OPTIMAL APPROXIMATION OF SDE’S WITH ADDITIVE
FRACTIONAL NOISE

ANDREAS NEUENKIRCH

ABSTRACT. We study pathwise approximation of scalar stochastic differential
equations with additive fractional Brownian noise of Hurst parameter H > 1/2,
considering the mean square L2-error criterion. By means of the Malliavin
calculus we derive the exact rate of convergence of the Euler scheme, also for
non-equidistant discretizations. Moreover, we establish a sharp lower error
bound that holds for arbitrary methods, which use a fixed number of bounded
linear functionals of the driving fractional Brownian motion. The Euler scheme
based on a discretization, which reflects the local smoothness properties of the
equation, matches this lower error bound up to the factor 1.39.

1. INTRODUCTION

Let BH(t),t € [0,1] be a fractional Brownian motion with Hurst parameter
H € (0,1), i.e., BY is a continuous centered Gaussian process with covariance
kernel

1
K(s,t) = i(szH + 25 |t — 52, s, t € [0,1].

For H = 1/2 fractional Brownian motion is a Brownian motion, while for H # 1/2
it is neither a semimartingale nor a Markov process. In particular, non-overlapping
increments are negatively correlated if H < 1/2 and positively if H > 1/2. More-
over, it holds

E|BT (1) = BT(s))' 2 =t —s|",  s,te[01],

and almost all sample paths of B¥ are Hélder continuous of any order A < H.
We consider pathwise approximations of the stochastic differential equation

dX (t) = a(t,X(t))dt + o(t)dBH (t),  t€][0,1], (1)
X(0) = o,

with H € (1/2,1) and deterministic initial value zog € R. Here a and o satisfy
standard smoothness assumptions and equation (1) is an integral equation with all
integrals being pathwise Riemann-Stieltjes integrals. See, e.g., Lin (1995), Zahle
and Klingenhofer (1999) and Nualart and Rascanu (2002), also for the case of non-
additive diffusion coefficients.

Approximation of stochastic differential equations driven by fractional Brownian
motion is studied only in few articles. In particular, no results on lower error bounds
are available up to now. Mainly, analytic methods like the Picard iteration (Lin
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(1995)), Wong-Zakai-type approximations (Lin (1995), Nourdin (2004), Boufoussi
and Tudor (2004)) and the Kramers-Smoluchowski approximation (Boufoussi and
Tudor (2004)) are considered, and uniform convergence of the approximation se-
quence for almost all sample paths is proved. Lin (1995) also shows that the Euler
approximation of equation (1) converges uniformly in probability. Nourdin (2004)
studies the approximation of autonomous differential equations driven by Holder
continuous functions and determines upper error bounds for the order of conver-
gence of the equidistant Euler scheme and an equidistant Milstein-type scheme.

In this paper the error e()?) of an approximation X of equation (1) will be
measured as follows. The pathwise distance between X and X in the L?-norm 1|2
is taken and then averaged over all trajectories, i.e.,

e(X) = (EIIX - X[}9)Y2.

First, we study the Euler approximation of equation (1) and wish to determine
the best discretization in a strong asymptotic sense. Specifically, we consider regular
sequences of discretizations generated by a density function h, i.e., the knots of these
discretizations are quantiles of the density h.

Applying the Malliavin calculus for fractional Brownian motion, see, e.g., Alos
and Nualart (2003), we derive the exact rate of convergence of these non-equidistant
Euler schemes, see Theorem 1. It turns out that the optimal density h* is propor-
tional to o'/(F+1/2) For the error of the corresponding Euler scheme X7, we
obtain

Jim e(XE ) = Bu ol o

with
9 1 1
Bu = T
QH+1)(H+1) 6
Here n denotes the number of subintervals of the discretization, i.e., the number of
evaluations of BH
Moreover we address the following questions: Can we reduce the error by switch-
ing to arbitrary discretizations or different approximation schemes? Furthermore,
to which extent can we decrease the error by approximation schemes that can use
arbitrary bounded linear functionals of the driving fractional Brownian motion?
To this end, we consider arbitrary approximation methods )?n of equation (1),
which apply n bounded linear functionals to a sample path of B¥. The n functionals
may be determined sequentially. This data about B may then be used in any way
to produce a approximation )?n The quantity
e(n) = inf e(X,)

n

is the minimal error that can be achieved by approximations )?n of this type.

We show that the minimal errors satisfy

- H
Jim 0™ -e(n) = yu - [lolly i1z
with
, sin(mH)I'(2H)
Yo =" 3HT1

see Theorem 2.

Thus, the Euler scheme based on the optimal density A* matches the minimal er-
rors up to a constant factor, which only depends on the Hurst parameter H. Hence
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other approximations schemes, which may use arbitrary bounded linear functionals,
can only decrease the error slightly, asymptotically. Moreover, there are no approx-
imation schemes )/(\'n of the above type, which can achieve a better approximation
rate than n= .

The paper is organized as follows. In Section 2 we state our assumptions on the
drift- and diffusion coefficient and we provide basic properties of the solution in the
mean square sense. Section 3 contains the results for the error of non-equidistant
Euler schemes. The minimal error is addressed in Section 4. Proofs are postponed
to Section 5.

2. STOCHASTIC DIFFERENTIAL EQUATIONS WITH ADDITIVE FRACTIONAL NOISE

In the sequel let H > 1/2. Furthermore, we will assume throughout this article
that the drift- and diffusion coefficient satisfy:

(A) a € C*2([0,1] x R) and there exist constants K, Ks, K3 > 0 such that
la(t,z)] < K7y, |azs(t, z)| < Ko,
and
|a(t,z) — a(s,z)] < K5 - (1 + [z]) - |t — 5]
for all s,t €[0,1] and z € R,
(B) o € C*([0,1]),
(C) o(t) > 0 for all t € [0,1].

Under these assumptions equation (1) has a unique pathwise solution X, i.e.,
almost all sample paths of the process X satisfy the integral equation

X(t) =0 +/0 a(t, X (7)) dr +/0 o(t)dBH (1), t €10,1],

with all integrals being Riemann-Stieltjes integrals, and if X is another solution
of equation (1), then X and X are indistinguishable. Moreover, almost all sample
paths of X are Holder continuous of every order A < H, and it holds

E[JX[[g < oo (2)

for all p > 1. See Lin (1995), Nualart and Rascanu (2002).

The assumptions (A), (B) and (C) are required for the analysis of approximations
of equation (1). For existence of a unique pathwise Riemann-Stieltjes solution much
weaker assumptions are sufficient. Compare, e.g., Lin (1995) resp. Nualart and
Ouknine (2002).

The following Proposition characterizes the smoothness of the solution in the
mean square sense.

Proposition 1. Let X be the solution of equation (1). It holds

lim — - (E[X(t + ) — X(0)]2)"*

lim —& =|o(t)] wuniformly in t € [0,1].



4 ANDREAS NEUENKIRCH

Hence the solution X behaves in mean square sense locally like a weighted frac-
tional Brownian motion, although X is not necessarily Gaussian. The mean square
Holder exponent is given by the Hurst parameter H of the driving fractional Brow-
nian motion, and the local mean square Holder constant is determined by the
diffusion coefficient o.

Remark 1. Stochastic differential equations with non-additive fractional noise are
studied, e.g., in Lin (1995), Zahle (1998), Nualart and Ragcanu (2002) and Nour-
din (2004). Ferrante and Rovira (2004) also consider stochastic delay differential
equations driven by fractional Brownian motion.

3. NON-EQUIDISTANT EULER SCHEME
For any discretization
O=to<t1 <...<tp=1
the corresponding Euler scheme XZ for equation (1) is given by
XE(0) =
and
XE(tj1) = XP(45) + alty, XP(47) - (01— t5) + 0(ty) - (B (t311) = BT (¢))

for j =0,...,n— 1. A global approximation XZ on [0,1] is obtained by piecewise
linear interpolation, i.e.,
Ry = BT By T e,
tiv1 =t tiv1 —tj
fort € [tj,tj+1].

To determine the exact rate of convergence of the Euler scheme, we will restrict
to regular sequences of discretizations generated by a strictly positive probability
density function h € C([0, 1)), i.e.,

tin .
O0=topn <tin <...<tpn,=1 with / h(s)ds = %, j=1,...,n—1. (3)
0

So by choosing such a density h one gets a sequence of discretizations. If; e.g.,
h = id, we obtain a sequence of equidistant discretizations.

We will use the notation X fn for the Euler scheme based on the discretization
given by (3). Clearly, good choices of h have to be related to the local smoothness
of the solution of equation (1), i.e., the local Holder constant o and the Holder
exponent H.

Theorem 1. It holds

lim n - e(XF,) = Bu - |lo-h |2
n—o00 ’

with

By = . !
HZQH+1)(H+1) 6
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Theorem 1 shows that the order of convergence of the Euler scheme only depends
on the Hurst parameter of the driving fractional Brownian motion. The minimal
asymptotic constant is obtained by choosing the density

(3 _ 1 1/(H+1/2)
h (ﬂ—m'h@ﬂ ,  tel0,1].

Corollary 1. (1) For the equidistant Euler scheme it holds
lim ' - e(X{,) = Bu - o]l
n— 00
(2) For the optimal density h* we have
: H CE \ _
T}LH;O n ‘e(Xh*,n) = Bu - ||U||1/(H+1/2)-

Consequently, equidistant discretization leads only to the best asymptotic con-
stant, if the diffusion coefficient is a constant mapping. For non-constant diffusion
coefficients the error can be reduced asymptotically by the factor ||ol1 /(g41/2)/ || ||2-

The following example provides evidence that even for a moderate number of

knots the Euler scheme based on the optimal density i* is superior to the equidis-
tant Euler scheme.

Example 1. We study the equation
dX(t) =6-(1.01 —t)dBH(t), X(0)=0 (4)

by means of exact error formulas. Figure 1 shows the quantities nf/ -e()? ,Ifn) and

nf . e()?i‘g,n), marked by + resp. X in dependence of the number n of knots for
H = 0.7. The solid lines correspond to the asymptotic constant of the error of
the schemes. So, for equation (4) the non-equidistant scheme performs uniformly
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FiGure 1. nfl . e()?i}in) and nf - e()A(f*n) for equation (4) vs. n
for H =0.7.

better than the equidistant one. Moreover, the asymptotic error formulas are in
good accordance with the exact errors even for a small numbers of knots.
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Remark 2. Regular sequences of discretizations are, e.g., widely studied and used
for the approximation of stochastic processes and for the prediction of integrals
of stochastic processes. See, e.g., Ritter (2000) for results and references. In the
context of stochastic differential equations driven by Brownian motion regular se-
quences are studied, e.g., by Cambanis and Hu (1996).

Remark 3. Instead of regular sequences of discretizations we can use the following
step size control for the Euler scheme, which is easier to implement. Let h € C([0, 1])
be a strictly positive probability density function and choose a basic step-size A > 0.
Set tg = 0 and
th+1 =t + A/R(t),

as long as the right hand side does not exceed one. Otherwise set tx4+; = 1. The
total number of steps is n(A) = min{k € N : ¢;, = 1}. For the Euler scheme XEA
based on this discretization the assertion of Theorem 1 holds with n = n(A).

4. LOWER BOUNDS

The non-equidistant Euler scheme in the previous section uses a finite number
of evaluations of B, i.e., a finite number of Dirac functionals is applied to the
trajectories of the driving fractional Brownian motion. Now we determine sharp
lower error bounds that hold for every approximation method, which applies n
sequentially selected bounded linear functional to a sample path of B,

Let A" denote the class of all bounded linear functionals on C([0, 1]) and assume
that zo is known. Fix a and o and consider the corresponding equation (1). Then
an arbitrary approximation method )?n, based on xg and n sequentially selected
bounded linear functionals, is defined by the measurable mappings

i s RE 5 Al
fork=1,...,n and
én : R™ — Ly(]0,1]).
The first functional, which will be applied to the trajectory of BH is

Ay =i (o),
and the functionals Ay for &k = 2,...,n are given by
A = P (o, A (BT, ..., Ap_1 (BT)).
The data xq, A, (BY),..., A, (B") is then used to compute a pathwise approxima-

tion
X = (o, AL (BT), ..., An(B™)).
The quantity
ez(n) = inf ez()?n)

is the minimal error, which can be obtained by using such approximation methods.
For fixed 1, ..., the best choice of ¢,, is the conditional mean of X given the
respective functionals applied to B¥. Hence the main difficulty in this theoret-
ical minimization problem is the choice of the functionals, i.e., of the mappings

Vi, .ooy Pp.
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The number n can be considered as a coarse measure for the computational cost
of the method X,,. Clearly, a more precise analysis of the computational cost should
take at least the number of arithmetical operations performed by X,, into account.

Theorem 2. It holds

lim. n'le(n) = vu - |lolli/(ri1/2),

where
5 sin(wH)['(2H)
Yo =" _em

Hence, the intrinsic difficulty of equation (1) is completely determined by the
LY (H+1/2)_quasi-norm of the diffusion coefficient o and the Hurst parameter H
of the driving fractional Brownian motion. In particular, Theorem 2 implies that
approximation schemes )/fn of the above type, which obtain a higher convergence
rate than n~, do not exist.

Combining Theorem 1 and 2, we obtain that the non-equidistant Euler schemes
obtain the optimal order of convergence. Moreover, by Corollary 1 we have that
the Euler scheme based on the optimal density hA* is asymptotically optimal up
to a constant factor, which only depends on H and not on the drift- or diffusion
coefficient of the equation.

Corollary 2. It holds
e(XE
limsup ) P
n—oo e(n) YH

The ratio of Sg /vm is a monotonically increasing function of H and we have

P VT
V6 ~ vm 6
Note that /77 /6 ~ 1.3853. Thus, the considered arbitrary approximations meth-
ods can only be slightly better than the best Euler scheme, asymptotically.

Remark 4. Theorem 2 remains valid, if n sequentially selected bounded linear
functionals of a trajectory of B on average are allowed. See Section 5.6.

Remark 5. Theorem 2 is also valid in the case H = 1/2, see Hofmann et al.
(2002) for more general results. On the other hand, if one restricts in this case to
methods that may use only point evaluations of the driving Brownian motion, then
the corresponding minimal errors satisfy

lm 12 -e(n) = Bz -l
see Hofmann et al. (2000). The ratio 8;/2/71/2 = /v/6 is the well known gap
between linear and standard information.
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5. PROOFS

Unspecified constants, depending only on K1, Ka, K3, o, ||0]|cc and ||o']|eo will
be denoted by ¢, regardless of their value. Note that the assumptions (A) on the
drift coefficient a imply a linear growth condition and a global Lipschitz condition
with respect to the state space variable, i.e.,

(
(

Al) VzeR Vte[0,1]: la(t,z)| <c-(1+ |z]),

A2) Vz,y e R YVt €[0,1]:  |a(t,y) —a(t,z)| < c- |y — x|

5.1. Proof of Proposition 1. Let 0 <t <t + s < 1. We have
t+s t+s

X(t+s)—X(t) = / a(t, X (1)) d7'+/ o' (1)(BH (t + s) — BH (1)) dr
t t

+o(t)(BE(t + 5) — BH(t)).

We get by (A1)
2
<c (L+E[IX]5) -5

E /t X () dr

Moreover, we have
2
<c EIBTS, s

E /H‘S 0'(7’)(BH(t +s) — BH(T)) dr

Note that E||X||2, < oo by (2) and in particular E||B¥||?, < co. Thus, we finally
obtain

o(®)] —c- st H < L EIX(E+5) — XOPY < Jot)] + e st
S

which completes the proof.

5.2. Preliminaries for the Proof of Theorem 1. Let
O=t<ti1 <...<t,=1

be a discretization of [0, 1] and put A = max;—1,_, |t; — t;—1|]. We will use the
notations

2(t) = / a(r, X(r))dr, F(t) = / o(r)dB"(r),  teo,1],

and
tn—1

Z(t) = / S alts, X(8)) - Lpppuon (D dr, £ €[0,1],
=0

ﬁ(t) = /0 i: o(ti) Lt ti00)(7) dBH (1), t € [0,1].

Moreover, let
B(s,t) = H(2H — 1)|s — t|*H 2 s,t €[0,1].
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Lemma 1. It holds

sup E|F(t) — F(t)]* <c- A2
tef0,1]

Proof: We have
tn—1

FO) = F0) = [ 3 (0(0) = 0(00) - Lpssep (7) dB7(7).
i=0
Using the isometry for integrals with respect to fractional Brownian motion with
deterministic integrands, see, e.g., Lemma 2.1 in Duncan et al. (2000), we obtain
E|F(t) - F(t)P
t t n—1

= / / Z (o(m) —a(t:i)(o(m2) — o(t;)d(T1, T2) * Lt, ti0) <[t ,t540) (T1> T2)dT1dT2.

o Jo [T
So we get by assumption (B)

t n—1

t
]E|F(t) - F(t)|2 S 02 . AQ/ / Z ¢(T1,7'2) . l[ti,ti+1)x[tj7tj+1)(7'1;7'2)dTldT2
0 Jo

4,j=0

t t
:CQ'AZ/ / QS(TI,TZ)dTldTZ :CthH'Az.
0 Jo
(|

Recall that almost all sample paths of the solution X of equation (1) are Holder
continuous of any order A\ < H. Hence, if g € C*(R), the Riemann-Stieltjes integrals

/0 o(X(s) dB(s), te€0,1],

exist almost surely. Compare, e.g., Theorem 4.2.1 in Zihle (1998). We will use the
following change-of-variable formula, which follows straightforward from Theorem
4.3.1 and 4.4.2 in Zahle (1998).

Lemma 2. Let g € C*(R). It holds

g(X (1)) = g(xo) + / ¢/ (X (s))a(s, X (5)) ds + / ¢(X(s))o(s) dBH (s), teo,1],

almost surely.

In the following, we will also apply the Malliavin calculus for fractional Brownian
motion. For an overview on this topic, see, e.g., Alos and Nualart (2003).

In particular, we will require the Malliavin derivative Dy X (t), s,t¢ € [0, 1] of the
solution X. The following Lemma can be obtained by a slightly modification of
Proposition 7 in Ferrante and Rovira (2004) or Theorem 5.4.1 in Nourdin (2004).

Lemma 3. We have

D, X(t) = o(s) exp </: a, (1, X (1)) dT> “110,4(5), s,t €10,1].

Next we analyze the approximation Zof Z , using Lemma 2 and 3.
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Lemma 4. We have

sup E|Z(t) — Z(t)]> < c- A2

te[o,1]
Proof: We have
tn 1 2
E|Z(t) - Z(t)]? < 2E / (1) = alti, X (1)) - Lo sy (1) dT
tn 1 2
1 oE / alti, X (7)) — a(ti, X(£))) - Ljpose)(r) dr

Since |a(m,x) — a(r2,2)| < K3 - (1 + |z|) - |11 — 72| due to Assumption (A) we get
for the first summand
2

E / (1) = alts, X (1)) - Lt i) (1) dr| < e-E(Q+[1X]]00)” - A%

For the second summand we have
2

E / alti, X (1)) — alts, X(6))) - L sy (7) d7

tiv1  ptiqa
/ / |R(ti,tj,T1,T2)|dT1dT2,
t;

z]Ot

where
R(ti,tj,71,72) = Ela(t;, X (1)) — a(ts, X (£:)] [a(t;, X (72)) — alt;, X(2;))]
fori,j=0,...,n—1and 7,72 € [0,1].
Now fix ¢; and consider the process a(t;, X (t)),t € [0,1]. By Lemma 2 we get

a(t;, X(t)) —a(t;, X(t;)) = /t ay(t;, X (u))a(u, X (u)) du

+ / (b, X))o @)dB" (), +€[0,1],

almost surely. Moreover, by the chain rule for the Malliavin derivative we have

Dslo(t)ax (ti, X (1))] = o(H)aw. (i, X (8)) DX (@), s, €[0,1].

Since
tgl[ép” |lo(t)aqs(t:, X ()] < llofleo - K1, (5)
sup Do (t)a, (t:, X (1))]] < |loll% - Kz exp(K), (6)

s,t€[0,1]

the process o(t)a(t;, X (t)), t € [0,1], is Skorohod integrable, see, e.g., Lemma 2
in Ferrante and Rovira (2004). Moreover, by the relation between the Riemann-
Stieltjes integral and the Skorohod integral for fractional Brownian motion, see,
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e.g., Section 2.1 in Nualart et al. (2003), we obtain
b X(0) = altis X(0)) = [ aslti X(w))alu, X(w) du
+ / (b, X () (w) 3B (u)

/tl / Difo(uay (ts, X (w))g(s, u) ds du_a.s.,

where the integral with respect to § B denotes the Skorohod integral. Since

1

sup [ o(r,)dr < 2, ")
s€[0,1] Jo

it follows by (A1), (5) and (6)

|R(ti,tj,m,m2)] < e B(1+[|X]|)? - A

+

E / 4o (ti, X (u))o (w)BE (1) /t " ety X ()0 (w)d B ()]

i
By the isometry for Skorohod integrals, see, e.g., Lemma 5 in Nualart et al. (2003),
we have moreover

E / 4o (ti, X (u))o (w) B (1) /t " et X ()0 (w)O B ()

J

= ]E\/t'J \/t; aw(ti, X(Ul))a(ul)ax (tj, X(UQ))U(U2)¢(U/1, UZ) duldu2

v [0 [ ] pulotuant, XD otuen s, X))
. QS(Ul y U2)¢(U2, Ul) d’l)1 d'U2 du1 d'LLQ.
Hence it follows by (5), (6) and (7)

T2

E / " (b, X ()0 (W) B (u) / 4o (t;, X (u))o ()3 B (u)

i tj

1
SC/ ¢(U1,U2)duldU2+C'|T1—ti||’7'2—tj|
t; t;

and therefore
tiv1 plig
|R(ti,tj,T1,T2)| SC]E(]. +||X||OO)Z-A2+C/ / ¢(U1,U2) dU,1 dU,2
t; t;
for (Tl,Tg) € [tz’;ti—i-l] X [tj,tj+1]. So we ﬁnally obtain

tnl 2

tl; )) - a’(tl?X(tl))) : ]‘[ti,ti+1)(7—) dr

ti+1 i1
<c B+ || X||o0)? - A% +c- A2 / / (g, us) duy dus < ¢ - A?.
=0/t ¢
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To analyze the error of the Euler approximation X in the discretization points,
we will use the Euler process X ¥ given by

XP(t) = XP(t;) + alt;, X7 (1)) - (t = t5) + o (t;) - (B (1) - B (t;))

for t € [t;,t;41). Clearly, we have XZ(t;) = XE(t;) for j = 0,1,...,n. Note that
the Euler process requires complete knowledge of the trajectories of B,

Lemma 5. It holds

sup E|X(t) — XP(t)]? <c- A2
telo,1]

Proof: We have
X(t) - XP@)=2(t) - Z(t) + F(t) — F(t)

/ alts, X (1)) — alts, XE(t:))) - Lpopsr)(7) dr.

By Lemma 1 and 4 and we get
2

tn 1
E|X (1) - XP(1)]* <E / alti, X (1)) = alts, X2(8))) - L iy (1) dr| +c- A,

Moreover, by the Holder inequality and (A2) it follows

tn—1
BX() - SE0F <c | S BN = KX Vi ()b e 4%
and
t
sup E|X(s) — XE(s)[2 §c/ sup E|X(s) — XE(s)2dr +c- A2,
0<s<t 0 0<s<r

respectively. Consequently, an application of Gronwalls lemma completes the proof.
O

5.3. Proof of Theorem 1. By X} 1‘“ we denote the piecewise linear interpolation
of X based on the discretization 0 = t07n <tin <...<tpn =1 generated by the
density function h, i.e.,
tipin—t t—t
Xii(t) = P X (tjn) + 20— X (1)
titin —tjn tivin = tin

for t € [tjn,tjt1,n]. We have

sup max |tm —ti 1l <|1/h|lo -n

neN =1,
Note that ||1/h]lec < 00, since the density function h is strictly positive. Hence it
follows by Lemma 5

1/2

</|X1‘“() Xﬁn(t)l2dt> < e |[1/hlleo -0 (8)
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Furthermore we obtain due to Theorem 1 in Seleznjev (2000) and Proposition 1
1 1/2 1 1/2
lim nf - (IE/ |X (t) —X,lli‘;l(t)|2dt> = By - </ o(t)*h=2H (t) dt>
n—oo 0 ’ 0

Hence the assertion follows.

5.4. Preliminaries for the Proof of Theorem 2. Let
t t

Y (t) :x0+/ a(T,X(T))dT—/ o' (F)BY (r)dr = X(H)—o(t)BY (1),  te0,1].
0 0

Moreover, define for a discretization 0 = tg < t; < ... < t, = 1 an approximation
Y of Y by

9)

~ ~ tiv1 — 1 t—t;
Y(t) = XP(t) - o(t;)B™ (t;) ——— = o(tj41)B" (tj41) ’
tiv1 =t tit1 —t;
fort € [tj,tj+1].
The asymptotic behavior of the eigenvalues g, £k = 1,2, ..., of the Karhunen-
Loéve expansion of o(t)BH(t), t € [0,1], is given by

I'(2H + 1) sin(wH)

o L2HA+1 _ 2
klglgok Ak = lollF g2 - Ty :
See Propositions 2.2 and 2.3 in Nazarov and Nikitin (2003). Note that
. I'(2H) sin(nH)
2H _ 2
nh_?;o" Z e = o1y 41/2) - —12H . (10)

k>n

5.5. Proof of Theorem 2. (i) We first establish the lower bound. Let X,
n = 1,2,..., be an arbitrary sequence of approximations methods. Moreover fix
H < a < 1 and denote by Y, the approximation of Y given by (9), based on the
discretization

i

i [no _W7 i=0,1,...,[n%]. (11)
Define
Vo=Xp—Y,.
Hence we have
1 1/2 1 1/2
([ Exo-tora) > ([ Booso-Topae) -,
0 0

with
1/2

A, = </01E|Y(t) - ?n(t)|2dt>

Denoting by Y% the linear interpolation of ¥ based on the discretization (11), we
get
1/2 1/2

A, < </01E|Y(t) —ylin))2 dt) + </011E|Y,§i“(t) - ?n(t)|2dt>

Since . R . ~
Yot = Yo = Xid' . — Xid,fna]
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and
BY (1) - V(5) <c- [t — s
for s,t € [0, 1], it follows by (8)
A, <ec-n™%

Hence we obtain

L 1/2
liminf nf- (/ E|X(t) — X,(®)]? dt)
0

n—oo
1/2

> lim inf n?! - </1 Elo(t) B (t) — V() [? dt>

n—o0 0

Setting
V) =V,/o,

it remains to show that

1 1/2
it o ([ BB - VIO 0@ dt) 2 m - lolh e
n—oo 0

Note that f/\',f is an approximation of B using at most m(n) = n + [n®] bounded
linear functionals that are applied to B¥. Moreover, approximating B in the mean
square weighted L?-norm with weight function o from finitely many bounded linear
functionals, which are applied to B, defines a linear problem with a Gaussian
measure in the sense of Traub et al. (1988), Chapter 6.5. Therefore sequential
selection of the functionals does not help and it holds

/1 BB (t) - V)P o)?dt> > A,

k>m(n)

see Traub et al. (1988), Chapter 6.5, and the references therein. Since lim,,—,o, m(n)/n =
1, the proof of the lower bound is completed by (10).
(ii) We have

/ BB () - THOP o0 dt = 3 M,
0

k>n
for

AT:n 1 (Do (1) (T T'g—k
=3 [ et L,

where &1, &, ... denote an orthonormal set of eigenfunctions corresponding to the
eigenvalues A1, Mg, ... of the Karhunen-Loeve expansion of o(t)BH (t), t € [0,1].
Fix H < a < 1 and set

n=12,...,

with Y,, given as in (i) and m*(n) = n— [n®]. For this sequence of approximations
it follows
lim n' - e(X)) =y - lloll/creay),

n—oo

which completes the proof.
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5.6. Discussion of the Proof of Theorem 2. The lower bound is established
by reducing the approximation problem for the stochastic differential equation to
a weighted approximation problem for B, for which the minimal error is strongly
asymptotic equivalent to

Vn =vu - |loll1 )12y -n

Since 12 is a convex sequence, i.e.,
2 2
2 Vn—1 + Vnt1
Vp < — 5
and v,, satisfies
. Un
lim =1,

n—o00 I/n+1

varying cardinality does not help for the approximation of BH. See Traub et al.
(1988), Chapter 6.5, and the references therein. Thus, the lower bound in Theorem
2 also holds, if n sequentially selected bounded linear functionals on average are
allowed.
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