H*-CALCULUS FOR PRODUCTS OF NON-COMMUTING OPERATORS

ROBERT HALLER-DINTELMANN, MATTHIAS HIEBER

ABSTRACT. It is shown that the product of two sectorial operators A and B admits a bounded
H*®°-calculus on a Banach space X provided suitable commutator estimates and Kalton-Weis
type assumptions on A and B are satisfied.

1. INTRODUCTION

The question of maximal LP-regularity for partial differential equations has attracted much at-
tention in the last decade. One reason for this is that, by linearization techniques, one obtains a
powerful approach to many nonlinear parabolic problems.

Starting from the fundamental paper of Da Prato and Grisvard [DPGT75], the so-called method
of operator sums was further developed by Dore and Venni [DV87] and more recently by Kalton and
Weis [KWO01]. They proved, roughly speaking, that the sum A + B of two commuting operators A
and B, equipped with its natural domain, has similar properties as A and B. The most important
examples fitting in this framework are of course the time derivative and differential operators with
respect to the space variable.

Whereas problems of this kind for commuting operators may be regarded as fairly well under-
stood, the situation is less clear in the non-commuting context. A first result in this direction
was given by Monniaux and Priiss [MP97], who proved a theorem of Dore-Venni type, assuming
the Labbas-Terreni commutator condition (see [LT87]). Very recently, Priiss and Simonett were
able to prove a non-commutative version of the Kalton-Weis theorem for both Da Prato-Grisvard
and Labbas-Terreni commutator conditions, see [PS04]. Applications of this result to parabolic
equations on wedges and cones yield optimal regularity results for the solution of these equations.

For many applications it is essential to have results of this kind not only for the sum of A and
B but also for products AB. Indeed, recent developments in free boundary value problemes with
moving contact lines show that regularity results on products of non commuting operators are very
helpful in this context.

First results on products of non commuting sectorial operators under certain commutator esti-
mates were obtained by Weber and Strkalj. Indeed, a Dore-Venni type result for products was first
obtained by Weber [Web98]. Strkalj [Str01] proved that the product AB of A and B is sectorial
provided the underlying space is B-convex and assumptions of Kalton-Weis type are satisfied.

It is the aim of this paper to study the remaining question in this context: existence of an H°-
calculus for the product AB of non commuting operators A and B under suitable commutator
and Kalton-Weis type assumptions. In the following Theorems 3.1 and 3.2 we give an affirmative
answer to this question.

2. PRELIMINARIES

In this section we introduce the notation being used throughout this article and collect certain
properties of sectorial operators and operators with a bounded H°-calculus.

If X and Y are Banach spaces, £(X,Y") denotes the space of all bounded, linear operators from
X to Y; moreover, £(X) := £L(X, X). The spectrum of a linear operator A in X is denoted by
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o(A), its resolvent set by o(A). As usual domain and range of an operator A are denoted by D(A)
and R(A), respectively.

Let X be a complex Banach space, and A be a closed linear operator in X. Then A is called
sectorial if D(A) = X, R(A) = X, (—00,0) C o(A) and

ltt+ A~ <M, t>0,

for some M < oo. We denote the class of sectorial operators in X by S(X). ¥y C C means the
open sector

Yo ={Ae C\{0}:|argA| < 6}.

If A€ S(X) then o(—A4) 2O Ty and sup{||A(A + A) || : JargA| < 0} < oo for some # > 0.
We thus define the spectral angle p4 of A € S(X) by

pa=inf{p:0(-4) D Bry, sup [AA+A)7] < oo}
}\GE,\.,Qb

Evidently, we have ¢4 € [0,7) and ¢4 > sup{|arg)| : A € 0(4)}. For ¢ € (0,7] we define the
space of holomorphic functions on X4 by H(Xy) = {f : ¥4 = C holomorphic}, and

H>(X4) = {f : ¥4 — C holomorphic and bounded}.

The space H*(X4) with norm ||f||% = sup{|f(A\)| : |argA| < ¢} forms a Banach algebra. We
also set Hg®(X¢) = U, so Ha,5(Z¢), where Ho5(Eg) = {f € H(Zy) : ||f||§/8 < o0}, and
£ 5 = supjyj<t A FN)] + supjy s NP F(N)]. Given A € S(X), fix any ¢ € (pa,7] and let
Ly = —(—00,0]e™ U[0,00)e ¥ with p4 < ¢ < ¢. Then
1 - o)
fA) == | FNA=A)7"dN, f e HP(3y),
¥

- 27 Jp

defines via ®4(f) = f(A) a functional calculus ®4 : H§*(X4) — L£(X) which is an algebra
homomorphism. Following McIntosh [McI86], we say that a sectorial operator A admits a bounded
H*-calculus if there are ¢ > p4 and a constant Ky < oo such that

(2.1) IF(DN < KollfI%,  for all f € H5®(Sg).

The class of sectorial operators A which admit a bounded H*-calculus will be denoted by H*(X)
and the H-angle of A is defined by

%X =inf{p > @4 : (2.1) is valid}.

If this is the case, the functional calculus for A on H§°(X4) extends uniquely to H*(X,).

We consider next another subclass of S(X), namely operators with bounded imaginary powers.
More precisely, a sectorial operator A in X is said to admit bounded imaginary powers if A € L(X)
for each s € R and there is a constant C' > 0 such that ||A%|| < C for |s| < 1. The class of such
operators will be denoted by BZP(X). We call

— 1 ;
ear = hm\s|—>oom log || A**|]
the power angle of A. Since the functions f, defined by fs(z) = 2% belong to H*(Z;), for any
s € R and ¢ € (0,7), we obviously have the inclusions

H®(X) C BIP(X) C S(X),
and the inequalities
Px > PR > pa > sup{larg A1 X € a(A)}.

Let Y be another Banach space. A family of operators 7 C L(X,Y) is called R-bounded, if
there is a constant C' > 0 and p € [1,00), such that for each N € N, T; € T, z; € X and for all
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independent, symmetric, {—1,1}-valued random variables €; on a probability space (2, M, u1) the
inequality

N N
Z{:‘jTjiL“j S C Zsjazj
= Lp(2Y) = @)
is valid. The smallest such C is called R-bound of T, we denote it by R(7). Observe that the
concept of R-boundedness does not depend on p, however R(7) does, see [CAPSWO00], [Wei01],
[KWO01], [DHPO03].

The concept of R-bounded families of operators leads immediately to the notion of R-sectorial
operators. Indeed, a sectorial operator is called R-sectorial (see [CPO01]) if

Ra(0) :=R{t(t+A)~":t>0}) < 0.
The R-angle o of A is defined by means of
R :==inf{f € (0,7): Ra(r —0) < 00},
where
Ra(0) := RU{ANA+ A)~! - |arg \| < 6)).
Finally, we say that A € H*(X) admits an R-bounded H*-calculus, if the set

{f(4): fe H®(Zy), IfII% <1}

is R-bounded for some ¢ € (0,7). As above, the infimum ¢¥* of such ¢ is called the RH*°-angle
of A. The class of such operators is denoted by RH>(X).

Assume that the underlying space X satisfies the so-called property («), see [CAPSWO00, Defi-
nition 3.11]. Then Kalton and Weis [KWO01, Theorem 5.3] proved that every operator A € H>(X)
already admits an R-bounded H *°-calculus. More precisely, we have

(2.2) H®(X) =RH®(X)  with  oF® =%.

It is well known that LP-spaces with 1 < p < oo possess the property ().
We are now able to state the Kalton-Weis theorem which gives a sufficient condition for the
existence of an operator-valued H°°-calculus.

Theorem 2.1 ([KWO01]). Let X be a Banach space. Assume that A € H™(X), F € H>®(X4; L(X))
such that
FN(p—=A)"=(—-A)TFQ), pep(d),e,,
and that ¢ > @ and R(F(X4)) < 0o. Then there exists a constant C' independent of F' such that
F(A) € L(X) and
IF(A)llcx) £ OR(F(Zg)).
Consider for two sectorial operators A and B in X their product AB defined by
(AB)z := ABz, D(AB):={z € D(B): Bx € D(A)}.

We then observe that AB is closed as soon as A is invertible or B is bounded. The Kalton-Weis

theorem moreover implies for commuting operators A and B the following result.

Corollary 2.2. Let X be a Banach space and assume that A and B are sectorial operators in X
which commute in the sense of resolvents. Suppose that 0 € p(A), A € H>*(X), B € RS(X) and
that o + o < .
a) Then AB is sectorial and pap < o5 + pX.
b) If in addition B € RH>®(X) with ¢X + pR> < m, then AB € H>®(X) and %5 <
o
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We say that a Banach space X belongs to the class H 7T, if the Hilbert transform is bounded
on LP(R; X) for some (and then all) p € (1,00). Here the Hilbert transform H of a function
f € S(R; X), the Schwartz space of rapidly decreasing X-valued functions, is defined by

Hf .= %PV(%) x f

These spaces are also called UMD Banach spaces, where the UMD stands for unconditional mar-
tingale difference property. It is a well known theorem that the set of Banach spaces of class HT
coincides with the class of UMD spaces; see e.g. [Bur86].

Throughout this paper, for ) € (0,7) and > 0 we denote by I}, the path given by

[y 1= —(—oo, —r]e?¥ Ure =¥ ¥l U [r,00)e™,

and we write T'y, := T,
We remark that by C; M and ¢ we denote various constants which may differ from line to line
but which are always independent of the free variables.

3. THE MAIN RESULT

Is the product of sectorial operators again sectorial? Let us recall that the first result in this
direction for non-commuting operators was proved by Weber [Web98]. He showed that in UMD
spaces, v + AB with natural domain D(AB) = {z € D(B) : Bx € D(A)} is sectorial provided A
and B have bounded imaginary powers of suitable power angles and certain commutator estimates
are fulfilled. This result was later on extended by Strkalj [Str01] to Kalton-Weis type assumptions
for operators defined in B-convex Banach lattices.

We start with a generalization of the latter result to arbitrary Banach spaces.

Theorem 3.1. Let X be a Banach space. Assume that A € H*(X) and B € RS(X) with 0 € o(A)
fulfill the following properties:
a) (u— B)"'D(A) C D(A) for some (all) u € o(B),
b) there are 04 > ¢ and Op > <p7§, such that 04 +0p < w and there exist constants c,a > 0
and > 0 with a + 8 < 1, such that
_ _ c
1A, (n+B)7 A+ A7 <

(L4 AN = |l 47

forall e X, g, and p € ¥r_g,.
Then there exists v > 0 such that the operator v + AB with domain D(AB) is sectorial with
ovyap < ba+0p.

The following main result of the paper states that in the above situation we even have AB €
H>(X) provided B € RH>®(X).

Theorem 3.2. Let X be a Banach space. Assume that A € H>®(X) and B € RH>®(X) with
0 € o(A) fulfill the following properties:
a) (u— B)'D(A) C D(A) for some (all) pu € o(B),
b) there are 04 > ©X and 0p > <p7§°°, such that 04 + g < w and there exist constants
c,a >0 and f >0 with o + 5 < 1, such that

1A, (e + B) (A + A7 < c

(L4 AN = |l 47

forall e X, g, and p € ¥r_g,.

Then there exists v > 0, such that the operator v + AB with domain D(AB) has a bounded H>-
calculus with ¢35 45 < 04 +05.
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Remark 3.3. a) As both theorems are not symmetric in the roles of A and B, it is worthwile
to note that the same results hold true if the properties of A and B are interchanged. The
proofs stay the same.

b) If X has property (a), the classes H*>°(X) and RH>*(X) coincide; see (2.2). Thus Theo-
rem 3.2 may be formulated in this case with B € H*(X).

c) It will become apparent in the proof of the two theorems, that the amount of the shift v
is determined mainly by the constant ¢ in the commutator estimate.

Finally we observe, that the invertibility of A implies A € o(A) for all |A\| < ||[A71]|7! and
TN+ A7 < JJA7H|(1 = [M|JA7L]]) ! for all these A. Thus the commutator estimate can be
extended to all A € B9, U{z € C: |2] < r} whenever r < [|[A7}||7L.

4. SECTORIALITY OF v + AB

In this section we give a proof of Theorem 3.1. Our method is inspired by the work of Weber
[Web98] and Priiss and Simonett [PS04]. It is heavily based on properties of the families of
operators S, and T}, which are defined as follows.

We fix angles v € (0,m1—04—0g) and ¢ € (04,7 —v—05), as well as a number r € (0, ||A~L[|71).
Now let p € ¥,. Then for all z € I'};, we have p/z € o(—B). Furthermore, by the choices of ¢ and
r, the inclusion I'}, C o(A) holds true. We then define for z € D(A)

! 1 1 )

Sux = o /F o) (Z —l—B) A(z — A) "z dz,
1 1 1 -1

Ty = 5= [ —AE-A4)7'(Z+B :

we 2mi Jry, 22 (= ) (z + ) zdz

The operators S, are clearly bounded from D(A) to X. For T, this follows by the commutator
estimate. Indeed for z € D(A), we have (u/z + B) "'z € D(A) and

P e 2, Clal'™?
A ( +{A,(—+B) }A )AazH<< + Azl|.
H H 2 ol * e ) 1471
The operators Su and T}, are even bounded on X. In order to show this, we introduce the

following lemma due to Kalton and Weis [KWO01, Lemma 4.1]. Further proofs may be found also
in [DDHT04].

Lemma 4.1. Suppose A € H*(X), ¢ > o and h € H;°(X4). Then there is a constant C > 0,
such that

> aph(2FtA)

kEZ

< Csup |ay|
kez

L(X)
for all a, € C and t > 0.

The above Lemma 4.1 enables us to prove that S, and T, are bounded on X. More precisely,
we have the following.

Lemma 4.2. Let v € (0,7 — 604 —05). The operators S, and T,, have unique bounded extensions
on X for every pn € ¥, and there is a constant C.,, such that

1
1Sulleco + 1Tl <| | ( *W)'

Proof. By Cauchy’s Theorem we may rewrite S, for an arbitrary number a € (0,1) as

_ 1 1 I -1 a -1
S"w—_'/pz1+”(;+3) A%z — A)" x d=.

211
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In a second step we commute some part of A%(z — A)~! with the resolvent of B and get for every
be(0,1)

Sur = = [ (4% =) ) (u+2B) (A% - A7) e e
2mi ry 2°
L i -1 af, _ A\—1\b a(, _ Ay-1)1-b
* omi F;za[WHB) Az = )] (Az - ) ) w
= I+ I>.

The right values of a and b will be chosen later on.
Analogously we get

1 L gag, _ og-1yib —1( qa(, _ A\—1\b
T,z 37 Jry 7 (A(z—=A)7) “(p+2B) 1A%z —A) Nz dz
_ b L ogag, _ ogp-1yih —1 (pa(, _ s\—1\b
2 Jry 2 (A"(z—A)) [(,u+zB) (A%(z—A)h ]az dz,

so that the proofs for S, and T}, are basically the same and we will concentrate on S,,.

The main step to estimate I5 is to use the bounded H°-calculus of A and write (A%(z — A)
as a contour integral. To this end, we define the function g.(¢) := (¢*(z —¢)~')® and choose angles
w and ¥ with 4 < w < ¥ < ¢ as well as numbers 7 and 7 satisfying r < 7 < # < ||A7!||~!. Then
g, € H§°(Xy) and we have

71)b

(M- =1 [ g4 dc

27 T

Using this, we can rewrite the commutator in I as

ab
=55 | g [ =

A closer look at the remaining commutator yields
1 -1
—1 o=t L -1 | (H A1
(428 -7 = L ) [(z +5) ,A] (- A)
and, using the commutator estimates, that leads to

H (0 +2B) 1, (A% = 4) )] H

< o [, plie-a|[(4+p) " a) -0

C|Z|Bib/ |Z|b|C|ab d|<|

rz 12 = (P (L + [ pul P

In order to estimate this integral, we first observe, that there is a constant C' > 0, such that for all
z €Il and all ¢ € I'], we have

(4.2) |z = ¢ = Clz] + 1<),

at least if we have p —w < /2, but this can be guaranteed by a suitable choice of w above. Thus
(4.1) may be estimated further by

|2]° ( B ) ¢|* 2|7~ ¢|*
C d C d|{].
PR / FTria) ey dels |u|1+ﬂ/r e

3
w

(0 +2B)7, (422 - 4)1)']

di¢|

(4.1)

IN

This last integral is convergent if @ and b satisfy a < 1 — ab.
Using this result, we estimate I as

C e a _1\1-b
ol < iz [ 1 A0 = )7 el
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As the function z — z*/(c+ z), « € [0,00) takes its maximum at x = ca/(1 — a), we see by the
bounded H*°-calculus of A and (4.2), that

H (4G =47 H : Cwesggo) <IZI$1 m)l_b = C|z|le= D00,

This finally yields the estimate
g /
L < —— 27901 |z ||z,
1L < e F:>| | 2] ]|

that gives us a second condition for a and b to make this integral converge: f < ab. If we choose
a,b € (0,1), such that a« + 8 < a + ab < 1, which is possible thanks to a + 8 < 1, both conditions
are satisfied simultaneously and we get ||Iz]] < C/|u|*T7||z||.

We now turn our attention to I;. As we have seen, the integrals defining I and S,z converge
absolutely. Thus the integral defining I; also converges absolutely. Since there is no singularity of
the integrand for small |z|, we only look at |z| > 2™, where ng € Z is a fixed number, such that
2™ > r. For this part of I; we may write thanks to the absolute convergence

. L —1\b —1( Aa —1\1-b
]\}I—I)noo r:;N;(A (z— A7) (p+2B) " (A%z— A7) Tz dsz,
where TN := {A € T7, : 27 < |A] < 2V} for N > ny.

For one of these integrals we have

2N

Ky = / —( 1 (Aa(te"“’—A)fl)( + te'¥ B) 1(A“ te' — 1)17%36"“’ dt
2m0

teiv)a
— eiv(l-a) Z / (( ) ) w+ te“"B
1-b
( - —) ) x dt.
t
Substituting t = 2Fs and settlng g; = g —b/b , we obtain

. ~ A - A ds

Ky = ’¢<1—“>§ / Ty 2%5e° B) ™! Goio | o ) @ —.

N=e€ ; 9o | ory (B +2%5€WB)™" Geiw | 55 ) & —
o

In order to estimate the norm of this expression, we choose by the Hahn-Banach theorem z* € X'
with ||z*|| =1 and

N-1 2

Z A kooiv gyl ~ A ds
||KN|| = ‘<k_ \/1' Geive <2T45> (/,L+2 se </7B) Geive 2Ts xr ?,JU

=ng

2k+1

2| N—1
A . A ds
< i | =/ 25 BY 7! Gip [ =— * —.
- /1 k§0 <ge¢ <2k5> b+ 2%5€¥B) ™ G <2k5> o > s

Having in mind the R-sectoriality of B, we plug in independent, symmetric, {—1, 1}-valued random
variables ey, - ..,en—_1 on some probability space (2.

2 N-1
A . A
:/ / E ai(w)< Jeiv <2k ) (1 + 2¥se B)™1 Goiv <2T> :1:,:1:*> dw
LI e s

As these random variables are independent, we may write

_ /12 /Q <Nzl () (1 + 2569 B) ! s (27’48) z, Ni e (W)Te7 <%> :1:> dw

k:no k:no

ds
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Note that A* € H>®(X') with ¢ = ¢%. in case D(A*) is dense in X'. If this is not the case,
we may use the sun-dual A® on X© instead (c.f. [vN92, Chapter 1.3]). By the Cauchy-Schwarz

inequality we see
» . A
> er(p+285eB) ! g <%> z

/2
1 k=ng
/2 1
1 ul

N-1
ds

IN

Z 519.96“’( > )

k=ng

L2(2;X)

N-1
B p -t (A

Z kR seiv (2’“sei%’ +B) Jeio (%) ’

k=no L2(92;X)

Z EkJeiv ( & ) z*

kno

L2(2;X")

ds

L2(QX7)

As B is R-sectorial, and |arg(u/(2¥se¥?))| < m — p we can estimate the latter term by

conf H¥an ()] X (L)

k=ng
where Cr := R ({AA+B) ™' : A€ Zr4,}).
Finally, we apply Lemma 4.1 to the two remaining norms. This yields

2
ds C

|KN] < / <Sup |5k|> lzll — = —ll=|l.
Jul k=no s |yl

Summing up our considerations, we finally get for all x € D(A)

ds

?

L2(2:X) L2(92;X")

1
18,21l < 101+ 121 < €7 (14 70 )l
Thus, by density, we have the same estimate on all of X, finishing the proof. O

The above lemma is now the basis for the construction of a right inverse for yu + AB. Also, we
show that v + AB is injective.

To this end, let « € D(A)N R(A). Then, by the closedness of B, we even have S,z € D(B) and
we can calculate with the help of Cauchy’s Theorem

BS,z = 1 —B( +B) 1A(Z—A)*lardz
# 27T'L F

1 1 pof 1 -1 .

(4.3) = 5 r;A(z—A) a:dz—2—m v p (Z—|—B) A(z—A) "z dz
]_ 1
= Al P B —A)lx de.
T o T 22 (z+ ) (2 )T de

This yields

1S, < 14 lel + Clul [ LEL L el < ollel

wll < PR T ]

for every x € D(A) N R(A). By density of D(A) N R(A) and the closedness of B this shows that
we even have S, € L(X, D(B)).

Looking again at (4.3), we see, that for every z € D(A) N R(A) the integral on the right hand
side is in D(A). Thus we get

-1
BSur = A7 (“‘ ~ o / SA(L4B) - dz) = A7 (2 — pSuz + Q).

27
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where
_ k[ L1k ! _ -l
Qui= 5= P {(Z+B) ,A] (z — A)'dz
is in £(X) with
C
(4.4) 1Qullz(x) < CW’

thanks to the commutator estimate. As BS, is a bounded operator on X and A is closed, this
means, that even for every € X we have BS,z € D(A) and ABS,z = (1+ Q,)z — pS,z. This
implies S,z € D(AB) for every x € X and

(n+AB)S, =1+Q,

in £(X). Choosing v > 0, such that ||Q,]] < § < 1 whenever |u| > v, we get the right inverse
R, :=5,(14 Q)" of p+ AB. Summarizing we proved the following result.

Lemma 4.3. There exists v > 0 and for every v € (0,7 — 04 — 6p) there is a constant C,, > 0
such that for every p € X, with |u| > v the operator p+ AB is surjective with right inverse R,

and
C 1
IR, < & (1+—).
Ml |u|®

Before we start to prove that p + AB is injective, we show that D(AB) N D(A) is dense in
X. We will need this later on, but on the other hand this also implies the density of D(AB) in
X, that we need to prove sectoriality of v + AB. In order to do so, fix A € ¢(B) and note that,
thanks to (A — B)~!D(A4) C D(A) we have (A — B)"'D(A) C D(AB) N D(A). Let x € X. By
density of D(B), we approximate z in X by (w,) C D(B) and set y, := (A — B)w,,. Since D(A)
is also dense in X, for every n € N, there is a 2z, € D(A), such that ||z, — yn|| < 1/n. Now,
(A= B)7'z, € D(AB) N D(A) for every n € N and

_ _ c
I =B) "z —zl| < I(X = B) " Hlllzn = yall + [lwn — 2| < — tlwe —2| —0 (- o00).
Lemma 4.4. There is a constant v > 0 such that the operator u + AB is injective for all p €
Yr—9a—0p With |u| > v.

Proof. The beginning of the proof is very similar to the construction of the right inverse, we just
look at T}, B instead of BS,,. Let x € D(AB) N D(A). Then we have Bz € D(A) and

_ 1 1 T

T,Bx = 33 F;;A(Z_A) (;4—3) Bz dz
L L Ry
= A 'z 57 F;ZQ(Z A) (Z—f—B) z dz,

analogously to (4.3). As x is supposed to be in D(A), this again implies T, Bx = A~ (z—uT,z). We
deduce as before, that AT, B € £(X) and AT,,B = I — uT), thanks to the density of D(AB)ND(A)
in X.

Since € D(AB) we may commute A and T}, and we see, that

T,(p+ AB)x = x — [T, A]|Buz, xz € D(AB).

In order to prove injectivity of p + AB, choose # € D(AB) with (1 + AB)xz = 0. Then our
considerations above yield z = [T},, A|Bx = p[T},, A]JA 2. Choosing a € (3,1 — a) and applying
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A~® to this identity, we obtain

2mi Jpr, 22

- 5 [ LA ) A taeacar

by the Dunford calculus. The commutator estimate and ||A'=%(z — A)71|| < C|z]|7® then yields
1 1
A=) < S / S ST
WP o, Eaa e W e e

By the choice of a, these two integrals converge, so we end up with

-1
Aag = P [ L e g [(H+B) ,A] ATrag-eg g,
4

5 dicllA™]].

A~ 2] < =z || A~ "]

|
1Z IB
If we choose v so big, that Cc/|u|? < 1, this implies A=%z = 0, and hence x = 0, finishing the
proof. O

Summarizing, we have proved Theorem 3.1: In fact, if we choose v > 0 big enough, then, for
all p € ¥:.9,-9, \ B(0,v) the operator p + AB is surjective by Lemma 4.3 and injective by
Lemma 4.4. Furthermore D(AB) and R(AB) are dense in X and for every v € (0,7 — 604 — 6p)
we have the resolvent estimate

1

IGu+ AB) = 1) < |( o

), pes,\ BO,v).

This implies, that ¢, 445 < 04 +65.

5. BOUNDED H*°-CALCULUS FOR v + AB

In order to prove a bounded H*°-calculus for v + AB with ¢, a5 < 04 + 05, we choose angles ¢
and n with 64 +60p < ¢ <n <7 and f € H;°(X,). We have to prove the estimate

—1

(5.1) fN (A= (v+4D)) < ClIf11%-

Ly

Here, we choose v > 0 in such a way, that by Theorem 3.1 the operator v + AB is sectorial.
Thus the resolvent in the above integral exists and can be respresented as (A — (v + AB))™! =
—Sy—A(1+ Q,-»)""'. Note that, as |arg(—\)| =7 — ¢ <7 — 4 — 0p, we have —\ € X, for some
vy €E€(r—¢,m—04 —0p), so that S,_, and @, _» are well defined.

As we have S,(1+ Q) ' = S, —5,Qu(1+ Qu) ' =: S, + P, we may split the integral for
(5.1) into two parts, namely

FOA=@+4B) "dr=— [ (NS, rdr - f( )Py x dX =: Jy + J.
L

The easy part is to estimate J», as we may simply take the norm into the integral. Using
Lemma 4.2 and (4.4), we get

f()\)P,,_)\ dA

ry

IN

1711 / 1502 Qv (1 4+ Quex) 1| A
2}

1 1
n < n
omie. [ (1 ) s W< Al

IN

thanks to g > 0.
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In order to estimate Ji, we calculate for x € D(A), using the definition of S,

f( ) v )\l’d)\

1 fv—A -t
A)S,— / )/ —2< > A(z — Atz dz dr
Iy 2mi Iy "z z
/ / YA — 1/-l-zB))_1 d\ A(z — A)~7 'z dz.
2’/T’L L I

As B € H*>(X), by permanence properties of the bounded H*-calculus (see e.g. [DHP03, Propo-
sition 2.11]), the operator v+ 2B also is in H*>(X) with ¢} .5 < 0¥ +|arg(z)| < 0p+¢—0p = ¢.
Thus we may write

1
Ji=—= [ fNS,azdr= / ~fv+zB)A(z — A) "tz d.
I'y ; z
By Cauchy’s Theorem we may rewrite this for an arbitrary number a € (0,1) as
1
/ f(u+zB)A“(z—A)_1:1: dz,

in the same manner as in the proof of Lemma 4.2. The resulting integral now also looks very

much like the integral we started the proof of this lemma with (we just have f(v + zB) instead of

(v + zB)~1). Indeed, the method here will be exactly the same as in the proof of Lemma 4.2, so

we will freely use the notations introduced there and only indicate the differences in the proof.
After commuting (A%(z — A) 1) with f(v + zB) we now end up with

S o= —/FTZ—la(Aa(z—A)*l)”f(umB)(Aﬂ(z_A)fl)“”mdz
_/,. Zi [f(u+zB), (Aa(z—A)*l)b} (A%(z = A) ) e dz
= t]11'|':]12.W

Evaluating the commutator in Jj5 this time leads to a double integral:
[f(u +2B), (A%(z — A)_l)b] -1 / f(A)L [(A —w+2B) (- A)—l} ¢ dA.
’ 4m? Ly JI7 (z=Q)* ’

As we may again apply our commutator estimates, thanks to

-1
(- 0aB) -] =27 | (524 B) Al e-a
we find
O el |
|C|ab -1 (V_A )1 !
< ||f||00||/r¢/ lic—4 ||H[ - Al (=47 aigl
B—b |Z| |C|ab B—b
< O™ [y N g e 49 < ORI

Here the first integral converges thanks to § > 0 and the second is of exactly the same form as in
(4.1). Now we can conclude [|.J12]| < C||fl|L]|z]| as before.

Also for J1; we may do the same calculations as we did for I; in the proof of Lemma 4.2 until
we reach the line

2 || N—-1
/1

: A
Z enf(v +2"5¢Y B) Geiv <%> x

k:’ng

ds

)

Z%%w( *> )

k’ng

L2(2;X) L2(2;X")
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where we used the R-sectoriality of B before. Evidently, now the R-bounded H“-calculus of B
does the job. Thus we end up with

2 ||N-1 A N—1 " ds
CJ‘%”JCHZO/1 k_z €k Yeiv (%) z Z EkYeiv <%> x ?;
=nyp

where Cg

L2(@;X) Tk=no L2(25X)

=R ({f(v+2Fse®B) : f € H(X,), |IfIL <1}). As

{f(v +2%seB) : f € HP®(Zy), Ifl% <1} C{f(B): f € H®(So,), IfI1% < 1}

and fp > R, this R-bound is finite. Now we estimate the two remaining norms as before,
getting [|J1]| < C||fIIZ Nz for all z € D(A) in the end. A density argument again finishes the

proof.
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