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Abstra
t. Let D be a bounded symmetri
 domain of tube type, S its Shilov boundary, and G

its group of biholomorphi
 automorphisms. We 
lassify the orbits of the identity 
omponent G of

the group of biholomorphi
 maps of D in the set S � S � S .
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Introdu
tion

Let D be a bounded symmetri
 domain in a (�nite dimensional) 
omplex ve
tor spa
e

V , realized as a 
ir
ular domain, let G := Aut(D)

0

be the identity 
omponent of its group of

biholomorphi
 transforms of D and let S be its Shilov boundary. The a
tion of any element of

G extends to a neigbourhood of D , and hen
e G a
ts on S . It is well known that this a
tion

is transitive. The main result of the present paper is a 
lassi�
ation of the G-orbits in the set

S � S � S of triples in S , when D is of tube type.

The a
tion of G on S � S 
an be easily studied as an appli
ation of Bruhat theory, and

the des
ription of the orbits is the same, whether D is of tube type or not. But for triples, there

is a drasti
 di�eren
e between tube type domains and non tube type domains. In the �rst 
ase,

there is a �nite number of orbits, whereas there are an in�nite number of orbits for a non tube

type domain.

Let r be the rank of D . The notion of r -polydis
s (and their 
orresponding Shilov

boundaries 
alled r -torus) plays an important role in the analysis of the orbits. On one hand

they are the \
omplexi�
ations" of the maximal 
ats of D (in the sense of the geometry of

Riemannian symmetri
 spa
es). On the other hand, a r -polydis
 in the usual sense is a set of

the form

�

r

=

n

r

X

j=1

�

j

x

j

: j�

j

j < 1; 1 � j � r

o

;

where the x

j

are linearly independent elements in V . The spa
e V has a natural stru
ture of

a positive hermitian Jordan triple system, and in parti
ular, it has a natural (Bana
h) norm,


alled the spe
tral norm, for whi
h the domain D is realized as the open unit ball. One of the

results we prove is that su
h a polydis
, 
onstru
ted on ve
tors x

j

of norm 1 lies in D if and

only if the (x

j

)

1�j�r

form a Jordan frame for V .

Fix an r -torus T � S arising as the Shilov boundary of an r -polydis
 asso
iated to a

Jordan frame. The main step towards the 
lassi�
ation of the orbits of G in S � S � S is the

result that any triple in S 
an be sent by an element of G to a triple in T . This requires that

D is of tube type, and this property really distinguishes tube type domains from non tube type

domains. On
e this result is obtained, the 
lassi�
ation be
omes easy, be
ause the problem is
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redu
ed to the 
ase of a polydis
, and further, using the produ
t stru
ture, to the 
ase of the

unit dis
 in C , where the situation is easy to analyze. The generalized Maslov index (see [C�01℄,

[Cl04℄) 
omes in as a subtle invariant for triples.

A spe
ial 
ase of this theorem was known before. If D is the Siegel domain (the unit

ball in the spa
e of 
omplex symmetri
 matri
es Sym

r

(C ) , then the group G is the proje
tive

symple
ti
 group PSp

2r

(R) := Sp

2r

(R)=f�1g , and the Shilov boundary of D 
an be identi�ed

with the Lagrangian manifold (the set of Lagrangian subspa
es of R

2r

). Then the orbits of

triples of Lagrangians have been des
ribed (see [KS90, p.492℄), using linear symple
ti
 algebra

te
hniques. Related results 
an be found in [FMS04℄, and in parti
ular their Proposition 4.3

(whi
h they dedu
e from [KS90℄) is, for this spe
i�
 example, equivalent to our Theorem III.1.

The main point of [FMS04℄ is a des
ription of the orbits of the a
tion of the maximal 
ompa
t

subgroup group U

n

(C ) of Sp

2n

(R) on triples of Lagrangians are 
lassi�ed, but this is a di�erent

problem.

Sin
e S is in parti
ular a generalized 
ag manifold of G , i.e., of the form G=P for some

paraboli
 subgroup P , the natural question arises to whi
h extent results similar to the ones

obtained in this paper 
ould be valid for other generalized 
ag manifolds. The natural ba
kground

for this problem is the following. If P

1

; : : : ; P

k

are paraboli
 subgroups of G , then the produ
t

manifold

M := G=P

1

� : : :�G=P

k

is 
alled a multiple 
ag manifold of �nite type if the diagonal a
tion of G on M has only �nitely

many orbits. For k = 1 we always have only one orbit, and for k = 2 the �niteness of the set of

orbits follows from the Bruhat de
omposition of G . For G = GL

n

(K ) or G = Sp

2n

(K ) and K is

an algebrai
ally 
losed �eld of 
hara
teristi
 zero, it has been shown in [MWZ99/00℄ that �nite

type implies k � 3, and for k = 3 the triples of paraboli
s leading to multiple 
ag manifolds

of �nite type are des
ribed and the G-orbits in these manifolds 
lassi�ed. The main te
hnique

to a
hieve these 
lassi�
ations was the representation theory of quivers. In [Li94℄, Littelmann


onsiders general simple algebrai
 groups over K and des
ribes all multiple 
ag manifolds of

�nite type for k = 3 under the assumption that P

1

is a Borel subgroup and P

2

, P

3

are maximal

paraboli
s. A
tually Littelmann 
onsiders the 
ondition that B = P

1

has a dense orbit in

G=P

2

� G=P

3

, but the results in [Vi86℄ show that this implies the �niteness of the number of

B -orbits and hen
e the �niteness of the number of G-orbits in G=B � G=P

2

� G=P

3

. From

Littelmann's 
lassi�
ation one 
an easily reads o� that for a maximal paraboli
 P in G the

triple produ
t (G=P )

3

is of �nite type if and only if the unipotent radi
al U of P is abelian

and in two ex
eptional situations. If U is abelian, then P is the maximal paraboli
 de�ned

by a 3-grading of g = L(G), so that G=P is the 
onformal 
ompletion of a Jordan triple (
f.

[BN05℄ for a dis
ussion of su
h 
ompletions in an abstra
t setting). The �rst ex
eptional 
ase,

where U is not abelian, 
orresponds to G = Sp

2n

(K ) , where G=P = P

2n�1

(K ) is the proje
tive

spa
e of K

2n

, U is the (2n � 1)-dimensional Heisenberg group and the Levi 
omplement is

Sp

2n�2

(K ) � K

�

. In the other ex
eptional 
ase G = SO

2n

(K ) and G=P is the highest weight

orbit in the 2

n

-dimensional spin representation of the 
overing group

e

G = Spin

2n

(K ) of G . Here

U

�

=

�

2

(K

n

) � K

n

also is a 2-step nilpotent group and the Levi 
omplement a
ts like GL

n

(K )

on this group. It seems that the positive �niteness results have a good 
han
e to 
arry over to

the split forms of groups over more general �elds and in parti
ular to K = R , but for real groups

not mu
h seems to be known about multiple 
ag manifolds of �nite type.

If M = (G=P )

3

is a multiple 
ag manifold of �nite type and P = U o L is a Levi

de
omposition of P , then L is the simultaneous stabilizer of a pair in (G=P )

2

with an open

orbit, and this implies that the 
onjugation a
tion of L on U has only �nitely many orbits. A


losely related but di�erent problem is the question when the 
onjugation a
tion of P on U

has �nitely many orbits. A

ording to a result of Ri
hardson, there is always a dense orbit, but

this does not imply �niteness. For more spe
i�
 results on this question we refer to [PR97℄ and

[HR99℄.

It is perhaps worthwhile to stress that the proofs we give are one more o

urren
e of the

intera
tion between 
omplex analysis of a bounded symmetri
 domains and the geometry of


onvex sets in the normed spa
e V . The notions of extremal points or fa
es of a 
onvex set do
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play an important role in our study.

The 
ontents of the paper is as follows. In Se
tion I we �rst re
all several fa
ts on

bounded symmetri
 domains. Our main sour
es are Loos' le
ture notes [Lo77℄ and Satake's

book [Sa80℄. For results 
on
erning Eu
lidean Jordan algebras we use [FK94℄. The main result

of Se
tion I is a 
lassi�
ation of the G-orbits in the set of quasi-invertible (=transversal) pairs in

D (Theorem I.18). For this 
lassi�
ation we do not need that D is of tube type. For the analysis

of G-orbits in S � S � S we only need the simpler 
ase of pairs (x; y), where x 2 S . For this


ase we give a more dire
t shorter proof, but we think that the general 
ase might also be useful

in other situations.

The main tool for the 
lassi�
ation of G-orbits in S � S �S is the 
hara
terization of the

transversality relation on D in terms of fa
es of the 
ompa
t 
onvex set D : Two elements x; y 2 D

are transversal if and only if they are not 
ontained in a proper fa
e of D (Theorem II.12). This


hara
terization is also valid for non tube type domains. A key 
on
ept for the 
lassi�
ation is

the notion of the rank of a fa
e F of D . For an irredu
ibel domain D of rank r it takes values

in the set f0; 1; : : : ; rg and 
lassi�es the G-orbits in the set of fa
es of D . It is normalized in

su
h a way that the rank of D as a fa
e is zero and that the extreme points, i.e., the elements in

the Shilov boundary, are fa
es of rank r . If Fa
e(x

1

; : : : ; x

n

) denotes the fa
e generated by the

subset fx

1

; : : : ; x

n

g of D , then the fun
tion

D

n

! f0; 1 : : : ; rg; (x

1

; : : : ; x

n

) 7! rankFa
e(x

1

; : : : ; x

n

)

is an invariant for the G-a
tion on D

n

.

In these terms, two elements x; y 2 D are transversal if and only if rankFa
e(x; y) = 0.

In Se
tion III we use this fa
t to show that for a domain D of tube type every triple in S is


onjugate to a triple in the Shilov boundary T of a maximal polydis
 �

r

de�ned by a Jordan

frame. This redu
es the 
lassi�
ation of G-orbits in S�S�S to the des
ription of interse
tions

of these orbits with T

3

. This is fully a
hieved in Se
tion V by assigning a 5-tuple of integer

invariants to ea
h orbit and by showing that triples with the same invariant lie in the same orbit.

The �rst four 
omponents of this 5-tuple are

(rankFa
e(x

1

; x

2

; x

3

); rankFa
e(x

1

; x

2

); rankFa
e(x

2

; x

3

); rankFa
e(x

1

; x

3

)):

The �fth 
omponent is de�ned as the Maslov index �(x

1

; x

2

; x

3

) whi
h is dis
ussed in some detail

in Se
tion IV. Note that if (x

1

; x

2

; x

3

) is transversal in the sense that all pairs (x

1

; x

2

), (x

2

; x

3

),

(x

3

; x

1

) are transversal, then the �rst four 
omponents of the invariant vanish, whi
h implies

that the G-orbits in the set of transversal triples are 
lassi�ed by the Maslov index.

We 
on
lude the paper with a brief dis
ussion of how the 
lassi�
ation of the G-orbits in

S � S 
an be interpreted in terms of the Bruhat de
omposition of G . We thank L. Kramer and

H. Rubenthaler for 
omments and referen
es 
on
erning multiple 
ag manifolds of �nite type.

I. Classi�
ation of orbits of transversal pairs in the boundary

Let D be an irredu
ible 
ir
ular bounded symmetri
 domain, so that D is the open unit

ball for a norm on a 
omplex ve
tor spa
e V ([Lo77, Th.4.1℄). In this se
tion we des
ribe the

G-orbits in the set of quasi-invertible pairs of elements in the 
losure of D (
f. Theorem I.18

below). Here we do not have to assume that D is of tube type.

I.1. The asso
iated Jordan triple. On V we 
onsider the hermitian Jordan triple produ
t

f�; �; �g:V

3

! V that is uniquely determined by the property that for ea
h v 2 V the ve
tor �eld

given by the fun
tion

�

v

:V ! V; z 7! v �Q(z):v = v � fz; v; zg

generates a one-parameter group of automorphisms of D ([Lo77, Lemma 4.3℄). Note that for

ea
h v 2 V the map (z; w) 7! fz; v; wg is symmetri
 and 
omplex bilinear, and that the maps

z 7! fa; z; bg are antilinear. For x; y 2 V we de�ne Q(x) and x�y 2 End(V ) by

Q(x):y := fx; y; xg and x�y:z := fx; y; zg:
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The Jordan triple stru
ture on V used by Loos is fx; y; zg

0

= 2fx; y; zg , so that his quadrati


representation is given by Q

0

(x; y) = 2fx; y; zg , but sin
e Loos de�nes Q

0

(x) as

1

2

Q

0

(x; x), we

obtain the same operators Q(x) = Q

0

(x).

I.2. Tripotents and Peir
e de
omposition. An element e 2 V is 
alled a tripotent if

e = fe; e; eg . For a tripotent e 2 V let V

j

:= V

j

(e) denote the j -eigenspa
e of the operator

2e�e . Then we obtain the 
orresponding Peir
e de
omposition of V :

V = V

0

� V

1

� V

2

([Lo77, Th. 3.13℄). Sin
e e�e is a Jordan triple derivation, we have the Peir
e rules

(1:1) fV

i

; V

j

; V

k

g � V

i�j+k

;

whi
h imply in parti
ular that ea
h spa
e V

j

is a Jordan subtriple. In addition, we have

(1:2) V

0

�V

2

= V

2

�V

0

= f0g:

The Jordan triple V also 
arries a Jordan algebra stru
ture, denoted V

(e)

, given by

ab := L(a):b := fa; e; bg:

Then e is an idempotent in V

(e)

be
ause ee = fe; e; eg = e , and the Peir
e de
omposition of

V with respe
t to the tripotent e 
oin
ides with the Peir
e de
omposition of the Jordan algebra

V

(e)

with respe
t to the idempotent e .

The multipli
ation operators in V

(e)

are given by L(a) = a�e , so that L(e) j

V

2

= id

V

2

implies that (V

2

; e) is a unital Jordan subalgebra of V

(e)

. For the quadrati
 representation in

V

(e)

we have

P (e) = 2L(e)

2

� L(e

2

) = 2L(e)

2

� L(e) = (2L(e)� 1)L(e);

so that P (e) = Q(e)

2

vanishes on V

0

� V

1

and restri
ts to the identity on V

2

. It follows in

parti
ular that (V

2

; e; Q(e)) is an involutive Jordan algebra (
f. [Lo77, Th. 3.13℄).

I.3. Orbits in D . Two tripotents e; f 2 V are said to be orthogonal if f 2 V

0

(e). In view

of the Peir
e rules (1.2), this implies ff; f; eg = fe; f; fg = (e�f):f = 0, so that we also have

e 2 V

0

(f), i.e., orthogonality is a symmetri
 relation. If this is the 
ase, then e + f also is a

tripotent be
ause the relations e�f = f�e = 0 lead to

fe+ f; e+ f; e+ fg = fe; e; e+ fg+ ff; f; e+ fg = fe; e; eg+ ff; f; fg = e+ f:

We 
all a non-zero tripotent e primitive if it 
annot be written as a sum of two non-zero

orthogonal tripotents and e is said to be maximal if there is no non-zero tripotent orthogonal

to e . A maximal tuple (


1

; : : : ; 


r

) of mutually orthogonal primitive tripotents is 
alled a Jordan

frame in V and r = rankD is 
alled the rank of D . We �x a Jordan frame (


1

; : : : ; 


r

). For

k = 0; 1; : : : ; r we then obtain tripotents

e

k

:= 


1

+ : : :+ 


k

;

where it is understood that e

0

= 0.

We re
all that ea
h bounded symmetri
 domain D 
an be de
omposed in a unique fashion

as a dire
t produ
t of inde
omposable, also 
alled irredu
ible, bounded symmetri
 domains:

(1:3) D = D

1

� : : :�D

m

:

Then the 
onne
ted group G := Aut(D)

0

satis�es

(1:4) G

�

=

G

1

� : : :�G

m

; where G

j

:= Aut(D

j

)

0

:
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If D is irredu
ible, then G has exa
tly r + 1 orbits in the 
losure D of D in V and e

0

; : : : ; e

r

form a set of representatives (
f. [Sa80, Th. III.8.7℄). For k = 0 we have G:e

0

= D and for k = r

we obtain the Shilov boundary G:e

r

= S ([Sa80, Th. III.8.14℄). We de�ne the rank of x 2 D by

rankx = k for x 2 G:e

k

and observe that the rank fun
tion is G-invariant and 
lassi�es the G-orbits in D .

If D is not irredu
ible, then (1.3/4) imply that the orbit of x = (x

1

; : : : ; x

m

) 2 D =

Q

m

j=1

D

j

is determined by the m-tuple

(rankx

1

; : : : ; rankx

m

) 2 N

m

0

:

Here (0; : : : ; 0) 
orresponds to elements in D and (rkD

1

; : : : ; rkD

m

) to elements in the produ
t

set S = S

1

� : : :� S

m

.

I.4. Spe
tral de
omposition and spe
tral norm. Let K be the stabilizer of 0 2 D in G .

Then K a
ts as a group of automorphism on the Jordan triple V and ea
h element z 2 V is


onjugate under K to an element in span

R

f


1

; : : : ; 


r

g . For k:z =

P

r

j=1

�

j




j

the number

jzj := maxfj�

1

j; : : : ; j�

r

jg

is 
alled the spe
tral norm of z . Then the elements e


j

:= k

�1

:


j

are orthogonal tripotents with

z =

X

j=1

�

j

e


j

;

whi
h is the spe
tral de
omposition of z . The spe
tral norm j � j is indeed a norm on V with

(1:5) D = fz 2 V : jzj < 1g:

The following theorem relates the holomorphi
 ar
-
omponents in �D to the tripotents

in V .

Theorem I.5. ([Lo77, Th. 6.3℄) For ea
h holomorphi
 ar
-
omponent A of �D there exists a

tripotent e in A su
h that

A = A

e

:= e+D

e

; where D

e

:= D \ V

0

(e)

is a bounded symmetri
 domain in V

0

(e) . The map e 7! A

e

yields a bije
tion from the set of non-

zero tripotents of V onto the set of holomorphi
 ar
-
omponents of �D . The Shilov boundary S


oin
ides with the set of maximal tripotents.

An element x 2 D is 
ontained in A

e

if and only if

(1:6) e = lim

n!1

Q(x)

n

:x:

I.6. Conformal 
ompletion of V . Let G

C

denote the universal 
omplexi�
ation of the


onne
ted real Lie group G and � the anti-holomorphi
 involution of G

C

for whi
h G is the

identity 
omponent of the �xed point group G

�

C

. Then the Lie algebra g

C

of G

C

has a faithful

realization by polynomial ve
tor �elds of degree � 2 on V , whi
h leads to a 3-grading

g

C

= g

+

� g

0

� g

�

;

where V

�

=

g

+

is the spa
e of 
onstant ve
tor �elds, g

0


onsists of linear ve
tor �elds, and g

�

is the set of quadrati
 ve
tor �elds 
orresponding to the maps z 7! Q(z):v = fz; v; zg for v 2 V .

By 
onstru
tion of the triple produ
t, the ve
tor �elds �

v


orrespond to elements of the real Lie
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algebra g = L(G), whi
h implies that � maps the 
onstant ve
tor �eld v to the quadrati
 ve
tor

�eld z 7! �fz; v; zg . Hen
e � reverses the grading of g

C

, i.e., �(g

j

) = g

�j

for j 2 f+;�; 0g .

The Jordan triple stru
ture on V

�

=

g

+

then satis�es

(1:7) fx; y; zg =

1

2

[[x; �:y℄; z℄:

The subgroups

G

�

:= exp g

�

and G

0

:= fg 2 G

C

: (8j) Ad(g)g

j

= g

j

g

satisfy

G

�

\G

0

= f1g and (G

�

oG

0

) \G

�

= f1g:

Therefore P

�

:= G

�

G

0

�

=

G

�

oG

0

are subgroups of G

C

, and we obtain an embedding

V ,! X := G

C

=P

�

; v 7! exp v � P

�

;


alled the 
onformal 
ompletion of V . The elements of G

+

a
t on V � X by translations

(1:8) t

v

:x 7! x+ v

be
ause exp v expxP

�

= exp(v + x)P

�

: We further have �(G

�

) = G

�

and �(G

0

) = G

0

.

For w 2 V we write

e

t

w

for the map X ! X indu
ed by the element exp(��(w)) =

(�(expw))

�1

. For v 2 V the 
ondition

e

t

w

:v 2 V , where V is 
onsidered as a subset of X , is

then equivalent to the invertibility of

(1:9) 1+ ad v ad(��:w) +

1

4

(ad v)

2

(ad �:w)

2

= 1� ad v ad(�:w) +

1

4

(ad v)

2

Æ � Æ (ad �)

2

Æ �

([BN05, Cor. 1.10℄). In view of (1.7), this is pre
isely the Bergman operator

B(v; w) = 1� 2v�w +Q(v)Q(w):

We further have in V the relation

(1:10)

e

t

w

:v = B(v; w)

�1

:(v �Q(v):w):

I.7. Quasi-invertibility and transversality. A pair (x; y) 2 V is 
alled quasi-invertible if

B(x; y) 2 End(V ) is invertible. We write x>y if (x; y) is quasi-invertible and say that x is

transversal to y . We write x

>

:= fy 2 V :x>yg for the set of all elements in V transversal to x .

In the Jordan algebra V

(y)

with the produ
t ab := fa; y; bg we have L(a) = a�y and

P (a) = Q(a)Q(y) ([N�04, App. A℄), so that

B(x; y) = id

V

�2L(x) + P (x);

and in the unital Jordan algebra V

(y)

� R with the identity element 1 := (0; 1) we have

1� 2L(x) + P (x) = P (1;1)� 2P (1; x) + P (x; x) = P (1� x);

i.e., the quasi-invertibility of (x; y) is equivalent to the quasi-invertibility of x in the Jordan

algebra V

(y)

.

I.8. The sl

2

-triple asso
iated to a tripotent. Let e 2 V be a tripotent, f := �(e),

h := [e; f ℄ and g

e

:= span

R

fh; e; fg . Then

[h; e℄ = 2fe; e; eg = 2e and [h; f ℄ = � [�h; e℄ = �� [h; e℄ = �2�e = �2f;

so that g

e

�

=

sl

2

(R) is a 3-dimensional subalgebra of g with g

�

e

= R(e + f).
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(a) The operator ad

V

h = 2e�e is diagonalizable with possible eigenvalues 0; 1; 2. The


orresponding eigenspa
e de
omposition V = V

0

� V

1

� V

2

is the Peir
e de
omposition of the

Jordan algebra V

(e)

with multipli
ation ab := fa; e; bg with respe
t to the idempotent e , i.e.,

2L(e):v

j

= jv

j

for j = 0; 1; 2.

(b) We observe that P (e) = 2L(e)

2

� L(e

2

) = (2L(e) � 1)L(e). For � 2 R we therefore

have for

B(e; (1� �)e) = B((1� �)e; e) = 1� (1� �)2e�e+ (1� �)

2

Q(e)

2

= 1� (1� �)2L(e) + (1� �)

2

P (e) = 1� (1� �)2L(e) + (1� �)

2

(2L(e)� 1)L(e)

the relation

B(e; (1� �)e)v

j

= �

j

v

j

; j = 0; 1; 2:

(
) From Q(e) = Q(Q(e)e) = Q(e)

3

we 
on
lude that the antilinear map Q(e) is diagonal-

izable over R with eigenvalues in f1; 0;�1g , so that Q(e)

2

= P (e) = (2L(e) � 1)L(e) implies

that

(1:11) kerQ(e) = kerP (e) = V

0

� V

1

:

From V

0

�V

2

= V

2

�V

0

= f0g we obtain for x; y 2 V

0

:

B(e+ x; e+ y):e = e� 2(e+ x)�(e+ y):e+Q(e+ x)Q(e+ y)e

= e� 2e� 2x�y:e+Q(e+ x)(Q(e):e+Q(y):e+ 2fe; e; yg)

= �e� 2(e�y):x+Q(e+ x):e = �e+ (Q(e):e+Q(x):e+ fe; e; xg) = 0:

Theorem I.9. ([Lo77, Th. 8.11℄) Let e 2 V be a tripotent and V

(e)

the 
orresponding Jordan

algebra with produ
t ab = fa; e; bg . Identifying e 2 V with an element of g

+

, the partial Cayley

transform 
orresponding to e is de�ned by C

e

:= exp

�

�

4

(e��:e)

�

2 G

C

, and in Jordan theoreti


terms it is given as a partially de�ned map on V by

C

e

= t

e

�B(e; (1�

p

2)e) �

e

t

e

:

In parti
ular

C

�1

e

(V ) \ V = fv 2 V :B(e; v) 2 GL(V )g = e

>

:

In [Lo77℄ Loos writes B(e;�e)

1

2

instead of B(e; (1�

p

2)e), whi
h makes sense be
ause

B(e; (1�

p

2)e)

2

= B(e; (1� 2)e) = B(e;�e)

is diagonalizable and the eigenvalues 1;

p

2 and 2 of B(e; (1�

p

2)e) are positive (I.8).

I.10. The pre
eding theorem implies in parti
ular that the 
ondition for an element x 2 V to

lie in the domain of the Cayley transform is pre
isely the transversality 
ondition e>x . If x

2

is the Peir
e 
omponent of x in V

2

, then [Lo77, Prop. 10.3℄ says that e>x is equivalent to the

invertibility of e� x

2

in the unital Jordan algebra (V

2

; e).

De�nition I.11. A hermitian s
alar produ
t h�; �i on V is said to be asso
iative if for

x; y; z; w 2 V we have

hfx; y; zg; wi = hx; fy; z; wgi;

whi
h is equivalent to

(z�y)

�

= y�z for y; z 2 V:

A

ording to [Lo77, Cor. 3.16℄, a s
alar produ
t with this property is given by

hx; yi := tr(x�y);

and for 0 6= x 2 V the operator x�x is non-zero and positive semide�nite. In this sense

(V; f�; �; �g) is a positive hermitian Jordan triple.
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Lemma I.12. Let e 2 V be a tripotent, V

j

:= V

j

(e) its Peir
e spa
es, and z 2 V

0

with jzj � 1 .

Further let f := lim

n!1

Q(z)

n

:z denote the unique tripotent 
ontained in the holomorphi


ar
-
omponent of z . Then '(z) := Q(z + e) j

V

1

:V

1

! V

1

is an antilinear operator whi
h is

symmetri
 with respe
t to the real s
alar produ
t (z; w) := Re tr(z�w) , and for z 2 V

1

we have

'(z)v = 2fz; v; eg .

If jzj < 1 , then '(z) + 1 is inje
tive (1 stands for id

V

1

), and for jzj = 1 its kernel is

Fix(�Q(e+ f)) \ V

1

(f) \ V

1

(e):

Proof. For v 2 V

1

we have

'(z)v = fz + e; v; z + eg = Q(z)v +Q(e)v + 2Q(z; e)v;

and Q(e)v 2 V

4�1

= V

3

= f0g as well as Q(z)v 2 V

0�1

= V

�1

= f0g by the Peir
e relations

(1.1), so that '(z)v = 2fz; v; eg:

A

ording to [Lo77, Lemma 6.7℄, the operator '(z) on V

1

is symmetri
 with respe
t to the

real s
alar produ
t (�; �) on V

1

, hen
e diagonalizable over R with real eigenvalues.

Let v 2 V

1

be an eigenve
tor for '(z) 
orresponding to the eigenvalue � 2 R , i.e.,

Q(z + e):v = �v . Indu
tively we get

Q(Q(z + e)

n

:(z + e)):v = �

2n+1

� v

for all n 2 N

0

from

Q(Q(z + e)

n

:(z + e)):v = Q(Q(z + e)Q(z + e)

n�1

:(z + e)):v

= Q(z + e)Q(Q(z + e)

n�1

:(z + e))Q(z + e):v

= Q(z + e)Q(Q(z + e)

n�1

:(z + e)):�v = �Q(z + e):(�

2n�1

:v) = �

2n+1

v:

Sin
e the in
lusion V

0

,! V is isometri
 with respe
t to the spe
tral norm ([Lo77, Th. 3.17℄),

we have

e+ z 2 e+D

e

= A

e

� D;

and the limit f = lim

n!1

Q(z)

n

:z is a tripotent in V

0

(e) (Theorem I.5).

As a 
onsequen
e of the Peir
e relations (1.2), we obtain

Q(e+ z):(e+ z) = Q(e)e+Q(z)z = e+Q(z)z;

and indu
tively

Q(e+ z)

n

:(e+ z) = e+Q(z)

n

:z ! e+ f:

Therefore

lim

n!1

�

2n+1

v = lim

n!1

Q(Q(z + e)

n

:(z + e)):v = Q(e+ f):v;

and the existen
e of the limit implies that j�j � 1. If j�j < 1, then Q(e+f):v = 0, and otherwise

Q(e + f):v = �v . It follows in parti
ular that ea
h eigenve
tor for Q(e + z) on V

1

also is an

eigenve
tor of Q(e+ f).

Suppose that j�j = 1. As a 
onsequen
e of the Peir
e rules, the sum e + f is a Jordan

tripotent (I.3), and from Q(e + f):v = �v and kerQ(e + f) = V

0

(e + f) � V

1

(e + f) (I.8), we

derive v 2 V

2

(e+ f), so that (e+ f)�(e+ f) = e�e+ f�f implies that v 2 V

1

(f).

On the other hand Q(e+ f) is an antilinear involution of V

2

(e+ f) � V

1

(e) \ V

1

(f). We


on
lude that

ker('(z) + 1) = ker('(f) + 1) = Fix(�Q(e+ f)) \ V

1

(f) \ V

1

(e):

To 
lassify the G-orbits of transversal pairs in D , we need a more expli
it des
ription of

the image

D

C

:= C

e

(D)

of D under the partial Cayley transform C

e

in terms of the Peir
e de
omposition of V . To this

end, we introdu
e the following notation:
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De�nition I.13. Let e 2 V be a tripotent.

(1) (V

2

; e; Q(e)) is a unital involutive Jordan algebra. We write v

�

:= Q(e)v for the involution

on V

2

and observe that V

2

= E � iE for E := fv 2 V : v

�

= vg . In this sense

Re v =

1

2

(v + v

�

) =

1

2

(v +Q(e)v)

is the 
omponent of v in the real form E of V

2

. The real Jordan algebra E is eu
lidean

and we write E

+

:= fa

2

: a 2 Eg for its 
losed positive 
one. For v; w 2 E we write v > w

for v � w 2 int(E

+

) and v � w for v � w 2 E

+

.

(2) For z 2 V

0

we de�ne the antilinear map

'(z):V

1

! V

1

; v 7! 2fe; v; zg = Q(e+ z):v

(Due to the di�erent normalization, the fa
tor 2 not present in [Lo77℄).

(3) We also de�ne a hermitian map

F :V

1

� V

1

! V

2

; (z; w) 7! fz; w; eg

with

F (z; w)

�

= F (w; z) and F (z; z) > 0 for 0 6= z 2 V

1

:

For u 2 V

0

with juj < 1 we further de�ne a real bilinear map

F

u

(z; w) = F (z; (1+ '(u))

�1

:w);

where we re
all from Lemma I.12 that 1+ '(u) is invertible.

In the following proposition the missing fa
tor

1

2

in front of F , 
ompared to [Lo77℄, is due

to our di�erent normalization of the triple produ
t.

Proposition I.14. ([Lo77, Th. 10.8℄) We have

D

C

= C

e

(D) = fv = v

2

+ v

1

+ v

0

2 V

2

� V

1

� V

0

: jv

0

j < 1;Re(v

2

� F

v

0

(v

1

; v

1

)) > 0g:

To determine the 
losure of D

C

, we need the following lemma, be
ause there might be

elements x

0

2 �D \ V

0

for whi
h the operator '(x

0

) + 1 is not invertible.

Lemma I.15. Let F be a �nite-dimensional eu
lidean ve
tor spa
e, (A

n

)

n2N

a sequen
e of

positive de�nite operators on F 
onverging to A and (v

n

)

n2N

a sequen
e of elements of F


onverging to v . If the sequen
e A

�

1

2

n

v

n

is bounded, then v 2 im(A):

Proof. Sin
e A is symmetri
, we have im(A) = ker(A)

?

. Let w 2 ker(A). We have to show

that hv; wi = 0. Sin
e the sequen
e A

�

1

2

n

v

n

is bounded, it 
ontains a 
onvergent subsequen
e,

and we may thus assume that it 
onverges to some u 2 F . Then we get

hv; wi = lim

n!1

hv

n

; wi = lim

n!1

hA

1

2

n

A

�

1

2

n

v

n

; wi = lim

n!1

hA

�

1

2

n

v

n

; A

1

2

n

wi = hu;A

1

2

wi = hu; 0i = 0:

This 
ompletes the proof.

Lemma I.16. For ea
h element v = v

2

+ v

1

+ v

0

2 D

C

we have v

1

2 im(1+ '(v

0

)):

Proof. Let (v

n

)

n2N

be a sequen
e in D

C


onverging to v and write v

n

j

, j = 0; 1; 2; for its

Peir
e 
omponents.

We pi
k a linear fun
tional f 2 E

�

in the interior of the dual 
one of E

+

, so that f(x) > 0

holds for 0 6= x 2 E

+

, and observe that this implies that

(v; w) := f(ReF (v; w))
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de�nes a real s
alar produ
t on V

1

. The argument in [Lo77, p.10.6℄ shows that for ea
h z 2 V

0

the operator '(z) is symmetri
 with respe
t to this s
alar produ
t. A

ording to Lemma I.12,

all its eigenvalues � satisfy j�j � 1 and even j�j < 1 for jzj < 1, so that 1+ '(z) is a positive

semide�nite symmetri
 operator whi
h is positive de�nite for jzj < 1.

From v

n

2 D

C

we get

jv

n

0

j < 1 and ReF

v

n

0

(v

n

1

; v

n

1

) � Re v

n

2

;

whi
h implies that

f(v

n

2

) � f(ReF

v

n

0

(v

n

1

; v

n

1

)) = f(ReF (v

n

1

; (1+ '(v

n

0

))

�1

v

n

1

))

= (v

n

1

; (1+ '(v

n

0

))

�1

v

n

1

) = ((1+ '(v

n

0

))

�

1

2

v

n

1

; (1+ '(v

n

0

))

�

1

2

v

n

1

):

Therefore the sequen
e (1+ '(v

n

0

))

�

1

2

v

n

1

in V

1

is bounded, and Lemma I.15 implies that

v

1

= lim

n!1

v

n

1

2 im(1+ '(v

0

)):

I.17. From the pre
eding lemma one easily derives an expli
it des
ription of the 
losure of D

C

be
ause the operator (1+ '(v

0

))

�1

is well-de�ned on im(1+ '(v

0

)). This leads to

D

C

=

n

v 2 V : jv

0

j � 1; v

1

2 im('(v

0

) + 1);Re

�

v

2

� F (v

1

; (1+ '(x

0

))

�1

v

1

)

�

� 0

o

:

Sin
e we do not need this des
ription in the following, we leave the details of its veri�
ation to

the reader.

Theorem I.18. (Orbits of transversal pairs) Let D be an irredu
ible bounded symmetri


domain, not ne
essarily of tube type. If (x; y) 2 D is a transversal pair with rkx = k , then there

exists a g 2 G with g:(x; y) = (e

k

; z) with

e

k

= 


1

+ : : :+ 


k

and z = �(


j+1

+ : : :+ 


k

) +

r

X

l=k+1

�

l




l

; �1 � �

k+1

� : : : � �

r

� 1:

Proof. Sin
e D is irredu
ible, G a
ts transitively on the set of elements of rank k , so that

we may w.l.o.g. assume that x = e := e

k

. We then have to show that ea
h G

e

-orbits in e

>

\ D


ontains an element of the form

�(


j+1

+ : : :+ 


k

) +

r

X

l=k+1

�

l




l

; �1 � �

k+1

� : : : � �

r

� 1:

We re
all the notation from De�nition I.13. For y > 0 in E we then �nd with (I.7)

(1:12) B(e� y; e) = id

V

�2L(e� y) + P (e� y) = P (e� (e� y)) = P (y):

Let Q := G

A

e

denote the stabilizer of the holomorphi
 ar
-
omponent A

e

of e in �D

(whi
h is a maximal paraboli
 subgroup of G). Then the group Q

C

:= C

e

Æ Q Æ C

�1

e

a
ts

naturally on D

C

= C

e

(D) and we also put

Q

C

e

:= C

e

ÆG

e

Æ C

�1

e

� Q

C

;

where G

e

is the stabilizer of e in G .

From [Lo77, Lemma 10.7℄ we now obtain

Q

C

= ft

b

Æ t

v+F (v;v)

exp(2e�v)P (y) exp(�

w

) � k: b 2 iE; v 2 V

1

; 0 < y 2 E;w 2 V

0

; k 2 K

e

g;
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where K

e

:= fg 2 G : g:0 = 0; g:e = eg � Aut(V )

e

is the set of all automorphisms of the Jordan

triple V �xing e and P (y) is the quadrati
 representation of the Jordan algebra V

(e)

(
f. I.7).

From the proof of [Lo77, Thm. 9.15℄ and the des
ription of the Lie algebra L(Q

C

) in [Lo77,

Prop. 10.6℄ it follows that for b 2 iE; v 2 V

1

; 0 < y 2 E and k 2 K

e

we have

t

b

Æ t

v+F (v;v)

exp(2e�v)P (y)k 2 Q

C

e

:

Moreover, the expli
it 
al
ulations in the proof of [Lo77, Th. 10.8℄ further imply that the map

V

0

! A

e

= e+ (D \ V

0

); w 7! exp(�

w

):e

is bije
tive and that the Cayley transform �xes ea
h �

w

. This implies that

Q

C

e

= ft

b

Æ t

v+F (v;v)

exp(2e�v)P (y) � k: b 2 iE; v 2 V

1

; 0 < y 2 E; k 2 K

e

g:

We observe that for v 2 V

1

the Peir
e rules imply that e�v is a nilpotent operator on V

mapping V

j

! V

j+1

. For x = x

2

+ x

1

+ x

0

2 D

C

the V

1

-
omponent of

t

v+F (v;v)

exp(2e�v):x

is given by

x

1

+ v + '(x

0

):v;

and sin
e �x

1

2 im(1+ '(x

0

)) by Lemma I.16, there is a unique v 2 im(1+ '(x

0

)) with

t

v+F (v;v)

exp(2e�v):x 2 V

2

� V

0

:

From that we 
on
lude that ea
h Q

C

e

-orbit in V through an element y = y

2

+ y

1

+ y

0

2 D

C


ontains an element of the form

x

2

+ x

0

with jx

0

j � 1 and Rex

2

� 0:

Applying elements of the form t

v

, v 2 iE , we may further assume that x

2

2 E , so that we have

an element in E

+

� D

e

. From the expli
it des
ription of Q

C

e

we derive that the interse
tion

of the orbit of x

2

+ x

0

2 E + V

0

with E + V

0


ontains the orbit of x

2

+ x

0

under the group

Q

00

:= P (E

+

)K

e

.

The orbits of Q

00

on the set E

+

� D

e

are produ
ts of orbits of the automorphism group

G(E

+

) of the symmetri
 
one E

+

in E and orbits of the identity 
omponent of the group K

e

on

D

e

. Sin
e the a
tion of the group K

e

preserves the Peir
e de
omposition, it a
ts on D

e

� V

0

as a

subgroup of Aut(V

0

). The identity 
omponent of the latter group is obtained by exponentiating

elements of the Lie subalgebra V

0

+ �(V

0

) + [V

0

; �(V

0

)℄ � g

C

(here we use that D

e

= D \ V

0

is

an irredu
ible bounded symmetri
 domain; 
f. Th. I.5), and all the elements of this subalgebra


ommute with the element e 2 V

2

by the Peir
e rules (I.2). Hen
e the image of K

e

in Aut(V

0

)


ontains the identity 
omponent of Aut(V

0

).

For e = e

k

= 


1

+ : : :+ 


k

, the orbits of G(E

+

)

0

, whi
h 
oin
ide with the orbits of the full

group G(E

+

), are represented by the elements

e

0

= 0; e

1

= 


1

; : : : ; e

j

= 


1

+ : : :+ 


j

; : : : ; e

k

= e

([FK94, Prop. IV.3.2℄). Sin
e (


k+1

; : : : ; 


r

) is a Jordan frame in V

0

, ea
h orbit of Aut(V

0

)

0

in

V

0


ontains an element of the form

r

X

l=k+1

�

l




l

; �

k+1

� : : : � �

r

(
f. [FK94, Prop. X.3.2℄).

Next we transfer this information ba
k to the bounded pi
ture, i.e., to G

e

-orbits in D .

A

ording to [Lo77, Prop. 10.3℄, we have

(1:13) C

e

(x

2

+ x

0

) = C

e

(x

2

) + x

0

= (e+ x

2

)(e� x

2

)

�1

+ x

0

for x

2

2 V

2

; x

0

2 V

0

:

For e

j

= 


1

+ : : : + 


j

, j � k , the element e + e

j

is invertible in V

2

, and we obtain for

ee

j

:= (e

j

� e)(e

j

+ e)

�1

= �C

e

(�e

j

) = C

�1

e

(e

j

) that C

e

(ee

j

) = e

j

. An expli
it 
al
ulation in the

asso
iative Jordan algebra generated by 


1

; : : : ; 


k

qui
kly shows that

ee

j

= �(e� e

j

) = �e+ e

j

= �


j+1

� : : :� 


k

:

This 
ompletes the proof.
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I.19. For the spe
ial 
ase k = r , i.e., e 2 S , we have V

0

= f0g , so that D

C

is the Siegel domain

D

C

= fv = v

2

+ v

1

2 V

2

� V

1

= V : Re(v

2

� F (v

1

; v

1

)) > 0g

of type II. In this 
ase the orbits of Q

00

e

are represented by elements of the form �e + e

j

,

j = 0; : : : ; r , so that we obtain only �nitely many orbits. Observe that rk(�e+ e

j

) = r � j , so

that, even if Q

00

is not 
onne
ted, it 
annot have less orbits in e

>

than its identity 
omponent.

In Se
tion III we shall only need the following spe
ial 
ase of Theorem I.18, for whi
h we

provide the following more dire
t proof.

Lemma I.20. Suppose that D is irredu
ible and of tube type, let x 2 S and z 2 D , and assume

that x>z . There exists g 2 G and an integer k; 0 � k � r

(y)

su
h that

g(x) = e

r

and g(z) = �

r

X

j=k+1




j

= e

k

� e

r

:

Proof. As G is transitive on S , there is no restri
tion in assuming that x = e := e

r

. Now

the transversality 
ondition is equivalent to z belonging to the domain V

�

+ e of the Cayley

transform C(z) := C

e

(z) := (e + z)(e � z)

�1

(
f. (1.13)). Set � = C(z) (Theorem I.9). Then

� 2 E

+

+ iE . The point e is sent by the Cayley transform \to in�nity", in su
h a way that

the stabilizer of e in G 
orresponds via 
onjugation by the Cayley transform to a subgroup of

the aÆne group of E

C

, denoted by Q

C

e

, namely the semi-dire
t produ
t of the translations by

an element of iE and the group G(E

+

) (after 
omplexi�
ation to E

C

of its a
tion on E ). By

using a translation, we see that in the Q

C

e

-orbit of � , there is an element of the form � 2 E

+

.

Sin
e D is irredu
ible, the G(E

+

)-orbits in E

+

are known to be exa
tly the r + 1 orbits of

the elements e

k

=

P

k

j=1




j

, with k = 0; 1; : : : r (see [FK94, Prop. IV.3.2℄). But now the inverse

Cayley transform of the element

k

X

j=1




j

is the element e

k

� e = �

r

X

j=k+1




j

. Hen
e the result.

II. Transversality and fa
es

In this se
tion we keep the notation from Se
tion I. In parti
ular D is a 
ir
ular irredu
ible

bounded symmetri
 domain of rank r in V . The main result of this se
tion is that transversality

of two elements x; y 2 D is equivalent to the geometri
 property that x and y do not lie in a

proper fa
e of the 
ompa
t 
onvex set D (Theorem II.12).

De�nition II.1. (a) We 
all a non-empty 
onvex subset F of a 
onvex set C a fa
e if for

0 < t < 1 and 
; d 2 C the relation t
 + (1 � t)d 2 F implies 
; d 2 F . We write F(C) for

the set of non-empty fa
es of C . A fa
e F is 
alled exposed if there exists a linear fun
tional

f :V ! R with

F = f

�1

(max f(C)):

An extreme point e 2 C is a point for whi
h feg is a fa
e, i.e., t
+(1� t)d = e for 
; d 2 C and

0 < t < 1 implies 
 = d = e . We write Ext(C) for the set of extreme points of C .

The set of all fa
es of C has a natural order stru
ture given by set in
lusion whose maximal

element is C itself. All extreme points of C are minimal elements of this set, but C need not

have any extreme points.

Obviously, the interse
tion of any family of fa
es is a fa
e. We thus de�ne for a subset

M � C the fa
e generated by M by

Fa
e(M) :=

\

fF � C:F 2 F(C);M � Fg:

(y)

If k = r , use the 
onvention that

P

r

j=r+1




j

= 0 .
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(b) For a 
onvex set C in the ve
tor spa
e V we write

algint(C) := fx 2 C: (8v 2 C � C)(9" > 0) x+ [0; "℄v � Cg

for its algebrai
 interior. If V is �nite-dimensional, then algint(C) is the interior of C in the

aÆne subspa
e it generates.

Remark II.2. (a) Suppose that C is a 
onvex subset of a �nite-dimensional ve
tor spa
e

having non-empty interior. Then all proper fa
es of C are 
ontained in the boundary �C and,


onversely, the Hahn{Bana
h Separation Theorem implies that ea
h boundary point is 
ontained

in a proper exposed fa
e.

(b) For any non-empty 
onvex subset of a �nite-dimensional real ve
tor spa
e the algebrai


interior is non-empty. Hen
e every fa
e F is generated by any element in its algebrai
 interior.

(
) Sin
e every fa
e E of a fa
e F of C is also a fa
e of C , fa
es of exposed fa
es of C

are fa
es of C . On the other hand, every proper fa
e is 
ontained in an exposed fa
e (see (a)),

so that we obtain indu
tively, that for ea
h fa
e F there exists a sequen
e of fa
es

F

0

= F � F

1

� : : : � F

n

= C

for whi
h F

i

is an exposed fa
e of F

i+1

for i = 0; : : : ; n� 1.

Proposition II.3. The proper fa
es of the 
onvex set D are the 
losures of the holomorphi


ar
-
omponents in �D and the Shilov boundary is the set of extreme points of D .

In parti
ular the group G a
ts on the set F(D) of fa
es of D .

Proof. For the fa
t that S is the set of extreme points of D we refer to [Lo77, Th. 6.5℄.

Next we use [Sa80, Lemma III.8.11, Th. III.8.13℄ to see that the proper exposed fa
es F

of D are the 
losures of the holomorphi
 ar
-
omponents in �D . Sin
e the a
tion of the group

G on D permutes the holomorphi
 ar
-
omponents in �D , it also permutes the exposed fa
es

of D .

We now 
laim that ea
h fa
e of D is exposed. Sin
e every fa
e F of D is generated by a

suitable element x 2 F (Remark II.2), it suÆ
es to show that the fa
e generated by any element

x 2 �D is exposed. Let A

x

be the holomorphi
 ar
-
omponent of �D 
ontaining x . Then A

x

is an exposed fa
e of D with algint(A

x

) = A

x

(Theorem I.5). Therefore the fa
e generated by

x 
oin
ides with A

x

, showing that every fa
e of D is exposed.

Remark II.4. From the pre
eding proposition we know that the map F 7! algint(F ) is a

G-equivariant bije
tion between the set F(D) of fa
es of D and the set of holomorphi
 ar
-


omponents in D .

If D is irredu
ible, we de�ne the rank of a fa
e by rkF := k if algint(F ) 
onsists of

elements of rank k . Sin
e two holomorphi
 ar
-
omponents are 
onjugate under G if and only

if their elements have the same rank (
f. Theorem I.5), the rank fun
tion

rk:F(D)! f0; : : : ; rg


lassi�es the G-orbits in F(D). The stabilizer of a proper fa
e, resp., a holomorphi
 ar
-


omponent in �D , is a maximal paraboli
 subgroup of G ([Sa80, Cor. III.8.6℄).

If D = D

1

� : : :�D

m

is a dire
t produ
t of the irredu
ible domains D

j

, then ea
h fa
e F

of D is a produ
t F

1

� : : :� F

m

of fa
es F

j

2 F(D

j

), so that the G-orbits in

F(D)

�

=

F(D

1

)� : : :�F(D

m

)

are 
lassi�ed by the m-tuple (rkF

1

; : : : ; rkF

m

).

In the following we shall prove that for two elements x; y 2 D transversality is equivalent

to the geometri
 transversality relation Fa
e(x; y) = D . We start with the easy impli
ation.
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Proposition II.5. If x; y 2 D are transversal, then they are not 
ontained in a proper fa
e,

i.e., Fa
e(x; y) = D:

Proof. If x and y are not geometri
ally transversal, then F := Fa
e(x; y) is a proper fa
e of

D , hen
e of the form

F = F

e

= e+ (D \ V

0

(e)) = (e+ V

0

(e)) \ D

for some tripotent e 2 V (Theorem I.5, Prop. II.3 and [Sa80, Lemma III.8.10℄ for the se
ond

equality). Then x; y 2 F implies that x; y 2 e+ V

0

(e), so that I.8 leads to B(x; y):e = 0. Thus

x and y are not transveral. This proves the assertion.

Example II.6. We 
onsider the r -dimensional polydis


D := �

r

:= fz 2 C

r

: max

j

jz

j

j < 1g � V = C

r

:

Let (


1

; : : : ; 


r

) denote the 
anoni
al basis of C

r

. The 
orresponding Jordan triple stru
ture is

given by

fx; y; zg = (x

1

y

1

z

1

; : : : ; x

r

y

r

z

r

):

An element z 2 C

r

is a tripotent if jz

j

j

2

z

j

= z

j

holds for ea
h j , whi
h means that either z

j

= 0

or jz

j

j = 1. We have

rk z = jfj: jz

j

j = 1gj;

and the tripotents of maximal rank form the n-dimensional torus S = T

n

, the Shilov boundary

of �

r

.

Sin
e the fa
es of D = �

r

are 
artesian produ
ts of fa
es of the 
losed unit dis


� = fz 2 C : jzj � 1g;

ea
h fa
e F 2 F(�

r

) is a produ
t F

1

� � � � �F

r

of 
losed unit dis
s and points in the boundary

of �. For a subset M � �

r

, it follows that the fa
e generated by M is given by

Fa
e(M) = F

1

� � � � � F

r

; F

j

=

n

fsg if m

j

= s 2 �� for all m 2M

� otherwise.

It follows in parti
ular that x; y 2 D are 
ontained in a proper fa
e if and only if x

j

= y

j

2 ��

holds for some j .

For k � r we 
onsider the tripotent e

k

:= 


1

+ : : :+ 


k

. Then

V

2

= C

k

� f0g

r�k

and V

0

= f0g

k

� C

r�k

:

An element x 2 �

r

is transversal to e

k

if and only if e

k

� (x

1

; : : : ; x

k

; 0; : : : ; 0) is invertible in

the unital Jordan algebra (V

2

; e

k

), whi
h means that the �rst k 
omponents of x are di�erent

from 1 (I.10). That this is not the 
ase means that one 
omponent x

j

, j � k , equals 1, and

therefore Fa
e(e

k

; x) 6= D . If, 
onversely, Fa
e(e

k

; x) 6= D , then e

k

; x are 
ontained in a proper

fa
e of �

r

whi
h implies that x

j

= 1 for some j � k .

Proposition II.7. Let e 2 V be a tripotent, V =

P

2

j=0

V

j

the 
orresponding Peir
e

de
omposition and p

j

:V ! V

j

the proje
tion along the other Peir
e 
omponents. Then ea
h

V

j

is a positive hermitian Jordan triple and we have

D

j

= V

j

\ D = p

j

(D):

In parti
ular, ea
h map p

j

:V ! V

j

is a 
ontra
tion with respe
t to the spe
tral norms determined

by the domains D and D

j

.

Proof. Let h�; �i be an asso
iative hermitian s
alar produ
t on V (De�nition I.11). Then

the Peir
e de
omposition is orthogonal with respe
t to h�; �i , so that it provides an orthogonal

de
omposition of V into 3 Jordan subtriples ([Lo77, Th. 3.13℄).
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Clearly the restri
tion of the s
alar produ
t to ea
h V

j

provides an asso
iative s
alar

produ
t on V

j

and for ea
h v 2 V

j

the operator v�v is positive semide�nite on V; whi
h implies

in parti
ular that its restri
tion to V

j

is positive semide�nite. Hen
e ea
h V

j

is a positive

hermitian Jordan triple.

A

ording to [Lo77, Th. 3.17℄, the in
lusion maps V

j

,! V are isometri
 with respe
t to

the spe
tral norm, whi
h means that

D

j

= V

j

\ D = fz 2 V

j

: jzj < 1g

holds for the 
orresponding bounded symmetri
 domains.

To see that the proje
tions p

j

are 
ontra
tive with respe
t to the spe
tral norm, let v 2 V

and v

j

= p

j

(v) its 
omponent in V

j

. For ea
h unit ve
tor w 2 V

j

the orthogonality of the Peir
e

de
omposition implies that

hv�v:w; wi =

2

X

k;l=0

hv

k

�v

l

:w; wi =

2

X

k=0

hv

k

�v

k

:w; wi � hv

j

�v

j

:w; wi;

whi
h leads for the spe
tral norm jv

j

j to

jv

j

j

2

= kv

j

�v

j

k

V

j

= supfhv

j

�v

j

:w; wi:w 2 V

j

; hw;wi = 1g

� supfhv�v:w; wi:w 2 V

j

; hw;wi = 1g � supfhv�v:w; wi:w 2 V; hw;wi = 1g = jvj

2

:

Sin
e the in
lusion V

j

,! V is isometri
, p

j

is a 
ontra
tion with respe
t to the spe
tral norm,

and therefore D

j

� p

j

(D) � D

j

proves equality.

Corollary II.8. If F is a proper fa
e of D

j

, then p

�1

j

(F ) is a proper fa
e of D .

De�nition II.9. Suppose that e 2 V is a tripotent with V

2

(e) = V , so that Q(e) is an

antilinear involution on V turning (V; e;Q(e)) into an involutive unital Jordan algebra. As in

Se
tion I, we endow V with the spe
tral norm jzj whose open unit ball is D .

A state of the unital involutive Jordan algebra V is a linear fun
tional f :V ! C with

1 = f(e) = kfk := sup jf(D)j:

Remark II.10. If f is a state on V and y 2 D with f(y) = 1, then e and y lie in the proper

fa
e fz 2 D: Re f(z) = 1g .

Proposition II.11. If y 2 D and e� y is not invertible in the unital Jordan algebra (V; e) ,

there exists a state f of V with f(y) = 1 .

Proof. We endow V with the asso
iative s
alar produ
t hz; wi := tr(z�w) (
f. Def. I.11).

By assumption e�y is not invertible, whi
h implies that the left multipli
ation L(e�y) =

(e � y)�e is not invertible. Pi
k v 2 kerL(e � y) with hv; vi = 1. We 
onsider the linear

fun
tional

f :V ! C ; f(z) := hL(z):v; vi

satisfying f(e) = hv; vi = 1 and

f(y) = hL(y):v; vi = hL(e):v; vi = f(e) = 1:

It remains to show that f is a state. Let E := fz 2 V : z

�

= Q(e)z = zg denote the

eu
lidean Jordan algebra with V

�

=

E 


R

C and unit element e . We write E

+

for the 
losed

positive 
one in E . This is the set of all those elements z for whi
h there exists a system




1

; : : : ; 


k

of orthogonal idempotents with e = 


1

+ : : : + 


k

and non-negative real numbers �

j

with

z =

k

X

j=1

�

j




j

:
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For su
h elements z 2 E

+

we then have

f(z) =

k

X

j=1

�

j

hL(


j

):v; vi =

k

X

j=1

�

j

h


j

�


j

:v; vi � 0

be
ause L(


j

) = 


j

�e = 


j

�


j

follows from 


j

�(e� 


j

) = 0 (I.2) and the operators 


j

�


j

are

positive semide�nite on V ([Lo77, Cor. 3.16℄). We 
on
lude that f(E) � R , so that f(z

�

) = f(z)

for all z 2 V .

From Q(e)

�1

= Q(e) we derive Q(Q(e):z) = Q(e)Q(z)Q(e) = Q(e)Q(z)Q(e)

�1

, so that

Q(e): z 7! z

�

is a Jordan triple automorphism of V , hen
e an isometry for the spe
tral norm j � j

on V . This implies that Q(e)D = D and therefore that for z = x+ iy 2 D , x; y 2 E , we have

jxj =

1

2

jz + z

�

j �

1

2

(jzj+ jz

�

j) = jzj:

For the map Re:V ! E; z 7!

1

2

(z + z

�

) this means that D

E

:= D \E = Re(D):

For the fun
tional f we thus obtain

kfk = sup jf(D)j = supRe f(D) = sup f(ReD) = sup f(D

E

):

In view of the Spe
tral Theorem for eu
lidean Jordan algebras ([FK94℄), we have

D

E

= (e�E

+

) \ (�e+E

+

) � e�E

+

;

so that f(z) � 0 for z 2 E

+

leads to kfk = sup f(D

E

) = f(e) = 1: This means that f is a

state.

Theorem II.12. Two elements x; y 2 D are transversal if and only if they are not 
ontained

in a proper fa
e, i.e.,

x>y () Fa
e(x; y) = D:

Proof. In view of Theorem II.3, geometri
 transversality is also invariant under the a
tion of

the group G . On the other hand transversality is invariant under G ([C�01℄), so that it suÆ
es

to assume that x = e is a Jordan tripotent. In view of Proposition II.5, it suÆ
es to show that

if e is not transversal to y 2 D , then both e and y lie in a proper fa
e of D .

For e = 0 we have Fa
e(x; e) = D be
ause e 2 D = algint(D) and also e>x for all x 2 D

be
ause B(x; e) = id

V

.

We may therefore assume that e 6= 0. We have to show that if e and y are not transversal,

then they are 
ontained in a proper fa
e of D . That y is not transversal to e is equivalent to

the element e � y

2

being not invertible in the unital Jordan algebra V

2

(e) (I.10). In view of

Proposition II.11, 
ombined with Remark II.10, e and y

2

are 
ontained in a proper fa
e F of the


onvex set D

2

. Hen
e e and y are 
ontained in the proper fa
e p

�1

2

(F ) of D (Corollary II.8).

Example II.13. Let p; q 2 N , r := min(p; q), and k�k denote the eu
lidean norm on C

p

, resp.,

C

q

. On the matrix spa
e V := M

p;q

(C )

�

=

Hom(C

q

; C

p

) we write jX j for the 
orresponding

operator norm. Then

D := fX 2M

p;q

(C ): jX j < 1g

is a bounded symmetri
 domain. The pseudo-unitary group U

p;q

(C ) a
ts transitively on D by

�

a b


 d

�

:z := (az + b)(
z + d)

�1

;

the e�e
tivity kernel of this a
tion is T1 , so that G = Aut(D)

0

�

=

PU

p;q

(C ). The 3-grading of

g

C

is indu
ed by the 3-grading of gl

p+q

(C ) given by

gl

p+q

(C )

+

=

�

0 M

p;q

(C )

0 0

�

; gl

p+q

(C )

0

=

�

gl

p

(C ) 0

0 gl

q

(C )

�
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and

gl

p+q

(C )

�

=

�

0 0

M

q;p

(C ) 0

�

:

We further have

u

p;q

(C ) =

n

�

a b

b

�

d

�

: a

�

= �a; d

�

= �d

o

:

The ve
tor �eld asso
iated to the one-parameter group given by exp

�

t

�

a b


 d

�

�

is given

by z 7! b � az � zd � z
z; so that the Jordan triple stru
ture on V = M

p;q

(C ) satis�es

Q(z)(w) = zw

�

z , whi
h leads to

fa; b; 
g =

1

2

(ab

�


+ 
b

�

a):

In parti
ular the Bergman operator satis�es

B(v; w)z = z� 2v�w:z+Q(v)Q(w)z = z� (vw

�

z+ zw

�

v) + v(wz

�

w)

�

v = (1� vw

�

)z(1�w

�

v):

From that it follows that v>w is equivalent to the invertibility of 1�w

�

v in the algebra M

q

(C ).

An element e 2M

p;q

(C ) is a tripotent if and only if ee

�

e = e , whi
h implies that ee

�

and

e

�

e are orthogonal proje
tions, and that e de�nes a partial isometry C

q

! C

p

. If K := ker(e)

and R := im(e), then the fa
e F

e

of D 
onsists of all matri
es z 2 D with z:v = e:v for

v 2 ker(e)

?

. For k = rank(e) and an orthonormal basis v

1

; : : : ; v

k

of ker(e)

?

and w

i

:= e:v

i

,

we have

F

e

= fz 2 D: (8i) hzv

i

; w

i

i = 1g:

From this des
ription of the fa
es of D it follows that an element z 2 D is 
ontained in a proper

fa
e if and only if its restri
tion to some one-dimensional subspa
e of C

q

is isometri
, i.e., if and

only if jzj = 1. Two elements z; w generate a proper fa
e if and only if there exists a unit ve
tor

v 2 C

q

for whi
h z:v = w:v is a unit ve
tor in C

p

.

A Jordan frame is given by the matri
es 


j

:= E

jj

, j = 1; : : : ; r , with a single non-zero

entry 1 in position (j; j). The rank of D is r and e

r

:= 


1

+ : : :+ 


r

is a maximal tripotent with

S = G:e

r

=

�

fz 2M

p;q

(C ): z

�

z = 1g if q � p

fz 2M

p;q

(C ): zz

�

= 1g if p � q.

For q � p this is the set of isometries C

q

,! C

p

and for p � q this is the set of all adjoints of

isometries C

p

! C

q

.

Let e

k

:= 


1

+: : :+


k

be the 
anoni
al tripotent of rank k . Writing an element z 2M

p;q

(C )

as a blo
k matrix

z =

�

z

11

z

12

z

21

z

22

�

with z

11

2M

k

(C ); z

12

2M

k;q�k

(C ); z

21

2M

p�k;k

(C ); z

22

2M

p�k;q�k

(C );

we have

2fe; e; zg = ee

�

z + ze

�

e =

�

1 0

0 0

��

z

11

z

12

z

21

z

22

�

+

�

z

11

z

12

z

21

z

22

��

1 0

0 0

�

=

�

2z

11

z

12

z

21

0

�

:

This shows that

V

2

(e

k

)

�

=

M

k

(C ); V

1

(e

k

)

�

=

M

k;q�k

(C )�M

p�k;k

(C ) and V

0

(e

k

)

�

=

M

p�k;q�k

(C );

and therefore

F

e

=

n

�

1 0

0 z

�

: z 2M

p�k;q�k

(C ); jzj � 1

o

:

For k = r we see in parti
ular that V

0

(e

r

) = 0.
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III. Orbits of triples in the Shilov boundary

In this se
tion we obtain the key result for our 
lassi�
ation of triples in S . We show that

if (


1

; : : : ; 


r

) is a Jordan frame in V , then ea
h G-orbit in S�S�S meets the Shilov boundary

T

�

=

T

r

of the 
orresponding polydis
. We further show that the polydis
s arising in this result


an also be 
hara
terized dire
tly as the interse
tions of D with r -dimensional subspa
es of

V , or, equivalently, as isometri
 images of polydis
s under aÆne maps C

r

! V , mapping �

r

isometri
ally into D . In parti
ular we show that any su
h aÆne map is linear.

Theorem III.1. Suppose that D � V is of tube type, (


1

; : : : ; 


r

) is a Jordan frame in V ,

and

T := S \ spanf


1

; : : : ; 


r

g =

n

r

X

j=1

�

j




j

: (8j) j�

j

j = 1

o

is the 
orresponding r -torus in S . Then for ea
h triple (e; f; g) 2 S there exists a g 2 G with

g:e; g:f; g:h 2 T .

Proof. Sin
e Jordan frames and G de
ompose a

ording to the de
omposition of D into

produ
ts of irredu
ible domains, it suÆ
es to prove the assertion for irredu
ible domains. We

prove the assertion by indu
tion on the rank r of D .

Case 1: If Fa
e(e; f; h) is proper, then its algebrai
 interior is a bounded symmetri


domain D

0

of smaller rank and (e; f; h) are 
ontained in its Shilov boundary. In fa
t, a

ording

to Theorem I.5 and Proposition II.3, for ea
h fa
e F of D 
orresponding to the holomorphi


ar
-
omponent A = algint(F ), the Shilov boundary of A is given by

S

A

= Ext(A) = Ext(F ) = Ext(D) \ F = S \ F:

Sin
e every element of Aut(D

0

)

0

is the restri
tion of an element of Aut(D) ([Sa80,

Lemma III.8.1℄), in this 
ase the result follows from the indu
tion hypothesis if r > 1. If

r = 1, then ea
h proper fa
e of D is an extreme point, so that the assumption that e; f; h lie

in a proper fa
e implies e = f = h . In this 
ase we further have 


1

2 S , so that the assertion

follows from the transitivity of the a
tion of G on S .

Case 2: We assume that some pair (e; f), (f; h) or (e; h) is transversal. We may w.l.o.g.

assume that (e; f) is transversal. Then Fa
e(e; f; h) � F (e; f) = D by Theorem II.12, and

G:(e; f) 
ontains (e;�e) be
ause rk f = rk e = r (Lemma I.20). Therefore the orbit of (e; f; h)


ontains an element of the form (e;�e; h). Sin
e D is of tube type, we have V

0

(e) = V

1

(e) = f0g ,

so that Q(e) is invertible (
f. (1.11)), and (V; e;Q(e)) is a unital involutive Jordan algebra. In this

Jordan algebra, S is the set of unitary elements, so that h

�

= Q(e)h = h

�1

(Jordan inverse).

Now the assertion follows from the Spe
tral Theorem for unitary elements in (V; e;Q(e)) (
f.

[FK94, Prop. X.2.3℄).

Case 3: Fa
e(e; f; h) = D , but neither (e; f), nor (f; h) or (e; h) is transversal. Sin
e G

a
ts transitively on S , we may w.l.o.g. assume that e = e

r

= 


1

+ : : :+ 


r

. Consider the proper

fa
e F := Fa
e(f; h) of D . Then we have

D = Fa
e(e; f; h) = Fa
e(feg [ F );

and for any x 2 algint(F ) we obtain

D = Fa
e(feg [ F ) = Fa
e(e; x);

whi
h means that e and x are transversal (Theorem II.12).

Now we need the 
lassi�
ation of G-orbits in the set of transversal pairs, whi
h shows that

the pair (e; x) is 
onjugate to an element of the form (e;�e+ e

j

) (Lemma I.20). The fa
e

F

0

= Fa
e(�e+ e

j

) = �Fa
e(e� e

j

) = �(e� e

j

) + (V

0

(e� e

j

) \ D) = (e

j

� e) + (V

2

(e

j

) \ D)
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is a bounded symmetri
 domain or rank j , and (e; f; h) is 
onjugate to a triple of the form

(e; f

0

; h

0

) where f

0

; h

0

are two elements in the Shilov boundary of F

0

, where they are transversal

be
ause they generate F

0

as a fa
e (Theorem II.12). Next we observe that the Peir
e rules

imply that by exponentiating elements of the 
entralizer of e� e

j

in g we generate the identity


omponent G

0

of the group Aut(D \ V

0

(e� e

j

)) and its elements g a
t on e

j

� e+ z by

g:(e

j

� e+ z) = (e

j

� e) + g:z

be
ause they 
ommute with the translation t

e

j

�e

. Now we 
on
lude the proof by applying the

spe
ial 
ase of transversal elements whi
h has already been taken 
are of, to see that the G

0

-orbit

of (e; f

0

; h

0

) interse
ts T .

Remark III.2. If D is not of tube type, then the Cayley transform C = C

e

leads to a

realization of D as a Siegel domain D

C

of type II , and sin
e C

e

(�e) = 0, the stabilizer G

e;�e

of �e in G 
orresponds to the stabilizer Q

C

e;�e

:= C

e

(G

e;�e

) of 0 in the aÆne group Q

C

e

, and

the identity 
omponent of this group is G(E

+

)

0

K

e

(see the proof of Theorem I.18). The Shilov

boundary of D

C

is the set

f(v

2

; v

1

) 2 V = V

2

� V

1

: Re v

2

= F (v

1

; v

1

)g;

and from this des
ription it is 
lear that no element v

2

+ v

1

with v

1

6= 0 is 
onjugate under

Q

C

e;�e

to an element in span

R

f


1

; : : : ; 


r

g � V

2

. Therefore the 
ondition that D is of tube type

is ne
essary for the 
on
lusion of Theorem III.1.

Example III.3. The simplest example of a bounded symmetri
 domain not of tube type is

the matrix ball D � C

n

for n > 1. Its rank is r = 1 and in this 
ase G

�

=

PSU

n;1

(C ) (
f.

Example II.13).

To z 2 D we assign the one-dimensional subspa
e L

z

:= C

�

z

1

�

2 C

n+1

. Endowing C

n+1

with the inde�nite hermitian form h given by

h(z; w) := z

1

w

1

+ : : :+ z

n

w

n

� z

n+1

w

n+1

;

we see that D 
orresponds to the set of lines on whi
h h is negative de�nite, and its Shilov

boundary, the sphere S

�

=

S

2n�1

, 
orresponds to the set of isotropi
 lines. In this pi
ture the

a
tion of SU

n;1

(C ) on D 
omes from the natural a
tion of this group on the one-dimensional

subspa
es of C

n+1

.

Fixing a unit ve
tor e 2 S , the pair (e;�e) 
orresponds to two di�erent isotropi
 lines

L

e

and L

�e

in C

n+1

, and the stabilizer of this pair in U

n;1

(C ) �xes the non-degenerate

subspa
e L

e

+ L

�e

, and also its orthogonal 
omplement of dimension n � 1. We 
on
lude

that U

n;1

(C )

e;�e

�

=

R

�

� U

n�1

(C ), and that no line L

z

6� L

e

+ L

�e


an be moved by U

n;1

(C )

into the plane L

e

+ L

�e

. On the other hand, the set of isotropi
 lines in the plane L

e

+ L

�e


orresponds to the 
ir
le in S obtained by interse
ting S with the boundary of a one-dimensional

dis
 � � D of size 1, whi
h in parti
ular is a polydis
 of maximal rank. This shows quite dire
tly

that there are triples in S that 
annot be moved into the one-dimensional spa
e C e , so that

Theorem III.1 does not hold.

That Theorem III.1 fails in this 
ontext, 
an be expressed quantitatively by the observation

that

F (C v

1

; C v

2

; C v

3

) :=

h(v

1

; v

2

)h(v

2

; v

3

)h(v

3

; v

1

)

h(v

2

; v

1

)h(v

3

; v

2

)h(v

1

; v

3

)

is a well-de�ned fun
tion on the set of triples of pairwise di�erent isotropi
 lines in C

n+1

whi
h

is invariant under the pseudo-unitary group U

n;1

(C ). The fun
tion F is related to the Cartan

invariant (for a presentation and a generalization of this invariant we refer to [Cl05℄).
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Example III.4. The matrix ball D � M

n

(C ) is a symmetri
 domain of tube type with

Shilov boundary S = U

n

(C ), the unitary group. The maximal polydis
s in D are obtained

by interse
ting D with the set of all matri
es that are diagonal with respe
t to some �xed

orthonormal basis of C

n

with respe
t to the standard s
alar produ
t. A parti
ular Jordan frame


onsists of the matrix units 


j

:= E

jj

, j = 1; : : : ; n , whose span is the set of diagonal matri
es.

Therefore Theorem III.1 states that ea
h triple (s

1

; s

2

; s

3

) of unitary matri
es 
an be diagonalized

by an element g 2 U

n;n

(C ), a
ting on U

n

(C ) by

�

a b


 d

�

:z = (az + b)(
z + d)

�1

:

The 
ompa
t subgroup U

n

(C ) � U

n

(C ) a
ts linearly by (a; d):z = azd

�1

, and under this

group ea
h pair (s

1

; s

2

) is 
onjugate to a pair of the form (1; s

0

2

), where the stabilizer of

1 is the diagonal subgroup, a
ting on the se
ond 
omponent by (a; a

�1

):s

2

= as

2

a

�1

, so

that s

0

2


an be diagonalized by 
onjugating with a suitable element a 2 U

n

(C ). This means

that diagonalizability of pairs redu
es to 
lassi
al linear algebra, but diagonalizability of triples

requires the non-linear a
tion of U

n;n

(C ) and Theorem III.1.

A 
lassi�
ation of the 
onjugation orbits of U

n

(C ) in U

n

(C )

2

is given in [FMS04℄, but

sin
e U

n

(C ) is mu
h smaller than U

n;n

(C ), this 
lassi�
ation leads to in�nitely many orbits.

Polydis
 in bounded symmetri
 domains

Let D � V be a bounded symmetri
 domain of rank r and �

r

� C

r

the r -dimensional

unit polydis
. We endow C

r

with the metri
 de�ned by the sup-norm

jzj := maxfjz

1

j; : : : ; jz

r

jg

and V by the metri
 de�ned by the spe
tral norm, also denotes jzj .

Theorem III.5. Any aÆne isometri
 map f : C

r

! V mapping �

r

into D is linear and

preserves the rank, i.e., for ea
h x 2 �

r

we have

rk f(x) = rkx:

Moreover, it is a morphism of Jordan triples and f(e

1

; : : : ; e

r

) is a Jordan frame.

Proof. Let x

0

:= f(0). Then `(x) := f(x) � x

0

de�nes an isometri
 linear map `: �

r

! V .

Sin
e ` is linear and isometri
, it maps the open unit ball �

r

in C

r

into the open unit ball D

of (V; j � j), so that it also maps �

r

isometri
ally into D .

Let f

1

; : : : ; f

r

denote the images of the 
anoni
al basis in C

r

under ` . Then the 
oordinate

proje
tions

�

j

:L := spanff

1

; : : : ; f

r

g = im(`)! C ;

X

j

�

j

f

j

7! �

j

are linear maps with k�

j

k = 1 be
ause `: C

r

! L is an isometri
 in
lusion. Using the Hahn{

Bana
h Theorem, we �nd extensions �

j

:V ! C with the same norm. Then the map

� := (�

1

; : : : ; �

r

):V ! C

r

satis�es k�k = 1 and � Æ ` = id. It follows in parti
ular that �(D) � �

r

.

Sin
e � maps D into �

r

, we have an order-preserving map

�

�

:F(�

r

)! F(D); F 7! �

�1

(F )

and the 
orresponding map

`

�

:F(D)! F(�

r

); F 7! `

�1

(F )
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satis�es

`

�

Æ �

�

= (� Æ `)

�

= id :

We 
on
lude that �

�

is an order preserving inje
tion. This entails in parti
ular, that for ea
h

stri
tly in
reasing 
hain

F

0

� F

1

� F

2

� : : : � F

r

of fa
es of �

r

, the images under �

�

form a stri
tly in
reasing 
hain of fa
es of D . Sin
e r is

the rank of D , the maximal 
hains in F(D) are of length r , whi
h implies that �

�

preserves

the rank of fa
es. Sin
e the rank of an element x 2 D 
oin
ides with the rank of the fa
e it

generates, we further see that for z 2 �

r

we have

rk `(z) = rkFa
e(`(z)) = rk `

�

(Fa
e(z)) = rk(Fa
e(z)) = rk z:

Therefore ` preserves the rank.

Moreover, ` maps the Shilov boundary T

r

, 
onsisting of the elements of maximal rank,

into the Shilov boundary S of D . The relation

f(�

r

) = x

0

+ `(�

r

) � D

implies

�x

0

+ `(�

r

) = �(x

0

+ `(�

r

)) � D;

so that for ea
h z 2 T

r

we have

`(z) =

1

2

((`(z) + x

0

) + (`(z)� x

0

)) 2 S;

so that S = Ext(D) implies x

0

= 0, and hen
e f = ` is linear.

For i 2 f1; : : : ; rg we 
onsider the 
orresponding fa
e

F := fz 2 �

r

: z

i

= 1g 2 F(�

r

):

Then F is the 
losure of an (r � 1)-dimensional aÆne polydis
, and f j

F

:F ! D is an aÆne

isometry into a fa
e F




2 F(D), where 
 is a primitive tripotent (Theorem I.5, Prop. II.3).

Applying the �rst part of the proof with D repla
ed by algint(F

0

) to the 
orresponding map

�

r�1

! F




� 
; z 7! f(z

1

; : : : ; z

i�1

; 1; z

i

; : : : ; z

r

)� 
;

we see that this map is linear, hen
e maps 0 to 0, whi
h leads to f(e

i

) = 
 . For i 6= j the element

e

i

+e

j

2 �

r

is 
ontained in the fa
e generated by e

i

, whi
h implies that f(e

i

+e

j

) = f(e

i

)+f(e

j

)

is 
ontained in the fa
e generated by f(e

i

). From Theorem I.5 we now derive

f(e

j

) = f(e

i

+ e

j

)� f(e

i

) 2 V

0

(f(e

i

));

so that the primitive tripotents f(e

i

), i = 1; : : : ; r , are mutually orthogonal. Hen
e the linear

map f : C

r

! V is a morphism of Lie triples systems.

Corollary III.6. Suppose that D

1

� V

1

and D

2

� V

2

are 
ir
ular bounded symmetri
 domains

of the same rank. Then any aÆne isometri
 map f :V

1

! V

2

mapping D

1

into D

2

is linear and

rank-preserving.

Proof. Let r := rkD

1

= rkD

2

and �x a poly
ylinder D

0

:= �

r

� D

1

de�ned by a Jordan

frame (


1

; : : : ; 


r

). For V

0

:= spanf


1

; : : : ; 


r

g we then obtain by restri
tion an isometri
 map

f

0

:V

0

! V

2

mapping D

0

! D

2

. In view of Theorem III.5, this map is linear, whi
h implies

f(0) = f

0

(0) = 0, and thus f is linear.

Moreover, f

0

is rank-preserving by Theorem III.5, whi
h implies that f is also rank-

preserving.
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Corollary III.7. If r = rankD , then any isometri
 linear embedding f : �

r

,! D is equiv-

ariant in the sense that there exists a subgroup G

1

� Aut(D

0

) and a surje
tive homomorphism

G

1

! Aut(�

r

)

0

�

=

PSU

1;1

(C )

r

su
h that f is equivariant with respe
t to the a
tion of G

1

on

�

r

and D .

Proof. If (e

1

; : : : ; e

r

) is the 
anoni
al basis in C

r

, then (


1

; : : : ; 


r

) := (f(e

1

); : : : ; f(e

r

)) is a

Jordan frame, so that

g

1

:=

r

X

j=1

g




j

� g

is isomorphi
 to su

1;1

(C )

r

�

=

sl

2

(R)

r

(see (I.8)), the Lie algebra of the group Aut(�

r

)

0

�

=

PSU

1;1

(C ). We may now put G

1

:= hexp g

1

i � G , and the assertion follows.

IV. The Maslov index

To de�ne the integers 
lassifying the G-orbits in S � S � S , we need in parti
ular the

Maslov index, a 
ertain G-invariant fun
tion �:S � S � S ! Z . In this se
tion we explain how

the Maslov index 
an be de�ned for bounded symmetri
 domains of tube type whi
h are not

ne
essarily irredu
ible, hen
e extending the de�nition given in [C�01℄, [C�03℄, [Cl04b℄. Using

Theorem III.1, we further derive a list of properties of the Maslov index and show that it 
an

be 
hara
terized in an axiomati
 fashion by these properties. A
tually this was our original

motivation to prove Theorem III.1.

Let us �rst 
onsider the 
ase of the unit dis
 �. Then the group G is PSU

1;1

(C ) a
ting

by homographies on �, and its Shilov boundary is the unit 
ir
le T . The Maslov index

� = �

T

: T� T� T �! Z

is de�ned by

� �(x; y; z) = 0 if two of the elements of the triplet 
oin
ide.

� �(x; y; z) = �1 if (x; y; z) is 
onjugate under G to (1;�1;�i):

If �

r

denotes the r -polydis
, then the identity 
omponent of Aut(�

r

) is G = PSU

1;1

(C )

r

and the Shilov boundary of �

r

is T

r

. The Maslov index � = �

T

r

: T

r

�! R is de�ned by

�((x

1

; x

2

; : : : ; x

r

); (y

1

; y

2

; : : : ; y

r

); (z

1

; z

2

; : : : ; z

r

)) := �(x

1

; y

1

; z

1

)+ �(x

2

; y

2

; z

2

)+ : : :+ �(x

r

; y

r

; z

r

) :

Now 
onsider an irredu
ible bounded symmetri
 domain D of tube type with Shilov

boundary S . The Maslov index � = �

S

: S � S � S �! Z is de�ned in [C�01℄, [C�03℄,

[Cl04b℄. As the de�nition is involved, we won't repeat it here, but it has the following property,

whi
h, in the light of Theorem III.1 and be
ause of the invarian
e of this index under G , is


hara
teristi
: For any Jordan frame (


1

; 


2

; : : : ; 


r

), let

T =

n

r

X

j=1

t

j




j

: jt

j

j = 1; 1 � j � r

o

be the r -torus whi
h is the Shilov boundary of the asso
iated r -polydis
. Then for any three

points x; y; z in T , one has

(4:2) �

S

(x; y; z) = �

T

(x; y; z):

Last, we extend now the de�nition of the Maslov index to any bounded symmetri
 domain

D in the following way. Assume that D = D

1

� D

2

� : : : � D

m

is the de
omposition of D as

a produ
t of irredu
ible domains. Then the identity 
omponent of the group of biholomorphi


automorphisms of D is the produ
t

G = Aut(D

1

)

0

�Aut(D

2

)

0

� : : :�Aut(D

m

)

0

;
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and the Shilov boundary S of D is the produ
t S = S

1

� S

2

� : : : � S

m

of the 
orresponding

Shilov boundaries. Then the Maslov index � = �

S

is de�ned by

�(x; y; z) := �

S

1

(x

1

; y

1

; z

1

) + �

S

2

(x

2

; y

2

; z

2

) + : : :+ �

S

r

(x

l

; y

l

; z

l

) :

Theorem IV.1. The Maslov index has the following properties :

(M1) It is invariant under the group G .

(M2) It is an alternating fun
tion with respe
t to any permutation of the three arguments.

(M3) It satis�es the 
o
y
le property �(x; y; z) = �(x; y; w) � �(x; z; w) + �(y; z; w) .

(M4) It is additive in the sense that if D = D

1

�D

2

, so that S = S

1

� S

2

, then

�

S

(x; y; z) = �

S

((x

1

; x

2

); (y

1

; y

2

); (z

1

; z

2

)) = �

S

1

(x

1

; y

1

; z

1

) + �

S

2

(x

2

; y

2

; z

2

) :

(M5) If � : D

1

�! D

2

is an equivariant holomorphi
 embedding of bounded symmetri
 domains

of tube type of equal rank, then �

S

2

Æ� = �

S

1

.

(M6) It is normalized by �

T

(1;�1;�i) = 1 for the Shilov boundary T of the unit dis
 � .

Proof. Properties (M1)-(M3) are known for irredu
ible domains ([C�01℄, [Cl04℄), and the

extension of these properties to produ
ts of irredu
ible domains is obvious. Property (M4)

obviously holds by the way we have de�ned the Maslov index.

For Property (M5), let r be the 
ommon rank of the two domains. We may assume that D

1

and D

2

are given in a 
ir
ular realization as unit balls in spa
es V

1

, resp., V

2

. Then '(0) 2 D

2

,

and there is some g

2

2 G

2

:= Aut(D

2

)

0

with g

2

:'(0) = 0. Then  (z) := g

2

:'(z) de�nes an

equivariant embedding D

1

! D

2

whi
h is linear be
ause  (0) = 0.

Let (x; y; z) 2 S

1

and pi
k g

1

2 G

1

:= Aut(D

1

)

0

su
h that g

1

:(x; y; z) is 
ontained in the

span of a Jordan frame (


1

; : : : ; 


r

) (Theorem III.1), hen
e in the Shilov boundary T

1

of the


orresponding polydis
 �

r

in D

1

. From the equivarian
e of ' we derive the existen
e of some

eg

1

2 G

2

with ' Æ g

1

= eg

1

Æ ' . Then  (�

r

) is a maximal polydis
 in D

2

with Shilov boundary

T

2

:=  (T

1

), so that (4.2) implies that

�

S

1

(x; y; z) = �

S

1

(g

1

:x; g

1

:y; g

1

:z) = �

T

1

(g

1

:x; g

1

:y; g

1

:z)

= �

T

2

( (g

1

:x);  (g

1

:y);  (g

1

:z)) = �

S

2

( (g

1

:x);  (g

1

:y);  (g

1

:z))

= �

S

2

(g

2

'(g

1

:x); g

2

'(g

1

:y); g

2

'(g

1

:z)) = �

S

2

('(g

1

:x); '(g

1

:y); '(g

1

:z))

= �

S

2

(eg

1

'(x); eg

1

'(y); eg

1

'(z)) = �

S

2

('(x); '(y); '(z)):

Property (M6) is a 
onsequen
e of the de�nition.

Remark IV.2. Note that (M2) and (M3) mean that �

S

is a Z-valued Alexander{Spanier 2-


o
y
le on S .

Before we turn to the general 
ase in the following se
tion, we re
all the 
lassi�
ation of

triples in the 
ir
le, the Shilov boundary of the unit dis
:

Example IV.3. We 
onsider the 
ase � := fz 2 C : jzj < 1g . Then G = PSU

1;1

(C ) a
ts by

h

�

a b


 d

�

i

:z = (az + b)(
z + d)

�1

:

The Shilov boundary is S = T = fz 2 C : jzj = 1g . Identifying S with the proje
tive line

P

1

(R) and G with PSL

2

(R), we immediately see that there are exa
tly two G-orbits in S � S ,

represented by

(1; 1) and (1;�1);

i.e., the diagonal in S�S and the set (S�S)

>

of transversal pairs. Sin
e the a
tion of G on S

preserves the orientation of a triple, it follows that we have 6 orbits in S � S � S , represented

by

(1; 1; 1); (1; 1;�1); (1;�1; 1); (1;�1;�1); (1;�1;�i) and (1;�1; i):
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Remark IV.4. As a fun
tion assigning to any triple in the Shilov boundary of any bounded

symmetri
 domain D an integer, the Maslov index is uniquely determined by the properties

(M1), (M2) and (M4)-(M6).

In view of Example IV.3, the Maslov index for D = � is uniquely determined by (M1),

(M2) and (M6). By (M4) it is also determined for polydis
s.

If D is any bounded symmetri
 domain of rank r and (s

1

; s

2

; s

3

) 2 S � S � S , then

Theorem III.1 implies that it 
an be 
onjugate by some g 2 G to a triple in the Shilov boundary

T

�

=

T

r

of a maximal polydis
, so that Corollary III.7, (M1) and (M5) lead to

�

S

(s

1

; s

2

; s

3

) = �

S

(g:s

1

; g:s

2

; g:s

3

) = �

T

(g:s

1

; g:s

2

; g:s

3

):

We 
on
lude that �

S

is determined uniquely by (M1), (M2), together with (M3)-(M6).

A 
lassi
al 
ase: the Lagrangian manifold

Let E be a real ve
tor spa
e of dimension 2r and ! be a symple
ti
 form on E . The

symple
ti
 group Sp(E;!) is the group of linear automorphisms whi
h preserve ! . A Lagrangian

is a maximal totally isotropi
 subspa
e of E , hen
e of dimension r . The set �

r

of all Lagrangians

is a 
ompa
t submanifold of the Grassmannian Gr

r

(E) of r -dimensional subspa
es of E . Then

the group G := PSp(E;!) := Sp(E;!)=f�1g a
ts transitively and e�e
tively on �

r

. Choosing a

symple
ti
 basis in E , we may identify E with R

r

�R

r

, the symple
ti
 form being the standard

one, namely

(4:1) !((�; �); (�

0

; �

0

)) = �

>

�

0

� �

>

�

0

:

Let us 
onsider the 
omplex ve
tor spa
e V = Sym

r

(C ) of 
omplex r � r symmetri


matri
es, and let D be the unit ball with respe
t to the operator norm. The spa
e V is an

involutive unital Jordan algebra with real form Sym

r

(R) , involution z

�

= z and Jordan produ
t

x�y :=

1

2

(xy+yx). The spe
tral norm on V 
oin
ides with the operator norm, and the unit ball is

then a bounded symmetri
 domain. To make 
onne
tion with symple
ti
 geometry, observe that

the graph of a symmetri
 matrix is a 
omplex isotropi
 subspa
e in C

r

� C

r

for the symple
ti


stru
ture (4.1). Let moreover h be the Hermitian form on C

r

� C

r

given by

h((�; �); (�

0

; �

0

)) = �

>

�

0

� �

>

�

0

= (�

0

)

�

� � (�

0

)

�

�:

The Hermitian form h has signature (r; r). Now to any x 2 V , asso
iate its graph

`

x

= f(�; x:�): � 2 C

r

g:

The 
ondition that x is in the unit ball is equivalent to the fa
t that 1�xx

�

is positive de�nite,

whi
h in turn implies that the restri
tion of h to `

x

is positive de�nite. Conversely, any (
omplex)

Lagrangian in C

r

� C

r

on whi
h the restri
tion of h is positive de�nite is the graph of some


omplex symmetri
 matrix in the unit ball. The Shilov boundary of D is the manifold of unitary

symmetri
 matri
es, and the 
orresponding graphs are the (
omplex) Lagrangians on whi
h the

restri
tion of the form h is identi
ally 0. Let C be the map from R

r

�R

r

to C

r

� C

r

given by

C(�; �) =

�

� + i�

p

2

;

� � i�

p

2

�

:

Then an elementary 
omputation shows that the 
omplexi�
ation of the image under C of a (real)

Lagrangian is a (
omplex) Lagrangian on whi
h the restri
tion of h is identi
ally 0, and vi
e

versa. This gives a one-to-one 
orresponden
e between �

r

and S . Moreover the natural a
tion of

G on �

r

is transferred to an a
tion on S and realizes an isomorphism of the real symple
ti
 group

and the group Sp

2r

(C ) \ U

r;r

(C ), whi
h generalizes the isomorphism of SL

2

(R) and SU

1;1

(C ).
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The matri
es E

11

; : : : ; E

rr

form a Jordan frame in Sym

r

(C ). The 
orresponding r -torus

is

T :=

(

0

B

B

�

e

i�

1

0 : : : 0

0 e

i�

2

: : : 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : e

i�

r

1

C

C

A

: �

j

2 R; 1 � j � r

)

:

The graph of an element of T is the r -spa
e generated by

(e

1

; e

i�

1

e

1

); (e

2

; e

i�

2

e

2

); : : : ; (e

r

; e

i�

r

e

r

);

or equivalently by

(e

�i

�

1

2

e

1

; e

i

�

1

2

e

1

); (e

�i

�

2

2

e

2

; e

i

�

2

2

e

2

); : : : ; (e

�i

�

r

2

e

r

; e

i

�

r

2

e

r

):

Observe that (e

�i

�

j

2

e

j

; e

i

�

j

2

e

j

) = C(
os

�

j

2

e

j

; sin

�

j

2

e

j

) to get that the 
orresponding Lagrangian

`(�

1

; �

2

; : : : ; �

r

) in �

r

is generated by

�


os

�

1

2

e

1

;� sin

�

1

2

e

1

�

;

�


os

�

2

2

e

2

;� sin

�

2

2

e

2

�

; : : : ;

�


os

�

r

2

e

r

;� sin

�

r

2

e

r

�

:

In this 
ase, one 
an then reformulate Theorem III.1 as follows.

Theorem IV.5. Let `

1

; `

2

; `

3

be three arbitrary Lagrangians in a symple
ti
 ve
tor spa
e E

of dimension 2r . Then there exists a symple
ti
 basis e

1

; e

2

; : : : ; e

r

; f

1

; f

2

; : : : ; f

r

su
h that ea
h

of the three Lagrangians is generated by


os �

1

e

1

+ sin �

1

f

1

; 
os �

2

e

2

+ sin �

2

f

2

; : : : ; 
os �

r

e

r

+ sin �

r

f

r

for appropriate 
hoi
es of the (�

j

)

1�j�r

.

The 
lassi�
ation result (Theorem V.4 below) for the 
ase S = �

r


an also be found in

[KS90, p.492℄.

V. The 
lassi�
ation of triples

In this se
tion we 
omplete the 
lassi�
ation of G-orbits in the set S � S � S of triples in

S by �rst assigning to ea
h triples an in
reasing 5-tuple of integers N = (n

1

; n

2

; n

3

; n

4

; n

5

) 2

f0; : : : ; rg

5

depending only on its orbit. Then we exhibit for ea
h su
h 5-tuple a standard triple

with this invariant, and �nally we show that two di�erent standard triples belong to di�erent

orbits.

De�nition V.1. To any triple (x

1

; x

2

; x

3

) in S � S � S , we may asso
iate �ve integers:

(1) the ranks of the three fa
es (
f. Remark II.4):

n

12

= rankFa
e(x

1

; x

2

); n

2;3

= rankFa
e(x

2

; x

3

); n

3;1

= rankFa
e(x

3

; x

1

)

(2) the rank of the fa
e generated by the triple

n

1;2;3

= rankFa
e(x

1

; x

2

; x

3

)

(3) the Maslov index �(x

1

; x

2

; x

3

).

Clearly the a
tion of G preserves these integers.

When x

1

; x

2

; x

3

are 
ontained in the boundary of a polydis
s (
f. Se
tion III), then these

integral invariants are easy to 
ompute (
f. Example II.6).
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Lemma V.2. Let e =

P

r

j+1




j

be a Peir
e de
omposition of the unit, and, for � = 1; 2; 3; let

x

�

=

r

X

j=1

�

(�)

j




j

; where j�

(�)

j

j = 1 for all j 2 f1; : : : ; rg:

Then

n

�;�

0

= jfj: �

(�)

j

= �

(�

0

)

j

gj; n

1;2;3

= jfj: �

(1)

j

= �

(2)

j

= �

(3)

j

gj;

and

�(x

1

; x

2

; x

3

) =

r

X

j=1

�(�

(1)

j

; �

(2)

j

; �

(3)

j

):

De�nition V.3. We now des
ribe the standard triples asso
iated to a (�xed) Jordan frame

(


1

; : : : ; 


r

). Let N = (n

1

; n

2

; n

3

; n

4

; n

5

) be a 5-tuple of integers su
h that

0 � n

1

� n

2

� n

3

� n

4

� n

5

� r :

Then the standard triple of type N is the triple (x

N

1

; x

N

2

; x

N

3

) de�ned by

x

N

1

= e

r

= 


1

+ : : :+ 


r

; x

N

2

= 


1

+ 


2

+ : : :+ 


n

2

� 


n

2

+1

� : : :� 


r

;

x

N

3

= 


1

+ : : :+ 


n

1

� 


n

1

+1

� : : :� 


n

3

+ 


n

3

+1

+ : : :+ 


n

4

� i


n

4

+1

� : : :� i


n

5

+ i


n

5

+1

+ : : :+ i


r

:

For this triple, one has

n

1;2;3

= n

1

; n

1;2

= n

2

; n

1;3

= n

1

+ n

4

� n

3

; n

2;3

= n

1

+ n

3

� n

2

;

and

�(x

N

1

; x

N

2

; x

N

3

) = n

5

� n

4

� (r � n

5

) = 2n

5

� n

4

� r:

Theorem V.4. If D is an irredu
ible bounded symmetri
 domain of tube type, then any triple

in S is 
onjugate to one and only one of the standard triples.

Proof. For the standard triples we have

(5:1) n

1

= n

1;2;3

; n

2

= n

1;2

; n

3

= n

2;3

+ n

2

� n

1

= n

2;3

+ n

1;2

� n

1;2;3

;

(5:2) n

4

= n

1;3

+ n

3

� n

1

= n

1;3

+ n

2;3

+ n

1;2

� 2n

1;2;3

;

and

(5:3) n

5

=

1

2

(�(x

N

1

; x

N

2

; x

N

3

) + n

4

+ r) =

1

2

(�(x

N

1

; x

N

2

; x

N

3

) + r + n

1;3

+ n

2;3

+ n

1;2

� 2n

1;2;3

):

Sin
e the numbers n

1;2;3

, n

1;2

, n

2;3

, n

3;1

and the Maslov index are G-invariant, it follows that

for di�erent values of N , the 
orresponding standard triples are not 
onjugate under G .

To show, 
onversely, that ea
h triple (e; f; h) 2 S�S�S is 
onjugate to a standard triple,

we �rst use Theorem III.1 to see that we may w.l.o.g. assume that (e; f; h) is 
ontained in the

torus

T :=

n

r

X

j=1

�

j




j

: (8j) j�

j

j = 1

o

de�ned by the Jordan frame (


1

; : : : ; 


r

). It is the Shilov boundary of the polydis


�

r

:=

n

r

X

j=1

�

j




j

: (8j) j�

j

j < 1

o

:
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We write

e =

r

X

j=1

�

e

j




j

; f =

r

X

j=1

�

f

j




j

and h =

r

X

j=1

�

h

j




j

:

From I.8 it follows that every element of Aut(�

r

)

0

�

=

PSU

1;1

(C )

r

is the restri
tion of an element

of Aut(D)

0

, be
ause

g




1

+ : : :+ g




r

�

=

su

1;1

(C )

r

= L(Aut(�

r

))

is a subalgebra of g = L(G). We may therefore assume that �

e

j

= 1 for ea
h j . Let

n

2

:= jfj: �

e

j

= �

f

j

gj = jfj: �

f

j

= 1gj:

Sin
e ea
h permutation of the set f


1

; : : : ; 


r

g is indu
ed by an element of K , whi
h a
ts

transitively on the set of Jordan frames, we may w.l.o.g. assume that

f = 


1

+ 


2

+ : : :+ 


n

2

� 


n

2

+1

� : : :� 


r

be
ause the Aut(�)

0

-orbits in T� T are represented by (1; 1) and (1;�1) (Example IV.3).

Let n

1

:= jfj: �

e

j

= �

f

j

= �

h

j

gj and write

n

4

:= jfj: �

e

j

= �

f

j

or �

e

j

= �

h

j

or �

f

j

= �

h

j

gj

for the number of 
omponents in whi
h at least two elements of fe; f; hg have the same entries.

Then h has pre
isely n

1

entries 1 among the �rst n

2

, and we may w.l.o.g. assume that they

arise in position j = 1; : : : ; n

1

. We may likewise assume that the 
omponents of e; f and h are

mutually di�erent for j > n

4

. Then the entries of h in positions n

1

+1; : : : ; n

2


an be moved by

elements of the group Aut(�)

n

2

�n

1

0

a
ting on these 
omponents to �1. For j 2 fn

2

+1; : : : ; n

4

g

the j -th 
omponent of h equals either 1 or �1. Moving the 1-entries with some element of K

e

permuting f


1

; : : : ; 


r

g to the rightmost positions, we get entries �1 for j = n

1

+ 1; : : : ; n

3

for

some n

3

satisfying n

2

� n

3

� n

4

. For j > n

4

we then have Im �

h

j

6= 0, and after permuting the

Jordan frame, we may assume that for some n

5

� n

4

we have Im �

h

j

< 0 for j = n

4

+ 1; : : : ; n

5

and Im �

h

j

> 0 for j > n

5

. We �nally use elements of Aut(�)

0

�xing 1 and �1 to move ea
h

entry with negative imaginary part to �i and the others to i (
f. Example IV.3). This proves

that ea
h triple is 
onjugate to a standard triple.

Remark V.5. In Theorem V.4, we have 
lassi�ed the G-orbits in the spa
e of triples in S by

the set of all 5-tuples N = (n

1

; n

2

; n

3

; n

4

; n

5

) 2 f0; : : : ; rg satisfying the monotoni
ity 
ondition

n

1

� n

2

� n

3

� n

4

� n

5

:

The des
ription the standard triples shows that ea
h su
h tuples arises via (5.1)-(5.3). We 
laim

that for the 5-tuple

(r

0

; r

1

; r

2

; r

3

; d) :=

�

n

1;2;3

; n

1;2

; n

2;3

; n

3;1

; �(x

N

1

; x

N

2

; x

N

3

)

�

of integers we then have

(P1) 0 � r

0

� r

1

; r

2

; r

3

� r .

(P2) r

1

+ r

2

+ r

3

� r + 2r

0

.

(P3) jdj � r + 2r

0

� (r

1

+ r

2

+ r

3

).

(P4) d � r + r

1

+ r

2

+ r

3

mod 2.

In fa
t, (P1) is 
lear,

r

1

+ r

2

+ r

3

= n

4

+ 2r

0

� r + 2r

0

;

jdj = jn

5

� n

4

� (r � n

5

)j � n

5

� n

4

+ r � n

5

= r � n

4

= r + 2r

0

� r

1

� r

2

� r

3

;
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and

d = n

5

� n

4

� (r � n

5

) � n

4

+ r � r + r

1

+ r

2

+ r

3

mod 2:

Suppose, 
onversely, that (r

0

; r

1

; r

2

; r

3

; d) 2 Z

5

satis�es (P1)-(P4). We then de�ne

n

1

:= r

0

; n

2

:= r

1

; n

3

:= r

2

+ r

1

� r

0

; n

4

:= r

3

+ r

2

+ r

1

� 2r

0

and

n

5

=

1

2

(d+ r

3

+ r

2

+ r

1

+ r) � r

0

:

Then (P4) implies n

5

2 Z . From (P1/2) we immediately get 0 � n

1

� n

2

� n

3

� n

4

� r:

Further (P3) leads to jdj � r � n

4

, and n

4

� n

5

follows from

2n

5

= d+ r

3

+ r

2

+ r

1

+ r � 2r

0

= d+ r + n

4

� r + n

4

� (r � n

4

) = 2n

4

:

This is turn implies n

5

=

1

2

(r + d+ n

4

) � r:

The 
onditions (P1)-(P4) are well known 
onditions des
ribing the 
lassi�
ation of triples

of Lagrangian subspa
e of symple
ti
 ve
tor spa
es ([KS90℄).

VI. Classi�
ation of orbits in S � S

In this se
tion we des
ribe how the 
lassi�
ation of G-orbits in S�S 
an be derived from

the Bruhat de
omposition of G , resp., the des
ription of the orbits of the maximal paraboli


subgroup G

e

in G with G=G

e

�

=

S .

Throughout this se
tion we assume D to be irredu
ible. Let (


1

; 


2

; : : : ; 


r

) be a Jordan

frame and put

"

k

= 


1

+ 


2

: : :+ 


k

� 


k+1

� : : :� 


r

for k = 0; : : : ; r:

Moreover let e = 


1

+ : : :+ 


r

= "

r

, and observe that "

0

= �e . The ve
tor spa
e

a =

r

M

j=1

R


j

is a maximal 
at in V in the sense of Loos ([Lo77℄) and 
an be thought of as a Cartan subspa
e

in the tangent spa
e of D at the origin. The 
orresponding ve
tor �elds form a Cartan subspa
e

of p . Denoting by 


j

the j -th 
oordinate in a with respe
t to the basis (


1

; 


2

; : : : ; 


r

), it is

known that the (restri
ted) roots of (g; a) are �


j

� 


k

;�2


j

; 1 � j 6= k � r and, in addition,

�


j

; 1 � j � r in the non tube type 
ase. We 
hoose as positive Weyl 
hamber in a the one

de�ned by the inequalities




1

� 


2

� : : : � 


r

� 0;

so that the 
orresponding simple roots are




1

� 


2

; 


2

� 


3

; : : : ; 


r�1

� 


r

; 


r

:

The Weyl group W is isomorphi
 to the semi-dire
t produ
t S

r

n Z

r

2

, where S

r

a
ts by

permutation of the 
oordinates 


j

, and the j -th fa
tor Z

2

a
ts by 
hanging the sign of the

j -th 
oordinate.

The stabilizer G

e

of the point e 2 S is known to be a maximal paraboli
 subgroup

(
f. Se
t. I). It is the standard paraboli
 subgroup asso
iated to the subset

� = f


1

� 


2

; 


2

� 


3

; : : : ; 


r�1

� 


r

g

of the set of simple roots. The subgroup W

�

of W generated by the re
e
tions asso
iated to the

roots in � is just S

r

, and double 
osets in W

�

nW=W

�


orrespond to orbits of S

r

in Z

r

2

, whi
h

are 
hara
terized by their number of sign 
hanges. In parti
ular, this shows that the elements

"

j

; 0 � j � r , form a set of representatives of the W

�

-orbits in W:e .
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Theorem VI.1. There are r+1 orbits of G in S�S . A set of representatives of these orbits

is given by the pairs (e; "

k

); 0 � k � r .

Proof. As G a
ts transitively on S , any orbit of G in S � S meets the subset feg � S . So

the statement amounts to show that a G

e

-orbit in S 
ontains "

k

for some k; 0 � k � r . By

Bruhat's theory, the orbits of the paraboli
 subgroup G

e

of G are in one-to-one 
orresponden
e

with the W

�

-double 
osets in W . In view of the pre
eding dis
ussion, this shows the result.

Remark VI.2. The open orbit in S under the G

e

-a
tion (the big Bruhat's 
ell) 
orresponds

to the point �e and is nothing but the set of all points in S transversal to e .

De�nition VI.3. For (x; y) 2 S � S we de�ne their transversality index �(x; y) to be the

unique number k 2 f0; : : : ; rg su
h that (x; y) belongs to the G orbit of (e; "

k

). Clearly, the

transversality index is invariant by the a
tion of G , and two pairs are 
onjugate if and only if

they have the same transversality index. Moreover, a pair (x; y) is transversal if and only if its

transversality index is 0.

Theorem VI.4. A pair (x; y) 2 S � S has transversality index k if and only if the fa
e

F (x; y) generated by x and y has rank k .

Proof. For 0 � k � r let e

k

= 


1

+ 


2

+ : : :+ 


k

. Then the fa
e generated by e and "

k

is

Fa
e(e; "

k

) = (e

k

+ V

0

(e

k

)) \ D;

whi
h has rank k . As any pair in S � S is 
onjugate to one of the pairs (e; "

k

), the theorem

follows immediately.
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