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Abstra
t

The aim of the paper is to study the Fredholm property of pseudodif-

ferential operators in the Sj�ostrand 
lass OPS

w

where we 
onsider these

operators as a
ting on the modulation spa
es M

2; p

(R

N

). These spa
es

are introdu
ed by means of a time-frequen
y partition of unity. The sym-

bol 
lass S

w

does not involve any assumptions on the smoothness of its

elements.

In terms of their limit operators, we will derive ne
essary and suÆ
ient


onditions for operators in OPS

w

to be Fredholm. In parti
ular, it will

be shown that the Fredholm property and, thus, the essential spe
tra of

operators in this 
lass are independent of the modulation spa
e parameter

p 2 (1; 1).

1 Introdu
tion

This paper is devoted to the study of the Fredholm property of pseudodi�erential

operators in the Sj�ostrand 
lass OPS

w

. The 
lass S

w

of Sj�ostrand symbols and

the 
orresponding 
lass OPS

w

of pseudodi�erential operators were introdu
ed

in [8, 9℄. This 
lass 
ontains the H�ormander 
lass OPS

0

0;0

and other interesting


lasses of pseudodi�erential operators. One feature of the 
lass S

w

is that no

assumptions on the smoothness of its elements are made.

Sj�ostrand [8, 9℄ 
onsiders operators in OPS

w

as a
ting on L

2

(R

N

). He proves

the boundedness of these operators and shows that OPS

w

is an inverse 
losed

Bana
h subalgebra of the algebra L(L

2

(R

N

)) of all bounded linear operators on

L

2

(R

N

).

Appli
ations in time-frequen
y analysis had lead to an in
reasing interest in

pseudodi�erential operators in 
lasses similar to OPS

w

but a
ting on several

kinds of modulation spa
es (see, for instan
e [1, 3, 2, 11℄). These spa
es are

�
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de�ned by means of a so-
alled time-frequen
y partition of unity (i.e., a partition

of unity on the phase spa
e).

Whereas main emphasize in [1, 3, 2, 11℄ is on boundedness results, we are going

to examine the Fredholm property of pseudodi�erential operators in OPS

w

on

modulation spa
es whi
h seems to have not been 
onsidered earlier. Our approa
h

is based on the limit operators method. An introdu
tion into this method as well

as several appli
ations of limit operators to other quite general operator 
lasses


an be found in the monograph [6℄ (see also the referen
es therein). For several

of these operator 
lasses (in
luding OPS

w

and the H�ormander 
lass OPS

0

0; 0

),

the limit operators approa
h seems to be the only available method to treat the

Fredholm property.

The present paper is organized as follows. In Se
tion 2 we re
all some aux-

iliary material from [5℄ and [6℄. In parti
ular, we introdu
e the Wiener algebra

W(Z

N

; X) of band-dominated operators with operator-valued 
oeÆ
ients a
ting

on the spa
es l

p

(Z

N

; X) where X is a Bana
h spa
e. For operators belonging to

the so-
alled ri
h subalgebra W

$

(Z

N

; X) of W(Z

N

; X) we formulate ne
essary

and suÆ
ient 
onditions for their Fredholmness. It will turn out that the Fred-

holm property and, thus, the essential spe
trum of an operator A 2 W

$

(Z

N

; X)

are independent of p 2 (1; 1).

Se
tion 3 is devoted to modulation spa
es and their dis
retizations. Given a

time-frequen
y partition of unity by pseudodi�erential operators

X

�2Z

2N

�

�

�

�

�

= I;

the modulation spa
e M

2; p

(R

N

) is de�ned as the spa
e of all distributions u 2

S

0

(R

N

) with

kuk

M

2; p

(R

N

)

:=

 

X

�2Z

2N

k�

�

uk

p

L

2

(R

N

)

!

1=p

<1

if p 2 [1; 1) and with

kuk

M

2;1

(R

N

)

:= sup

�2Z

2N

k�

�

uk

L

2

(R

N

)

<1

in 
ase p = 1. In Se
tion 4, we introdu
e the 
ontinuous analogue W(R

N

) of

the dis
rete Wiener algebra W(Z

N

; X) by imposing 
onditions on the de
ay of

the operators �

�

A�

�

��


. More pre
isely, an operator A belongs to W(R

N

) if

kAk

W(R

N

)

:=

X


2Z

2N

sup

�2Z

2N

k�

�

A�

�

��


k

L(L

2

(R

N

))

<1:

We prove that the operators in W(R

N

) a
t boundedly on M

2; p

(R

N

) for every

p 2 [1; 1℄ and that W(R

N

) is an inverse 
losed subalgebra of L(M

2; p

(R

N

)).
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Via dis
retization, the results re
alled in Se
tion 2 apply to yield ne
essary and

suÆ
ient 
onditions for the Fredholmness on M

2; p

(R

N

) of operators in the so-


alled ri
h subalgebra W

$

(R

N

) of W(R

N

). Moreover, the essential spe
trum of

A 2 W

$

(R

N

) proves to be independent of p 2 (1; 1).

In the 
on
luding �fth Se
tion, we apply the des
ription of operators in OPS

w

derived in [1℄ to 
on
lude that OPS

w

� W

$

(R

N

). Thus, the results of the

previous se
tions spe
ify to give Fredholm 
riteria for pseudodi�erential operators

in OPS

w

a
ting on modulation spa
es M

2; p

(R

N

) in terms of limit operators.

One 
onsequen
e is the independen
e of the essential spe
trum of an operator

A 2 OPS

w

of the modulation spa
e parameter p.

Noti
e that a 
riterion for the Fredholmness of pseudodi�erential operators

in OPS

0

0;0

a
ting on L

2

(R

N

) was obtained in [5℄ by similar te
hniques (see also

Chapter 4 in [6℄).

2 Operators in the dis
rete Wiener algebra

2.1 Band-dominated operators and P-Fredholmness

Given a 
omplex Bana
h spa
e X, let L(X) and K(X) stand for the Bana
h

algebra of all bounded linear operators onX and for its 
losed ideal of all 
ompa
t

operators, respe
tively. For ea
h positive integer N , ea
h real number p � 1,

and ea
h 
omplex Bana
h spa
e X, let l

p

(Z; X) denote the Bana
h spa
e of all

fun
tions f : Z

N

! X with

kfk

l

p

(Z

N

; X)

:=

 

X

x2Z

N

kf(x)k

p

X

!

1=p

<1:

Further, let l

1

(Z; X) refer to the Bana
h spa
e of all bounded fun
tions f :

Z

N

! X with norm

kfk

l

1

(Z

N

; X)

:= sup

x2Z

N

kf(x)k

X

;

and write 


0

(Z

N

; X) for the 
losed subspa
e of l

1

(Z; X) whi
h 
onsists of all

fun
tions f with

lim

x!1

kf(x)k

X

= 0:

For 1 � p < 1, the Bana
h dual spa
e of l

p

(Z

N

; X) 
an be identi�ed in a

standard way with l

q

(Z

N

; X

�

) where 1=p + 1=q = 1, and the dual of 


0

(Z

N

; X)

is isomorphi
 to l

1

(Z

N

; X

�

). Moreover, if X is a re
exive Bana
h spa
e, then the

spa
es l

p

(Z

N

; X) are re
exive for 1 < p <1. In 
ase X = H is a Hilbert spa
e

with inner produ
t h:; :i

H

, then l

2

(Z

N

; H) be
omes a Hilbert spa
e on de�ning

an inner produ
t by

hf; gi :=

X

x2Z

N

hf(x); g(x)i

H

:
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In what follows, we agree upon using the notation E(X) to refer to one of the

spa
es l

p

(Z

N

; X) with 1 < p <1 or 


0

(Z

N

; X), whereas we will write E

1

(X) if

one of the spa
es E(X), l

1

(Z

N

; X) or l

1

(Z

N

; X) is taken into 
onsideration.

For n 2 N , we denote the operator of multipli
ation by the 
hara
teristi


fun
tion of the dis
rete 
ube I

n

:= fx 2 Z

N

: jxj

1

:= max

1�j�N

jx

j

j � ng by

P

n

. This operator a
ts boundedly on ea
h of the spa
es E

1

(X). We let P refer

to the set of all operators P

n

with n 2 N and set Q

n

:= I � P

n

. Following the

terminology introdu
ed in [6℄, an operator K 2 L(E

1

(X)) is 
alled P-
ompa
t if

lim

n!1

kKQ

n

k

E

1

(X)

= lim

n!1

kQ

n

Kk

E

1

(X)

= 0:

We denote the set of all P-
ompa
t operators by K(E

1

(X)); P) and write

L(E

1

(X)); P) for the set of all operators A 2 L(E

1

(X)) for whi
h both AK

and KA are P-
ompa
t whenever K is P-
ompa
t. Then L(E

1

(X)); P) is a


losed subalgebra of L(E

1

(X)) whi
h 
ontains K(E

1

(X)); P) as a 
losed ideal.

De�nition 2.1 An operator A 2 L(E

1

(X); P) is 
alled a P-Fredholm operator

if the 
oset A+K(E

1

(X); P) is invertible in the quotient algebra

L(E

1

(X); P)=K(E

1

(X); P);

i.e., if there exist operators B; C 2 L(E

1

(X); P) and K; L 2 K(E

1

(X); P)

su
h that BA = I +K and AC = I + L.

This de�nition is equivalent to the following one.

De�nition 2.2 An operator A 2 L(E

1

(X); P) is P-Fredholm if and only if

there exist an m 2 N and operators L

m

; R

m

2 L(E

1

(X); P) su
h that

L

m

AQ

m

= Q

m

AR

m

= Q

m

:

P-Fredholmness is often referred to as lo
al invertibility at in�nity. If X has

�nite dimension, then these de�nitions be
ome equivalent to the usual de�nition

of Fredholmness, whi
h says that an operator is Fredholm if both its kernel and

its 
okernel have �nite dimension.

For k 2 Z

N

, let

^

V

k

stand for the operator of shift by k,

(

^

V

k

u)(x) = f(x� k); x 2 Z

N

:

Clearly,

^

V

k

2 L(E

1

(X)) and k

^

V

k

k

L(E

1

(X))

= 1.

De�nition 2.3 A band operator on E

1

(X) is a �nite sum of the form

P

�

a

�

^

V

�

where � 2 Z

N

and a

�

2 l

1

(Z

N

; L(X)). An operator is band-dominated if it is

the uniform limit in L(E

1

(X)) of a sequen
e of band operators.
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In 
ase X = C and N = 1, and with respe
t to the standard basis of E

1

(X),

band operators are given by matri
es with �nite band width, whi
h justi�es this

notion. Observe also that the 
lass of band operators is independent of the


on
rete spa
e E

1

(X) whereas the 
lass of band-dominated operators depends

on E

1

(X) heavily. We denote this 
lass by A(E

1

(X)). It is easy to see that

A(E

1

(X)) is a 
losed subalgebra both of L(E

1

(X)) and of L(E

1

(X); P).

De�nition 2.4 Let A 2 L(E

1

(X)), and let h : N ! Z

N

be a sequen
e whi
h

tends to in�nity. An operator A

h

2 L(E

1

(X)) is 
alled a limit operator of A

with respe
t to the sequen
e h if

lim

n!1

kP

k

(

^

V

�h(n)

A

^

V

h(n)

� A

h

)k

L(E

1

(X))

= lim

n!1

k(

^

V

�h(n)

A

^

V

h(n)

� A

h

)P

k

k

L(E

1

(X))

= 0 (1)

for every k 2 N. The set of all limit operators of A will be denoted by �

op

(A)

and is 
alled the operator spe
trum of A. Let further H stand for the set of all

sequen
es h : N ! Z

N

whi
h tend to in�nity, and let A

$

(E

1

(X)) refer to the set

of all operators A 2 A(E

1

(X)) enjoying the following property: Every sequen
e

h 2 H possesses a subsequen
e g for whi
h the limit operator A

g

exists. We refer

to the operators in A

$

(E

1

(X)) as ri
h band-dominated operators.

Obviously, ri
hness is a 
ompa
tness 
ondition with respe
t to the 
onvergen
e

de�ned by (1).

The following is our main result on P-Fredholmness of ri
h band-dominated

operators. For its proof see [6℄, Theorem 2.2.1.

Theorem 2.5 An operator A 2 A

$

(E

1

(X)) is P-Fredholm if and only if ea
h

of its limit operators is invertible and if the norms of their inverses are uniformly

bounded, i.e.,

sup

�

k(A

h

)

�1

k

L(E

1

(X))

: A

h

2 �

op

(A)

	

<1:

2.2 The dis
rete Wiener algebra

The statement of Theorem 2.5 gets a more satisfa
tory form for band-dominated

operators whi
h belongs to the dis
rete Wiener algebra, in whi
h 
ase the uniform

boundedness of the inverses of the limit operators follows from their invertibility.

Let W(Z

N

; X) denote the set of all band-dominated operators of the form

A =

X

�2Z

N

a

�

^

V

�

where the 
oeÆ
ients a

�

2 l

1

(Z

N

; L(X)) are subje
t to the 
ondition

kAk

W(Z

N

; X)

:=

X

�2Z

N

ka

�

k

l

1

(Z

N

; L(X))

<1: (2)
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Provided with usual operations and with the norm (2), the set W(Z

N

; X) be-


omes a Bana
h algebra, the so-
alled dis
rete Wiener algebra. The estimate

kAk

L(E

1

(X))

� kAk

W(Z

N

; X)

shows that W(Z

N

; X) is a non-
losed subalgebra of A(E

1

(X)).

One of the remarkable properties of the dis
rete Wiener algebra is its inverse


losedness.

Proposition 2.6 The Wiener algebra W(Z

N

; X) is inverse 
losed in every al-

gebra L(E

1

(X)).

Otherwise stated: If an operator A 2 W(Z

N

; X) a
ts on E

1

(X) and is invertible

there, then A

�1

2 W(Z

N

; X) again. A proof is in [6℄, Theorem 2.5.2. An imme-

diate 
onsequen
e of the inverse 
losedness is the independen
e of the spe
trum

of an operator A 2 W(Z

N

; X), thought of as a
ting on one of the spa
es E

1

(X),

of the 
on
rete 
hoi
e of that spa
e.

Set W

$

(Z

N

; X) := W(Z

N

; X) \ A

$

(E

1

(X)), and let A 2 W

$

(Z

N

; X). We


onsider this operator on one of the spa
es E

1

(X) and determine its limit op-

erators with respe
t to this spa
e. It turns out that the operator spe
trum of

A does not depend on the 
hoi
e of that spa
e and that all limit operators of A

belong to the Wiener algebra W(Z

N

; X) again. The following is Theorem 2.5.7

in [6℄.

Theorem 2.7 Let X be a re
exive Bana
h spa
e. The following assertions are

equivalent for an operator A 2 W

$

(Z

N

; X):

(a) there is a spa
e E(X) on whi
h A is P-Fredholm;

(b) there is a spa
e E(X) su
h that all limit operators of A are invertible on that

spa
e;

(
) all limit operators of A are invertible on l

1

(Z

N

; X);

(d) all limit operators of A are invertible on l

1

(Z

N

; X) and the norms of their

inverses are uniformly bounded;

(e) all limit operators of A are invertible on all spa
es E

1

(X) and the L(E

1

(X))-

norms of their inverses are uniformly bounded;

(f) A is P-Fredholm operator on ea
h of the spa
es E(X).

Let A 2 L(E

1

(X); P)). We say that the 
omplex number � belongs to the P-

spe
trum of A if the operator A��I is not P-Fredholm on E

1

(X). We denote the

P-spe
trum of A by �

P

(AjE

1

(X)) or shortly by �

P

(A). The 
ommon spe
trum

of A will be denoted by �(AjE

1

(X)) or simply by �(A).

Theorem 2.8 Let X be a re
exive Bana
h spa
e and A 2 W

$

(Z

N

; X). Then

the P-spe
trum of A, 
onsidered as an operator on E(X), is equal to

�

P

(AjE(X)) =

[

A

h

2�

op

(A)

�(A

h

jE(X)): (3)
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Moreover, neither the operator spe
trum of A, nor the P-spe
trum of A, nor the

spe
tra of the limit operators of A on the right-hand side of (3) depend on the


hoi
e of E(X).

If the spa
e X has a �nite dimension, then the P-spe
trum of A is the 
om-

mon essential spe
trum of that operator, that is, the spe
trum of the 
oset

A + K(E

1

(X)) in the Calkin algebra L(E

1

(X))=K(E

1

(X)). In this setting,

the ri
h Wiener algebra 
oin
ides with the full Wiener algebra. Hen
e, Theorem

2.8 has the following 
orollary.

Theorem 2.9 Let X be a �nite dimensional spa
e. Then the essential spe
trum

of A 2 W(Z

N

; X) does not depend on the 
hoi
e of E(X), and it is given by (3).

3 Operators on modulation spa
es

In the following two se
tions we de�ne the modulation spa
es and 
onsider the


ontinuous 
ounterparts of the band-dominated operators and the Wiener alge-

bra. The dis
rete and the 
ontinuous world are linked by a 
ertain dis
retization

operation whi
h we are going to introdu
e �rst.

3.1 Time-frequen
y dis
retization

Re
all that a fun
tion a 2 C

1

(R

N

�R

N

) belongs to the H�ormander 
lass S

0

0; 0

if,

for all r; t 2 N ,

jaj

r; t

:=

X

j�j�r; j�j�t

sup

(x; �)2R

N

�R

N

j�

�

x

�

�

�

a(x; �)j <1: (4)

Let a 2 S

0

0; 0

. The asso
iated pseudodi�erential operator Op(a) (also written as

a(x; D)) is de�ned at u 2 S(R

N

) by

(Op(a)u)(x) := (2�)

�N

Z

R

N

Z

R

N

a(x; �)e

ihx�y; �i

u(y) dy d�: (5)

The fun
tion a is 
alled the symbol of Op(a), and the 
lass of all pseudodi�erential

operators with symbols in S

0

0; 0

is denoted by OPS

0

0;0

. Standard referen
es on

pseudodi�erential operators are [12, 7, 10℄, to mention only a few.

It is well-known that OPS

0

0;0

forms an algebra with respe
t to the usual

sum and 
omposition of operators. Further, the operators Op(a) 2 OPS

0

0;0

are

bounded both on the S
hwartz spa
e S(R

N

) and on the Lebesgue spa
e L

2

(R

N

),

and

kOp(a)k

L(L

2

(R

N

))

� Cjaj

2k; 2l

if 2k > N; 2l > N: (6)

The latter fa
t is known as the Calderon-Vaillan
ourt theorem.
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Let A : S(R

N

) ! S(R

N

) be a bounded linear operator. An operator A

t

is


alled the formal adjoint of A if

hAu; vi = hu; A

t

vi for all u; v 2 S(R

N

): (7)

If A 2 OPS

0

0;0

, then its formal adjoint A

t

is a pseudodi�erential operator in

OPS

0

0;0

again. Furthermore, if A 2 OPS

0

0; 0

a
ts on L

2

(R

N

), then its Hilbert

spa
e adjoint A

�

also belongs to OPS

0

0;0

. Hen
e, (7) 
an be used to de�ne the

a
tion of A 2 OPS

0

0;0

on the spa
e of tempered distributions S

0

(R

N

).

Our next goal is to introdu
e the time-frequen
y dis
retization (whi
h is 
alled

bi-dis
retization in [6℄). For 
 = (�; �) 2 Z

N

� Z

N

, set U




:= V

�

E

�

, where

(V

�

u)(x) := u(x� �) and (E

�

u)(x) := e

ih�; xi

u(x):

The operators U




are unitary on L

2

(R

N

), and U

�




= E

��

V

��

= U

�1




. Note that

these operators, together with the s
alar unitary operator e

ir

I with r 2 Z form

a non
ommutative group, the so-
alled dis
rete Heisenberg group. In parti
ular,

one has

U

�

�

= e

ih�

1

; �

2

i

U

��

; U

�

U

�

= e

ih�

2

; �

1

i

U

�+�

(8)

and

U

�

�

U

�

= e

ih�

2

; �

1

��

1

i

U

���

= e

ih�

2

; �

1

��

1

i

U

�

���

where � = (�

1

; �

2

); � = (�

1

; �

2

) 2 Z

N

� Z

N

.

Let f 2 C

1

0

(R

N

) be a non-negative fun
tion su
h that f(x) = f(�x) for all

x and su
h that f(x) = 1 if jx

i

j � 2=3 for all i = 1; : : : ; N and f(x) = 0 if

jx

i

j � 3=4 for at least one i. De�ne a nonnegative fun
tion ' on R

N

by

'

2

(x) :=

f(x)

P

�2Z

N

f(x� �)

and set '

�

(x) := '(x� �) for � 2 Z

N

. The family ('

�

)

�2Z

N forms a partition of

unit on R

N

in sense that

X

�2Z

N

'

2

�

(x) = 1 for ea
h x 2 R

N

:

For 
 = (�; �) 2 Z

N

� Z

N

, de�ne �




on R

N

� R

N

by

�




(x; �) := '

�

(x)'

�

(�);

and write �




for the pseudodi�erential operator Op(�




). It is evident that

�




u = '

�

'

�

(D)u = '

�

Op('

�

)u

at u 2 S

0

(R

N

), and the formal adjoint of the operator �




a
ts as

�

�




u = '

�

(D)'

�

u = Op('

�

)'

�

u

8



at u 2 S

0

(R

N

).

The operators �




indu
e a partition of unity on the phase spa
e R

N

� R

N

in

the sense that

X


2Z

2N

�

�




�




u =

X


2Z

2N

�




�

�




u = u for ea
h u 2 S

0

(R

N

) (9)

where the series 
onverge in S

0

(R

N

). With these notations, we de�ne the operator

G of time-frequen
y dis
retization by

(Gu)




:= �

0

U

�




u where 
 2 Z

2N

and u 2 S

0

(R

N

);

that is, we 
onsider Gu as a ve
tor-valued fun
tion on Z

2N

with values in S

0

(R

N

).

Now we are in a position to de�ne the announ
ed modulation spa
esM

2; p

(R

N

)

whi
h will provide the frame for a lo
alization of fun
tions in the time-frequen
y

domain. The modulation spa
es under 
onsideration were introdu
ed in [4℄ where

they are used to study the Fredholm property of pseudodi�erential operators in

OPS

0

0;0

. Similar (but di�erent) modulation spa
es are 
onsidered in [3℄ (see also

Chapter 11 of [2℄).

De�nition 3.1 For p 2 [1; 1), let M

2; p

(R

N

) denote the spa
e of all distribu-

tions u 2 S

0

(R

N

) su
h that (Gu)




2 L

2

(R

N

) for every 
 2 Z

2N

and

kuk

M

2; p

(R

N

)

:=

0

�

X


2Z

2N

k(Gu)




k

p

L

2

(R

N

)

1

A

1=p

<1; (10)

and let L

2;1

(R

N

) stand for the spa
e of all distributions u 2 S

0

(R

N

) with (Gu)




2

L

2

(R

N

) for every 
 2 Z

2N

and

kuk

M

2;1

(R

N

)

:= sup


2Z

2N

k(Gu)




k

p

L

2

(R

N

)

<1: (11)

Sin
e U




is a unitary operator on L

2

(R

N

), one 
an repla
e (Gu)




= �

0

U

�




u by

�




u = U




�

0

U

�




u in the de�nitions (10) and (11) of the norms.

The following proposition is taken from [4℄. It summarizes basi
 properties of

modulation spa
es.

Proposition 3.2 (a) M

2; p

(R

N

) is a Bana
h spa
e for ea
h p 2 [1;1℄, and

M

2; 2

(R

N

) = L

2

(R

N

).

(b) For p 2 [1;1), every linear 
ontinuous fun
tional onM

2; p

(R

N

) is of the form

v 7!

Z

R

N

u(x)v(x) dx; (12)

with some distribution u 2 M

2; q

(R

N

) where 1=p + 1=q = 1. Hen
e, the Bana
h

dual M

2; p

(R

N

)

�


an be identi�ed with M

2; q

(R

N

), and M

2; p

(R

N

) is re
exive for

9



p 2 (1; 1).

(
) The S
hwartz spa
e S(R

N

) is 
ontained in M

2; p

(R

N

) for ea
h p 2 [1;1℄, and

it lies dense in M

2; p

(R

N

) for ea
h p 2 [1;1).

(d) M

2; p

(R

N

) is 
ontained in S

0

(R

N

) in the sense that u 2 M

2; p

(R

N

) de�nes a

linear fun
tional on S(R

N

) a
ting at ' via

u(') :=

Z

R

N

u(x)'(x) dx:

Moreover, if u

n

! 0 in M

2; q

(R

N

), then u

n

(')! 0 for ea
h fun
tion ' 2 S(R

N

).

Noti
e that the operators U




= V

�

E

�

are bije
tive isometries on ea
h of the spa
es

M

2; p

(R

N

) with p 2 [1; 1℄ and that U

�1




= E

��

V

��

.

Proposition 3.3 The operator G : M

2; p

(R

N

) ! l

p

(Z

2N

; L

2

(R

N

)) is an isome-

try, and the operator G

�1

l

de�ned at f 2 l

p

(Z

2N

; L

2

(R

N

)) by

G

�1

l

f :=

X


2Z

2N

U




�

�

0

f(
) (13)

is a left inverse for G.

Proof. The isometry of G is evident, and the equality G

�1

l

G = I follows from

G

�1

l

Gu =

X


2Z

2N

U




�

�

0

�

0

U

�




u =

X


2Z

2N

�

�




�




u = u;

whi
h holds for every u 2M

2; p

(R

N

) due to (9) and Proposition 3.2 (d).

Thus, the operator Q := GG

�1

l

: l

p

(Z

2N

; L

2

(R

N

)) ! l

p

(Z

2N

; L

2

(R

N

)) is a pro-

je
tion for all p 2 [1; 1℄. We denote its range by R

p

(Q). Then

G :M

2; p

(R

N

)! R

p

(Q)

be
omes an isometri
 bije
tion, and ea
h operator A 2 L(M

2; p

(R

N

)) be
omes

similar to the operator

A

G

:= GAG

�1

l

j

R

p

(Q)

: R

p

(Q)!R

p

(Q):

We extend A

G

to an operator �(A) a
ting on all of l

p

(Z

2N

; L

2

(R

N

)) by setting

�(A) := A

G

Q + I �Q = GAG

�1

l

+ I �Q

and 
all �(A) the time-frequen
y dis
retization of A. Clearly,

G

�1

l

�(A)G = G

�1

l

(GAG

�1

l

+ I �GG

�1

l

)G = A:

10



Proposition 3.4 Q 2 W(Z

2N

; L

2

(R

N

)).

Proof. The de�nitions of G and G

�1

l

imply that Q a
ts at f 2 l

p

(Z

2N

; L

2

(R

N

))

by

(Qf)(Æ) =

X


2Z

2N

�

0

U

�

Æ

U

Æ�


�

�

0

f(Æ � 
) =

X


2Z

2N

R




(Æ)(

^

V




f)(Æ)

where R




(Æ) := �

0

U

�

Æ

U

Æ�


�

�

0

and where

^

V




denotes again the dis
rete shift opera-

tor (

^

V




f)(Æ) := f(Æ�
) on l

p

(Z

2N

; L

2

(R

N

)). Choose 2k > N . In [6℄, Proposition

4.3.2, it is shown that then

kR




(Æ)k

L(L

2

(R

N

))

= k�

0

U

�

Æ

U

Æ�


�

�

0

k

L(L

2

(R

N

))

= kU

Æ

�

0

U

�

Æ

U

Æ�


�

�

0

U

�

Æ�


k

L(L

2

(R

N

))

= k�

Æ

�

�

Æ�


k

L(L

2

(R

N

))

� C(1 + j�j)

�2k

(1 + j�j)

�2k

(14)

with a 
onstant C independent of 
 = (�; �). Consequently,

X


2Z

2N

kR




(Æ)k

L(L

2

(R

N

))

� C

X

(�; �)2Z

N

�Z

N

(1 + j�j)

�2k

(1 + j�j)

�2k

<1

showing that kQk

W(Z

2N

; L

2

(R

N

))

<1.

3.2 Fredholmness and time-frequen
y dis
retization

Our next goal is to point out the relation between the Fredholmness of an opera-

tors a
ting on a modulation spa
eM

2; p

(R

N

) and the P-Fredholmness of its time-

frequen
y dis
retization. Beginning with this subse
tion, we assume p 2 (1; 1)

unless otherwise stated.

Proposition 3.5 (a) For every n 2 N, the operators P

n

Q and QP

n

are 
ompa
t

on l

p

(Z

2N

; L

2

(R

N

)).

(b) The proje
tion Q belongs to L(l

p

(Z

2N

; L

2

(R

N

)); P).

(
) For every operator A 2 L(M

2; p

(R

N

)), its dis
retization �(A) belongs to

L(l

p

(Z

2N

; L

2

(R

N

));P).

(d) If K 2 L(l

p

(Z

2N

; L

2

(R

N

))) is a P-
ompa
t operator of the form K = QKQ,

then G

�1

l

KG is 
ompa
t on M

2; p

(R

N

).

(e) The operator A 2 L(M

2; p

(R

N

)) is invertible if and only if the operator

�(A) 2 L(l

p

(Z

2N

; L

2

(R

N

))) is invertible.

(f) The operator A 2 L(M

2; p

(R

N

)) is Fredholm if and only if the operator

�(A) 2 L(l

p

(Z

2N

; L

2

(R

N

))) is P-Fredholm.

This proposition is proved in [5℄ for p = 2, see also Proposition 4.2.2 in [6℄. The

proof for general p 2 (1; 1) runs similarly.
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De�nition 3.6 Let A 2 L(M

2; p

(R

N

)), and let h : N ! Z

2N

be a sequen
e tend-

ing to in�nity. We say that the operator A

h

2 L(M

2; p

(R

N

)) is a limit operator

of A with respe
t to the sequen
e h if

U

�1

h(m)

AU

h(m)

! A

h

and U

�1

h(m)

A

�

U

h(m)

! A

�

h

strongly as m ! 1. The set �

op

(A) of all limit operators of A is 
alled the

operator spe
trum of A.

The following proposition des
ribes the relation between the time-frequen
y dis-


retization of the limit operators of A and the limit operators of the time-

frequen
y dis
retization of A. Its proof for p = 2 is in [5℄ and Proposition 4.2.5

in [6℄. The 
ase of general p 2 (1; 1) 
an be treated analogously.

Proposition 3.7 Let A 2 L(M

2; p

(R

N

)), and let h : N ! Z

2N

be a sequen
e

tending to in�nity su
h that the limit operator A

h

of A with respe
t to h ex-

ists. Then there is a subsequen
e g of h su
h that the limit operator �(A)

g

of

�(A) with respe
t to g exists, and there is an isometri
 isomorphism T

g

mapping

l

p

(Z

2N

; L

2

(R

N

)) onto itself su
h that

�(A)

g

= T

�1

g

�(A

h

)T

g

:

We still need the 
ounterparts of the notions of band and band-dominated oper-

ators for operators on modulation spa
es.

De�nition 3.8 An operator A 2 L(S

0

(R

N

)) is 
alled a band operator if there

exists an R > 0 su
h that �

�

A�

�

�

= 0 for all subs
ripts �; � 2 Z

2N

with

j�� �j := max

1�i�2N

j�

i

� �

i

j > R:

An operator A 2 L(M

2; p

(R

N

)) is 
alled band-dominated if it is the limit of a

sequen
e of band operators 
onverging to A in the norm of L(M

2; p

(R

N

)).

It is easy to 
he
k that the 
lass of all band-dominated operators onM

2; p

(R

N

) is

a 
losed subalgebra of L(M

2; p

(R

N

)). We denote this algebra by A(M

2; p

(R

N

)).

Further we 
all A 2 A(M

2; p

(R

N

)) a ri
h operator if every sequen
e h : N ! Z

2N

whi
h tends to in�nity possesses a subsequen
e g for whi
h the limit operator A

g

exists. The set of all ri
h operators forms a 
losed subalgebra of A(M

2; p

(R

N

))

whi
h we denote by A

$

(M

2; p

(R

N

)).

Proposition 3.9 (a) If A 2 A(M

2; p

(R

N

)), then �(A) 2 A(l

p

(Z

2N

; L

2

(R

N

)).

(b) If A 2 A

$

(M

2; p

(R

N

)), then �(A) 2 A

$

(l

p

(Z

2N

; L

2

(R

N

)).
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Proof. We prove assertion (a) only. The se
ond statement follows from (a)

and Proposition 3.7. First let A be a band operator on M

2; p

(R

N

). Then, for

u 2 l

p

(Z

2N

; L

2

(R

N

)),

(A

G

u)(Æ) =

X

�2Z

2N

�

0

U

�

Æ

AU

�

�

�

0

u(�) =

X


2Z

2N

�

0

U

�

Æ

AU

Æ�


�

�

0

u(Æ � 
)

=

X


2Z

2N

A




(Æ)(

^

V




u)(Æ) (15)

where A




(Æ) := �

0

U

�

Æ

AU

Æ�


�

�

0

. Sin
e A is a band operator, all series in (15) have

a �nite number of non-vanishing items only. Indeed,

kA




(Æ)k

L(L

2

(R

N

))

= k�

Æ

A�

�

Æ�


k

L(L

2

(R

N

))

= 0

if j
j > R with R > 0 being large enough. Hen
e, A

G

is a band operator.

That the operator A

G

is band-dominated whenever A is so follows by an evi-

dent approximation argument (take into a

ount that G : M

2; p

(R

N

) ! R

p

(Q)

and G

�1

l

: R

p

(Q) ! M

2; p

(R

N

) are isometries). Finally, sin
e the proje
tion

Q belongs to the dis
rete Wiener algebra due to Proposition 3.4 (and is, thus,

band-dominated), the operator �(A) = A

G

Q + (I � Q) is band-dominated for

ea
h band-dominated operator A.

Combining Propositions 3.5, 3.7 and Theorem 2.5 we arrive at the following Fred-

holm 
riterion for ri
h band-dominated operators on modulation spa
es.

Theorem 3.10 An operator A 2 A

$

(M

2; p

(R

N

)) is Fredholm if and only if all

limit operators A

h

of A are invertible and if the norms of their inverses are

uniformly bounded, i.e.,

sup

A

h

2�

op

(A)

kA

�1

h

k

L(M

2; p

(R

N

))

<1:

4 The Wiener algebra on R

N

We de�ne the 
ontinuous analogue of the dis
rete Wiener algebra by imposing


onditions on the de
ay of the norms k�

�

A�

�

��


k

L(L

2

(R

N

))

as 
 tends to in�nity.

De�nition 4.1 A linear operator A : S

0

(R

N

) ! S

0

(R

N

) belongs to the Wiener

algebra W(R

N

) if

kAk

W(R

N

)

:=

X


2Z

2N

sup

�2Z

2N

k�

�

A�

�

��


k

L(L

2

(R

N

))

<1: (16)

The Wiener algebra W(R

N

) 
ontains suÆ
iently many interesting operators. So

we will see in the next se
tion that W(R

N

) 
ontains the pseudodi�erential oper-

ators with non-smooth symbols in the Sj�ostrand 
lass OPS

w

and, thus, also the

H�ormander 
lass OPS

0

0;0

. Here are some basi
 properties of W(R

N

).
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Proposition 4.2 (a) W(R

N

) � L(M

2; p

(R

N

)), and

kAk

L(M

2; p

(R

N

))

� kAk

W(R

N

)

for ea
h p 2 [1; 1℄ and A 2 W(R

N

).

(b) Provided with the norm (16), the setW(R

N

) be
omes a unital Bana
h algebra.

(
) The Bana
h dual operator A

�

of an operator A 2 W(R

N

) 
onsidered as a
ting

on M

2; p

(R

N

) belongs W(R

N

), too.

Proof. (a) First let p 2 [1; 1). Then

kAuk

p

M

2; p

(R

N

)

=

X


2Z

2N

k�




Auk

p

L

2

(R

N

)

=

X


2Z

2N
















�




A

X

Æ2Z

2N

�

�

Æ

�

Æ

u
















p

L

2

(R

N

)

�

0

�

X


2Z

2N

k�




A�

�


��

k

L(L

2

(R

N

))
















X

Æ2Z

2N

�


��

u
















L

2

(R

N

)

1

A

p

�

X


2Z

2N

 

X

�2Z

2N

k

A

(
 � �)k�

�

uk

L

2

(R

N

)

!

p

where k

A

(�) := sup


2Z

N

k�




A�

�


��

k

L(L

2

(R

N

))

. Sin
e k

A

is a sequen
e in l

1

(Z

2N

),

kAuk

M

2; p

(R

N

)

�

X


2Z

2N

k

A

(
)

 

X

�2Z

2N

k�

�

uk

p

L

2

(R

N

)

!

1=p

= kAk

W(R

N

)

kuk

M

2; p

(R

N

)

:

In the same way, one gets the estimate

kAuk

M

2;1

(R

N

)

�

X


2Z

2N

k

A

(
) sup

�2Z

2N

k�

�

uk

L

2

(R

N

)

= kAk

W(R

N

)

kuk

M

2;1

(R

N

)

:

(b) It is easy to verify that

kABk

W(R

N

)

� kAk

W(R

N

)

kBk

W(R

N

)

;

and estimate (14) shows that the identity operator I belongs to W(R

N

). Hen
e,

W(R

N

) is a unital algebra, and its 
ompleteness with respe
t to the norm (16)

follows straightforwardly.

(
) Let A

�

be the Bana
h adjoint operator of A a
ting on M

2; p

(R

N

), that is

Z

R

N

Auv dx =

Z

R

N

uA

�

v dx; (17)
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where u 2 M

2; p

(R

N

) and v 2 M

2; q

(R

N

) with 1=p + 1=q = 1. The operator A is

bounded on L

2

(R

N

) sin
e A 2 W(R

N

) (Proposition 4.3.4 in [6℄). Sin
e (17) holds

for arbitrary u; v 2 S(R

N

), this identity states that A

�

is the adjoint operator to

A 
onsidered as a
ting on L

2

(R

N

). Hen
e,

k�

�

A

�

�

�

��


k

L(L

2

(R

N

))

= k�

��


A

�

�

�

�

k

L(L

2

(R

N

))

;

whi
h implies that

X


2Z

2N

sup

�2Z

2N

k�

�

A

�

�

�

��


k

L(L

2

(R

N

))

=

X


2Z

2N

sup

�2Z

2N

k�

��


A

�

�

�

�

k

L(L

2

(R

N

))

= k�

�

A

�

�

�

��


k

L(L

2

(R

N

))

<1;

when
e �nally A

�

2 W(R

N

).

Proposition 4.3 (a) If A 2 W(R

N

), then the operators GAG

�1

l

and �(A) belong

to the dis
rete Wiener algebra W(Z

2N

; L

2

(R

N

)).

(b) Conversely, if B 2 W(Z

2N

; L

2

(R

N

)), then G

�1

l

AG lies in W(R

N

).

The proof runs as that of Proposition 3.9; 
ompare also [5℄ and Proposition 4.3.5

in [6℄.

Proposition 4.4 The algebra W(R

N

) is inverse 
losed on ea
h of the spa
es

M

2; p

(R

N

) with p 2 [1; 1℄, i.e., if A 2 W(R

N

) is invertible in L(M

2; p

(R

N

)),

then A

�1

2 W(R

N

).

Proof. Let A 2 W(R

N

) be invertible on M

2; p

(R

N

). Then �(A) belongs to

W(Z

2N

; L

2

(R

N

)) by Proposition 4.3, and �(A) is invertible on l

p

(Z

2N

; L

2

(R

N

))

by Proposition 3.5 (e). From Proposition 2.6 we infer that �(A)

�1

lies in the

dis
rete Wiener algebra W(Z

2N

; L

2

(R

N

)), and sin
e

G

�1

l

�(A)

�1

GA = G

�1

l

�(A)

�1

GAG

�1

l

G = G

�1

l

�(A)

�1

�(A)QG = I;

one has G

�1

l

�(A)

�1

G = A

�1

2 W(R

N

) due to Proposition 4.3 (b).

We �x a p 2 [1; 1℄ and de�ne the ri
h Wiener algebra by

W

$

(R

N

) :=W(R

N

) \ A

$

(M

2; p

(R

N

)):

Thus, an operator A belongs toW

$

(R

N

) if every sequen
e h : N ! Z

2N

possesses

a subsequen
e g for whi
h the limit operator A

g

of A with respe
t to strong


onvergen
e on M

2; p

(R

N

) exists. It is easy to see that the limit operators A

g

belong toW(R

N

) again. Thus, the de�nition ofW

$

(R

N

) does not depend on the


on
rete 
hoi
e of the parameter p 2 [1; 1℄.
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Theorem 4.5 The following 
onditions are equivalent for A 2 W

$

(R

N

):

(a) A is a Fredholm operator on M

2; p

(R

N

) for a 
ertain p 2 (1; 1);

(b) A is a Fredholm operator on M

2; p

(R

N

) for ea
h p 2 (1; 1);

(
) there is a p 2 [1; 1℄ su
h that all limit operators of A are invertible on

M

2; p

(R

N

);

(d) all limit operators of A are invertible on every spa
e M

2; p

(R

N

) with p 2

[1; 1℄;

(e) all limit operators of A are uniformly invertible on ea
h of the spa
esM

2; p

(R

N

)

with p 2 [1; 1℄.

This is an immediate 
onsequen
e of Theorem 2.7 and Proposition 3.5 (e) and

(f). The pre
eding theorem has the following 
orollary for the essential spe
trum

of an operator A in the ri
h Wiener algebra when 
onsidered on M

2; p

(R

N

), i.e.,

for the spe
trum of the 
oset A + K(M

2; p

(R

N

)) in the 
orresponding Calkin

algebra.

Theorem 4.6 Let A 2 W

$

(R

N

). Then the essential spe
trum �

ess

A of A 
on-

sidered on M

2; p

(R

N

) is equal to

�

ess

(AjM

2; p

(R

N

)) =

[

A

h

2�

op

(A)

�(A

h

jM

2; p

(R

N

)):

Both the operator spe
trum of A, the essential spe
trum of A, and the 
ommon

spe
tra of the limit operators of A are independent of p 2 (1; 1).

5 Fredholm properties of pseudodi�erential op-

erators in the Sj�ostrand 
lass

We start with re
alling the de�nition of the 
lass of symbols of pseudodi�erential

operators introdu
ed by Sj�ostrand [8℄ in 1994; see also [9℄. We introdu
e this


lass for R

n

with arbitrary n 2 N . Later, we let n = 2N .

Let � 2 S(R

n

) be a fun
tion with

R

R

n

�(x) dx = 1. A fun
tion a : R

n

! C

belongs to the Sj�ostrand 
lass S

w

(R

n

) if

kak

S

w

(R

n

)

:=

Z

R

n

sup

k2Z

n

�

�

�

�

Z

R

n

e

ihx; �i

a(x)�(x� k) dx

�

�

�

�

d� <1: (18)

Provided with the norm (18), S

w

(R

n

) be
omes a Bana
h spa
e. Noti
e that a


hange of the fun
tion � gives rise to an equivalent norm on S

w

(R

n

) and leads,

thus, to the same 
lass of symbols.

We have to mention another des
riptions of the Sj�ostrand 
lass S

w

(R

n

). In

1997, Boulkhemair [1℄ introdu
ed the 
lass B(R

n

) of all fun
tions a : R

n

! C

16



whi
h own the property

kak

B(R

n

)

:=

Z

R

n

sup

x2Z

n

�

�

�

�

Z

R

n

e

�ihx; �i

â(�)�(� � �)d�

�

�

�

�

d� <1 (19)

where â refers to the Fourier transform of a in the sense of distributions. The

norm (19) 
an be also written as

kak

B(R

n

)

=

Z

R

n

k�(D � �)uk

L

1

(R

n

)

d�

and is further equivalent to the norm

kak

B(R

n

)

:=

X

l2Z

n

k�(D � l)uk

L

1

(R

n

)

: (20)

Moreover, Boulkhemair proved that the Sj�ostrand 
lass S

w

(R

n

) and his 
lass

B(R

n

) 
oin
ide. As a 
onsequen
e of this fa
t, he derived the following very


onvenient 
onstru
tive 
hara
terization of S

w

(R

n

).

Proposition 5.1 ([1℄) A distribution a 2 S

0

(R

n

) belongs to S

w

(R

n

) if and only

if there exist a 
ompa
t subset Q of R

n

and a sequen
e of fun
tions (a

k

)

k2Z

n

in

L

1

(R

n

) with supp (â

k

) � Q and

X

k2Z

n

ka

k

k

L

1

(R

n

)

<1;

su
h that

a(x) =

X

k2Z

n

e

ihx; ki

a

k

(x)

almost everywhere.

Let now n = 2N and a 2 S

w

(R

2N

). As usual, we write the independent variable

in R

2N

as (x; �) 2 R

N

� R

N

. Then the pseudodi�erential operator with symbol

a is de�ned by

(Op(a)u)(x) := (2�)

�N

Z

R

N

Z

R

N

e

ihx�y; �i

a(x; �)u(y) dy d�

where u 2 S(R

N

). Let OPS

w

= OPS

w

(R

2N

) stand for the 
lass of all pseu-

dodi�erential operators with symbols in S

w

(R

2N

). It has been shown in [8℄ that

the operators in OPS

w

are bounded on L

2

(R

N

) and that OPS

w

is an inverse


losed subalgebra of L(L

2

(R

N

)), i.e., if A 2 OPS

w

is invertible on L

2

(R

N

), then

A

�1

2 OPS

w

again.

17



The Sj�ostrand 
lass OPS

w


ontains several interesting 
lasses of pseudodif-

ferential operators. For instan
e, the H�ormander 
lass OPS

0

0; 0

is 
ontained in

OPS

w

(R

n

) whi
h 
an be 
he
ked as follows. Let a be in C

1

b

(R

n

), i.e., let

jaj

m

:=

X

j�j�m

sup

r2R

n

j�

�

a(x)j <1

for all m 2 N (note that S

0

0; 0

= C

1

b

(R

N

� R

N

)). Then �(D)a = k

0

� a where

k

0

2 S(R

n

) is given by

k

0

(x) = (2�)

�n

Z

R

n

e

�ihx; �i

�(�) d�:

Consequently, for m 2 N and all multi-indi
es l,

(�(D � l)a)(x) =

Z

R

n

e

�ihl; x�yi

k

0

(x� y)a(y) dy

= hli

�2m

Z

R

n

e

�ihl; x�yi

hD

y

i

2m

(k

0

(x� y)a(y)) dy

with the standard notations

hli := (1 + jlj

2

2

)

1=2

and hD

y

i

2

:= I ��

y

:

The latter estimate implies

k�(D � l)ak

L

1

(R

n

)

� C

m

hli

�2m

jaj

2m

sin
e �

�

x

k

0

2 S(R

n

) for all multi-indi
es �.

Similar 
lasses of pseudodi�erential operators have been 
onsidered in [2℄, see

also [6℄.

To prove the in
lusion of OPS

w

into the Wiener algebra in Proposition 5.3

below we need the following estimates.

Proposition 5.2 Let Q be a 
ompa
t subset of R

n

, and let f 2 S

0

(R

n

) be a

distribution with supp

^

f � Q. Then f 2 C

1

, and for every multi-index �,

k�

�

fk

L

1

(R

n

)

� C

�

kfk

L

1

(R

n

)

where the 
onstant C

�

depends on � only.

Proof. Let � 2 C

1

0

(R

n

) be su
h that

^

f� =

^

f . Sin
e

^

f 2 E

0

(R

n

), the 
ompa
tly

supported distributions, one has

f(x) = (2�)

�n

^

f(�e

�x

)

18



where e

�x

(�) := e

�ihx; �i

. Consequently,

(�

�

f)(x) = (2�)

�n

^

f( 

�; x

) = (2�)

�n

Z

R

n

f(y)e

y

( 

�; x

) dy

where  

�; x

2 C

1

0

(R

n

) is given by

 

�; x

(�) = (�i�)

�

�(�)e

�ihx; �i

:

The linear fun
tional e

y

is 
ontinuous on C

1

0

(R

n

). Hen
e,

(2�)

�n

e

y

( 

�; x

) = (2�)

�n

Z

R

n

(�i�)

�

�(�)e

�ihx�y; �i

d� =: h

�

(x� y):

Integrating by parts one �nds h

�

2 L

1

(R

n

). Thus,

(�

�

f)(x) =

Z

R

n

h

�

(x� y)f(y) dy;

when
e

k�

�

fk

L

1

(R

n

)

� kh

�

k

L

1

(R

n

)

kfk

L

1

(R

n

)

for every multi-index �.

Proposition 5.3 OPS

w

(R

2N

) � W(R

N

).

Proof. Let a 2 S

w

(R

N

� R

N

). By Proposition 5.1, a 
an be represented as

a(x; �) =

X

(�; �)2Z

N

�Z

N

e

ihx;�i+ih�; �i

a

��

(x; �) (21)

where supp â

��

is 
ontained in a 
ompa
t subset Q of R

2N

and

X

(�; �)2Z

N

�Z

N

ka

��

k

L

1

(R

2N

)

<1:

Then

Op(a) =

X

(�; �)2Z

N

�Z

N

E

�

Op(a

��

)V

�

(22)

and

k�

(


1

; 


2

)

Op(a)�

�

(Æ

1

; Æ

2

)

k

= k�

0

U

�

(


1

; 


2

)

Op(a)U

(Æ

1

; Æ

2

)

�

�

0

k

�



















X

(�; �)2Z

N

�Z

N

e

ih�; 


2

i

�

0

E

��


1

V

�


2

Op(a

��

)V

�+Æ

2

E

Æ

1

�

�

0



















�

X

(�; �)2Z

N

�Z

N

k�

0

E

��


1

V

�


2

Op(a

��

)V

�+Æ

2

E

Æ

1

�

�

0

k:
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By Proposition 5.2,

k�




x

�

Æ

�

a

��

k

L

1

(R

2N

)

� C


Æ

ka

��

k

L

1

(R

2N

)

: (23)

Hen
e (see, for instan
e, [6℄, Proposition 4.1.16),

k�

0

E

��


1

V

�


2

Op(a

��

)V

�+Æ

2

E

Æ

1

�

�

0

k

� C ja

��

j

2k

1

; 2k

2

(1 + j�� 


1

+ Æ

1

j)

�2k

1

(1 + j� + Æ

2

� 


2

j)

�2k

2

;

where 2k

1

> N and 2k

2

> N , and where the 
onstant C is independent of a

��

.

From (23) one 
on
ludes that

ja

��

j

2k

1

; 2k

2

� C ka

��

k

L

1

(R

N

)

with a 
onstant C independent of a

��

again. So one �nally has

k�

(


1

; 


2

)

Op(a)�

�

(Æ

1

; Æ

2

)

k

� C

X

(�; �)2Z

N

�Z

N

ka

��

k

L

1

(R

N

)

(1 + j�� 


1

� Æ

1

j)

�2k

1

(1 + j� + Æ

2

� 


2

j)

�2k

2

=: h(


1

� Æ

1

; 


2

� Æ

2

)

with a sequen
e h 2 l

1

(Z

N

� Z

N

). Consequently, Op(a) 2 W(R

N

).

The following 
orollary follows immediately from the pre
eding proposition in


ombination with Proposition 4.2 (a).

Corollary 5.4 Let a 2 S

w

(R

2N

) be represented as in (21), and let p 2 [1; 1℄.

Then

kOp(a)k

L(M

2; p

(R

N

))

� C

X

(�; �)2Z

N

�Z

N

ka

��

k

L

1

(R

N

)

with a 
onstant C independent of a

��

.

We say that the symbol a belongs to the 
lass R(R

2N

) if there are integers k

1

; k

2

with 2k

1

> N and 2k

2

> N su
h that a 
an be represented as

a(y) =

X


2Z

2N

e

ih
; yi

a




(y)

where y = (x; �) 2 R

N

� R

N

, and where the fun
tions a




2 S

0

0; 0

satisfy

X


2Z

2N

ja




j

2k

1

; 2k

2

<1: (24)

Proposition 5.5 The 
lasses R(R

2N

) and S

w

(R

2N

) 
oin
ide.

20



Proof. Let a 2 R(R

2N

). Then

X

l2Z

2N

k�(D � l)ak

L

1

(R

2N

)

�

X

l2Z

2N

X


2Z

2N

k�(D � l � 
)a




k

L

1

(R

2N

)

� C

X


2Z

2N

ja




j

2k

1

; 2k

2

X

l2Z

2N

(1 + jl

1

j)

�2k

1

(1 + jl

2

j)

�2k

2

<1;

when
e the in
lusion R(R

2N

) � S

w

(R

2N

). The reverse in
lusion follows from

Proposition 5.1.

The following observation will be needed to prove the ri
hness of the operators

in OPS

w

(R

2N

).

Lemma 5.6 Let (A

j

)

j2N

be a sequen
e of bounded linear operators on a Hilbert

spa
e H with

X

j2N

kA

j

k <1; (25)

and let A :=

P

j2N

A

j

. Furthermore, let (U

m

)

m2N

be a sequen
e of unitary oper-

ators on H su
h that the sequen
es (U

�

m

A

j

U

m

)

m2N


onverge strongly as m !1

to 
ertain operators

~

A

j

for every j. Then the sequen
e (U

�

m

AU

m

)

m2N


onverges

strongly to

~

A :=

P

j2N

~

A

j

.

Proof. Let u 2 H and " > 0. By 
ondition (25), there is an n

0

2 N su
h that

X

j>n

0

kA

j

uk <

"

3

; (26)

and due to strong 
onvergen
e, there is an m

0

2 N su
h that, for m > m

0

,

max

1�j�n

0

k(

~

A

j

� U

�

m

A

j

U

m

)uk <

"

3n

0

:

Hen
e, given arbitrary u 2 H and " > 0, one �nds an m

0

2 N su
h that

k(

~

A� U

�

m

AU

m

)uk �

n

0

X

j=1

k(

~

A

j

� U

�

m

A

j

U

m

)uk+ 2

X

j>n

0

kA

j

uk < "

for m � m

0

.

Proposition 5.7 OPS

w

(R

2N

) � W

$

(R

N

).

Proof. Let A := Op(a) 2 OPS

w

(R

N

�R

N

). By Proposition 5.5, the operator A


an be written as

A =

X

(�; �)2Z

N

�Z

N

E

�

Op(a

��

)V

�
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where

X

(�; �)2Z

N

�Z

N

kOp(a

��

)k <1:

Let h : m 7! h

m

:= (h

0

m

; h

00

m

) 2 Z

N

� Z

N

be a sequen
e whi
h tends to in�nity.

Then, evidently,

U

�

h

m

AU

h

m

=

X

(�; �)2Z

N

�Z

N

(U

�

h

m

E

�

U

h

m

) (U

�

h

m

Op(a

��

)U

h

m

) (U

�

h

m

V

�

U

h

m

):

Sin
e U




= V

�

E

�

and U

�




= E

��

V

��

, one has

U

�

h

m

E

�

U

h

m

= e

�ih�; h

00

m

i

E

�

and U

�

h

m

V

�

U

h

m

= e

ih�; h

0

m

i

V

�

:

In [6℄, Lemma 4.2.4, it is veri�ed that there is a subsequen
e g of h su
h that the

fun
tions

'

m

: � 7! e

�ih�; g

00

m

i

and 


m

: � 7! e

�ih�; g

0

m

i


onverge uniformly with respe
t to �; � 2 Z

N

to 
ertain limit fun
tions ' and 


as m ! 1. Clearly, j'(�)j = j
(�)j = 1 for ea
h �; � 2 Z

N

. It is also easy to

see that

U

�

g

m

Op(a

��

)U

g

m

= Op(a

g

m

��

)

where

a

g

m

��

(x; �) := a

��

(x+ g

0

m

; � + g

0

m

):

A

ording to the Arz�ela-As
oli Theorem, one further �nds a subsequen
e k of g

su
h that the fun
tions a

k

m

��


onverge to a limit fun
tion a

k

��

in the topology of

C

1

(R

2N

). This implies (
ompare [6℄, Theorem 4.3.15) that a

k

��

2 S

0

0; 0

and that

U

�

k

m

Op(a

��

)U

k

m

! Op(a

K

��

) strongly as m!1:

Applying the standard Cantor diagonal pro
ess, we �nally obtain that every

sequen
e h has a subsequen
e l su
h that

U

�

l

m

(E

�

Op(a

��

)V

�

)U

l

m

! '(�)
(�)E

�

Op(a

l

��

)V

�

strongly as m!1. Hen
e, the strong 
onvergen
e

U

�

l

m

AU

l

m

! A

l

:=

X

(�; �)2Z

N

�Z

N

'(�)
(�)E

�

Op(a

l

��

)V

�

(27)

as m ! 1 follows from Lemma 5.6, and the strong 
onvergen
e of the adjoint

sequen
es

U

�

l

m

A

�

U

l

m

! A

�

l

:=

X

(�; �)2Z

N

�Z

N

�'(�)�
(�)V

��

�

Op(a

l

��

)

�

�

E

��


an be 
he
ked similarly in the same way.

Now Theorem 17 implies the following �nal results on the Fredholmness of pseu-

dodi�erential operators in the Sj�ostrand 
lass a
ting on modulation spa
es.
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Theorem 5.8 The following 
onditions are equivalent for A 2 OPS

w

:

(a) A is a Fredholm operator on M

2; p

(R

N

) for a 
ertain p 2 (1; 1);

(b) A is a Fredholm operator on M

2; p

(R

N

) for ea
h p 2 (1; 1);

(
) there is a p 2 [1; 1℄ su
h that all limit operators of A are invertible on

M

2; p

(R

N

);

(d) all limit operators of A are invertible on every spa
e M

2; p

(R

N

) with p 2

[1; 1℄;

(e) all limit operators are uniformly invertible on ea
h of the spa
es M

2; p

(R

N

)

with p 2 [1; 1℄.

Corollary 5.9 Let A 2 OPS

w

. Then the essential spe
trum �

ess

(A) of A 
on-

sidered as an operator on M

2; p

(R

N

) does not depend on p 2 (1;1), and

�

ess

(AjM

2; p

(R

N

)) =

[

A

h

2�

op

(A)

�(A

h

jL

2

(R

N

)):
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