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Abstra
t. A tube (resp. an oval tube) in PG(3; q) is a pair T = fL;Lg, where fLg [ L

is a 
olle
tion of mutually disjoint lines of PG(3; q) su
h that for ea
h plane � of PG(3; q)


ontaining L the interse
tion of � with the lines of L is a hyperoval (resp. an oval). The

line L is 
alled the axis of T . We show that every tube for q even and every oval tube

for q odd 
an be naturally embedded into a regular spread and hen
e admits a group of

automorphisms whi
h �xes every element of T and a
ts regularly on ea
h of them. For q

odd we obtain a 
lassi�
ation of oval tubes up to proje
tive equivalen
e. Furthermore, we


hara
terize the reguli in PG(3; q); q odd, as oval tubes whi
h admit more than one axis.

1. Introdu
tion

A partial tube in PG(3; q) is a pair T = fL;Lg, where fLg [ L is a 
olle
tion of

mutually disjoint lines of PG(3; q) su
h that for ea
h plane � of PG(3; q) 
ontaining L the

interse
tion of � with the lines of L is an ar
. T is 
alled a tube if ea
h of these ar
s is


omplete. It follows that tubes exists only for q even and that L 
ontains q + 2 lines if T

is a tube. If L 
ontains q + 1 lines then T is 
alled an oval tube. An obvious example of

an oval tube is obtained by taking for L the lines of a regulus and for L any exterior line

of the underlying hyperboli
 quadri
 of L. An oval tube of this type is 
alled a quadri


tube. If q is even, then L 
an be extended by the line L

?

whi
h is the image of L under

the polarity asso
iated with L to form a tube. The line L is 
alled the axis of the partial

tube T .

Tubes were introdu
ed in [3℄ in 
onne
tion with a 
onstru
tion problem for 
at �:C

2

geometries, 
p. [9℄.

Examples of partial tubes 
an be obtained as follows. Let L be a line of a regular

spread in PG(3; q). Choose a plane �

0

through L and let 
 � �

0

n L be an ar
. If L

denotes the lines of the regular spread passing through the points of 
, then T = fL;Lg

is a partial tube. If 
 is a hyperoval or an oval then T is a tube or an oval tube. We are

going to prove that in fa
t all tubes for q even and all oval tubes for q odd are obtained

in this way. Sin
e for odd q all ovals are 
oni
s, we obtain a 
omplete 
lassi�
ation up to

proje
tive equivalen
e in the odd order 
ase. It turnes out that there are pre
isely

3q�1

4

or

3q�3

4

equivalen
e 
lasses if q � 3 mod 4 or q � 1 mod 4, respe
tively.

In order to des
ribe these tubes algebrai
ally it seems 
onvenient to introdu
e 
oor-

dinates from GF (q

2

). We 
onsider the 2-dimensional GF (q

2

)-ve
tor spa
e V = GF (q

2

)�

�
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GF (q

2

) as a 4-dimensional GF (q)-ve
tor spa
e. Put L = f0g � GF (q

2

) and L(a; b) =

f(z; az + bz)jz 2 GF (q

2

)g for a; b 2 GF (q

2

). The sets L(a; b); a; b 2 GF (q

2

), are pre-


isely the 2-dimensional GF (q)-subspa
es of V whi
h are 
omplementary to L. The set

B = fLg[fL(m; 0)jm 2 GF (q

2

)g is a regular spread. If we take the elements of this spread

as points and all reguli 
ontained in it as 
ir
les, then we get a model of the Miquelian

inversive plane I(q) with pointset GF (q

2

) [ f1g. If we map L(m; 0) to m and L to 1,

then the reguli 
ontained in B whi
h do not 
ontain L are mapped to the 
ir
les. Here, a


ir
le is a set of the form faw + bjw 2 GF (q

2

); ww = 1g with a; b 2 GF (q

2

); a 6= 0.

We 
onsider GF (q

2

) an aÆne plane over GF (q). Let 
 � GF (q

2

) be an ar
 in this

aÆne plane and put L = fL(a; 0)ja 2 
g. Then T = fL;Lg is a partial tube. T is a

quadri
 tube if and only if 
 is a 
ir
le.

A partial tube is 
alled 
entral if it admits a group of automorphisms whi
h �xes all

elements of L and a
ts regularly on ea
h of them.

Proposition 1.1. A partial tube is 
entral if and only if it 
an be embedded into a regular

spread in the way just des
ribed.

Proof. This is proved in [3℄, Theorem 3.2 for tubes, but the argument 
arries over to

partial tubes. �

2. Tubes of even order

For any three mutually skew lines L

1

; L

2

; L

3

of PG(3; q) we denote the regulus spanned

by them by R(L

1

; L

2

; L

3

)

Lemma 2.1. Let T = fL;Lg be a partial tube and let L = fL

0

; : : : ; L

m

g. Then A

n

=

[

i 6=n

R(L;L

i

; L

n

) is a partial spread of PG(3; q) for n = 0; : : : ;m.

Proof. Let G be any line of PG(3; q) whi
h interse
ts L and L

n

and let � be the plane

spanned by L and G. Sin
e G interse
ts L

n

and the interse
tion of � with the lines of L

is an ar
 there is at most one i 2 f0; : : : ;mg n fng with G \ L

i

6= ;. It follows that there

is at most one i 2 f0; : : : ;mg n fng su
h that G is a transversal of R(L;L

i

; L

n

) and hen
e

A

n

is a partial spread. �

Proposition 2.2. Let T be a tube with q even. Then the partial spread A

n

is a regular

spread for n = 0; : : : ; q + 1 and these spreads all 
oin
ide.

Proof. By the pre
eding lemma A

n

is a partial spread. Sin
e A

n


ontains 2 + (q +

1)(q � 1) = q

2

+ 1 lines it is a
tually a spread.

Consider the following in
iden
e stru
ture M. Points of M are the lines of PG(3; q)

that interse
t L and L

n

and 
ir
les of M are the reguli of PG(3; q) that admit L and L

n

as transversals. Then it is well-known that M is isomorphi
 to the Miquelian Minkowski

plane over GF (q), 
p. eg. [1: III 4. Satz 5.1℄.
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The reguli opposite to the R(L;L

i

; L

n

); i 2 f0; : : : ; q + 1g n fng, 
onstitute a 
o
k of

this Minkowski plane and A

n

is the spread asso
iated with this 
o
k, 
p. [4℄. By a result

of Thas [10℄, the 
o
k is linear sin
e q is even and hen
e A

n

is regular.

Under the Pl�u
ker mapping the regular spreads 
orrespond to interse
tions of the

Klein quadri
 with 
ertain proje
tive spa
es of rank 3. It follows that two regular spreads

whi
h have 4 
ommon lines that are not 
ontained in a regulus are the same. Sin
e ea
h

of the spreads A

n

; n = 0; : : : ; q + 1 
ontains the lines L;L

0

; : : : ; L

q+1

, they all 
oin
ide. �

This result immediately implies the following

Theorem 2.3. Every tube of even order is 
entral.

3. Oval tubes of odd order

For oval tubes of odd order the situation is more 
ompli
ated. In this 
ase, every

partial spread A

n

is asso
iated with a partial 
o
k of a hyperboli
 quadri
 of de�
ien
y

one. Partial 
o
ks of this type have been investigated by Johnson [5℄, and there are

examples of su
h partial 
o
ks whi
h 
annot be extended to a 
o
k. In any 
ase, the

partial spread A

n

n fL;L

n

g 
an be extended to a spread by a 
olle
tion of transversals to

L and L

n

. The partial 
o
k 
an be extended to a 
o
k if and only if these transversals

form a regulus. There are known 
ounterexamples for q = 5 and 9, 
p. [6℄ and [2℄, (and

also for q = 4, 
p. [5℄, although we are not interested in the even order 
ase in this se
tion).

In [3℄ the following des
ription for partial tubes has been given. Let V be the 4-

dimensional ve
tor spa
e GF (q)

2

� GF (q)

2

and put L = f0g � GF (q)

2

. Then every line

of PG(V ) whi
h is disjoint from L is the graph of a unique linear mapping from GF (q)

2

to GF (q)

2

, whi
h we identify with its matrix. A 
olle
tion A

0

; : : : ; A

m

of 2 � 2 matri
es

de�nes a partial tube with axis L if and only if the following two 
onditions are satis�ed:

(i) A

i

� A

j

is nonsingular for i 6= j

(ii) for any ve
tor v 6= 0 and any distin
t i; j; k 2 f0; : : : ;mg the points A

i

v; A

j

v; A

k

v are

aÆne independent.

Note that (ii) is equivalent to 


v

= fA

0

v; : : : ; A

m

vg being an (m+1)-ar
 (in parti
ular

an oval if m = q) for every v 6= 0.

Lemma 3.1. A 
olle
tion A

0

; : : : ; A

m

of 2� 2 matri
es de�nes a partial tube with axis L

if and only if they satisfy (i) and

(ii') For all (�; �) 2 GF (q)

2

nf(0; 0)g and all distin
t i; j; k 2 f0; : : : ;mg the matrix �(A

j

�

A

i

) + �(A

k

� A

i

) is nonsingular.

Proof. Condition (ii) is equivalent to the following requirement. For all (�; �) 2

GF (q)

2

n f(0; 0)g, for all v 6= 0 and for all distin
t i; j; k there holds �(A

j

�A

i

)v+�(A

k

�

A

i

)v 6= 0. But this is also equivalent to (ii'). �
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This lemma is in fa
t equivalent to Lemma 2.1 sin
e it is easy to see that fA

n

+�(A

i

�

A

n

)j� 2 GF (q); i 6= ng is a (partial) matrix spread set for the partial spread A

n

. This

follows from the fa
t that the reguli of PG(V ) whi
h 
ontain L 
orrespond to the aÆne

lines of the spa
e of 2� 2 matri
es, 
p. e.g. [8℄ or [7: Lemma 4.11℄.

Lemma 3.2. Let 
 = fv

0

; : : : ; v

q

g � GF (q)

2

be a 
oni
. Then

P

q

i=0

v

i

is the midpoint of


.

Proof. This is obviously true if the midpoint of 
 is the origin.

Let v be the midpoint of 
, then 
� v is a 
oni
 whose midpoint is the origin. Thus

we get

0 =

q

X

i=0

(v

i

� v) = (

q

X

i=0

v

i

)� (q + 1)v = (

q

X

i=0

v

i

)� v

and the result follows. �

Corollary 3.3. The midpoint of 


v

is given by m

v

= (

P

q

j=0

A

j

)v.

Lemma 3.4. For every i 2 f0; : : : ; qg there exists k = �(i) 2 f0; : : : ; qg su
h that A

i

+

A

�(i)

= 2(

P

q

j=0

A

j

).

Proof. Given i 2 f0; : : : ; qg and v 2 GF (q)

2

nf0g there exists k 2 f0; : : : ; qgnfig su
h

that A

i

v+A

k

v = 2(

P

q

j=0

A

j

)v sin
e 2(

P

q

j=0

A

j

)v is the midpoint of 
v, but k is dependent

on v. Sin
e there are q+1 mutually linear independent ve
tors in GF (q)

2

but only q 
hoi
es

for k, there are linear independent ve
tors v and w su
h that A

i

v + A

k

v = 2(

P

q

j=0

A

j

)v

and A

i

w +A

k

w = 2(

P

q

j=0

A

j

)w. It follows that A

i

+ A

k

= 2(

P

q

j=0

A

j

). �

If we repla
e every A

i

by A

i

�(

P

q

j=0

A

j

) we may assume that our 
olle
tion of matri
es

is 
losed unter taking additive inverses and that all 
oni
s 


v

are 
entrally symmetri
 with

respe
t to the origin. Moreover, we may renumber the matri
es A

i

with indi
es from

f�1; : : : ;�

q+1

2

g su
h that A

�i

= �A

i

for all i 2 f�1; : : : ;�

q+1

2

g.

By identifying GF (q)

2

and GF (q

2

) we may assume that for ea
h i 2 f�1; : : : ;�

q+1

2

g

there are a

i

; b

i

2 GF (q

2

) su
h that A

i

v = a

i

v+b

i

v for all v 2 GF (q

2

). We may also assume

that a

1

= 1; b

1

= 0 and b

2

= 0, i.e. that A

1

is the identity and that A

2

is linear overGF (q

2

).

Note that the elements of L are now pre
isely the sets L(a

i

; b

i

); i 2 f�1; : : : ;�

q+1

2

g. Sin
e

division by non-zero elements of GF (q

2

) is linear over GF (q), the sets




0

v

= f

A

i

v

v

ji 2 f�1; : : : ;�

q + 1

2

gg = fa

i

+ b

i

v

v

ji 2 f�1; : : : ;�

q + 1

2

gg

are 
oni
s for all v 2 GF (q

2

) n f0g. By Hilbert's theorem 90, the elements of the form

v

v

; v 2 GF (q

2

); are pre
isely the elements of norm 1. Hen
e the 
oni
s 


0

v

; v 2 GF (q

2

)nf0g,


oin
ide with the 
oni
s
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�

w

= fa

i

+ b

i

wji 2 f�1; : : : ;�

q + 1

2

gg; w 2 GF (q

2

); ww = 1:

Note that ea
h of these 
oni
s passes through the four points �1 and �a

2

, while the

other points are moving on 
ir
les.

Theorem 3.5. Every oval tube of odd order is 
entral.

Proof. The assumptions b

�1

= b

�

2 = 0 imply that L(a

�1

; b

�1

) and L(a

�2

; b

�2

) are


ontained in the regular spread B = fLg[fL(m; 0)jm 2 GF (q

2

)g. By Proposition 1.1, it is

suÆ
ient to show that b

i

= 0 for i 2 f�1; : : : ;�

q+1

2

g. Sin
e a 
oni
 is uniquely determined

by �ve points, it is a
tually suÆ
ient to show that b

i

= 0 for one i 2 f�3; : : : ;�

q+1

2

g.

If q = 3 there is nothing to prove.

If q = 5, then the union of the six lines 
onne
ting any two of the four points �1;�a

2


ontains 21 points. The remaining set of 4 points 
annot 
ontain a proper 
ir
le and hen
e

�b

3

= 0.

If q = 7, then the union of the six lines 
onne
ting any two of the four points �1;�a

2


ontains 33 points. The remaining set of 16 points 
annot 
ontain four distin
t 
ir
les sin
e

their union 
ontains at least 20 points.

From now on we assume q � 9.

Choose i; j 2 f�3; : : : ;�

q+1

2

g; i 6= �j; and w 2 GF (q

2

) with ww = 1. Put x = a

i

+b

i

w

and y = a

j

+ b

j

w.

We are going to apply Pas
al's theorem to the hexagon f1;�1; y;�a

2

; a

2

; xg, whi
h

lies on the 
oni
 


�

w

.

The lines 1 _ �1 and a

2

_ �a

2

interse
t in the origin.

The interse
tion point of the lines 1 _ x and �a

2

_ y is determined by the equation

x+ t

1

(1� x) = y + t

2

(�a

2

� y); t

1

; t

2

2 GF (q):

This yields

t

2

=

x� y + t

1

(1� x)

�a

2

� y

= t

2

=

x� y + t

1

(1� x)

�a

2

� y

and hen
e

t

1

=

(x� y)(a

2

+ y)� (x� y)(a

2

+ y)

(1� x)(a

2

+ y)� (1� x)(a

2

+ y)

:

Similarly, the interse
tion point of the lines a

2

_ x and �1 _ y is determined by the

equation

x+ t

3

(a

2

� x) = y + t

4

(�1� y); t

3

; t

4

2 GF (q):

This yields

t

3

=

y � x� t

4

(1 + y)

a

2

� x

= t

3

=

y � x� t

4

(1 + y)

a

2

� x
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and hen
e

t

4

=

(y � x)(a

2

� x)� (y � x)(a

2

� x)

�(1 + y)(a

2

+ x) + (1 + y)(a

2

� x)

:

Pas
al's theorem now says that the line joining the two points x + t

1

(1 � x) and

y+ t

4

(�1�y) passes through the origin. This is equivalent to the requirement

x+t

1

(1�x)

y�t

4

(1+y)

2

GF (q), whi
h is in turn equivalent to

(x+ t

1

(1� x))(y � t

4

(1 + y)) = (x+ t

1

(1� x))(y � t

4

(1 + y)): (�)

From our 
omputations of t

1

and t

4

we get

x+ t

1

(1� x) =

x((1� x)(a

2

+ y)� (1� x)(a

2

+ y)) + (1� x)((x� y)(a

2

+ y)� (x� y)(a

2

+ y))

(1� x)(a

2

+ y)� (1� x)(a

2

+ y)

=

(x� (x� y))(1� x)(a

2

+ y) + ((1� x)(x� y)� x(1� x))(a

2

+ y)

(1� x)(a

2

+ y)� (1� x)(a

2

+ y)

=

y(1� x)(a

2

+ y) + (x� x� (1� x)y)(a

2

+ y)

(1� x)(a

2

+ y)� (1� x)(a

2

+ y)

=

(x� x)(a

2

+ y) + y(1� x)a

2

� (1� x)ya

2

(1� x)(a

2

+ y)� (1� x)(a

2

+ y)

and

y � t

4

(1 + y) =

y(�(1 + y)(a

2

� x) + (1 + y)(a

2

� x))� (1 + y)((y � x)(a

2

� x)� (y � x)(a

2

� x))

�(1 + y)(a

2

� x) + (1 + y)(a

2

� x)

=

(�y + (y � x))(1 + y)(a

2

� x) + (�(1 + y)(y � x) + y(1 + y))(a

2

� x)

�(1 + y)(a

2

� x) + (1 + y)(a

2

� x)

=

�x(1 + y)(a

2

� x) + (y � y + (1 + y)x)(a

2

� x)

�(1 + y)(a

2

� x) + (1 + y)(a

2

� x)

=

(y � y)(a

2

� x)� x(1 + y)a

2

+ (1 + y)xa

2

�(1 + y)(a

2

� x) + (1 + y)(a

2

� x)

Note that the denominators of the expressions obtained for the points y � t

4

(1 + y) and

x+ t

1

(1� x) are both skew with respe
t to the 
onjugation mapping and hen
e 
an
el in

equation (�). This equation now be
omes

((x� x)(a

2

+ y) + (x� 1)(ya

2

� ya

2

)) ((y � y)(a

2

� x) + (y + 1)(xa

2

� xa

2

))

= ((x� x)(a

2

+ y) + (x� 1)(ya

2

� ya

2

)) ((y � y)(a

2

� x) + (y + 1)(xa

2

� xa

2

))

whi
h leads to

(x� x)(y � y)(a

2

+ y)(a

2

� x) + (x� 1)(y + 1)(ya

2

� ya

2

)(xa

2

� xa

2

)

+ (x� x)(y + 1)(a

2

+ y)(xa

2

� xa

2

) + (x� 1)(y � y)(a

2

� x)(ya

2

� ya

2

)

=(x� x)(y � y)(a

2

+ y)(a

2

� x) + (x� 1)(y + 1)(ya

2

� ya

2

)(xa

2

� xa

2

)

+ (x� x)(y + 1)(a

2

+ y)(xa

2

� xa

2

) + (x� 1)(y � y)(a

2

� x)(ya

2

� ya

2

):
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Subtra
ting the right hand side from the left yields

0 = (x� x)(y � y)(ya

2

� a

2

x� yx� ya

2

+ a

2

x+ yx)

+ (ya

2

� ya

2

)(xa

2

� xa

2

)(xy + x� y � xy � x+ y)

+ (x� x)(xa

2

� xa

2

)(ya

2

+ a

2

+ y � ya

2

� a

2

� y)

+ (y � y)(ya

2

� ya

2

)(xa

2

� a

2

+ x� xa

2

+ a

2

� x)

= (x� x)(y � y)(yx� yx) + (x� x)(y � y)(a

2

x� a

2

x) + (x� x)(y � y)(ya

2

� ya

2

)

+ (ya

2

� ya

2

)(xa

2

� xa

2

)(xy � xy) + (ya

2

� ya

2

)(xa

2

� xa

2

)(x� x+ y � y)

+ (x� x)(xa

2

� xa

2

)(y � y) + (x� x)(xa

2

� xa

2

)(ya

2

� ya

2

) + (x� x)(xa

2

� xa

2

)(a

2

� a

2

)

+ (y � y)(ya

2

� ya

2

)(x� x) + (y � y)(ya

2

� ya

2

)(xa

2

� xa

2

) + (y � y)(ya

2

� ya

2

)(a

2

� a

2

)

= (x� x)(y � y)(yx� yx) + (ya

2

� ya

2

)(xa

2

� xa

2

)(xy � xy)

+ (a

2

� a

2

)(x� x)(xa

2

� xa

2

) + (a

2

� a

2

)(y � y)(ya

2

� ya

2

)

Sin
e x = a

i

+ b

i

w and y = a

j

+ b

j

w the last expression is a polynomial P (w;w) of degree

3 in w and w. Sin
e ww = 1 the term P (w;w)w

3

is a polynomial of degree 6 in w. This

polynomial has at least the q + 1 elements w 2 GF (q

2

) with ww = 1 as zeroes, and so all


oeÆ
ients are zero sin
e q � 9. We have

x� x = �b

i

w + a

i

� a

i

+ b

i

w;

y � y = �b

j

w + a

j

� a

j

+ b

j

w;

yx� yx = (a

j

+ b

j

w)(a

i

+ b

i

w)� (a

j

+ b

j

w)(a

i

+ b

i

w)

= (a

j

b

i

� b

j

a

i

)w + a

j

a

i

+ b

j

b

i

� a

j

a

i

� b

j

b

i

+ (b

j

a

i

� a

j

b

i

)w;

xa

2

� xa

2

= (a

i

+ b

i

w)a

2

� (a

i

+ b

i

w)a

2

= b

i

a

2

w + a

i

a

2

� a

i

a

2

� b

i

a

2

w;

ya

2

� ya

2

= (a

j

+ b

j

w)a

2

� (a

j

+ b

j

w)a

2

= �b

j

a

2

w + a

j

a

2

� a

j

a

2

+ b

j

a

2

w:

For the 
oeÆ
ient of w

3

in P (w;w) we get

(�b

i

)(�b

j

)(a

j

b

i

� b

j

a

i

) + (�b

j

a

2

)(b

i

a

2

)(a

j

b

i

� b

j

a

i

) = b

i

b

j

(a

j

b

i

� b

j

a

i

)(1� a

2

2

):

If b

i

= 0 for at least one i 2 f�3; : : : ;�

q+1

2

g the theorem is proved. So we may assume

that b

i

6= 0 for all i 2 f�3; : : : ;�

q+1

2

g. Sin
e a

2

2

6= 1 this yields

a

j

b

i

� b

j

a

i

= 0 for all i; j 2 f�3; : : : ;�

q + 1

2

g; i 6= �j

It follows that b

i

= 
a

i

for all i 2 f�3; : : : ;�

q+1

2

g for some 
onstant 
. For the 
oni
s 


�

w

this implies




�

w

= fa

i

+ 
a

i

wji 2 f�3; : : : ;�

q + 1

2

gg [ f�1;�a

2

g for all w 2 GF (q

2

); ww = 1:
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Consider now the GF (q)-linear mapping �

w

: GF (q

2

)! GF (q

2

) whi
h maps z 2 GF (q

2

)

to z + 
wz. The inverse of �

w

is given by �

�1

w

(z) =

1

1�



(z � 
wz). For ea
h w 2

GF (q

2

); ww = 1 the set

�

�1

w

(


�

w

) = fa

i

ji 2 f�3; : : : ;�

q + 1

2

gg [ f�

1� 
w

1� 



;�

a

2

� 
wa

2

1� 



g

is a 
oni
 in the aÆne plane GF (q

2

). Sin
e q � 9 these 
oni
s are all the same and hen
e

1� 
w and a

2

� 
wa

2

are independent of w. It follows that 
 = 0 and hen
e b

i

= 0 for all

i 2 f�3; : : : ;�

q+1

2

g. �

Theorem 3.6. Let q be odd. Let b 2 GF (q

2

) with bb 6= 1 and set L(b) = fL(w+bw; 0)jw 2

GF (q

2

); ww = 1g. Then T (b) = fL;L(b)g is an oval tube of PG(V ). Every oval tube of

PG(3; q) is proje
tively equivalent to some T (b). The tubes T (b

1

) and T (b

2

) are proje
tively

equivalent if and only b

2

= b

1




2

; b

2

= b

�1

1




2

; b

2

= b

1




2

or b

2

= b

�1

1




2

for some 
 2 GF (q

2

)

with 

 = 1. If q � 3 mod 4 there are pre
isely

3q�1

4

equivalen
e 
lasses of oval tubes and

if q � 1 mod 4 there are

3q�3

4

equivalen
e 
lasses. T (b) is a quadri
 tube if and only if

b = 0.

Proof. By Theorem 3.5 and Proposition 1.1 we know that every oval tube is proje
-

tively equivalent to an oval tube T = fL;Lg whi
h has axis L = f0g � GF (q

2

) and is


ontained in the regular spread B = fLg [ fL(m; 0)jm 2 GF (q

2

)g. We also know that the

set 
 = fm 2 GF (q

2

)jL(m; 0) 2 Lg is a 
oni
 in the aÆne plane GF (q

2

), and we may

assume that this 
oni
 is 
entered at the origin. It follows that there are a; b 2 GF (q

2

)

with aa 6= bb su
h that 
 = 
(a; b) = faz+bzjz 2 GF (q

2

); zz = 1g. Let the 
orresponding

tube be 
alled T (a; b). Note that a and b are not uniquely determined by 
, but that


(a; b) = 
(a
; b
) = 
(b
; a
), and hen
e also T (a; b) = T (a
; b
) = T (b
; a
), for all


 2 GF (q

2

); 

 = 1.

The tube T (a; b) is quadri
 if and only if 
(a; b) is a 
ir
le and this happens pre
isely

if a = 0 or b = 0.

From now on we assume that T = T (a; b) is not the quadri
 tube, i.e that a 6=

0 6= b. Then B is the only regular spread whi
h 
ontains T . It follows that two su
h

tubes are proje
tively equivalent if and only if one is mapped onto the other by a GF (q)-

linear mapping of the ve
tor spa
e GF (q

2

)

2

whi
h �xes the spread B and the lines L

and L(0; 0). These linear mappings are of the form A(d

1

; d

2

) : (z; w) 7! (d

1

z; d

2

w) or

B(d

1

; d

2

) : (z; w) 7! (d

1

z; d

2

w); d

1

; d

2

2 GF (q

2

); d

1

6= 0 6= d

2

. A short 
al
ulation shows

that A(d

1

; d

2

) and B(d

1

; d

2

) map T (a; b) to T (da; db) and T (db; da), respe
tively, where

d =

d

2

d

1

. It follows that T (a; b) is proje
tively equivalent to T (1;

b

a

) = T (

b

a

).

Assume now that T (b

1

) and T (b

2

); b

1

6= 0 6= b

2

; are proje
tively equivalent. Then

we get that (1; b

2

) is equal to one of (d
; db

1


); (db

1


; d
); (db

1


; d
) or (d
; db

1


) for some


; d 2 GF (q

2

); 

 = 1; d 6= 0. These four 
ases lead to b

2

= b

1




2

; b

2

= b

�1

1




2

; b

2

= b

�1

1




2

or

b

2

= b

1




2

, respe
tively.

It remains to determine the number of isomorphism 
lasses.
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As proved in the previous paragraph, this is essentially the problem of 
ounting the

orbits of a group of order 2(q + 1) a
ting on the set M = fb 2 GF (q

2

)j0 6= bb 6= 1g, whi
h


ontains (q + 1)(q � 2) elements. The group 
onsists of the following mappings

(i) b 7! b


2

; 

 = 1,

(ii) b 7! b

�1




2

; 

 = 1,

(iii) b 7! b

�1




2

; 

 = 1,

(iv) b 7! b


2

; 

 = 1.

Sin
e bb 6= 1 the mappings of type (ii) have no �xed points, and so the dihedral group

of order q + 1 whi
h 
omprises the mappings of type (i) and (ii) a
ts freely on M . So the

stabilizer of any point 
ontains at most two elements.

Assume that a mapping of type (iii) �xes b 2M , then we get bb = 


2

. Sin
e 1 6= bb 2

GF (q) and 

 = 1 this yields bb = �1 = 


2

. The equation 


2

= �1 has a solution with



 = 1 if and only if 4jq + 1. In this 
ase there are pre
isely q + 1 elements of M whi
h

have a mapping of type (iii) in their stabilizer.

Assume now that a mapping of type (iv) �xes a point b 2M , then we get

b

b

= 


2

with



 = 1. There are pre
isely

(q+1)(q�1)

2

elements b 2 GF (q

2

) n f0g for whi
h this equation

has a solution, but those with bb = 1 are among them. So there are

(q+1)(q�3)

2

elements of

M whi
h have a mapping of type (iv) in their stabilizer.

Now we 
an 
ount as follows. If q � 3 mod 4 there are q+1+

(q+1)(q�3)

2

=

(q+1)(q�1)

2

elements with a stabilizer of order 2 and hen
e (q + 1)(q � 2) �

(q+1)(q�1)

2

=

(q+1)(q�3)

2

elements with trivial stabilizer. The number of orbits thus be
omes

(q+1)(q�1)

2

(q + 1)

+

(q+1)(q�3)

2

2(q + 1)

=

3q � 5

4

:

Taking into a

ount the quadri
 tube we have to add one to this number and so we have

3q�1

4

equivalen
e 
lasses of oval tubes.

If q � 1 mod 4 a similar 
omputation shows that there are

3q�3

4

equivalen
e 
lasses.

�

Remarks 3.7. a) If q � 1 mod 4 it is possible to 
onstru
t a system of representatives

for the proje
tive equivalen
e 
lasses of oval tubes as follows. Choose an element � 2

GF (q

2

) nGF (q) with �

2

2 GF (q). Then every oval tube is equivalent to some T (b) with

b 2 GF (q)nf�1g[� �GF (q). If b 2 GF (q)nf0;�1g there are two representatives, namely

b and b

�1

, and if b 2 � �GF (q) n f0g there are four, namely b;�b = b; b

�1

and �b

�1

= b

�1

.

If q � 3 mod 4 there seems to be no obvious 
hoi
e for a system of representatives.

b) Our 
lassi�
ation is in fa
t equivalent to the 
lassi�
ation of the 
oni
s in the aÆne

plane under the group of similarities.


) In prin
iple, it is also possible to 
lassify tubes up to equivalen
e under P�L(4; q). The

�eld automorphisms just a
t in their standard way on M .
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Lemma 3.8. Let 
 be a subset of the Miquelian inverse plane I(q); q odd, and assume

that there are two distin
t points a; b of I(q) n
 su
h that 
 is a 
oni
 in the aÆne planes

I(q)

a

and I(q)

b

. Then 
 is a 
ir
le of I(q).

Proof. We may identify I(q)

a

with the aÆne plane GF (q)

2

and we may assume that

b = (0; 0). The 
oni
s in the aÆne plane whi
h do not pass through b and have size

q + 1 are the sets f(x; y) 2 GF (q)

2

ja

11

x

2

+ 2a

12

xy + a

22

y

2

+ b

1

x + b

2

y + 
 = 0g for

a

ij

; b

i

; 
 2 GF (q); 
 6= 0; a

2

12

� a

11

a

22

a nonsquare in GF (q).

We may also �x a nonsquare % in GF (q) su
h that I(q) is the inversive plane asso
iated

with the �eld extension GF (q)[x℄=(x

2

�%) : GF (q). Then the 
ir
les are pre
isely the 
oni
s

with a

12

= 0 and a

22

= �%a

11

. The mapping � : I(q) ! I(q) whi
h ex
hanges a and b

and maps (x; y) 6= (0; 0) to (

x

x

2

�%y

2

;

y

x

2

�%y

2

) is an involutorial automorphism of I(q).

It is suÆ
ient to show that if 
 and �(
) are both 
oni
s in GF (q)

2

n f(0; 0)g, then


 is a 
ir
le.

Assume that


 = f(x; y) 2 GF (q)

2

ja

11

x

2

+ 2a

12

xy + a

22

y

2

+ b

1

x+ b

2

y + 
 = 0g;

then we get

�(
) = f(x; y) 2 GF (q)

2

ja

11

x

2

+2a

12

xy+a

22

y

2

+(b

1

x+b

2

y)(x

2

�%y

2

)+
(x

2

�%y

2

)

2

= 0g:

This set is a 
oni
 if and only if the polynomial

a

11

x

2

+ 2a

12

xy + a

22

y

2

+ (b

1

x+ b

2

y + 
(x

2

� %y

2

))(x

2

� %y

2

)

is a produ
t of two polynomials of degree 2. Sin
e this polynomial 
ontains no terms of

degree 0 and 1, one of the fa
tors must be the polynomial a

11

x

2

+ 2a

12

xy + a

22

y

2

. It

follows that a

11

x

2

+ 2a

12

xy + a

22

y

2

divides x

2

� %y

2

and hen
e a

12

= 0 and a

22

= �%a

11

,

i.e. 
 is a 
ir
le. �

Proposition 3.9. Let T = fL;Lg be an oval tube of odd order and assume that there

exists a line L

0

6= L of PG(3; q) su
h that fL

0

;Lg is also an oval tube, then T is isomorphi


to the quadri
 tube.

Proof. If T is not the quadri
 tube then the regular spread 
ontaining L is uniquely

determined. It follows that L

0

is also 
ontained in this spread. Sin
e the lines of this

regular spread and the reguli 
ontained in it form a model for the inversive plane I(q) the

result now follows from the pre
eding lemma. �

This proposition yields the following 
hara
terization of reguli in PG(3; q).

Corollary 3.10. Let L be a 
olle
tion of q + 1 mutually skew lines in PG(3; q); q odd.

Assume that there are two distin
t lines L

1

; L

2

62 L skew with all lines of L su
h that ea
h

line whi
h interse
ts L

1

or L

2

meets at most two distin
t lines of L. Then L is a regulus.
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