
Di�(R

n

) as a Milnor-Lie group

By Helge Gl

�

okner of Darmstadt

(Reeived Marh 7, 2002; revised version Marh 4, 2005)

Abstrat. We desribe a onstrution of the Lie group struture on the di�eomorphism group

Di�(R

n

), modelled on the spae D(R

n

;R

n

) of R

n

-valued test funtions on R

n

, in John Milnor's

setting of in�nite-dimensional Lie groups. New tools are introdued to simplify this task.

1. Introdution

It is well-known that the di�eomorphism group Di�(K) of a ompat smooth man-

ifold K an be made a Fr�ehet-Lie group, modelled on the Fr�ehet spae of smooth

vetor �elds on K. Sine all popular basi notions of \smooth" mappings oinide

for mappings between open subsets of Fr�ehet spaes (f. [9℄ and [10, Thm. 4.11 (a),

Thm. 12.8℄), it does not matter muh whih framework of di�erential alulus and

orresponding onept of Lie groups is used here; disussions based on smooth maps

in the sense of Mihal-Bastiani (also known as Keller's C

1



-maps) an be found in [8,

p. 92℄ and [14℄; a disussion in the \onvenient setting" of analysis by Fr�oliher, Kriegl

and Mihor is given in [1, Thm. 4.7.5℄ and [10, x43℄.

1)

The situation hanges dramatially if one onsiders the di�eomorphism group Di�(M)

of a non-ompat, �nite-dimensional smooth manifold M , whih one would like to

model on the LF-spaeD(M;TM) of ompatly supported, smooth vetor �elds onM .

In this ase, Mihal-Bastiani smoothness of mappings on D(M;TM) (whih implies

ontinuity) is a muh stronger ondition than being smooth in the onvenient sense,

already on D(R; TR)

�

=

D(R): The self-map D(R) ! D(R),  7!  Æ  � (0) of the

spae of real-valued test-funtions on the line is smooth in the onvenient sense, but

disontinuous [6℄.

1991 Mathematis Subjet Classi�ation. Primary 58D05; Seondary 22E65, 46F05, 46T20.

Keywords and phrases. Di�eomorphism groups, non-ompat manifolds, in�nite-dimensional Lie

groups, almost loal mappings, spaes of test funtions.

1)

Omori's interpretation of Di�(K) as an ILB-Lie group [16℄ and Hamilton's interpretation of

Di�(K) as a \tame" Lie group ([8, Thm. 2.3.5℄) refer to stronger, speialized notions of smoothness

spei� to Fr�ehet spaes. Cf. also [11℄, where Di�(K) was �rst studied.
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In the setting of Keller's C

1



-theory, Di�(M) was made a Lie group byMihor [12℄. But

the onstrution was rather ompliated and soon after, Mihor abandoned Keller's

C

1



-theory in favour of the onvenient setting of analysis. In this setting, Di�(M) was

made a Lie group in [10℄, using a simpler onstrution (see [10℄, omments on p. 455).

However, one had to pay a prie: Instead of the quite natural topology on Di�(M) used

in Keller's C

1



-theory (orresponding to the loally onvex topology on D(M;TM)),

whih makes Di�(M) a topologial group, the onvenient approah equips Di�(M)

with a properly �ner topology whih does not make Di�(M) a topologial group: the

group multipliation is disontinuous (f. [17℄).

In this artile, we introdue a ertain lass of mappings

f : D(M;E) ! D(N;F )

between spaes of vetor-valued test funtions (the \almost loal mappings;" see De�-

nition 3.1). Being almost loal is a mild regularity property, whih is satis�ed (at least

loally) by all mappings enountered in the onstrution of di�eomorphism groups.

Now the gist is that an almost loal map f is smooth (in the Mihal-Bastiani sense)

if and only if its restrition to eah of the steps C

1

K

(M;E) of the direted system is

smooth (Theorem 3.2). If E is �nite-dimensional, then C

1

K

(M;E) is a Fr�ehet spae

and hene smoothness of mappings on this spae oinides with smoothness in the

onvenient sense, whih is (frequently) easily veri�ed. In this way, we an pro�t from

the advantages of both settings of analysis: One the one hand, we an work with the

natural topologies and ensure smoothness in the stronger sense of Keller's C

1



-theory

(where smooth maps are, in partiular, ontinuous). On the other hand, one we have

veri�ed that a mapping of interest is almost loal, we an use the powerful tools of

onvenient alulus to hek its smoothness.

To illustrate the e�etiveness of this idea, we desribe in Setions 4{7 a new onstru-

tion of the Lie group struture on the di�eomorphism group of R

n

. We remark that

the onept of an almost loal map an be adapted to mappings between spaes of

setions in vetor bundles (see [5℄, [7℄ and [4, Defn. F.29 & Thm.F.30℄, where in fat

a slightly more general de�nition of almost loal maps is given).

2)

In [7℄, almost loal

maps (and related novel tools, \pathed maps") are used to onstrut the Lie group

struture on the di�eomorphism group Di�(M) for �-ompat M , and also to verify

that Di�(M) is a regular Lie group in Milnor's sense.

3)

The author believes that the

novel arguments and simpli�ations beome partiularly lear in the easiest possible

ase of R

n

treated here, unveiled by the additional tehnial mahinery needed for the

manifold ase.

Following the pattern of Setions 4{7, it is also possible to reate Lie group strutures

on other versions of di�eomorphism groups. Novel examples are the Fr�ehet-Lie group

Di�

S

(R

n

) of di�eomorphisms di�ering from id

R

n

by an R

n

-valued rapidly dereasing

map, or the Fr�ehet-Lie group Di�

b

(R

n

) of di�eomorphisms di�ering from id

R

n

by a

2)

While the ited papers use abstrat funtional analyti methods to disuss almost loal maps,

our present approah is quite expliit.

3)

For Di�



(M), this was asserted (without proof) in [13℄, using di�erent terminology. For om-

pat M , the proof is given in [14℄. Regularity in the onvenient sense was proved in [10℄.
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bounded smooth map with bounded partial derivatives of all orders (details will be

given in [18℄; it is even possible to replae R

n

with a Banah spae here). In [4℄, a vari-

ant of the present approah is used to turn di�eomorphism groups of �nite-dimensional

smooth manifolds over loal �elds into Lie groups.

2. Preliminaries

We reall one possible de�nition of smooth maps in the sense of Mihal-Bastiani (see

[2℄, [8℄, [12℄, [14℄ for more information): Let E and F be loally onvex spaes, and

U be an open subset of E. A map f : U ! F is smooth if the two-sided diretional

derivatives d

1

f(x; v) := df(x; v) := lim

t!0

t

�1

(f(x + tv) � f(x)) 2 F exist for all

(x; v) 2 U � E, the higher iterated di�erentials d

k

f := d(d

k�1

f) : U � E

2

k

�1

! F

exist for all 2 � k 2 N, and all of the mappings f , d

1

f , d

2

f , : : : are ontinuous.

If M is a �-ompat �nite-dimensional smooth manifold and E a loally onvex

spae, then C

1

(M;E), the spae of E-valued smooth mappings on M , is a loally

onvex spae in a natural way; given a ompat subset K � M , the losed vetor

subspae C

1

K

(M;E) := f 2 C

1

(M;E) : j

MnK

= 0g � C

1

(M;E) is given the in-

dued topology. The spae of E-valued test funtions is D(M;E) :=

S

K

C

1

K

(M;E) =

lim

�!

K

C

1

K

(M;E) (with K running through the ompat subsets of M), equipped with

the loally onvex diret limit topology. It indues the given topology on eah subspae

C

1

K

(M;E) (see [3℄ for all this). We abbreviate D(M) := D(M;R).

3. Almost loal mappings between spaes of test funtions

Suppose that f : D(R) ! D(R) is a mapping whose restrition to C

1

K

(R) is smooth,

for eah ompat subset K of R. Then f need not be smooth, and in fat not even

ontinuous, as the example f() :=  Æ  � (0) shows (see [6℄). Roughly speaking,

the pathology in this example is aused by the extreme nonloality of f : For eah

" > 0 and x 2 R, there are ; � 2 D(R) whih oinide o� [�"; "℄, but suh that

f()(x) 6= f(�)(x). In ontrast, no problems arise when the values f()(x) only depend

on (y) for y lose to x (and in slightly more general situations), in a sense to be made

preise presently. In order to be useful elsewhere, we formulate our result for mappings

between open subsets of spaes of test funtions on (�-ompat) �nite-dimensional

manifolds, with values in loally onvex spaes. For our disussion of Di�(R

n

), it

would be suÆient to onsider the speial ase where M = N = R

n

and both E

and F are �nite-dimensional real vetor spaes.

De�nition 3.1. Let M and N be �nite-dimensional smooth manifolds, E and F

loally onvex spaes, and P be an open subset of D(M;E). A map f : P ! D(N;F )

is alled almost loal

4)

if there exist sequenes (U

n

)

n2N

and (

e

U

n

)

n2N

of relatively

ompat open subsets U

n

� M and open neighbourhoods

e

U

n

� M of the losures

4)

More preisely, we should all suh mappings \speial almost loal maps," beause in the mean-

time a more general notion of almost loal maps has been developed (see [5℄, [7℄, [4, Defn. F.29℄).
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U

n

, as well as sequenes (V

n

)

n2N

and (

e

V

n

)

n2N

of open, relatively ompat subsets

V

n

� N and open neighbourhoods

e

V

n

� N of the losures V

n

, suh that the following

onditions are satis�ed:

(a) (U

n

)

n2N

is an open over of M , and (

e

U

n

)

n2N

is loally �nite.

(b) (V

n

)

n2N

is an open over of N , and (

e

V

n

)

n2N

is loally �nite.

() For all n 2 N and ; � 2 P suh that j

U

n

= �j

U

n

, we have f()j

V

n

= f(�)j

V

n

.

(d)

e

U

n

and

e

V

n

are oordinate neighbourhoods for eah n 2 N, i.e., there are C

1

-

di�eomorphisms �

n

:

e

U

n

! A

n

and  

n

:

f

V

n

! B

n

onto open subsets A

n

and B

n

of R

a

and R

b

, resp., where a := dim(M), b := dim(N).

The following result is the tehnial bakbone of our disussion of Di�(R

n

).

Theorem 3.2. (Smoothness Theorem). Let M and N be �nite-dimensional smooth

manifolds, E and F be loally onvex spaes, P be an open subset of D(M;E), and

f : P ! D(N;F ) be a mapping. If f

K

:= f j

P\C

1

K

(M;E)

is smooth for every ompat

subset K �M and f is almost loal, then f is smooth.

Proof . The proof will be given in various steps. For onveniene of notation,

we abbreviate P

j

:= P � D(M;E)

2

j

�1

� D(M;E)

2

j

for eah j 2 N, and identify

D(M;E)

2

j

with D(M;E

2

j

) in the natural way.

3.3. We laim: d

j

f : P

j

! D(N;F ) exists, for eah j 2 N. Furthermore,

d

j

f j

P

j

\C

1

K

(M;E

2

j

)

is smooth, for eah ompat subset K of M , and d

j

f()j

V

n

=

d

j

f(

1

)j

V

n

for all ; 

1

2 P

j

suh that j

U

n

= 

1

j

U

n

.

Case j = 1: Given  2 P and � 2 D(M;E), there is " > 0 suh that + ℄� "; "[ � � P .

Set K := supp()[ supp(�); then + t� 2 P \C

1

K

(M;E) for all t 2 R

�

, jtj < ". Sine

f

K

is smooth, the limit df(; �) = lim

t!0

t

�1

(f(+ t�)� f()) exists, and is given by

df

K

(; �). Aordingly, for eah ompat subset K of M ,

df j

P

1

\C

1

K

(M;E

2

)

= d(f

K

) ;

identifying D(M;E)

2

with D(M;E

2

) and C

1

K

(M;E)

2

with C

1

K

(M;E

2

) in the obvious

way. Here (df)

K

= d(f

K

) : P

1

\ C

1

K

(M;E

2

) ! D(N;F ) is smooth, and df(; �)j

V

n

=

df(

1

; �

1

)j

V

n

for all (; �); (

1

; �

1

) 2 P

1

whih oinide on U

n

, sine ( + t�)j

U

n

=

(

1

+ t�

1

)j

U

n

and thus t

�1

(f( + t�) � f())j

V

n

= t

�1

(f(

1

+ t�

1

) � f(

1

))j

V

n

in the

alulation of the diretional derivatives.

Indution step: If the laim holds for all funtions f satisfying the hypotheses of the

theorem and all j 2 f1; : : : ; rg (where r 2 N), then d

r

f may play the role of f , and

thus d

r+1

f = d(d

r

f) has the required properties by the ase j = 1. Thus 3.3 holds.

3.4. It remains to prove that d

j

f is ontinuous for eah j 2 N

0

. As, by 3.3, the

hypotheses of the proposition are satis�ed when f is replaed with d

j

f , it suÆes to

show that f is ontinuous. Now, given 

0

2 P , apparently g := f(

0

+ �) � f(

0

) :
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P � 

0

! D(N;F ) is almost loal and gj

(P�

0

)\C

1

K

(M;E)

is smooth, for eah ompat

subset K �M . The mapping f is ontinuous at 

0

if and only if g is ontinuous at 0.

It therefore suÆes to onsider the ase where P is an open zero-neighbourhood and

f(0) = 0 (whih we assume now), and show that f is ontinuous at 0.

3.5. Sine f is almost loal, we �nd sequenes (U

n

)

n2N

, (

e

U

n

)

n2N

, (V

n

)

n2N

, (

e

V

n

)

n2N

,

(�

n

)

n2N

and ( 

n

)

n2N

as desribed in De�nition 3.1. For eah n 2 N, we hoose

h

n

2 D(M) suh that K

n

:= supp(h

n

) �

e

U

n

and h

n

is identially 1 on U

n

.

3.6. Let �

1

be a set of ontinuous seminorms on E de�ning its loally onvex

topology, and whih is direted in the sense that for all p

1

; p

2

2 �

1

, there is p 2 �

1

suh that p � p

i

pointwise for i 2 f1; 2g. Given n 2 N, k 2 N

0

, and p 2 �

1

, the

mapping

k:k

n;k;p

: D(M;E)! [0;1[ ; kk

n;k;p

:= sup

j�j�k

sup

x2�

n

(U

n

)

p(�

�

( Æ �

�1

n

)(x))

is a ontinuous seminorm on D(M;E) (using standard notation for multi-indies � 2

(N

0

)

a

and partial derivatives). The sets

U(k; p; ") := f 2 D(M;E) : (8n 2 N) kk

n;k

n

;p

n

< "

n

g ;

where k = (k

n

) 2 (N

0

)

N

, p = (p

n

) 2 (�

1

)

N

, and " = ("

n

) 2 (R

+

)

N

, form a basis of

open zero-neighbourhoods for D(M;E) (see, e.g., [3, Prop. 4.8℄).

Let �

2

be a direted set of ontinuous seminorms de�ning the loally onvex topology

on D(N;F ); proeeding as above, we use the seminorms q

n

2 �

2

and take suprema

over x 2  

n

(V

n

) to de�ne seminorms k:k

n;k

n

;q

n

on D(N;F ), as well as a basis of open

zero-neighbourhoods V(k; q; ") for D(N;F ), where k 2 (N

0

)

N

, q 2 (�

2

)

N

, " 2 (R

+

)

N

.

3.7. To prove the ontinuity of f at 0, let arbitrary sequenes k = (k

n

) 2 (N

0

)

N

,

" = ("

n

) 2 (R

+

)

N

, and q = (q

n

) 2 (�

2

)

N

be given. Set F

n

:= fm 2 N : U

m

\K

n

6= ;g

for n 2 N. The overing (U

m

)

m2N

being loally �nite, F

n

is a �nite set. Furthermore,

N

m

:= fn 2 N : m 2 F

n

g = fn 2 N : U

m

\ K

n

6= ;g is �nite for eah m, as U

m

is

relatively ompat and (

e

U

n

)

n2N

is loally �nite.

Next, P being an open 0-neighbourhood, by 3.6 we �nd  = (

n

) 2 (N

0

)

N

, � =

(�

n

) 2 (�

1

)

N

, and � = (�

n

) 2 (R

+

)

N

suh that U(; �; �) � P .

Sine f j

P\C

1

K

n

(M;E)

is ontinuous at 0 for n 2 N and f(0) = 0, we �nd `

n

2 N

0

,

p

n

2 �

1

, and r

n

> 0 suh that `

n

� 

m

, p

n

� �

m

, and r

n

< �

m

for all m 2 F

n

, and

suh that kf()k

n;k

n

;q

n

< "

n

for all  2 C

1

K

n

(M;E) suh that kk

m;`

n

;p

n

< r

n

for

all m 2 F

n

(note that the latter ondition ensures  2 P ). As a onsequene of the

Leibniz Rule for the di�erentiation of produts, there is s

n

2 ℄0; r

n

℄ suh that, for all

m 2 F

n

, we have kh

n

� k

m;`

n

;p

n

< r

n

, for all  2 D(M;E) satisfying kk

m;`

n

;p

n

< s

n

(f. [3, proof of Prop. 4.8℄). Given m 2 N, hoose t

m

> 0 suh that t

m

� s

n

for all

n 2 N

m

, set �

m

:= supf`

n

: n 2 N

m

g 2 N

0

, and pik u

m

2 �

1

suh that u

m

� p

n

for

all n 2 N

m

. Set t := (t

m

), � := (�

m

), u := (u

m

).

Let  2 U(�; u; t) � U(; �; �) � P . For eah n 2 N, we have h

n

�  2 C

1

K

n

(M;E)

and kh

n

�k

m;`

n

;p

n

< r

n

for all m 2 F

n

. Hene kf()k

n;k

n

;q

n

= kf(h

n

�)k

n;k

n

;q

n

< "

n

,

noting that f()j

V

n

= f(h

n

� )j

V

n

sine h

n

j

U

n

� 1. Thus f(U(�; u; t)) � V(k; q; "),

and thus f is ontinuous at 0, as required. 2



6

4. Smoothness of omposition on End



(R

n

)

We study a monoid of smooth self-maps of R

n

losely related to Di�(R

n

).

De�nition 4.1. Let End



(R

n

) be the set of all smooth mappings  : R

n

! R

n

whih

oinide with id

R

n

outside some ompat set. Thus End



(R

n

) = id

R

n

+D(R

n

;R

n

) �

C

1

(R

n

;R

n

). Clearly End



(R

n

) is a monoid under omposition, with identity ele-

ment id

R

n

. We give End



(R

n

) the smooth manifold struture making the bijetion

� : D(R

n

;R

n

)! End



(R

n

);  7! id

R

n

+ 

a di�eomorphism.

It is easily veri�ed that �

�1

(�() Æ �(�)) = � +  Æ (id

R

n

+ �). Thus, to establish

smoothness of the omposition map End



(R

n

)�End



(R

n

)! End



(R

n

), we only need

to show that g : D(R

n

;R

n

) �D(R

n

;R

n

) ! D(R

n

;R

n

), g(; �) :=  Æ (id

R

n

+ �) is a

smooth map. The following fat will be used, whih follows from [10, Cor. 3.13℄ (see

[6, Appendix℄ for an elementary proof; [4, Prop. 11.3℄ for generalizations):

Lemma 4.2. The omposition map

�: C

1

(R

n

;R

m

)� C

1

(R

d

;R

n

)! C

1

(R

d

;R

m

); �(; �) :=  Æ �

is smooth, for all d;m; n 2 N

0

. Given ; 

1

2 C

1

(R

n

;R

m

) and �; �

1

2 C

1

(R

d

;R

n

),

we have d�(; �; 

1

; �

1

) = d Æ (�; �

1

) + 

1

Æ �. 2

Lemma 4.3. The mapping g : D(R

n

;R

n

) � D(R

n

;R

n

) ! D(R

n

;R

n

), g(; �) :=

 Æ (id

R

n

+ �) is smooth, with di�erential given by

dg(; �; 

1

; �

1

) = d Æ (id

R

n

+ �; �

1

) + 

1

Æ (id

R

n

+ �) for ; 

1

; �; �

1

2 D(R

n

;R

n

).

Proof. Given 

0

; �

0

2 D(R

n

;R

n

), we have to show that g is smooth on some open

neighbourhood of (

0

; �

0

). Set P := f(; �) 2 D(R

n

;R

n

)

2

: k�k

sup

< k�

0

k

sup

+ 1g,

where k�k

sup

:= maxfk�(x)k

1

: x 2 R

n

g, using the k:k

1

-norm on R

n

. Then P is an

open neighbourhood of (

0

; �

0

) in D(R

n

;R

n

)

2

�

=

D(R

n

;R

2n

). To see that f := gj

P

is

smooth, we verify the hypotheses of the Smoothness Theorem.

f is almost loal. Indeed, pik a bijetion j : N! Z

n

, k 7! j

k

and set V

k

:= B

2

(j

k

),

f

V

k

:= B

3

(j

k

) for k 2 N, where B

2

(j

k

) denotes the open ball of radius 2 about j

k

in R

n

, with respet to the k:k

1

-norm. Set r := 3 + k�

0

k

sup

. Then, for any x 2 V

k

and (; �) 2 P , we have f(; �)(x) = (x + �(x)), where kj

k

� (x + �(x))k

1

< r.

Aordingly, f(; �)j

V

k

only depends on (; �)j

U

k

, where U

k

:= B

r

(j

k

) � V

k

. We

set

f

U

k

:= B

2r

(j

k

). Then (U

k

), (

e

U

k

), (V

k

), and (

e

V

k

) are sequenes as desribed in

De�nition 3.1. Thus f is almost loal.

It remains to show that, given any ompat subset K � R

n

, the mapping f

K

:=

f j

P\C

1

K

(R

n

;R

2n

)

is smooth. To see this, given K, we observe that if (; �) 2 P \

C

1

K

(R

n

;R

n

)

2

and f(; �)(x) 6= 0 for some x 2 R

n

, then (x + �(x)) 6= 0 and thus

x + �(x) 2 supp() � K, entailing that x 2 K � �(x) � K + B

r

(0) =: R. Hene

f

K

takes its values in the vetor subspae C

1

R

(R

n

;R

n

) of D(R

n

;R

n

), whih also is a
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losed vetor subspae of C

1

(R

n

;R

n

) (with the same indued topology). It therefore

suÆes to show that f

K

is smooth as a map into C

1

(R

n

;R

n

), and has the desired

di�erential. Let � : C

1

(R

n

;R

n

) � C

1

(R

n

;R

n

) ! C

1

(R

n

;R

n

) be the omposition

map, whih is smooth by Lemma 4.2. Considering f

K

as a map into C

1

(R

n

;R

n

), we

have f

K

(; �) = �(; id

R

n

+ �) and thus f

K

= � Æ h, where

h : P \ C

1

K

(R

n

;R

2n

)! C

1

(R

n

;R

2n

) ; h(; �) := (; id

R

n

+ �)

is a restrition of a ontinuous aÆne linear map and hene smooth, with dh(; �; 

1

; �

1

)

= (

1

; �

1

) for all (; �) 2 P \ C

1

K

(R

n

;R

2n

) and (

1

; �

1

) 2 C

1

K

(R

n

;R

2n

). By the

Chain Rule, f

K

= � Æ h is smooth. Furthermore, for eah K ontaining the support

supp(

0

; �

0

), the Chain Rule, Lemma 4.2 and the above formula for dh yield

dg(

0

; �

0

; 

1

; �

1

) = d(f

K

)(

0

; �

0

; 

1

; �

1

) = d�

�

h(

0

; �

0

); dh(

0

; �

0

; 

1

; �

1

)

�

= d

0

Æ (id

R

n

+ �

0

; �

1

) + 

1

Æ (id

R

n

+ �

0

)(4.1)

for all (

1

; �

1

) 2 C

1

K

(R

n

;R

n

)

2

. Now Theorem 3.2 shows that f is smooth, en-

tailing that g is smooth on an open neighbourhood of (

0

; �

0

). As D(R

n

;R

2n

) =

S

K

C

1

K

(R

n

;R

2n

), Equation (4.1) shows that dg has the asserted form. 2

5. Global oordinates for Di�



(R

n

)

In this setion, we show that the unit group Di�



(R

n

) := End



(R

n

)

�

of End



(R

n

) is

open in End



(R

n

). The latter being a topologial monoid, we only need to show that

Di�



(R

n

) is a neighbourhood of id

R

n

in End



(R

n

).

Lemma 5.4. Let U := f 2 D(R

n

;R

n

) : max

x2R

n

kd(x; �)k

op

< 1g, where k:k

op

is the operator norm on L(R

n

) with respet to the maximum-norm on R

n

. Then U is

an open zero-neighbourhood in D(R

n

;R

n

), and �(U) � Di�



(R

n

).

Proof. Clearly U is open. Given  2 U , set r := max

x2R

n

kd(x; �)k

op

< 1.

Step 1. For eah x 2 R

n

, we have d�()(x; �) = id

R

n

+ d(x; �) 2 L(R

n

)

�

, as

kd(x; �)k

op

< 1. By the Inverse Funtion Theorem, �() is a loal di�eomorphism.

Step 2: �() is injetive. In fat, suppose that x = (x

i

) and y = (y

i

) are distint

elements of R

n

. Then there is j 2 f1; : : : ; ng suh that jy

j

�x

j

j = ky�xk

1

6= 0. The

jth oordinate of �()(y)� �()(x) is given by

�()(y)

j

� �()(x)

j

= y

j

� x

j

+ (y)

j

� (x)

j

:(5.2)

Sine

j(y)

j

�(x)

j

j =

�

�

�

�

Z

1

0

d(x+ t(y � x); y � x)

j

dt

�

�

�

�

� r�ky�xk

1

= rjy

j

�x

j

j < jy

j

�x

j

j ;

Equation (5.2) shows that �()(y)

j

� (�)(x)

j

6= 0 and thus �()(x) 6= �()(y).

Step 3: �() is surjetive. To see this, hoose a onneted, ompat subset L 6= ;

of R

n

ontaining K := supp() in its interior. Sine �()(x) = x for all x 2 R

n

nK

and �() is injetive, we dedue that �()(K) � K, and thus �()(L) � L. Set
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f := �()j

L

L

: L ! L. Sine �() is a loal di�eomorphism and thus an open map,

the mapping f j

L

0
is open (where L

0

denotes the interior of L in R

n

). Furthermore,

f j

LnK

= id

L

j

LnK

is an open map on the open subset L nK of L. Sine L = L

0

[(L nK),

we dedue that f is an open map. Thus f(L) is a non-empty, open, ompat subset

of the onneted topologial spae L, and therefore �()(L) = f(L) = L. Sine

�()(R

n

nL) = R

n

nL (as �()j

R

n

nL

= id

R

n

j

R

n

nL

), we dedue that �()(R

n

) = R

n

.

Thus �() 2 Di�



(R

n

). 2

By the preeding, 
 := �

�1

(Di�



(R

n

)) is an open subset of D(R

n

;R

n

).

5)

We retain

the urrent meaning of the symbols U and 
 for the remainder of the artile.

6. Smoothness of inversion

In this setion, we show that inversion is smooth on Di�



(R

n

).

Given  2 
, de�ne 

�

:= �

�1

(�()

�1

). Thus



�

+  Æ (id

R

n

+ 

�

) = 0 and  + 

�

Æ (id

R

n

+ ) = 0 :(6.1)

The group multipliation on Di�



(R

n

) being smooth, it suÆes to show that � is

smooth on U . Note that, for eah ompat subset K � R

n

and  2 C

1

K

(R

n

;R

n

)\U ,

we have 

�

2 C

1

K

(R

n

;R

n

) (see proof of Lemma 5.4).

Lemma 6.1. For eah ompat subset K of R

n

, the mapping

f : U \ C

1

K

(R

n

;R

n

)! C

1

K

(R

n

;R

n

);  7! 

�

is smooth.

Proof. Sine C

1

K

(R

n

;R

n

) is a Fr�ehet spae and U \C

1

K

(R

n

;R

n

) an open subset,

we only need to show that f is a 

1

-map in the sense of onvenient di�erential alulus,

viz. f is smooth along smooth urves. To verify this property, we proeed along the

lines of [10, p. 455℄. Let  : R! C

1

K

(R

n

;R

n

) \ U , t 7! 

t

be a smooth urve; we have

to show that f Æ  is a smooth urve. De�ne 

^

: R�R

n

! R

n

, 

^

(t; x) := 

t

(x), and

(f Æ )

^

: R�R

n

! R

n

, (f Æ )

^

(t; x) := (f(

t

))(x) = (

t

)

�

(x). Then 

^

is smooth by

[10, Thm. 3.12℄, and (f Æ )

^

satis�es the equation

(f Æ )

^

(t; x) + 

^

(t; x+ (f Æ )

^

(t; x)) = 0

for all (t; x) 2 R�R

n

, by (6.1). Thus H(t; x; (f Æ )

^

(t; x)) = 0 where

H : R�R

n

�R

n

! R

n

; H(t; x; y) := y + 

^

(t; x+ y) = y + 

t

(x+ y) :

The partial di�erential of H with respet to the y-variable is given by d

3

H(t; x; y; �) =

id

R

n

+ d

t

(x+ y; �) = d(�(

t

))(x+ y; �) 2 GL(R

n

), for all t; x; y. Note that, for �xed t

and x, the equation 0 = H(t; x; y) = y + 

t

(x + y) has a unique solution y. In fat,

y := (f Æ )

^

(t; x) is one solution; if there was a seond solution y

1

6= y, we would have

y � y

1

= 

t

(x+ y

1

)� 

t

(x + y) =

Z

1

0

d

t

(x+ y + s � (y

1

� y); y

1

� y) ds :

5)

If n = 1, it easy to see that 
 = f 2 D(R) : (8x 2 R) 

0

(x) > �1g.
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As 

t

2 U , in this equation the right hand side has k:k

1

-norm properly smaller than

the left hand side (f. proof of Lemma 5.4), whih is absurd; thus a seond solution

y

1

6= y annot exist. Due to global uniqueness of solutions, we dedue from the

standard Impliit Funtion Theorem that (f Æ )

^

is a smooth map. Therefore f Æ  is

smooth ([10, Thm. 3.12℄ or [15, Thm. III.4℄). 2

Given R > 0, set U

R

:= f 2 U : kk

sup

< Rg. Then U

R

is an open subset of U ,

and U =

S

R>0

U

R

.

Lemma 6.2. We have B

r

(x) � (id

R

n

+ )(B

r+R

(x)), for all r > 0, x 2 R

n

, and

 2 U

R

.

Proof. Sine id

R

n

+  = �() 2 Di�(R

n

) is a bijetion, for every y 2 B

r

(x) there

is a uniquely determined element z 2 R

n

suh that z + (z) = �()(z) = y. Then

kz�xk

1

= ky� (z)�xk

1

� ky�xk

1

+ k(z)k

1

< r+R, whene z 2 B

r+R

(x). 2

Lemma 6.3. If R; r > 0 and x 2 R

n

, then for all ; � 2 U

R

suh that j

B

r+R

(x)

=

�j

B

r+R

(x)

, we have 

�

j

B

r

(x)

= �

�

j

B

r

(x)

.

Proof. Let y 2 B

r

(x). Lemma 6.2 gives z 2 B

r+R

(x) suh that z+ (z) = y. Then



�

(y) = 

�

(z + (z)) = �(z) = ��(z) = �

�

(z + �(z)) = �

�

(z + (z)) = �

�

(y) ;

using Equation (6.1) to obtain the seond and forth equality. 2

Lemma 6.4. The mapping f : U ! D(R

n

;R

n

),  7! 

�

is smooth.

Proof. In view of the Smoothness Theorem 3.2 and Lemma 6.1, it suÆes to prove

that, for eah R > 0, the mapping f

R

:= f j

U

R

is almost loal. De�ne V

k

:= B

2

(j

k

),

e

V

k

:= B

3

(j

k

), U

k

:= B

2+R

(j

k

),

e

U

k

:= B

3+R

(j

k

) for k 2 N, where j

�

denotes a bijetion

N ! Z

n

. In view of Lemma 6.3, f

R

, together with the sequenes (V

k

)

k2N

(

e

U

k

)

k2N

,

(V

k

)

k2N

, and (

e

V

k

)

k2N

, satis�es the onditions formulated in De�nition 3.1. 2

Summing up:

Theorem 6.5. Di�



(R

n

), equipped with the smooth manifold struture making the

bijetion � : D(R

n

;R

n

) � 
! Di�



(R

n

),  7! id

R

n

+ a di�eomorphism, is a smooth

Lie group in the sense of Milnor [14℄. 2

7. The Lie group struture on Di�(R

n

)

We show that the group Di�(R

n

) of all di�eomorphisms of R

n

an be made a smooth

Lie group in the sense of Milnor, ontaining Di�



(R

n

) as an open submanifold.

Note that Di�



(R

n

) is a normal subgroup of Di�(R

n

): Given  2 Di�(R

n

) and

� = id

R

n

+ � 2 Di�



(R

n

), the di�eomorphism I



(�) :=  Æ � Æ 

�1

2 Di�(R

n

)

satis�es I



(�)(x) = x for all x 2 R

n

outside the ompat set (supp(�)); thus I



(�) 2

Di�



(R

n

).



10

Theorem 7.1. There is a uniquely determined smooth manifold struture on the

group Di�(R

n

) turning it into a Lie group and making Di�



(R

n

), equipped with the

Lie group struture desribed in Theorem 6.5, an open submanifold.

Proof. As Di�



(R

n

) � Di�(R

n

) already is a smooth Lie group, in view of the \loal

haraterization of Lie groups" stated in [3, Prop. 1.13℄, we only need to show that,

for eah  2 Di�(R

n

), the automorphism J



: Di�



(R

n

)! Di�



(R

n

), � 7!  Æ � Æ 

�1

of the normal subgroup Di�



(R

n

) � Di�(R

n

) is smooth. Thus, in terms of the global

hart � : 
! Di�(R

n

), � 7! id

R

n

+ �, we have to show that

f := �

�1

Æ J



Æ � : D(R

n

;R

n

)! D(R

n

;R

n

); � 7!  Æ (id

R

n

+ �) Æ 

�1

� id

R

n

is smooth.

Step 1: f is almost loal. Indeed, given any bijetion j

�

: N ! Z

n

, we de�ne

V

k

:= (B

2

(j

k

)),

e

V

k

:= (B

3

(j

k

)), U

k

:= B

2

(j

k

),

e

U

k

:= B

3

(j

k

) for k 2 N. Then f ,

together with the sequenes of open sets (U

k

)

k2N

, (

e

U

k

)

k2N

, (V

k

)

k2N

, and (

e

V

k

)

k2N

,

apparently satis�es the onditions of almost loality desribed in De�nition 3.1.

Step 2: f j


\C

1

K

(R

n

;R

n

)

is smooth, for eah ompat subset K � R

n

. To see this, note

�rst that, for eah � 2 
\C

1

K

(R

n

;R

n

), the map f(�) = J



(id

R

n

+ �)� id

R

n

vanishes

outside (supp(�)) � (K). Thus f j


\C

1

K

(R

n

;R

n

)

is a map into the losed vetor sub-

spae C

1

(K)

(R

n

;R

n

) of C

1

(R

n

;R

n

), and we only need to show that f j


\C

1

K

(R

n

;R

n

)

is smooth as a map into C

1

(R

n

;R

n

). But this is lear, beause

f(�) = �

�

; �(id

R

n

+ �; 

�1

)

�

� id

R

n

= �

�

; �(h(�); 

�1

)

�

� id

R

n

for eah � 2 
 \ C

1

K

(R

n

;R

n

), where � : C

1

(R

n

;R

n

) � C

1

(R

n

;R

n

) ! C

1

(R

n

;R

n

)

is the omposition map (whose smoothness we realled in Lemma 4.2), and where

h : 
 \ C

1

K

(R

n

;R

n

) ! C

1

(R

n

;R

n

), h(�) := id

R

n

+ � is a restrition of a ontinu-

ous aÆne linear map and hene smooth as well. Using the Chain Rule, we dedue

that indeed f j


\C

1

K

(R

n

;R

n

)

is smooth as a map into C

1

(R

n

;R

n

). The hypotheses of

Theorem 3.2 having been veri�ed, f is smooth. 2
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