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Abstrat. Let D be a bounded symmetri domain of tube type, S its Shilov boundary, and G

its group of biholomorphi automorphisms. We lassify the orbits of the identity omponent G of

the group of biholomorphi maps of D in the set S � S � S .
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Introdution

Let D be a bounded symmetri domain in a (�nite dimensional) omplex vetor spae

V , realized as a irular domain, let G := Aut(D)

0

be the identity omponent of its group of

biholomorphi transforms of D and let S be its Shilov boundary. The ation of any element of

G extends to a neigbourhood of D , and hene G ats on S . It is well known that this ation

is transitive. The main result of the present paper is a lassi�ation of the G-orbits in the set

S � S � S of triples in S , when D is of tube type.

The ation of G on S � S an be easily studied as an appliation of Bruhat theory, and

the desription of the orbits is the same, whether D is of tube type or not. But for triples, there

is a drasti di�erene between tube type domains and non tube type domains. In the �rst ase,

there is a �nite number of orbits, whereas there are an in�nite number of orbits for a non tube

type domain.

Let r be the rank of D . The notion of r -polydiss (and their orresponding Shilov

boundaries alled r -torus) plays an important role in the analysis of the orbits. On one hand

they are the \omplexi�ations" of the maximal ats of D (in the sense of the geometry of

Riemannian symmetri spaes). On the other hand, a r -polydis in the usual sense is a set of

the form

�

r

=

n

r

X

j=1

�

j

x

j

: j�

j

j < 1; 1 � j � r

o

;

where the x

j

are linearly independent elements in V . The spae V has a natural struture of

a positive hermitian Jordan triple system, and in partiular, it has a natural (Banah) norm,

alled the spetral norm, for whih the domain D is realized as the open unit ball. One of the

results we prove is that suh a polydis, onstruted on vetors x

j

of norm 1 lies in D if and

only if the (x

j

)

1�j�r

form a Jordan frame for V .

Fix an r -torus T � S arising as the Shilov boundary of an r -polydis assoiated to a

Jordan frame. The main step towards the lassi�ation of the orbits of G in S � S � S is the

result that any triple in S an be sent by an element of G to a triple in T . This requires that

D is of tube type, and this property really distinguishes tube type domains from non tube type

domains. One this result is obtained, the lassi�ation beomes easy, beause the problem is

* The �rst author aknowledges partial support from the EU (TMR Network Harmoni

Analysis and Related Problems)
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redued to the ase of a polydis, and further, using the produt struture, to the ase of the

unit dis in C , where the situation is easy to analyze. The generalized Maslov index (see [C�01℄,

[Cl04℄) omes in as a subtle invariant for triples.

A speial ase of this theorem was known before. If D is the Siegel domain (the unit

ball in the spae of omplex symmetri matries Sym

r

(C ) , then the group G is the projetive

sympleti group PSp

2r

(R) := Sp

2r

(R)=f�1g , and the Shilov boundary of D an be identi�ed

with the Lagrangian manifold (the set of Lagrangian subspaes of R

2r

). Then the orbits of

triples of Lagrangians have been desribed (see [KS90, p.492℄), using linear sympleti algebra

tehniques. Related results an be found in [FMS04℄, and in partiular their Proposition 4.3

(whih they dedue from [KS90℄) is, for this spei� example, equivalent to our Theorem III.1.

The main point of [FMS04℄ is a desription of the orbits of the ation of the maximal ompat

subgroup group U

n

(C ) of Sp

2n

(R) on triples of Lagrangians are lassi�ed, but this is a di�erent

problem.

Sine S is in partiular a generalized ag manifold of G , i.e., of the form G=P for some

paraboli subgroup P , the natural question arises to whih extent results similar to the ones

obtained in this paper ould be valid for other generalized ag manifolds. The natural bakground

for this problem is the following. If P

1

; : : : ; P

k

are paraboli subgroups of G , then the produt

manifold

M := G=P

1

� : : :�G=P

k

is alled a multiple ag manifold of �nite type if the diagonal ation of G on M has only �nitely

many orbits. For k = 1 we always have only one orbit, and for k = 2 the �niteness of the set of

orbits follows from the Bruhat deomposition of G . For G = GL

n

(K ) or G = Sp

2n

(K ) and K is

an algebraially losed �eld of harateristi zero, it has been shown in [MWZ99/00℄ that �nite

type implies k � 3, and for k = 3 the triples of parabolis leading to multiple ag manifolds

of �nite type are desribed and the G-orbits in these manifolds lassi�ed. The main tehnique

to ahieve these lassi�ations was the representation theory of quivers. In [Li94℄, Littelmann

onsiders general simple algebrai groups over K and desribes all multiple ag manifolds of

�nite type for k = 3 under the assumption that P

1

is a Borel subgroup and P

2

, P

3

are maximal

parabolis. Atually Littelmann onsiders the ondition that B = P

1

has a dense orbit in

G=P

2

� G=P

3

, but the results in [Vi86℄ show that this implies the �niteness of the number of

B -orbits and hene the �niteness of the number of G-orbits in G=B � G=P

2

� G=P

3

. From

Littelmann's lassi�ation one an easily reads o� that for a maximal paraboli P in G the

triple produt (G=P )

3

is of �nite type if and only if the unipotent radial U of P is abelian

and in two exeptional situations. If U is abelian, then P is the maximal paraboli de�ned

by a 3-grading of g = L(G), so that G=P is the onformal ompletion of a Jordan triple (f.

[BN05℄ for a disussion of suh ompletions in an abstrat setting). The �rst exeptional ase,

where U is not abelian, orresponds to G = Sp

2n

(K ) , where G=P = P

2n�1

(K ) is the projetive

spae of K

2n

, U is the (2n � 1)-dimensional Heisenberg group and the Levi omplement is

Sp

2n�2

(K ) � K

�

. In the other exeptional ase G = SO

2n

(K ) and G=P is the highest weight

orbit in the 2

n

-dimensional spin representation of the overing group

e

G = Spin

2n

(K ) of G . Here

U

�

=

�

2

(K

n

) � K

n

also is a 2-step nilpotent group and the Levi omplement ats like GL

n

(K )

on this group. It seems that the positive �niteness results have a good hane to arry over to

the split forms of groups over more general �elds and in partiular to K = R , but for real groups

not muh seems to be known about multiple ag manifolds of �nite type.

If M = (G=P )

3

is a multiple ag manifold of �nite type and P = U o L is a Levi

deomposition of P , then L is the simultaneous stabilizer of a pair in (G=P )

2

with an open

orbit, and this implies that the onjugation ation of L on U has only �nitely many orbits. A

losely related but di�erent problem is the question when the onjugation ation of P on U

has �nitely many orbits. Aording to a result of Rihardson, there is always a dense orbit, but

this does not imply �niteness. For more spei� results on this question we refer to [PR97℄ and

[HR99℄.

It is perhaps worthwhile to stress that the proofs we give are one more ourrene of the

interation between omplex analysis of a bounded symmetri domains and the geometry of

onvex sets in the normed spae V . The notions of extremal points or faes of a onvex set do
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play an important role in our study.

The ontents of the paper is as follows. In Setion I we �rst reall several fats on

bounded symmetri domains. Our main soures are Loos' leture notes [Lo77℄ and Satake's

book [Sa80℄. For results onerning Eulidean Jordan algebras we use [FK94℄. The main result

of Setion I is a lassi�ation of the G-orbits in the set of quasi-invertible (=transversal) pairs in

D (Theorem I.18). For this lassi�ation we do not need that D is of tube type. For the analysis

of G-orbits in S � S � S we only need the simpler ase of pairs (x; y), where x 2 S . For this

ase we give a more diret shorter proof, but we think that the general ase might also be useful

in other situations.

The main tool for the lassi�ation of G-orbits in S � S �S is the haraterization of the

transversality relation on D in terms of faes of the ompat onvex set D : Two elements x; y 2 D

are transversal if and only if they are not ontained in a proper fae of D (Theorem II.12). This

haraterization is also valid for non tube type domains. A key onept for the lassi�ation is

the notion of the rank of a fae F of D . For an irreduibel domain D of rank r it takes values

in the set f0; 1; : : : ; rg and lassi�es the G-orbits in the set of faes of D . It is normalized in

suh a way that the rank of D as a fae is zero and that the extreme points, i.e., the elements in

the Shilov boundary, are faes of rank r . If Fae(x

1

; : : : ; x

n

) denotes the fae generated by the

subset fx

1

; : : : ; x

n

g of D , then the funtion

D

n

! f0; 1 : : : ; rg; (x

1

; : : : ; x

n

) 7! rankFae(x

1

; : : : ; x

n

)

is an invariant for the G-ation on D

n

.

In these terms, two elements x; y 2 D are transversal if and only if rankFae(x; y) = 0.

In Setion III we use this fat to show that for a domain D of tube type every triple in S is

onjugate to a triple in the Shilov boundary T of a maximal polydis �

r

de�ned by a Jordan

frame. This redues the lassi�ation of G-orbits in S�S�S to the desription of intersetions

of these orbits with T

3

. This is fully ahieved in Setion V by assigning a 5-tuple of integer

invariants to eah orbit and by showing that triples with the same invariant lie in the same orbit.

The �rst four omponents of this 5-tuple are

(rankFae(x

1

; x

2

; x

3

); rankFae(x

1

; x

2

); rankFae(x

2

; x

3

); rankFae(x

1

; x

3

)):

The �fth omponent is de�ned as the Maslov index �(x

1

; x

2

; x

3

) whih is disussed in some detail

in Setion IV. Note that if (x

1

; x

2

; x

3

) is transversal in the sense that all pairs (x

1

; x

2

), (x

2

; x

3

),

(x

3

; x

1

) are transversal, then the �rst four omponents of the invariant vanish, whih implies

that the G-orbits in the set of transversal triples are lassi�ed by the Maslov index.

We onlude the paper with a brief disussion of how the lassi�ation of the G-orbits in

S � S an be interpreted in terms of the Bruhat deomposition of G . We thank L. Kramer and

H. Rubenthaler for omments and referenes onerning multiple ag manifolds of �nite type.

I. Classi�ation of orbits of transversal pairs in the boundary

Let D be an irreduible irular bounded symmetri domain, so that D is the open unit

ball for a norm on a omplex vetor spae V ([Lo77, Th.4.1℄). In this setion we desribe the

G-orbits in the set of quasi-invertible pairs of elements in the losure of D (f. Theorem I.18

below). Here we do not have to assume that D is of tube type.

I.1. The assoiated Jordan triple. On V we onsider the hermitian Jordan triple produt

f�; �; �g:V

3

! V that is uniquely determined by the property that for eah v 2 V the vetor �eld

given by the funtion

�

v

:V ! V; z 7! v �Q(z):v = v � fz; v; zg

generates a one-parameter group of automorphisms of D ([Lo77, Lemma 4.3℄). Note that for

eah v 2 V the map (z; w) 7! fz; v; wg is symmetri and omplex bilinear, and that the maps

z 7! fa; z; bg are antilinear. For x; y 2 V we de�ne Q(x) and x�y 2 End(V ) by

Q(x):y := fx; y; xg and x�y:z := fx; y; zg:
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The Jordan triple struture on V used by Loos is fx; y; zg

0

= 2fx; y; zg , so that his quadrati

representation is given by Q

0

(x; y) = 2fx; y; zg , but sine Loos de�nes Q

0

(x) as

1

2

Q

0

(x; x), we

obtain the same operators Q(x) = Q

0

(x).

I.2. Tripotents and Peire deomposition. An element e 2 V is alled a tripotent if

e = fe; e; eg . For a tripotent e 2 V let V

j

:= V

j

(e) denote the j -eigenspae of the operator

2e�e . Then we obtain the orresponding Peire deomposition of V :

V = V

0

� V

1

� V

2

([Lo77, Th. 3.13℄). Sine e�e is a Jordan triple derivation, we have the Peire rules

(1:1) fV

i

; V

j

; V

k

g � V

i�j+k

;

whih imply in partiular that eah spae V

j

is a Jordan subtriple. In addition, we have

(1:2) V

0

�V

2

= V

2

�V

0

= f0g:

The Jordan triple V also arries a Jordan algebra struture, denoted V

(e)

, given by

ab := L(a):b := fa; e; bg:

Then e is an idempotent in V

(e)

beause ee = fe; e; eg = e , and the Peire deomposition of

V with respet to the tripotent e oinides with the Peire deomposition of the Jordan algebra

V

(e)

with respet to the idempotent e .

The multipliation operators in V

(e)

are given by L(a) = a�e , so that L(e) j

V

2

= id

V

2

implies that (V

2

; e) is a unital Jordan subalgebra of V

(e)

. For the quadrati representation in

V

(e)

we have

P (e) = 2L(e)

2

� L(e

2

) = 2L(e)

2

� L(e) = (2L(e)� 1)L(e);

so that P (e) = Q(e)

2

vanishes on V

0

� V

1

and restrits to the identity on V

2

. It follows in

partiular that (V

2

; e; Q(e)) is an involutive Jordan algebra (f. [Lo77, Th. 3.13℄).

I.3. Orbits in D . Two tripotents e; f 2 V are said to be orthogonal if f 2 V

0

(e). In view

of the Peire rules (1.2), this implies ff; f; eg = fe; f; fg = (e�f):f = 0, so that we also have

e 2 V

0

(f), i.e., orthogonality is a symmetri relation. If this is the ase, then e + f also is a

tripotent beause the relations e�f = f�e = 0 lead to

fe+ f; e+ f; e+ fg = fe; e; e+ fg+ ff; f; e+ fg = fe; e; eg+ ff; f; fg = e+ f:

We all a non-zero tripotent e primitive if it annot be written as a sum of two non-zero

orthogonal tripotents and e is said to be maximal if there is no non-zero tripotent orthogonal

to e . A maximal tuple (

1

; : : : ; 

r

) of mutually orthogonal primitive tripotents is alled a Jordan

frame in V and r = rankD is alled the rank of D . We �x a Jordan frame (

1

; : : : ; 

r

). For

k = 0; 1; : : : ; r we then obtain tripotents

e

k

:= 

1

+ : : :+ 

k

;

where it is understood that e

0

= 0.

We reall that eah bounded symmetri domain D an be deomposed in a unique fashion

as a diret produt of indeomposable, also alled irreduible, bounded symmetri domains:

(1:3) D = D

1

� : : :�D

m

:

Then the onneted group G := Aut(D)

0

satis�es

(1:4) G

�

=

G

1

� : : :�G

m

; where G

j

:= Aut(D

j

)

0

:
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If D is irreduible, then G has exatly r + 1 orbits in the losure D of D in V and e

0

; : : : ; e

r

form a set of representatives (f. [Sa80, Th. III.8.7℄). For k = 0 we have G:e

0

= D and for k = r

we obtain the Shilov boundary G:e

r

= S ([Sa80, Th. III.8.14℄). We de�ne the rank of x 2 D by

rankx = k for x 2 G:e

k

and observe that the rank funtion is G-invariant and lassi�es the G-orbits in D .

If D is not irreduible, then (1.3/4) imply that the orbit of x = (x

1

; : : : ; x

m

) 2 D =

Q

m

j=1

D

j

is determined by the m-tuple

(rankx

1

; : : : ; rankx

m

) 2 N

m

0

:

Here (0; : : : ; 0) orresponds to elements in D and (rkD

1

; : : : ; rkD

m

) to elements in the produt

set S = S

1

� : : :� S

m

.

I.4. Spetral deomposition and spetral norm. Let K be the stabilizer of 0 2 D in G .

Then K ats as a group of automorphism on the Jordan triple V and eah element z 2 V is

onjugate under K to an element in span

R

f

1

; : : : ; 

r

g . For k:z =

P

r

j=1

�

j



j

the number

jzj := maxfj�

1

j; : : : ; j�

r

jg

is alled the spetral norm of z . Then the elements e

j

:= k

�1

:

j

are orthogonal tripotents with

z =

X

j=1

�

j

e

j

;

whih is the spetral deomposition of z . The spetral norm j � j is indeed a norm on V with

(1:5) D = fz 2 V : jzj < 1g:

The following theorem relates the holomorphi ar-omponents in �D to the tripotents

in V .

Theorem I.5. ([Lo77, Th. 6.3℄) For eah holomorphi ar-omponent A of �D there exists a

tripotent e in A suh that

A = A

e

:= e+D

e

; where D

e

:= D \ V

0

(e)

is a bounded symmetri domain in V

0

(e) . The map e 7! A

e

yields a bijetion from the set of non-

zero tripotents of V onto the set of holomorphi ar-omponents of �D . The Shilov boundary S

oinides with the set of maximal tripotents.

An element x 2 D is ontained in A

e

if and only if

(1:6) e = lim

n!1

Q(x)

n

:x:

I.6. Conformal ompletion of V . Let G

C

denote the universal omplexi�ation of the

onneted real Lie group G and � the anti-holomorphi involution of G

C

for whih G is the

identity omponent of the �xed point group G

�

C

. Then the Lie algebra g

C

of G

C

has a faithful

realization by polynomial vetor �elds of degree � 2 on V , whih leads to a 3-grading

g

C

= g

+

� g

0

� g

�

;

where V

�

=

g

+

is the spae of onstant vetor �elds, g

0

onsists of linear vetor �elds, and g

�

is the set of quadrati vetor �elds orresponding to the maps z 7! Q(z):v = fz; v; zg for v 2 V .

By onstrution of the triple produt, the vetor �elds �

v

orrespond to elements of the real Lie
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algebra g = L(G), whih implies that � maps the onstant vetor �eld v to the quadrati vetor

�eld z 7! �fz; v; zg . Hene � reverses the grading of g

C

, i.e., �(g

j

) = g

�j

for j 2 f+;�; 0g .

The Jordan triple struture on V

�

=

g

+

then satis�es

(1:7) fx; y; zg =

1

2

[[x; �:y℄; z℄:

The subgroups

G

�

:= exp g

�

and G

0

:= fg 2 G

C

: (8j) Ad(g)g

j

= g

j

g

satisfy

G

�

\G

0

= f1g and (G

�

oG

0

) \G

�

= f1g:

Therefore P

�

:= G

�

G

0

�

=

G

�

oG

0

are subgroups of G

C

, and we obtain an embedding

V ,! X := G

C

=P

�

; v 7! exp v � P

�

;

alled the onformal ompletion of V . The elements of G

+

at on V � X by translations

(1:8) t

v

:x 7! x+ v

beause exp v expxP

�

= exp(v + x)P

�

: We further have �(G

�

) = G

�

and �(G

0

) = G

0

.

For w 2 V we write

e

t

w

for the map X ! X indued by the element exp(��(w)) =

(�(expw))

�1

. For v 2 V the ondition

e

t

w

:v 2 V , where V is onsidered as a subset of X , is

then equivalent to the invertibility of

(1:9) 1+ ad v ad(��:w) +

1

4

(ad v)

2

(ad �:w)

2

= 1� ad v ad(�:w) +

1

4

(ad v)

2

Æ � Æ (ad �)

2

Æ �

([BN05, Cor. 1.10℄). In view of (1.7), this is preisely the Bergman operator

B(v; w) = 1� 2v�w +Q(v)Q(w):

We further have in V the relation

(1:10)

e

t

w

:v = B(v; w)

�1

:(v �Q(v):w):

I.7. Quasi-invertibility and transversality. A pair (x; y) 2 V is alled quasi-invertible if

B(x; y) 2 End(V ) is invertible. We write x>y if (x; y) is quasi-invertible and say that x is

transversal to y . We write x

>

:= fy 2 V :x>yg for the set of all elements in V transversal to x .

In the Jordan algebra V

(y)

with the produt ab := fa; y; bg we have L(a) = a�y and

P (a) = Q(a)Q(y) ([N�04, App. A℄), so that

B(x; y) = id

V

�2L(x) + P (x);

and in the unital Jordan algebra V

(y)

� R with the identity element 1 := (0; 1) we have

1� 2L(x) + P (x) = P (1;1)� 2P (1; x) + P (x; x) = P (1� x);

i.e., the quasi-invertibility of (x; y) is equivalent to the quasi-invertibility of x in the Jordan

algebra V

(y)

.

I.8. The sl

2

-triple assoiated to a tripotent. Let e 2 V be a tripotent, f := �(e),

h := [e; f ℄ and g

e

:= span

R

fh; e; fg . Then

[h; e℄ = 2fe; e; eg = 2e and [h; f ℄ = � [�h; e℄ = �� [h; e℄ = �2�e = �2f;

so that g

e

�

=

sl

2

(R) is a 3-dimensional subalgebra of g with g

�

e

= R(e + f).
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(a) The operator ad

V

h = 2e�e is diagonalizable with possible eigenvalues 0; 1; 2. The

orresponding eigenspae deomposition V = V

0

� V

1

� V

2

is the Peire deomposition of the

Jordan algebra V

(e)

with multipliation ab := fa; e; bg with respet to the idempotent e , i.e.,

2L(e):v

j

= jv

j

for j = 0; 1; 2.

(b) We observe that P (e) = 2L(e)

2

� L(e

2

) = (2L(e) � 1)L(e). For � 2 R we therefore

have for

B(e; (1� �)e) = B((1� �)e; e) = 1� (1� �)2e�e+ (1� �)

2

Q(e)

2

= 1� (1� �)2L(e) + (1� �)

2

P (e) = 1� (1� �)2L(e) + (1� �)

2

(2L(e)� 1)L(e)

the relation

B(e; (1� �)e)v

j

= �

j

v

j

; j = 0; 1; 2:

() From Q(e) = Q(Q(e)e) = Q(e)

3

we onlude that the antilinear map Q(e) is diagonal-

izable over R with eigenvalues in f1; 0;�1g , so that Q(e)

2

= P (e) = (2L(e) � 1)L(e) implies

that

(1:11) kerQ(e) = kerP (e) = V

0

� V

1

:

From V

0

�V

2

= V

2

�V

0

= f0g we obtain for x; y 2 V

0

:

B(e+ x; e+ y):e = e� 2(e+ x)�(e+ y):e+Q(e+ x)Q(e+ y)e

= e� 2e� 2x�y:e+Q(e+ x)(Q(e):e+Q(y):e+ 2fe; e; yg)

= �e� 2(e�y):x+Q(e+ x):e = �e+ (Q(e):e+Q(x):e+ fe; e; xg) = 0:

Theorem I.9. ([Lo77, Th. 8.11℄) Let e 2 V be a tripotent and V

(e)

the orresponding Jordan

algebra with produt ab = fa; e; bg . Identifying e 2 V with an element of g

+

, the partial Cayley

transform orresponding to e is de�ned by C

e

:= exp

�

�

4

(e��:e)

�

2 G

C

, and in Jordan theoreti

terms it is given as a partially de�ned map on V by

C

e

= t

e

�B(e; (1�

p

2)e) �

e

t

e

:

In partiular

C

�1

e

(V ) \ V = fv 2 V :B(e; v) 2 GL(V )g = e

>

:

In [Lo77℄ Loos writes B(e;�e)

1

2

instead of B(e; (1�

p

2)e), whih makes sense beause

B(e; (1�

p

2)e)

2

= B(e; (1� 2)e) = B(e;�e)

is diagonalizable and the eigenvalues 1;

p

2 and 2 of B(e; (1�

p

2)e) are positive (I.8).

I.10. The preeding theorem implies in partiular that the ondition for an element x 2 V to

lie in the domain of the Cayley transform is preisely the transversality ondition e>x . If x

2

is the Peire omponent of x in V

2

, then [Lo77, Prop. 10.3℄ says that e>x is equivalent to the

invertibility of e� x

2

in the unital Jordan algebra (V

2

; e).

De�nition I.11. A hermitian salar produt h�; �i on V is said to be assoiative if for

x; y; z; w 2 V we have

hfx; y; zg; wi = hx; fy; z; wgi;

whih is equivalent to

(z�y)

�

= y�z for y; z 2 V:

Aording to [Lo77, Cor. 3.16℄, a salar produt with this property is given by

hx; yi := tr(x�y);

and for 0 6= x 2 V the operator x�x is non-zero and positive semide�nite. In this sense

(V; f�; �; �g) is a positive hermitian Jordan triple.
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Lemma I.12. Let e 2 V be a tripotent, V

j

:= V

j

(e) its Peire spaes, and z 2 V

0

with jzj � 1 .

Further let f := lim

n!1

Q(z)

n

:z denote the unique tripotent ontained in the holomorphi

ar-omponent of z . Then '(z) := Q(z + e) j

V

1

:V

1

! V

1

is an antilinear operator whih is

symmetri with respet to the real salar produt (z; w) := Re tr(z�w) , and for z 2 V

1

we have

'(z)v = 2fz; v; eg .

If jzj < 1 , then '(z) + 1 is injetive (1 stands for id

V

1

), and for jzj = 1 its kernel is

Fix(�Q(e+ f)) \ V

1

(f) \ V

1

(e):

Proof. For v 2 V

1

we have

'(z)v = fz + e; v; z + eg = Q(z)v +Q(e)v + 2Q(z; e)v;

and Q(e)v 2 V

4�1

= V

3

= f0g as well as Q(z)v 2 V

0�1

= V

�1

= f0g by the Peire relations

(1.1), so that '(z)v = 2fz; v; eg:

Aording to [Lo77, Lemma 6.7℄, the operator '(z) on V

1

is symmetri with respet to the

real salar produt (�; �) on V

1

, hene diagonalizable over R with real eigenvalues.

Let v 2 V

1

be an eigenvetor for '(z) orresponding to the eigenvalue � 2 R , i.e.,

Q(z + e):v = �v . Indutively we get

Q(Q(z + e)

n

:(z + e)):v = �

2n+1

� v

for all n 2 N

0

from

Q(Q(z + e)

n

:(z + e)):v = Q(Q(z + e)Q(z + e)

n�1

:(z + e)):v

= Q(z + e)Q(Q(z + e)

n�1

:(z + e))Q(z + e):v

= Q(z + e)Q(Q(z + e)

n�1

:(z + e)):�v = �Q(z + e):(�

2n�1

:v) = �

2n+1

v:

Sine the inlusion V

0

,! V is isometri with respet to the spetral norm ([Lo77, Th. 3.17℄),

we have

e+ z 2 e+D

e

= A

e

� D;

and the limit f = lim

n!1

Q(z)

n

:z is a tripotent in V

0

(e) (Theorem I.5).

As a onsequene of the Peire relations (1.2), we obtain

Q(e+ z):(e+ z) = Q(e)e+Q(z)z = e+Q(z)z;

and indutively

Q(e+ z)

n

:(e+ z) = e+Q(z)

n

:z ! e+ f:

Therefore

lim

n!1

�

2n+1

v = lim

n!1

Q(Q(z + e)

n

:(z + e)):v = Q(e+ f):v;

and the existene of the limit implies that j�j � 1. If j�j < 1, then Q(e+f):v = 0, and otherwise

Q(e + f):v = �v . It follows in partiular that eah eigenvetor for Q(e + z) on V

1

also is an

eigenvetor of Q(e+ f).

Suppose that j�j = 1. As a onsequene of the Peire rules, the sum e + f is a Jordan

tripotent (I.3), and from Q(e + f):v = �v and kerQ(e + f) = V

0

(e + f) � V

1

(e + f) (I.8), we

derive v 2 V

2

(e+ f), so that (e+ f)�(e+ f) = e�e+ f�f implies that v 2 V

1

(f).

On the other hand Q(e+ f) is an antilinear involution of V

2

(e+ f) � V

1

(e) \ V

1

(f). We

onlude that

ker('(z) + 1) = ker('(f) + 1) = Fix(�Q(e+ f)) \ V

1

(f) \ V

1

(e):

To lassify the G-orbits of transversal pairs in D , we need a more expliit desription of

the image

D

C

:= C

e

(D)

of D under the partial Cayley transform C

e

in terms of the Peire deomposition of V . To this

end, we introdue the following notation:
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De�nition I.13. Let e 2 V be a tripotent.

(1) (V

2

; e; Q(e)) is a unital involutive Jordan algebra. We write v

�

:= Q(e)v for the involution

on V

2

and observe that V

2

= E � iE for E := fv 2 V : v

�

= vg . In this sense

Re v =

1

2

(v + v

�

) =

1

2

(v +Q(e)v)

is the omponent of v in the real form E of V

2

. The real Jordan algebra E is eulidean

and we write E

+

:= fa

2

: a 2 Eg for its losed positive one. For v; w 2 E we write v > w

for v � w 2 int(E

+

) and v � w for v � w 2 E

+

.

(2) For z 2 V

0

we de�ne the antilinear map

'(z):V

1

! V

1

; v 7! 2fe; v; zg = Q(e+ z):v

(Due to the di�erent normalization, the fator 2 not present in [Lo77℄).

(3) We also de�ne a hermitian map

F :V

1

� V

1

! V

2

; (z; w) 7! fz; w; eg

with

F (z; w)

�

= F (w; z) and F (z; z) > 0 for 0 6= z 2 V

1

:

For u 2 V

0

with juj < 1 we further de�ne a real bilinear map

F

u

(z; w) = F (z; (1+ '(u))

�1

:w);

where we reall from Lemma I.12 that 1+ '(u) is invertible.

In the following proposition the missing fator

1

2

in front of F , ompared to [Lo77℄, is due

to our di�erent normalization of the triple produt.

Proposition I.14. ([Lo77, Th. 10.8℄) We have

D

C

= C

e

(D) = fv = v

2

+ v

1

+ v

0

2 V

2

� V

1

� V

0

: jv

0

j < 1;Re(v

2

� F

v

0

(v

1

; v

1

)) > 0g:

To determine the losure of D

C

, we need the following lemma, beause there might be

elements x

0

2 �D \ V

0

for whih the operator '(x

0

) + 1 is not invertible.

Lemma I.15. Let F be a �nite-dimensional eulidean vetor spae, (A

n

)

n2N

a sequene of

positive de�nite operators on F onverging to A and (v

n

)

n2N

a sequene of elements of F

onverging to v . If the sequene A

�

1

2

n

v

n

is bounded, then v 2 im(A):

Proof. Sine A is symmetri, we have im(A) = ker(A)

?

. Let w 2 ker(A). We have to show

that hv; wi = 0. Sine the sequene A

�

1

2

n

v

n

is bounded, it ontains a onvergent subsequene,

and we may thus assume that it onverges to some u 2 F . Then we get

hv; wi = lim

n!1

hv

n

; wi = lim

n!1

hA

1

2

n

A

�

1

2

n

v

n

; wi = lim

n!1

hA

�

1

2

n

v

n

; A

1

2

n

wi = hu;A

1

2

wi = hu; 0i = 0:

This ompletes the proof.

Lemma I.16. For eah element v = v

2

+ v

1

+ v

0

2 D

C

we have v

1

2 im(1+ '(v

0

)):

Proof. Let (v

n

)

n2N

be a sequene in D

C

onverging to v and write v

n

j

, j = 0; 1; 2; for its

Peire omponents.

We pik a linear funtional f 2 E

�

in the interior of the dual one of E

+

, so that f(x) > 0

holds for 0 6= x 2 E

+

, and observe that this implies that

(v; w) := f(ReF (v; w))
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de�nes a real salar produt on V

1

. The argument in [Lo77, p.10.6℄ shows that for eah z 2 V

0

the operator '(z) is symmetri with respet to this salar produt. Aording to Lemma I.12,

all its eigenvalues � satisfy j�j � 1 and even j�j < 1 for jzj < 1, so that 1+ '(z) is a positive

semide�nite symmetri operator whih is positive de�nite for jzj < 1.

From v

n

2 D

C

we get

jv

n

0

j < 1 and ReF

v

n

0

(v

n

1

; v

n

1

) � Re v

n

2

;

whih implies that

f(v

n

2

) � f(ReF

v

n

0

(v

n

1

; v

n

1

)) = f(ReF (v

n

1

; (1+ '(v

n

0

))

�1

v

n

1

))

= (v

n

1

; (1+ '(v

n

0

))

�1

v

n

1

) = ((1+ '(v

n

0

))

�

1

2

v

n

1

; (1+ '(v

n

0

))

�

1

2

v

n

1

):

Therefore the sequene (1+ '(v

n

0

))

�

1

2

v

n

1

in V

1

is bounded, and Lemma I.15 implies that

v

1

= lim

n!1

v

n

1

2 im(1+ '(v

0

)):

I.17. From the preeding lemma one easily derives an expliit desription of the losure of D

C

beause the operator (1+ '(v

0

))

�1

is well-de�ned on im(1+ '(v

0

)). This leads to

D

C

=

n

v 2 V : jv

0

j � 1; v

1

2 im('(v

0

) + 1);Re

�

v

2

� F (v

1

; (1+ '(x

0

))

�1

v

1

)

�

� 0

o

:

Sine we do not need this desription in the following, we leave the details of its veri�ation to

the reader.

Theorem I.18. (Orbits of transversal pairs) Let D be an irreduible bounded symmetri

domain, not neessarily of tube type. If (x; y) 2 D is a transversal pair with rkx = k , then there

exists a g 2 G with g:(x; y) = (e

k

; z) with

e

k

= 

1

+ : : :+ 

k

and z = �(

j+1

+ : : :+ 

k

) +

r

X

l=k+1

�

l



l

; �1 � �

k+1

� : : : � �

r

� 1:

Proof. Sine D is irreduible, G ats transitively on the set of elements of rank k , so that

we may w.l.o.g. assume that x = e := e

k

. We then have to show that eah G

e

-orbits in e

>

\ D

ontains an element of the form

�(

j+1

+ : : :+ 

k

) +

r

X

l=k+1

�

l



l

; �1 � �

k+1

� : : : � �

r

� 1:

We reall the notation from De�nition I.13. For y > 0 in E we then �nd with (I.7)

(1:12) B(e� y; e) = id

V

�2L(e� y) + P (e� y) = P (e� (e� y)) = P (y):

Let Q := G

A

e

denote the stabilizer of the holomorphi ar-omponent A

e

of e in �D

(whih is a maximal paraboli subgroup of G). Then the group Q

C

:= C

e

Æ Q Æ C

�1

e

ats

naturally on D

C

= C

e

(D) and we also put

Q

C

e

:= C

e

ÆG

e

Æ C

�1

e

� Q

C

;

where G

e

is the stabilizer of e in G .

From [Lo77, Lemma 10.7℄ we now obtain

Q

C

= ft

b

Æ t

v+F (v;v)

exp(2e�v)P (y) exp(�

w

) � k: b 2 iE; v 2 V

1

; 0 < y 2 E;w 2 V

0

; k 2 K

e

g;
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where K

e

:= fg 2 G : g:0 = 0; g:e = eg � Aut(V )

e

is the set of all automorphisms of the Jordan

triple V �xing e and P (y) is the quadrati representation of the Jordan algebra V

(e)

(f. I.7).

From the proof of [Lo77, Thm. 9.15℄ and the desription of the Lie algebra L(Q

C

) in [Lo77,

Prop. 10.6℄ it follows that for b 2 iE; v 2 V

1

; 0 < y 2 E and k 2 K

e

we have

t

b

Æ t

v+F (v;v)

exp(2e�v)P (y)k 2 Q

C

e

:

Moreover, the expliit alulations in the proof of [Lo77, Th. 10.8℄ further imply that the map

V

0

! A

e

= e+ (D \ V

0

); w 7! exp(�

w

):e

is bijetive and that the Cayley transform �xes eah �

w

. This implies that

Q

C

e

= ft

b

Æ t

v+F (v;v)

exp(2e�v)P (y) � k: b 2 iE; v 2 V

1

; 0 < y 2 E; k 2 K

e

g:

We observe that for v 2 V

1

the Peire rules imply that e�v is a nilpotent operator on V

mapping V

j

! V

j+1

. For x = x

2

+ x

1

+ x

0

2 D

C

the V

1

-omponent of

t

v+F (v;v)

exp(2e�v):x

is given by

x

1

+ v + '(x

0

):v;

and sine �x

1

2 im(1+ '(x

0

)) by Lemma I.16, there is a unique v 2 im(1+ '(x

0

)) with

t

v+F (v;v)

exp(2e�v):x 2 V

2

� V

0

:

From that we onlude that eah Q

C

e

-orbit in V through an element y = y

2

+ y

1

+ y

0

2 D

C

ontains an element of the form

x

2

+ x

0

with jx

0

j � 1 and Rex

2

� 0:

Applying elements of the form t

v

, v 2 iE , we may further assume that x

2

2 E , so that we have

an element in E

+

� D

e

. From the expliit desription of Q

C

e

we derive that the intersetion

of the orbit of x

2

+ x

0

2 E + V

0

with E + V

0

ontains the orbit of x

2

+ x

0

under the group

Q

00

:= P (E

+

)K

e

.

The orbits of Q

00

on the set E

+

� D

e

are produts of orbits of the automorphism group

G(E

+

) of the symmetri one E

+

in E and orbits of the identity omponent of the group K

e

on

D

e

. Sine the ation of the group K

e

preserves the Peire deomposition, it ats on D

e

� V

0

as a

subgroup of Aut(V

0

). The identity omponent of the latter group is obtained by exponentiating

elements of the Lie subalgebra V

0

+ �(V

0

) + [V

0

; �(V

0

)℄ � g

C

(here we use that D

e

= D \ V

0

is

an irreduible bounded symmetri domain; f. Th. I.5), and all the elements of this subalgebra

ommute with the element e 2 V

2

by the Peire rules (I.2). Hene the image of K

e

in Aut(V

0

)

ontains the identity omponent of Aut(V

0

).

For e = e

k

= 

1

+ : : :+ 

k

, the orbits of G(E

+

)

0

, whih oinide with the orbits of the full

group G(E

+

), are represented by the elements

e

0

= 0; e

1

= 

1

; : : : ; e

j

= 

1

+ : : :+ 

j

; : : : ; e

k

= e

([FK94, Prop. IV.3.2℄). Sine (

k+1

; : : : ; 

r

) is a Jordan frame in V

0

, eah orbit of Aut(V

0

)

0

in

V

0

ontains an element of the form

r

X

l=k+1

�

l



l

; �

k+1

� : : : � �

r

(f. [FK94, Prop. X.3.2℄).

Next we transfer this information bak to the bounded piture, i.e., to G

e

-orbits in D .

Aording to [Lo77, Prop. 10.3℄, we have

(1:13) C

e

(x

2

+ x

0

) = C

e

(x

2

) + x

0

= (e+ x

2

)(e� x

2

)

�1

+ x

0

for x

2

2 V

2

; x

0

2 V

0

:

For e

j

= 

1

+ : : : + 

j

, j � k , the element e + e

j

is invertible in V

2

, and we obtain for

ee

j

:= (e

j

� e)(e

j

+ e)

�1

= �C

e

(�e

j

) = C

�1

e

(e

j

) that C

e

(ee

j

) = e

j

. An expliit alulation in the

assoiative Jordan algebra generated by 

1

; : : : ; 

k

quikly shows that

ee

j

= �(e� e

j

) = �e+ e

j

= �

j+1

� : : :� 

k

:

This ompletes the proof.
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I.19. For the speial ase k = r , i.e., e 2 S , we have V

0

= f0g , so that D

C

is the Siegel domain

D

C

= fv = v

2

+ v

1

2 V

2

� V

1

= V : Re(v

2

� F (v

1

; v

1

)) > 0g

of type II. In this ase the orbits of Q

00

e

are represented by elements of the form �e + e

j

,

j = 0; : : : ; r , so that we obtain only �nitely many orbits. Observe that rk(�e+ e

j

) = r � j , so

that, even if Q

00

is not onneted, it annot have less orbits in e

>

than its identity omponent.

In Setion III we shall only need the following speial ase of Theorem I.18, for whih we

provide the following more diret proof.

Lemma I.20. Suppose that D is irreduible and of tube type, let x 2 S and z 2 D , and assume

that x>z . There exists g 2 G and an integer k; 0 � k � r

(y)

suh that

g(x) = e

r

and g(z) = �

r

X

j=k+1



j

= e

k

� e

r

:

Proof. As G is transitive on S , there is no restrition in assuming that x = e := e

r

. Now

the transversality ondition is equivalent to z belonging to the domain V

�

+ e of the Cayley

transform C(z) := C

e

(z) := (e + z)(e � z)

�1

(f. (1.13)). Set � = C(z) (Theorem I.9). Then

� 2 E

+

+ iE . The point e is sent by the Cayley transform \to in�nity", in suh a way that

the stabilizer of e in G orresponds via onjugation by the Cayley transform to a subgroup of

the aÆne group of E

C

, denoted by Q

C

e

, namely the semi-diret produt of the translations by

an element of iE and the group G(E

+

) (after omplexi�ation to E

C

of its ation on E ). By

using a translation, we see that in the Q

C

e

-orbit of � , there is an element of the form � 2 E

+

.

Sine D is irreduible, the G(E

+

)-orbits in E

+

are known to be exatly the r + 1 orbits of

the elements e

k

=

P

k

j=1



j

, with k = 0; 1; : : : r (see [FK94, Prop. IV.3.2℄). But now the inverse

Cayley transform of the element

k

X

j=1



j

is the element e

k

� e = �

r

X

j=k+1



j

. Hene the result.

II. Transversality and faes

In this setion we keep the notation from Setion I. In partiular D is a irular irreduible

bounded symmetri domain of rank r in V . The main result of this setion is that transversality

of two elements x; y 2 D is equivalent to the geometri property that x and y do not lie in a

proper fae of the ompat onvex set D (Theorem II.12).

De�nition II.1. (a) We all a non-empty onvex subset F of a onvex set C a fae if for

0 < t < 1 and ; d 2 C the relation t + (1 � t)d 2 F implies ; d 2 F . We write F(C) for

the set of non-empty faes of C . A fae F is alled exposed if there exists a linear funtional

f :V ! R with

F = f

�1

(max f(C)):

An extreme point e 2 C is a point for whih feg is a fae, i.e., t+(1� t)d = e for ; d 2 C and

0 < t < 1 implies  = d = e . We write Ext(C) for the set of extreme points of C .

The set of all faes of C has a natural order struture given by set inlusion whose maximal

element is C itself. All extreme points of C are minimal elements of this set, but C need not

have any extreme points.

Obviously, the intersetion of any family of faes is a fae. We thus de�ne for a subset

M � C the fae generated by M by

Fae(M) :=

\

fF � C:F 2 F(C);M � Fg:

(y)

If k = r , use the onvention that

P

r

j=r+1



j

= 0 .
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(b) For a onvex set C in the vetor spae V we write

algint(C) := fx 2 C: (8v 2 C � C)(9" > 0) x+ [0; "℄v � Cg

for its algebrai interior. If V is �nite-dimensional, then algint(C) is the interior of C in the

aÆne subspae it generates.

Remark II.2. (a) Suppose that C is a onvex subset of a �nite-dimensional vetor spae

having non-empty interior. Then all proper faes of C are ontained in the boundary �C and,

onversely, the Hahn{Banah Separation Theorem implies that eah boundary point is ontained

in a proper exposed fae.

(b) For any non-empty onvex subset of a �nite-dimensional real vetor spae the algebrai

interior is non-empty. Hene every fae F is generated by any element in its algebrai interior.

() Sine every fae E of a fae F of C is also a fae of C , faes of exposed faes of C

are faes of C . On the other hand, every proper fae is ontained in an exposed fae (see (a)),

so that we obtain indutively, that for eah fae F there exists a sequene of faes

F

0

= F � F

1

� : : : � F

n

= C

for whih F

i

is an exposed fae of F

i+1

for i = 0; : : : ; n� 1.

Proposition II.3. The proper faes of the onvex set D are the losures of the holomorphi

ar-omponents in �D and the Shilov boundary is the set of extreme points of D .

In partiular the group G ats on the set F(D) of faes of D .

Proof. For the fat that S is the set of extreme points of D we refer to [Lo77, Th. 6.5℄.

Next we use [Sa80, Lemma III.8.11, Th. III.8.13℄ to see that the proper exposed faes F

of D are the losures of the holomorphi ar-omponents in �D . Sine the ation of the group

G on D permutes the holomorphi ar-omponents in �D , it also permutes the exposed faes

of D .

We now laim that eah fae of D is exposed. Sine every fae F of D is generated by a

suitable element x 2 F (Remark II.2), it suÆes to show that the fae generated by any element

x 2 �D is exposed. Let A

x

be the holomorphi ar-omponent of �D ontaining x . Then A

x

is an exposed fae of D with algint(A

x

) = A

x

(Theorem I.5). Therefore the fae generated by

x oinides with A

x

, showing that every fae of D is exposed.

Remark II.4. From the preeding proposition we know that the map F 7! algint(F ) is a

G-equivariant bijetion between the set F(D) of faes of D and the set of holomorphi ar-

omponents in D .

If D is irreduible, we de�ne the rank of a fae by rkF := k if algint(F ) onsists of

elements of rank k . Sine two holomorphi ar-omponents are onjugate under G if and only

if their elements have the same rank (f. Theorem I.5), the rank funtion

rk:F(D)! f0; : : : ; rg

lassi�es the G-orbits in F(D). The stabilizer of a proper fae, resp., a holomorphi ar-

omponent in �D , is a maximal paraboli subgroup of G ([Sa80, Cor. III.8.6℄).

If D = D

1

� : : :�D

m

is a diret produt of the irreduible domains D

j

, then eah fae F

of D is a produt F

1

� : : :� F

m

of faes F

j

2 F(D

j

), so that the G-orbits in

F(D)

�

=

F(D

1

)� : : :�F(D

m

)

are lassi�ed by the m-tuple (rkF

1

; : : : ; rkF

m

).

In the following we shall prove that for two elements x; y 2 D transversality is equivalent

to the geometri transversality relation Fae(x; y) = D . We start with the easy impliation.
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Proposition II.5. If x; y 2 D are transversal, then they are not ontained in a proper fae,

i.e., Fae(x; y) = D:

Proof. If x and y are not geometrially transversal, then F := Fae(x; y) is a proper fae of

D , hene of the form

F = F

e

= e+ (D \ V

0

(e)) = (e+ V

0

(e)) \ D

for some tripotent e 2 V (Theorem I.5, Prop. II.3 and [Sa80, Lemma III.8.10℄ for the seond

equality). Then x; y 2 F implies that x; y 2 e+ V

0

(e), so that I.8 leads to B(x; y):e = 0. Thus

x and y are not transveral. This proves the assertion.

Example II.6. We onsider the r -dimensional polydis

D := �

r

:= fz 2 C

r

: max

j

jz

j

j < 1g � V = C

r

:

Let (

1

; : : : ; 

r

) denote the anonial basis of C

r

. The orresponding Jordan triple struture is

given by

fx; y; zg = (x

1

y

1

z

1

; : : : ; x

r

y

r

z

r

):

An element z 2 C

r

is a tripotent if jz

j

j

2

z

j

= z

j

holds for eah j , whih means that either z

j

= 0

or jz

j

j = 1. We have

rk z = jfj: jz

j

j = 1gj;

and the tripotents of maximal rank form the n-dimensional torus S = T

n

, the Shilov boundary

of �

r

.

Sine the faes of D = �

r

are artesian produts of faes of the losed unit dis

� = fz 2 C : jzj � 1g;

eah fae F 2 F(�

r

) is a produt F

1

� � � � �F

r

of losed unit diss and points in the boundary

of �. For a subset M � �

r

, it follows that the fae generated by M is given by

Fae(M) = F

1

� � � � � F

r

; F

j

=

n

fsg if m

j

= s 2 �� for all m 2M

� otherwise.

It follows in partiular that x; y 2 D are ontained in a proper fae if and only if x

j

= y

j

2 ��

holds for some j .

For k � r we onsider the tripotent e

k

:= 

1

+ : : :+ 

k

. Then

V

2

= C

k

� f0g

r�k

and V

0

= f0g

k

� C

r�k

:

An element x 2 �

r

is transversal to e

k

if and only if e

k

� (x

1

; : : : ; x

k

; 0; : : : ; 0) is invertible in

the unital Jordan algebra (V

2

; e

k

), whih means that the �rst k omponents of x are di�erent

from 1 (I.10). That this is not the ase means that one omponent x

j

, j � k , equals 1, and

therefore Fae(e

k

; x) 6= D . If, onversely, Fae(e

k

; x) 6= D , then e

k

; x are ontained in a proper

fae of �

r

whih implies that x

j

= 1 for some j � k .

Proposition II.7. Let e 2 V be a tripotent, V =

P

2

j=0

V

j

the orresponding Peire

deomposition and p

j

:V ! V

j

the projetion along the other Peire omponents. Then eah

V

j

is a positive hermitian Jordan triple and we have

D

j

= V

j

\ D = p

j

(D):

In partiular, eah map p

j

:V ! V

j

is a ontration with respet to the spetral norms determined

by the domains D and D

j

.

Proof. Let h�; �i be an assoiative hermitian salar produt on V (De�nition I.11). Then

the Peire deomposition is orthogonal with respet to h�; �i , so that it provides an orthogonal

deomposition of V into 3 Jordan subtriples ([Lo77, Th. 3.13℄).
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Clearly the restrition of the salar produt to eah V

j

provides an assoiative salar

produt on V

j

and for eah v 2 V

j

the operator v�v is positive semide�nite on V; whih implies

in partiular that its restrition to V

j

is positive semide�nite. Hene eah V

j

is a positive

hermitian Jordan triple.

Aording to [Lo77, Th. 3.17℄, the inlusion maps V

j

,! V are isometri with respet to

the spetral norm, whih means that

D

j

= V

j

\ D = fz 2 V

j

: jzj < 1g

holds for the orresponding bounded symmetri domains.

To see that the projetions p

j

are ontrative with respet to the spetral norm, let v 2 V

and v

j

= p

j

(v) its omponent in V

j

. For eah unit vetor w 2 V

j

the orthogonality of the Peire

deomposition implies that

hv�v:w; wi =

2

X

k;l=0

hv

k

�v

l

:w; wi =

2

X

k=0

hv

k

�v

k

:w; wi � hv

j

�v

j

:w; wi;

whih leads for the spetral norm jv

j

j to

jv

j

j

2

= kv

j

�v

j

k

V

j

= supfhv

j

�v

j

:w; wi:w 2 V

j

; hw;wi = 1g

� supfhv�v:w; wi:w 2 V

j

; hw;wi = 1g � supfhv�v:w; wi:w 2 V; hw;wi = 1g = jvj

2

:

Sine the inlusion V

j

,! V is isometri, p

j

is a ontration with respet to the spetral norm,

and therefore D

j

� p

j

(D) � D

j

proves equality.

Corollary II.8. If F is a proper fae of D

j

, then p

�1

j

(F ) is a proper fae of D .

De�nition II.9. Suppose that e 2 V is a tripotent with V

2

(e) = V , so that Q(e) is an

antilinear involution on V turning (V; e;Q(e)) into an involutive unital Jordan algebra. As in

Setion I, we endow V with the spetral norm jzj whose open unit ball is D .

A state of the unital involutive Jordan algebra V is a linear funtional f :V ! C with

1 = f(e) = kfk := sup jf(D)j:

Remark II.10. If f is a state on V and y 2 D with f(y) = 1, then e and y lie in the proper

fae fz 2 D: Re f(z) = 1g .

Proposition II.11. If y 2 D and e� y is not invertible in the unital Jordan algebra (V; e) ,

there exists a state f of V with f(y) = 1 .

Proof. We endow V with the assoiative salar produt hz; wi := tr(z�w) (f. Def. I.11).

By assumption e�y is not invertible, whih implies that the left multipliation L(e�y) =

(e � y)�e is not invertible. Pik v 2 kerL(e � y) with hv; vi = 1. We onsider the linear

funtional

f :V ! C ; f(z) := hL(z):v; vi

satisfying f(e) = hv; vi = 1 and

f(y) = hL(y):v; vi = hL(e):v; vi = f(e) = 1:

It remains to show that f is a state. Let E := fz 2 V : z

�

= Q(e)z = zg denote the

eulidean Jordan algebra with V

�

=

E 


R

C and unit element e . We write E

+

for the losed

positive one in E . This is the set of all those elements z for whih there exists a system



1

; : : : ; 

k

of orthogonal idempotents with e = 

1

+ : : : + 

k

and non-negative real numbers �

j

with

z =

k

X

j=1

�

j



j

:
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For suh elements z 2 E

+

we then have

f(z) =

k

X

j=1

�

j

hL(

j

):v; vi =

k

X

j=1

�

j

h

j

�

j

:v; vi � 0

beause L(

j

) = 

j

�e = 

j

�

j

follows from 

j

�(e� 

j

) = 0 (I.2) and the operators 

j

�

j

are

positive semide�nite on V ([Lo77, Cor. 3.16℄). We onlude that f(E) � R , so that f(z

�

) = f(z)

for all z 2 V .

From Q(e)

�1

= Q(e) we derive Q(Q(e):z) = Q(e)Q(z)Q(e) = Q(e)Q(z)Q(e)

�1

, so that

Q(e): z 7! z

�

is a Jordan triple automorphism of V , hene an isometry for the spetral norm j � j

on V . This implies that Q(e)D = D and therefore that for z = x+ iy 2 D , x; y 2 E , we have

jxj =

1

2

jz + z

�

j �

1

2

(jzj+ jz

�

j) = jzj:

For the map Re:V ! E; z 7!

1

2

(z + z

�

) this means that D

E

:= D \E = Re(D):

For the funtional f we thus obtain

kfk = sup jf(D)j = supRe f(D) = sup f(ReD) = sup f(D

E

):

In view of the Spetral Theorem for eulidean Jordan algebras ([FK94℄), we have

D

E

= (e�E

+

) \ (�e+E

+

) � e�E

+

;

so that f(z) � 0 for z 2 E

+

leads to kfk = sup f(D

E

) = f(e) = 1: This means that f is a

state.

Theorem II.12. Two elements x; y 2 D are transversal if and only if they are not ontained

in a proper fae, i.e.,

x>y () Fae(x; y) = D:

Proof. In view of Theorem II.3, geometri transversality is also invariant under the ation of

the group G . On the other hand transversality is invariant under G ([C�01℄), so that it suÆes

to assume that x = e is a Jordan tripotent. In view of Proposition II.5, it suÆes to show that

if e is not transversal to y 2 D , then both e and y lie in a proper fae of D .

For e = 0 we have Fae(x; e) = D beause e 2 D = algint(D) and also e>x for all x 2 D

beause B(x; e) = id

V

.

We may therefore assume that e 6= 0. We have to show that if e and y are not transversal,

then they are ontained in a proper fae of D . That y is not transversal to e is equivalent to

the element e � y

2

being not invertible in the unital Jordan algebra V

2

(e) (I.10). In view of

Proposition II.11, ombined with Remark II.10, e and y

2

are ontained in a proper fae F of the

onvex set D

2

. Hene e and y are ontained in the proper fae p

�1

2

(F ) of D (Corollary II.8).

Example II.13. Let p; q 2 N , r := min(p; q), and k�k denote the eulidean norm on C

p

, resp.,

C

q

. On the matrix spae V := M

p;q

(C )

�

=

Hom(C

q

; C

p

) we write jX j for the orresponding

operator norm. Then

D := fX 2M

p;q

(C ): jX j < 1g

is a bounded symmetri domain. The pseudo-unitary group U

p;q

(C ) ats transitively on D by

�

a b

 d

�

:z := (az + b)(z + d)

�1

;

the e�etivity kernel of this ation is T1 , so that G = Aut(D)

0

�

=

PU

p;q

(C ). The 3-grading of

g

C

is indued by the 3-grading of gl

p+q

(C ) given by

gl

p+q

(C )

+

=

�

0 M

p;q

(C )

0 0

�

; gl

p+q

(C )

0

=

�

gl

p

(C ) 0

0 gl

q

(C )

�
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and

gl

p+q

(C )

�

=

�

0 0

M

q;p

(C ) 0

�

:

We further have

u

p;q

(C ) =

n

�

a b

b

�

d

�

: a

�

= �a; d

�

= �d

o

:

The vetor �eld assoiated to the one-parameter group given by exp

�

t

�

a b

 d

�

�

is given

by z 7! b � az � zd � zz; so that the Jordan triple struture on V = M

p;q

(C ) satis�es

Q(z)(w) = zw

�

z , whih leads to

fa; b; g =

1

2

(ab

�

+ b

�

a):

In partiular the Bergman operator satis�es

B(v; w)z = z� 2v�w:z+Q(v)Q(w)z = z� (vw

�

z+ zw

�

v) + v(wz

�

w)

�

v = (1� vw

�

)z(1�w

�

v):

From that it follows that v>w is equivalent to the invertibility of 1�w

�

v in the algebra M

q

(C ).

An element e 2M

p;q

(C ) is a tripotent if and only if ee

�

e = e , whih implies that ee

�

and

e

�

e are orthogonal projetions, and that e de�nes a partial isometry C

q

! C

p

. If K := ker(e)

and R := im(e), then the fae F

e

of D onsists of all matries z 2 D with z:v = e:v for

v 2 ker(e)

?

. For k = rank(e) and an orthonormal basis v

1

; : : : ; v

k

of ker(e)

?

and w

i

:= e:v

i

,

we have

F

e

= fz 2 D: (8i) hzv

i

; w

i

i = 1g:

From this desription of the faes of D it follows that an element z 2 D is ontained in a proper

fae if and only if its restrition to some one-dimensional subspae of C

q

is isometri, i.e., if and

only if jzj = 1. Two elements z; w generate a proper fae if and only if there exists a unit vetor

v 2 C

q

for whih z:v = w:v is a unit vetor in C

p

.

A Jordan frame is given by the matries 

j

:= E

jj

, j = 1; : : : ; r , with a single non-zero

entry 1 in position (j; j). The rank of D is r and e

r

:= 

1

+ : : :+ 

r

is a maximal tripotent with

S = G:e

r

=

�

fz 2M

p;q

(C ): z

�

z = 1g if q � p

fz 2M

p;q

(C ): zz

�

= 1g if p � q.

For q � p this is the set of isometries C

q

,! C

p

and for p � q this is the set of all adjoints of

isometries C

p

! C

q

.

Let e

k

:= 

1

+: : :+

k

be the anonial tripotent of rank k . Writing an element z 2M

p;q

(C )

as a blok matrix

z =

�

z

11

z

12

z

21

z

22

�

with z

11

2M

k

(C ); z

12

2M

k;q�k

(C ); z

21

2M

p�k;k

(C ); z

22

2M

p�k;q�k

(C );

we have

2fe; e; zg = ee

�

z + ze

�

e =

�

1 0

0 0

��

z

11

z

12

z

21

z

22

�

+

�

z

11

z

12

z

21

z

22

��

1 0

0 0

�

=

�

2z

11

z

12

z

21

0

�

:

This shows that

V

2

(e

k

)

�

=

M

k

(C ); V

1

(e

k

)

�

=

M

k;q�k

(C )�M

p�k;k

(C ) and V

0

(e

k

)

�

=

M

p�k;q�k

(C );

and therefore

F

e

=

n

�

1 0

0 z

�

: z 2M

p�k;q�k

(C ); jzj � 1

o

:

For k = r we see in partiular that V

0

(e

r

) = 0.
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III. Orbits of triples in the Shilov boundary

In this setion we obtain the key result for our lassi�ation of triples in S . We show that

if (

1

; : : : ; 

r

) is a Jordan frame in V , then eah G-orbit in S�S�S meets the Shilov boundary

T

�

=

T

r

of the orresponding polydis. We further show that the polydiss arising in this result

an also be haraterized diretly as the intersetions of D with r -dimensional subspaes of

V , or, equivalently, as isometri images of polydiss under aÆne maps C

r

! V , mapping �

r

isometrially into D . In partiular we show that any suh aÆne map is linear.

Theorem III.1. Suppose that D � V is of tube type, (

1

; : : : ; 

r

) is a Jordan frame in V ,

and

T := S \ spanf

1

; : : : ; 

r

g =

n

r

X

j=1

�

j



j

: (8j) j�

j

j = 1

o

is the orresponding r -torus in S . Then for eah triple (e; f; g) 2 S there exists a g 2 G with

g:e; g:f; g:h 2 T .

Proof. Sine Jordan frames and G deompose aording to the deomposition of D into

produts of irreduible domains, it suÆes to prove the assertion for irreduible domains. We

prove the assertion by indution on the rank r of D .

Case 1: If Fae(e; f; h) is proper, then its algebrai interior is a bounded symmetri

domain D

0

of smaller rank and (e; f; h) are ontained in its Shilov boundary. In fat, aording

to Theorem I.5 and Proposition II.3, for eah fae F of D orresponding to the holomorphi

ar-omponent A = algint(F ), the Shilov boundary of A is given by

S

A

= Ext(A) = Ext(F ) = Ext(D) \ F = S \ F:

Sine every element of Aut(D

0

)

0

is the restrition of an element of Aut(D) ([Sa80,

Lemma III.8.1℄), in this ase the result follows from the indution hypothesis if r > 1. If

r = 1, then eah proper fae of D is an extreme point, so that the assumption that e; f; h lie

in a proper fae implies e = f = h . In this ase we further have 

1

2 S , so that the assertion

follows from the transitivity of the ation of G on S .

Case 2: We assume that some pair (e; f), (f; h) or (e; h) is transversal. We may w.l.o.g.

assume that (e; f) is transversal. Then Fae(e; f; h) � F (e; f) = D by Theorem II.12, and

G:(e; f) ontains (e;�e) beause rk f = rk e = r (Lemma I.20). Therefore the orbit of (e; f; h)

ontains an element of the form (e;�e; h). Sine D is of tube type, we have V

0

(e) = V

1

(e) = f0g ,

so that Q(e) is invertible (f. (1.11)), and (V; e;Q(e)) is a unital involutive Jordan algebra. In this

Jordan algebra, S is the set of unitary elements, so that h

�

= Q(e)h = h

�1

(Jordan inverse).

Now the assertion follows from the Spetral Theorem for unitary elements in (V; e;Q(e)) (f.

[FK94, Prop. X.2.3℄).

Case 3: Fae(e; f; h) = D , but neither (e; f), nor (f; h) or (e; h) is transversal. Sine G

ats transitively on S , we may w.l.o.g. assume that e = e

r

= 

1

+ : : :+ 

r

. Consider the proper

fae F := Fae(f; h) of D . Then we have

D = Fae(e; f; h) = Fae(feg [ F );

and for any x 2 algint(F ) we obtain

D = Fae(feg [ F ) = Fae(e; x);

whih means that e and x are transversal (Theorem II.12).

Now we need the lassi�ation of G-orbits in the set of transversal pairs, whih shows that

the pair (e; x) is onjugate to an element of the form (e;�e+ e

j

) (Lemma I.20). The fae

F

0

= Fae(�e+ e

j

) = �Fae(e� e

j

) = �(e� e

j

) + (V

0

(e� e

j

) \ D) = (e

j

� e) + (V

2

(e

j

) \ D)
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is a bounded symmetri domain or rank j , and (e; f; h) is onjugate to a triple of the form

(e; f

0

; h

0

) where f

0

; h

0

are two elements in the Shilov boundary of F

0

, where they are transversal

beause they generate F

0

as a fae (Theorem II.12). Next we observe that the Peire rules

imply that by exponentiating elements of the entralizer of e� e

j

in g we generate the identity

omponent G

0

of the group Aut(D \ V

0

(e� e

j

)) and its elements g at on e

j

� e+ z by

g:(e

j

� e+ z) = (e

j

� e) + g:z

beause they ommute with the translation t

e

j

�e

. Now we onlude the proof by applying the

speial ase of transversal elements whih has already been taken are of, to see that the G

0

-orbit

of (e; f

0

; h

0

) intersets T .

Remark III.2. If D is not of tube type, then the Cayley transform C = C

e

leads to a

realization of D as a Siegel domain D

C

of type II , and sine C

e

(�e) = 0, the stabilizer G

e;�e

of �e in G orresponds to the stabilizer Q

C

e;�e

:= C

e

(G

e;�e

) of 0 in the aÆne group Q

C

e

, and

the identity omponent of this group is G(E

+

)

0

K

e

(see the proof of Theorem I.18). The Shilov

boundary of D

C

is the set

f(v

2

; v

1

) 2 V = V

2

� V

1

: Re v

2

= F (v

1

; v

1

)g;

and from this desription it is lear that no element v

2

+ v

1

with v

1

6= 0 is onjugate under

Q

C

e;�e

to an element in span

R

f

1

; : : : ; 

r

g � V

2

. Therefore the ondition that D is of tube type

is neessary for the onlusion of Theorem III.1.

Example III.3. The simplest example of a bounded symmetri domain not of tube type is

the matrix ball D � C

n

for n > 1. Its rank is r = 1 and in this ase G

�

=

PSU

n;1

(C ) (f.

Example II.13).

To z 2 D we assign the one-dimensional subspae L

z

:= C

�

z

1

�

2 C

n+1

. Endowing C

n+1

with the inde�nite hermitian form h given by

h(z; w) := z

1

w

1

+ : : :+ z

n

w

n

� z

n+1

w

n+1

;

we see that D orresponds to the set of lines on whih h is negative de�nite, and its Shilov

boundary, the sphere S

�

=

S

2n�1

, orresponds to the set of isotropi lines. In this piture the

ation of SU

n;1

(C ) on D omes from the natural ation of this group on the one-dimensional

subspaes of C

n+1

.

Fixing a unit vetor e 2 S , the pair (e;�e) orresponds to two di�erent isotropi lines

L

e

and L

�e

in C

n+1

, and the stabilizer of this pair in U

n;1

(C ) �xes the non-degenerate

subspae L

e

+ L

�e

, and also its orthogonal omplement of dimension n � 1. We onlude

that U

n;1

(C )

e;�e

�

=

R

�

� U

n�1

(C ), and that no line L

z

6� L

e

+ L

�e

an be moved by U

n;1

(C )

into the plane L

e

+ L

�e

. On the other hand, the set of isotropi lines in the plane L

e

+ L

�e

orresponds to the irle in S obtained by interseting S with the boundary of a one-dimensional

dis � � D of size 1, whih in partiular is a polydis of maximal rank. This shows quite diretly

that there are triples in S that annot be moved into the one-dimensional spae C e , so that

Theorem III.1 does not hold.

That Theorem III.1 fails in this ontext, an be expressed quantitatively by the observation

that

F (C v

1

; C v

2

; C v

3

) :=

h(v

1

; v

2

)h(v

2

; v

3

)h(v

3

; v

1

)

h(v

2

; v

1

)h(v

3

; v

2

)h(v

1

; v

3

)

is a well-de�ned funtion on the set of triples of pairwise di�erent isotropi lines in C

n+1

whih

is invariant under the pseudo-unitary group U

n;1

(C ). The funtion F is related to the Cartan

invariant (for a presentation and a generalization of this invariant we refer to [Cl05℄).
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Example III.4. The matrix ball D � M

n

(C ) is a symmetri domain of tube type with

Shilov boundary S = U

n

(C ), the unitary group. The maximal polydiss in D are obtained

by interseting D with the set of all matries that are diagonal with respet to some �xed

orthonormal basis of C

n

with respet to the standard salar produt. A partiular Jordan frame

onsists of the matrix units 

j

:= E

jj

, j = 1; : : : ; n , whose span is the set of diagonal matries.

Therefore Theorem III.1 states that eah triple (s

1

; s

2

; s

3

) of unitary matries an be diagonalized

by an element g 2 U

n;n

(C ), ating on U

n

(C ) by

�

a b

 d

�

:z = (az + b)(z + d)

�1

:

The ompat subgroup U

n

(C ) � U

n

(C ) ats linearly by (a; d):z = azd

�1

, and under this

group eah pair (s

1

; s

2

) is onjugate to a pair of the form (1; s

0

2

), where the stabilizer of

1 is the diagonal subgroup, ating on the seond omponent by (a; a

�1

):s

2

= as

2

a

�1

, so

that s

0

2

an be diagonalized by onjugating with a suitable element a 2 U

n

(C ). This means

that diagonalizability of pairs redues to lassial linear algebra, but diagonalizability of triples

requires the non-linear ation of U

n;n

(C ) and Theorem III.1.

A lassi�ation of the onjugation orbits of U

n

(C ) in U

n

(C )

2

is given in [FMS04℄, but

sine U

n

(C ) is muh smaller than U

n;n

(C ), this lassi�ation leads to in�nitely many orbits.

Polydis in bounded symmetri domains

Let D � V be a bounded symmetri domain of rank r and �

r

� C

r

the r -dimensional

unit polydis. We endow C

r

with the metri de�ned by the sup-norm

jzj := maxfjz

1

j; : : : ; jz

r

jg

and V by the metri de�ned by the spetral norm, also denotes jzj .

Theorem III.5. Any aÆne isometri map f : C

r

! V mapping �

r

into D is linear and

preserves the rank, i.e., for eah x 2 �

r

we have

rk f(x) = rkx:

Moreover, it is a morphism of Jordan triples and f(e

1

; : : : ; e

r

) is a Jordan frame.

Proof. Let x

0

:= f(0). Then `(x) := f(x) � x

0

de�nes an isometri linear map `: �

r

! V .

Sine ` is linear and isometri, it maps the open unit ball �

r

in C

r

into the open unit ball D

of (V; j � j), so that it also maps �

r

isometrially into D .

Let f

1

; : : : ; f

r

denote the images of the anonial basis in C

r

under ` . Then the oordinate

projetions

�

j

:L := spanff

1

; : : : ; f

r

g = im(`)! C ;

X

j

�

j

f

j

7! �

j

are linear maps with k�

j

k = 1 beause `: C

r

! L is an isometri inlusion. Using the Hahn{

Banah Theorem, we �nd extensions �

j

:V ! C with the same norm. Then the map

� := (�

1

; : : : ; �

r

):V ! C

r

satis�es k�k = 1 and � Æ ` = id. It follows in partiular that �(D) � �

r

.

Sine � maps D into �

r

, we have an order-preserving map

�

�

:F(�

r

)! F(D); F 7! �

�1

(F )

and the orresponding map

`

�

:F(D)! F(�

r

); F 7! `

�1

(F )
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satis�es

`

�

Æ �

�

= (� Æ `)

�

= id :

We onlude that �

�

is an order preserving injetion. This entails in partiular, that for eah

stritly inreasing hain

F

0

� F

1

� F

2

� : : : � F

r

of faes of �

r

, the images under �

�

form a stritly inreasing hain of faes of D . Sine r is

the rank of D , the maximal hains in F(D) are of length r , whih implies that �

�

preserves

the rank of faes. Sine the rank of an element x 2 D oinides with the rank of the fae it

generates, we further see that for z 2 �

r

we have

rk `(z) = rkFae(`(z)) = rk `

�

(Fae(z)) = rk(Fae(z)) = rk z:

Therefore ` preserves the rank.

Moreover, ` maps the Shilov boundary T

r

, onsisting of the elements of maximal rank,

into the Shilov boundary S of D . The relation

f(�

r

) = x

0

+ `(�

r

) � D

implies

�x

0

+ `(�

r

) = �(x

0

+ `(�

r

)) � D;

so that for eah z 2 T

r

we have

`(z) =

1

2

((`(z) + x

0

) + (`(z)� x

0

)) 2 S;

so that S = Ext(D) implies x

0

= 0, and hene f = ` is linear.

For i 2 f1; : : : ; rg we onsider the orresponding fae

F := fz 2 �

r

: z

i

= 1g 2 F(�

r

):

Then F is the losure of an (r � 1)-dimensional aÆne polydis, and f j

F

:F ! D is an aÆne

isometry into a fae F



2 F(D), where  is a primitive tripotent (Theorem I.5, Prop. II.3).

Applying the �rst part of the proof with D replaed by algint(F

0

) to the orresponding map

�

r�1

! F



� ; z 7! f(z

1

; : : : ; z

i�1

; 1; z

i

; : : : ; z

r

)� ;

we see that this map is linear, hene maps 0 to 0, whih leads to f(e

i

) =  . For i 6= j the element

e

i

+e

j

2 �

r

is ontained in the fae generated by e

i

, whih implies that f(e

i

+e

j

) = f(e

i

)+f(e

j

)

is ontained in the fae generated by f(e

i

). From Theorem I.5 we now derive

f(e

j

) = f(e

i

+ e

j

)� f(e

i

) 2 V

0

(f(e

i

));

so that the primitive tripotents f(e

i

), i = 1; : : : ; r , are mutually orthogonal. Hene the linear

map f : C

r

! V is a morphism of Lie triples systems.

Corollary III.6. Suppose that D

1

� V

1

and D

2

� V

2

are irular bounded symmetri domains

of the same rank. Then any aÆne isometri map f :V

1

! V

2

mapping D

1

into D

2

is linear and

rank-preserving.

Proof. Let r := rkD

1

= rkD

2

and �x a polyylinder D

0

:= �

r

� D

1

de�ned by a Jordan

frame (

1

; : : : ; 

r

). For V

0

:= spanf

1

; : : : ; 

r

g we then obtain by restrition an isometri map

f

0

:V

0

! V

2

mapping D

0

! D

2

. In view of Theorem III.5, this map is linear, whih implies

f(0) = f

0

(0) = 0, and thus f is linear.

Moreover, f

0

is rank-preserving by Theorem III.5, whih implies that f is also rank-

preserving.
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Corollary III.7. If r = rankD , then any isometri linear embedding f : �

r

,! D is equiv-

ariant in the sense that there exists a subgroup G

1

� Aut(D

0

) and a surjetive homomorphism

G

1

! Aut(�

r

)

0

�

=

PSU

1;1

(C )

r

suh that f is equivariant with respet to the ation of G

1

on

�

r

and D .

Proof. If (e

1

; : : : ; e

r

) is the anonial basis in C

r

, then (

1

; : : : ; 

r

) := (f(e

1

); : : : ; f(e

r

)) is a

Jordan frame, so that

g

1

:=

r

X

j=1

g



j

� g

is isomorphi to su

1;1

(C )

r

�

=

sl

2

(R)

r

(see (I.8)), the Lie algebra of the group Aut(�

r

)

0

�

=

PSU

1;1

(C ). We may now put G

1

:= hexp g

1

i � G , and the assertion follows.

IV. The Maslov index

To de�ne the integers lassifying the G-orbits in S � S � S , we need in partiular the

Maslov index, a ertain G-invariant funtion �:S � S � S ! Z . In this setion we explain how

the Maslov index an be de�ned for bounded symmetri domains of tube type whih are not

neessarily irreduible, hene extending the de�nition given in [C�01℄, [C�03℄, [Cl04b℄. Using

Theorem III.1, we further derive a list of properties of the Maslov index and show that it an

be haraterized in an axiomati fashion by these properties. Atually this was our original

motivation to prove Theorem III.1.

Let us �rst onsider the ase of the unit dis �. Then the group G is PSU

1;1

(C ) ating

by homographies on �, and its Shilov boundary is the unit irle T . The Maslov index

� = �

T

: T� T� T �! Z

is de�ned by

� �(x; y; z) = 0 if two of the elements of the triplet oinide.

� �(x; y; z) = �1 if (x; y; z) is onjugate under G to (1;�1;�i):

If �

r

denotes the r -polydis, then the identity omponent of Aut(�

r

) is G = PSU

1;1

(C )

r

and the Shilov boundary of �

r

is T

r

. The Maslov index � = �

T

r

: T

r

�! R is de�ned by

�((x

1

; x

2

; : : : ; x

r

); (y

1

; y

2

; : : : ; y

r

); (z

1

; z

2

; : : : ; z

r

)) := �(x

1

; y

1

; z

1

)+ �(x

2

; y

2

; z

2

)+ : : :+ �(x

r

; y

r

; z

r

) :

Now onsider an irreduible bounded symmetri domain D of tube type with Shilov

boundary S . The Maslov index � = �

S

: S � S � S �! Z is de�ned in [C�01℄, [C�03℄,

[Cl04b℄. As the de�nition is involved, we won't repeat it here, but it has the following property,

whih, in the light of Theorem III.1 and beause of the invariane of this index under G , is

harateristi: For any Jordan frame (

1

; 

2

; : : : ; 

r

), let

T =

n

r

X

j=1

t

j



j

: jt

j

j = 1; 1 � j � r

o

be the r -torus whih is the Shilov boundary of the assoiated r -polydis. Then for any three

points x; y; z in T , one has

(4:2) �

S

(x; y; z) = �

T

(x; y; z):

Last, we extend now the de�nition of the Maslov index to any bounded symmetri domain

D in the following way. Assume that D = D

1

� D

2

� : : : � D

m

is the deomposition of D as

a produt of irreduible domains. Then the identity omponent of the group of biholomorphi

automorphisms of D is the produt

G = Aut(D

1

)

0

�Aut(D

2

)

0

� : : :�Aut(D

m

)

0

;
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and the Shilov boundary S of D is the produt S = S

1

� S

2

� : : : � S

m

of the orresponding

Shilov boundaries. Then the Maslov index � = �

S

is de�ned by

�(x; y; z) := �

S

1

(x

1

; y

1

; z

1

) + �

S

2

(x

2

; y

2

; z

2

) + : : :+ �

S

r

(x

l

; y

l

; z

l

) :

Theorem IV.1. The Maslov index has the following properties :

(M1) It is invariant under the group G .

(M2) It is an alternating funtion with respet to any permutation of the three arguments.

(M3) It satis�es the oyle property �(x; y; z) = �(x; y; w) � �(x; z; w) + �(y; z; w) .

(M4) It is additive in the sense that if D = D

1

�D

2

, so that S = S

1

� S

2

, then

�

S

(x; y; z) = �

S

((x

1

; x

2

); (y

1

; y

2

); (z

1

; z

2

)) = �

S

1

(x

1

; y

1

; z

1

) + �

S

2

(x

2

; y

2

; z

2

) :

(M5) If � : D

1

�! D

2

is an equivariant holomorphi embedding of bounded symmetri domains

of tube type of equal rank, then �

S

2

Æ� = �

S

1

.

(M6) It is normalized by �

T

(1;�1;�i) = 1 for the Shilov boundary T of the unit dis � .

Proof. Properties (M1)-(M3) are known for irreduible domains ([C�01℄, [Cl04℄), and the

extension of these properties to produts of irreduible domains is obvious. Property (M4)

obviously holds by the way we have de�ned the Maslov index.

For Property (M5), let r be the ommon rank of the two domains. We may assume that D

1

and D

2

are given in a irular realization as unit balls in spaes V

1

, resp., V

2

. Then '(0) 2 D

2

,

and there is some g

2

2 G

2

:= Aut(D

2

)

0

with g

2

:'(0) = 0. Then  (z) := g

2

:'(z) de�nes an

equivariant embedding D

1

! D

2

whih is linear beause  (0) = 0.

Let (x; y; z) 2 S

1

and pik g

1

2 G

1

:= Aut(D

1

)

0

suh that g

1

:(x; y; z) is ontained in the

span of a Jordan frame (

1

; : : : ; 

r

) (Theorem III.1), hene in the Shilov boundary T

1

of the

orresponding polydis �

r

in D

1

. From the equivariane of ' we derive the existene of some

eg

1

2 G

2

with ' Æ g

1

= eg

1

Æ ' . Then  (�

r

) is a maximal polydis in D

2

with Shilov boundary

T

2

:=  (T

1

), so that (4.2) implies that

�

S

1

(x; y; z) = �

S

1

(g

1

:x; g

1

:y; g

1

:z) = �

T

1

(g

1

:x; g

1

:y; g

1

:z)

= �

T

2

( (g

1

:x);  (g

1

:y);  (g

1

:z)) = �

S

2

( (g

1

:x);  (g

1

:y);  (g

1

:z))

= �

S

2

(g

2

'(g

1

:x); g

2

'(g

1

:y); g

2

'(g

1

:z)) = �

S

2

('(g

1

:x); '(g

1

:y); '(g

1

:z))

= �

S

2

(eg

1

'(x); eg

1

'(y); eg

1

'(z)) = �

S

2

('(x); '(y); '(z)):

Property (M6) is a onsequene of the de�nition.

Remark IV.2. Note that (M2) and (M3) mean that �

S

is a Z-valued Alexander{Spanier 2-

oyle on S .

Before we turn to the general ase in the following setion, we reall the lassi�ation of

triples in the irle, the Shilov boundary of the unit dis:

Example IV.3. We onsider the ase � := fz 2 C : jzj < 1g . Then G = PSU

1;1

(C ) ats by

h

�

a b

 d

�

i

:z = (az + b)(z + d)

�1

:

The Shilov boundary is S = T = fz 2 C : jzj = 1g . Identifying S with the projetive line

P

1

(R) and G with PSL

2

(R), we immediately see that there are exatly two G-orbits in S � S ,

represented by

(1; 1) and (1;�1);

i.e., the diagonal in S�S and the set (S�S)

>

of transversal pairs. Sine the ation of G on S

preserves the orientation of a triple, it follows that we have 6 orbits in S � S � S , represented

by

(1; 1; 1); (1; 1;�1); (1;�1; 1); (1;�1;�1); (1;�1;�i) and (1;�1; i):
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Remark IV.4. As a funtion assigning to any triple in the Shilov boundary of any bounded

symmetri domain D an integer, the Maslov index is uniquely determined by the properties

(M1), (M2) and (M4)-(M6).

In view of Example IV.3, the Maslov index for D = � is uniquely determined by (M1),

(M2) and (M6). By (M4) it is also determined for polydiss.

If D is any bounded symmetri domain of rank r and (s

1

; s

2

; s

3

) 2 S � S � S , then

Theorem III.1 implies that it an be onjugate by some g 2 G to a triple in the Shilov boundary

T

�

=

T

r

of a maximal polydis, so that Corollary III.7, (M1) and (M5) lead to

�

S

(s

1

; s

2

; s

3

) = �

S

(g:s

1

; g:s

2

; g:s

3

) = �

T

(g:s

1

; g:s

2

; g:s

3

):

We onlude that �

S

is determined uniquely by (M1), (M2), together with (M3)-(M6).

A lassial ase: the Lagrangian manifold

Let E be a real vetor spae of dimension 2r and ! be a sympleti form on E . The

sympleti group Sp(E;!) is the group of linear automorphisms whih preserve ! . A Lagrangian

is a maximal totally isotropi subspae of E , hene of dimension r . The set �

r

of all Lagrangians

is a ompat submanifold of the Grassmannian Gr

r

(E) of r -dimensional subspaes of E . Then

the group G := PSp(E;!) := Sp(E;!)=f�1g ats transitively and e�etively on �

r

. Choosing a

sympleti basis in E , we may identify E with R

r

�R

r

, the sympleti form being the standard

one, namely

(4:1) !((�; �); (�

0

; �

0

)) = �

>

�

0

� �

>

�

0

:

Let us onsider the omplex vetor spae V = Sym

r

(C ) of omplex r � r symmetri

matries, and let D be the unit ball with respet to the operator norm. The spae V is an

involutive unital Jordan algebra with real form Sym

r

(R) , involution z

�

= z and Jordan produt

x�y :=

1

2

(xy+yx). The spetral norm on V oinides with the operator norm, and the unit ball is

then a bounded symmetri domain. To make onnetion with sympleti geometry, observe that

the graph of a symmetri matrix is a omplex isotropi subspae in C

r

� C

r

for the sympleti

struture (4.1). Let moreover h be the Hermitian form on C

r

� C

r

given by

h((�; �); (�

0

; �

0

)) = �

>

�

0

� �

>

�

0

= (�

0

)

�

� � (�

0

)

�

�:

The Hermitian form h has signature (r; r). Now to any x 2 V , assoiate its graph

`

x

= f(�; x:�): � 2 C

r

g:

The ondition that x is in the unit ball is equivalent to the fat that 1�xx

�

is positive de�nite,

whih in turn implies that the restrition of h to `

x

is positive de�nite. Conversely, any (omplex)

Lagrangian in C

r

� C

r

on whih the restrition of h is positive de�nite is the graph of some

omplex symmetri matrix in the unit ball. The Shilov boundary of D is the manifold of unitary

symmetri matries, and the orresponding graphs are the (omplex) Lagrangians on whih the

restrition of the form h is identially 0. Let C be the map from R

r

�R

r

to C

r

� C

r

given by

C(�; �) =

�

� + i�

p

2

;

� � i�

p

2

�

:

Then an elementary omputation shows that the omplexi�ation of the image under C of a (real)

Lagrangian is a (omplex) Lagrangian on whih the restrition of h is identially 0, and vie

versa. This gives a one-to-one orrespondene between �

r

and S . Moreover the natural ation of

G on �

r

is transferred to an ation on S and realizes an isomorphism of the real sympleti group

and the group Sp

2r

(C ) \ U

r;r

(C ), whih generalizes the isomorphism of SL

2

(R) and SU

1;1

(C ).
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The matries E

11

; : : : ; E

rr

form a Jordan frame in Sym

r

(C ). The orresponding r -torus

is

T :=

(

0

B

B

�

e

i�

1

0 : : : 0

0 e

i�

2

: : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : e

i�

r

1

C

C

A

: �

j

2 R; 1 � j � r

)

:

The graph of an element of T is the r -spae generated by

(e

1

; e

i�

1

e

1

); (e

2

; e

i�

2

e

2

); : : : ; (e

r

; e

i�

r

e

r

);

or equivalently by

(e

�i

�

1

2

e

1

; e

i

�

1

2

e

1

); (e

�i

�

2

2

e

2

; e

i

�

2

2

e

2

); : : : ; (e

�i

�

r

2

e

r

; e

i

�

r

2

e

r

):

Observe that (e

�i

�

j

2

e

j

; e

i

�

j

2

e

j

) = C(os

�

j

2

e

j

; sin

�

j

2

e

j

) to get that the orresponding Lagrangian

`(�

1

; �

2

; : : : ; �

r

) in �

r

is generated by

�

os

�

1

2

e

1

;� sin

�

1

2

e

1

�

;

�

os

�

2

2

e

2

;� sin

�

2

2

e

2

�

; : : : ;

�

os

�

r

2

e

r

;� sin

�

r

2

e

r

�

:

In this ase, one an then reformulate Theorem III.1 as follows.

Theorem IV.5. Let `

1

; `

2

; `

3

be three arbitrary Lagrangians in a sympleti vetor spae E

of dimension 2r . Then there exists a sympleti basis e

1

; e

2

; : : : ; e

r

; f

1

; f

2

; : : : ; f

r

suh that eah

of the three Lagrangians is generated by

os �

1

e

1

+ sin �

1

f

1

; os �

2

e

2

+ sin �

2

f

2

; : : : ; os �

r

e

r

+ sin �

r

f

r

for appropriate hoies of the (�

j

)

1�j�r

.

The lassi�ation result (Theorem V.4 below) for the ase S = �

r

an also be found in

[KS90, p.492℄.

V. The lassi�ation of triples

In this setion we omplete the lassi�ation of G-orbits in the set S � S � S of triples in

S by �rst assigning to eah triples an inreasing 5-tuple of integers N = (n

1

; n

2

; n

3

; n

4

; n

5

) 2

f0; : : : ; rg

5

depending only on its orbit. Then we exhibit for eah suh 5-tuple a standard triple

with this invariant, and �nally we show that two di�erent standard triples belong to di�erent

orbits.

De�nition V.1. To any triple (x

1

; x

2

; x

3

) in S � S � S , we may assoiate �ve integers:

(1) the ranks of the three faes (f. Remark II.4):

n

12

= rankFae(x

1

; x

2

); n

2;3

= rankFae(x

2

; x

3

); n

3;1

= rankFae(x

3

; x

1

)

(2) the rank of the fae generated by the triple

n

1;2;3

= rankFae(x

1

; x

2

; x

3

)

(3) the Maslov index �(x

1

; x

2

; x

3

).

Clearly the ation of G preserves these integers.

When x

1

; x

2

; x

3

are ontained in the boundary of a polydiss (f. Setion III), then these

integral invariants are easy to ompute (f. Example II.6).
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Lemma V.2. Let e =

P

r

j+1



j

be a Peire deomposition of the unit, and, for � = 1; 2; 3; let

x

�

=

r

X

j=1

�

(�)

j



j

; where j�

(�)

j

j = 1 for all j 2 f1; : : : ; rg:

Then

n

�;�

0

= jfj: �

(�)

j

= �

(�

0

)

j

gj; n

1;2;3

= jfj: �

(1)

j

= �

(2)

j

= �

(3)

j

gj;

and

�(x

1

; x

2

; x

3

) =

r

X

j=1

�(�

(1)

j

; �

(2)

j

; �

(3)

j

):

De�nition V.3. We now desribe the standard triples assoiated to a (�xed) Jordan frame

(

1

; : : : ; 

r

). Let N = (n

1

; n

2

; n

3

; n

4

; n

5

) be a 5-tuple of integers suh that

0 � n

1

� n

2

� n

3

� n

4

� n

5

� r :

Then the standard triple of type N is the triple (x

N

1

; x

N

2

; x

N

3

) de�ned by

x

N

1

= e

r

= 

1

+ : : :+ 

r

; x

N

2

= 

1

+ 

2

+ : : :+ 

n

2

� 

n

2

+1

� : : :� 

r

;

x

N

3

= 

1

+ : : :+ 

n

1

� 

n

1

+1

� : : :� 

n

3

+ 

n

3

+1

+ : : :+ 

n

4

� i

n

4

+1

� : : :� i

n

5

+ i

n

5

+1

+ : : :+ i

r

:

For this triple, one has

n

1;2;3

= n

1

; n

1;2

= n

2

; n

1;3

= n

1

+ n

4

� n

3

; n

2;3

= n

1

+ n

3

� n

2

;

and

�(x

N

1

; x

N

2

; x

N

3

) = n

5

� n

4

� (r � n

5

) = 2n

5

� n

4

� r:

Theorem V.4. If D is an irreduible bounded symmetri domain of tube type, then any triple

in S is onjugate to one and only one of the standard triples.

Proof. For the standard triples we have

(5:1) n

1

= n

1;2;3

; n

2

= n

1;2

; n

3

= n

2;3

+ n

2

� n

1

= n

2;3

+ n

1;2

� n

1;2;3

;

(5:2) n

4

= n

1;3

+ n

3

� n

1

= n

1;3

+ n

2;3

+ n

1;2

� 2n

1;2;3

;

and

(5:3) n

5

=

1

2

(�(x

N

1

; x

N

2

; x

N

3

) + n

4

+ r) =

1

2

(�(x

N

1

; x

N

2

; x

N

3

) + r + n

1;3

+ n

2;3

+ n

1;2

� 2n

1;2;3

):

Sine the numbers n

1;2;3

, n

1;2

, n

2;3

, n

3;1

and the Maslov index are G-invariant, it follows that

for di�erent values of N , the orresponding standard triples are not onjugate under G .

To show, onversely, that eah triple (e; f; h) 2 S�S�S is onjugate to a standard triple,

we �rst use Theorem III.1 to see that we may w.l.o.g. assume that (e; f; h) is ontained in the

torus

T :=

n

r

X

j=1

�

j



j

: (8j) j�

j

j = 1

o

de�ned by the Jordan frame (

1

; : : : ; 

r

). It is the Shilov boundary of the polydis

�

r

:=

n

r

X

j=1

�

j



j

: (8j) j�

j

j < 1

o

:
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We write

e =

r

X

j=1

�

e

j



j

; f =

r

X

j=1

�

f

j



j

and h =

r

X

j=1

�

h

j



j

:

From I.8 it follows that every element of Aut(�

r

)

0

�

=

PSU

1;1

(C )

r

is the restrition of an element

of Aut(D)

0

, beause

g



1

+ : : :+ g



r

�

=

su

1;1

(C )

r

= L(Aut(�

r

))

is a subalgebra of g = L(G). We may therefore assume that �

e

j

= 1 for eah j . Let

n

2

:= jfj: �

e

j

= �

f

j

gj = jfj: �

f

j

= 1gj:

Sine eah permutation of the set f

1

; : : : ; 

r

g is indued by an element of K , whih ats

transitively on the set of Jordan frames, we may w.l.o.g. assume that

f = 

1

+ 

2

+ : : :+ 

n

2

� 

n

2

+1

� : : :� 

r

beause the Aut(�)

0

-orbits in T� T are represented by (1; 1) and (1;�1) (Example IV.3).

Let n

1

:= jfj: �

e

j

= �

f

j

= �

h

j

gj and write

n

4

:= jfj: �

e

j

= �

f

j

or �

e

j

= �

h

j

or �

f

j

= �

h

j

gj

for the number of omponents in whih at least two elements of fe; f; hg have the same entries.

Then h has preisely n

1

entries 1 among the �rst n

2

, and we may w.l.o.g. assume that they

arise in position j = 1; : : : ; n

1

. We may likewise assume that the omponents of e; f and h are

mutually di�erent for j > n

4

. Then the entries of h in positions n

1

+1; : : : ; n

2

an be moved by

elements of the group Aut(�)

n

2

�n

1

0

ating on these omponents to �1. For j 2 fn

2

+1; : : : ; n

4

g

the j -th omponent of h equals either 1 or �1. Moving the 1-entries with some element of K

e

permuting f

1

; : : : ; 

r

g to the rightmost positions, we get entries �1 for j = n

1

+ 1; : : : ; n

3

for

some n

3

satisfying n

2

� n

3

� n

4

. For j > n

4

we then have Im �

h

j

6= 0, and after permuting the

Jordan frame, we may assume that for some n

5

� n

4

we have Im �

h

j

< 0 for j = n

4

+ 1; : : : ; n

5

and Im �

h

j

> 0 for j > n

5

. We �nally use elements of Aut(�)

0

�xing 1 and �1 to move eah

entry with negative imaginary part to �i and the others to i (f. Example IV.3). This proves

that eah triple is onjugate to a standard triple.

Remark V.5. In Theorem V.4, we have lassi�ed the G-orbits in the spae of triples in S by

the set of all 5-tuples N = (n

1

; n

2

; n

3

; n

4

; n

5

) 2 f0; : : : ; rg satisfying the monotoniity ondition

n

1

� n

2

� n

3

� n

4

� n

5

:

The desription the standard triples shows that eah suh tuples arises via (5.1)-(5.3). We laim

that for the 5-tuple

(r

0

; r

1

; r

2

; r

3

; d) :=

�

n

1;2;3

; n

1;2

; n

2;3

; n

3;1

; �(x

N

1

; x

N

2

; x

N

3

)

�

of integers we then have

(P1) 0 � r

0

� r

1

; r

2

; r

3

� r .

(P2) r

1

+ r

2

+ r

3

� r + 2r

0

.

(P3) jdj � r + 2r

0

� (r

1

+ r

2

+ r

3

).

(P4) d � r + r

1

+ r

2

+ r

3

mod 2.

In fat, (P1) is lear,

r

1

+ r

2

+ r

3

= n

4

+ 2r

0

� r + 2r

0

;

jdj = jn

5

� n

4

� (r � n

5

)j � n

5

� n

4

+ r � n

5

= r � n

4

= r + 2r

0

� r

1

� r

2

� r

3

;
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and

d = n

5

� n

4

� (r � n

5

) � n

4

+ r � r + r

1

+ r

2

+ r

3

mod 2:

Suppose, onversely, that (r

0

; r

1

; r

2

; r

3

; d) 2 Z

5

satis�es (P1)-(P4). We then de�ne

n

1

:= r

0

; n

2

:= r

1

; n

3

:= r

2

+ r

1

� r

0

; n

4

:= r

3

+ r

2

+ r

1

� 2r

0

and

n

5

=

1

2

(d+ r

3

+ r

2

+ r

1

+ r) � r

0

:

Then (P4) implies n

5

2 Z . From (P1/2) we immediately get 0 � n

1

� n

2

� n

3

� n

4

� r:

Further (P3) leads to jdj � r � n

4

, and n

4

� n

5

follows from

2n

5

= d+ r

3

+ r

2

+ r

1

+ r � 2r

0

= d+ r + n

4

� r + n

4

� (r � n

4

) = 2n

4

:

This is turn implies n

5

=

1

2

(r + d+ n

4

) � r:

The onditions (P1)-(P4) are well known onditions desribing the lassi�ation of triples

of Lagrangian subspae of sympleti vetor spaes ([KS90℄).

VI. Classi�ation of orbits in S � S

In this setion we desribe how the lassi�ation of G-orbits in S�S an be derived from

the Bruhat deomposition of G , resp., the desription of the orbits of the maximal paraboli

subgroup G

e

in G with G=G

e

�

=

S .

Throughout this setion we assume D to be irreduible. Let (

1

; 

2

; : : : ; 

r

) be a Jordan

frame and put

"

k

= 

1

+ 

2

: : :+ 

k

� 

k+1

� : : :� 

r

for k = 0; : : : ; r:

Moreover let e = 

1

+ : : :+ 

r

= "

r

, and observe that "

0

= �e . The vetor spae

a =

r

M

j=1

R

j

is a maximal at in V in the sense of Loos ([Lo77℄) and an be thought of as a Cartan subspae

in the tangent spae of D at the origin. The orresponding vetor �elds form a Cartan subspae

of p . Denoting by 

j

the j -th oordinate in a with respet to the basis (

1

; 

2

; : : : ; 

r

), it is

known that the (restrited) roots of (g; a) are �

j

� 

k

;�2

j

; 1 � j 6= k � r and, in addition,

�

j

; 1 � j � r in the non tube type ase. We hoose as positive Weyl hamber in a the one

de�ned by the inequalities



1

� 

2

� : : : � 

r

� 0;

so that the orresponding simple roots are



1

� 

2

; 

2

� 

3

; : : : ; 

r�1

� 

r

; 

r

:

The Weyl group W is isomorphi to the semi-diret produt S

r

n Z

r

2

, where S

r

ats by

permutation of the oordinates 

j

, and the j -th fator Z

2

ats by hanging the sign of the

j -th oordinate.

The stabilizer G

e

of the point e 2 S is known to be a maximal paraboli subgroup

(f. Set. I). It is the standard paraboli subgroup assoiated to the subset

� = f

1

� 

2

; 

2

� 

3

; : : : ; 

r�1

� 

r

g

of the set of simple roots. The subgroup W

�

of W generated by the reetions assoiated to the

roots in � is just S

r

, and double osets in W

�

nW=W

�

orrespond to orbits of S

r

in Z

r

2

, whih

are haraterized by their number of sign hanges. In partiular, this shows that the elements

"

j

; 0 � j � r , form a set of representatives of the W

�

-orbits in W:e .
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Theorem VI.1. There are r+1 orbits of G in S�S . A set of representatives of these orbits

is given by the pairs (e; "

k

); 0 � k � r .

Proof. As G ats transitively on S , any orbit of G in S � S meets the subset feg � S . So

the statement amounts to show that a G

e

-orbit in S ontains "

k

for some k; 0 � k � r . By

Bruhat's theory, the orbits of the paraboli subgroup G

e

of G are in one-to-one orrespondene

with the W

�

-double osets in W . In view of the preeding disussion, this shows the result.

Remark VI.2. The open orbit in S under the G

e

-ation (the big Bruhat's ell) orresponds

to the point �e and is nothing but the set of all points in S transversal to e .

De�nition VI.3. For (x; y) 2 S � S we de�ne their transversality index �(x; y) to be the

unique number k 2 f0; : : : ; rg suh that (x; y) belongs to the G orbit of (e; "

k

). Clearly, the

transversality index is invariant by the ation of G , and two pairs are onjugate if and only if

they have the same transversality index. Moreover, a pair (x; y) is transversal if and only if its

transversality index is 0.

Theorem VI.4. A pair (x; y) 2 S � S has transversality index k if and only if the fae

F (x; y) generated by x and y has rank k .

Proof. For 0 � k � r let e

k

= 

1

+ 

2

+ : : :+ 

k

. Then the fae generated by e and "

k

is

Fae(e; "

k

) = (e

k

+ V

0

(e

k

)) \ D;

whih has rank k . As any pair in S � S is onjugate to one of the pairs (e; "

k

), the theorem

follows immediately.
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