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Abstrat

It is known by ounter-examples that the usual L

q

-approah to the Stokes

equations, well known e.g. for bounded and exterior domains, annot be

extended to general domains 
 � R

3

without any modi�ation for q 6= 2.

In the present paper we will show that important properties like Helmholtz

deomposition, analytiity of the Stokes semigroup, and the maximal reg-

ularity estimate of the nonstationary Stokes equations remain valid for

general domains even for q 6= 2 if we replae the spae L

q

for 2 � q < 1

by the intersetion L

2

\ L

q

and for 1 < q < 2 by the sum spae L

2

+ L

q

.

As an appliation we prove the existene of a (suitable) weak solution u

of the Navier-Stokes equations with pressure term rp 2 L

5=4

lo

, onjetured

by Ca�arelli-Kohn-Nirenberg [8℄, and satisfying both the loal and strong

energy inequality.
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1 Introdution

Throughout this paper, 
 � R

3

means a general three-dimensional domain with

uniform C

2

-boundary �
 6= ;, where the main interest is foussed on domains

with nonompat boundary �
. As is well known, the standard approah to

the Stokes equations in L

q

-spaes; 1 < q < 1, annot be extended to general

unbounded domains in L

q

, q 6= 2; for ounter-examples onerning the Helmholtz

deomposition, see [6℄, [26℄. However, to develop a omplete and analogous theory

of the Stokes equations for arbitrary domains, we replae the spae L

q

(
) by

~

L

q

(
) =

(

L

2

(
) \ L

q

(
); 2 � q <1

L

2

(
) + L

q

(
); 1 < q < 2

:
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First, we prove the existene of the Helmholtz projetion P on the spae

~

L

q

(
)

yielding the deomposition f = f

0

+rp, f

0

= Pf; with properties orresponding

to those in L

q

(
).

In the next step we onsider in

~

L

q

(
) the usual resolvent equation

�u��u+rp = f; div u = 0 in 
; u

j

�


= 0; (1.1)

with � in the setor S

"

:= f0 6= � 2 C ; jarg�j <

�

2

+ "g, 0 < " <

�

2

. We prove an

~

L

q

-estimate similar to that in L

q

(
); i.e.,

j�j kuk

~

L

q

+ kr

2

uk

~

L

q

+ krpk

~

L

q

� Ckfk

~

L

q

; 1 < q <1; (1.2)

at least when j�j � Æ > 0, C = C(
; q; "; Æ) > 0.

The Stokes operator A = �P� is well de�ned in

~

L

q

�

(
); 1 < q <1, and the

semigroup fe

�At

; t � 0g is (loally in time) bounded and analyti in some setor

ft 2 C : jarg tj < "

0

, 0 < "

0

<

�

2

g, of the omplex plane.

Further, we prove the maximal regularity estimate of the nonstationary Stokes

system

u

t

��u+rp = f; div u = 0 in 
� (0; T );

u

j

�


= 0; u(0) = u

0

;

(1.3)

with 0 < T <1: To be more preise, if u

0

= 0 for simpliity, then

ku

t

k

Y

q

+ kuk

Y

q

+ kr

2

uk

Y

q

+ krpk

Y

q

� Ckfk

Y

q

; (1.4)

where Y

q

= L

q

(0; T ;

~

L

q

(
)) and C = C(T; q; �; �;K) > 0 depends on T; q, and

the type �; �;K of 
, see Setion 2.3.

As an appliation of these linear results we obtain the existene of a so-alled

suitable weak solution u of the Navier-Stokes system

u

t

��u+ u � ru+rp = f; div u = 0 in 
� (0; T );

u

j

�


= 0; u(0) = u

0

(1.5)

with speial regularity properties whih are new up to now for general domains,

see the onjeture in [8℄, p. 780. In partiular, we get for general domains the

regularity property

rp 2 L

5=4

lo

�

(0; T )� 


�

; (1.6)

whih is needed in the partial regularity theory of the Navier-Stokes equations.

Moreover, u satis�es the loal energy inequality, see (2.26) below and [8℄, (2.5),

as well as the strong energy inequality

1

2

ku(t)k

2

2

+

Z

t

s

kruk

2

2

d� �

1

2

ku(s)k

2

2

+

Z

t

s

hf; uid� (1.7)

for a.a. s 2 [0; T ) inluding s = 0 and all t with s � t < T , see [27℄. This result is

essentially known for domains with ompat boundaries; see [33℄, V. Thm. 3.6.2

and Thm. 3.4.1 for bounded domains, [16℄, [28℄, [32℄ for exterior domains.

2



2 Preliminaries and Main Results

2.1 Sum and Intersetion Spaes

We reall some properties of sum and intersetion spaes known from interpola-

tion theory, f. [4℄, [5℄, [29℄, [36℄.

Consider two (omplex) Banah spaes X

1

; X

2

with norms k�k

X

1

, k�k

X

2

, re-

spetively, and assume that both X

1

and X

2

are subspaes of a topologial vetor

spae V with ontinuous embeddings X

1

� V , X

2

� V . Further, we assume that

the intersetion X

1

\ X

2

is a dense subspae of both X

1

and X

2

in the orre-

sponding norms.

Then the sum spae

X

1

+X

2

:= fu

1

+ u

2

; u

1

2 X

1

; u

2

2 X

2

g � V

is a well de�ned Banah spae with the norm

kuk

X

1

+X

2

:= inffku

1

k

X

1

+ ku

2

k

X

2

; u = u

1

+ u

2

; u

1

2 X

1

; u

2

2 X

2

g:

Another formulation of that norm is given by

ku

1

+ u

2

k

X

1

+X

2

= inffku

1

� vk

X

1

+ ku

2

+ vk

X

2

; v 2 X

1

\X

2

g:

The intersetion spae X

1

\X

2

is a Banah spae with norm

kuk

X

1

\X

2

= max(kuk

X

1

; kuk

X

2

);

whih is equivalent to kuk

X

1

+kuk

X

2

. Note that the spaeX

1

+X

2

an be identi�ed

isometrially with the quotient spae X

1

�X

2

=D where D = f(�v; v); v 2 X

1

\

X

2

g, identifying u = u

1

+ u

2

2 X

1

+ X

2

with the equivalene lass [(u

1

; u

2

)℄ =

f(u

1

� v; u

2

+ v); v 2 X

1

\X

2

g.

Next we onsider the dual spaes X

0

1

; X

0

2

of X

1

; X

2

; resp., with norms

kfk

X

0

i

= sup

n

jhu; fij

kuk

X

i

; 0 6= u 2 X

i

o

; i = 1; 2:

In both ases hu; fi denotes the value of some funtional f at some element u,

and h�; �i is alled the natural pairing between the spae X

i

and its dual spae

X

0

i

: Note that kuk

X

i

= sup fjhu; fij = kfk

X

0

i

; 0 6= f 2 X

0

i

g.

Sine X

1

\X

2

is dense in X

1

and in X

2

, we an identify two elements f

1

2 X

0

1

,

f

2

2 X

0

2

, writing f

1

= f

2

, i� hu; f

1

i = hu; f

2

i holds for all u 2 X

1

\ X

2

. In

this way the intersetion X

0

1

\ X

0

2

is a well de�ned Banah spae with norm

kfk

X

0

1

\X

0

2

= max(kfk

X

0

1

; kfk

X

0

2

). The dual spae (X

1

+X

2

)

0

of X

1

+X

2

is given

by X

0

1

\X

0

2

, and we get

(X

1

+X

2

)

0

= X

0

1

\X

0

2

3



with the natural pairing hu; fi = hu

1

; fi+ hu

2

; fi for all u = u

1

+ u

2

2 X

1

+X

2

,

f 2 X

0

1

\X

0

2

. Thus it holds

kuk

X

1

+X

2

= sup

n

jhu

1

; fi+ hu

2

; fij

kfk

X

0

1

\X

0

2

; 0 6= f 2 X

0

1

\X

0

2

o

and

kfk

X

0

1

\X

0

2

= sup

n

jhu

1

; fi+ hu

2

; fij

kuk

X

1

+X

2

; 0 6= u = u

1

+ u

2

2 X

1

+X

2

o

;

see [4℄, p. 32, [36℄, p. 69. Therefore, jhu; fij � kuk

X

1

+X

2

kfk

X

0

1

\X

0

2

.

By analogy, we obtain that

(X

1

\X

2

)

0

= X

0

1

+X

0

2

with the natural pairing hu; f

1

+ f

2

i = hu; f

1

i+ hu; f

2

i.

Consider losed subspaes L

1

� X

1

, L

2

� X with norms k�k

L

1

= k�k

X

1

,

k�k

L

2

= k�k

X

2

and assume that L

1

\ L

2

is dense in both L

1

and L

2

in the or-

responding norms. Then kuk

L

1

\L

2

= kuk

X

1

\X

2

, u 2 L

1

\ L

2

, and an elementary

argument, using the Hahn-Banah theorem shows that also

kuk

L

1

+L

2

= kuk

X

1

+X

2

; u 2 L

1

+ L

2

: (2.1)

In partiular, we need the following speial ase. Let B

1

: D(B

1

) ! X

1

,

B

2

: D(B

2

) ! X

2

be losed linear operators with dense domains D(B

1

) � X

1

,

D(B

2

) � X

2

equipped with graph norms

kuk

D(B

1

)

= kuk

X

1

+ kB

1

uk

X

1

; kuk

D(B

2

)

= kuk

X

2

+ kB

2

uk

X

2

:

We assume that D(B

1

) \ D(B

2

) is dense in both D(B

1

) and D(B

2

) in the or-

responding graph norms. Eah funtional F 2 D(B

i

)

0

; i = 1; 2; is given by

some pair f; g 2 X

0

i

in the form hu; F i = hu; fi + hB

i

u; gi. Using (2.1) with

L

i

= f(u;B

i

u); u 2 D(B

i

)g � X

i

� X

i

; i = 1; 2; and the equality of norms

k � k

(X

1

�X

1

)+(X

2

�X

2

)

and k � k

(X

1

+X

2

)�(X

1

+X

2

)

on (X

1

�X

1

) + (X

2

�X

2

), we on-

lude that for eah u 2 D(B

1

) + D(B

2

) with deomposition u = u

1

+ u

2

; u

1

2

D(B

1

); u

2

2 D(B

2

);

kuk

D(B

1

)+D(B

2

)

= ku

1

+ u

2

k

X

1

+X

2

+ kB

1

u

1

+B

2

u

2

k

X

1

+X

2

: (2.2)

Suppose that X

1

and X

2

are reexive Banah spaes implying that eah

bounded sequene in X

1

(and X

2

) has a weakly onvergent subsequene. This

argument yields the following property: Given u 2 X

1

+X

2

there exist u

1

2 X

1

,

u

2

2 X

2

with u = u

1

+ u

2

suh that

kuk

X

1

+X

2

= ku

1

k

X

1

+ ku

2

k

X

2

: (2.3)
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2.2 Funtion Spaes

Let D

j

= �=�x

j

, j = 1; 2; 3, x = (x

1

; x

2

; x

3

) 2 
 � R

3

, r = (D

1

; D

2

; D

3

),

and r

2

= (D

j

D

k

)

j;k=1;2;3

: The spaes of smooth funtions on 
 are denoted as

usual by C

k

(
), C

k

(
), C

k

0

(
) with k 2 N

0

= N [ f0g or k = 1. We set

C

1

0;�

(
) = fu = (u

1

; u

2

; u

3

) 2 C

1

0

(
); div u = 0g.

Let 1 < q < 1 and q

0

=

q

q�1

suh that

1

q

+

1

q

0

= 1. Then L

q

(
) with

norm kuk

L

q

= kuk

q

= kuk

q;


denotes the usual Lebesgue spae for salar or

vetor �elds. Eah f = (f

1

; f

2

; f

3

) 2 L

q

0

(
) = L

q

(
)

0

will be identi�ed with the

funtional h�; fi : u 7! hu; fi = hu; fi




=

R




u � f dx on L

q

(
). Let L

q

�

(
) =

C

0;�

(
)

k�k

q

� L

q

(
) denote the subspae of divergene-free vetor �elds u =

(u

1

; u

2

; u

3

) with zero normal omponent N � u

j

�


at �
; here N means the outer

normal at �
: The usual Sobolev spaes W

k;q

(
) are mainly used for k = 1; 2

with norms kuk

W

1;q

= kuk

1;q

= kuk

1;q;


= kuk

q

+ kruk

q

and kuk

W

2;q

= kuk

2;q

=

kuk

2;q;


= kuk

1;q

+ kr

2

uk

q

, resp. Further, we need the subspaes W

1;q

0

(
) =

C

1

0

(
)

k�k

1;q

� W

1;q

(
) and W

1;q

0;�

(
) = C

1

0;�

(
)

k�k

1;q

� W

1;q

(
).

For simpliity, we will write C

k

; L

q

; W

1;q

�

et. instead of C

k

(
); L

q

(
);

W

1;q

�

(
), resp., when the underlying domain is known from the ontext. More-

over, we will use the same notation for spaes of salar-, vetor- or matrix-valued

funtions.

The sum spae L

2

+ L

q

is well de�ned when V in x 2.1 is the spae of distri-

butions with the usual topology. We obtain that

(L

2

+ L

q

)

0

= L

2

\ L

q

0

; (L

2

\ L

q

)

0

= L

2

+ L

q

0

;

where kuk

L

2

\L

q

= max(kuk

2

; kuk

q

) and

kuk

L

2

+L

q

= inf fku

1

k

2

+ ku

2

k

q

; u = u

1

+ u

2

; u

1

2 L

2

; u

2

2 L

q

g

= sup

n

jhu

1

+ u

2

; fij

kfk

L

2

\L

q

0

; 0 6= f 2 L

2

\ L

q

0

o

:

For the nonstationary problem on some time interval [0; T ), 0 < T � 1,

we need the usual Banah spae L

s

(0; T ;X) of measurable X{valued (lasses of)

funtions u with norm

kuk

L

s

(0;T ;X)

=

�

Z

T

0

ku(t)k

s

X

dt

�

1

s

; 1 � s <1;

where X is a Banah spae. For s =1 let

kuk

L

1

(0;T ;X)

= ess sup fku(t)k

X

; 0 � t < Tg:

If X is reexive and 1 < s < 1, then the dual spae of L

s

(0; T ;X) is given

by L

s

(0; T ;X)

0

= L

s

0

(0; T ;X

0

), s

0

=

s

s�1

, with the natural pairing hu; fi

T

=

R

T

0

hu(t); f(t)i dt.
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Let X = L

q

(
), 1 < q < 1. Then we use the notations kuk

L

s

(0;T ;L

q

)

=

� R

T

0

kuk

s

q

dt

�

1=s

; moreover, the pairing of L

s

(0; T ;L

q

) with its dual L

s

0

(0; T ;L

q

0

)

is given by hu; fi

T

= hu; fi


;T

=

R

T

0

R




u � f dx dt.

Let Y

1

= L

s

(0; T ;L

2

); Y

2

= L

s

(0; T ;L

q

) with 1 < q; s <1. Then we see that

(Y

1

+ Y

2

)

0

= Y

0

1

\ Y

0

2

= L

s

0

(0; T ;L

2

\ L

q

0

) = L

s

(0; T ;L

2

+ L

q

)

0

;

where the pairing between Y

1

+ Y

2

and Y

0

1

\ Y

0

2

is given by hu

1

+ u

2

; fi

T

=

hu

1

; fi

T

+ hu

2

; fi

T

for u

1

2 Y

1

, u

2

2 Y

2

, f 2 Y

0

1

\Y

0

2

. Furthermore, we an hoose

the deomposition u = u

1

+ u

2

2 L

s

(0; T ;L

2

+ L

q

) in suh a way that

kuk

Y

1

+Y

2

= ku

1

k

Y

1

+ ku

2

k

Y

2

: (2.4)

We onlude that

ku

1

+ u

2

k

Y

1

+Y

2

= sup

n

jhu

1

+ u

2

; fi

T

j

kfk

Y

0

1

\Y

0

2

; 0 6= f 2 L

s

0

(0; T ;L

2

\ L

q

0

)

o

: (2.5)

2.3 Struture Properties of the Boundary �


We reall some well known tehnial details on the uniform C

2

{domain 
 � R

3

,

see e.g. [1℄, p. 67, [20℄, p. 645, [33℄, p. 26. By de�nition, this means that there

are onstants �; �;K > 0 with the following properties:

For eah x

0

2 �
 we an hoose a Cartesian oordinate system with origin

x

0

and oordinates y = (y

1

; y

2

; y

3

) = (y

0

; y

3

), y

0

= (y

1

; y

2

), obtained by some

translation and rotation, as well as some C

2

-funtion h(y

0

), jy

0

j � �, with

C

2

-norm khk

C

2

� K, suh that the neighborhood

U

�;�;h

(x

0

) := f(y

0

; y

3

); h(y

0

)� � < y

3

< h(y

0

) + �; jy

0

j < �g

of x

0

satis�es

U

�

�;�;h

(x

0

) := f(y

0

; y

3

); h(y

0

)� � < y

3

< h(y

0

); jy

0

j < �g = 
 \ U

�;�;h

(x

0

);

and

�
 \ U

�;�;h

(x

0

) = f(y

0

; y

3

); h(y

0

) = y

3

; jy

0

j < �g :

Without loss of generality we may assume that the axes of y

0

= (y

1

; y

2

) are

ontained in the tangential plane at x

0

. Thus at y

0

= (0; 0) we have h(y

0

) = 0 and

r

0

h(y

0

) = (�h=�y

1

; �h=y

2

) = (0; 0). Therefore, for any given onstant M

0

> 0,

we may hoose � > 0 suÆiently small suh that a smallness ondition of the

form kr

0

hk

C

0

= maxfjr

0

h(y

0

)j; jy

0

j � �g � M

0

is satis�ed. It is important to

note that the onstants �; �;K > 0 do not depend on x

0

2 
. We all �; �;K

the type of 
.
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Let 
 be the losure of 
 and let B

r

(x) = fw 2 R

3

; jw � xj < rg be the

open ball with enter x 2 R

3

and radius r > 0. Then we an hoose some �xed

r 2 (0; �) depending only on �; �;K, balls B

j

= B

r

(x

j

) with enters x

j

2 
, and

C

2

-funtions h

j

(y

0

), jy

0

j � �, where j = 1; 2; : : : ; N if 
 is bounded and j 2 N if


 is unbounded, suh that


 �

N

[

j=1

B

j

or 
 �

1

[

j=1

B

j

; respetively; (2.6)

B

j

� U

�;�;h

j

(x

j

) if x

j

2 �
; B

j

� 
 if x

j

2 
:

Moreover, we an onstrut this overing in suh a way that not more than a

�xed �nite number N

0

= N

0

(�; �;K) 2 N of these balls B

1

; B

2

; : : : an have a

nonempty intersetion. Thus if we hoose any N

0

+ 1 di�erent balls B

1

; B

2

; : : :,

then their ommon intersetion is empty. If 
 is bounded, let N

0

= N .

Conerning the fB

j

g there exists a partition of unity '

j

2 C

1

0

(R

3

) with

0 � '

j

� 1, supp'

j

� B

j

, j = 1; : : : ; N or j 2 N ; satisfying

N

X

j=1

'

j

(x) = 1 or

1

X

j=1

'

j

(x) = 1; respetively, for all x 2 
; (2.7)

and the pointwise estimates jr'

j

(x)j; jr

2

'

j

(x)j � C uniformly with respet to

j where C = C(�; �;K):

If 
 is unbounded, we an represent 
 as a union of ountably many bounded

C

2

-subdomains 


j

� 
, j 2 N , suh that




j

� 


j+1

for all j 2 N ; 
 =

1

[

j=1




j

; (2.8)

and suh that eah 


j

has some �xed type �

0

; �

0

; K

0

> 0. Without loss of gener-

ality we may assume that � = �

0

, � = �

0

, K = K

0

: eah subdomain 


j

, j 2 N ,

has the same type �; �;K as 
, see [20℄, p. 665. Obviously eah ompat subset




0

� 
 is ontained in some 


j

and therefore in eah 


k

, k � j; see [33℄, p. 56,

Remark 1.4.2.

Finally we need a tehnial property in subsequent proofs. Given a ball

B

r

(x) � R

3

onsider some Cartesian oordinate system with origin x and o-

ordinates y = (y

0

; y

3

). Then B

�

r

(x) := fy = (y

0

; y

3

); jyj < r; y

3

< 0g is alled a

half ball with enter x and radius r. We may assume without loss of generality

that there are appropriate half balls B

�

j

= B

�

r

(x

j

) of the balls B

j

in (2.7) suh

that

supp'

j

� B

�

j

if x

j

2 
 where j = 1; : : : ; N or j 2 N: (2.9)
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2.4 Main Results on the Stokes Equations

We an extend several important L

q

-properties of the Stokes equations known

for speial domains suh as bounded or exterior domains, to general domains 


if we replae the usual L

q

-spae by the (smaller) spae

~

L

q

=

~

L

q

(
) = L

2

(
) \ L

q

(
) for 2 � q <1;

and by the (larger) spae

~

L

q

=

~

L

q

(
) = L

2

(
) + L

q

(
) for 1 < q < 2:

Analogously, we de�ne the subspae

~

L

q

�

=

~

L

q

�

(
) �

~

L

q

(
) by setting

~

L

q

�

=

L

2

�

(
) \ L

q

�

(
) for 2 � q <1, and

~

L

q

�

= L

2

�

(
) + L

q

�

(
) for 1 < q < 2.

In the same way we modify the L

q

{Sobolev spaes W

k;q

(
) and the spaes

G

q

(
) = frp 2 L

q

; p 2 L

q

lo

(
)g; krpk

G

q

= krpk

L

q

;

D

q

(
) = L

q

�

(
) \W

1;q

0

(
) \W

2;q

(
); kuk

D

q

= kuk

W

2;q

;

1 < q <1, as follows: For 2 � q <1 let

~

W

k;q

(
) = W

k;2

(
) \W

k;q

(
);

~

G

q

(
) = G

2

(
) \G

q

(
);

~

D

q

(
) = D

2

(
) \D

q

(
);

and for 1 < q < 2 let

~

W

k;q

(
) = W

k;2

(
) +W

k;q

(
);

~

G

q

(
) = G

2

(
) +G

q

(
);

~

D

q

(
) = D

2

(
) +D

q

(
);

k = 1; 2. Then the norms k�k

~

W

k;q

; k�k

~

G

q

and k�k

~

D

q

are well de�ned. If 
 is

bounded, then

~

L

q

= L

q

;

~

L

q

�

= L

q

�

;

~

G

q

= G

q

;

~

D

q

= D

q

and

~

W

k;q

=

~

W

k;q

hold

with equivalent norms. Thus the introdution of "�"{spaes is reasonable only

for unbounded domains.

Our �rst result yields the existene of the Helmholtz projetion in

~

L

q

(
). The

ounter-examples in [6℄, [26℄, show that the usual L

q

-theory for speial domains

annot be extended to 
 for arbitrary q 6= 2. It is important to note that the

onstants C = C(q; �; �;K) > 0 below only depend on q and the type �; �;K of

the domain 
.

Theorem 2.1 (Helmholtz deomposition) Let 
 � R

3

be a uniform C

2

-

domain of type �; �;K > 0 and let 1 < q < 1; q

0

=

q

q�1

. Then for eah

f 2

~

L

q

there exists a unique deomposition f = f

0

+rp with f

0

2

~

L

q

�

, rp 2

~

G

q

satisfying the estimate

kf

0

k

~

L

q

+ krpk

~

L

q

� Ckfk

~

L

q

; C = C(q; �; �;K) > 0: (2.10)
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The Helmholtz projetion P =

~

P

q

de�ned by

~

P

q

f = f

0

is a bounded operator from

~

L

q

onto

~

L

q

�

satisfying

~

P

q

f = f if f 2

~

L

q

�

and

~

P

q

(rp) = 0 if rp 2

~

G

q

. Moreover,

h

~

P

q

f; gi = hf;

~

P

q

0

gi for all f 2

~

L

q

, g 2

~

L

q

0

.

Remark 2.2 By Theorem 2.1 we onlude that

~

P

0

q

=

~

P

q

0

for the dual operator

~

P

0

q

= (

~

P

q

)

0

of

~

P

q

, 1 < q <1, and (

~

L

q

�

)

0

=

~

L

q

0

�

with pairing h�; �i. We also get that

the norm de�ned by

kuk

�

~

L

q

�

= sup

n

jhu; fij

kfk

~

L

q

0

�

; 0 6= f 2

~

L

q

0

�

o

; u 2

~

L

q

�

; (2.11)

is equivalent to the norm kuk

~

L

q

�

= kuk

~

L

q

in the sense that kuk

�

~

L

q

�

� kuk

~

L

q

�

�

Ckuk

�

~

L

q

�

with C = C(q; �; �;K) > 0 from (2.10).

The usual L

q

-Stokes operator A = A

q

with domain D(A

q

) = D

q

= L

q

�

\

W

1;q

0

\W

2;q

� L

q

�

and range R(A

q

) � L

q

�

de�ned by A

q

u = �P

q

�u is meaningful

if the Helmholtz projetion P

q

: L

q

! L

q

�

is well de�ned. Thus, beause of the

ounter-examples, see [6℄, [26℄, we annot expet that this theory is extendable

to general domains 
 for q 6= 2 without modi�ation of the L

q

-spae.

Next we will show that the usual Stokes estimate, at least for j�j � Æ >

0, remains valid for 
 when we replae the L

q

-theory by the

~

L

q

-theory. More

preisely, let the Stokes operator A =

~

A

q

be de�ned as an operator with domain

D(

~

A

q

) =

~

D

q

�

~

L

q

�

into

~

L

q

�

, by setting

~

A

q

u = �

~

P

q

�u; u 2

~

D

q

:

Let I be the identity and S

"

= f0 6= � 2 C ; j arg�j <

�

2

+ "g, 0 < " <

�

2

.

Theorem 2.3 (Stokes resolvent) Let 
 � R

3

be a uniform C

2

-domain of type

�; �;K > 0 and let 1 < q <1; q

0

=

q

q�1

, 0 < " <

�

2

, Æ > 0. Then

~

A

q

= �

~

P

q

� : D(

~

A

q

)!

~

L

q

�

; D(

~

A

q

) �

~

L

q

�

;

is a densely de�ned losed operator, the resolvent (�I +

~

A

q

)

�1

:

~

L

q

�

!

~

L

q

�

is well

de�ned for all � 2 S

"

; and for u = (�I +

~

A

q

)

�1

f , f 2

~

L

q

�

, the estimate

j�j kuk

~

L

q

�

+ kuk

~

W

2;q

� Ckfk

~

L

q

�

; j�j � Æ; (2.12)

with C = C(q; "; Æ; �; �;K) > 0, is satis�ed. Further, it holds the duality relation

h

~

A

q

u; vi = hu;

~

A

q

0

vi; u 2 D(

~

A

q

); v 2 D(

~

A

q

0

): (2.13)

Remark 2.4 a) From (2.12) we onlude that �

~

A

q

generates a C

0

-semigroup

fe

�t

~

A

q

; t � 0g whih has an analyti extension to some setor f0 6= t 2

C ; j arg tj < "

0

g, 0 < "

0

<

�

2

, satisfying the estimate

ke

�t

~

A

q

fk

~

L

q

�

� Me

Æt

kfk

~

L

q

�

; f 2

~

L

q

�

; t � 0; (2.14)
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with M =M(q; Æ; �; �;K) > 0. Note that Æ > 0 may be hosen arbitrarily small,

but we annot prove up to now whether (2.14) holds with Æ = 0 for the general

domain 
.

b) Let f 2

~

L

q

, 1 < q < 1, � 2 S

"

, j�j > Æ, and set u = (�I +

~

A

q

)

�1

~

P

q

f ,

rp = (I �

~

P

q

)(f + �u). Then we obtain a unique solution pair u 2 D(

~

A

q

),

rp 2

~

G

q

of the equation �u��u+rp = f , and by (2.12)

j�j kuk

~

L

q

+ kr

2

uk

~

L

q

+ krpk

~

L

q

� Ckfk

~

L

q

; (2.15)

where C = C(q; "; Æ; �; �;K) > 0.

) Due to (2.15) the graph norm kuk

D(

~

A

q

)

= kuk

~

L

q

�

+ k

~

A

q

uk

~

L

q

�

on the Banah

spae D(

~

A

q

) satis�es the estimate

Ckuk

~

W

2;q

� kuk

D(

~

A

q

)

� C

0

kuk

~

W

2;q

; u 2 D(

~

A

q

); (2.16)

with onstants C = C(q; �; �;K) > 0, C

0

= C

0

(q; �; �;K) > 0. Hene the norms

kuk

~

W

2;q

and kuk

D(

~

A

q

)

are equivalent.

Another important property is the maximal regularity estimate of the non-

stationary Stokes equation (1.3) whih an be written, applying the Helmholtz

projetion, in the form

u

t

+

~

A

q

u = f; u(0) = u

0

: (2.17)

For simpliity, we do not use the weakest possible norm for the initial value u

0

,

see Remark 2.6, a).

Theorem 2.5 (Nonstationary Stokes system) Let 
 � R

3

be a uniform C

2

-

domain of type �; �;K > 0, and let 0 < T <1, Y

q

= L

q

(0; T ;

~

L

q

�

); 1 < q <1:

Then for eah f 2 Y

q

and eah u

0

2 D(

~

A

q

) there exists a unique solution u 2

L

q

�

0; T ;D(

~

A

q

)

�

, u

t

2 Y

q

, of the evolution system (2.17), satisfying the estimate

ku

t

k

Y

q

+ kuk

Y

q

+ k

~

A

q

uk

Y

q

� C

�

ku

0

k

D(

~

A

q

)

+ kfk

Y

q

�

(2.18)

with C = C(q; T; �; �;K) > 0.

Remark 2.6 a) The assumption u

0

2 D(

~

A

q

) in this theorem is not optimal and

may be replaed by the weaker properties u

0

2

~

L

q

�

and

R

T

0

k

~

A

q

e

�t

~

A

q

u

0

k

q

~

L

q

�

dt <1.

Then the term ku

0

k

D(

~

A

q

)

in (2.18) may be substituted by the weaker norm

�

Z

T

0

k

~

A

q

e

�t

~

A

q

u

0

k

q

~

L

q

�

dt

�

1

q

; 1 < q <1: (2.19)

Furthermore, by (2.16), the estimate (2.18) implies that

ku

t

k

Y

q

+ kuk

L

q

(0;T ;

~

W

2;q

)

� C

�

ku

0

k

D(

~

A

q

)

+ kfk

Y

q

�

; (2.20)
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where C = C(q; T; �; �;K) > 0.

b) Let f 2 Y

q

= L

q

(0; T ;

~

L

q

�

) in Theorem 2.5 be replaed by f 2

^

Y

q

= L

q

(0; T ;

~

L

q

),

1 < q < 1. Then u 2 L

q

�

0; T ;D(

~

A

q

)

�

, de�ned by u

t

+

~

A

q

u =

~

P

q

f , and rp,

de�ned by rp(t) = (I �

~

P

q

)

�

f +�u

�

(t), is a unique solution pair of the system

u

t

��u+rp = f; u(0) = u

0

;

satisfying

ku

t

k

Y

q

+ kuk

Y

q

+ kr

2

uk

^

Y

q

+ krpk

^

Y

q

� C

�

ku

0

k

D(

~

A

q

)

+ kfk

^

Y

q

�

(2.21)

with C = C(q; T; �; �;K) > 0.

Using (2.3) we see that in the ase 1 < q < 2 the solution pair u;rp possesses

a deomposition u = u

(1)

+ u

(2)

, rp = rp

(1)

+rp

(2)

suh that

u

(1)

2 L

q

(0; T ;W

2;2

); u

(1)

t

2 L

q

(0; T ;L

2

�

);

u

(2)

2 L

q

(0; T ;W

2;q

); u

(2)

t

2 L

q

(0; T ;L

q

�

); (2.22)

rp

(1)

2 L

q

(0; T ;L

2

); rp

(2)

2 L

q

(0; T ;L

q

);

and

ku

t

k

Y

q

+ kuk

Y

q

+ kr

2

uk

^

Y

q

+ krpk

^

Y

q

= ku

(1)

t

k

^

Y

(1)

q

+ ku

(1)

k

^

Y

(1)

q

+ kr

2

u

(1)

k

^

Y

(1)

q

+ krp

(1)

k

^

Y

(1)

q

+

ku

(2)

t

k

^

Y

(2)

q

+ ku

(2)

k

^

Y

(2)

q

+ kr

2

u

(2)

k

^

Y

(2)

q

+ krp

(2)

k

^

Y

(2)

q

where

^

Y

(1)

q

= L

q

(0; T ;L

2

),

^

Y

(2)

q

= L

q

(0; T ;L

q

).

2.5 Appliations

As an appliation we onstrut a so-alled suitable weak solution u of the insta-

tionary Navier-Stokes system

u

t

��u+ u � ru+rp = f; div u = 0 in 
� (0; T )

u(0) = u

0

; u

j

�


= 0

(2.23)

for the general domain 
 � R

3

with important additional properties. In partiu-

lar we are interested in estimate (2.21) for q =

5

4

. The reason is that the energy

properties u 2 L

1

(0; T ;L

2

�

), ru 2 L

2

(0; T ;L

2

) imply that u � ru 2 L

q

(0; T ;L

q

)

with q =

5

4

. Hene, shifting u � ru in (2.23) to the right-hand side and onsid-

ering for simpliity u

0

= 0; we get from (2.21) that rp 2 L

q

(0; T ;L

2

+ L

q

) and

rp 2 L

q

lo

�

(0; T )� 


�

. This property is needed in the loal regularity theory as

well as in the proof of the loal energy estimate. It was onjetured in [8℄, p. 780,

and open up to now for general domains.
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Moreover, we prove that u satis�es the strong energy inequality, see [16℄,

[28℄, [33℄, whih was open for general domains as well. A onsequene is Leray's

struture theorem [25℄ for general domains; note that the proof in [25℄ onerns

the entire spae R

3

only.

We reall some de�nitions, see, e.g., [33℄, [35℄. The spae C

1

0

([0; T );C

1

0;�

)

onsists of smooth solenoidal vetor �elds v de�ned on [0; T )� 
 with ompat

support supp v � [0; T )� 
.

Let f 2 L

5=4

(0; T ;L

2

), 0 < T � 1, u

0

2 L

2

�

. Then a funtion u 2

L

1

(0; T ;L

2

�

) \ L

2

lo

�

[0; T );W

1;2

0;�

�

is alled a weak solution of (2.23) i�

�hu; v

t

i


;T

+ hru;rvi


;T

+ hu � ru; vi


;T

= hu

0

; v(0)i




+ hf; vi


;T

(2.24)

is satis�ed for all v 2 C

1

0

�

[0; T );C

1

0;�

�

. We may assume without loss of generality

that u is weakly ontinuous as a funtion from [0; T ) to L

2

�

.

We know that for eah weak solution u there exists a distribution p in (0; T )�


suh that u

t

��u+u �ru+rp = f holds in the sense of distributions, see [33℄; p

is alled an assoiated pressure of u. However, for general 
 it is ruial whether

p is ontained in any L

q

�type spae; the problem in this ontext is the validity

of the maximal regularity estimate (2.21) for q =

5

4

.

The following result is essentially known for domains with ompat bound-

aries; see [33℄, V. Thm. 3.6.2, for bounded domains, and [28℄, [32℄ for exterior

domains.

Theorem 2.7 (Suitable weak solution) Let 
 � R

3

be a uniform C

2

-domain

of type �; �;K, let 0 < T � 1, q =

5

4

, f 2 L

q

(0; T ;L

2

) and u

0

2 L

2

�

. Then there

exists a weak solution u 2 L

1

(0; T ;L

2

�

)\L

2

lo

�

[0; T );W

1;2

0;�

�

(alled a suitable weak

solution) of the system (2.23) and an assoiated pressure p with the following

additional properties:

(a) Regularity:

u

t

; u;ru;r

2

u;rp 2 L

q

("; T

0

;L

2

+ L

q

) (2.25)

with 0 < " < T

0

< T: If u

0

2 D(

~

A

q

), then (2.25) holds for " = 0; 0 < T

0

< T:

(b) Loal energy inequality:

1

2

k�u(t)k

2

2

+

Z

t

s

k�ruk

2

2

d� �

1

2

k�u(s)k

2

2

+

Z

t

s

h�f; �ui d� (2.26)

�

1

2

Z

t

s

hrjuj

2

;r�

2

i d� +

Z

t

s

h

1

2

juj

2

+ p; u � r�

2

i d�

for a.a. s 2 [0; T ), all t 2 [s; T ), and all � 2 C

1

0

(R

3

).

() Strong energy inequality:

1

2

ku(t)k

2

2

+

Z

t

s

kruk

2

2

d� �

1

2

ku(s)k

2

2

+

Z

t

s

hf; ui d� (2.27)

for a.a. s 2 [0; T ) inluding s = 0, and all t 2 [s; T ).
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Remark 2.8 a) From (2.25) we obtain the existene of some pressure p satisfying

p 2 L

q

�

"; T

0

;L

r

lo

(
)

�

; 0 < " < T

0

< T; q =

5

4

; r =

15

7

; (2.28)

and we get that u 2 L

2

�

0; T

0

;L

6

(
)

�

, 0 < T

0

< T . This shows that (2.26) is well

de�ned. As in (2.22) we obtain deompositions u = u

(1)

+ u

(2)

, p = p

(1)

+ p

(2)

satisfying

u

(1)

t

; u

(1)

;ru

(1)

;r

2

u

(1)

;rp

(1)

2 L

q

("; T

0

;L

2

) for 0 < " < T

0

< T (2.29)

and

u

(2)

t

; u

(2)

;ru

(2)

;r

2

u

(2)

;rp

(2)

2 L

q

("; T

0

;L

q

) for 0 < " < T

0

< T; (2.30)

whih holds with " = 0 if additionally u

0

2 D(

~

A

q

): Note that we may hoose

T

0

= T in (2.25) if T <1:

b) To obtain Leray's struture theorem, see [25℄, let T = 1 and assume for

simpliity that f = 0. Then u in Theorem 2.7, also alled a turbulent weak

solution of (2.23), has the following properties: There exists a ountable disjoint

family fI

k

g

1

k=0

of intervals in (0;1) suh that

(1) I

1

= (0; T

1

), I

0

= [T

1

;1) with some 0 < T

1

� T

1

<1,

(2) j(0;1)n [

1

k=0

I

k

j = 0,

P

1

k=1

jI

k

j

1

2

< 1 where j � j denotes the Lebesgue

measure,

(3) u(�; t) 2 C

1

(
) for every t 2 I

k

, k = 0; 1; : : :

These properties imply that the

1

2

�dimensional Hausdor� measure of the singular

set

P

= ft 2 (0;1); u(�; t) 62 C

1

(
)g is zero, see [8℄.

3 Proofs

3.1 Preliminary Loal Results

Using the struture properties of the given uniform C

2

{domain 
 � R

3

of type

�; �;K > 0, see x 2.3, we are able to redue our results by the loalization

priniple to a standard domain of the form

H = H

�;�;r;h

= f(y

0

; y

3

); h(y

0

)� � < y

3

< h(y

0

); jy

0

j < �g \ B

r

; (3.1)

here h : y

0

7! h(y

0

), jy

0

j � �, is a C

2

-funtion and B

r

= B

r

(0) a ball with radius

0 < r = r(�; �;K) < � suh that

B

r

� f(y

0

; y

3

); h(y

0

)� � < y

3

< h(y

0

) + �; jy

0

j < �g:

13



Further, we may assume that h(0) = 0, r

0

h(0) = (0; 0), h(y

0

) = 0 for r � jy

0

j � �,

and that h satis�es the smallness ondition

kr

0

hk

C

0

= maxfjr

0

h(y

0

)j; jy

0

j � �g �M

0

; (3.2)

where M

0

> 0 is a given onstant. Reall that r

0

= (D

1

; D

2

):

In the subsequent proofs we an treat eah problem for the standard domain

(3.1) as a problem in the domain H

h

= f(y

0

; y

3

) 2 R

3

; y

3

< h(y

0

); y

0

2 R

2

g

with h 2 C

2

0

(R

2

); H

h

is alled a bent half spae, see [11℄. Then, using the

smallness ondition (3.2), an equation in H

h

is onsidered as a perturbation of

some equation in the half spae H

0

= f(y

0

; y

3

) 2 R

3

; y

3

< 0g.

The following estimates in H = H

�;�;h;r

are well known. However, we have

to hek that the onstants in these estimates depend only on q; �; �;K; here we

need the smallness ondition (3.2) on h.

Let 1 < q < 1. First we onsider the Helmholtz deomposition in H. Let

f 2 L

q

(H), f

0

2 L

q

�

(H), p 2 W

1;q

(H) satisfy f = f

0

+rp and supp f

0

[ supp p �

B

r

: Then

kf

0

k

L

q

(H)

+ krpk

L

q

(H)

� Ckfk

L

q

(H)

; C = C(q; �; �;K) > 0; (3.3)

f. [31℄, p. 12, and Lemma 3.8, a).

Next let f 2 L

q

(H), u 2 L

q

�

(H) \W

1;q

0

(H) \W

2;q

(H), p 2 W

1;q

(H) satisfy

�u��u+rp = f with � 2 S

"

, see Theorem 2.3, and with supp u[ supp p � B

r

.

Then there are onstants �

0

= �

0

(q; �; �;K) > 0, C = C(q; �; �;K) > 0 suh

that

j�j kuk

L

q

(H)

+ kuk

W

2;q

(H)

+ krpk

L

q

(H)

� Ckfk

L

q

(H)

(3.4)

if j�j � �

0

. To prove this estimate we use [11℄, p. 624, and apply [11℄, Theorem

3.1, (i), and (1.2).

The next estimate onerns the nonstationary Stokes equation in H. As usual

the Stokes operator is de�ned by A

q

= �P

q

� with domain D(A

q

) = L

q

�

(H) \

W

1;q

0

(H) \ W

2;q

(H). Let 0 < T < 1, u

0

2 D(A

q

), f 2 L

q

�

0; T ;L

q

(H)

�

; and

let u 2 L

q

�

0; T;D(A

q

)

�

, p 2 L

q

�

0; T ;W

1;q

(H)

�

satisfy supp u

0

[ supp u(t) [

supp p(t) � B

r

for a.a. t 2 [0; T ℄. Moreover, assume that

u

t

��u+rp = f; u(0) = u

0

or � u

t

��u+rp = f; u(T ) = u

0

;

resp. Then there is a onstant C = C(q; �; �;K; T ) > 0 suh that

ku

t

k

L

q

(0;T ;L

q

(H))

+ kuk

L

q

(0;T ;W

2;q

(H))

+ krpk

L

q

(0;T ;L

q

(H))

(3.5)

� C

�

ku

0

k

W

2;q

(H)

+ kfk

L

q

(0;T ;L

q

(H))

�

:

In the ase u(0) = u

0

this estimate follows from [34℄, Theorem 4.1, (4.2) and

(4.21'). The seond ase �u

t

��u+rp = f , u(T ) = u

0

, an be redued to the

�rst ase by the transformation ~u(t) = u(T � t),

~

f(t) = f(T � t), ~p(t) = p(T � t).
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The relatively strong assumption u

0

2 D(A

q

) is used for simpliity and an be

weakened as in Remark 2.6, a). Note that the onditions u(0) = u

0

or u(T ) = u

0

,

resp., are well de�ned sine u

t

2 L

q

(0; T ;L

q

�

).

Finally, we onsider the divergene problem

div u = f in H; u

j

�H

= 0 ;

and let L

q

0

(H) = ff 2 L

q

(H);

R

H

f dx = 0g. Then from [14℄, III, Theorem 3.2,

we obtain the existene of some linear operator R : L

q

0

(H)!W

1;q

0

(H) satisfying

divRf = f and

kRfk

W

1;q

(H)

� Ckfk

L

q

(H)

if f 2 L

q

0

(H); (3.6)

kRfk

W

2;q

(H)

� Ckfk

W

1;q

(H)

if f 2 L

q

0

(H) \W

1;q

0

(H)

with C = C(q; �; �;K) > 0; moreover, Rf 2 W

2;q

0

(H) if f 2 L

q

0

(H) \W

1;q

0

(H):

The dual operator R

0

of R maps W

�1;q

0

(H) into L

q

0

0

(H). Thus for eah p 2

L

q

0

(H) we �nd a unique onstantM =M(p) satisfying p�M = R

0

(rp) 2 L

q

0

0

(H)

and the estimate

kp�Mk

L

q

0

(H)

� Ckrpk

W

�1;q

0

(H)

= C sup

n

jhp; div vij

krvk

q

; 0 6= v 2 W

1;q

0

(H)

o

(3.7)

with C = C(q; �; �;K) > 0.

Now let 
 � R

3

be a bounded C

2

-domain �
. Obviously, suh a domain is of

type �; �;K. We ollet several results on the Helmholtz projetion P = P

q

and

the Stokes operator A = A

q

, 1 < q <1. In this ase the onstant C below may

depend also on 
 exept for q = 2 where Hilbert spae arguments are appliable.

It is known, see [13℄, [31℄, [34℄, that eah f 2 L

q

has a unique deomposition

f = f

0

+ rp, f

0

2 L

q

�

, rp 2 G

q

, and that P

q

: L

q

! L

q

�

de�ned by P

q

f =

f

0

satis�es the estimate kP

q

fk

L

q

+ krpk

L

q

� Ckfk

L

q

with C = C(q;
) > 0;

however, it is not lear whether C depends only on the type �; �;K: We obtain

(P

q

)

0

= P

q

0

and hP

q

f; gi = hf; P

q

0

gi for all f 2 L

q

, g 2 L

q

0

. If q = 2, a Hilbert

spae argument yields the estimate

kP

2

fk

L

2

+ krpk

L

2

� 2kfk

L

2

; f 2 L

2

; rp 2 G

2

; (3.8)

with C = C(2;
) = 2 not depending on 
.

The Stokes operator A

q

= �P

q

� : D(A

q

) ! L

q

�

where D(A

q

) = L

q

�

\W

1;q

0

\

W

2;q

, satis�es the resolvent estimate

j�j kuk

L

q

+ kA

q

uk

L

q

� Ckfk

L

q

; C = C("; q;
) > 0;

where u 2 D(A

q

), �u+ A

q

u = f , � 2 S

"

, 0 < " <

�

2

, and the estimate

kuk

W

2;q

� CkA

q

uk

L

q

; C = C(q;
):
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Furthermore, A

0

q

= A

q

0

implying that hA

q

u; vi = hu;A

q

0

vi for all u 2 D(A

q

),

v 2 D(A

q

0

); see [11℄, [17℄, [34℄. If q = 2, we obtain by a Hilbert spae argument

that u 2 D(A

2

) with �u+ A

2

u = f 2 L

2

�

, � 2 S

"

, satis�es the estimate

j�j kuk

L

2

+ kA

2

uk

L

2

� Ckfk

L

2

; C = 1 + 2= os "; (3.9)

with C independent of 
. Moreover, sine A

2

is selfadjoint,

hA

2

u; ui = kA

1

2

2

uk

2

L

2

= kruk

2

L

2

; u 2 D(A

2

) : (3.10)

Let 1 < q, r < 1, 0 < T < 1 and f 2 L

r

(0; T ;L

q

�

), u

0

2 D(A

q

). Then the

semigroup operators e

�tA

q

and the operators J

q;r

, J

0

q;r

given by

(J

q;r

)f(t) =

Z

t

0

e

�(t��)A

q

f(�)d�; (J

0

q;r

f)(t) =

Z

T

t

e

�(��t)A

q

f(�)d�;

are well de�ned for 0 � t � T , see [11℄, [17℄. Setting u(t) = e

�tA

q

u

0

+ (J

q;r

f)(t)

we obtain the unique solution u 2 L

r

�

0; T ;D(A

q

)

�

, u

t

2 L

r

(0; T ;L

q

�

), of the

nonstationary Stokes system u

t

+ A

q

u = f , u(0) = u

0

, satisfying the estimate

ku

t

k

q;r

+ kuk

q;r

+ kA

q

uk

q;r

� C( ku

0

k

D(A

q

)

+ kfk

q;r

) (3.11)

with C = C(q; r; T;
) > 0. For our appliation it is important that C =

C(2; r; T;
) = C(r; T ) does not depend on 
 if q = 2, see [33℄, IV, 1.6. Anal-

ogously, u(t) = e

�(T�t)A

q

u

0

+ (J

0

q;r

f)(t) is the unique solution of the system

�u

t

+ A

q

u = f , u(T ) = u

0

, in L

r

�

0; T ;D(A

q

)

�

with u

t

2 L

r

(0; T ;L

q

�

) satisfy-

ing the estimate (3.11) with the same onstant C; this result follows from the

transformation ~u(t) = u(T � t),

~

f(t) = f(T � t). Further, we obtain the duality

relation

(J

q;r

)

0

= J

0

q

0

;r

0

: (3.12)

Finally we mention some well known embedding estimates for Sobolev spaes

on bounded C

2

{domains 
 of type �; �;K, see [1℄, IV, Theorem 4.28, [12℄, [33℄,

II.1.3. Given 1 < q <1, 0 < M � 1, there exists some C = C(q;M; �; �;K) > 0

suh that

kruk

L

q

�Mkr

2

uk

L

q

+ Ckuk

L

q

(3.13)

for all u 2 W

2;q

. If 2 � q < 1, 0 < M � 1, then there exists some C =

C(q;M; �; �;K) > 0 suh that

kuk

L

q

�Mkr

2

uk

L

2

+ Ckuk

L

2

(3.14)

for all u 2 W

2;2

. Finally, let 1 < q;  < 1, 1 < r � 3 and 0 � � � 1 suh that

�(

1

r

�

1

3

) + (1� �)

1



=

1

q

. Then

kuk

L

q

� Ckruk

�

L

r

kuk

1��

L



(3.15)

for all u 2 W

1;r

0

\ L



with C = C(r; q; ) > 0.
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3.2 Helmholtz Projetion in

~

L

q

; Proof of Theorem 2.1

The proofs of the main theorems rest on the loalization priniple using the

struture of the domain 
 of the type �; �;K > 0, see x 2.3, and the loal

estimates in x 3.1. In the �rst step of eah proof we assume that 
 is bounded.

In this ase over 
 by domains of the form

U

j

= U

�

�;�;h

j

(x

j

) \B

j

; j = 1; 2; : : : ; N; (3.16)

with B

j

= B

r

(x

j

), 0 < r = r(�; �;K) < �, x

j

2 
, funtions h

j

2 C

2

where

h

j

� 0 if x

j

2 
; and use the ut-o� funtions '

j

as in (2.6), (2.7). We may

assume that eah U

j

has the standard form H = H

�;�;r;h

, see (3.1) and (2.9). In

the seond step of eah proof we onsider the sequene of bounded subdomains




j

� 
 of the same type �; �;K, see (2.8), and treat the limit j !1.

Step 1. 
 bounded

Let f 2 L

q

, 2 � q <1, and f

0

= P

q

f 2 L

q

�

, rp = f � f

0

2 G

q

. Then f 2 L

2

,

and we obtain, see x 3.1, that

kf

0

k

L

2

\L

q

+ krpk

L

2

\L

q

� Ckfk

L

2

\L

q

(3.17)

with C = C(q;
) > 0. First we show that the onstant C in (3.17) an be hosen

depending only on q; �; �;K. For this purpose onsider in U

j

the loal equation

'

j

f = '

j

f

0

+r

�

'

j

(p�M

j

)

�

� (r'

j

)(p�M

j

)

with the onstant M

j

= M

j

(p) suh that p �M

j

= R

0

(rp) 2 L

q

0

(U

j

), see (3.7).

Furthermore, we use the solution w = R

�

(r'

j

) � f

0

�

2 W

1;q

0

(U

j

) of the equation

divw = div ('

j

f

0

) = (r'

j

) � f

0

2 L

q

0

(U

j

), see (3.6). Then

'

j

f + (r'

j

)(p�M

j

)� w = ('

j

f

0

� w) +r

�

'

j

(p�M

j

)

�

is the Helmholtz deomposition of '

j

f + (r'

j

)(p �M

j

) � w in L

q

(U

j

), and we

may use estimate (3.3).

First let 2 � q � 6. Then (3.6), (3.15) with r =  = 2, and Poinar�e's

inequality imply that kwk

L

q

(U

j

)

� Ckf

0

k

L

2

(U

j

)

with C = C(q; �; �;K) > 0. Fur-

ther, onsidering p � M

j

, we apply (3.7), (3.15) and Poinar�e's inequality to

obtain with rp = f � f

0

that

kp�M

j

k

L

q

(U

j

)

� C(kfk

L

q

(U

j

)

+ kf

0

k

L

2

(U

j

)

)

where C = C(q; �; �;K) > 0. Combining these estimates we get the inequality

k'

j

f

0

k

q

L

q

(U

j

)

+ k'

j

rpk

q

L

q

(U

j

)

� C(kfk

q

L

q

(U

j

)

+ kf

0

k

q

L

2

(U

j

)

) (3.18)

with C = C(q; �; �;K) > 0. Next we will take the sum for j = 1; : : : ; N , and use

the number N

0

= N

0

(�; �;K) 2 N introdued in x 2.3, H�older's inequality, and
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the reverse H�older's inequality

�

P

N

j=1

ja

j

j

q

�

1=q

�

�

P

N

j=1

ja

j

j

2

�

1=2

. This leads to

the ruial estimate

kf

0

k

q

L

q

(
)

+ krpk

q

L

q

(
)

=

Z




�

N

X

j=1

'

j

jf

0

j

�

q

dx +

Z




�

N

X

j=1

'

j

jrpj

�

q

dx

�

Z




N

q

q

0

0

�

N

X

j=1

j'

j

f

0

j

q

�

dx+

Z




N

q

q

0

0

�

N

X

j=1

j'

j

rpj

q

�

dx

(3.19)

= N

q

q

0

0

 

N

X

j=1

k'

j

f

0

k

q

L

q

(U

j

)

+

N

X

j=1

k'

j

rpk

q

L

q

(U

j

)

!

� C

1

 

N

X

j=1

kfk

q

L

q

(U

j

)

+

�

N

X

j=1

kf

0

k

2

L

2

(U

j

)

�

q

2

!

� C

2

�

kfk

q

L

q

(
)

+ kf

0

k

q

L

2

(
)

�

with C

i

= C

i

(q; �; �;K) > 0, 2 � q � 6; this kind of estimate will be used in an

analogous way also in subsequent proofs in x 3.3 and x 3.4.

In the ase 6 < q <1 we obtain the estimate (3.19) in the same way as above

with kf

0

k

q

L

2

(
)

replaed by kf

0

k

q

L

6

(
)

. Now we use the elementary interpolation

estimate

kf

0

k

L

6

(
)

� �

�

1

"

�

1=�

kf

0

k

L

2

(
)

+ (1� �)"

1=(1��)

kf

0

k

L

q

(
)

;

where 0 < � < 1 is de�ned by

1

6

=

�

2

+

1��

q

, and where " > 0 is hosen suÆiently

small. Then the absorption priniple yields the estimate

kf

0

k

L

q

(
)

+krpk

L

q

(
)

� C

�

kfk

L

q

(
)

+kf

0

k

L

2

(
)

�

; C = C(q; �; �;K) > 0; (3.20)

also for q > 6. Therefore, (3.20) holds for all 2 � q <1. Combining (3.20) with

(3.8) we get (3.17) with C = C(q; �; �;K) > 0 for all 2 � q <1.

Next we onsider the ase f 2 L

2

+ L

q

, 1 < q < 2. Choose f

1

2 L

2

, f

2

2 L

q

with f = f

1

+ f

2

; kfk

L

2

+L

q

= kf

1

k

L

2

+ kf

2

k

L

q

, and de�ne

f

0

= P

2

f

1

+ P

q

f

2

2 L

2

�

+ L

q

�

; rp = (I � P

2

)f

1

+ (I � P

q

)f

2

2 G

2

+G

q

yielding f = f

0

+rp: Then we use the dual representation of the norm kf

0

k

L

2

+L

q

,
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see x 2.2, and obtain with (3.17), q

0

> 2, that

kf

0

k

L

2

+L

q

= sup

n

jhP

2

f

1

+ P

q

f

2

; gij

kgk

L

2

\L

q

0

; 0 6= g 2 L

2

\ L

q

0

o

(3.21)

= sup

n

jhf

1

+ f

2

; P

q

0

gij

kgk

L

2

\L

q

0

; 0 6= g 2 L

2

\ L

q

0

o

� sup

n

(kf

1

k

L

2

+ kf

2

k

L

q

)kP

q

0

gk

L

2

\L

q

0

kgk

L

2

\L

q

0

; 0 6= g 2 L

2

\ L

q

0

o

� Ckfk

L

2

+L

q

with the same C = C(q; �; �;K) > 0 as valid for (3.17). It follows that

kf

0

k

L

2

+L

q

+ krpk

L

2

+L

q

� Ckfk

L

2

+L

q

with C = C(q; �; �;K) > 0.

Summarizing we obtain for every 1 < q <1 and f 2

~

L

q

the estimate

kf

0

k

~

L

q

+ krpk

~

L

q

� Ckfk

~

L

q

; C = C(q; �; �;K) > 0 (3.22)

where

~

P

q

f = f

0

is de�ned by f

0

= P

q

f if f 2

~

L

q

= L

2

\ L

q

, 2 � q < 1, and

by f

0

= P

2

f

1

+ P

q

f

2

if f = f

1

+ f

2

2

~

L

q

= L

2

+ L

q

, 1 < q < 2. Moreover,

rp = (I �

~

P

q

)f 2

~

G

q

= G

2

\ G

q

if 2 � q < 1 and rp = rp

1

+ rp

2

=

(I � P

2

)f

1

+ (I � P

q

)f

2

2

~

G

q

= G

2

+ G

q

when 1 < q < 2. Thus we proved

(2.10) for bounded domains 
, and we may onlude that

~

P

q

f = P

q

f holds

for 1 < q < 1: Therefore, the other assertions of Theorem 2.1 are obvious for

bounded domains. Note that the hoie of C = C(q; �; �;K) in (2.10) is the only

new property in this ase.

Step 2. 
 unbounded

Let f 2

~

L

q

(
), 1 < q < 1, and let f

j

= f

j




j

2

~

L

q

(


j

), j 2 N , be the

restrition to the subdomain 


j

� 
, see (2.8). Our aim is to onstrut a unique

solution pair f

0

2

~

L

q

�

(
), rp 2

~

G

q

(
) satisfying f = f

0

+rp. For this purpose

we use Step 1 with the deomposition

f

j

= f

j;0

+rp

j

; where f

j;0

=

~

P

q

f

j

; rp

j

2

~

G

q

(


j

);

and the uniform estimate

kf

j;0

k

~

L

q

(


j

)

+ krp

j

k

~

L

q

(


j

)

� Ckf

j

k

~

L

q

(


j

)

� Ckfk

~

L

q

(
)

(3.23)

with C > 0 as in (3.22). Here onsider

~

L

q

(


j

) as a subspae of

~

L

q

(
) by extending

eah funtion on 


j

by zero to get a funtion on 
. Sine (

~

L

q

)

0

=

~

L

q

0

, (

~

L

q

0

)

0

=

~

L

q

,

f. x 2.2, we may assume, suppressing subsequenes, that there exist weak limits

f

0

= w � lim

j!1

f

j;0

2

~

L

q

�

(
); rp = w � lim

j!1

rp

j

2

~

G

q

(
)

satisfying f

0

+ rp = f . Note that rp

j

treated as an element of

~

L

q

(
) when

extended by zero need not be a gradient; however, by de Rham's argument, f.
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[35℄, Ch. I, (1.29), or [33℄, p. 73, we see that w� lim

j!1

rp

j

is indeed a gradient.

From (3.23) we obtain the estimate

kf

0

k

~

L

q

(
)

+ krpk

~

L

q

(
)

� Ckfk

~

L

q

(
)

(3.24)

with C as in (3.23). To prove the uniqueness of the deomposition f = f

0

+rp

assume that f

0

+rp = 0, f

0

2

~

L

q

�

(
), rp 2

~

G

q

(
). Then we use the onstrution

above for any g = g

0

+rh 2

~

L

q

0

(
), g

0

2

~

L

q

0

�

(
), rh 2

~

G

q

0

(
), and obtain that

hf

0

; gi = �hrp; g

0

i = 0. Hene f

0

= rp = 0, and

~

P

q

f = f

0

2

~

L

q

�

is well de�ned.

Now the assertions of Theorem 2.1 and of Remark 2.2 are easy onsequenes.

This ompletes the proof.

3.3 The Stokes Operator in

~

L

q

; Proof of Theorem 2.3

Step 1. 
 bounded.

First we onsider the Stokes equation ��u + rp = f with f 2 L

q

�

, u 2

D(A

q

) = L

q

�

\ W

1;q

0

\ W

2;q

, 1 < q < 1, whih is equivalent to the equation

A

q

u = f , and prove the preliminary estimate

kr

2

uk

L

q

(
)

+ krpk

L

p

(
)

� C( kfk

L

q

(
)

+ kuk

L

q

(
)

) (3.25)

with C = C(q; �; �;K) > 0 depending only on q and the type �; �;K.

This estimate has the important impliation that the graph norm kuk

D(A

q

)

=

kuk

L

q

+kA

q

uk

L

q

is equivalent to the norm kuk

W

2;q

on D(A

q

) with onstants only

depending on q; �; �;K. More preisely,

C

1

kuk

W

2;q

� kuk

D(A

q

)

� C

2

kuk

W

2;q

; u 2 D(A

q

); (3.26)

with C

1

= C

1

(q; �; �;K) > 0, C

2

= C

2

(q; �; �;K) > 0.

To prove (3.25) we use U

j

; '

j

, j = 1; : : : ; N , as in x 3.2, and onsider in U

j

the loal equation

�

0

('

j

u� w)��('

j

u� w) +r

�

'

j

(p�M

j

)

�

= '

j

f +�w � 2r'

j

� ru� (�'

j

)u+ (r'

j

)(p�M

j

) + �

0

('

j

u� w):

Here �

0

means the onstant in (3.4),M

j

=M

j

(p) is a onstant suh that p�M

j

=

R

0

(rp) 2 L

q

0

(
), see (3.7), and w = R

�

(r'

j

) � u

�

2 W

2;q

0

(U

j

) is the solution of

the equation divw = div ('

j

u) = (r'

j

) � u, see (3.6). Then we apply (3.4) with

� = �

0

, and use the estimates

kwk

W

1;q

(U

j

)

� Ckuk

L

q

(U

j

)

;

kwk

W

2;q

(U

j

)

� Ckuk

W

1;q

(U

j

)

;

kp�M

j

k

L

q

(U

j

)

� C( kfk

L

q

(U

j

)

+ kruk

L

q

(U

j

)

)
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with C = C(q; �; �;K) > 0, following from (3.6) and (3.7) applied torp = f+�u

in U

j

: Combining these estimates we are led to the loal inequalities

k'

j

r

2

uk

q

L

q

(U

j

)

+ k'

j

r(p�M

j

)k

q

L

q

(U

j

)

� C( kfk

q

L

q

(U

j

)

+ kuk

q

W

1;q

(U

j

)

) (3.27)

with C = C(q; �; �;K) > 0. Taking the sum over j = 1; : : : ; N in the same way

as in (3.19), and using the absorption argument to remove kruk

q

L

q

(
)

with (3.13),

we obtain the desired inequality (3.25).

Next we onsider the resolvent equation

�u+ A

q

u = �u��u+rp = f in 


with f 2 L

q

�

, where 1 < q <1, � 2 S

"

, 0 < " <

�

2

. Our �rst purpose is to prove

for u 2 D(A

q

) and rp = (I � P

q

)�u, 2 � q <1; the estimate

j�j kuk

L

2

\L

q

+ kr

2

uk

L

2

\L

q

+ krpk

L

2

\L

q

� Ckfk

L

2

\L

q

(3.28)

with j�j � Æ > 0, where Æ > 0 is given, and C = C(q; "; Æ; �; �;K) > 0. Note that

this estimate is well known for bounded domains with C = C(q; "; Æ;
) > 0, see

x 3.1. In this ase we obtain the loal equation

�('

j

u� w)��('

j

u� w) +r

�

'

j

(p�M

j

)

�

(3.29)

= '

j

f +�w � 2r'

j

� ru� (�'

j

)u� �w + (r'

j

)(p�M

j

)

with p�M

j

= R

0

(rp) and w = R

�

(r'

j

) � u

�

as above.

First let 2 � q � 6. Conerning w, we use the estimates above and the

inequality kwk

L

q

(U

j

)

� C

1

kwk

W

1;2

(U

j

)

� C

2

kuk

L

2

(U

j

)

, C

i

= C

i

(q; �; �;K) > 0. For

p�M

j

we use the above estimate and the inequality

kp�M

j

k

L

q

(U

j

)

� C

�

kfk

L

q

(U

j

)

+ j�j kuk

L

2

(U

j

)

+ kruk

L

q

(U

j

)

�

;

C = C(q; �; �;K) > 0. Further, we apply to the loal resolvent equation (3.29)

the estimate (3.4) with � replaed by �+�

0

0

where �

0

0

� 0 is suÆiently large suh

that j� + �

0

0

j � �

0

for j�j � Æ; �

0

as in (3.4). Then we ombine these estimates

and are led to the loal inequality

k�'

j

uk

q

L

q

(U

j

)

+ k'

j

uk

q

L

q

(U

j

)

+ k'

j

r

2

uk

q

L

q

(U

j

)

+ k'

j

rpk

q

L

q

(U

j

)

(3.30)

� C

�

kfk

q

L

q

(U

j

)

+ kuk

q

L

q

(U

j

)

+ kruk

q

L

q

(U

j

)

+ k�uk

q

L

2

(U

j

)

�

with C = C(q; Æ; "; �; �;K) > 0. Next we take the sum over j = 1; : : : ; N in the

same way as in (3.19). This leads to the inequality

j�j kuk

L

q

(
)

+ kuk

L

q

(
)

+ kr

2

uk

L

q

(
)

+ krpk

L

q

(
)

(3.31)

� C

�

kfk

L

q

(
)

+ kuk

L

q

(
)

+ kruk

L

q

(
)

+ j�j kuk

L

2

(
)

�
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with C = C(q; Æ; "; �; �;K) > 0, j�j � Æ, 2 � q � 6. Applying (3.13) we remove

the term kruk

L

q

(
)

in (3.31) by the absorption priniple.

If q > 6, estimate (3.31) holds in the same way with the term j�j kuk

L

2

(
)

on

the right-hand side replaed by j�j kuk

L

6

(
)

. Now use the elementary estimate

j�j kuk

L

6

(
)

� �

�

1

"

�

1=�

�

j�j kuk

L

2

(
)

) + (1� �)"

1=(1��)

(j�j kuk

L

q

(
)

�

with 0 < � < 1 suh that

1

6

=

�

2

+

1��

q

, with suÆiently small " > 0, and

use the absorption priniple. This proves (3.31) for all q � 2 without kruk

L

q

(
)

.

Moreover, due to (3.14), the term kuk

L

q

(
)

may be removed on the right-hand side

of (3.31). Now we ombine this improved inequality (3.31) with estimate (3.9)

for j�j � Æ and we apply (3.25) with q = 2. This proves the desired estimate

(3.28) for 2 � q <1.

Now let 1 < q < 2 and onsider in 
 the (well de�ned) equation �u��u +

rp = f with f 2 L

2

�

+ L

q

�

, where u 2 D(A

2

) + D(A

q

), rp = (I �

~

P

q

)�u and

� 2 S

"

, j�j � Æ. Using f = �u�

~

P

q

�u and (3.28) with q

0

> 2 we �rst obtain that

kfk

L

2

�

+L

q

�

= sup

n

jh�u�

~

P

q

�u; vij

kvk

L

2

�

\L

q

0

�

; 0 6= v 2 L

2

�

\ L

q

0

�

o

= sup

n

jhu; �v �

~

P

q

0

�vij

kvk

L

2

�

\L

q

0

�

; 0 6= v 2 L

2

�

\ L

q

0

�

o

= sup

n

jhu; gij

k(�I �

~

P

q

0

�)

�1

gk

L

2

�

\L

q

0

�

; 0 6= g 2 L

2

�

\ L

q

0

�

o

(3.32)

� j�jC

�1

sup

n

jhu; gij

kgk

L

2

�

\L

q

0

�

; 0 6= g 2 L

2

�

\ L

q

0

�

o

= j�jC

�1

kuk

�

L

2

�

\L

q

�

with C as in (3.28); see (2.11) onerning kuk

�

L

2

�

\L

q

�

. Hene also j�j kuk

L

2

�

+L

q

�

�

Ckfk

L

2

�

+L

q

�

and even

j�j kuk

L

2

�

+L

q

�

+ kuk

L

2

�

+L

q

�

+ kA

q

uk

L

2

�

+L

q

�

� Ckfk

L

2

�

+L

q

�

; � 2 S

"

; j�j � Æ: (3.33)

From the equivalene of norms k � k

D(A

q

)

and k � k

W

2;q

, f. (3.26), and from (2.2)

with B

1

= A

2

; B

2

= A

q

, we onlude that

C

1

kuk

W

2;2

+W

2;q

� kuk

L

2

�

+L

q

�

+ kA

q

uk

L

2

�

+L

q

�

� C

2

kuk

W

2;2

+W

2;q

where C

i

= C

i

(q; "; �; �;K); i = 1; 2: Then (3.33) and the identity rp = f �

�u+�u lead to the estimate

j�j kuk

L

2

�

+L

q

�

+ kuk

W

2;2

+W

2;q

+ krpk

L

2

+L

q

� Ckfk

L

2

�

+L

q

�

(3.34)
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with C = C(q; Æ; "; �; �;K) > 0.

Sine 
 is bounded, we easily onlude that

~

A

q

u = �

~

P

q

�u = A

q

u for u 2

D(

~

A

q

) = D(A

q

); 1 < q < 1: The only new result in this ase is the validity of

the estimate

j�j kuk

~

L

q

�

+ kuk

~

W

2;q

+ krpk

~

L

q

� Ckfk

~

L

q

�

; u 2 D(

~

A

q

) ; (3.35)

with C = C(q; Æ; "; �; �;K) > 0 when j�j � Æ > 0. Thus the proof of Theorem

2.3 is omplete for bounded 
:

Step 2. 
 unbounded.

In priniple we use the same arguments as in Step 2 of x 3.2 with the bounded

subdomains 


j

� 
, j 2 N , see (2.8).

Let f 2

~

L

q

�

(
), 1 < q <1 and � 2 S

"

, 0 < " <

�

2

. Our aim is to onstrut a

unique solution u 2

~

D

q

(
) of the equation

�u�

~

P

q

�u = �u��u+rp = f; rp = (I �

~

P

q

)�u in 


satisfying estimate (2.12). For this purpose set f

j

=

~

P

q

f

j




j

and onsider the

solution u

j

2

~

D

q

(


j

) of the equation

�u

j

+

~

A

q

u

j

= �u

j

��u

j

+rp

j

= f

j

; rp

j

= (I �

~

P

q

)�u

j

in 


j

:

From (3.35) we obtain the uniform estimate

j�j ku

j

k

~

L

q

�

(


j

)

+ ku

j

k

~

W

2;q

(


j

)

+ krp

j

k

~

L

q

(


j

)

� Ckfk

~

L

q

�

(
)

(3.36)

with j�j � Æ > 0, C = C(q; Æ; "; �; �;K) > 0. The same weak onvergene

argument as in Step 2 of x 3.2 yields, suppressing subsequenes, weak limits

u = w � lim

j!1

u

j

in

~

L

q

�

(
); rp = w � lim

j!1

rp

j

in

~

L

q

(
)

satisfying u 2

~

D

q

(
), �u��u+rp = �u�

~

P

q

�u = f in 
 and (2.12).

To prove the uniqueness of u we assume that there is some v 2

~

D

q

(
) and

� 2 S

"

satisfying �v�

~

P

q

�v = 0. Given f

0

2

~

L

q

0

(
) let u 2

~

D

q

0

(
) be a solution

of �u�

~

P

q

0

�u =

~

P

q

0

f

0

. Then

0 = h�v �

~

P

q

�v; ui = hv; (��

~

P

q

0

�)ui = hv;

~

P

q

0

f

0

i = hv; f

0

i

for all f

0

2

~

L

q

0

(
); hene, v = 0. Thus we get that the equation �u +

~

A

q

u = f ,

� 2 S

"

, has a unique solution u = (�I +

~

A

q

)

�1

f satisfying (2.12).
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3.4 Maximal Regularity in

~

L

q

for the Nonstationary Stokes System;

Proof of Theorem 2.5

Step 1. 
 bounded

In priniple we use the same arguments as in the previous proofs. Given

0 < T <1 and 1 < s; q <1 let k � k

L

s

(X(
))

= k � k

L

s

(0;T ;X(
))

= (

R

T

0

k � k

s

X

dt)

1=s

whereX(
) is a Banah spae of funtions in 
; furthermore, we use the operators

J

q;s

, J

0

q;s

, see x 3.1, and de�ne

~

J

q;s

;

~

J

0

q;s

for f 2 L

s

(0; T ;

~

L

q

�

) by

(

~

J

q;s

f)(t) =

Z

t

0

e

�(t��)

~

A

q

f(�) d�; (

~

J

0

q;s

f)(t) =

Z

T

t

e

�(��t)

~

A

q

f(�) d�;

0 � t � T . Sine

~

A

0

q

=

~

A

q

0

, we obtain for all f 2 L

s

(0; T ;

~

L

q

�

), g 2 L

s

0

(0; T ;

~

L

q

0

�

)

that

h

~

J

q;s

f; gi

T

= hf;

~

J

0

q

0

;s

0

gi

T

:

First onsider the ase u

0

= 0 and let s = q. Then u =

~

J

q;q

f solves the

evolution system u

t

+

~

A

q

u = f , u(0) = 0, and u =

~

J

0

q;q

f is the solution of the

system �u

t

+

~

A

q

u = f , u(T ) = 0. Our aim is to prove in both ases the estimate

ku

t

k

L

q

(

~

L

q

�

(
))

+ kuk

L

q

(

~

W

2;q

(
))

+ krpk

L

q

(

~

L

q

(
))

� Ckfk

L

q

(

~

L

q

�

(
))

(3.37)

with rp = (I �

~

P

q

)�u and C = C(T; q; �; �;K) > 0.

Observe that it is suÆient to prove (3.37) for the ase u =

~

J

q;q

f only. The

other ase follows using the transformation ~u(t) = u(T � t),

~

f(t) = f(T � t).

Further, it is suÆient to prove (3.37) when 2 � q <1. For, using (

~

J

0

q;q

)

0

=

~

J

q

0

;q

0

and the duality priniple in the same way as in (3.32), the ase 1 < q < 2 is

redued to the ase 2 < q

0

< 1. In this ontext we note that it is suÆient

to prove instead of (3.37) the estimate ku

t

k

L

q

(

~

L

q

�

(
))

� Ckfk

L

q

(

~

L

q

�

(
))

. Atually,

(3.37) follows using

~

A

q

u = f�u

t

, the simple identity u(t) =

R

t

0

u

t

(�)d� leading to

the estimate kuk

L

q

(

~

L

q

�

(
))

� Cku

t

k

L

q

(

~

L

q

�

(
))

; C = C(T ) > 0; and the equivalene

relation (3.26).

Thus it remains to prove (3.37) with 2 � q <1 where u =

~

J

q;q

solves

u

t

+

~

A

q

u = u

t

��u+rp = f 2 L

q

(0; T ;

~

L

q

�

); u(0) = 0

andrp = (I�

~

P

q

)�u. Using the well known estimate (3.11) for bounded domains

we know that u =

~

J

q;q

satis�es (3.37) with C = C(T; q;
) > 0. Thus it remains

to prove that C in (3.37) an be hosen depending only on T; q; �; �;K.

To prove this result onsider the loal equation

('

j

u� w)

t

��('

j

u� w) +r

�

'

j

(p�M

j

)

�

= '

j

f � w

t

+�w � 2r'

j

� ru� (�'

j

)u+ (r'

j

)(p�M

j

)

in U

j

where w = R

�

(r'

j

) � u

�

2 L

q

�

0; T ;W

2;q

0

(U

j

)

�

solves the equations divw =

(r'

j

) � u and divw

t

= (r'

j

) � u

t

for a.a. t 2 (0; T ): Here U

j

; '

j

; 1 � j � N ,
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have the same meaning as in the previous proofs and M

j

= M

j

(p) is a onstant

depending on t de�ned by p�M

j

= R

0

(rp) 2 L

q

�

0; T ;L

q

0

(U

j

)

�

.

First let 2 � q � 6. Then from (3.6), (3.7) using rp = f �u

t

+�u we obtain

the estimates

kw

t

k

L

q

(L

q

(U

j

))

� Cku

t

k

L

q

(L

2

(U

j

))

;

kr

2

wk

L

q

(L

q

(U

j

))

� C

�

kuk

L

q

(L

q

(U

j

))

+ kruk

L

q

(L

q

(U

j

))

�

; (3.38)

kp�M

j

k

L

q

(L

q

(U

j

))

� C

�

kfk

L

q

(L

q

(U

j

))

+ ku

t

k

L

q

(L

2

(U

j

))

+ kruk

L

q

(L

q

(U

j

))

�

with C = C(q; �; �;K) > 0. Applying the loal estimate (3.5) and using (3.38)

we are led to the inequality

k'

j

u

t

k

q

L

q

(L

q

(U

j

))

+ k'

j

uk

q

L

q

(L

q

(U

j

))

+ k'

j

r

2

uk

q

L

q

(L

q

(U

j

))

+ k'

j

rpk

q

L

q

(L

q

(U

j

))

(3.39)

� C

�

kfk

q

L

q

(L

q

(U

j

))

+ kuk

q

L

q

(L

q

(U

j

))

+ kruk

q

L

q

(L

q

(U

j

))

+ ku

t

k

q

L

q

(L

2

(U

j

))

�

with C = C(T; q; �; �;K) > 0. Next we argue in priniple in the same way as in

Step 1 of x 3.3: Take the sum over j = 1; : : : ; N , remove the term kruk

L

q

(L

q

(
))

with the absorption argument using (3.13), then apply the estimate (3.11) to

ku

t

k

L

q

(L

2

(
))

with C = C(q; T ) > 0. If q > 6, we have to replae the term

ku

t

k

L

q

(L

2

(
))

by the term ku

t

k

L

q

(L

6

(
))

, and use the interpolation inequality

ku

t

k

L

q

(L

6

(
))

� �

�

1

"

�

1=�

ku

t

k

L

q

(L

2

(
))

+ (1� �)"

1=(1��)

ku

t

k

L

q

(L

q

(
))

with suÆiently small " > 0. This leads to the inequality

ku

t

k

L

q

(L

2

�

(
)\L

q

�

(
))

+ kuk

L

q

(W

2;2

(
)\W

2;q

(
))

+ krpk

L

q

(L

2

(
)\L

q

(
))

� Ckfk

L

q

(L

2

�

(
)\L

q

�

(
))

for all 2 � q < 1 with C = C(T; q; �; �;K) > 0 and ompletes the proof of

(3.37) for 1 < q <1. In partiular, this proves inequality (2.18) for the bounded

domain 
 when u

0

= 0. To prove (2.18) with u

0

2 D(

~

A

q

) we solve the system

~u

t

+

~

A

q

~u =

~

f , ~u(0) = 0, with

~

f = f �

~

A

q

u

0

. Then u(t) = ~u(t) + u

0

yields the

desired solution with u

0

2 D(

~

A

q

). This proves Theorem 2.5 for bounded 
.

Step 2. 
 unbounded

Using the same arguments as in Step 2 of x 3.3, let f 2 L

q

�

0; T ;

~

L

q

�

(
)

�

,

1 < q <1, and onsider the solution u

j

2 L

q

�

0; T ;D(

~

A

q

)

�

of the system

u

j;t

+

~

A

q

u

j

= f

j

; u

j

(0) = 0;

with f

j

=

~

P

q

f

j




j

, j 2 N , following Step 1. Then (3.37) applied to the domains




j

yields the uniform estimate

ku

j;t

k

L

q

(

~

L

q

�

(


j

))

+ ku

j

k

L

q

(

~

W

2;q

(


j

))

+ krp

j

k

L

q

(

~

L

q

(


j

))

� Ckfk

L

q

(

~

L

q

�

(
))

(3.40)
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with rp

j

= (I �

~

P

q

)�u

j

, C = C(T; q; �; �;K) > 0. Suppressing subsequenes

we obtain by the weak onvergene argument the weak limits

u = w � lim

j!1

u

j

2 L

q

�

0; T ;

~

L

q

�

(
)

�

; rp = w � lim

j!1

rp

j

2 L

q

�

0; T ;

~

L

q

(
)

�

;

satisfying u 2 L

q

�

0; T ;

~

D

q

(
)

�

, u

t

+

~

A

q

u = u

t

��u+rp = f , u(0) = 0, and the

estimate

ku

t

k

L

q

(

~

L

q

�

(
))

+ kuk

L

q

(

~

W

2;q

(
))

+ krpk

L

q

(

~

L

q

(
))

� Ckfk

L

q

(

~

L

q

�

(
))

; (3.41)

with C as in (3.40), whih is equivalent to inequality (2.18).

The uniqueness of u follows in the same way as in Step 2 of x 3.3, and the

ase u(0) = u

0

2 D(

~

A

q

) is treated as above in Step 1. The other properties in

Theorem 2.5 are obvious. This ompletes the proof.

3.5 Suitable Weak Solutions, Strong Energy Inequality, and Leray's

Struture Result for General Domains; Proof of Theorem 2.7

To onstrut a suitable weak solution u in the general uniform C

2

{domain 
 of

type �; �;K we use approximate solutions u

k

and the key estimate (2.18) in the

formulation (2.21) with the exponent q =

5

4

; the reason for this exponent is the

struture of the nonlinear term. Exept for this estimate, all the other approxi-

mation arguments are well known in priniple; here we follow the onstrution in

[33℄, Chapter V. However, it is easier, �rst to onsider a bounded domain 
 and

then to treat the subdomains 


j

with j !1 as in the previous proofs. Further-

more, we may assume without loss of generality that 0 < T <1 and onsequently

that T

0

= T in (2.25); if T = 1 we onsider a sequene 0 < T

1

< T

2

< : : : with

lim

j!1

T

j

=1 and ontinue the onstrution of u step by step.

Moreover, we may assume that u

0

= 0 in the following proof. The ase

u

0

6= 0 will be redued to this ase in two steps: If u

0

2 D(

~

A

q

); we replae

u(t) by û(t) = u(t) � e

�A

2

t

u

0

in the linear part of the equation (2.23). Hene

û(0) = 0, and the argument for u

0

= 0 yields (2.25) with " = 0 and u replaed

by û. Sine u

0

2 D(

~

A

q

), we onlude that (2.25) holds for u with " = 0: If

u

0

2 L

2

�

only, we hoose any 0 < " < T; use that e

�A

2

t

u

0

= e

�A

2

(t�")

u

0;"

with

u

0;"

= e

�A

2

"

u

0

2 D(A

2

) � D(

~

A

q

); q =

5

4

; and onlude from the validity of

(2.25) for û; " = 0; that (2.25) holds for u in the restrited interval ("; T

0

): This

information is suÆient to prove (2.26), (2.27).

Thus we may assume that u

0

= 0; 0 < T

0

= T <1; and we prove (2.25) with

" = 0: Further let f 2 L

q

(0; T ;L

2

(
)); q =

5

4

:

Step 1. 
 bounded.

Following [33℄, V.3.3, we use Yosida's approximation operators J

k

= (I +

k

�1

A

2

)

�1

, k 2 N , and �nd solutions u = u

k

of the approximate Navier-Stokes

system

u

t

��u+ (J

k

u) � ru+rp = f; div u = 0; u

j

�


= 0; u(0) = 0 (3.42)
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on (0; T ). Further, we reall the following estimates:

1

2

ku

k

k

2

L

1

(L

2

�

(
))

+ kru

k

k

2

L

2

(L

2

(
))

� C

0

kfk

2

L

1

(L

2

(
))

; C

0

> 0; (3.43)

ku

k

k

L



(L

Æ

(
))

� Ckfk

L

1

(L

2

(
))

;

where Æ � 2 ;  � 2 ;

2



+

3

Æ

=

3

2

, C = C(; Æ) > 0; and

kJ

k

u

k

� ru

k

k

L



(L

Æ

(
))

� Ckfk

2

L

1

(L

2

(
))

;

where 1 < ; Æ < 2;

2



+

3

Æ

= 4, C = C(; Æ) > 0; see [33℄, V.2.2, (2.2.3), and V.2.6

onerning these properties.

Moreover, due to (3.37),

ku

k;t

k

L

q

(L

q

(
))

+ ku

k

k

L

q

(W

2;q

(
))

+ krp

k

k

L

q

(L

q

(
))

(3.44)

� C

�

kfk

L

q

(L

2

(
))

+ kfk

2

L

1

(L

2

(
))

�

; q =

5

4

; C = C(T; �; �;K) > 0:

Using these uniform boundedness properties we onlude letting k !1 (and

suppressing subsequenes) that there exists a weak solution u of the system (2.23)

with the following weak (\*") and strong (\!") onvergene properties, resp.:

u

k

*

u

in L

2

�

0; T ;W

1;2

0

(
)

�

u

k

!

u

in L

2

�

0; T ;L

2

(
)

�

(sine 
 is bounded)

ru

k

*

ru

k

in L

2

�

0; T ;L

2

(
)

�

u

k

(t) ! u(t) in L

2

�

(
) for a.a. t 2 [0; T )

and (u

k;t

; u

k

;ru

k

;r

2

u

k

;rp

k

) * (u

t

; u;ru;r

2

u;rp) in L

q

�

0; T ;L

q

(
)

�

; where

q =

5

4

. Moreover, Poinar�e's inequality shows that

kp

k

�M

k

k

L

q

(L

r

(
))

� Ckrp

k

k

L

q

(L

q

(
))

(3.45)

where q =

5

4

, r =

15

7

, M

k

=M

k

(p

k

) =

1

j
j

R




p

k

dx and C = C(T;
) > 0.

Hene we onlude that the estimates (3.43), (3.44) also hold with u

k

;rp

k

replaed by u;rp and that

p

k

�M

k

* p̂ in L

q

�

0; T ;L

r

(
)

�

for some p̂ 2

�

0; T ;L

r

(
)

�

satisfying rp̂ = rp. Choosing M = M(t) suh that

p̂ = p�M , (3.45) holds with p

k

�M

k

, rp

k

replaed by p�M , rp.

Let � 2 C

1

0

(R

3

). Then an elementary alulation yields for all 0 � s � t � T

the equality

1

2

k�u

k

(t)k

2

L

2

+

Z

t

s

k�ru

k

k

2

L

2

d� (3.46)

=

1

2

k�u

k

(s)k

2

L

2

+

Z

t

s

h�f; �u

k

id� �

1

2

Z

t

s

hrju

k

j

2

;r�

2

id�

+

Z

t

s

h

1

2

ju

k

j

2

; (J

k

u

k

) � r�

2

id� +

Z

t

s

hp

k

; u

k

� r�

2

id�:
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By the onvergene properties above and writing the most problemati term in

(3.46) in the form hp

k

; u

k

� r�

2

i = hp

k

�M

k

; u

k

� r�

2

i we may let k onverge to

in�nity in eah term, using Lebesgue's dominated onvergene theorem. Beause

of the weak onvergene property onerning ru

k

, inequality (3.46) yields (2.26)

for a.a. s 2 [0; T ) and all t 2 [s; T ). Finally the strong energy inequality (2.27) is

a onsequene of (2.26) with � � 1 on 
: Reall that the restrition onerning

" in (2.25) is needed only for tehnial reasons if 0 6= u

0

2 L

2

�

nD(

~

A

q

):

Step 2. 
 unbounded.

Consider the bounded subdomains 


j

� 
, j 2 N , as in (2.8), and let u

j

be

a weak solution in 


j

aording to Step 1 with assoiated pressure term rp

j

,

satisfying

u

j;t

��u

j

+ u

j

� ru

j

+rp

j

= f

j

; div u

j

= 0;

u

j

(0) = 0; u

j

j

�


j

= 0;

(3.47)

where f

j

= f

j




j

. Applying the diagonal priniple in the same way as in [33℄,

V.(3.3.17), we �nd a subsequene f~u

j

g of the sequene fu

j

g and a weak solution

u with pressure term rp of the system (2.23) with the following onvergene

properties as j !1 (assuming for simpliity ~u

j

= u

j

):

u

j

onverges to u weakly in L

2

�

0; T ;W

1;2

(


j

0

)

�

and strongly in

L

2

�

0; T ;L

2

(


j

0

)

�

for eah �xed j

0

,

ru

j

onverges to ru weakly in L

2

�

0; T ;L

2

(


j

0

)

�

,

u

j

(t) onverges to u(t) strongly in L

2

(


j

0

) for a.a. t 2 [0; T ).

Furthermore, uniformly in j 2 N ,

1

2

ku

j

k

2

L

1

(L

2

�

(


j

))

+ kru

j

k

2

L

2

(L

2

(


j

))

� C

0

kfk

2

L

1

(L

2

(
))

; C

0

> 0; (3.48)

ku

j

k

L



(L

Æ

(


j

))

� Ckfk

L

1

(L

2

(
))

;

where  � 2 ; Æ � 2 ;

2



+

3

Æ

=

3

2

, C = C(; Æ) > 0; and

ku

j

� ru

j

k

L



(L

Æ

(


j

))

� Ckfk

2

L

1

(L

2

(
))

;

where 1 < ; Æ < 2,

2



+

3

Æ

= 4, C = C(; Æ) > 0.

Using the maximal regularity estimate (2.18) in the form (2.21) ombined

with the last estimate we are led to the inequality

ku

j;t

k

L

q

(L

2

+L

q

(


j

))

+ ku

j

k

L

q

(W

2;2

+W

2;q

(


j

))

+ krp

j

k

L

q

(L

2

+L

q

(


j

))

(3.49)

� C

�

kfk

L

q

(L

2

(
))

+ kfk

2

L

1

(L

1

(
))

�

with q =

5

4

and C = C(T; �; �;K) > 0 not depending on j 2 N . Thus we may

onlude without loss of generality, see the previous proofs, that

(u

j;t

; u

j

;ru

j

;r

2

u

j

;rp

j

)* (u

t

; u;ru;r

2

u;rp) in L

q

�

0; T; L

2

(
) + L

q

(
)

�
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as j !1; and that (3.49) holds with u

j

;


j

replaed by u;
. This proves (2.25)

for u

0

= 0; the general ase u

0

2 L

2

�

requires introduing " > 0.

To prove the loal energy inequality (2.26) hoose j

0

in suh a way that


 \ supp � � 


j

0

, use (2.26) from Step 1 for 


j

and u

j

, j � j

0

, and let j ! 1

using the onvergene properties above. This proves (2.26) for u;
.

To prove (2.27) we hoose a sequene �

j

2 C

1

0

(R

3

), j 2 N , satisfying

0 � �

j

� 1, jr�

2

j

j � C

0

with some onstant C

0

, and with lim

j!1

�

j

(x) = 1,

lim

j!1

r�

2

j

(x) = 0 for all x 2 R

3

. Setting � = �

j

in (2.26) we obtain the desired

inequality (2.27) by letting j !1.

Now the proof of Theorem 2.7 is omplete.
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Tôhoku University

Sendai, 980-8578 Japan

kozono�math.tohoku.a.jp

Hermann Sohr

Fakult�at f�ur Elektrotehnik, Informatik und Mathematik

Universit�at Paderborn

D-33098 Paderborn

hsohr�math.uni-paderborn.de

32


