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Abstract

We investigate a geometrically exact generalized continua of micromorphic type in the
sense of Eringen for the phenomenological description of metallic foams. The two-field
problem for the macrodeformation ¢ and the ”affine microdeformation” P € GL*(3,R) in
the quasistatic, conservative elastic case is investigated in a variational form. The elastic
stress-strain relation is taken for simplicity as physically linear.

Depending on material constants different mathematical existence theorems in Sobolev-
spaces are given for the resulting nonlinear boundary value problems. These results extend
existence results obtained by the first author for the micro-incompressible case P € SL(3,R)
and the micropolar case P € SO(3,R).

In order to mathematically treat external loads for large deformations a new condition,
called bounded external work, has to be included, overcoming the conditional coercivity
of the formulation. The observed possible lack of coercivity is related to fracture of the
substructure of the metallic foam.

We identify the relevant effective material parameters by comparison with the linear
micromorphic model and its classical response for large scale samples. We corroborate the
performance of the micromorphic model by presenting numerical calculations based on a
linearized version of the finite-strain model and comparing the predictions to experimental
results showing a marked size effect.
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1 Introduction

1.1 Theoretical aspects

This article addresses the modelling and mathematical analysis of geometrically exact! gen-
eralized continua of micromorphic type in the sense of Eringen in the elastic case. General
continuum models involving independent rotations have already been introduced by the
Cosserat brothers [19] at the beginning of the last century.

Their development has been largely forgotten for decades only to be rediscovered in the early
sixties [64, 39, 1, 27, 25, 74, 75, 41, 56, 69, 76]. At that time theoretical investigations on non-
classical continuum theories were the main motivation [51]. Since then, the Cosserat concept
has been generalized in various directions, for an overview of these so called microcontinuum
theories we refer to [26, 24, 8, 7, 9, 43, 53]. Recently, in [13, 14], the micromorphic balance
equations derived by Eringen have been formally justified as a more realistic continuum model
based on molecular dynamics and ensemble averaging.

The micromorphic model includes in a natural way size effects, i.e. small samples behave
comparatively stiffer than large samples. These effects have recently received much attention
in conjunction with nano-devices and cellular structures.

The mathematical analysis of general micromorphic solids in the static case is at present
restricted to the infinitesimal, linear elastic models, see e.g. [46, 22, 44, 36, 37] for linear mi-
cropolar models and [49, 47, 48] for linear microstretch models. The major difficulty of the
mathematical treatment in the finite-strain static case is related to the geometrically exact
formulation of the theory and the appearance of nonlinear manifolds necessary for the de-
scription of the microstructure. In addition, coercivity turns out to be a delicate problem
related to the possible fracture of the material. No general existence theorems for finite mi-
cromorphic models had been known until [60]. The simpler, geometrically exact nonlinear
micropolar case has been dealt with in [61].

This contribution is organized as follows: first, in section 1.2 we motivate the application of the
micromorphic model for the continuum-mechanical response of metallic foams. After that, we
review (section 2) the basic concepts of the geometrically exact elastic micromorphic theories
with affine microstructure in a variational context, i.e. we formulate the quasistatic conservative
case as a minimization problem. For simplicity we restrict attention to a macroscopically
physically linear stress-strain relation. Then we provide the corresponding balance equations
and highlight the influence of material parameters on the ellipticity of the force balance equation.

More mathematically inclined readers may start directly in the analytical section 3. There,
the complete problem statement of the geometrically exact elastic micromorphic case in a
variational context is repeated. Since the two-field variational problem is only conditionally
coercive we need to introduce a modification for the applied loads as given in [60] in order
to ensure first that the functional to be minimized is bounded below and second that the
curvature contribution can be controlled. This modification of the loads, herein called principle
of ”bounded external work”, expresses nothing but the physical fact that by moving a solid
arbitrarily in a "real” force field only a finite amount of work can be gained. Such a condition
is, however, unnecessary in either classical non-polar nonlinear/linear elasticity or the linear
micromorphic model.

With this preparation existence of minimizers in suitable Sobolev-spaces is then established
using the direct methods of variations and a novel extended Korn’s first inequality. The math-
ematical development extends the development given in [60]. The investigation of the general
micromorphic case with affine microstructure allows one to appreciate the peculiarities of the
previously investigated micro-incompressible and micropolar subcases more closely. The special
role played by the Cosserat couple modulus . > 0 is already seen in the infinitesimal strain
case, where the two fields of deformation and microdeformation do not decouple even if u. = 0.

Then we switch to the infinitesimal micromorphic elastic solid (section 4) for which we give
the variational formulation (section 4.1) and the corresponding balance equations (section 4.2).
Based on the linearized kinematics we determine effective material parameters in section 4.3
and provide an identification with the well known representation of Mindlin in section 4.4,
ensuring automatically positive definiteness of the local strain energy.

In the final section 5 we compute the response of an infinite micromorphic continuum with
a hole and identify it to the response of a cellular solid exhibiting strong size effects. We

LFully frame-indifferent.



compare the response of a traditional Cosserat model and p. > 0 with the response of the
linear micromorphic model and p. = 0. The relevant notation is introduced in the appendix.
In the appendix we supply as well the coercivity inequality, the derivation of the nonlinear
balance equations and an analytical solution for a simplified linear micromorphic boundary
value problem.

1.2 Application: continuum modelling of metallic foams.

Cellular solids are strongly heterogeneous materials made of two highly contrasted constituents,
namely air with the highest volume fraction and at least one ceramic, polymeric or metallic
phase [38]. Their properties are extremely difficult to predict from the knowledge of the hard
phase content since they strongly depend on the morphology of the hard skeleton. The complex
microstructure of a nickel foam can be seen in figure 1 showing the distribution of open cells
of characteristic size close to 500 um. The edges of the faces of the polyhedral cells are nickel
struts with a triangular cross—section.

The need for homogeneous effective models for the design of components and structures made
of foam arises, because considering all individual cells remains computationally prohibitive. In
principle, such homogeneous equivalent models can be obtained by means of classical homog-
enization techniques which are, however, difficult to extend to the extreme morphologies of
cellular solids [42]. Alternatively, material parameters of phenomenological models can be iden-
tified from overall tensile curves or/and strain field measurements [4]. The substitution of
such highly porous materials by a continuous homogeneous medium with an effective density,
though necessary for practical applications, is rather challenging since many important fea-
tures of the material behaviour can be lost. In particular, size effects are observed in metallic
foams as a result of the interaction between the size of the considered structure and that of
the microstructure, namely the cell size [63, 28, 6]. As a result, a continuum model should be
able to reproduce, in a continuous way, the principle size effects. This is possible only if the
phenomenological continuum model contains some constitutive intrinsic length scale(s) (here
denoted by L.). In particular, models based on classical Cauchy continua fail to reproduce
the size effects presented in this work. The Cosserat continuum is a possible candidate for
modelling cellular solids as recognized at several places [77, 67]. However, it will turn out to be
quite inadequate when dealing with the size effect addressed in this work. The reason lies in
the fact that cellular solids are highly compressible materials so that size effects do not merely
arise from gradients of rotations (Cosserat approach) but also from microextension gradients
[21]. That is why the attention is drawn here to the micromorphic continuum which is based
on a full microdeformation tensor as additional degree of freedom. Another approach based
on strain gradient plasticity was proposed in [11] for the modelling of size effects in sandwich
beams containing aluminium foam.

We consider metallic foams mainly for their relatively high elastic stiffness in comparison
to available polymer foams [38]. Even though the tensile curves of aluminium and nickel foams
exhibit a clear elastic domain, the present work can only be seen as a prelude to more realistic
nonlinear analyses within the framework of (finite-strain) elastoplasticity. Indeed, the size effect
modeled in this work is not linked to a specific local constitutive behaviour of the metal struts.
It can be rather seen as a benchmark test for the continuum medium chosen for representing a
cellular solid.

We insist on the following prerequisite of the model for successful applications to structural
computations. Let us consider a foam plate with a machined cylindrical hole of radius R and
subject it to tensile loading, the load being applied far from the hole. If the cell size | € R, a
simple classical continuum model is able to correctly predict the strain field around the hole.
This has been demonstrated even in the nonlinear regime based on the comparison between
Finite Element simulations and strain field measurements in a nickel foam [4]. Stress and strain
concentrations occur at the equator where the crack leading to final fracture initiates.

However, when the hole size becomes close to the cell size, it is clear that such effect should
not be noticeable any longer since the hole becomes nothing but a pore similar to the other
ones. The transition from large hole behaviour up to the disappearance of any overall stress
concentration effect in the case of holes with R ~ [/2, was studied experimentally by strain
field measurements in [21].

A continuum model should be able to account for such a size effect if it is to be trusted
for computing components containing holes and notches. We show in the computational part
of the present work that the (infinitesimal) micromorphic model is able to reproduce at least
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Figure 1: Scanning Electron Micrograph of a nickel foam for battery applications. The picture
taken from [21] shows the distribution of cells and struts with characteristic sizes 500 pm and
70 pm respectively.

qualitatively this size effect, even in the elastic regime, by solving numerically the problem of
a cylindrical hole in an infinite matrix. Furthermore, the numerical analysis provides a way of
identifying the involved characteristic length.

2 A finite-strain elastic micromorphic model with affine
microstructure

Let us now motivate a finite-strain micromorphic approach.? For our development we choose
a strictly Lagrangean description. We first introduce an independent kinematical field of mi-
crodeformations P € GL™(3,R) together with its right polar decomposition
P=R, U, =polar(P)-U, = R, e
— U,
Up=—"77 7 €
det[Up]

with R, € SO(3,R) and U, € PSym(3,R) N SL(3,R). The microdeformations P are meant to
describe the substructure of the material which can rotate, stretch, shear and shrink. We
refer to R, as microrotations.

The micromorphic theory we deal with can formally be obtained by introducing the mul-
tiplicative decomposition of the macroscopic deformation gradient F' into independent

microdeformation P and the micromorphic, nonsymmetric right stretch tensor U
(first Cosserat deformation tensor) with

F=P.U, U=P'F, UeGL"(3,R), (2.2)
3

U,, det[P]=e"",
P

SL(3,R), P= i SL(3,R), (2.1)

leading altogether to a micro-compressible, micromorphic formulation.

2Following Eringen [24, p.13] we distinguish the general micromorphic case: P € GL*(3,R) = Rt .
SL(3,R) with 9 additional degrees of freedom (dof); the micro-incompressible micromorphic case:
P € SL(3,R) with 8 dof; the microstretch case: P € Rt .SO(3,R) with 4 dof and the micropolar case:
P € SO(3,R) with only 3 additional dof.

3The strain measure U which is induced by this definition corresponds to €% presented in (1.5.11); of [24,
p.15].



The notion micromorphic is prone to misunderstandings: the microdeformation P must be
considered as a macroscopic (average) quantity as the deformation gradient and the resulting
model is still phenomenological. However, geometrical features of the real substructure to be
modelled determine the choice of geometric manifolds for P. Since the substructure of the
metallic foam can in principle be crushed, the choice P € GL™ (3, R) is mandatory.

In the quasistatic case, the micromorphic theory is derived from a two-field variational
principle by postulating the following ”action euclidienne” [19, p.156] I for the finite macro-
scopic deformation ¢ : [0,7] x Q — R? and the independent microdeformation P : [0,T] x 2
GL*(3,R):

I(p,P) = /Q W (F, P,D,P) — () — Ty (P) dV

—/HN((p) dS— | M (P)dS — min. w.rt. (¢, P),

Le
I's

P.=Py, ¢ =gat). (2.3)

The elastically stored energy density W depends on the macroscopic deformation gradient
F' as usual but in addition on the microdeformation P together with their first order space
derivatives, represented through the third order tensor D,P. Here 2 C R? is a domain with
boundary 92 and I' C 02 is that part of the boundary, where Dirichlet conditions g, Py for
displacements and microdeformations, respectively, can be prescribed, while I's C 9f is a part
of the boundary, where traction boundary conditions in the form of the potential of applied
surface forces Il are given with ' I's = (). The potential of external applied volume force is
II; and I takes on the role of the potential of applied external volume couples.* In addition,
I'c C 00 is the part of the boundary, where the potential of applied surface couples I, are
applied with TN T¢ = 0. On the free boundary 9Q \ {T UTs UT'¢} corresponding natural
boundary conditions for ¢ and P apply, which are obtained automatically in the variational
process.

Variation of the action I with respect to ¢ yields the traditional equation for balance of
linear momentum and variation of I with respect to P yields the additional balance of moment
of momentum.

The standard conclusion from frame-indifference (here: invariance of the free energy
under superposed rigid body motions (SRBM) not merely observer-invariance of the model
[73, 5, 57]: VQ € SO(3,R) : W(F,P,D,P) = W(QF,QP,DQP]) leads to the reduced

representation of the energy (specify @ = }_%Z;):
W(F,P,DP) = W(R, F, R, P,R,D.P) = W(U,U,U,, R,D.P) = WHT,U,,, &,,Va,), (2.4)
where for P = R, U, € SL(3,R) we set
Ry = R,D,P = (RZV(Pel),RZV(F@),RZV(P@)) € MP¥3 x MPX3 x MPX3 |, (2.5)

which coincides with one specific representation® of the third order right micropolar curva-
ture tensor (or torsion-curvature tensor, wryness tensor, second Cosserat deformation tensor,
bending-twist tensor, etc.), if P € SO(3,R).

For a geometrically exact (macroscopically isotropic) theory we assume in the following an
additive split of the total free energy density into micromorphic local stretch (macroscopic),
stretch of the substructure (microscopic) and micromorphic curvature part according to

Wi= Wup0) + Wiam(Up,a@p) + Weury (R, Va,) , (2.6)
N——r ————— ~—_——

macroscopic energy  microscopic local energy  microscopic interaction energy

4appearing in a non-mechanical context e.g. as influence of a magnetic field on the polarization of a sub-
structure of the bulk.

"Note that & = ETV(P.ei) ¢ s0(3,R).  Another representation of £, is given by &, :=
(Ff 0. P, Ry ay?,ﬁfazﬁ) € T(3). Since .(R.P) = 0 for P = K, € SO(3,R), it holds that §, €
50(3,R) X 50(3,R) X s0(3,R) in this case. It is therefore possible to base all considerations of curvature in the
micropolar case on a more compact expression 8 := (axl(ﬁf@zﬁp)\ axl(ﬁgayﬁpﬂ axl(ﬁf@zﬁp)) € MBEx3.

This is the traditional micropolar approach, see e.g. [68, 30, 40]. For us it is, however, not possible to use ﬁp,
since we allow P € GL*(3,R).



since a possible coupling between U and &, for centrosymmetric bodies can be ruled out [62,
p.14].

2.1 The elastic macroscopic micromorphic strain energy density

For a macroscopic theory which is relevant mainly for small elastic strain®

pis we require that
Wp (U) is a non-negative isotropic quadratic form (physically linear). This should cover already
many cases of physical interest. We assume moreover the macroscopic stretch energy density

normalized to

Winp(1) =0,  DgWinp (D) =0. (2.7)

U=1

For the local energy contribution elastically stored in the cell-structure we assume the nonlinear
expression

U, A 1
Wi (Up) = " | = WP 4 20 (@] = 12 + (e — 1)
e det[U,]/?) E ? det[U,] ]
isochoric subs;;ucture energy volumetric energy
— 5 AT - . — . —
=p U, = Ll + — (€™ = 1)* + (7™ = 1)*) = Weoan (Up, @), (2.8)

4

avoiding self-interpenetration in a variational setting, since Wigam — 00 as det[P] = det[Up] — 0
if A™ > 0.7 The most general form of Wy, consistent® with the requirement (2.7) is

_ — — 5 Ae — 2
Winp(U) = e[| sym(U = L)|* + pe || skew (U — 1) + 5 tr [sym(@ =], (2.9)

with material constants g, i, Ae such that pe, 3\e + 2pe, . > 0 from non-negativity [24] of
(2.9). It is important to realize that pu.,\. are effective elastic constants which in
general do not coincide with the classical Lamé constants pu, A > 0. Here, we take the
classical Lamé constants to be obtained from standard experiments of sufficiently large samples
of the materials, such that length scale effects do not interfere. The so-called Cosserat couple
modulus p. (rotational couple modulus) remains for the moment unspecified, but we note that

pe = 0 is physically possible, since the micromorphic reaction stress DWW, (U) -UT is
not symmetric in general, i.e. the problem does not decouple. For comparison, in [24, p.111]
for the infinitesimal micropolar case, the elastic moduli are taken to be pe = p + 5, pe =
£, Xe = A, but in this formula p can neither be regarded as one of the Lamé constants.” ' In
[20, 71, 72, 31, 23, 32] the abbreviation p. is used while in [40] it is g, = @ and p. = G, in [50]
for the micropolar theory.

By formal similarity with the classical formulation, we may call ™, A™ the microscopic
Lamé moduli of the affine substructure, which can in principle be determined from classi-
cal experiments or numerical computation on the microscale, e.g. dealing with a nickel-foam
structure, they are the Lamé-constants of the smallest possible representative volume element
(RVE) in the foam. In section 4.3 it will be shown how to obtain consistent values for p., A, if
we know already the microscopic values ™, A™ and the macroscopic constants pu, A.

2.2 The nonlinear elastic curvature energy density of the metallic
foam

The curvature energy is responsible for the size-dependent resistance of the cell-structure against
local twisting and inhomogeneous volume change. Thus inhomogeneous microstructural rear-

6By this we mean that the part of the deformation which is superposed onto the substructure deformation
has small elastic strains.

Note that ((det[Up] ~ 1) + (g - 1)2) = 2tr[U, — 1]% + O(||U, — 1|]?).
8Mixed products like (U — 1, Up — 1) and tr [U — 1] - tr [Up — 1] are excluded by non-negativity.

9 A simple definition of the Lamé constants in (the restricted case of) micropolar elasticity is that they should
coincide with the classical Lamé constants for symmetric situations. Equivalently, they are obtained by the
classical formula py = 2(15:;»1/) A= (1+Vﬁ'1’72y) , where E and v are uniquely determined from uniform traction
experiments for sufficiently large samples.

10Uniform traction and uniform compression do not activate rotations, hence the classical identification of the
Lamé constants is achieved independent of y.. Uniform traction alone allows to determine the Young modulus
E and the Poisson ratio v [17, p.126]. Contrary to [34, p.411] we do not see the possibility to define a specific
?micropolar Young modulus” or ”micropolar Poisson ratio”.




rangements are penalized. For the curvature term, to be specific, we assume the general form

Lite | Lt

Weurs (8, V&) = == (1+ s LE IR, [) (s [|sym & 12 + a || skew &2 + a7 tr[8,1°)
1+p )

o fQ (as||Va,||"* + as L. | Va,||*T7) , (2.10)

where L, > 0 is setting an internal length scale with units of length. It is to be noted that
we have decoupled the curvature coming from inhomogeneous volume changes and from pure
twisting. The values ay > 0,p > 0 and ¢ > 0 are additional material constants. The factor 11—2
appears only for convenience and a5 > 0, ag,a7 > 0,ag > 0 should be satisfied as a minimal
requirement. We mean tr[®,]> = ||tr [&,]||? by abuse of notation. This choice for Wy does
not presuppose any knowledge of the magnitude of the micromorphic curvature in the material
and is non-degenerate in the origin ||&,|| = 0, ||Va,|| = 0.

Some care has to be exerted in the finite-strain regime: Wy, should preferably be coercive
in the sense that we impose pointwise

Fet>03r>1: VR, €TB)VEERY 1 Weurn (8,8 > ¢t |I(8, O], (2.11)
or less demanding

Wcurv(-ﬁpaf)
(8, OII”

which implies necessarily ag, ag > 0 in (2.10). Observe that our formulation of the micromor-

dr>1: — 00 as |[(Ry, &) = oo, (2.12)

phic curvature tensor is mathematically convenient in the sense that ||&,|| = ||EZD,(?|| = ||IDcP|

provides pointwise control of all first derivatives of P independent of the values of P itself.'!

Note that the presented formulation still includes a finite Cosserat micropolar model as a
special case, if we set P = R € SO(3,R). In this fashion, we have the following correspondence
of limit problems:

AT — o0 micro-incompressible model: manifold SL(3,R) ,
microstretch model: manifold R - SO(3,R), (2.13)

micropolar model: manifold SO(3,R) ,

pt = oo
[T Sl )

TR

p A e = 00 higher (second) gradient continua.

2.3 The micromorphic balance equations

For the choices we have made we supply the resulting material form of the highly nonlinear
field equations on the reference configuration (with ay = 0, p = 1) which can be obtained after
some algebraic manipulations, see section 7.3 (We have gathered the influence of the external
potentials in II(z, ¢, P)):

0 = Div (S1(F, P) +2p. P~ " skew(P'F)) + D,II(z, (), P)gs, balance of forces,
0 = skew(T, ' DpWop (@) T T, ) + skew (Tzf Div [R, D, Weury (R, Vai,)] Up)
+ skew (D, Weury (R, V) &Y ) + skew (EZDFH(@“, o(z), P)UP)MM :
rotational momentum,
0 = devsym (U; 1DUI/Vmp (U) UTUZ) — devsym (Dﬁp Weoam (Up, @p) UZ) (2.14)
+ dev sym (RZ Div [R, Dg, Weurv (8, V)] Up) + devsym (EZDﬁH(a:, o(z), P)Up) ,
volumetric momentum,

0=tr [U; ' D Wonp () UTUZ] — Dz, Wroam (U, @) + Div Dy, Weury (R, V&,),  (2.15)

isochoric momentum,

HThis is not true for other possible basic invariant curvature expressions like F_IDXF or FTD,(? or FTDP,
see Eringen [24, 1.5.4,1.5.11].



where S; is the first Piola-Kirchhoff stress (for p. = 0) with the functional form
Si(F,P)y=P " 2psym (P 'F—1)+Xtr [PT'F—1]1], (2.16)

similar to [59, (P3)] and Dg, Weuryv(Rp) is the material micromorphic moment tensor (or

couple-stress tensor). Note that Dy Wfoam(Up, @p,) = 0, leaving no contribution of the local
foam energy in the rotational momentum equation.

In our subsequent variationally based mathematical development the nonlinear balance
equations will not play a prominent role. They become more important, however, for our
numerical calculations.

Remark 2.1
Observe the chain of symmetry conditions for isochoric macroscopic relative elastic strain en-

ergies Wy (U):

Ue€Sym= DgWump(U) € Sym= DzWy,(U) U' € Sym & S»(F, P) € Sym,
Sy(F,P) := F 'DpW,(P'F) € Sym. (2.17)

The reverse implications are in general false.

2.4 The micromorphic micro-incompressible balance equations

In the special case P = P € SL(3,R), @, = 0, the balance equations have to incorporate the
nonlinear constraint det[P] = 1. This can be done by suitably restricting the possible variations
of P, see (7.6) and set Wioam (Up) := Wioam (U, 0)

0 = Div [(SI(F, P) + 2 e ﬁ‘Tskew(ﬁ‘lF))] + D,I(z, ¢(z), P)gs,
0 = skew(T, ' DpWop (@) T T, ) + skew (R Div [R, Dy, Weury (8] Up)

+ skew (D, Weury (%) 87 ) + skew (R, Dpll(a, p(x), P)T )Mm :
U,)U ) (2.18)

+ dev sym (EZ; Div [Rp D, Weury (8)] Up) + devsym (Ep DsIl(z, (), ?)Up) .

0 = devsym (U; D W (0) UTUZ) dev sym (D Wioam (U

A similar form of the unconventional'? balance of angular momentum equation has been given
in [7, p.63] for the micropolar case.

2.5 Constitutive consequences of the value for the Cosserat couple
modulus

Looking at (2.9) with p. > 0 we see that the implication of this choice for p. at a first glance
is an innocuous rise in the macroscopic elastic strain energy Wy, (U), if R, # polar(F), but
R, is generically assumed to be independent of the continuum rotations polar(F). The choice
e > 0 acts like a local ”elastic spring” between both continuum rotations and microrotations.

Let us consider the mathematical implications of y. = 0 and 0 < p. < u, respectively,
in more detail. It is readily verified that for the elasticity tensors (differentiating the stretch

energy density Wy, (U) at fixed P w.r.t. F)
e >0: YV H € M3 . D2Wyp (P F).(H,H) > 2 pe [P H||? > 2416 Amin (P~ P7Y || H||,

‘ 1
fe =0:VH € M>*® : DEWyp (P F).(H,H) > 2p ||§(P*1H +HT'P~1))2. (2.19)

12Since we have not transformed the tensor equation into a related vector format, which is usually preferred
in the micropolar case. Following [7] we can identify an external volume couple b. in the equilibrium vector-

format with axl(skew(RZM)). Then be is a volume couple which is not a dead load. We note that a term
skew (Dﬁp Weurv(Rp) ﬁg) does not directly appear in derivations based on ﬁp since e.g. ﬁll, = axl(ﬁgazﬁp)
and variation along a one-parameter group of rotations yields

GRL = axl((ARp)T0: Ry + Ry, 02 [AR,)) = axl(— R, AdsRp + R, (0. A)Rp + R, A0 Rp) = axl(R,, (0 A)Rp) .
This is not at variance with (2.18), since differentiation is carried out differently. =~ Observe that

skew (Dﬁp Wcurv(ﬁp)ﬁg) =0 if a5 = ap, a7 = 0, i.e. if couple stresses are proportional to the curvature
tensor.



Hence the choice g, > 0 leads to uniform convexity of Wy,(P7'F) wrt. F if P €
L>(Q,GLT(3,R)) and unconditional elastic stability on the macroscopic level: regard-
less of what spatial distribution of microdeformations P(z) is given, the macroscopic equation
of balance of linear momentum would then be uniquely solvable and this equation is insensi-
tive to any deterioration of the spatial features of the microstructure as long as P is merely
essentially bounded. Uniform convexity is difficult to accept from a constitutive point of view,
since uniform convexity is impossible for a geometrically exact description in the framework of
a classical macroscopic continuum but clear from the above discussion: the additional elastic
spring between micro- and continuum rotation extremely rigidifies the material and completely
changes the type of the mathematical boundary value problem in comparison with the classical
finite elasticity theory.

Fortunately, such a far reaching unsatisfactory conclusion does not hold for zero Cosserat
couple modulus p. = 0, in which case we have for £, € R®:

DiWup(PTIF).(E@n, 6 @n) = p([PTH@ | +(PTHE@n,n© PTYE))
_ _ 2 _
=u(IIP~re@nl? + (P7lem)) > plIP T E@nl?,  (2:20)
which shows the physically much more appealing inequality
DiWap(PT'F).(E@ 0,6 @ 1) > p Amin(PTTPTY [IENP - [Inl1? (2.21)

expressing nothing but uniform Legendre-Hadamard ellipticity of the acoustic-tensor with
ellipticity constant pApnin(P~TP71). As a result we see that for large microstructural
expansion P, the ellipticity constant may deteriorate, i.e. the larger the foam
is extended, the weaker it gets while the compressed metallic foam gets stiffer.
The Legendre-Hadamard condition has the most convincing physical basis [2, p.461] because it
implies the reality of wave speeds and the Baker-Ericksen inequalities (stress increases
with strain, [52, p.19]).13

3 Mathematical analysis

3.1 Statement of the finite elastic micromorphic problem in varia-
tional form

Let us gather the obtained three-field problem posed in a variational form. The task is to

find a triple (¢, P,a@,) : @ C R® — R* x SL(3,R) x R of macroscopic deformation ¢ and

independent microdeformation P = e T P, minimizing the energy functional I with

— _ — —T =
I(p, P,ay) = /me(P 1Vg0) + Weoam (Up, @p) + WcurV(Rp D.P,Va,) - Iy () = Mp(P)dV
Q

—/ On(p)dS— | I (P)dS+— min. wrt. (¢, P,@p), (3.1)
Ts T'e

under the constraints

U,=R,P, R,=polar(P), U=P'Vp, P=c¢

+P, (3.2)
and the Dirichlet boundary conditions

SO‘F :gd7 RP‘F :de, Up‘l" :Upd => ?‘F :devpd, aplr :@pd. (33)

13The preferred value pe = 0 for the macroscopic case can as well be motivated by the following consideration:
Consider the Green strains FTF — 11 = (U — 1)T(U — 1) + 2sym(U — 1). Therefore 4£||FTF — 1> =
pl|symU — 1| + O(||U — 1||?). Hence p. = 0 provides the correct first order approximation to a classical St.
Venant-Kirchhoff material. With u. = 0 we exclusively recover the fact of the classical continuum theory that
W isotropic implies symmetry of the Biot stress tensor: D7W (U) € Sym. If we expand R = 1l + A+ ... with
A € 50(3) and write F' = 1l + Vu, then the micropolar effects disappear to first order for y. = 0. In this sense,
e = 0 is close to classical elasticity.
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Here, the constitutive assumptions on the densities are taken to be

— — — Ae — 2
Win () = pe | sym(@ — )| + e | skew(D)|? + 55 b [sym(@ — 1)),

_ _ Am L
Wioam (Up, @p) = ™ [Up — M| + == (€™ = 1)* + (7% = 1)7) , (3.4)
— L%%—p q q 2 2 2 %
Weary (8, Vap) = u=5— (1+ s L1181 (a5 [[sym &yl + as || skew | +az tr [8,])
Lf1:+p — ||1+p = [|2+p
=i (as IVl + as L [Va, I217)

Ry = I_BZ;DX? = (EZ;V(F.Q),EZV(F.eg),}_fZV(ﬁ.eg)) ,the third order curvature tensor.

The total elastically stored energy W = Wnp + Wepam + Weury depends on the deformation
gradient F' = Vip, and the microdeformations P together with their space derivatives. Here
Q C R? is a domain with boundary Q2 and I' C 09 is that part of the boundary, where Dirichlet
conditions gq, Py for displacements and microdeformations, respectively, are prescribed, while
I's C 00 is a part of the boundary, where traction boundary conditions in the form of the
potential of applied surface forces IIy are given with TN T's = @. In addition, I'c C 09 is
the part of the boundary where the potential of external surface couples I, are applied with
I'NT'c = 0. On the free boundary 90\ {T'UT'sUT'¢} corresponding natural boundary conditions
for (¢, P) apply. The potential of the external applied volume force is II; and IIs takes on the
role of the potential of applied external volume couples.

The parameters ue, Ae > 0 govern the relative elastic deformation, u, > 0 is called
the Cosserat couple modulus, ™, \™ > 0 are the Lamé constants of a representative
volume element (RVE) of the substructure and L. > 0 introduces an internal length which
is characteristic for the material, e.g. related to the cell size of the metallic foam. The
parameters «;, ¢ = 1,..,8 are dimensionless weighting factors. If not stated otherwise, we
assume that as > 0,a > 0,8 > 0, a7 > 0.

A finite Cosserat micropolar theory is included in the formulation (3.1),(3.2),(3.4) by re-
stricting it to P € SO(3,R) or setting ™, \™ = oo, formally. Similarly, for g™ = oo only we
recover the micro-stretch formulation with P € Rt - SO(3,R) and for A™ = oo, we recover the
micro-incompressible formulation case P € SL(3, R).

3.2 The external potentials

Traditionally, in the conservative, dead load case one would have

for the potentials of applied loads with given functions f € L%(Q2,R3), M € L?>(Q,M3*3), N €
Lz(Fs,R3), M. e L2(F0,M3X3).

For our treatment, we need to assume, however, that the external potentials, describing
the configuration dependent applied loads, are continuous with respect to the topology of
LY(Q), L'(T's), L*(T'¢), respectively and satisfy in addition the condition

3Ct >0 VeeL'(Q,R?), Pe LY(Q,GLT(3,R)) :

[ -y, [ s, [ me@asscen 6o
Q Ts |G

While continuity is satisfied e.g. for the dead load case IIf(p) = (f,¢) and f € L>(Q),
the second condition (3.6) restricts attention to ”bounded external work”. If we want to
describe a situation corresponding to the classical dead load case, we could take

1
14 lle@ =K, (f(@),p(2)), (3.7)

for some large positive constant K+ and [-]; the positive part of a scalar argument. It suffices
now that f € L'(£2), then [, II;(¢) dV < C*, independent of ¢ € L*(Q2).

The new condition (3.6) can be rephrased as saying that only a finite amount of work
can be performed against the external loads, regardless of the magnitude of translation and
microdeformation. This is certainly true for any real field of applied loads.'*

It ()

M1n classical finite elasticity, such a condition is not necessary, since the elastic energy density is assumed a

11



3.3 The different cases

We distinguish three different situations:

I pe > 0,04 >0,p >1, q> 0, elastic macro-stability, local first order micromorphic. Frac-
ture excluded.

II: pe =0, a4 >0,p > 1, q>1, elastic pre-stability, nonlocal second order micromorphic,
macroscopic specimens, in a sense close to classical elasticity, zero Cosserat couple mod-
ulus. Fracture excluded.

II: pe =0,a4 =0,0 < p <1, q=0, elastic pre-stability, nonlocal second order micromor-
phic theory, macroscopic specimens, in a sense close to classical elasticity, zero Cosserat
couple modulus. Since possibly ¢ & WH1(Q, R?), due to lack of elastic coercivity, includ-
ing fracture in multiaxial situations.

We refer to 0 < p < 1, ¢ > 0 as the sub-critical case, to p = 1, ¢ > 0 as the critical case
and to p > 1, ¢ > 1 as the super-critical case. We will mathematically treat the first two
cases I/IIL.

3.4 Existence for the geometrically exact elastic micromorphic model

The following results extend the existence theorems for geometrically exact micromorphic micro-
incompressible elastic solids given previously.'®

Theorem 3.1 (Existence for elastic micromorphic model: case I.)

Let Q C R? be a bounded Lipschitz domain and assume for the boundary data gq € H*(Q2,R?)
and Py € WhH'*tP(Q, GL" (3, R)). Moreover, let the applied external potentials satisfy (3.6).
Then (3.1) with material constants conforming to case I and p > 1 admits at least one mini-
mizing solution triple (¢, P,a,) € H*(Q,R?) x WhiTP(Q,SL(3,R)) x WH2P(Q R).

Proof. We apply the direct methods of variations. The influence of the external potentials is
gathered in writing II(p, P). With the prescription of (g4, Pa) it is clear that I < oo for exactly
this pair of functions after decomposing Py in its rotational, isochoric stretch and volumetric
stretch. Since (3.6) is assumed, it is also clear that I is bounded below for all p € L'(2,R?)
and P € L'(Q,GL* (3, R)).

We may therefore choose decreasing (infimizing) sequences of triples

(¢", P",ak) € H'(Q,B®) x WHHP(Q,SL(3, R)) x WH>TP(Q,R), (3.8)
such that
lim I((pk,ﬁk,aﬁ) = inf I(p,P,a,). (3.9)
k—o00 B ) c LI(Q,]R3),
P € L'(Q,SL(3,R)),
a, € L'(,R)

The total curvature contribution W .., along this sequence is bounded independent of the
number k again on account of (3.6).16 B
Observe now that the micromorphic curvature term &, controls P € W17 (Q SL(3, R)),

. Ry — = . . .
since ||R,|| = [|R, DeP|| = ||DxP]|, pointwise, the assumption that as,as > 0 and the appli-
cation of Poincarés inequality with the Dirichlet conditions on P. Moreover, since ag > 0 we

priori to verify an unqualified coercivity condition [65] of the type W(F) > ¢t ||F||? — C, ¢ > 1, which,
together with Dirichlet conditions and Poincaré’s inequality controls the LZ(Q2) part of the deformation.

Fields satisfying (3.6) are e.g. the gravity field of a finite mass, the electric field of a finite charge etc.
Remark as well that (3.6) does not exclude local, integrable singularities. The traditional dead load case in
(3.5) must rather be interpreted as a linearization of the finite external potential: write ¢(z) = « + u(x), then
I(z, p(z)) = I(z,z + u(z)) = O(z,z) + (DyI(z, z),u) + ... = const. + (f,u) + ... with f(z) = D,II(z,z). We
are not aware of a previous introduction of a condition similar to (3.6).

15The proposed finite results determine the macroscopic deformation ¢ € H' (€2, R?) and nothing more. This
means that discontinuous macroscopic deformations by cavities or the formation of holes are not excluded
(possible mode I failure). If u. > 0, fracture is effectively ruled out, which is unrealistic.

161f (3.6) does not hold, one might have infimizing sequences with unbounded curvature. The geometrically
exact micromorphic formulation is only conditionally coercive.
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obtain boundedness of @ € W'*7(Q,R), again independent of k € N. This result remains
true already without specification of Dirichlet boundary conditions for @, since the term e
estimates any L?-norm of &,. For p > 1 Sobolev’s embedding shows that we can choose a
subsequence, not relabelled, such that strongly

@ - q, e CO(LR) k- . (3.10)

Now we may extract a subsequence again denoted by P converging strongly in L**?(Q) to an
element P € White(Q M3*3) since p > 0 by assumption. Moreover, a further subsequence
can be found, such that the curvature tensor K, converges weakly to some ?%; in L'*T7(Q).
For 1 < (1 + p) < 3 the embedding

3(1+p)

Whitr(Q) c Ls=0t0 °(Q), 6> 0, (3.11)

for three space dimensions is compact for 4 > 0 and shows that the subsequence ?k can be
chosen such that it converges indeed strongly in the topology of L6~%(§), since we have moreover
p > 1, which implies immediately that Pe WhitP(Q SL(3,R)). If 1+p > 3 we can use better
embeddings to have the same conclusion.

Because p. > 0, we have the simple algebraic estimate

Wanp (P4 F®) > e [|P7HFFE — W2 = g (PR = 2P~ V4 FE 1) + 3)
> pe (T2 = 2v3I T +3) (3.12)

implying the boundedness of the micromorphic stretch U = P~ F* in L%(Q). Moreover, by
Holder’s inequality, we obtain

- _ 1 1 1
[F o0 = IPFPTVEER o <IPHI| o IPTVEFH ), 00 == —+—,
S 1 T2
—k
e 5k —1,k ok
=[le™ Pl o IPTVF ]|, o,
)k —1,k ok
<supe” s [P, g Py 0. (3.13)
T

Since P" is bounded in L8(Q) (3.11) and P~'*F* is bounded in L2(Q) and ar is strongly
converging in C°(Q2, R) (3.10), we may choose 7; = 6, r2 = 2 to obtain boundedness of F'* = Vi,
in L*(Q), s = % Using the Dirichlet boundary conditions for ¢ and the generalized Poincaré

inequality we get
lorllwrs(@rs) < Const. (3.14)
By the boundedness of ¢* in W1#(Q, R?) we may extract a subsequence, not relabelled, such

that ©* — ¢ € WbH*(Q,R?*). Furthermore, we may always obtain a subsequence of (", P*)

such that Uy = P~Y*FF converges weakly in L?*(Q) to some element U on account of the
boundedness of the stretch energy and p. > 0.
We have already shown that for p > 1 the sequence P converges indeed strongly in L" ()

to an element P € W*+7(Q, SL(3,R)). Therefore

—_ __ ~ ~—1 ”
J- 1_k AGP » —L AP =P mLi(QSL3R),
det[P"] det[P]
3(1+p) .
= TP 5 1< (14p) <3, 3.15
G- (1+p) (1+2) (3.15)

- ~-1 < ~
and we obtain for p > 1 that P YL P strong in L319(Q,SL(3,R)), 6 > 0. Moreover,

1,k
, (3.16)

—k
p 1,
3

a2

_ _ ——1,k ~_ _
pLk—g¢ P S P l=¢

’ --1,k . B
on account of the strong convergence of @z. Thus P " F* converges certainly weakly to P~1F

in L'(Q) on account of Holder’s inequality (sharp). The weak limit in L'(Q) must coincide
with the weak limit of Uy in L?(2). Hence the identity U = P~V holds.
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Since the mapping polar : GLT(3,R) ~ SO(3,R) is a bounded continuous function on
invertible matrices with positive determinant, it generates a nonlinear superposition operator
polar(:) : L"(Q,GL" (3, R)) ~ L"(2,S0(3,R)), (3.17)

~

which, moreover, is continuous [3, p.101,Th.3.7]. Thus Ry = polar(P,) — R = polar(P)
strongly in L"(2) and a similar argument as for the sequence U}, shows that

Ryx — R, = polar(P)"D,P, (3.18)

in L'*7(Q2), weakly. Again on account of P' 5P L7(92,SL(3,R)) we infer now

_ b T—"F 2T~ =~
or=VP""P' 5 VP P=T, inL"(Q,SL(3,R)), (3.19)

because the map M?*? — PSym(3), X — VXX is continuous and has linear growth.

Since the total energy is convex in (U,U,, Ry, V@p) and continuous w.r.t. @, and the
external potential II is continuous w.r.t. strong convergence in L*() on account of (3.6), we
get

~

1($,P.a,) = / Woan(T) + Weosen (T @) + Weure (s V) AV — TI(, B)
Q

< liminf [ Wip(@r) + Weoam Th) + Weurs (84, VL) AV = T3, Py)
Q

k—oo
= lim I(¢*, P" ak) = inf I(¢,P,q,), (3.20)
k— oo ) c Ll(Q,R3),
P e L'(Q,SL(3,R)),
a, € L'(Q,R)

which implies that the limit triple ($, 13, 8,,) is a minimizer. Note that the limit microdeforma-

tions P = eanRpUp may fail to be continuous, if p < 2 (non-existence or limit case of Sobolev
embedding). Moreover, uniqueness cannot be ascertained, since SL(3,R) is a nonlinear man-
ifold (and the considered problem is indeed highly nonlinear), such that convex combinations
in SL(3,R) may leave SL(3,R). Since the functional I is differentiable, the minimizing pair
is a stationary point and therefore a solution of the field equations (2.18). Note again that
the limit microdeformations may fail to be continuously distributed in space. That
under these unfavourable circumstances a minimizing solution may nevertheless be found is
entirely due to g, > 0 and p > 1. The proof simplifies considerably in the geometrically exact
Cosserat micropolar case P € SO(3,R), in which case p > 1 is already sufficient. [ ]
We continue with the super-critical case which is more appropriate for macroscopic situations
and closer to classical elasticity.

Theorem 3.2 (Existence for elastic micromorphic model: case II.)

Let Q C R® be a bounded Lipschitz domain and assume for the boundary data gq € H*(Q, R?)
and Py € WHitPta(Q SLL(3,R)). Moreover, let the applied external potentials satisfy (3.6).
Then (3.1) with material constants conforming to case II admits at least one minimizing solution
triple (¢, P,@,) € H'(Q,R?) x WbHiTr+a(Q SL(3,R)) x WH2P(Q R).

Proof. We repeat the arguments of case I. However, the boundedness of infimizing sequences
is not immediately clear. Boundedness of the microdeformations ?k holds true in the space
Whitrte(Q SL(3,R)) with 1 +p+ g > N = 3, hence we may extract a subsequence, not rela-
belled, such that P converges strongly to P € C°(Q,SL(3,R)) in the topology of C°(Q, SL(3,R))

1,

on account of the Sobolev-embedding theorem. Since P~1F = e+ P
that

, we obtain as well

PV Pl e C°Q,GLT(3,R)), (3.21)
on account of strong convergence of a’;.

Along such strongly convergent sequence of microdeformations, the sequence of deformations
©* is also bounded in H'(2, R*). However, this is not due to a basically simple estimate as in
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case I, but only true after integration over the domain: at face value we only control certain
mixed symmetric expressions in the deformation gradient. Let us define u; € H%?(w,R®) by
©* = ga + (¢* — ga) = ga + ug. Then we have
= _ — —k _ K ]
o0 >[(gd7 Py, apd) > / me(Uk) + Wfoam(Upa 05];) + Wcurv(ﬁp,k: vaé) dv — H(@k: Pk)
Q

> [ Wan@0)aV = 1(ps, PY) 2 | W @)V - C
Q Q

> / %HP—L’“wk + Vil P~k _ o112V — C (3.22)
Q
= [ BIPT (Vs + Vo) + (Vu+ Vo) TP - 21V - €
Q
:/ Ee || P14V uy + Val Pk
o 4
2
+ e (pkvuy, + Vul PR, PRy gy 4+ Vgl PR — 21)

4
+ %HP‘L’“ng +vgTP~Tk _o1|2aV - C

>/ %||P*17’“Vuk+Vu£P*T”“||2
Q

4
+ EEIP 4V ga + Vgl PR — 21|V - ©

e 1k _ 1o _
e <s |P~ Yy, + Vui P71F|12 4 -IlP YEYga + Vga P~k — 211||2>

>/ B | =1k + Vil PP

Q

— B||P T gy + Vgl PTE - 21

+ B P Vg + Vgl PR — 212 av - ©

- / %HP—L’“VW + Vug PR - %HP_U“VSM +Vgd PTF —21|PdV - C
Q

> / %HP*L’“VW +Vul PR |2dv - C
Q

— / % ||(P717k _ ﬁfl + f)fl)vuk + vu{(Pfl,k _ ﬁfl + P*l)T“Z dV _ C
Q

> / % 1P~ Vug + Vuf P12 AV = Co [|[P1 = P~ [usl3p ) — C
Q ~~

combinations of derivatives
7 ~_ _ .
> (gg e = Co||[P7H = PV o) |lugl a2y — C
where we used Young’s inequality with e = %, made use of the appropriate Dirichlet boundary
conditions for uj and applied the extended Korn’s inequality (7.1) in the improved version
of [66] yielding the positive constant ¢k for the continuous microdeformation P~'. Since

[Pt — P~1k|| o — 0 for k — oo due to (3.21) we are able to conclude the boundedness of

uy, in H'(Q). Hence, ¢y, is bounded in H'(Q2). Now we obtain that Uy — U = P~V by
construction with the notations as in case I. The remainder proceeds as in case . This finishes
the argument. The limit microdeformations P are indeed found to be continuous. |

4 The infinitesimal micromorphic elastic solid

4.1 The variational formulation

Starting from the proposed finite-strain formulation and not intrinsically linear (as below in
section 4.5), we may obtain a linear, infinitesimal micromorphic model by expanding all ap-
pearing variables to first order and keeping only quadratic terms in the energy expression.
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Thus we write FF = 11 + Vu, P = 11 + p, and the model turns into the problem of finding
a pair (u,p) : @ C R® = R® x glT(3,R) of macroscopic displacement u and independent,
infinitesimal microdeformation p satisfying

/ Wi (5,9) + Weurs (£, Vtr [p]) AV > min. w.r.t. (u,p),
Q

£=Vu —D, Pjr=D>Pd € g[+(37]R) = M3X37 Plr = 9d > (41)

A Am
Winp (8, 1) = pte || syme||* + puc || skewz||* + 5 [symz]® + p™ || symp||> + St [sym p]*

A ;
= pte || sym Vu — sympl|” + pic || skew(Vu — p)||> + 5 tr[Vu —p)’

2 A" 2
+ p™ || sym pl| +7tr[p] ,

L2
Woure (&, Ve [p]) = n7 (s || sym|[* + ag || skew, > + a7 tr 6,7 + as [|Ver []12) |

t, = Di[devp] = (V(dev p.e1), V(dev p.e2), V(dev p.e3)) .

Here, £, is the third order infinitesimal curvature tensor, defined only on the purely distortional
part of the infinitesimal microdeformation dev p. If pe, u™ > 0 and pe, Ae, A™ > 0 it is an easy
matter to show existence and uniqueness. For u. = 0 we have to invoke the classical Korn’s
first inequality. It should be observed that even if p. = 0 there remains a coupling of the two
fields (u,p) due to the remaining coupling in the symmetric terms.

4.2 The linear system of balance equations
The linearized macroscopic force balance equation is obtained by taking free variations with
respect to the total displacement u. Hence we obtain
Divo(Vu,p) =0, wu.(z) =ga(r) — 2, (4.2)
with
o(Vu,p) = 2p, (sym Vu — symp) + 2u. (skew Vu — skewp) + Ae tr [Vu —p] - 1. (4.3)

The remaining system of nine balance equations for the nine additional components of p €
al™(3,R) = M**? is obtained by taking free variations with respect to p which results in

dev Div De, Weury (€, Vir [p]) = dev (=2p, (sym Vu — sym p)
— 2. (skew Vu — skewp) — Ag tr [Vu — p] 1
+2u™ symp + A" trp] - 1) ,
Div Dy [p)Weury (8, Vir [p]) = tr (=2p, (sym Vu — symp)
— 2. (skew Vu — skew p) — A tr [Vu — p] 1
+2p™ symp + A" tr[p] - 1) . (4.4)

This is equivalent to

0 =devo(Vu,p) —2p™ devsymp + dev Div Dy, Weur (8, Vtr [p])
0 = tr[o(Vu,p)] — (2™ + 3A™) tr [p] + Div Dyu(p) Weury (€, Vtr [p]) . (4.5)

4.3 Calculation of consistent effective elastic moduli

It is of prime importance to have values of u., Ae at hand which are consistent with the classical
linear elastic model for long wave-length (large samples). Considering very large samples of
the cellular structure amounts to letting L. > 0, the characteristic length, tend to zero. As a
consequence of L. = 0 the two equations (4.5) loose the curvature terms and turn into

0 =devo(Vu,p) — 2u™ devsymp, (4.6)
0 = tr[o(Vu, p)] - @u™ + 3X") ]
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expressing an algebraic side-condition. Inserting formula (4.3) for ¢ into (4.6) allows us to
obtain after some lengthy but straightforward computations the following algebraic relations

(2pte + 3Ae)
tr[p] = tr[Vu],
T = S ey 30 ey TV
fhe
devsymp = —— = devsym Vu, 4.7
(e + 1) o
dev skew p = dev skew Vu,, (e not involved!) ,

where we used that the operator dev is orthogonal to R - Il and sym is orthogonal to skew and
dev skew = skew. Moreover,

_ (2pte + 3\e)
eVl = (1= o)
_ (2u™ + 3A™) [V . (4.8)

(2p™ + 3A™) + (2p + 3X)
Reinserting the results into (4.3) yields, after taking dev on both sides

devo(Vu,p) = 2p, (devsym Vu — devsym p) + 2u. (skew Vu — skew p)

fhe

= 2 <dev symVu — ——
(ke + pm)

dev sym Vu) + 2p. (skew Vu — 1 - skew Vu)

m

He [
= 2l <1 — 7> devsym Vu = 2, ——
(ke + pm) (ke + p™)

Similarly, reinserting the results into (4.3) yields, after taking the trace on both sides

devsym Vu. (4.9)

tr [0(Vu,p)] = 2pe tr [sym Vu — sym p| + 2, tr [skew Vu — skew p] + A tr [Vu — p] - tr[11]
= 24 tr [Vu — p] + 3o tr [Vu — p] = (2pe + 3Ae) tr [Vu —p]
(2p™ 4+ 3A™)

= (2t + 3\
(2 ) 3§ (2 730

tr [Vu] . (4.10)

For a linear elastic isotropic solid, which represents the macroscopic stress-strain relation for
large samples, one has the classical relation

o=2usymVu+ Atr[Vu] -1 =
devo =2p devsymVu  and  tr[o] = (2 + 3X) tr [Vu]. (4.11)

Upon comparing coefficients of (4.11) with (4.9) and (4.10) we identify

m

2 =2 €7 . m\
a u(ue+um)
2 m m
(2043 = (2p1c +3A) (2™ + 337)

(2p™ 4+ 3Am) + (216 + 3Xe)

(4.12)

This implies that in our model the large scale shear modulus y is half the harmonic mean'”

of the relative elastic shear modulus p, and the microstructural shear modulus p™,
while the large scale bulk modulus k = @ is half the harmonic mean of the relative
elastic bulk modulus . and the microstructural bulk modulus ™.

Hence, solving in a first step for the relative elastic shear modulus u, and the relative

elastic bulk modulus k. = %, yields

s p (2 + 37) (2p™ + 3A™)
e = —————, 3ke = (2ue +3Xe) = . 4.13
(™ — p) ( ) (2pm + 3Xm) — (21 + 3X) (.13)
Therefore
o = B gy CuASN@ERASAY) e (4.14)
(wm = p) 2(p™ —p) +3Am =) (e —p)
(e, B) = li% = % for a,, B > 0, compare with the Reuss-bounds in homogenization theory.
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This result motivates that the ”macroscopic” Lamé moduli u, A must always be smaller than the
microscopic moduli g™, A™ related to the response of a representative volume element (RVE)
of the substructure. This is physically consistent: the large-scale sample cannot possibly be
stiffer than the constitutive substructure. Let us consider the interesting limit cases in (4.12):

242

3(u™ —p)’
microstretch: p™ =00, A" <oco = A=A, U=p.,

micro-incompressible: A" — 0o, pm<oo = A=A+

micropolar: p™ — oo, A =00 = A=A, p=pe- (4.15)

4.4 Identification with Mindlin’s representation

Many papers on linearized micromorphic models start from a representation of the free-energy
function based on Mindlin’s work [55, 5.5], e.g.[45]. A major drawback of Mindlin’s representa-
tion is, however, that no account has been taken, to ensure overall positivity of the quadratic
energy. This has to be checked additionally and can be quite labourous because of many ap-
pearing coefficients. We consider only the local part (the part without curvature) of Mindlin’s
representation. Let us define

e =symVu, g:=Vu—p. (4.16)

Then Mindlin’s local energy contribution ng“d with seven material constants [, X, b1,b2,b3,91,92
reads

. : h) ~ b , b b
Waird(Vu, p) = Whid(e,g) = St e]” + Allell + %tr 2] + flléll2 + §<€,€T>

+gitrie]tr[E] + 2 g2 (¢,8) . (4.17)

Note that this defines a quadratic form, whose positive-definiteness is not ensured by taking
positive parameters i, A, . ... In comparison, in (4.1) we have proposed a five material constants
representation, which automatically defines a positive quadratic form, if the coefficients are
positive themselves.'® The proposed quadratic representation in (4.1) reads

“l

~ . Y ~ . Am
Winp (8,0) = pte || symE||* + pue || skew |* + 5 tr [symz]* + ™ || sympl|* + 5t [symp]

Ae

= pte || sym||® + e || skew2|)? + Sotr [symz]” + p

“l

symp — e + ¢||?
m

A 2
+ Ttr [symp — e + €]

. 5 A
= pte || symz||* + p. || skew z[|* + étr [symz]’

+ ™ ([lsymp — el|* + 2(symp — €,¢) + |[e]|*)

A .
+ > (tr [symp — €]* + 2tr [sym p — e]tr [¢] + tr [5]2) (4.18)
Ae + A »
= e+ ) [ symz? + e skew 22 + B g o 2

m AT :
el + A e P

—2p™ (e — symp, ) — X tr [e — sym p|tr [¢]
(Ae + A7) 2
2

= (pe + p™) || syme||* + pec || skew 2[|* + tr [sym ]

+ ™ Jle|* + )\7 tr[e]® — 2u™ (g, &) — A™ tr [g]tr [¢]

(Ae +A™)

5 tr [symz]

S . 1, _
= (e + ™) I5E+EDN + pell;E-EDI° +

A ;
+ u™ [e]l? + tr [e]? — 2u™ (g, €) — A™ tr [E]tr [¢]

18This can be slightly weakened: 2ue + 3Ae > 0,2u™ + 3A™ > 0, pre, u™, pre > 0 is sufficient.
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e M) g cie Ty, e AT
:(H’ [ )||6+6T||2+MZ||€_ET”Z+( )

4 2
. Am
+ u™ [e]l? + o tr [e]® — 2u™ (g, €) — A™ tr [E]tr [¢]

tr [g]

(Ae +A™)

5t ]

_ (pe +p) J;“m) (IEl1? + &,27)) + % (el = &,27) +

+ 1™ |lel)? + % tr[e]” — 2u™ (2, €) — A™ tr [g]tr [¢]

m m __ A Am
— (/’Le +/’L2 +/'LC) ||€||2 + (/’Le +/'L2 /’LC) <€7€T> + ( 6'; )

A .
+ ™ |lel* + o tr [€] — 2u™(z, &) — A™ tr[E]tr [¢] .

tr[g]?

Hence, comparing with Mindlin’s representation (4.17) we are able to identify

ﬂ:llma /)::Ama blee_f_)‘m;

bo = pe + ™ + pe, bs = pe + ™ — pc,

g1 =-\", g2 = —p™. (4.19)
Mindlin proposes [55, p.60]

3by +b24+b3 >0, ba+b3>0, by—0b3>0,
(= Ket+c™>0, pet+pm >0, p.>0) (4.20)

as necessary conditions for a positive definite energy function which is (of course)
verified for (4.1).

Remark 4.1
It is not clear to us, whether Mindlin’s seven parameter representation of the local strain-energy
can be obtained by consistently linearizing a finite-strain micromorphic model.

4.5 The intrinsically linear micromorphic model

Several sets of generalized strain measures can be defined if one starts in an intrinsically linear
context with no reference to some underlying finite-strain micromorphic model. The strain
measures used in [35] are retained for the computational part of this work:

(Vu+ (Vu)T), 2=Vu-p, K =D, (4.21)

N =

£ =

i.e. the total strain ¢ , the relative deformation £ and the third—rank micro—deformation
gradient tensor K.!%Three generalized stress tensors may be introduced in the virtual power
of internal and contact forces:

7D (u,p) = (0,2) + (5,8) + (S, K), 7 (u,p) = (t,0) + (M,p), (4.22)

where the second-rank stress tensor ¢ is symmetric but should not be confused with the classical
Cauchy stress tensor. The additional stress tensors s and S respectively are second and third-
rank tensors. The balance of momentum and balance of moment of momentum equations read,
in the absence of volume forces or generalized couples (nor double forces):

Div(c +s) =0, DivS+s=0. (4.23)
They are coupled thanks to the micro—stress tensor s. Equilibrium at the boundary reads
t=(c+s)n, M=Si, (4.24)

where the outer surface normal vector is denoted by 7.

19Note that we have given up the decoupling of the curvature into volumetric and distortional parts, contrary
to (4.1).
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In a linearized elastic micromorphic solid, the Helmholtz free energy is assumed to be a
quadratic form I/Vllfn (¢,2,K) of the previous strain measures (4.21). The state laws are then
deduced from the exploitation of the entropy principle of thermodynamics [33]:

6VVI?H aI/Vllin 6VVI?H
=P e TP ST (4:25)

The most general form of the potential for an isotropic linear elastic micromorphic medium
has been proposed by Mindlin [55] based on such an intrinsically linear development. Keeping
the original index notation for the proposed invariants of the strain tensors and the material
moduli, it reads:

1~ . 1. 1. _ _ 1. _ _
‘/Vlgn = 5/\61'1'6]']' + peijei; + ibl €ii€j; + §b2 €ij€ij + ibg €ijEji
+  g1€u€jj + g2€i(Eij +Eji)
1 1
+ A Ky Ky + Ao K K iy + §A3KukKjkk + §A4Kiijikk
1 1
+ A5 Kijj Ky + §A8KijiKkjk + §A10Kiijijk

+ An KK + %A13Kijk[(ikj + %AMKiijjik
+ %A15Kiijkji ; (4.26)
from which the constitutive relations
o =Atrfe] - 1L+ 2ie + gy tr 2] - 1L + 295 symE,
s=gitr[e] - 1 +2goe+bytr[g] - UL+ by B+ b3z’ , (4.27)
and
Spgr = Ay (Krii‘qu + Kiip5qr) + Az (Kiiq‘spr + Kiriépq) + A3ij7‘5pq
+  AyKpiilgr + As(Kipilgr + KgiiOpr) + AgKigiOpr
+ AlOquT + All(Kqu + Kqu) + A13Kp7‘q
+ AuKgr + AisKrgp, (4.28)
are deduced. Hence, the most general isotropic linear elastic relations involve 7 + 11 = 18
constants. It should again be noted that the constants ji, A cannot automatically be identified
with the classical Lamé constants, despite appearance. The coefficients A; have the dimension
of a bending stiffness modulus: MPa.m?.

In order to achieve positivity for the curvature part of the energy and to simplify the
exposition at the same time, we take

L2
A=A =A3=A1=As = As = A1 = A1z = A1y = 415 =0, AIOZHGCa (4.29)

in our finite element simulation. Another simplification of the local energy expression seems to
be expedient. We assume further on, that with some number o € R

e =0, w=ap™, A=aX?, a€(0,1). (4.30)

For example, o = 0.9 means that the large-scale bulk behaviour is assumed to be about 10
percent weaker than the response of a representative volume element (RVE) on the small scale.
Taking into account the homogenization formulas derived in (4.13) implies then that

o o

= m Ae = AT 4.31
He - mes, e I—a ( )
Hence in terms of Mindlin’s representation we obtain
1 ~ 1
:a =K, A= _>\7
a 1 1

b =Ae + A= —— AT+ A" = A= ——— 4.32
1= At —a" 1-a a(l—a)”’ (4:32)
b = b = m__ -
2 3 He + 19 a (1 — Oé) K,

1 1
==X go=-——p,
(67 (67
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for given large-scale Lamé moduli g, A.

5 Implementation

5.1 Finite Element method for the infinitesimal micromorphic con-
tinuum

The implementation of the infinitesimal micromorphic model into a finite element program is
illustrated here in the two—dimensional case (plane strain or plane stress). The vector of degrees
of freedom attributed to each node is written:

[d.0.f] = [U1 Uz p11 p22 P12 p21]T . (5.1)
The associated generalized strain vector is:

[grad] = [e11 €22 €33 €12 E11 €22 E33 E12 21
T
K11 Kz Kior Kizp Konn Koro Koo Koz . (5.2)

The matrix [B] linking the strain vector to the degrees of freedom reads as follows under plane
strain conditions:

(9, 0 0 0 0 0 W
0 8 0 0 0 0
0 0O 0 0 0 0
19, %0,, 0 0 0 0
8, 0 -1 0 0 0
0 8 0 -1 0 0
0 0o 0 0 0 0
8, 0O 0 0 -1 0
[grad| = [B] [dof], [B]=| 0 &, 0O ©0 o0 —1]|, (5.3)
0 0 8, 0 0 0
0 0 8, 0 0 0
0 0 0 0 8, 0
0 0 0 0 8, 0
0 0 0 0 0 &,
0 0 0 0 0 &,
0 0 0 8, 0 0
L0 0 0 8, 0 0 |

where 0,, = 0 - /0z;. Plane strain conditions imply €33 = £33 = 0. In the case of plane stress
conditions, €33 and £33 are introduced as additional degrees of freedom shared by each element.
The associated reactions are o33 and s33. Plane stress conditions are enforced by prescribing
vanishing reaction stresses, but other conditions can also be considered. The generalized stress
vector reads:

[ﬂux] = [011 022 033 012 S11 S22 S$33 S12 S21
T
Si11 Si12 S121 S122 S211 S212 S221 5222] . (5-4)

The isotropic elasticity matrix linking the elastic part of the micro—deformation gradient and
the third-rank stress tensor is written as:

Mg Ky
M2 Ko
My Ky
M2 Koo
) , 5.5
M1 [4] Ko (55)
Moo Ksio
Mooq Kso
| Maa2 | | K222 |
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where [4] equals

[ AA 0 0 A1’475 0 A275’8 A172’3 0
0 Aszq014 Az11,13 0 A 0 0 Ao
0 Ar1113  Ago,15 0 As 11,14 0 0 Arsg
Aiss 0 0 As0,13 0 As114 Ariis 0 (5.6)
0 Ar1115  Asi1,14 0 A410,13 0 0 Aras|’ '
Arss 0 0 As.11,14 0 Ag 1015 A211,13 0
Ao 0 0 A111,15 0 As 1113 Aszio,14 0
L 0 A17273 A27578 0 A17475 0 0 AA ]

with AA =24 + 245 + A3 + Ay + 245 + Ag + A9 + 2411 + A1z + A14 + A1s. The notation
A,'J"k = A,‘ + Aj + A.k; is used.
The variational formulation of the micromorphic boundary value problem is a straightfor-
ward extension of the classical one:
[@a+ st s kav= [ i+ 0rmds, (57)

Q (291

with the boundary conditions (4.24). The finite element formulation follows from the same
discretization of the variational problem as in the classical case.

An analytical solution of a simple boundary value problem for the linear elastic micromorphic
continuum is proposed in appendix 7.5, which serves as validation test for the implementation
of the model.

5.2 Finite element simulations of hole size effects in metallic foams

One of the early goals of the mechanics of generalized continua was to control the magnitude
of stress concentrations at holes, edges or cracks. Indeed, Mindlin analysed the stress concen-
tration coefficient at a hole in a plate in the case of a couple—stress medium [54]. Contrary to
the classical situation, the stress concentration factor is found to depend on the relative size of
the hole with respect to the value of the characteristic size even if the hole is embedded in an
infinite matrix. The analytical solution of the more general problem of the spherical or cylin-
drical elastic inclusion inside an infinite matrix was solved only recently for infinitesimal-strain
Cosserat elasticity [16, 15, 70]. Finite element simulations within the infinitesimal Cosserat
framework show that, contrary to the classical situation, the stress—strain state is generally not
homogeneous inside a spherical or cylindrical elastic heterogeneity [32]. The stress concentra-
tion factor at the equator of a cylindrical hole in an infinite linear elastic Cosserat matrix tends
asymptotically to the classical constant value for large enough holes. For holes with a radius
close to or smaller than the value of the intrinsic lengths of the Cosserat matrix, the factor is
found to decrease. The value for vanishingly small holes tends towards an asymptotic limit that
depends on the Cosserat intrinsic length scale and on the additional Cosserat couple modulus
i > 0. For strictly positive Cosserat couple modulus y. > 0 it remains larger than
one, meaning that holes of any size induce stress concentration in a traditional
infinitesimal Cosserat medium. This behavior is illustrated by figure 2.

The strain field around a cylindrical hole in an infinite micromorphic matrix under plane
stress conditions is now investigated using the finite element method. The material parameters
used for the presented simulations are taken so as to represent large scale samples of nickel
foam studied at room temperature in [4, 21]. This corresponds to

p=165MPa A =110MPa, (5.8)

in terms of the Lamé constants. We choose the factor o = 0.9 appearing in (4.30) and the

Cosserat couple modulus p. = 0. This implies

o
a(l—a)

1 ~ 1
i=-p=183.MPa, \=—\=122.MPa, b = \ = 1222. MPa,
(8% (8%

b2:b3:ue+/£m: u:1833.MPa,

a(l—a)
1 1

g1 =——A=—122.MPa, g, =——p=—183.MPa,
(0% (0%
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Figure 2: (traditional linear Cosserat response) Strain concentration at the ”equator” of a cylin-
drical hole in an infinite Cosserat medium under tensile loading by the stress £ in direction 2.
The component plotted is £22/¢33. The material properties of the Cosserat equivalent medium
representing the nickel foam are taken to be g, = p = 165MPa, Ac = A = 110MPa, p. =
1000 MPa, L. = 1.35 mm.
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in terms of Mindlin’s representation. The elastic constants b; act as well as penalty terms that
force the relative elastic deformation to remain small. This ensures that the microdeforma-
tion is close to the gradient of the displacement field so that the micromorphic model almost
degenerates into a second gradient theory [33]. A single additional parameter, namely the
characteristic length L. > 0, is introduced in the six-rank tensor A by setting A;p = £ (f £ in
Mindlin’s representation and Aj, Ay, ... = 0 for the remaining coefficients. The characteristic

length is set to L, = 1.35 mm in the following simulations. Hence

pL?

Ay = = 50 MPamm?. (5.10)
This value was identified in the particular case of nickel foam with relative density p*/pn; =
0.035 and mean cell diameter 500 pm. It is in accordance with results of strain field measure-
ments provided in [21].

Figure 3 shows the results of finite element simulations of the tension of a plate with a
machined cylindrical hole. Tension is applied along the vertical direction 2 under plane stress
conditions. The figure 3a shows the reference strain field 455 around the hole expected in the case
of a classical Cauchy continuum. Only the mesh region surrounding the hole is shown. Vertical
displacement is applied at the top of the mesh which is not represented in the picture. For
such a classical simulation, the size of the hole does not matter. In contrast, the figures 3b and
3c show the strain map €22 around a hole embedded in an infinite linear elastic micromorphic
matrix using the values of the elastic properties given by (5.9). The results are given for two
hole sizes: R =1 mm and R = 0.3 mm respectively. For both computations, the applied strain
at infinity €53 is the same and the material parameters correspond to each other. The size of
the hole is the only varying parameter. It clearly appears that the strain field becomes more
and more homogeneous when the hole size is reduced. For R = 0.3 mm, there is almost no
strain concentration at the equator any longer.

For larger and larger holes, we have checked that the classical solution of figure 3a is retrieved
when using the micromorphic model. The striking feature of the numerical simulations is that
for vanishingly small holes, the micromorphic theory predicts a strictly homogeneous strain
field: tiny holes do not introduce any strain fluctuation. This can be seen more quantitatively
from the curves of figure 4. The strain profile along the ligament x» = 0 is plotted for different
values of the hole radius ranging from R = 10 mm to R = 0.1 mm. The curve obtained for
R = 10 mm is almost identical to the classical result which predicts a stress/strain concentration
factor of 3 at the equator (x; = R) under plane stress conditions. Strain localization decreases
for smaller holes. As a result, the strain concentration factor tends to 1 when the hole size
tends to zero. This is contrary to the case of the infinitesimal Cosserat continuum (see figure
2). These numerical results cannot currently be compared to analytical solutions which do
not seem to be available for a hole in a general linear micromorphic continuum, to the best
knowledge of the authors. An analytical solution for the more restricted linear microstretch
case has been derived in [18].

The interesting point is that, in a linear elastic micromorphic continuum, there is a limit size
below which no geometrical heterogenities can be detected. This limit size sets the resolution
of the continuum, in a way similar to the resolution of a microscope. An equivalent parametric
study is possible by varying the intrinsic length scale parameter L. for a fixed radius size R.
This enables us in fact to identify the value of the characteristic length that leads to strain
concentration around holes only when the holes are sufficiently larger than the cell size.

It must be noted that the finite element simulations were not carried out on one quarter of
the sample but for the entire structure, in contrast to the classical case. The reason is that, in
spite of the symmetry conditions, it is not possible to know a priori what are the boundary
conditions pj; or pas (or conversely the reactions My, or Mas) to be prescribed on the lines
1 = 0 or z» = 0. This difficulty does not arise for a linear Cosserat continuum since the
symmetry conditions imply that the infinitesimal microrotation vanishes at these boundaries.
The computation time is therefore increased not only by the larger number of degrees of freedom
but also by the fact that the entire specimen must be meshed instead of one quarter. The mesh
size in the presented simulations is satisfactory in the sense that convergence is achieved for the
generalized stress and strain fields upon mesh refinement, up to a precision better than 1%.
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Figure 3: Strain field £22/¢55 around a cylindrical hole in an infinite matrix under tensile loading
€55 under plane stress conditions: (a) classical continuum (reference solution), (b) linear elastic
micromorphic continuum for a hole radius R = 1 mm, (c) linear elastic micromorphic continuum
for a hole radius R = 0.3 mm. The tensile direction 2 is vertical, the horizontal direction is 1.
For the illustration, a magnifcation factor was applied so that the three holes have the same
apparent radius. Only the region of the mesh surrounding the hole is shown. The elastic moduli
usedfor the simulation are given by (5.9).
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Figure 4: Computed strain profile along the ligament o = 0 for the linear micromorphic plate
with a cylindrical hole of radius R. The position z; = R, called ”"equator” is the location of
stress and strain maximum at least for large enough holes. The elastic moduli used for the
simulations are given by (5.9).

6 Final remarks

The presented variational finite-strain micromorphic problem fits neatly into the framework of
the direct methods of variations. The coercivity part for the deformation is, however, nontrivial
and for the value of the Cosserat couple modulus p, = 0 additional difficulties arise which can
only be circumvented by the use of the generalized Korn’s first inequality. In both treated cases
I/II, more realistic assumptions on the applied external loads II are necessary to establish a
lower bound for the energy I and a control of the curvature independent of the magnitude of
deformation.

Altogether, the quasistatic finite-strain micromorphic theory is established on firm mathe-
matical grounds. With the same methods, the geometrically exact microstretch case can also be
treated. An extension of the method to other choices of strain and curvature measures needs to
be done, however, this might be a non-trivial task due to certain deficiencies of these measures.
The open case III allows for discontinuous macroscopic deformations and might therefore be a
model problem allowing to describe fracture.

Our variational framework is ideally suited for subsequent numerical treatment within the
finite element method. This is shown by numerically studying the linearized micromorphic
model meant to describe the behaviour of nickel foams. In these calculations, the Cosserat
couple modulus p. is indeed set to zero and the obtained result is contrasted with the response
of a traditional infinitesimal Cosserat model with high Cosserat couple modulus p.. It seems
that the micromorphic model with zero Cosserat couple modulus p. = 0 is indeed sufficient to
capture the underlying physics. The importance of the characteristic size of the cells on the
response of the structure is clearly revealed.

A more accurate description for the foam is clearly needed but this requires an extension of
the presented elastic model towards a consistent elastoplastic constitutive setting as proposed
e.g in [33] for infinitesimal and finite deformations. The involved characteristic length(s) can

26



be identified using an inverse approach from the strain field measurements. An alternative way
is to derive the effective properties of an equivalent homogeneous micromorphic medium from
the knowledge of the detailed cell morphology based on homogenization procedures that are
now available for generalized continua [29].
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7 Appendix

7.1 Notation

Let 2 C R? be a bounded domain with Lipschitz boundary 852 and let I' be a smooth subset of 99 with non-
vanishing 2-dimensional Hausdorff measure. For a,b € R? we let (a,b)gs denote the scalar product on R® with
associated vector norm ||a||2; = (a,a)gs. We denote by M?*? the set of real 3 x 3 second order tensors, written
with capital letters and by T(3) the set of all third order tensors. The standard Euclidean scalar product on
MB*3 is given by (X, Y )ysxs = tr [XYT], and thus the Frobenius tensor norm is [|X||> = (X, X)ysxs. In the
following we omit the index R?, M?%3, The identity tensor on M?%3 will be denoted by 11, so that tr [X] = (X, 1L).
We let Sym and PSym denote the symmetric and positive definite symmetric tensors respectively. We adopt
the usual abbreviations of Lie-group theory, i.e., GL(3,R) := {X € M3X3 |det[X] # 0} the general linear
group, SL(3,R) := {X € GL(3,R) |det[X] = 1}, O(3) := {X € GL(3,R) | XTX = 1}, SO(3,R) := {X €
GL(3,R) |[XTX = 1, det[X] = 1} with corresponding Lie-algebras so(3) := {X € M?X3 |XT = —X} of skew
symmetric tensors and sl(3) := {X € M®*? |tr[X] = 0} of traceless tensors. We set sym(X) = §(X7T + X)
and skew(X) = %(X — XT) such that X = sym(X) + skew(X). For X € M>*3 we set for the deviatoric

part dev X = X — % tr[X]1 € sl(3) and for vectors £,n € R™ we have the tensor product (£ ® 1);; =
& n;j. The operator axl : s0(3,R) — R3 is the canonical identification. We write the polar decomposition in
the form FF = RU = polar(F)U with R = polar(F) the orthogonal part of F. For a second order tensor
X we define the third order tensor h = D X(z) = (V(X(z).e1), V(X (z).e2), V(X (z).e3)) = (h1,h2,p%) €
MB*3 x MBX3 x MB*3. For third order tensors h € T(3) we set [[p||2 = S2_, ||h]|? together with sym(p) :=
(symb!,symb?,sym h3) and tr[h] := (tr [p'],tr [h%],tr [h3]) € R®. Moreover, for any second order tensor X we
define X -h := (Xh', X2, Xh3) and h-X correspondingly. Quantities with a bar, e.g. the micropolar rotation R,
represent the micropolar replacement of the corresponding classical continuum rotation R. In general we work
in the context of nonlinear, finite elasticity. For the total deformation ¢ € C*(€Q,R?) we have the deformation
gradient F = Vip € C(Q,M3%3) and we use V in general only for column-vectors in R3. Furthermore, Si(F)
and S(F) denote the first and second Piola Kirchhoff stress tensors, respectively. Total time derivatives are
written %X(t) = X. The first and second differential of a scalar valued function W (F) are written DpW (F).H
and DLW (F).(H, H), respectively. Sometimes we use also dx W(X) to denote the first derivative of W with

respect to X. We employ the standard notation of Sobolev spaces, i.e. L2(£2), H12(Q), HY?(Q), which we use
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indifferently for scalar-valued functions as well as for vector-valued and tensor-valued functions. Moreover, we
set || X|Joo = Supgeq [|[X(@)]|. For X € C!(f},M3%3) we define Curl X(z) and Div X(z) as the operation curl
and Div applied row wise, respectively. For b € T(3) we define Divh = (Div | Divp2|Divp3)" € MB*3. We
define HY?(Q,T) := {¢ € H-2(Q) | @) = 0}, where ¢, = 0 is to be understood in the sense of traces and
by C§°(92) we denote infinitely differentiable functions with compact support in Q. We use capital letters to
denote possibly large positive constants, e.g. Ct, K and lower case letters to denote possibly small positive
constants, e.g. ct,dT. The smallest eigenvalue of a positive definite symmetric tensor P is abbreviated by
Amin (P). Finally, w.r.t. abbreviates with respect to.

7.2 The coercivity inequality

The decisive analytical tool for the treatment of case II (super-critical) is the following new non-trivial inequality
establishing coercivity:

Theorem 7.1 (Extended 3D-Korn’s first inequality)

Let Q C R? be a bounded Lipschitz domain and let I' C 99Q be a smooth part of the boundary with non
vanishing 2-dimensional Hausdorff measure. Define Hy'*>(Q,T) := {¢ € H"?(Q) | ¢ = 0} and let Fp, F, ' €
C1(Q,GL(3,R)). Moreover suppose that Curl F, € C'(Q,M?%3). Then

3t >o0vge Ho* (D) (IVoF, (@) + Fy T (@) V" 72 ) > et 19117120 -

Proof. The proof has been presented in [58]. |

Remark 7.2

Note that for F, = VO we would only have to deal with the classical Korn’s inequality evaluated on the trans-
formed domain ©(Q2). However, in general, F}, is incompatible giving rise to a non-Riemannian manifold
structure. Compare this to [10] for an interpretation and the physical relevance of the volume dislocation density
tensor Curl F},. A Riemannian version of Korn’s inequality has also been given in [12].

Motivated by the investigations in [58] it has been shown recently by Pompe [66] that the extended Korn’s
inequality can be viewed as a special case of a general class of coercivity inequalities for quadratic forms. He
was able to show that indeed Fp, F;l € C(Q2,GL(3,R)) is sufficient for (7.1) to hold without any condition on
the compatibility.

However, taking the special structure of the extended Korn’s inequality again into account, work in progress
suggests that continuity is not really necessary: instead Fp, Fy ' € L°(Q,GL(3,R)) and Curl F, € L319(Q)
should suffice, whereas Fp, Fyy ' € L (€, GL(3,R)) alone is not sufficient, see the counterexample presented in
[66]. This possible improvement has no consequences for the analysis, however.

In view of the important role of the extended Korn’s first inequality let us agree in saying that an inhomogeneous

material characterized by a free energy density W : R? x M3*3 i R is elastically pre-stable, whenever
JHeM>*®, H#0: DLW(x,F).(H,H)=0 and (7.1)
Jet >03G e GLT3,R)VH € M*¥® : DLW (x, F).(H,H) > c¢t||G(z)TH + HTG(2)|? .

In this terminology, infinitesimal classical elasticity is pre-stable with G = 1l and the extended Korn’s first
inequality links the smoothness of G to the positive definiteness of the elastic tangent stiffness tensor.

7.3 Derivation of the geometrically exact micromorphic balance equa-
tions

The balance equations are obtained as for the micro-incompressible case with the only provision that we can
take as variation for U, € PSym the following expression

d

EUP =TUp, T €Sym(3), (7.2)
instead of T' € sl(3,R) N Sym(3) for the micro-incompressible case based on Up. Note that any value of the
differential %Up can be obtained as %Up =T U, for some T € Sym(3) while T U, is not necessarily symmetric
if 7' is symmetric.

7.4 Derivation of the geometrically exact micromorphic balance equa-
tions in the micro-incompressible case

Introducing a constraint nonlinear manifold like SL(3,R) for the micro-incompressible case complicates the
derivation of the balance equations considerably.

The derivation of the force balance equation remains straight forward, however. Since we can write P =
Rp-Up and Ry, U, can be prescribed arbitrarily, we may realize the variation of P through independent variation
of the orthogonal and isochoric stretch part:

P=R,-U,= 7= |%%|7,+% |10 (7.3)
St Up= = | gfe| Yo T | Y| :
Now take either %Up =0or %Ep = 0. In the first case, we have the variation
d— d— | = - — —
aP = {aRp] Up=ARpyUp, =AP, Aeso(3,R),arbitrary, (7.4)
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and in the second case we have

d— = [d= _
aP =Ry {EUP] =RpTUp, T €sl(3,R)NSym(3). (7.5)
For the first case, we consider simultaneously in each space point a one parameter group of microdeformations
%P(w, t) = A(z,t) - P(z,t), P(x,0) = P(z), A€ C§°(Q,sl(3,R)). The corresponding stationarity condition is
obtained from - -

%lhol(cp, P(z,t)) = 0. This yields three terms: the derivatives involving W (F, P) and II(P) are straightfor-

ward, using the definition of the one parameter group, and yield

%‘t_oﬂ(ﬁ(a:,t)) = (DHI(P(a,t), — P(z,1)) = (DFIL(P(x,t), A(z,t) - P(a,t))
= (D5I(PYP", A(z,t)) (7.6)
= (DII(P)UL R, , A(w, 1)) = (RpR,, DEII(P)ULR, , A, t))
= (Rpskew (Rp Dﬁn(?)*p) R, Az, 1)),
and
T Wan(F, Pla,0) = (DpWa(T,0), 0)
= (D Wanp(U, Uy), [P E]) = (D Wanp(U, ), [ P 1F)

d o~ — i d oA
SPIPTIE) = ~(DgWano (T, T), P [ PI0)

~(DgWanp(U, Up), P~ A(,1) - P2, )U) = —(DgWanp(U, Up)U" , PL A(w, ) - P(a, 1)

= <DUWmP(ﬁzﬁp)7 _[:,_1[

I
Sl

L — = 71 2 — 771 = = 7T 5T
= (P T DgWup(U,U,)U" PT, A(z,1)) = —(RpU,  DgWump(U,Up)U" UpR,, , A(z,1)) (7.7)
Az, 1))

= =1 = =T\ 5T
~(Ryskew (U, DpWaup (U, U,)U" U, ) R,

= (R, skew (v;lpﬁwmp(ﬁ,ﬁp)ﬁTﬁf ) R, Az, t))

Here, (-,-) means additionally integration w.r.t. z. For the term containing the curvature part, we note

d 3 —T — — —
Jtle=o /Q Weury (Rp(2,1) AV = D _ (9 Weurv (R, 85, 85), R, V(AP.€;) + (ARp) TV (P.e;))
=1

M3X3

3
. (RP aﬁé Wcurv(ﬁzlnﬁfnﬁg)z V(AP~ei)>M3X3 + (RP aﬁé Wcurv(ﬁzlnﬁfnﬁg)RﬁTRp aAT>M3X3 (7'8)

Il
—

3

Il
&Mw

Il
-

3
. = . — — : —T
—(Div [Rp OK;WCMV(RZI,,RIZ,,R%)] (AP.e))  +(By <§ Oas Wcurv(ﬁ;,ﬁg,ﬁg)%f) R, AT)

A i=1

= 7<DiV [Ep Dﬁp Wcurv(ﬁp)] aAﬁ>

M3X3

3
-y g W 5.8, ) A7)
=1

3
— (Div [Ep Dg, Wcm(ﬁp)] PTLA) + (R, (Z Og Wcurv(ﬁ},,ﬁg,ﬁg)ﬁ;T) Ry, AT)
i=1

3
= =T . [5 — — i =T
= —(R, R. Div [Rp Dy, Wcurv(ﬁp)] UpRe , A) — (Rp skew (Z (aﬁ; Weurv (82, 82, 83) ﬁpaT)> R, A)
i=1
- =T . 5 =\ 5T - 7\ 5T
= (R, skew (Rp Div [Rp Dg, Wcm(ﬁp)] Up) R., A) — (Rpskew (Dﬁp Wcm(ﬁp)ﬁp) R.,A).

Since A € C§°(£,50(3,R)) is arbitrary, equation (2.18), follows. In order to obtain the remaining five equations
for the five independent components of Up € SL(3,R) N PSym(3) we consider the second possible independent
variation of P. With

d— _
G P =B TUp, T Esl3,R)NSym(3), (7.9)

we consider simultaneously in each space point a one parameter group of microdeformations %P(az,t) =
Ry TUp, P(x,0) = P(z), T € C3°(£2,5(3,R)). The corresponding stationarity condition is obtained from
%ltzol(g;, P(z,t)) = 0. This yields again three terms: the derivatives involving Wip(F, P) and II(P) are

straightforward, using the definition of the one parameter group, and yield

d R R d .
a‘t_OH(P(a:,t)) = (DpM(P(,1), - P(,1))

= (DHI(P(z,t), RpT(x,t) - Up(a,t)) = (EZDFH(?)UP,T(Q:J))

= (devsym (EZDFH(P)ﬁp) ,T(z, 1), (7.10)
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and
d —

A _ d— o
T o Wanp(F, P(@,1)) = (DgWanp(T, ), 2-0) + (Dgr, Wanp (U, Up), 7-Up)
— — « d o~ — o _
= 7<Dﬁme(U’ UP)’Pil[aP]Uv + <DﬁPme(U’ UP)aT(Irt)UP>

—— = — — — =T
= _<DUWmP(U7 UP): P IRPT(xz t) : UPU> + <Dﬁp me(U, UP)Up 7T(x7t)>

= ADgWaup(U, Up)U" U, " T(@,)U) + (D Wanp(U, Up)U , T(w, 1)) (7.11)
= (T, DyWup (T, Tp)U" Uy, T(w,8)) + (Dgp, Waap (T, )T , T, )
= —(devsym (ﬁ;lpﬁwmp(ﬁ,ﬁp)ﬁTﬁp) ,T(,t)) + (dev sym (Dﬁp Wonp (U, ﬁp)ﬁg) ,T(z, 1)) .
For the term containing the curvature part, we note
4 / Weurv (8p(z,1)) dV = i (0gi Weurv (R, 83, ﬁz),ﬁfv@pTﬁp.ei) + (EEP)TV(P@)) (7.12)
dt|;=0 Ja - P dt M3X3

3
=) (R Dgi Weury (85, 82, 83), V(TUp.¢;))

i=

= —(devsym (EZ; Div [Ep Dg, Wcurv(ﬁp)] ﬁp) T

M3x3

-

Since T' € C§°(9,sl(3,R)) is arbitrary, equation (2.18); follows. By splitting the possible variations of P €
SL(3,R), we have implicitly used the Cartan Lie-algebra decomposition: s((3,R) = so(3,R) @ p,p = {T €
sym(3) | tr [T] = 0}.

7.5 Validation of the Finite Element implementation

Analytical solutions can be worked out for some particular boundary value problems for the linearized elastic
micromorphic continuum. They can be used to check the Finite Element implementation presented in this work.
An example is given here for an infinite strip in direction 1 and with 0 < 2 < L, L being the thickness of the
strip. We look for displacement and microdeformation fields of the form:

u =wuz(xz2)e2, p=pii(x2)er ®er + pr2(z2)er ® e (7.13)

with respect to a Cartesian orhonormal basis (e1, e2,e3). As a result the non vanishing components of the strain
measures are

’ - ~ ’
€22 = Uy, £11 = —P11, £&22 = Uy — P22,
! !
Ki12 =pi1, K222 =paa, (7.14)

where the prime indicates differentiation with respect to the x> variable. The corresponding non-vanishing
stress components follow from application of the linearized elasticity constitutive equations (4.27):

o11 = Aub + g1(uh — p11 — p22) — 201p11, 022 = (A + 2)ub + g1 (uh — pr1 — pa2) + 291 (uh — pas),
o33 = Aub + g1(uh — p11 — pa2),
s11 = grub + bi(uy — p11 — p22) — (b2 + b3)p11, s33 = gruh + bi(up — p11 — p22),
s22 = (g1 + 2g2)uby + b1 (uy — p11 — paa) + (b2 + b3)(uh — p22). (7.15)
In the special case (4.29), the only non—vanishing components of the hyperstress tensors are
Si12 = Ap'y, Sazz = Aphy. (7.16)

The stress tensors must fulfill the linearized balance equation of momentum and generalized moment of momen-
tum (4.23) which reduce here to

Ohy + 85 =0, Siis+s11 =0, Shyy+822=0. (7.17)

These equations lead to the following linear system of differential equations for the unknowns (u2,pi1,p22):

0 = Aujy — bipyy — bpas,

0 = ApYy + brub — bp1y — bipaz,

0 = Aphy + buh — bip11 — bp2z , (7.18)
where the following notations have been introduced:

b=b1+by+bs, A=A+2a+2g1 +4g2+b,b1 =91 +b1, b=g1 +2g>+b.

When the displacement component u» is eliminated from the system (7.18), we get

0 = Apy] — Bp}; — Cphy =0,

0 = Aphy — Dpyy — Dphy =0, (7.19)
where the following notations were introduced:
1 b? 1 b2 1 bby
B=-0b-2), C==-(b-—=), D= =(by — —). 7.20
i) ) L= =) (7.20)
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Figure 5: Displacement and microdeformation profiles along the width of an infinite strip
subjected to a prescribed microdeformation p» = 0.01 at x> = 10mm. This test is used in the
validation procedure of the Finite Element implementation of linear micromorphic elasticity.
The used material parameters are given by (5.9).

There exists then a linear combination p of p1; and p22 such that
p" =w?p, (7.21)

provided that

wt—(B+C)W?-C?=0, (7.22)
which admits in general a single positive root. The solution of the system (7.18) is then a linear combination
of cosh(wzz) and sinh(wz2) functions. The integration constants are determined by the proper boundary
conditions. The figure 5 gives the functions ua(z2),p11(z2),p22(x2) over the segment [0,L] corresponding
to the following boundary conditions:

u2(0) = u2(L) =0, p11(0) =p11(L) =0, p22(0)=0, p22(L)=po (7.23)

The set of elastic constants used for this example is given by (5.9). The particular case L = 10mm, pg = 0.01
is illustrated in figure 5.
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