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Abstract

It is known by counter-examples that the usual L?-approach to the Stokes
equations, well known e.g. for bounded and exterior domains, cannot be
extended to general domains 2 C R® without any modification for g # 2.
In the present paper we will show that important properties like Helmholtz
decomposition, analyticity of the Stokes semigroup, and the maximal reg-
ularity estimate of the nonstationary Stokes equations remain valid for
general domains even for g # 2 if we replace the space L? for 2 < ¢ < o0
by the intersection L? N L7 and for 1 < ¢ < 2 by the sum space L? + L9.
As an application we prove the existence of a (suitable) weak solution u
of the Navier-Stokes equations with pressure term Vp € Lir’o/f , conjectured
by Caffarelli-Kohn-Nirenberg [8], and satisfying both the local and strong
energy inequality.
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1 Introduction

Throughout this paper, Q2 C R® means a general three-dimensional domain with
uniform C?-boundary 92 # 0, where the main interest is focussed on domains
with noncompact boundary 0€2. As is well known, the standard approach to
the Stokes equations in Lf-spaces,1 < ¢ < oo, cannot be extended to general
unbounded domains in L?, ¢ # 2; for counter-examples concerning the Helmholtz
decomposition, see [6], [26]. However, to develop a complete and analogous theory
of the Stokes equations for arbitrary domains, we replace the space L1(€2) by

frgy — {P@ND@, 2<g <00
L)+ L), 1<qg<2
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First, we prove the existence of the Helmholtz projection P on the space L?(12)
yielding the decomposition f = fo+ Vp, fo = Pf, with properties corresponding
to those in L(€2).

In the next step we consider in L9(Q) the usual resolvent equation

AMi—Au+Vp=f, divu=0 in ¢, u|Q:0, (1.1)

d
with A in the sector 8. := {0 # A € C; Jarg\| < § +¢}, 0 < e < §. We prove an
Li-estimate similar to that in L?(9Q), i.e.,

AHullze + 1V2ullze + VPl e < Cllfllze, 1< g <o, (1.2)

at least when [A| > ¢ >0, C = C(Q,q,¢,0) > 0.

The Stokes operator A = —PA is well defined in f/g(Q), 1 < ¢ < o0, and the
semigroup {e 4% ¢t > 0} is (locally in time) bounded and analytic in some sector
{teC: Jargt| <&, 0 <&' < T}, of the complex plane.

Further, we prove the maximal regularity estimate of the nonstationary Stokes

system
u —Au+Vp = f, dive = 0 inQx (0,7),

1.3
Ul = 0, u(0) = up, (13)

with 0 < T < o0. To be more precise, if uy = 0 for simplicity, then
luelly, + llully, + IV*ully, + IVplly, < Cliflly, (1.4)

where Y, = L#(0,T; L(2)) and C' = C(T, ¢, a, 8, K) > 0 depends on T,q, and
the type «, 8, K of €2, see Section 2.3.
As an application of these linear results we obtain the existence of a so-called

suitable weak solution u of the Navier-Stokes system
ug—Au+u-Vu+Vp = f, divu = 0 in Qx (0,7),

(1.5)
Uy, = 0, u(0) = wug
with special regularity properties which are new up to now for general domains,
see the conjecture in [8], p. 780. In particular, we get for general domains the
regularity property

Vp e L ((0,7) x ), (1.6)
which is needed in the partial regularity theory of the Navier-Stokes equations.
Moreover, u satisfies the local energy inequality, see (2.26) below and [8], (2.5),

as well as the strong energy inequality

1 ! 1 !
St + [ Ivulgar < Shus) B+ [ (s, ur (L7)
for a.a. s € [0,T) including s = 0 and all ¢ with s < ¢ < T, see [27]. This result is

essentially known for domains with compact boundaries; see [33], V. Thm. 3.6.2
and Thm. 3.4.1 for bounded domains, [16], [28], [32] for exterior domains.
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2 Preliminaries and Main Results

2.1 Sum and Intersection Spaces

We recall some properties of sum and intersection spaces known from interpola-
tion theory, cf. [4], [5], [29], [36].

Consider two (complex) Banach spaces X, Xy with norms ||-||x,, [|||x,, re-
spectively, and assume that both X; and X, are subspaces of a topological vector
space V with continuous embeddings X; C V, Xy C V. Further, we assume that
the intersection X; N X, is a dense subspace of both X; and X, in the corre-
sponding norms.

Then the sum space

Xi+Xo:={us +up; ug € Xy, us € Xo} CV
is a well defined Banach space with the norm
Jullx, 4, = inf{{lurllx, + lluallx,; v =1+ uz, w1 € Xi, up € X}
Another formulation of that norm is given by
w1 + usl|x, 1 x, = inf{||ug — v||x, + ||us + v||x,; v € X7 N X5}
The intersection space X; N X5 is a Banach space with norm
[ullx,nx, = max([Jullx,, [lullx,),

which is equivalent to ||u|| x,+||u| x,. Note that the space X;+X5 can be identified
isometrically with the quotient space X; x Xy/D where D = {(—v,v); v € X; N
Xy}, identifying u = u; + up € X; + X, with the equivalence class [(u,us)] =
{(uy — v, ug +v); v e Xy NXo}.

Next we consider the dual spaces X, X} of Xy, Xy, resp., with norms

| fllx; = Sup{|<u’ f>|; 0#uce X} i=1,2.

[[ullx,

In both cases (u, f) denotes the value of some functional f at some element u,
and (-,-) is called the natural pairing between the space X; and its dual space
X;. Note that |ul|x, = sup {|[{u, )| /|| fllx; 0 # f € X]}.

Since X;NXj is dense in X; and in X5, we can identify two elements f; € X7,
fo € X5, writing f1 = fo, iff (u, f1) = (u, fo) holds for all u € X; N X,. In
this way the intersection X| N X} is a well defined Banach space with norm
| fllx;nxy = max(|| f]|x:, || f]|x;). The dual space (X; + X3)" of X + Xy is given
by X N X, and we get

(X1 +Xp) =X{NX,



with the natural pairing (u, f) = (us, f) + (uo, f) for all u = u; + us € X7 + Xo,
f e X{ N XJ). Thus it holds

[(uy, f) + (uz, f)]

| f 1 x1nx;

el x, = sup { 0% feXinxi)

and

[(ur, f) + (uz, )]

||u||X1+X2

||f||XmXé:sup{ ;07éu:u1+uQ€X1+X2};
see [4], p. 32, [36], p. 69. Therefore, [(u, f)| < ||lullx,+x, [|f]|x:nxz-
By analogy, we obtain that

(X1 ﬁ XQ), — X{ + Xé

with the natural pairing (u, fi + f2) = (u, f1) + (u, fa).

Consider closed subspaces Ly C X, Ly C X with norms |||, = ||'||lx,,
I'll, = II|lx, and assume that L; N Lo is dense in both L; and Ly in the cor-
responding norms. Then ||ul|z,nz, = ||©|x,nx,, ¥ € L1 N Ly, and an elementary
argument, using the Hahn-Banach theorem shows that also

||u||L1+L2 = ||u||X1+X27 u € Ll + L2' (21)

In particular, we need the following special case. Let By : D(B;) — X,
B, : D(By) — X, be closed linear operators with dense domains D(B;) C X7,
D(B3) C X, equipped with graph norms

lullpsy = lullx, + |Biullx,,  ullp,) = |lullx, + | Beullx, -

We assume that D(B;) N D(Bsy) is dense in both D(B;) and D(B>) in the cor-
responding graph norms. FEach functional F' € D(B;)’, i = 1,2, is given by
some pair f,¢g € X/ in the form (u, F) = (u, f) + (Bju,g). Using (2.1) with
L; = {(u,Bu); u € D(B;)} € X; x X;,7 = 1,2, and the equality of norms
|- loxxxn+(xoxxz) and [ - [[oxx0) < (x14+x0) on (X1 X Xp) + (X5 X X3), we con-
clude that for each u € D(B;) + D(B,) with decomposition v = u; + us, u; €
D(By), us € D(Bs),

ull p(Br)+D(B2) = |lu1 + u2||x, 1 x5 + [[Brur + Baual| x, 1 x,- (2.2)

Suppose that X; and X, are reflexive Banach spaces implying that each
bounded sequence in X; (and X5) has a weakly convergent subsequence. This
argument yields the following property: Given u € X; + X, there exist u; € X,
up € Xo with u = uq + ug such that

Jullxix, = llunllx, + lJuzllx,- (2:3)



2.2 Function Spaces

Let D; = 0/0zj, j = 1,2,3, © = (x1,22,23) € Q@ C R, V = (Dy, Dy, D3),
and V? = (DjDy)j k=123 The spaces of smooth functions on € are denoted as
usual by C*(Q), C*¥(Q), CE(Q) with k € Ny = N U {0} or &k = co. We set
C5o(Q) = {u = (u1, u, uz) € C5°(§2); divu = 0}.

Let 1 < ¢ < oo and ¢ = % such that %+§ = 1. Then LY(Q) with
norm |jullpe = |lull; = ||ullgo denotes the usual Lebesgue space for scalar or

vector fields. Each f = (fi, f2, f3) € LY(Q) = LI(Q)" will be identified with the
functional (-, f) : u — (u, f) = (u, flo = [u- fdr on LI(Q). Let LL(Q) =

C’gyg(Q)H'”q C L%(€2) denote the subspace of divergence-free vector fields u =
(uy, ug, uz) with zero normal component N - u 50 at 0€2; here N means the outer

normal at 9§2. The usual Sobolev spaces W*¢(Q) are mainly used for k = 1,2
with norms [Jullwre = ||ullig = llulliee = llully + [[Vully and [Juflw2e = |ull2,g =
lulloge = llullig + ||V?ullg, resp. Further, we need the subspaces W, 9(Q) =
C@) c wia(Q) and WE(Q) = Cg () ™ Wha(Q).

For simplicity, we will write C*, L, W17 etc. instead of C*(Q), LY(Q),
Whi(Q), resp., when the underlying domain is known from the context. More-
over, we will use the same notation for spaces of scalar-, vector- or matrix-valued
functions.

The sum space L? + L? is well defined when V in § 2.1 is the space of distri-
butions with the usual topology. We obtain that

(L2 + LY =L*NLY, (L’NL% =L*+ LY,

where ||u||;2nze = max(||ullz, ||ul|,) and

|ullr24re = inf{]|ui|lz + ||uallg; v =11 +us, ug € L?, uy € L}
= SUP{M,OifELzﬂLq,}
£l 2o

For the nonstationary problem on some time interval [0,7), 0 < T < oo,
we need the usual Banach space L*(0,T; X) of measurable X—valued (classes of)
functions v with norm

T 1
voa = ([ lu@ldr)’, 15 <o,
0

[l

where X is a Banach space. For s = oo let
[ul| L (0.r:x) = ess sup {|lu(t)||lx; 0 <t <T}.

If X is reflexive and 1 < s < oo, then the dual space of L*(0,7;X) is given
by L*(0,T;X) = L*(0,T;X"), s = =%, with the natural pairing (u, f)p =

I ), £() dt. =



Let X = L9(€2), 1 < ¢ < oco. Then we use the notations ||u||s,rLe) =
(fOT ||u||;dt) 1/5; moreover, the pairing of L*(0,T’; L4) with its dual L* (0, T; LY)

is given by (u, f)r = (u, flor = fOT Jqu- fdxdt.
Let Yy = L*(0,T; L?),Y; = L*(0,T; LY) with 1 < ¢, s < co. Then we see that

(Yi+Y) =Y/ NY, =L (0,T; LN LY) = L*(0,T; L? + L7,

where the pairing between Y; + Y5 and Y] NY] is given by (u; + ug, f)r =
(uy, f)r+ (ug, fYr for uy € Y1, us € Yy, f € Y/ NY,. Furthermore, we can choose
the decomposition u = u; + uy € L¥(0,T; L? + L9) in such a way that

ullvidve = llullys + [Juallys - (2.4)
We conclude that
(w1 + ug, f)7]

1 f vy

s + wsllyi v, = sup § 0# el (0,201} (25)

2.3 Structure Properties of the Boundary 02

We recall some well known technical details on the uniform C?-domain Q2 C R?,
see e.g. [1], p. 67, [20], p. 645, [33], p. 26. By definition, this means that there
are constants «, 3, K > 0 with the following properties:

For each 2y € 02 we can choose a Cartesian coordinate system with origin
xy and coordinates y = (y1,v2,y3) = (v, y3), ¥' = (y1, y2), obtained by some
translation and rotation, as well as some C%-function h(y'), |y'| < «, with
C?-norm ||h||¢2 < K, such that the neighborhood

Uapn(xo) == {(v,y3); h(y') =B <ys < h(y')+ B, |y] < a}

of xq satisfies

Uapn(®0) :=A{(t,y3); (y') = B <ys <h(y), y'| <a} =QNUqpn(xo),

and
NN Ugpn(zo) ={(v,ys); My') =us, V] <a}.

Without loss of generality we may assume that the axes of y' = (y1,y,) are
contained in the tangential plane at xy. Thus at ¥’ = (0,0) we have h(y") = 0 and
V'h(y") = (Oh/0y1, Oh/ys) = (0,0). Therefore, for any given constant My > 0,
we may choose a > 0 sufficiently small such that a smallness condition of the
form ||V'h||co = max{|V'h(y)|; |¥| < a} < M, is satisfied. It is important to
note that the constants «, 3, K > 0 do not depend on zy € 2. We call o, 5, K
the type of €.



Let Q be the closure of 2 and let B,(z) = {w € R®; |w — x| < r} be the
open ball with center # € R* and radius » > 0. Then we can choose some fixed
r € (0, a) depending only on «, 8, K, balls B; = B,(x;) with centers z; € Q, and
C?-functions h;(y'), |y'| < a, where j =1,2,..., N if Q is bounded and j € N if
Q2 is unbounded, such that

N o0
Q C UBj or QC UBj, respectively, (2.6)
j=1 j=1

Ej - Uoé,ﬂyhj (.’L‘]) if T € 092, Ej cQ if T € Q.

Moreover, we can construct this covering in such a way that not more than a

fixed finite number Ny = Ny(a, 8, K) € N of these balls By, By, ... can have a

nonempty intersection. Thus if we choose any Ny + 1 different balls By, Bs, .. .,

then their common intersection is empty. If €2 is bounded, let Ny = N.
Concerning the {B;} there exists a partition of unity ¢; € C$°(R®) with

0<¢p;<1,suppp; € B;,j=1,...,N or j € N, satistying

N o0
Z pi(x) =1 or Z @;(x) = 1, respectively, for all z € (, (2.7)
7=1 7j=1

and the pointwise estimates |Vi;(z)|, |[V*p;(x)| < C uniformly with respect to
J where C = C(a, 3, K).

If ©2 is unbounded, we can represent €2 as a union of countably many bounded
C*-subdomains ; C 2, j € N, such that

Q; CQuy foralljeN, Q=[]Q, (2.8)

j=1

and such that each (2; has some fixed type o/, #', K’ > 0. Without loss of gener-
ality we may assume that o = o/, f = ', K = K': each subdomain Q;, j € N,
has the same type «, §, K as Q, see [20], p. 665. Obviously each compact subset
Qp C Q is contained in some €2; and therefore in each Q, k > j; see [33], p. 56,
Remark 1.4.2.

Finally we need a technical property in subsequent proofs. Given a ball
B.(z) C R® consider some Cartesian coordinate system with origin = and co-
ordinates y = (y',y3). Then B, (z) := {y = (v, y3); |y| <r, ys < 0} is called a
half ball with center  and radius r. We may assume without loss of generality
that there are appropriate half balls B, = B (z;) of the balls B; in (2.7) such
that

suppp; € By ifz; € Q wherej=1,...,N or jeN (2.9)



2.4 Main Results on the Stokes Equations

We can extend several important LI-properties of the Stokes equations known
for special domains such as bounded or exterior domains, to general domains 2
if we replace the usual L%-space by the (smaller) space

L= L9Q) = LX(Q) N LY(Q) for 2 < g < oo,
and by the (larger) space
L9=19Q) = L*(Q) + LYQ) for1<q<2.

Analogously, we define the subspace LY = LI(Q) C LI(Q) by setting LI =
LA(Q) N LL(Q) for 2 < g < 0o, and LL = L2(Q) + LL(Q) for 1 < ¢ < 2.
In the same way we modify the L/~Sobolev spaces W#4(Q) and the spaces

GU(Q) = {Vpe Ltpe L, (@), IVplla: = (9Pl
DIQ) = LUQ)AWHQNTW2Q),  ullpe = [ulwee,

1 < g < o0, as follows: For 2 < ¢ < oo let

Wka(Q) = Wh2(Q)nWke(Q),
GUQ) = G*(Q)NGIQ),
DY(Q) = D?*Q)NDIQ),

and for 1 < ¢ < 2 let

Wha(Q) Wk2(Q) + Wka(Q),
G(Q) G2(Q) + G1(Q),
DIUQ) = D*(Q)+ DY(Q),

k = 1,2. Then the norms ||-||wrq, ||I'|ge and ||-|[5, are well defined. If Q is
bounded then LY = L9, Lq = L4, GY = G4, D1 = D7 and Wk = W+ hold
with equivalent norms. Thus the 1ntroduct10n of ”~"—spaces is reasonable only
for unbounded domains.

Our first result yields the existence of the Helmholtz projection in L¢(Q). The
counter-examples in [6], [26], show that the usual L?-theory for special domains
cannot be extended to €2 for arbitrary ¢ # 2. It is important to note that the
constants C' = C(q, «, 8, K) > 0 below only depend on ¢ and the type «, 3, K of
the domain 2.

Theorem 2.1 (Helmholtz decomposition) Let Q@ C R3 be a uniform C*-

domain of type a, 5, K > 0 and let 1 < q < o0, q = ﬁ. Then for each

f e LY there exists a unique decomposition f = fo+ Vp with fy € IN/?T, Vp € GY
satisfying the estimate

[follze + IVDlze < Cllfllze, € =Clg,a,8,K) > 0. (2.10)
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The Helmholtz projection P = P defined by P, f fo s a bounded operator from
LY onto L1 satisfying Pf=f sz e L and P .(Vp) =0 if Vp € G9. Moreover,

(Pf, g) = (f, qg>f07“allf€Lq ge L7,

Remark 2.2 By Theorem 2.1 we conclude that ]5(; = ]5q/ for the dual operator
]5; = (P,)' of P,, 1 < q < oo, and (L%)" = LY with pairing (-,-). We also get that
the norm defined by

. [{u, £ 2

lullz, = su {“ - OyéfeLq}, we L, (2.11)
f Lq

is equivalent to the norm [lufzs = |lul[z, in the sense that ||ul[7, < [Juflze <

Cllull3, with C = C(q,a, B, K) > 0 from (2.10).

The usual L?-Stokes operator A = A, with domain D(A,) = D? = L1 N
Wy 'MW C L9 and range R(A,) C L4 defined by A,u = —P,Au is meaningful
if the Helmholtz projection P, : L? — L% is well defined. Thus, because of the
counter-examples, see [6], [26], we cannot expect that this theory is extendable
to general domains €2 for ¢ # 2 without modification of the Li-space.

Next we will show that the usual Stokes estimate, at least for |[A| > § >
0, remains valid for {2 when we replace the L?-theory by the Li-theory. More
precisely, let the Stokes operator A = A be defined as an operator with domain
D(A,) = D C L% into LY, by setting
fiqu = —IBun, uwe D,

Let I be the identity and S, = {0 # A € C; |arg\| < § +¢},0<e < 7.

Theorem 2.3 (Stokes resolvent) Let Q C R3 be a uniform C?-domain of type

a,ﬁ,K>0andlet1<q<oo,q’—q 7, 0<e<f,0>0. Then

A,=-P,A:D(A,) - LI, D(A,) c LY,

is a densely defined closed operator, the resolvent (A + flq)_l L4 — L9 is well
defined for all X € S., and for u= (A + Ay) *f, f € LL, the estimate

Al lullze + [[ullpes < CNfllze, 1A 26, (2.12)
with C = C(q,¢,0,a, 3, K) > 0, is satisfied. Further, it holds the duality relation
(Agu,v) = (u, Agv), u € D(A,), v € D(A,). (2.13)

Remark 2.4 a) From (2.12) we conclude that —A, generates a C°-semigroup
{e7*; ¢ > 0} which has an analytic extension to some sector {0 # t €
G, |argt| < €'}, 0 < &' < 7, satisfying the estimate

le=t fllze < M || fllza, f€LL, t>0, (2.14)
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with M = M(q, 0, a, 3, K) > 0. Note that 6 > 0 may be chosen arbitrarily small,
but we cannot prove up to now whether (2.14) holds with § = 0 for the general
domain €.

b) Let f € L%, 1 < ¢ < 00, A € S, |[A| > 6, and set u = (A + A,)"'P,f,
Vp = (I — P))(f + Au). Then we obtain a unique solution pair u € D(A,),
Vp € G of the equation \u — Au + Vp = f, and by (2.12)

M ullze + 1IV2ullze + Vel 20 < ClINlzo, (2.15)

where C'= C(q,¢,0,a, 3, K) > 0.
c) Due to (2.15) the graph norm |[[ul|p4,) = [lullzz + ||f~1qu||ig on the Banach

space D(A,) satisfies the estimate

Cllullyirza < llullpia,y < Cllullyze, v e D(A,), (2.16)

with constants C' = C(q,a,3,K) > 0, C' = C'(q,, 3, K) > 0. Hence the norms
||u|]j2q and ||u||D(/1q) are equivalent.

Another important property is the maximal regularity estimate of the non-
stationary Stokes equation (1.3) which can be written, applying the Helmholtz
projection, in the form

w + Agu = f, u(0) = uy. (2.17)

For simplicity, we do not use the weakest possible norm for the initial value wuy,
see Remark 2.6, a).

Theorem 2.5 (Nonstationary Stokes system) LetQ C R® be a uniform C?-
domain of type o, 5, K >0, and let 0 < T < oo, Y, = LY(0,T;L%), 1 < ¢ < 0.

Then for each f € Yy and each ug € D(A,) there exists a unique solution u €
L1(0,T; D(Ay)), u, € Yy, of the evolution system (2.17), satisfying the estimate

luellv, + llully, + [[Aqully, < C(lluollpea,y + 1£1lv,) (2.18)
with C = C(q,T,«, 5, K) > 0.

Remark 2.6 a) The assumption uy € D(A,) in this theorem is not optimal and
may be replaced by the weaker properties uy € L% and fOT nge—mq%“%q dt < oo.
Then the term [lugl|p4,) in (2.18) may be substituted by the weaker norm

r . 1
(/0 ||Aqe’m‘1uo||qig dt)e, 1 < ¢ < oo. (2.19)
Furthermore, by (2.16), the estimate (2.18) implies that
luelly, + Nl oo raizay < C(lluollpeay + 1 £1l,). (2.20)
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where C'= C(q, T, , 3, K) > 0.

b) Let f € Y, = L0, T} ig) in Theorem 2.5 be replaced by f € f/q = L0, T; L9),

1 < g < oo. Then u € L9(0,T; D(A)), defined by u, + Agu = P,f, and Vp,
defined by Vp(t) = (I — P,)(f + Au)(¢), is a unique solution pair of the system

u — Au+ Vp = f, u(0) = uy,
satisfying
Judlly, + lully, +1IV2ully, + I1Velly, < C(luollpea,y + [1£1ly,) (2.21)

with C' =C(q,T,a, 3, K) > 0.
Using (2.3) we see that in the case 1 < ¢ < 2 the solution pair u, Vp possesses
a decomposition u = u") + 4, Vp = Vp) + Vp® such that

oM e L1(0,T; W), ol e L1(0,T; L2),
u® e L0, T; W29, u{¥ € L9(0,T; L), (2.22)
vpY e L9(0,T; L?), Vp? e L9(0,T; L),
and
luclly, + [lully, + IV?ully, + IVplly,
= ut”llgm + lu®llgo + [VuOllp0 + [1VpD 0 +

lu? g + lu® g + V4 g + VP g0
where Y\ = L9(0, T; L?), V,? = L9(0, T; LY).

2.5 Applications

As an application we construct a so-called suitable weak solution u of the insta-
tionary Navier-Stokes system

ug—Au+u-Vu+Vp = f, divu = 0 inQx(0,7)

u(0) " — (2.23)

Ulaq

for the general domain 0 C R® with important additional properties. In particu-
lar we are interested in estimate (2.21) for ¢ = 2. The reason is that the energy
properties u € L>(0,T; L%), Vu € L*(0,T; L?) imply that u - Vu € L?(0,T; L9)
with ¢ = 2. Hence, shifting v - Vu in (2.23) to the right-hand side and consid-
ering for simplicity uy = 0, we get from (2.21) that Vp € L9(0,T; L? + L9) and
Vp e quoc((O, T) x Q) This property is needed in the local regularity theory as
well as in the proof of the local energy estimate. It was conjectured in [8], p. 780,

and open up to now for general domains.
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Moreover, we prove that u satisfies the strong energy inequality, see [16],
[28], [33], which was open for general domains as well. A consequence is Leray’s
structure theorem [25] for general domains; note that the proof in [25] concerns
the entire space R? only.

We recall some definitions, see, e.g., [33], [35]. The space Cg°([0,T); C5%)
consists of smooth solenoidal vector fields v defined on [0,7") x © with compact
support suppv C [0,7) x €.

Let f € LY*0,T;L%, 0 < T < oo, ugp € L?. Then a function u €
L=(0,T; L2) N L2 ([0,T); Wy2) is called a weak solution of (2.23) iff

loc
—(u,viyar + (Vu, Voyar + (u-Vu,v)gr = (ug,v(0))a+ (f,v)ar (2.24)

is satisfied for all v € C§° ([O, T); C{;j,). We may assume without loss of generality
that u is weakly continuous as a function from [0,7) to LZ.

We know that for each weak solution u there exists a distribution p in (0,77) x2
such that uy — Au+u-Vu+ Vp = f holds in the sense of distributions, see [33]; p
is called an associated pressure of u. However, for general € it is crucial whether
p is contained in any LY—type space; the problem in this context is the validity
of the maximal regularity estimate (2.21) for ¢ = 2.

The following result is essentially known for domains with compact bound-
aries; see [33], V. Thm. 3.6.2, for bounded domains, and [28], [32] for exterior

domains.

Theorem 2.7 (Suitable weak solution) Let Q C R? be a uniform C*-domain
of type o, B, K, let 0 < T < o0, q = %, f e L10,T;L? and uy € L2. Then there
exists a weak solution u € L>(0,T; L2)NLE ([0, T); Wolf) (called a suitable weak
solution) of the system (2.23) and an associated pressure p with the following
additional properties:

(a) Regularity:
wy, u, Vu, Viu, Vp € Li(e, T'; L? + L9) (2.25)

with 0 <e <T' <T. Ifuy € D(A,), then (2.25) holds fore =0,0 < T' < T.
(b) Local energy inequality:

1 ! 1 !
SluOl+ [ ovuldr < Slou(s) i+ [ (of.on dr (226)

1 [ ‘1
—5/ (V|u|2,V¢2>dT+/ (5lul*+p,u- Vo) dr

for a.a. s €[0,T), allt € [s,T), and all p € C°(R?).
(c) Strong energy inequality:

1 ¢ 1 !
sl + [ Ivulpdr < S+ [(huar @20
for a.a. s € [0,T) including s =0, and all t € [s,T).
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Remark 2.8 a) From (2.25) we obtain the existence of some pressure p satisfying

5 15
2 =2 9.9
T (2.28)

pe L, T L1 (Q),0<e<T' <T,q=

and we get that u € L?(0,7"; L5(Q2)), 0 < T" < T. This shows that (2.26) is well
defined. As in (2.22) we obtain decompositions u = u™™ + u® p = p® + p?
satisfying

ugl), u, Vul), V2 vpl) € Li(e, T"; L?) for 0<e<T' <T (2.29)
and
UEQ), u?, Vu? Vi vp? e Li(e, T"; L) for 0<e<T <T, (2.30)

which holds with ¢ = 0 if additionally uy € D(A,). Note that we may choose
T' =T in (2.25) if T < oo.

b) To obtain Leray’s structure theorem, see [25], let T = oo and assume for
simplicity that f = 0. Then u in Theorem 2.7, also called a turbulent weak
solution of (2.23), has the following properties: There exists a countable disjoint
family {7} }7°, of intervals in (0, co) such that

(1) I, = (O,Tl), Iy = [TOO,OO) with some 0 < 717 < T, < 00,

(2) 1(0,00)\ U2y Ix] = 0, >0, II,]2 < oo where | - | denotes the Lebesgue
measure,

(3) wu(-,t) € C*(Q) for every t € I, k =0,1,...
These properties imply that the %—dimensional Hausdorff measure of the singular

set Y ={t € (0,00);u(-,t) € C°(Q)} is zero, see [8].

3 Proofs

3.1 Preliminary Local Results

Using the structure properties of the given uniform C?-domain Q C R?® of type
a,B,K > 0, see § 2.3, we are able to reduce our results by the localization
principle to a standard domain of the form

H=Hyp,n={,ys3); h(y) — B <ys <h(y), || <a}NB,; (3.1)

here h: y' — h(y'), |v'| < a, is a C*function and B, = B,(0) a ball with radius
0<r=r(a,f,K) < «such that

B, C{(y,y3); h(y') — B <wys <h(y")+ B, |y] < a}.
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Further, we may assume that h(0) = 0, V'h(0) = (0,0), h(y') = 0 forr < || < «,
and that A satisfies the smallness condition

IV'h|co = max{|V'h(y)]; |y'| < a} < Mo, (3-2)

where My > 0 is a given constant. Recall that V' = (Dy, D).

In the subsequent proofs we can treat each problem for the standard domain
(3.1) as a problem in the domain H, = {(v/,y3) € R y3 < h(y), y € R?*}
with h € CZ(R?); Hy is called a bent half space, see [11]. Then, using the
smallness condition (3.2), an equation in Hj, is considered as a perturbation of
some equation in the half space Hy = {(v/,y3) € R?; y3 < 0}.

The following estimates in H = H, g}, are well known. However, we have
to check that the constants in these estimates depend only on ¢, o, 3, K; here we
need the smallness condition (3.2) on h.

Let 1 < g < oo. First we consider the Helmholtz decomposition in H. Let
f€LIH), fo € L1(H), p e WH(H) satisty f = fo+ Vp and supp foUsuppp C
B,. Then

| follazy + VDl Loy < Cllfllay, € =Clg,a,8,K) >0, (3.3)

cf. [31], p. 12, and Lemma 3.8, a).

Next let f € LY(H), u € LL(H) N Wy Y(H) N W>4(H), p € WH(H) satisfy
A —Au+Vp = f with A € §,, see Theorem 2.3, and with supp uUsuppp C B,.
Then there are constants \g = A\o(q,,5,K) > 0, C = C(q,a, 3, K) > 0 such
that

(A Nwll oy + Mlullwzainy + VPl Loy < Cllf Lo (3.4)
if |[A\| > Ag. To prove this estimate we use [11], p. 624, and apply [11], Theorem
3.1, (i), and (1.2).

The next estimate concerns the nonstationary Stokes equation in H. As usual
the Stokes operator is defined by A, = —FP,A with domain D(A,) = L¢(H) N
Wy (H) N WI(H). Let 0 < T < oo, ug € D(A,), f € LI(0,T;LI(H)), and
let u € Lq(O,T,D(Aq)), p € Lq(O,T; Wl’q(H)) satisfy suppup U supp u(t) U
supp p(t) C B, for a.a. t € [0,T]. Moreover, assume that

uw—Au+Vp=f u0)=u or —u—Au+Vp=Ff u(T)=u,
resp. Then there is a constant C' = C(q, «, 5, K,T) > 0 such that
||| Lago,rsracenyy + ||wll ooy + VP Lago,rpacay) (3.5)
< C(lluollwzagmy + I fllzaqo/rszacmy)-

In the case u(0) = up this estimate follows from [34], Theorem 4.1, (4.2) and
(4.21°). The second case —u; — Au+ Vp = f, u(T) = ug, can be reduced to the

first case by the transformation u(t) = u(T —t), f(t) = f(T —1t), p(t) = p(T —t).
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The relatively strong assumption uy € D(A,) is used for simplicity and can be
weakened as in Remark 2.6, a). Note that the conditions u(0) = ug or u(T") = uy,
resp., are well defined since u;, € L9(0,7; LL).

Finally, we consider the divergence problem

divu=f in H, 0,

u|8H -

and let L{(H) = {f € LY(H); [,, fdx = 0}. Then from [14], III, Theorem 3.2,
we obtain the existence of some linear operator R : Li(H) — Wy'(H) satisfying
divRf = f and

RS lwracry
RS w2

with C' = C(q, o, 8, K) > 0; moreover, Rf € WX (H) if f € LY{(H) "W, (H).
The dual operator R’ of R maps W~"¢ (H) into Lg’(H). Thus for each p €

L7 (H) we find a unique constant M = M (p) satisfying p— M = R'(Vp) € LI (H)
and the estimate

Cllifllay  if f € Lo(H), (3.6)

<
< Olfllwremy if fe L§(H)N W (H)

[(p, div )]

oo, A E WOI"](H)} (3.7)

=Ml () < CIVBly -y = C 5w

with C' = C(q,a, 3, K) > 0.

Now let Q C R? be a bounded C%-domain 02. Obviously, such a domain is of
type «, 3, K. We collect several results on the Helmholtz projection P = F, and
the Stokes operator A = A;, 1 < ¢ < oo. In this case the constant C' below may
depend also on €2 except for ¢ = 2 where Hilbert space arguments are applicable.

It is known, see [13], [31], [34], that each f € L7 has a unique decomposition
f=/fo+Vp, fo € LL, Vp € G? and that P, : LY — L% defined by P, f =
fo satisfies the estimate ||P,f||« + ||VpllLe < C||fllze with C = C(g,Q) > 0;
however, it is not clear whether C' depends only on the type «, 3, K. We obtain
(P)' = Py and (P,f,g) = (f, Pyg) for all f € L4, g € LY. If ¢ = 2, a Hilbert
space argument yields the estimate

1P2fllzz + VPl < 20 fllee,  f € L* VpeG?, (3-8)

with C' = C(2,) = 2 not depending on 2.
The Stokes operator A, = —P,A : D(A,) — L% where D(A,) = L N W' N
W24 satisfies the resolvent estimate

(Allullze + [[Aqullze < Cllfllze, € =Cle,q,€) >0,
where u € D(Ay), \u+ Aqu= f, A€ S,,0<e <7, and the estimate

[ullwze < CllAgullee,  C = C(g, Q).
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Furthermore, Af = Ay, implying that (Agu,v) = (u, Agv) for all u € D(A,),
v € D(Ay); see [11], [17], [34]. If ¢ = 2, we obtain by a Hilbert space argument
that u € D(Ay) with \u+ Ayu = f € L2, X € 8., satisfies the estimate

A ||w|lp2 + [|A2u||e < C|fllez, C =142/cose, (3.9)

with C' independent of 2. Moreover, since A, is selfadjoint,
(Aqu,u) = ||ASul[3. = |Vul]72, u€ D(Ay). (3.10)

Let 1 < ¢, r<o0,0<T <ooand feL(0,1;LL), up € D(A;). Then the
semigroup operators e *4« and the operators Tq.rs Jq’ﬂq given by

(Tur) () = / D f(nydr, ()0 = / e T4 f (1) dr,

are well defined for 0 < ¢ < T, see [11], [17]. Setting u(t) = e™ug + (T, f)(2)
we obtain the unique solution v € L" (O,T;D(Aq)), uy € L"(0,T;L%), of the
nonstationary Stokes system u; + Aju = f, u(0) = wy, satisfying the estimate

[willg.r + [[ullgr + [[Agullgr < C(lluollpiag) + 1 Fllar) (3.11)

with C = C(q,r,T7,Q2) > 0. For our application it is important that C' =
C(2,r,T,Q) = C(r,T) does not depend on € if ¢ = 2, see [33], IV, 1.6. Anal-
ogously, u(t) = e~@=D4ayy + (J7 f)(t) is the unique solution of the system
—uy + Agu = f, u(T) = ug, in L"(0,T; D(A,)) with u, € L"(0,T;L%) satisfy-
ing the estimate (3.11) with the same constant C; this result follows from the
transformation @(t) = u(T —t), f(t) = f(I —t). Further, we obtain the duality
relation
(Tar) = T (312)
Finally we mention some well known embedding estimates for Sobolev spaces
on bounded C?~domains Q of type «, 3, K, see [1], IV, Theorem 4.28, [12], [33],
I1.1.3. Given 1 < ¢ < 00, 0 < M < 1, there exists some C = C(q, M, «, 3, K) > 0
such that
IVullze < MIIVZul|zs + Clul|s (3.13)

for all u € W24, If 2 < g < oo, 0 < M < 1, then there exists some C =
C(q,M,a, B, K) > 0 such that

lullze < M{[V*ul|z2 + C|lul|: (3.14)

for all u € W22, Finally, let 1 < ¢,v <o0,1 <7 <3 and 0 < «a <1 such that
a(%—%)+(1—a)%:%. Then
lullre < CIVull [full (3.15)

for all w € W, N L7 with C = C(r,q,v) > 0.
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3.2 Helmholtz Projection in L¢; Proof of Theorem 2.1

The proofs of the main theorems rest on the localization principle using the
structure of the domain 2 of the type «a, 3, K > 0, see § 2.3, and the local
estimates in § 3.1. In the first step of each proof we assume that €2 is bounded.
In this case cover £ by domains of the form

Uj:Ua_,ﬂ’h]-(xj)mBja j:1,2,...,N, (316)

with B; = B,(z;), 0 < r = r(o, 3,K) < a, z; € Q, functions h; € C? where
h; = 0 if z; € Q, and use the cut-off functions ¢; as in (2.6), (2.7). We may
assume that each U; has the standard form H = H, 5,5, see (3.1) and (2.9). In
the second step of each proof we consider the sequence of bounded subdomains
Q; C Q of the same type o, 3, K, see (2.8), and treat the limit j — oo.

Step 1. 2 bounded
Let fe L%, 2<qg<oo,and fo=PF,f € LY, Vp=f—fo, € GY. Then f € L?
and we obtain, see § 3.1, that

| follzznze + IVDPllL2nce < Clfllz2nze (3.17)

with C'= C(q, Q) > 0. First we show that the constant C'in (3.17) can be chosen
depending only on ¢, «, 8, K. For this purpose consider in U; the local equation

oif = @ifo+V(pilp — M;)) — (Ve;)(p — M)

with the constant M; = M;(p) such that p — M; = R'(Vp) € L{(U;), see (3.7).
Furthermore, we use the solution w = R((V;) - fo) € Wy (U;) of the equation
divw = div (p;fo) = (Vg;) - fo € L{(U;), see (3.6). Then

0if + (Vo) (p— My) —w = (p;fo —w) + V(e;(p — M;))

is the Helmholtz decomposition of ¢;f + (Vy,)(p — M;) —w in LI(Uj), and we
may use estimate (3.3).

First let 2 < ¢ < 6. Then (3.6), (3.15) with r = v = 2, and Poincaré’s
inequality imply that ||w|z«w;) < C||follz2w,) with C = C(q,a, 5, K) > 0. Fur-
ther, considering p — M;, we apply (3.7), (3.15) and Poincaré’s inequality to
obtain with Vp = f — f, that

1P = Mjl| o,y < CUf leawy) + [ follz2w;))
where C' = C(q, «, 3, K) > 0. Combining these estimates we get the inequality
63 folla + 16500y < CU Ny + Mollfa))  (318)

with C' = C(q, a, 5, K) > 0. Next we will take the sum for j = 1,..., N, and use
the number Ny = Ny(«, 5, K) € N introduced in § 2.3, Holder’s inequality, and
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the reverse Holder’s inequality (Z;VZI |aj|q)1/q < (Zjvzl |aj|2)1/2. This leads to
the crucial estimate

||f0||qu(Q) + ||VP||qu(Q)

:/ <i¢j|f0|)qd$+/ (ZN:%WZ)')qu
Q j=1 Q j=1
4 N q N
g/NO"_'(Z|80jf0|q) dw+/Noy<Z|%Vp|q> de
Q j=1 @ j=1

(3.19)

. [ N N
Ny (Z“Sojfouiq((]j) +Z||90jVP||qu(UJ)>
7j=1 7=1

N N

< (Z 1oy + (D ||fo|li2wj>>2>
=1 i=1

< Cz(“quLq(Q) + HfO”%?(Q))

with C; = Ci(q, o, 5, K) > 0, 2 < g < 6; this kind of estimate will be used in an
analogous way also in subsequent proofs in § 3.3 and § 3.4.

In the case 6 < ¢ < oo we obtain the estimate (3.19) in the same way as above
with ||f0||qL2(Q) replaced by ||f0||qL6(Q). Now we use the elementary interpolation
estimate

1\ e Y
[follesoy < @(2) " Molleze) + (1 = )= follagen,

where 0 < a < 1 is defined by % =5+ I_TO‘, and where € > 0 is chosen sufficiently

small. Then the absorption principle yields the estimate

| follza) + | VD La) < C(HfHLq(Q)+||f0||L2(Q))7 C=0C(¢,o,5,K) >0, (3.20)

also for ¢ > 6. Therefore, (3.20) holds for all 2 < ¢ < co. Combining (3.20) with
(3.8) we get (3.17) with C' = C(q¢,a, 8, K) > 0 for all 2 < ¢ < oc.

Next we consider the case f € L? + L4, 1 < q < 2. Choose f; € L?, f, € LY
with f = fi + f2, [[fllz240e = [[f1lle2 + | f2]| e, and define

fo=Pofi+Pfo€ L2+ LY, Vp=U—-P)fi+ (I —P)f, € G*+G*

yielding f = fo+ Vp. Then we use the dual representation of the norm || fol| 224 4,
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see § 2.2, and obtain with (3.17), ¢’ > 2, that

P P /
| follLz4re = sup { [(Pof1 + Pof2, )] 0#£ge L’NL! } (3.21)
||9||L2nLq’
Pl 12
Sup{|<f1+f27 qg>|,0%g€ L2qu}
||9||L2nLq’
q P’ q’ /
< Sup{(||f1||L2 + el | Py gllpony 04ge Lszq}
||9||L2nLq’
< O fllz24 e

with the same C' = C(q,«,5,K) > 0 as valid for (3.17). It follows that
| follzzza +[|VPllz242e < C||f||L24 L0 with C = C(q, a, 3, K) > 0.
Summarizing we obtain for every 1 < ¢ < oo and f € L? the estimate

[ follza +[IVPllze < Cllfllze; € =Clg; 2, 8,K) >0 (3.22)

where P,f = fo is defined by f, = Pfiffeiq—LQHLq 2 < ¢ < o0, and
by fo = Pofi + Pufoif f = fi+ fo € L9 = L[>+ L9, 1 < ¢ < 2. Moreover,
Vp = (I — )fEGq—G2ﬂG41f2<q<ooande—Vp1+Vp2—
(I-P)fi+(I—P)f, € G =G?>+ G when 1 < ¢ < 2. Thus we proved
(2.10) for bounded domains €, and we may conclude that P,f = P,f holds
for 1 < ¢ < o0. Therefore, the other assertions of Theorem 2.1 are obvious for
bounded domains. Note that the choice of C'= C(q, o, 8, K) in (2.10) is the only
new property in this case.

Step 2. {2 unbounded }
Let f € L), 1 < ¢ < oo, and let f; = f|Q_ € L), j € N, be the

J
restriction to the subdomain €2; C ©Q, see (2.8). Our aim is to construct a unique
solution pair fy € L1(Q2), Vp € G9(Q2) satisfying f = fy + Vp. For this purpose
we use Step 1 with the decomposition

fi = fio+ Vpj, where fjo=P,f;, Vp; € GY(Q),
and the uniform estimate
1f50llza(,) + 1VPillia,) < Cllfilliaw,) < Cllf i (3.23)

with C' > 0 as in (3.22). Here consider INﬂ(Qj) as a subspace of [Nﬂ(f}) by extending
each function on §2; by zero to get a function on §2. Since (L9)' = L7, (1Y) = L9,
cf. § 2.2, we may assume, suppressing subsequences, that there exist weak limits

fo=w—lim fjy € LUQ), Vp=w — lim Vp; € GY(Q)
J—00 J—00

satisfying fo + Vp = f. Note that Vp; treated as an element of iq(Q) when
extended by zero need not be a gradient; however, by de Rham’s argument, cf.
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[35], Ch. I, (1.29), or [33], p. 73, we see that w—1lim;_,o, Vp; is indeed a gradient.
From (3.23) we obtain the estimate

1 follzaa) + VPl ey < Cllfllzaoy (3.24)

with C' as in (3.23). To prove the uniqueness of the decomposition f = fy + Vp
assume that fo+Vp =0, fy € ig(Q), Vp e éq(Q). Then we use the construction
above for any g = gy + Vh € LY (Q), go € LI (Q), Vh € G7 (), and obtain that
(fo,9) = —(Vp,g0) = 0. Hence fo = Vp =0, and P,f = f, € LZ is well defined.
Now the assertions of Theorem 2.1 and of Remark 2.2 are easy consequences.
This completes the proof.

3.3 The Stokes Operator in L¢; Proof of Theorem 2.3

Step 1. 2 bounded.

First we consider the Stokes equation —Au + Vp = f with f € LI, u €
D(A,) = LInN Wol’q NW?21 1 < g < oo, which is equivalent to the equation
Asu = f, and prove the preliminary estimate

1V2ul| ogay + | VDl o) < CONFlLoge) + l|ull o) (3.25)

with C'= C(q, «, #, K) > 0 depending only on ¢ and the type «, 3, K.

This estimate has the important implication that the graph norm |lu||pca,) =
||u||Le + ||Aqu| e is equivalent to the norm |ju||y2.4 on D(A,) with constants only
depending on ¢, «, 3, K. More precisely,

Crllullwe2a < |lullpay) < Collul|lw2a, w € D(A), (3.26)

with Cl - Cl(Qa O‘aﬁaK) > 07 02 = 02((17 O‘aﬁaK) > 0.
To prove (3.25) we use Uj,p;, j =1,...,N, as in § 3.2, and consider in U;
the local equation

No(pju — w) = Alpju —w) +V (p;(p — Mj))
= ¢if + Aw = 2Vp; - Vu — (Ag;)u + (Vi;) (p — M;) + Ao(pju — w).

Here Ay means the constant in (3.4), M; = M;(p) is a constant such that p—M; =
R'(Vp) € L§(Q), see (3.7), and w = R((Vy;) - u) € Wy (U;) is the solution of
the equation divw = div (¢;u) = (Vy;) - u, see (3.6). Then we apply (3.4) with
A = Ao, and use the estimates

||w||W1"1(Uj) < C||U||Lq(U]-)a
|lwllw2aw;) < Cllullwraw;),
I — MjllLaw;y < CUNfllzew;) + IVl o))
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with C' = C(q, «, 3, K) > 0, following from (3.6) and (3.7) applied to Vp = f+Au
in U;. Combining these estimates we are led to the local inequalities

e V2 ull g,y + 105V (0 = M)y < OO Lo,y + 1ullfyraq,y) — (3:27)

with C'= C(q, «, 5, K) > 0. Taking the sum over j = 1,..., N in the same way
as in (3.19), and using the absorption argument to remove ||Vu||qu(Q) with (3.13),
we obtain the desired inequality (3.25).

Next we consider the resolvent equation

AM+Au=Au—-Au+Vp=f in Q

with f € L, where 1 < g <oo, A€ ., 0 <e < 7. Our first purpose is to prove
for w € D(A,) and Vp = (I — P;))Au, 2 < g < oo, the estimate

Al Jul|2nne + (IV?ulli2aze + (VDI 200 < Cllf |l22nLs (3.28)

with [A] > § > 0, where § > 0 is given, and C' = C(q, ¢, 9, o, 5, K) > 0. Note that
this estimate is well known for bounded domains with C' = C(q,¢,6,€Q) > 0, see
§ 3.1. In this case we obtain the local equation

Apju —w) = Alpju — w) + V(p;(p — M;)) (3.29)
= ¢;f + Aw —2Vp; - Vu — (Apj)u — Aw + (V;) (p — M)

with p — M; = R'(Vp) and w = R((V;) - u) as above.

First let 2 < ¢ < 6. Concerning w, we use the estimates above and the
inequality ||w||L«w;) < Crllw|lwizw,) < C’2||u||L2 ), Ci = Ci(q, o, B, K) > 0. For
p — M; we use the above estimate and the 1nequahty

Ip = Mjllzow,) < C(I1fllzawy + A ullzaw,) + IVullzaw,),

C =C(q,a,,K) > 0. Further, we apply to the local resolvent equation (3.29)
the estimate (3.4) with A replaced by A+ Aj where Aj > 0 is sufficiently large such
that |[A + Aj| > Ao for |A] > J, A\p as in (3.4). Then we combine these estimates
and are led to the local inequality

IXojull gy + Nesull gy + 105Vl Law,) + 105Vl o) (3.30)
< C(||f||Lq wy 1l Lo,y + I1Vull o, + IXullfz )

with C'= C(q,6,¢,, 5, K) > 0. Next we take the sum over j =1,..., N in the
same way as in (3.19). This leads to the inequality

A [l ooy + ull Loy + V0l Loy + IVD| e (3.31)
< C(If ey + NullLoy + 1Vl o) + |A] [Jull20))
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with C'= C(q,d,e,a,5,K) > 0, |\| > 6, 2 < g < 6. Applying (3.13) we remove
the term ||Vu||Lqq) in (3.31) by the absorption principle.

If ¢ > 6, estimate (3.31) holds in the same way with the term |A| [|u||;2(q) on
the right-hand side replaced by |A|||u||zs(). Now use the elementary estimate

1 1/ —a
A lllzey < a(2) (Al Tullza@) + (1= @) 07 (] ull o)

with 0 < o < 1 such that % =5+ I_TO‘, with sufficiently small ¢ > 0, and
use the absorption principle. This proves (3.31) for all ¢ > 2 without ||Vul|z¢(q).
Moreover, due to (3.14), the term ||u|| () may be removed on the right-hand side
of (3.31). Now we combine this improved inequality (3.31) with estimate (3.9)
for |A| > ¢ and we apply (3.25) with ¢ = 2. This proves the desired estimate
(3.28) for 2 < ¢ < 0.

Now let 1 < ¢ < 2 and consider in € the (well defined) equation Au — Au +
Vp = f with f € L2 + L, where u € D(A4,) + D(A,), Vp = (I — P,)Au and

o)

A€ S., |\ > 0. Using f = Au— P,Au and (3.28) with ¢ > 2 we first obtain that

sup { |(Au — P,Au,v)|

1llzaers = 0£velinLy}
||v||L§ﬁLg,
Av — Py A :
= sup{|<u’ A | U>|;O7EUEL§HLZ}
||,U||L(27ng'
_ sup{ ~|<”’g>l : 07AgeL§ng’} (3.32)
||()\I o P(I'A)_ g||Lg_ﬂLg’
> et sup {90 g e r2 sy
||g||Lg_ﬂLg_’

= NC™ lullznrs

with C as in (3.28); see (2.11) concerning ||ul|}. ;.. Hence also || [jul|f2;pa <
Cllfllz241e and even

Alllullizsss + lllizros + 1 Agullzars < Clfllizias. A€ S, N 26 (3.33)

From the equivalence of norms || - || p4,) and || - |24, cf. (3.26), and from (2.2)
with By = Ay, By, = A, we conclude that

Cillullwaeiwoa < flullrzsrs + | Aqullzz 4oy < Collullw22iwaa

where C; = Ci(q,¢,a,3,K),i = 1,2. Then (3.33) and the identity Vp = f —
Au + Au lead to the estimate

A ullzzzs + lullwe2pwze +11VPllLzire < ONfllpzrs (3.34)
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with C' = C(q,d,¢,a, 3, K) > 0.

Since 2 is bounded, we easily conclude that flqu = —Pun = Agu for u €
D(A,) = D(4,),1 < ¢ < co. The only new result in this case is the validity of
the estimate

A lullzg + lulles + 1PNz < Cllfllz,  we D(A), (3.35)

with C = C(q,9d,¢e,a,3,K) > 0 when |A] > 6 > 0. Thus the proof of Theorem
2.3 is complete for bounded 2.

Step 2. ) unbounded.

In principle we use the same arguments as in Step 2 of § 3.2 with the bounded
subdomains Q; C Q, j € N, see (2.8).

Let f € ig(Q), I<g<oocand A € S,, 0 <e <. Our aim is to construct a
unique solution u € D?(2) of the equation

M—PAu=Mi—Au+Vp=f, Vp=(—-P)Au inQ
satisfying estimate (2.12). For this purpose set f; = ]5qf|Qj and consider the
solution u; € D9(£2;) of the equation

Auj 4+ Aguj = Muj — Auj +Vp; = f;, Vpj = (I — P)Au; in €.
From (3.35) we obtain the uniform estimate
A il ze 0,y + Twsllizage,) + 1VPillioq;) < Cllfllig @ (3.36)

with [A\| > 6 > 0, C = C(q,0,6,,3,K) > 0. The same weak convergence
argument as in Step 2 of § 3.2 yields, suppressing subsequences, weak limits

uw=w— limu; inLL(Q), Vp=w— lim Vp; in LY(Q)
j—00

J—00

satisfying u € Dq(Q), AM—Au+Vp=u— ]5un = fin Q and (2.12).

To prove the uniqueness of u we assume that there is some v € DY(Q) and
\ € 8. satisfying Av — P,Av = 0. Given f’ € L7 (Q) let u € DY (2) be a solution
of \u — PyAu = P, f'. Then

0= (\v— Pqu,u> = (v, (A — Pq:A)u> = (v, quf'> = (v, f")

for all f' € LY (Q); hence, v = 0. Thus we get that the equation Au + fiqu =7,
A € 8., has a unique solution u = (A + A4,) ' f satisfying (2.12).
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3.4 Maximal Regularity in L for the Nonstationary Stokes System;
Proof of Theorem 2.5

Step 1. € bounded

In principle we use the same arguments as in the previous proofs. Given
0<T <ooandl<s,g<oolet| |y =" leeorxey = (fy |15 dt)
where X (€2) is a Banach space of functions in 2; furthermore, we use the operators
Jg.s» Ty see § 3.1, and define qu qu,s for f € L*(0,T; ig) by

t _ 5 T -
Gl = [ e pyan (G = [ e dr
0 t
0<t<T. Since fig = fiq:, we obtain for all f € L*(0,T; Eg), g€ L*(0,T; ig’)
that . .
<L7q,8f7 g>T = <f7 qu’ys’g>T-

First consider the case up = 0 and let s = ¢. Then u = jq,qf solves the
evolution system u; + Agu = f, u(0) = 0, and v = J; f is the solution of the
system —u; + flqu = f,u(T) = 0. Our aim is to prove in both cases the estimate

||Ut||Lq(ig(Q)) + ||U||Lq(vi/2,q(9)) + ||Vp||Lq(iq(Q)) < C||f||Lq(ig(Q)) (3.37)

with Vp = (I — Pq)Au and C = C(T,q,a,,K) > 0.

Observe that it is sufficient to prove (3.37) for the case u = J,,f only. The
other case follows using the transformation a(t) = u(T —t), f(t) = f(T —t).
Further, it is sufficient to prove (3.37) when 2 < ¢ < co. For, using (jq',q)' SN
and the duality principle in the same way as in (3.32), the case 1 < ¢ < 2 is
reduced to the case 2 < ¢’ < oco. In this context we note that it is sufficient
to prove instead of (3.37) the estimate ||u|| o720y < Cllfllagis (). Actually,
(3.37) follows using A,u = f —u;, the simple identity u(t) = fot u(7)d7 leading to
the estimate ||ul| o1 (q) < Cllutlpo(iz ), € = C(T') > 0, and the equivalence
relation (3.26).

Thus it remains to prove (3.37) with 2 < ¢ < oo where u = 7, , solves

u + Agu = u, — Au+Vp=f € L0, T;L%), u(0)=0

and Vp = (I — P,)Au. Using the well known estimate (3.11) for bounded domains
we know that u = J,, satisfies (3.37) with C' = C(T, ¢, ) > 0. Thus it remains
to prove that C' in (3.37) can be chosen depending only on T, ¢, o, 3, K.

To prove this result consider the local equation

(pju—w)e — Alpju — w) + V(g;(p — M;))
= ¢;f —wi+ Aw =2V, - Vu — (Apj)u+ (V;) (p — M;)

in U; where w = R((V;) -u) € L7(0,T; Woz’q(Uj)) solves the equations divw =
(Vpj) - v and divw, = (Vy,) - u, for a.a. t € (0,7). Here Uj,p;,1 < j < N,
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have the same meaning as in the previous proofs and M; = M;(p) is a constant
depending on ¢ defined by p — M; = R'(Vp) € L?(0,T; L{(U;)).

First let 2 < ¢ < 6. Then from (3.6), (3.7) using Vp = f — u; + Au we obtain
the estimates

IN

[wellLo(zew;)) Cllugl| a2 wy)),

IV?wlloowy < C(lullzaswyy + IVullawsw,y), (3.38)
lp = Mjlleaawyy < CUzaswyy + luells@ewyy + 1Vullawsw;))
with C' = C(q,«, 8, K) > 0. Applying the local estimate (3.5) and using (3.38)

we are led to the inequality

||¢Jut||Lq Li1(U. + ||¢Ju|| a(La( U] + ||QOJV2U||LQ La(U. + ||QOJVP||L41 La(U, )) (3 39)

< C(||f||Lq Loy T 1l azoqyy) + IIVUHLq wowyy T el zazawy)

with C' = C(T,q, o, 5, K) > 0. Next we argue in principle in the same way as in
Step 1 of § 3.3: Take the sum over j = 1,..., N, remove the term ||Vul|zs(La(q)
with the absorption argument using (3.13), then apply the estimate (3.11) to
|luel|l a2y with C = C(q,T) > 0. If ¢ > 6, we have to replace the term
|ue||Lacr2y) by the term ||ug||pa(rs(q)), and use the interpolation inequality

1.1 o)
|uel| ooy < a(g) /"‘||ut||Lq(L2(Q)) + (1 —a)e s [[uel| Loz
with sufficiently small € > 0. This leads to the inequality
wel| Loz @nza(e) + lull Logwz2@yaw2a ) + VPl o2 @)nza@y)

< Ofllpazz e )

for all 2 < ¢ < oo with C = C(T,q,a,,K) > 0 and completes the proof of
(3.37) for 1 < ¢ < oo. In particular, this proves inequality (2.18) for the bounded
domain €2 when uy = 0. To prove (2.18) with ug € D(A,) we solve the system
i+ Ao = f, @(0) = 0, with f = f — Ajug. Then u(t) = a(t) + uo yields the
desired solution with ug € D(/qu). This proves Theorem 2.5 for bounded (2.

Step 2. 2 unbounded .
Using the same arguments as in Step 2 of § 3.3, let f € Lq(O,T; L?,(Q)),
1 < ¢ < oo, and consider the solution u; € L? (0, T; D(Aq)) of the system

th+14 u; = fj, U](O) :0

with f; = P, f| , 7 € N, following Step 1. Then (3.37) applied to the domains

(2; yields the uniform estimate

|14 (i) T ||U’J||Lq Wza(o;)) T ||VPJ||Lq L) < CHf“Lq L@ (3.40)

||UJ,
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with Vp; = (I — Pq)Auj, C =C(T,q,a,3,K) > 0. Suppressing subsequences
we obtain by the weak convergence argument the weak limits
uw=w— limu; € L7(0,T; L%()), Vp=w — lim Vp; € L4(0,T; LY(Q)),
j—ro00 j—ro00
satisfying u € L1 (O,T; Dq(Q)), uy + flqu =u;— Au+ Vp = f, u(0) =0, and the
estimate

||Ut||Lq(ig(Q)) + ||U||Lq(vi/2,q(9)) + ||VP||Lq(iq(Q)) < C||f||Lq(ig(Q))= (3.41)

with C' as in (3.40), which is equivalent to inequality (2.18).
The uniqueness of u follows in the same way as in Step 2 of § 3.3, and the

case u(0) = ug € D(A,) is treated as above in Step 1. The other properties in
Theorem 2.5 are obvious. This completes the proof.

3.5 Suitable Weak Solutions, Strong Energy Inequality, and Leray’s
Structure Result for General Domains; Proof of Theorem 2.7

To construct a suitable weak solution u in the general uniform C?-domain  of
type «, 3, K we use approximate solutions uy and the key estimate (2.18) in the
formulation (2.21) with the exponent ¢ = 2; the reason for this exponent is the
structure of the nonlinear term. Except for this estimate, all the other approxi-
mation arguments are well known in principle; here we follow the construction in
[33], Chapter V. However, it is easier, first to consider a bounded domain 2 and
then to treat the subdomains €2; with j — oo as in the previous proofs. Further-
more, we may assume without loss of generality that 0 < 7' < oo and consequently
that 7" = T in (2.25); if T = oco we consider a sequence 0 < T} < T, < ... with
lim;_,, T; = oo and continue the construction of u step by step.

Moreover, we may assume that uy = 0 in the following proof. The case
ug # 0 will be reduced to this case in two steps: If ug € D(/qu), we replace
u(t) by a(t) = u(t) — e *2'uy in the linear part of the equation (2.23). Hence
@(0) = 0, and the argument for vy = 0 yields (2.25) with € = 0 and u replaced
by . Since uy € D(A,), we conclude that (2.25) holds for u with ¢ = 0. If
uyg € L2 only, we choose any 0 < ¢ < T, use that e~ 42tuy = e~42(=%)y; _ with
upe = e *uy € D(Ay) € D(A,), ¢ = 3 and conclude from the validity of
(2.25) for 4, = 0, that (2.25) holds for u in the restricted interval (e,7"). This
information is sufficient to prove (2.26), (2.27).

Thus we may assume that up = 0, 0 < 7" =T < 00, and we prove (2.25) with

e = 0. Further let f € L1(0,T; L*(Q)), ¢ = 2.

Step 1. €2 bounded.

Following [33], V.3.3, we use Yosida's approximation operators J = (I +
k71A5)7! k € N, and find solutions u = wuy, of the approximate Navier-Stokes
system

u — Au+ (Jyu) - Vu+Vp=f, divu =0, Uy =05 u(0) =0 (3.42)
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on (0,7). Further, we recall the following estimates:

1
§||uk||i°°(L?,(Q)) + ||Vuk||%2(L2(Q)) CO||f||%1(L2(Q))7 Co >0, (3.43)

<
lurllvsy < Cllfllrez@)s

Where(522,722,%+%:%,C:C('y,5)>0,and

| Tettr, - Vgl ooy < ClFI 2

where 1 < 7,8 <2, 243 =4, 0 = C(v,6) > 0; see [33], V.2.2, (2.2.3), and V.2.6
concerning these properties.
Moreover, due to (3.37),

Ntk il La(za(e))y + |kl Lagwza(e)) + VPRl Loz (3.44)
5%
< C(I1flpaee2 () + ||f||%1(L2(Q)))7 7= 7 C=C(T,a,5K)>0.

Using these uniform boundedness properties we conclude letting & — oo (and
suppressing subsequences) that there exists a weak solution u of the system (2.23)
with the following weak (“—") and strong (“—”) convergence properties, resp.:

u, — u in L*(0,7; Wy*(Q2))
up — U in L*(0,7;L*(€2)) (since © is bounded)
Vu, — Vu, in L*(0,T;L*(Q))
ug(t) — wu(t) in L2(Q) fora.a.tel0,T)
U 1, Uk, Vg, Viug, Vo) = (ug, u, Vu, V2u, Vp) in Lq(O,T; Lq(Q)), where
. Moreover, Poincaré’s inequality shows that
1Pk — M| La(zr@)) < ClIVPrllLagrooy) (3.45)

where ¢ = 2, r = 2, M), = My(py) = ﬁfﬂpk dz and C' = C(T,Q) > 0.
Hence we conclude that the estimates (3.43), (3.44) also hold with uy, Vpy
replaced by u, Vp and that

pr— My —p in L9(0,T; L"(2))
for some p € (O,T; L’"(Q)) satisfying Vp = Vp. Choosing M = M (t) such that
p=p— M, (3.45) holds with p, — My, Vpy, replaced by p — M, Vp.

Let ¢ € C$°(R?). Then an elementary calculation yields for all 0 < s <t < T
the equality

all

!
q=y

slonOl: + [ lovulsdr (3.46)
t t
= shou()Es + [ er.oudr - 5 [ (Tlu, veyr
+/S <%|uk|2,(Jkuk)-V¢2>dT+/s (pis us - V).
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By the convergence properties above and writing the most problematic term in
(3.46) in the form (pg,uy - VP?y = (pr, — My, ug - V$?) we may let k converge to
infinity in each term, using Lebesgue’s dominated convergence theorem. Because
of the weak convergence property concerning Vuy, inequality (3.46) yields (2.26)
fora.a. s € [0,7) and all ¢t € [s,T). Finally the strong energy inequality (2.27) is
a consequence of (2.26) with ¢ = 1 on 2. Recall that the restriction concerning
£ in (2.25) is needed only for technical reasons if 0 # ug € L2 \ D(A,).

Step 2. ) unbounded.
Consider the bounded subdomains ©; C Q, j € N, as in (2.8), and let u; be
a weak solution in 2; according to Step 1 with associated pressure term Vpj,
satisfying
Ujt — AUJ' + Uj - VUj + ij = fj, div uj = 0,
(3.47)
ui(0) = 0,

Uil gq, ’
where f; = f|Q,' Applying the diagonal principle in the same way as in [33],
J

V.(3.3.17), we find a subsequence {a;} of the sequence {u;} and a weak solution
u with pressure term Vp of the system (2.23) with the following convergence
properties as j — oo (assuming for simplicity 4; = u;):
uj converges to wu weakly in L2?(0,7;W"%(Qy;)) and strongly in
L?(0,T; L*(Q,)) for each fixed j,
Vu; converges to Vu weakly in L?(0,T; L*(9,)),
u;(t) converges to u(t) strongly in L?(€2;,) for a.a. t € [0,T)).
Furthermore, uniformly in j € N,

1
5““3‘“%00@3(@)) + ||vuj||%2(L2(Qj))

IN

OO||f||%1(L2(Q))7 Co >0, (3.48)
||uj||L”(L“(Qj)) < C||f||L1(L2(Q));

where v >2,0>2,242=3C=C(y,0) >0, and

2
Y
;- Vgl o,y < O||f||%1(L2(Q))=

where 1 < 7,6 < 2, %+%:4,C:C(’y,5) > 0.
Using the maximal regularity estimate (2.18) in the form (2.21) combined
with the last estimate we are led to the inequality

Jwjall Loz racey)) + llujllLaw2awaie,)) + (VD || Lo(r2rLogey))  (3-49)
< C(1flzoqzz @y + 17121 (0))
with ¢ = % and C = C(T,a, B, K) > 0 not depending on j € N. Thus we may
conclude without loss of generality, see the previous proofs, that

(wj, uj, Vug, V2uj, Vp;) = (u, u, Vu, V?u,Vp) in L* (O,T, L*(Q) + Lq(Q))
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as j — oo, and that (3.49) holds with wu;, 2; replaced by w, 2. This proves (2.25)
for ug = 0; the general case uy € L? requires introducing ¢ > 0.

To prove the local energy inequality (2.26) choose jy in such a way that
QNsupp ¢ C Qj, use (2.26) from Step 1 for Q; and u;, j > jo, and let j — oo
using the convergence properties above. This proves (2.26) for u, Q.

To prove (2.27) we choose a sequence ¢; € CP(R?), j € N, satisfying
0 < ¢; <1, Vg3 < Cp with some constant Cp, and with lim; . ¢j(z) = 1,
lim;_,o V@3 (x) = 0 for all 2 € R®. Setting ¢ = ¢; in (2.26) we obtain the desired
inequality (2.27) by letting j — oc.

Now the proof of Theorem 2.7 is complete.
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