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-ESTIMATES FOR PARABOLIC SYSTEMS IN NON-DIVERGENCE

FORM WITH VMO-COEFFICIENTS

ROBERT HALLER-DINTELMANN, HORST HECK, MATTHIAS HIEBER

Abstra
t. Consider a paraboli
 N � N-system of order m on R

n

with top-order 
oeÆ
ients

a

�

2 VMO \ L

1

. Let 1 < p; q < 1 and let ! be a Mu
kenhoupt weight. It is proved that

systems of this kind possess a unique solution u satifying

ku

0

k

L

q

(J;L

p

!

(R

n

)

N

)

+ kAuk

L

q

(J;L

p

!

(R

n

)

N

)

� Ckfk

L

q

(J;L

p

!

(R

n

)

N

)

;

where Au =

P

j�j�m

a

�

D

�

u and J = [0;1). In parti
ular, 
hosing ! = 1, the realization of A

in L

p

(R

n

)

N

has maximal L

p

� L

q

-regularity.

1. Introdu
tion

L

p

� L

q

-estimates for paraboli
 di�erential equations are of parti
ular interest sin
e, 
ombined

with interpolation theory, they provide a powerful tool for many nonlinear problems. Whereas

L

p

� L

q

-regularity properties for a single se
ond-order equation in divergen
e form are fairly well

understood (see e.g. the re
ent monograph of Aus
her [Aus04℄), the situation is far from 
lear

for systems in divergen
e form, for higher order operators or for equations (or systems) having a

non-divergen
e stru
ture.

In this paper we 
onsider higher order paraboli
 N �N -systems on R

n

in non-divergen
e form,

i.e. systems of the form

(1.1) u

t

�

X

j�j�m

a

�

(x)D

�

u = f;

where the 
oeÆ
ients a

�

for j�j = m belong to the 
lass VMO(R

n

; C

N�N

). Here VMO(R

n

; C

N�N

)

denotes the Sarason spa
e of all fun
tions on R

n

with values in C

N�N

having vanishing mean

os
illation. Our aim is to prove that equation (1.1) admits a unique solution whi
h satis�es an

estimate of the form

(1.2) ku

0

k

L

q

(J;L

p

!

(R

n

)

N

)

+ kAuk

L

q

(J;L

p

!

(R

n

)

N

)

� Ckfk

L

q

(J;L

p

!

(R

n

)

N

)

;

where 1 < p; q <1, Au =

P

j�j�m

a

�

D

�

u, J = [0;1) and ! 2 A

p

is a Mu
kenhoupt weight.

Note that in parti
ular the Sobolev spa
e W

�;n=�

(R

n

) for � 2 (0; 1℄ is 
ontained in VMO(R

n

);

thus our approa
h allows to treat paraboli
 systems with not ne
essarily 
ontinuous 
oeÆ
ients.

The ellipti
 problem Au = f for a single di�erential operator A of order 2m in non-divergen
e

form subje
t to general boundary 
onditions was solved in the L

p

-setting in a 
lassi
al paper by

Agmon, Douglis and Nirenberg [ADN59℄, provided the top-order 
oeÆ
ients of A are bounded and

uniformly 
ontinuous. The 
orresponding result for paraboli
 equations (and even systems) was

proved re
ently by Denk, Hieber and Pr�uss in [DHP03℄. For previous results dealing with the 
ase

of R

n

, se
ond order operators with parti
ular boundary 
onditions or with additional regularity

assumptions on the 
oeÆ
ients, we refer to [LSU68℄, [Duo90℄, [PS93℄, [AHS94℄, [Ama95℄, [HP97℄

and [DS97℄.
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2 ROBERT HALLER-DINTELMANN, HORST HECK, MATTHIAS HIEBER

The study of linear and quasilinear ellipti
 equations with VMO-
oeÆ
ients started with the

pioneering work of Chiarenza, Fras
a and Longo [CFL91℄, [CFL93℄. They proved W

2;p

-estimates

for the solution u of the Diri
hlet problem asso
iated to

n

X

i;j=1

a

ij

D

i

D

j

u = f;

provided 1 < p < 1, f 2 L

p

and a

ij

2 VMO \ L

1

. Their proof was based on parameter-

dependent Calder�on-Zygmund theory. The te
hniques were lateron generalized by Palaga
hev, Di

Fazio, Maugeri and Softova [Pal95℄, [DP96℄, [MP98℄, [MPS00℄ to quasilinear ellipti
 equations and

to the oblique derivative problem.

The 
orresponding result for 
ertain ellipti
 systems was proved re
ently by Ragusa [Rag02℄.

The �rst result for a s
alar, se
ond order paraboli
 equation is due to Bramanti and Cerutti

[BC93℄. They extended the te
hnique developed in [CFL93℄ to the paraboli
 situation. The

oblique derivative problem in the paraboli
 situation was solved more re
ently by Softova [Sof00℄.

Using wavelet te
hniques, Duong and Yan [DY02℄ proved that the operators asso
iated to these

equations admit a bounded H

1

-
al
ulus on L

p

(R

n

); see also previous work by Angeletti, Mazet

and T
hamit
hian [AMT97℄. Combining their result with the Dore-Venni theorem one obtains

also estimates of the form (1.2) for se
ond order operators. For a result on ellipti
 boundary value

problems with 
oeÆ
ients in VMO see Guidetti [Gui02℄.

We already mentioned that L

p

� L

q

-estimates for paraboli
 systems in non-divergen
e form

have been 
onsidered so far only for 
oeÆ
ients whi
h are bounded and uniformly 
ontinuous (see

[DHP03℄). The approa
h there was to lo
alize and to 
onsider perturbations whi
h are small in

L

1

. Of 
ourse, this method needs uniformly 
ontinuous 
oeÆ
ients.

Our approa
h to paraboli
 systems with VMO-
oeÆ
ients is very di�erent. It is based on a

parti
ular representation of the highest order derivatives of the solution u of �u + Au = f . This

representation allows to estimate D

�

u for j�j = m by parameter-depending Calder�on-Zygmund

theory and 
ommutator te
hniques. More pre
isely, we are aiming for a weighted a priori estimate

of the form

X

j�j�m

k�

1�

j�j

m

D

�

uk

p;!

� Ck(�+A)uk

p;!

;

where ! 2 A

p

is a Mu
kenhoupt weight, u 2 W

m;p

!

(R

n

)

N

, � 2 C belongs to a suitable se
tor of

the 
omplex plane and the 
oeÆ
ients of A are small in BMO.

The reason for introdu
ing Mu
kenhoupt weights in this 
ontext is the following: 
ombining the


hara
terization theorem of maximal L

p

-regularity due to Weis [Wei01℄ with results due to Rubio

de Fran
ia [Rub80℄ one sees that estimate (1.2) is implied by weighted estimates of the form

k�(�+A)

�1

fk

p;!

� Ckfk

p;!

; ! 2 A

p

; f 2 L

p

!

(R

n

)

N

;

where A is the realization of A given by Au =

P

j�j�m

a

�

D

�

u in L

p

!

(R

n

)

N

, � lies in a suitable

se
tor of the 
omplex plane and the 
onstant C is allowed to depend on the A

p

-
onstant of the

weight ! only. For details see the following se
tion and [HHH03℄. This method was already

su

essfully used in [HH03℄ for s
alar paraboli
 equations.

The problem of determining the \minimal" regularity assumption on the top-order 
oeÆ
ients

a

�

of A su
h that (1.1) admits a unique solution satisfying (1.2) is still far from being solved. It

is quite surprising that the answer also depends on the spa
e dimension n. Indeed, it is shown in

[HW04℄ that for s
alar se
ond order ellipti
 operators with L

1

-
oeÆ
ients the estimate (1.2) holds

true provided n = 2, 1 < q <1 and p 2 (1; 2℄ is 
lose to 2. This is no longer true for n > 2, even

for p = 2, as the following example due to Talenti [Tal65℄ shows: let n > 2 and let 
 be the unit

ball in R

n

. Set

A =

n

X

i;j=1

(

x

i

x

j

jxj

2

(1� 
n) + Æ

ij


)D

ij

=:

n

X

i;j=1

a

ij

D

ij
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for 0 < 
 <

n�2

n(n�1)

. Then A : H

2

(
) \H

1

0

(
) ! L

2

(
) is not an isomorphism. We refer also to

Maugeri, Palaga
hev and Softova [MPS00℄ and the refen
es therein. Observe that in the above 
ase

a

ij

2 W

1;n�"

(
) for all " > 0. Thus paraboli
 equations asso
iated to operators with 
oeÆ
ients

a

ij

2 W

1;n�"

(
) for n � 3 
annot ful�ll an estimate of the form (1.2) in general. On the other

hand, if a

ij

2 W

1;n+"

(
), then by Morrey's theorem a

ij

2 C

�

(
) and estimate (1.2) is well known

in this 
ase; see e.g. [HP97℄ or [DDHPV04℄. Sin
e W

1;n

(R

n

) is a subspa
e of VMO(R

n

), our

regularity assumptions allow in parti
ular to treat the limiting 
ase above.

This paper is organized as follows. After 
olle
ting 
ertain results on Mu
kenhoupt weights

and fundamental solutions of paraboli
 systems in Se
tion 2, we state our main result in se
-

tion 3. Se
tion 4 deals with singular integrals, parameter dependening Calder�on-Zygmund kernels

and 
ommutator estimates in weighted L

p

-spa
es. These results are fundamental for the a priori

estimate given in Se
tion 5. Finally, in Se
tion 6 we give a proof of our main result.

2. Preliminaries

We start this se
tion with the de�nition of the Mu
kenhoupt 
lass A

p

for 1 < p < 1. More

pre
isely, a fun
tion 0 � ! 2 L

1

lo


(R

n

) is 
alled an A

p

-weight in the sense of Mu
kenhoupt, if there

is a 
onstant C > 0 su
h that

�

1

jQj

Z

Q

! dx

��

1

jQj

Z

Q

!

�

1

p�1

dx

�

p�1

� C;

for all 
ubes Q � R

n

with sides parallel to the axes. The smallest su
h C is 
alled the A

p

-
onstant

of !. We 
all a 
onstant C = C(!) to be A

p

-
onsistent if it depends on the A

p

-
onstant of !

only. For operators a
ting in weighted L

p

-spa
es with a weight belonging to A

p

the following

extrapolation theorem (see [GR85, Theorem IV.5.19℄ or [Ste93, V.6.17℄) is true. Let 1 < p; q < 1

and T be a family of operators su
h that for all ! 2 A

p

there exists a 
onstant C, depending only

on the A

p

-
onstant of !, su
h that

kTfk

p;!

� Ckfk

p;!

; T 2 T :

Then it follows that the same inequality, with p repla
ed by q, holds for all ! 2 A

q

. This extrapo-

lation theorem allows to give the following suÆ
ient 
riterion for maximal L

p

�L

q

-regularity, and

so (1.2), on L

p

-spa
es, see [HHH03℄. The proof 
ombines a result due to Gar
ia-Cuerva and Rubio

de Fran
ia [GR85, Theorem V.6.4℄ with a re
ent Fourier multiplier theorem due to Weis [Wei01℄.

Proposition 2.1 ([HHH03℄). Let 1 < p; q < 1 and assume that A is a se
torial operator in

L

p

!

(R

n

)

N

of angle ' <

�

2

. Suppose that a weighted estimate of the form

(2.1) ks(is+A)

�1

fk

p;!

� Ckfk

p;!

; ! 2 A

p

; f 2 L

p

!

(R

n

)

N

;

holds, where the 
onstant C depends only on the A

p

-
onstant of the weight !. Then there exists a


onstant M � 0, su
h that

ku

0

k

L

q

(J;L

p

!

(R

n

)

N

)

+ kAuk

L

q

(J;L

p

!

(R

n

)

N

)

�Mkfk

L

q

(J;L

p

!

(R

n

)

N

)

:

In the following, we 
onsider systems of di�erential operators of the form A =

P

j�j�m

a

�

(x)D

�

,

where D = �i(�

1

; : : : ; �

n

) and a

�

2 L

1

(R

n

; C

N�N

). We will assume that A is (M; �)-ellipti
; this

means that there exist 
onstants � 2 [0; �) and M > 0, su
h that the prin
ipal part A

#

(x; �) =

P

j�j=m

a

�

(x)�

�

of the symbol of A satis�es the following 
onditions:

�(A

#

(x; �)) � �

�

and

kA

#

(x; �)

�1

k � M for all � 2 R

n

; j�j = 1;

for almost all x 2 R

n

. The set of all su
h x will be denoted by E. Here �

�

denotes the se
tor in the


omplex plane de�ned by �

�

= f� 2 C n f0g : j arg�j < �g and the spe
trum of an N �N -matrix

M is denoted by �(M).
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Let A

p;!

be the realization of the di�erential operator A in L

p

!

(R

n

)

N

, that is de�ned by

A

p;!

u := Au;(2.2)

D(A

p;!

) := W

m;p

!

(R

n

)

N

:

For the time being, we freeze the ellipti
 operator A in x

0

2 E and 
onsider the fundamental

solution 


x

0

�

of � + A

x

0

for � 2 �

���

, where � 2 (�; �). Then by [DHP03℄ we have the following

pointwise estimates for the fundamental solution 


x

0

�

:

(2.3) kD

�




x

0

�

(x)k � C

�;k

j�j

n+k

m

�1

p

n

m;k

(


�

j�j

1

m

jxj); x 2 R

n

; k := j�j;

where

p

n

m;k

(r) =

Z

1

0

s

n�2

(1 + s)

m�k�1

e

�r(1+s)

ds; n � 2;

p

1

m;k

(r) =

Z

1

0

1

(1 + s)

m�k

e

�r(1+s)

ds:

This means that D

�




x

0

�

is integrable for all � with j�j < m.

We next 
onsider the spa
es of fun
tions with bounded mean os
illation BMO(R

n

) and vanishing

mean os
illation VMO(R

n

), respe
tively. For this it is useful to introdu
e the following notation.

For f 2 L

1

lo


(R

n

; C

N�N

) and G � R

n

open and bounded we write

f

G

:=

Z

�

G

f(x) dx :=

1

jGj

Z

G

f(x) dx:

for the mean value of f over G. We then say that a fun
tion f 2 L

1

lo


(R

n

; C

N�N

) has bounded

mean os
illation, or f 2 BMO(R

n

; C

N�N

), if

kfk

�

:= sup

B2B

Z

�

B

kf(x)� f

B

k dx = sup

B2B

kf � f

B

k

B

<1;

where B denotes the set of all balls in R

n

.

For given r > 0 we write B

r

for the set of all balls in R

n

with radius less than r. We then further

de�ne the VMO-modulus �

f

of a fun
tion f 2 BMO(R

n

; C

N�N

) via

�

f

(r) = sup

B2B

r

Z

�

B

kf(x)� f

B

k dx; r > 0:

and we say that f has vanishing mean os
illation, or f 2 VMO(R

n

; C

N�N

), if

lim

r!0+

�

f

(r) = 0:

If N = 1 we will shortly write BMO(R

n

) or VMO(R

n

) for BMO(R

n

; C

N�N

) or VMO(R

n

; C

N�N

),

respe
tively. Note that a fun
tion f = (f

j;k

)

N

j;k=1

belongs to BMO(R

n

; C

N�N

) or VMO(R

n

; C

N�N

),

if and only if every 
omponent f

j;k

of f belongs to BMO(R

n

) or VMO(R

n

), respe
tively.

Next we introdu
e the sharp fun
tion f

#

of f 2 L

1

lo


(R

n

) by

f

#

(x) := sup

B2B;B3x

Z

�

B

jf(y)� f

B

j dy:

Then the following holds.

Lemma 2.2. Let 1 < p < 1 and ! 2 A

p

. Then there exists an A

p

-
onsistent 
onstant C su
h

that

kfk

p;!

� Ckf

#

k

p;!

; f 2 L

p

!

(R

n

):

For a proof of this fa
t see e.g. Proposition 5.4 in [HH03℄.

The following inequality will be often useful to have.

(2.4)

Z

�

I

jf(x)� f

I

j dx � 2

Z

�

I

jf(x)� 
j dx;
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for any 
onstant 
 2 R and any measurable set I � R

n

with positive measure.

Furthermore, we re
all the well known John-Nirenberg inequality (see e.g. [Ste93, IV.1.3℄).

Denote by I a 
ube in R

n

with sides parallel to the 
oordinate axes and let 1 � p <1. Then

(2.5)

�

Z

�

I

jf(x)� f

I

j

p

dx

�

1

p

� C

p

kfk

�

:

Moreover, let 2

j

I; j 2 N, be the 
ube with the same 
enter as I but with sidelength 2

j

d, where d

is the sidelength of I . Then

(2.6)

�

Z

�

2

j

I

jf(x)� f

I

j

p

dx

�

1

p

� C

p

(j + 1)kfk

�

:

We note that (2.6) follows from (2.5) by indu
tion.

3. Main Results

We are now in the position to state the main result of this paper.

Theorem 3.1. Let n � 2, 1 < p < 1, ! 2 A

p

, �

0

2 (0; �), � > �

0

and M > 0. Assume that

A =

P

j�j�m

a

�

(x)D

�

is an (M;�

0

)-ellipti
 operator in L

p

!

(R

n

)

N

with 
oeÆ
ients a

�

satisfying

a) a

�

2 L

1

(R

n

; C

N�N

) \ VMO(R

n

; C

N�N

) for j�j = m,

b) a

�

2 L

1

(R

n

; C

N�N

) for j�j < m.

Then there are A

p

-
onsistent 
onstants �

0

; C � 0, su
h that

k(�+ �

0

+A

p;!

)

�1

k

L(L

p

!

(R

n

)

N

)

�

C

j�j

; � 2 �

���

:

The following 
orollary follows immediately from Proposition 2.1 and Theorem 3.1.

Corollary 3.2. Let 1 < p; q < 1. Assume that �

0

<

�

2

. Then there exist 
onstants M;� � 0

su
h that

ku

0

k

L

q

(J;L

p

!

(R

n

)

N

)

+ k(�+A

p;!

)uk

L

q

(J;L

p

!

(R

n

)

N

)

�Mkfk

L

q

(J;L

p

!

(R

n

)

N

)

;

In parti
ular, �(�+A

p;!

) generates an analyti
 semigroup on L

p

!

(R

n

)

N

.

Remark 3.3. Obviously, 
hoosing ! = 1, the above assertions hold also in the unweighted spa
e

L

p

(R

n

)

N

.

4. Singular Integrals and Commutators

In this se
tion we 
onsider integral operators of Calder�on-Zygmund type and related 
ommutators

with BMO-fun
tions. More pre
isely, we 
all a fun
tion K 2 L

1

lo


(R

n

n f0g; C

N�N

) a Calder�on-

Zygmund kernel, if for a 
onstant C > 0 the following three 
onditions are satis�ed:

a) kFKk

1

� C,

b) kK(x)k � Cjxj

�n

for all x 2 R

n

n f0g,


) kK(x� y)�K(x)k � Cjyjjxj

�(n+1)

for all x; y 2 R

n

, where jxj > 2jyj > 0.

Here we denote by F the Fourier transform.

Remark 4.1. It is 
lear that the entries K

j;k

of K = (K

j;k

)

N

j;k=1

are s
alar Calder�on-Zygmund

kernels if and only if K is a Calder�on-Zygmund kernel.

The following result on s
alar-valued kernels was proved in [HH03, Propositions 5.1 and 5.4℄. It

extends in parti
ular a 
lassi
al 
ommutator result due to Coifman, Ro
hberg and Weiss [CRW76℄

to the weighted situation.
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Proposition 4.2. Let 1 < p < 1, ! 2 A

p

, a 2 BMO(R

n

) and k 2 L

1

lo


(R

n

n f0g) be a (s
alar-

valued) Calder�on-Zygmund kernel. Then

Tf := k � f and [T; a℄f := T (af)� aTf; f 2 S(R

n

);

de�ne bounded linear operators on L

p

!

(R

n

) and there is an A

p

-
onsistent 
onstant C su
h that

kTfk

p;!

� Ckfk

p;!

and k[T; a℄fk

p;!

� Ckak

�

kfk

p;!

:

We next give a result analog to Proposition 4.2 but now for kernels having two variables. We

assume that the kernel is homogeneous in the se
ond variable. By S

n�1

we denote the unit sphere

in R

n

.

Proposition 4.3. Let 1 < p <1, ! 2 A

p

and a 2 BMO(R

n

). Further let k : R

n

�(R

n

nf0g)! C

be measurable, su
h that

a) the fun
tion k(x; �) is homogeneous of degree �n for a.e. x 2 R

n

,

b)

R

S

n�1

k(x; y) dy = 0,


) kD

�

y

k(x; y)k

L

1

(R

n

�S

n�1

)

�M , j�j � 2n.

Consider the operators T and [T; a℄ given by

Tf(x) = lim

"!0

Z

jx�yj>"

k(x; x� y)f(y) dy = p:v:

Z

R

n

k(x; x� y)f(y) dy;

[T; a℄ f(x) = p:v:

Z

R

n

k(x; x� y)

�

a(x) � a(y)

�

f(y) dy:

Then T and [T; a℄ are bounded on L

p

!

(R

n

) and there is an A

p

-
onsistent 
onstant C su
h that

kTfk

p;!

� Ckfk

p;!

; k[T; a℄fk

p;!

� Ckak

�

kfk

p;!

:

The proof of this proposition is given in [HH03, Proposition 5.5℄ and uses a representation of

jyj

n

k(x; y) by spheri
al harmoni
s. As we need this method in the following, we shortly des
ribe

it in the next proposition.

Proposition 4.4. Let k be as in Proposition 4.3. Then for j 2 N there exist b

j

2 L

1

(R

n

) and

Y

j

2 L

1

(R

n

n f0g) su
h that

a) k(x; y) =

1

X

j=1

b

j

(x)

Y

j

(y)

jyj

n

,

b) Y

j

(y)=jyj

n

is a Calder�on-Zygmund kernel,


) the norms of the asso
iated operators on L

p

!

(R

n

) are uniformly bounded in j 2 N,

d)

P

1

j=1

kb

j

k

1

<1.

The following result is a 
onsequen
e of (2.3), see e.g. [HH03, Lemma 6.1℄.

Proposition 4.5. Let B be an (M;�

0

)-ellipti
 di�erential operator, homogenous of degree m, with


onstant 
oeÆ
ients. Further, let � > �

0

and let 


�

be the fundamental solution of � + B for

� 2 �

���

. Then, for every � 2 �

���

and j�j � m, the fun
tions

�

1�j�j=m

D

�




�

are Calder�on-Zygmund kernels. Furthermore, the 
onstant C, that appears in the de�nition of

Calder�on-Zygmund kernels, 
an be 
hosen independently of �.

Remark 4.6. In parti
ular, the kernels 


x

0

�

, x

0

2 E, ful�ll the 
onditions of this proposition. Note

that the inequalities in (2.3) do not depend on x

0

. Therefore, the 
onstant C 
an also be 
hosen

independently of x

0

2 E.

The next result ensures the existen
e of a 
ertain integral kernel.



L

p

� L

q

-ESTIMATES FOR PARABOLIC SYSTEMS WITH VMO-COEFFICIENTS 7

Lemma 4.7. Let h 2 C

1

(R

n

n f0g; C

N�N

) be homogeneous of degree 0 and T 2 L(L

2

(R

n

)

N

)

be de�ned as Tf = F

�1

hFf . Then there exists a fun
tion k 2 C

1

(R

n

n f0g; C

N�N

) whi
h is

homogeneous of degree �n and satis�es

R

S

n�1

k(x) dx = 0. Furthermore,

Tf = 
 � f + lim

"!0

Z

jyj>"

k(y)f(� � y) dy; f 2 L

2

(R

n

)

N

;

where 
 =

R

S

n�1

h(x) dx and

kD

�

kk

L

1

(S

n�1

)

� C

X

j�j�r

kD

�

hk

L

1

(S

n�1

)

for some r 2 N depending only on n and j�j.

Proof. The proof follows easily from the s
alar-valued 
ase given in [HH03℄. In fa
t, set h =

(h

j;`

)

N

j;`=1

. Then h

j;`

2 C

1

(R

n

n f0g) for all j; ` 2 f1; : : : ; Ng. Furthermore, for x 6= 0 and � 2 R

we have

h

j;`

(�x) = e

T

j

h(�x)e

`

= e

T

j

h(x)e

`

= h

j;`

(x);

whi
h implies the homogeneity of ea
h 
omponent h

j;`

. By [HH03, Lemma 6.2℄ we obtain s
alar

kernels k

j;`

2 C

1

(R

n

n f0g) and 


j;`

with the desired properties. Now k := (k

j;`

)

N

j;`=1

and 
 :=

(


j;`

)

N

j;`=1

is the fun
tion and the 
onstant we were looking for. �

5. A Priori Estimates

The main result of this se
tion is the following a priori estimate. We denote by A always a

homogeneous, (M;�

0

)-ellipti
 di�erential operator of order m, where �

0

2 (0; �). We also assume

that a

�

2 L

1

(R

n

; C

N�N

) for all � with j�j = m.

Theorem 5.1. Let 1 < p < 1, ! 2 A

p

and � > �

0

. Then there exist A

p

-
onsistent 
onstants

C; � > 0 and �

0

� 0, su
h that for all u 2W

m;p

!

(R

n

)

N

and all � 2 �

���

with j�j > �

0

X

j�j�m

k�

1�

j�j

m

D

�

uk

p;!

� Ck(�+A)uk

p;!

;

provided ka

�

k

�

� � for all j�j = m.

The proof of the above theorem is based on a representation of D

�

u in terms of kernels 


x

0

�

and

operators �+A

x

0

. More pre
isely, we have the following representation formula.

Lemma 5.2. Let u 2 D(R

n

)

N

and x 2 E. If j�j < m, then

D

�

u(x) =

Z

R

n

D

�




x

�

(x� y)(�+A

x

)u(y) dy:

Moreover, for j�j = m

D

�

u(x) = p:v:

Z

R

n

K

�

(x; x � y)(�+A

x

)u(y) dy + 


�

(x)(� +A)u(x)

�

Z

R

n

�


x

�

(x� y)

�

p:v:

Z

R

n

K

�

(x; y � z)(�+A

x

)u(z) dz

�

dy

� 


�

(x)

Z

R

n

�


x

�

(x� y)(�+A

x

)u(y) dy:

Here 


�

2 L

1

(R

n

) and K

�

is a matrix-valued integral kernel, whose entries ful�ll the assumptions

of Proposition 4.3.
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Proof. For every x

0

2 E we have Fu = (� + A

#

(x

0

; �))

�1

F(� + A

x

0

)u. The �rst part of the

assertion follows easily by setting x

0

= x sin
e by the estimates (2.3) D

�




x

0

�

is in L

1

(R

n

)

N

for

every j�j < m.

Hen
e we turn to the 
ase where j�j = m and see that

FD

�

u(�) = �

�

�

�+A

#

(x

0

; �)

�

�1

�

F(�+A

x

0

)u

�

(�)

= �

�

(A

#

(x

0

; �))

�1

�

F(�+A

x

0

)u

�

(�)

+

h

�

�

�

�+A

#

(x

0

; �)

�

�1

� �

�

(A

#

(x

0

; �))

�1

i

�

F(�+A

x

0

)u

�

(�):

We may now repla
e (� + A

#

(x

0

; �))

�1

� (A

#

(x

0

; �))

�1

by ��

�

� + A

#

(x

0

; �)

�

�1

(A

#

(x

0

; �))

�1

,

sin
e the two matri
es 
ommute. Hen
e we obtain

FD

�

u(�) = �

�

(A

#

(x

0

; �))

�1

�

F(�+A

x

0

)u

�

(�)

� �

�

�+A

#

(x

0

; �)

�

�1

�

�

(A

#

(x

0

; �))

�1

�

F(�+A

x

0

)u

�

(�):

As j�j = m and A is an (M;�

0

)-ellipti
 operator, the symbol h

x

0

(�) := �

�

(A

#

(x

0

; �))

�1

is a smooth

homogeneous fun
tion of degree 0.

By Lemma 4.7 there exist kernels K

�

(x

0

; �) 2 C

1

(R

n

n f0g; C

N�N

), that are homogeneous

of degree �n with

R

S

n�1

K

�

(x

0

; y) dy = 0. Furthermore, the ellipti
ity of A yields the estimate

kD

�

h

x

0

k

L

1

(S

n�1

)

� C

k

uniformly in x

0

2 E and for all j�j � k. This implies, that the derivatives

of K

�

(x

0

; �) are bounded on the unit sphere independently of x

0

2 E. By this we �nally obtain,

that the entries of K

�

ful�ll the assumptions of Proposition 4.3.

For the 
onstants 


�

(x

0

), whi
h we obtain from Lemma 4.7, ellipti
ity of A yields

j


�

(x

0

)j �

Z

S

n�1

j�

�

(A

#

(x

0

; �))

�1

j d� �

Z

S

n�1

M d� � CM:

Thus 


�

2 L

1

(R

n

).

Inserting these kernels and the 
onstants 


�

into the above equation and applying F

�1

we get

D

�

u(x) = p:v:

Z

R

n

K

�

(x

0

; x� y)(�+A

x

0

)u(y) dy + 


�

(x

0

)(�+A

x

0

)u(x)

�

Z

R

n

�


x

0

�

(x � y)

�

p:v:

Z

R

n

K

�

(x

0

; y � z)(�+A

x

0

)u(z) dz

�

dy

� 


�

(x

0

)

Z

R

n

�


x

0

�

(x� y)(�+A

x

0

)u(y) dy

for every x

0

2 E. The assertion follows again by setting x

0

= x. �

Before proving Theorem 5.1 some 
omments on our notation are in order. The entries of

the matri
es a

�

(x) and 


x

0

�

are denoted by a

(�)

j;k

(x) and g

�;x

0

j;k

for j; k = 1; : : : ; N , respe
tively.

Furthermore, we write u

j

, j = 1; : : : ; N , for the 
omponents of u.

By Lemma 5.2 we get for j�j < m

�

1�

j�j

m

D

�

u(x) =

Z

R

n

�

1�

j�j

m

D

�




x

�

(x� y)(�+A

x

)u(y) dy

=

Z

R

n

�

1�

j�j

m

D

�




x

�

(x� y)(�+A)u(y) dy

+

Z

R

n

�

1�

j�j

m

D

�




x

�

(x � y)(A

x

�A)u(y) dy:
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Looking at one 
omponent one obtains

�

1�

j�j

m

D

�

u

j

(x) =

N

X

k=1

Z

R

n

�

1�

j�j

m

D

�

g

�;x

j;k

(x� y)

�

(�+A)u(y)

�

k

dy

+

N

X

`=1

N

X

k=1

Z

R

n

�

1�

j�j

m

D

�

g

�;x

j;k

(x� y)

X

j�j=m

�

a

(�)

k;l

(x)� a

(�)

k;l

(y)

�

D

�

u

`

(y) dy(5.1)

=

N

X

k=1

�

T

3;�;�

j;k

((� +A)u)

k

�

(x) +

N

X

`=1

N

X

k=1

X

j�j=m

�

[T

3;�;�

j;k

; a

(�)

k;`

℄D

�

u

`

�

(x);

where

T

3;�;�

j;k

f(x) =

Z

R

n

�

1�

j�j

m

D

�

g

�;x

j;k

(x � y)f(y) dy;

[T

3;�;�

j;k

; a℄f(x) =

Z

R

n

�

1�

j�j

m

D

�

g

�;x

j;k

(x � y)

�

a(x)� a(y)

�

f(y) dy

for j; k = 1; : : : ; N , j�j < m, � 2 �

���

and a 2 BMO(R

n

). By the same 
al
ulations, we derive

from the representation formula in Lemma 5.2 for j�j = m

D

�

u(x) = p:v:

Z

R

n

K

�

(x; x � y)(�+A)u(y) dy + p:v:

Z

R

n

K

�

(x; x � y)(A

x

�A)u(y) dy

+ 


�

(x)(� +A)u(x)�

Z

R

n

�


x

�

(x� y)

�

p:v:

Z

R

n

K

�

(x; y � z)(�+A)u(z) dz

�

dy

�

Z

R

n

�


x

�

(x� y)

�

p:v:

Z

R

n

K

�

(x; y � z)(A

x

�A)u(z) dz

�

dy

� 


�

(x)

Z

R

n

�


x

�

(x� y)(�+A)u(y) dy � 


�

(x)

Z

R

n

�


x

�

(x� y)(A

x

�A)u(y) dy:

For the j-th 
omponent this means

D

�

u

j

(x) =

N

X

k=1

p:v:

Z

R

n

K

�

j;k

(x; x � y)

�

(�+A)u(y)

�

k

dy

+

X

j�j=m

N

X

`=1

N

X

k=1

p:v:

Z

R

n

K

�

j;k

(x; x� y)

�

a

(�)

k;`

(x) � a

(�)

k;`

(y)

�

D

�

u

`

(y) dy

+

N

X

k=1




�

j;k

(x)

�

(�+A)u(x)

�

k

�

N

X

`=1

N

X

k=1

Z

R

n

�g

�;x

j;k

(x� y) p:v:

Z

R

n

K

�

k;`

(x; y � z)

�

(�+A)u(z)

�

`

dz dy

�

X

j�j=m

N

X

r=1

N

X

`=1

N

X

k=1

Z

R

n

�g

�;x

j;k

(x� y)

� p:v:

Z

R

n

K

�

k;`

(x; y � z)

�

a

(�)

`;r

(x)� a

(�)

`;r

(z)

�

D

�

u

r

(z) dz dy

�

N

X

`=1

N

X

k=1




�

j;k

(x)

Z

R

n

�g

�;x

k;`

(x � y)

�

(�+A)u(y)

�

`

dy

�

X

j�j=m

N

X

r=1

N

X

`=1

N

X

k=1




�

j;k

(x)

Z

R

n

�g

�;x

k;`

(x� y)

�

a

(�)

`;r

(x)� a

(�)

`;r

(y)

�

D

�

u

r

(y) dy;



10 ROBERT HALLER-DINTELMANN, HORST HECK, MATTHIAS HIEBER

where K

�

j;k

(x; x�y) and 


�

j;k

(x) are the entries of the matri
es K

�

(x; x�y) and 


�

(x) respe
tively.

In order to get a notational grip on this formula we introdu
e the following operators. Let

j; k; ` 2 f1; : : : ; Ng, j�j = m, � 2 �

���

and let a 2 BMO(R

n

) and f 2 L

p

!

(R

n

). Then we de�ne

T

1;�

j;k

f(x) = p:v:

Z

R

n

K

�

j;k

(x; x� y)f(y) dy;

[T

1;�

j;k

; a℄f(x) = p:v:

Z

R

n

K

�

j;k

(x; x� y)

�

a(x) � a(y)

�

f(y) dy;

T

2;�;�

j;k;`

f(x) =

Z

R

n

�g

�;x

j;k

(x� y) p:v:

Z

R

n

K

�

k;`

(x; y � z)f(z) dz dy;

[T

2;�;�

j;k;`

; a℄f(x) =

Z

R

n

�g

�;x

j;k

(x� y) p:v:

Z

R

n

K

�

k;`

(x; y � z)

�

a(x) � a(z)

�

f(z) dz dy:

Using this notation we �nally write

D

�

u

j

(x) =

N

X

k=1

T

1;�

j;k

�

(�+A)u

�

k

(x) +

X

j�j=m

N

X

`=1

N

X

k=1

h

T

1;�

j;k

; a

(�)

k;`

i

D

�

u

`

(x)

+

N

X

k=1




�

j;k

(x)

�

(�+A)u(x)

�

k

�

N

X

`=1

N

X

k=1

T

2;�;�

j;k;`

�

(�+A)u

�

`

(x)

�

X

j�j=m

N

X

r=1

N

X

`=1

N

X

k=1

h

T

2;�;�

j;k;`

; a

(�)

`;r

i

D

�

u

r

(x)�

N

X

`=1

N

X

k=1




�

j;k

(x)T

3;�;0

k;`

�

(�+A)u

�

`

(x)(5.2)

�

X

j�j=m

N

X

r=1

N

X

`=1

N

X

k=1




�

j;k

(x)

h

T

3;�;0

k;`

; a

(�)

`;r

i

D

�

u

r

(x):

Note, that the operator [T

2;�;�

j;k;`

; a℄ is not a 
ommutator. As we 
an handle it by the same methods

as the 
ommutators, we however use this notation.

We now prove the following mapping properties of the above operators.

Lemma 5.3. Let j; k; ` 2 f1; : : : ; Ng, j�j = m, j�j < m, � 2 �

���

, a 2 L

1

(R

n

), 1 < p < 1,

! 2 A

p

and f 2 L

p

!

(R

n

). Then

kT

1;�

j;k

fk

p;!

� Ckfk

p;!

;










h

T

1;�

j;k

; a

i

f










p;!

� Ckak

�

kfk

p;!

;

kT

2;�;�

j;k;`

fk

p;!

� Ckfk

p;!

;










[T

2;�;�

j;k;`

; a℄f










p;!

� CA

�

(1 + kak

1

)kfk

p;!

;

kT

3;�;�

j;k

fk

p;!

� Ckfk

p;!

;










[T

3;�;�

j;k

; a℄f










p;!

� CA

�

(1 + kak

1

)kfk

p;!

;

where

A

�

:= max

�

kak

�

; max

j�j=m

N

max

r;s=1

ka

(�)

r;s

k

�

�

:

Proof. By Lemma 5.2 the kernelsK

�

j;k

ful�ll the hypotheses of Proposition 4.3. Thus the assertion


on
erning the T

1

-operators follows.

We turn to the operators 
ontaining T

3

. Using (2.3), we have

kD

�




x

�

(z)k � Cj�j

n+j�j

m

�1

p

n

m;j�j

(
j�j

1

m

jzj)

for all j�j < m, � 2 �

���

and x; z 2 R

n

. Consequently, we have the same estimate for the entries

g

�;x

j;k

and the boundedness of T

3;�;�

j;k

follows as in [HH03, Proposition 6.5℄.

Dealing with the 
ommutator of T

3;�;�

j;k

with BMO-fun
tions is mu
h harder. We �rst show a

point-wise estimate for the sharp fun
tion of [T

3;�;�

j;k

; a℄f .
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Let I be an axis-parallel 
ube in R

n

and x 2 I . Then

[T

3;�;�

j;k

; a℄f(z) =

�

a(z)� a

I

�

T

3;�;�

j;k

f(z)� T

3;�;�

j;k

�

(a� a

I

)1

2I

f

�

(z)� T

3;�;�

j;k

�

(a� a

I

)1

(2I)




f

�

(z)

=: A(z) +B(z) + C(z):

We estimate A

#

(x), B

#

(x), and C

#

(x) separately. For A and B we 
hoose 
 = 0 in (2.4) and look

at

R

�

I

jA(z)j dz and

R

�

I

jB(z)j dz.

The H�older inequality yields for all 1 < r <1

Z

�

I

jA(z)j dz � C

�

Z

�

I

ja(z)� a

I

j

r

0

dz

�

1

r

0

�

Z

�

I

jT

3;�;�

j;k

f(z)j

r

dz

�

1

r

:

For the �rst fa
tor we use the John Nirenberg inequality (2.5), and we estimate the se
ond one by

the supremum over all 
ubes that 
ontain x, and thus by the maximal operator. This yields

Z

�

I

jA(z)j dz � Ckak

�

�

M jT

3;�;�

j;k

f j

r

�

1

r

(x):

For estimating B

#

, we �rst apply Jensen's inequality:

Z

�

I

jB(z)j dz �

�

Z

�

I

jT

3;�;�

j;k

�

(a� a

I

)f1

2I

�

(z)j

q

dz

�

1

q

�

�

1

jI j

�

1

q

kT

3;�;�

j;k

�

(a� a

I

)f1

2I

�

k

q

;

where 1 < q < 1. Now we use the boundedness of T

3;�;�

j;k

in L

q

(R

n

) and then again H�older's

inequality as above. Doing so, we get for every u 2 (1;1) and every 1 < r = qu <1:

Z

�

I

jB(z)j dz � C

�

1

jI j

Z

2I

ja(z)� a

I

j

qu

0

dz

�

1

qu

0

�

1

jI j

Z

2I

jf(z)j

qu

dz

�

1

qu

� Ckak

�

(M jf j

r

)

1

r

(x);

where we again estimated the �rst fa
tor by the John Nirenberg inequality and the se
ond one by

the maximal operator.

The third part C

#

(x) is more involved. Here we have to use the stru
ture of our kernels and

we 
annot 
hoose 
 = 0 in (2.4). We de�ne the averaged operator

A

I

:=

X

j�j=m

Z

�

I

a

�

(x) dxD

�

;

whi
h is a homogeneous di�erential operator with 
onstant 
oeÆ
ients. Thus there exist suitable


onstants

~

�

0

;K � 0, su
h that the operator

~

�

0

+ A

I

is (K;�

0

=2)-ellipti
. By Proposition 4.5 we

see, that (� +A

I

)

�1

is given by a kernel K

I;�

for all � 2

~

�

0

+�

���

0

=2

. Choosing �

0

�

~

�

0

so big,

that �

���

0

nB(0; �

0

) �

~

�

0

+�

���

0

=2

, we get for all � > �

0

and � 2 �

���

satisfying j�j > �

0

the

estimate

kD

�

K

I;�

(x)k � Cj�j

n+j�j

m

�1

p

n

m;j�j

(
j�j

1

m

jxj);

as in (2.3). Thus for all these � and for all j�j � m the fun
tion �

1�j�j=m

D

�

K

I;�

is a Calder�on-

Zygmund kernel and the asso
iated operators are bounded in L

p

!

(R

n

) uniformly in � 2 �

���

n

B(0; �

0

).

With this preparations in hand, we now estimate C

#

(x). To this end we 
hoose the 
onstant 


in (2.4) as


 :=

Z

R

n

�

1�

j�j

m

D

�

K

I;�

j;k

(x

I

� y)(a(y)� a

I

)1

(2I)



(y)f(y) dy;
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where x

I

is the 
enter of the 
ube I . Setting g(y) := (a(y)� a

I

)1

(2I)




(y)f(y) we obtain

Z

�

I

jC(z)� 
j dz =

Z

�

I

�

�

�

�

Z

R

n

�

1�

j�j

m

D

�

�

g

�;z

j;k

(z � y)�K

I;�

j;k

(x

I

� y)

�

g(y) dy

�

�

�

�

dz

=

Z

�

I

�

�

�

�

Z

R

n

�

1�

j�j

m

D

�

�

g

�;z

j;k

(z � y)�K

I;�

j;k

(z � y)

�

g(y) dy

�

�

�

�

dz

+

Z

�

I

�

�

�

�

Z

R

n

�

1�

j�j

m

D

�

�

K

I;�

j;k

(z � y)�K

I;�

j;k

(x

I

� y)

�

g(y) dy

�

�

�

�

dz

=: I

1

+ I

2

:

Therefore we need information about the di�eren
es g

�;z

j;k

�K

I;�

j;k

and K

I;�

j;k

(z � �) �K

I;�

j;k

(x

I

� �).

To handle the �rst di�eren
e we 
al
ulate for the 
orresponding matrix-valued kernels 


z

�

and K

I;�

and for every ' 2 D(R

n

)

N

(


z

�

�K

I;�

) � ' = F

�1

�

(�+A

#

(z; �))

�1

� (� +A

I;#

(�))

�1

�

F'

= F

�1

(�+A

#

(z; �))

�1

�

A

I;#

(�)�A

#

(z; �)

�

(�+A

I;#

(�))

�1

F'

=

X

j�j=m

F

�1

(� +A

#

(z; �))

�1

�

(a

�

)

I

� a

�

(z)

�

�

�

(�+A

I;#

(�))

�1

F'

=

X

j�j=m




z

�

�

��

(a

�

)

I

� a

�

(z)

�

D

�

K

I;�

� '

�

:

For one 
omponent this identity means, that for every f 2 D(R

n

)

h

�

1�

j�j

m

D

�

�

g

�;z

j;k

�K

I;�

j;k

�

i

� f(z)

=

X

j�j=m

N

X

`=1

N

X

s=1

�

(a

(�)

`;s

)

I

� a

(�)

`;s

(z)

�

Z

R

n

�

1�

j�j

m

D

�

g

�;z

j;`

(z � y)

Z

R

n

D

�

K

I;�

s;k

(y � u)f(u) du dy

=:

X

j�j=m

N

X

`=1

N

X

s=1

�

(a

(�)

`;s

)

I

� a

(�)

`;s

(z)

�

S

�;�;�

j;k;`;s

f(z);

where S

�;�;�

j;k;`;s

is a bounded operator on L

p

!

(R

n

), as it is a 
omposition of two 
onvolutions with

Calder�on-Zygmund kernels. Propositions 4.2 and 4.5 even allow us to estimate the norm of this

operator A

p

-
onsistently and independently of �.

Using this to estimate I

1

, we get

I

1

�

X

j�j=m

N

X

`=1

N

X

s=1

�

Z

�

I

�

�

�

(a

(�)

`;s

)

I

� a

(�)

`;s

(z)

�

�

�

�

�

�

h

S

�;�;�

j;k;`;s

(a1

(2I)




f)

i

(z)

�

�

�

dz

+

Z

�

I

�

�

�

(a

(�)

`;s

)

I

� a

(�)

`;s

(z)

�

�

�

�

�

�

h

S

�;�;�

j;k;`;s

(a

I

1

(2I)



f)

i

(z)

�

�

�

dz

�

=: I

11

+ I

12

:

In order to treat I

11

we write 1

(2I)



f = f � 1

2I

f . The triangle inequality then yields for every

1 < r <1

I

11

�

X

j�j=m

N

X

`=1

N

X

s=1

�

Z

�

I

�

�

�

(a

(�)

`;s

)

I

� a

(�)

`;s

(z)

�

�

�

�

�

�

h

S

�;�;�

j;k;`;s

(af)

i

(z)

�

�

�

dz

+

Z

�

I

�

�

�

(a

(�)

`;s

)

I

� a

(�)

`;s

(z)

�

�

�

�

�

�

h

S

�;�;�

j;k;`;s

(a1

2I

f)

i

(z)

�

�

�

dz

�

� C

X

j�j=m

N

X

`=1

N

X

s=1










a

(�)

`;s










�

�

(M jS

�;�;�

j;k;`;s

af j

r

)

1

r

(x) + kak

1

(M jf j

r

)

1

r

(x)

�

;
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in the same way as we estimated

R

�

I

jA(z)j dz and

R

�

I

jB(z)j dz. Analogously

I

12

� C

X

j�j=m

N

X

`=1

N

X

s=1










a

(�)

`;s










�

�

(M jS

�;�;�

j;k;`;s

a

I

f j

r

)

1

r

(x) + kak

1

(M jf j

r

)

1

r

(x)

�

� Ckak

1

X

j�j=m

N

X

`=1

N

X

s=1










a

(�)

`;s










�

�

(M jS

�;�;�

j;k;`;s

f j

r

)

1

r

(x) + (M jf j

r

)

1

r

(x)

�

:

For I

2

we use that every entry of �

1�j�j=m

D

�

K

I;�

is a Calder�on-Zygmund kernel:

I

2

=

Z

�

I

�

�

�

�

Z

R

n

�

1�

j�j

m

D

�

�

K

I;�

j;k

(z � y)�K

I;�

j;k

(x

I

� y)

�

g(y) dy

�

�

�

�

dz

�

Z

�

I

Z

R

n

n2I

�

�

�

�

1�

j�j

m

D

�

K

I;�

j;k

�

x

I

� y � (x

I

� z)

�

� �

1�

j�j

m

D

�

K

I;�

j;k

(x

I

� y)

�

�

�

� ja(y)� a

I

jjf(y)j dy dz

� C

Z

�

I

Z

R

n

n2I

jx

I

� zj

jx

I

� yj

n+1

ja(y)� a

I

jjf(y)j dy dz:

This estimate is possible, as jx

I

� yj > 2jx

I

� zj is valid. Applying the H�older inequality

I

2

� C

Z

�

I

 

Z

R

n

n2I

jx

I

� zj

jx

I

� yj

n+1

ja(y)� a

I

j

r

0

dy

!

1

r

0

 

Z

R

n

n2I

jx

I

� zj

jx

I

� yj

n+1

jf(y)j

r

dy

!

1

r

dz

follows for every 1 < r <1. Denoting the side-length of I by d, we estimate the �rst fa
tor:

Z

R

n

n2I

jx

I

� zj

jx

I

� yj

n+1

ja(y)� a

I

j

r

0

dy

=

1

X

`=2

Z

2

`

In2

`�1

I

jx

I

� zj

jx

I

� yj

n+1

ja(y)� a

I

j

r

0

dy �

1

X

`=2

d

(2

`�2

d)

n+1

Z

2

`

I

ja(y)� a

I

j

r

0

dy

= 4

n+1

1

X

`=2

2

�`

Z

�

2

`

I

ja(y)� a

I

j

r

0

dy � C

1

X

`=2

2

�`

(`+ 1)

r

0

kak

r

0

�

� Ckak

r

0

�

by (2.6) and sin
e (2

`�2

d)

n+1

= 2

`

4

�(n+1)

dj2

`

I j.

Analogously we get for the se
ond fa
tor

Z

R

n

n2I

jx

I

� zj

jx

I

� yj

n+1

jf(y)j

r

dy � C

1

X

`=2

2

�`

Z

�

2

`

I

jf(y)j

r

dy � CM jf j

r

(x):

Altogether we obtain for I

2

I

2

� Ckak

�

�

M jf j

r

�

1

r

(x):

Combining this with the estimate for I

1

we see that

Z

�

I

jC(z)� 
j dz � C

�

kak

�

�

M jf j

r

�

1

r

(x) +

X

j�j=m

N

X

`=1

N

X

s=1










a

(�)

`;s










�

�

�

M jS

�;�;�

j;k;`;s

af j

r

�

1

r

(x)

+ kak

1

�

M jS

�;�;�

j;k;`;s

f j

r

�

1

r

(x) + kak

1

�

M jf j

r

�

1

r

(x)

��

:
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Colle
ting the results for A, B and C, we have for every 1 < r <1

�

[T

3;�;�

j;k

; a℄f

�

#

(x) � A

#

(x) +B

#

(x) + C

#

(x)

� Ckak

�

�

�

M jT

3;�;�

j;k

f j

r

�

1

r

(x) +

�

M jf j

r

�

1

r

(x)

�

+ C

X

j�j=m

N

X

`=1

N

X

s=1










a

(�)

`;s










�

�

�

M jS

�;�;�

j;k;`;s

af j

r

�

1

r

(x)

+ kak

1

�

M jS

�;�;�

j;k;`;s

f j

r

�

1

r

(x) + kak

1

�

M jf j

r

�

1

r

(x)

�

:

As in the third step of the proof of Proposition 5.4 in [HH03℄ there exists an r > 1, su
h that

k

�

M jf j

r

�

1

r

k

p;!

� Ckfk

p;!

; f 2 L

p

!

(R

n

);

with an A

p

-
onsistent 
onstant C. This and Lemma 2.2 now yield










[T

3;�;�

j;k

; a℄f










p;!

� C













�

[T

3;�;�

j;k

; a℄f

�

#













p;!

� CA

�

�

kT

3;�;�

j;k

fk

p;!

+ kfk

p;!

+

X

j�j=m

N

X

`=1

N

X

s=1

�

kS

�;�;�

j;k;`;s

afk

p;!

+ kak

1

�

kS

�;�;�

j;k;`;s

fk

p;!

+ kfk

p;!

�

��

� CA

�

�

kfk

p;!

+N

m+2

�

kafk

p;!

+ kak

1

kfk

p;!

�

�

� CA

�

(1 + kak

1

)kfk

p;!

;

where C is an A

p

-
onsistent 
onstant.

We �nally show the boundedness of the operators T

2;�;�

j;k;`

and [T

2;�;�

j;k;`

; a℄. For this purpose, we

use Proposition 4.4 to expand the kernel of the prin
ipal value integral in the de�nition of T

2;�;�

j;k;`

.

This yields

T

2;�;�

j;k;`

f(x) =

1

X

s=1

b

�;k;`

s

(x)

Z

R

n

�g

�;x

j;k

(x � y) p:v:

Z

R

n

Y

�;k;`

s

(y � z)

jy � zj

n

f(z) dz

| {z }

=:R

�;k;`

s

f(y)

dy;

where R

�;k;`

s

is a Calder�on-Zygmund operator on L

p

!

(R

n

), whose norm 
an be bounded indepen-

dently of s. Hen
e

kT

2;�;�

j;k;`

fk

p;!

=
















1

X

s=1

b

�;k;`

s

�

T

3;�;0

j;k

R

�;k;`

s

f

�
















p;!

�

1

X

s=1

kb

�;k;`

s

k

1

kT

3;�;0

j;k

R

�;k;`

s

fk

p;!

� C

1

X

s=1

kb

�;k;`

s

k

1

kfk

p;!

� Ckfk

p;!

with an A

p

-
onsistent 
onstant C.

In order to bound the operator [T

2;�;�

j;k;`

; a℄ we write

[T

2;�;�

j;k;`

; a℄f(x) =

Z

R

n

�g

�;x

j;k

(x� y) p:v:

Z

R

n

K

�

k;`

(x; y � z)

�

a(x)� a(z)

�

f(z) dz dy

=

Z

R

n

�g

�;x

j;k

(x� y)

�

a(x)� a(y)

�

p:v:

Z

R

n

K

�

k;`

(x; y � z)f(z) dz dy

+

Z

R

n

�g

�;x

j;k

(x� y) p:v:

Z

R

n

K

�

k;`

(x; y � z)

�

a(y)� a(z)

�

f(z) dz dy:
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Applying on
e more Proposition 4.4 to expand the kernel K

�

k;`

, we get

[T

2;�;�

j;k;`

; a℄f(x) =

1

X

s=1

b

�;k;`

s

(x)

�

�

[T

3;�;0

j;k

; a℄R

�;k;`

s

f

�

(x) + T

3;�;0

j;k

�

[R

�;k;`

s

; a℄f

�

(x)

�

:

As we have already bounded the T

3

-operators, we �nally 
on
lude with the help of Propositions 4.3

and 4.4










[T

2;�;�

j;k;`

; a℄f










p;!

� C

1

X

s=1

kb

�;k;`

s

k

1

�

A

�

(1 + kak

1

)kfk

p;!

+ kak

�

kfk

p;!

�

� CA

�

(1 + kak

1

)kfk

p;!

:

�

Proof of Theorem 5.1: For every j�j < m and all j = 1; : : : ; N we have by (5.1)

�

1�

j�j

m

D

�

u

j

(x) =

N

X

k=1

�

T

3;�;�

j;k

((� +A)u)

k

�

(x) +

N

X

`=1

N

X

k=1

X

j�j=m

�

[T

3;�;�

j;k

; a

(�)

k;`

℄D

�

u

`

�

(x):

By the pre
eeding lemma we see that

k�

1�

j�j

m

D

�

u

j

k

p;!

� C

�

N

X

k=1

k

�

(� +A)u

�

k

k

p;!

+ a

�

a

1

N

X

`=1

X

j�j=m

kD

�

u

`

k

p;!

�

;

where

a

�

:= max

j�j=m

N

max

k;`=1

ka

(�)

k;`

k

�

and a

1

:= 1 + max

j�j=m

N

max

k;`=1

ka

(�)

k;`

k

1

:

Analogously we get by (5.2) for all j�j = m and all j = 1; : : : ; N

kD

�

u

j

k

p;!

� C

�

N

X

k=1

k

�

(�+A)u

�

k

k

p;!

+ a

�

N

X

k=1

X

j�j=m

kD

�

u

k

k

p;!

+

N

X

k=1

k

�

(�+A)u

�

k

k

p;!

+

N

X

k=1

k

�

(�+A)u

�

k

k

p;!

+ a

�

a

1

N

X

k=1

X

j�j=m

kD

�

u

k

k

p;!

+

N

X

k=1

k

�

(�+A)u

�

k

k

p;!

+ a

�

a

1

N

X

k=1

X

j�j=m

kD

�

u

k

k

p;!

�

:

Combinig these two estimates, we 
on
lude that

X

j�j�m










�

1�

j�j

m

D

�

u










p;!

� C

N

X

j=1

X

j�j�m










�

1�

j�j

m

D

�

u

j










p;!

� C

�

N

X

k=1

k

�

(�+A)u

�

k

k

p;!

+ a

�

a

1

N

X

k=1

X

j�j=m

kD

�

u

k

k

p;!

�

with an A

p

-
onsistent 
onstant C. If � < (Ca

1

)

�1

, we have Ca

�

a

1

� C�a

1

< 1. Thus we may

bring the se
ond term on the left hand side to the right hand side and therefore �nish the proof.

�



16 ROBERT HALLER-DINTELMANN, HORST HECK, MATTHIAS HIEBER

6. Proof of the Main Result

Due to the a priori estimate given in the previous se
tion, it remains to prove that the operator

� + A from W

m;p

!

(R

n

) onto L

p

!

(R

n

)

N

is surje
tive. This follows from the 
ontinuity method in

the same way as in [HH03℄. We just refer to Theorem 6.7 in [HH03℄. We thus have the following

result.

Proposition 6.1. Let n � 2, 1 < p <1, �

0

2 (0; �), � > �

0

, ! 2 A

p

. Let A be as above. Then

there are A

p

-
onsistent 
onstants � > 0 und �

0

� 0, su
h that for every f 2 L

p

!

(R

n

)

N

and every

� 2 �

���

there exists a unique fun
tion u 2 W

m;p

!

(R

n

)

N

su
h that

(�+ �

0

+A)u = f;

whenever max

j�j=m

ka

�

k

�

� �.

Corollary 6.2. Under the assumptions of Proposition 6.1, there exist A

p

-
onsistent 
onstants

C; � � 0 su
h that

k(�+ �

0

+A

p;!

)

�1

k

p;!

�

C

j�j

; � 2 �

���

:

If �

0

< �=2, then �(�

0

+A

p;!

) generates an analyti
 semigroup on L

p

!

(R

n

). Moreover, �

0

+A

p;!

satis�es the estimate (1.2).

Proof. Theorem 5.1 implies that � + �

0

+ A

p;!

is one to one as well as the resolvent estimate.

Surje
tivity of �+�

0

+A

p;!

follows from Proposition 6.1. The L

p

-L

q

-estimate is now a 
onsequen
e

of Proposition 2.1. �

In order to apply a lo
alization pro
edure to di�erential operators with VMO 
oeÆ
ients, we

need the following lemma.

Lemma 6.3. Let f 2 VMO(R

n

; C

N�N

). Then for every " > 0, there is a radius r = r("; f) > 0,

su
h that for all x

0

2 R

n

, there exists a fun
tion g 2 VMO(R

n

; C

N�N

) with kgk

�

� " and

f(x) = g(x) for all x 2 B(x

0

; r).

Proof. The 
orresponding result for N = 1 is in [HH03, Lemma 3.2℄. By this, for every entry f

j;k

,

j; k = 1; : : : ; N , of f we get a fun
tion g

j;k

having the above properties. Setting g = (g

j;k

)

N

j;k=1

yields the result. �

Proof of Theorem 3.1. In order to apply the usual lo
alization pro
edure, we have to de�ne

lo
al operators A

j

, j 2 N, that are equal to A on balls B(x

j

; r) � R

n

, but whose 
oeÆ
ients have

BMO norm smaller than �, where � is the 
onstant from Theorem 5.1.

In order to do so, we 
hoose for every j�j = m a radius r

�

> 0 given by Lemma 6.3 with

" = �. We set r := min

j�j=m

r

�

. By Lemma 6.3 there exist fun
tions a

�;j

2 BMO(R

n

; C

N�N

)

with ka

�;j

k

�

� � and a

�;j

= a

�

on B(x

j

; r). Taking a

�;j

as 
oeÆ
ients for suitable di�erential

operators A

j

the result follows by the lo
alization method used in [AHS94℄ and [HH03℄. �
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