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Abstra
t

It is known by 
ounter-examples that the usual L

q

-approa
h to the Stokes

equations, well known e.g. for bounded and exterior domains, 
annot be

extended to general domains 
 � R

3

without any modi�
ation for q 6= 2.

In the present paper we will show that important properties like Helmholtz

de
omposition, analyti
ity of the Stokes semigroup, and the maximal reg-

ularity estimate of the nonstationary Stokes equations remain valid for

general domains even for q 6= 2 if we repla
e the spa
e L

q

for 2 � q < 1

by the interse
tion L

2

\ L

q

and for 1 < q < 2 by the sum spa
e L

2

+ L

q

.

As an appli
ation we prove the existen
e of a (suitable) weak solution u

of the Navier-Stokes equations with pressure term rp 2 L

5=4

lo


, 
onje
tured

by Ca�arelli-Kohn-Nirenberg [8℄, and satisfying both the lo
al and strong

energy inequality.
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1 Introdu
tion

Throughout this paper, 
 � R

3

means a general three-dimensional domain with

uniform C

2

-boundary �
 6= ;, where the main interest is fo
ussed on domains

with non
ompa
t boundary �
. As is well known, the standard approa
h to

the Stokes equations in L

q

-spa
es; 1 < q < 1, 
annot be extended to general

unbounded domains in L

q

, q 6= 2; for 
ounter-examples 
on
erning the Helmholtz

de
omposition, see [6℄, [26℄. However, to develop a 
omplete and analogous theory

of the Stokes equations for arbitrary domains, we repla
e the spa
e L

q

(
) by

~

L

q

(
) =

(

L

2

(
) \ L

q

(
); 2 � q <1

L

2

(
) + L

q

(
); 1 < q < 2

:
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First, we prove the existen
e of the Helmholtz proje
tion P on the spa
e

~

L

q

(
)

yielding the de
omposition f = f

0

+rp, f

0

= Pf; with properties 
orresponding

to those in L

q

(
).

In the next step we 
onsider in

~

L

q

(
) the usual resolvent equation

�u��u+rp = f; div u = 0 in 
; u

j

�


= 0; (1.1)

with � in the se
tor S

"

:= f0 6= � 2 C ; jarg�j <

�

2

+ "g, 0 < " <

�

2

. We prove an

~

L

q

-estimate similar to that in L

q

(
); i.e.,

j�j kuk

~

L

q

+ kr

2

uk

~

L

q

+ krpk

~

L

q

� Ckfk

~

L

q

; 1 < q <1; (1.2)

at least when j�j � Æ > 0, C = C(
; q; "; Æ) > 0.

The Stokes operator A = �P� is well de�ned in

~

L

q

�

(
); 1 < q <1, and the

semigroup fe

�At

; t � 0g is (lo
ally in time) bounded and analyti
 in some se
tor

ft 2 C : jarg tj < "

0

, 0 < "

0

<

�

2

g, of the 
omplex plane.

Further, we prove the maximal regularity estimate of the nonstationary Stokes

system

u

t

��u+rp = f; div u = 0 in 
� (0; T );

u

j

�


= 0; u(0) = u

0

;

(1.3)

with 0 < T <1: To be more pre
ise, if u

0

= 0 for simpli
ity, then

ku

t

k

Y

q

+ kuk

Y

q

+ kr

2

uk

Y

q

+ krpk

Y

q

� Ckfk

Y

q

; (1.4)

where Y

q

= L

q

(0; T ;

~

L

q

(
)) and C = C(T; q; �; �;K) > 0 depends on T; q, and

the type �; �;K of 
, see Se
tion 2.3.

As an appli
ation of these linear results we obtain the existen
e of a so-
alled

suitable weak solution u of the Navier-Stokes system

u

t

��u+ u � ru+rp = f; div u = 0 in 
� (0; T );

u

j

�


= 0; u(0) = u

0

(1.5)

with spe
ial regularity properties whi
h are new up to now for general domains,

see the 
onje
ture in [8℄, p. 780. In parti
ular, we get for general domains the

regularity property

rp 2 L

5=4

lo


�

(0; T )� 


�

; (1.6)

whi
h is needed in the partial regularity theory of the Navier-Stokes equations.

Moreover, u satis�es the lo
al energy inequality, see (2.26) below and [8℄, (2.5),

as well as the strong energy inequality

1

2

ku(t)k

2

2

+

Z

t

s

kruk

2

2

d� �

1

2

ku(s)k

2

2

+

Z

t

s

hf; uid� (1.7)

for a.a. s 2 [0; T ) in
luding s = 0 and all t with s � t < T , see [27℄. This result is

essentially known for domains with 
ompa
t boundaries; see [33℄, V. Thm. 3.6.2

and Thm. 3.4.1 for bounded domains, [16℄, [28℄, [32℄ for exterior domains.
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2 Preliminaries and Main Results

2.1 Sum and Interse
tion Spa
es

We re
all some properties of sum and interse
tion spa
es known from interpola-

tion theory, 
f. [4℄, [5℄, [29℄, [36℄.

Consider two (
omplex) Bana
h spa
es X

1

; X

2

with norms k�k

X

1

, k�k

X

2

, re-

spe
tively, and assume that both X

1

and X

2

are subspa
es of a topologi
al ve
tor

spa
e V with 
ontinuous embeddings X

1

� V , X

2

� V . Further, we assume that

the interse
tion X

1

\ X

2

is a dense subspa
e of both X

1

and X

2

in the 
orre-

sponding norms.

Then the sum spa
e

X

1

+X

2

:= fu

1

+ u

2

; u

1

2 X

1

; u

2

2 X

2

g � V

is a well de�ned Bana
h spa
e with the norm

kuk

X

1

+X

2

:= inffku

1

k

X

1

+ ku

2

k

X

2

; u = u

1

+ u

2

; u

1

2 X

1

; u

2

2 X

2

g:

Another formulation of that norm is given by

ku

1

+ u

2

k

X

1

+X

2

= inffku

1

� vk

X

1

+ ku

2

+ vk

X

2

; v 2 X

1

\X

2

g:

The interse
tion spa
e X

1

\X

2

is a Bana
h spa
e with norm

kuk

X

1

\X

2

= max(kuk

X

1

; kuk

X

2

);

whi
h is equivalent to kuk

X

1

+kuk

X

2

. Note that the spa
eX

1

+X

2


an be identi�ed

isometri
ally with the quotient spa
e X

1

�X

2

=D where D = f(�v; v); v 2 X

1

\

X

2

g, identifying u = u

1

+ u

2

2 X

1

+ X

2

with the equivalen
e 
lass [(u

1

; u

2

)℄ =

f(u

1

� v; u

2

+ v); v 2 X

1

\X

2

g.

Next we 
onsider the dual spa
es X

0

1

; X

0

2

of X

1

; X

2

; resp., with norms

kfk

X

0

i

= sup

n

jhu; fij

kuk

X

i

; 0 6= u 2 X

i

o

; i = 1; 2:

In both 
ases hu; fi denotes the value of some fun
tional f at some element u,

and h�; �i is 
alled the natural pairing between the spa
e X

i

and its dual spa
e

X

0

i

: Note that kuk

X

i

= sup fjhu; fij = kfk

X

0

i

; 0 6= f 2 X

0

i

g.

Sin
e X

1

\X

2

is dense in X

1

and in X

2

, we 
an identify two elements f

1

2 X

0

1

,

f

2

2 X

0

2

, writing f

1

= f

2

, i� hu; f

1

i = hu; f

2

i holds for all u 2 X

1

\ X

2

. In

this way the interse
tion X

0

1

\ X

0

2

is a well de�ned Bana
h spa
e with norm

kfk

X

0

1

\X

0

2

= max(kfk

X

0

1

; kfk

X

0

2

). The dual spa
e (X

1

+X

2

)

0

of X

1

+X

2

is given

by X

0

1

\X

0

2

, and we get

(X

1

+X

2

)

0

= X

0

1

\X

0

2

3



with the natural pairing hu; fi = hu

1

; fi+ hu

2

; fi for all u = u

1

+ u

2

2 X

1

+X

2

,

f 2 X

0

1

\X

0

2

. Thus it holds

kuk

X

1

+X

2

= sup

n

jhu

1

; fi+ hu

2

; fij

kfk

X

0

1

\X

0

2

; 0 6= f 2 X

0

1

\X

0

2

o

and

kfk

X

0

1

\X

0

2

= sup

n

jhu

1

; fi+ hu

2

; fij

kuk

X

1

+X

2

; 0 6= u = u

1

+ u

2

2 X

1

+X

2

o

;

see [4℄, p. 32, [36℄, p. 69. Therefore, jhu; fij � kuk

X

1

+X

2

kfk

X

0

1

\X

0

2

.

By analogy, we obtain that

(X

1

\X

2

)

0

= X

0

1

+X

0

2

with the natural pairing hu; f

1

+ f

2

i = hu; f

1

i+ hu; f

2

i.

Consider 
losed subspa
es L

1

� X

1

, L

2

� X with norms k�k

L

1

= k�k

X

1

,

k�k

L

2

= k�k

X

2

and assume that L

1

\ L

2

is dense in both L

1

and L

2

in the 
or-

responding norms. Then kuk

L

1

\L

2

= kuk

X

1

\X

2

, u 2 L

1

\ L

2

, and an elementary

argument, using the Hahn-Bana
h theorem shows that also

kuk

L

1

+L

2

= kuk

X

1

+X

2

; u 2 L

1

+ L

2

: (2.1)

In parti
ular, we need the following spe
ial 
ase. Let B

1

: D(B

1

) ! X

1

,

B

2

: D(B

2

) ! X

2

be 
losed linear operators with dense domains D(B

1

) � X

1

,

D(B

2

) � X

2

equipped with graph norms

kuk

D(B

1

)

= kuk

X

1

+ kB

1

uk

X

1

; kuk

D(B

2

)

= kuk

X

2

+ kB

2

uk

X

2

:

We assume that D(B

1

) \ D(B

2

) is dense in both D(B

1

) and D(B

2

) in the 
or-

responding graph norms. Ea
h fun
tional F 2 D(B

i

)

0

; i = 1; 2; is given by

some pair f; g 2 X

0

i

in the form hu; F i = hu; fi + hB

i

u; gi. Using (2.1) with

L

i

= f(u;B

i

u); u 2 D(B

i

)g � X

i

� X

i

; i = 1; 2; and the equality of norms

k � k

(X

1

�X

1

)+(X

2

�X

2

)

and k � k

(X

1

+X

2

)�(X

1

+X

2

)

on (X

1

�X

1

) + (X

2

�X

2

), we 
on-


lude that for ea
h u 2 D(B

1

) + D(B

2

) with de
omposition u = u

1

+ u

2

; u

1

2

D(B

1

); u

2

2 D(B

2

);

kuk

D(B

1

)+D(B

2

)

= ku

1

+ u

2

k

X

1

+X

2

+ kB

1

u

1

+B

2

u

2

k

X

1

+X

2

: (2.2)

Suppose that X

1

and X

2

are re
exive Bana
h spa
es implying that ea
h

bounded sequen
e in X

1

(and X

2

) has a weakly 
onvergent subsequen
e. This

argument yields the following property: Given u 2 X

1

+X

2

there exist u

1

2 X

1

,

u

2

2 X

2

with u = u

1

+ u

2

su
h that

kuk

X

1

+X

2

= ku

1

k

X

1

+ ku

2

k

X

2

: (2.3)
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2.2 Fun
tion Spa
es

Let D

j

= �=�x

j

, j = 1; 2; 3, x = (x

1

; x

2

; x

3

) 2 
 � R

3

, r = (D

1

; D

2

; D

3

),

and r

2

= (D

j

D

k

)

j;k=1;2;3

: The spa
es of smooth fun
tions on 
 are denoted as

usual by C

k

(
), C

k

(
), C

k

0

(
) with k 2 N

0

= N [ f0g or k = 1. We set

C

1

0;�

(
) = fu = (u

1

; u

2

; u

3

) 2 C

1

0

(
); div u = 0g.

Let 1 < q < 1 and q

0

=

q

q�1

su
h that

1

q

+

1

q

0

= 1. Then L

q

(
) with

norm kuk

L

q

= kuk

q

= kuk

q;


denotes the usual Lebesgue spa
e for s
alar or

ve
tor �elds. Ea
h f = (f

1

; f

2

; f

3

) 2 L

q

0

(
) = L

q

(
)

0

will be identi�ed with the

fun
tional h�; fi : u 7! hu; fi = hu; fi




=

R




u � f dx on L

q

(
). Let L

q

�

(
) =

C

0;�

(
)

k�k

q

� L

q

(
) denote the subspa
e of divergen
e-free ve
tor �elds u =

(u

1

; u

2

; u

3

) with zero normal 
omponent N � u

j

�


at �
; here N means the outer

normal at �
: The usual Sobolev spa
es W

k;q

(
) are mainly used for k = 1; 2

with norms kuk

W

1;q

= kuk

1;q

= kuk

1;q;


= kuk

q

+ kruk

q

and kuk

W

2;q

= kuk

2;q

=

kuk

2;q;


= kuk

1;q

+ kr

2

uk

q

, resp. Further, we need the subspa
es W

1;q

0

(
) =

C

1

0

(
)

k�k

1;q

� W

1;q

(
) and W

1;q

0;�

(
) = C

1

0;�

(
)

k�k

1;q

� W

1;q

(
).

For simpli
ity, we will write C

k

; L

q

; W

1;q

�

et
. instead of C

k

(
); L

q

(
);

W

1;q

�

(
), resp., when the underlying domain is known from the 
ontext. More-

over, we will use the same notation for spa
es of s
alar-, ve
tor- or matrix-valued

fun
tions.

The sum spa
e L

2

+ L

q

is well de�ned when V in x 2.1 is the spa
e of distri-

butions with the usual topology. We obtain that

(L

2

+ L

q

)

0

= L

2

\ L

q

0

; (L

2

\ L

q

)

0

= L

2

+ L

q

0

;

where kuk

L

2

\L

q

= max(kuk

2

; kuk

q

) and

kuk

L

2

+L

q

= inf fku

1

k

2

+ ku

2

k

q

; u = u

1

+ u

2

; u

1

2 L

2

; u

2

2 L

q

g

= sup

n

jhu

1

+ u

2

; fij

kfk

L

2

\L

q

0

; 0 6= f 2 L

2

\ L

q

0

o

:

For the nonstationary problem on some time interval [0; T ), 0 < T � 1,

we need the usual Bana
h spa
e L

s

(0; T ;X) of measurable X{valued (
lasses of)

fun
tions u with norm

kuk

L

s

(0;T ;X)

=

�

Z

T

0

ku(t)k

s

X

dt

�

1

s

; 1 � s <1;

where X is a Bana
h spa
e. For s =1 let

kuk

L

1

(0;T ;X)

= ess sup fku(t)k

X

; 0 � t < Tg:

If X is re
exive and 1 < s < 1, then the dual spa
e of L

s

(0; T ;X) is given

by L

s

(0; T ;X)

0

= L

s

0

(0; T ;X

0

), s

0

=

s

s�1

, with the natural pairing hu; fi

T

=

R

T

0

hu(t); f(t)i dt.
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Let X = L

q

(
), 1 < q < 1. Then we use the notations kuk

L

s

(0;T ;L

q

)

=

� R

T

0

kuk

s

q

dt

�

1=s

; moreover, the pairing of L

s

(0; T ;L

q

) with its dual L

s

0

(0; T ;L

q

0

)

is given by hu; fi

T

= hu; fi


;T

=

R

T

0

R




u � f dx dt.

Let Y

1

= L

s

(0; T ;L

2

); Y

2

= L

s

(0; T ;L

q

) with 1 < q; s <1. Then we see that

(Y

1

+ Y

2

)

0

= Y

0

1

\ Y

0

2

= L

s

0

(0; T ;L

2

\ L

q

0

) = L

s

(0; T ;L

2

+ L

q

)

0

;

where the pairing between Y

1

+ Y

2

and Y

0

1

\ Y

0

2

is given by hu

1

+ u

2

; fi

T

=

hu

1

; fi

T

+ hu

2

; fi

T

for u

1

2 Y

1

, u

2

2 Y

2

, f 2 Y

0

1

\Y

0

2

. Furthermore, we 
an 
hoose

the de
omposition u = u

1

+ u

2

2 L

s

(0; T ;L

2

+ L

q

) in su
h a way that

kuk

Y

1

+Y

2

= ku

1

k

Y

1

+ ku

2

k

Y

2

: (2.4)

We 
on
lude that

ku

1

+ u

2

k

Y

1

+Y

2

= sup

n

jhu

1

+ u

2

; fi

T

j

kfk

Y

0

1

\Y

0

2

; 0 6= f 2 L

s

0

(0; T ;L

2

\ L

q

0

)

o

: (2.5)

2.3 Stru
ture Properties of the Boundary �


We re
all some well known te
hni
al details on the uniform C

2

{domain 
 � R

3

,

see e.g. [1℄, p. 67, [20℄, p. 645, [33℄, p. 26. By de�nition, this means that there

are 
onstants �; �;K > 0 with the following properties:

For ea
h x

0

2 �
 we 
an 
hoose a Cartesian 
oordinate system with origin

x

0

and 
oordinates y = (y

1

; y

2

; y

3

) = (y

0

; y

3

), y

0

= (y

1

; y

2

), obtained by some

translation and rotation, as well as some C

2

-fun
tion h(y

0

), jy

0

j � �, with

C

2

-norm khk

C

2

� K, su
h that the neighborhood

U

�;�;h

(x

0

) := f(y

0

; y

3

); h(y

0

)� � < y

3

< h(y

0

) + �; jy

0

j < �g

of x

0

satis�es

U

�

�;�;h

(x

0

) := f(y

0

; y

3

); h(y

0

)� � < y

3

< h(y

0

); jy

0

j < �g = 
 \ U

�;�;h

(x

0

);

and

�
 \ U

�;�;h

(x

0

) = f(y

0

; y

3

); h(y

0

) = y

3

; jy

0

j < �g :

Without loss of generality we may assume that the axes of y

0

= (y

1

; y

2

) are


ontained in the tangential plane at x

0

. Thus at y

0

= (0; 0) we have h(y

0

) = 0 and

r

0

h(y

0

) = (�h=�y

1

; �h=y

2

) = (0; 0). Therefore, for any given 
onstant M

0

> 0,

we may 
hoose � > 0 suÆ
iently small su
h that a smallness 
ondition of the

form kr

0

hk

C

0

= maxfjr

0

h(y

0

)j; jy

0

j � �g � M

0

is satis�ed. It is important to

note that the 
onstants �; �;K > 0 do not depend on x

0

2 
. We 
all �; �;K

the type of 
.
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Let 
 be the 
losure of 
 and let B

r

(x) = fw 2 R

3

; jw � xj < rg be the

open ball with 
enter x 2 R

3

and radius r > 0. Then we 
an 
hoose some �xed

r 2 (0; �) depending only on �; �;K, balls B

j

= B

r

(x

j

) with 
enters x

j

2 
, and

C

2

-fun
tions h

j

(y

0

), jy

0

j � �, where j = 1; 2; : : : ; N if 
 is bounded and j 2 N if


 is unbounded, su
h that


 �

N

[

j=1

B

j

or 
 �

1

[

j=1

B

j

; respe
tively; (2.6)

B

j

� U

�;�;h

j

(x

j

) if x

j

2 �
; B

j

� 
 if x

j

2 
:

Moreover, we 
an 
onstru
t this 
overing in su
h a way that not more than a

�xed �nite number N

0

= N

0

(�; �;K) 2 N of these balls B

1

; B

2

; : : : 
an have a

nonempty interse
tion. Thus if we 
hoose any N

0

+ 1 di�erent balls B

1

; B

2

; : : :,

then their 
ommon interse
tion is empty. If 
 is bounded, let N

0

= N .

Con
erning the fB

j

g there exists a partition of unity '

j

2 C

1

0

(R

3

) with

0 � '

j

� 1, supp'

j

� B

j

, j = 1; : : : ; N or j 2 N ; satisfying

N

X

j=1

'

j

(x) = 1 or

1

X

j=1

'

j

(x) = 1; respe
tively, for all x 2 
; (2.7)

and the pointwise estimates jr'

j

(x)j; jr

2

'

j

(x)j � C uniformly with respe
t to

j where C = C(�; �;K):

If 
 is unbounded, we 
an represent 
 as a union of 
ountably many bounded

C

2

-subdomains 


j

� 
, j 2 N , su
h that




j

� 


j+1

for all j 2 N ; 
 =

1

[

j=1




j

; (2.8)

and su
h that ea
h 


j

has some �xed type �

0

; �

0

; K

0

> 0. Without loss of gener-

ality we may assume that � = �

0

, � = �

0

, K = K

0

: ea
h subdomain 


j

, j 2 N ,

has the same type �; �;K as 
, see [20℄, p. 665. Obviously ea
h 
ompa
t subset




0

� 
 is 
ontained in some 


j

and therefore in ea
h 


k

, k � j; see [33℄, p. 56,

Remark 1.4.2.

Finally we need a te
hni
al property in subsequent proofs. Given a ball

B

r

(x) � R

3


onsider some Cartesian 
oordinate system with origin x and 
o-

ordinates y = (y

0

; y

3

). Then B

�

r

(x) := fy = (y

0

; y

3

); jyj < r; y

3

< 0g is 
alled a

half ball with 
enter x and radius r. We may assume without loss of generality

that there are appropriate half balls B

�

j

= B

�

r

(x

j

) of the balls B

j

in (2.7) su
h

that

supp'

j

� B

�

j

if x

j

2 
 where j = 1; : : : ; N or j 2 N: (2.9)
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2.4 Main Results on the Stokes Equations

We 
an extend several important L

q

-properties of the Stokes equations known

for spe
ial domains su
h as bounded or exterior domains, to general domains 


if we repla
e the usual L

q

-spa
e by the (smaller) spa
e

~

L

q

=

~

L

q

(
) = L

2

(
) \ L

q

(
) for 2 � q <1;

and by the (larger) spa
e

~

L

q

=

~

L

q

(
) = L

2

(
) + L

q

(
) for 1 < q < 2:

Analogously, we de�ne the subspa
e

~

L

q

�

=

~

L

q

�

(
) �

~

L

q

(
) by setting

~

L

q

�

=

L

2

�

(
) \ L

q

�

(
) for 2 � q <1, and

~

L

q

�

= L

2

�

(
) + L

q

�

(
) for 1 < q < 2.

In the same way we modify the L

q

{Sobolev spa
es W

k;q

(
) and the spa
es

G

q

(
) = frp 2 L

q

; p 2 L

q

lo


(
)g; krpk

G

q

= krpk

L

q

;

D

q

(
) = L

q

�

(
) \W

1;q

0

(
) \W

2;q

(
); kuk

D

q

= kuk

W

2;q

;

1 < q <1, as follows: For 2 � q <1 let

~

W

k;q

(
) = W

k;2

(
) \W

k;q

(
);

~

G

q

(
) = G

2

(
) \G

q

(
);

~

D

q

(
) = D

2

(
) \D

q

(
);

and for 1 < q < 2 let

~

W

k;q

(
) = W

k;2

(
) +W

k;q

(
);

~

G

q

(
) = G

2

(
) +G

q

(
);

~

D

q

(
) = D

2

(
) +D

q

(
);

k = 1; 2. Then the norms k�k

~

W

k;q

; k�k

~

G

q

and k�k

~

D

q

are well de�ned. If 
 is

bounded, then

~

L

q

= L

q

;

~

L

q

�

= L

q

�

;

~

G

q

= G

q

;

~

D

q

= D

q

and

~

W

k;q

=

~

W

k;q

hold

with equivalent norms. Thus the introdu
tion of "�"{spa
es is reasonable only

for unbounded domains.

Our �rst result yields the existen
e of the Helmholtz proje
tion in

~

L

q

(
). The


ounter-examples in [6℄, [26℄, show that the usual L

q

-theory for spe
ial domains


annot be extended to 
 for arbitrary q 6= 2. It is important to note that the


onstants C = C(q; �; �;K) > 0 below only depend on q and the type �; �;K of

the domain 
.

Theorem 2.1 (Helmholtz de
omposition) Let 
 � R

3

be a uniform C

2

-

domain of type �; �;K > 0 and let 1 < q < 1; q

0

=

q

q�1

. Then for ea
h

f 2

~

L

q

there exists a unique de
omposition f = f

0

+rp with f

0

2

~

L

q

�

, rp 2

~

G

q

satisfying the estimate

kf

0

k

~

L

q

+ krpk

~

L

q

� Ckfk

~

L

q

; C = C(q; �; �;K) > 0: (2.10)
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The Helmholtz proje
tion P =

~

P

q

de�ned by

~

P

q

f = f

0

is a bounded operator from

~

L

q

onto

~

L

q

�

satisfying

~

P

q

f = f if f 2

~

L

q

�

and

~

P

q

(rp) = 0 if rp 2

~

G

q

. Moreover,

h

~

P

q

f; gi = hf;

~

P

q

0

gi for all f 2

~

L

q

, g 2

~

L

q

0

.

Remark 2.2 By Theorem 2.1 we 
on
lude that

~

P

0

q

=

~

P

q

0

for the dual operator

~

P

0

q

= (

~

P

q

)

0

of

~

P

q

, 1 < q <1, and (

~

L

q

�

)

0

=

~

L

q

0

�

with pairing h�; �i. We also get that

the norm de�ned by

kuk

�

~

L

q

�

= sup

n

jhu; fij

kfk

~

L

q

0

�

; 0 6= f 2

~

L

q

0

�

o

; u 2

~

L

q

�

; (2.11)

is equivalent to the norm kuk

~

L

q

�

= kuk

~

L

q

in the sense that kuk

�

~

L

q

�

� kuk

~

L

q

�

�

Ckuk

�

~

L

q

�

with C = C(q; �; �;K) > 0 from (2.10).

The usual L

q

-Stokes operator A = A

q

with domain D(A

q

) = D

q

= L

q

�

\

W

1;q

0

\W

2;q

� L

q

�

and range R(A

q

) � L

q

�

de�ned by A

q

u = �P

q

�u is meaningful

if the Helmholtz proje
tion P

q

: L

q

! L

q

�

is well de�ned. Thus, be
ause of the


ounter-examples, see [6℄, [26℄, we 
annot expe
t that this theory is extendable

to general domains 
 for q 6= 2 without modi�
ation of the L

q

-spa
e.

Next we will show that the usual Stokes estimate, at least for j�j � Æ >

0, remains valid for 
 when we repla
e the L

q

-theory by the

~

L

q

-theory. More

pre
isely, let the Stokes operator A =

~

A

q

be de�ned as an operator with domain

D(

~

A

q

) =

~

D

q

�

~

L

q

�

into

~

L

q

�

, by setting

~

A

q

u = �

~

P

q

�u; u 2

~

D

q

:

Let I be the identity and S

"

= f0 6= � 2 C ; j arg�j <

�

2

+ "g, 0 < " <

�

2

.

Theorem 2.3 (Stokes resolvent) Let 
 � R

3

be a uniform C

2

-domain of type

�; �;K > 0 and let 1 < q <1; q

0

=

q

q�1

, 0 < " <

�

2

, Æ > 0. Then

~

A

q

= �

~

P

q

� : D(

~

A

q

)!

~

L

q

�

; D(

~

A

q

) �

~

L

q

�

;

is a densely de�ned 
losed operator, the resolvent (�I +

~

A

q

)

�1

:

~

L

q

�

!

~

L

q

�

is well

de�ned for all � 2 S

"

; and for u = (�I +

~

A

q

)

�1

f , f 2

~

L

q

�

, the estimate

j�j kuk

~

L

q

�

+ kuk

~

W

2;q

� Ckfk

~

L

q

�

; j�j � Æ; (2.12)

with C = C(q; "; Æ; �; �;K) > 0, is satis�ed. Further, it holds the duality relation

h

~

A

q

u; vi = hu;

~

A

q

0

vi; u 2 D(

~

A

q

); v 2 D(

~

A

q

0

): (2.13)

Remark 2.4 a) From (2.12) we 
on
lude that �

~

A

q

generates a C

0

-semigroup

fe

�t

~

A

q

; t � 0g whi
h has an analyti
 extension to some se
tor f0 6= t 2

C ; j arg tj < "

0

g, 0 < "

0

<

�

2

, satisfying the estimate

ke

�t

~

A

q

fk

~

L

q

�

� Me

Æt

kfk

~

L

q

�

; f 2

~

L

q

�

; t � 0; (2.14)
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with M =M(q; Æ; �; �;K) > 0. Note that Æ > 0 may be 
hosen arbitrarily small,

but we 
annot prove up to now whether (2.14) holds with Æ = 0 for the general

domain 
.

b) Let f 2

~

L

q

, 1 < q < 1, � 2 S

"

, j�j > Æ, and set u = (�I +

~

A

q

)

�1

~

P

q

f ,

rp = (I �

~

P

q

)(f + �u). Then we obtain a unique solution pair u 2 D(

~

A

q

),

rp 2

~

G

q

of the equation �u��u+rp = f , and by (2.12)

j�j kuk

~

L

q

+ kr

2

uk

~

L

q

+ krpk

~

L

q

� Ckfk

~

L

q

; (2.15)

where C = C(q; "; Æ; �; �;K) > 0.


) Due to (2.15) the graph norm kuk

D(

~

A

q

)

= kuk

~

L

q

�

+ k

~

A

q

uk

~

L

q

�

on the Bana
h

spa
e D(

~

A

q

) satis�es the estimate

Ckuk

~

W

2;q

� kuk

D(

~

A

q

)

� C

0

kuk

~

W

2;q

; u 2 D(

~

A

q

); (2.16)

with 
onstants C = C(q; �; �;K) > 0, C

0

= C

0

(q; �; �;K) > 0. Hen
e the norms

kuk

~

W

2;q

and kuk

D(

~

A

q

)

are equivalent.

Another important property is the maximal regularity estimate of the non-

stationary Stokes equation (1.3) whi
h 
an be written, applying the Helmholtz

proje
tion, in the form

u

t

+

~

A

q

u = f; u(0) = u

0

: (2.17)

For simpli
ity, we do not use the weakest possible norm for the initial value u

0

,

see Remark 2.6, a).

Theorem 2.5 (Nonstationary Stokes system) Let 
 � R

3

be a uniform C

2

-

domain of type �; �;K > 0, and let 0 < T <1, Y

q

= L

q

(0; T ;

~

L

q

�

); 1 < q <1:

Then for ea
h f 2 Y

q

and ea
h u

0

2 D(

~

A

q

) there exists a unique solution u 2

L

q

�

0; T ;D(

~

A

q

)

�

, u

t

2 Y

q

, of the evolution system (2.17), satisfying the estimate

ku

t

k

Y

q

+ kuk

Y

q

+ k

~

A

q

uk

Y

q

� C

�

ku

0

k

D(

~

A

q

)

+ kfk

Y

q

�

(2.18)

with C = C(q; T; �; �;K) > 0.

Remark 2.6 a) The assumption u

0

2 D(

~

A

q

) in this theorem is not optimal and

may be repla
ed by the weaker properties u

0

2

~

L

q

�

and

R

T

0

k

~

A

q

e

�t

~

A

q

u

0

k

q

~

L

q

�

dt <1.

Then the term ku

0

k

D(

~

A

q

)

in (2.18) may be substituted by the weaker norm

�

Z

T

0

k

~

A

q

e

�t

~

A

q

u

0

k

q

~

L

q

�

dt

�

1

q

; 1 < q <1: (2.19)

Furthermore, by (2.16), the estimate (2.18) implies that

ku

t

k

Y

q

+ kuk

L

q

(0;T ;

~

W

2;q

)

� C

�

ku

0

k

D(

~

A

q

)

+ kfk

Y

q

�

; (2.20)
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where C = C(q; T; �; �;K) > 0.

b) Let f 2 Y

q

= L

q

(0; T ;

~

L

q

�

) in Theorem 2.5 be repla
ed by f 2

^

Y

q

= L

q

(0; T ;

~

L

q

),

1 < q < 1. Then u 2 L

q

�

0; T ;D(

~

A

q

)

�

, de�ned by u

t

+

~

A

q

u =

~

P

q

f , and rp,

de�ned by rp(t) = (I �

~

P

q

)

�

f +�u

�

(t), is a unique solution pair of the system

u

t

��u+rp = f; u(0) = u

0

;

satisfying

ku

t

k

Y

q

+ kuk

Y

q

+ kr

2

uk

^

Y

q

+ krpk

^

Y

q

� C

�

ku

0

k

D(

~

A

q

)

+ kfk

^

Y

q

�

(2.21)

with C = C(q; T; �; �;K) > 0.

Using (2.3) we see that in the 
ase 1 < q < 2 the solution pair u;rp possesses

a de
omposition u = u

(1)

+ u

(2)

, rp = rp

(1)

+rp

(2)

su
h that

u

(1)

2 L

q

(0; T ;W

2;2

); u

(1)

t

2 L

q

(0; T ;L

2

�

);

u

(2)

2 L

q

(0; T ;W

2;q

); u

(2)

t

2 L

q

(0; T ;L

q

�

); (2.22)

rp

(1)

2 L

q

(0; T ;L

2

); rp

(2)

2 L

q

(0; T ;L

q

);

and

ku

t

k

Y

q

+ kuk

Y

q

+ kr

2

uk

^

Y

q

+ krpk

^

Y

q

= ku

(1)

t

k

^

Y

(1)

q

+ ku

(1)

k

^

Y

(1)

q

+ kr

2

u

(1)

k

^

Y

(1)

q

+ krp

(1)

k

^

Y

(1)

q

+

ku

(2)

t

k

^

Y

(2)

q

+ ku

(2)

k

^

Y

(2)

q

+ kr

2

u

(2)

k

^

Y

(2)

q

+ krp

(2)

k

^

Y

(2)

q

where

^

Y

(1)

q

= L

q

(0; T ;L

2

),

^

Y

(2)

q

= L

q

(0; T ;L

q

).

2.5 Appli
ations

As an appli
ation we 
onstru
t a so-
alled suitable weak solution u of the insta-

tionary Navier-Stokes system

u

t

��u+ u � ru+rp = f; div u = 0 in 
� (0; T )

u(0) = u

0

; u

j

�


= 0

(2.23)

for the general domain 
 � R

3

with important additional properties. In parti
u-

lar we are interested in estimate (2.21) for q =

5

4

. The reason is that the energy

properties u 2 L

1

(0; T ;L

2

�

), ru 2 L

2

(0; T ;L

2

) imply that u � ru 2 L

q

(0; T ;L

q

)

with q =

5

4

. Hen
e, shifting u � ru in (2.23) to the right-hand side and 
onsid-

ering for simpli
ity u

0

= 0; we get from (2.21) that rp 2 L

q

(0; T ;L

2

+ L

q

) and

rp 2 L

q

lo


�

(0; T )� 


�

. This property is needed in the lo
al regularity theory as

well as in the proof of the lo
al energy estimate. It was 
onje
tured in [8℄, p. 780,

and open up to now for general domains.
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Moreover, we prove that u satis�es the strong energy inequality, see [16℄,

[28℄, [33℄, whi
h was open for general domains as well. A 
onsequen
e is Leray's

stru
ture theorem [25℄ for general domains; note that the proof in [25℄ 
on
erns

the entire spa
e R

3

only.

We re
all some de�nitions, see, e.g., [33℄, [35℄. The spa
e C

1

0

([0; T );C

1

0;�

)


onsists of smooth solenoidal ve
tor �elds v de�ned on [0; T )� 
 with 
ompa
t

support supp v � [0; T )� 
.

Let f 2 L

5=4

(0; T ;L

2

), 0 < T � 1, u

0

2 L

2

�

. Then a fun
tion u 2

L

1

(0; T ;L

2

�

) \ L

2

lo


�

[0; T );W

1;2

0;�

�

is 
alled a weak solution of (2.23) i�

�hu; v

t

i


;T

+ hru;rvi


;T

+ hu � ru; vi


;T

= hu

0

; v(0)i




+ hf; vi


;T

(2.24)

is satis�ed for all v 2 C

1

0

�

[0; T );C

1

0;�

�

. We may assume without loss of generality

that u is weakly 
ontinuous as a fun
tion from [0; T ) to L

2

�

.

We know that for ea
h weak solution u there exists a distribution p in (0; T )�


su
h that u

t

��u+u �ru+rp = f holds in the sense of distributions, see [33℄; p

is 
alled an asso
iated pressure of u. However, for general 
 it is 
ru
ial whether

p is 
ontained in any L

q

�type spa
e; the problem in this 
ontext is the validity

of the maximal regularity estimate (2.21) for q =

5

4

.

The following result is essentially known for domains with 
ompa
t bound-

aries; see [33℄, V. Thm. 3.6.2, for bounded domains, and [28℄, [32℄ for exterior

domains.

Theorem 2.7 (Suitable weak solution) Let 
 � R

3

be a uniform C

2

-domain

of type �; �;K, let 0 < T � 1, q =

5

4

, f 2 L

q

(0; T ;L

2

) and u

0

2 L

2

�

. Then there

exists a weak solution u 2 L

1

(0; T ;L

2

�

)\L

2

lo


�

[0; T );W

1;2

0;�

�

(
alled a suitable weak

solution) of the system (2.23) and an asso
iated pressure p with the following

additional properties:

(a) Regularity:

u

t

; u;ru;r

2

u;rp 2 L

q

("; T

0

;L

2

+ L

q

) (2.25)

with 0 < " < T

0

< T: If u

0

2 D(

~

A

q

), then (2.25) holds for " = 0; 0 < T

0

< T:

(b) Lo
al energy inequality:

1

2

k�u(t)k

2

2

+

Z

t

s

k�ruk

2

2

d� �

1

2

k�u(s)k

2

2

+

Z

t

s

h�f; �ui d� (2.26)

�

1

2

Z

t

s

hrjuj

2

;r�

2

i d� +

Z

t

s

h

1

2

juj

2

+ p; u � r�

2

i d�

for a.a. s 2 [0; T ), all t 2 [s; T ), and all � 2 C

1

0

(R

3

).

(
) Strong energy inequality:

1

2

ku(t)k

2

2

+

Z

t

s

kruk

2

2

d� �

1

2

ku(s)k

2

2

+

Z

t

s

hf; ui d� (2.27)

for a.a. s 2 [0; T ) in
luding s = 0, and all t 2 [s; T ).
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Remark 2.8 a) From (2.25) we obtain the existen
e of some pressure p satisfying

p 2 L

q

�

"; T

0

;L

r

lo


(
)

�

; 0 < " < T

0

< T; q =

5

4

; r =

15

7

; (2.28)

and we get that u 2 L

2

�

0; T

0

;L

6

(
)

�

, 0 < T

0

< T . This shows that (2.26) is well

de�ned. As in (2.22) we obtain de
ompositions u = u

(1)

+ u

(2)

, p = p

(1)

+ p

(2)

satisfying

u

(1)

t

; u

(1)

;ru

(1)

;r

2

u

(1)

;rp

(1)

2 L

q

("; T

0

;L

2

) for 0 < " < T

0

< T (2.29)

and

u

(2)

t

; u

(2)

;ru

(2)

;r

2

u

(2)

;rp

(2)

2 L

q

("; T

0

;L

q

) for 0 < " < T

0

< T; (2.30)

whi
h holds with " = 0 if additionally u

0

2 D(

~

A

q

): Note that we may 
hoose

T

0

= T in (2.25) if T <1:

b) To obtain Leray's stru
ture theorem, see [25℄, let T = 1 and assume for

simpli
ity that f = 0. Then u in Theorem 2.7, also 
alled a turbulent weak

solution of (2.23), has the following properties: There exists a 
ountable disjoint

family fI

k

g

1

k=0

of intervals in (0;1) su
h that

(1) I

1

= (0; T

1

), I

0

= [T

1

;1) with some 0 < T

1

� T

1

<1,

(2) j(0;1)n [

1

k=0

I

k

j = 0,

P

1

k=1

jI

k

j

1

2

< 1 where j � j denotes the Lebesgue

measure,

(3) u(�; t) 2 C

1

(
) for every t 2 I

k

, k = 0; 1; : : :

These properties imply that the

1

2

�dimensional Hausdor� measure of the singular

set

P

= ft 2 (0;1); u(�; t) 62 C

1

(
)g is zero, see [8℄.

3 Proofs

3.1 Preliminary Lo
al Results

Using the stru
ture properties of the given uniform C

2

{domain 
 � R

3

of type

�; �;K > 0, see x 2.3, we are able to redu
e our results by the lo
alization

prin
iple to a standard domain of the form

H = H

�;�;r;h

= f(y

0

; y

3

); h(y

0

)� � < y

3

< h(y

0

); jy

0

j < �g \ B

r

; (3.1)

here h : y

0

7! h(y

0

), jy

0

j � �, is a C

2

-fun
tion and B

r

= B

r

(0) a ball with radius

0 < r = r(�; �;K) < � su
h that

B

r

� f(y

0

; y

3

); h(y

0

)� � < y

3

< h(y

0

) + �; jy

0

j < �g:
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Further, we may assume that h(0) = 0, r

0

h(0) = (0; 0), h(y

0

) = 0 for r � jy

0

j � �,

and that h satis�es the smallness 
ondition

kr

0

hk

C

0

= maxfjr

0

h(y

0

)j; jy

0

j � �g �M

0

; (3.2)

where M

0

> 0 is a given 
onstant. Re
all that r

0

= (D

1

; D

2

):

In the subsequent proofs we 
an treat ea
h problem for the standard domain

(3.1) as a problem in the domain H

h

= f(y

0

; y

3

) 2 R

3

; y

3

< h(y

0

); y

0

2 R

2

g

with h 2 C

2

0

(R

2

); H

h

is 
alled a bent half spa
e, see [11℄. Then, using the

smallness 
ondition (3.2), an equation in H

h

is 
onsidered as a perturbation of

some equation in the half spa
e H

0

= f(y

0

; y

3

) 2 R

3

; y

3

< 0g.

The following estimates in H = H

�;�;h;r

are well known. However, we have

to 
he
k that the 
onstants in these estimates depend only on q; �; �;K; here we

need the smallness 
ondition (3.2) on h.

Let 1 < q < 1. First we 
onsider the Helmholtz de
omposition in H. Let

f 2 L

q

(H), f

0

2 L

q

�

(H), p 2 W

1;q

(H) satisfy f = f

0

+rp and supp f

0

[ supp p �

B

r

: Then

kf

0

k

L

q

(H)

+ krpk

L

q

(H)

� Ckfk

L

q

(H)

; C = C(q; �; �;K) > 0; (3.3)


f. [31℄, p. 12, and Lemma 3.8, a).

Next let f 2 L

q

(H), u 2 L

q

�

(H) \W

1;q

0

(H) \W

2;q

(H), p 2 W

1;q

(H) satisfy

�u��u+rp = f with � 2 S

"

, see Theorem 2.3, and with supp u[ supp p � B

r

.

Then there are 
onstants �

0

= �

0

(q; �; �;K) > 0, C = C(q; �; �;K) > 0 su
h

that

j�j kuk

L

q

(H)

+ kuk

W

2;q

(H)

+ krpk

L

q

(H)

� Ckfk

L

q

(H)

(3.4)

if j�j � �

0

. To prove this estimate we use [11℄, p. 624, and apply [11℄, Theorem

3.1, (i), and (1.2).

The next estimate 
on
erns the nonstationary Stokes equation in H. As usual

the Stokes operator is de�ned by A

q

= �P

q

� with domain D(A

q

) = L

q

�

(H) \

W

1;q

0

(H) \ W

2;q

(H). Let 0 < T < 1, u

0

2 D(A

q

), f 2 L

q

�

0; T ;L

q

(H)

�

; and

let u 2 L

q

�

0; T;D(A

q

)

�

, p 2 L

q

�

0; T ;W

1;q

(H)

�

satisfy supp u

0

[ supp u(t) [

supp p(t) � B

r

for a.a. t 2 [0; T ℄. Moreover, assume that

u

t

��u+rp = f; u(0) = u

0

or � u

t

��u+rp = f; u(T ) = u

0

;

resp. Then there is a 
onstant C = C(q; �; �;K; T ) > 0 su
h that

ku

t

k

L

q

(0;T ;L

q

(H))

+ kuk

L

q

(0;T ;W

2;q

(H))

+ krpk

L

q

(0;T ;L

q

(H))

(3.5)

� C

�

ku

0

k

W

2;q

(H)

+ kfk

L

q

(0;T ;L

q

(H))

�

:

In the 
ase u(0) = u

0

this estimate follows from [34℄, Theorem 4.1, (4.2) and

(4.21'). The se
ond 
ase �u

t

��u+rp = f , u(T ) = u

0

, 
an be redu
ed to the

�rst 
ase by the transformation ~u(t) = u(T � t),

~

f(t) = f(T � t), ~p(t) = p(T � t).
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The relatively strong assumption u

0

2 D(A

q

) is used for simpli
ity and 
an be

weakened as in Remark 2.6, a). Note that the 
onditions u(0) = u

0

or u(T ) = u

0

,

resp., are well de�ned sin
e u

t

2 L

q

(0; T ;L

q

�

).

Finally, we 
onsider the divergen
e problem

div u = f in H; u

j

�H

= 0 ;

and let L

q

0

(H) = ff 2 L

q

(H);

R

H

f dx = 0g. Then from [14℄, III, Theorem 3.2,

we obtain the existen
e of some linear operator R : L

q

0

(H)!W

1;q

0

(H) satisfying

divRf = f and

kRfk

W

1;q

(H)

� Ckfk

L

q

(H)

if f 2 L

q

0

(H); (3.6)

kRfk

W

2;q

(H)

� Ckfk

W

1;q

(H)

if f 2 L

q

0

(H) \W

1;q

0

(H)

with C = C(q; �; �;K) > 0; moreover, Rf 2 W

2;q

0

(H) if f 2 L

q

0

(H) \W

1;q

0

(H):

The dual operator R

0

of R maps W

�1;q

0

(H) into L

q

0

0

(H). Thus for ea
h p 2

L

q

0

(H) we �nd a unique 
onstantM =M(p) satisfying p�M = R

0

(rp) 2 L

q

0

0

(H)

and the estimate

kp�Mk

L

q

0

(H)

� Ckrpk

W

�1;q

0

(H)

= C sup

n

jhp; div vij

krvk

q

; 0 6= v 2 W

1;q

0

(H)

o

(3.7)

with C = C(q; �; �;K) > 0.

Now let 
 � R

3

be a bounded C

2

-domain �
. Obviously, su
h a domain is of

type �; �;K. We 
olle
t several results on the Helmholtz proje
tion P = P

q

and

the Stokes operator A = A

q

, 1 < q <1. In this 
ase the 
onstant C below may

depend also on 
 ex
ept for q = 2 where Hilbert spa
e arguments are appli
able.

It is known, see [13℄, [31℄, [34℄, that ea
h f 2 L

q

has a unique de
omposition

f = f

0

+ rp, f

0

2 L

q

�

, rp 2 G

q

, and that P

q

: L

q

! L

q

�

de�ned by P

q

f =

f

0

satis�es the estimate kP

q

fk

L

q

+ krpk

L

q

� Ckfk

L

q

with C = C(q;
) > 0;

however, it is not 
lear whether C depends only on the type �; �;K: We obtain

(P

q

)

0

= P

q

0

and hP

q

f; gi = hf; P

q

0

gi for all f 2 L

q

, g 2 L

q

0

. If q = 2, a Hilbert

spa
e argument yields the estimate

kP

2

fk

L

2

+ krpk

L

2

� 2kfk

L

2

; f 2 L

2

; rp 2 G

2

; (3.8)

with C = C(2;
) = 2 not depending on 
.

The Stokes operator A

q

= �P

q

� : D(A

q

) ! L

q

�

where D(A

q

) = L

q

�

\W

1;q

0

\

W

2;q

, satis�es the resolvent estimate

j�j kuk

L

q

+ kA

q

uk

L

q

� Ckfk

L

q

; C = C("; q;
) > 0;

where u 2 D(A

q

), �u+ A

q

u = f , � 2 S

"

, 0 < " <

�

2

, and the estimate

kuk

W

2;q

� CkA

q

uk

L

q

; C = C(q;
):
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Furthermore, A

0

q

= A

q

0

implying that hA

q

u; vi = hu;A

q

0

vi for all u 2 D(A

q

),

v 2 D(A

q

0

); see [11℄, [17℄, [34℄. If q = 2, we obtain by a Hilbert spa
e argument

that u 2 D(A

2

) with �u+ A

2

u = f 2 L

2

�

, � 2 S

"

, satis�es the estimate

j�j kuk

L

2

+ kA

2

uk

L

2

� Ckfk

L

2

; C = 1 + 2= 
os "; (3.9)

with C independent of 
. Moreover, sin
e A

2

is selfadjoint,

hA

2

u; ui = kA

1

2

2

uk

2

L

2

= kruk

2

L

2

; u 2 D(A

2

) : (3.10)

Let 1 < q, r < 1, 0 < T < 1 and f 2 L

r

(0; T ;L

q

�

), u

0

2 D(A

q

). Then the

semigroup operators e

�tA

q

and the operators J

q;r

, J

0

q;r

given by

(J

q;r

)f(t) =

Z

t

0

e

�(t��)A

q

f(�)d�; (J

0

q;r

f)(t) =

Z

T

t

e

�(��t)A

q

f(�)d�;

are well de�ned for 0 � t � T , see [11℄, [17℄. Setting u(t) = e

�tA

q

u

0

+ (J

q;r

f)(t)

we obtain the unique solution u 2 L

r

�

0; T ;D(A

q

)

�

, u

t

2 L

r

(0; T ;L

q

�

), of the

nonstationary Stokes system u

t

+ A

q

u = f , u(0) = u

0

, satisfying the estimate

ku

t

k

q;r

+ kuk

q;r

+ kA

q

uk

q;r

� C( ku

0

k

D(A

q

)

+ kfk

q;r

) (3.11)

with C = C(q; r; T;
) > 0. For our appli
ation it is important that C =

C(2; r; T;
) = C(r; T ) does not depend on 
 if q = 2, see [33℄, IV, 1.6. Anal-

ogously, u(t) = e

�(T�t)A

q

u

0

+ (J

0

q;r

f)(t) is the unique solution of the system

�u

t

+ A

q

u = f , u(T ) = u

0

, in L

r

�

0; T ;D(A

q

)

�

with u

t

2 L

r

(0; T ;L

q

�

) satisfy-

ing the estimate (3.11) with the same 
onstant C; this result follows from the

transformation ~u(t) = u(T � t),

~

f(t) = f(T � t). Further, we obtain the duality

relation

(J

q;r

)

0

= J

0

q

0

;r

0

: (3.12)

Finally we mention some well known embedding estimates for Sobolev spa
es

on bounded C

2

{domains 
 of type �; �;K, see [1℄, IV, Theorem 4.28, [12℄, [33℄,

II.1.3. Given 1 < q <1, 0 < M � 1, there exists some C = C(q;M; �; �;K) > 0

su
h that

kruk

L

q

�Mkr

2

uk

L

q

+ Ckuk

L

q

(3.13)

for all u 2 W

2;q

. If 2 � q < 1, 0 < M � 1, then there exists some C =

C(q;M; �; �;K) > 0 su
h that

kuk

L

q

�Mkr

2

uk

L

2

+ Ckuk

L

2

(3.14)

for all u 2 W

2;2

. Finally, let 1 < q; 
 < 1, 1 < r � 3 and 0 � � � 1 su
h that

�(

1

r

�

1

3

) + (1� �)

1




=

1

q

. Then

kuk

L

q

� Ckruk

�

L

r

kuk

1��

L




(3.15)

for all u 2 W

1;r

0

\ L




with C = C(r; q; 
) > 0.
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3.2 Helmholtz Proje
tion in

~

L

q

; Proof of Theorem 2.1

The proofs of the main theorems rest on the lo
alization prin
iple using the

stru
ture of the domain 
 of the type �; �;K > 0, see x 2.3, and the lo
al

estimates in x 3.1. In the �rst step of ea
h proof we assume that 
 is bounded.

In this 
ase 
over 
 by domains of the form

U

j

= U

�

�;�;h

j

(x

j

) \B

j

; j = 1; 2; : : : ; N; (3.16)

with B

j

= B

r

(x

j

), 0 < r = r(�; �;K) < �, x

j

2 
, fun
tions h

j

2 C

2

where

h

j

� 0 if x

j

2 
; and use the 
ut-o� fun
tions '

j

as in (2.6), (2.7). We may

assume that ea
h U

j

has the standard form H = H

�;�;r;h

, see (3.1) and (2.9). In

the se
ond step of ea
h proof we 
onsider the sequen
e of bounded subdomains




j

� 
 of the same type �; �;K, see (2.8), and treat the limit j !1.

Step 1. 
 bounded

Let f 2 L

q

, 2 � q <1, and f

0

= P

q

f 2 L

q

�

, rp = f � f

0

2 G

q

. Then f 2 L

2

,

and we obtain, see x 3.1, that

kf

0

k

L

2

\L

q

+ krpk

L

2

\L

q

� Ckfk

L

2

\L

q

(3.17)

with C = C(q;
) > 0. First we show that the 
onstant C in (3.17) 
an be 
hosen

depending only on q; �; �;K. For this purpose 
onsider in U

j

the lo
al equation

'

j

f = '

j

f

0

+r

�

'

j

(p�M

j

)

�

� (r'

j

)(p�M

j

)

with the 
onstant M

j

= M

j

(p) su
h that p �M

j

= R

0

(rp) 2 L

q

0

(U

j

), see (3.7).

Furthermore, we use the solution w = R

�

(r'

j

) � f

0

�

2 W

1;q

0

(U

j

) of the equation

divw = div ('

j

f

0

) = (r'

j

) � f

0

2 L

q

0

(U

j

), see (3.6). Then

'

j

f + (r'

j

)(p�M

j

)� w = ('

j

f

0

� w) +r

�

'

j

(p�M

j

)

�

is the Helmholtz de
omposition of '

j

f + (r'

j

)(p �M

j

) � w in L

q

(U

j

), and we

may use estimate (3.3).

First let 2 � q � 6. Then (3.6), (3.15) with r = 
 = 2, and Poin
ar�e's

inequality imply that kwk

L

q

(U

j

)

� Ckf

0

k

L

2

(U

j

)

with C = C(q; �; �;K) > 0. Fur-

ther, 
onsidering p � M

j

, we apply (3.7), (3.15) and Poin
ar�e's inequality to

obtain with rp = f � f

0

that

kp�M

j

k

L

q

(U

j

)

� C(kfk

L

q

(U

j

)

+ kf

0

k

L

2

(U

j

)

)

where C = C(q; �; �;K) > 0. Combining these estimates we get the inequality

k'

j

f

0

k

q

L

q

(U

j

)

+ k'

j

rpk

q

L

q

(U

j

)

� C(kfk

q

L

q

(U

j

)

+ kf

0

k

q

L

2

(U

j

)

) (3.18)

with C = C(q; �; �;K) > 0. Next we will take the sum for j = 1; : : : ; N , and use

the number N

0

= N

0

(�; �;K) 2 N introdu
ed in x 2.3, H�older's inequality, and
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the reverse H�older's inequality

�

P

N

j=1

ja

j

j

q

�

1=q

�

�

P

N

j=1

ja

j

j

2

�

1=2

. This leads to

the 
ru
ial estimate

kf

0

k

q

L

q

(
)

+ krpk

q

L

q

(
)

=

Z




�

N

X

j=1

'

j

jf

0

j

�

q

dx +

Z




�

N

X

j=1

'

j

jrpj

�

q

dx

�

Z




N

q

q

0

0

�

N

X

j=1

j'

j

f

0

j

q

�

dx+

Z




N

q

q

0

0

�

N

X

j=1

j'

j

rpj

q

�

dx

(3.19)

= N

q

q

0

0

 

N

X

j=1

k'

j

f

0

k

q

L

q

(U

j

)

+

N

X

j=1

k'

j

rpk

q

L

q

(U

j

)

!

� C

1

 

N

X

j=1

kfk

q

L

q

(U

j

)

+

�

N

X

j=1

kf

0

k

2

L

2

(U

j

)

�

q

2

!

� C

2

�

kfk

q

L

q

(
)

+ kf

0

k

q

L

2

(
)

�

with C

i

= C

i

(q; �; �;K) > 0, 2 � q � 6; this kind of estimate will be used in an

analogous way also in subsequent proofs in x 3.3 and x 3.4.

In the 
ase 6 < q <1 we obtain the estimate (3.19) in the same way as above

with kf

0

k

q

L

2

(
)

repla
ed by kf

0

k

q

L

6

(
)

. Now we use the elementary interpolation

estimate

kf

0

k

L

6

(
)

� �

�

1

"

�

1=�

kf

0

k

L

2

(
)

+ (1� �)"

1=(1��)

kf

0

k

L

q

(
)

;

where 0 < � < 1 is de�ned by

1

6

=

�

2

+

1��

q

, and where " > 0 is 
hosen suÆ
iently

small. Then the absorption prin
iple yields the estimate

kf

0

k

L

q

(
)

+krpk

L

q

(
)

� C

�

kfk

L

q

(
)

+kf

0

k

L

2

(
)

�

; C = C(q; �; �;K) > 0; (3.20)

also for q > 6. Therefore, (3.20) holds for all 2 � q <1. Combining (3.20) with

(3.8) we get (3.17) with C = C(q; �; �;K) > 0 for all 2 � q <1.

Next we 
onsider the 
ase f 2 L

2

+ L

q

, 1 < q < 2. Choose f

1

2 L

2

, f

2

2 L

q

with f = f

1

+ f

2

; kfk

L

2

+L

q

= kf

1

k

L

2

+ kf

2

k

L

q

, and de�ne

f

0

= P

2

f

1

+ P

q

f

2

2 L

2

�

+ L

q

�

; rp = (I � P

2

)f

1

+ (I � P

q

)f

2

2 G

2

+G

q

yielding f = f

0

+rp: Then we use the dual representation of the norm kf

0

k

L

2

+L

q

,
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see x 2.2, and obtain with (3.17), q

0

> 2, that

kf

0

k

L

2

+L

q

= sup

n

jhP

2

f

1

+ P

q

f

2

; gij

kgk

L

2

\L

q

0

; 0 6= g 2 L

2

\ L

q

0

o

(3.21)

= sup

n

jhf

1

+ f

2

; P

q

0

gij

kgk

L

2

\L

q

0

; 0 6= g 2 L

2

\ L

q

0

o

� sup

n

(kf

1

k

L

2

+ kf

2

k

L

q

)kP

q

0

gk

L

2

\L

q

0

kgk

L

2

\L

q

0

; 0 6= g 2 L

2

\ L

q

0

o

� Ckfk

L

2

+L

q

with the same C = C(q; �; �;K) > 0 as valid for (3.17). It follows that

kf

0

k

L

2

+L

q

+ krpk

L

2

+L

q

� Ckfk

L

2

+L

q

with C = C(q; �; �;K) > 0.

Summarizing we obtain for every 1 < q <1 and f 2

~

L

q

the estimate

kf

0

k

~

L

q

+ krpk

~

L

q

� Ckfk

~

L

q

; C = C(q; �; �;K) > 0 (3.22)

where

~

P

q

f = f

0

is de�ned by f

0

= P

q

f if f 2

~

L

q

= L

2

\ L

q

, 2 � q < 1, and

by f

0

= P

2

f

1

+ P

q

f

2

if f = f

1

+ f

2

2

~

L

q

= L

2

+ L

q

, 1 < q < 2. Moreover,

rp = (I �

~

P

q

)f 2

~

G

q

= G

2

\ G

q

if 2 � q < 1 and rp = rp

1

+ rp

2

=

(I � P

2

)f

1

+ (I � P

q

)f

2

2

~

G

q

= G

2

+ G

q

when 1 < q < 2. Thus we proved

(2.10) for bounded domains 
, and we may 
on
lude that

~

P

q

f = P

q

f holds

for 1 < q < 1: Therefore, the other assertions of Theorem 2.1 are obvious for

bounded domains. Note that the 
hoi
e of C = C(q; �; �;K) in (2.10) is the only

new property in this 
ase.

Step 2. 
 unbounded

Let f 2

~

L

q

(
), 1 < q < 1, and let f

j

= f

j




j

2

~

L

q

(


j

), j 2 N , be the

restri
tion to the subdomain 


j

� 
, see (2.8). Our aim is to 
onstru
t a unique

solution pair f

0

2

~

L

q

�

(
), rp 2

~

G

q

(
) satisfying f = f

0

+rp. For this purpose

we use Step 1 with the de
omposition

f

j

= f

j;0

+rp

j

; where f

j;0

=

~

P

q

f

j

; rp

j

2

~

G

q

(


j

);

and the uniform estimate

kf

j;0

k

~

L

q

(


j

)

+ krp

j

k

~

L

q

(


j

)

� Ckf

j

k

~

L

q

(


j

)

� Ckfk

~

L

q

(
)

(3.23)

with C > 0 as in (3.22). Here 
onsider

~

L

q

(


j

) as a subspa
e of

~

L

q

(
) by extending

ea
h fun
tion on 


j

by zero to get a fun
tion on 
. Sin
e (

~

L

q

)

0

=

~

L

q

0

, (

~

L

q

0

)

0

=

~

L

q

,


f. x 2.2, we may assume, suppressing subsequen
es, that there exist weak limits

f

0

= w � lim

j!1

f

j;0

2

~

L

q

�

(
); rp = w � lim

j!1

rp

j

2

~

G

q

(
)

satisfying f

0

+ rp = f . Note that rp

j

treated as an element of

~

L

q

(
) when

extended by zero need not be a gradient; however, by de Rham's argument, 
f.
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[35℄, Ch. I, (1.29), or [33℄, p. 73, we see that w� lim

j!1

rp

j

is indeed a gradient.

From (3.23) we obtain the estimate

kf

0

k

~

L

q

(
)

+ krpk

~

L

q

(
)

� Ckfk

~

L

q

(
)

(3.24)

with C as in (3.23). To prove the uniqueness of the de
omposition f = f

0

+rp

assume that f

0

+rp = 0, f

0

2

~

L

q

�

(
), rp 2

~

G

q

(
). Then we use the 
onstru
tion

above for any g = g

0

+rh 2

~

L

q

0

(
), g

0

2

~

L

q

0

�

(
), rh 2

~

G

q

0

(
), and obtain that

hf

0

; gi = �hrp; g

0

i = 0. Hen
e f

0

= rp = 0, and

~

P

q

f = f

0

2

~

L

q

�

is well de�ned.

Now the assertions of Theorem 2.1 and of Remark 2.2 are easy 
onsequen
es.

This 
ompletes the proof.

3.3 The Stokes Operator in

~

L

q

; Proof of Theorem 2.3

Step 1. 
 bounded.

First we 
onsider the Stokes equation ��u + rp = f with f 2 L

q

�

, u 2

D(A

q

) = L

q

�

\ W

1;q

0

\ W

2;q

, 1 < q < 1, whi
h is equivalent to the equation

A

q

u = f , and prove the preliminary estimate

kr

2

uk

L

q

(
)

+ krpk

L

p

(
)

� C( kfk

L

q

(
)

+ kuk

L

q

(
)

) (3.25)

with C = C(q; �; �;K) > 0 depending only on q and the type �; �;K.

This estimate has the important impli
ation that the graph norm kuk

D(A

q

)

=

kuk

L

q

+kA

q

uk

L

q

is equivalent to the norm kuk

W

2;q

on D(A

q

) with 
onstants only

depending on q; �; �;K. More pre
isely,

C

1

kuk

W

2;q

� kuk

D(A

q

)

� C

2

kuk

W

2;q

; u 2 D(A

q

); (3.26)

with C

1

= C

1

(q; �; �;K) > 0, C

2

= C

2

(q; �; �;K) > 0.

To prove (3.25) we use U

j

; '

j

, j = 1; : : : ; N , as in x 3.2, and 
onsider in U

j

the lo
al equation

�

0

('

j

u� w)��('

j

u� w) +r

�

'

j

(p�M

j

)

�

= '

j

f +�w � 2r'

j

� ru� (�'

j

)u+ (r'

j

)(p�M

j

) + �

0

('

j

u� w):

Here �

0

means the 
onstant in (3.4),M

j

=M

j

(p) is a 
onstant su
h that p�M

j

=

R

0

(rp) 2 L

q

0

(
), see (3.7), and w = R

�

(r'

j

) � u

�

2 W

2;q

0

(U

j

) is the solution of

the equation divw = div ('

j

u) = (r'

j

) � u, see (3.6). Then we apply (3.4) with

� = �

0

, and use the estimates

kwk

W

1;q

(U

j

)

� Ckuk

L

q

(U

j

)

;

kwk

W

2;q

(U

j

)

� Ckuk

W

1;q

(U

j

)

;

kp�M

j

k

L

q

(U

j

)

� C( kfk

L

q

(U

j

)

+ kruk

L

q

(U

j

)

)
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with C = C(q; �; �;K) > 0, following from (3.6) and (3.7) applied torp = f+�u

in U

j

: Combining these estimates we are led to the lo
al inequalities

k'

j

r

2

uk

q

L

q

(U

j

)

+ k'

j

r(p�M

j

)k

q

L

q

(U

j

)

� C( kfk

q

L

q

(U

j

)

+ kuk

q

W

1;q

(U

j

)

) (3.27)

with C = C(q; �; �;K) > 0. Taking the sum over j = 1; : : : ; N in the same way

as in (3.19), and using the absorption argument to remove kruk

q

L

q

(
)

with (3.13),

we obtain the desired inequality (3.25).

Next we 
onsider the resolvent equation

�u+ A

q

u = �u��u+rp = f in 


with f 2 L

q

�

, where 1 < q <1, � 2 S

"

, 0 < " <

�

2

. Our �rst purpose is to prove

for u 2 D(A

q

) and rp = (I � P

q

)�u, 2 � q <1; the estimate

j�j kuk

L

2

\L

q

+ kr

2

uk

L

2

\L

q

+ krpk

L

2

\L

q

� Ckfk

L

2

\L

q

(3.28)

with j�j � Æ > 0, where Æ > 0 is given, and C = C(q; "; Æ; �; �;K) > 0. Note that

this estimate is well known for bounded domains with C = C(q; "; Æ;
) > 0, see

x 3.1. In this 
ase we obtain the lo
al equation

�('

j

u� w)��('

j

u� w) +r

�

'

j

(p�M

j

)

�

(3.29)

= '

j

f +�w � 2r'

j

� ru� (�'

j

)u� �w + (r'

j

)(p�M

j

)

with p�M

j

= R

0

(rp) and w = R

�

(r'

j

) � u

�

as above.

First let 2 � q � 6. Con
erning w, we use the estimates above and the

inequality kwk

L

q

(U

j

)

� C

1

kwk

W

1;2

(U

j

)

� C

2

kuk

L

2

(U

j

)

, C

i

= C

i

(q; �; �;K) > 0. For

p�M

j

we use the above estimate and the inequality

kp�M

j

k

L

q

(U

j

)

� C

�

kfk

L

q

(U

j

)

+ j�j kuk

L

2

(U

j

)

+ kruk

L

q

(U

j

)

�

;

C = C(q; �; �;K) > 0. Further, we apply to the lo
al resolvent equation (3.29)

the estimate (3.4) with � repla
ed by �+�

0

0

where �

0

0

� 0 is suÆ
iently large su
h

that j� + �

0

0

j � �

0

for j�j � Æ; �

0

as in (3.4). Then we 
ombine these estimates

and are led to the lo
al inequality

k�'

j

uk

q

L

q

(U

j

)

+ k'

j

uk

q

L

q

(U

j

)

+ k'

j

r

2

uk

q

L

q

(U

j

)

+ k'

j

rpk

q

L

q

(U

j

)

(3.30)

� C

�

kfk

q

L

q

(U

j

)

+ kuk

q

L

q

(U

j

)

+ kruk

q

L

q

(U

j

)

+ k�uk

q

L

2

(U

j

)

�

with C = C(q; Æ; "; �; �;K) > 0. Next we take the sum over j = 1; : : : ; N in the

same way as in (3.19). This leads to the inequality

j�j kuk

L

q

(
)

+ kuk

L

q

(
)

+ kr

2

uk

L

q

(
)

+ krpk

L

q

(
)

(3.31)

� C

�

kfk

L

q

(
)

+ kuk

L

q

(
)

+ kruk

L

q

(
)

+ j�j kuk

L

2

(
)

�
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with C = C(q; Æ; "; �; �;K) > 0, j�j � Æ, 2 � q � 6. Applying (3.13) we remove

the term kruk

L

q

(
)

in (3.31) by the absorption prin
iple.

If q > 6, estimate (3.31) holds in the same way with the term j�j kuk

L

2

(
)

on

the right-hand side repla
ed by j�j kuk

L

6

(
)

. Now use the elementary estimate

j�j kuk

L

6

(
)

� �

�

1

"

�

1=�

�

j�j kuk

L

2

(
)

) + (1� �)"

1=(1��)

(j�j kuk

L

q

(
)

�

with 0 < � < 1 su
h that

1

6

=

�

2

+

1��

q

, with suÆ
iently small " > 0, and

use the absorption prin
iple. This proves (3.31) for all q � 2 without kruk

L

q

(
)

.

Moreover, due to (3.14), the term kuk

L

q

(
)

may be removed on the right-hand side

of (3.31). Now we 
ombine this improved inequality (3.31) with estimate (3.9)

for j�j � Æ and we apply (3.25) with q = 2. This proves the desired estimate

(3.28) for 2 � q <1.

Now let 1 < q < 2 and 
onsider in 
 the (well de�ned) equation �u��u +

rp = f with f 2 L

2

�

+ L

q

�

, where u 2 D(A

2

) + D(A

q

), rp = (I �

~

P

q

)�u and

� 2 S

"

, j�j � Æ. Using f = �u�

~

P

q

�u and (3.28) with q

0

> 2 we �rst obtain that

kfk

L

2

�

+L

q

�

= sup

n

jh�u�

~

P

q

�u; vij

kvk

L

2

�

\L

q

0

�

; 0 6= v 2 L

2

�

\ L

q

0

�

o

= sup

n

jhu; �v �

~

P

q

0

�vij

kvk

L

2

�

\L

q

0

�

; 0 6= v 2 L

2

�

\ L

q

0

�

o

= sup

n

jhu; gij

k(�I �

~

P

q

0

�)

�1

gk

L

2

�

\L

q

0

�

; 0 6= g 2 L

2

�

\ L

q

0

�

o

(3.32)

� j�jC

�1

sup

n

jhu; gij

kgk

L

2

�

\L

q

0

�

; 0 6= g 2 L

2

�

\ L

q

0

�

o

= j�jC

�1

kuk

�

L

2

�

\L

q

�

with C as in (3.28); see (2.11) 
on
erning kuk

�

L

2

�

\L

q

�

. Hen
e also j�j kuk

L

2

�

+L

q

�

�

Ckfk

L

2

�

+L

q

�

and even

j�j kuk

L

2

�

+L

q

�

+ kuk

L

2

�

+L

q

�

+ kA

q

uk

L

2

�

+L

q

�

� Ckfk

L

2

�

+L

q

�

; � 2 S

"

; j�j � Æ: (3.33)

From the equivalen
e of norms k � k

D(A

q

)

and k � k

W

2;q

, 
f. (3.26), and from (2.2)

with B

1

= A

2

; B

2

= A

q

, we 
on
lude that

C

1

kuk

W

2;2

+W

2;q

� kuk

L

2

�

+L

q

�

+ kA

q

uk

L

2

�

+L

q

�

� C

2

kuk

W

2;2

+W

2;q

where C

i

= C

i

(q; "; �; �;K); i = 1; 2: Then (3.33) and the identity rp = f �

�u+�u lead to the estimate

j�j kuk

L

2

�

+L

q

�

+ kuk

W

2;2

+W

2;q

+ krpk

L

2

+L

q

� Ckfk

L

2

�

+L

q

�

(3.34)
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with C = C(q; Æ; "; �; �;K) > 0.

Sin
e 
 is bounded, we easily 
on
lude that

~

A

q

u = �

~

P

q

�u = A

q

u for u 2

D(

~

A

q

) = D(A

q

); 1 < q < 1: The only new result in this 
ase is the validity of

the estimate

j�j kuk

~

L

q

�

+ kuk

~

W

2;q

+ krpk

~

L

q

� Ckfk

~

L

q

�

; u 2 D(

~

A

q

) ; (3.35)

with C = C(q; Æ; "; �; �;K) > 0 when j�j � Æ > 0. Thus the proof of Theorem

2.3 is 
omplete for bounded 
:

Step 2. 
 unbounded.

In prin
iple we use the same arguments as in Step 2 of x 3.2 with the bounded

subdomains 


j

� 
, j 2 N , see (2.8).

Let f 2

~

L

q

�

(
), 1 < q <1 and � 2 S

"

, 0 < " <

�

2

. Our aim is to 
onstru
t a

unique solution u 2

~

D

q

(
) of the equation

�u�

~

P

q

�u = �u��u+rp = f; rp = (I �

~

P

q

)�u in 


satisfying estimate (2.12). For this purpose set f

j

=

~

P

q

f

j




j

and 
onsider the

solution u

j

2

~

D

q

(


j

) of the equation

�u

j

+

~

A

q

u

j

= �u

j

��u

j

+rp

j

= f

j

; rp

j

= (I �

~

P

q

)�u

j

in 


j

:

From (3.35) we obtain the uniform estimate

j�j ku

j

k

~

L

q

�

(


j

)

+ ku

j

k

~

W

2;q

(


j

)

+ krp

j

k

~

L

q

(


j

)

� Ckfk

~

L

q

�

(
)

(3.36)

with j�j � Æ > 0, C = C(q; Æ; "; �; �;K) > 0. The same weak 
onvergen
e

argument as in Step 2 of x 3.2 yields, suppressing subsequen
es, weak limits

u = w � lim

j!1

u

j

in

~

L

q

�

(
); rp = w � lim

j!1

rp

j

in

~

L

q

(
)

satisfying u 2

~

D

q

(
), �u��u+rp = �u�

~

P

q

�u = f in 
 and (2.12).

To prove the uniqueness of u we assume that there is some v 2

~

D

q

(
) and

� 2 S

"

satisfying �v�

~

P

q

�v = 0. Given f

0

2

~

L

q

0

(
) let u 2

~

D

q

0

(
) be a solution

of �u�

~

P

q

0

�u =

~

P

q

0

f

0

. Then

0 = h�v �

~

P

q

�v; ui = hv; (��

~

P

q

0

�)ui = hv;

~

P

q

0

f

0

i = hv; f

0

i

for all f

0

2

~

L

q

0

(
); hen
e, v = 0. Thus we get that the equation �u +

~

A

q

u = f ,

� 2 S

"

, has a unique solution u = (�I +

~

A

q

)

�1

f satisfying (2.12).
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3.4 Maximal Regularity in

~

L

q

for the Nonstationary Stokes System;

Proof of Theorem 2.5

Step 1. 
 bounded

In prin
iple we use the same arguments as in the previous proofs. Given

0 < T <1 and 1 < s; q <1 let k � k

L

s

(X(
))

= k � k

L

s

(0;T ;X(
))

= (

R

T

0

k � k

s

X

dt)

1=s

whereX(
) is a Bana
h spa
e of fun
tions in 
; furthermore, we use the operators

J

q;s

, J

0

q;s

, see x 3.1, and de�ne

~

J

q;s

;

~

J

0

q;s

for f 2 L

s

(0; T ;

~

L

q

�

) by

(

~

J

q;s

f)(t) =

Z

t

0

e

�(t��)

~

A

q

f(�) d�; (

~

J

0

q;s

f)(t) =

Z

T

t

e

�(��t)

~

A

q

f(�) d�;

0 � t � T . Sin
e

~

A

0

q

=

~

A

q

0

, we obtain for all f 2 L

s

(0; T ;

~

L

q

�

), g 2 L

s

0

(0; T ;

~

L

q

0

�

)

that

h

~

J

q;s

f; gi

T

= hf;

~

J

0

q

0

;s

0

gi

T

:

First 
onsider the 
ase u

0

= 0 and let s = q. Then u =

~

J

q;q

f solves the

evolution system u

t

+

~

A

q

u = f , u(0) = 0, and u =

~

J

0

q;q

f is the solution of the

system �u

t

+

~

A

q

u = f , u(T ) = 0. Our aim is to prove in both 
ases the estimate

ku

t

k

L

q

(

~

L

q

�

(
))

+ kuk

L

q

(

~

W

2;q

(
))

+ krpk

L

q

(

~

L

q

(
))

� Ckfk

L

q

(

~

L

q

�

(
))

(3.37)

with rp = (I �

~

P

q

)�u and C = C(T; q; �; �;K) > 0.

Observe that it is suÆ
ient to prove (3.37) for the 
ase u =

~

J

q;q

f only. The

other 
ase follows using the transformation ~u(t) = u(T � t),

~

f(t) = f(T � t).

Further, it is suÆ
ient to prove (3.37) when 2 � q <1. For, using (

~

J

0

q;q

)

0

=

~

J

q

0

;q

0

and the duality prin
iple in the same way as in (3.32), the 
ase 1 < q < 2 is

redu
ed to the 
ase 2 < q

0

< 1. In this 
ontext we note that it is suÆ
ient

to prove instead of (3.37) the estimate ku

t

k

L

q

(

~

L

q

�

(
))

� Ckfk

L

q

(

~

L

q

�

(
))

. A
tually,

(3.37) follows using

~

A

q

u = f�u

t

, the simple identity u(t) =

R

t

0

u

t

(�)d� leading to

the estimate kuk

L

q

(

~

L

q

�

(
))

� Cku

t

k

L

q

(

~

L

q

�

(
))

; C = C(T ) > 0; and the equivalen
e

relation (3.26).

Thus it remains to prove (3.37) with 2 � q <1 where u =

~

J

q;q

solves

u

t

+

~

A

q

u = u

t

��u+rp = f 2 L

q

(0; T ;

~

L

q

�

); u(0) = 0

andrp = (I�

~

P

q

)�u. Using the well known estimate (3.11) for bounded domains

we know that u =

~

J

q;q

satis�es (3.37) with C = C(T; q;
) > 0. Thus it remains

to prove that C in (3.37) 
an be 
hosen depending only on T; q; �; �;K.

To prove this result 
onsider the lo
al equation

('

j

u� w)

t

��('

j

u� w) +r

�

'

j

(p�M

j

)

�

= '

j

f � w

t

+�w � 2r'

j

� ru� (�'

j

)u+ (r'

j

)(p�M

j

)

in U

j

where w = R

�

(r'

j

) � u

�

2 L

q

�

0; T ;W

2;q

0

(U

j

)

�

solves the equations divw =

(r'

j

) � u and divw

t

= (r'

j

) � u

t

for a.a. t 2 (0; T ): Here U

j

; '

j

; 1 � j � N ,
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have the same meaning as in the previous proofs and M

j

= M

j

(p) is a 
onstant

depending on t de�ned by p�M

j

= R

0

(rp) 2 L

q

�

0; T ;L

q

0

(U

j

)

�

.

First let 2 � q � 6. Then from (3.6), (3.7) using rp = f �u

t

+�u we obtain

the estimates

kw

t

k

L

q

(L

q

(U

j

))

� Cku

t

k

L

q

(L

2

(U

j

))

;

kr

2

wk

L

q

(L

q

(U

j

))

� C

�

kuk

L

q

(L

q

(U

j

))

+ kruk

L

q

(L

q

(U

j

))

�

; (3.38)

kp�M

j

k

L

q

(L

q

(U

j

))

� C

�

kfk

L

q

(L

q

(U

j

))

+ ku

t

k

L

q

(L

2

(U

j

))

+ kruk

L

q

(L

q

(U

j

))

�

with C = C(q; �; �;K) > 0. Applying the lo
al estimate (3.5) and using (3.38)

we are led to the inequality

k'

j

u

t

k

q

L

q

(L

q

(U

j

))

+ k'

j

uk

q

L

q

(L

q

(U

j

))

+ k'

j

r

2

uk

q

L

q

(L

q

(U

j

))

+ k'

j

rpk

q

L

q

(L

q

(U

j

))

(3.39)

� C

�

kfk

q

L

q

(L

q

(U

j

))

+ kuk

q

L

q

(L

q

(U

j

))

+ kruk

q

L

q

(L

q

(U

j

))

+ ku

t

k

q

L

q

(L

2

(U

j

))

�

with C = C(T; q; �; �;K) > 0. Next we argue in prin
iple in the same way as in

Step 1 of x 3.3: Take the sum over j = 1; : : : ; N , remove the term kruk

L

q

(L

q

(
))

with the absorption argument using (3.13), then apply the estimate (3.11) to

ku

t

k

L

q

(L

2

(
))

with C = C(q; T ) > 0. If q > 6, we have to repla
e the term

ku

t

k

L

q

(L

2

(
))

by the term ku

t

k

L

q

(L

6

(
))

, and use the interpolation inequality

ku

t

k

L

q

(L

6

(
))

� �

�

1

"

�

1=�

ku

t

k

L

q

(L

2

(
))

+ (1� �)"

1=(1��)

ku

t

k

L

q

(L

q

(
))

with suÆ
iently small " > 0. This leads to the inequality

ku

t

k

L

q

(L

2

�

(
)\L

q

�

(
))

+ kuk

L

q

(W

2;2

(
)\W

2;q

(
))

+ krpk

L

q

(L

2

(
)\L

q

(
))

� Ckfk

L

q

(L

2

�

(
)\L

q

�

(
))

for all 2 � q < 1 with C = C(T; q; �; �;K) > 0 and 
ompletes the proof of

(3.37) for 1 < q <1. In parti
ular, this proves inequality (2.18) for the bounded

domain 
 when u

0

= 0. To prove (2.18) with u

0

2 D(

~

A

q

) we solve the system

~u

t

+

~

A

q

~u =

~

f , ~u(0) = 0, with

~

f = f �

~

A

q

u

0

. Then u(t) = ~u(t) + u

0

yields the

desired solution with u

0

2 D(

~

A

q

). This proves Theorem 2.5 for bounded 
.

Step 2. 
 unbounded

Using the same arguments as in Step 2 of x 3.3, let f 2 L

q

�

0; T ;

~

L

q

�

(
)

�

,

1 < q <1, and 
onsider the solution u

j

2 L

q

�

0; T ;D(

~

A

q

)

�

of the system

u

j;t

+

~

A

q

u

j

= f

j

; u

j

(0) = 0;

with f

j

=

~

P

q

f

j




j

, j 2 N , following Step 1. Then (3.37) applied to the domains




j

yields the uniform estimate

ku

j;t

k

L

q

(

~

L

q

�

(


j

))

+ ku

j

k

L

q

(

~

W

2;q

(


j

))

+ krp

j

k

L

q

(

~

L

q

(


j

))

� Ckfk

L

q

(

~

L

q

�

(
))

(3.40)
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with rp

j

= (I �

~

P

q

)�u

j

, C = C(T; q; �; �;K) > 0. Suppressing subsequen
es

we obtain by the weak 
onvergen
e argument the weak limits

u = w � lim

j!1

u

j

2 L

q

�

0; T ;

~

L

q

�

(
)

�

; rp = w � lim

j!1

rp

j

2 L

q

�

0; T ;

~

L

q

(
)

�

;

satisfying u 2 L

q

�

0; T ;

~

D

q

(
)

�

, u

t

+

~

A

q

u = u

t

��u+rp = f , u(0) = 0, and the

estimate

ku

t

k

L

q

(

~

L

q

�

(
))

+ kuk

L

q

(

~

W

2;q

(
))

+ krpk

L

q

(

~

L

q

(
))

� Ckfk

L

q

(

~

L

q

�

(
))

; (3.41)

with C as in (3.40), whi
h is equivalent to inequality (2.18).

The uniqueness of u follows in the same way as in Step 2 of x 3.3, and the


ase u(0) = u

0

2 D(

~

A

q

) is treated as above in Step 1. The other properties in

Theorem 2.5 are obvious. This 
ompletes the proof.

3.5 Suitable Weak Solutions, Strong Energy Inequality, and Leray's

Stru
ture Result for General Domains; Proof of Theorem 2.7

To 
onstru
t a suitable weak solution u in the general uniform C

2

{domain 
 of

type �; �;K we use approximate solutions u

k

and the key estimate (2.18) in the

formulation (2.21) with the exponent q =

5

4

; the reason for this exponent is the

stru
ture of the nonlinear term. Ex
ept for this estimate, all the other approxi-

mation arguments are well known in prin
iple; here we follow the 
onstru
tion in

[33℄, Chapter V. However, it is easier, �rst to 
onsider a bounded domain 
 and

then to treat the subdomains 


j

with j !1 as in the previous proofs. Further-

more, we may assume without loss of generality that 0 < T <1 and 
onsequently

that T

0

= T in (2.25); if T = 1 we 
onsider a sequen
e 0 < T

1

< T

2

< : : : with

lim

j!1

T

j

=1 and 
ontinue the 
onstru
tion of u step by step.

Moreover, we may assume that u

0

= 0 in the following proof. The 
ase

u

0

6= 0 will be redu
ed to this 
ase in two steps: If u

0

2 D(

~

A

q

); we repla
e

u(t) by û(t) = u(t) � e

�A

2

t

u

0

in the linear part of the equation (2.23). Hen
e

û(0) = 0, and the argument for u

0

= 0 yields (2.25) with " = 0 and u repla
ed

by û. Sin
e u

0

2 D(

~

A

q

), we 
on
lude that (2.25) holds for u with " = 0: If

u

0

2 L

2

�

only, we 
hoose any 0 < " < T; use that e

�A

2

t

u

0

= e

�A

2

(t�")

u

0;"

with

u

0;"

= e

�A

2

"

u

0

2 D(A

2

) � D(

~

A

q

); q =

5

4

; and 
on
lude from the validity of

(2.25) for û; " = 0; that (2.25) holds for u in the restri
ted interval ("; T

0

): This

information is suÆ
ient to prove (2.26), (2.27).

Thus we may assume that u

0

= 0; 0 < T

0

= T <1; and we prove (2.25) with

" = 0: Further let f 2 L

q

(0; T ;L

2

(
)); q =

5

4

:

Step 1. 
 bounded.

Following [33℄, V.3.3, we use Yosida's approximation operators J

k

= (I +

k

�1

A

2

)

�1

, k 2 N , and �nd solutions u = u

k

of the approximate Navier-Stokes

system

u

t

��u+ (J

k

u) � ru+rp = f; div u = 0; u

j

�


= 0; u(0) = 0 (3.42)
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on (0; T ). Further, we re
all the following estimates:

1

2

ku

k

k

2

L

1

(L

2

�

(
))

+ kru

k

k

2

L

2

(L

2

(
))

� C

0

kfk

2

L

1

(L

2

(
))

; C

0

> 0; (3.43)

ku

k

k

L




(L

Æ

(
))

� Ckfk

L

1

(L

2

(
))

;

where Æ � 2 ; 
 � 2 ;

2




+

3

Æ

=

3

2

, C = C(
; Æ) > 0; and

kJ

k

u

k

� ru

k

k

L




(L

Æ

(
))

� Ckfk

2

L

1

(L

2

(
))

;

where 1 < 
; Æ < 2;

2




+

3

Æ

= 4, C = C(
; Æ) > 0; see [33℄, V.2.2, (2.2.3), and V.2.6


on
erning these properties.

Moreover, due to (3.37),

ku

k;t

k

L

q

(L

q

(
))

+ ku

k

k

L

q

(W

2;q

(
))

+ krp

k

k

L

q

(L

q

(
))

(3.44)

� C

�

kfk

L

q

(L

2

(
))

+ kfk

2

L

1

(L

2

(
))

�

; q =

5

4

; C = C(T; �; �;K) > 0:

Using these uniform boundedness properties we 
on
lude letting k !1 (and

suppressing subsequen
es) that there exists a weak solution u of the system (2.23)

with the following weak (\*") and strong (\!") 
onvergen
e properties, resp.:

u

k

*

u

in L

2

�

0; T ;W

1;2

0

(
)

�

u

k

!

u

in L

2

�

0; T ;L

2

(
)

�

(sin
e 
 is bounded)

ru

k

*

ru

k

in L

2

�

0; T ;L

2

(
)

�

u

k

(t) ! u(t) in L

2

�

(
) for a.a. t 2 [0; T )

and (u

k;t

; u

k

;ru

k

;r

2

u

k

;rp

k

) * (u

t

; u;ru;r

2

u;rp) in L

q

�

0; T ;L

q

(
)

�

; where

q =

5

4

. Moreover, Poin
ar�e's inequality shows that

kp

k

�M

k

k

L

q

(L

r

(
))

� Ckrp

k

k

L

q

(L

q

(
))

(3.45)

where q =

5

4

, r =

15

7

, M

k

=M

k

(p

k

) =

1

j
j

R




p

k

dx and C = C(T;
) > 0.

Hen
e we 
on
lude that the estimates (3.43), (3.44) also hold with u

k

;rp

k

repla
ed by u;rp and that

p

k

�M

k

* p̂ in L

q

�

0; T ;L

r

(
)

�

for some p̂ 2

�

0; T ;L

r

(
)

�

satisfying rp̂ = rp. Choosing M = M(t) su
h that

p̂ = p�M , (3.45) holds with p

k

�M

k

, rp

k

repla
ed by p�M , rp.

Let � 2 C

1

0

(R

3

). Then an elementary 
al
ulation yields for all 0 � s � t � T

the equality

1

2

k�u

k

(t)k

2

L

2

+

Z

t

s

k�ru

k

k

2

L

2

d� (3.46)

=

1

2

k�u

k

(s)k

2

L

2

+

Z

t

s

h�f; �u

k

id� �

1

2

Z

t

s

hrju

k

j

2

;r�

2

id�

+

Z

t

s

h

1

2

ju

k

j

2

; (J

k

u

k

) � r�

2

id� +

Z

t

s

hp

k

; u

k

� r�

2

id�:
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By the 
onvergen
e properties above and writing the most problemati
 term in

(3.46) in the form hp

k

; u

k

� r�

2

i = hp

k

�M

k

; u

k

� r�

2

i we may let k 
onverge to

in�nity in ea
h term, using Lebesgue's dominated 
onvergen
e theorem. Be
ause

of the weak 
onvergen
e property 
on
erning ru

k

, inequality (3.46) yields (2.26)

for a.a. s 2 [0; T ) and all t 2 [s; T ). Finally the strong energy inequality (2.27) is

a 
onsequen
e of (2.26) with � � 1 on 
: Re
all that the restri
tion 
on
erning

" in (2.25) is needed only for te
hni
al reasons if 0 6= u

0

2 L

2

�

nD(

~

A

q

):

Step 2. 
 unbounded.

Consider the bounded subdomains 


j

� 
, j 2 N , as in (2.8), and let u

j

be

a weak solution in 


j

a

ording to Step 1 with asso
iated pressure term rp

j

,

satisfying

u

j;t

��u

j

+ u

j

� ru

j

+rp

j

= f

j

; div u

j

= 0;

u

j

(0) = 0; u

j

j

�


j

= 0;

(3.47)

where f

j

= f

j




j

. Applying the diagonal prin
iple in the same way as in [33℄,

V.(3.3.17), we �nd a subsequen
e f~u

j

g of the sequen
e fu

j

g and a weak solution

u with pressure term rp of the system (2.23) with the following 
onvergen
e

properties as j !1 (assuming for simpli
ity ~u

j

= u

j

):

u

j


onverges to u weakly in L

2

�

0; T ;W

1;2

(


j

0

)

�

and strongly in

L

2

�

0; T ;L

2

(


j

0

)

�

for ea
h �xed j

0

,

ru

j


onverges to ru weakly in L

2

�

0; T ;L

2

(


j

0

)

�

,

u

j

(t) 
onverges to u(t) strongly in L

2

(


j

0

) for a.a. t 2 [0; T ).

Furthermore, uniformly in j 2 N ,

1

2

ku

j

k

2

L

1

(L

2

�

(


j

))

+ kru

j

k

2

L

2

(L

2

(


j

))

� C

0

kfk

2

L

1

(L

2

(
))

; C

0

> 0; (3.48)

ku

j

k

L




(L

Æ

(


j

))

� Ckfk

L

1

(L

2

(
))

;

where 
 � 2 ; Æ � 2 ;

2




+

3

Æ

=

3

2

, C = C(
; Æ) > 0; and

ku

j

� ru

j

k

L




(L

Æ

(


j

))

� Ckfk

2

L

1

(L

2

(
))

;

where 1 < 
; Æ < 2,

2




+

3

Æ

= 4, C = C(
; Æ) > 0.

Using the maximal regularity estimate (2.18) in the form (2.21) 
ombined

with the last estimate we are led to the inequality

ku

j;t

k

L

q

(L

2

+L

q

(


j

))

+ ku

j

k

L

q

(W

2;2

+W

2;q

(


j

))

+ krp

j

k

L

q

(L

2

+L

q

(


j

))

(3.49)

� C

�

kfk

L

q

(L

2

(
))

+ kfk

2

L

1

(L

1

(
))

�

with q =

5

4

and C = C(T; �; �;K) > 0 not depending on j 2 N . Thus we may


on
lude without loss of generality, see the previous proofs, that

(u

j;t

; u

j

;ru

j

;r

2

u

j

;rp

j

)* (u

t

; u;ru;r

2

u;rp) in L

q

�

0; T; L

2

(
) + L

q

(
)

�
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as j !1; and that (3.49) holds with u

j

;


j

repla
ed by u;
. This proves (2.25)

for u

0

= 0; the general 
ase u

0

2 L

2

�

requires introdu
ing " > 0.

To prove the lo
al energy inequality (2.26) 
hoose j

0

in su
h a way that


 \ supp � � 


j

0

, use (2.26) from Step 1 for 


j

and u

j

, j � j

0

, and let j ! 1

using the 
onvergen
e properties above. This proves (2.26) for u;
.

To prove (2.27) we 
hoose a sequen
e �

j

2 C

1

0

(R

3

), j 2 N , satisfying

0 � �

j

� 1, jr�

2

j

j � C

0

with some 
onstant C

0

, and with lim

j!1

�

j

(x) = 1,

lim

j!1

r�

2

j

(x) = 0 for all x 2 R

3

. Setting � = �

j

in (2.26) we obtain the desired

inequality (2.27) by letting j !1.

Now the proof of Theorem 2.7 is 
omplete.
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