LP — L1-ESTIMATES FOR PARABOLIC SYSTEMS IN NON-DIVERGENCE
FORM WITH VMO-COEFFICIENTS

ROBERT HALLER-DINTELMANN, HORST HECK, MATTHIAS HIEBER

ABSTRACT. Consider a parabolic N x N-system of order m on R™ with top-order coefficients
aq € VMO NL*®. Let 1 < p,q < oo and let w be a Muckenhoupt weight. It is proved that
systems of this kind possess a unique solution u satifying

' lpa(r;e @myvy + [Mullpag,2p @myny < Cllfllpar,ze @myny,
where Au = Z‘a|<m aq D%u and J = [0,00). In particular, chosing w = 1, the realization of A
in LP(R™)N has maximal LP — Li-regularity.

1. INTRODUCTION

LP — Li-estimates for parabolic differential equations are of particular interest since, combined
with interpolation theory, they provide a powerful tool for many nonlinear problems. Whereas
LP — [Y-regularity properties for a single second-order equation in divergence form are fairly well
understood (see e.g. the recent monograph of Auscher [Aus04]), the situation is far from clear
for systems in divergence form, for higher order operators or for equations (or systems) having a
non-divergence structure.

In this paper we consider higher order parabolic NV x N-systems on R" in non-divergence form,
i.e. systems of the form

(1.1) ug — Z aq(z)D = f,

|| <m

where the coefficients a, for |a| = m belong to the class VMO(R"; CN*¥). Here VMO (R"; CN*V)
denotes the Sarason space of all functions on R” with values in CN*¥ having vanishing mean
oscillation. Our aim is to prove that equation (1.1) admits a unique solution which satisfies an
estimate of the form

(1.2) W'l Larser @myny + AUl Loz ®@myvy < ClfllLacron @y,
where 1 < p,q < o0, Au = E‘a|<m aoD%u, J =1[0,00) and w € A, is a Muckenhoupt weight.
Note that in particular the Sobolev space W?"/¢(R*) for § € (0,1] is contained in VMO(R"?);
thus our approach allows to treat parabolic systems with not necessarily continuous coefficients.
The elliptic problem Au = f for a single differential operator A of order 2m in non-divergence
form subject to general boundary conditions was solved in the LP-setting in a classical paper by
Agmon, Douglis and Nirenberg [ADN59], provided the top-order coeflicients of A are bounded and
uniformly continuous. The corresponding result for parabolic equations (and even systems) was
proved recently by Denk, Hieber and Priiss in [DHPO03]. For previous results dealing with the case
of R™, second order operators with particular boundary conditions or with additional regularity
assumptions on the coefficients, we refer to [LSU68], [Duo90], [PS93], [AHS94], [Ama95], [HP97]
and [DS97].
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The study of linear and quasilinear elliptic equations with VMO-coefficients started with the
pioneering work of Chiarenza, Frasca and Longo [CFL91], [CFL93]. They proved W?P-estimates
for the solution u of the Dirichlet problem associated to

Z aijDiDju = f,

ij=1

provided 1 < p < oo, f € LP and a;; € VMO N L*. Their proof was based on parameter-
dependent Calderén-Zygmund theory. The techniques were lateron generalized by Palagachev, Di
Fazio, Maugeri and Softova [Pal95], [DP96], [MP98], [MPS00] to quasilinear elliptic equations and
to the oblique derivative problem.

The corresponding result for certain elliptic systems was proved recently by Ragusa [Rag02].

The first result for a scalar, second order parabolic equation is due to Bramanti and Cerutti
[BC93]. They extended the technique developed in [CFL93] to the parabolic situation. The
oblique derivative problem in the parabolic situation was solved more recently by Softova [Sof00].
Using wavelet techniques, Duong and Yan [DY02] proved that the operators associated to these
equations admit a bounded H*°-calculus on LP(R™); see also previous work by Angeletti, Mazet
and Tchamitchian [AMT97]. Combining their result with the Dore-Venni theorem one obtains
also estimates of the form (1.2) for second order operators. For a result on elliptic boundary value
problems with coefficients in VMO see Guidetti [Gui02].

We already mentioned that LP — LY-estimates for parabolic systems in non-divergence form
have been considered so far only for coefficients which are bounded and uniformly continuous (see
[DHPO03]). The approach there was to localize and to consider perturbations which are small in
L. Of course, this method needs uniformly continuous coefficients.

Our approach to parabolic systems with VMO-coefficients is very different. It is based on a
particular representation of the highest order derivatives of the solution u of Au + Au = f. This
representation allows to estimate D”u for |v| = m by parameter-depending Calderén-Zygmund
theory and commutator techniques. More precisely, we are aiming for a weighted a priori estimate
of the form

Sl
>IN R Dl < Ol + Al

lv|<m

where w € A, is a Muckenhoupt weight, u € W™P(R*)V X € C belongs to a suitable sector of
the complex plane and the coefficients of A are small in BMO.

The reason for introducing Muckenhoupt weights in this context is the following: combining the
characterization theorem of maximal LP-regularity due to Weis [Wei01] with results due to Rubio
de Francia [Rub80] one sees that estimate (1.2) is implied by weighted estimates of the form

XA+ A fllpw S Cllfllp,  w € Ap, f € LLRMY,

where A is the realization of A given by Au = 37, <, @aD%u in LP(R*)N, X lies in a suitable
sector of the complex plane and the constant C is allowed to depend on the Ap,-constant of the
weight w only. For details see the following section and [HHHO03]. This method was already
successfully used in [HHO3] for scalar parabolic equations.

The problem of determining the “minimal” regularity assumption on the top-order coefficients
aq of A such that (1.1) admits a unique solution satisfying (1.2) is still far from being solved. It
is quite surprising that the answer also depends on the space dimension n. Indeed, it is shown in
[HWO04] that for scalar second order elliptic operators with L>°-coefficients the estimate (1.2) holds
true provided n = 2,1 < ¢ < oo and p € (1,2] is close to 2. This is no longer true for n > 2, even
for p = 2, as the following example due to Talenti [Tal65] shows: let n > 2 and let  be the unit
ball in R™. Set

n T n
./4 = Z ( |2J (]. — cn) + 6ijc)Dij = Z aijDij

4,j=1 5,j=1
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for 0 < ¢ < ;. Then A : H?(Q) N Hg(Q) — L*(Q) is not an isomorphism. We refer also to
Maugeri, Palagachev and Softova [MPS00] and the refences therein. Observe that in the above case
a;; € WHn=¢(Q) for all € > 0. Thus parabolic equations associated to operators with coefficients
a;; € WHn=¢(Q) for n > 3 cannot fulfill an estimate of the form (1.2) in general. On the other
hand, if a;; € WHnT¢(Q), then by Morrey’s theorem a;; € C%(Q) and estimate (1.2) is well known
in this case; see e.g. [HP97] or [DDHPV04]. Since W1m(R") is a subspace of VMO(R"), our
regularity assumptions allow in particular to treat the limiting case above.

This paper is organized as follows. After collecting certain results on Muckenhoupt weights
and fundamental solutions of parabolic systems in Section 2, we state our main result in sec-
tion 3. Section 4 deals with singular integrals, parameter dependening Calderén-Zygmund kernels
and commutator estimates in weighted LP-spaces. These results are fundamental for the a priori
estimate given in Section 5. Finally, in Section 6 we give a proof of our main result.

2. PRELIMINARIES

We start this section with the definition of the Muckenhoupt class A, for 1 < p < oco. More
precisely, a function 0 < w € L, (R") is called an A,-weight in the sense of Muckenhoupt, if there
is a constant C' > 0 such that

1 1 o\
(@/Qde><@~/pr d;z:) <,

for all cubes () C R™ with sides parallel to the axes. The smallest such C' is called the A,-constant
of w. We call a constant C = C(w) to be A,-consistent if it depends on the Ap-constant of w
only. For operators acting in weighted LP-spaces with a weight belonging to A, the following
extrapolation theorem (see [GR85, Theorem IV.5.19] or [Ste93, V.6.17]) is true. Let 1 < p,q < oo
and 7 be a family of operators such that for all w € A, there exists a constant C, depending only
on the Ap-constant of w, such that

ITfllpw <Cllfllpw,  TeT.

Then it follows that the same inequality, with p replaced by g, holds for all w € A,. This extrapo-
lation theorem allows to give the following sufficient criterion for maximal LP — L?-regularity, and
so (1.2), on LP-spaces, see [HHHO3]. The proof combines a result due to Garcia-Cuerva and Rubio
de Francia [GR85, Theorem V.6.4] with a recent Fourier multiplier theorem due to Weis [Wei01].

Proposition 2.1 ([HHHO03]). Let 1 < p,q < oo and assume that A is a sectorial operator in
LP (RN of angle ¢ < 5. Suppose that a weighted estimate of the form

(2.1) Is(is + A) 7 fllpw < Cllflpw,  w € Ay, f € LEERMY,

holds, where the constant C depends only on the A,-constant of the weight w. Then there exists a
constant M > 0, such that

'l ez @my~y + AU iz @mny < M Ffllpacrn @ey-

In the following, we consider systems of differential operators of the form A = E|a\gm aq(x) D%,
where D = —i(0y,...,0,) and a, € L>®(R?; CN*N). We will assume that A is (M, 6)-elliptic; this
means that there exist constants § € [0,7) and M > 0, such that the principal part Ax(z,§) =
Z\alim aq(x)€” of the symbol of A satisfies the following conditions:

o(Ag(z,€)) C %y and
[Ag (@, ' < M forall{eR", [¢] =1,

for almost all x € R™. The set of all such = will be denoted by E. Here ¥y denotes the sector in the
complex plane defined by ¥y = {A € C\ {0} : | arg A\| < 8} and the spectrum of an N x N-matrix
M is denoted by o(M).
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Let A, . be the realization of the differential operator A in LP (R®)"V that is defined by
(2.2) Apou = Au,
D(4,.) = WIrEY)N.
For the time being, we freeze the elliptic operator A in xyp € E and consider the fundamental

solution vy° of A + Ay, for X € ¥;_4, where ¢ € (§,7). Then by [DHPO03] we have the following
pointwise estimates for the fundamental solution +}°:

v ntk 1 p L n
(2.3) 1D (@) < CoulAl ™ pp (oAl z]),  ze R, k:= v,
where
© (1+5)
n — -Tr B
Poi(r) = /0 ==t ds, n>2,
| 1 (1+s)
— - —-r s d X
pch(r) /0 (1 + s)m,ke &

This means that D”7}° is integrable for all v with |v| < m.

We next consider the spaces of functions with bounded mean oscillation BMO(R™) and vanishing
mean oscillation VMO(R™), respectively. For this it is useful to introduce the following notation.
For f € L (R*;CN*N) and G C R™ open and bounded we write

loc
for= f 5o da = @ | f@) s

for the mean value of f over G. We then say that a function f € L (R";CY*") has bounded
mean oscillation, or f € BMO(R"; CN*N), if

£l == sup][ 1f(z) = fBll dz = sup || f = fBllB < oo,
BeBJ B BeB

where B denotes the set of all balls in R".
For given r > 0 we write B, for the set of all balls in R” with radius less than 7. We then further
define the VMO-modulus 7y of a function f € BMO(R?; CN*V) via

w(r) = s f 5@ ful dz, >0
BeB,. J B
and we say that f has vanishing mean oscillation, or f € VMO(R®; CN*N) if
Jim 7 (r) = 0.
If N =1 we will shortly write BMO(R") or VMO(R") for BMO(R"; CN*¥) or VMO(R™; CNV*/V),
respectively. Note that a function f = (fj7k)§\fk:1 belongs to BMO(R™; CV*¥) or VMO (R"; CN*NV),

if and only if every component f;; of f belongs to BMO(R") or VMO(R"), respectively.
Next we introduce the sharp function f# of f € L (R") by

loc
)= sw {17~ fal du
BeB,B>xJ B
Then the following holds.
Lemma 2.2. Let 1 < p < oo and w € A,. Then there exists an A,-consistent constant C' such
that
1fllpw < CllF#llpw,  f € LE(R").

For a proof of this fact see e.g. Proposition 5.4 in [HH03].
The following inequality will be often useful to have.

(2.4) ][ @) — fil de <2 ][ |F(z) — | dz,
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for any constant ¢ € R and any measurable set I C R™ with positive measure.
Furthermore, we recall the well known John-Nirenberg inequality (see e.g. [Ste93, IV.1.3]).
Denote by I a cube in R” with sides parallel to the coordinate axes and let 1 < p < co. Then

1

(25) (f 1@ -1ra2)” < il

Moreover, let 271, j € N, be the cube with the same center as I but with sidelength 27d, where d
is the sidelength of I. Then

(2.6) <][2” |f(x) = frl? d:v)% < GG+ DI

We note that (2.6) follows from (2.5) by induction.

3. MAIN RESULTS

We are now in the position to state the main result of this paper.

Theorem 3.1. Letn > 2,1 <p < oo, w € Ap, ¢po € (0,7), ¢ > ¢o and M > 0. Assume that
A=3 01<m @a(@)D is an (M, ¢o )-elliptic operator in LP (RN with coefficients a,, satisfying
a) an, € L®(R";CN*N) N VMO(R™; CN*N) for |a| = m,
b) a, € L®(R"; CN*N) for |a| < m.
Then there are Ap-consistent constants Ao, C > 0, such that

TN+ Xo + Apw) Hle(rr @myn) < AE X s

<
Al”
The following corollary follows immediately from Proposition 2.1 and Theorem 3.1.

Corollary 3.2. Let 1 < p,q < co. Assume that ¢o < 5. Then there exist constants M, > 0
such that

'l Larsnr @mywy + 11+ Apw)ullpacr;oz @y < M FllLasee @)y,
In particular, —(u + A,,.,) generates an analytic semigroup on LP (R™)N.

Remark 3.3. Obviously, choosing w = 1, the above assertions hold also in the unweighted space
LP(RM)N.

4. SINGULAR INTEGRALS AND COMMUTATORS

In this section we consider integral operators of Calderén-Zygmund type and related commutators
with BMO-functions. More precisely, we call a function K € L _(R" \ {0}; CV*N) a Calderdn-

loc
Zygmund kernel, if for a constant C' > 0 the following three conditions are satisfied:

a) ||FKl|w < C,

b) ||K(z)|| < Clz|™™ for all z € R* \ {0},

¢) [|K(z—y) — K(z)|| < Cly||lz|~"tY for all z,y € R*, where |z| > 2|y| > 0.
Here we denote by F the Fourier transform.

Remark 4.1. It is clear that the entries K, of K = (Kj)}Y,_, are scalar Calderén-Zygmund
kernels if and only if K is a Calderén-Zygmund kernel.

The following result on scalar-valued kernels was proved in [HH03, Propositions 5.1 and 5.4]. It
extends in particular a classical commutator result due to Coifman, Rochberg and Weiss [CRW76]
to the weighted situation.
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Proposition 4.2. Let 1 < p < 0o, w € A, a € BMO(R") and k € L, .(R" \ {0}) be a (scalar-
valued) Calderdn-Zygmund kernel. Then

Tf:=k+f and [T,dlf:=T(af)~alf,  feSE),
define bounded linear operators on LE(R™) and there is an Ay,-consistent constant C' such that

1T fllpw < Clifllpw  and  |I[T;alfll, ., < Cllallll£llpe-

We next give a result analog to Proposition 4.2 but now for kernels having two variables. We
assume that the kernel is homogeneous in the second variable. By S™~! we denote the unit sphere
in R™.

Proposition 4.3. Let 1 < p < 0o, w € A, and a € BMO(R"™). Further let k : R* x (R*\ {0}) = C
be measurable, such that

a) the function k(x,-) is homogeneous of degree —n for a.e. x € R,

b) fsn—l k(:z:,y) dy =0,
C) ||D‘3k(-’1/’,y)||L°@(R"xSn*1) S M: |a| S 2n.

Consider the operators T and [T, a] given by

Tf@) = lm [ keo-n)f@)dy = v [ Keo- i) d.

e—0 |x—y|>s
T.alfe) = p. [ ko - y)(a) - o) 1) dy.
Then T and [T, a] are bounded on LF (R™) and there is an A,-consistent constant C such that

ITfllpw < Cllfllpws T alfllpw < Cllall<llf]lp,e-

The proof of this proposition is given in [HH03, Proposition 5.5] and uses a representation of
ly|™k(z,y) by spherical harmonics. As we need this method in the following, we shortly describe
it in the next proposition.

Proposition 4.4. Let k be as in Proposition 4.3. Then for j € N there exist b; € L™ (R") and
Y; € L (R" \ {0}) such that

2) klz,y) = bex)%,

j=1
b) Y;(y)/ly|™ is a Calderon-Zygmund kernel,
c) the norms of the associated operators on LP(R™) are uniformly bounded in j € N,

d) 32721 lIbjllee < oo
The following result is a consequence of (2.3), see e.g. [HH03, Lemma 6.1].

Proposition 4.5. Let B be an (M, ¢o )-elliptic differential operator, homogenous of degree m, with
constant coefficients. Further, let ¢ > ¢o and let vy be the fundamental solution of A + B for
A€ X._s. Then, for every A € X,_y and |v| < m, the functions

Ali‘yl/mDV’)/)\

are Calderon-Zygmund kernels. Furthermore, the constant C, that appears in the definition of
Calderon-Zygmund kernels, can be chosen independently of .

Remark 4.6. In particular, the kernels 7y°, o € E, fulfill the conditions of this proposition. Note
that the inequalities in (2.3) do not depend on zy. Therefore, the constant C' can also be chosen
independently of zy € E.

The next result ensures the existence of a certain integral kernel.
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Lemma 4.7. Let h € C®(R"* \ {0}; CV*N) be homogeneous of degree 0 and T € L(L*(R™)N)
be defined as Tf = F~'hFf. Then there evists a function k € C(R"* \ {0}; CN*N) which is
homogeneous of degree —n and satisfies fS"—l k(z) dz = 0. Furthermore,

Tf=c-f+lim k(y)f(-—y)dy,  feL*R")Y,

e—0 ‘y‘>5

where ¢ = [q,_, h(z) dz and
1Dkl g (sn-1) < C Z 1D B[ poo (sn-1)
IBI<r

for some r € N depending only on n and |a|.

Proof. The proof follows easily from the scalar-valued case given in [HH03]. In fact, set h =
(hj,0)Ne—y- Then hj, € C*°(R™ \ {0}) for all j,£ € {1,...,N}. Furthermore, for z # 0 and A € R

we have
hje(Ax) = e?h(Am)ee = ejTh(w)eg = hj(z),

which implies the homogeneity of each component h;,. By [HH03, Lemma 6.2] we obtain scalar
kernels kj, € C*°(R™ \ {0}) and ¢; , with the desired properties. Now k := (kj¢)},—, and ¢ :=
(cﬂ);\fe:l is the function and the constant we were looking for. O

5. A PRIORI ESTIMATES

The main result of this section is the following a priori estimate. We denote by A always a
homogeneous, (M, ¢g)-elliptic differential operator of order m, where ¢ € (0,7). We also assume
that a, € L®(R"; CV*N) for all a with |a| = m.

Theorem 5.1. Let 1 < p < 00, w € A, and ¢ > ¢o. Then there exist A,-consistent constants
C,n >0 and Ao > 0, such that for all u € WP(R*)N and all X € X,_y with |A| > \o

el
> A D ullpw < ClHA + A)ullpw,

lv]<m
provided ||ay||« < n for all |a| =m.

The proof of the above theorem is based on a representation of D”u in terms of kernels v{° and
operators A + A,,. More precisely, we have the following representation formula.

Lemma 5.2. Let u € D(R")Y and z € E. If [v| < m, then

Due) = [ D"~ A+ A uly) d.
Moreover, for |v]| =m

D"u(z) = p.v. - K, (z,z —y)(A+ Ax)u(y) dy + ¢, (2) (A + A)u(z)

— A5 (z —y) <p.v. K, (z,y —2)(A+ Az)u(z) dz> dy
R~ R~

— (o) [ M5 =)+ Auly) dy.

Here ¢, € L®(R"™) and K, is a matriz-valued integral kernel, whose entries fulfill the assumptions
of Proposition 4.3.
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Proof. For every zop € E we have Fu = (A + Ax (0, &) "' F(A + Ayy)u. The first part of the
assertion follows easily by setting zo = z since by the estimates (2.3) D~y is in L'(R™)N for
every |v| < m.

Hence we turn to the case where |v| = m and see that

& (A Ap(@0,9) ™ (FA + Ay )u) (€)
= € (Ap(@0, ) (FOA + Any)u) (€)
€+ A5 (200,) T = € (A (20, ) 7| (FA+ Aug ) (©):

FD"u(§)

We may now replace (A + Az (x0,&)) = (Ag(20,€)) * by —=A(A + A#(ﬂﬁoaf))il(A#(ﬂfo;f))*l;
since the two matrices commute. Hence we obtain

FD'u(€) = €(Ap(20,6) " (F(A+ Agy)u) (€)
— A+ Ap(20,6) 7 € (Ap (20, ) (FO + Auy ) (€).

As |v] =m and Ais an (M, ¢p)-elliptic operator, the symbol hy, (§) := £/ (Ax(zo,£)) ! is a smooth
homogeneous function of degree 0.

By Lemma 4.7 there exist kernels K, (zo,:) € C®(R" \ {0}; CV*¥), that are homogeneous
of degree —n with [g, , K,(xo,y)dy = 0. Furthermore, the ellipticity of A yields the estimate
||DPhy, ||z (sn-1) < C uniformly in zg € £ and for all |3| < k. This implies, that the derivatives
of K,(zo,-) are bounded on the unit sphere independently of zy € E. By this we finally obtain,
that the entries of K, fulfill the assumptions of Proposition 4.3.

For the constants ¢, (x¢), which we obtain from Lemma 4.7, ellipticity of A yields

< [ 1€ Ua@e) e [ mac<om

Thus ¢, € L*(R").
Inserting these kernels and the constants c, into the above equation and applying F ! we get

D’u(z) = p.v. . K, (zo,x —y)(\ + Ay )u(y) dy + o (z0) (N + Ay )u(z)

_ /n M0 (z —y) (p-v. . K, (z0,y — 2)(A + Ay, )u(2) dz> dy

— ¢y (o) - M0 (@ = y) (A + Az )uly) dy

for every zog € E. The assertion follows again by setting xo = z. O

Before proving Theorem 5.1 some comments on our notation are in order. The entries of
the matrices ao(x) and 7y° are denoted by ag.?;e) (z) and g;:’kwo for j,k = 1,...,N, respectively.
Furthermore, we write uj, j = 1,..., N, for the components of u.

By Lemma 5.2 we get for |v| <m

NE Drue) = / N DY g (@ — ) (A + A uly) dy

[ A D - )+ Aty dy

N / A DRk @ - ) (As — Auly) dy.
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Looking at one component one obtains

N
_ v v _ v » T
M=% DVuj(z) = Z A M=% D g;:k (z —y) (A + Auly)), dy
— Jpn
N N i
(5.1) +3 > / NTED @ —y) Y (0l (@) - ol () Due(y) dy
=1 k=1"8" la|=m
N N N
= DTN+ D) (@) + > (I3, ) 1D%ue) (),
k=1 (=1 k=1 |a]=m
where
174 7M v VL
T3 fla) = / AT DY g (@ — y) f(y) dy,

[T alf (z)

[l
>
—
|
<
T
<
=
=y
—
8
|
NS
-
—~
IS
—~
8
A
|
]
ram)
<
A
SN—
g
ram)
<
A
o
<

for j,k=1,...,N, |v| <m, A € £,_4 and a € BMO(R™). By the same calculations, we derive
from the representation formula in Lemma 5.2 for [v| = m

D"u(z) = p.v. K,(z,z —y) A+ Au(y) dy + p.v. K, (z,z —y)(A: — Au(y) dy

R™ R™

+ () A+ Au(z) — /Rn A5 (z —y) (p.v. . K,(zv,y — 2)(A+ Au(z) dz) dy

— [ Az —y) <p-V-
R’n

K, (z,y — 2)(As — A)u(z) dz> dy

Rn

n

— o) [ %@ =)0+ Auly) dy - (o) [ N3 = (A - Auty) d.

For the j-th component this means

N
D"uj(z) = Zp.v. /Rn Kj”’,c(az;,az:—y)(()\+A)u(y))]c dy
k=1

N N
+ 3 e [ Kulas = )(ef2@) = o) D uity) dy

|a]=m €=1 k=1

N
+3 @) (A + Au(),
k=1

N N
S [ A e [ Koy = (0 ul), e dy
=1 k=1’R" R
N N N

Y YYY [ aie-w

|a‘:m r=1{¢=1 k=1

-p.v. Ky (z,y — 2) (aﬁ) (z) — agi):,) (2)) D%u,(2) dz dy
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where K7 (z,2 —y) and ¢ (z) are the entries of the matrices K, (z,z —y) and ¢, (z) respectively.
In order to get a notational grip on this formula we introduce the following operators. Let
ik, te{l,...,N}, |v|=m, A € £,_4 and let a € BMO(R") and f € LP(R™). Then we define

<

SR

~

~

&
Il

b [ Kialoo =) f() do

o | Kiuea =) (ale) = a(0) 1) dy.

/)\g (x—y pv/ KY 2,y — 2)f(z) dz dy,

(120 dlf(z) = / A} (z — y) pv. / Ky (w,y — 2) (a(@) — a(2)) f(2) dz dy.

Using this notation we finally write

£
=%
RN
[y
O
Il

JQkAZVf( )

N N N
+) @ (A + Au@), = DD TN (A + Au) ()
k=1 NN N (=1 k=1 NN
(5.2) = Y N [Tl D ur ) = 30 Y ks @ T (0 + AY) ()
la|=m r=1 (=1 k=1 (=1 k=1

Note, that the operator [szlf‘[", a] is not a commutator. As we can handle it by the same methods
as the commutators, we however use this notation.
We now prove the following mapping properties of the above operators.

Lemma 5.3. Let j,k,l € {1,...,N}, [v| =m, |p| <m, A € Lr_y, a € L®(R"), 1 < p < o0,
w€ A, and f € LP(R™). Then

IZ5 Fllpis < ClF |[zia) 1] < CllallFle,
1207 Sl < Ol lpor 2305 als| < CA QU+ o) e
I3 Fllpo < Clfllps |13 a]fH < CAL L+ lallo) Il

where

|Bl=m s

Proof. By Lemma 5.2 the kernels K7, fulfill the hypotheses of Proposition 4.3. Thus the assertion
concerning the T'-operators follows.
We turn to the operators containing 7. Using (2.3), we have

A, = max{||a||*, max max ||ars [|« }

n+\u\

D 5 ()| < CIA iy (el A7 2)

for all |u| < m, A € £:_4 and z,z € R*. Consequently, we have the same estimate for the entries
9;. ,:' and the boundedness of Tjg’k)"“ follows as in [HH03, Proposition 6.5].
Dealing with the commutator of T;:’,CA’” with BMO-functions is much harder. We first show a

point-wise estimate for the sharp function of [T;’:}c}"” ,alf.
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Let I be an axis-parallel cube in R” and x € I. Then

(T3, alf(z) = (alz) —an)Ti" f(2) = TP (0 — an)lar ) (2) = Tip " ((a = an)Lian £) (2)
=: A(z)+ B(z) + C(2).
We estimate A% (z), B¥(z), and C#(z) separately. For A and B we choose ¢ = 0 in (2.4) and look

at  [A(2)] dz and o, |B(2)| dz.
The Hélder inequality yields for all 1 < r < oo

/I A(z) dz < © (]l la(2) — ar|” dz) (]l T3 ()] dz)% |

For the first factor we use the John Nirenberg inequality (2.5), and we estimate the second one by
the supremum over all cubes that contain x, and thus by the maximal operator. This yields

]{ |A(2)] dz < Cllall. (MIT? 1) ().

For estimating B#, we first apply Jensen’s inequality:

][1 |B(2)] dz < (][1 T30 ((a = ar) f1ar) (2)]° dzf < <ﬁ> 175 ((a = ar) f21) g,

where 1 < ¢ < co. Now we use the boundedness of Tf}:"” in LY(R") and then again Holder’s
inequality as above. Doing so, we get for every u € (1,00) and every 1 < r = qu < oc:

fimenas<c (i la(2) — as™ dz) ( () dz)"" < Ollall. (M1 f]7)
; 1] o 1] ),

1
™

(z),

where we again estimated the first factor by the John Nirenberg inequality and the second one by
the maximal operator.

The third part C#(z) is more involved. Here we have to use the structure of our kernels and
we cannot choose ¢ = 0 in (2.4). We define the averaged operator

Ar = Z ][aa ) dzD®,

lorl=

which is a homogeneous differential operator with constant coefficients. Thus there exist suitable
constants Ao, K > 0, such that the operator Ao + Ay is (K ¢o0/2)-elliptic. By Proposition 4.5 we
see, that (A + A7) "' is given by a kernel K ) for all A € o + Yr—go/2- Choosing Ag > Ao SO big,
that X,_g4, \ B(0,\) C o + Y go/2, We get for all ¢ > ¢ and A € X;_ satisfying |A| > Ao the
estimate

ﬁ_ 1
IDPE (@)l < CIN T~ P, 5 (el Al |z]),

as in (2.3). Thus for all these A and for all |3| < m the function A\'~18I/mDSK; , is a Calderén-
Zygmund kernel and the associated operators are bounded in LZ (R™) uniformly in A € X,_4 \
B(0, Xo).

With this preparations in hand, we now estimate C#(z). To this end we choose the constant c
n (2.4) as

e / n N DRI @) - y)(aly) — an)len- () £() dy,
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where z7 is the center of the cube I. Setting g(y) := (a(y) — ar)121)-(y) f(y) we obtain
free—da = | v (g6 -0 - K52 - 0) o) o] a:

][I / A pr (g?,}f(z —y) = KNz - y)) 9(y) dy‘ dz

“f,

I

=: [1 +12

_ el
[ E D (K- - K ) o) ]

Therefore we need information about the differences gj).: KIL and KJI:‘(z —) = Kikk(ml - ).
To handle the first difference we calculate for the correspondlng matrix-valued kernels v; and K7
and for every ¢ € D(R")N
A=K xe = F A+ Ax(2,)7 = (A + Arz(6)7") Fo
= FTH A+ Ap(2,0) 7 (Are(8) — A (2,0) A + A1 (8) ™' Fo

- Z FH A+ Ap(2,0) 7 ((ag)r — as(2)) 7 (A + Arg (€)' Fo
151=

Z 75 * [((ag)r — ag(2)) DP Ky x % o] .
181=

For one component this identity means, that for every f € D(R")

N D (g = K]+ £(2)

=2 22

N N

|
|8|=m =1 s=1
N N

(a1 — i) (2)) A M= DR (2 — y) A DKMy —w)f(u) du dy
((

ZZ az@s))f “gﬁs)( ) jBI:\KMsf()

|8]=m £=1 s=1

where Sﬁ ;:7‘2’7‘5 is a bounded operator on L?(R™), as it is a composition of two convolutions with
Calderén-Zygmund kernels. Propositions 4.2 and 4.5 even allow us to estimate the norm of this
operator Ay-consistently and independently of A.

Using this to estimate I, we get

L < Z ZZ[][ ‘a“ H[S}BHHS al(y)cf)] (z)‘ dz

|B]|=m {=1 s=1
][ ‘ agﬁs) ‘ HS}BL)\%LLS a11(21)“f)] (z)‘ dz] =:I1; + Ir».

In order to treat I3 we write 137 f = f — 1arf. The triangle inequality then yields for every
1<r<oo

TR ZZ {][ ‘ (@), agf?(z)‘ HkaAlﬂs(af)] (z)‘ dz
|B|=m £=1 s=1
][I ‘ agﬁs) ‘ HS]BLAZHS a121f)] (2)‘ dz}
<oy f}f}Hah (IS0 @) + llalloe (MIFI)F (2),

|B]=m £=1 s=1
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in the same way as we estimated o, |A(z)| dz and 4, |B(z)| dz. Analogously

N
L, < C Z ZZHals S]Bk)\fsa f|r)%( ) + |lallso (M| £ )%( ))
|8]=m £=1 s=1
< Cllalle 3 ZZHa&’?* ISEX AT (2) + (MIF) ().

|8]=m =1 s=1
For I we use that every entry of Al_‘“‘/mD“KI,A is a Calderén-Zygmund kernel:

lel

L, N D (K e - )—Kj?WI—yDg@)@ddz

= ][ / ‘Al_MDuK“( y—(wl—z))—)\l_wD”K“( _y)‘
IRn\zI
“lay) —arl|f(y)| dy d=
= 0][ /R"\z[ |;1:|1$i y|n|+1 la(y) — arllf(y)| dy dz.

This estimate is possible, as |zr — y| > 2|z; — 2| is valid. Applying the Holder inequality

lvr — 2] : " 27 — 2| -
peof ([ ) —al T PR
2 d ( Rr\27 |w1_y|n+1| ) ~af R™\21 |$1—Z/|”+1| )l

follows for every 1 < r < co. Denoting the side-length of I by d, we estimate the first factor:

ry — 2z ’
Loy el —arl” dy
> |:IZ1—Z| ’ > d ’
= Z/QZI\QZ_UW'(I(Z/)_GI'T dy < ZW 1 la(y) —ar|” dy
=2
4n+122 ][ Y —ar|” dy < 022 C+ ) alll < Cllall”
ZZI

by (2.6) and since (2¢=2d)"! = 2¢4=(n+1)q)2¢y).
Analogously we get for the second factor

lzr — 2] - -
g fW dy <C ) 2 FW|" dy < CM|f["(z).
/W ) > f, 11w £1"(@)
Altogether we obtain for I,

I < Cllall« (M f]") " ().

Combining this with the estimate for I; we see that

1

][|0 )—cldz < C|llall.(M|f]")" (&) + Zii

|Bl=m £=1 s=1

+llalloe (MISE P (@) + lalloo (M) * (2 >)}

a

(on1sisern @
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Collecting the results for A, B and C, we have for every 1 < r < 0o

(2mar) @) < A*@)+ BF@) + OF (@)

IN

1
™

A

Cllall. ((MITEMFI7) (@) + (MIfT7)

N N
EEDID I i §

|8]=m £=1 s=1

()

1
-

((M|Sﬁ;3,z{‘saf|r) (z)

1
™

WA,
+[lalloo (M ST A7)

1
(@) + ol (34171) (@) ).
As in the third step of the proof of Proposition 5.4 in [HHO03] there exists an r > 1, such that
1
I(MIFI) " lpw < Cllfllpw, — f € LE(RY),

with an A,-consistent constant C. This and Lemma 2.2 now yield

o, sc¢ H (2w, alf) "

H [TJ?),’kMu’ alf

p,w

A,
< CA, {HT;’jk “Fllpw + 11£llp,e

N N
A A,
+ X 30Y (I s + el (0S5 T+ 1)) |

|Bl=m (=1 s=1
< ca. {nfnp,w+Nm+2(||af||p,w+||a||oo||f||p,w)] < O+ alloo)ll e

where C' is an Ap-consistent constant.
We finally show the boundedness of the operators Tﬁ’,j}" and [Tﬁ’,:}", a]. For this purpose, we
use Proposition 4.4 to expand the kernel of the principal value integral in the definition of Tﬁ’,::z”.

This yields

TQ,)\,Vf( ) _ i bu,k,(( ) A A,x( _ ) Y;’,k,((y — Z) f( ) dz d
jokot J\E) = s L o Ijp L =Y} PV [ ly — z|" %) dz dy,
s=1 N _
=:R{™f(y)

where RV%¢ is a Calderén-Zygmund operator on LZ(R"), whose norm can be bounded indepen-
dently of s. Hence

oo

Yy o, A0 sk,
IT2 Fllps = || Dbt (T30 R f)
s=1 -
- o0
4 37)\70 Y 3Ry
< ST R s < O B Ll s < CIl
= s=1

with an A,-consistent constant C.

In order to bound the operator [Tﬁ’,::z", a] we write

S
=%
2,
~
8
N
Il

[ 2gi@=ppr [ Ko=) - ) 1) dz

/ /\g;:}f(a: — y)(a(m) — a(y)) p.v./ Ky (z,y — 2)f(2) dz dy
R" Rn

[ agie=n e [ Ky —2)(a) - o) £ = dy
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Applying once more Proposition 4.4 to expand the kernel KV kes We get

(T alf () Zb"” ) (520, R £ ) + T (R 0] f) ()

As we have already bounded the T-operators, we finally conclude with the help of Propositions 4.3
and 4.4

2)\1/
|z

IN

C 155 Nloo (A (L + llalloo)l|f lpew + lall<[1fl1p.e)

CA(L+ llalloo) [1f[lp.- O

IN

Proof of Theorem 5.1: For every |v| < m and all j =1,..., N we have by (5.1)

N

N N
N TR DY (@) = 3 (T (O Awe) @)+ 3030 D0 (T3 1D (2).

k=1 =1 k=1 |a|=m

By the preceeding lemma we see that

N N
o, § : a
||)\1 m [) U,ijM < C( E ||(()\+.A)U/)k||p,w + Ak Qoo E ||D U’[HP#‘-J)’
k=1

(=1 |a]=m
where

Gy 1= max max ||a§ca[)||* and a =14 max max ||a§ea[)||oo.

la|=m k,f=1 ’ |a|=m k,{=1
Analogously we get by (5.2) for all [v|=m and all j=1,...,N

N
||Duuj||p,w < C<Z||((>\+A ||pw+a*z Z |1D* Uk”ptd"‘Z” >\+A ”p,w

k=1 |a|=

(A + A)u ||pw+a*aooz Z | D% uk|lp.

k= 1|a\

O+ )+ e 3 Y ||Dauk||p,w)-

k=1 |a|=m

WE uMz

+

i
I

Combinig these two estimates, we conclude that

S HAP*D” < CZ 3 HAPWD"UJ

70"' 70"'

v <m i=1 l<m
N
< 0(2||(<A+A>u)k||p,w+a*aoo2 ) ||Dauk||p,w)
k=1 k=1 |a|l=m

with an A,-consistent constant C. If n < (Can,) !, we have Casas < Cnas < 1. Thus we may
bring the second term on the left hand side to the right hand side and therefore finish the proof.
O
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6. PROOF OF THE MAIN RESULT

Due to the a priori estimate given in the previous section, it remains to prove that the operator
A+ A from W™P(R") onto LP (R")¥ is surjective. This follows from the continuity method in
the same way as in [HHO03]. We just refer to Theorem 6.7 in [HH03]. We thus have the following
result.

Proposition 6.1. Letn > 2,1 <p < o0, ¢g € (0,7), ¢ > ¢, w € Ap. Let A be as above. Then
there are Ap-consistent constants n > 0 und \g > 0, such that for every f € LP(R*)N and every
A € X._g there exists a unique function u € WP(R")N such that

A+ X+ Au=f,
whenever max|q|=m, |laall« < 7.

Corollary 6.2. Under the assumptions of Proposition 6.1, there exist A,-consistent constants
C, X\ > 0 such that

_ C
[N+ X0 + Ap) Hlpw < o
If g0 < /2, then —(Xo + Ap ) generates an analytic semigroup on LE(R™). Moreover, Ao + Ap .
satisfies the estimate (1.2).

AE Eﬁ,q;.

Proof. Theorem 5.1 implies that A + Ao + A, ., is one to one as well as the resolvent estimate.
Surjectivity of A4+Xg+ A, ., follows from Proposition 6.1. The LP-L%estimate is now a consequence
of Proposition 2.1. O

In order to apply a localization procedure to differential operators with VMO coefficients, we
need the following lemma.

Lemma 6.3. Let f € VMO(R™; CVN*N). Then for every e > 0, there is a radius r = r(e, f) > 0,
such that for all zy € R™, there ezists a function g € VMO(R®; CN*N) with ||g|l« < & and
f(z) = g(z) for all z € B(xzg,r).

Proof. The corresponding result for N = 1 is in [HH03, Lemma 3.2]. By this, for every entry f; ,
J,k=1,...,N, of f we get a function g;; having the above properties. Setting g = (gj,k);'\,’kd
yields the result.

Proof of Theorem 3.1. In order to apply the usual localization procedure, we have to define
local operators Aj, j € N, that are equal to A on balls B(z;,r) C R", but whose coefficients have
BMO norm smaller than 7, where 7 is the constant from Theorem 5.1.

In order to do so, we choose for every |a| = m a radius 7, > 0 given by Lemma 6.3 with
e =n. We set r := min|q|—, 7o. By Lemma 6.3 there exist functions a,,; € BMO(R"; CN*N)
with ||laq,jll« < n and aq; = aq on B(xj,r). Taking a, ; as coefficients for suitable differential

operators A; the result follows by the localization method used in [AHS94] and [HHO3]. O
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