
Di�(R

n

) as a Milnor-Lie group

By Helge Gl

�

o
kner of Darmstadt

(Re
eived Mar
h 7, 2002; revised version Mar
h 4, 2005)

Abstra
t. We des
ribe a 
onstru
tion of the Lie group stru
ture on the di�eomorphism group

Di�(R

n

), modelled on the spa
e D(R

n

;R

n

) of R

n

-valued test fun
tions on R

n

, in John Milnor's

setting of in�nite-dimensional Lie groups. New tools are introdu
ed to simplify this task.

1. Introdu
tion

It is well-known that the di�eomorphism group Di�(K) of a 
ompa
t smooth man-

ifold K 
an be made a Fr�e
het-Lie group, modelled on the Fr�e
het spa
e of smooth

ve
tor �elds on K. Sin
e all popular basi
 notions of \smooth" mappings 
oin
ide

for mappings between open subsets of Fr�e
het spa
es (
f. [9℄ and [10, Thm. 4.11 (a),

Thm. 12.8℄), it does not matter mu
h whi
h framework of di�erential 
al
ulus and


orresponding 
on
ept of Lie groups is used here; dis
ussions based on smooth maps

in the sense of Mi
hal-Bastiani (also known as Keller's C

1




-maps) 
an be found in [8,

p. 92℄ and [14℄; a dis
ussion in the \
onvenient setting" of analysis by Fr�oli
her, Kriegl

and Mi
hor is given in [1, Thm. 4.7.5℄ and [10, x43℄.

1)

The situation 
hanges dramati
ally if one 
onsiders the di�eomorphism group Di�(M)

of a non-
ompa
t, �nite-dimensional smooth manifold M , whi
h one would like to

model on the LF-spa
eD(M;TM) of 
ompa
tly supported, smooth ve
tor �elds onM .

In this 
ase, Mi
hal-Bastiani smoothness of mappings on D(M;TM) (whi
h implies


ontinuity) is a mu
h stronger 
ondition than being smooth in the 
onvenient sense,

already on D(R; TR)

�

=

D(R): The self-map D(R) ! D(R), 
 7! 
 Æ 
 � 
(0) of the

spa
e of real-valued test-fun
tions on the line is smooth in the 
onvenient sense, but

dis
ontinuous [6℄.
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1)

Omori's interpretation of Di�(K) as an ILB-Lie group [16℄ and Hamilton's interpretation of

Di�(K) as a \tame" Lie group ([8, Thm. 2.3.5℄) refer to stronger, spe
ialized notions of smoothness

spe
i�
 to Fr�e
het spa
es. Cf. also [11℄, where Di�(K) was �rst studied.
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In the setting of Keller's C

1




-theory, Di�(M) was made a Lie group byMi
hor [12℄. But

the 
onstru
tion was rather 
ompli
ated and soon after, Mi
hor abandoned Keller's

C

1




-theory in favour of the 
onvenient setting of analysis. In this setting, Di�(M) was

made a Lie group in [10℄, using a simpler 
onstru
tion (see [10℄, 
omments on p. 455).

However, one had to pay a pri
e: Instead of the quite natural topology on Di�(M) used

in Keller's C

1




-theory (
orresponding to the lo
ally 
onvex topology on D(M;TM)),

whi
h makes Di�(M) a topologi
al group, the 
onvenient approa
h equips Di�(M)

with a properly �ner topology whi
h does not make Di�(M) a topologi
al group: the

group multipli
ation is dis
ontinuous (
f. [17℄).

In this arti
le, we introdu
e a 
ertain 
lass of mappings

f : D(M;E) ! D(N;F )

between spa
es of ve
tor-valued test fun
tions (the \almost lo
al mappings;" see De�-

nition 3.1). Being almost lo
al is a mild regularity property, whi
h is satis�ed (at least

lo
ally) by all mappings en
ountered in the 
onstru
tion of di�eomorphism groups.

Now the gist is that an almost lo
al map f is smooth (in the Mi
hal-Bastiani sense)

if and only if its restri
tion to ea
h of the steps C

1

K

(M;E) of the dire
ted system is

smooth (Theorem 3.2). If E is �nite-dimensional, then C

1

K

(M;E) is a Fr�e
het spa
e

and hen
e smoothness of mappings on this spa
e 
oin
ides with smoothness in the


onvenient sense, whi
h is (frequently) easily veri�ed. In this way, we 
an pro�t from

the advantages of both settings of analysis: One the one hand, we 
an work with the

natural topologies and ensure smoothness in the stronger sense of Keller's C

1




-theory

(where smooth maps are, in parti
ular, 
ontinuous). On the other hand, on
e we have

veri�ed that a mapping of interest is almost lo
al, we 
an use the powerful tools of


onvenient 
al
ulus to 
he
k its smoothness.

To illustrate the e�e
tiveness of this idea, we des
ribe in Se
tions 4{7 a new 
onstru
-

tion of the Lie group stru
ture on the di�eomorphism group of R

n

. We remark that

the 
on
ept of an almost lo
al map 
an be adapted to mappings between spa
es of

se
tions in ve
tor bundles (see [5℄, [7℄ and [4, Defn. F.29 & Thm.F.30℄, where in fa
t

a slightly more general de�nition of almost lo
al maps is given).

2)

In [7℄, almost lo
al

maps (and related novel tools, \pat
hed maps") are used to 
onstru
t the Lie group

stru
ture on the di�eomorphism group Di�(M) for �-
ompa
t M , and also to verify

that Di�(M) is a regular Lie group in Milnor's sense.

3)

The author believes that the

novel arguments and simpli�
ations be
ome parti
ularly 
lear in the easiest possible


ase of R

n

treated here, unveiled by the additional te
hni
al ma
hinery needed for the

manifold 
ase.

Following the pattern of Se
tions 4{7, it is also possible to 
reate Lie group stru
tures

on other versions of di�eomorphism groups. Novel examples are the Fr�e
het-Lie group

Di�

S

(R

n

) of di�eomorphisms di�ering from id

R

n

by an R

n

-valued rapidly de
reasing

map, or the Fr�e
het-Lie group Di�

b

(R

n

) of di�eomorphisms di�ering from id

R

n

by a

2)

While the 
ited papers use abstra
t fun
tional analyti
 methods to dis
uss almost lo
al maps,

our present approa
h is quite expli
it.

3)

For Di�




(M), this was asserted (without proof) in [13℄, using di�erent terminology. For 
om-

pa
t M , the proof is given in [14℄. Regularity in the 
onvenient sense was proved in [10℄.
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bounded smooth map with bounded partial derivatives of all orders (details will be

given in [18℄; it is even possible to repla
e R

n

with a Bana
h spa
e here). In [4℄, a vari-

ant of the present approa
h is used to turn di�eomorphism groups of �nite-dimensional

smooth manifolds over lo
al �elds into Lie groups.

2. Preliminaries

We re
all one possible de�nition of smooth maps in the sense of Mi
hal-Bastiani (see

[2℄, [8℄, [12℄, [14℄ for more information): Let E and F be lo
ally 
onvex spa
es, and

U be an open subset of E. A map f : U ! F is smooth if the two-sided dire
tional

derivatives d

1

f(x; v) := df(x; v) := lim

t!0

t

�1

(f(x + tv) � f(x)) 2 F exist for all

(x; v) 2 U � E, the higher iterated di�erentials d

k

f := d(d

k�1

f) : U � E

2

k

�1

! F

exist for all 2 � k 2 N, and all of the mappings f , d

1

f , d

2

f , : : : are 
ontinuous.

If M is a �-
ompa
t �nite-dimensional smooth manifold and E a lo
ally 
onvex

spa
e, then C

1

(M;E), the spa
e of E-valued smooth mappings on M , is a lo
ally


onvex spa
e in a natural way; given a 
ompa
t subset K � M , the 
losed ve
tor

subspa
e C

1

K

(M;E) := f
 2 C

1

(M;E) : 
j

MnK

= 0g � C

1

(M;E) is given the in-

du
ed topology. The spa
e of E-valued test fun
tions is D(M;E) :=

S

K

C

1

K

(M;E) =

lim

�!

K

C

1

K

(M;E) (with K running through the 
ompa
t subsets of M), equipped with

the lo
ally 
onvex dire
t limit topology. It indu
es the given topology on ea
h subspa
e

C

1

K

(M;E) (see [3℄ for all this). We abbreviate D(M) := D(M;R).

3. Almost lo
al mappings between spa
es of test fun
tions

Suppose that f : D(R) ! D(R) is a mapping whose restri
tion to C

1

K

(R) is smooth,

for ea
h 
ompa
t subset K of R. Then f need not be smooth, and in fa
t not even


ontinuous, as the example f(
) := 
 Æ 
 � 
(0) shows (see [6℄). Roughly speaking,

the pathology in this example is 
aused by the extreme nonlo
ality of f : For ea
h

" > 0 and x 2 R, there are 
; � 2 D(R) whi
h 
oin
ide o� [�"; "℄, but su
h that

f(
)(x) 6= f(�)(x). In 
ontrast, no problems arise when the values f(
)(x) only depend

on 
(y) for y 
lose to x (and in slightly more general situations), in a sense to be made

pre
ise presently. In order to be useful elsewhere, we formulate our result for mappings

between open subsets of spa
es of test fun
tions on (�-
ompa
t) �nite-dimensional

manifolds, with values in lo
ally 
onvex spa
es. For our dis
ussion of Di�(R

n

), it

would be suÆ
ient to 
onsider the spe
ial 
ase where M = N = R

n

and both E

and F are �nite-dimensional real ve
tor spa
es.

De�nition 3.1. Let M and N be �nite-dimensional smooth manifolds, E and F

lo
ally 
onvex spa
es, and P be an open subset of D(M;E). A map f : P ! D(N;F )

is 
alled almost lo
al

4)

if there exist sequen
es (U

n

)

n2N

and (

e

U

n

)

n2N

of relatively


ompa
t open subsets U

n

� M and open neighbourhoods

e

U

n

� M of the 
losures

4)

More pre
isely, we should 
all su
h mappings \spe
ial almost lo
al maps," be
ause in the mean-

time a more general notion of almost lo
al maps has been developed (see [5℄, [7℄, [4, Defn. F.29℄).
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U

n

, as well as sequen
es (V

n

)

n2N

and (

e

V

n

)

n2N

of open, relatively 
ompa
t subsets

V

n

� N and open neighbourhoods

e

V

n

� N of the 
losures V

n

, su
h that the following


onditions are satis�ed:

(a) (U

n

)

n2N

is an open 
over of M , and (

e

U

n

)

n2N

is lo
ally �nite.

(b) (V

n

)

n2N

is an open 
over of N , and (

e

V

n

)

n2N

is lo
ally �nite.

(
) For all n 2 N and 
; � 2 P su
h that 
j

U

n

= �j

U

n

, we have f(
)j

V

n

= f(�)j

V

n

.

(d)

e

U

n

and

e

V

n

are 
oordinate neighbourhoods for ea
h n 2 N, i.e., there are C

1

-

di�eomorphisms �

n

:

e

U

n

! A

n

and  

n

:

f

V

n

! B

n

onto open subsets A

n

and B

n

of R

a

and R

b

, resp., where a := dim(M), b := dim(N).

The following result is the te
hni
al ba
kbone of our dis
ussion of Di�(R

n

).

Theorem 3.2. (Smoothness Theorem). Let M and N be �nite-dimensional smooth

manifolds, E and F be lo
ally 
onvex spa
es, P be an open subset of D(M;E), and

f : P ! D(N;F ) be a mapping. If f

K

:= f j

P\C

1

K

(M;E)

is smooth for every 
ompa
t

subset K �M and f is almost lo
al, then f is smooth.

Proof . The proof will be given in various steps. For 
onvenien
e of notation,

we abbreviate P

j

:= P � D(M;E)

2

j

�1

� D(M;E)

2

j

for ea
h j 2 N, and identify

D(M;E)

2

j

with D(M;E

2

j

) in the natural way.

3.3. We 
laim: d

j

f : P

j

! D(N;F ) exists, for ea
h j 2 N. Furthermore,

d

j

f j

P

j

\C

1

K

(M;E

2

j

)

is smooth, for ea
h 
ompa
t subset K of M , and d

j

f(
)j

V

n

=

d

j

f(


1

)j

V

n

for all 
; 


1

2 P

j

su
h that 
j

U

n

= 


1

j

U

n

.

Case j = 1: Given 
 2 P and � 2 D(M;E), there is " > 0 su
h that 
+ ℄� "; "[ � � P .

Set K := supp(
)[ supp(�); then 
+ t� 2 P \C

1

K

(M;E) for all t 2 R

�

, jtj < ". Sin
e

f

K

is smooth, the limit df(
; �) = lim

t!0

t

�1

(f(
+ t�)� f(
)) exists, and is given by

df

K

(
; �). A

ordingly, for ea
h 
ompa
t subset K of M ,

df j

P

1

\C

1

K

(M;E

2

)

= d(f

K

) ;

identifying D(M;E)

2

with D(M;E

2

) and C

1

K

(M;E)

2

with C

1

K

(M;E

2

) in the obvious

way. Here (df)

K

= d(f

K

) : P

1

\ C

1

K

(M;E

2

) ! D(N;F ) is smooth, and df(
; �)j

V

n

=

df(


1

; �

1

)j

V

n

for all (
; �); (


1

; �

1

) 2 P

1

whi
h 
oin
ide on U

n

, sin
e (
 + t�)j

U

n

=

(


1

+ t�

1

)j

U

n

and thus t

�1

(f(
 + t�) � f(
))j

V

n

= t

�1

(f(


1

+ t�

1

) � f(


1

))j

V

n

in the


al
ulation of the dire
tional derivatives.

Indu
tion step: If the 
laim holds for all fun
tions f satisfying the hypotheses of the

theorem and all j 2 f1; : : : ; rg (where r 2 N), then d

r

f may play the role of f , and

thus d

r+1

f = d(d

r

f) has the required properties by the 
ase j = 1. Thus 3.3 holds.

3.4. It remains to prove that d

j

f is 
ontinuous for ea
h j 2 N

0

. As, by 3.3, the

hypotheses of the proposition are satis�ed when f is repla
ed with d

j

f , it suÆ
es to

show that f is 
ontinuous. Now, given 


0

2 P , apparently g := f(


0

+ �) � f(


0

) :
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P � 


0

! D(N;F ) is almost lo
al and gj

(P�


0

)\C

1

K

(M;E)

is smooth, for ea
h 
ompa
t

subset K �M . The mapping f is 
ontinuous at 


0

if and only if g is 
ontinuous at 0.

It therefore suÆ
es to 
onsider the 
ase where P is an open zero-neighbourhood and

f(0) = 0 (whi
h we assume now), and show that f is 
ontinuous at 0.

3.5. Sin
e f is almost lo
al, we �nd sequen
es (U

n

)

n2N

, (

e

U

n

)

n2N

, (V

n

)

n2N

, (

e

V

n

)

n2N

,

(�

n

)

n2N

and ( 

n

)

n2N

as des
ribed in De�nition 3.1. For ea
h n 2 N, we 
hoose

h

n

2 D(M) su
h that K

n

:= supp(h

n

) �

e

U

n

and h

n

is identi
ally 1 on U

n

.

3.6. Let �

1

be a set of 
ontinuous seminorms on E de�ning its lo
ally 
onvex

topology, and whi
h is dire
ted in the sense that for all p

1

; p

2

2 �

1

, there is p 2 �

1

su
h that p � p

i

pointwise for i 2 f1; 2g. Given n 2 N, k 2 N

0

, and p 2 �

1

, the

mapping

k:k

n;k;p

: D(M;E)! [0;1[ ; k
k

n;k;p

:= sup

j�j�k

sup

x2�

n

(U

n

)

p(�

�

(
 Æ �

�1

n

)(x))

is a 
ontinuous seminorm on D(M;E) (using standard notation for multi-indi
es � 2

(N

0

)

a

and partial derivatives). The sets

U(k; p; ") := f
 2 D(M;E) : (8n 2 N) k
k

n;k

n

;p

n

< "

n

g ;

where k = (k

n

) 2 (N

0

)

N

, p = (p

n

) 2 (�

1

)

N

, and " = ("

n

) 2 (R

+

)

N

, form a basis of

open zero-neighbourhoods for D(M;E) (see, e.g., [3, Prop. 4.8℄).

Let �

2

be a dire
ted set of 
ontinuous seminorms de�ning the lo
ally 
onvex topology

on D(N;F ); pro
eeding as above, we use the seminorms q

n

2 �

2

and take suprema

over x 2  

n

(V

n

) to de�ne seminorms k:k

n;k

n

;q

n

on D(N;F ), as well as a basis of open

zero-neighbourhoods V(k; q; ") for D(N;F ), where k 2 (N

0

)

N

, q 2 (�

2

)

N

, " 2 (R

+

)

N

.

3.7. To prove the 
ontinuity of f at 0, let arbitrary sequen
es k = (k

n

) 2 (N

0

)

N

,

" = ("

n

) 2 (R

+

)

N

, and q = (q

n

) 2 (�

2

)

N

be given. Set F

n

:= fm 2 N : U

m

\K

n

6= ;g

for n 2 N. The 
overing (U

m

)

m2N

being lo
ally �nite, F

n

is a �nite set. Furthermore,

N

m

:= fn 2 N : m 2 F

n

g = fn 2 N : U

m

\ K

n

6= ;g is �nite for ea
h m, as U

m

is

relatively 
ompa
t and (

e

U

n

)

n2N

is lo
ally �nite.

Next, P being an open 0-neighbourhood, by 3.6 we �nd 
 = (


n

) 2 (N

0

)

N

, � =

(�

n

) 2 (�

1

)

N

, and � = (�

n

) 2 (R

+

)

N

su
h that U(
; �; �) � P .

Sin
e f j

P\C

1

K

n

(M;E)

is 
ontinuous at 0 for n 2 N and f(0) = 0, we �nd `

n

2 N

0

,

p

n

2 �

1

, and r

n

> 0 su
h that `

n

� 


m

, p

n

� �

m

, and r

n

< �

m

for all m 2 F

n

, and

su
h that kf(
)k

n;k

n

;q

n

< "

n

for all 
 2 C

1

K

n

(M;E) su
h that k
k

m;`

n

;p

n

< r

n

for

all m 2 F

n

(note that the latter 
ondition ensures 
 2 P ). As a 
onsequen
e of the

Leibniz Rule for the di�erentiation of produ
ts, there is s

n

2 ℄0; r

n

℄ su
h that, for all

m 2 F

n

, we have kh

n

� 
k

m;`

n

;p

n

< r

n

, for all 
 2 D(M;E) satisfying k
k

m;`

n

;p

n

< s

n

(
f. [3, proof of Prop. 4.8℄). Given m 2 N, 
hoose t

m

> 0 su
h that t

m

� s

n

for all

n 2 N

m

, set �

m

:= supf`

n

: n 2 N

m

g 2 N

0

, and pi
k u

m

2 �

1

su
h that u

m

� p

n

for

all n 2 N

m

. Set t := (t

m

), � := (�

m

), u := (u

m

).

Let 
 2 U(�; u; t) � U(
; �; �) � P . For ea
h n 2 N, we have h

n

� 
 2 C

1

K

n

(M;E)

and kh

n

�
k

m;`

n

;p

n

< r

n

for all m 2 F

n

. Hen
e kf(
)k

n;k

n

;q

n

= kf(h

n

�
)k

n;k

n

;q

n

< "

n

,

noting that f(
)j

V

n

= f(h

n

� 
)j

V

n

sin
e h

n

j

U

n

� 1. Thus f(U(�; u; t)) � V(k; q; "),

and thus f is 
ontinuous at 0, as required. 2
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4. Smoothness of 
omposition on End




(R

n

)

We study a monoid of smooth self-maps of R

n


losely related to Di�(R

n

).

De�nition 4.1. Let End




(R

n

) be the set of all smooth mappings 
 : R

n

! R

n

whi
h


oin
ide with id

R

n

outside some 
ompa
t set. Thus End




(R

n

) = id

R

n

+D(R

n

;R

n

) �

C

1

(R

n

;R

n

). Clearly End




(R

n

) is a monoid under 
omposition, with identity ele-

ment id

R

n

. We give End




(R

n

) the smooth manifold stru
ture making the bije
tion

� : D(R

n

;R

n

)! End




(R

n

); 
 7! id

R

n

+ 


a di�eomorphism.

It is easily veri�ed that �

�1

(�(
) Æ �(�)) = � + 
 Æ (id

R

n

+ �). Thus, to establish

smoothness of the 
omposition map End




(R

n

)�End




(R

n

)! End




(R

n

), we only need

to show that g : D(R

n

;R

n

) �D(R

n

;R

n

) ! D(R

n

;R

n

), g(
; �) := 
 Æ (id

R

n

+ �) is a

smooth map. The following fa
t will be used, whi
h follows from [10, Cor. 3.13℄ (see

[6, Appendix℄ for an elementary proof; [4, Prop. 11.3℄ for generalizations):

Lemma 4.2. The 
omposition map

�: C

1

(R

n

;R

m

)� C

1

(R

d

;R

n

)! C

1

(R

d

;R

m

); �(
; �) := 
 Æ �

is smooth, for all d;m; n 2 N

0

. Given 
; 


1

2 C

1

(R

n

;R

m

) and �; �

1

2 C

1

(R

d

;R

n

),

we have d�(
; �; 


1

; �

1

) = d
 Æ (�; �

1

) + 


1

Æ �. 2

Lemma 4.3. The mapping g : D(R

n

;R

n

) � D(R

n

;R

n

) ! D(R

n

;R

n

), g(
; �) :=


 Æ (id

R

n

+ �) is smooth, with di�erential given by

dg(
; �; 


1

; �

1

) = d
 Æ (id

R

n

+ �; �

1

) + 


1

Æ (id

R

n

+ �) for 
; 


1

; �; �

1

2 D(R

n

;R

n

).

Proof. Given 


0

; �

0

2 D(R

n

;R

n

), we have to show that g is smooth on some open

neighbourhood of (


0

; �

0

). Set P := f(
; �) 2 D(R

n

;R

n

)

2

: k�k

sup

< k�

0

k

sup

+ 1g,

where k�k

sup

:= maxfk�(x)k

1

: x 2 R

n

g, using the k:k

1

-norm on R

n

. Then P is an

open neighbourhood of (


0

; �

0

) in D(R

n

;R

n

)

2

�

=

D(R

n

;R

2n

). To see that f := gj

P

is

smooth, we verify the hypotheses of the Smoothness Theorem.

f is almost lo
al. Indeed, pi
k a bije
tion j : N! Z

n

, k 7! j

k

and set V

k

:= B

2

(j

k

),

f

V

k

:= B

3

(j

k

) for k 2 N, where B

2

(j

k

) denotes the open ball of radius 2 about j

k

in R

n

, with respe
t to the k:k

1

-norm. Set r := 3 + k�

0

k

sup

. Then, for any x 2 V

k

and (
; �) 2 P , we have f(
; �)(x) = 
(x + �(x)), where kj

k

� (x + �(x))k

1

< r.

A

ordingly, f(
; �)j

V

k

only depends on (
; �)j

U

k

, where U

k

:= B

r

(j

k

) � V

k

. We

set

f

U

k

:= B

2r

(j

k

). Then (U

k

), (

e

U

k

), (V

k

), and (

e

V

k

) are sequen
es as des
ribed in

De�nition 3.1. Thus f is almost lo
al.

It remains to show that, given any 
ompa
t subset K � R

n

, the mapping f

K

:=

f j

P\C

1

K

(R

n

;R

2n

)

is smooth. To see this, given K, we observe that if (
; �) 2 P \

C

1

K

(R

n

;R

n

)

2

and f(
; �)(x) 6= 0 for some x 2 R

n

, then 
(x + �(x)) 6= 0 and thus

x + �(x) 2 supp(
) � K, entailing that x 2 K � �(x) � K + B

r

(0) =: R. Hen
e

f

K

takes its values in the ve
tor subspa
e C

1

R

(R

n

;R

n

) of D(R

n

;R

n

), whi
h also is a
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losed ve
tor subspa
e of C

1

(R

n

;R

n

) (with the same indu
ed topology). It therefore

suÆ
es to show that f

K

is smooth as a map into C

1

(R

n

;R

n

), and has the desired

di�erential. Let � : C

1

(R

n

;R

n

) � C

1

(R

n

;R

n

) ! C

1

(R

n

;R

n

) be the 
omposition

map, whi
h is smooth by Lemma 4.2. Considering f

K

as a map into C

1

(R

n

;R

n

), we

have f

K

(
; �) = �(
; id

R

n

+ �) and thus f

K

= � Æ h, where

h : P \ C

1

K

(R

n

;R

2n

)! C

1

(R

n

;R

2n

) ; h(
; �) := (
; id

R

n

+ �)

is a restri
tion of a 
ontinuous aÆne linear map and hen
e smooth, with dh(
; �; 


1

; �

1

)

= (


1

; �

1

) for all (
; �) 2 P \ C

1

K

(R

n

;R

2n

) and (


1

; �

1

) 2 C

1

K

(R

n

;R

2n

). By the

Chain Rule, f

K

= � Æ h is smooth. Furthermore, for ea
h K 
ontaining the support

supp(


0

; �

0

), the Chain Rule, Lemma 4.2 and the above formula for dh yield

dg(


0

; �

0

; 


1

; �

1

) = d(f

K

)(


0

; �

0

; 


1

; �

1

) = d�

�

h(


0

; �

0

); dh(


0

; �

0

; 


1

; �

1

)

�

= d


0

Æ (id

R

n

+ �

0

; �

1

) + 


1

Æ (id

R

n

+ �

0

)(4.1)

for all (


1

; �

1

) 2 C

1

K

(R

n

;R

n

)

2

. Now Theorem 3.2 shows that f is smooth, en-

tailing that g is smooth on an open neighbourhood of (


0

; �

0

). As D(R

n

;R

2n

) =

S

K

C

1

K

(R

n

;R

2n

), Equation (4.1) shows that dg has the asserted form. 2

5. Global 
oordinates for Di�




(R

n

)

In this se
tion, we show that the unit group Di�




(R

n

) := End




(R

n

)

�

of End




(R

n

) is

open in End




(R

n

). The latter being a topologi
al monoid, we only need to show that

Di�




(R

n

) is a neighbourhood of id

R

n

in End




(R

n

).

Lemma 5.4. Let U := f
 2 D(R

n

;R

n

) : max

x2R

n

kd
(x; �)k

op

< 1g, where k:k

op

is the operator norm on L(R

n

) with respe
t to the maximum-norm on R

n

. Then U is

an open zero-neighbourhood in D(R

n

;R

n

), and �(U) � Di�




(R

n

).

Proof. Clearly U is open. Given 
 2 U , set r := max

x2R

n

kd
(x; �)k

op

< 1.

Step 1. For ea
h x 2 R

n

, we have d�(
)(x; �) = id

R

n

+ d
(x; �) 2 L(R

n

)

�

, as

kd
(x; �)k

op

< 1. By the Inverse Fun
tion Theorem, �(
) is a lo
al di�eomorphism.

Step 2: �(
) is inje
tive. In fa
t, suppose that x = (x

i

) and y = (y

i

) are distin
t

elements of R

n

. Then there is j 2 f1; : : : ; ng su
h that jy

j

�x

j

j = ky�xk

1

6= 0. The

jth 
oordinate of �(
)(y)� �(
)(x) is given by

�(
)(y)

j

� �(
)(x)

j

= y

j

� x

j

+ 
(y)

j

� 
(x)

j

:(5.2)

Sin
e

j
(y)

j

�
(x)

j

j =

�

�

�

�

Z

1

0

d
(x+ t(y � x); y � x)

j

dt

�

�

�

�

� r�ky�xk

1

= rjy

j

�x

j

j < jy

j

�x

j

j ;

Equation (5.2) shows that �(
)(y)

j

� 
(�)(x)

j

6= 0 and thus �(
)(x) 6= �(
)(y).

Step 3: �(
) is surje
tive. To see this, 
hoose a 
onne
ted, 
ompa
t subset L 6= ;

of R

n


ontaining K := supp(
) in its interior. Sin
e �(
)(x) = x for all x 2 R

n

nK

and �(
) is inje
tive, we dedu
e that �(
)(K) � K, and thus �(
)(L) � L. Set



8

f := �(
)j

L

L

: L ! L. Sin
e �(
) is a lo
al di�eomorphism and thus an open map,

the mapping f j

L

0
is open (where L

0

denotes the interior of L in R

n

). Furthermore,

f j

LnK

= id

L

j

LnK

is an open map on the open subset L nK of L. Sin
e L = L

0

[(L nK),

we dedu
e that f is an open map. Thus f(L) is a non-empty, open, 
ompa
t subset

of the 
onne
ted topologi
al spa
e L, and therefore �(
)(L) = f(L) = L. Sin
e

�(
)(R

n

nL) = R

n

nL (as �(
)j

R

n

nL

= id

R

n

j

R

n

nL

), we dedu
e that �(
)(R

n

) = R

n

.

Thus �(
) 2 Di�




(R

n

). 2

By the pre
eding, 
 := �

�1

(Di�




(R

n

)) is an open subset of D(R

n

;R

n

).

5)

We retain

the 
urrent meaning of the symbols U and 
 for the remainder of the arti
le.

6. Smoothness of inversion

In this se
tion, we show that inversion is smooth on Di�




(R

n

).

Given 
 2 
, de�ne 


�

:= �

�1

(�(
)

�1

). Thus




�

+ 
 Æ (id

R

n

+ 


�

) = 0 and 
 + 


�

Æ (id

R

n

+ 
) = 0 :(6.1)

The group multipli
ation on Di�




(R

n

) being smooth, it suÆ
es to show that � is

smooth on U . Note that, for ea
h 
ompa
t subset K � R

n

and 
 2 C

1

K

(R

n

;R

n

)\U ,

we have 


�

2 C

1

K

(R

n

;R

n

) (see proof of Lemma 5.4).

Lemma 6.1. For ea
h 
ompa
t subset K of R

n

, the mapping

f : U \ C

1

K

(R

n

;R

n

)! C

1

K

(R

n

;R

n

); 
 7! 


�

is smooth.

Proof. Sin
e C

1

K

(R

n

;R

n

) is a Fr�e
het spa
e and U \C

1

K

(R

n

;R

n

) an open subset,

we only need to show that f is a 


1

-map in the sense of 
onvenient di�erential 
al
ulus,

viz. f is smooth along smooth 
urves. To verify this property, we pro
eed along the

lines of [10, p. 455℄. Let 
 : R! C

1

K

(R

n

;R

n

) \ U , t 7! 


t

be a smooth 
urve; we have

to show that f Æ 
 is a smooth 
urve. De�ne 


^

: R�R

n

! R

n

, 


^

(t; x) := 


t

(x), and

(f Æ 
)

^

: R�R

n

! R

n

, (f Æ 
)

^

(t; x) := (f(


t

))(x) = (


t

)

�

(x). Then 


^

is smooth by

[10, Thm. 3.12℄, and (f Æ 
)

^

satis�es the equation

(f Æ 
)

^

(t; x) + 


^

(t; x+ (f Æ 
)

^

(t; x)) = 0

for all (t; x) 2 R�R

n

, by (6.1). Thus H(t; x; (f Æ 
)

^

(t; x)) = 0 where

H : R�R

n

�R

n

! R

n

; H(t; x; y) := y + 


^

(t; x+ y) = y + 


t

(x+ y) :

The partial di�erential of H with respe
t to the y-variable is given by d

3

H(t; x; y; �) =

id

R

n

+ d


t

(x+ y; �) = d(�(


t

))(x+ y; �) 2 GL(R

n

), for all t; x; y. Note that, for �xed t

and x, the equation 0 = H(t; x; y) = y + 


t

(x + y) has a unique solution y. In fa
t,

y := (f Æ 
)

^

(t; x) is one solution; if there was a se
ond solution y

1

6= y, we would have

y � y

1

= 


t

(x+ y

1

)� 


t

(x + y) =

Z

1

0

d


t

(x+ y + s � (y

1

� y); y

1

� y) ds :

5)

If n = 1, it easy to see that 
 = f
 2 D(R) : (8x 2 R) 


0

(x) > �1g.
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As 


t

2 U , in this equation the right hand side has k:k

1

-norm properly smaller than

the left hand side (
f. proof of Lemma 5.4), whi
h is absurd; thus a se
ond solution

y

1

6= y 
annot exist. Due to global uniqueness of solutions, we dedu
e from the

standard Impli
it Fun
tion Theorem that (f Æ 
)

^

is a smooth map. Therefore f Æ 
 is

smooth ([10, Thm. 3.12℄ or [15, Thm. III.4℄). 2

Given R > 0, set U

R

:= f
 2 U : k
k

sup

< Rg. Then U

R

is an open subset of U ,

and U =

S

R>0

U

R

.

Lemma 6.2. We have B

r

(x) � (id

R

n

+ 
)(B

r+R

(x)), for all r > 0, x 2 R

n

, and


 2 U

R

.

Proof. Sin
e id

R

n

+ 
 = �(
) 2 Di�(R

n

) is a bije
tion, for every y 2 B

r

(x) there

is a uniquely determined element z 2 R

n

su
h that z + 
(z) = �(
)(z) = y. Then

kz�xk

1

= ky� 
(z)�xk

1

� ky�xk

1

+ k
(z)k

1

< r+R, when
e z 2 B

r+R

(x). 2

Lemma 6.3. If R; r > 0 and x 2 R

n

, then for all 
; � 2 U

R

su
h that 
j

B

r+R

(x)

=

�j

B

r+R

(x)

, we have 


�

j

B

r

(x)

= �

�

j

B

r

(x)

.

Proof. Let y 2 B

r

(x). Lemma 6.2 gives z 2 B

r+R

(x) su
h that z+ 
(z) = y. Then




�

(y) = 


�

(z + 
(z)) = �
(z) = ��(z) = �

�

(z + �(z)) = �

�

(z + 
(z)) = �

�

(y) ;

using Equation (6.1) to obtain the se
ond and forth equality. 2

Lemma 6.4. The mapping f : U ! D(R

n

;R

n

), 
 7! 


�

is smooth.

Proof. In view of the Smoothness Theorem 3.2 and Lemma 6.1, it suÆ
es to prove

that, for ea
h R > 0, the mapping f

R

:= f j

U

R

is almost lo
al. De�ne V

k

:= B

2

(j

k

),

e

V

k

:= B

3

(j

k

), U

k

:= B

2+R

(j

k

),

e

U

k

:= B

3+R

(j

k

) for k 2 N, where j

�

denotes a bije
tion

N ! Z

n

. In view of Lemma 6.3, f

R

, together with the sequen
es (V

k

)

k2N

(

e

U

k

)

k2N

,

(V

k

)

k2N

, and (

e

V

k

)

k2N

, satis�es the 
onditions formulated in De�nition 3.1. 2

Summing up:

Theorem 6.5. Di�




(R

n

), equipped with the smooth manifold stru
ture making the

bije
tion � : D(R

n

;R

n

) � 
! Di�




(R

n

), 
 7! id

R

n

+
 a di�eomorphism, is a smooth

Lie group in the sense of Milnor [14℄. 2

7. The Lie group stru
ture on Di�(R

n

)

We show that the group Di�(R

n

) of all di�eomorphisms of R

n


an be made a smooth

Lie group in the sense of Milnor, 
ontaining Di�




(R

n

) as an open submanifold.

Note that Di�




(R

n

) is a normal subgroup of Di�(R

n

): Given 
 2 Di�(R

n

) and

� = id

R

n

+ � 2 Di�




(R

n

), the di�eomorphism I




(�) := 
 Æ � Æ 


�1

2 Di�(R

n

)

satis�es I




(�)(x) = x for all x 2 R

n

outside the 
ompa
t set 
(supp(�)); thus I




(�) 2

Di�




(R

n

).
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Theorem 7.1. There is a uniquely determined smooth manifold stru
ture on the

group Di�(R

n

) turning it into a Lie group and making Di�




(R

n

), equipped with the

Lie group stru
ture des
ribed in Theorem 6.5, an open submanifold.

Proof. As Di�




(R

n

) � Di�(R

n

) already is a smooth Lie group, in view of the \lo
al


hara
terization of Lie groups" stated in [3, Prop. 1.13℄, we only need to show that,

for ea
h 
 2 Di�(R

n

), the automorphism J




: Di�




(R

n

)! Di�




(R

n

), � 7! 
 Æ � Æ 


�1

of the normal subgroup Di�




(R

n

) � Di�(R

n

) is smooth. Thus, in terms of the global


hart � : 
! Di�(R

n

), � 7! id

R

n

+ �, we have to show that

f := �

�1

Æ J




Æ � : D(R

n

;R

n

)! D(R

n

;R

n

); � 7! 
 Æ (id

R

n

+ �) Æ 


�1

� id

R

n

is smooth.

Step 1: f is almost lo
al. Indeed, given any bije
tion j

�

: N ! Z

n

, we de�ne

V

k

:= 
(B

2

(j

k

)),

e

V

k

:= 
(B

3

(j

k

)), U

k

:= B

2

(j

k

),

e

U

k

:= B

3

(j

k

) for k 2 N. Then f ,

together with the sequen
es of open sets (U

k

)

k2N

, (

e

U

k

)

k2N

, (V

k

)

k2N

, and (

e

V

k

)

k2N

,

apparently satis�es the 
onditions of almost lo
ality des
ribed in De�nition 3.1.

Step 2: f j


\C

1

K

(R

n

;R

n

)

is smooth, for ea
h 
ompa
t subset K � R

n

. To see this, note

�rst that, for ea
h � 2 
\C

1

K

(R

n

;R

n

), the map f(�) = J




(id

R

n

+ �)� id

R

n

vanishes

outside 
(supp(�)) � 
(K). Thus f j


\C

1

K

(R

n

;R

n

)

is a map into the 
losed ve
tor sub-

spa
e C

1


(K)

(R

n

;R

n

) of C

1

(R

n

;R

n

), and we only need to show that f j


\C

1

K

(R

n

;R

n

)

is smooth as a map into C

1

(R

n

;R

n

). But this is 
lear, be
ause

f(�) = �

�


; �(id

R

n

+ �; 


�1

)

�

� id

R

n

= �

�


; �(h(�); 


�1

)

�

� id

R

n

for ea
h � 2 
 \ C

1

K

(R

n

;R

n

), where � : C

1

(R

n

;R

n

) � C

1

(R

n

;R

n

) ! C

1

(R

n

;R

n

)

is the 
omposition map (whose smoothness we re
alled in Lemma 4.2), and where

h : 
 \ C

1

K

(R

n

;R

n

) ! C

1

(R

n

;R

n

), h(�) := id

R

n

+ � is a restri
tion of a 
ontinu-

ous aÆne linear map and hen
e smooth as well. Using the Chain Rule, we dedu
e

that indeed f j


\C

1

K

(R

n

;R

n

)

is smooth as a map into C

1

(R

n

;R

n

). The hypotheses of

Theorem 3.2 having been veri�ed, f is smooth. 2
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