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Abstrat

The aim of the paper is to study the Fredholm property of pseudodif-

ferential operators in the Sj�ostrand lass OPS

w

where we onsider these

operators as ating on the modulation spaes M

2; p

(R

N

). These spaes

are introdued by means of a time-frequeny partition of unity. The sym-

bol lass S

w

does not involve any assumptions on the smoothness of its

elements.

In terms of their limit operators, we will derive neessary and suÆient

onditions for operators in OPS

w

to be Fredholm. In partiular, it will

be shown that the Fredholm property and, thus, the essential spetra of

operators in this lass are independent of the modulation spae parameter

p 2 (1; 1).

1 Introdution

This paper is devoted to the study of the Fredholm property of pseudodi�erential

operators in the Sj�ostrand lass OPS

w

. The lass S

w

of Sj�ostrand symbols and

the orresponding lass OPS

w

of pseudodi�erential operators were introdued

in [8, 9℄. This lass ontains the H�ormander lass OPS

0

0;0

and other interesting

lasses of pseudodi�erential operators. One feature of the lass S

w

is that no

assumptions on the smoothness of its elements are made.

Sj�ostrand [8, 9℄ onsiders operators in OPS

w

as ating on L

2

(R

N

). He proves

the boundedness of these operators and shows that OPS

w

is an inverse losed

Banah subalgebra of the algebra L(L

2

(R

N

)) of all bounded linear operators on

L

2

(R

N

).

Appliations in time-frequeny analysis had lead to an inreasing interest in

pseudodi�erential operators in lasses similar to OPS

w

but ating on several

kinds of modulation spaes (see, for instane [1, 3, 2, 11℄). These spaes are

�
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de�ned by means of a so-alled time-frequeny partition of unity (i.e., a partition

of unity on the phase spae).

Whereas main emphasize in [1, 3, 2, 11℄ is on boundedness results, we are going

to examine the Fredholm property of pseudodi�erential operators in OPS

w

on

modulation spaes whih seems to have not been onsidered earlier. Our approah

is based on the limit operators method. An introdution into this method as well

as several appliations of limit operators to other quite general operator lasses

an be found in the monograph [6℄ (see also the referenes therein). For several

of these operator lasses (inluding OPS

w

and the H�ormander lass OPS

0

0; 0

),

the limit operators approah seems to be the only available method to treat the

Fredholm property.

The present paper is organized as follows. In Setion 2 we reall some aux-

iliary material from [5℄ and [6℄. In partiular, we introdue the Wiener algebra

W(Z

N

; X) of band-dominated operators with operator-valued oeÆients ating

on the spaes l

p

(Z

N

; X) where X is a Banah spae. For operators belonging to

the so-alled rih subalgebra W

$

(Z

N

; X) of W(Z

N

; X) we formulate neessary

and suÆient onditions for their Fredholmness. It will turn out that the Fred-

holm property and, thus, the essential spetrum of an operator A 2 W

$

(Z

N

; X)

are independent of p 2 (1; 1).

Setion 3 is devoted to modulation spaes and their disretizations. Given a

time-frequeny partition of unity by pseudodi�erential operators

X

�2Z

2N

�

�

�

�

�

= I;

the modulation spae M

2; p

(R

N

) is de�ned as the spae of all distributions u 2

S

0

(R

N

) with

kuk

M

2; p

(R

N

)

:=

 

X

�2Z

2N

k�

�

uk

p

L

2

(R

N

)

!

1=p

<1

if p 2 [1; 1) and with

kuk

M

2;1

(R

N

)

:= sup

�2Z

2N

k�

�

uk

L

2

(R

N

)

<1

in ase p = 1. In Setion 4, we introdue the ontinuous analogue W(R

N

) of

the disrete Wiener algebra W(Z

N

; X) by imposing onditions on the deay of

the operators �

�

A�

�

��

. More preisely, an operator A belongs to W(R

N

) if

kAk

W(R

N

)

:=

X

2Z

2N

sup

�2Z

2N

k�

�

A�

�

��

k

L(L

2

(R

N

))

<1:

We prove that the operators in W(R

N

) at boundedly on M

2; p

(R

N

) for every

p 2 [1; 1℄ and that W(R

N

) is an inverse losed subalgebra of L(M

2; p

(R

N

)).
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Via disretization, the results realled in Setion 2 apply to yield neessary and

suÆient onditions for the Fredholmness on M

2; p

(R

N

) of operators in the so-

alled rih subalgebra W

$

(R

N

) of W(R

N

). Moreover, the essential spetrum of

A 2 W

$

(R

N

) proves to be independent of p 2 (1; 1).

In the onluding �fth Setion, we apply the desription of operators in OPS

w

derived in [1℄ to onlude that OPS

w

� W

$

(R

N

). Thus, the results of the

previous setions speify to give Fredholm riteria for pseudodi�erential operators

in OPS

w

ating on modulation spaes M

2; p

(R

N

) in terms of limit operators.

One onsequene is the independene of the essential spetrum of an operator

A 2 OPS

w

of the modulation spae parameter p.

Notie that a riterion for the Fredholmness of pseudodi�erential operators

in OPS

0

0;0

ating on L

2

(R

N

) was obtained in [5℄ by similar tehniques (see also

Chapter 4 in [6℄).

2 Operators in the disrete Wiener algebra

2.1 Band-dominated operators and P-Fredholmness

Given a omplex Banah spae X, let L(X) and K(X) stand for the Banah

algebra of all bounded linear operators onX and for its losed ideal of all ompat

operators, respetively. For eah positive integer N , eah real number p � 1,

and eah omplex Banah spae X, let l

p

(Z; X) denote the Banah spae of all

funtions f : Z

N

! X with

kfk

l

p

(Z

N

; X)

:=

 

X

x2Z

N

kf(x)k

p

X

!

1=p

<1:

Further, let l

1

(Z; X) refer to the Banah spae of all bounded funtions f :

Z

N

! X with norm

kfk

l

1

(Z

N

; X)

:= sup

x2Z

N

kf(x)k

X

;

and write 

0

(Z

N

; X) for the losed subspae of l

1

(Z; X) whih onsists of all

funtions f with

lim

x!1

kf(x)k

X

= 0:

For 1 � p < 1, the Banah dual spae of l

p

(Z

N

; X) an be identi�ed in a

standard way with l

q

(Z

N

; X

�

) where 1=p + 1=q = 1, and the dual of 

0

(Z

N

; X)

is isomorphi to l

1

(Z

N

; X

�

). Moreover, if X is a reexive Banah spae, then the

spaes l

p

(Z

N

; X) are reexive for 1 < p <1. In ase X = H is a Hilbert spae

with inner produt h:; :i

H

, then l

2

(Z

N

; H) beomes a Hilbert spae on de�ning

an inner produt by

hf; gi :=

X

x2Z

N

hf(x); g(x)i

H

:
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In what follows, we agree upon using the notation E(X) to refer to one of the

spaes l

p

(Z

N

; X) with 1 < p <1 or 

0

(Z

N

; X), whereas we will write E

1

(X) if

one of the spaes E(X), l

1

(Z

N

; X) or l

1

(Z

N

; X) is taken into onsideration.

For n 2 N , we denote the operator of multipliation by the harateristi

funtion of the disrete ube I

n

:= fx 2 Z

N

: jxj

1

:= max

1�j�N

jx

j

j � ng by

P

n

. This operator ats boundedly on eah of the spaes E

1

(X). We let P refer

to the set of all operators P

n

with n 2 N and set Q

n

:= I � P

n

. Following the

terminology introdued in [6℄, an operator K 2 L(E

1

(X)) is alled P-ompat if

lim

n!1

kKQ

n

k

E

1

(X)

= lim

n!1

kQ

n

Kk

E

1

(X)

= 0:

We denote the set of all P-ompat operators by K(E

1

(X)); P) and write

L(E

1

(X)); P) for the set of all operators A 2 L(E

1

(X)) for whih both AK

and KA are P-ompat whenever K is P-ompat. Then L(E

1

(X)); P) is a

losed subalgebra of L(E

1

(X)) whih ontains K(E

1

(X)); P) as a losed ideal.

De�nition 2.1 An operator A 2 L(E

1

(X); P) is alled a P-Fredholm operator

if the oset A+K(E

1

(X); P) is invertible in the quotient algebra

L(E

1

(X); P)=K(E

1

(X); P);

i.e., if there exist operators B; C 2 L(E

1

(X); P) and K; L 2 K(E

1

(X); P)

suh that BA = I +K and AC = I + L.

This de�nition is equivalent to the following one.

De�nition 2.2 An operator A 2 L(E

1

(X); P) is P-Fredholm if and only if

there exist an m 2 N and operators L

m

; R

m

2 L(E

1

(X); P) suh that

L

m

AQ

m

= Q

m

AR

m

= Q

m

:

P-Fredholmness is often referred to as loal invertibility at in�nity. If X has

�nite dimension, then these de�nitions beome equivalent to the usual de�nition

of Fredholmness, whih says that an operator is Fredholm if both its kernel and

its okernel have �nite dimension.

For k 2 Z

N

, let

^

V

k

stand for the operator of shift by k,

(

^

V

k

u)(x) = f(x� k); x 2 Z

N

:

Clearly,

^

V

k

2 L(E

1

(X)) and k

^

V

k

k

L(E

1

(X))

= 1.

De�nition 2.3 A band operator on E

1

(X) is a �nite sum of the form

P

�

a

�

^

V

�

where � 2 Z

N

and a

�

2 l

1

(Z

N

; L(X)). An operator is band-dominated if it is

the uniform limit in L(E

1

(X)) of a sequene of band operators.
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In ase X = C and N = 1, and with respet to the standard basis of E

1

(X),

band operators are given by matries with �nite band width, whih justi�es this

notion. Observe also that the lass of band operators is independent of the

onrete spae E

1

(X) whereas the lass of band-dominated operators depends

on E

1

(X) heavily. We denote this lass by A(E

1

(X)). It is easy to see that

A(E

1

(X)) is a losed subalgebra both of L(E

1

(X)) and of L(E

1

(X); P).

De�nition 2.4 Let A 2 L(E

1

(X)), and let h : N ! Z

N

be a sequene whih

tends to in�nity. An operator A

h

2 L(E

1

(X)) is alled a limit operator of A

with respet to the sequene h if

lim

n!1

kP

k

(

^

V

�h(n)

A

^

V

h(n)

� A

h

)k

L(E

1

(X))

= lim

n!1

k(

^

V

�h(n)

A

^

V

h(n)

� A

h

)P

k

k

L(E

1

(X))

= 0 (1)

for every k 2 N. The set of all limit operators of A will be denoted by �

op

(A)

and is alled the operator spetrum of A. Let further H stand for the set of all

sequenes h : N ! Z

N

whih tend to in�nity, and let A

$

(E

1

(X)) refer to the set

of all operators A 2 A(E

1

(X)) enjoying the following property: Every sequene

h 2 H possesses a subsequene g for whih the limit operator A

g

exists. We refer

to the operators in A

$

(E

1

(X)) as rih band-dominated operators.

Obviously, rihness is a ompatness ondition with respet to the onvergene

de�ned by (1).

The following is our main result on P-Fredholmness of rih band-dominated

operators. For its proof see [6℄, Theorem 2.2.1.

Theorem 2.5 An operator A 2 A

$

(E

1

(X)) is P-Fredholm if and only if eah

of its limit operators is invertible and if the norms of their inverses are uniformly

bounded, i.e.,

sup

�

k(A

h

)

�1

k

L(E

1

(X))

: A

h

2 �

op

(A)

	

<1:

2.2 The disrete Wiener algebra

The statement of Theorem 2.5 gets a more satisfatory form for band-dominated

operators whih belongs to the disrete Wiener algebra, in whih ase the uniform

boundedness of the inverses of the limit operators follows from their invertibility.

Let W(Z

N

; X) denote the set of all band-dominated operators of the form

A =

X

�2Z

N

a

�

^

V

�

where the oeÆients a

�

2 l

1

(Z

N

; L(X)) are subjet to the ondition

kAk

W(Z

N

; X)

:=

X

�2Z

N

ka

�

k

l

1

(Z

N

; L(X))

<1: (2)
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Provided with usual operations and with the norm (2), the set W(Z

N

; X) be-

omes a Banah algebra, the so-alled disrete Wiener algebra. The estimate

kAk

L(E

1

(X))

� kAk

W(Z

N

; X)

shows that W(Z

N

; X) is a non-losed subalgebra of A(E

1

(X)).

One of the remarkable properties of the disrete Wiener algebra is its inverse

losedness.

Proposition 2.6 The Wiener algebra W(Z

N

; X) is inverse losed in every al-

gebra L(E

1

(X)).

Otherwise stated: If an operator A 2 W(Z

N

; X) ats on E

1

(X) and is invertible

there, then A

�1

2 W(Z

N

; X) again. A proof is in [6℄, Theorem 2.5.2. An imme-

diate onsequene of the inverse losedness is the independene of the spetrum

of an operator A 2 W(Z

N

; X), thought of as ating on one of the spaes E

1

(X),

of the onrete hoie of that spae.

Set W

$

(Z

N

; X) := W(Z

N

; X) \ A

$

(E

1

(X)), and let A 2 W

$

(Z

N

; X). We

onsider this operator on one of the spaes E

1

(X) and determine its limit op-

erators with respet to this spae. It turns out that the operator spetrum of

A does not depend on the hoie of that spae and that all limit operators of A

belong to the Wiener algebra W(Z

N

; X) again. The following is Theorem 2.5.7

in [6℄.

Theorem 2.7 Let X be a reexive Banah spae. The following assertions are

equivalent for an operator A 2 W

$

(Z

N

; X):

(a) there is a spae E(X) on whih A is P-Fredholm;

(b) there is a spae E(X) suh that all limit operators of A are invertible on that

spae;

() all limit operators of A are invertible on l

1

(Z

N

; X);

(d) all limit operators of A are invertible on l

1

(Z

N

; X) and the norms of their

inverses are uniformly bounded;

(e) all limit operators of A are invertible on all spaes E

1

(X) and the L(E

1

(X))-

norms of their inverses are uniformly bounded;

(f) A is P-Fredholm operator on eah of the spaes E(X).

Let A 2 L(E

1

(X); P)). We say that the omplex number � belongs to the P-

spetrum of A if the operator A��I is not P-Fredholm on E

1

(X). We denote the

P-spetrum of A by �

P

(AjE

1

(X)) or shortly by �

P

(A). The ommon spetrum

of A will be denoted by �(AjE

1

(X)) or simply by �(A).

Theorem 2.8 Let X be a reexive Banah spae and A 2 W

$

(Z

N

; X). Then

the P-spetrum of A, onsidered as an operator on E(X), is equal to

�

P

(AjE(X)) =

[

A

h

2�

op

(A)

�(A

h

jE(X)): (3)
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Moreover, neither the operator spetrum of A, nor the P-spetrum of A, nor the

spetra of the limit operators of A on the right-hand side of (3) depend on the

hoie of E(X).

If the spae X has a �nite dimension, then the P-spetrum of A is the om-

mon essential spetrum of that operator, that is, the spetrum of the oset

A + K(E

1

(X)) in the Calkin algebra L(E

1

(X))=K(E

1

(X)). In this setting,

the rih Wiener algebra oinides with the full Wiener algebra. Hene, Theorem

2.8 has the following orollary.

Theorem 2.9 Let X be a �nite dimensional spae. Then the essential spetrum

of A 2 W(Z

N

; X) does not depend on the hoie of E(X), and it is given by (3).

3 Operators on modulation spaes

In the following two setions we de�ne the modulation spaes and onsider the

ontinuous ounterparts of the band-dominated operators and the Wiener alge-

bra. The disrete and the ontinuous world are linked by a ertain disretization

operation whih we are going to introdue �rst.

3.1 Time-frequeny disretization

Reall that a funtion a 2 C

1

(R

N

�R

N

) belongs to the H�ormander lass S

0

0; 0

if,

for all r; t 2 N ,

jaj

r; t

:=

X

j�j�r; j�j�t

sup

(x; �)2R

N

�R

N

j�

�

x

�

�

�

a(x; �)j <1: (4)

Let a 2 S

0

0; 0

. The assoiated pseudodi�erential operator Op(a) (also written as

a(x; D)) is de�ned at u 2 S(R

N

) by

(Op(a)u)(x) := (2�)

�N

Z

R

N

Z

R

N

a(x; �)e

ihx�y; �i

u(y) dy d�: (5)

The funtion a is alled the symbol of Op(a), and the lass of all pseudodi�erential

operators with symbols in S

0

0; 0

is denoted by OPS

0

0;0

. Standard referenes on

pseudodi�erential operators are [12, 7, 10℄, to mention only a few.

It is well-known that OPS

0

0;0

forms an algebra with respet to the usual

sum and omposition of operators. Further, the operators Op(a) 2 OPS

0

0;0

are

bounded both on the Shwartz spae S(R

N

) and on the Lebesgue spae L

2

(R

N

),

and

kOp(a)k

L(L

2

(R

N

))

� Cjaj

2k; 2l

if 2k > N; 2l > N: (6)

The latter fat is known as the Calderon-Vaillanourt theorem.
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Let A : S(R

N

) ! S(R

N

) be a bounded linear operator. An operator A

t

is

alled the formal adjoint of A if

hAu; vi = hu; A

t

vi for all u; v 2 S(R

N

): (7)

If A 2 OPS

0

0;0

, then its formal adjoint A

t

is a pseudodi�erential operator in

OPS

0

0;0

again. Furthermore, if A 2 OPS

0

0; 0

ats on L

2

(R

N

), then its Hilbert

spae adjoint A

�

also belongs to OPS

0

0;0

. Hene, (7) an be used to de�ne the

ation of A 2 OPS

0

0;0

on the spae of tempered distributions S

0

(R

N

).

Our next goal is to introdue the time-frequeny disretization (whih is alled

bi-disretization in [6℄). For  = (�; �) 2 Z

N

� Z

N

, set U



:= V

�

E

�

, where

(V

�

u)(x) := u(x� �) and (E

�

u)(x) := e

ih�; xi

u(x):

The operators U



are unitary on L

2

(R

N

), and U

�



= E

��

V

��

= U

�1



. Note that

these operators, together with the salar unitary operator e

ir

I with r 2 Z form

a nonommutative group, the so-alled disrete Heisenberg group. In partiular,

one has

U

�

�

= e

ih�

1

; �

2

i

U

��

; U

�

U

�

= e

ih�

2

; �

1

i

U

�+�

(8)

and

U

�

�

U

�

= e

ih�

2

; �

1

��

1

i

U

���

= e

ih�

2

; �

1

��

1

i

U

�

���

where � = (�

1

; �

2

); � = (�

1

; �

2

) 2 Z

N

� Z

N

.

Let f 2 C

1

0

(R

N

) be a non-negative funtion suh that f(x) = f(�x) for all

x and suh that f(x) = 1 if jx

i

j � 2=3 for all i = 1; : : : ; N and f(x) = 0 if

jx

i

j � 3=4 for at least one i. De�ne a nonnegative funtion ' on R

N

by

'

2

(x) :=

f(x)

P

�2Z

N

f(x� �)

and set '

�

(x) := '(x� �) for � 2 Z

N

. The family ('

�

)

�2Z

N forms a partition of

unit on R

N

in sense that

X

�2Z

N

'

2

�

(x) = 1 for eah x 2 R

N

:

For  = (�; �) 2 Z

N

� Z

N

, de�ne �



on R

N

� R

N

by

�



(x; �) := '

�

(x)'

�

(�);

and write �



for the pseudodi�erential operator Op(�



). It is evident that

�



u = '

�

'

�

(D)u = '

�

Op('

�

)u

at u 2 S

0

(R

N

), and the formal adjoint of the operator �



ats as

�

�



u = '

�

(D)'

�

u = Op('

�

)'

�

u

8



at u 2 S

0

(R

N

).

The operators �



indue a partition of unity on the phase spae R

N

� R

N

in

the sense that

X

2Z

2N

�

�



�



u =

X

2Z

2N

�



�

�



u = u for eah u 2 S

0

(R

N

) (9)

where the series onverge in S

0

(R

N

). With these notations, we de�ne the operator

G of time-frequeny disretization by

(Gu)



:= �

0

U

�



u where  2 Z

2N

and u 2 S

0

(R

N

);

that is, we onsider Gu as a vetor-valued funtion on Z

2N

with values in S

0

(R

N

).

Now we are in a position to de�ne the announed modulation spaesM

2; p

(R

N

)

whih will provide the frame for a loalization of funtions in the time-frequeny

domain. The modulation spaes under onsideration were introdued in [4℄ where

they are used to study the Fredholm property of pseudodi�erential operators in

OPS

0

0;0

. Similar (but di�erent) modulation spaes are onsidered in [3℄ (see also

Chapter 11 of [2℄).

De�nition 3.1 For p 2 [1; 1), let M

2; p

(R

N

) denote the spae of all distribu-

tions u 2 S

0

(R

N

) suh that (Gu)



2 L

2

(R

N

) for every  2 Z

2N

and

kuk

M

2; p

(R

N

)

:=

0

�

X

2Z

2N

k(Gu)



k

p

L

2

(R

N

)

1

A

1=p

<1; (10)

and let L

2;1

(R

N

) stand for the spae of all distributions u 2 S

0

(R

N

) with (Gu)



2

L

2

(R

N

) for every  2 Z

2N

and

kuk

M

2;1

(R

N

)

:= sup

2Z

2N

k(Gu)



k

p

L

2

(R

N

)

<1: (11)

Sine U



is a unitary operator on L

2

(R

N

), one an replae (Gu)



= �

0

U

�



u by

�



u = U



�

0

U

�



u in the de�nitions (10) and (11) of the norms.

The following proposition is taken from [4℄. It summarizes basi properties of

modulation spaes.

Proposition 3.2 (a) M

2; p

(R

N

) is a Banah spae for eah p 2 [1;1℄, and

M

2; 2

(R

N

) = L

2

(R

N

).

(b) For p 2 [1;1), every linear ontinuous funtional onM

2; p

(R

N

) is of the form

v 7!

Z

R

N

u(x)v(x) dx; (12)

with some distribution u 2 M

2; q

(R

N

) where 1=p + 1=q = 1. Hene, the Banah

dual M

2; p

(R

N

)

�

an be identi�ed with M

2; q

(R

N

), and M

2; p

(R

N

) is reexive for

9



p 2 (1; 1).

() The Shwartz spae S(R

N

) is ontained in M

2; p

(R

N

) for eah p 2 [1;1℄, and

it lies dense in M

2; p

(R

N

) for eah p 2 [1;1).

(d) M

2; p

(R

N

) is ontained in S

0

(R

N

) in the sense that u 2 M

2; p

(R

N

) de�nes a

linear funtional on S(R

N

) ating at ' via

u(') :=

Z

R

N

u(x)'(x) dx:

Moreover, if u

n

! 0 in M

2; q

(R

N

), then u

n

(')! 0 for eah funtion ' 2 S(R

N

).

Notie that the operators U



= V

�

E

�

are bijetive isometries on eah of the spaes

M

2; p

(R

N

) with p 2 [1; 1℄ and that U

�1



= E

��

V

��

.

Proposition 3.3 The operator G : M

2; p

(R

N

) ! l

p

(Z

2N

; L

2

(R

N

)) is an isome-

try, and the operator G

�1

l

de�ned at f 2 l

p

(Z

2N

; L

2

(R

N

)) by

G

�1

l

f :=

X

2Z

2N

U



�

�

0

f() (13)

is a left inverse for G.

Proof. The isometry of G is evident, and the equality G

�1

l

G = I follows from

G

�1

l

Gu =

X

2Z

2N

U



�

�

0

�

0

U

�



u =

X

2Z

2N

�

�



�



u = u;

whih holds for every u 2M

2; p

(R

N

) due to (9) and Proposition 3.2 (d).

Thus, the operator Q := GG

�1

l

: l

p

(Z

2N

; L

2

(R

N

)) ! l

p

(Z

2N

; L

2

(R

N

)) is a pro-

jetion for all p 2 [1; 1℄. We denote its range by R

p

(Q). Then

G :M

2; p

(R

N

)! R

p

(Q)

beomes an isometri bijetion, and eah operator A 2 L(M

2; p

(R

N

)) beomes

similar to the operator

A

G

:= GAG

�1

l

j

R

p

(Q)

: R

p

(Q)!R

p

(Q):

We extend A

G

to an operator �(A) ating on all of l

p

(Z

2N

; L

2

(R

N

)) by setting

�(A) := A

G

Q + I �Q = GAG

�1

l

+ I �Q

and all �(A) the time-frequeny disretization of A. Clearly,

G

�1

l

�(A)G = G

�1

l

(GAG

�1

l

+ I �GG

�1

l

)G = A:

10



Proposition 3.4 Q 2 W(Z

2N

; L

2

(R

N

)).

Proof. The de�nitions of G and G

�1

l

imply that Q ats at f 2 l

p

(Z

2N

; L

2

(R

N

))

by

(Qf)(Æ) =

X

2Z

2N

�

0

U

�

Æ

U

Æ�

�

�

0

f(Æ � ) =

X

2Z

2N

R



(Æ)(

^

V



f)(Æ)

where R



(Æ) := �

0

U

�

Æ

U

Æ�

�

�

0

and where

^

V



denotes again the disrete shift opera-

tor (

^

V



f)(Æ) := f(Æ�) on l

p

(Z

2N

; L

2

(R

N

)). Choose 2k > N . In [6℄, Proposition

4.3.2, it is shown that then

kR



(Æ)k

L(L

2

(R

N

))

= k�

0

U

�

Æ

U

Æ�

�

�

0

k

L(L

2

(R

N

))

= kU

Æ

�

0

U

�

Æ

U

Æ�

�

�

0

U

�

Æ�

k

L(L

2

(R

N

))

= k�

Æ

�

�

Æ�

k

L(L

2

(R

N

))

� C(1 + j�j)

�2k

(1 + j�j)

�2k

(14)

with a onstant C independent of  = (�; �). Consequently,

X

2Z

2N

kR



(Æ)k

L(L

2

(R

N

))

� C

X

(�; �)2Z

N

�Z

N

(1 + j�j)

�2k

(1 + j�j)

�2k

<1

showing that kQk

W(Z

2N

; L

2

(R

N

))

<1.

3.2 Fredholmness and time-frequeny disretization

Our next goal is to point out the relation between the Fredholmness of an opera-

tors ating on a modulation spaeM

2; p

(R

N

) and the P-Fredholmness of its time-

frequeny disretization. Beginning with this subsetion, we assume p 2 (1; 1)

unless otherwise stated.

Proposition 3.5 (a) For every n 2 N, the operators P

n

Q and QP

n

are ompat

on l

p

(Z

2N

; L

2

(R

N

)).

(b) The projetion Q belongs to L(l

p

(Z

2N

; L

2

(R

N

)); P).

() For every operator A 2 L(M

2; p

(R

N

)), its disretization �(A) belongs to

L(l

p

(Z

2N

; L

2

(R

N

));P).

(d) If K 2 L(l

p

(Z

2N

; L

2

(R

N

))) is a P-ompat operator of the form K = QKQ,

then G

�1

l

KG is ompat on M

2; p

(R

N

).

(e) The operator A 2 L(M

2; p

(R

N

)) is invertible if and only if the operator

�(A) 2 L(l

p

(Z

2N

; L

2

(R

N

))) is invertible.

(f) The operator A 2 L(M

2; p

(R

N

)) is Fredholm if and only if the operator

�(A) 2 L(l

p

(Z

2N

; L

2

(R

N

))) is P-Fredholm.

This proposition is proved in [5℄ for p = 2, see also Proposition 4.2.2 in [6℄. The

proof for general p 2 (1; 1) runs similarly.
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De�nition 3.6 Let A 2 L(M

2; p

(R

N

)), and let h : N ! Z

2N

be a sequene tend-

ing to in�nity. We say that the operator A

h

2 L(M

2; p

(R

N

)) is a limit operator

of A with respet to the sequene h if

U

�1

h(m)

AU

h(m)

! A

h

and U

�1

h(m)

A

�

U

h(m)

! A

�

h

strongly as m ! 1. The set �

op

(A) of all limit operators of A is alled the

operator spetrum of A.

The following proposition desribes the relation between the time-frequeny dis-

retization of the limit operators of A and the limit operators of the time-

frequeny disretization of A. Its proof for p = 2 is in [5℄ and Proposition 4.2.5

in [6℄. The ase of general p 2 (1; 1) an be treated analogously.

Proposition 3.7 Let A 2 L(M

2; p

(R

N

)), and let h : N ! Z

2N

be a sequene

tending to in�nity suh that the limit operator A

h

of A with respet to h ex-

ists. Then there is a subsequene g of h suh that the limit operator �(A)

g

of

�(A) with respet to g exists, and there is an isometri isomorphism T

g

mapping

l

p

(Z

2N

; L

2

(R

N

)) onto itself suh that

�(A)

g

= T

�1

g

�(A

h

)T

g

:

We still need the ounterparts of the notions of band and band-dominated oper-

ators for operators on modulation spaes.

De�nition 3.8 An operator A 2 L(S

0

(R

N

)) is alled a band operator if there

exists an R > 0 suh that �

�

A�

�

�

= 0 for all subsripts �; � 2 Z

2N

with

j�� �j := max

1�i�2N

j�

i

� �

i

j > R:

An operator A 2 L(M

2; p

(R

N

)) is alled band-dominated if it is the limit of a

sequene of band operators onverging to A in the norm of L(M

2; p

(R

N

)).

It is easy to hek that the lass of all band-dominated operators onM

2; p

(R

N

) is

a losed subalgebra of L(M

2; p

(R

N

)). We denote this algebra by A(M

2; p

(R

N

)).

Further we all A 2 A(M

2; p

(R

N

)) a rih operator if every sequene h : N ! Z

2N

whih tends to in�nity possesses a subsequene g for whih the limit operator A

g

exists. The set of all rih operators forms a losed subalgebra of A(M

2; p

(R

N

))

whih we denote by A

$

(M

2; p

(R

N

)).

Proposition 3.9 (a) If A 2 A(M

2; p

(R

N

)), then �(A) 2 A(l

p

(Z

2N

; L

2

(R

N

)).

(b) If A 2 A

$

(M

2; p

(R

N

)), then �(A) 2 A

$

(l

p

(Z

2N

; L

2

(R

N

)).
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Proof. We prove assertion (a) only. The seond statement follows from (a)

and Proposition 3.7. First let A be a band operator on M

2; p

(R

N

). Then, for

u 2 l

p

(Z

2N

; L

2

(R

N

)),

(A

G

u)(Æ) =

X

�2Z

2N

�

0

U

�

Æ

AU

�

�

�

0

u(�) =

X

2Z

2N

�

0

U

�

Æ

AU

Æ�

�

�

0

u(Æ � )

=

X

2Z

2N

A



(Æ)(

^

V



u)(Æ) (15)

where A



(Æ) := �

0

U

�

Æ

AU

Æ�

�

�

0

. Sine A is a band operator, all series in (15) have

a �nite number of non-vanishing items only. Indeed,

kA



(Æ)k

L(L

2

(R

N

))

= k�

Æ

A�

�

Æ�

k

L(L

2

(R

N

))

= 0

if jj > R with R > 0 being large enough. Hene, A

G

is a band operator.

That the operator A

G

is band-dominated whenever A is so follows by an evi-

dent approximation argument (take into aount that G : M

2; p

(R

N

) ! R

p

(Q)

and G

�1

l

: R

p

(Q) ! M

2; p

(R

N

) are isometries). Finally, sine the projetion

Q belongs to the disrete Wiener algebra due to Proposition 3.4 (and is, thus,

band-dominated), the operator �(A) = A

G

Q + (I � Q) is band-dominated for

eah band-dominated operator A.

Combining Propositions 3.5, 3.7 and Theorem 2.5 we arrive at the following Fred-

holm riterion for rih band-dominated operators on modulation spaes.

Theorem 3.10 An operator A 2 A

$

(M

2; p

(R

N

)) is Fredholm if and only if all

limit operators A

h

of A are invertible and if the norms of their inverses are

uniformly bounded, i.e.,

sup

A

h

2�

op

(A)

kA

�1

h

k

L(M

2; p

(R

N

))

<1:

4 The Wiener algebra on R

N

We de�ne the ontinuous analogue of the disrete Wiener algebra by imposing

onditions on the deay of the norms k�

�

A�

�

��

k

L(L

2

(R

N

))

as  tends to in�nity.

De�nition 4.1 A linear operator A : S

0

(R

N

) ! S

0

(R

N

) belongs to the Wiener

algebra W(R

N

) if

kAk

W(R

N

)

:=

X

2Z

2N

sup

�2Z

2N

k�

�

A�

�

��

k

L(L

2

(R

N

))

<1: (16)

The Wiener algebra W(R

N

) ontains suÆiently many interesting operators. So

we will see in the next setion that W(R

N

) ontains the pseudodi�erential oper-

ators with non-smooth symbols in the Sj�ostrand lass OPS

w

and, thus, also the

H�ormander lass OPS

0

0;0

. Here are some basi properties of W(R

N

).
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Proposition 4.2 (a) W(R

N

) � L(M

2; p

(R

N

)), and

kAk

L(M

2; p

(R

N

))

� kAk

W(R

N

)

for eah p 2 [1; 1℄ and A 2 W(R

N

).

(b) Provided with the norm (16), the setW(R

N

) beomes a unital Banah algebra.

() The Banah dual operator A

�

of an operator A 2 W(R

N

) onsidered as ating

on M

2; p

(R

N

) belongs W(R

N

), too.

Proof. (a) First let p 2 [1; 1). Then

kAuk

p

M

2; p

(R

N

)

=

X

2Z

2N

k�



Auk

p

L

2

(R

N

)

=

X

2Z

2N











�



A

X

Æ2Z

2N

�

�

Æ

�

Æ

u











p

L

2

(R

N

)

�

0

�

X

2Z

2N

k�



A�

�

��

k

L(L

2

(R

N

))











X

Æ2Z

2N

�

��

u











L

2

(R

N

)

1

A

p

�

X

2Z

2N

 

X

�2Z

2N

k

A

( � �)k�

�

uk

L

2

(R

N

)

!

p

where k

A

(�) := sup

2Z

N

k�



A�

�

��

k

L(L

2

(R

N

))

. Sine k

A

is a sequene in l

1

(Z

2N

),

kAuk

M

2; p

(R

N

)

�

X

2Z

2N

k

A

()

 

X

�2Z

2N

k�

�

uk

p

L

2

(R

N

)

!

1=p

= kAk

W(R

N

)

kuk

M

2; p

(R

N

)

:

In the same way, one gets the estimate

kAuk

M

2;1

(R

N

)

�

X

2Z

2N

k

A

() sup

�2Z

2N

k�

�

uk

L

2

(R

N

)

= kAk

W(R

N

)

kuk

M

2;1

(R

N

)

:

(b) It is easy to verify that

kABk

W(R

N

)

� kAk

W(R

N

)

kBk

W(R

N

)

;

and estimate (14) shows that the identity operator I belongs to W(R

N

). Hene,

W(R

N

) is a unital algebra, and its ompleteness with respet to the norm (16)

follows straightforwardly.

() Let A

�

be the Banah adjoint operator of A ating on M

2; p

(R

N

), that is

Z

R

N

Auv dx =

Z

R

N

uA

�

v dx; (17)
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where u 2 M

2; p

(R

N

) and v 2 M

2; q

(R

N

) with 1=p + 1=q = 1. The operator A is

bounded on L

2

(R

N

) sine A 2 W(R

N

) (Proposition 4.3.4 in [6℄). Sine (17) holds

for arbitrary u; v 2 S(R

N

), this identity states that A

�

is the adjoint operator to

A onsidered as ating on L

2

(R

N

). Hene,

k�

�

A

�

�

�

��

k

L(L

2

(R

N

))

= k�

��

A

�

�

�

�

k

L(L

2

(R

N

))

;

whih implies that

X

2Z

2N

sup

�2Z

2N

k�

�

A

�

�

�

��

k

L(L

2

(R

N

))

=

X

2Z

2N

sup

�2Z

2N

k�

��

A

�

�

�

�

k

L(L

2

(R

N

))

= k�

�

A

�

�

�

��

k

L(L

2

(R

N

))

<1;

whene �nally A

�

2 W(R

N

).

Proposition 4.3 (a) If A 2 W(R

N

), then the operators GAG

�1

l

and �(A) belong

to the disrete Wiener algebra W(Z

2N

; L

2

(R

N

)).

(b) Conversely, if B 2 W(Z

2N

; L

2

(R

N

)), then G

�1

l

AG lies in W(R

N

).

The proof runs as that of Proposition 3.9; ompare also [5℄ and Proposition 4.3.5

in [6℄.

Proposition 4.4 The algebra W(R

N

) is inverse losed on eah of the spaes

M

2; p

(R

N

) with p 2 [1; 1℄, i.e., if A 2 W(R

N

) is invertible in L(M

2; p

(R

N

)),

then A

�1

2 W(R

N

).

Proof. Let A 2 W(R

N

) be invertible on M

2; p

(R

N

). Then �(A) belongs to

W(Z

2N

; L

2

(R

N

)) by Proposition 4.3, and �(A) is invertible on l

p

(Z

2N

; L

2

(R

N

))

by Proposition 3.5 (e). From Proposition 2.6 we infer that �(A)

�1

lies in the

disrete Wiener algebra W(Z

2N

; L

2

(R

N

)), and sine

G

�1

l

�(A)

�1

GA = G

�1

l

�(A)

�1

GAG

�1

l

G = G

�1

l

�(A)

�1

�(A)QG = I;

one has G

�1

l

�(A)

�1

G = A

�1

2 W(R

N

) due to Proposition 4.3 (b).

We �x a p 2 [1; 1℄ and de�ne the rih Wiener algebra by

W

$

(R

N

) :=W(R

N

) \ A

$

(M

2; p

(R

N

)):

Thus, an operator A belongs toW

$

(R

N

) if every sequene h : N ! Z

2N

possesses

a subsequene g for whih the limit operator A

g

of A with respet to strong

onvergene on M

2; p

(R

N

) exists. It is easy to see that the limit operators A

g

belong toW(R

N

) again. Thus, the de�nition ofW

$

(R

N

) does not depend on the

onrete hoie of the parameter p 2 [1; 1℄.
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Theorem 4.5 The following onditions are equivalent for A 2 W

$

(R

N

):

(a) A is a Fredholm operator on M

2; p

(R

N

) for a ertain p 2 (1; 1);

(b) A is a Fredholm operator on M

2; p

(R

N

) for eah p 2 (1; 1);

() there is a p 2 [1; 1℄ suh that all limit operators of A are invertible on

M

2; p

(R

N

);

(d) all limit operators of A are invertible on every spae M

2; p

(R

N

) with p 2

[1; 1℄;

(e) all limit operators of A are uniformly invertible on eah of the spaesM

2; p

(R

N

)

with p 2 [1; 1℄.

This is an immediate onsequene of Theorem 2.7 and Proposition 3.5 (e) and

(f). The preeding theorem has the following orollary for the essential spetrum

of an operator A in the rih Wiener algebra when onsidered on M

2; p

(R

N

), i.e.,

for the spetrum of the oset A + K(M

2; p

(R

N

)) in the orresponding Calkin

algebra.

Theorem 4.6 Let A 2 W

$

(R

N

). Then the essential spetrum �

ess

A of A on-

sidered on M

2; p

(R

N

) is equal to

�

ess

(AjM

2; p

(R

N

)) =

[

A

h

2�

op

(A)

�(A

h

jM

2; p

(R

N

)):

Both the operator spetrum of A, the essential spetrum of A, and the ommon

spetra of the limit operators of A are independent of p 2 (1; 1).

5 Fredholm properties of pseudodi�erential op-

erators in the Sj�ostrand lass

We start with realling the de�nition of the lass of symbols of pseudodi�erential

operators introdued by Sj�ostrand [8℄ in 1994; see also [9℄. We introdue this

lass for R

n

with arbitrary n 2 N . Later, we let n = 2N .

Let � 2 S(R

n

) be a funtion with

R

R

n

�(x) dx = 1. A funtion a : R

n

! C

belongs to the Sj�ostrand lass S

w

(R

n

) if

kak

S

w

(R

n

)

:=

Z

R

n

sup

k2Z

n

�

�

�

�

Z

R

n

e

ihx; �i

a(x)�(x� k) dx

�

�

�

�

d� <1: (18)

Provided with the norm (18), S

w

(R

n

) beomes a Banah spae. Notie that a

hange of the funtion � gives rise to an equivalent norm on S

w

(R

n

) and leads,

thus, to the same lass of symbols.

We have to mention another desriptions of the Sj�ostrand lass S

w

(R

n

). In

1997, Boulkhemair [1℄ introdued the lass B(R

n

) of all funtions a : R

n

! C

16



whih own the property

kak

B(R

n

)

:=

Z

R

n

sup

x2Z

n

�

�

�

�

Z

R

n

e

�ihx; �i

â(�)�(� � �)d�

�

�

�

�

d� <1 (19)

where â refers to the Fourier transform of a in the sense of distributions. The

norm (19) an be also written as

kak

B(R

n

)

=

Z

R

n

k�(D � �)uk

L

1

(R

n

)

d�

and is further equivalent to the norm

kak

B(R

n

)

:=

X

l2Z

n

k�(D � l)uk

L

1

(R

n

)

: (20)

Moreover, Boulkhemair proved that the Sj�ostrand lass S

w

(R

n

) and his lass

B(R

n

) oinide. As a onsequene of this fat, he derived the following very

onvenient onstrutive haraterization of S

w

(R

n

).

Proposition 5.1 ([1℄) A distribution a 2 S

0

(R

n

) belongs to S

w

(R

n

) if and only

if there exist a ompat subset Q of R

n

and a sequene of funtions (a

k

)

k2Z

n

in

L

1

(R

n

) with supp (â

k

) � Q and

X

k2Z

n

ka

k

k

L

1

(R

n

)

<1;

suh that

a(x) =

X

k2Z

n

e

ihx; ki

a

k

(x)

almost everywhere.

Let now n = 2N and a 2 S

w

(R

2N

). As usual, we write the independent variable

in R

2N

as (x; �) 2 R

N

� R

N

. Then the pseudodi�erential operator with symbol

a is de�ned by

(Op(a)u)(x) := (2�)

�N

Z

R

N

Z

R

N

e

ihx�y; �i

a(x; �)u(y) dy d�

where u 2 S(R

N

). Let OPS

w

= OPS

w

(R

2N

) stand for the lass of all pseu-

dodi�erential operators with symbols in S

w

(R

2N

). It has been shown in [8℄ that

the operators in OPS

w

are bounded on L

2

(R

N

) and that OPS

w

is an inverse

losed subalgebra of L(L

2

(R

N

)), i.e., if A 2 OPS

w

is invertible on L

2

(R

N

), then

A

�1

2 OPS

w

again.

17



The Sj�ostrand lass OPS

w

ontains several interesting lasses of pseudodif-

ferential operators. For instane, the H�ormander lass OPS

0

0; 0

is ontained in

OPS

w

(R

n

) whih an be heked as follows. Let a be in C

1

b

(R

n

), i.e., let

jaj

m

:=

X

j�j�m

sup

r2R

n

j�

�

a(x)j <1

for all m 2 N (note that S

0

0; 0

= C

1

b

(R

N

� R

N

)). Then �(D)a = k

0

� a where

k

0

2 S(R

n

) is given by

k

0

(x) = (2�)

�n

Z

R

n

e

�ihx; �i

�(�) d�:

Consequently, for m 2 N and all multi-indies l,

(�(D � l)a)(x) =

Z

R

n

e

�ihl; x�yi

k

0

(x� y)a(y) dy

= hli

�2m

Z

R

n

e

�ihl; x�yi

hD

y

i

2m

(k

0

(x� y)a(y)) dy

with the standard notations

hli := (1 + jlj

2

2

)

1=2

and hD

y

i

2

:= I ��

y

:

The latter estimate implies

k�(D � l)ak

L

1

(R

n

)

� C

m

hli

�2m

jaj

2m

sine �

�

x

k

0

2 S(R

n

) for all multi-indies �.

Similar lasses of pseudodi�erential operators have been onsidered in [2℄, see

also [6℄.

To prove the inlusion of OPS

w

into the Wiener algebra in Proposition 5.3

below we need the following estimates.

Proposition 5.2 Let Q be a ompat subset of R

n

, and let f 2 S

0

(R

n

) be a

distribution with supp

^

f � Q. Then f 2 C

1

, and for every multi-index �,

k�

�

fk

L

1

(R

n

)

� C

�

kfk

L

1

(R

n

)

where the onstant C

�

depends on � only.

Proof. Let � 2 C

1

0

(R

n

) be suh that

^

f� =

^

f . Sine

^

f 2 E

0

(R

n

), the ompatly

supported distributions, one has

f(x) = (2�)

�n

^

f(�e

�x

)

18



where e

�x

(�) := e

�ihx; �i

. Consequently,

(�

�

f)(x) = (2�)

�n

^

f( 

�; x

) = (2�)

�n

Z

R

n

f(y)e

y

( 

�; x

) dy

where  

�; x

2 C

1

0

(R

n

) is given by

 

�; x

(�) = (�i�)

�

�(�)e

�ihx; �i

:

The linear funtional e

y

is ontinuous on C

1

0

(R

n

). Hene,

(2�)

�n

e

y

( 

�; x

) = (2�)

�n

Z

R

n

(�i�)

�

�(�)e

�ihx�y; �i

d� =: h

�

(x� y):

Integrating by parts one �nds h

�

2 L

1

(R

n

). Thus,

(�

�

f)(x) =

Z

R

n

h

�

(x� y)f(y) dy;

whene

k�

�

fk

L

1

(R

n

)

� kh

�

k

L

1

(R

n

)

kfk

L

1

(R

n

)

for every multi-index �.

Proposition 5.3 OPS

w

(R

2N

) � W(R

N

).

Proof. Let a 2 S

w

(R

N

� R

N

). By Proposition 5.1, a an be represented as

a(x; �) =

X

(�; �)2Z

N

�Z

N

e

ihx;�i+ih�; �i

a

��

(x; �) (21)

where supp â

��

is ontained in a ompat subset Q of R

2N

and

X

(�; �)2Z

N

�Z

N

ka

��

k

L

1

(R

2N

)

<1:

Then

Op(a) =

X

(�; �)2Z

N

�Z

N

E

�

Op(a

��

)V

�

(22)

and

k�

(

1

; 

2

)

Op(a)�

�

(Æ

1

; Æ

2

)

k

= k�

0

U

�

(

1

; 

2

)

Op(a)U

(Æ

1

; Æ

2

)

�

�

0

k

�













X

(�; �)2Z

N

�Z

N

e

ih�; 

2

i

�

0

E

��

1

V

�

2

Op(a

��

)V

�+Æ

2

E

Æ

1

�

�

0













�

X

(�; �)2Z

N

�Z

N

k�

0

E

��

1

V

�

2

Op(a

��

)V

�+Æ

2

E

Æ

1

�

�

0

k:
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By Proposition 5.2,

k�



x

�

Æ

�

a

��

k

L

1

(R

2N

)

� C

Æ

ka

��

k

L

1

(R

2N

)

: (23)

Hene (see, for instane, [6℄, Proposition 4.1.16),

k�

0

E

��

1

V

�

2

Op(a

��

)V

�+Æ

2

E

Æ

1

�

�

0

k

� C ja

��

j

2k

1

; 2k

2

(1 + j�� 

1

+ Æ

1

j)

�2k

1

(1 + j� + Æ

2

� 

2

j)

�2k

2

;

where 2k

1

> N and 2k

2

> N , and where the onstant C is independent of a

��

.

From (23) one onludes that

ja

��

j

2k

1

; 2k

2

� C ka

��

k

L

1

(R

N

)

with a onstant C independent of a

��

again. So one �nally has

k�

(

1

; 

2

)

Op(a)�

�

(Æ

1

; Æ

2

)

k

� C

X

(�; �)2Z

N

�Z

N

ka

��

k

L

1

(R

N

)

(1 + j�� 

1

� Æ

1

j)

�2k

1

(1 + j� + Æ

2

� 

2

j)

�2k

2

=: h(

1

� Æ

1

; 

2

� Æ

2

)

with a sequene h 2 l

1

(Z

N

� Z

N

). Consequently, Op(a) 2 W(R

N

).

The following orollary follows immediately from the preeding proposition in

ombination with Proposition 4.2 (a).

Corollary 5.4 Let a 2 S

w

(R

2N

) be represented as in (21), and let p 2 [1; 1℄.

Then

kOp(a)k

L(M

2; p

(R

N

))

� C

X

(�; �)2Z

N

�Z

N

ka

��

k

L

1

(R

N

)

with a onstant C independent of a

��

.

We say that the symbol a belongs to the lass R(R

2N

) if there are integers k

1

; k

2

with 2k

1

> N and 2k

2

> N suh that a an be represented as

a(y) =

X

2Z

2N

e

ih; yi

a



(y)

where y = (x; �) 2 R

N

� R

N

, and where the funtions a



2 S

0

0; 0

satisfy

X

2Z

2N

ja



j

2k

1

; 2k

2

<1: (24)

Proposition 5.5 The lasses R(R

2N

) and S

w

(R

2N

) oinide.
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Proof. Let a 2 R(R

2N

). Then

X

l2Z

2N

k�(D � l)ak

L

1

(R

2N

)

�

X

l2Z

2N

X

2Z

2N

k�(D � l � )a



k

L

1

(R

2N

)

� C

X

2Z

2N

ja



j

2k

1

; 2k

2

X

l2Z

2N

(1 + jl

1

j)

�2k

1

(1 + jl

2

j)

�2k

2

<1;

whene the inlusion R(R

2N

) � S

w

(R

2N

). The reverse inlusion follows from

Proposition 5.1.

The following observation will be needed to prove the rihness of the operators

in OPS

w

(R

2N

).

Lemma 5.6 Let (A

j

)

j2N

be a sequene of bounded linear operators on a Hilbert

spae H with

X

j2N

kA

j

k <1; (25)

and let A :=

P

j2N

A

j

. Furthermore, let (U

m

)

m2N

be a sequene of unitary oper-

ators on H suh that the sequenes (U

�

m

A

j

U

m

)

m2N

onverge strongly as m !1

to ertain operators

~

A

j

for every j. Then the sequene (U

�

m

AU

m

)

m2N

onverges

strongly to

~

A :=

P

j2N

~

A

j

.

Proof. Let u 2 H and " > 0. By ondition (25), there is an n

0

2 N suh that

X

j>n

0

kA

j

uk <

"

3

; (26)

and due to strong onvergene, there is an m

0

2 N suh that, for m > m

0

,

max

1�j�n

0

k(

~

A

j

� U

�

m

A

j

U

m

)uk <

"

3n

0

:

Hene, given arbitrary u 2 H and " > 0, one �nds an m

0

2 N suh that

k(

~

A� U

�

m

AU

m

)uk �

n

0

X

j=1

k(

~

A

j

� U

�

m

A

j

U

m

)uk+ 2

X

j>n

0

kA

j

uk < "

for m � m

0

.

Proposition 5.7 OPS

w

(R

2N

) � W

$

(R

N

).

Proof. Let A := Op(a) 2 OPS

w

(R

N

�R

N

). By Proposition 5.5, the operator A

an be written as

A =

X

(�; �)2Z

N

�Z

N

E

�

Op(a

��

)V

�
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where

X

(�; �)2Z

N

�Z

N

kOp(a

��

)k <1:

Let h : m 7! h

m

:= (h

0

m

; h

00

m

) 2 Z

N

� Z

N

be a sequene whih tends to in�nity.

Then, evidently,

U

�

h

m

AU

h

m

=

X

(�; �)2Z

N

�Z

N

(U

�

h

m

E

�

U

h

m

) (U

�

h

m

Op(a

��

)U

h

m

) (U

�

h

m

V

�

U

h

m

):

Sine U



= V

�

E

�

and U

�



= E

��

V

��

, one has

U

�

h

m

E

�

U

h

m

= e

�ih�; h

00

m

i

E

�

and U

�

h

m

V

�

U

h

m

= e

ih�; h

0

m

i

V

�

:

In [6℄, Lemma 4.2.4, it is veri�ed that there is a subsequene g of h suh that the

funtions

'

m

: � 7! e

�ih�; g

00

m

i

and 

m

: � 7! e

�ih�; g

0

m

i

onverge uniformly with respet to �; � 2 Z

N

to ertain limit funtions ' and 

as m ! 1. Clearly, j'(�)j = j(�)j = 1 for eah �; � 2 Z

N

. It is also easy to

see that

U

�

g

m

Op(a

��

)U

g

m

= Op(a

g

m

��

)

where

a

g

m

��

(x; �) := a

��

(x+ g

0

m

; � + g

0

m

):

Aording to the Arz�ela-Asoli Theorem, one further �nds a subsequene k of g

suh that the funtions a

k

m

��

onverge to a limit funtion a

k

��

in the topology of

C

1

(R

2N

). This implies (ompare [6℄, Theorem 4.3.15) that a

k

��

2 S

0

0; 0

and that

U

�

k

m

Op(a

��

)U

k

m

! Op(a

K

��

) strongly as m!1:

Applying the standard Cantor diagonal proess, we �nally obtain that every

sequene h has a subsequene l suh that

U

�

l

m

(E

�

Op(a

��

)V

�

)U

l

m

! '(�)(�)E

�

Op(a

l

��

)V

�

strongly as m!1. Hene, the strong onvergene

U

�

l

m

AU

l

m

! A

l

:=

X

(�; �)2Z

N

�Z

N

'(�)(�)E

�

Op(a

l

��

)V

�

(27)

as m ! 1 follows from Lemma 5.6, and the strong onvergene of the adjoint

sequenes

U

�

l

m

A

�

U

l

m

! A

�

l

:=

X

(�; �)2Z

N

�Z

N

�'(�)�(�)V

��

�

Op(a

l

��

)

�

�

E

��

an be heked similarly in the same way.

Now Theorem 17 implies the following �nal results on the Fredholmness of pseu-

dodi�erential operators in the Sj�ostrand lass ating on modulation spaes.
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Theorem 5.8 The following onditions are equivalent for A 2 OPS

w

:

(a) A is a Fredholm operator on M

2; p

(R

N

) for a ertain p 2 (1; 1);

(b) A is a Fredholm operator on M

2; p

(R

N

) for eah p 2 (1; 1);

() there is a p 2 [1; 1℄ suh that all limit operators of A are invertible on

M

2; p

(R

N

);

(d) all limit operators of A are invertible on every spae M

2; p

(R

N

) with p 2

[1; 1℄;

(e) all limit operators are uniformly invertible on eah of the spaes M

2; p

(R

N

)

with p 2 [1; 1℄.

Corollary 5.9 Let A 2 OPS

w

. Then the essential spetrum �

ess

(A) of A on-

sidered as an operator on M

2; p

(R

N

) does not depend on p 2 (1;1), and

�

ess

(AjM

2; p

(R

N

)) =

[

A

h

2�

op

(A)

�(A

h

jL

2

(R

N

)):
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