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Abstract

The aim of the paper is to study the Fredholm property of pseudodif-
ferential operators in the Sjostrand class OPS,, where we consider these
operators as acting on the modulation spaces M%P(RY). These spaces
are introduced by means of a time-frequency partition of unity. The sym-
bol class Sy, does not involve any assumptions on the smoothness of its
elements.

In terms of their limit operators, we will derive necessary and sufficient
conditions for operators in OPS,, to be Fredholm. In particular, it will
be shown that the Fredholm property and, thus, the essential spectra of
operators in this class are independent of the modulation space parameter
p € (1, 00).

1 Introduction

This paper is devoted to the study of the Fredholm property of pseudodifferential
operators in the Sjostrand class OPS,,. The class S, of Sjostrand symbols and
the corresponding class OPS,, of pseudodifferential operators were introduced
in [8, 9]. This class contains the Héormander class OPSS’0 and other interesting
classes of pseudodifferential operators. One feature of the class S, is that no
assumptions on the smoothness of its elements are made.

Sjostrand [8, 9] considers operators in OPS,, as acting on L*(RY). He proves
the boundedness of these operators and shows that OPS,, is an inverse closed
Banach subalgebra of the algebra L(L?(R"Y)) of all bounded linear operators on
L*(RN).

Applications in time-frequency analysis had lead to an increasing interest in
pseudodifferential operators in classes similar to OPS,, but acting on several
kinds of modulation spaces (see, for instance [1, 3, 2, 11]). These spaces are
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defined by means of a so-called time-frequency partition of unity (i.e., a partition
of unity on the phase space).

Whereas main emphasize in [1, 3, 2, 11] is on boundedness results, we are going
to examine the Fredholm property of pseudodifferential operators in OPS,, on
modulation spaces which seems to have not been considered earlier. Our approach
is based on the limit operators method. An introduction into this method as well
as several applications of limit operators to other quite general operator classes
can be found in the monograph [6] (see also the references therein). For several
of these operator classes (including OPS,, and the Hormander class OPSj ),
the limit operators approach seems to be the only available method to treat the
Fredholm property.

The present paper is organized as follows. In Section 2 we recall some aux-
iliary material from [5] and [6]. In particular, we introduce the Wiener algebra
W(ZY, X) of band-dominated operators with operator-valued coefficients acting
on the spaces [?(Z", X) where X is a Banach space. For operators belonging to
the so-called rich subalgebra W*(ZY, X) of W(Z", X) we formulate necessary
and sufficient conditions for their Fredholmness. It will turn out that the Fred-
holm property and, thus, the essential spectrum of an operator A € W*(Z", X)
are independent of p € (1, 00).

Section 3 is devoted to modulation spaces and their discretizations. Given a
time-frequency partition of unity by pseudodifferential operators

> b, =1,

a€Z2N

the modulation space M*P?(R") is defined as the space of all distributions u €
S'(RY) with

1/p
[ullar2pery = ( > ||‘1’a“||’22(RN>> =

an2N
if p € [1, co) and with
||u||M2*°°(RN) ‘= Sup ||(I)au||L2(RN) < 0
anZN

in case p = oo. In Section 4, we introduce the continuous analogue W(RY) of
the discrete Wiener algebra W(Z", X)) by imposing conditions on the decay of
the operators ®,A®7, . More precisely, an operator A belongs to W(RY) if

Al = D sup [ @aA®;_ [|pmegex) < oo.

YEZL2N agLN

We prove that the operators in W(RY) act boundedly on M?%?(RY) for every
p € [1, oo] and that W(R") is an inverse closed subalgebra of L(M?*?(RY)).
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Via discretization, the results recalled in Section 2 apply to yield necessary and
sufficient conditions for the Fredholmness on M?%P(RY) of operators in the so-
called rich subalgebra W*(RY) of W(RY). Moreover, the essential spectrum of
A € WH(RY) proves to be independent of p € (1, o0).

In the concluding fifth Section, we apply the description of operators in OPS,,
derived in [1] to conclude that OPS, C W#[RY). Thus, the results of the
previous sections specify to give Fredholm criteria for pseudodifferential operators
in OPS,, acting on modulation spaces M*P(RY) in terms of limit operators.
One consequence is the independence of the essential spectrum of an operator
A € OPS,, of the modulation space parameter p.

Notice that a criterion for the Fredholmness of pseudodifferential operators
in OPSy , acting on L*(R") was obtained in [5] by similar techniques (see also
Chapter 4 in [6]).

2 Operators in the discrete Wiener algebra

2.1 Band-dominated operators and P-Fredholmness

Given a complex Banach space X, let L(X) and K(X) stand for the Banach
algebra of all bounded linear operators on X and for its closed ideal of all compact
operators, respectively. For each positive integer N, each real number p > 1,
and each complex Banach space X, let (P(Z, X) denote the Banach space of all
functions f : ZN¥ — X with

1/p
1 f @y, x) = (Z ||f(a:)||’;{> < 00.

zeZN

Further, let [*°(Z, X) refer to the Banach space of all bounded functions f :
ZY — X with norm

[l 2, x) := sup [[f(2)]lx,
zezN
and write cy(Z", X) for the closed subspace of [°°(Z, X) which consists of all
functions f with

lim || ()] = 0.

For 1 < p < oo, the Banach dual space of IP(Z", X) can be identified in a
standard way with [9(Z", X*) where 1/p + 1/q = 1, and the dual of ¢y(Z", X)
is isomorphic to I1(Z%, X*). Moreover, if X is a reflexive Banach space, then the
spaces [P(ZY, X) are reflexive for 1 < p < co. In case X = H is a Hilbert space
with inner product (., .)y, then [?(Z%, H) becomes a Hilbert space on defining
an inner product by

(f, 9y =D (f(x), g(x))u.

zeZN
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In what follows, we agree upon using the notation E(X) to refer to one of the
spaces [P(ZY, X) with 1 < p < oo or ¢p(Z", X), whereas we will write £<(X) if
one of the spaces E(X), [1(ZY, X) or [®°(Z", X) is taken into consideration.
For n € N, we denote the operator of multiplication by the characteristic
function of the discrete cube I, := {& € Z" : |z| = maxj<j<n |2;| < n} by
P,. This operator acts boundedly on each of the spaces E*(X). We let P refer
to the set of all operators P, with n € N and set ), := I — P,. Following the
terminology introduced in [6], an operator K € L(E>(X)) is called P-compact if

lim [[KQy| p~x) = lim [|Q, K| g=(x) = 0.
n—00 n—00

We denote the set of all P-compact operators by K(E*°(X)), P) and write
L(E>(X)), P) for the set of all operators A € L(E*(X)) for which both AK
and KA are P-compact whenever K is P-compact. Then L(E*(X)), P) is a
closed subalgebra of L(E* (X)) which contains K(E*(X)), P) as a closed ideal.

Definition 2.1 An operator A € L(E>*(X), P) is called a P-Fredholm operator
if the coset A+ K(E>(X), P) is invertible in the quotient algebra

L(E>(X), P)/K(E*(X), P),

i.e., if there exist operators B, C € L(E*(X),P) and K, L € K(E*(X), P)
such that BA=1+ K and AC =1+ L.

This definition is equivalent to the following one.

Definition 2.2 An operator A € L(E®(X), P) is P-Fredholm if and only if
there exist an m € N and operators Ly,, R,, € L(E*(X), P) such that

P-Fredholmness is often referred to as local invertibility at infinity. If X has
finite dimension, then these definitions become equivalent to the usual definition
of Fredholmness, which says that an operator is Fredholm if both its kernel and
its cokernel have finite dimension.

For k € ZV, let Vj stand for the operator of shift by k,

(Viu)(z) = f(z — k), =€z
Clearly, Vi, € L(E>(X)) and ||Vi||z(zex) = 1.

Definition 2.3 A band operator on E*(X) is a finite sum of the form ) Vi
where o € Z" and a, € I®(Z", L(X)). An operator is band-dominated if it is
the uniform limit in L(E* (X)) of a sequence of band operators.



In case X = C and N = 1, and with respect to the standard basis of E>(X),
band operators are given by matrices with finite band width, which justifies this
notion. Observe also that the class of band operators is independent of the
concrete space E*(X) whereas the class of band-dominated operators depends
on E*°(X) heavily. We denote this class by A(E*(X)). It is easy to see that
A(E>(X)) is a closed subalgebra both of L(E*(X)) and of L(E>(X), P).

Definition 2.4 Let A € L(E®(X)), and let h : N — ZN be a sequence which
tends to infinity. An operator A, € L(E™(X)) is called a limit operator of A
with respect to the sequence h if

lim 1 Pe(Verin) AVigny — An)|| L))
= lim ||(Vop) AVi) — An) Pell pime(x)) = 0 (1)

n—oo
for every k € N. The set of all limit operators of A will be denoted by oy, (A)
and is called the operator spectrum of A. Let further H stand for the set of all
sequences h : N — ZN which tend to infinity, and let A>(E>®(X)) refer to the set
of all operators A € A(E*(X)) enjoying the following property: Every sequence
h € H possesses a subsequence g for which the limit operator A, exists. We refer
to the operators in A¥(E>(X)) as rich band-dominated operators.

Obviously, richness is a compactness condition with respect to the convergence
defined by (1).

The following is our main result on P-Fredholmness of rich band-dominated
operators. For its proof see [6], Theorem 2.2.1.

Theorem 2.5 An operator A € A*(E>®(X)) is P-Fredholm if and only if each
of its limit operators is invertible and if the norms of their inverses are uniformly
bounded, i.e.,

sup {[1(An) "l (x)) + An € gp(A) } < 0.

2.2 The discrete Wiener algebra

The statement of Theorem 2.5 gets a more satisfactory form for band-dominated

operators which belongs to the discrete Wiener algebra, in which case the uniform

boundedness of the inverses of the limit operators follows from their invertibility.
Let W(Z", X) denote the set of all band-dominated operators of the form

where the coefficients a,, € [*°(Z", L(X)) are subject to the condition

IAlwey, x) = Y llaallie@y, L) < oo (2)

aczZN



Provided with usual operations and with the norm (2), the set W(Z", X) be-
comes a Banach algebra, the so-called discrete Wiener algebra. The estimate

Al L~y < I1Allwey, x)

shows that W(Z", X) is a non-closed subalgebra of A(E*(X)).
One of the remarkable properties of the discrete Wiener algebra is its inverse
closedness.

Proposition 2.6 The Wiener algebra W(ZN, X)) is inverse closed in every al-
gebra L(E>(X)).

Otherwise stated: If an operator A € W(Z", X) acts on E*(X) and is invertible
there, then A~' € W(Z", X)) again. A proof is in [6], Theorem 2.5.2. An imme-
diate consequence of the inverse closedness is the independence of the spectrum
of an operator A € W(Z", X), thought of as acting on one of the spaces E*(X),
of the concrete choice of that space.

Set WH(ZN, X) := W(ZN, X) N A¥(E*(X)), and let A € WH(Z", X). We
consider this operator on one of the spaces E*(X) and determine its limit op-
erators with respect to this space. It turns out that the operator spectrum of
A does not depend on the choice of that space and that all limit operators of A
belong to the Wiener algebra W(Z", X) again. The following is Theorem 2.5.7
in [6].

Theorem 2.7 Let X be a reflexive Banach space. The following assertions are
equivalent for an operator A € W3(ZN, X):

(a) there is a space E(X) on which A is P-Fredholm;

(b) there is a space E(X) such that all limit operators of A are invertible on that
space;

(¢) all limit operators of A are invertible on [®(ZN, X);

(d) all limit operators of A are invertible on [®(Z", X) and the norms of their
wnverses are uniformly bounded;

(e) all limit operators of A are invertible on all spaces E*®(X) and the L(E*(X))-
norms of their inverses are uniformly bounded;

(f) A is P-Fredholm operator on each of the spaces E(X).

Let A € L(E~(X), P)). We say that the complex number A belongs to the P-
spectrum of A if the operator A—\I is not P-Fredholm on E*°(X). We denote the
P-spectrum of A by op(A|E*®(X)) or shortly by op(A). The common spectrum
of A will be denoted by o(A|E*(X)) or simply by o(A).

Theorem 2.8 Let X be a reflevive Banach space and A € WH(ZN, X). Then
the P-spectrum of A, considered as an operator on E(X), is equal to

op(AEX) = |J o(lBX)). (3)

Ap E0op (A)
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Moreover, neither the operator spectrum of A, nor the P-spectrum of A, nor the
spectra of the limit operators of A on the right-hand side of (3) depend on the
choice of E(X).

If the space X has a finite dimension, then the P-spectrum of A is the com-
mon essential spectrum of that operator, that is, the spectrum of the coset
A+ K(E®(X)) in the Calkin algebra L(E*°(X))/K(E*(X)). In this setting,
the rich Wiener algebra coincides with the full Wiener algebra. Hence, Theorem
2.8 has the following corollary.

Theorem 2.9 Let X be a finite dimensional space. Then the essential spectrum
of A€ W(Z", X) does not depend on the choice of E(X), and it is given by (3).

3 Operators on modulation spaces

In the following two sections we define the modulation spaces and consider the
continuous counterparts of the band-dominated operators and the Wiener alge-
bra. The discrete and the continuous world are linked by a certain discretization
operation which we are going to introduce first.

3.1 Time-frequency discretization

Recall that a function a € C°(RY x RY) belongs to the Hérmander class S§  if,
for all r, t € N,

alrei= sup [970¢a(z, £)| < oo (4)

N N
la|<r, |B|<t (& OERTXR

Let a € S . The associated pseudodifferential operator Op(a) (also written as
a(z, D)) is defined at u € S(RY) by

©Opae) = o) [ [ ae g rOugayas. )

The function a is called the symbol of Op(a), and the class of all pseudodifferential
operators with symbols in S7 , is denoted by OPS] ;. Standard references on
pseudodifferential operators are [12, 7, 10], to mention only a few.

It is well-known that OPS{  forms an algebra with respect to the usual
sum and composition of operators. Further, the operators Op(a) € OPSj  are
bounded both on the Schwartz space S(RY) and on the Lebesgue space L?(RY),
and

||Op(a)||L(L2(RN)) < C’|a|2k,2l if 2k > N, 2l > N. (6)

The latter fact is known as the Calderon-Vaillancourt theorem.



Let A: S(RY) — S(RY) be a bounded linear operator. An operator A’ is
called the formal adjoint of A if

(Au, v) = (u, A) for allu, v € S(RY). (7)

If A e OPSS}O, then its formal adjoint A! is a pseudodifferential operator in
OPSy , again. Furthermore, if A € OPS{, acts on L*(R"), then its Hilbert
space adjoint A* also belongs to OPS] ;. Hence, (7) can be used to define the
action of A € OPS{ , on the space of tempered distributions S'(RV).

Our next goal is to introduce the time-frequency discretization (which is called
bi-discretization in [6]). For v = («, ) € Z x Z", set U, := V3E,, where

(Vau)(z) :=u(x — B) and (Bau)(z) = e"®%u(z).

The operators U, are unitary on L*(RY), and U = E_,V_g = U_'. Note that
these operators, together with the scalar unitary operator eI with r» € Z form
a noncommutative group, the so-called discrete Heisenberg group. In particular,
one has

U =elevedy_ o UUs = ey, 4 (8)
and

U;UB — ei<062,041—ﬂ1>Uﬂ_a — ei<52,a1—ﬂ1>Uc’;_ﬂ
where o = (a1, an), 8= (81, f2) € ZN x ZV.

Let f € C°(RY) be a non-negative function such that f(x) = f(—x) for all

x and such that f(z) = 1if |;] < 2/3 foralli =1,..., N and f(z) = 0 if
|z;| > 3/4 for at least one . Define a nonnegative function ¢ on RY by

2 . f(z)
©*(x) = S =D

and set p,(7) := ¢(x — a) for a € Z". The family (4 )aczy forms a partition of
unit on RY in sense that

Z ©2(x) =1  for each x € RY.

a€ZN

For v = (a, B) € ZY x ZN, define ¢, on RV x RY by

$(2, &) = va(z)p(£),
and write @, for the pseudodifferential operator Op(¢,). It is evident that

Pyu = paps(D)u = @aOp(ps)u

at u € S'(RY), and the formal adjoint of the operator ®., acts as
®lu = ps(D)pau = Op(ps)pau

8



at u € S'(RY).
The operators ®., induce a partition of unity on the phase space RV x RY in
the sense that

Z O Pyu = Z ®,®*u=u  for each u € S'(R") (9)

yeLN yeLN

where the series converge in S’(RY). With these notations, we define the operator
G of time-frequency discretization by

(Gu)y :=®oUju  wherey € Z*" and u € S'(R"),

that is, we consider Gu as a vector-valued function on Z*" with values in S"(RY).

Now we are in a position to define the announced modulation spaces M%7 (RY)
which will provide the frame for a localization of functions in the time-frequency
domain. The modulation spaces under consideration were introduced in [4] where
they are used to study the Fredholm property of pseudodifferential operators in
OPSj . Similar (but different) modulation spaces are considered in [3] (see also
Chapter 11 of [2]).

Definition 3.1 For p € [1, 00), let M*P(RY) denote the space of all distribu-
tions u € S'(RY) such that (Gu), € L*(RY) for every v € Z*N and

1/p

lallszoy = | 321G, | < o0, (10)

,-YGZZN

and let L**°(RYN) stand for the space of all distributions u € S"(RYN) with (Gu)., €
L3(RN) for every v € Z*N and

[l arz.co @y == sup [[(Gu)y[[7 gy < 0o (11)
y€EZ2N
Since U, is a unitary operator on L*(RY), one can replace (Gu), = ®U*u by
®,u = U, U u in the definitions (10) and (11) of the norms.
The following proposition is taken from [4]. It summarizes basic properties of
modulation spaces.

Proposition 3.2 (a) M?*?(RY) is a Banach space for each p € [1,00|, and
MQ,Q(RN) — LQ(RN)
(b) Forp € [1,00), every linear continuous functional on M*?(RN) is of the form

v - u(z)v(z) dz, (12)

with some distribution v € M*4(RY) where 1/p +1/q = 1. Hence, the Banach
dual M?P(RN)* can be identified with M?1(RY), and M*P(RY) is reflexive for

9



p € (1, c0).

(¢) The Schwartz space S(RY) is contained in M*P(RYN) for each p € [1,00], and
it lies dense in M?P(RYN) for each p € [1,00).

(d) M*P(RN) is contained in S'(RYN) in the sense that u € M*P(RY) defines a
linear functional on S(RY) acting at ¢ via

ul) = / ule)pla) dr.

Moreover, if u, — 0 in M*9(RY), then u,(¢) — 0 for each function p € S(RY).

Notice that the operators U, = VgF,, are bijective isometries on each of the spaces
M?*?(RY) with p € [1, o] and that U, ' = E_,V_3.

Proposition 3.3 The operator G : M>P(RY) — [P(Z*N, L*(RY)) is an isome-
try, and the operator G, ' defined at f € IP(Z*N, L*(RY)) by

Gl f= ) U f(7) (13)

erZZN
s a left inverse for G.

Proof. The isometry of GG is evident, and the equality Gl_lG = I follows from

G'Gu= Y U dj®Uiu= Y &:du=u,

yeLN yeLN

which holds for every u € M*P(RY) due to (9) and Proposition 3.2 (d). ]

Thus, the operator Q := GG, ' : IP(Z*N, L*(RY)) — P(Z*N, L*(RY)) is a pro-
jection for all p € [1, co]. We denote its range by R,(Q). Then

G: M*P(RY) — R,(Q)

becomes an isometric bijection, and each operator A € L(M?%*P(RY)) becomes
similar to the operator

A= GAG Mz, Ry(Q) = Ry(Q)-

We extend Ag to an operator I'(A) acting on all of IP(Z*", L*(RY)) by setting
[(A)=A6Q+1-Q=GAG " +1—-Q

and call ['(A) the time-frequency discretization of A. Clearly,

Gr'T(A)G = GTH(GAG + 1 - GGHG = A.
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Proposition 3.4 Q € W(Z*", L*(RY)).
Proof. The definitions of G and G, ! imply that @ acts at f € (P(Z*N, L*(R"))
by

(QH©O) = > ®UsUs 5 f(0—7) = Y Ry( )(5)

yEL2N yEL2N

where R, (8) := ®,U;Us_,®% and where V, denotes again the discrete shift opera-
tor (V,£)(8) := f(6—~) on IP(Z*N, L*(RY)). Choose 2k > N. In [6], Proposition
4.3.2, it is shown that then

1Ry () |zzz@eny = [[PoUs Us—y gl nir2ny)
= NUs®oUs Us  ®oUs_, | L2y
= ||(I)5(I)377||L(L2(RN))
< O+ a1+ B~ (14)

with a constant C' independent of v = («, (). Consequently,

SR @)@y <C Y (L lal) (L [8) 7 < 0o

YEZL2N (a, BYEZN XN

showing that ||Q||W(ZzN,L2(RN)) < 00. ]

3.2 Fredholmness and time-frequency discretization

Our next goal is to point out the relation between the Fredholmness of an opera-
tors acting on a modulation space M?%?(R") and the P-Fredholmness of its time-
frequency discretization. Beginning with this subsection, we assume p € (1, o0)
unless otherwise stated.

Proposition 3.5 (a) For every n € N, the operators P,Q and QP, are compact
on IP(Z*, L*(RY)).

(b) The projection Q belongs to L(IP(Z*N, L*(RY)), P).

(¢) For every operator A € L(M*P(RY)), its discretization I'(A) belongs to
L(IP(Z2N, L*(RY)), P).

(d) If K € L(I*(Z*N, L*(RY))) is a P-compact operator of the form K = QKQ),
then G;'KG is compact on M*P(RYN).

(e) The operator A € L(M*P(RN)) is invertible if and only if the operator
[(A) € L(IP(Z*N, L*(RY))) is invertible.

(f) The operator A € L(M*P(RN)) is Fredholm if and only if the operator
['(A) € L(IP(Z*N, L*(RY))) is P-Fredholm.

This proposition is proved in [5] for p = 2, see also Proposition 4.2.2 in [6]. The
proof for general p € (1, co) runs similarly.
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Definition 3.6 Let A € L(M*?P(RY)), and let h : N — Z*" be a sequence tend-
ing to infinity. We say that the operator A, € L(M?*P?(RY)) is a limit operator
of A with respect to the sequence h if

UnimyAUngmy = A and Uy A Upmy — A},

strongly as m — oo. The set o,,(A) of all limit operators of A is called the
operator spectrum of A.

The following proposition describes the relation between the time-frequency dis-
cretization of the limit operators of A and the limit operators of the time-
frequency discretization of A. Its proof for p = 2 is in [5] and Proposition 4.2.5
in [6]. The case of general p € (1, co) can be treated analogously.

Proposition 3.7 Let A € L(M*?(RY)), and let h : N — Z*" be a sequence
tending to infinity such that the limit operator A, of A with respect to h ex-
ists. Then there is a subsequence g of h such that the limit operator I'(A), of

I'(A) with respect to g exists, and there is an isometric isomorphism T, mapping
P(Z*N, L*(RY)) onto itself such that

T(A4), = T, 'T(A,)T,.

We still need the counterparts of the notions of band and band-dominated oper-
ators for operators on modulation spaces.

Definition 3.8 An operator A € L(S'(RY)) is called a band operator if there
exists an R > 0 such that ®,A®, = 0 for all subscripts o, f € Z*N with

la — B := max | — ;| > R.

An operator A € L(M*?(RY)) is called band-dominated if it is the limit of a
sequence of band operators converging to A in the norm of L(M*P(RN)).

It is easy to check that the class of all band-dominated operators on M%?(RY) is
a closed subalgebra of L(M?%?(RY)). We denote this algebra by A(M?*?P(RY)).
Further we call A € A(M%*P(RN)) a rich operator if every sequence h : N — Z2?N
which tends to infinity possesses a subsequence g for which the limit operator A,
exists. The set of all rich operators forms a closed subalgebra of A(M?*?(RY))
which we denote by A%(M?P?(RY)).

Proposition 3.9 (a) If A € A(M*?(R")), then T'(A) € A(IP(Z*N, L*(RY)).
(b) If A € AS(M?>P(RY)), then T'(A) € A*(IP(Z?V, L>(RY)).
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Proof. We prove assertion (a) only. The second statement follows from (a)
and Proposition 3.7. First let A be a band operator on M%?(RY). Then, for
u € IP(Z*, LA(RY)),

(Agu)(8) = Y QUsAUyRiu(0) = Y SoUs AUs_, Lju(5 — )
0ez2N y€Z2N
= Y A0 Tu) () (15)
yEZ2N

where A, (0) := Ui AUs_,®§. Since A is a band operator, all series in (15) have
a finite number of non-vanishing items only. Indeed,

1AL () r2@yy = [[@sALs_ [ L(r2@yy =0

if |y| > R with R > 0 being large enough. Hence, Ag is a band operator.
That the operator Ag is band-dominated whenever A is so follows by an evi-
dent approximation argument (take into account that G : M*?(RY) — R,(Q)
and G;' 1 R,(Q) — M*P(RV) are isometries). Finally, since the projection
@ belongs to the discrete Wiener algebra due to Proposition 3.4 (and is, thus,
band-dominated), the operator I'(A) = AgQ + (I — @) is band-dominated for
each band-dominated operator A. n

Combining Propositions 3.5, 3.7 and Theorem 2.5 we arrive at the following Fred-
holm criterion for rich band-dominated operators on modulation spaces.

Theorem 3.10 An operator A € A*(M?>P?(RN)) is Fredholm if and only if all
limit operators Ap of A are invertible and if the norms of their inverses are
uniformly bounded, i.e.,

sup ||A,:1||L(M2,p(RN)) < 00.
AhEU'Dp(A)

4 The Wiener algebra on RY

We define the continuous analogue of the discrete Wiener algebra by imposing
conditions on the decay of the norms [|®,A®, _[[12evy) as v tends to infinity.

Definition 4.1 A linear operator A : S'"(RY) — S'(RY) belongs to the Wiener
algebra W(RY) if

||A||W(RN) = Z sup ||(I)aA(I)Z_7||L(L2(RN)) < Q0. (16)

yezen @EL*N

The Wiener algebra W(R") contains sufficiently many interesting operators. So
we will see in the next section that W(R") contains the pseudodifferential oper-
ators with non-smooth symbols in the Sjostrand class OPS,, and, thus, also the
Hérmander class OPS{ ;. Here are some basic properties of W(RY).
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Proposition 4.2 (a) W(RY) C L(M?*?(RY)), and

1Al Laezr vy < Ay

for each p € [1, o] and A € W(RY).

(b) Provided with the norm (16), the set W(RYN) becomes a unital Banach algebra.
(¢) The Banach dual operator A* of an operator A € W(RY) considered as acting
on M?P?(RY) belongs W(RY), too.

Proof. (a) First let p € [1, co). Then

||Au||M2pRN) = Z R AUHL2 RN)
EZZN
p

= Y 2,4 ) 2;Psu

’YEZQN §EZ2N LZ(RN)

p

< Z @0 AP _o || 2y Z D, u

76221\] eZZN 2(RN)

p

< > (Z kA(V—a)H‘I’aUHU(RN))

YEZ2N \aeZ?2N

where ka(a) == sup,cgn [|[@,APR: || L2@y))- Since ky is a sequence in I'(Z*"),

1/p
[ Aul|przneny < > kaly (Z [ ®gull?. RN> = [|Allw@ny llwll a2 e @y

y€EZ2N aez2N

In the same way, one gets the estimate

| Aul[prz o @y < Y ka(v) sup {|Patlzen) = [|Allwiey) llullae @),
NEZ2N QEZ

(b) Tt is easy to verify that
[ABllwe~) < [|Albwex) [1Bllwe),

and estimate (14) shows that the identity operator I belongs to W(RY). Hence,
W(RY) is a unital algebra, and its completeness with respect to the norm (16)
follows straightforwardly.

(¢) Let A* be the Banach adjoint operator of A acting on M*?(RY), that is
Auv dx = / uA*v d, (17)
RN RN
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where u € M*P(RY) and v € M*9(RY) with 1/p+ 1/q = 1. The operator A is
bounded on L?(RY) since A € W(RY) (Proposition 4.3.4 in [6]). Since (17) holds
for arbitrary u, v € S(RY), this identity states that A* is the adjoint operator to
A considered as acting on L?(R"Y). Hence,

||(I>aA*(I)377||L(L2(RN)) = ||‘I)ava*‘1)Z||L(L2(RN))7
which implies that

sup [|@a A" @, [lpe@yy = Y Sup [|Pay A Y|pwaany)
AL o EeZ2N
YEZ el

= ||(I)QA*(I)Z_7||L(L2(RN)) < 00,
whence finally A* € W(RY). n

Proposition 4.3 (a) If A € W(RY), then the operators GAG; " and I'(A) belong
to the discrete Wiener algebra W(Z?N, L*(RY)).

(b) Conversely, if B € W(Z*N, L>(RY)), then G;'AG lies in W(RY).

The proof runs as that of Proposition 3.9; compare also [5] and Proposition 4.3.5
in [6].

Proposition 4.4 The algebra W(RY) is inverse closed on each of the spaces
M?*P(RN) with p € [1, 00|, i.e., if A € W(RY) is invertible in L(M*P?(RY)),
then A~ € W(RY).

Proof. Let A € W(R") be invertible on M*?(R"). Then T'(4) belongs to
W(Z*N, L*(R")) by Proposition 4.3, and I'(A) is invertible on ?(Z*N, L*(R"))
by Proposition 3.5 (e¢). From Proposition 2.6 we infer that I'(A)~! lies in the
discrete Wiener algebra W(Z*", L?(R")), and since

Gr'T(A)T'GA = G 'T(A)T'GAG'G = GT'T(A) 7' (A)QG =1,
one has G 'I'(A)1G = A=t € W(RY) due to Proposition 4.3 (b). m
We fix a p € [1, oo] and define the rich Wiener algebra by
WHRY) := W(RY) n A¥(M>P(RY)).

Thus, an operator A belongs to W#(RY) if every sequence h : N — Z2V possesses
a subsequence g for which the limit operator A, of A with respect to strong
convergence on M?%P(RY) exists. It is easy to see that the limit operators A,
belong to W(RY ) again. Thus, the definition of W*(R") does not depend on the
concrete choice of the parameter p € [1, oo.

15



Theorem 4.5 The following conditions are equivalent for A € W3(RN):

(a) A is a Fredholm operator on M*P(RY) for a certain p € (1, 00);

(b) A is a Fredholm operator on M?*P?(RYN) for each p € (1, 00);

(¢) there is a p € [1, 00| such that all limit operators of A are invertible on
M2’p(RN),'

(d) all limit operators of A are invertible on every space M*P(RN) with p €
[1, oo;

(€) all limit operators of A are uniformly invertible on each of the spaces M?*?(RN)
with p € [1, 0o.

This is an immediate consequence of Theorem 2.7 and Proposition 3.5 (e) and
(f). The preceding theorem has the following corollary for the essential spectrum
of an operator A in the rich Wiener algebra when considered on M%?(RY), i.e.,
for the spectrum of the coset A + K(M?*?(RY)) in the corresponding Calkin
algebra.

Theorem 4.6 Let A € W* (RN). Then the essential spectrum ooz, A of A con-
sidered on M*P(RN) is equal to

Tess(AIMPP(RY)) = | ] o(An|M>P(RY)).
AhEUop(A)

Both the operator spectrum of A, the essential spectrum of A, and the common
spectra of the limit operators of A are independent of p € (1, 00).

5 Fredholm properties of pseudodifferential op-
erators in the Sjostrand class

We start with recalling the definition of the class of symbols of pseudodifferential
operators introduced by Sjostrand [8] in 1994; see also [9]. We introduce this
class for R* with arbitrary n € N. Later, we let n = 2N.

Let x € S(R™) be a function with [, x(z)dr = 1. A function a : R* — C
belongs to the Sjostrand class S, (R") if

\|al| s, @) ::/ sup / @ Oa(z)x(x — k) dr| dé < co. (18)
Rn keZ™ n

Provided with the norm (18), S, (R") becomes a Banach space. Notice that a

change of the function x gives rise to an equivalent norm on S, (R") and leads,

thus, to the same class of symbols.

We have to mention another descriptions of the Sjostrand class S, (R"). In
1997, Boulkhemair [1] introduced the class B(R™) of all functions a : R* — C

16



which own the property

Jallagey = [ sup | [ et - md|dn <00 (19)
R" x n n

where a refers to the Fourier transform of a in the sense of distributions. The
norm (19) can be also written as

lallagey = [ 1D = e
and is further equivalent to the norm

lalls@n =Y [IX(D = Dul|pon)- (20)

lezn

Moreover, Boulkhemair proved that the Sjostrand class S, (R™) and his class
B(R™) coincide. As a consequence of this fact, he derived the following very
convenient constructive characterization of S, (R™).

Proposition 5.1 ([1]) A distribution a € S'"(R™) belongs to S,(R™) if and only
if there exist a compact subset Q@ of R* and a sequence of functions (ay)gezn in
L*>®(R™) with supp (ax) C Q and

kezm

such that

almost everywhere.

Let now n = 2N and a € S,(R*Y). As usual, we write the independent variable
in R?Y as (z, £) € RN x RY. Then the pseudodifferential operator with symbol
a is defined by

Opaue) = (m) ™ [ [ e Oaa, uly) dya

where u € S(RY). Let OPS, = OPS,(R?*N) stand for the class of all pseu-
dodifferential operators with symbols in S, (R?*"). It has been shown in [8] that
the operators in OPS,, are bounded on L*(RY) and that OPS,, is an inverse
closed subalgebra of L(L*(RY)), i.e., if A € OPS,, is invertible on L*(R"), then
A~l € OPS,, again.

17



The Sjostrand class OPS,, contains several interesting classes of pseudodif-
ferential operators. For instance, the Hérmander class OPS , is contained in
OPS,,(R") which can be checked as follows. Let a be in Cp°(R"), i.e., let

lal,, == Z sup |0%a(x)| < oo

n
\a|§mreR

for all m € N (note that S§ , = C;°(RY x RY)). Then x(D)a = ko * a where
ky € S(R™) is given by

n

kwmz(%J“/ e 0 (€ de.

Consequently, for m € N and all multi-indices [,
D~ Da)a) = [ O Ikfa = y)aly) dy
= 7 [ D, (e~ paly) dy
with the standard notations
(Iy:= (1 +]IHY* and (D,)?:=1-A,.
The latter estimate implies
IX(D = Dall e eny < Con{l) ™" [a]am

since 0%ky € S(R™) for all multi-indices . ]

Similar classes of pseudodifferential operators have been considered in [2], see
also [6].

To prove the inclusion of OPS,, into the Wiener algebra in Proposition 5.3
below we need the following estimates.

Proposition 5.2 Let Q be a compact subset of R", and let f € S'"(R") be a
distribution with supp f C Q. Then f € C*, and for every multi-indez «,

10 f || oo (mny < Caal|fl oo (mr)
where the constant C,, depends on a only.

Proof. Let ¢ € C°(R") be such that f¢ = f. Since f € £'(R"), the compactly
supported distributions, one has

flx) = (2m) " f(de-)

18



where e_, (&) := e *® &, Consequently,

(0°f) (@) = 2m) " f (Ya,2) = (2m) " S Wey(aa) dy
where 1, , € C§°(R") is given by

Ve, (E) = (i) p(E)e™"DE),

The linear functional e, is continuous on C§°(R"™). Hence,

(2) ey lthne) = (20) " [ (i) 8(E)e I E = ol ).

Integrating by parts one finds h, € L'(R"). Thus,

@ 1)@) = [ ol =)0
whence
10% fll oo @ry < [|PallLr @y l] f1] zoe )
for every multi-index a. n
Proposition 5.3 OPS,(R*) c W(RY).
Proof. Let a € S,(RY x RY). By Proposition 5.1, a can be represented as

afw, =y 0V g, ¢) (21)

(o, B)EZN xZN

where supp G,z is contained in a compact subset @ of R* and

> laapll ey < oo

(o, B)EZNxZLN

Then
Op(a) = > FEaOp(ans)Vy (22)

(o, BYEZN xZLN

and

1P(31,72)OP(@) (5,5l
= [[PoU¢,1,4,)OP(@) Uy, 5) P

1,72

< Z ei<0‘,72>q)0E0¢*”/1 Vf’hop(aaﬂ)vﬂﬂﬁEﬁl (1)3

(a, B)EZN XN

< > N®0Ea 1,V ,0p(aas) Vass, Bs, Bl

(o, B)EZN XN
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By Proposition 5.2,
103 0as || Lo 2y < Cosllaapll oo o). (23)
Hence (see, for instance, [6], Proposition 4.1.16),
[0 Ea—r, Vor,Op(aap) Vs, Es, D
< C'laaplor, 20, (1 + | = 71+ 61)) (L4 B + 65 — 72]) 72,

where 2k, > N and 2k; > N, and where the constant C' is independent of a,g.
From (23) one concludes that

|aaﬂ|2k1,2k2 <C Ha'aB“LO"(RN)

with a constant C' independent of a,s again. So one finally has

||®(71;72)Op(a')®>(k51,52) ||

<O Y laasllpegen) (Lo =y =6 )7L+ |8+ 6 — yel)
(o, B)EZN XN

=t h(y1 — 01, 72 — J2)
with a sequence h € ['(Z"Y x Z"). Consequently, Op(a) € W(RY). -

The following corollary follows immediately from the preceding proposition in
combination with Proposition 4.2 (a).

Corollary 5.4 Let a € S,(R*N) be represented as in (21), and let p € [1, 00].
Then

10p(a)|| a2 r@yyy < C Z |@asl| oo )
(a, B)ELNXZN

with a constant C' independent of aqg.

We say that the symbol a belongs to the class R(R?Y) if there are integers &, ko
with 2k > N and 2k, > N such that a can be represented as

aly) = > €M¥a,(y)

yeLN

where y = (z, £) € RV x R", and where the functions a, € S ; satisfy

> laylok, 25, < 0. (24)

7€Z2N

Proposition 5.5 The classes R(R*Y) and S, (R*") coincide.
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Proof. Let a € R(R?Y). Then

> XD = Da| o e

l€Z2N

< 33 D — L=l

leZZN erZZN

O3 ooz 3 (L (L) (1 + )™ < oo,

y€Z2N leZ2N

IN

whence the inclusion R(R*) C S, (R*). The reverse inclusion follows from
Proposition 5.1. |

The following observation will be needed to prove the richness of the operators
in OPS,(RY).

Lemma 5.6 Let (Aj);en be a sequence of bounded linear operators on a Hilbert
space H with

D141l < oo, (25)
jEN
and let A := ZjeN A;. Furthermore, let (Uy,)men be a sequence of unitary oper-
ators on H such that the sequences (U, A;jUp)men converge strongly as m — 0o
to certain operators flj for every j. Then the sequence (U}, AUy, )men converges
strongly to A = D e flj.

Proof. Let v € H and € > 0. By condition (25), there is an ny € N such that
£
> gl < 5, (20
Jj>no

and due to strong convergence, there is an my € N such that, for m > my,

max |[(4; - UpA;Un)ull < 5.

1<j<no no

Hence, given arbitrary u € H and € > 0, one finds an my € N such that

1A~ Uz AUl < 371G = U Undul +2 3 | Azu] <2

Jj=1 J>no
for m > my. m
Proposition 5.7 OPS,(R*Y) c W¥(RY),

Proof. Let A := Op(a) € OPS,(RY x RY). By Proposition 5.5, the operator A
can be written as

A= > E.Op(aw)Vs

(a, B)EZN XN
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where

Y. lOp(acs)l < oo

(a, BYEZN XN

Let h:m — hy, := (hl,, b)) € Z" x Z" be a sequence which tends to infinity.
Then, evidently,

U;:mAUhm = Z (U;:mEaUhm) (U;:mOp(aaﬂ)Uhm) (UftmvﬂUhm)
(a, BYEZN XN

Since U, = V3E, and U> = E_,V_g, one has
U, E U, = e ) B and Ui VU, = eiw’h’rn)Vﬂ,

In [6], Lemma 4.2.4, it is verified that there is a subsequence g of h such that the
functions . .
O sy e X9 and oy, 1 B e WBm)

converge uniformly with respect to o, 8 € Z" to certain limit functions ¢ and =y
as m — oo. Clearly, |p(a)| = |v(8)] =1 for each «, B € ZN. It is also easy to
see that

Uy, Op(aap)Uy,, = Op(als)
where
aly (v, &) = aap(T + gy €+ g1n)-

According to the Arzéla-Ascoli Theorem, one further finds a subsequence £ of g

such that the functions a’é”é converge to a limit function a’;ﬂ in the topology of

C>*(R*Y). This implies (compare [6], Theorem 4.3.15) that af; € S{ , and that
Uy Op(aap)Us, — Op(als) strongly as m — oco.

Applying the standard Cantor diagonal process, we finally obtain that every
sequence h has a subsequence [ such that

UL, (EaOp(aas)Va) U, = ¢(0)(B)EaOplags)Vs
strongly as m — oo. Hence, the strong convergence
U AU, = A= Y p()y(B)EOpl(dl,p) Vs (27)
(o, B)EZN XZN

as m — oo follows from Lemma 5.6, and the strong convergence of the adjoint
sequences

Up AU, = A= Y @(@)7(B)V-5 [Oplags)] E-a

(o, B)ELNXLN

can be checked similarly in the same way. [

Now Theorem 17 implies the following final results on the Fredholmness of pseu-
dodifferential operators in the Sjostrand class acting on modulation spaces.
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Theorem 5.8 The following conditions are equivalent for A € OPS,,:

(a) A is a Fredholm operator on M*P(RY) for a certain p € (1, 00);

(b) A is a Fredholm operator on M?*P?(RYN) for each p € (1, 0o);

(c) there is a p € [1, 00| such that all limit operators of A are invertible on
M2’p(RN),'

(d) all limit operators of A are invertible on every space M*P(RN) with p €
[1, oo];

(€) all limit operators are uniformly invertible on each of the spaces M*P(RY)
with p € [1, oo.

Corollary 5.9 Let A € OPS,,. Then the essential spectrum o.5(A) of A con-
sidered as an operator on M*P(RN) does not depend on p € (1,00), and

Oess(AIM*P(RY)) = | oA L*(RY)).
AhEUop(A)
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