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Abstrat

We investigate a geometrially exat generalized ontinua of miromorphi type in the

sense of Eringen for the phenomenologial desription of metalli foams. The two-�eld

problem for the marodeformation ' and the "aÆne mirodeformation" P 2 GL

+

(3;R) in

the quasistati, onservative elasti ase is investigated in a variational form. The elasti

stress-strain relation is taken for simpliity as physially linear.

Depending on material onstants di�erent mathematial existene theorems in Sobolev-

spaes are given for the resulting nonlinear boundary value problems. These results extend

existene results obtained by the �rst author for the miro-inompressible ase P 2 SL(3;R)

and the miropolar ase P 2 SO(3;R).

In order to mathematially treat external loads for large deformations a new ondition,

alled bounded external work, has to be inluded, overoming the onditional oerivity

of the formulation. The observed possible lak of oerivity is related to frature of the

substruture of the metalli foam.

We identify the relevant e�etive material parameters by omparison with the linear

miromorphi model and its lassial response for large sale samples. We orroborate the

performane of the miromorphi model by presenting numerial alulations based on a

linearized version of the �nite-strain model and omparing the preditions to experimental

results showing a marked size e�et.
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1 Introdution

1.1 Theoretial aspets

This artile addresses the modelling and mathematial analysis of geometrially exat

1

gen-

eralized ontinua of miromorphi type in the sense of Eringen in the elasti ase. General

ontinuum models involving independent rotations have already been introdued by the

Cosserat brothers [19℄ at the beginning of the last entury.

Their development has been largely forgotten for deades only to be redisovered in the early

sixties [64, 39, 1, 27, 25, 74, 75, 41, 56, 69, 76℄. At that time theoretial investigations on non-

lassial ontinuum theories were the main motivation [51℄. Sine then, the Cosserat onept

has been generalized in various diretions, for an overview of these so alled miroontinuum

theories we refer to [26, 24, 8, 7, 9, 43, 53℄. Reently, in [13, 14℄, the miromorphi balane

equations derived by Eringen have been formally justi�ed as a more realisti ontinuum model

based on moleular dynamis and ensemble averaging.

The miromorphi model inludes in a natural way size e�ets, i.e. small samples behave

omparatively sti�er than large samples. These e�ets have reently reeived muh attention

in onjuntion with nano-devies and ellular strutures.

The mathematial analysis of general miromorphi solids in the stati ase is at present

restrited to the in�nitesimal, linear elasti models, see e.g. [46, 22, 44, 36, 37℄ for linear mi-

ropolar models and [49, 47, 48℄ for linear mirostreth models. The major diÆulty of the

mathematial treatment in the �nite-strain stati ase is related to the geometrially exat

formulation of the theory and the appearane of nonlinear manifolds neessary for the de-

sription of the mirostruture. In addition, oerivity turns out to be a deliate problem

related to the possible frature of the material. No general existene theorems for �nite mi-

romorphi models had been known until [60℄. The simpler, geometrially exat nonlinear

miropolar ase has been dealt with in [61℄.

This ontribution is organized as follows: �rst, in setion 1.2 we motivate the appliation of the

miromorphi model for the ontinuum-mehanial response of metalli foams. After that, we

review (setion 2) the basi onepts of the geometrially exat elasti miromorphi theories

with aÆne mirostruture in a variational ontext, i.e. we formulate the quasistati onservative

ase as a minimization problem. For simpliity we restrit attention to a marosopially

physially linear stress-strain relation. Then we provide the orresponding balane equations

and highlight the inuene of material parameters on the elliptiity of the fore balane equation.

More mathematially inlined readers may start diretly in the analytial setion 3. There,

the omplete problem statement of the geometrially exat elasti miromorphi ase in a

variational ontext is repeated. Sine the two-�eld variational problem is only onditionally

oerive we need to introdue a modi�ation for the applied loads as given in [60℄ in order

to ensure �rst that the funtional to be minimized is bounded below and seond that the

urvature ontribution an be ontrolled. This modi�ation of the loads, herein alled priniple

of "bounded external work", expresses nothing but the physial fat that by moving a solid

arbitrarily in a "real" fore �eld only a �nite amount of work an be gained. Suh a ondition

is, however, unneessary in either lassial non-polar nonlinear/linear elastiity or the linear

miromorphi model.

With this preparation existene of minimizers in suitable Sobolev-spaes is then established

using the diret methods of variations and a novel extended Korn's �rst inequality. The math-

ematial development extends the development given in [60℄. The investigation of the general

miromorphi ase with aÆne mirostruture allows one to appreiate the peuliarities of the

previously investigated miro-inompressible and miropolar subases more losely. The speial

role played by the Cosserat ouple modulus �



� 0 is already seen in the in�nitesimal strain

ase, where the two �elds of deformation and mirodeformation do not deouple even if �



= 0.

Then we swith to the in�nitesimal miromorphi elasti solid (setion 4) for whih we give

the variational formulation (setion 4.1) and the orresponding balane equations (setion 4.2).

Based on the linearized kinematis we determine e�etive material parameters in setion 4.3

and provide an identi�ation with the well known representation of Mindlin in setion 4.4,

ensuring automatially positive de�niteness of the loal strain energy.

In the �nal setion 5 we ompute the response of an in�nite miromorphi ontinuum with

a hole and identify it to the response of a ellular solid exhibiting strong size e�ets. We

1

Fully frame-indi�erent.
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ompare the response of a traditional Cosserat model and �



> 0 with the response of the

linear miromorphi model and �



= 0. The relevant notation is introdued in the appendix.

In the appendix we supply as well the oerivity inequality, the derivation of the nonlinear

balane equations and an analytial solution for a simpli�ed linear miromorphi boundary

value problem.

1.2 Appliation: ontinuum modelling of metalli foams.

Cellular solids are strongly heterogeneous materials made of two highly ontrasted onstituents,

namely air with the highest volume fration and at least one erami, polymeri or metalli

phase [38℄. Their properties are extremely diÆult to predit from the knowledge of the hard

phase ontent sine they strongly depend on the morphology of the hard skeleton. The omplex

mirostruture of a nikel foam an be seen in �gure 1 showing the distribution of open ells

of harateristi size lose to 500 �m. The edges of the faes of the polyhedral ells are nikel

struts with a triangular ross{setion.

The need for homogeneous e�etive models for the design of omponents and strutures made

of foam arises, beause onsidering all individual ells remains omputationally prohibitive. In

priniple, suh homogeneous equivalent models an be obtained by means of lassial homog-

enization tehniques whih are, however, diÆult to extend to the extreme morphologies of

ellular solids [42℄. Alternatively, material parameters of phenomenologial models an be iden-

ti�ed from overall tensile urves or/and strain �eld measurements [4℄. The substitution of

suh highly porous materials by a ontinuous homogeneous medium with an e�etive density,

though neessary for pratial appliations, is rather hallenging sine many important fea-

tures of the material behaviour an be lost. In partiular, size e�ets are observed in metalli

foams as a result of the interation between the size of the onsidered struture and that of

the mirostruture, namely the ell size [63, 28, 6℄. As a result, a ontinuum model should be

able to reprodue, in a ontinuous way, the priniple size e�ets. This is possible only if the

phenomenologial ontinuum model ontains some onstitutive intrinsi length sale(s) (here

denoted by L



). In partiular, models based on lassial Cauhy ontinua fail to reprodue

the size e�ets presented in this work. The Cosserat ontinuum is a possible andidate for

modelling ellular solids as reognized at several plaes [77, 67℄. However, it will turn out to be

quite inadequate when dealing with the size e�et addressed in this work. The reason lies in

the fat that ellular solids are highly ompressible materials so that size e�ets do not merely

arise from gradients of rotations (Cosserat approah) but also from miroextension gradients

[21℄. That is why the attention is drawn here to the miromorphi ontinuum whih is based

on a full mirodeformation tensor as additional degree of freedom. Another approah based

on strain gradient plastiity was proposed in [11℄ for the modelling of size e�ets in sandwih

beams ontaining aluminium foam.

We onsider metalli foams mainly for their relatively high elasti sti�ness in omparison

to available polymer foams [38℄. Even though the tensile urves of aluminium and nikel foams

exhibit a lear elasti domain, the present work an only be seen as a prelude to more realisti

nonlinear analyses within the framework of (�nite-strain) elastoplastiity. Indeed, the size e�et

modeled in this work is not linked to a spei� loal onstitutive behaviour of the metal struts.

It an be rather seen as a benhmark test for the ontinuum medium hosen for representing a

ellular solid.

We insist on the following prerequisite of the model for suessful appliations to strutural

omputations. Let us onsider a foam plate with a mahined ylindrial hole of radius R and

subjet it to tensile loading, the load being applied far from the hole. If the ell size l � R, a

simple lassial ontinuum model is able to orretly predit the strain �eld around the hole.

This has been demonstrated even in the nonlinear regime based on the omparison between

Finite Element simulations and strain �eld measurements in a nikel foam [4℄. Stress and strain

onentrations our at the equator where the rak leading to �nal frature initiates.

However, when the hole size beomes lose to the ell size, it is lear that suh e�et should

not be notieable any longer sine the hole beomes nothing but a pore similar to the other

ones. The transition from large hole behaviour up to the disappearane of any overall stress

onentration e�et in the ase of holes with R � l=2, was studied experimentally by strain

�eld measurements in [21℄.

A ontinuum model should be able to aount for suh a size e�et if it is to be trusted

for omputing omponents ontaining holes and nothes. We show in the omputational part

of the present work that the (in�nitesimal) miromorphi model is able to reprodue at least

4



Figure 1: Sanning Eletron Mirograph of a nikel foam for battery appliations. The piture

taken from [21℄ shows the distribution of ells and struts with harateristi sizes 500 �m and

70 �m respetively.

qualitatively this size e�et, even in the elasti regime, by solving numerially the problem of

a ylindrial hole in an in�nite matrix. Furthermore, the numerial analysis provides a way of

identifying the involved harateristi length.

2 A �nite-strain elasti miromorphi model with aÆne

mirostruture

Let us now motivate a �nite-strain miromorphi approah.

2

For our development we hoose

a stritly Lagrangean desription. We �rst introdue an independent kinematial �eld of mi-

rodeformations P 2 GL

+

(3;R) together with its right polar deomposition

P = R

p

� U

p

= polar(P ) � U

p

= R

p

e

�

p

3

U

p

; det[P ℄ = e

�

p

;

U

p

=

U

p

det[U

p

℄

1=3

2 SL(3;R) ; P =

P

det[P ℄

1=3

2 SL(3;R) ; (2.1)

with R

p

2 SO(3;R) and U

p

2 PSym(3;R) \ SL(3;R). The mirodeformations P are meant to

desribe the substruture of the material whih an rotate, streth, shear and shrink. We

refer to R

p

as mirorotations.

The miromorphi theory we deal with an formally be obtained by introduing the mul-

tipliative deomposition of the marosopi deformation gradient F into independent

mirodeformation P and the miromorphi, nonsymmetri right streth tensor U

(�rst Cosserat deformation tensor) with

F = P � U ; U = P

�1

F ; U 2 GL

+

(3;R); (2.2)

leading altogether to a miro-ompressible, miromorphi formulation.

3

2

Following Eringen [24, p.13℄ we distinguish the general miromorphi ase: P 2 GL

+

(3;R) = R

+

�

SL(3;R) with 9 additional degrees of freedom (dof); the miro-inompressible miromorphi ase:

P 2 SL(3;R) with 8 dof; the mirostreth ase: P 2 R

+

� SO(3;R) with 4 dof and the miropolar ase:

P 2 SO(3;R) with only 3 additional dof.

3

The strain measure U whih is indued by this de�nition orresponds to C

T

KL

presented in (1:5:11)

1

of [24,

p.15℄.
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The notionmiromorphi is prone to misunderstandings: the mirodeformation P must be

onsidered as a marosopi (average) quantity as the deformation gradient and the resulting

model is still phenomenologial. However, geometrial features of the real substruture to be

modelled determine the hoie of geometri manifolds for P . Sine the substruture of the

metalli foam an in priniple be rushed, the hoie P 2 GL

+

(3;R) is mandatory.

In the quasistati ase, the miromorphi theory is derived from a two-�eld variational

priniple by postulating the following "ation eulidienne" [19, p.156℄ I for the �nite maro-

sopi deformation ' : [0; T ℄�
 7! R

3

and the independent mirodeformation P : [0; T ℄�
 7!

GL

+

(3;R):

I('; P ) =

Z




W (F; P;D

x

P )��

f

(') ��

M

(P ) dV

�

Z

�

S

�

N

(') dS�

Z

�

C

�

M



(P ) dS 7! min : w.r.t. ('; P );

P

j

�

= P

d

; '

j

�

= g

d

(t) : (2.3)

The elastially stored energy density W depends on the marosopi deformation gradient

F as usual but in addition on the mirodeformation P together with their �rst order spae

derivatives, represented through the third order tensor D

x

P . Here 
 � R

3

is a domain with

boundary �
 and � � �
 is that part of the boundary, where Dirihlet onditions g; P

d

for

displaements and mirodeformations, respetively, an be presribed, while �

S

� �
 is a part

of the boundary, where tration boundary onditions in the form of the potential of applied

surfae fores �

N

are given with � \ �

S

= ;. The potential of external applied volume fore is

�

f

and �

M

takes on the role of the potential of applied external volume ouples.

4

In addition,

�

C

� �
 is the part of the boundary, where the potential of applied surfae ouples �

M



are

applied with � \ �

C

= ;. On the free boundary �
 n f� [ �

S

[ �

C

g orresponding natural

boundary onditions for ' and P apply, whih are obtained automatially in the variational

proess.

Variation of the ation I with respet to ' yields the traditional equation for balane of

linear momentum and variation of I with respet to P yields the additional balane of moment

of momentum.

The standard onlusion from frame-indi�erene (here: invariane of the free energy

under superposed rigid bodymotions (SRBM) not merely observer-invariane of the model

[73, 5, 57℄: 8Q 2 SO(3;R) : W (F; P;D

x

P ) = W (QF;QP;D

x

[QP ℄) leads to the redued

representation of the energy (speify Q = R

T

p

):

W (F; P ;D

x

P ) =W (R

T

p

F;R

T

p

P;R

T

p

D

x

P ) =W (U

p

U;U

p

; R

T

p

D

x

P ) =W

℄

(U;U

p

;K

p

;r�

p

) ; (2.4)

where for P = R

p

U

p

2 SL(3;R) we set

K

p

:= R

T

p

D

x

P =

�

R

T

p

r(P :e

1

); R

T

p

r(P :e

2

); R

T

p

r(P :e

3

)

�

2 M

3�3

� M

3�3

� M

3�3

; (2.5)

whih oinides with one spei� representation

5

of the third order right miropolar urva-

ture tensor (or torsion-urvature tensor, wryness tensor, seond Cosserat deformation tensor,

bending-twist tensor, et.), if P 2 SO(3;R).

For a geometrially exat (marosopially isotropi) theory we assume in the following an

additive split of the total free energy density into miromorphi loal streth (marosopi),

streth of the substruture (mirosopi) and miromorphi urvature part aording to

W

℄

= W

mp

(U)

| {z }

marosopi energy

+ W

foam

(U

p

; �

p

)

| {z }

mirosopi loal energy

+ W

urv

(K

p

;r�

p

)

| {z }

mirosopi interation energy

; (2.6)

4

appearing in a non-mehanial ontext e.g. as inuene of a magneti �eld on the polarization of a sub-

struture of the bulk.

5

Note that K

i

p

= R

p

T

r(P :e

i

) 62 so(3;R). Another representation of K

p

is given by K

p

:=

�

R

T

p

�

x

P ;R

T

p

�

y

P ;R

T

p

�

z

P

�

2 T(3). Sine �

x

(R

T

p

P ) = 0 for P = R

p

2 SO(3;R), it holds that K

p

2

so(3;R) � so(3;R) � so(3;R) in this ase. It is therefore possible to base all onsiderations of urvature in the

miropolar ase on a more ompat expression

b

K

p

:=

�

axl(R

T

p

�

x

R

p

)j axl(R

T

p

�

y

R

p

)j axl(R

T

p

�

z

R

p

)

�

2 M

3�3

.

This is the traditional miropolar approah, see e.g. [68, 30, 40℄. For us it is, however, not possible to use

b

K

p

,

sine we allow P 2 GL

+

(3;R).
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sine a possible oupling between U and K

p

for entrosymmetri bodies an be ruled out [62,

p.14℄.

2.1 The elasti marosopi miromorphi strain energy density

For a marosopi theory whih is relevant mainly for small elasti strain

6

we require that

W

mp

(U) is a non-negative isotropi quadrati form (physially linear). This should over already

many ases of physial interest. We assume moreover the marosopi streth energy density

normalized to

W

mp

(11) = 0; D

U

W

mp

(U)

j

U=11

= 0 : (2.7)

For the loal energy ontribution elastially stored in the ell-struture we assume the nonlinear

expression

W

foam

(U

p

) = �

m

k

U

p

det[U

p

℄

(1=3)

� 11k

2

| {z }

isohori substruture energy

+

�

m

4

�

(det[U

p

℄� 1)

2

+ (

1

det[U

p

℄

� 1)

2

�

| {z }

volumetri energy

= �

m

kU

p

� 11k

2

+

�

m

4

�

(e

�

p

� 1)

2

+ (e

��

p

� 1)

2

�

=:W

foam

(U

p

; �

p

) ; (2.8)

avoiding self-interpenetration in a variational setting, sineW

foam

!1 as det[P ℄ = det[U

p

℄! 0

if �

m

> 0.

7

The most general form of W

mp

onsistent

8

with the requirement (2.7) is

W

mp

(U) = �

e

k sym(U � 11)k

2

+ �



k skew(U � 11)k

2

+

�

e

2

tr

�

sym(U � 11)

�

2

; (2.9)

with material onstants �

e

; �



; �

e

suh that �

e

; 3�

e

+ 2�

e

; �



� 0 from non-negativity [24℄ of

(2.9). It is important to realize that �

e

; �

e

are e�etive elasti onstants whih in

general do not oinide with the lassial Lam�e onstants �; � > 0. Here, we take the

lassial Lam�e onstants to be obtained from standard experiments of suÆiently large samples

of the materials, suh that length sale e�ets do not interfere. The so-alled Cosserat ouple

modulus �



(rotational ouple modulus) remains for the moment unspei�ed, but we note that

�



= 0 is physially possible, sine the miromorphi reation stress D

U

W

mp

(U) � U

T

is

not symmetri in general, i.e. the problem does not deouple. For omparison, in [24, p.111℄

for the in�nitesimal miropolar ase, the elasti moduli are taken to be �

e

= � +

�

2

; �



=

�

2

; �

e

= �, but in this formula � an neither be regarded as one of the Lam�e onstants.

9 10

In

[20, 71, 72, 31, 23, 32℄ the abbreviation �



is used while in [40℄ it is �



= � and �



= G



in [50℄

for the miropolar theory.

By formal similarity with the lassial formulation, we may all �

m

; �

m

the mirosopi

Lam�e moduli of the aÆne substruture, whih an in priniple be determined from lassi-

al experiments or numerial omputation on the mirosale, e.g. dealing with a nikel-foam

struture, they are the Lam�e-onstants of the smallest possible representative volume element

(RVE) in the foam. In setion 4.3 it will be shown how to obtain onsistent values for �

e

; �

e

if

we know already the mirosopi values �

m

; �

m

and the marosopi onstants �; �.

2.2 The nonlinear elasti urvature energy density of the metalli

foam

The urvature energy is responsible for the size-dependent resistane of the ell-struture against

loal twisting and inhomogeneous volume hange. Thus inhomogeneous mirostrutural rear-

6

By this we mean that the part of the deformation whih is superposed onto the substruture deformation

has small elasti strains.

7

Note that

�

(det[U

p

℄� 1)

2

+ (

1

det[U

p

℄

� 1)

2

�

= 2 tr [U

p

� 11℄

2

+O(kU

p

� 11k

3

).

8

Mixed produts like hU � 11; U

p

� 11i and tr

�

U � 11

�

� tr

�

U

p

� 11

�

are exluded by non-negativity.

9

A simple de�nition of the Lam�e onstants in (the restrited ase of) miropolar elastiity is that they should

oinide with the lassial Lam�e onstants for symmetri situations. Equivalently, they are obtained by the

lassial formula � =

E

2(1+�)

; � =

E�

(1+�)(1�2�)

, where E and � are uniquely determined from uniform tration

experiments for suÆiently large samples.

10

Uniform tration and uniform ompression do not ativate rotations, hene the lassial identi�ation of the

Lam�e onstants is ahieved independent of �



. Uniform tration alone allows to determine the Young modulus

E and the Poisson ratio � [17, p.126℄. Contrary to [34, p.411℄ we do not see the possibility to de�ne a spei�

"miropolar Young modulus" or "miropolar Poisson ratio".

7



rangements are penalized. For the urvature term, to be spei�, we assume the general form

W

urv

(K

p

;r�

p

) = �

L

1+p



12

(1 + �

4

L

q



kK

p

k

q

)

�

�

5

k symK

p

k

2

+ �

6

k skewK

p

k

2

+ �

7

tr [K

p

℄

2

�

1+p

2

+ �

L

1+p



12

�

�

8

kr�

p

k

1+p

+ �

8

L



kr�

p

k

2+p

�

; (2.10)

where L



> 0 is setting an internal length sale with units of length. It is to be noted that

we have deoupled the urvature oming from inhomogeneous volume hanges and from pure

twisting. The values �

4

� 0; p > 0 and q � 0 are additional material onstants. The fator

1

12

appears only for onveniene and �

5

> 0; �

6

; �

7

� 0; �

8

> 0 should be satis�ed as a minimal

requirement. We mean tr [K

p

℄

2

= ktr [K

p

℄k

2

by abuse of notation. This hoie for W

urv

does

not presuppose any knowledge of the magnitude of the miromorphi urvature in the material

and is non-degenerate in the origin kK

p

k = 0; kr�

p

k = 0.

Some are has to be exerted in the �nite-strain regime: W

urv

should preferably be oerive

in the sense that we impose pointwise

9 

+

> 0 9 r > 1 : 8K

p

2 T(3) 8� 2 R

3

: W

urv

(K

p

; �) � 

+

k(K

p

; �)k

r

; (2.11)

or less demanding

9 r > 1 :

W

urv

(K

p

; �)

k(K

p

; �)k

r

!1 as k(K

p

; �)k ! 1 ; (2.12)

whih implies neessarily �

6

; �

8

> 0 in (2.10). Observe that our formulation of the miromor-

phi urvature tensor is mathematially onvenient in the sense that kK

p

k = kR

T

p

D

x

Pk = kD

x

Pk

provides pointwise ontrol of all �rst derivatives of P independent of the values of P itself.

11

Note that the presented formulation still inludes a �nite Cosserat miropolar model as a

speial ase, if we set P = R 2 SO(3;R). In this fashion, we have the following orrespondene

of limit problems:

�

m

!1 ) miro-inompressible model: manifold SL(3;R) ;

�

m

!1 ) mirostreth model: manifold R

+

� SO(3;R) ; (2.13)

�

m

; �

m

!1 ) miropolar model: manifold SO(3;R) ;

�

m

; �

m

; �



!1 ) higher (seond) gradient ontinua :

2.3 The miromorphi balane equations

For the hoies we have made we supply the resulting material form of the highly nonlinear

�eld equations on the referene on�guration (with �

4

= 0; p = 1) whih an be obtained after

some algebrai manipulations, see setion 7.3 (We have gathered the inuene of the external

potentials in �(x; '; P )):

0 = Div

�

S

1

(F; P ) + 2�



P

�T

skew(P

�1

F )

�

+D

'

�(x; '(x); P )

R

3

; balane of fores ;

0 = skew(U

�1

p

D

U

W

mp

(U)U

T

U

T

p

) + skew

�

R

T

p

Div

�

R

p

D

K

p

W

urv

(K

p

;r�

p

)

�

U

p

�

+ skew

�

D

K

p

W

urv

(K

p

;r�

p

)K

T

p

�

+ skew

�

R

T

p

D

P

�(x; '(x); P )U

p

�

M

3�3

;

rotational momentum ;

0 = dev sym

�

U

�1

p

D

U

W

mp

(U)U

T

U

T

p

�

� dev sym

�

D

U

p

W

foam

(U

p

; �

p

)U

T

p

�

(2.14)

+ dev sym

�

R

T

p

Div

�

R

p

D

K

p

W

urv

(K

p

;r�

p

)

�

U

p

�

+ dev sym

�

R

T

p

D

P

�(x; '(x); P )U

p

�

;

volumetri momentum ;

0 = tr

h

U

�1

p

D

U

W

mp

(U )U

T

U

T

p

i

�D

�

p

W

foam

(U

p

; �

p

) + DivD

r
�

p

W

urv

(K

p

;r�

p

) ; (2.15)

isohori momentum ;

11

This is not true for other possible basi invariant urvature expressions like P

�1

D

x

P or P

T

D

x

P or F

T

D

x

P ,

see Eringen [24, 1.5.4,1.5.11℄.

8



where S

1

is the �rst Piola-Kirhho� stress (for �



= 0) with the funtional form

S

1

(F; P ) = P

�T

�

2� sym

�

P

�1

F � 11

�

+ � tr

�

P

�1

F � 11

�

11

�

; (2.16)

similar to [59, (P3)℄ and D

K

p

W

urv

(K

p

) is the material miromorphi moment tensor (or

ouple-stress tensor). Note that D

R

p

W

foam

(U

p

; �

p

) = 0, leaving no ontribution of the loal

foam energy in the rotational momentum equation.

In our subsequent variationally based mathematial development the nonlinear balane

equations will not play a prominent role. They beome more important, however, for our

numerial alulations.

Remark 2.1

Observe the hain of symmetry onditions for isohori marosopi relative elasti strain en-

ergies W

mp

(U):

U 2 Sym) D

U

W

mp

(U) 2 Sym) D

U

W

mp

(U)U

T

2 Sym, S

2

(F; P ) 2 Sym ;

S

2

(F; P ) := F

�1

D

F

W

mp

(P

�1

F ) 2 Sym : (2.17)

The reverse impliations are in general false.

2.4 The miromorphi miro-inompressible balane equations

In the speial ase P = P 2 SL(3;R); �

p

� 0, the balane equations have to inorporate the

nonlinear onstraint det[P ℄ � 1. This an be done by suitably restriting the possible variations

of P , see (7.6) and set W

foam

(U

p

) :=W

foam

(U

p

; 0)

0 = Div

h�

S

1

(F; P ) + 2�



P

�T

skew(P

�1

F )

�i

+D

'

�(x; '(x); P )

R

3

;

0 = skew(U

�1

p

D

U

W

mp

(U)U

T

U

T

p

) + skew

�

R

T

p

Div

�

R

p

D

K

p

W

urv

(K

p

)

�

U

p

�

+ skew

�

D

K

p

W

urv

(K

p

)K

T

p

�

+ skew

�

R

T

p

D

P

�(x; '(x); P )U

p

�

M

3�3

;

0 = dev sym

�

U

�1

p

D

U

W

mp

(U)U

T

U

T

p

�

� dev sym

�

D

U

p

W

foam

(U

p

)U

T

p

�

(2.18)

+ dev sym

�

R

T

p

Div

�

R

p

D

K

p

W

urv

(K

p

)

�

U

p

�

+ dev sym

�

R

T

p

D

P

�(x; '(x); P )U

p

�

:

A similar form of the unonventional

12

balane of angular momentum equation has been given

in [7, p.63℄ for the miropolar ase.

2.5 Constitutive onsequenes of the value for the Cosserat ouple

modulus

Looking at (2.9) with �



> 0 we see that the impliation of this hoie for �



at a �rst glane

is an innouous rise in the marosopi elasti strain energy W

mp

(U), if R

p

6= polar(F ), but

R

p

is generially assumed to be independent of the ontinuum rotations polar(F ). The hoie

�



> 0 ats like a loal "elasti spring" between both ontinuum rotations and mirorotations.

Let us onsider the mathematial impliations of �



= 0 and 0 < �



� �, respetively,

in more detail. It is readily veri�ed that for the elastiity tensors (di�erentiating the streth

energy density W

mp

(U) at �xed P w.r.t. F )

�



> 0 : 8H 2 M

3�3

:D

2

F

W

mp

(P

�1

F ):(H;H) � 2�



kP

�1

Hk

2

� 2�



�

min

(P

�T

P

�1

) kHk

2

;

�



= 0 : 8H 2 M

3�3

:D

2

F

W

mp

(P

�1

F ):(H;H) � 2� k

1

2

(P

�1

H +H

T

P

�T

)k

2

: (2.19)

12

Sine we have not transformed the tensor equation into a related vetor format, whih is usually preferred

in the miropolar ase. Following [7℄ we an identify an external volume ouple b



in the equilibrium vetor-

format with axl(skew(R

T

p

M)). Then b



is a volume ouple whih is not a dead load. We note that a term

skew

�

D

K

p

W

urv

(K

p

)K

T

p

�

does not diretly appear in derivations based on

b

K

p

sine e.g.

b

K

1

p

= axl(R

T

p

�

x

R

p

)

and variation along a one-parameter group of rotations yields

Æ

b

K

1

p

= axl((AR

p

)

T

�

x

R

p

+ R

T

p

�

x

[AR

p

℄) = axl(�R

T

p

A�

x

R

p

+ R

T

p

(�

x

A)R

p

+ R

T

p

A�

x

R

p

) = axl(R

T

p

(�

x

A)R

p

) :

This is not at variane with (2.18)

2

sine di�erentiation is arried out di�erently. Observe that

skew

�

D

K

p

W

urv

(K

p

)K

T

p

�

= 0 if �

5

= �

6

; �

7

= 0, i.e. if ouple stresses are proportional to the urvature

tensor.

9



Hene the hoie �



> 0 leads to uniform onvexity of W

mp

(P

�1

F ) w.r.t. F if P 2

L

1

(
;GL

+

(3;R)) and unonditional elasti stability on the marosopi level: regard-

less of what spatial distribution of mirodeformations P (x) is given, the marosopi equation

of balane of linear momentum would then be uniquely solvable and this equation is insensi-

tive to any deterioration of the spatial features of the mirostruture as long as P is merely

essentially bounded. Uniform onvexity is diÆult to aept from a onstitutive point of view,

sine uniform onvexity is impossible for a geometrially exat desription in the framework of

a lassial marosopi ontinuum but lear from the above disussion: the additional elasti

spring between miro- and ontinuum rotation extremely rigidi�es the material and ompletely

hanges the type of the mathematial boundary value problem in omparison with the lassial

�nite elastiity theory.

Fortunately, suh a far reahing unsatisfatory onlusion does not hold for zero Cosserat

ouple modulus �



= 0, in whih ase we have for �; � 2 R

3

:

D

2

F

W

mp

(P

�1

F ):(� 
 �; � 
 �) = �

�

kP

�1

� 
 �k

2

+ hP

�1

� 
 �; � 
 P

�1

�i

�

= �

�

kP

�1

� 
 �k

2

+ hP

�1

�; �i

2

�

� � kP

�1

� 
 �k

2

; (2.20)

whih shows the physially muh more appealing inequality

D

2

F

W

mp

(P

�1

F ):(� 
 �; � 
 �) � ��

min

(P

�T

P

�1

) k�k

2

� k�k

2

; (2.21)

expressing nothing but uniform Legendre-Hadamard elliptiity of the aousti-tensor with

elliptiity onstant ��

min

(P

�T

P

�1

). As a result we see that for large mirostrutural

expansion P , the elliptiity onstant may deteriorate, i.e. the larger the foam

is extended, the weaker it gets while the ompressed metalli foam gets sti�er.

The Legendre-Hadamard ondition has the most onvining physial basis [2, p.461℄ beause it

implies the reality of wave speeds and the Baker-Eriksen inequalities (stress inreases

with strain, [52, p.19℄).

13

3 Mathematial analysis

3.1 Statement of the �nite elasti miromorphi problem in varia-

tional form

Let us gather the obtained three-�eld problem posed in a variational form. The task is to

�nd a triple ('; P ; �

p

) : 
 � R

3

7! R

3

� SL(3;R) � R of marosopi deformation ' and

independent mirodeformation P = e

�

p

3

P , minimizing the energy funtional I with

I('; P ; �

p

) =

Z




W

mp

(P

�1

r') +W

foam

(U

p

; �

p

) +W

urv

(R

T

p

D

x

P ;r�

p

)��

f

(')� �

M

(P ) dV

�

Z

�

S

�

N

(') dS�

Z

�

C

�

M



(P ) dS 7! min : w.r.t. ('; P ; �

p

), (3.1)

under the onstraints

U

p

= R

T

p

P ; R

p

= polar(P ); U = P

�1

r' ; P = e

�

p

3

P ; (3.2)

and the Dirihlet boundary onditions

'

j

�

= g

d

; R

p

j

�

= R

p

d

; U

p

j

�

= U

p

d

) P

j

�

= R

p

d

U

p

d

; �

p

j

�

= �

p

d

: (3.3)
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The preferred value �



= 0 for the marosopi ase an as well be motivated by the following onsideration:

Consider the Green strains F

T

F � 11 = (U � 11)

T

(U � 11) + 2 sym(U � 11). Therefore

�

4

kF

T

F � 11k

2

=

�k symU � 11k

2

+O(kU � 11k

3

). Hene �



= 0 provides the orret �rst order approximation to a lassial St.

Venant-Kirhho� material. With �



= 0 we exlusively reover the fat of the lassial ontinuum theory that

W isotropi implies symmetry of the Biot stress tensor: D

U

W (U) 2 Sym. If we expand R = 11 + A+ : : : with

A 2 so(3) and write F = 11 +ru, then the miropolar e�ets disappear to �rst order for �



= 0. In this sense,

�



= 0 is lose to lassial elastiity.

10



Here, the onstitutive assumptions on the densities are taken to be

W

mp

(U) = �

e

k sym(U � 11)k

2

+ �



k skew(U)k

2

+

�

e

2

tr

�

sym(U � 11)

�

2

;

W

foam

(U

p

; �

p

) = �

m

kU

p

� 11k

2

+

�

m

4

�

(e

�

p

� 1)

2

+ (e

��

p

� 1)

2

�

; (3.4)

W

urv

(K

p

;r�

p

) = �

L

1+p



12

(1 + �

4

L

q



kK

p

k

q

)

�

�

5

k symK

p

k

2

+ �

6

k skewK

p

k

2

+ �

7

tr [K

p

℄

2

�

1+p

2

+ �

L

1+p



12

�

�

�

8

kr�

p

k

1+p

+ �

8

L



kr�

p

k

2+p

�

;

K

p

= R

T

p

D

x

P =

�

R

T

p

r(P :e

1

); R

T

p

r(P :e

2

); R

T

p

r(P :e

3

)

�

; the third order urvature tensor :

The total elastially stored energy W = W

mp

+W

foam

+W

urv

depends on the deformation

gradient F = r', and the mirodeformations P together with their spae derivatives. Here


 � R

3

is a domain with boundary �
 and � � �
 is that part of the boundary, where Dirihlet

onditions g

d

; P

d

for displaements and mirodeformations, respetively, are presribed, while

�

S

� �
 is a part of the boundary, where tration boundary onditions in the form of the

potential of applied surfae fores �

N

are given with � \ �

S

= ;. In addition, �

C

� �
 is

the part of the boundary where the potential of external surfae ouples �

M



are applied with

�\�

C

= ;. On the free boundary �
nf�[�

S

[�

C

g orresponding natural boundary onditions

for ('; P ) apply. The potential of the external applied volume fore is �

f

and �

M

takes on the

role of the potential of applied external volume ouples.

The parameters �

e

; �

e

> 0 govern the relative elasti deformation, �



� 0 is alled

the Cosserat ouple modulus, �

m

; �

m

> 0 are the Lam�e onstants of a representative

volume element (RVE) of the substruture and L



> 0 introdues an internal length whih

is harateristi for the material, e.g. related to the ell size of the metalli foam. The

parameters �

i

; i = 1; ::; 8 are dimensionless weighting fators. If not stated otherwise, we

assume that �

5

> 0; �

6

> 0; �

8

> 0; �

7

� 0.

A �nite Cosserat miropolar theory is inluded in the formulation (3.1),(3.2),(3.4) by re-

striting it to P 2 SO(3;R) or setting �

m

; �

m

= 1, formally. Similarly, for �

m

= 1 only we

reover the miro-streth formulation with P 2 R

+

� SO(3;R) and for �

m

=1, we reover the

miro-inompressible formulation ase P 2 SL(3;R).

3.2 The external potentials

Traditionally, in the onservative, dead load ase one would have

�

f

(') = hf; 'i ; �

M

(P ) = hM;P i ; �

N

(') = hN;'i ; �

M



(P ) = hM



; P i ; (3.5)

for the potentials of applied loads with given funtions f 2 L

2

(
;R

3

); M 2 L

2

(
;M

3�3

); N 2

L

2

(�

S

;R

3

); M



2 L

2

(�

C

;M

3�3

).

For our treatment, we need to assume, however, that the external potentials, desribing

the on�guration dependent applied loads, are ontinuous with respet to the topology of

L

1

(
); L

1

(�

S

); L

1

(�

C

), respetively and satisfy in addition the ondition

9C

+

> 0 8' 2 L

1

(
;R

3

); P 2 L

1

(
;GL

+

(3;R)) :

Z




�

f

(')��

M

(P ) dV;

Z

�

S

�

N

(') dS;

Z

�

C

�

M



(P ) dS � C

+

: (3.6)

While ontinuity is satis�ed e.g. for the dead load ase �

f

(') = hf; 'i and f 2 L

1

(
),

the seond ondition (3.6) restrits attention to "bounded external work". If we want to

desribe a situation orresponding to the lassial dead load ase, we ould take

�

f

(') =

1

1 + [k'(x)k �K

+

℄

+

hf(x); '(x)i ; (3.7)

for some large positive onstant K

+

and [�℄

+

the positive part of a salar argument. It suÆes

now that f 2 L

1

(
), then

R




�

f

(') dV � C

+

, independent of ' 2 L

1

(
).

The new ondition (3.6) an be rephrased as saying that only a �nite amount of work

an be performed against the external loads, regardless of the magnitude of translation and

mirodeformation. This is ertainly true for any real �eld of applied loads.

14

14

In lassial �nite elastiity, suh a ondition is not neessary, sine the elasti energy density is assumed a

11



3.3 The di�erent ases

We distinguish three di�erent situations:

I: �



> 0; �

4

� 0; p � 1; q � 0, elasti maro-stability, loal �rst order miromorphi. Fra-

ture exluded.

II: �



= 0; �

4

> 0; p � 1; q > 1, elasti pre-stability, nonloal seond order miromorphi,

marosopi speimens, in a sense lose to lassial elastiity, zero Cosserat ouple mod-

ulus. Frature exluded.

III: �



= 0; �

4

= 0; 0 < p � 1; q = 0, elasti pre-stability, nonloal seond order miromor-

phi theory, marosopi speimens, in a sense lose to lassial elastiity, zero Cosserat

ouple modulus. Sine possibly ' 62 W

1;1

(
;R

3

), due to lak of elasti oerivity, inlud-

ing frature in multiaxial situations.

We refer to 0 < p < 1; q � 0 as the sub-ritial ase, to p = 1; q � 0 as the ritial ase

and to p � 1; q > 1 as the super-ritial ase. We will mathematially treat the �rst two

ases I/II.

3.4 Existene for the geometrially exat elasti miromorphi model

The following results extend the existene theorems for geometrially exat miromorphi miro-

inompressible elasti solids given previously.

15

Theorem 3.1 (Existene for elasti miromorphi model: ase I.)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

)

and P

d

2 W

1;1+p

(
;GL

+

(3;R)). Moreover, let the applied external potentials satisfy (3.6).

Then (3.1) with material onstants onforming to ase I and p > 1 admits at least one mini-

mizing solution triple ('; P ; �

p

) 2 H

1

(
;R

3

)�W

1;1+p

(
; SL(3;R)) �W

1;2+p

(
;R).

Proof. We apply the diret methods of variations. The inuene of the external potentials is

gathered in writing �('; P ). With the presription of (g

d

; P

d

) it is lear that I <1 for exatly

this pair of funtions after deomposing P

d

in its rotational, isohori streth and volumetri

streth. Sine (3.6) is assumed, it is also lear that I is bounded below for all ' 2 L

1

(
;R

3

)

and P 2 L

1

(
;GL

+

(3;R)).

We may therefore hoose dereasing (in�mizing) sequenes of triples

('

k

; P

k

; �

k

p

) 2 H

1

(
;R

3

)�W

1;1+p

(
; SL(3;R)) �W

1;2+p

(
;R) ; (3.8)

suh that

lim

k!1

I('

k

; P

k

; �

k

p

) = inf

' 2 L

1

(
;R

3

);

P 2 L

1

(
; SL(3;R));

�

p

2 L

1

(
;R)

I('; P ; �

p

) : (3.9)

The total urvature ontribution W

urv

along this sequene is bounded independent of the

number k again on aount of (3.6).

16

Observe now that the miromorphi urvature term K

p

ontrols P 2 W

1;1+p

(
; SL(3;R)),

sine kK

p

k = kR

T

p

D

x

Pk = kD

x

Pk, pointwise, the assumption that �

5

; �

6

> 0 and the appli-

ation of Poinar�es inequality with the Dirihlet onditions on P . Moreover, sine �

8

> 0 we

priori to verify an unquali�ed oerivity ondition [65℄ of the type W (F ) � 

+

kFk

q

� C; q > 1, whih,

together with Dirihlet onditions and Poinar�e's inequality ontrols the L

q

(
) part of the deformation.

Fields satisfying (3.6) are e.g. the gravity �eld of a �nite mass, the eletri �eld of a �nite harge et.

Remark as well that (3.6) does not exlude loal, integrable singularities. The traditional dead load ase in

(3.5) must rather be interpreted as a linearization of the �nite external potential: write '(x) = x+ u(x), then

�(x;'(x)) = �(x; x+ u(x)) = �(x; x) + hD

'

�(x; x); ui+ : : : = onst:+ hf; ui+ : : : with f(x) = D

'

�(x; x). We

are not aware of a previous introdution of a ondition similar to (3.6).

15

The proposed �nite results determine the marosopi deformation ' 2 H

1

(
;R

3

) and nothing more. This

means that disontinuous marosopi deformations by avities or the formation of holes are not exluded

(possible mode I failure). If �



> 0, frature is e�etively ruled out, whih is unrealisti.

16

If (3.6) does not hold, one might have in�mizing sequenes with unbounded urvature. The geometrially

exat miromorphi formulation is only onditionally oerive.

12



obtain boundedness of �

k

p

2 W

1;2+p

(
;R), again independent of k 2 N. This result remains

true already without spei�ation of Dirihlet boundary onditions for �

p

sine the term e

�

p

estimates any L

q

-norm of �

p

. For p > 1 Sobolev's embedding shows that we an hoose a

subsequene, not relabelled, suh that strongly

�

k

p

!

b

�

p

2 C

0

(
;R) k !1 : (3.10)

Now we may extrat a subsequene again denoted by P

k

onverging strongly in L

1+p

(
) to an

element

b

P 2 W

1;1+p

(
;M

3�3

) sine p > 0 by assumption. Moreover, a further subsequene

an be found, suh that the urvature tensor K

p;k

onverges weakly to some



K

p

in L

1+p

(
).

For 1 < (1 + p) < 3 the embedding

W

1;1+p

(
) � L

3(1+p)

3�(1+p)

�Æ

(
) ; Æ � 0 ; (3.11)

for three spae dimensions is ompat for Æ > 0 and shows that the subsequene P

k

an be

hosen suh that it onverges indeed strongly in the topology of L

6�Æ

(
), sine we have moreover

p � 1, whih implies immediately that

b

P 2 W

1;1+p

(
; SL(3;R)). If 1+ p � 3 we an use better

embeddings to have the same onlusion.

Beause �



> 0, we have the simple algebrai estimate

W

mp

(P

�1;k

F

k

) � �



kP

�1;k

F

k

� 11k

2

= �



�

kP

�1;k

F

k

k

2

� 2hP

�1;k

F

k

; 11i+ 3

�

� �



�

kU

k

k

2

� 2

p

3kU

k

k+ 3

�

; (3.12)

implying the boundedness of the miromorphi streth U

k

= P

�1;k

F

k

in L

2

(
). Moreover, by

H�older's inequality, we obtain

kF

k

k

s;


= kP

k

P

�1;k

F

k

k

s;


� kP

k

k

r

1

;


kP

�1;k

F

k

k

r

2

;


;

1

s

=

1

r

1

+

1

r

2

;

= ke

�

k

p

3

P

k

k

r

1

;


kP

�1;k

F

k

k

r

2

;


;

� sup

x2


e

�

k

p

(x)

3

kP

k

k

r

1

;


kP

�1;k

F

k

k

r

2

;


: (3.13)

Sine P

k

is bounded in L

6

(
) (3.11) and P

�1;k

F

k

is bounded in L

2

(
) and �

k

p

is strongly

onverging in C

0

(
;R) (3.10), we may hoose r

1

= 6; r

2

= 2 to obtain boundedness of F

k

= r'

k

in L

s

(
); s =

3

2

. Using the Dirihlet boundary onditions for '

k

and the generalized Poinar�e

inequality we get

k'

k

k

W

1;s

(
;R

3

)

� Const: (3.14)

By the boundedness of '

k

in W

1;s

(
;R

3

) we may extrat a subsequene, not relabelled, suh

that '

k

* '̂ 2 W

1;s

(
;R

3

). Furthermore, we may always obtain a subsequene of ('

k

; P

k

)

suh that U

k

= P

�1;k

F

k

onverges weakly in L

2

(
) to some element

b

U on aount of the

boundedness of the streth energy and �



> 0.

We have already shown that for p � 1 the sequene P

k

onverges indeed strongly in L

r

(
)

to an element

b

P 2 W

1;1+p

(
; SL(3;R)). Therefore

P

�1;k

=

1

det[P

k

℄

AdjP

k

!

1

det[

b

P ℄

Adj

b

P =

b

P

�1

inL

r

2

(
; SL(3;R)) ;

r =

3(1 + p)

(3� (1 + p))

� Æ ; if 1 < (1 + p) < 3 ; (3.15)

and we obtain for p > 1 that P

�1;k

!

b

P

�1

strong in L

3+

~

Æ

(
; SL(3;R));

~

Æ > 0. Moreover,

P

�1;k

= e

�

�

k

p

3

P

�1;k

!

b

P

�1

= e

�

b

�

p

3

b

P

�1;k

; (3.16)

on aount of the strong onvergene of �

k

p

. Thus P

�1;k

F

k

onverges ertainly weakly to

b

P

�1

F

in L

1

(
) on aount of H�older's inequality (sharp). The weak limit in L

1

(
) must oinide

with the weak limit of U

k

in L

2

(
). Hene the identity

b

U =

b

P

�1

r'̂ holds.

13



Sine the mapping polar : GL

+

(3;R) 7! SO(3;R) is a bounded ontinuous funtion on

invertible matries with positive determinant, it generates a nonlinear superposition operator

polar(�) : L

r

(
;GL

+

(3;R)) 7! L

r

(
; SO(3;R)) ; (3.17)

whih, moreover, is ontinuous [3, p.101,Th.3.7℄. Thus R

k

= polar(P

k

) !

b

R = polar(

b

P )

strongly in L

r

(
) and a similar argument as for the sequene U

k

shows that

K

p;k

*



K

p

= polar(

b

P )

T

D

x

b

P ; (3.18)

in L

1+p

(
), weakly. Again on aount of P

k

!

b

P in L

r

(
; SL(3;R)) we infer now

U

k

p

=

q

P

k;T

P

k

!

q

b

P

T

b

P =

b

U

p

in L

r

(
; SL(3;R)) ; (3.19)

beause the map M

3�3

7! PSym(3); X 7!

p

X

T

X is ontinuous and has linear growth.

Sine the total energy is onvex in (U;U

p

;K

p

;r�

p

) and ontinuous w.r.t. �

p

, and the

external potential � is ontinuous w.r.t. strong onvergene in L

1

(
) on aount of (3.6), we

get

I('̂;

b

P;

b

�

p

) =

Z




W

mp

(

b

U) +W

foam

(

b

U

p

;

b

�

p

) +W

urv

(



K

p

;r

b

�

p

) dV ��('̂;

b

P )

� lim inf

k!1

Z




W

mp

(U

k

) +W

foam

(U

k

p

) +W

urv

(K

p;k

;r�

k

p

) dV ��('

k

; P

k

)

= lim

k!1

I('

k

; P

k

; �

k

p

) = inf

' 2 L

1

(
;R

3

);

P 2 L

1

(
; SL(3;R));

�

p

2 L

1

(
;R)

I('; P ; �

p

) ; (3.20)

whih implies that the limit triple ('̂;

b

P ;

b

�

p

) is a minimizer. Note that the limit mirodeforma-

tions P = e

�

p

3

R

p

U

p

may fail to be ontinuous, if p � 2 (non-existene or limit ase of Sobolev

embedding). Moreover, uniqueness annot be asertained, sine SL(3;R) is a nonlinear man-

ifold (and the onsidered problem is indeed highly nonlinear), suh that onvex ombinations

in SL(3;R) may leave SL(3;R). Sine the funtional I is di�erentiable, the minimizing pair

is a stationary point and therefore a solution of the �eld equations (2.18). Note again that

the limit mirodeformations may fail to be ontinuously distributed in spae. That

under these unfavourable irumstanes a minimizing solution may nevertheless be found is

entirely due to �



> 0 and p > 1. The proof simpli�es onsiderably in the geometrially exat

Cosserat miropolar ase P 2 SO(3;R), in whih ase p � 1 is already suÆient. �

We ontinue with the super-ritial ase whih is more appropriate for marosopi situations

and loser to lassial elastiity.

Theorem 3.2 (Existene for elasti miromorphi model: ase II.)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

)

and P

d

2 W

1;1+p+q

(
; SL(3;R)). Moreover, let the applied external potentials satisfy (3.6).

Then (3.1) with material onstants onforming to ase II admits at least one minimizing solution

triple ('; P ; �

p

) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SL(3;R)) �W

1;2+p

(
;R).

Proof. We repeat the arguments of ase I. However, the boundedness of in�mizing sequenes

is not immediately lear. Boundedness of the mirodeformations P

k

holds true in the spae

W

1;1+p+q

(
; SL(3;R)) with 1 + p+ q > N = 3, hene we may extrat a subsequene, not rela-

belled, suh that P

k

onverges strongly to

b

P 2 C

0

(
; SL(3;R)) in the topology of C

0

(
; SL(3;R))

on aount of the Sobolev-embedding theorem. Sine P

�1;k

= e

�

�

k

p

3

P

�1;k

, we obtain as well

that

P

�1;k

!

b

P

�1

2 C

0

(
;GL

+

(3;R)) ; (3.21)

on aount of strong onvergene of �

k

p

.

Along suh strongly onvergent sequene of mirodeformations, the sequene of deformations

'

k

is also bounded in H

1

(
;R

3

). However, this is not due to a basially simple estimate as in

14



ase I, but only true after integration over the domain: at fae value we only ontrol ertain

mixed symmetri expressions in the deformation gradient. Let us de�ne u

k

2 H

1;2

(!;R

3

) by

'

k

= g

d

+ ('

k

� g

d

) = g

d

+ u

k

. Then we have

1 >I(g

d

; P

d

; �

p

d

) >

Z




W

mp

(U

k

) +W

foam

(U

k

p

; �

k

p

) +W

urv

(K

p;k

;r�

k

p

) dV ��('

k

; P

k

)

�

Z




W

mp

(U

k

) dV ��('

k

; P

k

) �

Z




W

mp

(U

k

) dV � C

�

Z




�

e

4

kP

�1;k

r'

k

+r'

T

k

P

�T;k

� 211k

2

dV � C (3.22)

=

Z




�

e

4

kP

�1;k

(ru

k

+rg

d

) + (ru

k

+rg

d

)

T

P

�T;k

� 211k

2

dV � C

=

Z




�

e

4

kP

�1;k

ru

k

+ru

T

k

P

�T;k

k

2

+

2�

e

4

hP

�1;k

ru

k

+ru

T

k

P

�T;k

; P

�1;k

rg

d

+rg

T

d

P

�T;k

� 211i

+

�

e

4

kP

�1;k

rg

d

+rg

T

d

P

�T;k

� 211k

2

dV � C

�

Z




�

e

4

kP

�1;k

ru

k

+ru

T

k

P

�T;k

k

2

�

�

e

4

�

" kP

�1;k

ru

k

+ru

T

k

P

�T;k

k

2

+

1

"

kP

�1;k

rg

d

+rg

T

d

P

�T;k

� 211k

2

�

+

�

e

4

kP

�1;k

rg

d

+rg

T

d

P

�T;k

� 211k

2

dV � C

�

Z




�

e

8

kP

�1;k

ru

k

+ru

T

k

P

�T;k

k

2

�

�

e

2

kP

�1;k

rg

d

+rg

T

d

P

�T;k

� 211k

2

+

�

e

4

kP

�1;k

rg

d

+rg

T

d

P

�T;k

� 211k

2

dV � C

=

Z




�

e

8

kP

�1;k

ru

k

+ru

T

k

P

�T;k

k

2

�

�

e

4

kP

�1;k

rg

d

+rg

T

d

P

�T;k

� 211k

2

dV � C

�

Z




�

e

8

kP

�1;k

ru

k

+ru

T

k

P

�T;k

k

2

dV � C

=

Z




�

e

8

k(P

�1;k

�

b

P

�1

+

b

P

�1

)ru

k

+ru

T

k

(P

�1;k

�

b

P

�1

+ P

�1

)

T

k

2

dV � C

�

Z




�

e

8

k

b

P

�1

ru

k

+ru

T

k

b

P

�T

k

2

| {z }

ombinations of derivatives

dV � C

2

k

b

P

�1

� P

�1;k

k

1

ku

k

k

2

H

1;2

(
)

� C

� (

�

e

8



K

� C

2

k

b

P

�1

� P

�1;k

k

1

) ku

k

k

2

H

1;2

(
)

� C ;

where we used Young's inequality with " =

1

2

, made use of the appropriate Dirihlet boundary

onditions for u

k

and applied the extended Korn's inequality (7.1) in the improved version

of [66℄ yielding the positive onstant 

K

for the ontinuous mirodeformation

b

P

�1

. Sine

k

b

P

�1

� P

�1;k

k

1

! 0 for k ! 1 due to (3.21) we are able to onlude the boundedness of

u

k

in H

1

(
). Hene, '

k

is bounded in H

1

(
). Now we obtain that U

k

*

b

U =

b

P

�1

r'̂ by

onstrution with the notations as in ase I. The remainder proeeds as in ase I. This �nishes

the argument. The limit mirodeformations

b

P are indeed found to be ontinuous. �

4 The in�nitesimal miromorphi elasti solid

4.1 The variational formulation

Starting from the proposed �nite-strain formulation and not intrinsially linear (as below in

setion 4.5), we may obtain a linear, in�nitesimal miromorphi model by expanding all ap-

pearing variables to �rst order and keeping only quadrati terms in the energy expression.
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Thus we write F = 11 + ru; P = 11 + p; and the model turns into the problem of �nding

a pair (u; p) : 
 � R

3

7! R

3

� gl

+

(3;R) of marosopi displaement u and independent,

in�nitesimal mirodeformation p satisfying

Z




W

mp

("; p) +W

urv

(k

p

;rtr [p℄) dV 7! min : w.r.t. (u; p);

" = ru� p; p

j

�

= p

d

2 gl

+

(3;R) = M

3�3

; '

j

�

= g

d

; (4.1)

W

mp

("; p) = �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [sym p℄

2

= �

e

k symru� sym pk

2

+ �



k skew(ru� p)k

2

+

�

e

2

tr [ru� p℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [p℄

2

;

W

urv

(k

p

;rtr [p℄) = �

L

2



12

�

�

5

k sym k

p

k

2

+ �

6

k skew k

p

k

2

+ �

7

tr [k

p

℄

2

+ �

8

krtr [p℄k

2

�

;

k

p

= D

x

[dev p℄ = (r(dev p:e

1

);r(dev p:e

2

);r(dev p:e

3

)) :

Here, k

p

is the third order in�nitesimal urvature tensor, de�ned only on the purely distortional

part of the in�nitesimal mirodeformation dev p. If �

e

; �

m

> 0 and �



; �

e

; �

m

� 0 it is an easy

matter to show existene and uniqueness. For �



= 0 we have to invoke the lassial Korn's

�rst inequality. It should be observed that even if �



= 0 there remains a oupling of the two

�elds (u; p) due to the remaining oupling in the symmetri terms.

4.2 The linear system of balane equations

The linearized marosopi fore balane equation is obtained by taking free variations with

respet to the total displaement u. Hene we obtain

Div �(ru; p) = 0; u

j

�

(x) = g

d

(x) � x ; (4.2)

with

�(ru; p) = 2�

e

(symru� sym p) + 2�



(skewru� skew p) + �

e

tr [ru� p℄ � 11 : (4.3)

The remaining system of nine balane equations for the nine additional omponents of p 2

gl

+

(3;R) = M

3�3

is obtained by taking free variations with respet to p whih results in

devDivD

k

p

W

urv

(k

p

;rtr [p℄) = dev (�2�

e

(symru� sym p)

� 2�



(skewru� skew p)� �

e

tr [ru� p℄ 11

+2�

m

sym p+ �

m

tr [p℄ � 11) ;

DivD

rtr[p℄

W

urv

(k

p

;rtr [p℄) = tr (�2�

e

(symru� sym p)

� 2�



(skewru� skew p)� �

e

tr [ru� p℄ 11

+2�

m

sym p+ �

m

tr [p℄ � 11) : (4.4)

This is equivalent to

0 = dev�(ru; p)� 2�

m

dev sym p+ devDivD

k

p

W

urv

(k

p

;rtr [p℄) ;

0 = tr [�(ru; p)℄� (2�

m

+ 3�

m

) tr [p℄ + DivD

rtr[p℄

W

urv

(k

p

;rtr [p℄) : (4.5)

4.3 Calulation of onsistent e�etive elasti moduli

It is of prime importane to have values of �

e

; �

e

at hand whih are onsistent with the lassial

linear elasti model for long wave-length (large samples). Considering very large samples of

the ellular struture amounts to letting L



� 0, the harateristi length, tend to zero. As a

onsequene of L



= 0 the two equations (4.5) loose the urvature terms and turn into

0 = dev �(ru; p)� 2�

m

dev sym p ; (4.6)

0 = tr [�(ru; p)℄� (2�

m

+ 3�

m

) tr [p℄ ;
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expressing an algebrai side-ondition. Inserting formula (4.3) for � into (4.6) allows us to

obtain after some lengthy but straightforward omputations the following algebrai relations

tr [p℄ =

(2�

e

+ 3�

e

)

2(�

e

+ �

m

) + 3(�

e

+ �

m

)

tr [ru℄ ;

dev sym p =

�

e

(�

e

+ �

m

)

dev symru ; (4.7)

dev skew p = dev skewru ; (�



not involved!) ;

where we used that the operator dev is orthogonal to R � 11 and sym is orthogonal to skew and

dev skew = skew. Moreover,

tr [ru� p℄ =

�

1�

(2�

e

+ 3�

e

)

2(�

e

+ �

m

) + 3(�

e

+ �

m

)

�

tr [ru℄

=

(2�

m

+ 3�

m

)

(2�

m

+ 3�

m

) + (2�

e

+ 3�

e

)

tr [ru℄ : (4.8)

Reinserting the results into (4.3) yields, after taking dev on both sides

dev �(ru; p) = 2�

e

(dev symru� dev sym p) + 2�



(skewru� skew p)

= 2�

e

�

dev symru�

�

e

(�

e

+ �

m

)

dev symru

�

+ 2�



(skewru� 1 � skewru)

= 2�

e

�

1�

�

e

(�

e

+ �

m

)

�

dev symru = 2�

e

�

m

(�

e

+ �

m

)

dev symru : (4.9)

Similarly, reinserting the results into (4.3) yields, after taking the trae on both sides

tr [�(ru; p)℄ = 2�

e

tr [symru� sym p℄ + 2�



tr [skewru� skew p℄ + �

e

tr [ru� p℄ � tr [11℄

= 2�

e

tr [ru� p℄ + 3�

e

tr [ru� p℄ = (2�

e

+ 3�

e

) tr [ru� p℄

= (2�

e

+ 3�

e

)

(2�

m

+ 3�

m

)

(2�

m

+ 3�

m

) + (2�

e

+ 3�

e

)

tr [ru℄ : (4.10)

For a linear elasti isotropi solid, whih represents the marosopi stress-strain relation for

large samples, one has the lassial relation

� = 2� symru+ � tr [ru℄ � 11 )

dev � = 2� dev symru and tr [�℄ = (2�+ 3�) tr [ru℄ : (4.11)

Upon omparing oeÆients of (4.11) with (4.9) and (4.10) we identify

2� = 2�

e

�

m

(�

e

+ �

m

)

;

(2�+ 3�) = (2�

e

+ 3�

e

)

(2�

m

+ 3�

m

)

(2�

m

+ 3�

m

) + (2�

e

+ 3�

e

)

: (4.12)

This implies that in our model the large sale shear modulus � is half the harmoni mean

17

of the relative elasti shear modulus �

e

and the mirostrutural shear modulus �

m

,

while the large sale bulk modulus � =

2�+3�

3

is half the harmoni mean of the relative

elasti bulk modulus �

e

and the mirostrutural bulk modulus �

m

.

Hene, solving in a �rst step for the relative elasti shear modulus �

e

and the relative

elasti bulk modulus �

e

=

2�

e

+3�

e

3

, yields

�

e

=

�

m

�

(�

m

� �)

; 3�

e

= (2�

e

+ 3�

e

) =

(2�+ 3�) (2�

m

+ 3�

m

)

(2�

m

+ 3�

m

)� (2�+ 3�)

: (4.13)

Therefore

�

e

=

�

m

�

(�

m

� �)

; 3�

e

=

(2�+ 3�) (2�

m

+ 3�

m

)

(2(�

m

� �) + 3(�

m

� �))

� 2

�

m

�

(�

m

� �)

: (4.14)

17

H(�; �) =

2

1

�

+

1

�

=

2��

�+�

for �; � > 0, ompare with the Reuss-bounds in homogenization theory.
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This result motivates that the "marosopi" Lam�e moduli �; � must always be smaller than the

mirosopi moduli �

m

; �

m

related to the response of a representative volume element (RVE)

of the substruture. This is physially onsistent: the large-sale sample annot possibly be

sti�er than the onstitutive substruture. Let us onsider the interesting limit ases in (4.12):

miro-inompressible: �

m

!1 ; �

m

<1 ) � = �

e

+

2�

2

3(�

m

� �)

;

mirostreth: �

m

!1 ; �

m

<1 ) � = �

e

; � = �

e

;

miropolar: �

m

!1 ; �

m

!1 ) � = �

e

; � = �

e

: (4.15)

4.4 Identi�ation with Mindlin's representation

Many papers on linearized miromorphi models start from a representation of the free-energy

funtion based on Mindlin's work [55, 5.5℄, e.g.[45℄. A major drawbak of Mindlin's representa-

tion is, however, that no aount has been taken, to ensure overall positivity of the quadrati

energy. This has to be heked additionally and an be quite labourous beause of many ap-

pearing oeÆients. We onsider only the loal part (the part without urvature) of Mindlin's

representation. Let us de�ne

" = symru ; " := ru� p : (4.16)

Then Mindlin's loal energy ontributionW

Mind

mp

with seven material onstants b�;

b

�; b

1

; b

2

; b

3

; g

1

; g

2

reads

W

Mind

mp

(ru; p) =W

Mind

mp

("; ") =

b

�

2

tr ["℄

2

+ b� k"k

2

+

b

1

2

tr ["℄

2

+

b

2

2

k"k

2

+

b

3

2

h"; "

T

i

+ g

1

tr ["℄ tr ["℄ + 2 g

2

h"; "i : (4.17)

Note that this de�nes a quadrati form, whose positive-de�niteness is not ensured by taking

positive parameters b�;

b

�; : : :. In omparison, in (4.1) we have proposed a �ve material onstants

representation, whih automatially de�nes a positive quadrati form, if the oeÆients are

positive themselves.
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The proposed quadrati representation in (4.1) reads

W

mp

("; p) = �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [sym p℄

2

= �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sym p� "+ "k

2

+

�

m

2

tr [sym p� "+ "℄

2

= �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

�

k sym p� "k

2

+ 2hsym p� "; "i+ k"k

2

�

+

�

m

2

�

tr [sym p� "℄

2

+ 2tr [sym p� "℄tr ["℄ + tr ["℄

2

�

(4.18)

= (�

e

+ �

m

) k sym "k

2

+ �



k skew "k

2

+

(�

e

+ �

m

)

2

tr [sym "℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"� sym p; "i � �

m

tr ["� sym p℄tr ["℄

= (�

e

+ �

m

) k sym "k

2

+ �



k skew "k

2

+

(�

e

+ �

m

)

2

tr [sym "℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄

= (�

e

+ �

m

) k

1

2

("+ "

T

)k

2

+ �



k

1

2

("� "

T

)k

2

+

(�

e

+ �

m

)

2

tr [sym "℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄
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This an be slightly weakened: 2�

e

+ 3�

e

� 0; 2�

m

+ 3�

m

� 0; �

e

; �

m

; �



� 0 is suÆient.

18



=

(�

e

+ �

m

)

4

k"+ "

T

k

2

+

�



4

k"� "

T

k

2

+

(�

e

+ �

m

)

2

tr ["℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄

=

(�

e

+ �

m

)

2

�

k"k

2

+ h"; "

T

i

�

+

�



2

�

k"k

2

� h"; "

T

i

�

+

(�

e

+ �

m

)

2

tr ["℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄

=

(�

e

+ �

m

+ �



)

2

k"k

2

+

(�

e

+ �

m

� �



)

2

h"; "

T

i+

(�

e

+ �

m

)

2

tr ["℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄ :

Hene, omparing with Mindlin's representation (4.17) we are able to identify

b� = �

m

;

b

� = �

m

; b

1

= �

e

+ �

m

;

b

2

= �

e

+ �

m

+ �



; b

3

= �

e

+ �

m

� �



;

g

1

= ��

m

; g

2

= ��

m

: (4.19)

Mindlin proposes [55, p.60℄

3b

1

+ b

2

+ b

3

� 0 ; b

2

+ b

3

� 0 ; b

2

� b

3

� 0 ;

() �

e

+ �

m

� 0 ; �

e

+ �

m

� 0 ; �



� 0) (4.20)

as neessary onditions for a positive de�nite energy funtion whih is (of ourse)

veri�ed for (4.1).

Remark 4.1

It is not lear to us, whether Mindlin's seven parameter representation of the loal strain-energy

an be obtained by onsistently linearizing a �nite-strain miromorphi model.

4.5 The intrinsially linear miromorphi model

Several sets of generalized strain measures an be de�ned if one starts in an intrinsially linear

ontext with no referene to some underlying �nite-strain miromorphi model. The strain

measures used in [35℄ are retained for the omputational part of this work:

" =

1

2

(ru+ (ru)

T

); " = ru� p; K = D

x

p ; (4.21)

i.e. the total strain " , the relative deformation " and the third{rankmiro{deformation

gradient tensor K.

19

Three generalized stress tensors may be introdued in the virtual power

of internal and ontat fores:

�

(i)

(u; p) = h�; _"i+ hs;

_

"i+ hS;

_

Ki; �

()

(u; p) = ht; _ui+ hM; _pi ; (4.22)

where the seond{rank stress tensor � is symmetri but should not be onfused with the lassial

Cauhy stress tensor. The additional stress tensors s and S respetively are seond and third{

rank tensors. The balane of momentum and balane of moment of momentum equations read,

in the absene of volume fores or generalized ouples (nor double fores):

Div(� + s) = 0; DivS + s = 0 : (4.23)

They are oupled thanks to the miro{stress tensor s. Equilibrium at the boundary reads

t = (� + s):~n; M = S:~n ; (4.24)

where the outer surfae normal vetor is denoted by ~n.

19

Note that we have given up the deoupling of the urvature into volumetri and distortional parts, ontrary

to (4.1).

19



In a linearized elasti miromorphi solid, the Helmholtz free energy is assumed to be a

quadrati form W

℄

lin

("; ";K) of the previous strain measures (4.21). The state laws are then

dedued from the exploitation of the entropy priniple of thermodynamis [33℄:

� = �

�W

℄

lin

�"

; s = �

�W

℄

lin

�"

; S = �

�W

℄

lin

�K

(4.25)

The most general form of the potential for an isotropi linear elasti miromorphi medium

has been proposed by Mindlin [55℄ based on suh an intrinsially linear development. Keeping

the original index notation for the proposed invariants of the strain tensors and the material

moduli, it reads:

W

℄

lin

=

1

2

b

� "

ii

"

jj

+ b�"

ij

"

ij

+

1

2

b

1

"

ii

"

jj

+

1
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b

2

"

ij

"

ij

+

1

2

b

3

"

ij

"

ji

+ g

1

"

ii

"

jj

+ g

2

"

ij

("

ij

+ "

ji

)

+ A

1

K

iik

K

kkj

+A

2

K

iik

K

jkj

+

1

2

A

3

K

iik

K

jkk

+

1

2

A

4

K

ijj

K

ikk

+ A

5

K

ijj

K

kik

+

1

2

A

8

K

iji

K

kjk

+

1

2

A

10

K

ijk

K

ijk

+ A

11

K

ijk

K

jki

+

1

2

A

13

K

ijk

K

ikj

+

1

2

A

14

K

ijk

K

jik

+

1

2

A

15

K

ijk

K

kji

; (4.26)

from whih the onstitutive relations

� =

b

� tr ["℄ � 11 + 2b�"+ g

1

tr ["℄ � 11 + 2g

2

sym " ;

s = g

1

tr ["℄ � 11 + 2g

2

"+ b

1

tr ["℄ � 11 + b

2

"+ b

3

"

T

; (4.27)

and

S

pqr

= A

1

(K

rii

Æ

pq

+K

iip

Æ

qr

) +A

2

(K

iiq

Æ

pr

+K

iri

Æ

pq

) +A

3

K

jjr

Æ

pq

+ A

4

K

pii

Æ

qr

+A

5

(K

ipi

Æ

qr

+K

qii

Æ

pr

) +A

8

K

iqi

Æ

pr

+ A

10

K

pqr

+A

11

(K

qrp

+K

rpq

) +A

13

K

prq

+ A

14

K

qpr

+A

15

K

rqp

; (4.28)

are dedued. Hene, the most general isotropi linear elasti relations involve 7 + 11 = 18

onstants. It should again be noted that the onstants b�;

b

� annot automatially be identi�ed

with the lassial Lam�e onstants, despite appearane. The oeÆients A

i

have the dimension

of a bending sti�ness modulus: MPa:m

2

.

In order to ahieve positivity for the urvature part of the energy and to simplify the

exposition at the same time, we take

A

1

= A

2

= A

3

= A

4

= A

5

= A

8

= A

11

= A

13

= A

14

= A

15

= 0; A

10

=

�L

2



6

; (4.29)

in our �nite element simulation. Another simpli�ation of the loal energy expression seems to

be expedient. We assume further on, that with some number � 2 R

�



= 0 ; � = ��

m

; � = ��

m

; � 2 (0; 1) : (4.30)

For example, � = 0:9 means that the large-sale bulk behaviour is assumed to be about 10

perent weaker than the response of a representative volume element (RVE) on the small sale.

Taking into aount the homogenization formulas derived in (4.13) implies then that

�

e

=

�

1� �

�

m

; �

e

=

�

1� �

�

m

: (4.31)

Hene in terms of Mindlin's representation we obtain

b� =

1

�

� ;

b

� =

1

�

� ;

b

1

= �

e

+ �

m

=

�

1� �

�

m

+ �

m

=

1

1� �

�

m

=

1

� (1� �)

� ; (4.32)

b

2

= b

3

= �

e

+ �

m

=

1

� (1� �)

� ;

g

1

= �

1

�

� ; g

2

= �

1

�

� ;
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for given large-sale Lam�e moduli �; �.

5 Implementation

5.1 Finite Element method for the in�nitesimal miromorphi on-

tinuum

The implementation of the in�nitesimal miromorphi model into a �nite element program is

illustrated here in the two{dimensional ase (plane strain or plane stress). The vetor of degrees

of freedom attributed to eah node is written:

[d:o:f℄ = [U

1

U

2

p

11

p

22

p

12

p

21

℄

T

: (5.1)

The assoiated generalized strain vetor is:

[grad℄ = ["

11

"
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K
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K
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K
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℄

T

: (5.2)

The matrix [B℄ linking the strain vetor to the degrees of freedom reads as follows under plane

strain onditions:

[grad℄ = [B℄ [d:o:f℄ ; [B℄ =
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; (5.3)

where �

x

i

= � � =�x

i

. Plane strain onditions imply "

33

= "

33

= 0. In the ase of plane stress

onditions, "

33

and "

33

are introdued as additional degrees of freedom shared by eah element.

The assoiated reations are �

33

and s

33

. Plane stress onditions are enfored by presribing

vanishing reation stresses, but other onditions an also be onsidered. The generalized stress

vetor reads:

[ux℄ = [�
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: (5.4)

The isotropi elastiity matrix linking the elasti part of the miro{deformation gradient and

the third{rank stress tensor is written as:
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21



where [A℄ equals
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with AA = 2A

1

+ 2A
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+ A
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+ A

4

+ 2A

5
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11

+ A

13
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15

. The notation

A

i;j;k

= A

i

+A

j

+A

k

is used.

The variational formulation of the miromorphi boundary value problem is a straightfor-

ward extension of the lassial one:

Z




h�; _"i+ hs;

_

"i+ hS;

_

Ki dV =

Z

�


ht; _ui+ hM; _pi dS ; (5.7)

with the boundary onditions (4.24). The �nite element formulation follows from the same

disretization of the variational problem as in the lassial ase.

An analytial solution of a simple boundary value problem for the linear elasti miromorphi

ontinuum is proposed in appendix 7.5, whih serves as validation test for the implementation

of the model.

5.2 Finite element simulations of hole size e�ets in metalli foams

One of the early goals of the mehanis of generalized ontinua was to ontrol the magnitude

of stress onentrations at holes, edges or raks. Indeed, Mindlin analysed the stress onen-

tration oeÆient at a hole in a plate in the ase of a ouple{stress medium [54℄. Contrary to

the lassial situation, the stress onentration fator is found to depend on the relative size of

the hole with respet to the value of the harateristi size even if the hole is embedded in an

in�nite matrix. The analytial solution of the more general problem of the spherial or ylin-

drial elasti inlusion inside an in�nite matrix was solved only reently for in�nitesimal-strain

Cosserat elastiity [16, 15, 70℄. Finite element simulations within the in�nitesimal Cosserat

framework show that, ontrary to the lassial situation, the stress{strain state is generally not

homogeneous inside a spherial or ylindrial elasti heterogeneity [32℄. The stress onentra-

tion fator at the equator of a ylindrial hole in an in�nite linear elasti Cosserat matrix tends

asymptotially to the lassial onstant value for large enough holes. For holes with a radius

lose to or smaller than the value of the intrinsi lengths of the Cosserat matrix, the fator is

found to derease. The value for vanishingly small holes tends towards an asymptoti limit that

depends on the Cosserat intrinsi length sale and on the additional Cosserat ouple modulus

�



� 0. For stritly positive Cosserat ouple modulus �



> 0 it remains larger than

one, meaning that holes of any size indue stress onentration in a traditional

in�nitesimal Cosserat medium. This behavior is illustrated by �gure 2.

The strain �eld around a ylindrial hole in an in�nite miromorphi matrix under plane

stress onditions is now investigated using the �nite element method. The material parameters

used for the presented simulations are taken so as to represent large sale samples of nikel

foam studied at room temperature in [4, 21℄. This orresponds to

� = 165MPa � = 110MPa ; (5.8)

in terms of the Lam�e onstants. We hoose the fator � = 0:9 appearing in (4.30) and the

Cosserat ouple modulus �



= 0. This implies

b� =

1

�

� = 183:MPa ;

b

� =

1

�

� = 122:MPa ; b

1

=

1

� (1� �)

� = 1222:MPa ;

b

2

= b

3

= �

e

+ �

m

=

1

� (1� �)

� = 1833:MPa ; (5.9)

g

1

= �

1

�

� = �122:MPa ; g

2

= �

1

�

� = �183:MPa ;
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Figure 2: (traditional linear Cosserat response) Strain onentration at the "equator" of a ylin-

drial hole in an in�nite Cosserat medium under tensile loading by the stress "

1

in diretion 2.

The omponent plotted is "

22

="

1

22

. The material properties of the Cosserat equivalent medium

representing the nikel foam are taken to be �

e

= � = 165MPa; �

e

= � = 110MPa; �



=

1000MPa; L



= 1:35mm.
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in terms of Mindlin's representation. The elasti onstants b

i

at as well as penalty terms that

fore the relative elasti deformation to remain small. This ensures that the mirodeforma-

tion is lose to the gradient of the displaement �eld so that the miromorphi model almost

degenerates into a seond gradient theory [33℄. A single additional parameter, namely the

harateristi length L



> 0, is introdued in the six{rank tensor A by setting A

10

=

�L

2



6

in

Mindlin's representation and A

1

; A

2

; : : : = 0 for the remaining oeÆients. The harateristi

length is set to L



= 1:35 mm in the following simulations. Hene

A

10

=

�L

2



6

= 50MPamm

2

: (5.10)

This value was identi�ed in the partiular ase of nikel foam with relative density �

?

=�

Ni

=

0:035 and mean ell diameter 500 �m. It is in aordane with results of strain �eld measure-

ments provided in [21℄.

Figure 3 shows the results of �nite element simulations of the tension of a plate with a

mahined ylindrial hole. Tension is applied along the vertial diretion 2 under plane stress

onditions. The �gure 3a shows the referene strain �eld "

22

around the hole expeted in the ase

of a lassial Cauhy ontinuum. Only the mesh region surrounding the hole is shown. Vertial

displaement is applied at the top of the mesh whih is not represented in the piture. For

suh a lassial simulation, the size of the hole does not matter. In ontrast, the �gures 3b and

3 show the strain map "

22

around a hole embedded in an in�nite linear elasti miromorphi

matrix using the values of the elasti properties given by (5.9). The results are given for two

hole sizes: R = 1 mm and R = 0:3 mm respetively. For both omputations, the applied strain

at in�nity "

1

22

is the same and the material parameters orrespond to eah other. The size of

the hole is the only varying parameter. It learly appears that the strain �eld beomes more

and more homogeneous when the hole size is redued. For R = 0:3 mm, there is almost no

strain onentration at the equator any longer.

For larger and larger holes, we have heked that the lassial solution of �gure 3a is retrieved

when using the miromorphi model. The striking feature of the numerial simulations is that

for vanishingly small holes, the miromorphi theory predits a stritly homogeneous strain

�eld: tiny holes do not introdue any strain utuation. This an be seen more quantitatively

from the urves of �gure 4. The strain pro�le along the ligament x

2

= 0 is plotted for di�erent

values of the hole radius ranging from R = 10 mm to R = 0:1 mm. The urve obtained for

R = 10 mm is almost idential to the lassial result whih predits a stress/strain onentration

fator of 3 at the equator (x

1

= R) under plane stress onditions. Strain loalization dereases

for smaller holes. As a result, the strain onentration fator tends to 1 when the hole size

tends to zero. This is ontrary to the ase of the in�nitesimal Cosserat ontinuum (see �gure

2). These numerial results annot urrently be ompared to analytial solutions whih do

not seem to be available for a hole in a general linear miromorphi ontinuum, to the best

knowledge of the authors. An analytial solution for the more restrited linear mirostreth

ase has been derived in [18℄.

The interesting point is that, in a linear elasti miromorphi ontinuum, there is a limit size

below whih no geometrial heterogenities an be deteted. This limit size sets the resolution

of the ontinuum, in a way similar to the resolution of a mirosope. An equivalent parametri

study is possible by varying the intrinsi length sale parameter L



for a �xed radius size R.

This enables us in fat to identify the value of the harateristi length that leads to strain

onentration around holes only when the holes are suÆiently larger than the ell size.

It must be noted that the �nite element simulations were not arried out on one quarter of

the sample but for the entire struture, in ontrast to the lassial ase. The reason is that, in

spite of the symmetry onditions, it is not possible to know a priori what are the boundary

onditions p

11

or p

22

(or onversely the reations M

11

or M

22

) to be presribed on the lines

x

1

= 0 or x

2

= 0. This diÆulty does not arise for a linear Cosserat ontinuum sine the

symmetry onditions imply that the in�nitesimal mirorotation vanishes at these boundaries.

The omputation time is therefore inreased not only by the larger number of degrees of freedom

but also by the fat that the entire speimen must be meshed instead of one quarter. The mesh

size in the presented simulations is satisfatory in the sense that onvergene is ahieved for the

generalized stress and strain �elds upon mesh re�nement, up to a preision better than 1%.
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(a)

(b) ()

0.2 0.6 1 1.4 1.8 2.2 2.6

Figure 3: Strain �eld "

22

="

1

22

around a ylindrial hole in an in�nite matrix under tensile loading

"

1

22

under plane stress onditions: (a) lassial ontinuum (referene solution), (b) linear elasti

miromorphi ontinuum for a hole radius R = 1 mm, () linear elasti miromorphi ontinuum

for a hole radius R = 0:3 mm. The tensile diretion 2 is vertial, the horizontal diretion is 1.

For the illustration, a magnifation fator was applied so that the three holes have the same

apparent radius. Only the region of the mesh surrounding the hole is shown. The elasti moduli

usedfor the simulation are given by (5.9).
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Figure 4: Computed strain pro�le along the ligament x

2

= 0 for the linear miromorphi plate

with a ylindrial hole of radius R. The position x

1

= R, alled "equator" is the loation of

stress and strain maximum at least for large enough holes. The elasti moduli used for the

simulations are given by (5.9).

6 Final remarks

The presented variational �nite-strain miromorphi problem �ts neatly into the framework of

the diret methods of variations. The oerivity part for the deformation is, however, nontrivial

and for the value of the Cosserat ouple modulus �



= 0 additional diÆulties arise whih an

only be irumvented by the use of the generalized Korn's �rst inequality. In both treated ases

I/II, more realisti assumptions on the applied external loads � are neessary to establish a

lower bound for the energy I and a ontrol of the urvature independent of the magnitude of

deformation.

Altogether, the quasistati �nite-strain miromorphi theory is established on �rm mathe-

matial grounds. With the same methods, the geometrially exat mirostreth ase an also be

treated. An extension of the method to other hoies of strain and urvature measures needs to

be done, however, this might be a non-trivial task due to ertain de�ienies of these measures.

The open ase III allows for disontinuous marosopi deformations and might therefore be a

model problem allowing to desribe frature.

Our variational framework is ideally suited for subsequent numerial treatment within the

�nite element method. This is shown by numerially studying the linearized miromorphi

model meant to desribe the behaviour of nikel foams. In these alulations, the Cosserat

ouple modulus �



is indeed set to zero and the obtained result is ontrasted with the response

of a traditional in�nitesimal Cosserat model with high Cosserat ouple modulus �



. It seems

that the miromorphi model with zero Cosserat ouple modulus �



= 0 is indeed suÆient to

apture the underlying physis. The importane of the harateristi size of the ells on the

response of the struture is learly revealed.

A more aurate desription for the foam is learly needed but this requires an extension of

the presented elasti model towards a onsistent elastoplasti onstitutive setting as proposed

e.g in [33℄ for in�nitesimal and �nite deformations. The involved harateristi length(s) an

26



be identi�ed using an inverse approah from the strain �eld measurements. An alternative way

is to derive the e�etive properties of an equivalent homogeneous miromorphi medium from

the knowledge of the detailed ell morphology based on homogenization proedures that are

now available for generalized ontinua [29℄.
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7 Appendix

7.1 Notation

Let 
 � R

3

be a bounded domain with Lipshitz boundary �
 and let � be a smooth subset of �
 with non-

vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the salar produt on R

3

with

assoiated vetor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3� 3 seond order tensors, written

with apital letters and by T(3) the set of all third order tensors. The standard Eulidean salar produt on

M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the

following we omit the index R

3

;M

3�3

. The identity tensor on M

3�3

will be denoted by 11, so that tr [X℄ = hX; 11i.

We let Sym and PSym denote the symmetri and positive de�nite symmetri tensors respetively. We adopt

the usual abbreviations of Lie-group theory, i.e., GL(3;R) := fX 2 M

3�3

jdet[X℄ 6= 0g the general linear

group, SL(3;R) := fX 2 GL(3;R) jdet[X℄ = 1g; O(3) := fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2

GL(3;R) jX

T

X = 11; det[X℄ = 1g with orresponding Lie-algebras so(3) := fX 2 M

3�3

jX

T

= �Xg of skew

symmetri tensors and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g of traeless tensors. We set sym(X) =

1

2

(X

T

+ X)

and skew(X) =

1

2

(X � X

T

) suh that X = sym(X) + skew(X). For X 2 M

3�3

we set for the deviatori

part devX = X �

1

3

tr [X℄ 11 2 sl(3) and for vetors �; � 2 R

n

we have the tensor produt (� 
 �)

ij

=

�

i

�

j

. The operator axl : so(3;R) 7! R

3

is the anonial identi�ation. We write the polar deomposition in

the form F = RU = polar(F )U with R = polar(F ) the orthogonal part of F . For a seond order tensor

X we de�ne the third order tensor h = D

x

X(x) = (r(X(x):e

1

);r(X(x):e

2

);r(X(x):e

3

)) = (h

1

; h

2

; h

3

) 2

M

3�3

� M

3�3

� M

3�3

. For third order tensors h 2 T(3) we set khk

2

=

P

3

i=1

kh

i

k

2

together with sym(h) :=

(sym h

1

; sym h

2

; sym h

3

) and tr [h℄ := (tr

�

h

1

�

; tr

�

h

2

�

; tr

�

h

3

�

) 2 R

3

. Moreover, for any seond order tensor X we

de�ne X �h := (Xh

1

;Xh

2

;Xh

3

) and h�X orrespondingly. Quantities with a bar, e.g. the miropolar rotation R

p

,

represent the miropolar replaement of the orresponding lassial ontinuum rotation R. In general we work

in the ontext of nonlinear, �nite elastiity. For the total deformation ' 2 C

1

(
;R

3

) we have the deformation

gradient F = r' 2 C(
;M

3�3

) and we use r in general only for olumn-vetors in R

3

. Furthermore, S

1

(F )

and S

2

(F ) denote the �rst and seond Piola Kirhho� stress tensors, respetively. Total time derivatives are

written

d

dt

X(t) =

_

X. The �rst and seond di�erential of a salar valued funtion W (F ) are written D

F

W (F ):H

and D

2

F

W (F ):(H;H), respetively. Sometimes we use also �

X

W (X) to denote the �rst derivative of W with

respet to X. We employ the standard notation of Sobolev spaes, i.e. L

2

(
); H

1;2

(
); H

1;2

Æ

(
), whih we use
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indi�erently for salar-valued funtions as well as for vetor-valued and tensor-valued funtions. Moreover, we

set kXk

1

= sup

x2


kX(x)k. For X 2 C

1

(
;M

3�3

) we de�ne CurlX(x) and DivX(x) as the operation url

and Div applied row wise, respetively. For h 2 T(3) we de�ne Div h =

�

Div h

1

jDiv h

2

jDiv h

3

�

T

2 M

3�3

. We

de�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the sense of traes and

by C

1

0

(
) we denote in�nitely di�erentiable funtions with ompat support in 
. We use apital letters to

denote possibly large positive onstants, e.g. C

+

;K and lower ase letters to denote possibly small positive

onstants, e.g. 

+

; d

+

. The smallest eigenvalue of a positive de�nite symmetri tensor P is abbreviated by

�

min

(P ). Finally, w.r.t. abbreviates with respet to.

7.2 The oerivity inequality

The deisive analytial tool for the treatment of ase II (super-ritial) is the following new non-trivial inequality

establishing oerivity:

Theorem 7.1 (Extended 3D-Korn's �rst inequality)

Let 
 � R

3

be a bounded Lipshitz domain and let � � �
 be a smooth part of the boundary with non

vanishing 2-dimensional Hausdor� measure. De�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g and let F

p

; F

�1

p

2

C

1

(
;GL(3;R)). Moreover suppose that CurlF

p

2 C

1

(
;M

3�3

). Then

9 

+

> 0 8 � 2 H

1;2

Æ

(
;�) : kr�F

�1

p

(x) + F

�T

p

(x)r�

T

k

2

L

2

(
)

� 

+

k�k

2

H

1;2

(
)

:

Proof. The proof has been presented in [58℄. �

Remark 7.2

Note that for F

p

= r� we would only have to deal with the lassial Korn's inequality evaluated on the trans-

formed domain �(
). However, in general, F

p

is inompatible giving rise to a non-Riemannian manifold

struture. Compare this to [10℄ for an interpretation and the physial relevane of the volume disloation density

tensor CurlF

p

. A Riemannian version of Korn's inequality has also been given in [12℄.

Motivated by the investigations in [58℄ it has been shown reently by Pompe [66℄ that the extended Korn's

inequality an be viewed as a speial ase of a general lass of oerivity inequalities for quadrati forms. He

was able to show that indeed F

p

; F

�1

p

2 C(
;GL(3;R)) is suÆient for (7.1) to hold without any ondition on

the ompatibility.

However, taking the speial struture of the extended Korn's inequality again into aount, work in progress

suggests that ontinuity is not really neessary: instead F

p

; F

�1

p

2 L

1

(
;GL(3;R)) and CurlF

p

2 L

3+Æ

(
)

should suÆe, whereas F

p

; F

�1

p

2 L

1

(
;GL(3;R)) alone is not suÆient, see the ounterexample presented in

[66℄. This possible improvement has no onsequenes for the analysis, however.

In view of the important role of the extended Korn's �rst inequality let us agree in saying that an inhomogeneous

material haraterized by a free energy density W : R

3

� M

3�3

7! R is elastially pre-stable, whenever

9H 2 M

3�3

; H 6= 0 : D

2

F

W (x;F ):(H;H) = 0 and (7.1)

9 

+

> 0 9 G 2 GL

+

(3;R) 8H 2 M

3�3

: D

2

F

W (x;F ):(H;H) � 

+

kG(x)

T

H +H

T

G(x)k

2

:

In this terminology, in�nitesimal lassial elastiity is pre-stable with G = 11 and the extended Korn's �rst

inequality links the smoothness of G to the positive de�niteness of the elasti tangent sti�ness tensor.

7.3 Derivation of the geometrially exat miromorphi balane equa-

tions

The balane equations are obtained as for the miro-inompressible ase with the only provision that we an

take as variation for U

p

2 PSym the following expression

d

dt

U

p

= T U

p

; T 2 Sym(3) ; (7.2)

instead of T 2 sl(3;R) \ Sym(3) for the miro-inompressible ase based on U

p

. Note that any value of the

di�erential

d

dt

U

p

an be obtained as

d

dt

U

p

= T U

p

for some T 2 Sym(3) while T U

p

is not neessarily symmetri

if T is symmetri.

7.4 Derivation of the geometrially exat miromorphi balane equa-

tions in the miro-inompressible ase

Introduing a onstraint nonlinear manifold like SL(3;R) for the miro-inompressible ase ompliates the

derivation of the balane equations onsiderably.

The derivation of the fore balane equation remains straight forward, however. Sine we an write P =

R

p

�U

p

and R

p

; U

p

an be presribed arbitrarily, we may realize the variation of P through independent variation

of the orthogonal and isohori streth part:

P = R

p

� U

p

)

d

dt

P =

�

d

dt

R

p

�

U

p

+ R

p

�

d

dt

U

p

�

: (7.3)

Now take either

d

dt

U

p

= 0 or

d

dt

R

p

= 0. In the �rst ase, we have the variation

d

dt

P =

�

d

dt

R

p

�

U

p

= AR

p

U

p

= AP; A 2 so(3;R) ; arbitrary ; (7.4)
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and in the seond ase we have

d

dt

P = R

p

�

d

dt

U

p

�

= R

p

T U

p

; T 2 sl(3;R) \ Sym(3) : (7.5)

For the �rst ase, we onsider simultaneously in eah spae point a one parameter group of mirodeformations

d

dt

^

P (x; t) = A(x; t) �

^

P (x; t);

^

P (x; 0) = P (x); A 2 C

1

0

(
; sl(3;R)). The orresponding stationarity ondition is

obtained from

d

dt

j

t=0

I(';

^

P (x; t)) = 0. This yields three terms: the derivatives involving W

mp

(F;P ) and �(P ) are straightfor-

ward, using the de�nition of the one parameter group, and yield

d

dt

j

t=0

�(

^

P (x; t)) = hD

P

�(

^

P (x; t);

d

dt

^

P (x; t)i = hD

P

�(

^

P (x; t); A(x; t) �

^

P (x; t)i

= hD

P

�(P )P

T

; A(x; t)i (7.6)

= hD

P

�(P )U

p

R

T

p

; A(x; t)i = hR

p

R

T

p

D

P

�(P )U

p

R

T

p

; A(x; t)i

= hR

p

skew

�

R

T

p

D

P

�(P )U

p

�

R

T

p

; A(x; t)i ;

and

d

dt

j

t=0

W

mp

(F;

^

P (x; t)) = hD

U

W

mp

(U;U

p

);

d

dt

Ui

= hD

U

W

mp

(U;U

p

);

d

dt

[

^

P

�1

F ℄i = hD

U

W

mp

(U;U

p

); [

d

dt

^

P

�1

℄F i

= hD

U

W

mp

(U;U

p

);�

^

P

�1

[

d

dt

^

P ℄

^

P

�1

F i = �hD

U

W

mp

(U;U

p

);

^

P

�1

[

d

dt

^

P ℄Ui

= �hD

U

W

mp

(U;U

p

);

^

P

�1

A(x; t) �

^

P (x; t)Ui = �hD

U

W

mp

(U;U

p

)U

T

;

^

P

�1

A(x; t) �

^

P (x; t)i

= �h

^

P

�T

D

U

W

mp

(U;U

p

)U

T

^

P

T

; A(x; t)i = �hR

p

U

�1

p

D

U

W

mp

(U;U

p

)U

T

U

p

R

T

p

; A(x; t)i (7.7)

= �hR

p

skew

�

U

�1

p

D

U

W

mp

(U;U

p

)U

T

U

p

�

R

T

p

; A(x; t)i

= �hR

p

skew

�

U

�1

p

D

U

W

mp

(U;U

p

)U

T

U

T

p

�

R

T

p

; A(x; t)i

Here, h�; �i means additionally integration w.r.t. x. For the term ontaining the urvature part, we note

d

dt

j

t=0

Z




W

urv

(K

p

(x; t)) dV =

3

X

i=1

h�

K

i

p

W

urv

(K

1

p

;K

2

p

;K

3

p

); R

T

p

r(AP:e

i

) + (AR

p

)

T

r(P :e

i

)i

M

3�3

=

3

X

i=1

hR

p

�

K

i

p

W

urv

(K

1

p

;K

2

p

;K

3

p

);r(AP:e

i

)i

M

3�3

+ hR

p

�

K

i

p

W

urv

(K

1

p

;K

2

p

;K

3

p

)K

i;T

p

R

T

p

; A

T

i

M

3�3

(7.8)

=

3

X

i=1

�hDiv

h

R

p

�

K

i

p

W

urv

(K

1

p

;K

2

p

;K

3

p

)

i

; AP:e

i

i

R

3

+ hR

p

 

3

X

i=1

�

K

i

p

W

urv

(K

1

p

;K

2

p

;K

3

p

)K

i;T

p

!

R

T

p

; A

T

i

= �hDiv

h

R

p

D

K

p

W

urv

(K

p

)

i
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Sine A 2 C
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; so(3;R)) is arbitrary, equation (2.18)

2

follows. In order to obtain the remaining �ve equations

for the �ve independent omponents of U
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we onsider simultaneously in eah spae point a one parameter group of mirodeformations
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0

(
; sl(3;R)) is arbitrary, equation (2.18)

3

follows. By splitting the possible variations of P 2

SL(3;R), we have impliitly used the Cartan Lie-algebra deomposition: sl(3;R) = so(3;R) � p; p = fT 2

sym(3) j tr [T ℄ = 0g.

7.5 Validation of the Finite Element implementation

Analytial solutions an be worked out for some partiular boundary value problems for the linearized elasti

miromorphi ontinuum. They an be used to hek the Finite Element implementation presented in this work.

An example is given here for an in�nite strip in diretion 1 and with 0 � x

2

� L, L being the thikness of the

strip. We look for displaement and mirodeformation �elds of the form:
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with respet to a Cartesian orhonormal basis (e
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; e
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; e
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). As a result the non vanishing omponents of the strain

measures are
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where the prime indiates di�erentiation with respet to the x

2

variable. The orresponding non{vanishing

stress omponents follow from appliation of the linearized elastiity onstitutive equations (4.27):
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In the speial ase (4.29), the only non{vanishing omponents of the hyperstress tensors are
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The stress tensors must ful�ll the linearized balane equation of momentum and generalized moment of momen-

tum (4.23) whih redue here to

�

0

22

+ s

0

22

= 0; S

0

112

+ s

11

= 0; S

0

222

+ s

22

= 0 : (7.17)

These equations lead to the following linear system of di�erential equations for the unknowns (u
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where the following notations have been introdued:
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When the displaement omponent u
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Figure 5: Displaement and mirodeformation pro�les along the width of an in�nite strip

subjeted to a presribed mirodeformation p

2

= 0:01 at x

2

= 10mm. This test is used in the

validation proedure of the Finite Element implementation of linear miromorphi elastiity.

The used material parameters are given by (5.9).

There exists then a linear ombination p of p

11

and p

22

suh that

p

000

= !

2

p

0

; (7.21)

provided that
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whih admits in general a single positive root. The solution of the system (7.18) is then a linear ombination

of osh(!x

2

) and sinh(!x

2

) funtions. The integration onstants are determined by the proper boundary

onditions. The �gure 5 gives the funtions u
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) over the segment [0; L℄ orresponding

to the following boundary onditions:
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The set of elasti onstants used for this example is given by (5.9). The partiular ase L = 10mm; p

0

= 0:01

is illustrated in �gure 5.
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