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Abstrat. We study pathwise approximation of salar stohasti di�erential

equations with additive frational Brownian noise of Hurst parameterH > 1=2,

onsidering the mean square L

2

-error riterion. By means of the Malliavin

alulus we derive the exat rate of onvergene of the Euler sheme, also for

non-equidistant disretizations. Moreover, we establish a sharp lower error

bound that holds for arbitrary methods, whih use a �xed number of bounded

linear funtionals of the driving frational Brownian motion. The Euler sheme

based on a disretization, whih reets the loal smoothness properties of the

equation, mathes this lower error bound up to the fator 1.39.

1. Introdution

Let B

H

(t); t 2 [0; 1℄ be a frational Brownian motion with Hurst parameter

H 2 (0; 1), i.e., B

H

is a ontinuous entered Gaussian proess with ovariane

kernel

K(s; t) =

1

2

(s

2H

+ t

2H

� jt� sj

2H

); s; t 2 [0; 1℄:

For H = 1=2 frational Brownian motion is a Brownian motion, while for H 6= 1=2

it is neither a semimartingale nor a Markov proess. In partiular, non-overlapping

inrements are negatively orrelated if H < 1=2 and positively if H > 1=2. More-

over, it holds

(E jB

H

(t)�B

H

(s)j

2

)

1=2

= jt� sj

H

; s; t 2 [0; 1℄;

and almost all sample paths of B

H

are H�older ontinuous of any order � < H .

We onsider pathwise approximations of the stohasti di�erential equation

dX(t) = a(t;X(t)) dt+ �(t) dB

H

(t); t 2 [0; 1℄; (1)

X(0) = x

0

;

with H 2 (1=2; 1) and deterministi initial value x

0

2 R. Here a and � satisfy

standard smoothness assumptions and equation (1) is an integral equation with all

integrals being pathwise Riemann-Stieltjes integrals. See, e.g., Lin (1995), Z�ahle

and Klingenh�ofer (1999) and Nualart and R�a�sanu (2002), also for the ase of non-

additive di�usion oeÆients.

Approximation of stohasti di�erential equations driven by frational Brownian

motion is studied only in few artiles. In partiular, no results on lower error bounds

are available up to now. Mainly, analyti methods like the Piard iteration (Lin
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(1995)), Wong-Zakai-type approximations (Lin (1995), Nourdin (2004), Boufoussi

and Tudor (2004)) and the Kramers-Smoluhowski approximation (Boufoussi and

Tudor (2004)) are onsidered, and uniform onvergene of the approximation se-

quene for almost all sample paths is proved. Lin (1995) also shows that the Euler

approximation of equation (1) onverges uniformly in probability. Nourdin (2004)

studies the approximation of autonomous di�erential equations driven by H�older

ontinuous funtions and determines upper error bounds for the order of onver-

gene of the equidistant Euler sheme and an equidistant Milstein-type sheme.

In this paper the error e(

b

X) of an approximation

b

X of equation (1) will be

measured as follows. The pathwise distane between X and

b

X in the L

2

-norm k �k

2

is taken and then averaged over all trajetories, i.e.,

e(

b

X) = (EkX �

b

Xk

2

2

)

1=2

:

First, we study the Euler approximation of equation (1) and wish to determine

the best disretization in a strong asymptoti sense. Spei�ally, we onsider regular

sequenes of disretizations generated by a density funtion h, i.e., the knots of these

disretizations are quantiles of the density h.

Applying the Malliavin alulus for frational Brownian motion, see, e.g., Al�os

and Nualart (2003), we derive the exat rate of onvergene of these non-equidistant

Euler shemes, see Theorem 1. It turns out that the optimal density h

�

is propor-

tional to �

1=(H+1=2)

. For the error of the orresponding Euler sheme

b

X

E

h

�

;n

we

obtain

lim

n!1

n

H

� e(

b

X

E

h

�

;n

) = �

H

� k�k

1=(H+1=2)

with

�

2

H

=

1

(2H + 1)(H + 1)

�

1

6

:

Here n denotes the number of subintervals of the disretization, i.e., the number of

evaluations of B

H

.

Moreover we address the following questions: Can we redue the error by swith-

ing to arbitrary disretizations or di�erent approximation shemes? Furthermore,

to whih extent an we derease the error by approximation shemes that an use

arbitrary bounded linear funtionals of the driving frational Brownian motion?

To this end, we onsider arbitrary approximation methods

b

X

n

of equation (1),

whih apply n bounded linear funtionals to a sample path of B

H

. The n funtionals

may be determined sequentially. This data about B

H

may then be used in any way

to produe a approximation

b

X

n

. The quantity

e(n) = inf

b

X

n

e(

b

X

n

)

is the minimal error that an be ahieved by approximations

b

X

n

of this type.

We show that the minimal errors satisfy

lim

n!1

n

H

� e(n) = 

H

� k�k

1=(H+1=2)

with



2

H

=

sin(�H)�(2H)

�

2H+1

;

see Theorem 2.

Thus, the Euler sheme based on the optimal density h

�

mathes the minimal er-

rors up to a onstant fator, whih only depends on the Hurst parameter H . Hene
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other approximations shemes, whih may use arbitrary bounded linear funtionals,

an only derease the error slightly, asymptotially. Moreover, there are no approx-

imation shemes

b

X

n

of the above type, whih an ahieve a better approximation

rate than n

�H

.

The paper is organized as follows. In Setion 2 we state our assumptions on the

drift- and di�usion oeÆient and we provide basi properties of the solution in the

mean square sense. Setion 3 ontains the results for the error of non-equidistant

Euler shemes. The minimal error is addressed in Setion 4. Proofs are postponed

to Setion 5.

2. Stohasti Differential Equations with Additive Frational Noise

In the sequel let H > 1=2. Furthermore, we will assume throughout this artile

that the drift- and di�usion oeÆient satisfy:

(A) a 2 C

0;2

([0; 1℄� R) and there exist onstants K

1

;K

2

;K

3

> 0 suh that

ja

x

(t; x)j � K

1

; ja

xx

(t; x)j � K

2

;

and

ja(t; x)� a(s; x)j � K

3

� (1 + jxj) � jt� sj

for all s; t 2 [0; 1℄ and x 2 R,

(B) � 2 C

1

([0; 1℄),

(C) �(t) > 0 for all t 2 [0; 1℄.

Under these assumptions equation (1) has a unique pathwise solution X , i.e.,

almost all sample paths of the proess X satisfy the integral equation

X(t) = x

0

+

Z

t

0

a(�;X(�)) d� +

Z

t

0

�(�) dB

H

(�); t 2 [0; 1℄;

with all integrals being Riemann-Stieltjes integrals, and if

e

X is another solution

of equation (1), then X and

e

X are indistinguishable. Moreover, almost all sample

paths of X are H�older ontinuous of every order � < H , and it holds

E kXk

p

1

<1 (2)

for all p > 1. See Lin (1995), Nualart and R�a�sanu (2002).

The assumptions (A), (B) and (C) are required for the analysis of approximations

of equation (1). For existene of a unique pathwise Riemann-Stieltjes solution muh

weaker assumptions are suÆient. Compare, e.g., Lin (1995) resp. Nualart and

Ouknine (2002).

The following Proposition haraterizes the smoothness of the solution in the

mean square sense.

Proposition 1. Let X be the solution of equation (1). It holds

lim

s!0

1

s

H

�

�

E jX(t + s)�X(t)j

2

�

1=2

= j�(t)j uniformly in t 2 [0; 1℄:
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Hene the solution X behaves in mean square sense loally like a weighted fra-

tional Brownian motion, although X is not neessarily Gaussian. The mean square

H�older exponent is given by the Hurst parameter H of the driving frational Brow-

nian motion, and the loal mean square H�older onstant is determined by the

di�usion oeÆient �.

Remark 1. Stohasti di�erential equations with non-additive frational noise are

studied, e.g., in Lin (1995), Z�ahle (1998), Nualart and R�a�sanu (2002) and Nour-

din (2004). Ferrante and Rovira (2004) also onsider stohasti delay di�erential

equations driven by frational Brownian motion.

3. Non-Equidistant Euler Sheme

For any disretization

0 = t

0

< t

1

< : : : < t

n

= 1

the orresponding Euler sheme

b

X

E

for equation (1) is given by

b

X

E

(0) = x

0

and

b

X

E

(t

j+1

) =

b

X

E

(t

j

) + a(t

j

;

b

X

E

(t

j

)) � (t

j+1

� t

j

) + �(t

j

) � (B

H

(t

j+1

)�B

H

(t

j

))

for j = 0; : : : ; n� 1: A global approximation

b

X

E

on [0; 1℄ is obtained by pieewise

linear interpolation, i.e.,

b

X

E

(t) =

t

j+1

� t

t

j+1

� t

j

�

b

X

E

(t

j

) +

t� t

j

t

j+1

� t

j

�

b

X

E

(t

j+1

)

for t 2 [t

j

; t

j+1

℄.

To determine the exat rate of onvergene of the Euler sheme, we will restrit

to regular sequenes of disretizations generated by a stritly positive probability

density funtion h 2 C([0; 1℄), i.e.,

0 = t

0;n

< t

1;n

< : : : < t

n;n

= 1 with

Z

t

j;n

0

h(s) ds =

j

n

; j = 1; : : : ; n� 1: (3)

So by hoosing suh a density h one gets a sequene of disretizations. If, e.g.,

h = id, we obtain a sequene of equidistant disretizations.

We will use the notation

b

X

E

h;n

for the Euler sheme based on the disretization

given by (3). Clearly, good hoies of h have to be related to the loal smoothness

of the solution of equation (1), i.e., the loal H�older onstant � and the H�older

exponent H .

Theorem 1. It holds

lim

n!1

n

H

� e(

b

X

E

h;n

) = �

H

� k� � h

�H

k

2

with

�

2

H

=

1

(2H + 1)(H + 1)

�

1

6

:
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Theorem 1 shows that the order of onvergene of the Euler sheme only depends

on the Hurst parameter of the driving frational Brownian motion. The minimal

asymptoti onstant is obtained by hoosing the density

h

�

(t) =

1

k�

1=(H+1=2)

k

1

� j�(t)j

1=(H+1=2)

; t 2 [0; 1℄:

Corollary 1. (1) For the equidistant Euler sheme it holds

lim

n!1

n

H

� e(

b

X

E

id;n

) = �

H

� k�k

2

:

(2) For the optimal density h

�

we have

lim

n!1

n

H

� e(

b

X

E

h

�

;n

) = �

H

� k�k

1=(H+1=2)

:

Consequently, equidistant disretization leads only to the best asymptoti on-

stant, if the di�usion oeÆient is a onstant mapping. For non-onstant di�usion

oeÆients the error an be redued asymptotially by the fator k�k

1=(H+1=2)

=k�k

2

.

The following example provides evidene that even for a moderate number of

knots the Euler sheme based on the optimal density h

�

is superior to the equidis-

tant Euler sheme.

Example 1. We study the equation

dX(t) = 6 � (1:01� t) dB

H

(t); X(0) = 0 (4)

by means of exat error formulas. Figure 1 shows the quantities n

H

� e(

b

X

E

h

�

;n

) and

n

H

� e(

b

X

E

id;n

), marked by + resp. � in dependene of the number n of knots for

H = 0:7. The solid lines orrespond to the asymptoti onstant of the error of

the shemes. So, for equation (4) the non-equidistant sheme performs uniformly

100 200 300 400 500 600 700 800 900 1000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Figure 1. n

H

� e(

b

X

E

id;n

) and n

H

� e(

b

X

E

h

�

;n

) for equation (4) vs. n

for H = 0:7.

better than the equidistant one. Moreover, the asymptoti error formulas are in

good aordane with the exat errors even for a small numbers of knots.
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Remark 2. Regular sequenes of disretizations are, e.g., widely studied and used

for the approximation of stohasti proesses and for the predition of integrals

of stohasti proesses. See, e.g., Ritter (2000) for results and referenes. In the

ontext of stohasti di�erential equations driven by Brownian motion regular se-

quenes are studied, e.g., by Cambanis and Hu (1996).

Remark 3. Instead of regular sequenes of disretizations we an use the following

step size ontrol for the Euler sheme, whih is easier to implement. Let h 2 C([0; 1℄)

be a stritly positive probability density funtion and hoose a basi step-size � > 0.

Set t

0

= 0 and

t

k+1

= t

k

+�=h(t

k

);

as long as the right hand side does not exeed one. Otherwise set t

k+1

= 1. The

total number of steps is n(�) = minfk 2 N : t

k

= 1g. For the Euler sheme

b

X

E

h;�

based on this disretization the assertion of Theorem 1 holds with n = n(�).

4. Lower Bounds

The non-equidistant Euler sheme in the previous setion uses a �nite number

of evaluations of B

H

, i.e., a �nite number of Dira funtionals is applied to the

trajetories of the driving frational Brownian motion. Now we determine sharp

lower error bounds that hold for every approximation method, whih applies n

sequentially seleted bounded linear funtional to a sample path of B

H

.

Let �

lin

denote the lass of all bounded linear funtionals on C([0; 1℄) and assume

that x

0

is known. Fix a and � and onsider the orresponding equation (1). Then

an arbitrary approximation method

b

X

n

, based on x

0

and n sequentially seleted

bounded linear funtionals, is de�ned by the measurable mappings

 

k

: R

k

! �

lin

for k = 1; : : : ; n and

�

n

: R

n+1

! L

2

([0; 1℄):

The �rst funtional, whih will be applied to the trajetory of B

H

, is

�

1

=  

1

(x

0

);

and the funtionals �

k

for k = 2; : : : ; n are given by

�

k

=  

k

(x

0

;�

1

(B

H

); : : : ;�

k�1

(B

H

)):

The data x

0

;�

1

(B

H

); : : : ;�

n

(B

H

) is then used to ompute a pathwise approxima-

tion

b

X

n

= �

n

(x

0

;�

1

(B

H

); : : : ;�

n

(B

H

)):

The quantity

e

2

(n) = inf

b

X

n

e

2

(

b

X

n

)

is the minimal error, whih an be obtained by using suh approximation methods.

For �xed  

1

; : : : ;  

n

the best hoie of �

n

is the onditional mean of X given the

respetive funtionals applied to B

H

. Hene the main diÆulty in this theoret-

ial minimization problem is the hoie of the funtionals, i.e., of the mappings

 

1

; : : : ;  

n

.
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The number n an be onsidered as a oarse measure for the omputational ost

of the method

b

X

n

. Clearly, a more preise analysis of the omputational ost should

take at least the number of arithmetial operations performed by

b

X

n

into aount.

Theorem 2. It holds

lim

n!1

n

H

� e(n) = 

H

� k�k

1=(H+1=2)

;

where



2

H

=

sin(�H)�(2H)

�

1+2H

:

Hene, the intrinsi diÆulty of equation (1) is ompletely determined by the

L

1=(H+1=2)

-quasi-norm of the di�usion oeÆient � and the Hurst parameter H

of the driving frational Brownian motion. In partiular, Theorem 2 implies that

approximation shemes

b

X

n

of the above type, whih obtain a higher onvergene

rate than n

�H

, do not exist.

Combining Theorem 1 and 2, we obtain that the non-equidistant Euler shemes

obtain the optimal order of onvergene. Moreover, by Corollary 1 we have that

the Euler sheme based on the optimal density h

�

is asymptotially optimal up

to a onstant fator, whih only depends on H and not on the drift- or di�usion

oeÆient of the equation.

Corollary 2. It holds

lim sup

n!1

e(

b

X

E

h

�

;n

)

e(n)

�

�

H



H

:

The ratio of �

H

=

H

is a monotonially inreasing funtion of H and we have

�

p

6

�

�

H



H

�

p

7�

6

:

Note that

p

7�=6 ' 1:3853:Thus, the onsidered arbitrary approximations meth-

ods an only be slightly better than the best Euler sheme, asymptotially.

Remark 4. Theorem 2 remains valid, if n sequentially seleted bounded linear

funtionals of a trajetory of B

H

on average are allowed. See Setion 5.6.

Remark 5. Theorem 2 is also valid in the ase H = 1=2, see Hofmann et al.

(2002) for more general results. On the other hand, if one restrits in this ase to

methods that may use only point evaluations of the driving Brownian motion, then

the orresponding minimal errors satisfy

lim

n!1

n

1=2

� e(n) = �

1=2

� k�k

1

;

see Hofmann et al. (2000). The ratio �

1=2

=

1=2

= �=

p

6 is the well known gap

between linear and standard information.
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5. Proofs

Unspei�ed onstants, depending only on K

1

, K

2

, K

3

, x

0

, k�k

1

and k�

0

k

1

will

be denoted by , regardless of their value. Note that the assumptions (A) on the

drift oeÆient a imply a linear growth ondition and a global Lipshitz ondition

with respet to the state spae variable, i.e.,

(

~

A1) 8x 2 R; 8t 2 [0; 1℄ : ja(t; x)j �  � (1 + jxj);

(

~

A2) 8x; y 2 R; 8t 2 [0; 1℄ : ja(t; y)� a(t; x)j �  � jy � xj:

5.1. Proof of Proposition 1. Let 0 � t � t+ s � 1. We have

X(t+ s)�X(t) =

Z

t+s

t

a(�;X(�)) d� +

Z

t+s

t

�

0

(�)(B

H

(t+ s)�B

H

(�)) d�

+ �(t)(B

H

(t+ s)�B

H

(t)):

We get by (

~

A1)

E

�

�

�

�

Z

t+s

t

a(�;X(�)) d�

�

�

�

�

2

�  � (1 + E jjX jj

2

1

) � s

2

:

Moreover, we have

E

�

�

�

�

Z

t+s

t

�

0

(�)(B

H

(t+ s)�B

H

(�)) d�

�

�

�

�

2

�  � E jjB

H

jj

2

1

� s

2

:

Note that E jjX jj

2

1

< 1 by (2) and in partiular E jjB

H

jj

2

1

<1. Thus, we �nally

obtain

j�(t)j �  � s

1�H

�

1

s

H

� (E jX(t+ s)�X(t)j

2

)

1=2

� j�(t)j+  � s

1�H

;

whih ompletes the proof.

5.2. Preliminaries for the Proof of Theorem 1. Let

0 = t

0

< t

1

< : : : < t

n

= 1

be a disretization of [0; 1℄ and put � = max

i=1;:::;n

jt

i

� t

i�1

j. We will use the

notations

Z(t) =

Z

t

0

a(�;X(�)) d�; F (t) =

Z

t

0

�(�) dB

H

(�); t 2 [0; 1℄;

and

e

Z(t) =

Z

t

0

n�1

X

i=0

a(t

i

; X(t

i

)) � 1

[t

i

;t

i+1

)

(�) d�; t 2 [0; 1℄;

e

F (t) =

Z

t

0

n�1

X

i=0

�(t

i

) � 1

[t

i

;t

i+1

)

(�) dB

H

(�); t 2 [0; 1℄:

Moreover, let

�(s; t) = H(2H � 1)js� tj

2H�2

; s; t 2 [0; 1℄:
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Lemma 1. It holds

sup

t2[0;1℄

E jF (t) �

e

F (t)j

2

�  ��

2

:

Proof: We have

F (t)�

e

F (t) =

Z

t

0

n�1

X

i=0

(�(�) � �(t

i

)) � 1

[t

i

;t

i+1

)

(�) dB

H

(�):

Using the isometry for integrals with respet to frational Brownian motion with

deterministi integrands, see, e.g., Lemma 2.1 in Dunan et al. (2000), we obtain

E jF (t) �

e

F (t)j

2

=

Z

t

0

Z

t

0

n�1

X

i;j=0

(�(�

1

)� �(t

i

))(�(�

2

)� �(t

j

))�(�

1

; �

2

) � 1

[t

i

;t

i+1

)�[t

j

;t

j+1

)

(�

1

; �

2

)d�

1

d�

2

:

So we get by assumption (B)

E jF (t) �

e

F (t)j

2

� 

2

��

2

Z

t

0

Z

t

0

n�1

X

i;j=0

�(�

1

; �

2

) � 1

[t

i

;t

i+1

)�[t

j

;t

j+1

)

(�

1

; �

2

) d�

1

d�

2

= 

2

��

2

Z

t

0

Z

t

0

�(�

1

; �

2

) d�

1

d�

2

= 

2

t

2H

��

2

:

�

Reall that almost all sample paths of the solution X of equation (1) are H�older

ontinuous of any order � < H . Hene, if g 2 C

1

(R); the Riemann-Stieltjes integrals

Z

t

0

g(X(s)) dB

H

(s); t 2 [0; 1℄;

exist almost surely. Compare, e.g., Theorem 4.2.1 in Z�ahle (1998). We will use the

following hange-of-variable formula, whih follows straightforward from Theorem

4.3.1 and 4.4.2 in Z�ahle (1998).

Lemma 2. Let g 2 C

2

(R). It holds

g(X(t)) = g(x

0

) +

Z

t

0

g

0

(X(s))a(s;X(s)) ds+

Z

t

0

g

0

(X(s))�(s) dB

H

(s); t 2 [0; 1℄;

almost surely.

In the following, we will also apply the Malliavin alulus for frational Brownian

motion. For an overview on this topi, see, e.g., Al�os and Nualart (2003).

In partiular, we will require the Malliavin derivative D

s

X(t), s; t 2 [0; 1℄ of the

solution X . The following Lemma an be obtained by a slightly modi�ation of

Proposition 7 in Ferrante and Rovira (2004) or Theorem 5.4.1 in Nourdin (2004).

Lemma 3. We have

D

s

X(t) = �(s) exp

�

Z

t

s

a

x

(�;X(�)) d�

�

� 1

[0;t℄

(s); s; t 2 [0; 1℄:

Next we analyze the approximation

e

Z of Z, using Lemma 2 and 3.
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Lemma 4. We have

sup

t2[0;1℄

E jZ(t) �

e

Z(t)j

2

�  ��

2

:

Proof: We have

E jZ(t) �

e

Z(t)j

2

� 2E

�

�

�

�

�

Z

t

0

n�1

X

i=0

(a(�;X(�))� a(t

i

; X(�))) � 1

[t

i

;t

i+1

)

(�) d�

�

�

�

�

�

2

+ 2E

�

�

�

�

�

Z

t

0

n�1

X

i=0

(a(t

i

; X(�))� a(t

i

; X(t

i

))) � 1

[t

i

;t

i+1

)

(�) d�

�

�

�

�

�

2

:

Sine ja(�

1

; x) � a(�

2

; x)j � K

3

� (1 + jxj) � j�

1

� �

2

j due to Assumption (A) we get

for the �rst summand

E

�

�

�

�

�

Z

t

0

n�1

X

i=0

(a(�;X(�)) � a(t

i

; X(�))) � 1

[t

i

;t

i+1

)

(�) d�

�

�

�

�

�

2

�  � E(1 + jjX jj

1

)

2

��

2

:

For the seond summand we have

E

�

�

�

�

�

Z

t

0

n�1

X

i=0

(a(t

i

; X(�))� a(t

i

; X(t

i

))) � 1

[t

i

;t

i+1

)

(�) d�

�

�

�

�

�

2

�

n�1

X

i;j=0

Z

t

j+1

t

j

Z

t

i+1

t

i

jR(t

i

; t

j

; �

1

; �

2

)j d�

1

d�

2

;

where

R(t

i

; t

j

; �

1

; �

2

) = E [a(t

i

; X(�

1

))� a(t

i

; X(t

i

))℄ [a(t

j

; X(�

2

))� a(t

j

; X(t

j

))℄

for i; j = 0; : : : ; n� 1 and �

1

; �

2

2 [0; 1℄.

Now �x t

i

and onsider the proess a(t

i

; X(t)); t 2 [0; 1℄. By Lemma 2 we get

a(t

i

; X(t))� a(t

i

; X(t

i

)) =

Z

t

t

i

a

x

(t

i

; X(u))a(u;X(u)) du

+

Z

t

t

i

a

x

(t

i

; X(u))�(u)dB

H

(u); t 2 [0; 1℄;

almost surely. Moreover, by the hain rule for the Malliavin derivative we have

D

s

[�(t)a

x

(t

i

; X(t))℄ = �(t)a

xx

(t

i

; X(t))D

s

X(t); s; t 2 [0; 1℄:

Sine

sup

t2[0;1℄

j�(t)a

x

(t

i

; X(t))j � k�k

1

�K

1

; (5)

sup

s;t2[0;1℄

jD

s

[�(t)a

x

(t

i

; X(t))℄j � k�k

2

1

�K

2

exp(K

1

); (6)

the proess �(t)a(t

i

; X(t)), t 2 [0; 1℄; is Skorohod integrable, see, e.g., Lemma 2

in Ferrante and Rovira (2004). Moreover, by the relation between the Riemann-

Stieltjes integral and the Skorohod integral for frational Brownian motion, see,
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e.g., Setion 2.1 in Nualart et al. (2003), we obtain

a(t

i

; X(t))� a(t

i

; X(t

i

)) =

Z

t

t

i

a

x

(t

i

; X(u))a(u;X(u)) du

+

Z

t

t

i

a

x

(t

i

; X(u))�(u)ÆB

H

(u)

+

Z

t

t

i

Z

1

0

D

s

[�(u)a

x

(t

i

; X(u))℄�(s; u) ds du a:s:;

where the integral with respet to ÆB

H

denotes the Skorohod integral. Sine

sup

s2[0;1℄

Z

1

0

�(�; s) d� � 2H; (7)

it follows by (

~

A1), (5) and (6)

jR(t

i

; t

j

; �

1

; �

2

)j �  � E(1 + kXk

1

)

2

��

2

+

�

�

�

�

�

E

Z

�

1

t

i

a

x

(t

i

; X(u))�(u)ÆB

H

(u)

Z

�

2

t

j

a

x

(t

j

; X(u))�(u)ÆB

H

(u)

�

�

�

�

�

:

By the isometry for Skorohod integrals, see, e.g., Lemma 5 in Nualart et al. (2003),

we have moreover

E

Z

�

1

t

i

a

x

(t

i

; X(u))�(u)ÆB

H

(u)

Z

�

2

t

j

a

x

(t

j

; X(u))�(u)ÆB

H

(u)

= E

Z

�

2

t

j

Z

�

1

t

i

a

x

(t

i

; X(u

1

))�(u

1

)a

x

(t

j

; X(u

2

))�(u

2

)�(u

1

; u

2

) du

1

du

2

+ E

Z

�

2

t

j

Z

�

1

t

i

Z

1

0

Z

1

0

D

v

1

[�(u

1

)a

x

(t

i

; X(u

1

))℄D

v

2

[�(u

2

)a

x

(t

j

; X(u

2

))℄

� �(v

1

; u

2

)�(v

2

; u

1

) dv

1

dv

2

du

1

du

2

:

Hene it follows by (5), (6) and (7)

�

�

�

�

�

E

Z

�

1

t

i

a

x

(t

i

; X(u))�(u)ÆB

H

(u)

Z

�

2

t

j

a

x

(t

j

; X(u))�(u)ÆB

H

(u)

�

�

�

�

�

� 

Z

�

2

t

j

Z

�

1

t

i

�(u

1

; u

2

) du

1

du

2

+  � j�

1

� t

i

jj�

2

� t

j

j

and therefore

jR(t

i

; t

j

; �

1

; �

2

)j �  � E(1 + kXk

1

)

2

��

2

+ 

Z

t

j+1

t

j

Z

t

i+1

t

i

�(u

1

; u

2

) du

1

du

2

for (�

1

; �

2

) 2 [t

i

; t

i+1

℄� [t

j

; t

j+1

℄. So we �nally obtain

E

�

�

�

�

�

Z

t

0

n�1

X

i=0

(a(t

i

; X(�))� a(t

i

; X(t

i

))) � 1

[t

i

;t

i+1

)

(�) d�

�

�

�

�

�

2

�  � E(1 + kXk

1

)

2

��

2

+  ��

2

n�1

X

i;j=0

Z

t

j+1

t

j

Z

t

i+1

t

i

�(u

1

; u

2

) du

1

du

2

�  ��

2

:
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�

To analyze the error of the Euler approximation

b

X

E

in the disretization points,

we will use the Euler proess

e

X

E

given by

e

X

E

(t) =

b

X

E

(t

j

) + a(t

j

;

b

X

E

(t

j

)) � (t� t

j

) + �(t

j

) � (B

H

(t)�B

H

(t

j

))

for t 2 [t

j

; t

j+1

): Clearly, we have

b

X

E

(t

j

) =

e

X

E

(t

j

) for j = 0; 1; : : : ; n. Note that

the Euler proess requires omplete knowledge of the trajetories of B

H

.

Lemma 5. It holds

sup

t2[0;1℄

E jX(t) �

e

X

E

(t)j

2

�  ��

2

:

Proof: We have

X(t)�

e

X

E

(t) = Z(t)�

e

Z(t) + F (t)�

e

F (t)

+

Z

t

0

n�1

X

i=0

(a(t

i

; X(t

i

))� a(t

i

;

e

X

E

(t

i

))) � 1

[t

i

;t

i+1

)

(�) d�:

By Lemma 1 and 4 and we get

E jX(t) �

e

X

E

(t)j

2

� E

�

�

�

�

�

Z

t

0

n�1

X

i=0

(a(t

i

; X(t

i

))� a(t

i

;

e

X

E

(t

i

))) � 1

[t

i

;t

i+1

)

(�) d�

�

�

�

�

�

2

+  ��

2

;

Moreover, by the H�older inequality and (

~

A2) it follows

E jX(t) �

e

X

E

(t)j

2

� 

Z

t

0

n�1

X

i=0

E jX(t

i

)�

e

X

E

(t

i

)j

2

� 1

[t

i

;t

i+1

)

(�) d� +  ��

2

;

and

sup

0�s�t

E jX(s) �

e

X

E

(s)j

2

� 

Z

t

0

sup

0�s��

E jX(s) �

e

X

E

(s)j

2

d� +  ��

2

;

respetively. Consequently, an appliation of Gronwalls lemma ompletes the proof.

�

5.3. Proof of Theorem 1. By X

lin

h;n

we denote the pieewise linear interpolation

of X based on the disretization 0 = t

0;n

< t

1;n

< : : : < t

n;n

= 1 generated by the

density funtion h, i.e.,

X

lin

h;n

(t) =

t

j+1;n

� t

t

j+1;n

� t

j;n

�X(t

j;n

) +

t� t

j;n

t

j+1;n

� t

j;n

�X(t

j+1;n

)

for t 2 [t

j;n

; t

j+1;n

℄. We have

sup

n2N

max

i=1;:::;n

jt

i;n

� t

i�1;n

j � k1=hk

1

� n

�1

:

Note that k1=hk

1

< 1, sine the density funtion h is stritly positive. Hene it

follows by Lemma 5

�

E

Z

1

0

jX

lin

h;n

(t)�

b

X

E

h;n

(t)j

2

dt

�

1=2

�  � k1=hk

1

� n

�1

: (8)
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Furthermore we obtain due to Theorem 1 in Seleznjev (2000) and Proposition 1

lim

n!1

n

H

�

�

E

Z

1

0

jX(t)�X

lin

h;n

(t)j

2

dt

�

1=2

= �

H

�

�

Z

1

0

�(t)

2

h

�2H

(t) dt

�

1=2

:

Hene the assertion follows.

5.4. Preliminaries for the Proof of Theorem 2. Let

Y (t) = x

0

+

Z

t

0

a(�;X(�)) d��

Z

t

0

�

0

(�)B

H

(�) d� = X(t)��(t)B

H

(t); t 2 [0; 1℄:

Moreover, de�ne for a disretization 0 = t

0

< t

1

< : : : < t

n

= 1 an approximation

b

Y of Y by

b

Y (t) =

b

X

E

(t)� �(t

j

)B

H

(t

j

)

t

j+1

� t

t

j+1

� t

j

� �(t

j+1

)B

H

(t

j+1

)

t� t

j

t

j+1

� t

j

(9)

for t 2 [t

j

; t

j+1

℄.

The asymptoti behavior of the eigenvalues �

k

, k = 1; 2; : : : ; of the Karhunen-

Lo�eve expansion of �(t)B

H

(t), t 2 [0; 1℄, is given by

lim

k!1

k

2H+1

� �

k

= jj�jj

2

1=(H+1=2)

�

�(2H + 1) sin(�H)

�

1+2H

:

See Propositions 2.2 and 2.3 in Nazarov and Nikitin (2003). Note that

lim

n!1

n

2H

X

k>n

�

k

= jj�jj

2

1=(H+1=2)

�

�(2H) sin(�H)

�

1+2H

: (10)

5.5. Proof of Theorem 2. (i) We �rst establish the lower bound. Let

b

X

n

,

n = 1; 2; : : : ; be an arbitrary sequene of approximations methods. Moreover �x

H < � < 1 and denote by

b

Y

n

the approximation of Y given by (9), based on the

disretization

t

i;dn

�

e

=

i

dn

�

e

; i = 0; 1; : : : ; dn

�

e: (11)

De�ne

b

V

n

=

b

X

n

�

b

Y

n

:

Hene we have

�

Z

1

0

E jX(t) �

b

X

n

(t)j

2

dt

�

1=2

�

�

Z

1

0

E j�(t)B

H

(t)�

b

V

n

(t)j

2

dt

�

1=2

�A

n

with

A

n

=

�

Z

1

0

E jY (t)�

b

Y

n

(t)j

2

dt

�

1=2

:

Denoting by Y

lin

n

the linear interpolation of Y based on the disretization (11), we

get

A

n

�

�

Z

1

0

E jY (t)� Y

lin

n

(t)j

2

dt

�

1=2

+

�

Z

1

0

E jY

lin

n

(t)�

b

Y

n

(t)j

2

dt

�

1=2

:

Sine

Y

lin

n

�

b

Y

n

= X

lin

id;dn

�

e

�

b

X

E

id;dn

�

e
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and

E jY (t)� Y (s)j

2

�  � jt� sj

2

for s; t 2 [0; 1℄, it follows by (8)

A

n

�  � n

��

:

Hene we obtain

lim inf

n!1

n

H

�

�

Z

1

0

E jX(t) �

b

X

n

(t)j

2

dt

�

1=2

� lim inf

n!1

n

H

�

�

Z

1

0

E j�(t)B

H

(t)�

b

V

n

(t)j

2

dt

�

1=2

:

Setting

b

V

�

n

=

b

V

n

=�;

it remains to show that

lim inf

n!1

n

H

�

�

Z

1

0

E jB

H

(t)�

b

V

�

n

(t)j

2

� �(t)

2

dt

�

1=2

� 

H

� jj�jj

1=(H+1=2)

:

Note that

b

V

�

n

is an approximation of B

H

using at most m(n) = n+ dn

�

e bounded

linear funtionals that are applied to B

H

. Moreover, approximatingB

H

in the mean

square weighted L

2

-norm with weight funtion �

2

from �nitely many bounded linear

funtionals, whih are applied to B

H

, de�nes a linear problem with a Gaussian

measure in the sense of Traub et al. (1988), Chapter 6.5. Therefore sequential

seletion of the funtionals does not help and it holds

Z

1

0

E jB

H

(t)�

b

V

�

n

(t)j

2

� �(t)

2

dt �

X

k>m(n)

�

k

;

see Traub et al. (1988), Chapter 6.5, and the referenes therein. Sine lim

n!1

m(n)=n =

1, the proof of the lower bound is ompleted by (10).

(ii) We have

Z

1

0

E jB

H

(t)�

b

V

y

n

(t)j

2

� �(t)

2

dt =

X

k>n

�

k

;

for

b

V

y

n

=

n

X

k=1

Z

1

0

B

H

(�)�(�)�

k

(�) d� �

�

k

�

;

where �

1

, �

2

, : : : denote an orthonormal set of eigenfuntions orresponding to the

eigenvalues �

1

, �

2

, : : : of the Karhunen-Loeve expansion of �(t)B

H

(t), t 2 [0; 1℄.

Fix H < � < 1 and set

b

X

y

n

=

b

Y

n

+

b

V

y

m

�

(n)

; n = 1; 2; : : : ;

with

b

Y

n

given as in (i) and m

�

(n) = n�dn

�

e. For this sequene of approximations

it follows

lim

n!1

n

H

� e(

b

X

y

n

) = 

H

� k�k

1=(H+1=2)

;

whih ompletes the proof.
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5.6. Disussion of the Proof of Theorem 2. The lower bound is established

by reduing the approximation problem for the stohasti di�erential equation to

a weighted approximation problem for B

H

, for whih the minimal error is strongly

asymptoti equivalent to

�

n

= 

H

� k�k

1=(H+1=2)

� n

�H

Sine �

2

n

is a onvex sequene, i.e.,

�

2

n

�

�

2

n�1

+ �

2

n+1

2

;

and �

n

satis�es

lim

n!1

�

n

�

n+1

= 1;

varying ardinality does not help for the approximation of B

H

. See Traub et al.

(1988), Chapter 6.5, and the referenes therein. Thus, the lower bound in Theorem

2 also holds, if n sequentially seleted bounded linear funtionals on average are

allowed.
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