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Abstract

We study exponential families within the class of counting processes and show that
a mixed Poisson process belongs to an exponential family if and only if it is either
a Poisson process or it has a Gamma structure distribution. This property can be
expressed via exponential martingales.

1 Introduction

Since mixed Poisson processes were introduced as a generalization of homogeneous Poisson
processes they have been intensively studied. A detailed survey of the developed theory
and obtained results is given by the monograph “Mixed Poisson Processes” by J. Grandell
[Gral.

An important question is how mixed Poisson processes can be characterized within more
general classes of processes. A well known result in this context is the characterization of
mixed Poisson processes within the class of general point processes via the conditional uni-
formity of its occurence times by K. Nawrotzki [Naw|. Some recent articles were published
by Y. Hayakawa |Hay|, B. Grigelionis |Gri] and D. Pfeifer and U. Heller [PH|. While the
first article proves a characterization within general point processes via normalised event
occurence times, the latter two characterize mixed Poisson processes within the class of
birth processes via martingales involving transistion intensities.

The present article, however, does not deal with characterizations of mixed Poisson pro-
cesses within more general classes of processes but proves a characterization of Poélya-
Lundberg processes within the class of mixed Poisson processes. Pélya-Lundberg processes,
i.e., mixed Poisson processes whose structure distribution are Gamma distributions, were
of special interest ever since mixed Poisson processes were studied. Not only that they seem
to be appropriate to model the number of occurences of certain events in applications but
they also are probably the easiest to treat analytically.

The characterization given in this article underlines the special role of these processes. The
characterizing property is an exponential martingale property which will be deduced from
studies of exponential families of stochastic processes. An overview of this topic is given
in the monograph “Exponential Families of Stochastic Processes” by U. Kiichler and M.
Sgrensen [KS].

The article is organized as follows: In section 2 we first concentrate on the definition of such
exponential families. We follow a concept proposed by I. Kiichler and U. Kiichler [KK],
where exponential families are introduced as equivalence classes with at least two elements



of an equivalence relation which is defined on a set of probability measures on a filtered
measurable space. Then, we study exponential families of mixed Poisson processes and we
determine all existing exponential families. It turns out that these are only the family of
Poisson processes and families of Pélya-Lundberg processes. Finally, in section 3 we de-
duce the main theorem, which states that Poélya-Lundberg processes can be characterized
within the class of all mixed Poisson processes by exponential martingales.

2 Exponential Families of Mixed Poisson Processes

Consider the following canonical model. Let Q be the space of all simple counting functions
w : T — Nand for F the o-algebra generated by all cylindric sets. Furthermore, we consider
the canonical process X7, T = [0,00), with X;(w) = w(t) for w € Q and ¢ € T and the
natural filtration {F;}ier generated by Xr. For P we choose the set of all probability
measures on (€2, F). For a measure P € P we denote by P, t € T, the restriction of P to
Fi.

Since we consider a canonical model, in the sequel, we will sometimes refer to a measure
P € P as the corresponding process.

In order to define exponential families we follow a concept proposed by I. Kiichler and U.
Kiichler in [KK]. The definition is based on the following relation on P:

Definition 1: We say that two measures P,Q € P are in relation, in symbols P ~ Q, if
for every t € T the measure Q¢ is absolutely continuous with respect to Py and if there are
functions ¢,d : T — [0,00) such that the Radon-Nikodym derivative dQ;/dP; satisfies

dQ,/dP, = fOXeHd)  p g (1)

This relation is an equivalence relation with the help of which we can now define exponential
families by

Definition 2: An equivalence class of ~ with at least two elements is called an exponential
famaly.

This nonparametric approach to exponential families which are usually defined as paramet-
ric families of measures has overall two advantages: the independence of any parametriza-
tion and the more general mathematical structuring.

Consider now the set M C P which consists of all mixed Poisson processes. Recall that
under P € M the process Xt is called a mixed Poisson process if its distribution Px,,
satisfies

Py, (A) = /OOO PMNA)dU()), A€ F,

where P? describes the distribution of a Poisson process with intensity A and where U is
a distribution concentrated on [0,00). The distribution U is called structure distribution



of the mixed Poisson process. If U is a Gamma distribution with scale parameter ¢ > 0
and shape parameter -y, I'(¢, ), we call the corresponding mixed Poisson process a Polya-
Lundberg process.

By @ we denote the Laplace transform of U, i.e. a(t) = [;° e dU(X).

In order to determine exponential families of mixed Poisson processes, we will deduce
equivalent descriptions of the equivalence P ~ @ of two measures P,(Q € M via the
structure distributions and their Laplace transforms Up, dp resp. Ug, g corresponding
to P resp. . The connection between P and the Laplace transform 4p is described by

P(X;=k) = tp’(t), t>0,ke Ny,

(k)

where 4p’ denotes the k-th derivative of dp.

Now, we counsider the following issue: Can a measure P € M be equivalent to a measure
() which does not correspond to a mixed Poisson process, @ € P\M, that is, can we
restrict ~ to M without reducing the equivalence classes? This question is answered by
the following proposition:

Proposition 3: Let P,Q € P be two equivalent measures. Let additionally P be a mized
Poisson process, i. e., P € M. Then also @) is a mized Poisson process, Q € M.

Proof: We will apply the fact that a mixed Poisson process is characterized by the
conditional uniformity of its event occurence times (see [Naw]), which can be expressed as
follows:

k! R L () — by )Rt

P(th = kla . ,th,1 — kn—1|th = kn) tkn kl' (kl - kl*l)!
n =2

(2)

holds for n € N, ty,...,t, € T with 0 < #; < --- < ¢, and for kyi,...,k, € Ny with
0< Kk <o <y

Consider two measures P € M and @ € P with P ~ (). By condition (1) we have

Q(Xy, =k1y.... Xy, =ky) = elWXatdb) p(x, =k ... X, =k,)

n n

forn €N, ki,...,k, €N, t1,...,t, € [0,¢], t, > t;, i = 1,...,n and for some non-negative
functions ¢ and d. Since then
QXy =ki,..., Xy, = kn)
ecltn)bntd(tn) p(X, =Fky,... X, =ky)
ec(tn)kn-i-d(tn) p(th — kn)
P(Xy, =ki,..., Xy, =ky)

= P(th = kn) = P(th = kl, [N ,th71 = kn_1|th — kn),

Q(th = kl? e 7th71 = kn—1|th = kn) =




equation (2) holds under @ if and only if it holds under P. [ |

Consequently, we can simply restrict ~ onto M. Then we are able to establish the following
characterization for the equivalence of two measures:

Proposition 4: Let P and Q) be two mized Poisson processes, P,QQ € M, andc,d: T — R
real functions. Then the following statements are equivalent:

(i) The measure P is equivalent to Q, P ~ Q and the equivalence is determined by the
functions ¢ and d.

(ii) The relation Q(X; = k) = e“DF+d0) p(X, = k) holds for all t € T and k € Ny.

(111) For the Laplace transforms ip and g of the structure distributions of P and Q we

have
ag“)(t) = eck+a(t) )y t>0, keN, (3)
d0) = 0.

Proof: First, (i) holds if and only if
Q(Xy, = kiy..o, Xy, = ky) = enbntdt) p(x, =Ky, ... Xy, =ky) (4)

holds for all n € N and ¢1,...%, with 0 <t < ... <t, <tand ki,...,k, € Ny. Without
loss of generality, k1 < ko < -+ < k.
Benow n €N, ty,...t, and kq,...,k, € Ny, accordingly. By (2) we have

n

k850 (4 — t_g)li R
P(Xy =ki,....X; =k,) = 21 P(X; =ky).
(X = b Xy =) wn k! g (kp — ky—1)! (Kin = En)

Since this is similarly valid for @), equation (4) reduces to
Q(th — kn) — ec(tn)kn+d(tn) P(th — kn) (5)

If additionally ¢,, > 0, this is equivalent to

~(kn c(tn)kn n) ~(kn
UE) )(tn) — Cltn)kn+d(t )ugg )(tn)-

For t,, = 0 the condition d(0) = 0 is necessary and sufficient for equation (5) to hold for
all k, > 0.
The equivalence of (i), (ii) und (iii) follows from these considerations. [ |

As an additional consequence of this proposition we obtain that, since Laplace trans-
forms of distributions are continuous and infinitely often differentiable on (0, 00), also the
functions ¢ and d are alike.

The following lemma is an essential contribution to find exponential families. It supplies
necessary and sufficient conditions for a measure P € M to belong to an exponential
family depending only on the Laplace transform corresponding to P and not on any other
Laplace transform corresponding to an equivalent measure distinct from P.



Lemma 5: For a measure P € M and functions c¢,d : T — R the following statements
are equivalent:

(i) There is a measure Q € M distinct from P, which is equivalent to P. The equivalence
P ~ Q s determined by ¢ and d.

(11) It is d # 0 and d(0) = 0. Furthermore, ¢,d are continuous and differentiable on
(0,00) and verify for all t € (0,00) and all k € N the equation

(@K —1) +d(1) el @) = (® —1)al) (1) (6)

Proof: “=" Suppose (i) to be valid. Then we have by proposition 4

ay(t) = eGP @), >0, ke,
d(0) = 0.

The functions ¢ and d are continuous and differentiable on (0,00). Considering the first
equation for k£ = 0, we see that d # 0 since P # () and consequently 4p # ig. So, we have

oc(t)k+d() agf)(t) _ ag“)(t)
_ i - (k—1) _ ﬁ c(t)-(k=1)+d(t) (k1)

and (ii) is proven.
“«<” Suppose (ii) to be valid. Define a function 4g : T'— R by
up (t), tefT.

We will show that g is a Laplace transform and that the measure Q € M which corre-
sponds to g, is equivalent to P. At first, we prove the following by induction on &:

aS) () = OO G0, >0, keN. (8)



By definition, the equation holds for £ = 0. Now suppose the upper equation to be valid
for K — 1, k € N. Then it also holds for &:

- (k) _iA(k*I) _i c(t)(k—1)+d(t) »k
i) = Zal ) = = (e up(t))

= ((Ok = 1) +d (1) eOETO GETD (1) 4 OB 55 )
= OO () (k- 1)+ d @) all V() +al (1)
©) e k-1)+d() ((ec@) _ 1) a® () + al®) (t))

RO 5D 1), ¢ > 0.

Because 1 is completely monotone on (0,00), cp. (8), and 4¢g(0) = 1, 4 actually is the
Laplace transform of a distribution (see for instance [FEL]). Let Ug be this distribution
and @ € M the corresponding mixed Poisson process. Because of d # 0 we have tg # up
and hence Q # P. Moreover (8) implies that @ is equivalent to P. Thus, there is an
exponential family which contains P. |

Let us now consider some examples. With Lemma 5 we can easily verify that each Poisson
process is in an exponential family:

Under P, let X7 be a Poisson process with intensity A > 0, i.e., Up = 0, and up(t) =
e M. t € T. Choose ¢y € R\{0} and let ¢ and d be

c(t)=co,  d(t)=-A(e® —1)t, teT. 9)

Then ¢ and d are continuous and on (0, 00) differentiable and
(O = 1) +d@)af ) = (¢ - 1) al ).

holds for ¢ > 0 and k € N. Moreover, we have d #Z 0 and d(0) = 0. So due to lemma 5, the
ordinary Poisson process belongs to an exponential family.
Equally, we can show that Pdlya-Lundberg processes are contained in exponential families:
Under P, let Xp be a Polya-Lundberg process with structure distribution Up = T'(¢p,7),
¢,y > 0. Then

t

-
ﬁp(t):(l—i-;) ) teT, keN,

is the Laplace transform of Up. Let ¢ and d be

c(t):m(tW), d(t):7(1n<t+(p>+lnoz>, teT, (10)

t+pa t+pa

where & € R\{1}. Then ¢ and d are continuous and differentiable on (0, c0) and equation
(6) of Lemma 5 holds. As additionally, d(0) = 0 and d # 0, P belongs to an exponential



family.

However, the conditions of Lemma, 5 for a Laplace transform @ p in order to correspond to
a measure P of an exponential family are very restrictive. The following proposition, in
fact, shows that the above examples are the only ones possible:

Proposition 6: For a measure P € M the following statements are equivalent:
(i) The measure P belongs to an exponential family.

(i) There are X > 0 resp. @,y > 0 such that the structure distribution Up of P is
Up = 6y resp. Up =T(p,7).
In other words, X1 1s either a Poisson process or a Pdlya-Lundberg process under P.

The functions c, d that determine those measures which are equivalent to P are as in (9)
resp. (10) for Up = 0 resp. Up =T'(yp,7).

Before we can prove this proposition we need the following technical lemma;:
Lemma 7: Condition (ii) of Lemma 5 implies

2
(70 1) (1) = ) e ®,  £>0,

where v(tg) = (Z;’;Eig; - Z:ﬁgg;) : e—c(tlo)_1 for an arbitrary ty > 0.

Proof: Let ¢ty > 0. By equation (6) of Lemma 5 we have

A k-1 +d()

= , t>0, keN
The solution @~V of this ordinary differential equation satisfies
k—1
—c(t) _ 1
C(k—1) (k1) e * I(t)
UP (t) = UP (t[]) (m) (& , t> 0, k S N, (11)

with I(t) := ftt d(,()s) ds.

0 ecls)—1
The following procedure is to evaluate equation (11) for k£ = 1,2,3 which first leads to a
system of equations and at the end to a differential equation for the function ¢. For £k =1
we have by (11)

ap(t) = ap(ty) ', >0, (12)

and consequently

t>0. (13)



Evaluating (11) for k = 2, we obtain

ap(t) = ap(to) T)_—l 'V, >0, (14)

o dp(t) (€70 — 1) () 1)
0 = 2 T >0 (15)

At the same time we have

2
AT, —d(t)e= W dp(ty) (e -1 1(t)
up(t) = dp(to) i) _ + antio) o=t 1 eV, t>0, (16)

by deriving equation (14) and substituting d'(¢) by (15). Equation (11) for k£ = 3 is

~ 11 ~ 11 e—c(t) —1 ’ I(t)
Up(t) = ’U,P(t[]) m (& , t> 0. (17)

Joining (16) and (17) finally leads to the following differential equation for ¢

o p)? () o)) 1 )

C(t) _ U/P( 0 _Yp 0 ) _ , C(t)

<e 1> \(,&P(t[]) ﬁ,F;(to) g—C(to) — 11 c (t) € ) t> 0.
= ;Eto)

Notice that the continuous function v, as a function of ¢3, does not change its sign on
(0,00), because v(tg) = 0 for a ty > 0 implies that Up is a Dirac distribution and therefore
we had v = 0. u

Proof of Proposition 6: It remains to show that (i) implies (ii). Assume (i) to be
valid, i.e., assume P € M to belong to an exponential family. Let g > 0. Then Lemma 7
implies the following differential equation:

2
(0 = 1) ulty) =y, t>0, (13)

In the sequel, we will solve this equation for ¢ and deduce up.

We distinguish the cases v = 0 and v(tg) # 0 for all £y > 0. Assume v = 0, that is, Up is a
Dirac distribution. We are interested in the points in which Up can be concentrated and in
what the corresponding functions ¢ and d are. Equation (18) now looks like 0 = ¢ (£) e=¢®
and implies ¢(t) = cp, t > 0. Thus, by (15) we have




Consequently, taking into account that d(0) = 0, we obtain

dt) = 20 ooy ps

Since

equation (12) leads to

i'p (to) (t—to)

ﬁp(t) = ﬁp(to) etp(to) t> 0. (19)

Taking the logarithmic derivative with respect to ¢, we have

= , t>0. (20)

That means, for t > 0 the quotient @/,(t)/ap(t) is independent of ¢. Additionally this
quotient is < 0 and = 0 if and only if U = dy. The latter case has no longer to be
considered since U = ¢y implies d = 0 which contradicts condition (ii) from Lemma 5.

Thus with A\ := —gﬁ 82;, we have the following representation for 4p

Gp(t) = Ce ™™,  ¢t>0. (21)

Since a Laplace transform @p is continuous and satisfies ap(0) = 1, the constant C has to
be equal to 1. Altogether, we have the following representations for 4p and ¢, d

Gap(t) =e N, c(t)=co, d(t) =X —1)t,  t>0.

Because these functions are continuous, they can be extended onto the whole interval
T = [0,00). Apparently, 4p is the Laplace transform of a Dirac distribution in A > 0 and
the measure P € M corresponds to an ordinary Poisson process with intensity A > 0.

Consider now the case v(tg) # 0. With v := v(tp) and g(t) := e¢® — 1 the differen-
tial equation

2
(efc(t) - 1) v(ty) = ¢ (t) e,

can be transformed into

2 / g'(t)
g(t)'v=—g(t resp. v =— , t >0,
(* (* o
and thus,
1
t) = t .
9(t) vi+a’ >0



Since g(t) € (—1,00) for ¢t > 0, the integration constant a is restricted by

a> 0 for v > 0,
a< -1 for v < 0.

From ¢ we obtain a representation for ¢

1
t) = —In|(1l t .
c(t) n<+v-t+a>’ >0

By (15) we have

’alp(to) vig +a -1
ap(ty) vt+a vt+a+1’

dt) = t >0,

and consequently, taking d(0) = 0 into account,

~1
i) = (o) vt ta (ln (vt—i—a—i—l) I (a—i-l))’ LS 0.

vt +a a

ﬁp(to) v

¢
! ~/
I(t) :/ﬂds _ Uplto) whota, (vita) o,
ec(s) — 1 up(to) v vig+a
to

Equation (12) leads to

1
ip(to) vtgta

vt4+a \ipt) v
vig+a

ap(t) = ap(ty) ! = ap(to)( ,  t>0.

As additionally

vto+a  glto) "t —e(to) -1
v v (,U (e V- 1) )

is valid for ¢ > 0, we obtain the following representation of @p from (22):

W'p (tp) e -
vt+a ) istr (v 0-1))7
) .t

vig+a

up = up(to) (

Taking twice the logarithmic derivative one can show that neither Zi gzg . (v (e*C(tO) —

nor  depend on the choice of ¢5. Thus, setting

U'p(to) 1
) >0 d — t0) > 0,
ap(to) v(to) (e <lto) — 1) and ¢ = a/v(to)

v =

we can express Up as
t

-
ﬁp(t) = C(l-ﬁ-;) s t > 0.

10

(22)

(23)

)™



Since 4p is a Laplace transform and thus continuous in 0 with 4p(0) = 1, C has to be
equal to 1 . Apparently, 4p is the Laplace transform of a I’-distribution with parameters
0,y > 0. With « := %1, where a > 0 or a < —1 imply a € R\{1}, we obtain

t+ ¢ t+ ¢
t) =1 d(t) = | | t .
c(t) n(t+<poz>’ (t) 'y<n(t+(pa>+na>, >0

The above representations for 4p, ¢ and d can be continuously extended to the point 0. B

We will now indicate an alternative way to prove the last proposition: R. S. Liptser and
A. N. Shiryayev (cp. [LS], theorem 19.7.) characterize absolute continuity of two measures
P,Q € P by their compensators {A] };>0, {AtQ}tZ[). The measure Q is absolute continu-

ous with respect to P if and only if there exists a nonnegative process {)\f ’Q} 0 wich is
>

predictable with respect to {F;}er, such that
A2w) = [ AWl t< oo,
0

and /Ooo ( - Ag;,cz(w)>2dAf (w) < o0

are verified for P-almost all w € Q.
Now for P € M and analogously for Q@ € M we have (cp. [Gral)

t
Al (w) = /0 nis(w)(s)ds, P-a.e.,
where (), n € N, t > 0, are the transition intensities of the mixed Poisson process (and
hence birth process) P. So, for the case P,Q € M we obtain:

Q
HX w (t)
)\tF)’Q(LU) = ﬁ , P — a.e. .,
Xt (w)

which is a predictable process if and only if the quotient on the right side does not depend
on w, i.e., )\tP’Q(w) = )\f’Q for w € Q. Additionally, we have 0 < )\tP’Q < 1for P #Q.

A second part of theorem 19.7. in LS| says that the Radon-Nikodym derivatives dQ;/dP;
for ¢ > 0 can be represented as

dQ.

ar, (w) = exp {/Ot In A9 (w) dX(w) — (A?(w) - AtP(w))} , P, —a.e. (25)

Now let us return to our initial question: Which measures P, () € M can be in relation ~
to each other?
The definition of P ~ @ requires for ¢ € [0,00) that

%(w) _ eC(t)Xt(w)er(t), P, —a.e.,

11



which together with equation (25) leads to

/ ‘I APQ X, (w) — (A?(w) - Af(w)) = () Xy(w) +d(t), P —ae.
0

Partial integration yields
t d\PQ
5 As d

t
In AP X (w) — 0 APWXS(W) ds — A9 AL (W) + /0 EAE’QAf(w) ds + AF (w)
S

= c(t)Xy(w) + d(t)

for P;-almost all w. If for a fixed w € 2 this equation is valid and if ¢ > 0 is a continuity
point of the path X, (w) we can derive with respect to t and obtain

d
(1-A9) 24P @) = WXe(w) +d ()
which implies

d d(t) d'()
Ry (8) = %Af(w) = PR t(w) 1 Pe
t t

Furthermore, for ¢ > 0 and n € N, the set {w € Q : X(w) = n, lims_;—g Xs(w) = n}, ie.
the set of counting functions which at time ¢ do not jump and are in state n, has positive
P;-measure. So, the transition intensities must verify
P(t) — C,(t) n+ d,(t)

" L-A% 1209

K neN t>0.

But the only processes P € M with transition intensities . (¢) that are linear in n for

fixed t are Poisson processes and Polya-Lundberg processes (cp. [Gral).

To find those measures () € M which can be equivalent to P consider the quotient
Q

B X, () (t)
P

BX, () (t)

to each other, we find that a Poisson process can only be equivalent to a Poisson process

and a Polya-Lundberg process with structure distribution I'(¢, ), ¢,y > 0, and transition

intensities ky,(t) = % can only be equivalent to Polya-Lundberg processes with the same

parameter 7.

. Since it must not depend on w if the two measures P and @ shall be in relation

An immediate consequence of proposition 6 is the following corollary which specifies expo-
nential families in M.

Corollary 8: The only existing exponential families in M are the exponential family of
homogeneous Poisson processes {P € M : Up = dx, A > 0} and exponential families of
Pdélya-Lundberg processes {P € M : Up = I'(¢,7), ¢ > 0}, where the shape parameter
v > 0 of the corresponding Gamma structure distributions remains constant within such
an exponential family.

12



Proof: Proposition 6 determines the only measures P € M belonging to exponential
families and the only functions ¢ and d leading to equivalent measures. Combining these
and therefore calculating for such a P € M and all possible appropriate functions ¢ and
d the equivalent measures P € M via ip(t) = e ip(t) we obtain the above stated
exponential families. [ |

3 A Martingale Characterization of Pélya-Lundberg Processes

In the preceeding section we emphasized the special position of the Pdlya-Lundberg process
within mixed Poisson processes. In the sequel, we will deduce a martingale characterization.
First, consider the succeeding proposition characterizing the process of densities
{dQ:/dP;}i>0 = {e )X td(t } of two equivalent measures P, Q € M as a martingale:

Proposition 9: Given a measure P € M and functions ¢,d : T — R the following
statements are equivalent:

(i) There is a measure Q € M, so that for every t € T' the measure Q; is absolutely con-
tinuous with respect to Py and the corresponding Radon-Nikodym derivative verifies

dQ,/dP, = cOXetdt) p,_g ¢,

(i1) Under P, the process { C(t)Xt"'d(t)} . is a martingale with respect to the natural
te

filtration {Fi}ier of X1 and the expectation of eWOXe+d(t) 45 equal to 1 for allt € T.

d d
Proof: (i) = (ii): Sincefort >0, s € [0,¢] and A € F; we have/ d?—"t dP = / Qs
t

the process of Radon-Nikodym derivatives { ec()Xetd(t) } . is a martingale with respect
te
to {Fi}er.

(ii) = (i): It is evident, that if we define a projective family of measures {Q;}i>0
by dQ/dP; := ecXe+d(t) then there exists a measure @ € P such that the measures Q;
are the restrictions of () to F;. What we have to show is, that ) necessarily lies in M.

For d = 0 the measure P itself verifies (i). Notice that d = 0 and hence 1 = Ep (e oft )Xt)
imply ¢ =0 or Up = &y.

Let d # 0. We will apply lemma 5, that is to show that d(0) = 0 and that ¢ and d
are continuous and differentiable on (0, 00) such that

(O k-1)+d @) af V@) = @ -1)al (@) (26)
holds for ¢ > 0 and k£ € N.

At first we have d(0) = — In Ep (eC(O)XO) = 0.

13



Continuity and differentiability can be deduced from the martingale property:

Let £ > 0 fixed. The martingale property corresponds to
Bp (0% | X, ) = Xt e0,1)

because X7 is a markovian process under P. We can equivalently write:

D e OO p(Xy = k| X, = k) = eXORTE) s e (0,4 ky € Ny, (27)
k=0

Since the conditional probabilities P(X; = k| X5 = ks) are

hek, (b —s)FFs 7lgf)(t)

(=1)

for s € [0,¢t], k > ks,

P(Xt = k | XS = ks) = (k - ks)' ,agfs)(s)
0 else,
we have
ec(s)ks-l-d(s)ﬁ,(kS)(S) — i eC(Ok+d(t) (_l)k—kswa(k)(t) 5 €[04, ks € Np.
" fen TR ot ks

Since for ks € {0,1} the right side of the equation is a continuous and differentiable func-
tion of s for s € [0, 1] and since ¢ can be chosen arbitrarily big, the functions ¢ and d must
be continuous and differentiable on (0, c0).

To prove (26) we differentiate the last equation with respect to s and obtain:

( 5)ks L S) c(s)ks+d(s )(5) + et(8)ks+d(s) agcﬁl)(s)
RS t)k+d(t P e A A(k)
= _kz (—1) —(k D) (), s € (0,t), ks € Ny.

Since power series are continuous in their convergence interval, taking the limit s 1 ¢ finally
leads to

(c’(t)ks +d’(t)) oc(ks+d(t) aEfS)(t) + eC(OksFd(t) agcsﬂ)(t) —  c)(ks+1)+d(t) agfs-i-l)(t)
resp.
(¢ (0 + d(8) a5 (1) = (@ = 1) 4t V() ky €.

Such a representation exists for every ¢ > 0. Hence, all the conditions of lemma 5 (ii) are
verified and consequently there exists a measure @Q € M, that verifies the required (cp.
lemma 5 (i)). [
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An immediate consequence of proposition 9 is the following martingale characterization
of Polya-Lundberg processes within the class of mixed Poisson processes:

Main theorem: The following statements are equivalent for a measure P € M:

(i) There are functions ¢,d : T — R with d non-constant, such that {ec(t)Xt+d(t) }

ter
under P is a martingale with respect to {F; et
(1) The measure P corresponds either to a Poisson or a Pélya-Lundberg process.
Proof: Use propositions 6 and 9. |
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