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Abstrat. A tube (resp. an oval tube) in PG(3; q) is a pair T = fL;Lg, where fLg [ L

is a olletion of mutually disjoint lines of PG(3; q) suh that for eah plane � of PG(3; q)

ontaining L the intersetion of � with the lines of L is a hyperoval (resp. an oval). The

line L is alled the axis of T . We show that every tube for q even and every oval tube

for q odd an be naturally embedded into a regular spread and hene admits a group of

automorphisms whih �xes every element of T and ats regularly on eah of them. For q

odd we obtain a lassi�ation of oval tubes up to projetive equivalene. Furthermore, we

haraterize the reguli in PG(3; q); q odd, as oval tubes whih admit more than one axis.

1. Introdution

A partial tube in PG(3; q) is a pair T = fL;Lg, where fLg [ L is a olletion of

mutually disjoint lines of PG(3; q) suh that for eah plane � of PG(3; q) ontaining L the

intersetion of � with the lines of L is an ar. T is alled a tube if eah of these ars is

omplete. It follows that tubes exists only for q even and that L ontains q + 2 lines if T

is a tube. If L ontains q + 1 lines then T is alled an oval tube. An obvious example of

an oval tube is obtained by taking for L the lines of a regulus and for L any exterior line

of the underlying hyperboli quadri of L. An oval tube of this type is alled a quadri

tube. If q is even, then L an be extended by the line L

?

whih is the image of L under

the polarity assoiated with L to form a tube. The line L is alled the axis of the partial

tube T .

Tubes were introdued in [3℄ in onnetion with a onstrution problem for at �:C

2

geometries, p. [9℄.

Examples of partial tubes an be obtained as follows. Let L be a line of a regular

spread in PG(3; q). Choose a plane �

0

through L and let 
 � �

0

n L be an ar. If L

denotes the lines of the regular spread passing through the points of 
, then T = fL;Lg

is a partial tube. If 
 is a hyperoval or an oval then T is a tube or an oval tube. We are

going to prove that in fat all tubes for q even and all oval tubes for q odd are obtained

in this way. Sine for odd q all ovals are onis, we obtain a omplete lassi�ation up to

projetive equivalene in the odd order ase. It turnes out that there are preisely

3q�1

4

or

3q�3

4

equivalene lasses if q � 3 mod 4 or q � 1 mod 4, respetively.

In order to desribe these tubes algebraially it seems onvenient to introdue oor-

dinates from GF (q

2

). We onsider the 2-dimensional GF (q

2

)-vetor spae V = GF (q

2

)�

�
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GF (q

2

) as a 4-dimensional GF (q)-vetor spae. Put L = f0g � GF (q

2

) and L(a; b) =

f(z; az + bz)jz 2 GF (q

2

)g for a; b 2 GF (q

2

). The sets L(a; b); a; b 2 GF (q

2

), are pre-

isely the 2-dimensional GF (q)-subspaes of V whih are omplementary to L. The set

B = fLg[fL(m; 0)jm 2 GF (q

2

)g is a regular spread. If we take the elements of this spread

as points and all reguli ontained in it as irles, then we get a model of the Miquelian

inversive plane I(q) with pointset GF (q

2

) [ f1g. If we map L(m; 0) to m and L to 1,

then the reguli ontained in B whih do not ontain L are mapped to the irles. Here, a

irle is a set of the form faw + bjw 2 GF (q

2

); ww = 1g with a; b 2 GF (q

2

); a 6= 0.

We onsider GF (q

2

) an aÆne plane over GF (q). Let 
 � GF (q

2

) be an ar in this

aÆne plane and put L = fL(a; 0)ja 2 
g. Then T = fL;Lg is a partial tube. T is a

quadri tube if and only if 
 is a irle.

A partial tube is alled entral if it admits a group of automorphisms whih �xes all

elements of L and ats regularly on eah of them.

Proposition 1.1. A partial tube is entral if and only if it an be embedded into a regular

spread in the way just desribed.

Proof. This is proved in [3℄, Theorem 3.2 for tubes, but the argument arries over to

partial tubes. �

2. Tubes of even order

For any three mutually skew lines L

1

; L

2

; L

3

of PG(3; q) we denote the regulus spanned

by them by R(L

1

; L

2

; L

3

)

Lemma 2.1. Let T = fL;Lg be a partial tube and let L = fL

0

; : : : ; L

m

g. Then A

n

=

[

i 6=n

R(L;L

i

; L

n

) is a partial spread of PG(3; q) for n = 0; : : : ;m.

Proof. Let G be any line of PG(3; q) whih intersets L and L

n

and let � be the plane

spanned by L and G. Sine G intersets L

n

and the intersetion of � with the lines of L

is an ar there is at most one i 2 f0; : : : ;mg n fng with G \ L

i

6= ;. It follows that there

is at most one i 2 f0; : : : ;mg n fng suh that G is a transversal of R(L;L

i

; L

n

) and hene

A

n

is a partial spread. �

Proposition 2.2. Let T be a tube with q even. Then the partial spread A

n

is a regular

spread for n = 0; : : : ; q + 1 and these spreads all oinide.

Proof. By the preeding lemma A

n

is a partial spread. Sine A

n

ontains 2 + (q +

1)(q � 1) = q

2

+ 1 lines it is atually a spread.

Consider the following inidene struture M. Points of M are the lines of PG(3; q)

that interset L and L

n

and irles of M are the reguli of PG(3; q) that admit L and L

n

as transversals. Then it is well-known that M is isomorphi to the Miquelian Minkowski

plane over GF (q), p. eg. [1: III 4. Satz 5.1℄.
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The reguli opposite to the R(L;L

i

; L

n

); i 2 f0; : : : ; q + 1g n fng, onstitute a ok of

this Minkowski plane and A

n

is the spread assoiated with this ok, p. [4℄. By a result

of Thas [10℄, the ok is linear sine q is even and hene A

n

is regular.

Under the Pl�uker mapping the regular spreads orrespond to intersetions of the

Klein quadri with ertain projetive spaes of rank 3. It follows that two regular spreads

whih have 4 ommon lines that are not ontained in a regulus are the same. Sine eah

of the spreads A

n

; n = 0; : : : ; q + 1 ontains the lines L;L

0

; : : : ; L

q+1

, they all oinide. �

This result immediately implies the following

Theorem 2.3. Every tube of even order is entral.

3. Oval tubes of odd order

For oval tubes of odd order the situation is more ompliated. In this ase, every

partial spread A

n

is assoiated with a partial ok of a hyperboli quadri of de�ieny

one. Partial oks of this type have been investigated by Johnson [5℄, and there are

examples of suh partial oks whih annot be extended to a ok. In any ase, the

partial spread A

n

n fL;L

n

g an be extended to a spread by a olletion of transversals to

L and L

n

. The partial ok an be extended to a ok if and only if these transversals

form a regulus. There are known ounterexamples for q = 5 and 9, p. [6℄ and [2℄, (and

also for q = 4, p. [5℄, although we are not interested in the even order ase in this setion).

In [3℄ the following desription for partial tubes has been given. Let V be the 4-

dimensional vetor spae GF (q)

2

� GF (q)

2

and put L = f0g � GF (q)

2

. Then every line

of PG(V ) whih is disjoint from L is the graph of a unique linear mapping from GF (q)

2

to GF (q)

2

, whih we identify with its matrix. A olletion A

0

; : : : ; A

m

of 2 � 2 matries

de�nes a partial tube with axis L if and only if the following two onditions are satis�ed:

(i) A

i

� A

j

is nonsingular for i 6= j

(ii) for any vetor v 6= 0 and any distint i; j; k 2 f0; : : : ;mg the points A

i

v; A

j

v; A

k

v are

aÆne independent.

Note that (ii) is equivalent to 


v

= fA

0

v; : : : ; A

m

vg being an (m+1)-ar (in partiular

an oval if m = q) for every v 6= 0.

Lemma 3.1. A olletion A

0

; : : : ; A

m

of 2� 2 matries de�nes a partial tube with axis L

if and only if they satisfy (i) and

(ii') For all (�; �) 2 GF (q)

2

nf(0; 0)g and all distint i; j; k 2 f0; : : : ;mg the matrix �(A

j

�

A

i

) + �(A

k

� A

i

) is nonsingular.

Proof. Condition (ii) is equivalent to the following requirement. For all (�; �) 2

GF (q)

2

n f(0; 0)g, for all v 6= 0 and for all distint i; j; k there holds �(A

j

�A

i

)v+�(A

k

�

A

i

)v 6= 0. But this is also equivalent to (ii'). �
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This lemma is in fat equivalent to Lemma 2.1 sine it is easy to see that fA

n

+�(A

i

�

A

n

)j� 2 GF (q); i 6= ng is a (partial) matrix spread set for the partial spread A

n

. This

follows from the fat that the reguli of PG(V ) whih ontain L orrespond to the aÆne

lines of the spae of 2� 2 matries, p. e.g. [8℄ or [7: Lemma 4.11℄.

Lemma 3.2. Let 
 = fv

0

; : : : ; v

q

g � GF (q)

2

be a oni. Then

P

q

i=0

v

i

is the midpoint of


.

Proof. This is obviously true if the midpoint of 
 is the origin.

Let v be the midpoint of 
, then 
� v is a oni whose midpoint is the origin. Thus

we get

0 =

q

X

i=0

(v

i

� v) = (

q

X

i=0

v

i

)� (q + 1)v = (

q

X

i=0

v

i

)� v

and the result follows. �

Corollary 3.3. The midpoint of 


v

is given by m

v

= (

P

q

j=0

A

j

)v.

Lemma 3.4. For every i 2 f0; : : : ; qg there exists k = �(i) 2 f0; : : : ; qg suh that A

i

+

A

�(i)

= 2(

P

q

j=0

A

j

).

Proof. Given i 2 f0; : : : ; qg and v 2 GF (q)

2

nf0g there exists k 2 f0; : : : ; qgnfig suh

that A

i

v+A

k

v = 2(

P

q

j=0

A

j

)v sine 2(

P

q

j=0

A

j

)v is the midpoint of 
v, but k is dependent

on v. Sine there are q+1 mutually linear independent vetors in GF (q)

2

but only q hoies

for k, there are linear independent vetors v and w suh that A

i

v + A

k

v = 2(

P

q

j=0

A

j

)v

and A

i

w +A

k

w = 2(

P

q

j=0

A

j

)w. It follows that A

i

+ A

k

= 2(

P

q

j=0

A

j

). �

If we replae every A

i

by A

i

�(

P

q

j=0

A

j

) we may assume that our olletion of matries

is losed unter taking additive inverses and that all onis 


v

are entrally symmetri with

respet to the origin. Moreover, we may renumber the matries A

i

with indies from

f�1; : : : ;�

q+1

2

g suh that A

�i

= �A

i

for all i 2 f�1; : : : ;�

q+1

2

g.

By identifying GF (q)

2

and GF (q

2

) we may assume that for eah i 2 f�1; : : : ;�

q+1

2

g

there are a

i

; b

i

2 GF (q

2

) suh that A

i

v = a

i

v+b

i

v for all v 2 GF (q

2

). We may also assume

that a

1

= 1; b

1

= 0 and b

2

= 0, i.e. that A

1

is the identity and that A

2

is linear overGF (q

2

).

Note that the elements of L are now preisely the sets L(a

i

; b

i

); i 2 f�1; : : : ;�

q+1

2

g. Sine

division by non-zero elements of GF (q

2

) is linear over GF (q), the sets




0

v

= f

A

i

v

v

ji 2 f�1; : : : ;�

q + 1

2

gg = fa

i

+ b

i

v

v

ji 2 f�1; : : : ;�

q + 1

2

gg

are onis for all v 2 GF (q

2

) n f0g. By Hilbert's theorem 90, the elements of the form

v

v

; v 2 GF (q

2

); are preisely the elements of norm 1. Hene the onis 


0

v

; v 2 GF (q

2

)nf0g,

oinide with the onis
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�

w

= fa

i

+ b

i

wji 2 f�1; : : : ;�

q + 1

2

gg; w 2 GF (q

2

); ww = 1:

Note that eah of these onis passes through the four points �1 and �a

2

, while the

other points are moving on irles.

Theorem 3.5. Every oval tube of odd order is entral.

Proof. The assumptions b

�1

= b

�

2 = 0 imply that L(a

�1

; b

�1

) and L(a

�2

; b

�2

) are

ontained in the regular spread B = fLg[fL(m; 0)jm 2 GF (q

2

)g. By Proposition 1.1, it is

suÆient to show that b

i

= 0 for i 2 f�1; : : : ;�

q+1

2

g. Sine a oni is uniquely determined

by �ve points, it is atually suÆient to show that b

i

= 0 for one i 2 f�3; : : : ;�

q+1

2

g.

If q = 3 there is nothing to prove.

If q = 5, then the union of the six lines onneting any two of the four points �1;�a

2

ontains 21 points. The remaining set of 4 points annot ontain a proper irle and hene

�b

3

= 0.

If q = 7, then the union of the six lines onneting any two of the four points �1;�a

2

ontains 33 points. The remaining set of 16 points annot ontain four distint irles sine

their union ontains at least 20 points.

From now on we assume q � 9.

Choose i; j 2 f�3; : : : ;�

q+1

2

g; i 6= �j; and w 2 GF (q

2

) with ww = 1. Put x = a

i

+b

i

w

and y = a

j

+ b

j

w.

We are going to apply Pasal's theorem to the hexagon f1;�1; y;�a

2

; a

2

; xg, whih

lies on the oni 


�

w

.

The lines 1 _ �1 and a

2

_ �a

2

interset in the origin.

The intersetion point of the lines 1 _ x and �a

2

_ y is determined by the equation

x+ t

1

(1� x) = y + t

2

(�a

2

� y); t

1

; t

2

2 GF (q):

This yields

t

2

=

x� y + t

1

(1� x)

�a

2

� y

= t

2

=

x� y + t

1

(1� x)

�a

2

� y

and hene

t

1

=

(x� y)(a

2

+ y)� (x� y)(a

2

+ y)

(1� x)(a

2

+ y)� (1� x)(a

2

+ y)

:

Similarly, the intersetion point of the lines a

2

_ x and �1 _ y is determined by the

equation

x+ t

3

(a

2

� x) = y + t

4

(�1� y); t

3

; t

4

2 GF (q):

This yields

t

3

=

y � x� t

4

(1 + y)

a

2

� x

= t

3

=

y � x� t

4

(1 + y)

a

2

� x
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and hene

t

4

=

(y � x)(a

2

� x)� (y � x)(a

2

� x)

�(1 + y)(a

2

+ x) + (1 + y)(a

2

� x)

:

Pasal's theorem now says that the line joining the two points x + t

1

(1 � x) and

y+ t

4

(�1�y) passes through the origin. This is equivalent to the requirement

x+t

1

(1�x)

y�t

4

(1+y)

2

GF (q), whih is in turn equivalent to

(x+ t

1

(1� x))(y � t

4

(1 + y)) = (x+ t

1

(1� x))(y � t

4

(1 + y)): (�)

From our omputations of t

1

and t

4

we get

x+ t

1

(1� x) =

x((1� x)(a

2

+ y)� (1� x)(a

2

+ y)) + (1� x)((x� y)(a

2

+ y)� (x� y)(a

2

+ y))

(1� x)(a

2

+ y)� (1� x)(a

2

+ y)

=

(x� (x� y))(1� x)(a

2

+ y) + ((1� x)(x� y)� x(1� x))(a

2

+ y)

(1� x)(a

2

+ y)� (1� x)(a

2

+ y)

=

y(1� x)(a

2

+ y) + (x� x� (1� x)y)(a

2

+ y)

(1� x)(a

2

+ y)� (1� x)(a

2

+ y)

=

(x� x)(a

2

+ y) + y(1� x)a

2

� (1� x)ya

2

(1� x)(a

2

+ y)� (1� x)(a

2

+ y)

and

y � t

4

(1 + y) =

y(�(1 + y)(a

2

� x) + (1 + y)(a

2

� x))� (1 + y)((y � x)(a

2

� x)� (y � x)(a

2

� x))

�(1 + y)(a

2

� x) + (1 + y)(a

2

� x)

=

(�y + (y � x))(1 + y)(a

2

� x) + (�(1 + y)(y � x) + y(1 + y))(a

2

� x)

�(1 + y)(a

2

� x) + (1 + y)(a

2

� x)

=

�x(1 + y)(a

2

� x) + (y � y + (1 + y)x)(a

2

� x)

�(1 + y)(a

2

� x) + (1 + y)(a

2

� x)

=

(y � y)(a

2

� x)� x(1 + y)a

2

+ (1 + y)xa

2

�(1 + y)(a

2

� x) + (1 + y)(a

2

� x)

Note that the denominators of the expressions obtained for the points y � t

4

(1 + y) and

x+ t

1

(1� x) are both skew with respet to the onjugation mapping and hene anel in

equation (�). This equation now beomes

((x� x)(a

2

+ y) + (x� 1)(ya

2

� ya

2

)) ((y � y)(a

2

� x) + (y + 1)(xa

2

� xa

2

))

= ((x� x)(a

2

+ y) + (x� 1)(ya

2

� ya

2

)) ((y � y)(a

2

� x) + (y + 1)(xa

2

� xa

2

))

whih leads to

(x� x)(y � y)(a

2

+ y)(a

2

� x) + (x� 1)(y + 1)(ya

2

� ya

2

)(xa

2

� xa

2

)

+ (x� x)(y + 1)(a

2

+ y)(xa

2

� xa

2

) + (x� 1)(y � y)(a

2

� x)(ya

2

� ya

2

)

=(x� x)(y � y)(a

2

+ y)(a

2

� x) + (x� 1)(y + 1)(ya

2

� ya

2

)(xa

2

� xa

2

)

+ (x� x)(y + 1)(a

2

+ y)(xa

2

� xa

2

) + (x� 1)(y � y)(a

2

� x)(ya

2

� ya

2

):
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Subtrating the right hand side from the left yields

0 = (x� x)(y � y)(ya

2

� a

2

x� yx� ya

2

+ a

2

x+ yx)

+ (ya

2

� ya

2

)(xa

2

� xa

2

)(xy + x� y � xy � x+ y)

+ (x� x)(xa

2

� xa

2

)(ya

2

+ a

2

+ y � ya

2

� a

2

� y)

+ (y � y)(ya

2

� ya

2

)(xa

2

� a

2

+ x� xa

2

+ a

2

� x)

= (x� x)(y � y)(yx� yx) + (x� x)(y � y)(a

2

x� a

2

x) + (x� x)(y � y)(ya

2

� ya

2

)

+ (ya

2

� ya

2

)(xa

2

� xa

2

)(xy � xy) + (ya

2

� ya

2

)(xa

2

� xa

2

)(x� x+ y � y)

+ (x� x)(xa

2

� xa

2

)(y � y) + (x� x)(xa

2

� xa

2

)(ya

2

� ya

2

) + (x� x)(xa

2

� xa

2

)(a

2

� a

2

)

+ (y � y)(ya

2

� ya

2

)(x� x) + (y � y)(ya

2

� ya

2

)(xa

2

� xa

2

) + (y � y)(ya

2

� ya

2

)(a

2

� a

2

)

= (x� x)(y � y)(yx� yx) + (ya

2

� ya

2

)(xa

2

� xa

2

)(xy � xy)

+ (a

2

� a

2

)(x� x)(xa

2

� xa

2

) + (a

2

� a

2

)(y � y)(ya

2

� ya

2

)

Sine x = a

i

+ b

i

w and y = a

j

+ b

j

w the last expression is a polynomial P (w;w) of degree

3 in w and w. Sine ww = 1 the term P (w;w)w

3

is a polynomial of degree 6 in w. This

polynomial has at least the q + 1 elements w 2 GF (q

2

) with ww = 1 as zeroes, and so all

oeÆients are zero sine q � 9. We have

x� x = �b

i

w + a

i

� a

i

+ b

i

w;

y � y = �b

j

w + a

j

� a

j

+ b

j

w;

yx� yx = (a

j

+ b

j

w)(a

i

+ b

i

w)� (a

j

+ b

j

w)(a

i

+ b

i

w)

= (a

j

b

i

� b

j

a

i

)w + a

j

a

i

+ b

j

b

i

� a

j

a

i

� b

j

b

i

+ (b

j

a

i

� a

j

b

i

)w;

xa

2

� xa

2

= (a

i

+ b

i

w)a

2

� (a

i

+ b

i

w)a

2

= b

i

a

2

w + a

i

a

2

� a

i

a

2

� b

i

a

2

w;

ya

2

� ya

2

= (a

j

+ b

j

w)a

2

� (a

j

+ b

j

w)a

2

= �b

j

a

2

w + a

j

a

2

� a

j

a

2

+ b

j

a

2

w:

For the oeÆient of w

3

in P (w;w) we get

(�b

i

)(�b

j

)(a

j

b

i

� b

j

a

i

) + (�b

j

a

2

)(b

i

a

2

)(a

j

b

i

� b

j

a

i

) = b

i

b

j

(a

j

b

i

� b

j

a

i

)(1� a

2

2

):

If b

i

= 0 for at least one i 2 f�3; : : : ;�

q+1

2

g the theorem is proved. So we may assume

that b

i

6= 0 for all i 2 f�3; : : : ;�

q+1

2

g. Sine a

2

2

6= 1 this yields

a

j

b

i

� b

j

a

i

= 0 for all i; j 2 f�3; : : : ;�

q + 1

2

g; i 6= �j

It follows that b

i

= a

i

for all i 2 f�3; : : : ;�

q+1

2

g for some onstant . For the onis 


�

w

this implies




�

w

= fa

i

+ a

i

wji 2 f�3; : : : ;�

q + 1

2

gg [ f�1;�a

2

g for all w 2 GF (q

2

); ww = 1:
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Consider now the GF (q)-linear mapping �

w

: GF (q

2

)! GF (q

2

) whih maps z 2 GF (q

2

)

to z + wz. The inverse of �

w

is given by �

�1

w

(z) =

1

1�

(z � wz). For eah w 2

GF (q

2

); ww = 1 the set

�

�1

w

(


�

w

) = fa

i

ji 2 f�3; : : : ;�

q + 1

2

gg [ f�

1� w

1� 

;�

a

2

� wa

2

1� 

g

is a oni in the aÆne plane GF (q

2

). Sine q � 9 these onis are all the same and hene

1� w and a

2

� wa

2

are independent of w. It follows that  = 0 and hene b

i

= 0 for all

i 2 f�3; : : : ;�

q+1

2

g. �

Theorem 3.6. Let q be odd. Let b 2 GF (q

2

) with bb 6= 1 and set L(b) = fL(w+bw; 0)jw 2

GF (q

2

); ww = 1g. Then T (b) = fL;L(b)g is an oval tube of PG(V ). Every oval tube of

PG(3; q) is projetively equivalent to some T (b). The tubes T (b

1

) and T (b

2

) are projetively

equivalent if and only b

2

= b

1



2

; b

2

= b

�1

1



2

; b

2

= b

1



2

or b

2

= b

�1

1



2

for some  2 GF (q

2

)

with  = 1. If q � 3 mod 4 there are preisely

3q�1

4

equivalene lasses of oval tubes and

if q � 1 mod 4 there are

3q�3

4

equivalene lasses. T (b) is a quadri tube if and only if

b = 0.

Proof. By Theorem 3.5 and Proposition 1.1 we know that every oval tube is proje-

tively equivalent to an oval tube T = fL;Lg whih has axis L = f0g � GF (q

2

) and is

ontained in the regular spread B = fLg [ fL(m; 0)jm 2 GF (q

2

)g. We also know that the

set 
 = fm 2 GF (q

2

)jL(m; 0) 2 Lg is a oni in the aÆne plane GF (q

2

), and we may

assume that this oni is entered at the origin. It follows that there are a; b 2 GF (q

2

)

with aa 6= bb suh that 
 = 
(a; b) = faz+bzjz 2 GF (q

2

); zz = 1g. Let the orresponding

tube be alled T (a; b). Note that a and b are not uniquely determined by 
, but that


(a; b) = 
(a; b) = 
(b; a), and hene also T (a; b) = T (a; b) = T (b; a), for all

 2 GF (q

2

);  = 1.

The tube T (a; b) is quadri if and only if 
(a; b) is a irle and this happens preisely

if a = 0 or b = 0.

From now on we assume that T = T (a; b) is not the quadri tube, i.e that a 6=

0 6= b. Then B is the only regular spread whih ontains T . It follows that two suh

tubes are projetively equivalent if and only if one is mapped onto the other by a GF (q)-

linear mapping of the vetor spae GF (q

2

)

2

whih �xes the spread B and the lines L

and L(0; 0). These linear mappings are of the form A(d

1

; d

2

) : (z; w) 7! (d

1

z; d

2

w) or

B(d

1

; d

2

) : (z; w) 7! (d

1

z; d

2

w); d

1

; d

2

2 GF (q

2

); d

1

6= 0 6= d

2

. A short alulation shows

that A(d

1

; d

2

) and B(d

1

; d

2

) map T (a; b) to T (da; db) and T (db; da), respetively, where

d =

d

2

d

1

. It follows that T (a; b) is projetively equivalent to T (1;

b

a

) = T (

b

a

).

Assume now that T (b

1

) and T (b

2

); b

1

6= 0 6= b

2

; are projetively equivalent. Then

we get that (1; b

2

) is equal to one of (d; db

1

); (db

1

; d); (db

1

; d) or (d; db

1

) for some

; d 2 GF (q

2

);  = 1; d 6= 0. These four ases lead to b

2

= b

1



2

; b

2

= b

�1

1



2

; b

2

= b

�1

1



2

or

b

2

= b

1



2

, respetively.

It remains to determine the number of isomorphism lasses.

8



As proved in the previous paragraph, this is essentially the problem of ounting the

orbits of a group of order 2(q + 1) ating on the set M = fb 2 GF (q

2

)j0 6= bb 6= 1g, whih

ontains (q + 1)(q � 2) elements. The group onsists of the following mappings

(i) b 7! b

2

;  = 1,

(ii) b 7! b

�1



2

;  = 1,

(iii) b 7! b

�1



2

;  = 1,

(iv) b 7! b

2

;  = 1.

Sine bb 6= 1 the mappings of type (ii) have no �xed points, and so the dihedral group

of order q + 1 whih omprises the mappings of type (i) and (ii) ats freely on M . So the

stabilizer of any point ontains at most two elements.

Assume that a mapping of type (iii) �xes b 2M , then we get bb = 

2

. Sine 1 6= bb 2

GF (q) and  = 1 this yields bb = �1 = 

2

. The equation 

2

= �1 has a solution with

 = 1 if and only if 4jq + 1. In this ase there are preisely q + 1 elements of M whih

have a mapping of type (iii) in their stabilizer.

Assume now that a mapping of type (iv) �xes a point b 2M , then we get

b

b

= 

2

with

 = 1. There are preisely

(q+1)(q�1)

2

elements b 2 GF (q

2

) n f0g for whih this equation

has a solution, but those with bb = 1 are among them. So there are

(q+1)(q�3)

2

elements of

M whih have a mapping of type (iv) in their stabilizer.

Now we an ount as follows. If q � 3 mod 4 there are q+1+

(q+1)(q�3)

2

=

(q+1)(q�1)

2

elements with a stabilizer of order 2 and hene (q + 1)(q � 2) �

(q+1)(q�1)

2

=

(q+1)(q�3)

2

elements with trivial stabilizer. The number of orbits thus beomes

(q+1)(q�1)

2

(q + 1)

+

(q+1)(q�3)

2

2(q + 1)

=

3q � 5

4

:

Taking into aount the quadri tube we have to add one to this number and so we have

3q�1

4

equivalene lasses of oval tubes.

If q � 1 mod 4 a similar omputation shows that there are

3q�3

4

equivalene lasses.

�

Remarks 3.7. a) If q � 1 mod 4 it is possible to onstrut a system of representatives

for the projetive equivalene lasses of oval tubes as follows. Choose an element � 2

GF (q

2

) nGF (q) with �

2

2 GF (q). Then every oval tube is equivalent to some T (b) with

b 2 GF (q)nf�1g[� �GF (q). If b 2 GF (q)nf0;�1g there are two representatives, namely

b and b

�1

, and if b 2 � �GF (q) n f0g there are four, namely b;�b = b; b

�1

and �b

�1

= b

�1

.

If q � 3 mod 4 there seems to be no obvious hoie for a system of representatives.

b) Our lassi�ation is in fat equivalent to the lassi�ation of the onis in the aÆne

plane under the group of similarities.

) In priniple, it is also possible to lassify tubes up to equivalene under P�L(4; q). The

�eld automorphisms just at in their standard way on M .
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Lemma 3.8. Let 
 be a subset of the Miquelian inverse plane I(q); q odd, and assume

that there are two distint points a; b of I(q) n
 suh that 
 is a oni in the aÆne planes

I(q)

a

and I(q)

b

. Then 
 is a irle of I(q).

Proof. We may identify I(q)

a

with the aÆne plane GF (q)

2

and we may assume that

b = (0; 0). The onis in the aÆne plane whih do not pass through b and have size

q + 1 are the sets f(x; y) 2 GF (q)

2

ja

11

x

2

+ 2a

12

xy + a

22

y

2

+ b

1

x + b

2

y +  = 0g for

a

ij

; b

i

;  2 GF (q);  6= 0; a

2

12

� a

11

a

22

a nonsquare in GF (q).

We may also �x a nonsquare % in GF (q) suh that I(q) is the inversive plane assoiated

with the �eld extension GF (q)[x℄=(x

2

�%) : GF (q). Then the irles are preisely the onis

with a

12

= 0 and a

22

= �%a

11

. The mapping � : I(q) ! I(q) whih exhanges a and b

and maps (x; y) 6= (0; 0) to (

x

x

2

�%y

2

;

y

x

2

�%y

2

) is an involutorial automorphism of I(q).

It is suÆient to show that if 
 and �(
) are both onis in GF (q)

2

n f(0; 0)g, then


 is a irle.

Assume that


 = f(x; y) 2 GF (q)

2

ja

11

x

2

+ 2a

12

xy + a

22

y

2

+ b

1

x+ b

2

y +  = 0g;

then we get

�(
) = f(x; y) 2 GF (q)

2

ja

11

x

2

+2a

12

xy+a

22

y

2

+(b

1

x+b

2

y)(x

2

�%y

2

)+(x

2

�%y

2

)

2

= 0g:

This set is a oni if and only if the polynomial

a

11

x

2

+ 2a

12

xy + a

22

y

2

+ (b

1

x+ b

2

y + (x

2

� %y

2

))(x

2

� %y

2

)

is a produt of two polynomials of degree 2. Sine this polynomial ontains no terms of

degree 0 and 1, one of the fators must be the polynomial a

11

x

2

+ 2a

12

xy + a

22

y

2

. It

follows that a

11

x

2

+ 2a

12

xy + a

22

y

2

divides x

2

� %y

2

and hene a

12

= 0 and a

22

= �%a

11

,

i.e. 
 is a irle. �

Proposition 3.9. Let T = fL;Lg be an oval tube of odd order and assume that there

exists a line L

0

6= L of PG(3; q) suh that fL

0

;Lg is also an oval tube, then T is isomorphi

to the quadri tube.

Proof. If T is not the quadri tube then the regular spread ontaining L is uniquely

determined. It follows that L

0

is also ontained in this spread. Sine the lines of this

regular spread and the reguli ontained in it form a model for the inversive plane I(q) the

result now follows from the preeding lemma. �

This proposition yields the following haraterization of reguli in PG(3; q).

Corollary 3.10. Let L be a olletion of q + 1 mutually skew lines in PG(3; q); q odd.

Assume that there are two distint lines L

1

; L

2

62 L skew with all lines of L suh that eah

line whih intersets L

1

or L

2

meets at most two distint lines of L. Then L is a regulus.
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