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Abstra
t. We study pathwise approximation of s
alar sto
hasti
 di�erential

equations with additive fra
tional Brownian noise of Hurst parameterH > 1=2,


onsidering the mean square L

2

-error 
riterion. By means of the Malliavin


al
ulus we derive the exa
t rate of 
onvergen
e of the Euler s
heme, also for

non-equidistant dis
retizations. Moreover, we establish a sharp lower error

bound that holds for arbitrary methods, whi
h use a �xed number of bounded

linear fun
tionals of the driving fra
tional Brownian motion. The Euler s
heme

based on a dis
retization, whi
h re
e
ts the lo
al smoothness properties of the

equation, mat
hes this lower error bound up to the fa
tor 1.39.

1. Introdu
tion

Let B

H

(t); t 2 [0; 1℄ be a fra
tional Brownian motion with Hurst parameter

H 2 (0; 1), i.e., B

H

is a 
ontinuous 
entered Gaussian pro
ess with 
ovarian
e

kernel

K(s; t) =

1

2

(s

2H

+ t

2H

� jt� sj

2H

); s; t 2 [0; 1℄:

For H = 1=2 fra
tional Brownian motion is a Brownian motion, while for H 6= 1=2

it is neither a semimartingale nor a Markov pro
ess. In parti
ular, non-overlapping

in
rements are negatively 
orrelated if H < 1=2 and positively if H > 1=2. More-

over, it holds

(E jB

H

(t)�B

H

(s)j

2

)

1=2

= jt� sj

H

; s; t 2 [0; 1℄;

and almost all sample paths of B

H

are H�older 
ontinuous of any order � < H .

We 
onsider pathwise approximations of the sto
hasti
 di�erential equation

dX(t) = a(t;X(t)) dt+ �(t) dB

H

(t); t 2 [0; 1℄; (1)

X(0) = x

0

;

with H 2 (1=2; 1) and deterministi
 initial value x

0

2 R. Here a and � satisfy

standard smoothness assumptions and equation (1) is an integral equation with all

integrals being pathwise Riemann-Stieltjes integrals. See, e.g., Lin (1995), Z�ahle

and Klingenh�ofer (1999) and Nualart and R�a�s
anu (2002), also for the 
ase of non-

additive di�usion 
oeÆ
ients.

Approximation of sto
hasti
 di�erential equations driven by fra
tional Brownian

motion is studied only in few arti
les. In parti
ular, no results on lower error bounds

are available up to now. Mainly, analyti
 methods like the Pi
ard iteration (Lin
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(1995)), Wong-Zakai-type approximations (Lin (1995), Nourdin (2004), Boufoussi

and Tudor (2004)) and the Kramers-Smolu
howski approximation (Boufoussi and

Tudor (2004)) are 
onsidered, and uniform 
onvergen
e of the approximation se-

quen
e for almost all sample paths is proved. Lin (1995) also shows that the Euler

approximation of equation (1) 
onverges uniformly in probability. Nourdin (2004)

studies the approximation of autonomous di�erential equations driven by H�older


ontinuous fun
tions and determines upper error bounds for the order of 
onver-

gen
e of the equidistant Euler s
heme and an equidistant Milstein-type s
heme.

In this paper the error e(

b

X) of an approximation

b

X of equation (1) will be

measured as follows. The pathwise distan
e between X and

b

X in the L

2

-norm k �k

2

is taken and then averaged over all traje
tories, i.e.,

e(

b

X) = (EkX �

b

Xk

2

2

)

1=2

:

First, we study the Euler approximation of equation (1) and wish to determine

the best dis
retization in a strong asymptoti
 sense. Spe
i�
ally, we 
onsider regular

sequen
es of dis
retizations generated by a density fun
tion h, i.e., the knots of these

dis
retizations are quantiles of the density h.

Applying the Malliavin 
al
ulus for fra
tional Brownian motion, see, e.g., Al�os

and Nualart (2003), we derive the exa
t rate of 
onvergen
e of these non-equidistant

Euler s
hemes, see Theorem 1. It turns out that the optimal density h

�

is propor-

tional to �

1=(H+1=2)

. For the error of the 
orresponding Euler s
heme

b

X

E

h

�

;n

we

obtain

lim

n!1

n

H

� e(

b

X

E

h

�

;n

) = �

H

� k�k

1=(H+1=2)

with

�

2

H

=

1

(2H + 1)(H + 1)

�

1

6

:

Here n denotes the number of subintervals of the dis
retization, i.e., the number of

evaluations of B

H

.

Moreover we address the following questions: Can we redu
e the error by swit
h-

ing to arbitrary dis
retizations or di�erent approximation s
hemes? Furthermore,

to whi
h extent 
an we de
rease the error by approximation s
hemes that 
an use

arbitrary bounded linear fun
tionals of the driving fra
tional Brownian motion?

To this end, we 
onsider arbitrary approximation methods

b

X

n

of equation (1),

whi
h apply n bounded linear fun
tionals to a sample path of B

H

. The n fun
tionals

may be determined sequentially. This data about B

H

may then be used in any way

to produ
e a approximation

b

X

n

. The quantity

e(n) = inf

b

X

n

e(

b

X

n

)

is the minimal error that 
an be a
hieved by approximations

b

X

n

of this type.

We show that the minimal errors satisfy

lim

n!1

n

H

� e(n) = 


H

� k�k

1=(H+1=2)

with




2

H

=

sin(�H)�(2H)

�

2H+1

;

see Theorem 2.

Thus, the Euler s
heme based on the optimal density h

�

mat
hes the minimal er-

rors up to a 
onstant fa
tor, whi
h only depends on the Hurst parameter H . Hen
e
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other approximations s
hemes, whi
h may use arbitrary bounded linear fun
tionals,


an only de
rease the error slightly, asymptoti
ally. Moreover, there are no approx-

imation s
hemes

b

X

n

of the above type, whi
h 
an a
hieve a better approximation

rate than n

�H

.

The paper is organized as follows. In Se
tion 2 we state our assumptions on the

drift- and di�usion 
oeÆ
ient and we provide basi
 properties of the solution in the

mean square sense. Se
tion 3 
ontains the results for the error of non-equidistant

Euler s
hemes. The minimal error is addressed in Se
tion 4. Proofs are postponed

to Se
tion 5.

2. Sto
hasti
 Differential Equations with Additive Fra
tional Noise

In the sequel let H > 1=2. Furthermore, we will assume throughout this arti
le

that the drift- and di�usion 
oeÆ
ient satisfy:

(A) a 2 C

0;2

([0; 1℄� R) and there exist 
onstants K

1

;K

2

;K

3

> 0 su
h that

ja

x

(t; x)j � K

1

; ja

xx

(t; x)j � K

2

;

and

ja(t; x)� a(s; x)j � K

3

� (1 + jxj) � jt� sj

for all s; t 2 [0; 1℄ and x 2 R,

(B) � 2 C

1

([0; 1℄),

(C) �(t) > 0 for all t 2 [0; 1℄.

Under these assumptions equation (1) has a unique pathwise solution X , i.e.,

almost all sample paths of the pro
ess X satisfy the integral equation

X(t) = x

0

+

Z

t

0

a(�;X(�)) d� +

Z

t

0

�(�) dB

H

(�); t 2 [0; 1℄;

with all integrals being Riemann-Stieltjes integrals, and if

e

X is another solution

of equation (1), then X and

e

X are indistinguishable. Moreover, almost all sample

paths of X are H�older 
ontinuous of every order � < H , and it holds

E kXk

p

1

<1 (2)

for all p > 1. See Lin (1995), Nualart and R�a�s
anu (2002).

The assumptions (A), (B) and (C) are required for the analysis of approximations

of equation (1). For existen
e of a unique pathwise Riemann-Stieltjes solution mu
h

weaker assumptions are suÆ
ient. Compare, e.g., Lin (1995) resp. Nualart and

Ouknine (2002).

The following Proposition 
hara
terizes the smoothness of the solution in the

mean square sense.

Proposition 1. Let X be the solution of equation (1). It holds

lim

s!0

1

s

H

�

�

E jX(t + s)�X(t)j

2

�

1=2

= j�(t)j uniformly in t 2 [0; 1℄:
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Hen
e the solution X behaves in mean square sense lo
ally like a weighted fra
-

tional Brownian motion, although X is not ne
essarily Gaussian. The mean square

H�older exponent is given by the Hurst parameter H of the driving fra
tional Brow-

nian motion, and the lo
al mean square H�older 
onstant is determined by the

di�usion 
oeÆ
ient �.

Remark 1. Sto
hasti
 di�erential equations with non-additive fra
tional noise are

studied, e.g., in Lin (1995), Z�ahle (1998), Nualart and R�a�s
anu (2002) and Nour-

din (2004). Ferrante and Rovira (2004) also 
onsider sto
hasti
 delay di�erential

equations driven by fra
tional Brownian motion.

3. Non-Equidistant Euler S
heme

For any dis
retization

0 = t

0

< t

1

< : : : < t

n

= 1

the 
orresponding Euler s
heme

b

X

E

for equation (1) is given by

b

X

E

(0) = x

0

and

b

X

E

(t

j+1

) =

b

X

E

(t

j

) + a(t

j

;

b

X

E

(t

j

)) � (t

j+1

� t

j

) + �(t

j

) � (B

H

(t

j+1

)�B

H

(t

j

))

for j = 0; : : : ; n� 1: A global approximation

b

X

E

on [0; 1℄ is obtained by pie
ewise

linear interpolation, i.e.,

b

X

E

(t) =

t

j+1

� t

t

j+1

� t

j

�

b

X

E

(t

j

) +

t� t

j

t

j+1

� t

j

�

b

X

E

(t

j+1

)

for t 2 [t

j

; t

j+1

℄.

To determine the exa
t rate of 
onvergen
e of the Euler s
heme, we will restri
t

to regular sequen
es of dis
retizations generated by a stri
tly positive probability

density fun
tion h 2 C([0; 1℄), i.e.,

0 = t

0;n

< t

1;n

< : : : < t

n;n

= 1 with

Z

t

j;n

0

h(s) ds =

j

n

; j = 1; : : : ; n� 1: (3)

So by 
hoosing su
h a density h one gets a sequen
e of dis
retizations. If, e.g.,

h = id, we obtain a sequen
e of equidistant dis
retizations.

We will use the notation

b

X

E

h;n

for the Euler s
heme based on the dis
retization

given by (3). Clearly, good 
hoi
es of h have to be related to the lo
al smoothness

of the solution of equation (1), i.e., the lo
al H�older 
onstant � and the H�older

exponent H .

Theorem 1. It holds

lim

n!1

n

H

� e(

b

X

E

h;n

) = �

H

� k� � h

�H

k

2

with

�

2

H

=

1

(2H + 1)(H + 1)

�

1

6

:



OPTIMAL APPROXIMATION OF SDE'S WITH ADDITIVE FRACTIONAL NOISE 5

Theorem 1 shows that the order of 
onvergen
e of the Euler s
heme only depends

on the Hurst parameter of the driving fra
tional Brownian motion. The minimal

asymptoti
 
onstant is obtained by 
hoosing the density

h

�

(t) =

1

k�

1=(H+1=2)

k

1

� j�(t)j

1=(H+1=2)

; t 2 [0; 1℄:

Corollary 1. (1) For the equidistant Euler s
heme it holds

lim

n!1

n

H

� e(

b

X

E

id;n

) = �

H

� k�k

2

:

(2) For the optimal density h

�

we have

lim

n!1

n

H

� e(

b

X

E

h

�

;n

) = �

H

� k�k

1=(H+1=2)

:

Consequently, equidistant dis
retization leads only to the best asymptoti
 
on-

stant, if the di�usion 
oeÆ
ient is a 
onstant mapping. For non-
onstant di�usion


oeÆ
ients the error 
an be redu
ed asymptoti
ally by the fa
tor k�k

1=(H+1=2)

=k�k

2

.

The following example provides eviden
e that even for a moderate number of

knots the Euler s
heme based on the optimal density h

�

is superior to the equidis-

tant Euler s
heme.

Example 1. We study the equation

dX(t) = 6 � (1:01� t) dB

H

(t); X(0) = 0 (4)

by means of exa
t error formulas. Figure 1 shows the quantities n

H

� e(

b

X

E

h

�

;n

) and

n

H

� e(

b

X

E

id;n

), marked by + resp. � in dependen
e of the number n of knots for

H = 0:7. The solid lines 
orrespond to the asymptoti
 
onstant of the error of

the s
hemes. So, for equation (4) the non-equidistant s
heme performs uniformly

100 200 300 400 500 600 700 800 900 1000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Figure 1. n

H

� e(

b

X

E

id;n

) and n

H

� e(

b

X

E

h

�

;n

) for equation (4) vs. n

for H = 0:7.

better than the equidistant one. Moreover, the asymptoti
 error formulas are in

good a

ordan
e with the exa
t errors even for a small numbers of knots.
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Remark 2. Regular sequen
es of dis
retizations are, e.g., widely studied and used

for the approximation of sto
hasti
 pro
esses and for the predi
tion of integrals

of sto
hasti
 pro
esses. See, e.g., Ritter (2000) for results and referen
es. In the


ontext of sto
hasti
 di�erential equations driven by Brownian motion regular se-

quen
es are studied, e.g., by Cambanis and Hu (1996).

Remark 3. Instead of regular sequen
es of dis
retizations we 
an use the following

step size 
ontrol for the Euler s
heme, whi
h is easier to implement. Let h 2 C([0; 1℄)

be a stri
tly positive probability density fun
tion and 
hoose a basi
 step-size � > 0.

Set t

0

= 0 and

t

k+1

= t

k

+�=h(t

k

);

as long as the right hand side does not ex
eed one. Otherwise set t

k+1

= 1. The

total number of steps is n(�) = minfk 2 N : t

k

= 1g. For the Euler s
heme

b

X

E

h;�

based on this dis
retization the assertion of Theorem 1 holds with n = n(�).

4. Lower Bounds

The non-equidistant Euler s
heme in the previous se
tion uses a �nite number

of evaluations of B

H

, i.e., a �nite number of Dira
 fun
tionals is applied to the

traje
tories of the driving fra
tional Brownian motion. Now we determine sharp

lower error bounds that hold for every approximation method, whi
h applies n

sequentially sele
ted bounded linear fun
tional to a sample path of B

H

.

Let �

lin

denote the 
lass of all bounded linear fun
tionals on C([0; 1℄) and assume

that x

0

is known. Fix a and � and 
onsider the 
orresponding equation (1). Then

an arbitrary approximation method

b

X

n

, based on x

0

and n sequentially sele
ted

bounded linear fun
tionals, is de�ned by the measurable mappings

 

k

: R

k

! �

lin

for k = 1; : : : ; n and

�

n

: R

n+1

! L

2

([0; 1℄):

The �rst fun
tional, whi
h will be applied to the traje
tory of B

H

, is

�

1

=  

1

(x

0

);

and the fun
tionals �

k

for k = 2; : : : ; n are given by

�

k

=  

k

(x

0

;�

1

(B

H

); : : : ;�

k�1

(B

H

)):

The data x

0

;�

1

(B

H

); : : : ;�

n

(B

H

) is then used to 
ompute a pathwise approxima-

tion

b

X

n

= �

n

(x

0

;�

1

(B

H

); : : : ;�

n

(B

H

)):

The quantity

e

2

(n) = inf

b

X

n

e

2

(

b

X

n

)

is the minimal error, whi
h 
an be obtained by using su
h approximation methods.

For �xed  

1

; : : : ;  

n

the best 
hoi
e of �

n

is the 
onditional mean of X given the

respe
tive fun
tionals applied to B

H

. Hen
e the main diÆ
ulty in this theoret-

i
al minimization problem is the 
hoi
e of the fun
tionals, i.e., of the mappings

 

1

; : : : ;  

n

.
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The number n 
an be 
onsidered as a 
oarse measure for the 
omputational 
ost

of the method

b

X

n

. Clearly, a more pre
ise analysis of the 
omputational 
ost should

take at least the number of arithmeti
al operations performed by

b

X

n

into a

ount.

Theorem 2. It holds

lim

n!1

n

H

� e(n) = 


H

� k�k

1=(H+1=2)

;

where




2

H

=

sin(�H)�(2H)

�

1+2H

:

Hen
e, the intrinsi
 diÆ
ulty of equation (1) is 
ompletely determined by the

L

1=(H+1=2)

-quasi-norm of the di�usion 
oeÆ
ient � and the Hurst parameter H

of the driving fra
tional Brownian motion. In parti
ular, Theorem 2 implies that

approximation s
hemes

b

X

n

of the above type, whi
h obtain a higher 
onvergen
e

rate than n

�H

, do not exist.

Combining Theorem 1 and 2, we obtain that the non-equidistant Euler s
hemes

obtain the optimal order of 
onvergen
e. Moreover, by Corollary 1 we have that

the Euler s
heme based on the optimal density h

�

is asymptoti
ally optimal up

to a 
onstant fa
tor, whi
h only depends on H and not on the drift- or di�usion


oeÆ
ient of the equation.

Corollary 2. It holds

lim sup

n!1

e(

b

X

E

h

�

;n

)

e(n)

�

�

H




H

:

The ratio of �

H

=


H

is a monotoni
ally in
reasing fun
tion of H and we have

�

p

6

�

�

H




H

�

p

7�

6

:

Note that

p

7�=6 ' 1:3853:Thus, the 
onsidered arbitrary approximations meth-

ods 
an only be slightly better than the best Euler s
heme, asymptoti
ally.

Remark 4. Theorem 2 remains valid, if n sequentially sele
ted bounded linear

fun
tionals of a traje
tory of B

H

on average are allowed. See Se
tion 5.6.

Remark 5. Theorem 2 is also valid in the 
ase H = 1=2, see Hofmann et al.

(2002) for more general results. On the other hand, if one restri
ts in this 
ase to

methods that may use only point evaluations of the driving Brownian motion, then

the 
orresponding minimal errors satisfy

lim

n!1

n

1=2

� e(n) = �

1=2

� k�k

1

;

see Hofmann et al. (2000). The ratio �

1=2

=


1=2

= �=

p

6 is the well known gap

between linear and standard information.
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5. Proofs

Unspe
i�ed 
onstants, depending only on K

1

, K

2

, K

3

, x

0

, k�k

1

and k�

0

k

1

will

be denoted by 
, regardless of their value. Note that the assumptions (A) on the

drift 
oeÆ
ient a imply a linear growth 
ondition and a global Lips
hitz 
ondition

with respe
t to the state spa
e variable, i.e.,

(

~

A1) 8x 2 R; 8t 2 [0; 1℄ : ja(t; x)j � 
 � (1 + jxj);

(

~

A2) 8x; y 2 R; 8t 2 [0; 1℄ : ja(t; y)� a(t; x)j � 
 � jy � xj:

5.1. Proof of Proposition 1. Let 0 � t � t+ s � 1. We have

X(t+ s)�X(t) =

Z

t+s

t

a(�;X(�)) d� +

Z

t+s

t

�

0

(�)(B

H

(t+ s)�B

H

(�)) d�

+ �(t)(B

H

(t+ s)�B

H

(t)):

We get by (

~

A1)

E

�

�

�

�

Z

t+s

t

a(�;X(�)) d�

�

�

�

�

2

� 
 � (1 + E jjX jj

2

1

) � s

2

:

Moreover, we have

E

�

�

�

�

Z

t+s

t

�

0

(�)(B

H

(t+ s)�B

H

(�)) d�

�

�

�

�

2

� 
 � E jjB

H

jj

2

1

� s

2

:

Note that E jjX jj

2

1

< 1 by (2) and in parti
ular E jjB

H

jj

2

1

<1. Thus, we �nally

obtain

j�(t)j � 
 � s

1�H

�

1

s

H

� (E jX(t+ s)�X(t)j

2

)

1=2

� j�(t)j+ 
 � s

1�H

;

whi
h 
ompletes the proof.

5.2. Preliminaries for the Proof of Theorem 1. Let

0 = t

0

< t

1

< : : : < t

n

= 1

be a dis
retization of [0; 1℄ and put � = max

i=1;:::;n

jt

i

� t

i�1

j. We will use the

notations

Z(t) =

Z

t

0

a(�;X(�)) d�; F (t) =

Z

t

0

�(�) dB

H

(�); t 2 [0; 1℄;

and

e

Z(t) =

Z

t

0

n�1

X

i=0

a(t

i

; X(t

i

)) � 1

[t

i

;t

i+1

)

(�) d�; t 2 [0; 1℄;

e

F (t) =

Z

t

0

n�1

X

i=0

�(t

i

) � 1

[t

i

;t

i+1

)

(�) dB

H

(�); t 2 [0; 1℄:

Moreover, let

�(s; t) = H(2H � 1)js� tj

2H�2

; s; t 2 [0; 1℄:
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Lemma 1. It holds

sup

t2[0;1℄

E jF (t) �

e

F (t)j

2

� 
 ��

2

:

Proof: We have

F (t)�

e

F (t) =

Z

t

0

n�1

X

i=0

(�(�) � �(t

i

)) � 1

[t

i

;t

i+1

)

(�) dB

H

(�):

Using the isometry for integrals with respe
t to fra
tional Brownian motion with

deterministi
 integrands, see, e.g., Lemma 2.1 in Dun
an et al. (2000), we obtain

E jF (t) �

e

F (t)j

2

=

Z

t

0

Z

t

0

n�1

X

i;j=0

(�(�

1

)� �(t

i

))(�(�

2

)� �(t

j

))�(�

1

; �

2

) � 1

[t

i

;t

i+1

)�[t

j

;t

j+1

)

(�

1

; �

2

)d�

1

d�

2

:

So we get by assumption (B)

E jF (t) �

e

F (t)j

2

� 


2

��

2

Z

t

0

Z

t

0

n�1

X

i;j=0

�(�

1

; �

2

) � 1

[t

i

;t

i+1

)�[t

j

;t

j+1

)

(�

1

; �

2

) d�

1

d�

2

= 


2

��

2

Z

t

0

Z

t

0

�(�

1

; �

2

) d�

1

d�

2

= 


2

t

2H

��

2

:

�

Re
all that almost all sample paths of the solution X of equation (1) are H�older


ontinuous of any order � < H . Hen
e, if g 2 C

1

(R); the Riemann-Stieltjes integrals

Z

t

0

g(X(s)) dB

H

(s); t 2 [0; 1℄;

exist almost surely. Compare, e.g., Theorem 4.2.1 in Z�ahle (1998). We will use the

following 
hange-of-variable formula, whi
h follows straightforward from Theorem

4.3.1 and 4.4.2 in Z�ahle (1998).

Lemma 2. Let g 2 C

2

(R). It holds

g(X(t)) = g(x

0

) +

Z

t

0

g

0

(X(s))a(s;X(s)) ds+

Z

t

0

g

0

(X(s))�(s) dB

H

(s); t 2 [0; 1℄;

almost surely.

In the following, we will also apply the Malliavin 
al
ulus for fra
tional Brownian

motion. For an overview on this topi
, see, e.g., Al�os and Nualart (2003).

In parti
ular, we will require the Malliavin derivative D

s

X(t), s; t 2 [0; 1℄ of the

solution X . The following Lemma 
an be obtained by a slightly modi�
ation of

Proposition 7 in Ferrante and Rovira (2004) or Theorem 5.4.1 in Nourdin (2004).

Lemma 3. We have

D

s

X(t) = �(s) exp

�

Z

t

s

a

x

(�;X(�)) d�

�

� 1

[0;t℄

(s); s; t 2 [0; 1℄:

Next we analyze the approximation

e

Z of Z, using Lemma 2 and 3.
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Lemma 4. We have

sup

t2[0;1℄

E jZ(t) �

e

Z(t)j

2

� 
 ��

2

:

Proof: We have

E jZ(t) �

e

Z(t)j

2

� 2E

�

�

�

�

�

Z

t

0

n�1

X

i=0

(a(�;X(�))� a(t

i

; X(�))) � 1

[t

i

;t

i+1

)

(�) d�

�

�

�

�

�

2

+ 2E

�

�

�

�

�

Z

t

0

n�1

X

i=0

(a(t

i

; X(�))� a(t

i

; X(t

i

))) � 1

[t

i

;t

i+1

)

(�) d�

�

�

�

�

�

2

:

Sin
e ja(�

1

; x) � a(�

2

; x)j � K

3

� (1 + jxj) � j�

1

� �

2

j due to Assumption (A) we get

for the �rst summand

E

�

�

�

�

�

Z

t

0

n�1

X

i=0

(a(�;X(�)) � a(t

i

; X(�))) � 1

[t

i

;t

i+1

)

(�) d�

�

�

�

�

�

2

� 
 � E(1 + jjX jj

1

)

2

��

2

:

For the se
ond summand we have

E

�

�

�

�

�

Z

t

0

n�1

X

i=0

(a(t

i

; X(�))� a(t

i

; X(t

i

))) � 1

[t

i

;t

i+1

)

(�) d�

�

�

�

�

�

2

�

n�1

X

i;j=0

Z

t

j+1

t

j

Z

t

i+1

t

i

jR(t

i

; t

j

; �

1

; �

2

)j d�

1

d�

2

;

where

R(t

i

; t

j

; �

1

; �

2

) = E [a(t

i

; X(�

1

))� a(t

i

; X(t

i

))℄ [a(t

j

; X(�

2

))� a(t

j

; X(t

j

))℄

for i; j = 0; : : : ; n� 1 and �

1

; �

2

2 [0; 1℄.

Now �x t

i

and 
onsider the pro
ess a(t

i

; X(t)); t 2 [0; 1℄. By Lemma 2 we get

a(t

i

; X(t))� a(t

i

; X(t

i

)) =

Z

t

t

i

a

x

(t

i

; X(u))a(u;X(u)) du

+

Z

t

t

i

a

x

(t

i

; X(u))�(u)dB

H

(u); t 2 [0; 1℄;

almost surely. Moreover, by the 
hain rule for the Malliavin derivative we have

D

s

[�(t)a

x

(t

i

; X(t))℄ = �(t)a

xx

(t

i

; X(t))D

s

X(t); s; t 2 [0; 1℄:

Sin
e

sup

t2[0;1℄

j�(t)a

x

(t

i

; X(t))j � k�k

1

�K

1

; (5)

sup

s;t2[0;1℄

jD

s

[�(t)a

x

(t

i

; X(t))℄j � k�k

2

1

�K

2

exp(K

1

); (6)

the pro
ess �(t)a(t

i

; X(t)), t 2 [0; 1℄; is Skorohod integrable, see, e.g., Lemma 2

in Ferrante and Rovira (2004). Moreover, by the relation between the Riemann-

Stieltjes integral and the Skorohod integral for fra
tional Brownian motion, see,
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e.g., Se
tion 2.1 in Nualart et al. (2003), we obtain

a(t

i

; X(t))� a(t

i

; X(t

i

)) =

Z

t

t

i

a

x

(t

i

; X(u))a(u;X(u)) du

+

Z

t

t

i

a

x

(t

i

; X(u))�(u)ÆB

H

(u)

+

Z

t

t

i

Z

1

0

D

s

[�(u)a

x

(t

i

; X(u))℄�(s; u) ds du a:s:;

where the integral with respe
t to ÆB

H

denotes the Skorohod integral. Sin
e

sup

s2[0;1℄

Z

1

0

�(�; s) d� � 2H; (7)

it follows by (

~

A1), (5) and (6)

jR(t

i

; t

j

; �

1

; �

2

)j � 
 � E(1 + kXk

1

)

2

��

2

+

�

�

�

�

�

E

Z

�

1

t

i

a

x

(t

i

; X(u))�(u)ÆB

H

(u)

Z

�

2

t

j

a

x

(t

j

; X(u))�(u)ÆB

H

(u)

�

�

�

�

�

:

By the isometry for Skorohod integrals, see, e.g., Lemma 5 in Nualart et al. (2003),

we have moreover

E

Z

�

1

t

i

a

x

(t

i

; X(u))�(u)ÆB

H

(u)

Z

�

2

t

j

a

x

(t

j

; X(u))�(u)ÆB

H

(u)

= E

Z

�

2

t

j

Z

�

1

t

i

a

x

(t

i

; X(u

1

))�(u

1

)a

x

(t

j

; X(u

2

))�(u

2

)�(u

1

; u

2

) du

1

du

2

+ E

Z

�

2

t

j

Z

�

1

t

i

Z

1

0

Z

1

0

D

v

1

[�(u

1

)a

x

(t

i

; X(u

1

))℄D

v

2

[�(u

2

)a

x

(t

j

; X(u

2

))℄

� �(v

1

; u

2

)�(v

2

; u

1

) dv

1

dv

2

du

1

du

2

:

Hen
e it follows by (5), (6) and (7)

�

�

�

�

�

E

Z

�

1

t

i

a

x

(t

i

; X(u))�(u)ÆB

H

(u)

Z

�

2

t

j

a

x

(t

j

; X(u))�(u)ÆB

H

(u)

�

�

�

�

�

� 


Z

�

2

t

j

Z

�

1

t

i

�(u

1

; u

2

) du

1

du

2

+ 
 � j�

1

� t

i

jj�

2

� t

j

j

and therefore

jR(t

i

; t

j

; �

1

; �

2

)j � 
 � E(1 + kXk

1

)

2

��

2

+ 


Z

t

j+1

t

j

Z

t

i+1

t

i

�(u

1

; u

2

) du

1

du

2

for (�

1

; �

2

) 2 [t

i

; t

i+1

℄� [t

j

; t

j+1

℄. So we �nally obtain

E

�

�

�

�

�

Z

t

0

n�1

X

i=0

(a(t

i

; X(�))� a(t

i

; X(t

i

))) � 1

[t

i

;t

i+1

)

(�) d�

�

�

�

�

�

2

� 
 � E(1 + kXk

1

)

2

��

2

+ 
 ��

2

n�1

X

i;j=0

Z

t

j+1

t

j

Z

t

i+1

t

i

�(u

1

; u

2

) du

1

du

2

� 
 ��

2

:
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�

To analyze the error of the Euler approximation

b

X

E

in the dis
retization points,

we will use the Euler pro
ess

e

X

E

given by

e

X

E

(t) =

b

X

E

(t

j

) + a(t

j

;

b

X

E

(t

j

)) � (t� t

j

) + �(t

j

) � (B

H

(t)�B

H

(t

j

))

for t 2 [t

j

; t

j+1

): Clearly, we have

b

X

E

(t

j

) =

e

X

E

(t

j

) for j = 0; 1; : : : ; n. Note that

the Euler pro
ess requires 
omplete knowledge of the traje
tories of B

H

.

Lemma 5. It holds

sup

t2[0;1℄

E jX(t) �

e

X

E

(t)j

2

� 
 ��

2

:

Proof: We have

X(t)�

e

X

E

(t) = Z(t)�

e

Z(t) + F (t)�

e

F (t)

+

Z

t

0

n�1

X

i=0

(a(t

i

; X(t

i

))� a(t

i

;

e

X

E

(t

i

))) � 1

[t

i

;t

i+1

)

(�) d�:

By Lemma 1 and 4 and we get

E jX(t) �

e

X

E

(t)j

2

� E

�

�

�

�

�

Z

t

0

n�1

X

i=0

(a(t

i

; X(t

i

))� a(t

i

;

e

X

E

(t

i

))) � 1

[t

i

;t

i+1

)

(�) d�

�

�

�

�

�

2

+ 
 ��

2

;

Moreover, by the H�older inequality and (

~

A2) it follows

E jX(t) �

e

X

E

(t)j

2

� 


Z

t

0

n�1

X

i=0

E jX(t

i

)�

e

X

E

(t

i

)j

2

� 1

[t

i

;t

i+1

)

(�) d� + 
 ��

2

;

and

sup

0�s�t

E jX(s) �

e

X

E

(s)j

2

� 


Z

t

0

sup

0�s��

E jX(s) �

e

X

E

(s)j

2

d� + 
 ��

2

;

respe
tively. Consequently, an appli
ation of Gronwalls lemma 
ompletes the proof.

�

5.3. Proof of Theorem 1. By X

lin

h;n

we denote the pie
ewise linear interpolation

of X based on the dis
retization 0 = t

0;n

< t

1;n

< : : : < t

n;n

= 1 generated by the

density fun
tion h, i.e.,

X

lin

h;n

(t) =

t

j+1;n

� t

t

j+1;n

� t

j;n

�X(t

j;n

) +

t� t

j;n

t

j+1;n

� t

j;n

�X(t

j+1;n

)

for t 2 [t

j;n

; t

j+1;n

℄. We have

sup

n2N

max

i=1;:::;n

jt

i;n

� t

i�1;n

j � k1=hk

1

� n

�1

:

Note that k1=hk

1

< 1, sin
e the density fun
tion h is stri
tly positive. Hen
e it

follows by Lemma 5

�

E

Z

1

0

jX

lin

h;n

(t)�

b

X

E

h;n

(t)j

2

dt

�

1=2

� 
 � k1=hk

1

� n

�1

: (8)
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Furthermore we obtain due to Theorem 1 in Seleznjev (2000) and Proposition 1

lim

n!1

n

H

�

�

E

Z

1

0

jX(t)�X

lin

h;n

(t)j

2

dt

�

1=2

= �

H

�

�

Z

1

0

�(t)

2

h

�2H

(t) dt

�

1=2

:

Hen
e the assertion follows.

5.4. Preliminaries for the Proof of Theorem 2. Let

Y (t) = x

0

+

Z

t

0

a(�;X(�)) d��

Z

t

0

�

0

(�)B

H

(�) d� = X(t)��(t)B

H

(t); t 2 [0; 1℄:

Moreover, de�ne for a dis
retization 0 = t

0

< t

1

< : : : < t

n

= 1 an approximation

b

Y of Y by

b

Y (t) =

b

X

E

(t)� �(t

j

)B

H

(t

j

)

t

j+1

� t

t

j+1

� t

j

� �(t

j+1

)B

H

(t

j+1

)

t� t

j

t

j+1

� t

j

(9)

for t 2 [t

j

; t

j+1

℄.

The asymptoti
 behavior of the eigenvalues �

k

, k = 1; 2; : : : ; of the Karhunen-

Lo�eve expansion of �(t)B

H

(t), t 2 [0; 1℄, is given by

lim

k!1

k

2H+1

� �

k

= jj�jj

2

1=(H+1=2)

�

�(2H + 1) sin(�H)

�

1+2H

:

See Propositions 2.2 and 2.3 in Nazarov and Nikitin (2003). Note that

lim

n!1

n

2H

X

k>n

�

k

= jj�jj

2

1=(H+1=2)

�

�(2H) sin(�H)

�

1+2H

: (10)

5.5. Proof of Theorem 2. (i) We �rst establish the lower bound. Let

b

X

n

,

n = 1; 2; : : : ; be an arbitrary sequen
e of approximations methods. Moreover �x

H < � < 1 and denote by

b

Y

n

the approximation of Y given by (9), based on the

dis
retization

t

i;dn

�

e

=

i

dn

�

e

; i = 0; 1; : : : ; dn

�

e: (11)

De�ne

b

V

n

=

b

X

n

�

b

Y

n

:

Hen
e we have

�

Z

1

0

E jX(t) �

b

X

n

(t)j

2

dt

�

1=2

�

�

Z

1

0

E j�(t)B

H

(t)�

b

V

n

(t)j

2

dt

�

1=2

�A

n

with

A

n

=

�

Z

1

0

E jY (t)�

b

Y

n

(t)j

2

dt

�

1=2

:

Denoting by Y

lin

n

the linear interpolation of Y based on the dis
retization (11), we

get

A

n

�

�

Z

1

0

E jY (t)� Y

lin

n

(t)j

2

dt

�

1=2

+

�

Z

1

0

E jY

lin

n

(t)�

b

Y

n

(t)j

2

dt

�

1=2

:

Sin
e

Y

lin

n

�

b

Y

n

= X

lin

id;dn

�

e

�

b

X

E

id;dn

�

e
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and

E jY (t)� Y (s)j

2

� 
 � jt� sj

2

for s; t 2 [0; 1℄, it follows by (8)

A

n

� 
 � n

��

:

Hen
e we obtain

lim inf

n!1

n

H

�

�

Z

1

0

E jX(t) �

b

X

n

(t)j

2

dt

�

1=2

� lim inf

n!1

n

H

�

�

Z

1

0

E j�(t)B

H

(t)�

b

V

n

(t)j

2

dt

�

1=2

:

Setting

b

V

�

n

=

b

V

n

=�;

it remains to show that

lim inf

n!1

n

H

�

�

Z

1

0

E jB

H

(t)�

b

V

�

n

(t)j

2

� �(t)

2

dt

�

1=2

� 


H

� jj�jj

1=(H+1=2)

:

Note that

b

V

�

n

is an approximation of B

H

using at most m(n) = n+ dn

�

e bounded

linear fun
tionals that are applied to B

H

. Moreover, approximatingB

H

in the mean

square weighted L

2

-norm with weight fun
tion �

2

from �nitely many bounded linear

fun
tionals, whi
h are applied to B

H

, de�nes a linear problem with a Gaussian

measure in the sense of Traub et al. (1988), Chapter 6.5. Therefore sequential

sele
tion of the fun
tionals does not help and it holds

Z

1

0

E jB

H

(t)�

b

V

�

n

(t)j

2

� �(t)

2

dt �

X

k>m(n)

�

k

;

see Traub et al. (1988), Chapter 6.5, and the referen
es therein. Sin
e lim

n!1

m(n)=n =

1, the proof of the lower bound is 
ompleted by (10).

(ii) We have

Z

1

0

E jB

H

(t)�

b

V

y

n

(t)j

2

� �(t)

2

dt =

X

k>n

�

k

;

for

b

V

y

n

=

n

X

k=1

Z

1

0

B

H

(�)�(�)�

k

(�) d� �

�

k

�

;

where �

1

, �

2

, : : : denote an orthonormal set of eigenfun
tions 
orresponding to the

eigenvalues �

1

, �

2

, : : : of the Karhunen-Loeve expansion of �(t)B

H

(t), t 2 [0; 1℄.

Fix H < � < 1 and set

b

X

y

n

=

b

Y

n

+

b

V

y

m

�

(n)

; n = 1; 2; : : : ;

with

b

Y

n

given as in (i) and m

�

(n) = n�dn

�

e. For this sequen
e of approximations

it follows

lim

n!1

n

H

� e(

b

X

y

n

) = 


H

� k�k

1=(H+1=2)

;

whi
h 
ompletes the proof.
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5.6. Dis
ussion of the Proof of Theorem 2. The lower bound is established

by redu
ing the approximation problem for the sto
hasti
 di�erential equation to

a weighted approximation problem for B

H

, for whi
h the minimal error is strongly

asymptoti
 equivalent to

�

n

= 


H

� k�k

1=(H+1=2)

� n

�H

Sin
e �

2

n

is a 
onvex sequen
e, i.e.,

�

2

n

�

�

2

n�1

+ �

2

n+1

2

;

and �

n

satis�es

lim

n!1

�

n

�

n+1

= 1;

varying 
ardinality does not help for the approximation of B

H

. See Traub et al.

(1988), Chapter 6.5, and the referen
es therein. Thus, the lower bound in Theorem

2 also holds, if n sequentially sele
ted bounded linear fun
tionals on average are

allowed.
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