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-ESTIMATES FOR PARABOLIC SYSTEMS IN NON-DIVERGENCE

FORM WITH VMO-COEFFICIENTS

ROBERT HALLER-DINTELMANN, HORST HECK, MATTHIAS HIEBER

Abstrat. Consider a paraboli N � N-system of order m on R

n

with top-order oeÆients

a

�

2 VMO \ L

1

. Let 1 < p; q < 1 and let ! be a Mukenhoupt weight. It is proved that

systems of this kind possess a unique solution u satifying

ku

0

k

L

q

(J;L

p

!

(R

n

)

N

)

+ kAuk

L

q

(J;L

p

!

(R

n

)

N

)

� Ckfk

L

q

(J;L

p

!

(R

n

)

N

)

;

where Au =

P

j�j�m

a

�

D

�

u and J = [0;1). In partiular, hosing ! = 1, the realization of A

in L

p

(R

n

)

N

has maximal L

p

� L

q

-regularity.

1. Introdution

L

p

� L

q

-estimates for paraboli di�erential equations are of partiular interest sine, ombined

with interpolation theory, they provide a powerful tool for many nonlinear problems. Whereas

L

p

� L

q

-regularity properties for a single seond-order equation in divergene form are fairly well

understood (see e.g. the reent monograph of Ausher [Aus04℄), the situation is far from lear

for systems in divergene form, for higher order operators or for equations (or systems) having a

non-divergene struture.

In this paper we onsider higher order paraboli N �N -systems on R

n

in non-divergene form,

i.e. systems of the form

(1.1) u

t

�

X

j�j�m

a

�

(x)D

�

u = f;

where the oeÆients a

�

for j�j = m belong to the lass VMO(R

n

; C

N�N

). Here VMO(R

n

; C

N�N

)

denotes the Sarason spae of all funtions on R

n

with values in C

N�N

having vanishing mean

osillation. Our aim is to prove that equation (1.1) admits a unique solution whih satis�es an

estimate of the form

(1.2) ku

0

k

L

q

(J;L

p

!

(R

n

)

N

)

+ kAuk

L

q

(J;L

p

!

(R

n

)

N

)

� Ckfk

L

q

(J;L

p

!

(R

n

)

N

)

;

where 1 < p; q <1, Au =

P

j�j�m

a

�

D

�

u, J = [0;1) and ! 2 A

p

is a Mukenhoupt weight.

Note that in partiular the Sobolev spae W

�;n=�

(R

n

) for � 2 (0; 1℄ is ontained in VMO(R

n

);

thus our approah allows to treat paraboli systems with not neessarily ontinuous oeÆients.

The ellipti problem Au = f for a single di�erential operator A of order 2m in non-divergene

form subjet to general boundary onditions was solved in the L

p

-setting in a lassial paper by

Agmon, Douglis and Nirenberg [ADN59℄, provided the top-order oeÆients of A are bounded and

uniformly ontinuous. The orresponding result for paraboli equations (and even systems) was

proved reently by Denk, Hieber and Pr�uss in [DHP03℄. For previous results dealing with the ase

of R

n

, seond order operators with partiular boundary onditions or with additional regularity

assumptions on the oeÆients, we refer to [LSU68℄, [Duo90℄, [PS93℄, [AHS94℄, [Ama95℄, [HP97℄

and [DS97℄.
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2 ROBERT HALLER-DINTELMANN, HORST HECK, MATTHIAS HIEBER

The study of linear and quasilinear ellipti equations with VMO-oeÆients started with the

pioneering work of Chiarenza, Frasa and Longo [CFL91℄, [CFL93℄. They proved W

2;p

-estimates

for the solution u of the Dirihlet problem assoiated to

n

X

i;j=1

a

ij

D

i

D

j

u = f;

provided 1 < p < 1, f 2 L

p

and a

ij

2 VMO \ L

1

. Their proof was based on parameter-

dependent Calder�on-Zygmund theory. The tehniques were lateron generalized by Palagahev, Di

Fazio, Maugeri and Softova [Pal95℄, [DP96℄, [MP98℄, [MPS00℄ to quasilinear ellipti equations and

to the oblique derivative problem.

The orresponding result for ertain ellipti systems was proved reently by Ragusa [Rag02℄.

The �rst result for a salar, seond order paraboli equation is due to Bramanti and Cerutti

[BC93℄. They extended the tehnique developed in [CFL93℄ to the paraboli situation. The

oblique derivative problem in the paraboli situation was solved more reently by Softova [Sof00℄.

Using wavelet tehniques, Duong and Yan [DY02℄ proved that the operators assoiated to these

equations admit a bounded H

1

-alulus on L

p

(R

n

); see also previous work by Angeletti, Mazet

and Thamithian [AMT97℄. Combining their result with the Dore-Venni theorem one obtains

also estimates of the form (1.2) for seond order operators. For a result on ellipti boundary value

problems with oeÆients in VMO see Guidetti [Gui02℄.

We already mentioned that L

p

� L

q

-estimates for paraboli systems in non-divergene form

have been onsidered so far only for oeÆients whih are bounded and uniformly ontinuous (see

[DHP03℄). The approah there was to loalize and to onsider perturbations whih are small in

L

1

. Of ourse, this method needs uniformly ontinuous oeÆients.

Our approah to paraboli systems with VMO-oeÆients is very di�erent. It is based on a

partiular representation of the highest order derivatives of the solution u of �u + Au = f . This

representation allows to estimate D

�

u for j�j = m by parameter-depending Calder�on-Zygmund

theory and ommutator tehniques. More preisely, we are aiming for a weighted a priori estimate

of the form

X

j�j�m

k�

1�

j�j

m

D

�

uk

p;!

� Ck(�+A)uk

p;!

;

where ! 2 A

p

is a Mukenhoupt weight, u 2 W

m;p

!

(R

n

)

N

, � 2 C belongs to a suitable setor of

the omplex plane and the oeÆients of A are small in BMO.

The reason for introduing Mukenhoupt weights in this ontext is the following: ombining the

haraterization theorem of maximal L

p

-regularity due to Weis [Wei01℄ with results due to Rubio

de Frania [Rub80℄ one sees that estimate (1.2) is implied by weighted estimates of the form

k�(�+A)

�1

fk

p;!

� Ckfk

p;!

; ! 2 A

p

; f 2 L

p

!

(R

n

)

N

;

where A is the realization of A given by Au =

P

j�j�m

a

�

D

�

u in L

p

!

(R

n

)

N

, � lies in a suitable

setor of the omplex plane and the onstant C is allowed to depend on the A

p

-onstant of the

weight ! only. For details see the following setion and [HHH03℄. This method was already

suessfully used in [HH03℄ for salar paraboli equations.

The problem of determining the \minimal" regularity assumption on the top-order oeÆients

a

�

of A suh that (1.1) admits a unique solution satisfying (1.2) is still far from being solved. It

is quite surprising that the answer also depends on the spae dimension n. Indeed, it is shown in

[HW04℄ that for salar seond order ellipti operators with L

1

-oeÆients the estimate (1.2) holds

true provided n = 2, 1 < q <1 and p 2 (1; 2℄ is lose to 2. This is no longer true for n > 2, even

for p = 2, as the following example due to Talenti [Tal65℄ shows: let n > 2 and let 
 be the unit

ball in R

n

. Set

A =

n

X

i;j=1

(

x

i

x

j

jxj

2

(1� n) + Æ

ij

)D

ij

=:

n

X

i;j=1

a

ij

D

ij
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for 0 <  <

n�2

n(n�1)

. Then A : H

2

(
) \H

1

0

(
) ! L

2

(
) is not an isomorphism. We refer also to

Maugeri, Palagahev and Softova [MPS00℄ and the refenes therein. Observe that in the above ase

a

ij

2 W

1;n�"

(
) for all " > 0. Thus paraboli equations assoiated to operators with oeÆients

a

ij

2 W

1;n�"

(
) for n � 3 annot ful�ll an estimate of the form (1.2) in general. On the other

hand, if a

ij

2 W

1;n+"

(
), then by Morrey's theorem a

ij

2 C

�

(
) and estimate (1.2) is well known

in this ase; see e.g. [HP97℄ or [DDHPV04℄. Sine W

1;n

(R

n

) is a subspae of VMO(R

n

), our

regularity assumptions allow in partiular to treat the limiting ase above.

This paper is organized as follows. After olleting ertain results on Mukenhoupt weights

and fundamental solutions of paraboli systems in Setion 2, we state our main result in se-

tion 3. Setion 4 deals with singular integrals, parameter dependening Calder�on-Zygmund kernels

and ommutator estimates in weighted L

p

-spaes. These results are fundamental for the a priori

estimate given in Setion 5. Finally, in Setion 6 we give a proof of our main result.

2. Preliminaries

We start this setion with the de�nition of the Mukenhoupt lass A

p

for 1 < p < 1. More

preisely, a funtion 0 � ! 2 L

1

lo

(R

n

) is alled an A

p

-weight in the sense of Mukenhoupt, if there

is a onstant C > 0 suh that

�

1

jQj

Z

Q

! dx

��

1

jQj

Z

Q

!

�

1

p�1

dx

�

p�1

� C;

for all ubes Q � R

n

with sides parallel to the axes. The smallest suh C is alled the A

p

-onstant

of !. We all a onstant C = C(!) to be A

p

-onsistent if it depends on the A

p

-onstant of !

only. For operators ating in weighted L

p

-spaes with a weight belonging to A

p

the following

extrapolation theorem (see [GR85, Theorem IV.5.19℄ or [Ste93, V.6.17℄) is true. Let 1 < p; q < 1

and T be a family of operators suh that for all ! 2 A

p

there exists a onstant C, depending only

on the A

p

-onstant of !, suh that

kTfk

p;!

� Ckfk

p;!

; T 2 T :

Then it follows that the same inequality, with p replaed by q, holds for all ! 2 A

q

. This extrapo-

lation theorem allows to give the following suÆient riterion for maximal L

p

�L

q

-regularity, and

so (1.2), on L

p

-spaes, see [HHH03℄. The proof ombines a result due to Garia-Cuerva and Rubio

de Frania [GR85, Theorem V.6.4℄ with a reent Fourier multiplier theorem due to Weis [Wei01℄.

Proposition 2.1 ([HHH03℄). Let 1 < p; q < 1 and assume that A is a setorial operator in

L

p

!

(R

n

)

N

of angle ' <

�

2

. Suppose that a weighted estimate of the form

(2.1) ks(is+A)

�1

fk

p;!

� Ckfk

p;!

; ! 2 A

p

; f 2 L

p

!

(R

n

)

N

;

holds, where the onstant C depends only on the A

p

-onstant of the weight !. Then there exists a

onstant M � 0, suh that

ku

0

k

L

q

(J;L

p

!

(R

n

)

N

)

+ kAuk

L

q

(J;L

p

!

(R

n

)

N

)

�Mkfk

L

q

(J;L

p

!

(R

n

)

N

)

:

In the following, we onsider systems of di�erential operators of the form A =

P

j�j�m

a

�

(x)D

�

,

where D = �i(�

1

; : : : ; �

n

) and a

�

2 L

1

(R

n

; C

N�N

). We will assume that A is (M; �)-ellipti; this

means that there exist onstants � 2 [0; �) and M > 0, suh that the prinipal part A

#

(x; �) =

P

j�j=m

a

�

(x)�

�

of the symbol of A satis�es the following onditions:

�(A

#

(x; �)) � �

�

and

kA

#

(x; �)

�1

k � M for all � 2 R

n

; j�j = 1;

for almost all x 2 R

n

. The set of all suh x will be denoted by E. Here �

�

denotes the setor in the

omplex plane de�ned by �

�

= f� 2 C n f0g : j arg�j < �g and the spetrum of an N �N -matrix

M is denoted by �(M).
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Let A

p;!

be the realization of the di�erential operator A in L

p

!

(R

n

)

N

, that is de�ned by

A

p;!

u := Au;(2.2)

D(A

p;!

) := W

m;p

!

(R

n

)

N

:

For the time being, we freeze the ellipti operator A in x

0

2 E and onsider the fundamental

solution 

x

0

�

of � + A

x

0

for � 2 �

���

, where � 2 (�; �). Then by [DHP03℄ we have the following

pointwise estimates for the fundamental solution 

x

0

�

:

(2.3) kD

�



x

0

�

(x)k � C

�;k

j�j

n+k

m

�1

p

n

m;k

(

�

j�j

1

m

jxj); x 2 R

n

; k := j�j;

where

p

n

m;k

(r) =

Z

1

0

s

n�2

(1 + s)

m�k�1

e

�r(1+s)

ds; n � 2;

p

1

m;k

(r) =

Z

1

0

1

(1 + s)

m�k

e

�r(1+s)

ds:

This means that D

�



x

0

�

is integrable for all � with j�j < m.

We next onsider the spaes of funtions with bounded mean osillation BMO(R

n

) and vanishing

mean osillation VMO(R

n

), respetively. For this it is useful to introdue the following notation.

For f 2 L

1

lo

(R

n

; C

N�N

) and G � R

n

open and bounded we write

f

G

:=

Z

�

G

f(x) dx :=

1

jGj

Z

G

f(x) dx:

for the mean value of f over G. We then say that a funtion f 2 L

1

lo

(R

n

; C

N�N

) has bounded

mean osillation, or f 2 BMO(R

n

; C

N�N

), if

kfk

�

:= sup

B2B

Z

�

B

kf(x)� f

B

k dx = sup

B2B

kf � f

B

k

B

<1;

where B denotes the set of all balls in R

n

.

For given r > 0 we write B

r

for the set of all balls in R

n

with radius less than r. We then further

de�ne the VMO-modulus �

f

of a funtion f 2 BMO(R

n

; C

N�N

) via

�

f

(r) = sup

B2B

r

Z

�

B

kf(x)� f

B

k dx; r > 0:

and we say that f has vanishing mean osillation, or f 2 VMO(R

n

; C

N�N

), if

lim

r!0+

�

f

(r) = 0:

If N = 1 we will shortly write BMO(R

n

) or VMO(R

n

) for BMO(R

n

; C

N�N

) or VMO(R

n

; C

N�N

),

respetively. Note that a funtion f = (f

j;k

)

N

j;k=1

belongs to BMO(R

n

; C

N�N

) or VMO(R

n

; C

N�N

),

if and only if every omponent f

j;k

of f belongs to BMO(R

n

) or VMO(R

n

), respetively.

Next we introdue the sharp funtion f

#

of f 2 L

1

lo

(R

n

) by

f

#

(x) := sup

B2B;B3x

Z

�

B

jf(y)� f

B

j dy:

Then the following holds.

Lemma 2.2. Let 1 < p < 1 and ! 2 A

p

. Then there exists an A

p

-onsistent onstant C suh

that

kfk

p;!

� Ckf

#

k

p;!

; f 2 L

p

!

(R

n

):

For a proof of this fat see e.g. Proposition 5.4 in [HH03℄.

The following inequality will be often useful to have.

(2.4)

Z

�

I

jf(x)� f

I

j dx � 2

Z

�

I

jf(x)� j dx;
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for any onstant  2 R and any measurable set I � R

n

with positive measure.

Furthermore, we reall the well known John-Nirenberg inequality (see e.g. [Ste93, IV.1.3℄).

Denote by I a ube in R

n

with sides parallel to the oordinate axes and let 1 � p <1. Then

(2.5)

�

Z

�

I

jf(x)� f

I

j

p

dx

�

1

p

� C

p

kfk

�

:

Moreover, let 2

j

I; j 2 N, be the ube with the same enter as I but with sidelength 2

j

d, where d

is the sidelength of I . Then

(2.6)

�

Z

�

2

j

I

jf(x)� f

I

j

p

dx

�

1

p

� C

p

(j + 1)kfk

�

:

We note that (2.6) follows from (2.5) by indution.

3. Main Results

We are now in the position to state the main result of this paper.

Theorem 3.1. Let n � 2, 1 < p < 1, ! 2 A

p

, �

0

2 (0; �), � > �

0

and M > 0. Assume that

A =

P

j�j�m

a

�

(x)D

�

is an (M;�

0

)-ellipti operator in L

p

!

(R

n

)

N

with oeÆients a

�

satisfying

a) a

�

2 L

1

(R

n

; C

N�N

) \ VMO(R

n

; C

N�N

) for j�j = m,

b) a

�

2 L

1

(R

n

; C

N�N

) for j�j < m.

Then there are A

p

-onsistent onstants �

0

; C � 0, suh that

k(�+ �

0

+A

p;!

)

�1

k

L(L

p

!

(R

n

)

N

)

�

C

j�j

; � 2 �

���

:

The following orollary follows immediately from Proposition 2.1 and Theorem 3.1.

Corollary 3.2. Let 1 < p; q < 1. Assume that �

0

<

�

2

. Then there exist onstants M;� � 0

suh that

ku

0

k

L

q

(J;L

p

!

(R

n

)

N

)

+ k(�+A

p;!

)uk

L

q

(J;L

p

!

(R

n

)

N

)

�Mkfk

L

q

(J;L

p

!

(R

n

)

N

)

;

In partiular, �(�+A

p;!

) generates an analyti semigroup on L

p

!

(R

n

)

N

.

Remark 3.3. Obviously, hoosing ! = 1, the above assertions hold also in the unweighted spae

L

p

(R

n

)

N

.

4. Singular Integrals and Commutators

In this setion we onsider integral operators of Calder�on-Zygmund type and related ommutators

with BMO-funtions. More preisely, we all a funtion K 2 L

1

lo

(R

n

n f0g; C

N�N

) a Calder�on-

Zygmund kernel, if for a onstant C > 0 the following three onditions are satis�ed:

a) kFKk

1

� C,

b) kK(x)k � Cjxj

�n

for all x 2 R

n

n f0g,

) kK(x� y)�K(x)k � Cjyjjxj

�(n+1)

for all x; y 2 R

n

, where jxj > 2jyj > 0.

Here we denote by F the Fourier transform.

Remark 4.1. It is lear that the entries K

j;k

of K = (K

j;k

)

N

j;k=1

are salar Calder�on-Zygmund

kernels if and only if K is a Calder�on-Zygmund kernel.

The following result on salar-valued kernels was proved in [HH03, Propositions 5.1 and 5.4℄. It

extends in partiular a lassial ommutator result due to Coifman, Rohberg and Weiss [CRW76℄

to the weighted situation.
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Proposition 4.2. Let 1 < p < 1, ! 2 A

p

, a 2 BMO(R

n

) and k 2 L

1

lo

(R

n

n f0g) be a (salar-

valued) Calder�on-Zygmund kernel. Then

Tf := k � f and [T; a℄f := T (af)� aTf; f 2 S(R

n

);

de�ne bounded linear operators on L

p

!

(R

n

) and there is an A

p

-onsistent onstant C suh that

kTfk

p;!

� Ckfk

p;!

and k[T; a℄fk

p;!

� Ckak

�

kfk

p;!

:

We next give a result analog to Proposition 4.2 but now for kernels having two variables. We

assume that the kernel is homogeneous in the seond variable. By S

n�1

we denote the unit sphere

in R

n

.

Proposition 4.3. Let 1 < p <1, ! 2 A

p

and a 2 BMO(R

n

). Further let k : R

n

�(R

n

nf0g)! C

be measurable, suh that

a) the funtion k(x; �) is homogeneous of degree �n for a.e. x 2 R

n

,

b)

R

S

n�1

k(x; y) dy = 0,

) kD

�

y

k(x; y)k

L

1

(R

n

�S

n�1

)

�M , j�j � 2n.

Consider the operators T and [T; a℄ given by

Tf(x) = lim

"!0

Z

jx�yj>"

k(x; x� y)f(y) dy = p:v:

Z

R

n

k(x; x� y)f(y) dy;

[T; a℄ f(x) = p:v:

Z

R

n

k(x; x� y)

�

a(x) � a(y)

�

f(y) dy:

Then T and [T; a℄ are bounded on L

p

!

(R

n

) and there is an A

p

-onsistent onstant C suh that

kTfk

p;!

� Ckfk

p;!

; k[T; a℄fk

p;!

� Ckak

�

kfk

p;!

:

The proof of this proposition is given in [HH03, Proposition 5.5℄ and uses a representation of

jyj

n

k(x; y) by spherial harmonis. As we need this method in the following, we shortly desribe

it in the next proposition.

Proposition 4.4. Let k be as in Proposition 4.3. Then for j 2 N there exist b

j

2 L

1

(R

n

) and

Y

j

2 L

1

(R

n

n f0g) suh that

a) k(x; y) =

1

X

j=1

b

j

(x)

Y

j

(y)

jyj

n

,

b) Y

j

(y)=jyj

n

is a Calder�on-Zygmund kernel,

) the norms of the assoiated operators on L

p

!

(R

n

) are uniformly bounded in j 2 N,

d)

P

1

j=1

kb

j

k

1

<1.

The following result is a onsequene of (2.3), see e.g. [HH03, Lemma 6.1℄.

Proposition 4.5. Let B be an (M;�

0

)-ellipti di�erential operator, homogenous of degree m, with

onstant oeÆients. Further, let � > �

0

and let 

�

be the fundamental solution of � + B for

� 2 �

���

. Then, for every � 2 �

���

and j�j � m, the funtions

�

1�j�j=m

D

�



�

are Calder�on-Zygmund kernels. Furthermore, the onstant C, that appears in the de�nition of

Calder�on-Zygmund kernels, an be hosen independently of �.

Remark 4.6. In partiular, the kernels 

x

0

�

, x

0

2 E, ful�ll the onditions of this proposition. Note

that the inequalities in (2.3) do not depend on x

0

. Therefore, the onstant C an also be hosen

independently of x

0

2 E.

The next result ensures the existene of a ertain integral kernel.
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Lemma 4.7. Let h 2 C

1

(R

n

n f0g; C

N�N

) be homogeneous of degree 0 and T 2 L(L

2

(R

n

)

N

)

be de�ned as Tf = F

�1

hFf . Then there exists a funtion k 2 C

1

(R

n

n f0g; C

N�N

) whih is

homogeneous of degree �n and satis�es

R

S

n�1

k(x) dx = 0. Furthermore,

Tf =  � f + lim

"!0

Z

jyj>"

k(y)f(� � y) dy; f 2 L

2

(R

n

)

N

;

where  =

R

S

n�1

h(x) dx and

kD

�

kk

L

1

(S

n�1

)

� C

X

j�j�r

kD

�

hk

L

1

(S

n�1

)

for some r 2 N depending only on n and j�j.

Proof. The proof follows easily from the salar-valued ase given in [HH03℄. In fat, set h =

(h

j;`

)

N

j;`=1

. Then h

j;`

2 C

1

(R

n

n f0g) for all j; ` 2 f1; : : : ; Ng. Furthermore, for x 6= 0 and � 2 R

we have

h

j;`

(�x) = e

T

j

h(�x)e

`

= e

T

j

h(x)e

`

= h

j;`

(x);

whih implies the homogeneity of eah omponent h

j;`

. By [HH03, Lemma 6.2℄ we obtain salar

kernels k

j;`

2 C

1

(R

n

n f0g) and 

j;`

with the desired properties. Now k := (k

j;`

)

N

j;`=1

and  :=

(

j;`

)

N

j;`=1

is the funtion and the onstant we were looking for. �

5. A Priori Estimates

The main result of this setion is the following a priori estimate. We denote by A always a

homogeneous, (M;�

0

)-ellipti di�erential operator of order m, where �

0

2 (0; �). We also assume

that a

�

2 L

1

(R

n

; C

N�N

) for all � with j�j = m.

Theorem 5.1. Let 1 < p < 1, ! 2 A

p

and � > �

0

. Then there exist A

p

-onsistent onstants

C; � > 0 and �

0

� 0, suh that for all u 2W

m;p

!

(R

n

)

N

and all � 2 �

���

with j�j > �

0

X

j�j�m

k�

1�

j�j

m

D

�

uk

p;!

� Ck(�+A)uk

p;!

;

provided ka

�

k

�

� � for all j�j = m.

The proof of the above theorem is based on a representation of D

�

u in terms of kernels 

x

0

�

and

operators �+A

x

0

. More preisely, we have the following representation formula.

Lemma 5.2. Let u 2 D(R

n

)

N

and x 2 E. If j�j < m, then

D

�

u(x) =

Z

R

n

D

�



x

�

(x� y)(�+A

x

)u(y) dy:

Moreover, for j�j = m

D

�

u(x) = p:v:

Z

R

n

K

�

(x; x � y)(�+A

x

)u(y) dy + 

�

(x)(� +A)u(x)

�

Z

R

n

�

x

�

(x� y)

�

p:v:

Z

R

n

K

�

(x; y � z)(�+A

x

)u(z) dz

�

dy

� 

�

(x)

Z

R

n

�

x

�

(x� y)(�+A

x

)u(y) dy:

Here 

�

2 L

1

(R

n

) and K

�

is a matrix-valued integral kernel, whose entries ful�ll the assumptions

of Proposition 4.3.
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Proof. For every x

0

2 E we have Fu = (� + A

#

(x

0

; �))

�1

F(� + A

x

0

)u. The �rst part of the

assertion follows easily by setting x

0

= x sine by the estimates (2.3) D

�



x

0

�

is in L

1

(R

n

)

N

for

every j�j < m.

Hene we turn to the ase where j�j = m and see that

FD

�

u(�) = �

�

�

�+A

#

(x

0

; �)

�

�1

�

F(�+A

x

0

)u

�

(�)

= �

�

(A

#

(x

0

; �))

�1

�

F(�+A

x

0

)u

�

(�)

+

h

�

�

�

�+A

#

(x

0

; �)

�

�1

� �

�

(A

#

(x

0

; �))

�1

i

�

F(�+A

x

0

)u

�

(�):

We may now replae (� + A

#

(x

0

; �))

�1

� (A

#

(x

0

; �))

�1

by ��

�

� + A

#

(x

0

; �)

�

�1

(A

#

(x

0

; �))

�1

,

sine the two matries ommute. Hene we obtain

FD

�

u(�) = �

�

(A

#

(x

0

; �))

�1

�

F(�+A

x

0

)u

�

(�)

� �

�

�+A

#

(x

0

; �)

�

�1

�

�

(A

#

(x

0

; �))

�1

�

F(�+A

x

0

)u

�

(�):

As j�j = m and A is an (M;�

0

)-ellipti operator, the symbol h

x

0

(�) := �

�

(A

#

(x

0

; �))

�1

is a smooth

homogeneous funtion of degree 0.

By Lemma 4.7 there exist kernels K

�

(x

0

; �) 2 C

1

(R

n

n f0g; C

N�N

), that are homogeneous

of degree �n with

R

S

n�1

K

�

(x

0

; y) dy = 0. Furthermore, the elliptiity of A yields the estimate

kD

�

h

x

0

k

L

1

(S

n�1

)

� C

k

uniformly in x

0

2 E and for all j�j � k. This implies, that the derivatives

of K

�

(x

0

; �) are bounded on the unit sphere independently of x

0

2 E. By this we �nally obtain,

that the entries of K

�

ful�ll the assumptions of Proposition 4.3.

For the onstants 

�

(x

0

), whih we obtain from Lemma 4.7, elliptiity of A yields

j

�

(x

0

)j �

Z

S

n�1

j�

�

(A

#

(x

0

; �))

�1

j d� �

Z

S

n�1

M d� � CM:

Thus 

�

2 L

1

(R

n

).

Inserting these kernels and the onstants 

�

into the above equation and applying F

�1

we get

D

�

u(x) = p:v:

Z

R

n

K

�

(x

0

; x� y)(�+A

x

0

)u(y) dy + 

�

(x

0

)(�+A

x

0

)u(x)

�

Z

R

n

�

x

0

�

(x � y)

�

p:v:

Z

R

n

K

�

(x

0

; y � z)(�+A

x

0

)u(z) dz

�

dy

� 

�

(x

0

)

Z

R

n

�

x

0

�

(x� y)(�+A

x

0

)u(y) dy

for every x

0

2 E. The assertion follows again by setting x

0

= x. �

Before proving Theorem 5.1 some omments on our notation are in order. The entries of

the matries a

�

(x) and 

x

0

�

are denoted by a

(�)

j;k

(x) and g

�;x

0

j;k

for j; k = 1; : : : ; N , respetively.

Furthermore, we write u

j

, j = 1; : : : ; N , for the omponents of u.

By Lemma 5.2 we get for j�j < m

�

1�

j�j

m

D

�

u(x) =

Z

R

n

�

1�

j�j

m

D

�



x

�

(x� y)(�+A

x

)u(y) dy

=

Z

R

n

�

1�

j�j

m

D

�



x

�

(x� y)(�+A)u(y) dy

+

Z

R

n

�

1�

j�j

m

D

�



x

�

(x � y)(A

x

�A)u(y) dy:
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Looking at one omponent one obtains

�

1�

j�j

m

D

�

u

j

(x) =

N

X

k=1

Z

R

n

�

1�

j�j

m

D

�

g

�;x

j;k

(x� y)

�

(�+A)u(y)

�

k

dy

+

N

X

`=1

N

X

k=1

Z

R

n

�

1�

j�j

m

D

�

g

�;x

j;k

(x� y)

X

j�j=m

�

a

(�)

k;l

(x)� a

(�)

k;l

(y)

�

D

�

u

`

(y) dy(5.1)

=

N

X

k=1

�

T

3;�;�

j;k

((� +A)u)

k

�

(x) +

N

X

`=1

N

X

k=1

X

j�j=m

�

[T

3;�;�

j;k

; a

(�)

k;`

℄D

�

u

`

�

(x);

where

T

3;�;�

j;k

f(x) =

Z

R

n

�

1�

j�j

m

D

�

g

�;x

j;k

(x � y)f(y) dy;

[T

3;�;�

j;k

; a℄f(x) =

Z

R

n

�

1�

j�j

m

D

�

g

�;x

j;k

(x � y)

�

a(x)� a(y)

�

f(y) dy

for j; k = 1; : : : ; N , j�j < m, � 2 �

���

and a 2 BMO(R

n

). By the same alulations, we derive

from the representation formula in Lemma 5.2 for j�j = m

D

�

u(x) = p:v:

Z

R

n

K

�

(x; x � y)(�+A)u(y) dy + p:v:

Z

R

n

K

�

(x; x � y)(A

x

�A)u(y) dy

+ 

�

(x)(� +A)u(x)�

Z

R

n

�

x

�

(x� y)

�

p:v:

Z

R

n

K

�

(x; y � z)(�+A)u(z) dz

�

dy

�

Z

R

n

�

x

�

(x� y)

�

p:v:

Z

R

n

K

�

(x; y � z)(A

x

�A)u(z) dz

�

dy

� 

�

(x)

Z

R

n

�

x

�

(x� y)(�+A)u(y) dy � 

�

(x)

Z

R

n

�

x

�

(x� y)(A

x

�A)u(y) dy:

For the j-th omponent this means

D

�

u

j

(x) =

N

X

k=1

p:v:

Z

R

n

K

�

j;k

(x; x � y)

�

(�+A)u(y)

�

k

dy

+

X

j�j=m

N

X

`=1

N

X

k=1

p:v:

Z

R

n

K

�

j;k

(x; x� y)

�

a

(�)

k;`

(x) � a

(�)

k;`

(y)

�

D

�

u

`

(y) dy

+

N

X

k=1



�

j;k

(x)

�

(�+A)u(x)

�

k

�

N

X

`=1

N

X

k=1

Z

R

n

�g

�;x

j;k

(x� y) p:v:

Z

R

n

K

�

k;`

(x; y � z)

�

(�+A)u(z)

�

`

dz dy

�

X

j�j=m

N

X

r=1

N

X

`=1

N

X

k=1

Z

R

n

�g

�;x

j;k

(x� y)

� p:v:

Z

R

n

K

�

k;`

(x; y � z)

�

a

(�)

`;r

(x)� a

(�)

`;r

(z)

�

D

�

u

r

(z) dz dy

�

N

X

`=1

N

X

k=1



�

j;k

(x)

Z

R

n

�g

�;x

k;`

(x � y)

�

(�+A)u(y)

�

`

dy

�

X

j�j=m

N

X

r=1

N

X

`=1

N

X

k=1



�

j;k

(x)

Z

R

n

�g

�;x

k;`

(x� y)

�

a

(�)

`;r

(x)� a

(�)

`;r

(y)

�

D

�

u

r

(y) dy;
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where K

�

j;k

(x; x�y) and 

�

j;k

(x) are the entries of the matries K

�

(x; x�y) and 

�

(x) respetively.

In order to get a notational grip on this formula we introdue the following operators. Let

j; k; ` 2 f1; : : : ; Ng, j�j = m, � 2 �

���

and let a 2 BMO(R

n

) and f 2 L

p

!

(R

n

). Then we de�ne

T

1;�

j;k

f(x) = p:v:

Z

R

n

K

�

j;k

(x; x� y)f(y) dy;

[T

1;�

j;k

; a℄f(x) = p:v:

Z

R

n

K

�

j;k

(x; x� y)

�

a(x) � a(y)

�

f(y) dy;

T

2;�;�

j;k;`

f(x) =

Z

R

n

�g

�;x

j;k

(x� y) p:v:

Z

R

n

K

�

k;`

(x; y � z)f(z) dz dy;

[T

2;�;�

j;k;`

; a℄f(x) =

Z

R

n

�g

�;x

j;k

(x� y) p:v:

Z

R

n

K

�

k;`

(x; y � z)

�

a(x) � a(z)

�

f(z) dz dy:

Using this notation we �nally write

D

�

u

j

(x) =

N

X

k=1

T

1;�

j;k

�

(�+A)u

�

k

(x) +

X

j�j=m

N

X

`=1

N

X

k=1

h

T

1;�

j;k

; a

(�)

k;`

i

D

�

u

`

(x)

+

N

X

k=1



�

j;k

(x)

�

(�+A)u(x)

�

k

�

N

X

`=1

N

X

k=1

T

2;�;�

j;k;`

�

(�+A)u

�

`

(x)

�

X

j�j=m

N

X

r=1

N

X

`=1

N

X

k=1

h

T

2;�;�

j;k;`

; a

(�)

`;r

i

D

�

u

r

(x)�

N

X

`=1

N

X

k=1



�

j;k

(x)T

3;�;0

k;`

�

(�+A)u

�

`

(x)(5.2)

�

X

j�j=m

N

X

r=1

N

X

`=1

N

X

k=1



�

j;k

(x)

h

T

3;�;0

k;`

; a

(�)

`;r

i

D

�

u

r

(x):

Note, that the operator [T

2;�;�

j;k;`

; a℄ is not a ommutator. As we an handle it by the same methods

as the ommutators, we however use this notation.

We now prove the following mapping properties of the above operators.

Lemma 5.3. Let j; k; ` 2 f1; : : : ; Ng, j�j = m, j�j < m, � 2 �

���

, a 2 L

1

(R

n

), 1 < p < 1,

! 2 A

p

and f 2 L

p

!

(R

n

). Then

kT

1;�

j;k

fk

p;!

� Ckfk

p;!

;







h

T

1;�

j;k

; a

i

f







p;!

� Ckak

�

kfk

p;!

;

kT

2;�;�

j;k;`

fk

p;!

� Ckfk

p;!

;







[T

2;�;�

j;k;`

; a℄f







p;!

� CA

�

(1 + kak

1

)kfk

p;!

;

kT

3;�;�

j;k

fk

p;!

� Ckfk

p;!

;







[T

3;�;�

j;k

; a℄f







p;!

� CA

�

(1 + kak

1

)kfk

p;!

;

where

A

�

:= max

�

kak

�

; max

j�j=m

N

max

r;s=1

ka

(�)

r;s

k

�

�

:

Proof. By Lemma 5.2 the kernelsK

�

j;k

ful�ll the hypotheses of Proposition 4.3. Thus the assertion

onerning the T

1

-operators follows.

We turn to the operators ontaining T

3

. Using (2.3), we have

kD

�



x

�

(z)k � Cj�j

n+j�j

m

�1

p

n

m;j�j

(j�j

1

m

jzj)

for all j�j < m, � 2 �

���

and x; z 2 R

n

. Consequently, we have the same estimate for the entries

g

�;x

j;k

and the boundedness of T

3;�;�

j;k

follows as in [HH03, Proposition 6.5℄.

Dealing with the ommutator of T

3;�;�

j;k

with BMO-funtions is muh harder. We �rst show a

point-wise estimate for the sharp funtion of [T

3;�;�

j;k

; a℄f .
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Let I be an axis-parallel ube in R

n

and x 2 I . Then

[T

3;�;�

j;k

; a℄f(z) =

�

a(z)� a

I

�

T

3;�;�

j;k

f(z)� T

3;�;�

j;k

�

(a� a

I

)1

2I

f

�

(z)� T

3;�;�

j;k

�

(a� a

I

)1

(2I)



f

�

(z)

=: A(z) +B(z) + C(z):

We estimate A

#

(x), B

#

(x), and C

#

(x) separately. For A and B we hoose  = 0 in (2.4) and look

at

R

�

I

jA(z)j dz and

R

�

I

jB(z)j dz.

The H�older inequality yields for all 1 < r <1

Z

�

I

jA(z)j dz � C

�

Z

�

I

ja(z)� a

I

j

r

0

dz

�

1

r

0

�

Z

�

I

jT

3;�;�

j;k

f(z)j

r

dz

�

1

r

:

For the �rst fator we use the John Nirenberg inequality (2.5), and we estimate the seond one by

the supremum over all ubes that ontain x, and thus by the maximal operator. This yields

Z

�

I

jA(z)j dz � Ckak

�

�

M jT

3;�;�

j;k

f j

r

�

1

r

(x):

For estimating B

#

, we �rst apply Jensen's inequality:

Z

�

I

jB(z)j dz �

�

Z

�

I

jT

3;�;�

j;k

�

(a� a

I

)f1

2I

�

(z)j

q

dz

�

1

q

�

�

1

jI j

�

1

q

kT

3;�;�

j;k

�

(a� a

I

)f1

2I

�

k

q

;

where 1 < q < 1. Now we use the boundedness of T

3;�;�

j;k

in L

q

(R

n

) and then again H�older's

inequality as above. Doing so, we get for every u 2 (1;1) and every 1 < r = qu <1:

Z

�

I

jB(z)j dz � C

�

1

jI j

Z

2I

ja(z)� a

I

j

qu

0

dz

�

1

qu

0

�

1

jI j

Z

2I

jf(z)j

qu

dz

�

1

qu

� Ckak

�

(M jf j

r

)

1

r

(x);

where we again estimated the �rst fator by the John Nirenberg inequality and the seond one by

the maximal operator.

The third part C

#

(x) is more involved. Here we have to use the struture of our kernels and

we annot hoose  = 0 in (2.4). We de�ne the averaged operator

A

I

:=

X

j�j=m

Z

�

I

a

�

(x) dxD

�

;

whih is a homogeneous di�erential operator with onstant oeÆients. Thus there exist suitable

onstants

~

�

0

;K � 0, suh that the operator

~

�

0

+ A

I

is (K;�

0

=2)-ellipti. By Proposition 4.5 we

see, that (� +A

I

)

�1

is given by a kernel K

I;�

for all � 2

~

�

0

+�

���

0

=2

. Choosing �

0

�

~

�

0

so big,

that �

���

0

nB(0; �

0

) �

~

�

0

+�

���

0

=2

, we get for all � > �

0

and � 2 �

���

satisfying j�j > �

0

the

estimate

kD

�

K

I;�

(x)k � Cj�j

n+j�j

m

�1

p

n

m;j�j

(j�j

1

m

jxj);

as in (2.3). Thus for all these � and for all j�j � m the funtion �

1�j�j=m

D

�

K

I;�

is a Calder�on-

Zygmund kernel and the assoiated operators are bounded in L

p

!

(R

n

) uniformly in � 2 �

���

n

B(0; �

0

).

With this preparations in hand, we now estimate C

#

(x). To this end we hoose the onstant 

in (2.4) as

 :=

Z

R

n

�

1�

j�j

m

D

�

K

I;�

j;k

(x

I

� y)(a(y)� a

I

)1

(2I)


(y)f(y) dy;
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where x

I

is the enter of the ube I . Setting g(y) := (a(y)� a

I

)1

(2I)



(y)f(y) we obtain

Z

�

I

jC(z)� j dz =

Z

�

I

�

�

�

�

Z

R

n

�

1�

j�j

m

D

�

�

g

�;z

j;k

(z � y)�K

I;�

j;k

(x

I

� y)

�

g(y) dy

�

�

�

�

dz

=

Z

�

I

�

�

�

�

Z

R

n

�

1�

j�j

m

D

�

�

g

�;z

j;k

(z � y)�K

I;�

j;k

(z � y)

�

g(y) dy

�

�

�

�

dz

+

Z

�

I

�

�

�

�

Z

R

n

�

1�

j�j

m

D

�

�

K

I;�

j;k

(z � y)�K

I;�

j;k

(x

I

� y)

�

g(y) dy

�

�

�

�

dz

=: I

1

+ I

2

:

Therefore we need information about the di�erenes g

�;z

j;k

�K

I;�

j;k

and K

I;�

j;k

(z � �) �K

I;�

j;k

(x

I

� �).

To handle the �rst di�erene we alulate for the orresponding matrix-valued kernels 

z

�

and K

I;�

and for every ' 2 D(R

n

)

N

(

z

�

�K

I;�

) � ' = F

�1

�

(�+A

#

(z; �))

�1

� (� +A

I;#

(�))

�1

�

F'

= F

�1

(�+A

#

(z; �))

�1

�

A

I;#

(�)�A

#

(z; �)

�

(�+A

I;#

(�))

�1

F'

=

X

j�j=m

F

�1

(� +A

#

(z; �))

�1

�

(a

�

)

I

� a

�

(z)

�

�

�

(�+A

I;#

(�))

�1

F'

=

X

j�j=m



z

�

�

��

(a

�

)

I

� a

�

(z)

�

D

�

K

I;�

� '

�

:

For one omponent this identity means, that for every f 2 D(R

n

)

h

�

1�

j�j

m

D

�

�

g

�;z

j;k

�K

I;�

j;k

�

i

� f(z)

=

X

j�j=m

N

X

`=1

N

X

s=1

�

(a

(�)

`;s

)

I

� a

(�)

`;s

(z)

�

Z

R

n

�

1�

j�j

m

D

�

g

�;z

j;`

(z � y)

Z

R

n

D

�

K

I;�

s;k

(y � u)f(u) du dy

=:

X

j�j=m

N

X

`=1

N

X

s=1

�

(a

(�)

`;s

)

I

� a

(�)

`;s

(z)

�

S

�;�;�

j;k;`;s

f(z);

where S

�;�;�

j;k;`;s

is a bounded operator on L

p

!

(R

n

), as it is a omposition of two onvolutions with

Calder�on-Zygmund kernels. Propositions 4.2 and 4.5 even allow us to estimate the norm of this

operator A

p

-onsistently and independently of �.

Using this to estimate I

1

, we get

I

1

�

X

j�j=m

N

X

`=1

N

X

s=1

�

Z

�

I

�

�

�

(a

(�)

`;s

)

I

� a

(�)

`;s

(z)

�

�

�

�

�

�

h

S

�;�;�

j;k;`;s

(a1

(2I)



f)

i

(z)

�

�

�

dz

+

Z

�

I

�

�

�

(a

(�)

`;s

)

I

� a

(�)

`;s

(z)

�

�

�

�

�

�

h

S

�;�;�

j;k;`;s

(a

I

1

(2I)


f)

i

(z)

�

�

�

dz

�

=: I

11

+ I

12

:

In order to treat I

11

we write 1

(2I)


f = f � 1

2I

f . The triangle inequality then yields for every

1 < r <1

I

11

�

X

j�j=m

N

X

`=1

N

X

s=1

�

Z

�

I

�

�

�

(a

(�)

`;s

)

I

� a

(�)

`;s

(z)

�

�

�

�

�

�

h

S

�;�;�

j;k;`;s

(af)

i

(z)

�

�

�

dz

+

Z

�

I

�

�

�

(a

(�)

`;s

)

I

� a

(�)

`;s

(z)

�

�

�

�

�

�

h

S

�;�;�

j;k;`;s

(a1

2I

f)

i

(z)

�

�

�

dz

�

� C

X

j�j=m

N

X

`=1

N

X

s=1







a

(�)

`;s







�

�

(M jS

�;�;�

j;k;`;s

af j

r

)

1

r

(x) + kak

1

(M jf j

r

)

1

r

(x)

�

;
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in the same way as we estimated

R

�

I

jA(z)j dz and

R

�

I

jB(z)j dz. Analogously

I

12

� C

X

j�j=m

N

X

`=1

N

X

s=1







a

(�)

`;s







�

�

(M jS

�;�;�

j;k;`;s

a

I

f j

r

)

1

r

(x) + kak

1

(M jf j

r

)

1

r

(x)

�

� Ckak

1

X

j�j=m

N

X

`=1

N

X

s=1







a

(�)

`;s







�

�

(M jS

�;�;�

j;k;`;s

f j

r

)

1

r

(x) + (M jf j

r

)

1

r

(x)

�

:

For I

2

we use that every entry of �

1�j�j=m

D

�

K

I;�

is a Calder�on-Zygmund kernel:

I

2

=

Z

�

I

�

�

�

�

Z

R

n

�

1�

j�j

m

D

�

�

K

I;�

j;k

(z � y)�K

I;�

j;k

(x

I

� y)

�

g(y) dy

�

�

�

�

dz

�

Z

�

I

Z

R

n

n2I

�

�

�

�

1�

j�j

m

D

�

K

I;�

j;k

�

x

I

� y � (x

I

� z)

�

� �

1�

j�j

m

D

�

K

I;�

j;k

(x

I

� y)

�

�

�

� ja(y)� a

I

jjf(y)j dy dz

� C

Z

�

I

Z

R

n

n2I

jx

I

� zj

jx

I

� yj

n+1

ja(y)� a

I

jjf(y)j dy dz:

This estimate is possible, as jx

I

� yj > 2jx

I

� zj is valid. Applying the H�older inequality

I

2

� C

Z

�

I

 

Z

R

n

n2I

jx

I

� zj

jx

I

� yj

n+1

ja(y)� a

I

j

r

0

dy

!

1

r

0

 

Z

R

n

n2I

jx

I

� zj

jx

I

� yj

n+1

jf(y)j

r

dy

!

1

r

dz

follows for every 1 < r <1. Denoting the side-length of I by d, we estimate the �rst fator:

Z

R

n

n2I

jx

I

� zj

jx

I

� yj

n+1

ja(y)� a

I

j

r

0

dy

=

1

X

`=2

Z

2

`

In2

`�1

I

jx

I

� zj

jx

I

� yj

n+1

ja(y)� a

I

j

r

0

dy �

1

X

`=2

d

(2

`�2

d)

n+1

Z

2

`

I

ja(y)� a

I

j

r

0

dy

= 4

n+1

1

X

`=2

2

�`

Z

�

2

`

I

ja(y)� a

I

j

r

0

dy � C

1

X

`=2

2

�`

(`+ 1)

r

0

kak

r

0

�

� Ckak

r

0

�

by (2.6) and sine (2

`�2

d)

n+1

= 2

`

4

�(n+1)

dj2

`

I j.

Analogously we get for the seond fator

Z

R

n

n2I

jx

I

� zj

jx

I

� yj

n+1

jf(y)j

r

dy � C

1

X

`=2

2

�`

Z

�

2

`

I

jf(y)j

r

dy � CM jf j

r

(x):

Altogether we obtain for I

2

I

2

� Ckak

�

�

M jf j

r

�

1

r

(x):

Combining this with the estimate for I

1

we see that

Z

�

I

jC(z)� j dz � C

�

kak

�

�

M jf j

r

�

1

r

(x) +

X

j�j=m

N

X

`=1

N

X

s=1







a

(�)

`;s







�

�

�

M jS

�;�;�

j;k;`;s

af j

r

�

1

r

(x)

+ kak

1

�

M jS

�;�;�

j;k;`;s

f j

r

�

1

r

(x) + kak

1

�

M jf j

r

�

1

r

(x)

��

:
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Colleting the results for A, B and C, we have for every 1 < r <1

�

[T

3;�;�

j;k

; a℄f

�

#

(x) � A

#

(x) +B

#

(x) + C

#

(x)

� Ckak

�

�

�

M jT

3;�;�

j;k

f j

r

�

1

r

(x) +

�

M jf j

r

�

1

r

(x)

�

+ C

X

j�j=m

N

X

`=1

N

X

s=1







a

(�)

`;s







�

�

�

M jS

�;�;�

j;k;`;s

af j

r

�

1

r

(x)

+ kak

1

�

M jS

�;�;�

j;k;`;s

f j

r

�

1

r

(x) + kak

1

�

M jf j

r

�

1

r

(x)

�

:

As in the third step of the proof of Proposition 5.4 in [HH03℄ there exists an r > 1, suh that

k

�

M jf j

r

�

1

r

k

p;!

� Ckfk

p;!

; f 2 L

p

!

(R

n

);

with an A

p

-onsistent onstant C. This and Lemma 2.2 now yield







[T

3;�;�

j;k

; a℄f







p;!

� C









�

[T

3;�;�

j;k

; a℄f

�

#









p;!

� CA

�

�

kT

3;�;�

j;k

fk

p;!

+ kfk

p;!

+

X

j�j=m

N

X

`=1

N

X

s=1

�

kS

�;�;�

j;k;`;s

afk

p;!

+ kak

1

�

kS

�;�;�

j;k;`;s

fk

p;!

+ kfk

p;!

�

��

� CA

�

�

kfk

p;!

+N

m+2

�

kafk

p;!

+ kak

1

kfk

p;!

�

�

� CA

�

(1 + kak

1

)kfk

p;!

;

where C is an A

p

-onsistent onstant.

We �nally show the boundedness of the operators T

2;�;�

j;k;`

and [T

2;�;�

j;k;`

; a℄. For this purpose, we

use Proposition 4.4 to expand the kernel of the prinipal value integral in the de�nition of T

2;�;�

j;k;`

.

This yields

T

2;�;�

j;k;`

f(x) =

1

X

s=1

b

�;k;`

s

(x)

Z

R

n

�g

�;x

j;k

(x � y) p:v:

Z

R

n

Y

�;k;`

s

(y � z)

jy � zj

n

f(z) dz

| {z }

=:R

�;k;`

s

f(y)

dy;

where R

�;k;`

s

is a Calder�on-Zygmund operator on L

p

!

(R

n

), whose norm an be bounded indepen-

dently of s. Hene

kT

2;�;�

j;k;`

fk

p;!

=











1

X

s=1

b

�;k;`

s

�

T

3;�;0

j;k

R

�;k;`

s

f

�











p;!

�

1

X

s=1

kb

�;k;`

s

k

1

kT

3;�;0

j;k

R

�;k;`

s

fk

p;!

� C

1

X

s=1

kb

�;k;`

s

k

1

kfk

p;!

� Ckfk

p;!

with an A

p

-onsistent onstant C.

In order to bound the operator [T

2;�;�

j;k;`

; a℄ we write

[T

2;�;�

j;k;`

; a℄f(x) =

Z

R

n

�g

�;x

j;k

(x� y) p:v:

Z

R

n

K

�

k;`

(x; y � z)

�

a(x)� a(z)

�

f(z) dz dy

=

Z

R

n

�g

�;x

j;k

(x� y)

�

a(x)� a(y)

�

p:v:

Z

R

n

K

�

k;`

(x; y � z)f(z) dz dy

+

Z

R

n

�g

�;x

j;k

(x� y) p:v:

Z

R

n

K

�

k;`

(x; y � z)

�

a(y)� a(z)

�

f(z) dz dy:



L

p

� L

q

-ESTIMATES FOR PARABOLIC SYSTEMS WITH VMO-COEFFICIENTS 15

Applying one more Proposition 4.4 to expand the kernel K

�

k;`

, we get

[T

2;�;�

j;k;`

; a℄f(x) =

1

X

s=1

b

�;k;`

s

(x)

�

�

[T

3;�;0

j;k

; a℄R

�;k;`

s

f

�

(x) + T

3;�;0

j;k

�

[R

�;k;`

s

; a℄f

�

(x)

�

:

As we have already bounded the T

3

-operators, we �nally onlude with the help of Propositions 4.3

and 4.4







[T

2;�;�

j;k;`

; a℄f







p;!

� C

1

X

s=1

kb

�;k;`

s

k

1

�

A

�

(1 + kak

1

)kfk

p;!

+ kak

�

kfk

p;!

�

� CA

�

(1 + kak

1

)kfk

p;!

:

�

Proof of Theorem 5.1: For every j�j < m and all j = 1; : : : ; N we have by (5.1)

�

1�

j�j

m

D

�

u

j

(x) =

N

X

k=1

�

T

3;�;�

j;k

((� +A)u)

k

�

(x) +

N

X

`=1

N

X

k=1

X

j�j=m

�

[T

3;�;�

j;k

; a

(�)

k;`

℄D

�

u

`

�

(x):

By the preeeding lemma we see that

k�

1�

j�j

m

D

�

u

j

k

p;!

� C

�

N

X

k=1

k

�

(� +A)u

�

k

k

p;!

+ a

�

a

1

N

X

`=1

X

j�j=m

kD

�

u

`

k

p;!

�

;

where

a

�

:= max

j�j=m

N

max

k;`=1

ka

(�)

k;`

k

�

and a

1

:= 1 + max

j�j=m

N

max

k;`=1

ka

(�)

k;`

k

1

:

Analogously we get by (5.2) for all j�j = m and all j = 1; : : : ; N

kD

�

u

j

k

p;!

� C

�

N

X

k=1

k

�

(�+A)u

�

k

k

p;!

+ a

�

N

X

k=1

X

j�j=m

kD

�

u

k

k

p;!

+

N

X

k=1

k

�

(�+A)u

�

k

k

p;!

+

N

X

k=1

k

�

(�+A)u

�

k

k

p;!

+ a

�

a

1

N

X

k=1

X

j�j=m

kD

�

u

k

k

p;!

+

N

X

k=1

k

�

(�+A)u

�

k

k

p;!

+ a

�

a

1

N

X

k=1

X

j�j=m

kD

�

u

k

k

p;!

�

:

Combinig these two estimates, we onlude that

X

j�j�m







�

1�

j�j

m

D

�

u







p;!

� C

N

X

j=1

X

j�j�m







�

1�

j�j

m

D

�

u

j







p;!

� C

�

N

X

k=1

k

�

(�+A)u

�

k

k

p;!

+ a

�

a

1

N

X

k=1

X

j�j=m

kD

�

u

k

k

p;!

�

with an A

p

-onsistent onstant C. If � < (Ca

1

)

�1

, we have Ca

�

a

1

� C�a

1

< 1. Thus we may

bring the seond term on the left hand side to the right hand side and therefore �nish the proof.

�
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6. Proof of the Main Result

Due to the a priori estimate given in the previous setion, it remains to prove that the operator

� + A from W

m;p

!

(R

n

) onto L

p

!

(R

n

)

N

is surjetive. This follows from the ontinuity method in

the same way as in [HH03℄. We just refer to Theorem 6.7 in [HH03℄. We thus have the following

result.

Proposition 6.1. Let n � 2, 1 < p <1, �

0

2 (0; �), � > �

0

, ! 2 A

p

. Let A be as above. Then

there are A

p

-onsistent onstants � > 0 und �

0

� 0, suh that for every f 2 L

p

!

(R

n

)

N

and every

� 2 �

���

there exists a unique funtion u 2 W

m;p

!

(R

n

)

N

suh that

(�+ �

0

+A)u = f;

whenever max

j�j=m

ka

�

k

�

� �.

Corollary 6.2. Under the assumptions of Proposition 6.1, there exist A

p

-onsistent onstants

C; � � 0 suh that

k(�+ �

0

+A

p;!

)

�1

k

p;!

�

C

j�j

; � 2 �

���

:

If �

0

< �=2, then �(�

0

+A

p;!

) generates an analyti semigroup on L

p

!

(R

n

). Moreover, �

0

+A

p;!

satis�es the estimate (1.2).

Proof. Theorem 5.1 implies that � + �

0

+ A

p;!

is one to one as well as the resolvent estimate.

Surjetivity of �+�

0

+A

p;!

follows from Proposition 6.1. The L

p

-L

q

-estimate is now a onsequene

of Proposition 2.1. �

In order to apply a loalization proedure to di�erential operators with VMO oeÆients, we

need the following lemma.

Lemma 6.3. Let f 2 VMO(R

n

; C

N�N

). Then for every " > 0, there is a radius r = r("; f) > 0,

suh that for all x

0

2 R

n

, there exists a funtion g 2 VMO(R

n

; C

N�N

) with kgk

�

� " and

f(x) = g(x) for all x 2 B(x

0

; r).

Proof. The orresponding result for N = 1 is in [HH03, Lemma 3.2℄. By this, for every entry f

j;k

,

j; k = 1; : : : ; N , of f we get a funtion g

j;k

having the above properties. Setting g = (g

j;k

)

N

j;k=1

yields the result. �

Proof of Theorem 3.1. In order to apply the usual loalization proedure, we have to de�ne

loal operators A

j

, j 2 N, that are equal to A on balls B(x

j

; r) � R

n

, but whose oeÆients have

BMO norm smaller than �, where � is the onstant from Theorem 5.1.

In order to do so, we hoose for every j�j = m a radius r

�

> 0 given by Lemma 6.3 with

" = �. We set r := min

j�j=m

r

�

. By Lemma 6.3 there exist funtions a

�;j

2 BMO(R

n

; C

N�N

)

with ka

�;j

k

�

� � and a

�;j

= a

�

on B(x

j

; r). Taking a

�;j

as oeÆients for suitable di�erential

operators A

j

the result follows by the loalization method used in [AHS94℄ and [HH03℄. �

Referenes

[ADN59℄ Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of ellipti partial

di�erential equations satisfying general boundary onditions. I Comm. Pure Appl. Math. 12 (1959),

623{727.

[Ama95℄ Amann, H.: Linear and Quasilinear Paraboli Problems, Vol. I. Abstrat Linear Theory. Monographs

in Mathematis 89, Birkh�auser, Basel, 1995.

[AHS94℄ Amann, H., Hieber, M., Simonett, G.: Bounded H

1

-alulus for ellipti operators. Di�erential Inte-

gral Equations 7 (1994), 613{653.

[AMT97℄ Angeletti, J.-M., Mazet, S., Thamithian, Ph.: Analysis of seond order ellipti operators without

boundary onditions and with VMO or H�olderian oeÆients. In: Multisale Wavelet Methods for

PDEs, W. Dahmen, A. Kurdilla, P. Oswald (eds.), Aademi Press 1997, 495-539.

[Aus04℄ Ausher, P.: On neessary and suÆient onditions for L

p

estimates of Riesz transforms assoiated to

ellipti operators on R

n

and related estimates. Memoirs Amer. Math. So., to appear.



L

p

� L

q

-ESTIMATES FOR PARABOLIC SYSTEMS WITH VMO-COEFFICIENTS 17

[BC93℄ Bramanti, M., Cerutti, M.C.: W

1;2

p

solvability for the Cauhy Dirihlet problem for paraboli equa-

tions with VMO oeÆients. Commun. Partial Di�er. Equations 18 (1993), 1735-1763.

[CFL91℄ Chiarenza, F., Frasa, M., Longo, P.: Interior W

2;p

estimates for nondivergene ellipti equations

with disontinuous oeÆients. Rierhe di Mat. 40 (1991), 149-168.

[CFL93℄ Chiarenza, F., Frasa, M., Longo, P.: W

2;p

-solvability of the Dirihlet problem for nondivergene

ellipti equations with VMO oeÆients. Trans. Amer. Math. So. 336 (1993), 841-853.

[CRW76℄ Coifman, R., Rohberg, R., Weiss, G.: Fatorization theorems for Hardy spaes in several variables.

Ann. of Math. 103 (1976), 611-635.

[DDHPV04℄ Denk, R., Dore, G., Hieber, M., Pr�uss, J., Venni, A.: New Thoughts on old theorems of R.T. Seeley.

Math. Ann. 328 2004, 545{583.

[DHP03℄ Denk, R., Hieber, M., Pr�uss, J.: R-boundedness, Fourier multipliers and problems of ellipti and

paraboli type. Memoirs Amer. Math. So., 166 (2003).

[DP96℄ Di Fazio, G., Palagahev, D.K.: Oblique derivative problem for ellipti equations in non-divergene

form with VMO oeÆients. Comment. Math. Univ. Carolin. 37 (1996), 537{556.

[DV87℄ Dore, G., Venni, A.: On the losedness of the sum of two losed operators. Math. Z. 196 (1987),

189-201.

[Duo90℄ Duong, X.T.: H

1

Funtional alulus of ellipti operators with C

1

oeÆients on L

p

spaes on

smooth domains. J. Austral. Math. So. Ser. A 48 (1990), 113-123.

[DS97℄ Duong, X.T., Simonett, G.: H

1

-alulus for ellipti operators with nonsmooth oeÆients. Di�eren-

tial Integral Equations 10 (1997), 201{217.

[DY02℄ Duong, X.T., Yan, L.X.: Bounded holomorphi funtional alulus for non-divergene form di�erential

operators. Di�erential Integral Equations 15 (2002), 709{730.

[GR85℄ Garia-Cuerva, J., Rubio de Frania, J.L.: Weighted Norm Inequalities and Related Topis, North-

Holland, 1985.

[Gui02℄ Guidetti, D.: General linear boundary value problems for ellipti operators with VMO oeÆients.

Math. Nahr. 237 (2002), 62-88.

[HHH03℄ Haller, R., Hek, H., Hieber, M.: Mukenhoupt weights and maximal regularity. Arh. Math. 81

(2003), 422{430.

[HH03℄ Hek, H., Hieber, M.: Maximal L

p

-regularity for ellipti operators with VMO-oeÆients. J. Evol.

Equ. 3 (2003), 332{359.

[HP97℄ Hieber, M., Pr�uss, J.: Heat kernels and maximal L

p

-L

q

estimates for paraboli evolution equations.

Comm. Partial Di�erential Equations 22 (1997), 1647{1669.

[HW04℄ Hieber, M. Wood, I.: The Dirihlet Problem in Convex Bounded Domains for Operators with L

1

-

CoeÆients. Preprint, TU Darmstadt (2004).

[LSU68℄ Ladyzenskaja, O., Solonnikov, V.A., Uraleva, N.N.: Linear and Quasilinear Equations of Paraboli

Type. Amer. Math. So. Transl. Math. Monographs, Providene, R.I., 1968.

[MP98℄ Maugeri, A., Palagahev, D.K.: Boundary value problems with an oblique derivative for uniformly

ellipti operators with disontinuous oeÆients. Forum Math. 10 (1998), 393-405.

[MPS00℄ Maugeri, A., Palagahev, D., Softova, L.: Ellipti and Paraboli Equations with Disontinuous Coef-

�ients. Wiley, 2000.

[Pal95℄ Palagahev, D.K.: Quasilinear ellipti equations with VMO oeÆients. Trans. Amer. Math. So. 347

(1995), 2481{2493.

[PS93℄ Pr�uss, J., Sohr, H.: Imaginary powers of ellipti seond order di�erential operators in L

p

-spaes.

Hiroshima Math. J. 23 (1993), 161-192.

[Rag02℄ Ragusa, M.A.: Loal H�older regularity for solutions of ellipti systems. Duke Math. J. 113 (2002),

385{397.

[Rub80℄ Rubio de Frania, J.L.: Vetor valued inequalities for operators on L

p

-spaes. Bull. London Math.

So. 12 (1980), 211-215.

[Sar75℄ Sarason, D.: Funtions of vanishing mean osillation. Trans. Amer. Math. So. 207 (1975), 391-405.

[Sof00℄ Softova, L.: Oblique derivative problem for paraboli operators with VMO oeÆients, Manusripta

Math. 103 (2000), 203{220.

[Ste93℄ Stein, E.M.: Harmoni Analysis: Real-Variable Methods, Orthogonality and Osillatory Integrals.

Prineton University Press, Prineton, 1993.

[SW71℄ Stein, E.M., Weiss, G.: Introdution to Fourier Analysis on Eulidean Spaes. Prineton University

Press, Prineton, 1971.

[Tal65℄ Talenti, G.: Sopra una lasse di equazioni ellittihi a oeÆienti misurabili. Ann. Mat. Pura Appl. 69

(1965), 285-304.

[Tor86℄ Torhinsky, A.: Real-variable Methods in Harmoni Analysis. Aademi Press, New York, 1986.

[Wei01℄ Weis, L.: Operator-valued Fourier multiplier theorems and maximal L

p

-regularity, Math. Ann., 319

(2001), 735-758.



18 ROBERT HALLER-DINTELMANN, HORST HECK, MATTHIAS HIEBER

Tehnishe Universit

�

at Darmstadt, Fahbereih Mathematik, Shlossgartenstr. 7, D-64289 Darm-

stadt, Germany

E-mail address: haller�mathematik.tu-darmstadt.de

Tehnishe Universit

�

at Darmstadt, Fahbereih Mathematik, Shlossgartenstr. 7, D-64289 Darm-

stadt, Germany

E-mail address: hek�mathematik.tu-darmstadt.de

Tehnishe Universit

�

at Darmstadt, Fahbereih Mathematik, Shlossgartenstr. 7, D-64289 Darm-

stadt, Germany

E-mail address: hieber�mathematik.tu-darmstadt.de


