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Abstrat

We study exponential families within the lass of ounting proesses and show that

a mixed Poisson proess belongs to an exponential family if and only if it is either

a Poisson proess or it has a Gamma struture distribution. This property an be

expressed via exponential martingales.

1 Introdution

Sine mixed Poisson proesses were introdued as a generalization of homogeneous Poisson

proesses they have been intensively studied. A detailed survey of the developed theory

and obtained results is given by the monograph �Mixed Poisson Proesses� by J. Grandell

[Gra℄.

An important question is how mixed Poisson proesses an be haraterized within more

general lasses of proesses. A well known result in this ontext is the haraterization of

mixed Poisson proesses within the lass of general point proesses via the onditional uni-

formity of its ourene times by K. Nawrotzki [Naw℄. Some reent artiles were published

by Y. Hayakawa [Hay℄, B. Grigelionis [Gri℄ and D. Pfeifer and U. Heller [PH℄. While the

�rst artile proves a haraterization within general point proesses via normalised event

ourene times, the latter two haraterize mixed Poisson proesses within the lass of

birth proesses via martingales involving transistion intensities.

The present artile, however, does not deal with haraterizations of mixed Poisson pro-

esses within more general lasses of proesses but proves a haraterization of Pólya-

Lundberg proesses within the lass of mixed Poisson proesses. Pólya-Lundberg proesses,

i.e., mixed Poisson proesses whose struture distribution are Gamma distributions, were

of speial interest ever sine mixed Poisson proesses were studied. Not only that they seem

to be appropriate to model the number of ourenes of ertain events in appliations but

they also are probably the easiest to treat analytially.

The haraterization given in this artile underlines the speial role of these proesses. The

haraterizing property is an exponential martingale property whih will be dedued from

studies of exponential families of stohasti proesses. An overview of this topi is given

in the monograph �Exponential Families of Stohasti Proesses� by U. Kühler and M.

Sørensen [KS℄.

The artile is organized as follows: In setion 2 we �rst onentrate on the de�nition of suh

exponential families. We follow a onept proposed by I. Kühler and U. Kühler [KK℄,

where exponential families are introdued as equivalene lasses with at least two elements
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of an equivalene relation whih is de�ned on a set of probability measures on a �ltered

measurable spae. Then, we study exponential families of mixed Poisson proesses and we

determine all existing exponential families. It turns out that these are only the family of

Poisson proesses and families of Pólya-Lundberg proesses. Finally, in setion 3 we de-

due the main theorem, whih states that Pólya-Lundberg proesses an be haraterized

within the lass of all mixed Poisson proesses by exponential martingales.

2 Exponential Families of Mixed Poisson Proesses

Consider the following anonial model. Let 
 be the spae of all simple ounting funtions

! : T ! N and for F the �-algebra generated by all ylindri sets. Furthermore, we onsider

the anonial proess X

T

; T = [0;1); with X

t

(!) = !(t) for ! 2 
 and t 2 T and the

natural �ltration fF

t

g

t2T

generated by X

T

. For P we hoose the set of all probability

measures on (
;F). For a measure P 2 P we denote by P

t

, t 2 T , the restrition of P to

F

t

.

Sine we onsider a anonial model, in the sequel, we will sometimes refer to a measure

P 2 P as the orresponding proess.

In order to de�ne exponential families we follow a onept proposed by I. Kühler and U.

Kühler in [KK℄. The de�nition is based on the following relation on P:

De�nition 1: We say that two measures P;Q 2 P are in relation, in symbols P � Q, if

for every t 2 T the measure Q

t

is absolutely ontinuous with respet to P

t

and if there are

funtions ; d : T ! [0;1) suh that the Radon-Nikodym derivative dQ

t

=dP

t

satis�es

dQ

t

=dP

t

= e

(t)X

t

+d(t)

P

t

� a.s. (1)

This relation is an equivalene relation with the help of whih we an now de�ne exponential

families by

De�nition 2: An equivalene lass of � with at least two elements is alled an exponential

family.

This nonparametri approah to exponential families whih are usually de�ned as paramet-

ri families of measures has overall two advantages: the independene of any parametriza-

tion and the more general mathematial struturing.

Consider now the set M � P whih onsists of all mixed Poisson proesses. Reall that

under P 2 M the proess X

T

is alled a mixed Poisson proess if its distribution P

X

T

satis�es

P

X

T

(A) =

Z

1

0

P

�

(A) dU(�); A 2 F ;

where P

�

desribes the distribution of a Poisson proess with intensity � and where U is

a distribution onentrated on [0;1). The distribution U is alled struture distribution
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of the mixed Poisson proess. If U is a Gamma distribution with sale parameter ' > 0

and shape parameter , �('; ), we all the orresponding mixed Poisson proess a Pólya-

Lundberg proess.

By û we denote the Laplae transform of U , i.e. û(t) =

R

1

0

e

��t

dU(�):

In order to determine exponential families of mixed Poisson proesses, we will dedue

equivalent desriptions of the equivalene P � Q of two measures P;Q 2 M via the

struture distributions and their Laplae transforms U

P

, û

P

resp. U

Q

, û

Q

orresponding

to P resp. Q. The onnetion between P and the Laplae transform û

P

is desribed by

P (X

t

= k) =

(�t)

k

k!

û

(k)

P

(t); t > 0; k 2 N

0

;

where û

(k)

P

denotes the k-th derivative of û

P

.

Now, we onsider the following issue: Can a measure P 2 M be equivalent to a measure

Q whih does not orrespond to a mixed Poisson proess, Q 2 PnM, that is, an we

restrit � to M without reduing the equivalene lasses? This question is answered by

the following proposition:

Proposition 3: Let P;Q 2 P be two equivalent measures. Let additionally P be a mixed

Poisson proess, i. e., P 2M. Then also Q is a mixed Poisson proess, Q 2M.

Proof: We will apply the fat that a mixed Poisson proess is haraterized by the

onditional uniformity of its event ourene times (see [Naw℄), whih an be expressed as

follows:

P (X

t

1

= k

1

; : : : ;X

t

n�1

= k

n�1

jX

t

n

= k

n

) =

k

n

! t

k

1

1

t

k

n

n

k

1

!

n

Y

l=2

(t

l

� t

l�1

)

k

l

�k

l�1

(k

l

� k

l�1

)!

(2)

holds for n 2 N, t

1

; : : : ; t

n

2 T with 0 � t

1

< � � � < t

n

and for k

1

; : : : ; k

n

2 N

0

with

0 � k

1

� � � � � k

n

.

Consider two measures P 2M and Q 2 P with P � Q. By ondition (1) we have

Q (X

t

1

= k

1

; : : : ;X

t

n

= k

n

) = e

(t

n

)X

t

n

+d(t

n

)

P (X

t

1

= k

1

; : : : ;X

t

n

= k

n

)

for n 2 N; k

1

; : : : ; k

n

2 N; t

1

; : : : ; t

n

2 [0; t℄; t

n

� t

i

; i = 1; : : : ; n and for some non-negative

funtions  and d. Sine then

Q(X

t

1

= k

1

; : : : ;X

t

n�1

= k

n�1

jX

t

n

= k

n

) =

Q(X

t

1

= k

1

; : : : ;X

t

n

= k

n

)

Q(X

t

n

= k

n

)

=

e

(t

n

)k

n

+d(t

n

)

P (X

t

1

= k

1

; : : : ;X

t

n

= k

n

)

e

(t

n

)k

n

+d(t

n

)

P (X

t

n

= k

n

)

=

P (X

t

1

= k

1

; : : : ;X

t

n

= k

n

)

P (X

t

n

= k

n

)

= P (X

t

1

= k

1

; : : : ;X

t

n�1

= k

n�1

jX

t

n

= k

n

);
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equation (2) holds under Q if and only if it holds under P . �

Consequently, we an simply restrit � ontoM. Then we are able to establish the following

haraterization for the equivalene of two measures:

Proposition 4: Let P and Q be two mixed Poisson proesses, P;Q 2M, and ; d : T ! R

real funtions. Then the following statements are equivalent:

(i) The measure P is equivalent to Q, P � Q and the equivalene is determined by the

funtions  and d.

(ii) The relation Q(X

t

= k) = e

(t)k+d(t)

P (X

t

= k) holds for all t 2 T and k 2 N

0

:

(iii) For the Laplae transforms û

P

and û

Q

of the struture distributions of P and Q we

have

û

(k)

Q

(t) = e

(t)k+d(t)

û

(k)

P

(t); t > 0; k 2 N

0

;

(3)

d(0) = 0:

Proof: First, (i) holds if and only if

Q(X

t

1

= k

1

; : : : ;X

t

n

= k

n

) = e

(t

n

)k

n

+d(t

n

)

P (X

t

1

= k

1

; : : : ;X

t

n

= k

n

) (4)

holds for all n 2 N and t

1

; : : : t

n

with 0 � t

1

< : : : < t

n

� t and k

1

; : : : ; k

n

2 N

0

. Without

loss of generality, k

1

� k

2

� � � � � k

n

.

Be now n 2 N, t

1

; : : : t

n

and k

1

; : : : ; k

n

2 N

0

, aordingly. By (2) we have

P (X

t

1

= k

1

; : : : ;X

t

n

= k

n

) =

k

n

! t

k

1

1

t

k

n

n

k

1

!

n

Y

l=2

(t

l

� t

l�1

)

k

l

�k

l�1

(k

l

� k

l�1

)!

P (X

t

n

= k

n

):

Sine this is similarly valid for Q, equation (4) redues to

Q(X

t

n

= k

n

) = e

(t

n

)k

n

+d(t

n

)

P (X

t

n

= k

n

): (5)

If additionally t

n

> 0, this is equivalent to

û

(k

n

)

Q

(t

n

) = e

(t

n

)k

n

+d(t

n

)

û

(k

n

)

P

(t

n

):

For t

n

= 0 the ondition d(0) = 0 is neessary and su�ient for equation (5) to hold for

all k

n

� 0.

The equivalene of (i), (ii) und (iii) follows from these onsiderations. �

As an additional onsequene of this proposition we obtain that, sine Laplae trans-

forms of distributions are ontinuous and in�nitely often di�erentiable on (0;1), also the

funtions  and d are alike.

The following lemma is an essential ontribution to �nd exponential families. It supplies

neessary and su�ient onditions for a measure P 2 M to belong to an exponential

family depending only on the Laplae transform orresponding to P and not on any other

Laplae transform orresponding to an equivalent measure distint from P .

4



Lemma 5: For a measure P 2M and funtions ; d : T ! R the following statements

are equivalent:

(i) There is a measure Q 2M distint from P , whih is equivalent to P . The equivalene

P � Q is determined by  and d.

(ii) It is d 6� 0 and d(0) = 0. Furthermore, ; d are ontinuous and di�erentiable on

(0;1) and verify for all t 2 (0;1) and all k 2 N the equation

�



0

(t)(k � 1) + d

0

(t)

�

û

(k�1)

P

(t) = (e

(t)

� 1) û

(k)

P

(t): (6)

Proof: �)� Suppose (i) to be valid. Then we have by proposition 4

û

(k)

Q

(t) = e

(t)k+d(t)

û

(k)

P

(t); t > 0; k 2 N

0

;

d(0) = 0:

The funtions  and d are ontinuous and di�erentiable on (0;1). Considering the �rst

equation for k = 0, we see that d 6� 0 sine P 6= Q and onsequently û

P

6= û

Q

. So, we have

e

(t)k+d(t)

û

(k)

P

(t) = û

(k)

Q

(t)

=

d

dt

û

(k�1)

Q

(t) =

d

dt

e

(t)�(k�1)+d(t)

û

(k�1)

P

(t)

=

�



0

(t)(k � 1) + d

0

(t)

�

e

(t)�(k�1)+d(t)

û

(k�1)

P

(t) + e

(t)�(k�1)+d(t)

û

(k)

P

(t)

=

h

�



0

(t)(k � 1) + d

0

(t)

�

û

(k�1)

P

(t) + û

(k)

P

(t)

i

e

(t)�(k�1)+d(t)

; t > 0; k 2 N:

Finally, we obtain

�



0

(t)(k � 1) + d

0

(t)

�

û

(k�1)

P

(t) = (e

(t)

� 1) û

(k)

P

(t); t > 0; k 2 N; (7)

and (ii) is proven.

�(� Suppose (ii) to be valid. De�ne a funtion û

Q

: T ! R by

û

Q

(t) := e

d(t)

û

P

(t); t 2 T:

We will show that û

Q

is a Laplae transform and that the measure Q 2 M whih orre-

sponds to û

Q

, is equivalent to P . At �rst, we prove the following by indution on k:

û

(k)

Q

(t) = e

(t)k+d(t)

û

(k)

P

(t); t > 0; k 2 N

0

: (8)
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By de�nition, the equation holds for k = 0. Now suppose the upper equation to be valid

for k � 1, k 2 N . Then it also holds for k:

û

(k)

Q

(t) =

d

dt

û

(k�1)

Q

(t) =

d

dt

�

e

(t)(k�1)+d(t)

û

k

P

(t)

�

=

�



0

(t)(k � 1) + d

0

(t)

�

e

(t)(k�1)+d(t)

û

(k�1)

P

(t) + e

(t)(k�1)+d(t)

û

(k)

P

(t)

= e

(t)(k�1)+d(t)

�

�



0

(t)(k � 1) + d

0

(t)

�

û

(k�1)

P

(t) + û

(k)

P

(t)

�

(6)

= e

(t)(k�1)+d(t)

��

e

(t)

� 1

�

û

(k)

P

(t) + û

(k)

P

(t)

�

= e

(t)k+d(t)

û

(k)

P

(t); t > 0:

Beause û

Q

is ompletely monotone on (0;1), p. (8), and û

Q

(0) = 1, û

Q

atually is the

Laplae transform of a distribution (see for instane [FEL℄). Let U

Q

be this distribution

and Q 2M the orresponding mixed Poisson proess. Beause of d 6� 0 we have û

Q

6= û

P

and hene Q 6= P . Moreover (8) implies that Q is equivalent to P . Thus, there is an

exponential family whih ontains P . �

Let us now onsider some examples. With Lemma 5 we an easily verify that eah Poisson

proess is in an exponential family:

Under P , let X

T

be a Poisson proess with intensity � > 0, i.e., U

P

= Æ

�

and û

P

(t) =

e

��t

; t 2 T: Choose 

0

2 Rnf0g and let  and d be

(t) = 

0

; d(t) = �� (e



0

� 1) t; t 2 T: (9)

Then  and d are ontinuous and on (0;1) di�erentiable and

�



0

(t)(k � 1) + d

0

(t)

�

û

(k�1)

P

(t) =

�

e

(t)

� 1

�

û

(k)

P

(t):

holds for t > 0 and k 2 N. Moreover, we have d 6� 0 and d(0) = 0. So due to lemma 5, the

ordinary Poisson proess belongs to an exponential family.

Equally, we an show that Pólya-Lundberg proesses are ontained in exponential families:

Under P , let X

T

be a Pólya-Lundberg proess with struture distribution U

P

= �('; ),

';  > 0. Then

û

P

(t) =

�

1 +

t

'

�

�

; t 2 T; k 2 N;

is the Laplae transform of U

P

. Let  and d be

(t) = ln

�

t+ '

t+ '�

�

; d(t) = 

�

ln

�

t+ '

t+ '�

�

+ ln �

�

; t 2 T; (10)

where � 2 Rnf1g. Then  and d are ontinuous and di�erentiable on (0;1) and equation

(6) of Lemma 5 holds. As additionally, d(0) = 0 and d 6� 0, P belongs to an exponential
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family.

However, the onditions of Lemma 5 for a Laplae transform û

P

in order to orrespond to

a measure P of an exponential family are very restritive. The following proposition, in

fat, shows that the above examples are the only ones possible:

Proposition 6: For a measure P 2M the following statements are equivalent:

(i) The measure P belongs to an exponential family.

(ii) There are � > 0 resp. ';  > 0 suh that the struture distribution U

P

of P is

U

P

= Æ

�

resp. U

P

= �('; ).

In other words, X

T

is either a Poisson proess or a Pólya-Lundberg proess under P .

The funtions , d that determine those measures whih are equivalent to P are as in (9)

resp. (10) for U

P

= Æ

�

resp. U

P

= �('; ).

Before we an prove this proposition we need the following tehnial lemma:

Lemma 7: Condition (ii) of Lemma 5 implies

�

e

�(t)

� 1

�

2

v(t

0

) = 

0

(t) e

�(t)

; t > 0;

where v(t

0

) =

�

û

0

P

(t

0

)

û

P

(t

0

)

�

û

00

P

(t

0

)

û

0

P

(t

0

)

�

�

1

e

�(t

0

)

�1

for an arbitrary t

0

> 0.

Proof: Let t

0

> 0. By equation (6) of Lemma 5 we have

û

(k)

P

(t)

û

(k�1)

P

(t)

=



0

(t)(k � 1) + d

0

(t)

e

(t)

� 1

; t > 0; k 2 N:

The solution û

(k�1)

P

of this ordinary di�erential equation satis�es

û

(k�1)

P

(t) = û

(k�1)

P

(t

0

)

 

e

�(t)

� 1

e

�(t

0

)

� 1

!

k�1

e

I(t)

; t > 0; k 2 N; (11)

with I(t) :=

R

t

t

0

d

0

(s)

e

(s)

�1

ds:

The following proedure is to evaluate equation (11) for k = 1; 2; 3 whih �rst leads to a

system of equations and at the end to a di�erential equation for the funtion . For k = 1

we have by (11)

û

P

(t) = û

P

(t

0

) e

I(t)

; t > 0: (12)

and onsequently

û

0

P

(t) = û

P

(t

0

) e

I(t)

d

0

(t)

e

(t)

� 1

; t > 0: (13)
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Evaluating (11) for k = 2, we obtain

û

0

P

(t) = û

0

P

(t

0

)

e

�(t)

� 1

e

�(t

0

)

� 1

e

I(t)

; t > 0; (14)

and ombining (13) and (14) leads to

d

0

(t) =

û

0

P

(t

0

)

û

P

(t

0

)

�

(e

�(t)

� 1) (e

(t)

� 1)

e

�(t

0

)

� 1

; t > 0: (15)

At the same time we have

û

00

P

(t) = û

0

P

(t

0

)

0

�

�

0

(t)e

�(t)

e

�(t

0

)

� 1

+

û

0

P

(t

0

)

û

P

(t

0

)

�

 

e

�(t)

� 1

e

�(t

0

)

� 1

!

2

1

A

e

I(t)

; t > 0; (16)

by deriving equation (14) and substituting d

0

(t) by (15). Equation (11) for k = 3 is

û

00

P

(t) = û

00

P

(t

0

)

 

e

�(t)

� 1

e

�(t

0

)

� 1

!

2

e

I(t)

; t > 0: (17)

Joining (16) and (17) �nally leads to the following di�erential equation for 

�

e

�(t)

� 1

�

2

�

û

0

P

(t

0

)

û

P

(t

0

)

�

û

00

P

(t

0

)

û

0

P

(t

0

)

�

�

1

e

�(t

0

)

� 1

| {z }

=:v(t

0

)

= 

0

(t) e

�(t)

; t > 0:

Notie that the ontinuous funtion v, as a funtion of t

0

, does not hange its sign on

(0;1), beause v(t

0

) = 0 for a t

0

> 0 implies that U

P

is a Dira distribution and therefore

we had v � 0. �

Proof of Proposition 6: It remains to show that (i) implies (ii). Assume (i) to be

valid, i.e., assume P 2M to belong to an exponential family. Let t

0

> 0. Then Lemma 7

implies the following di�erential equation:

�

e

�(t)

� 1

�

2

v(t

0

) = 

0

(t) e

�(t)

; t > 0: (18)

In the sequel, we will solve this equation for  and dedue û

P

.

We distinguish the ases v � 0 and v(t

0

) 6= 0 for all t

0

> 0. Assume v � 0, that is, U

P

is a

Dira distribution. We are interested in the points in whih U

P

an be onentrated and in

what the orresponding funtions  and d are. Equation (18) now looks like 0 = 

0

(t) e

�(t)

and implies (t) = 

0

; t > 0. Thus, by (15) we have

d

0

(t) =

û

0

P

(t

0

)

û

P

(t

0

)

(e



0

� 1)

8



Consequently, taking into aount that d(0) = 0, we obtain

d(t) =

û

0

P

(t

0

)

û

P

(t

0

)

(e



0

� 1) t; t > 0:

Sine

I(t) =

t

Z

t

0

d

0

(s)

e

(s)

� 1

ds =

û

0

P

(t

0

)

û

P

(t

0

)

(t� t

0

); t > 0;

equation (12) leads to

û

P

(t) = û

P

(t

0

) e

û

0

P

(t

0

)

û

P

(t

0

)

(t�t

0

)

; t > 0: (19)

Taking the logarithmi derivative with respet to t, we have

û

0

P

(t)

û

P

(t)

=

û

0

P

(t

0

)

û

P

(t

0

)

; t > 0: (20)

That means, for t > 0 the quotient û

0

P

(t)=û

P

(t) is independent of t. Additionally this

quotient is � 0 and = 0 if and only if U = Æ

0

. The latter ase has no longer to be

onsidered sine U = Æ

0

implies d � 0 whih ontradits ondition (ii) from Lemma 5.

Thus with � := �

û

0

P

(t

0

)

û

P

(t

0

)

; we have the following representation for û

P

û

P

(t) = Ce

��t

; t > 0: (21)

Sine a Laplae transform û

P

is ontinuous and satis�es û

P

(0) = 1, the onstant C has to

be equal to 1. Altogether, we have the following representations for û

P

and ; d

û

P

(t) = e

��t

; (t) = 

0

; d(t) = �� (e



0

� 1) t; t > 0:

Beause these funtions are ontinuous, they an be extended onto the whole interval

T = [0;1). Apparently, û

P

is the Laplae transform of a Dira distribution in � > 0 and

the measure P 2M orresponds to an ordinary Poisson proess with intensity � > 0.

Consider now the ase v(t

0

) 6= 0. With v := v(t

0

) and g(t) := e

�(t)

� 1 the di�eren-

tial equation

�

e

�(t)

� 1

�

2

v(t

0

) = 

0

(t) e

�(t)

;

an be transformed into

g(t)

2

v = �g

0

(t) resp. v = �

g

0

(t)

g(t)

2

; t > 0;

and thus,

g(t) =

1

v t+ a

; t > 0:

9



Sine g(t) 2 (�1;1) for t > 0, the integration onstant a is restrited by

a � 0 for v > 0;

a � �1 for v < 0:

From g we obtain a representation for 

(t) = � ln

�

1 +

1

v � t+ a

�

; t > 0:

By (15) we have

d

0

(t) =

û

0

P

(t

0

)

û

P

(t

0

)

�

v t

0

+ a

v t+ a

�

�1

v t+ a+ 1

; t > 0;

and onsequently, taking d(0) = 0 into aount,

d(t) =

û

0

P

(t

0

)

û

P

(t

0

)

�

vt

0

+ a

v

�

�

ln

�

vt+ a+ 1

vt+ a

�

� ln

�

a+ 1

a

��

; t > 0:

For I(t) we get

I(t) =

t

Z

t

0

d

0

(s)

e

(s)

� 1

ds =

û

0

P

(t

0

)

û

P

(t

0

)

�

v t

0

+ a

v

ln

�

v t+ a

v t

0

+ a

�

; t > 0:

Equation (12) leads to

û

P

(t) = û

P

(t

0

) e

I(t)

= û

P

(t

0

)

�

v t+ a

v t

0

+ a

�

û

0

P

(t

0

)

û

P

(t

0

)

�

v t

0

+a

v

; t > 0: (22)

As additionally

v t

0

+ a

v

=

g(t

0

)

�1

v

=

�

v

�

e

�(t

0

)

� 1

�

�

�1

(23)

is valid for t > 0, we obtain the following representation of û

P

from (22):

û

P

= û

P

(t

0

)

�

v t+ a

v t

0

+ a

�

û

0

P

(t

0

)

û

P

(t

0

)

�

(

v

(

e

�(t

0

)

�1

))

�1

; t > 0: (24)

Taking twie the logarithmi derivative one an show that neither

û

0

P

(t

0

)

û

P

(t

0

)

�

�

v

�

e

�(t

0

)

� 1

��

�1

nor

a

v

depend on the hoie of t

0

. Thus, setting

 := �

û

0

P

(t

0

)

û

P

(t

0

)

�

1

v(t

0

)

�

e

�(t

0

)

� 1

�

> 0 and ' := a=v(t

0

) > 0;

we an express û

P

as

û

P

(t) = C

�

1 +

t

'

�

�

; t > 0:

10



Sine û

P

is a Laplae transform and thus ontinuous in 0 with û

P

(0) = 1, C has to be

equal to 1 . Apparently, û

P

is the Laplae transform of a �-distribution with parameters

';  > 0. With � :=

a+1

a

, where a > 0 or a < �1 imply � 2 Rnf1g, we obtain

(t) = ln

�

t+ '

t+ '�

�

; d(t) = 

�

ln

�

t+ '

t+ '�

�

+ ln �

�

; t > 0:

The above representations for û

P

,  and d an be ontinuously extended to the point 0. �

We will now indiate an alternative way to prove the last proposition: R. S. Liptser and

A. N. Shiryayev (p. [LS℄, theorem 19.7.) haraterize absolute ontinuity of two measures

P;Q 2 P by their ompensators fA

P

t

g

t�0

; fA

Q

t

g

t�0

. The measure Q is absolute ontinu-

ous with respet to P if and only if there exists a nonnegative proess

n

�

P;Q

t

o

t�0

wih is

preditable with respet to fF

t

g

t2T

, suh that

A

Q

t

(!) =

Z

1

0

�

P;Q

s

(!)dA

P

s

(!); t <1;

and

Z

1

0

�

1�

q

�

P;Q

s

(!)

�

2

dA

P

s

(!) <1

are veri�ed for P -almost all ! 2 
.

Now for P 2M and analogously for Q 2M we have (p. [Gra℄)

A

P

t

(!) =

Z

t

0

�

P

X

s

(!)

(s)ds ; P -a.e.;

where �

P

n

(t), n 2 N, t > 0, are the transition intensities of the mixed Poisson proess (and

hene birth proess) P . So, for the ase P;Q 2M we obtain:

�

P;Q

t

(!) =

�

Q

X

t

(!)

(t)

�

P

X

t

(!)

(t)

; P � a:e: ;

whih is a preditable proess if and only if the quotient on the right side does not depend

on !, i.e., �

P;Q

t

(!) � �

P;Q

t

for ! 2 
. Additionally, we have 0 < �

P;Q

t

< 1 for P 6= Q.

A seond part of theorem 19.7. in [LS℄ says that the Radon-Nikodym derivatives dQ

t

=dP

t

for t � 0 an be represented as

dQ

t

dP

t

(!) = exp

�

Z

t

0

ln�

P;Q

s

(!) dX

s

(!)�

�

A

Q

t

(!)�A

P

t

(!)

�

�

; P

t

� a:e: (25)

Now let us return to our initial question: Whih measures P;Q 2M an be in relation �

to eah other?

The de�nition of P � Q requires for t 2 [0;1) that

dQ

t

dP

t

(!) = e

(t)X

t

(!)+d(t)

; P

t

� a:e:;

11



whih together with equation (25) leads to

Z

t

0

ln�

P;Q

s

dX

s

(!)�

�

A

Q

t

(!)�A

P

t

(!)

�

= (t)X

t

(!) + d(t); P

t

� a:e:

Partial integration yields

ln�

P;Q

t

X

t

(!)�

Z

t

0

d

ds

�

P;Q

s

�

P;Q

s

X

s

(!) ds� �

P;Q

t

A

P

t

(!) +

Z

t

0

d

ds

�

P;Q

s

A

P

s

(!) ds+A

P

t

(!)

= (t)X

t

(!) + d(t)

for P

t

-almost all !. If for a �xed ! 2 
 this equation is valid and if t > 0 is a ontinuity

point of the path X

T

(!) we an derive with respet to t and obtain

�

1� �

P;Q

t

�

d

dt

A

P

t

(!) = 

0

(t)X

t

(!) + d

0

(t)

whih implies

�

P

X

t

(!)

(t) =

d

dt

A

P

t

(!) =



0

(t)

1� �

P;Q

t

X

t

(!) +

d

0

(t)

1� �

P;Q

t

:

Furthermore, for t > 0 and n 2 N, the set f! 2 
 : X

t

(!) = n; lim

s!t�0

X

s

(!) = ng, i.e.

the set of ounting funtions whih at time t do not jump and are in state n, has positive

P

t

-measure. So, the transition intensities must verify

�

P

n

(t) =



0

(t)

1� �

P;Q

t

n+

d

0

(t)

1� �

P;Q

t

; n 2 N; t > 0:

But the only proesses P 2 M with transition intensities �

P

n

(t) that are linear in n for

�xed t are Poisson proesses and Pólya-Lundberg proesses (p. [Gra℄).

To �nd those measures Q 2 M whih an be equivalent to P onsider the quotient

�

Q

X

t

(!)

(t)

�

P

X

t

(!)

(t)

. Sine it must not depend on ! if the two measures P and Q shall be in relation

to eah other, we �nd that a Poisson proess an only be equivalent to a Poisson proess

and a Pólya-Lundberg proess with struture distribution �('; ), ';  > 0, and transition

intensities �

n

(t) =

+n

'+t

an only be equivalent to Pólya-Lundberg proesses with the same

parameter .

An immediate onsequene of proposition 6 is the following orollary whih spei�es expo-

nential families in M.

Corollary 8: The only existing exponential families in M are the exponential family of

homogeneous Poisson proesses fP 2 M : U

P

= Æ

�

; � > 0g and exponential families of

Pólya-Lundberg proesses fP 2 M : U

P

= �('; ); ' > 0g; where the shape parameter

 > 0 of the orresponding Gamma struture distributions remains onstant within suh

an exponential family.

12



Proof: Proposition 6 determines the only measures P 2 M belonging to exponential

families and the only funtions  and d leading to equivalent measures. Combining these

and therefore alulating for suh a P 2 M and all possible appropriate funtions  and

d the equivalent measures

~

P 2 M via û

~

P

(t) = e

d(t)

û

P

(t) we obtain the above stated

exponential families. �

3 AMartingale Charaterization of Pólya-Lundberg Proesses

In the preeeding setion we emphasized the speial position of the Pólya-Lundberg proess

within mixed Poisson proesses. In the sequel, we will dedue a martingale haraterization.

First, onsider the sueeding proposition haraterizing the proess of densities

fdQ

t

=dP

t

g

t�0

=

�

e

(t)X

t

+d(t)

	

t�0

of two equivalent measures P; Q 2M as a martingale:

Proposition 9: Given a measure P 2 M and funtions ; d : T ! R the following

statements are equivalent:

(i) There is a measure Q 2M, so that for every t 2 T the measure Q

t

is absolutely on-

tinuous with respet to P

t

and the orresponding Radon-Nikodym derivative veri�es

dQ

t

=dP

t

= e

(t)X

t

+d(t)

P

t

-a.e.

(ii) Under P , the proess

n

e

(t)X

t

+d(t)

o

t2T

is a martingale with respet to the natural

�ltration fF

t

g

t2T

of X

T

and the expetation of e

(t)X

t

+d(t)

is equal to 1 for all t 2 T .

Proof: (i)) (ii): Sine for t � 0, s 2 [0; t℄ and A 2 F

s

we have

Z

A

dQ

t

dP

t

dP =

Z

A

dQ

s

dP

s

dP

the proess of Radon-Nikodym derivatives

n

e

(t)X

t

+d(t)

o

t2T

is a martingale with respet

to fF

t

g

t2T

.

(ii) ) (i): It is evident, that if we de�ne a projetive family of measures fQ

t

g

t�0

by dQ

t

=dP

t

:= e

(t)X

t

+d(t)

, then there exists a measure Q 2 P suh that the measures Q

t

are the restritions of Q to F

t

. What we have to show is, that Q neessarily lies in M.

For d � 0 the measure P itself veri�es (i). Notie that d � 0 and hene 1 = E

P

�

e

(t)X

t

�

imply  � 0 or U

P

= Æ

0

.

Let d 6� 0. We will apply lemma 5, that is to show that d(0) = 0 and that  and d

are ontinuous and di�erentiable on (0;1) suh that

�



0

(t)(k � 1) + d

0

(t)

�

û

(k�1)

P

(t) = (e

(t)

� 1) û

(k)

P

(t) (26)

holds for t > 0 and k 2 N.

At �rst we have d(0) = � ln E

P

�

e

(0)X

0

�

= 0:

13



Continuity and di�erentiability an be dedued from the martingale property:

Let t > 0 �xed. The martingale property orresponds to

E

P

�

e

(t)X

t

+d(t)

�

�

X

s

�

= e

(s)X

s

+d(s)

; s 2 [0; t℄;

beause X

T

is a markovian proess under P . We an equivalently write:

1

X

k=0

e

(t)k+d(t)

P (X

t

= k jX

s

= k

s

) = e

(s)k

s

+d(s)

; s 2 [0; t℄; k

s

2 N

0

: (27)

Sine the onditional probabilities P (X

t

= k jX

s

= k

s

) are

P (X

t

= k jX

s

= k

s

) =

8

>

>

<

>

>

:

(�1)

k�k

s

(t� s)

k�k

s

(k � k

s

)!

�

û

(k)

P

(t)

û

(k

s

)

P

(s)

for s 2 [0; t℄; k � k

s

;

0 else,

we have

e

(s)k

s

+d(s)

û

(k

s

)

P

(s) =

1

X

k=k

s

e

(t)k+d(t)

(�1)

k�k

s

(t� s)

k�k

s

(k � k

s

)!

û

(k)

P

(t); s 2 [0; t℄; k

s

2 N

0

:

Sine for k

s

2 f0; 1g the right side of the equation is a ontinuous and di�erentiable fun-

tion of s for s 2 [0; t℄ and sine t an be hosen arbitrarily big, the funtions  and d must

be ontinuous and di�erentiable on (0;1).

To prove (26) we di�erentiate the last equation with respet to s and obtain:

�



0

(s)k

s

+ d

0

(s)

�

e

(s)k

s

+d(s)

û

(k

s

)

P

(s) + e

(s)k

s

+d(s)

û

(k

s

+1)

P

(s)

=

1

X

k=k

s

+1

e

(t)k+d(t)

(�1)

k�k

s

(t� s)

k�k

s

�1

(k � k

s

� 1)!

û

(k)

P

(t); s 2 (0; t); k

s

2 N

0

:

Sine power series are ontinuous in their onvergene interval, taking the limit s " t �nally

leads to

�



0

(t)k

s

+ d

0

(t)

�

e

(t)k

s

+d(t)

û

(k

s

)

P

(t) + e

(t)k

s

+d(t)

û

(k

s

+1)

P

(t) = e

(t)(k

s

+1)+d(t)

û

(k

s

+1)

P

(t)

resp.

�



0

(t)k

s

+ d

0

(t)

�

û

(k

s

)

P

(t) =

�

e

(t)

� 1

�

û

(k

s

+1)

P

(t); k

s

2 N

0

:

Suh a representation exists for every t > 0. Hene, all the onditions of lemma 5 (ii) are

veri�ed and onsequently there exists a measure Q 2 M, that veri�es the required (p.

lemma 5 (i)). �
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An immediate onsequene of proposition 9 is the following martingale haraterization

of Pólya-Lundberg proesses within the lass of mixed Poisson proesses:

Main theorem: The following statements are equivalent for a measure P 2M:

(i) There are funtions ; d : T ! R with d non-onstant, suh that

n

e

(t)X

t

+d(t)

o

t2T

under P is a martingale with respet to fF

t

g

t2T

.

(ii) The measure P orresponds either to a Poisson or a Pólya-Lundberg proess.

Proof: Use propositions 6 and 9. �
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