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Abstra
t

We study exponential families within the 
lass of 
ounting pro
esses and show that

a mixed Poisson pro
ess belongs to an exponential family if and only if it is either

a Poisson pro
ess or it has a Gamma stru
ture distribution. This property 
an be

expressed via exponential martingales.

1 Introdu
tion

Sin
e mixed Poisson pro
esses were introdu
ed as a generalization of homogeneous Poisson

pro
esses they have been intensively studied. A detailed survey of the developed theory

and obtained results is given by the monograph �Mixed Poisson Pro
esses� by J. Grandell

[Gra℄.

An important question is how mixed Poisson pro
esses 
an be 
hara
terized within more

general 
lasses of pro
esses. A well known result in this 
ontext is the 
hara
terization of

mixed Poisson pro
esses within the 
lass of general point pro
esses via the 
onditional uni-

formity of its o

uren
e times by K. Nawrotzki [Naw℄. Some re
ent arti
les were published

by Y. Hayakawa [Hay℄, B. Grigelionis [Gri℄ and D. Pfeifer and U. Heller [PH℄. While the

�rst arti
le proves a 
hara
terization within general point pro
esses via normalised event

o

uren
e times, the latter two 
hara
terize mixed Poisson pro
esses within the 
lass of

birth pro
esses via martingales involving transistion intensities.

The present arti
le, however, does not deal with 
hara
terizations of mixed Poisson pro-


esses within more general 
lasses of pro
esses but proves a 
hara
terization of Pólya-

Lundberg pro
esses within the 
lass of mixed Poisson pro
esses. Pólya-Lundberg pro
esses,

i.e., mixed Poisson pro
esses whose stru
ture distribution are Gamma distributions, were

of spe
ial interest ever sin
e mixed Poisson pro
esses were studied. Not only that they seem

to be appropriate to model the number of o

uren
es of 
ertain events in appli
ations but

they also are probably the easiest to treat analyti
ally.

The 
hara
terization given in this arti
le underlines the spe
ial role of these pro
esses. The


hara
terizing property is an exponential martingale property whi
h will be dedu
ed from

studies of exponential families of sto
hasti
 pro
esses. An overview of this topi
 is given

in the monograph �Exponential Families of Sto
hasti
 Pro
esses� by U. Kü
hler and M.

Sørensen [KS℄.

The arti
le is organized as follows: In se
tion 2 we �rst 
on
entrate on the de�nition of su
h

exponential families. We follow a 
on
ept proposed by I. Kü
hler and U. Kü
hler [KK℄,

where exponential families are introdu
ed as equivalen
e 
lasses with at least two elements
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of an equivalen
e relation whi
h is de�ned on a set of probability measures on a �ltered

measurable spa
e. Then, we study exponential families of mixed Poisson pro
esses and we

determine all existing exponential families. It turns out that these are only the family of

Poisson pro
esses and families of Pólya-Lundberg pro
esses. Finally, in se
tion 3 we de-

du
e the main theorem, whi
h states that Pólya-Lundberg pro
esses 
an be 
hara
terized

within the 
lass of all mixed Poisson pro
esses by exponential martingales.

2 Exponential Families of Mixed Poisson Pro
esses

Consider the following 
anoni
al model. Let 
 be the spa
e of all simple 
ounting fun
tions

! : T ! N and for F the �-algebra generated by all 
ylindri
 sets. Furthermore, we 
onsider

the 
anoni
al pro
ess X

T

; T = [0;1); with X

t

(!) = !(t) for ! 2 
 and t 2 T and the

natural �ltration fF

t

g

t2T

generated by X

T

. For P we 
hoose the set of all probability

measures on (
;F). For a measure P 2 P we denote by P

t

, t 2 T , the restri
tion of P to

F

t

.

Sin
e we 
onsider a 
anoni
al model, in the sequel, we will sometimes refer to a measure

P 2 P as the 
orresponding pro
ess.

In order to de�ne exponential families we follow a 
on
ept proposed by I. Kü
hler and U.

Kü
hler in [KK℄. The de�nition is based on the following relation on P:

De�nition 1: We say that two measures P;Q 2 P are in relation, in symbols P � Q, if

for every t 2 T the measure Q

t

is absolutely 
ontinuous with respe
t to P

t

and if there are

fun
tions 
; d : T ! [0;1) su
h that the Radon-Nikodym derivative dQ

t

=dP

t

satis�es

dQ

t

=dP

t

= e


(t)X

t

+d(t)

P

t

� a.s. (1)

This relation is an equivalen
e relation with the help of whi
h we 
an now de�ne exponential

families by

De�nition 2: An equivalen
e 
lass of � with at least two elements is 
alled an exponential

family.

This nonparametri
 approa
h to exponential families whi
h are usually de�ned as paramet-

ri
 families of measures has overall two advantages: the independen
e of any parametriza-

tion and the more general mathemati
al stru
turing.

Consider now the set M � P whi
h 
onsists of all mixed Poisson pro
esses. Re
all that

under P 2 M the pro
ess X

T

is 
alled a mixed Poisson pro
ess if its distribution P

X

T

satis�es

P

X

T

(A) =

Z

1

0

P

�

(A) dU(�); A 2 F ;

where P

�

des
ribes the distribution of a Poisson pro
ess with intensity � and where U is

a distribution 
on
entrated on [0;1). The distribution U is 
alled stru
ture distribution
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of the mixed Poisson pro
ess. If U is a Gamma distribution with s
ale parameter ' > 0

and shape parameter 
, �('; 
), we 
all the 
orresponding mixed Poisson pro
ess a Pólya-

Lundberg pro
ess.

By û we denote the Lapla
e transform of U , i.e. û(t) =

R

1

0

e

��t

dU(�):

In order to determine exponential families of mixed Poisson pro
esses, we will dedu
e

equivalent des
riptions of the equivalen
e P � Q of two measures P;Q 2 M via the

stru
ture distributions and their Lapla
e transforms U

P

, û

P

resp. U

Q

, û

Q


orresponding

to P resp. Q. The 
onne
tion between P and the Lapla
e transform û

P

is des
ribed by

P (X

t

= k) =

(�t)

k

k!

û

(k)

P

(t); t > 0; k 2 N

0

;

where û

(k)

P

denotes the k-th derivative of û

P

.

Now, we 
onsider the following issue: Can a measure P 2 M be equivalent to a measure

Q whi
h does not 
orrespond to a mixed Poisson pro
ess, Q 2 PnM, that is, 
an we

restri
t � to M without redu
ing the equivalen
e 
lasses? This question is answered by

the following proposition:

Proposition 3: Let P;Q 2 P be two equivalent measures. Let additionally P be a mixed

Poisson pro
ess, i. e., P 2M. Then also Q is a mixed Poisson pro
ess, Q 2M.

Proof: We will apply the fa
t that a mixed Poisson pro
ess is 
hara
terized by the


onditional uniformity of its event o

uren
e times (see [Naw℄), whi
h 
an be expressed as

follows:

P (X

t

1

= k

1

; : : : ;X

t

n�1

= k

n�1

jX

t

n

= k

n

) =

k

n

! t

k

1

1

t

k

n

n

k

1

!

n

Y

l=2

(t

l

� t

l�1

)

k

l

�k

l�1

(k

l

� k

l�1

)!

(2)

holds for n 2 N, t

1

; : : : ; t

n

2 T with 0 � t

1

< � � � < t

n

and for k

1

; : : : ; k

n

2 N

0

with

0 � k

1

� � � � � k

n

.

Consider two measures P 2M and Q 2 P with P � Q. By 
ondition (1) we have

Q (X

t

1

= k

1

; : : : ;X

t

n

= k

n

) = e


(t

n

)X

t

n

+d(t

n

)

P (X

t

1

= k

1

; : : : ;X

t

n

= k

n

)

for n 2 N; k

1

; : : : ; k

n

2 N; t

1

; : : : ; t

n

2 [0; t℄; t

n

� t

i

; i = 1; : : : ; n and for some non-negative

fun
tions 
 and d. Sin
e then

Q(X

t

1

= k

1

; : : : ;X

t

n�1

= k

n�1

jX

t

n

= k

n

) =

Q(X

t

1

= k

1

; : : : ;X

t

n

= k

n

)

Q(X

t

n

= k

n

)

=

e


(t

n

)k

n

+d(t

n

)

P (X

t

1

= k

1

; : : : ;X

t

n

= k

n

)

e


(t

n

)k

n

+d(t

n

)

P (X

t

n

= k

n

)

=

P (X

t

1

= k

1

; : : : ;X

t

n

= k

n

)

P (X

t

n

= k

n

)

= P (X

t

1

= k

1

; : : : ;X

t

n�1

= k

n�1

jX

t

n

= k

n

);
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equation (2) holds under Q if and only if it holds under P . �

Consequently, we 
an simply restri
t � ontoM. Then we are able to establish the following


hara
terization for the equivalen
e of two measures:

Proposition 4: Let P and Q be two mixed Poisson pro
esses, P;Q 2M, and 
; d : T ! R

real fun
tions. Then the following statements are equivalent:

(i) The measure P is equivalent to Q, P � Q and the equivalen
e is determined by the

fun
tions 
 and d.

(ii) The relation Q(X

t

= k) = e


(t)k+d(t)

P (X

t

= k) holds for all t 2 T and k 2 N

0

:

(iii) For the Lapla
e transforms û

P

and û

Q

of the stru
ture distributions of P and Q we

have

û

(k)

Q

(t) = e


(t)k+d(t)

û

(k)

P

(t); t > 0; k 2 N

0

;

(3)

d(0) = 0:

Proof: First, (i) holds if and only if

Q(X

t

1

= k

1

; : : : ;X

t

n

= k

n

) = e


(t

n

)k

n

+d(t

n

)

P (X

t

1

= k

1

; : : : ;X

t

n

= k

n

) (4)

holds for all n 2 N and t

1

; : : : t

n

with 0 � t

1

< : : : < t

n

� t and k

1

; : : : ; k

n

2 N

0

. Without

loss of generality, k

1

� k

2

� � � � � k

n

.

Be now n 2 N, t

1

; : : : t

n

and k

1

; : : : ; k

n

2 N

0

, a

ordingly. By (2) we have

P (X

t

1

= k

1

; : : : ;X

t

n

= k

n

) =

k

n

! t

k

1

1

t

k

n

n

k

1

!

n

Y

l=2

(t

l

� t

l�1

)

k

l

�k

l�1

(k

l

� k

l�1

)!

P (X

t

n

= k

n

):

Sin
e this is similarly valid for Q, equation (4) redu
es to

Q(X

t

n

= k

n

) = e


(t

n

)k

n

+d(t

n

)

P (X

t

n

= k

n

): (5)

If additionally t

n

> 0, this is equivalent to

û

(k

n

)

Q

(t

n

) = e


(t

n

)k

n

+d(t

n

)

û

(k

n

)

P

(t

n

):

For t

n

= 0 the 
ondition d(0) = 0 is ne
essary and su�
ient for equation (5) to hold for

all k

n

� 0.

The equivalen
e of (i), (ii) und (iii) follows from these 
onsiderations. �

As an additional 
onsequen
e of this proposition we obtain that, sin
e Lapla
e trans-

forms of distributions are 
ontinuous and in�nitely often di�erentiable on (0;1), also the

fun
tions 
 and d are alike.

The following lemma is an essential 
ontribution to �nd exponential families. It supplies

ne
essary and su�
ient 
onditions for a measure P 2 M to belong to an exponential

family depending only on the Lapla
e transform 
orresponding to P and not on any other

Lapla
e transform 
orresponding to an equivalent measure distin
t from P .
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Lemma 5: For a measure P 2M and fun
tions 
; d : T ! R the following statements

are equivalent:

(i) There is a measure Q 2M distin
t from P , whi
h is equivalent to P . The equivalen
e

P � Q is determined by 
 and d.

(ii) It is d 6� 0 and d(0) = 0. Furthermore, 
; d are 
ontinuous and di�erentiable on

(0;1) and verify for all t 2 (0;1) and all k 2 N the equation

�




0

(t)(k � 1) + d

0

(t)

�

û

(k�1)

P

(t) = (e


(t)

� 1) û

(k)

P

(t): (6)

Proof: �)� Suppose (i) to be valid. Then we have by proposition 4

û

(k)

Q

(t) = e


(t)k+d(t)

û

(k)

P

(t); t > 0; k 2 N

0

;

d(0) = 0:

The fun
tions 
 and d are 
ontinuous and di�erentiable on (0;1). Considering the �rst

equation for k = 0, we see that d 6� 0 sin
e P 6= Q and 
onsequently û

P

6= û

Q

. So, we have

e


(t)k+d(t)

û

(k)

P

(t) = û

(k)

Q

(t)

=

d

dt

û

(k�1)

Q

(t) =

d

dt

e


(t)�(k�1)+d(t)

û

(k�1)

P

(t)

=

�




0

(t)(k � 1) + d

0

(t)

�

e


(t)�(k�1)+d(t)

û

(k�1)

P

(t) + e


(t)�(k�1)+d(t)

û

(k)

P

(t)

=

h

�




0

(t)(k � 1) + d

0

(t)

�

û

(k�1)

P

(t) + û

(k)

P

(t)

i

e


(t)�(k�1)+d(t)

; t > 0; k 2 N:

Finally, we obtain

�




0

(t)(k � 1) + d

0

(t)

�

û

(k�1)

P

(t) = (e


(t)

� 1) û

(k)

P

(t); t > 0; k 2 N; (7)

and (ii) is proven.

�(� Suppose (ii) to be valid. De�ne a fun
tion û

Q

: T ! R by

û

Q

(t) := e

d(t)

û

P

(t); t 2 T:

We will show that û

Q

is a Lapla
e transform and that the measure Q 2 M whi
h 
orre-

sponds to û

Q

, is equivalent to P . At �rst, we prove the following by indu
tion on k:

û

(k)

Q

(t) = e


(t)k+d(t)

û

(k)

P

(t); t > 0; k 2 N

0

: (8)
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By de�nition, the equation holds for k = 0. Now suppose the upper equation to be valid

for k � 1, k 2 N . Then it also holds for k:

û

(k)

Q

(t) =

d

dt

û

(k�1)

Q

(t) =

d

dt

�

e


(t)(k�1)+d(t)

û

k

P

(t)

�

=

�




0

(t)(k � 1) + d

0

(t)

�

e


(t)(k�1)+d(t)

û

(k�1)

P

(t) + e


(t)(k�1)+d(t)

û

(k)

P

(t)

= e


(t)(k�1)+d(t)

�

�




0

(t)(k � 1) + d

0

(t)

�

û

(k�1)

P

(t) + û

(k)

P

(t)

�

(6)

= e


(t)(k�1)+d(t)

��

e


(t)

� 1

�

û

(k)

P

(t) + û

(k)

P

(t)

�

= e


(t)k+d(t)

û

(k)

P

(t); t > 0:

Be
ause û

Q

is 
ompletely monotone on (0;1), 
p. (8), and û

Q

(0) = 1, û

Q

a
tually is the

Lapla
e transform of a distribution (see for instan
e [FEL℄). Let U

Q

be this distribution

and Q 2M the 
orresponding mixed Poisson pro
ess. Be
ause of d 6� 0 we have û

Q

6= û

P

and hen
e Q 6= P . Moreover (8) implies that Q is equivalent to P . Thus, there is an

exponential family whi
h 
ontains P . �

Let us now 
onsider some examples. With Lemma 5 we 
an easily verify that ea
h Poisson

pro
ess is in an exponential family:

Under P , let X

T

be a Poisson pro
ess with intensity � > 0, i.e., U

P

= Æ

�

and û

P

(t) =

e

��t

; t 2 T: Choose 


0

2 Rnf0g and let 
 and d be


(t) = 


0

; d(t) = �� (e




0

� 1) t; t 2 T: (9)

Then 
 and d are 
ontinuous and on (0;1) di�erentiable and

�




0

(t)(k � 1) + d

0

(t)

�

û

(k�1)

P

(t) =

�

e


(t)

� 1

�

û

(k)

P

(t):

holds for t > 0 and k 2 N. Moreover, we have d 6� 0 and d(0) = 0. So due to lemma 5, the

ordinary Poisson pro
ess belongs to an exponential family.

Equally, we 
an show that Pólya-Lundberg pro
esses are 
ontained in exponential families:

Under P , let X

T

be a Pólya-Lundberg pro
ess with stru
ture distribution U

P

= �('; 
),

'; 
 > 0. Then

û

P

(t) =

�

1 +

t

'

�

�


; t 2 T; k 2 N;

is the Lapla
e transform of U

P

. Let 
 and d be


(t) = ln

�

t+ '

t+ '�

�

; d(t) = 


�

ln

�

t+ '

t+ '�

�

+ ln �

�

; t 2 T; (10)

where � 2 Rnf1g. Then 
 and d are 
ontinuous and di�erentiable on (0;1) and equation

(6) of Lemma 5 holds. As additionally, d(0) = 0 and d 6� 0, P belongs to an exponential

6



family.

However, the 
onditions of Lemma 5 for a Lapla
e transform û

P

in order to 
orrespond to

a measure P of an exponential family are very restri
tive. The following proposition, in

fa
t, shows that the above examples are the only ones possible:

Proposition 6: For a measure P 2M the following statements are equivalent:

(i) The measure P belongs to an exponential family.

(ii) There are � > 0 resp. '; 
 > 0 su
h that the stru
ture distribution U

P

of P is

U

P

= Æ

�

resp. U

P

= �('; 
).

In other words, X

T

is either a Poisson pro
ess or a Pólya-Lundberg pro
ess under P .

The fun
tions 
, d that determine those measures whi
h are equivalent to P are as in (9)

resp. (10) for U

P

= Æ

�

resp. U

P

= �('; 
).

Before we 
an prove this proposition we need the following te
hni
al lemma:

Lemma 7: Condition (ii) of Lemma 5 implies

�

e

�
(t)

� 1

�

2

v(t

0

) = 


0

(t) e

�
(t)

; t > 0;

where v(t

0

) =

�

û

0

P

(t

0

)

û

P

(t

0

)

�

û

00

P

(t

0

)

û

0

P

(t

0

)

�

�

1

e

�
(t

0

)

�1

for an arbitrary t

0

> 0.

Proof: Let t

0

> 0. By equation (6) of Lemma 5 we have

û

(k)

P

(t)

û

(k�1)

P

(t)

=




0

(t)(k � 1) + d

0

(t)

e


(t)

� 1

; t > 0; k 2 N:

The solution û

(k�1)

P

of this ordinary di�erential equation satis�es

û

(k�1)

P

(t) = û

(k�1)

P

(t

0

)

 

e

�
(t)

� 1

e

�
(t

0

)

� 1

!

k�1

e

I(t)

; t > 0; k 2 N; (11)

with I(t) :=

R

t

t

0

d

0

(s)

e


(s)

�1

ds:

The following pro
edure is to evaluate equation (11) for k = 1; 2; 3 whi
h �rst leads to a

system of equations and at the end to a di�erential equation for the fun
tion 
. For k = 1

we have by (11)

û

P

(t) = û

P

(t

0

) e

I(t)

; t > 0: (12)

and 
onsequently

û

0

P

(t) = û

P

(t

0

) e

I(t)

d

0

(t)

e


(t)

� 1

; t > 0: (13)
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Evaluating (11) for k = 2, we obtain

û

0

P

(t) = û

0

P

(t

0

)

e

�
(t)

� 1

e

�
(t

0

)

� 1

e

I(t)

; t > 0; (14)

and 
ombining (13) and (14) leads to

d

0

(t) =

û

0

P

(t

0

)

û

P

(t

0

)

�

(e

�
(t)

� 1) (e


(t)

� 1)

e

�
(t

0

)

� 1

; t > 0: (15)

At the same time we have

û

00

P

(t) = û

0

P

(t

0

)

0

�

�


0

(t)e

�
(t)

e

�
(t

0

)

� 1

+

û

0

P

(t

0

)

û

P

(t

0

)

�

 

e

�
(t)

� 1

e

�
(t

0

)

� 1

!

2

1

A

e

I(t)

; t > 0; (16)

by deriving equation (14) and substituting d

0

(t) by (15). Equation (11) for k = 3 is

û

00

P

(t) = û

00

P

(t

0

)

 

e

�
(t)

� 1

e

�
(t

0

)

� 1

!

2

e

I(t)

; t > 0: (17)

Joining (16) and (17) �nally leads to the following di�erential equation for 


�

e

�
(t)

� 1

�

2

�

û

0

P

(t

0

)

û

P

(t

0

)

�

û

00

P

(t

0

)

û

0

P

(t

0

)

�

�

1

e

�
(t

0

)

� 1

| {z }

=:v(t

0

)

= 


0

(t) e

�
(t)

; t > 0:

Noti
e that the 
ontinuous fun
tion v, as a fun
tion of t

0

, does not 
hange its sign on

(0;1), be
ause v(t

0

) = 0 for a t

0

> 0 implies that U

P

is a Dira
 distribution and therefore

we had v � 0. �

Proof of Proposition 6: It remains to show that (i) implies (ii). Assume (i) to be

valid, i.e., assume P 2M to belong to an exponential family. Let t

0

> 0. Then Lemma 7

implies the following di�erential equation:

�

e

�
(t)

� 1

�

2

v(t

0

) = 


0

(t) e

�
(t)

; t > 0: (18)

In the sequel, we will solve this equation for 
 and dedu
e û

P

.

We distinguish the 
ases v � 0 and v(t

0

) 6= 0 for all t

0

> 0. Assume v � 0, that is, U

P

is a

Dira
 distribution. We are interested in the points in whi
h U

P


an be 
on
entrated and in

what the 
orresponding fun
tions 
 and d are. Equation (18) now looks like 0 = 


0

(t) e

�
(t)

and implies 
(t) = 


0

; t > 0. Thus, by (15) we have

d

0

(t) =

û

0

P

(t

0

)

û

P

(t

0

)

(e




0

� 1)

8



Consequently, taking into a

ount that d(0) = 0, we obtain

d(t) =

û

0

P

(t

0

)

û

P

(t

0

)

(e




0

� 1) t; t > 0:

Sin
e

I(t) =

t

Z

t

0

d

0

(s)

e


(s)

� 1

ds =

û

0

P

(t

0

)

û

P

(t

0

)

(t� t

0

); t > 0;

equation (12) leads to

û

P

(t) = û

P

(t

0

) e

û

0

P

(t

0

)

û

P

(t

0

)

(t�t

0

)

; t > 0: (19)

Taking the logarithmi
 derivative with respe
t to t, we have

û

0

P

(t)

û

P

(t)

=

û

0

P

(t

0

)

û

P

(t

0

)

; t > 0: (20)

That means, for t > 0 the quotient û

0

P

(t)=û

P

(t) is independent of t. Additionally this

quotient is � 0 and = 0 if and only if U = Æ

0

. The latter 
ase has no longer to be


onsidered sin
e U = Æ

0

implies d � 0 whi
h 
ontradi
ts 
ondition (ii) from Lemma 5.

Thus with � := �

û

0

P

(t

0

)

û

P

(t

0

)

; we have the following representation for û

P

û

P

(t) = Ce

��t

; t > 0: (21)

Sin
e a Lapla
e transform û

P

is 
ontinuous and satis�es û

P

(0) = 1, the 
onstant C has to

be equal to 1. Altogether, we have the following representations for û

P

and 
; d

û

P

(t) = e

��t

; 
(t) = 


0

; d(t) = �� (e




0

� 1) t; t > 0:

Be
ause these fun
tions are 
ontinuous, they 
an be extended onto the whole interval

T = [0;1). Apparently, û

P

is the Lapla
e transform of a Dira
 distribution in � > 0 and

the measure P 2M 
orresponds to an ordinary Poisson pro
ess with intensity � > 0.

Consider now the 
ase v(t

0

) 6= 0. With v := v(t

0

) and g(t) := e

�
(t)

� 1 the di�eren-

tial equation

�

e

�
(t)

� 1

�

2

v(t

0

) = 


0

(t) e

�
(t)

;


an be transformed into

g(t)

2

v = �g

0

(t) resp. v = �

g

0

(t)

g(t)

2

; t > 0;

and thus,

g(t) =

1

v t+ a

; t > 0:

9



Sin
e g(t) 2 (�1;1) for t > 0, the integration 
onstant a is restri
ted by

a � 0 for v > 0;

a � �1 for v < 0:

From g we obtain a representation for 



(t) = � ln

�

1 +

1

v � t+ a

�

; t > 0:

By (15) we have

d

0

(t) =

û

0

P

(t

0

)

û

P

(t

0

)

�

v t

0

+ a

v t+ a

�

�1

v t+ a+ 1

; t > 0;

and 
onsequently, taking d(0) = 0 into a

ount,

d(t) =

û

0

P

(t

0

)

û

P

(t

0

)

�

vt

0

+ a

v

�

�

ln

�

vt+ a+ 1

vt+ a

�

� ln

�

a+ 1

a

��

; t > 0:

For I(t) we get

I(t) =

t

Z

t

0

d

0

(s)

e


(s)

� 1

ds =

û

0

P

(t

0

)

û

P

(t

0

)

�

v t

0

+ a

v

ln

�

v t+ a

v t

0

+ a

�

; t > 0:

Equation (12) leads to

û

P

(t) = û

P

(t

0

) e

I(t)

= û

P

(t

0

)

�

v t+ a

v t

0

+ a

�

û

0

P

(t

0

)

û

P

(t

0

)

�

v t

0

+a

v

; t > 0: (22)

As additionally

v t

0

+ a

v

=

g(t

0

)

�1

v

=

�

v

�

e

�
(t

0

)

� 1

�

�

�1

(23)

is valid for t > 0, we obtain the following representation of û

P

from (22):

û

P

= û

P

(t

0

)

�

v t+ a

v t

0

+ a

�

û

0

P

(t

0

)

û

P

(t

0

)

�

(

v

(

e

�
(t

0

)

�1

))

�1

; t > 0: (24)

Taking twi
e the logarithmi
 derivative one 
an show that neither

û

0

P

(t

0

)

û

P

(t

0

)

�

�

v

�

e

�
(t

0

)

� 1

��

�1

nor

a

v

depend on the 
hoi
e of t

0

. Thus, setting


 := �

û

0

P

(t

0

)

û

P

(t

0

)

�

1

v(t

0

)

�

e

�
(t

0

)

� 1

�

> 0 and ' := a=v(t

0

) > 0;

we 
an express û

P

as

û

P

(t) = C

�

1 +

t

'

�

�


; t > 0:

10



Sin
e û

P

is a Lapla
e transform and thus 
ontinuous in 0 with û

P

(0) = 1, C has to be

equal to 1 . Apparently, û

P

is the Lapla
e transform of a �-distribution with parameters

'; 
 > 0. With � :=

a+1

a

, where a > 0 or a < �1 imply � 2 Rnf1g, we obtain


(t) = ln

�

t+ '

t+ '�

�

; d(t) = 


�

ln

�

t+ '

t+ '�

�

+ ln �

�

; t > 0:

The above representations for û

P

, 
 and d 
an be 
ontinuously extended to the point 0. �

We will now indi
ate an alternative way to prove the last proposition: R. S. Liptser and

A. N. Shiryayev (
p. [LS℄, theorem 19.7.) 
hara
terize absolute 
ontinuity of two measures

P;Q 2 P by their 
ompensators fA

P

t

g

t�0

; fA

Q

t

g

t�0

. The measure Q is absolute 
ontinu-

ous with respe
t to P if and only if there exists a nonnegative pro
ess

n

�

P;Q

t

o

t�0

wi
h is

predi
table with respe
t to fF

t

g

t2T

, su
h that

A

Q

t

(!) =

Z

1

0

�

P;Q

s

(!)dA

P

s

(!); t <1;

and

Z

1

0

�

1�

q

�

P;Q

s

(!)

�

2

dA

P

s

(!) <1

are veri�ed for P -almost all ! 2 
.

Now for P 2M and analogously for Q 2M we have (
p. [Gra℄)

A

P

t

(!) =

Z

t

0

�

P

X

s

(!)

(s)ds ; P -a.e.;

where �

P

n

(t), n 2 N, t > 0, are the transition intensities of the mixed Poisson pro
ess (and

hen
e birth pro
ess) P . So, for the 
ase P;Q 2M we obtain:

�

P;Q

t

(!) =

�

Q

X

t

(!)

(t)

�

P

X

t

(!)

(t)

; P � a:e: ;

whi
h is a predi
table pro
ess if and only if the quotient on the right side does not depend

on !, i.e., �

P;Q

t

(!) � �

P;Q

t

for ! 2 
. Additionally, we have 0 < �

P;Q

t

< 1 for P 6= Q.

A se
ond part of theorem 19.7. in [LS℄ says that the Radon-Nikodym derivatives dQ

t

=dP

t

for t � 0 
an be represented as

dQ

t

dP

t

(!) = exp

�

Z

t

0

ln�

P;Q

s

(!) dX

s

(!)�

�

A

Q

t

(!)�A

P

t

(!)

�

�

; P

t

� a:e: (25)

Now let us return to our initial question: Whi
h measures P;Q 2M 
an be in relation �

to ea
h other?

The de�nition of P � Q requires for t 2 [0;1) that

dQ

t

dP

t

(!) = e


(t)X

t

(!)+d(t)

; P

t

� a:e:;

11



whi
h together with equation (25) leads to

Z

t

0

ln�

P;Q

s

dX

s

(!)�

�

A

Q

t

(!)�A

P

t

(!)

�

= 
(t)X

t

(!) + d(t); P

t

� a:e:

Partial integration yields

ln�

P;Q

t

X

t

(!)�

Z

t

0

d

ds

�

P;Q

s

�

P;Q

s

X

s

(!) ds� �

P;Q

t

A

P

t

(!) +

Z

t

0

d

ds

�

P;Q

s

A

P

s

(!) ds+A

P

t

(!)

= 
(t)X

t

(!) + d(t)

for P

t

-almost all !. If for a �xed ! 2 
 this equation is valid and if t > 0 is a 
ontinuity

point of the path X

T

(!) we 
an derive with respe
t to t and obtain

�

1� �

P;Q

t

�

d

dt

A

P

t

(!) = 


0

(t)X

t

(!) + d

0

(t)

whi
h implies

�

P

X

t

(!)

(t) =

d

dt

A

P

t

(!) =




0

(t)

1� �

P;Q

t

X

t

(!) +

d

0

(t)

1� �

P;Q

t

:

Furthermore, for t > 0 and n 2 N, the set f! 2 
 : X

t

(!) = n; lim

s!t�0

X

s

(!) = ng, i.e.

the set of 
ounting fun
tions whi
h at time t do not jump and are in state n, has positive

P

t

-measure. So, the transition intensities must verify

�

P

n

(t) =




0

(t)

1� �

P;Q

t

n+

d

0

(t)

1� �

P;Q

t

; n 2 N; t > 0:

But the only pro
esses P 2 M with transition intensities �

P

n

(t) that are linear in n for

�xed t are Poisson pro
esses and Pólya-Lundberg pro
esses (
p. [Gra℄).

To �nd those measures Q 2 M whi
h 
an be equivalent to P 
onsider the quotient

�

Q

X

t

(!)

(t)

�

P

X

t

(!)

(t)

. Sin
e it must not depend on ! if the two measures P and Q shall be in relation

to ea
h other, we �nd that a Poisson pro
ess 
an only be equivalent to a Poisson pro
ess

and a Pólya-Lundberg pro
ess with stru
ture distribution �('; 
), '; 
 > 0, and transition

intensities �

n

(t) =


+n

'+t


an only be equivalent to Pólya-Lundberg pro
esses with the same

parameter 
.

An immediate 
onsequen
e of proposition 6 is the following 
orollary whi
h spe
i�es expo-

nential families in M.

Corollary 8: The only existing exponential families in M are the exponential family of

homogeneous Poisson pro
esses fP 2 M : U

P

= Æ

�

; � > 0g and exponential families of

Pólya-Lundberg pro
esses fP 2 M : U

P

= �('; 
); ' > 0g; where the shape parameter


 > 0 of the 
orresponding Gamma stru
ture distributions remains 
onstant within su
h

an exponential family.

12



Proof: Proposition 6 determines the only measures P 2 M belonging to exponential

families and the only fun
tions 
 and d leading to equivalent measures. Combining these

and therefore 
al
ulating for su
h a P 2 M and all possible appropriate fun
tions 
 and

d the equivalent measures

~

P 2 M via û

~

P

(t) = e

d(t)

û

P

(t) we obtain the above stated

exponential families. �

3 AMartingale Chara
terization of Pólya-Lundberg Pro
esses

In the pre
eeding se
tion we emphasized the spe
ial position of the Pólya-Lundberg pro
ess

within mixed Poisson pro
esses. In the sequel, we will dedu
e a martingale 
hara
terization.

First, 
onsider the su

eeding proposition 
hara
terizing the pro
ess of densities

fdQ

t

=dP

t

g

t�0

=

�

e


(t)X

t

+d(t)

	

t�0

of two equivalent measures P; Q 2M as a martingale:

Proposition 9: Given a measure P 2 M and fun
tions 
; d : T ! R the following

statements are equivalent:

(i) There is a measure Q 2M, so that for every t 2 T the measure Q

t

is absolutely 
on-

tinuous with respe
t to P

t

and the 
orresponding Radon-Nikodym derivative veri�es

dQ

t

=dP

t

= e


(t)X

t

+d(t)

P

t

-a.e.

(ii) Under P , the pro
ess

n

e


(t)X

t

+d(t)

o

t2T

is a martingale with respe
t to the natural

�ltration fF

t

g

t2T

of X

T

and the expe
tation of e


(t)X

t

+d(t)

is equal to 1 for all t 2 T .

Proof: (i)) (ii): Sin
e for t � 0, s 2 [0; t℄ and A 2 F

s

we have

Z

A

dQ

t

dP

t

dP =

Z

A

dQ

s

dP

s

dP

the pro
ess of Radon-Nikodym derivatives

n

e


(t)X

t

+d(t)

o

t2T

is a martingale with respe
t

to fF

t

g

t2T

.

(ii) ) (i): It is evident, that if we de�ne a proje
tive family of measures fQ

t

g

t�0

by dQ

t

=dP

t

:= e


(t)X

t

+d(t)

, then there exists a measure Q 2 P su
h that the measures Q

t

are the restri
tions of Q to F

t

. What we have to show is, that Q ne
essarily lies in M.

For d � 0 the measure P itself veri�es (i). Noti
e that d � 0 and hen
e 1 = E

P

�

e


(t)X

t

�

imply 
 � 0 or U

P

= Æ

0

.

Let d 6� 0. We will apply lemma 5, that is to show that d(0) = 0 and that 
 and d

are 
ontinuous and di�erentiable on (0;1) su
h that

�




0

(t)(k � 1) + d

0

(t)

�

û

(k�1)

P

(t) = (e


(t)

� 1) û

(k)

P

(t) (26)

holds for t > 0 and k 2 N.

At �rst we have d(0) = � ln E

P

�

e


(0)X

0

�

= 0:

13



Continuity and di�erentiability 
an be dedu
ed from the martingale property:

Let t > 0 �xed. The martingale property 
orresponds to

E

P

�

e


(t)X

t

+d(t)

�

�

X

s

�

= e


(s)X

s

+d(s)

; s 2 [0; t℄;

be
ause X

T

is a markovian pro
ess under P . We 
an equivalently write:

1

X

k=0

e


(t)k+d(t)

P (X

t

= k jX

s

= k

s

) = e


(s)k

s

+d(s)

; s 2 [0; t℄; k

s

2 N

0

: (27)

Sin
e the 
onditional probabilities P (X

t

= k jX

s

= k

s

) are

P (X

t

= k jX

s

= k

s

) =

8

>

>

<

>

>

:

(�1)

k�k

s

(t� s)

k�k

s

(k � k

s

)!

�

û

(k)

P

(t)

û

(k

s

)

P

(s)

for s 2 [0; t℄; k � k

s

;

0 else,

we have

e


(s)k

s

+d(s)

û

(k

s

)

P

(s) =

1

X

k=k

s

e


(t)k+d(t)

(�1)

k�k

s

(t� s)

k�k

s

(k � k

s

)!

û

(k)

P

(t); s 2 [0; t℄; k

s

2 N

0

:

Sin
e for k

s

2 f0; 1g the right side of the equation is a 
ontinuous and di�erentiable fun
-

tion of s for s 2 [0; t℄ and sin
e t 
an be 
hosen arbitrarily big, the fun
tions 
 and d must

be 
ontinuous and di�erentiable on (0;1).

To prove (26) we di�erentiate the last equation with respe
t to s and obtain:

�




0

(s)k

s

+ d

0

(s)

�

e


(s)k

s

+d(s)

û

(k

s

)

P

(s) + e


(s)k

s

+d(s)

û

(k

s

+1)

P

(s)

=

1

X

k=k

s

+1

e


(t)k+d(t)

(�1)

k�k

s

(t� s)

k�k

s

�1

(k � k

s

� 1)!

û

(k)

P

(t); s 2 (0; t); k

s

2 N

0

:

Sin
e power series are 
ontinuous in their 
onvergen
e interval, taking the limit s " t �nally

leads to

�




0

(t)k

s

+ d

0

(t)

�

e


(t)k

s

+d(t)

û

(k

s

)

P

(t) + e


(t)k

s

+d(t)

û

(k

s

+1)

P

(t) = e


(t)(k

s

+1)+d(t)

û

(k

s

+1)

P

(t)

resp.

�




0

(t)k

s

+ d

0

(t)

�

û

(k

s

)

P

(t) =

�

e


(t)

� 1

�

û

(k

s

+1)

P

(t); k

s

2 N

0

:

Su
h a representation exists for every t > 0. Hen
e, all the 
onditions of lemma 5 (ii) are

veri�ed and 
onsequently there exists a measure Q 2 M, that veri�es the required (
p.

lemma 5 (i)). �
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An immediate 
onsequen
e of proposition 9 is the following martingale 
hara
terization

of Pólya-Lundberg pro
esses within the 
lass of mixed Poisson pro
esses:

Main theorem: The following statements are equivalent for a measure P 2M:

(i) There are fun
tions 
; d : T ! R with d non-
onstant, su
h that

n

e


(t)X

t

+d(t)

o

t2T

under P is a martingale with respe
t to fF

t

g

t2T

.

(ii) The measure P 
orresponds either to a Poisson or a Pólya-Lundberg pro
ess.

Proof: Use propositions 6 and 9. �
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