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Abstrat. It is shown that the produt of two setorial operators A and B admits a bounded

H

1

-alulus on a Banah spae X provided suitable ommutator estimates and Kalton-Weis

type assumptions on A and B are satis�ed.

1. Introdution

The question of maximal L

p

-regularity for partial di�erential equations has attrated muh at-

tention in the last deade. One reason for this is that, by linearization tehniques, one obtains a

powerful approah to many nonlinear paraboli problems.

Starting from the fundamental paper of Da Prato and Grisvard [DPG75℄, the so-alled method

of operator sums was further developed by Dore and Venni [DV87℄ and more reently by Kalton and

Weis [KW01℄. They proved, roughly speaking, that the sum A+B of two ommuting operators A

and B, equipped with its natural domain, has similar properties as A and B. The most important

examples �tting in this framework are of ourse the time derivative and di�erential operators with

respet to the spae variable.

Whereas problems of this kind for ommuting operators may be regarded as fairly well under-

stood, the situation is less lear in the non-ommuting ontext. A �rst result in this diretion

was given by Monniaux and Pr�uss [MP97℄, who proved a theorem of Dore-Venni type, assuming

the Labbas-Terreni ommutator ondition (see [LT87℄). Very reently, Pr�uss and Simonett were

able to prove a non-ommutative version of the Kalton-Weis theorem for both Da Prato-Grisvard

and Labbas-Terreni ommutator onditions, see [PS04℄. Appliations of this result to paraboli

equations on wedges and ones yield optimal regularity results for the solution of these equations.

For many appliations it is essential to have results of this kind not only for the sum of A and

B but also for produts AB. Indeed, reent developments in free boundary value problemes with

moving ontat lines show that regularity results on produts of non ommuting operators are very

helpful in this ontext.

First results on produts of non ommuting setorial operators under ertain ommutator esti-

mates were obtained by Weber and

�

Strkalj. Indeed, a Dore-Venni type result for produts was �rst

obtained by Weber [Web98℄.

�

Strkalj [

�

Str01℄ proved that the produt AB of A and B is setorial

provided the underlying spae is B-onvex and assumptions of Kalton-Weis type are satis�ed.

It is the aim of this paper to study the remaining question in this ontext: existene of an H

1

-

alulus for the produt AB of non ommuting operators A and B under suitable ommutator

and Kalton-Weis type assumptions. In the following Theorems 3.1 and 3.2 we give an aÆrmative

answer to this question.

2. Preliminaries

In this setion we introdue the notation being used throughout this artile and ollet ertain

properties of setorial operators and operators with a bounded H

1

-alulus.

If X and Y are Banah spaes, L(X;Y ) denotes the spae of all bounded, linear operators from

X to Y ; moreover, L(X) := L(X;X). The spetrum of a linear operator A in X is denoted by
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�(A), its resolvent set by %(A). As usual domain and range of an operator A are denoted by D(A)

and R(A), respetively.

Let X be a omplex Banah spae, and A be a losed linear operator in X . Then A is alled

setorial if D(A) = X , R(A) = X , (�1; 0) � %(A) and

kt(t+A)

�1

k �M; t > 0;

for some M < 1. We denote the lass of setorial operators in X by S(X). �

�

� C means the

open setor

�

�

= f� 2 C n f0g : j arg�j < �g:

If A 2 S(X) then %(�A) � �

�

and supfk�(�+A)

�1

k : j arg�j < �g <1 for some � > 0.

We thus de�ne the spetral angle '

A

of A 2 S(X) by

'

A

= inff� : %(�A) � �

���

; sup

�2�

���

k�(�+A)

�1

k <1g:

Evidently, we have '

A

2 [0; �) and '

A

� supfj arg�j : � 2 �(A)g. For � 2 (0; �℄ we de�ne the

spae of holomorphi funtions on �

�

by H(�

�

) = ff : �

�

! C holomorphig, and

H

1

(�

�

) = ff : �

�

! C holomorphi and boundedg:

The spae H

1

(�

�

) with norm kfk

�

1

= supfjf(�)j : j arg�j < �g forms a Banah algebra. We

also set H

1

0

(�

�

) :=

S

�;�<0

H

�;�

(�

�

), where H

�;�

(�

�

) := ff 2 H(�

�

) : kfk

�

�;�

< 1g, and

kfk

�

�;�

:= sup

j�j�1

j�

�

f(�)j + sup

j�j�1

j�

��

f(�)j. Given A 2 S(X), �x any � 2 ('

A

; �℄ and let

�

 

= �(�1; 0℄e

i 

[ [0;1)e

�i 

with '

A

<  < �. Then

f(A) =

1

2�i

Z

�

 

f(�)(��A)

�1

d�; f 2 H

1

0

(�

�

);

de�nes via �

A

(f) = f(A) a funtional alulus �

A

: H

1

0

(�

�

) ! L(X) whih is an algebra

homomorphism. Following MIntosh [MI86℄, we say that a setorial operator A admits a bounded

H

1

-alulus if there are � > '

A

and a onstant K

�

<1 suh that

(2.1) kf(A)k � K

�

kfk

�

1

; for all f 2 H

1

0

(�

�

):

The lass of setorial operators A whih admit a bounded H

1

-alulus will be denoted by H

1

(X)

and the H

1

-angle of A is de�ned by

'

1

A

= inff� > '

A

: (2.1) is validg:

If this is the ase, the funtional alulus for A on H

1

0

(�

�

) extends uniquely to H

1

(�

�

).

We onsider next another sublass of S(X), namely operators with bounded imaginary powers.

More preisely, a setorial operator A inX is said to admit bounded imaginary powers if A

is

2 L(X)

for eah s 2 R and there is a onstant C > 0 suh that kA

is

k � C for jsj � 1. The lass of suh

operators will be denoted by BIP(X). We all

'

BIP

A

= lim

jsj!1

1

jsj

log kA

is

k

the power angle of A. Sine the funtions f

s

de�ned by f

s

(z) = z

is

belong to H

1

(�

�

), for any

s 2 R and � 2 (0; �), we obviously have the inlusions

H

1

(X) � BIP(X) � S(X);

and the inequalities

'

1

A

� '

BIP

A

� '

A

� supfj arg�j : � 2 �(A)g:

Let Y be another Banah spae. A family of operators T � L(X;Y ) is alled R-bounded, if

there is a onstant C > 0 and p 2 [1;1), suh that for eah N 2 N, T

j

2 T , x

j

2 X and for all
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independent, symmetri, f�1; 1g-valued random variables "

j

on a probability spae (
;M; �) the

inequality













N

X

j=1

"

j

T

j

x

j













L

p

(
;Y )

� C













N

X

j=1

"

j

x

j













L

p

(
;X)

is valid. The smallest suh C is alled R-bound of T , we denote it by R(T ). Observe that the

onept of R-boundedness does not depend on p, however R(T ) does, see [CdPSW00℄, [Wei01℄,

[KW01℄, [DHP03℄.

The onept of R-bounded families of operators leads immediately to the notion of R-setorial

operators. Indeed, a setorial operator is alled R-setorial (see [CP01℄) if

R

A

(0) := R(ft(t+A)

�1

: t > 0g) <1:

The R-angle '

R

A

of A is de�ned by means of

'

R

A

:= inff� 2 (0; �) : R

A

(� � �) <1g;

where

R

A

(�) := R(f�(� +A)

�1

: j arg�j � �g):

Finally, we say that A 2 H

1

(X) admits an R-bounded H

1

-alulus, if the set

ff(A) : f 2 H

1

(�

�

); kfk

�

1

� 1g

is R-bounded for some � 2 (0; �). As above, the in�mum '

R1

A

of suh � is alled the RH

1

-angle

of A. The lass of suh operators is denoted by RH

1

(X).

Assume that the underlying spae X satis�es the so-alled property (�), see [CdPSW00, De�-

nition 3.11℄. Then Kalton and Weis [KW01, Theorem 5.3℄ proved that every operator A 2 H

1

(X)

already admits an R-bounded H

1

-alulus. More preisely, we have

(2.2) H

1

(X) = RH

1

(X) with '

R1

A

= '

1

A

:

It is well known that L

p

-spaes with 1 < p <1 possess the property (�).

We are now able to state the Kalton-Weis theorem whih gives a suÆient ondition for the

existene of an operator-valued H

1

-alulus.

Theorem 2.1 ([KW01℄). Let X be a Banah spae. Assume that A 2 H

1

(X), F 2 H

1

(�

�

;L(X))

suh that

F (�)(� �A)

�1

= (��A)

�1

F (�); � 2 �(A); � 2 �

�

;

and that � > '

1

A

and R(F (�

�

)) <1. Then there exists a onstant C independent of F suh that

F (A) 2 L(X) and

kF (A)k

L(X)

� CR(F (�

�

)):

Consider for two setorial operators A and B in X their produt AB de�ned by

(AB)x := ABx; D(AB) := fx 2 D(B) : Bx 2 D(A)g:

We then observe that AB is losed as soon as A is invertible or B is bounded. The Kalton-Weis

theorem moreover implies for ommuting operators A and B the following result.

Corollary 2.2. Let X be a Banah spae and assume that A and B are setorial operators in X

whih ommute in the sense of resolvents. Suppose that 0 2 �(A), A 2 H

1

(X), B 2 RS(X) and

that '

1

A

+ '

R

B

< �.

a) Then AB is setorial and '

AB

� '

1

A

+ '

R

B

.

b) If in addition B 2 RH

1

(X) with '

1

A

+ '

R1

B

< �, then AB 2 H

1

(X) and '

1

AB

�

'

1

A

+ '

R1

B

.
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We say that a Banah spae X belongs to the lass HT , if the Hilbert transform is bounded

on L

p

(R;X) for some (and then all) p 2 (1;1). Here the Hilbert transform H of a funtion

f 2 S(R;X), the Shwartz spae of rapidly dereasing X-valued funtions, is de�ned by

Hf :=

1

�

PV (

1

t

) � f

These spaes are also alled UMD Banah spaes, where the UMD stands for unonditional mar-

tingale di�erene property. It is a well known theorem that the set of Banah spaes of lass HT

oinides with the lass of UMD spaes; see e.g. [Bur86℄.

Throughout this paper, for  2 (0; �) and r � 0 we denote by �

r

 

the path given by

�

r

 

:= �(�1;�r℄e

i 

[ re

�i[� ; ℄

[ [r;1)e

�i 

;

and we write �

 

:= �

0

 

.

We remark that by C, M and  we denote various onstants whih may di�er from line to line

but whih are always independent of the free variables.

3. The main result

Is the produt of setorial operators again setorial? Let us reall that the �rst result in this

diretion for non-ommuting operators was proved by Weber [Web98℄. He showed that in UMD

spaes, � + AB with natural domain D(AB) = fx 2 D(B) : Bx 2 D(A)g is setorial provided A

and B have bounded imaginary powers of suitable power angles and ertain ommutator estimates

are ful�lled. This result was later on extended by Strkalj [

�

Str01℄ to Kalton-Weis type assumptions

for operators de�ned in B-onvex Banah latties.

We start with a generalization of the latter result to arbitrary Banah spaes.

Theorem 3.1. Let X be a Banah spae. Assume that A 2 H

1

(X) and B 2 RS(X) with 0 2 %(A)

ful�ll the following properties:

a) (��B)

�1

D(A) � D(A) for some (all) � 2 %(B),

b) there are �

A

> '

1

A

and �

B

> '

R

B

, suh that �

A

+ �

B

< � and there exist onstants ; � � 0

and � > 0 with �+ � < 1, suh that

k[A; (�+B)

�1

℄(� +A)

�1

k �



(1 + j�j)

1��

j�j

1+�

for all � 2 �

���

A

and � 2 �

���

B

.

Then there exists � � 0 suh that the operator � + AB with domain D(AB) is setorial with

'

�+AB

� �

A

+ �

B

.

The following main result of the paper states that in the above situation we even have AB 2

H

1

(X) provided B 2 RH

1

(X).

Theorem 3.2. Let X be a Banah spae. Assume that A 2 H

1

(X) and B 2 RH

1

(X) with

0 2 %(A) ful�ll the following properties:

a) (��B)

�1

D(A) � D(A) for some (all) � 2 %(B),

b) there are �

A

> '

1

A

and �

B

> '

R1

B

, suh that �

A

+ �

B

< � and there exist onstants

; � � 0 and � > 0 with �+ � < 1, suh that

k[A; (�+B)

�1

℄(� +A)

�1

k �



(1 + j�j)

1��

j�j

1+�

for all � 2 �

���

A

and � 2 �

���

B

.

Then there exists � � 0, suh that the operator � + AB with domain D(AB) has a bounded H

1

-

alulus with '

1

�+AB

� �

A

+ �

B

.
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Remark 3.3. a) As both theorems are not symmetri in the roles of A and B, it is worthwile

to note that the same results hold true if the properties of A and B are interhanged. The

proofs stay the same.

b) If X has property (�), the lasses H

1

(X) and RH

1

(X) oinide; see (2.2). Thus Theo-

rem 3.2 may be formulated in this ase with B 2 H

1

(X).

) It will beome apparent in the proof of the two theorems, that the amount of the shift �

is determined mainly by the onstant  in the ommutator estimate.

Finally we observe, that the invertibility of A implies � 2 %(A) for all j�j < kA

�1

k

�1

and

k(� + A)

�1

k � kA

�1

k(1 � j�jkA

�1

k)

�1

for all these �. Thus the ommutator estimate an be

extended to all � 2 �

���

A

[ fz 2 C : jzj < rg whenever r < kA

�1

k

�1

.

4. Setoriality of � +AB

In this setion we give a proof of Theorem 3.1. Our method is inspired by the work of Weber

[Web98℄ and Pr�uss and Simonett [PS04℄. It is heavily based on properties of the families of

operators S

�

and T

�

whih are de�ned as follows.

We �x angles  2 (0; ���

A

��

B

) and ' 2 (�

A

; ����

B

), as well as a number r 2 (0; kA

�1

k

�1

).

Now let � 2 �



. Then for all z 2 �

r

'

, we have �=z 2 %(�B). Furthermore, by the hoies of ' and

r, the inlusion �

r

'

� %(A) holds true. We then de�ne for x 2 D(A)

S

�

x :=

1

2�i

Z

�

r

'

1

z

2

�

�

z

+B

�

�1

A(z �A)

�1

x dz;

T

�

x :=

1

2�i

Z

�

r

'

1

z

2

A(z �A)

�1

�

�

z

+B

�

�1

x dz:

The operators S

�

are learly bounded from D(A) to X . For T

�

this follows by the ommutator

estimate. Indeed for x 2 D(A), we have (�=z +B)

�1

x 2 D(A) and









A

�

�

z

+B

�

�1

x









=









�

�

�

z

+B

�

�1

+

�

A;

�

�

z

+B

�

�1

�

A

�1

�

Ax









�

�

jzj

j�j

+

Cjzj

1+�

j�j

1+�

�

kAxk:

The operators S

�

and T

�

are even bounded on X . In order to show this, we introdue the

following lemma due to Kalton and Weis [KW01, Lemma 4.1℄. Further proofs may be found also

in [DDH

+

04℄.

Lemma 4.1. Suppose A 2 H

1

(X), � > '

1

A

and h 2 H

1

0

(�

�

). Then there is a onstant C > 0,

suh that











X

k2Z

�

k

h(2

k

tA)











L(X)

� C sup

k2Z

j�

k

j

for all �

k

2 C and t > 0.

The above Lemma 4.1 enables us to prove that S

�

and T

�

are bounded on X . More preisely,

we have the following.

Lemma 4.2. Let  2 (0; � � �

A

� �

B

). The operators S

�

and T

�

have unique bounded extensions

on X for every � 2 �



and there is a onstant C



, suh that

kS

�

k

L(X)

+ kT

�

k

L(X)

�

C



j�j

�

1 +

1

j�j

�

�

:

Proof. By Cauhy's Theorem we may rewrite S

�

for an arbitrary number a 2 (0; 1) as

S

�

x =

1

2�i

Z

�

r

'

1

z

1+a

�

�

z

+B

�

�1

A

a

(z �A)

�1

x dz:
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In a seond step we ommute some part of A

a

(z �A)

�1

with the resolvent of B and get for every

b 2 (0; 1)

S

�

x =

1

2�i

Z

�

r

'

1

z

a

�

A

a

(z �A)

�1

�

b

(�+ zB)

�1

�

A

a

(z �A)

�1

�

1�b

x dz

+

1

2�i

Z

�

r

'

1

z

a

h

(�+ zB)

�1

;

�

A

a

(z �A)

�1

�

b

i

�

A

a

(z �A)

�1

�

1�b

x dz

=: I

1

+ I

2

:

The right values of a and b will be hosen later on.

Analogously we get

T

�

x =

1

2�i

Z

�

r

'

1

z

a

�

A

a

(z �A)

�1

�

1�b

(�+ zB)

�1

�

A

a

(z �A)

�1

�

b

x dz

�

1

2�i

Z

�

r

'

1

z

a

�

A

a

(z �A)

�1

�

1�b

h

(�+ zB)

�1

;

�

A

a

(z �A)

�1

�

b

i

x dz;

so that the proofs for S

�

and T

�

are basially the same and we will onentrate on S

�

.

The main step to estimate I

2

is to use the bounded H

1

-alulus of A and write (A

a

(z�A)

�1

)

b

as a ontour integral. To this end, we de�ne the funtion g

z

(�) := (�

a

(z��)

�1

)

b

and hoose angles

! and # with �

A

< ! < # < ' as well as numbers ~r and r̂ satisfying r < ~r < r̂ < kA

�1

k

�1

. Then

g

z

2 H

1

0

(�

#

) and we have

�

A

a

(z �A)

�1

�

b

=

1

2�i

Z

�

r̂

!

g

z

(�)(� �A)

�1

d�:

Using this, we an rewrite the ommutator in I

2

as

h

(�+ zB)

�1

;

�

A

a

(z �A)

�1

�

b

i

=

1

2�i

Z

�

r̂

!

�

ab

(z � �)

b

h

(�+ zB)

�1

; (� �A)

�1

i

d�:

A loser look at the remaining ommutator yields

h

(�+ zB)

�1

; (� �A)

�1

i

=

1

z

(� �A)

�1

�

�

�

z

+B

�

�1

; A

�

(� �A)

�1

and, using the ommutator estimates, that leads to







h

(�+ zB)

�1

;

�

A

a

(z �A)

�1

�

b

i







� C

1

jzj

Z

�

r̂

!

j�j

ab

jz � �j

b

k(� �A)

�1

k









�

�

�

z

+B

�

�1

; A

�

(� �A)

�1









dj�j

� Cjzj

��b

Z

�

r̂

!

jzj

b

j�j

ab

jz � �j

b

(1 + j�j)

2��

j�j

1+�

dj�j:(4.1)

In order to estimate this integral, we �rst observe, that there is a onstant C > 0, suh that for all

z 2 �

r

'

and all � 2 �

r̂

!

we have

(4.2) jz � �j � C(jzj+ j�j);

at least if we have '� ! < �=2, but this an be guaranteed by a suitable hoie of ! above. Thus

(4.1) may be estimated further by

C

jzj

��b

j�j

1+�

Z

�

r̂

!

�

jzj

jzj+ j�j

�

b

j�j

ab

(1 + j�j)

2��

dj�j � C

jzj

��b

j�j

1+�

Z

�

r̂

!

j�j

ab

(1 + j�j)

2��

dj�j:

This last integral is onvergent if a and b satisfy � < 1� ab.

Using this result, we estimate I

2

as

kI

2

k �

C

j�j

1+�

Z

�

r

'

jzj

��a�b







�

A

a

(z �A)

�1

�

1�b







kxk djzj:
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As the funtion x 7! x

a

=( + x), x 2 [0;1) takes its maximum at x = a=(1 � a), we see by the

bounded H

1

-alulus of A and (4.2), that







�

A

a

(z �A)

�1

�

1�b







� C sup

x2[0;1)

�

x

a

jzj+ x

�

1�b

= Cjzj

(a�1)(1�b)

:

This �nally yields the estimate

kI

2

k �

C

j�j

1+�

Z

�

r

'

jzj

��ab�1

djzj kxk;

that gives us a seond ondition for a and b to make this integral onverge: � < ab. If we hoose

a; b 2 (0; 1), suh that �+ � < �+ ab < 1, whih is possible thanks to �+ � < 1, both onditions

are satis�ed simultaneously and we get kI

2

k � C=j�j

1+�

kxk.

We now turn our attention to I

1

. As we have seen, the integrals de�ning I

2

and S

�

x onverge

absolutely. Thus the integral de�ning I

1

also onverges absolutely. Sine there is no singularity of

the integrand for small jzj, we only look at jzj � 2

n

0

, where n

0

2 Z is a �xed number, suh that

2

n

0

> r. For this part of I

1

we may write thanks to the absolute onvergene

lim

N!1

Z

�

r;N

'

1

z

a

�

A

a

(z �A)

�1

�

b

(�+ zB)

�1

�

A

a

(z �A)

�1

�

1�b

x dz;

where �

r;N

'

:= f� 2 �

r

'

: 2

n

0

� j�j � 2

N

g for N > n

0

.

For one of these integrals we have

K

N

:=

Z

2

N

2

n

0

1

(te

i'

)

a

�

A

a

(te

i'

�A)

�1

�

b

(�+ te

i'

B)

�1

�

A

a

(te

i'

�A)

�1

�

1�b

xe

i'

dt

= e

i'(1�a)

N�1

X

k=n

0

Z

2

k+1

2

k

1

t

 

�

A

t

�

a

�

e

i'

�

A

t

�

�1

!

b

(�+ te

i'

B)

�1

�

 

�

A

t

�

a

�

e

i'

�

A

t

�

�1

!

1�b

x dt:

Substituting t = 2

k

s and setting ~g

z

:= g

(1�b)=b

z

, we obtain

K

N

= e

i'(1�a)

N�1

X

k=n

0

Z

2

1

g

e

i'

�

A

2

k

s

�

(�+ 2

k

se

i'

B)

�1

~g

e

i'

�

A

2

k

s

�

x

ds

s

:

In order to estimate the norm of this expression, we hoose by the Hahn-Banah theorem x

�

2 X

0

with kx

�

k = 1 and

kK

N

k =

�

�

�

�

�

*

N�1

X

k=n

0

Z

2

1

g

e

i'

�

A

2

k

s

�

(�+ 2

k

se

i'

B)

�1

~g

e

i'

�

A

2

k

s

�

x

ds

s

; x

�

+

�

�

�

�

�

�

Z

2

1

�

�

�

�

�

N�1

X

k=n

0

�

g

e

i'

�

A

2

k

s

�

(�+ 2

k

se

i'

B)

�1

~g

e

i'

�

A

2

k

s

�

x; x

�

�

�

�

�

�

�

ds

s

:

Having in mind theR-setoriality of B, we plug in independent, symmetri, f�1; 1g-valued random

variables "

n

0

; : : : ; "

N�1

on some probability spae 
.

=

Z

2

1

�

�

�

�

�

Z




N�1

X

k=n

0

"

2

k

(!)

�

g

e

i'

�

A

2

k

s

�

(�+ 2

k

se

i'

B)

�1

~g

e

i'

�

A

2

k

s

�

x; x

�

�

d!

�

�

�

�

�

ds

s

:

As these random variables are independent, we may write

=

Z

2

1

�

�

�

�

�

Z




*

N�1

X

k=n

0

"

k

(!)(�+ 2

k

se

i'

B)

�1

~g

e

i'

�

A

2

k

s

�

x;

N�1

X

k=n

0

"

k

(!)g

e

i'

�

A

�

2

k

s

�

x

�

+

d!

�

�

�

�

�

ds

s

:
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Note that A

�

2 H

1

(X

0

) with '

1

A

= '

1

A

�

in ase D(A

�

) is dense in X

0

. If this is not the ase,

we may use the sun-dual A

�

on X

�

instead (.f. [vN92, Chapter 1.3℄). By the Cauhy-Shwarz

inequality we see

�

Z

2

1











N�1

X

k=n

0

"

k

(�+ 2

k

se

i'

B)

�1

~g

e

i'

�

A

2

k

s

�

x











L

2

(
;X)











N�1

X

k=n

0

"

k

g

e

i'

�

A

�

2

k

s

�

x

�











L

2

(
;X

0

)

ds

s

=

Z

2

1

1

j�j











N�1

X

k=n

0

"

k

�

2

k

se

i'

�

�

2

k

se

i'

+B

�

�1

~g

e

i'

�

A

2

k

s

�

x











L

2

(
;X)

�











N�1

X

k=n

0

"

k

g

e

i'

�

A

�

2

k

s

�

x

�











L

2

(
;X

0

)

ds

s

:

As B is R-setorial, and j arg(�=(2

k

se

i'

))j < � � �

B

we an estimate the latter term by

� C

R

Z

2

1

1

j�j











N�1

X

k=n

0

"

k

~g

e

i'

�

A

2

k

s

�

x











L

2

(
;X)











N�1

X

k=n

0

"

k

g

e

i'

�

A

�

2

k

s

�

x

�











L

2

(
;X

0

)

ds

s

;

where C

R

:= R

��

�(� +B)

�1

: � 2 �

���

B

	�

.

Finally, we apply Lemma 4.1 to the two remaining norms. This yields

kK

N

k �

C

j�j

Z

2

1

�

N�1

sup

k=n

0

j"

k

j

�

2

kxk

ds

s

=

C

j�j

kxk:

Summing up our onsiderations, we �nally get for all x 2 D(A)

kS

�

xk � kI

1

k+ kI

2

k � C

1

j�j

�

1 +

1

j�j

�

�

kxk:

Thus, by density, we have the same estimate on all of X , �nishing the proof. �

The above lemma is now the basis for the onstrution of a right inverse for �+AB. Also, we

show that � +AB is injetive.

To this end, let x 2 D(A)\R(A). Then, by the losedness of B, we even have S

�

x 2 D(B) and

we an alulate with the help of Cauhy's Theorem

BS

�

x =

1

2�i

Z

�

r

'

1

z

2

B

�

�

z

+B

�

�1

A(z �A)

�1

x dz

=

1

2�i

Z

�

r

'

1

z

2

A(z �A)

�1

x dz �

�

2�i

Z

�

r

'

1

z

3

�

�

z

+B

�

�1

A(z �A)

�1

x dz(4.3)

= A

�1

x�

�

2�i

Z

�

r

'

1

z

2

�

�

z

+B

�

�1

(z �A)

�1

x dz:

This yields

kBS

�

xk � kA

�1

kkxk+ Cj�j

Z

�

r

'

1

jzj

2

jzj

j�j

1

1 + jzj

djzjkxk � Ckxk

for every x 2 D(A) \ R(A). By density of D(A) \ R(A) and the losedness of B this shows that

we even have S

�

2 L(X;D(B)).

Looking again at (4.3), we see, that for every x 2 D(A) \ R(A) the integral on the right hand

side is in D(A). Thus we get

BS

�

x = A

�1

 

x�

�

2�i

Z

�

r

'

1

z

2

A

�

�

z

+B

�

�1

(z �A)

�1

x dz

!

= A

�1

(x� �S

�

x+Q

�

x) ;
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where

Q

�

:=

�

2�i

Z

�

r

'

1

z

2

�

�

�

z

+B

�

�1

; A

�

(z �A)

�1

dz

is in L(X) with

(4.4) kQ

�

k

L(X)

� C



j�j

�

;

thanks to the ommutator estimate. As BS

�

is a bounded operator on X and A is losed, this

means, that even for every x 2 X we have BS

�

x 2 D(A) and ABS

�

x = (1 +Q

�

)x� �S

�

x. This

implies S

�

x 2 D(AB) for every x 2 X and

(�+AB)S

�

= 1 +Q

�

in L(X). Choosing � � 0, suh that kQ

�

k � Æ < 1 whenever j�j � �, we get the right inverse

R

�

:= S

�

(1 +Q

�

)

�1

of �+AB. Summarizing we proved the following result.

Lemma 4.3. There exists � � 0 and for every  2 (0; � � �

A

� �

B

) there is a onstant C



� 0

suh that for every � 2 �



with j�j � � the operator � + AB is surjetive with right inverse R

�

and

kR

�

k �

C



j�j

�

1 +

1

j�j

�

�

:

Before we start to prove that � + AB is injetive, we show that D(AB) \ D(A) is dense in

X . We will need this later on, but on the other hand this also implies the density of D(AB) in

X , that we need to prove setoriality of � + AB. In order to do so, �x � 2 %(B) and note that,

thanks to (� � B)

�1

D(A) � D(A) we have (� � B)

�1

D(A) � D(AB) \ D(A). Let x 2 X . By

density of D(B), we approximate x in X by (w

n

) � D(B) and set y

n

:= (� � B)w

n

. Sine D(A)

is also dense in X , for every n 2 N, there is a z

n

2 D(A), suh that kz

n

� y

n

k � 1=n. Now,

(��B)

�1

z

n

2 D(AB) \D(A) for every n 2 N and

k(��B)

�1

z

n

� xk � k(��B)

�1

kkz

n

� y

n

k+ kw

n

� xk �

C

n

+ kw

n

� xk �! 0 (n!1):

Lemma 4.4. There is a onstant � � 0 suh that the operator � + AB is injetive for all � 2

�

���

A

��

B

with j�j � �.

Proof. The beginning of the proof is very similar to the onstrution of the right inverse, we just

look at T

�

B instead of BS

�

. Let x 2 D(AB) \D(A). Then we have Bx 2 D(A) and

T

�

Bx =

1

2�i

Z

�

r

'

1

z

2

A(z �A)

�1

�

�

z

+B

�

�1

Bx dz

= A

�1

x�

�

2�i

Z

�

r

'

1

z

2

(z �A)

�1

�

�

z

+B

�

�1

x dz;

analogously to (4.3). As x is supposed to be inD(A), this again implies T

�

Bx = A

�1

(x��T

�

x). We

dedue as before, that AT

�

B 2 L(X) and AT

�

B = I��T

�

thanks to the density of D(AB)\D(A)

in X .

Sine x 2 D(AB) we may ommute A and T

�

and we see, that

T

�

(�+AB)x = x� [T

�

; A℄Bx; x 2 D(AB):

In order to prove injetivity of � + AB, hoose x 2 D(AB) with (� + AB)x = 0. Then our

onsiderations above yield x = [T

�

; A℄Bx = �[T

�

; A℄A

�1

x. Choosing a 2 (�; 1 � �) and applying
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A

�a

to this identity, we obtain

A

�a

x =

�

2�i

Z

�

r

'

1

z

2

A

1�a

(z �A)

�1

�

�

�

z

+B

�

�1

; A

�

A

�1+a

A

�a

x dz

= �

�

4�

Z

�

r

'

Z

�

r

'

A

1�a

(z �A)

�1

z

2

�

1�a

�

�

�

z

+B

�

�1

; A

�

(� �A)

�1

A

�a

x d� dz;

by the Dunford alulus. The ommutator estimate and kA

1�a

(z �A)

�1

k � Cjzj

�a

then yields

kA

�a

xk � C



j�j

�

Z

�

r

'

1

jzj

a��

(1 + jzj)

djzj

Z

�

r

'

1

j�j

1�a

(1 + j�j)

1��

dj�jkA

�a

xk:

By the hoie of a, these two integrals onverge, so we end up with

kA

�a

xk � C



j�j

�

kA

�a

xk:

If we hoose � so big, that C=j�j

�

< 1, this implies A

�a

x = 0, and hene x = 0, �nishing the

proof. �

Summarizing, we have proved Theorem 3.1: In fat, if we hoose � � 0 big enough, then, for

all � 2 �

���

A

��

B

n B(0; �) the operator � + AB is surjetive by Lemma 4.3 and injetive by

Lemma 4.4. Furthermore D(AB) and R(AB) are dense in X and for every  2 (0; � � �

A

� �

B

)

we have the resolvent estimate

k(�+AB)

�1

k = kR

�

k �

C



j�j

�

1 +

1

j�j

�

�

; � 2 �



nB(0; �):

This implies, that '

�+AB

� �

A

+ �

B

.

5. Bounded H

1

-alulus for � +AB

In order to prove a bounded H

1

-alulus for � +AB with '

�+AB

� �

A

+ �

B

, we hoose angles �

and � with �

A

+ �

B

< � < � < � and f 2 H

1

0

(�

�

). We have to prove the estimate

(5.1)











Z

�

�

f(�)

�

�� (� +AB)

�

�1

d�











� Ckfk

�

1

:

Here, we hoose � � 0 in suh a way, that by Theorem 3.1 the operator � + AB is setorial.

Thus the resolvent in the above integral exists and an be respresented as (� � (� + AB))

�1

=

�S

���

(1 +Q

���

)

�1

. Note that, as j arg(��)j = � � � < � � �

A

� �

B

, we have �� 2 �



for some

 2 (� � �; � � �

A

� �

B

), so that S

���

and Q

���

are well de�ned.

As we have S

�

(1 + Q

�

)

�1

= S

�

� S

�

Q

�

(1 + Q

�

)

�1

=: S

�

+ P

�

, we may split the integral for

(5.1) into two parts, namely

Z

�

�

f(�)

�

�� (� +AB)

�

�1

d� = �

Z

�

�

f(�)S

���

d��

Z

�

�

f(�)P

���

d� =: J

1

+ J

2

:

The easy part is to estimate J

2

, as we may simply take the norm into the integral. Using

Lemma 4.2 and (4.4), we get











Z

�

�

f(�)P

���

d�











� kfk

�

1

Z

�

�

kS

���

Q

���

(1 +Q

���

)

�1

k dj�j

� Ckfk

�

1

Z

�

�

�

1 +

1

j� � �j

�

�

1

j� � �j

1+�

dj�j � Ckfk

�

1

;

thanks to � > 0.
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In order to estimate J

1

, we alulate for x 2 D(A), using the de�nition of S

�

Z

�

�

f(�)S

���

x d� =

1

2�i

Z

�

�

f(�)

Z

�

r

'

1

z

2

�

� � �

z

+B

�

�1

A(z �A)

�1

x dz d�

= �

1

2�i

Z

�

r

'

1

z

Z

�

�

f(�)

�

�� (� + zB)

�

�1

d� A(z �A)

�1

x dz:

As B 2 H

1

(X), by permanene properties of the bounded H

1

-alulus (see e.g. [DHP03, Propo-

sition 2.11℄), the operator �+zB also is in H

1

(X) with '

1

�+zB

� '

1

B

+ j arg(z)j < �

B

+���

B

= �.

Thus we may write

J

1

= �

Z

�

�

f(�)S

���

x d� =

Z

�

r

'

1

z

f(� + zB)A(z �A)

�1

x dz:

By Cauhy's Theorem we may rewrite this for an arbitrary number a 2 (0; 1) as

Z

�

r

'

1

z

a

f(� + zB)A

a

(z �A)

�1

x dz;

in the same manner as in the proof of Lemma 4.2. The resulting integral now also looks very

muh like the integral we started the proof of this lemma with (we just have f(� + zB) instead of

(� + zB)

�1

). Indeed, the method here will be exatly the same as in the proof of Lemma 4.2, so

we will freely use the notations introdued there and only indiate the di�erenes in the proof.

After ommuting (A

a

(z �A)

�1

)

b

with f(� + zB) we now end up with

J

1

= �

Z

�

r

'

1

z

a

�

A

a

(z �A)

�1

�

b

f(� + zB)

�

A

a

(z �A)

�1

�

1�b

x dz

�

Z

�

r

'

1

z

a

h

f(� + zB);

�

A

a

(z �A)

�1

�

b

i

�

A

a

(z � A)

�1

�

1�b

x dz

=: J

11

+ J

12

:

Evaluating the ommutator in J

12

this time leads to a double integral:

h

f(� + zB);

�

A

a

(z �A)

�1

�

b

i

=

1

4�

2

Z

�

�

Z

�

r̂

!

f(�)

�

ab

(z � �)

b

h

�

�� (� + zB)

�

�1

; (� �A)

�1

i

d� d�:

As we may again apply our ommutator estimates, thanks to

h

�

�� (� + zB)

�

�1

; (� �A)

�1

i

=

1

z

(� �A)

�1

"

�

� � �

z

+B

�

�1

; A

#

(� �A)

�1

;

we �nd







h

f(� + zB);

�

A

a

(z �A)

�1

�

b

i







� Ckfk

�

1

1

jzj

Z

�

�

Z

�

r̂

!

j�j

ab

jz � �j

b

k(� �A)

�1

k











"

�

� � �

z

+B

�

�1

; A

#

(� �A)

�1











dj�j dj�j

� Ckfk

�

1

jzj

��b

Z

�

�

1

j� � �j

1+�

dj�j

Z

�

r̂

!

jzj

b

j�j

ab

jz � �j

b

(1 + j�j)

2��

dj�j � Ckfk

�

1

jzj

��b

:

Here the �rst integral onverges thanks to � > 0 and the seond is of exatly the same form as in

(4.1). Now we an onlude kJ

12

k � Ckfk

�

1

kxk as before.

Also for J

11

we may do the same alulations as we did for I

1

in the proof of Lemma 4.2 until

we reah the line

Z

2

1











N�1

X

k=n

0

"

k

f(� + 2

k

se

i'

B) ~g

e

i'

�

A

2

k

s

�

x











L

2

(
;X)











N�1

X

k=n

0

"

k

g

e

i'

�

A

�

2

k

s

�

x

�











L

2

(
;X

0

)

ds

s

;
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where we used the R-setoriality of B before. Evidently, now the R-bounded H

1

-alulus of B

does the job. Thus we end up with

C

R

kfk

�

1

Z

2

1











N�1

X

k=n

0

"

k

~g

e

i'

�

A

2

k

s

�

x











L

2

(
;X)











N�1

X

k=n

0

"

k

g

e

i'

�

A

�

2

k

s

�

x

�











L

2

(
;X

0

)

ds

s

;

where C

R

:= R

��

f(� + 2

k

se

i'

B) : f 2 H

1

0

(�

�

); kfk

�

1

� 1

	�

. As

�

f(� + 2

k

se

i'

B) : f 2 H

1

0

(�

�

); kfk

�

1

� 1

	

� ff(B) : f 2 H

1

0

(�

�

B

); kfk

�

1

� 1g

and �

B

> '

R1

B

, this R-bound is �nite. Now we estimate the two remaining norms as before,

getting kJ

1

k � Ckfk

�

1

kxk for all x 2 D(A) in the end. A density argument again �nishes the

proof. �

Referenes

[Bur86℄ D. L. Burkholder. Martingales and Fourier analysis in Banah spaes. In Probability and analysis

(Varenna, 1985), volume 1206 of Leture Notes in Math., pages 61{108. Springer, Berlin, 1986.

[CdPSW00℄ P. Cl�ement, B. de Pagter, F. A. Sukohev, and H. Witvliet. Shauder deompositions and multiplier

theorems. Studia Math., 138:135{163, 2000.

[CP01℄ P. Cl�ement and J. Pr�u�. An operator-valued transferene priniple and maximal regularity on vetor-

valued L

p

-spaes. In L. Weis G. Lumer, editor, Evolution equations and their appliations in physial

and life sienes (Bad Herrenalb, 1998), volume 215 of Leture Notes in Pure and Appl. Math., pages

67{87. Marel Dekker, 2001.

[DDH

+

04℄ R. Denk, G. Dore, M. Hieber, J. Pr�uss, and A. Venni. New thoughts on old results of R. T. Seeley.

Math. Ann., 328:545{583, 2004.

[DHP03℄ R. Denk, M. Hieber, and J. Pr�uss. R-boundedness, Fourier multipliers and problems of ellipti and

paraboli type. Mem. Amer. Math. So., 166(788), 2003.

[DPG75℄ G. Da Prato and P. Grisvard. Sommes d'op�erateurs lin�eaires et �equations di��erentielles op�erationnelles.

J. Math. Pures Appl. (9), 54(3):305{387, 1975.

[DV87℄ G. Dore and A. Venni. On the losedness of the sum of two losed operators. Math. Z., 196:189{201,

1987.

[KW01℄ N. Kalton and L. Weis. The H

1

-alulus and sums of losed operators.Math. Ann., 321:319{345, 2001.

[LT87℄ R. Labbas and B. Terreni. Somme d'op�erateurs lin�eaires de type parabolique. I. Boll. Un. Mat. Ital. B

(7), 1(2):545{569, 1987.

[MI86℄ A. MIntosh. Operators whih have an H

1

funtional alulus. In Minionferene on operator theory

and partial di�erential equations (North Ryde, 1986), volume 14 of Pro. Centre Math. Anal. Austral.

Nat. Univ., pages 210{231. Austral. Nat. Univ., Canberra, 1986.

[MP97℄ S. Monniaux and J. Pr�uss. A theorem of the Dore-Venni type for nonommuting operators. Trans. Am.

Math. So., 349:4787{4814, 1997.

[PS04℄ J. Pr�uss and G. Simonett. H

1

-alulus for the sum of nonommuting operators. Preprint, 2004.

[

�

Str01℄

�

Z.

�

Strkalj. A theorem on produts of non-ommuting setorial operators. In Evolution equations and

their appliations in physial and life sienes (Bad Herrenalb, 1998), volume 215 of Leture Notes in

Pure and Appl. Math., pages 175{185. Dekker, New York, 2001.

[vN92℄ Jan van Neerven. The adjoint of a semigroup of linear operators, volume 1529 of Leture Notes in

Mathematis. Springer-Verlag, Berlin, 1992.

[Web98℄ F. Weber. On produts of non-ommuting setorial operators. Ann. Suola Norm. Sup. Pisa Cl. Si.

(4), 27(3-4):499{531, 1998.

[Wei01℄ L. Weis. Operator-valued Fourier multiplier theorems and maximal L

p

-regularity. Math. Ann.,

319(4):735{758, 2001.

Tehnishe Universit

�

at Darmstadt, Fahbereih Mathematik, Shlossgartenstr. 7, D-64289 Darm-

stadt, Germany

E-mail address: haller�mathematik.tu-darmstadt.de

Tehnishe Universit

�

at Darmstadt, Fahbereih Mathematik, Shlossgartenstr. 7, D-64289 Darm-

stadt, Germany

E-mail address: hieber�mathematik.tu-darmstadt.de


