

If, in addition, the sequen
e of fun
tions x 7! jf j(x; z

j

(x)) is weakly relatively 
om-

pa
t in L

1

(
); then

f(�; z

j

(�))*

Z

R

d

f(x; �)d�

x

(�) in L

1

(
):

Remark In an obvious way the se
ond part of the above theorem 
an be extended

to ve
tor valued fun
tions f .

Lemma A.6 [M�u99, Cor. 3.4℄ Let u

j

: 
 ! R

d

; v

j

: 
 ! R

d

0

be measurable

and suppose that u

j

! u a.e. while v

j

generates the Young measure �. Then the

sequen
e of pairs (u

j

; v

j

) : 
! R

d+d

0

generates the Young measure x 7! Æ

u(x)


 �

x

.

Lemma A.7 [M�u99, Cor. 3.2℄ Suppose that a sequen
e z

j

of measurable fun
tions

from 
 to R

d

generates the Young measure � : 
!M(R

d

): Then

z

j

! z in measure if and only if �

x

= Æ

z(x)

a:e::

Other preliminaries

Lemma A.8 Let 
 be an open bounded subset of R

d

, let g

n

; g be the fun
tions from

L

p

(
), with 1 < p <1, su
h that kg

n

k

L

p

(
)

� 
; g

n

! g a.e. in 
. Then

g

n

* g in L

p

(
):
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For the proof see [Lio69, Lemma 1.3, p. 12℄. The assertion of Lemma A.8 is also

true if the sequen
e (g

n

) 
onverges lo
ally in measure, see [Els02, p. 264℄.

Before stating the next proposition (
f. [Zei90a, Prop. 23.23, p. 422℄) we introdu
e

the notion of an evolution triple 'V � H � V

0

' as follows: V is a real, separable,

and re
exive Bana
h spa
e, H is a real, separable Hilbert spa
e with the dense and


ontinuous embedding V � H: Then set W

1

p

(0; T ;V;H) = fu 2 L

p

(0; T ;V ) : u

t

2

L

q

(0; T ;V

0

)g, where 1 < p < 1; p

�1

+ q

�1

= 1: By (�; �)

H

we mean the s
alar

produ
t in H and by h�; �i

V

the dual pairing between V and V

0

.

Proposition A.9 Let 'V � H � V

0

' be an evolution triple, and let 1 < p <

1; p

�1

+ q

�1

= 1; 0 < T <1: Then the following hold:

(i) The set of all fun
tions u 2 L

p

(0; T ;V ) that have generalized derivative u

t

2

L

q

(0; T ;V

0

) forms a real Bana
h spa
e with the norm

kuk

W

1

p

= kuk

L

p

(0;T ;V )

+ ku

t

k

L

q

(0;T ;V

0

)

:

(ii) The embedding

W

1

p

(0; T ;V;H) � C([0; T ℄;H)

is 
ontinuous.

(iii) For all u; v 2 W

1

p

(0; T ;V;H) and arbitrary t; s, 0 � s � t � T; the following

generalized integration by parts formula holds:

(u(t); v(t))

H

� (u(s); v(s))

H

=

t

Z

s

hu

t

(�); v(�)i

V

+ hv

t

(�); u(�)i

V

d�: (56)
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