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Abstract. We describe a construction of the Lie group structure on the diffeomorphism group
Diff(R™), modelled on the space D(R™,R™) of R™-valued test functions on R™, in John Milnor’s
setting of infinite-dimensional Lie groups. New tools are introduced to simplify this task.

1. Introduction

It is well-known that the diffeomorphism group Diff(K) of a compact smooth man-
ifold K can be made a Fréchet-Lie group, modelled on the Fréchet space of smooth
vector fields on K. Since all popular basic notions of “smooth” mappings coincide
for mappings between open subsets of Fréchet spaces (cf. [9] and [10, Thm. 4.11 (a),
Thm. 12.8]), it does not matter much which framework of differential calculus and
corresponding concept of Lie groups is used here; discussions based on smooth maps
in the sense of Michal-Bastiani (also known as Keller’'s C2°-maps) can be found in [8,
p-92] and [14]; a discussion in the “convenient setting” of analysis by Frolicher, Kriegl
and Michor is given in [1, Thm.4.7.5] and [10, §43]."

The situation changes dramatically if one considers the diffeomorphism group Diff(M)
of a non-compact, finite-dimensional smooth manifold M, which one would like to
model on the LF-space D(M,T M) of compactly supported, smooth vector fields on M.
In this case, Michal-Bastiani smoothness of mappings on D(M,T M) (which implies
continuity) is a much stronger condition than being smooth in the convenient sense,
already on D(R,TR) = D(R): The self-map D(R) — D(R), v — v oy —(0) of the
space of real-valued test-functions on the line is smooth in the convenient sense, but
discontinuous [6].
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In the setting of Keller’s C2°-theory, Diff (M) was made a Lie group by Michor [12]. But
the construction was rather complicated and soon after, Michor abandoned Keller’s
C2°-theory in favour of the convenient setting of analysis. In this setting, Diff(M) was
made a Lie group in [10], using a simpler construction (see [10], comments on p.455).
However, one had to pay a price: Instead of the quite natural topology on Diff (M) used
in Keller’s C'¢°-theory (corresponding to the locally convex topology on D(M,TM)),
which makes Diff(M) a topological group, the convenient approach equips Diff(M)
with a properly finer topology which does not make Diff(M) a topological group: the
group multiplication is discontinuous (cf. [17]).

In this article, we introduce a certain class of mappings
f: DIM,E) — D(N,F)

between spaces of vector-valued test functions (the “almost local mappings;” see Defi-
nition 3.1). Being almost local is a mild regularity property, which is satisfied (at least
locally) by all mappings encountered in the construction of diffeomorphism groups.
Now the gist is that an almost local map f is smooth (in the Michal-Bastiani sense)
if and only if its restriction to each of the steps C5¢(M, E) of the directed system is
smooth (Theorem 3.2). If E is finite-dimensional, then C32 (M, E) is a Fréchet space
and hence smoothness of mappings on this space coincides with smoothness in the
convenient sense, which is (frequently) easily verified. In this way, we can profit from
the advantages of both settings of analysis: One the one hand, we can work with the
natural topologies and ensure smoothness in the stronger sense of Keller’s C2°-theory
(where smooth maps are, in particular, continuous). On the other hand, once we have
verified that a mapping of interest is almost local, we can use the powerful tools of
convenient calculus to check its smoothness.

To illustrate the effectiveness of this idea, we describe in Sections 4-7 a new construc-
tion of the Lie group structure on the diffeomorphism group of R™. We remark that
the concept of an almost local map can be adapted to mappings between spaces of
sections in vector bundles (see [5], [7] and [4, Defn. F.29 & Thm. F.30], where in fact
a slightly more general definition of almost local maps is given).?) In [7], almost local
maps (and related novel tools, “patched maps”) are used to construct the Lie group
structure on the diffeomorphism group Diff(M) for o-compact M, and also to verify
that Diff(M) is a regular Lie group in Milnor’s sense.?) The author believes that the
novel arguments and simplifications become particularly clear in the easiest possible
case of R™ treated here, unveiled by the additional technical machinery needed for the
manifold case.

Following the pattern of Sections 4-7, it is also possible to create Lie group structures
on other versions of diffeomorphism groups. Novel examples are the Fréchet-Lie group
Diffs(R"™) of diffeomorphisms differing from idg~ by an R"-valued rapidly decreasing
map, or the Fréchet-Lie group Diff,(R™) of diffeomorphisms differing from idg~ by a

2)While the cited papers use abstract functional analytic methods to discuss almost local maps,
our present approach is quite explicit.

3)For Diff.(M), this was asserted (without proof) in [13], using different terminology. For com-
pact M, the proof is given in [14]. Regularity in the convenient sense was proved in [10].
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bounded smooth map with bounded partial derivatives of all orders (details will be
given in [18]; it is even possible to replace R™ with a Banach space here). In [4], a vari-
ant of the present approach is used to turn diffeomorphism groups of finite-dimensional
smooth manifolds over local fields into Lie groups.

2. Preliminaries

We recall one possible definition of smooth maps in the sense of Michal-Bastiani (see
[2], 8], [12], [14] for more information): Let E and F be locally convex spaces, and
U be an open subset of E. A map f: U — F is smooth if the two-sided directional
derivatives d'f(z,v) := df(z,v) := limy_,ot71(f(z + tv) — f(z)) € F exist for all
(z,v) € U x E, the higher iterated differentials d*f := d(d*1f): U x E**~1 - F
exist for all 2 < k € IN, and all of the mappings f, d' f, d*f, ... are continuous.

If M is a o-compact finite-dimensional smooth manifold and E a locally convex
space, then C°°(M, E), the space of E-valued smooth mappings on M, is a locally
convex space in a natural way; given a compact subset K C M, the closed vector
subspace C (M, E) := {y € C®°(M,E): v|u\x = 0} € C®(M, E) is given the in-
duced topology. The space of E-valued test functions is D(M, E) := |J, CRF (M, E) =
hglK C¥ (M, E) (with K running through the compact subsets of M), equipped with

the locally convex direct limit topology. It induces the given topology on each subspace
C¥ (M, E) (see [3] for all this). We abbreviate D(M) := D(M,R).

3. Almost local mappings between spaces of test functions

Suppose that f: D(R) — D(R) is a mapping whose restriction to C32(R) is smooth,
for each compact subset K of R. Then f need not be smooth, and in fact not even
continuous, as the example f(v) := v oy — v(0) shows (see [6]). Roughly speaking,
the pathology in this example is caused by the extreme nonlocality of f: For each
e > 0 and z € R, there are v,7 € D(R) which coincide off [—¢,¢], but such that
f(y)(z) # f(n)(x). In contrast, no problems arise when the values f(v)(z) only depend
on v(y) for y close to z (and in slightly more general situations), in a sense to be made
precise presently. In order to be useful elsewhere, we formulate our result for mappings
between open subsets of spaces of test functions on (g-compact) finite-dimensional
manifolds, with values in locally convex spaces. For our discussion of Diff(R"), it
would be sufficient to consider the special case where M = N = R"™ and both E
and F are finite-dimensional real vector spaces.

Definition 3.1. Let M and N be finite-dimensional smooth manifolds, £ and F
locally convex spaces, and P be an open subset of D(M, E). A map f: P — D(N,F)

is called almost local® if there exist sequences (Un)nen and ([}n)nem of relatively
compact open subsets U,, C M and open neighbourhoods U,, C M of the closures

4) More precisely, we should call such mappings “special almost local maps,” because in the mean-
time a more general notion of almost local maps has been developed (see [5], [7], [4, Defn. F.29]).
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U,, as well as sequences (V,,)n,en and (V,),en of open, relatively compact subsets
Vi, € N and open neighbourhoods V,, C N of the closures W, such that the following
conditions are satisfied:

(a) (
(b

) (Upn)nen is an open cover of M, and (Up)nen is locally finite.
) (Vi)nen is an open cover of N, and (Vy,)nen is locally finite.

(c) For all n € IN and ~,n € P such that v|y, = n|v,, we have f(v)|lv, = f(n)|v,-
)

(d ﬁn and ‘N/n are coordinate neighbourhoods for each n € IN, i.e., there are C*°-
diffeomorphisms ¢,,: U, — A, and ¢, : V,, = B, onto open subsets A, and B,
of R® and R?, resp., where a := dim(M), b := dim(N).

The following result is the technical backbone of our discussion of Diff(R™).

Theorem 3.2. (Smoothness Theorem). Let M and N be finite-dimensional smooth
manifolds, E and F be locally convex spaces, P be an open subset of D(M,E), and
f: P — D(N,F) be a mapping. If fx := f|pnclo{o(M7E) is smooth for every compact
subset K C M and f is almost local, then f is smooth.

Proof. The proof will be given in various steps. For convenience of notation,
we abbreviate P; := P x D(M, E)?~' C D(M,E)?* for each j € IN, and identify
D(M, E)* with D(M,E?") in the natural way.

3.3. We claim: &f: P; — D(N,F) exists, for each j € N. Furthermore,
djf|P-ﬂC°°(M g2y S smooth, for each compact subset K of M, and & f(vy)|v, =
J K El

& f(yi)lv, for all v,y € Pj such that v|u, = n|u, -
Case j = 1: Given v € P and nj € D(M, E), there is € > 0 such that y+ |—e¢,e[n C P.
Set K := supp(y) Usupp(n); then y+tn € PNCE (M, E) for all t € R*, |t| < . Since

fx is smooth, the limit df (y,n) = lim;_o t L (f(y +tn) — f(7)) exists, and is given by
dfk (v,m). Accordingly, for each compact subset K of M,

df| i (,e2) = d(fK)

identifying D(M, E)? with D(M, E?) and C2 (M, E)? with C% (M, E?) in the obvious
way. Here (df)x = d(fx): PA N C3 (M, E?) — D(N, F) is smooth, and df (v,n)|v, =
df (y1,m)|v, for all (v,n),(y1,m) € P which coincide on U,, since (v + tn)|y, =

(71 + tm)lv, and thus ¢~ (f(y +tn) = f(Y)|v, =t (f(71 +tm) = f(71))]v, in the
calculation of the directional derivatives.

Induction step: If the claim holds for all functions f satisfying the hypotheses of the
theorem and all j € {1,...,7} (where r € IN), then d"f may play the role of f, and
thus d" ! f = d(d" f) has the required properties by the case j = 1. Thus 3.3 holds.

3.4. It remains to prove that d’ f is continuous for each j € INg. As, by 3.3, the
hypotheses of the proposition are satisfied when f is replaced with @’ f, it suffices to
show that f is continuous. Now, given 79 € P, apparently g := f(y0 + ) — f(7) :
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P —~y — D(N, F) is almost local and g|(p_%)mc;{o(M7E) is smooth, for each compact
subset K C M. The mapping f is continuous at 7o if and only if g is continuous at 0.
It therefore suffices to consider the case where P is an open zero-neighbourhood and
f(0) = 0 (which we assume now), and show that f is continuous at 0.

3.5. Since f is almost local, we find sequences (Un)nen, (Un)ner, (Va)nens (Vi )nen,
(¢n)nen and (¥n)nen as described in Definition 3.1. For each n € IN, we choose
h,, € D(M) such that K,, := supp(h,,) C U,, and h,, is identically 1 on U,,.

3.6. Let I'y be a set of continuous seminorms on E defining its locally convex
topology, and which is directed in the sense that for all p;,ps € I'y, there is p € Iy
such that p > p; pointwise for i € {1,2}. Given n € IN, k € INg, and p € T'1, the
mapping

[ lnkp: DML E) = (0,000, [[llnkp = sup  sup  p(d*(y o ¢,")(x))
la|<k z€¢n(Un)
is a continuous seminorm on D(M, E) (using standard notation for multi-indices « €
(INg)® and partial derivatives). The sets

Uk, p,e) = {y € DM, E): (Vn € N) |17lln k0 pn <En},

where k = (k,,) € (No)¥, p = (pn) € (T1)Y, and € = (¢,) € (RF)Y, form a basis of
open zero-neighbourhoods for D(M, E) (see, e.g., [3, Prop.4.8]).

Let I's be a directed set of continuous seminorms defining the locally convex topology
on D(N, F); proceeding as above, we use the seminorms ¢, € I'> and take suprema
over & € 1, (V) to define seminorms ||.||n k. .q, 00 D(NV, F), as well as a basis of open
zero-neighbourhoods V(k, q,¢) for D(N, F), where k € (No)N, ¢ € (I')¥, e € (RT)N.

3.7. To prove the continuity of f at 0, let arbitrary sequences k = (k,) € (INg)W,
e =(en) € (RN, and q = (gn) € ([2)Y be given. Set F,, := {m € N: U,, N K,, # 0}
for n € IN. The covering (U, ) men being locally finite, F), is a finite set. Furthermore,
Ny ={neN:me€ F,} ={n € N: U, NK, # 0} is finite for each m, as Uy, is
relatively compact and (Up)nen is locally finite.

Next, P being an open 0-neighbourhood, by 3.6 we find ¢ = (c,) € (No)V, 7 =
(mn) € (T1)N, and p = (p,,) € (RT)N such that U(c, m, p) C P.

Since f|pﬂc;(o (M,E) is continuous at 0 for n € IN and f(0) = 0, we find ¢, € Ny,
pn € T'y, and r; > 0 such that ¢, > ¢y, pp > T, and r, < p,, for all m € F,,, and
such that ||f(V)llnk,.g. < €n for all v € CF (M, E) such that [|v[|m,e,p, < rn for
all m € F,, (note that the latter condition ensures v € P). As a consequence of the
Leibniz Rule for the differentiation of products, there is s,, €]0,r,] such that, for all
m € Fy,, we have ||y, - Yllm,t,.p. < Tn, for all v € D(M, E) satistying ||V||m,t..pn < Sn
(cf. [3, proof of Prop.4.8]). Given m € N, choose t,, > 0 such that t,, < s, for all
n € Ny, set Ky = sup{lp: n € Np,} € Ny, and pick u,, € I'y such that u,, > p, for
all n € Ny Set t:= (tm), & := (Em), U = (Up,).

Let v € U(k,u,t) C U(c,m,p) C P. For each n € N, we have h,, -y € CF (M, E)
and ([ Yllm ey g < 7 for all m € By Hence [F()llntan = 1 (hnDllnsonpe < En
noting that f(y)|v, = f(hn - 7)|v, since hyly, = 1. Thus f(U(k,u,t)) C V(k,q,¢),
and thus f is continuous at 0, as required. |
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4. Smoothness of composition on End.(R™)

We study a monoid of smooth self-maps of R™ closely related to Diff(R"™).

Definition 4.1. Let End.(IR™) be the set of all smooth mappings v: R™ — R™ which
coincide with idg» outside some compact set. Thus End.(R") = idg~» + D(R",R"™) C
C*®(R™ R"™). Clearly End.(R™) is a monoid under composition, with identity ele-
ment idg~. We give End.(R") the smooth manifold structure making the bijection

B:D(R™,R") - End.(R"), v~ idg~ + 7
a diffeomorphism.

It is easily verified that S~ (8(7y) o B(n)) = n + v o (idg» + 7). Thus, to establish
smoothness of the composition map End.(R") x End.(R™) — End.(R"), we only need
to show that g: D(R",R") x D(R"™,R") — D(R",R"), ¢g(7,n) :=vo (idg~ +17) is a
smooth map. The following fact will be used, which follows from [10, Cor. 3.13] (see
[6, Appendix] for an elementary proof; [4, Prop.11.3] for generalizations):

Lemma 4.2. The composition map
L: C®(R",R™) x C*(RY,R") — C®(RY,R™), T(y,1) =701

is smooth, for all d,m,n € No. Given v,71 € C®(R",R™) and n,m € C=°(RI, R"),
we have dU(7y,m571,m) = dy o (n,m) + 101 =

Lemma 4.3. The mapping g: D(R™,R") x D(R",R") — D(R",R"), g(v,n) :=
v o (idg= + 1) is smooth, with differential given by

dg(y,m;71,m) = dyo (idre+n,m) + 710 (idr=+ 1) for v,71,m,m € D(R",R").

Proof. Given vy,m0 € D(R™, R"), we have to show that g is smooth on some open
neighbourhood of (y0,70). Set P := {(v,n) € D(R",R")*: [[nllsup < [Inollsup + 1},
where ||9]|sup := max{||n(2)||c: € R™}, using the ||.||co-norm on R™. Then P is an
open neighbourhood of (y0,70) in D(R", R™)? = D(R",R?"). To see that f := g|p is
smooth, we verify the hypotheses of the Smoothness Theorem.

f is almost local. Indeed, pick a bijection j: IN — Z", k — ji and set Vi := Ba(ji),
17; := Bs(ji) for k € IN, where B(j) denotes the open ball of radius 2 about ji
in R"™, with respect to the ||.||sc-norm. Set 7 := 3 + [|no||sup. Then, for any = € V;
and (v,n) € P, we have f(y,n)(x) = y(z + n(z)), where [|jr — (z + n(z))ll < 7.
Accordingly, f(v,n)|v, only depends on (v,n)|u,, where Uy := B,(jr) 2 Vi. We
set Uy := Ba,(jr). Then (Uy), (Uy), (Vi), and (V}) are sequences as described in
Definition 3.1. Thus f is almost local.

It remains to show that, given any compact subset K C R"™, the mapping fx :=
f|PmC;{O(]Rn)]R2n) is smooth. To see this, given K, we observe that if (y,n) € PN
C2(R™,R™)? and f(y,n)(z) # 0 for some z € R", then y(z + n(z)) # 0 and thus
z + n(xz) € supp(y) C K, entailing that x € K — n(z) C K + B,(0) =: R. Hence
fr takes its values in the vector subspace C%F(R", R™) of D(R",R"™), which also is a
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closed vector subspace of C*°(R™,R") (with the same induced topology). It therefore
suffices to show that fx is smooth as a map into C*°(R™,R"™), and has the desired
differential. Let I': C*®°(R", R") x C*°(R",R") — C*°(R",R") be the composition
map, which is smooth by Lemma 4.2. Considering fx as a map into C*°(R", R"), we
have fx(v,n) = I'(y,idr~ +7n) and thus fx =T o h, where

h: PNCE(R",R*™) - C°(R",R*), h(y,n) := (7, idg+n)

is a restriction of a continuous affine linear map and hence smooth, with dh(y,n;v1,m)
= (y1,m) for all (y,n) € PN CER",R?") and (y1,m) € C2(R",R*"). By the
Chain Rule, fx = I' o h is smooth. Furthermore, for each K containing the support
supp(70, 7o), the Chain Rule, Lemma 4.2 and the above formula for dh yield

dg(vo,mo;vi,m) = d(fx)(v0,m0;571,m) = dT(h(v0,m0), dh(Y0,m0;71,m1))
(4.1) = dy o (idr» + 1m0, m1) + 71 © (idr» + 10)

for all (y1,m) € CP(R" R")?. Now Theorem 3.2 shows that f is smooth, en-
tailing that g is smooth on an open neighbourhood of (vo,70). As D(R™ R*") =
Ux CF (R"™,R?"), Equation (4.1) shows that dg has the asserted form. |

5. Global coordinates for Diff.(R")

In this section, we show that the unit group Diff.(R") := End.(R"™)* of End.(R") is
open in End.(R™). The latter being a topological monoid, we only need to show that
Diff.(R™) is a neighbourhood of idg~ in End.(R™).

Lemma 5.4. Let U := {y € D(R",R") : maxgern ||dy(z,)|lop < 1}, where ||.||op
is the operator norm on L(IR™) with respect to the maximum-norm on R"™. Then U is
an open zero-neighbourhood in D(R™, R"), and S(U) C Diff.(R").

Proof. Clearly U is open. Given v € U, set r := maxgern ||dy(z,+)||op < 1.

Step 1. For each z € R", we have df3(y)(z,.) = idg~» + dvy(z,.) € L(R"™)*, as
[|dy(,«)]lop < 1. By the Inverse Function Theorem, 5(v) is a local diffeomorphism.

Step 2: [(7) is injective. In fact, suppose that © = (z;) and y = (y;) are distinct
elements of R™. Then there is j € {1,...,n} such that |y; — 2| = ||y — ¢||cc #0. The
jth coordinate of 5(v)(y) — B(v)(x) is given by

(5.2) BV = B(@); =y; —xj +v(y); —v(x); -

Since

1
IY(y)j—(x);] = / dy(z+t(y —x),y —x)jdt| <r-|ly—alloo = rly; —z5] < ly;j—z;],
0

Equation (5.2) shows that 5(v)(y); — 7(8)(z); # 0 and thus 5(7)(z) # B(7)(y)-

Step 3: [(7) is surjective. To see this, choose a connected, compact subset L # ()
of R™ containing K := supp(7) in its interior. Since S(7y)(z) = x for all x € R™\ K
and B(v) is injective, we deduce that f(v)(K) C K, and thus 8(v)(L) C L. Set
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f = pB(")|%: L - L. Since () is a local diffeomorphism and thus an open map,
the mapping f|zo is open (where L denotes the interior of L in R™). Furthermore,
flenkx =1dz|L\k 18 an open map on the open subset L \ K of L. Since L = L°U(L \ K),
we deduce that f is an open map. Thus f(L) is a non-empty, open, compact subset
of the connected topological space L, and therefore 5(y)(L) = f(L) = L. Since
B()(R"\ L) = R*\ L (a5 A(x) |1 = i [\ 1), we deduce that 5(7)(R") = R
Thus () € Diff.(R"). o

By the preceding, Q := 8~ (Diff.(R")) is an open subset of D(R™, R").”) We retain
the current meaning of the symbols U and (2 for the remainder of the article.

6. Smoothness of inversion
In this section, we show that inversion is smooth on Diff.(R").
Given v € Q, define v* := f=1(3(y)~!). Thus
(6.1) ¥ +yo(idgn +7*) =0 and v+ o (idr~ +7v)=0.
The group multiplication on Diff.(R"™) being smooth, it suffices to show that = is

smooth on U. Note that, for each compact subset K C R™ and v € C¥(R*,R™)NU,
we have v* € C2(R™, R") (see proof of Lemma 5.4).

Lemma 6.1. For each compact subset K of R™, the mapping
[:UNCE (R, R") = O (R™,R"), 7=
is smooth.

Proof. Since C(R™,R") is a Fréchet space and U N CZ°(R",R™) an open subset,
we only need to show that f is a ¢>-map in the sense of convenient differential calculus,
viz. f is smooth along smooth curves. To verify this property, we proceed along the
lines of [10, p.455]. Let ¢: R = C2(R",R") N U, t + ¢ be a smooth curve; we have
to show that f ocis a smooth curve. Define ¢: R x R® — R™, ¢(¢, ) := ¢;(x), and
(foc) :RxR™ = R, (foc) t,z) := (f(ct))(x) = (c)*(x). Then ¢ is smooth by
[10, Thm. 3.12], and (f o ¢)" satisfies the equation

(foc)™(t,z) +c"(t,x+ (foe) (t,x) =0
for all (t,z) € R x R™, by (6.1). Thus H(¢,z, (f o ¢)"(t,z)) = 0 where
H:RxR"xR"—=R", H(t,z,y):=y+ct,z+y) =y+c(r+y).

The partial differential of H with respect to the y-variable is given by dsH (¢, z,y,) =
idga + deg(z 4y, ) = d(B(ct))(z +y,+) € GL(R™), for all ¢,z,y. Note that, for fixed ¢
and x, the equation 0 = H (t,z,y) = y + ¢;(x + y) has a unique solution y. In fact,
y := (foc)(¢,2) is one solution; if there was a second solution y; # y, we would have

1
y—y1=f:t(:v+y1)—0t(:v+y)=/ deg(x+y+s-(y1 —y), y1 —y)ds.
0

5If n = 1, it easy to see that Q = {y € D(R): (V& € R) v'(z) > —1}.
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As ¢, € U, in this equation the right hand side has ||.||co-norm properly smaller than
the left hand side (cf. proof of Lemma 5.4), which is absurd; thus a second solution
y1 # y cannot exist. Due to global uniqueness of solutions, we deduce from the
standard Implicit Function Theorem that (f oc)” is a smooth map. Therefore f oc is
smooth ([10, Thm. 3.12] or [15, Thm. III.4]). i

Given R > 0, set Ug := {y € U: ||7|lsup < R}. Then Ug is an open subset of U,
and U = UR>O UR.

Lemma 6.2. We have B,(z) C (idr» + v)(Br+r(2)), for all r > 0, x € R", and
v € Ug.

Proof. Since idg» + v = S(y) € Diff(R™) is a bijection, for every y € B,(z) there
is a uniquely determined element z € R™ such that z + v(z) = B(v)(2) = y. Then
Iz = 2lloo = lly = 7(2) = 2lloc < |ly = @[l + 17(2)llc0 <7+ R, whence z € Bryg(z). O

Lemma 6.3. If R,r > 0 and € R", then for all v,n € Ug such that v|p
B, sr(2), we have |, (2) = 0"|B,(a)-

rr(T) =

Proof. Let y € B,(x). Lemma 6.2 gives z € B4 g(z) such that z+ v(z) =y. Then

Y (W) =7 (2 +7(2) = =v(2) = —n(z) =" (z + n(2)) =n" (2 +v(2)) =n"(y) ,

using Equation (6.1) to obtain the second and forth equality. |

Lemma 6.4. The mapping f: U — D(R™,R"™), v — v* is smooth.

Proof. In view of the Smoothness Theorem 3.2 and Lemma 6.1, it suffices to prove
that, for each R > 0, the mapping fr := f|u, is almost local. Define V}, := B2 (ji.),
‘7,c := B3(ji), Ux := Batr-r(jr), [}k := B3 r(ji) for k € IN, where j, denotes a bijection
N — Z™. In view of Lemma 6.3, fr, together with the sequences (V)ren (ﬁk)ke]N;
(V) ken, and (Vk)kem, satisfies the conditions formulated in Definition 3.1. O

Summing up:

Theorem 6.5. Diff.(R"™), equipped with the smooth manifold structure making the
bijection a: D(R™,R™) D Q — Diff.(R"), v + idg~ + a diffeomorphism, is a smooth
Lie group in the sense of Milnor [14]. O

7. The Lie group structure on Diff(R"™)

We show that the group Diff(R™) of all diffeomorphisms of R™ can be made a smooth
Lie group in the sense of Milnor, containing Diff.(R™) as an open submanifold.

Note that Diff.(R") is a normal subgroup of Diff(R™): Given v € Diff(R") and
n = idg» + o € Diff.(R"), the diffecomorphism I,(n) := yono~~! € Diff(R")
satisfies I, (n)(z) = x for all z € R™ outside the compact set y(supp(o)); thus I,(n) €
Diff, (R").
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Theorem 7.1. There is a uniquely determined smooth manifold structure on the
group Diff(R™) turning it into a Lie group and making Diff.(R"™), equipped with the
Lie group structure described in Theorem 6.5, an open submanifold.

Proof. As Diff . (R"™) C Diff(R™) already is a smooth Lie group, in view of the “local
characterization of Lie groups” stated in [3, Prop.1.13], we only need to show that,
for each v € Diff(R™), the automorphism J, : Diff.(R") — Diff.(R™), n — yono~y~!
of the normal subgroup Diff.(R"™) C Diff(R™) is smooth. Thus, in terms of the global
chart a: Q@ — Diff(R™), n — idg~ + 1, we have to show that

fi=atoJ, oa:DR",R") - DR",R"), n yo(idgs+n)oy ' —idgn

is smooth.

Step 1. f is almost local. Indeed, given any bijection j, : N — Z", we define
Vi := 7(B2(jk)), Vi := v(Bs(jx)), Uk := B2(jr), Uk := Bs(j) for k € N. Then f,
together with the sequences of open sets (Uk)ren, (Ur)ken, (Vi)ken, and (Vi)ren,
apparently satisfies the conditions of almost locality described in Definition 3.1.

Step 2: f|QﬂC? (R, &) 18 smooth, for each compact subset K C R™. To see this, note
first that, for each n € QNCFE (R™,R"), the map f(n) = J,(idr~ +n) —idr~ vanishes
outside y(supp(n)) C v(K). Thus f|QﬂCIo(o (R»,R") 18 @ map into the closed vector sub-
space C‘W"(’K)(IR”,IR”) of C*(R"™ R"), and we only need to show that f|QﬂC?{O(]Rn7]Rn)
is smooth as a map into C*°(R™,R™). But this is clear, because

f(m) = T(y, Dlidg=+1n,7 1)) —idg= = T(v, T(h(n),y ")) —idg»

for each n € AN CFP(R™, R™), where I': C*°(R",R"™) x C*(R",R") - C>*(R",R")
is the composition map (whose smoothness we recalled in Lemma 4.2), and where
h: QN CR(R™,R") — C®°(R",R"), h(n) := idr~ + 7 is a restriction of a continu-
ous affine linear map and hence smooth as well. Using the Chain Rule, we deduce
that indeed f|QmC? (R»,R") is smooth as a map into C*°(R™,R"). The hypotheses of
Theorem 3.2 having been verified, f is smooth. O
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