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Abstra
t. It is shown that the produ
t of two se
torial operators A and B admits a bounded

H

1

-
al
ulus on a Bana
h spa
e X provided suitable 
ommutator estimates and Kalton-Weis

type assumptions on A and B are satis�ed.

1. Introdu
tion

The question of maximal L

p

-regularity for partial di�erential equations has attra
ted mu
h at-

tention in the last de
ade. One reason for this is that, by linearization te
hniques, one obtains a

powerful approa
h to many nonlinear paraboli
 problems.

Starting from the fundamental paper of Da Prato and Grisvard [DPG75℄, the so-
alled method

of operator sums was further developed by Dore and Venni [DV87℄ and more re
ently by Kalton and

Weis [KW01℄. They proved, roughly speaking, that the sum A+B of two 
ommuting operators A

and B, equipped with its natural domain, has similar properties as A and B. The most important

examples �tting in this framework are of 
ourse the time derivative and di�erential operators with

respe
t to the spa
e variable.

Whereas problems of this kind for 
ommuting operators may be regarded as fairly well under-

stood, the situation is less 
lear in the non-
ommuting 
ontext. A �rst result in this dire
tion

was given by Monniaux and Pr�uss [MP97℄, who proved a theorem of Dore-Venni type, assuming

the Labbas-Terreni 
ommutator 
ondition (see [LT87℄). Very re
ently, Pr�uss and Simonett were

able to prove a non-
ommutative version of the Kalton-Weis theorem for both Da Prato-Grisvard

and Labbas-Terreni 
ommutator 
onditions, see [PS04℄. Appli
ations of this result to paraboli


equations on wedges and 
ones yield optimal regularity results for the solution of these equations.

For many appli
ations it is essential to have results of this kind not only for the sum of A and

B but also for produ
ts AB. Indeed, re
ent developments in free boundary value problemes with

moving 
onta
t lines show that regularity results on produ
ts of non 
ommuting operators are very

helpful in this 
ontext.

First results on produ
ts of non 
ommuting se
torial operators under 
ertain 
ommutator esti-

mates were obtained by Weber and

�

Strkalj. Indeed, a Dore-Venni type result for produ
ts was �rst

obtained by Weber [Web98℄.

�

Strkalj [

�

Str01℄ proved that the produ
t AB of A and B is se
torial

provided the underlying spa
e is B-
onvex and assumptions of Kalton-Weis type are satis�ed.

It is the aim of this paper to study the remaining question in this 
ontext: existen
e of an H

1

-


al
ulus for the produ
t AB of non 
ommuting operators A and B under suitable 
ommutator

and Kalton-Weis type assumptions. In the following Theorems 3.1 and 3.2 we give an aÆrmative

answer to this question.

2. Preliminaries

In this se
tion we introdu
e the notation being used throughout this arti
le and 
olle
t 
ertain

properties of se
torial operators and operators with a bounded H

1

-
al
ulus.

If X and Y are Bana
h spa
es, L(X;Y ) denotes the spa
e of all bounded, linear operators from

X to Y ; moreover, L(X) := L(X;X). The spe
trum of a linear operator A in X is denoted by
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�(A), its resolvent set by %(A). As usual domain and range of an operator A are denoted by D(A)

and R(A), respe
tively.

Let X be a 
omplex Bana
h spa
e, and A be a 
losed linear operator in X . Then A is 
alled

se
torial if D(A) = X , R(A) = X , (�1; 0) � %(A) and

kt(t+A)

�1

k �M; t > 0;

for some M < 1. We denote the 
lass of se
torial operators in X by S(X). �

�

� C means the

open se
tor

�

�

= f� 2 C n f0g : j arg�j < �g:

If A 2 S(X) then %(�A) � �

�

and supfk�(�+A)

�1

k : j arg�j < �g <1 for some � > 0.

We thus de�ne the spe
tral angle '

A

of A 2 S(X) by

'

A

= inff� : %(�A) � �

���

; sup

�2�

���

k�(�+A)

�1

k <1g:

Evidently, we have '

A

2 [0; �) and '

A

� supfj arg�j : � 2 �(A)g. For � 2 (0; �℄ we de�ne the

spa
e of holomorphi
 fun
tions on �

�

by H(�

�

) = ff : �

�

! C holomorphi
g, and

H

1

(�

�

) = ff : �

�

! C holomorphi
 and boundedg:

The spa
e H

1

(�

�

) with norm kfk

�

1

= supfjf(�)j : j arg�j < �g forms a Bana
h algebra. We

also set H

1

0

(�

�

) :=

S

�;�<0

H

�;�

(�

�

), where H

�;�

(�

�

) := ff 2 H(�

�

) : kfk

�

�;�

< 1g, and

kfk

�

�;�

:= sup

j�j�1

j�

�

f(�)j + sup

j�j�1

j�

��

f(�)j. Given A 2 S(X), �x any � 2 ('

A

; �℄ and let

�

 

= �(�1; 0℄e

i 

[ [0;1)e

�i 

with '

A

<  < �. Then

f(A) =

1

2�i

Z

�

 

f(�)(��A)

�1

d�; f 2 H

1

0

(�

�

);

de�nes via �

A

(f) = f(A) a fun
tional 
al
ulus �

A

: H

1

0

(�

�

) ! L(X) whi
h is an algebra

homomorphism. Following M
Intosh [M
I86℄, we say that a se
torial operator A admits a bounded

H

1

-
al
ulus if there are � > '

A

and a 
onstant K

�

<1 su
h that

(2.1) kf(A)k � K

�

kfk

�

1

; for all f 2 H

1

0

(�

�

):

The 
lass of se
torial operators A whi
h admit a bounded H

1

-
al
ulus will be denoted by H

1

(X)

and the H

1

-angle of A is de�ned by

'

1

A

= inff� > '

A

: (2.1) is validg:

If this is the 
ase, the fun
tional 
al
ulus for A on H

1

0

(�

�

) extends uniquely to H

1

(�

�

).

We 
onsider next another sub
lass of S(X), namely operators with bounded imaginary powers.

More pre
isely, a se
torial operator A inX is said to admit bounded imaginary powers if A

is

2 L(X)

for ea
h s 2 R and there is a 
onstant C > 0 su
h that kA

is

k � C for jsj � 1. The 
lass of su
h

operators will be denoted by BIP(X). We 
all

'

BIP

A

= lim

jsj!1

1

jsj

log kA

is

k

the power angle of A. Sin
e the fun
tions f

s

de�ned by f

s

(z) = z

is

belong to H

1

(�

�

), for any

s 2 R and � 2 (0; �), we obviously have the in
lusions

H

1

(X) � BIP(X) � S(X);

and the inequalities

'

1

A

� '

BIP

A

� '

A

� supfj arg�j : � 2 �(A)g:

Let Y be another Bana
h spa
e. A family of operators T � L(X;Y ) is 
alled R-bounded, if

there is a 
onstant C > 0 and p 2 [1;1), su
h that for ea
h N 2 N, T

j

2 T , x

j

2 X and for all
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independent, symmetri
, f�1; 1g-valued random variables "

j

on a probability spa
e (
;M; �) the

inequality



















N

X

j=1
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j
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j
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p

(
;Y )
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N

X

j=1

"

j

x

j



















L

p

(
;X)

is valid. The smallest su
h C is 
alled R-bound of T , we denote it by R(T ). Observe that the


on
ept of R-boundedness does not depend on p, however R(T ) does, see [CdPSW00℄, [Wei01℄,

[KW01℄, [DHP03℄.

The 
on
ept of R-bounded families of operators leads immediately to the notion of R-se
torial

operators. Indeed, a se
torial operator is 
alled R-se
torial (see [CP01℄) if

R

A

(0) := R(ft(t+A)

�1

: t > 0g) <1:

The R-angle '

R

A

of A is de�ned by means of

'

R

A

:= inff� 2 (0; �) : R

A

(� � �) <1g;

where

R

A

(�) := R(f�(� +A)

�1

: j arg�j � �g):

Finally, we say that A 2 H

1

(X) admits an R-bounded H

1

-
al
ulus, if the set

ff(A) : f 2 H

1

(�

�

); kfk

�

1

� 1g

is R-bounded for some � 2 (0; �). As above, the in�mum '

R1

A

of su
h � is 
alled the RH

1

-angle

of A. The 
lass of su
h operators is denoted by RH

1

(X).

Assume that the underlying spa
e X satis�es the so-
alled property (�), see [CdPSW00, De�-

nition 3.11℄. Then Kalton and Weis [KW01, Theorem 5.3℄ proved that every operator A 2 H

1

(X)

already admits an R-bounded H

1

-
al
ulus. More pre
isely, we have

(2.2) H

1

(X) = RH

1

(X) with '

R1

A

= '

1

A

:

It is well known that L

p

-spa
es with 1 < p <1 possess the property (�).

We are now able to state the Kalton-Weis theorem whi
h gives a suÆ
ient 
ondition for the

existen
e of an operator-valued H

1

-
al
ulus.

Theorem 2.1 ([KW01℄). Let X be a Bana
h spa
e. Assume that A 2 H

1

(X), F 2 H

1

(�

�

;L(X))

su
h that

F (�)(� �A)

�1

= (��A)

�1

F (�); � 2 �(A); � 2 �

�

;

and that � > '

1

A

and R(F (�

�

)) <1. Then there exists a 
onstant C independent of F su
h that

F (A) 2 L(X) and

kF (A)k

L(X)

� CR(F (�

�

)):

Consider for two se
torial operators A and B in X their produ
t AB de�ned by

(AB)x := ABx; D(AB) := fx 2 D(B) : Bx 2 D(A)g:

We then observe that AB is 
losed as soon as A is invertible or B is bounded. The Kalton-Weis

theorem moreover implies for 
ommuting operators A and B the following result.

Corollary 2.2. Let X be a Bana
h spa
e and assume that A and B are se
torial operators in X

whi
h 
ommute in the sense of resolvents. Suppose that 0 2 �(A), A 2 H

1

(X), B 2 RS(X) and

that '

1

A

+ '

R

B

< �.

a) Then AB is se
torial and '

AB

� '

1

A

+ '

R

B

.

b) If in addition B 2 RH

1

(X) with '

1

A

+ '

R1

B

< �, then AB 2 H

1

(X) and '

1

AB

�

'

1

A

+ '

R1

B

.
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We say that a Bana
h spa
e X belongs to the 
lass HT , if the Hilbert transform is bounded

on L

p

(R;X) for some (and then all) p 2 (1;1). Here the Hilbert transform H of a fun
tion

f 2 S(R;X), the S
hwartz spa
e of rapidly de
reasing X-valued fun
tions, is de�ned by

Hf :=

1

�

PV (

1

t

) � f

These spa
es are also 
alled UMD Bana
h spa
es, where the UMD stands for un
onditional mar-

tingale di�eren
e property. It is a well known theorem that the set of Bana
h spa
es of 
lass HT


oin
ides with the 
lass of UMD spa
es; see e.g. [Bur86℄.

Throughout this paper, for  2 (0; �) and r � 0 we denote by �

r

 

the path given by

�

r

 

:= �(�1;�r℄e

i 

[ re

�i[� ; ℄

[ [r;1)e

�i 

;

and we write �

 

:= �

0

 

.

We remark that by C, M and 
 we denote various 
onstants whi
h may di�er from line to line

but whi
h are always independent of the free variables.

3. The main result

Is the produ
t of se
torial operators again se
torial? Let us re
all that the �rst result in this

dire
tion for non-
ommuting operators was proved by Weber [Web98℄. He showed that in UMD

spa
es, � + AB with natural domain D(AB) = fx 2 D(B) : Bx 2 D(A)g is se
torial provided A

and B have bounded imaginary powers of suitable power angles and 
ertain 
ommutator estimates

are ful�lled. This result was later on extended by Strkalj [

�

Str01℄ to Kalton-Weis type assumptions

for operators de�ned in B-
onvex Bana
h latti
es.

We start with a generalization of the latter result to arbitrary Bana
h spa
es.

Theorem 3.1. Let X be a Bana
h spa
e. Assume that A 2 H

1

(X) and B 2 RS(X) with 0 2 %(A)

ful�ll the following properties:

a) (��B)

�1

D(A) � D(A) for some (all) � 2 %(B),

b) there are �

A

> '

1

A

and �

B

> '

R

B

, su
h that �

A

+ �

B

< � and there exist 
onstants 
; � � 0

and � > 0 with �+ � < 1, su
h that

k[A; (�+B)

�1

℄(� +A)

�1

k �




(1 + j�j)

1��

j�j

1+�

for all � 2 �

���

A

and � 2 �

���

B

.

Then there exists � � 0 su
h that the operator � + AB with domain D(AB) is se
torial with

'

�+AB

� �

A

+ �

B

.

The following main result of the paper states that in the above situation we even have AB 2

H

1

(X) provided B 2 RH

1

(X).

Theorem 3.2. Let X be a Bana
h spa
e. Assume that A 2 H

1

(X) and B 2 RH

1

(X) with

0 2 %(A) ful�ll the following properties:

a) (��B)

�1

D(A) � D(A) for some (all) � 2 %(B),

b) there are �

A

> '

1

A

and �

B

> '

R1

B

, su
h that �

A

+ �

B

< � and there exist 
onstants


; � � 0 and � > 0 with �+ � < 1, su
h that

k[A; (�+B)

�1

℄(� +A)

�1

k �




(1 + j�j)

1��

j�j

1+�

for all � 2 �

���

A

and � 2 �

���

B

.

Then there exists � � 0, su
h that the operator � + AB with domain D(AB) has a bounded H

1

-


al
ulus with '

1

�+AB

� �

A

+ �

B

.
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Remark 3.3. a) As both theorems are not symmetri
 in the roles of A and B, it is worthwile

to note that the same results hold true if the properties of A and B are inter
hanged. The

proofs stay the same.

b) If X has property (�), the 
lasses H

1

(X) and RH

1

(X) 
oin
ide; see (2.2). Thus Theo-

rem 3.2 may be formulated in this 
ase with B 2 H

1

(X).


) It will be
ome apparent in the proof of the two theorems, that the amount of the shift �

is determined mainly by the 
onstant 
 in the 
ommutator estimate.

Finally we observe, that the invertibility of A implies � 2 %(A) for all j�j < kA

�1

k

�1

and

k(� + A)

�1

k � kA

�1

k(1 � j�jkA

�1

k)

�1

for all these �. Thus the 
ommutator estimate 
an be

extended to all � 2 �

���

A

[ fz 2 C : jzj < rg whenever r < kA

�1

k

�1

.

4. Se
toriality of � +AB

In this se
tion we give a proof of Theorem 3.1. Our method is inspired by the work of Weber

[Web98℄ and Pr�uss and Simonett [PS04℄. It is heavily based on properties of the families of

operators S

�

and T

�

whi
h are de�ned as follows.

We �x angles 
 2 (0; ���

A

��

B

) and ' 2 (�

A

; ��
��

B

), as well as a number r 2 (0; kA

�1

k

�1

).

Now let � 2 �




. Then for all z 2 �

r

'

, we have �=z 2 %(�B). Furthermore, by the 
hoi
es of ' and

r, the in
lusion �

r

'

� %(A) holds true. We then de�ne for x 2 D(A)

S

�

x :=

1

2�i

Z

�

r

'

1

z

2

�

�

z

+B

�

�1

A(z �A)

�1

x dz;

T

�

x :=

1

2�i

Z

�

r

'

1

z

2

A(z �A)

�1

�

�

z

+B

�

�1

x dz:

The operators S

�

are 
learly bounded from D(A) to X . For T

�

this follows by the 
ommutator

estimate. Indeed for x 2 D(A), we have (�=z +B)

�1

x 2 D(A) and













A

�

�

z

+B

�

�1

x













=













�

�

�

z

+B

�

�1

+

�

A;

�

�

z

+B

�

�1

�

A

�1

�

Ax













�

�

jzj

j�j

+

Cjzj

1+�

j�j

1+�

�

kAxk:

The operators S

�

and T

�

are even bounded on X . In order to show this, we introdu
e the

following lemma due to Kalton and Weis [KW01, Lemma 4.1℄. Further proofs may be found also

in [DDH

+

04℄.

Lemma 4.1. Suppose A 2 H

1

(X), � > '

1

A

and h 2 H

1

0

(�

�

). Then there is a 
onstant C > 0,

su
h that
















X

k2Z

�

k

h(2

k

tA)
















L(X)

� C sup

k2Z

j�

k

j

for all �

k

2 C and t > 0.

The above Lemma 4.1 enables us to prove that S

�

and T

�

are bounded on X . More pre
isely,

we have the following.

Lemma 4.2. Let 
 2 (0; � � �

A

� �

B

). The operators S

�

and T

�

have unique bounded extensions

on X for every � 2 �




and there is a 
onstant C




, su
h that

kS

�

k

L(X)

+ kT

�

k

L(X)

�

C




j�j

�

1 +

1

j�j

�

�

:

Proof. By Cau
hy's Theorem we may rewrite S

�

for an arbitrary number a 2 (0; 1) as

S

�

x =

1

2�i

Z

�

r

'

1

z

1+a

�

�

z

+B

�

�1

A

a

(z �A)

�1

x dz:
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In a se
ond step we 
ommute some part of A

a

(z �A)

�1

with the resolvent of B and get for every

b 2 (0; 1)

S

�

x =

1

2�i

Z

�

r

'

1

z

a

�

A

a

(z �A)

�1

�

b

(�+ zB)

�1

�

A

a

(z �A)

�1

�

1�b

x dz

+

1

2�i

Z

�

r

'

1

z

a

h

(�+ zB)

�1

;

�

A

a

(z �A)

�1

�

b

i

�

A

a

(z �A)

�1

�

1�b

x dz

=: I

1

+ I

2

:

The right values of a and b will be 
hosen later on.

Analogously we get

T

�

x =

1

2�i

Z

�

r

'

1

z

a

�

A

a

(z �A)

�1

�

1�b

(�+ zB)

�1

�

A

a

(z �A)

�1

�

b

x dz

�

1

2�i

Z

�

r

'

1

z

a

�

A

a

(z �A)

�1

�

1�b

h

(�+ zB)

�1

;

�

A

a

(z �A)

�1

�

b

i

x dz;

so that the proofs for S

�

and T

�

are basi
ally the same and we will 
on
entrate on S

�

.

The main step to estimate I

2

is to use the bounded H

1

-
al
ulus of A and write (A

a

(z�A)

�1

)

b

as a 
ontour integral. To this end, we de�ne the fun
tion g

z

(�) := (�

a

(z��)

�1

)

b

and 
hoose angles

! and # with �

A

< ! < # < ' as well as numbers ~r and r̂ satisfying r < ~r < r̂ < kA

�1

k

�1

. Then

g

z

2 H

1

0

(�

#

) and we have

�

A

a

(z �A)

�1

�

b

=

1

2�i

Z

�

r̂

!

g

z

(�)(� �A)

�1

d�:

Using this, we 
an rewrite the 
ommutator in I

2

as

h

(�+ zB)

�1

;

�

A

a

(z �A)

�1

�

b

i

=

1

2�i

Z

�

r̂

!

�

ab

(z � �)

b

h

(�+ zB)

�1

; (� �A)

�1

i

d�:

A 
loser look at the remaining 
ommutator yields

h

(�+ zB)

�1

; (� �A)

�1

i

=

1

z

(� �A)

�1

�

�

�

z

+B

�

�1

; A

�

(� �A)

�1

and, using the 
ommutator estimates, that leads to










h

(�+ zB)

�1

;

�

A

a

(z �A)

�1

�

b

i










� C

1

jzj

Z

�

r̂

!

j�j

ab

jz � �j

b

k(� �A)

�1

k













�

�

�

z

+B

�

�1

; A

�

(� �A)

�1













dj�j

� Cjzj

��b

Z

�

r̂

!

jzj

b

j�j

ab

jz � �j

b

(1 + j�j)

2��

j�j

1+�

dj�j:(4.1)

In order to estimate this integral, we �rst observe, that there is a 
onstant C > 0, su
h that for all

z 2 �

r

'

and all � 2 �

r̂

!

we have

(4.2) jz � �j � C(jzj+ j�j);

at least if we have '� ! < �=2, but this 
an be guaranteed by a suitable 
hoi
e of ! above. Thus

(4.1) may be estimated further by

C

jzj

��b

j�j

1+�

Z

�

r̂

!

�

jzj

jzj+ j�j

�

b

j�j

ab

(1 + j�j)

2��

dj�j � C

jzj

��b

j�j

1+�

Z

�

r̂

!

j�j

ab

(1 + j�j)

2��

dj�j:

This last integral is 
onvergent if a and b satisfy � < 1� ab.

Using this result, we estimate I

2

as

kI

2

k �

C

j�j

1+�

Z

�

r

'

jzj

��a�b










�

A

a

(z �A)

�1

�

1�b










kxk djzj:
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As the fun
tion x 7! x

a

=(
 + x), x 2 [0;1) takes its maximum at x = 
a=(1 � a), we see by the

bounded H

1

-
al
ulus of A and (4.2), that










�

A

a

(z �A)

�1

�

1�b










� C sup

x2[0;1)

�

x

a

jzj+ x

�

1�b

= Cjzj

(a�1)(1�b)

:

This �nally yields the estimate

kI

2

k �

C

j�j

1+�

Z

�

r

'

jzj

��ab�1

djzj kxk;

that gives us a se
ond 
ondition for a and b to make this integral 
onverge: � < ab. If we 
hoose

a; b 2 (0; 1), su
h that �+ � < �+ ab < 1, whi
h is possible thanks to �+ � < 1, both 
onditions

are satis�ed simultaneously and we get kI

2

k � C=j�j

1+�

kxk.

We now turn our attention to I

1

. As we have seen, the integrals de�ning I

2

and S

�

x 
onverge

absolutely. Thus the integral de�ning I

1

also 
onverges absolutely. Sin
e there is no singularity of

the integrand for small jzj, we only look at jzj � 2

n

0

, where n

0

2 Z is a �xed number, su
h that

2

n

0

> r. For this part of I

1

we may write thanks to the absolute 
onvergen
e

lim

N!1

Z

�

r;N

'

1

z

a

�

A

a

(z �A)

�1

�

b

(�+ zB)

�1

�

A

a

(z �A)

�1

�

1�b

x dz;

where �

r;N

'

:= f� 2 �

r

'

: 2

n

0

� j�j � 2

N

g for N > n

0

.

For one of these integrals we have

K

N

:=

Z

2

N

2

n

0

1

(te

i'

)

a

�

A

a

(te

i'

�A)

�1

�

b

(�+ te

i'

B)

�1

�

A

a

(te

i'

�A)

�1

�

1�b

xe

i'

dt

= e

i'(1�a)

N�1

X

k=n

0

Z

2

k+1

2

k

1

t

 

�

A

t

�

a

�

e

i'

�

A

t

�

�1

!

b

(�+ te

i'

B)

�1

�

 

�

A

t

�

a

�

e

i'

�

A

t

�

�1

!

1�b

x dt:

Substituting t = 2

k

s and setting ~g

z

:= g

(1�b)=b

z

, we obtain

K

N

= e

i'(1�a)

N�1

X

k=n

0

Z

2

1

g

e

i'

�

A

2

k

s

�

(�+ 2

k

se

i'

B)

�1

~g

e

i'

�

A

2

k

s

�

x

ds

s

:

In order to estimate the norm of this expression, we 
hoose by the Hahn-Bana
h theorem x

�

2 X

0

with kx

�

k = 1 and

kK

N

k =

�

�

�

�

�

*

N�1

X

k=n

0

Z

2

1

g

e

i'

�

A

2

k

s

�

(�+ 2

k

se

i'

B)

�1

~g

e

i'

�

A

2

k

s

�

x

ds

s

; x

�

+

�

�

�

�

�

�

Z

2

1

�

�

�

�

�

N�1

X

k=n

0

�

g

e

i'

�

A

2

k

s

�

(�+ 2

k

se

i'

B)

�1

~g

e

i'

�

A

2

k

s

�

x; x

�

�

�

�

�

�

�

ds

s

:

Having in mind theR-se
toriality of B, we plug in independent, symmetri
, f�1; 1g-valued random

variables "

n

0

; : : : ; "

N�1

on some probability spa
e 
.

=

Z

2

1

�

�

�

�

�

Z




N�1

X

k=n

0

"

2

k

(!)

�

g

e

i'

�

A

2

k

s

�

(�+ 2

k

se

i'

B)

�1

~g

e

i'

�

A

2

k

s

�

x; x

�

�

d!

�

�

�

�

�

ds

s

:

As these random variables are independent, we may write

=

Z

2

1

�

�

�

�

�

Z




*

N�1

X

k=n

0

"

k

(!)(�+ 2

k

se

i'

B)

�1

~g

e

i'

�

A

2

k

s

�

x;

N�1

X

k=n

0

"

k

(!)g

e

i'

�

A

�

2

k

s

�

x

�

+

d!

�

�

�

�

�

ds

s

:
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Note that A

�

2 H

1

(X

0

) with '

1

A

= '

1

A

�

in 
ase D(A

�

) is dense in X

0

. If this is not the 
ase,

we may use the sun-dual A

�

on X

�

instead (
.f. [vN92, Chapter 1.3℄). By the Cau
hy-S
hwarz

inequality we see

�

Z

2

1
















N�1

X

k=n

0

"

k

(�+ 2

k

se

i'

B)

�1

~g

e

i'

�

A

2

k

s

�

x
















L

2

(
;X)
















N�1

X

k=n

0

"

k

g

e

i'

�

A

�

2

k

s

�

x

�
















L

2

(
;X

0

)

ds

s

=

Z

2

1

1

j�j
















N�1

X

k=n

0

"

k

�

2

k

se

i'

�

�

2

k

se

i'

+B

�

�1

~g

e

i'

�

A

2

k

s

�

x
















L

2

(
;X)

�
















N�1

X

k=n

0

"

k

g

e

i'

�

A

�

2

k

s

�

x

�
















L

2

(
;X

0

)

ds

s

:

As B is R-se
torial, and j arg(�=(2

k

se

i'

))j < � � �

B

we 
an estimate the latter term by

� C

R

Z

2

1

1

j�j
















N�1

X

k=n

0

"

k

~g

e

i'

�

A

2

k

s

�

x
















L

2

(
;X)
















N�1

X

k=n

0

"

k

g

e

i'

�

A

�

2

k

s

�

x

�
















L

2

(
;X

0

)

ds

s

;

where C

R

:= R

��

�(� +B)

�1

: � 2 �

���

B

	�

.

Finally, we apply Lemma 4.1 to the two remaining norms. This yields

kK

N

k �

C

j�j

Z

2

1

�

N�1

sup

k=n

0

j"

k

j

�

2

kxk

ds

s

=

C

j�j

kxk:

Summing up our 
onsiderations, we �nally get for all x 2 D(A)

kS

�

xk � kI

1

k+ kI

2

k � C

1

j�j

�

1 +

1

j�j

�

�

kxk:

Thus, by density, we have the same estimate on all of X , �nishing the proof. �

The above lemma is now the basis for the 
onstru
tion of a right inverse for �+AB. Also, we

show that � +AB is inje
tive.

To this end, let x 2 D(A)\R(A). Then, by the 
losedness of B, we even have S

�

x 2 D(B) and

we 
an 
al
ulate with the help of Cau
hy's Theorem

BS

�

x =

1

2�i

Z

�

r

'

1

z

2

B

�

�

z

+B

�

�1

A(z �A)

�1

x dz

=

1

2�i

Z

�

r

'

1

z

2

A(z �A)

�1

x dz �

�

2�i

Z

�

r

'

1

z

3

�

�

z

+B

�

�1

A(z �A)

�1

x dz(4.3)

= A

�1

x�

�

2�i

Z

�

r

'

1

z

2

�

�

z

+B

�

�1

(z �A)

�1

x dz:

This yields

kBS

�

xk � kA

�1

kkxk+ Cj�j

Z

�

r

'

1

jzj

2

jzj

j�j

1

1 + jzj

djzjkxk � Ckxk

for every x 2 D(A) \ R(A). By density of D(A) \ R(A) and the 
losedness of B this shows that

we even have S

�

2 L(X;D(B)).

Looking again at (4.3), we see, that for every x 2 D(A) \ R(A) the integral on the right hand

side is in D(A). Thus we get

BS

�

x = A

�1

 

x�

�

2�i

Z

�

r

'

1

z

2

A

�

�

z

+B

�

�1

(z �A)

�1

x dz

!

= A

�1

(x� �S

�

x+Q

�

x) ;
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where

Q

�

:=

�

2�i

Z

�

r

'

1

z

2

�

�

�

z

+B

�

�1

; A

�

(z �A)

�1

dz

is in L(X) with

(4.4) kQ

�

k

L(X)

� C




j�j

�

;

thanks to the 
ommutator estimate. As BS

�

is a bounded operator on X and A is 
losed, this

means, that even for every x 2 X we have BS

�

x 2 D(A) and ABS

�

x = (1 +Q

�

)x� �S

�

x. This

implies S

�

x 2 D(AB) for every x 2 X and

(�+AB)S

�

= 1 +Q

�

in L(X). Choosing � � 0, su
h that kQ

�

k � Æ < 1 whenever j�j � �, we get the right inverse

R

�

:= S

�

(1 +Q

�

)

�1

of �+AB. Summarizing we proved the following result.

Lemma 4.3. There exists � � 0 and for every 
 2 (0; � � �

A

� �

B

) there is a 
onstant C




� 0

su
h that for every � 2 �




with j�j � � the operator � + AB is surje
tive with right inverse R

�

and

kR

�

k �

C




j�j

�

1 +

1

j�j

�

�

:

Before we start to prove that � + AB is inje
tive, we show that D(AB) \ D(A) is dense in

X . We will need this later on, but on the other hand this also implies the density of D(AB) in

X , that we need to prove se
toriality of � + AB. In order to do so, �x � 2 %(B) and note that,

thanks to (� � B)

�1

D(A) � D(A) we have (� � B)

�1

D(A) � D(AB) \ D(A). Let x 2 X . By

density of D(B), we approximate x in X by (w

n

) � D(B) and set y

n

:= (� � B)w

n

. Sin
e D(A)

is also dense in X , for every n 2 N, there is a z

n

2 D(A), su
h that kz

n

� y

n

k � 1=n. Now,

(��B)

�1

z

n

2 D(AB) \D(A) for every n 2 N and

k(��B)

�1

z

n

� xk � k(��B)

�1

kkz

n

� y

n

k+ kw

n

� xk �

C

n

+ kw

n

� xk �! 0 (n!1):

Lemma 4.4. There is a 
onstant � � 0 su
h that the operator � + AB is inje
tive for all � 2

�

���

A

��

B

with j�j � �.

Proof. The beginning of the proof is very similar to the 
onstru
tion of the right inverse, we just

look at T

�

B instead of BS

�

. Let x 2 D(AB) \D(A). Then we have Bx 2 D(A) and

T

�

Bx =

1

2�i

Z

�

r

'

1

z

2

A(z �A)

�1

�

�

z

+B

�

�1

Bx dz

= A

�1

x�

�

2�i

Z

�

r

'

1

z

2

(z �A)

�1

�

�

z

+B

�

�1

x dz;

analogously to (4.3). As x is supposed to be inD(A), this again implies T

�

Bx = A

�1

(x��T

�

x). We

dedu
e as before, that AT

�

B 2 L(X) and AT

�

B = I��T

�

thanks to the density of D(AB)\D(A)

in X .

Sin
e x 2 D(AB) we may 
ommute A and T

�

and we see, that

T

�

(�+AB)x = x� [T

�

; A℄Bx; x 2 D(AB):

In order to prove inje
tivity of � + AB, 
hoose x 2 D(AB) with (� + AB)x = 0. Then our


onsiderations above yield x = [T

�

; A℄Bx = �[T

�

; A℄A

�1

x. Choosing a 2 (�; 1 � �) and applying
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A

�a

to this identity, we obtain

A

�a

x =

�

2�i

Z

�

r

'

1

z

2

A

1�a

(z �A)

�1

�

�

�

z

+B

�

�1

; A

�

A

�1+a

A

�a

x dz

= �

�

4�

Z

�

r

'

Z

�

r

'

A

1�a

(z �A)

�1

z

2

�

1�a

�

�

�

z

+B

�

�1

; A

�

(� �A)

�1

A

�a

x d� dz;

by the Dunford 
al
ulus. The 
ommutator estimate and kA

1�a

(z �A)

�1

k � Cjzj

�a

then yields

kA

�a

xk � C




j�j

�

Z

�

r

'

1

jzj

a��

(1 + jzj)

djzj

Z

�

r

'

1

j�j

1�a

(1 + j�j)

1��

dj�jkA

�a

xk:

By the 
hoi
e of a, these two integrals 
onverge, so we end up with

kA

�a

xk � C




j�j

�

kA

�a

xk:

If we 
hoose � so big, that C
=j�j

�

< 1, this implies A

�a

x = 0, and hen
e x = 0, �nishing the

proof. �

Summarizing, we have proved Theorem 3.1: In fa
t, if we 
hoose � � 0 big enough, then, for

all � 2 �

���

A

��

B

n B(0; �) the operator � + AB is surje
tive by Lemma 4.3 and inje
tive by

Lemma 4.4. Furthermore D(AB) and R(AB) are dense in X and for every 
 2 (0; � � �

A

� �

B

)

we have the resolvent estimate

k(�+AB)

�1

k = kR

�

k �

C




j�j

�

1 +

1

j�j

�

�

; � 2 �




nB(0; �):

This implies, that '

�+AB

� �

A

+ �

B

.

5. Bounded H

1

-
al
ulus for � +AB

In order to prove a bounded H

1

-
al
ulus for � +AB with '

�+AB

� �

A

+ �

B

, we 
hoose angles �

and � with �

A

+ �

B

< � < � < � and f 2 H

1

0

(�

�

). We have to prove the estimate

(5.1)
















Z

�

�

f(�)

�

�� (� +AB)

�

�1

d�
















� Ckfk

�

1

:

Here, we 
hoose � � 0 in su
h a way, that by Theorem 3.1 the operator � + AB is se
torial.

Thus the resolvent in the above integral exists and 
an be respresented as (� � (� + AB))

�1

=

�S

���

(1 +Q

���

)

�1

. Note that, as j arg(��)j = � � � < � � �

A

� �

B

, we have �� 2 �




for some


 2 (� � �; � � �

A

� �

B

), so that S

���

and Q

���

are well de�ned.

As we have S

�

(1 + Q

�

)

�1

= S

�

� S

�

Q

�

(1 + Q

�

)

�1

=: S

�

+ P

�

, we may split the integral for

(5.1) into two parts, namely

Z

�

�

f(�)

�

�� (� +AB)

�

�1

d� = �

Z

�

�

f(�)S

���

d��

Z

�

�

f(�)P

���

d� =: J

1

+ J

2

:

The easy part is to estimate J

2

, as we may simply take the norm into the integral. Using

Lemma 4.2 and (4.4), we get
















Z

�

�

f(�)P

���

d�
















� kfk

�

1

Z

�

�

kS

���

Q

���

(1 +Q

���

)

�1

k dj�j

� Ckfk

�

1

Z

�

�

�

1 +

1

j� � �j

�

�

1

j� � �j

1+�

dj�j � Ckfk

�

1

;

thanks to � > 0.
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In order to estimate J

1

, we 
al
ulate for x 2 D(A), using the de�nition of S

�

Z

�

�

f(�)S

���

x d� =

1

2�i

Z

�

�

f(�)

Z

�

r

'

1

z

2

�

� � �

z

+B

�

�1

A(z �A)

�1

x dz d�

= �

1

2�i

Z

�

r

'

1

z

Z

�

�

f(�)

�

�� (� + zB)

�

�1

d� A(z �A)

�1

x dz:

As B 2 H

1

(X), by permanen
e properties of the bounded H

1

-
al
ulus (see e.g. [DHP03, Propo-

sition 2.11℄), the operator �+zB also is in H

1

(X) with '

1

�+zB

� '

1

B

+ j arg(z)j < �

B

+���

B

= �.

Thus we may write

J

1

= �

Z

�

�

f(�)S

���

x d� =

Z

�

r

'

1

z

f(� + zB)A(z �A)

�1

x dz:

By Cau
hy's Theorem we may rewrite this for an arbitrary number a 2 (0; 1) as

Z

�

r

'

1

z

a

f(� + zB)A

a

(z �A)

�1

x dz;

in the same manner as in the proof of Lemma 4.2. The resulting integral now also looks very

mu
h like the integral we started the proof of this lemma with (we just have f(� + zB) instead of

(� + zB)

�1

). Indeed, the method here will be exa
tly the same as in the proof of Lemma 4.2, so

we will freely use the notations introdu
ed there and only indi
ate the di�eren
es in the proof.

After 
ommuting (A

a

(z �A)

�1

)

b

with f(� + zB) we now end up with

J

1

= �

Z

�

r

'

1

z

a

�

A

a

(z �A)

�1

�

b

f(� + zB)

�

A

a

(z �A)

�1

�

1�b

x dz

�

Z

�

r

'

1

z

a

h

f(� + zB);

�

A

a

(z �A)

�1

�

b

i

�

A

a

(z � A)

�1

�

1�b

x dz

=: J

11

+ J

12

:

Evaluating the 
ommutator in J

12

this time leads to a double integral:

h

f(� + zB);

�

A

a

(z �A)

�1

�

b

i

=

1

4�

2

Z

�

�

Z

�

r̂

!

f(�)

�

ab

(z � �)

b

h

�

�� (� + zB)

�

�1

; (� �A)

�1

i

d� d�:

As we may again apply our 
ommutator estimates, thanks to

h

�

�� (� + zB)

�

�1

; (� �A)

�1

i

=

1

z

(� �A)

�1

"

�

� � �

z

+B

�

�1

; A

#

(� �A)

�1

;

we �nd










h

f(� + zB);

�

A

a

(z �A)

�1

�

b

i










� Ckfk

�

1

1

jzj

Z

�

�

Z

�

r̂

!

j�j

ab

jz � �j

b

k(� �A)

�1

k
















"

�

� � �

z

+B

�

�1

; A

#

(� �A)

�1
















dj�j dj�j

� Ckfk

�

1

jzj

��b

Z

�

�

1

j� � �j

1+�

dj�j

Z

�

r̂

!

jzj

b

j�j

ab

jz � �j

b

(1 + j�j)

2��

dj�j � Ckfk

�

1

jzj

��b

:

Here the �rst integral 
onverges thanks to � > 0 and the se
ond is of exa
tly the same form as in

(4.1). Now we 
an 
on
lude kJ

12

k � Ckfk

�

1

kxk as before.

Also for J

11

we may do the same 
al
ulations as we did for I

1

in the proof of Lemma 4.2 until

we rea
h the line

Z

2

1
















N�1

X

k=n

0

"

k

f(� + 2

k

se

i'

B) ~g

e

i'

�

A

2

k

s

�

x
















L

2

(
;X)
















N�1

X

k=n

0

"

k

g

e

i'

�

A

�

2

k

s

�

x

�
















L

2

(
;X

0

)

ds

s

;
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where we used the R-se
toriality of B before. Evidently, now the R-bounded H

1

-
al
ulus of B

does the job. Thus we end up with

C

R

kfk

�

1

Z

2

1
















N�1

X

k=n

0

"

k

~g

e

i'

�

A

2

k

s

�

x
















L

2

(
;X)
















N�1

X

k=n

0

"

k

g

e

i'

�

A

�

2

k

s

�

x

�
















L

2

(
;X

0

)

ds

s

;

where C

R

:= R

��

f(� + 2

k

se

i'

B) : f 2 H

1

0

(�

�

); kfk

�

1

� 1

	�

. As

�

f(� + 2

k

se

i'

B) : f 2 H

1

0

(�

�

); kfk

�

1

� 1

	

� ff(B) : f 2 H

1

0

(�

�

B

); kfk

�

1

� 1g

and �

B

> '

R1

B

, this R-bound is �nite. Now we estimate the two remaining norms as before,

getting kJ

1

k � Ckfk

�

1

kxk for all x 2 D(A) in the end. A density argument again �nishes the

proof. �
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