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Abstra
t

We investigate a geometri
ally exa
t generalized 
ontinua of mi
romorphi
 type in the

sense of Eringen for the phenomenologi
al des
ription of metalli
 foams. The two-�eld

problem for the ma
rodeformation ' and the "aÆne mi
rodeformation" P 2 GL

+

(3;R) in

the quasistati
, 
onservative elasti
 
ase is investigated in a variational form. The elasti


stress-strain relation is taken for simpli
ity as physi
ally linear.

Depending on material 
onstants di�erent mathemati
al existen
e theorems in Sobolev-

spa
es are given for the resulting nonlinear boundary value problems. These results extend

existen
e results obtained by the �rst author for the mi
ro-in
ompressible 
ase P 2 SL(3;R)

and the mi
ropolar 
ase P 2 SO(3;R).

In order to mathemati
ally treat external loads for large deformations a new 
ondition,


alled bounded external work, has to be in
luded, over
oming the 
onditional 
oer
ivity

of the formulation. The observed possible la
k of 
oer
ivity is related to fra
ture of the

substru
ture of the metalli
 foam.

We identify the relevant e�e
tive material parameters by 
omparison with the linear

mi
romorphi
 model and its 
lassi
al response for large s
ale samples. We 
orroborate the

performan
e of the mi
romorphi
 model by presenting numeri
al 
al
ulations based on a

linearized version of the �nite-strain model and 
omparing the predi
tions to experimental

results showing a marked size e�e
t.
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1 Introdu
tion

1.1 Theoreti
al aspe
ts

This arti
le addresses the modelling and mathemati
al analysis of geometri
ally exa
t

1

gen-

eralized 
ontinua of mi
romorphi
 type in the sense of Eringen in the elasti
 
ase. General


ontinuum models involving independent rotations have already been introdu
ed by the

Cosserat brothers [19℄ at the beginning of the last 
entury.

Their development has been largely forgotten for de
ades only to be redis
overed in the early

sixties [64, 39, 1, 27, 25, 74, 75, 41, 56, 69, 76℄. At that time theoreti
al investigations on non-


lassi
al 
ontinuum theories were the main motivation [51℄. Sin
e then, the Cosserat 
on
ept

has been generalized in various dire
tions, for an overview of these so 
alled mi
ro
ontinuum

theories we refer to [26, 24, 8, 7, 9, 43, 53℄. Re
ently, in [13, 14℄, the mi
romorphi
 balan
e

equations derived by Eringen have been formally justi�ed as a more realisti
 
ontinuum model

based on mole
ular dynami
s and ensemble averaging.

The mi
romorphi
 model in
ludes in a natural way size e�e
ts, i.e. small samples behave


omparatively sti�er than large samples. These e�e
ts have re
ently re
eived mu
h attention

in 
onjun
tion with nano-devi
es and 
ellular stru
tures.

The mathemati
al analysis of general mi
romorphi
 solids in the stati
 
ase is at present

restri
ted to the in�nitesimal, linear elasti
 models, see e.g. [46, 22, 44, 36, 37℄ for linear mi-


ropolar models and [49, 47, 48℄ for linear mi
rostret
h models. The major diÆ
ulty of the

mathemati
al treatment in the �nite-strain stati
 
ase is related to the geometri
ally exa
t

formulation of the theory and the appearan
e of nonlinear manifolds ne
essary for the de-

s
ription of the mi
rostru
ture. In addition, 
oer
ivity turns out to be a deli
ate problem

related to the possible fra
ture of the material. No general existen
e theorems for �nite mi-


romorphi
 models had been known until [60℄. The simpler, geometri
ally exa
t nonlinear

mi
ropolar 
ase has been dealt with in [61℄.

This 
ontribution is organized as follows: �rst, in se
tion 1.2 we motivate the appli
ation of the

mi
romorphi
 model for the 
ontinuum-me
hani
al response of metalli
 foams. After that, we

review (se
tion 2) the basi
 
on
epts of the geometri
ally exa
t elasti
 mi
romorphi
 theories

with aÆne mi
rostru
ture in a variational 
ontext, i.e. we formulate the quasistati
 
onservative


ase as a minimization problem. For simpli
ity we restri
t attention to a ma
ros
opi
ally

physi
ally linear stress-strain relation. Then we provide the 
orresponding balan
e equations

and highlight the in
uen
e of material parameters on the ellipti
ity of the for
e balan
e equation.

More mathemati
ally in
lined readers may start dire
tly in the analyti
al se
tion 3. There,

the 
omplete problem statement of the geometri
ally exa
t elasti
 mi
romorphi
 
ase in a

variational 
ontext is repeated. Sin
e the two-�eld variational problem is only 
onditionally


oer
ive we need to introdu
e a modi�
ation for the applied loads as given in [60℄ in order

to ensure �rst that the fun
tional to be minimized is bounded below and se
ond that the


urvature 
ontribution 
an be 
ontrolled. This modi�
ation of the loads, herein 
alled prin
iple

of "bounded external work", expresses nothing but the physi
al fa
t that by moving a solid

arbitrarily in a "real" for
e �eld only a �nite amount of work 
an be gained. Su
h a 
ondition

is, however, unne
essary in either 
lassi
al non-polar nonlinear/linear elasti
ity or the linear

mi
romorphi
 model.

With this preparation existen
e of minimizers in suitable Sobolev-spa
es is then established

using the dire
t methods of variations and a novel extended Korn's �rst inequality. The math-

emati
al development extends the development given in [60℄. The investigation of the general

mi
romorphi
 
ase with aÆne mi
rostru
ture allows one to appre
iate the pe
uliarities of the

previously investigated mi
ro-in
ompressible and mi
ropolar sub
ases more 
losely. The spe
ial

role played by the Cosserat 
ouple modulus �




� 0 is already seen in the in�nitesimal strain


ase, where the two �elds of deformation and mi
rodeformation do not de
ouple even if �




= 0.

Then we swit
h to the in�nitesimal mi
romorphi
 elasti
 solid (se
tion 4) for whi
h we give

the variational formulation (se
tion 4.1) and the 
orresponding balan
e equations (se
tion 4.2).

Based on the linearized kinemati
s we determine e�e
tive material parameters in se
tion 4.3

and provide an identi�
ation with the well known representation of Mindlin in se
tion 4.4,

ensuring automati
ally positive de�niteness of the lo
al strain energy.

In the �nal se
tion 5 we 
ompute the response of an in�nite mi
romorphi
 
ontinuum with

a hole and identify it to the response of a 
ellular solid exhibiting strong size e�e
ts. We

1

Fully frame-indi�erent.
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ompare the response of a traditional Cosserat model and �




> 0 with the response of the

linear mi
romorphi
 model and �




= 0. The relevant notation is introdu
ed in the appendix.

In the appendix we supply as well the 
oer
ivity inequality, the derivation of the nonlinear

balan
e equations and an analyti
al solution for a simpli�ed linear mi
romorphi
 boundary

value problem.

1.2 Appli
ation: 
ontinuum modelling of metalli
 foams.

Cellular solids are strongly heterogeneous materials made of two highly 
ontrasted 
onstituents,

namely air with the highest volume fra
tion and at least one 
erami
, polymeri
 or metalli


phase [38℄. Their properties are extremely diÆ
ult to predi
t from the knowledge of the hard

phase 
ontent sin
e they strongly depend on the morphology of the hard skeleton. The 
omplex

mi
rostru
ture of a ni
kel foam 
an be seen in �gure 1 showing the distribution of open 
ells

of 
hara
teristi
 size 
lose to 500 �m. The edges of the fa
es of the polyhedral 
ells are ni
kel

struts with a triangular 
ross{se
tion.

The need for homogeneous e�e
tive models for the design of 
omponents and stru
tures made

of foam arises, be
ause 
onsidering all individual 
ells remains 
omputationally prohibitive. In

prin
iple, su
h homogeneous equivalent models 
an be obtained by means of 
lassi
al homog-

enization te
hniques whi
h are, however, diÆ
ult to extend to the extreme morphologies of


ellular solids [42℄. Alternatively, material parameters of phenomenologi
al models 
an be iden-

ti�ed from overall tensile 
urves or/and strain �eld measurements [4℄. The substitution of

su
h highly porous materials by a 
ontinuous homogeneous medium with an e�e
tive density,

though ne
essary for pra
ti
al appli
ations, is rather 
hallenging sin
e many important fea-

tures of the material behaviour 
an be lost. In parti
ular, size e�e
ts are observed in metalli


foams as a result of the intera
tion between the size of the 
onsidered stru
ture and that of

the mi
rostru
ture, namely the 
ell size [63, 28, 6℄. As a result, a 
ontinuum model should be

able to reprodu
e, in a 
ontinuous way, the prin
iple size e�e
ts. This is possible only if the

phenomenologi
al 
ontinuum model 
ontains some 
onstitutive intrinsi
 length s
ale(s) (here

denoted by L




). In parti
ular, models based on 
lassi
al Cau
hy 
ontinua fail to reprodu
e

the size e�e
ts presented in this work. The Cosserat 
ontinuum is a possible 
andidate for

modelling 
ellular solids as re
ognized at several pla
es [77, 67℄. However, it will turn out to be

quite inadequate when dealing with the size e�e
t addressed in this work. The reason lies in

the fa
t that 
ellular solids are highly 
ompressible materials so that size e�e
ts do not merely

arise from gradients of rotations (Cosserat approa
h) but also from mi
roextension gradients

[21℄. That is why the attention is drawn here to the mi
romorphi
 
ontinuum whi
h is based

on a full mi
rodeformation tensor as additional degree of freedom. Another approa
h based

on strain gradient plasti
ity was proposed in [11℄ for the modelling of size e�e
ts in sandwi
h

beams 
ontaining aluminium foam.

We 
onsider metalli
 foams mainly for their relatively high elasti
 sti�ness in 
omparison

to available polymer foams [38℄. Even though the tensile 
urves of aluminium and ni
kel foams

exhibit a 
lear elasti
 domain, the present work 
an only be seen as a prelude to more realisti


nonlinear analyses within the framework of (�nite-strain) elastoplasti
ity. Indeed, the size e�e
t

modeled in this work is not linked to a spe
i�
 lo
al 
onstitutive behaviour of the metal struts.

It 
an be rather seen as a ben
hmark test for the 
ontinuum medium 
hosen for representing a


ellular solid.

We insist on the following prerequisite of the model for su

essful appli
ations to stru
tural


omputations. Let us 
onsider a foam plate with a ma
hined 
ylindri
al hole of radius R and

subje
t it to tensile loading, the load being applied far from the hole. If the 
ell size l � R, a

simple 
lassi
al 
ontinuum model is able to 
orre
tly predi
t the strain �eld around the hole.

This has been demonstrated even in the nonlinear regime based on the 
omparison between

Finite Element simulations and strain �eld measurements in a ni
kel foam [4℄. Stress and strain


on
entrations o

ur at the equator where the 
ra
k leading to �nal fra
ture initiates.

However, when the hole size be
omes 
lose to the 
ell size, it is 
lear that su
h e�e
t should

not be noti
eable any longer sin
e the hole be
omes nothing but a pore similar to the other

ones. The transition from large hole behaviour up to the disappearan
e of any overall stress


on
entration e�e
t in the 
ase of holes with R � l=2, was studied experimentally by strain

�eld measurements in [21℄.

A 
ontinuum model should be able to a

ount for su
h a size e�e
t if it is to be trusted

for 
omputing 
omponents 
ontaining holes and not
hes. We show in the 
omputational part

of the present work that the (in�nitesimal) mi
romorphi
 model is able to reprodu
e at least

4



Figure 1: S
anning Ele
tron Mi
rograph of a ni
kel foam for battery appli
ations. The pi
ture

taken from [21℄ shows the distribution of 
ells and struts with 
hara
teristi
 sizes 500 �m and

70 �m respe
tively.

qualitatively this size e�e
t, even in the elasti
 regime, by solving numeri
ally the problem of

a 
ylindri
al hole in an in�nite matrix. Furthermore, the numeri
al analysis provides a way of

identifying the involved 
hara
teristi
 length.

2 A �nite-strain elasti
 mi
romorphi
 model with aÆne

mi
rostru
ture

Let us now motivate a �nite-strain mi
romorphi
 approa
h.

2

For our development we 
hoose

a stri
tly Lagrangean des
ription. We �rst introdu
e an independent kinemati
al �eld of mi-


rodeformations P 2 GL

+

(3;R) together with its right polar de
omposition

P = R

p

� U

p

= polar(P ) � U

p

= R

p

e

�

p

3

U

p

; det[P ℄ = e

�

p

;

U

p

=

U

p

det[U

p

℄

1=3

2 SL(3;R) ; P =

P

det[P ℄

1=3

2 SL(3;R) ; (2.1)

with R

p

2 SO(3;R) and U

p

2 PSym(3;R) \ SL(3;R). The mi
rodeformations P are meant to

des
ribe the substru
ture of the material whi
h 
an rotate, stret
h, shear and shrink. We

refer to R

p

as mi
rorotations.

The mi
romorphi
 theory we deal with 
an formally be obtained by introdu
ing the mul-

tipli
ative de
omposition of the ma
ros
opi
 deformation gradient F into independent

mi
rodeformation P and the mi
romorphi
, nonsymmetri
 right stret
h tensor U

(�rst Cosserat deformation tensor) with

F = P � U ; U = P

�1

F ; U 2 GL

+

(3;R); (2.2)

leading altogether to a mi
ro-
ompressible, mi
romorphi
 formulation.

3

2

Following Eringen [24, p.13℄ we distinguish the general mi
romorphi
 
ase: P 2 GL

+

(3;R) = R

+

�

SL(3;R) with 9 additional degrees of freedom (dof); the mi
ro-in
ompressible mi
romorphi
 
ase:

P 2 SL(3;R) with 8 dof; the mi
rostret
h 
ase: P 2 R

+

� SO(3;R) with 4 dof and the mi
ropolar 
ase:

P 2 SO(3;R) with only 3 additional dof.

3

The strain measure U whi
h is indu
ed by this de�nition 
orresponds to C

T

KL

presented in (1:5:11)

1

of [24,

p.15℄.
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The notionmi
romorphi
 is prone to misunderstandings: the mi
rodeformation P must be


onsidered as a ma
ros
opi
 (average) quantity as the deformation gradient and the resulting

model is still phenomenologi
al. However, geometri
al features of the real substru
ture to be

modelled determine the 
hoi
e of geometri
 manifolds for P . Sin
e the substru
ture of the

metalli
 foam 
an in prin
iple be 
rushed, the 
hoi
e P 2 GL

+

(3;R) is mandatory.

In the quasistati
 
ase, the mi
romorphi
 theory is derived from a two-�eld variational

prin
iple by postulating the following "a
tion eu
lidienne" [19, p.156℄ I for the �nite ma
ro-

s
opi
 deformation ' : [0; T ℄�
 7! R

3

and the independent mi
rodeformation P : [0; T ℄�
 7!

GL

+

(3;R):

I('; P ) =

Z




W (F; P;D

x

P )��

f

(') ��

M

(P ) dV

�

Z

�

S

�

N

(') dS�

Z

�

C

�

M




(P ) dS 7! min : w.r.t. ('; P );

P

j

�

= P

d

; '

j

�

= g

d

(t) : (2.3)

The elasti
ally stored energy density W depends on the ma
ros
opi
 deformation gradient

F as usual but in addition on the mi
rodeformation P together with their �rst order spa
e

derivatives, represented through the third order tensor D

x

P . Here 
 � R

3

is a domain with

boundary �
 and � � �
 is that part of the boundary, where Diri
hlet 
onditions g; P

d

for

displa
ements and mi
rodeformations, respe
tively, 
an be pres
ribed, while �

S

� �
 is a part

of the boundary, where tra
tion boundary 
onditions in the form of the potential of applied

surfa
e for
es �

N

are given with � \ �

S

= ;. The potential of external applied volume for
e is

�

f

and �

M

takes on the role of the potential of applied external volume 
ouples.

4

In addition,

�

C

� �
 is the part of the boundary, where the potential of applied surfa
e 
ouples �

M




are

applied with � \ �

C

= ;. On the free boundary �
 n f� [ �

S

[ �

C

g 
orresponding natural

boundary 
onditions for ' and P apply, whi
h are obtained automati
ally in the variational

pro
ess.

Variation of the a
tion I with respe
t to ' yields the traditional equation for balan
e of

linear momentum and variation of I with respe
t to P yields the additional balan
e of moment

of momentum.

The standard 
on
lusion from frame-indi�eren
e (here: invarian
e of the free energy

under superposed rigid bodymotions (SRBM) not merely observer-invarian
e of the model

[73, 5, 57℄: 8Q 2 SO(3;R) : W (F; P;D

x

P ) = W (QF;QP;D

x

[QP ℄) leads to the redu
ed

representation of the energy (spe
ify Q = R

T

p

):

W (F; P ;D

x

P ) =W (R

T

p

F;R

T

p

P;R

T

p

D

x

P ) =W (U

p

U;U

p

; R

T

p

D

x

P ) =W

℄

(U;U

p

;K

p

;r�

p

) ; (2.4)

where for P = R

p

U

p

2 SL(3;R) we set

K

p

:= R

T

p

D

x

P =

�

R

T

p

r(P :e

1

); R

T

p

r(P :e

2

); R

T

p

r(P :e

3

)

�

2 M

3�3

� M

3�3

� M

3�3

; (2.5)

whi
h 
oin
ides with one spe
i�
 representation

5

of the third order right mi
ropolar 
urva-

ture tensor (or torsion-
urvature tensor, wryness tensor, se
ond Cosserat deformation tensor,

bending-twist tensor, et
.), if P 2 SO(3;R).

For a geometri
ally exa
t (ma
ros
opi
ally isotropi
) theory we assume in the following an

additive split of the total free energy density into mi
romorphi
 lo
al stret
h (ma
ros
opi
),

stret
h of the substru
ture (mi
ros
opi
) and mi
romorphi
 
urvature part a

ording to

W

℄

= W

mp

(U)

| {z }

ma
ros
opi
 energy

+ W

foam

(U

p

; �

p

)

| {z }

mi
ros
opi
 lo
al energy

+ W


urv

(K

p

;r�

p

)

| {z }

mi
ros
opi
 intera
tion energy

; (2.6)

4

appearing in a non-me
hani
al 
ontext e.g. as in
uen
e of a magneti
 �eld on the polarization of a sub-

stru
ture of the bulk.

5

Note that K

i

p

= R

p

T

r(P :e

i

) 62 so(3;R). Another representation of K

p

is given by K

p

:=

�

R

T

p

�

x

P ;R

T

p

�

y

P ;R

T

p

�

z

P

�

2 T(3). Sin
e �

x

(R

T

p

P ) = 0 for P = R

p

2 SO(3;R), it holds that K

p

2

so(3;R) � so(3;R) � so(3;R) in this 
ase. It is therefore possible to base all 
onsiderations of 
urvature in the

mi
ropolar 
ase on a more 
ompa
t expression

b

K

p

:=

�

axl(R

T

p

�

x

R

p

)j axl(R

T

p

�

y

R

p

)j axl(R

T

p

�

z

R

p

)

�

2 M

3�3

.

This is the traditional mi
ropolar approa
h, see e.g. [68, 30, 40℄. For us it is, however, not possible to use

b

K

p

,

sin
e we allow P 2 GL

+

(3;R).

6



sin
e a possible 
oupling between U and K

p

for 
entrosymmetri
 bodies 
an be ruled out [62,

p.14℄.

2.1 The elasti
 ma
ros
opi
 mi
romorphi
 strain energy density

For a ma
ros
opi
 theory whi
h is relevant mainly for small elasti
 strain

6

we require that

W

mp

(U) is a non-negative isotropi
 quadrati
 form (physi
ally linear). This should 
over already

many 
ases of physi
al interest. We assume moreover the ma
ros
opi
 stret
h energy density

normalized to

W

mp

(11) = 0; D

U

W

mp

(U)

j

U=11

= 0 : (2.7)

For the lo
al energy 
ontribution elasti
ally stored in the 
ell-stru
ture we assume the nonlinear

expression

W

foam

(U

p

) = �

m

k

U

p

det[U

p

℄

(1=3)

� 11k

2

| {z }

iso
hori
 substru
ture energy

+

�

m

4

�

(det[U

p

℄� 1)

2

+ (

1

det[U

p

℄

� 1)

2

�

| {z }

volumetri
 energy

= �

m

kU

p

� 11k

2

+

�

m

4

�

(e

�

p

� 1)

2

+ (e

��

p

� 1)

2

�

=:W

foam

(U

p

; �

p

) ; (2.8)

avoiding self-interpenetration in a variational setting, sin
eW

foam

!1 as det[P ℄ = det[U

p

℄! 0

if �

m

> 0.

7

The most general form of W

mp


onsistent

8

with the requirement (2.7) is

W

mp

(U) = �

e

k sym(U � 11)k

2

+ �




k skew(U � 11)k

2

+

�

e

2

tr

�

sym(U � 11)

�

2

; (2.9)

with material 
onstants �

e

; �




; �

e

su
h that �

e

; 3�

e

+ 2�

e

; �




� 0 from non-negativity [24℄ of

(2.9). It is important to realize that �

e

; �

e

are e�e
tive elasti
 
onstants whi
h in

general do not 
oin
ide with the 
lassi
al Lam�e 
onstants �; � > 0. Here, we take the


lassi
al Lam�e 
onstants to be obtained from standard experiments of suÆ
iently large samples

of the materials, su
h that length s
ale e�e
ts do not interfere. The so-
alled Cosserat 
ouple

modulus �




(rotational 
ouple modulus) remains for the moment unspe
i�ed, but we note that

�




= 0 is physi
ally possible, sin
e the mi
romorphi
 rea
tion stress D

U

W

mp

(U) � U

T

is

not symmetri
 in general, i.e. the problem does not de
ouple. For 
omparison, in [24, p.111℄

for the in�nitesimal mi
ropolar 
ase, the elasti
 moduli are taken to be �

e

= � +

�

2

; �




=

�

2

; �

e

= �, but in this formula � 
an neither be regarded as one of the Lam�e 
onstants.

9 10

In

[20, 71, 72, 31, 23, 32℄ the abbreviation �




is used while in [40℄ it is �




= � and �




= G




in [50℄

for the mi
ropolar theory.

By formal similarity with the 
lassi
al formulation, we may 
all �

m

; �

m

the mi
ros
opi


Lam�e moduli of the aÆne substru
ture, whi
h 
an in prin
iple be determined from 
lassi-


al experiments or numeri
al 
omputation on the mi
ros
ale, e.g. dealing with a ni
kel-foam

stru
ture, they are the Lam�e-
onstants of the smallest possible representative volume element

(RVE) in the foam. In se
tion 4.3 it will be shown how to obtain 
onsistent values for �

e

; �

e

if

we know already the mi
ros
opi
 values �

m

; �

m

and the ma
ros
opi
 
onstants �; �.

2.2 The nonlinear elasti
 
urvature energy density of the metalli


foam

The 
urvature energy is responsible for the size-dependent resistan
e of the 
ell-stru
ture against

lo
al twisting and inhomogeneous volume 
hange. Thus inhomogeneous mi
rostru
tural rear-

6

By this we mean that the part of the deformation whi
h is superposed onto the substru
ture deformation

has small elasti
 strains.

7

Note that

�

(det[U

p

℄� 1)

2

+ (

1

det[U

p

℄

� 1)

2

�

= 2 tr [U

p

� 11℄

2

+O(kU

p

� 11k

3

).

8

Mixed produ
ts like hU � 11; U

p

� 11i and tr

�

U � 11

�

� tr

�

U

p

� 11

�

are ex
luded by non-negativity.

9

A simple de�nition of the Lam�e 
onstants in (the restri
ted 
ase of) mi
ropolar elasti
ity is that they should


oin
ide with the 
lassi
al Lam�e 
onstants for symmetri
 situations. Equivalently, they are obtained by the


lassi
al formula � =

E

2(1+�)

; � =

E�

(1+�)(1�2�)

, where E and � are uniquely determined from uniform tra
tion

experiments for suÆ
iently large samples.

10

Uniform tra
tion and uniform 
ompression do not a
tivate rotations, hen
e the 
lassi
al identi�
ation of the

Lam�e 
onstants is a
hieved independent of �




. Uniform tra
tion alone allows to determine the Young modulus

E and the Poisson ratio � [17, p.126℄. Contrary to [34, p.411℄ we do not see the possibility to de�ne a spe
i�


"mi
ropolar Young modulus" or "mi
ropolar Poisson ratio".

7



rangements are penalized. For the 
urvature term, to be spe
i�
, we assume the general form

W


urv

(K

p

;r�

p

) = �

L

1+p




12

(1 + �

4

L

q




kK

p

k

q

)

�

�

5

k symK

p

k

2

+ �

6

k skewK

p

k

2

+ �

7

tr [K

p

℄

2

�

1+p

2

+ �

L

1+p




12

�

�

8

kr�

p

k

1+p

+ �

8

L




kr�

p

k

2+p

�

; (2.10)

where L




> 0 is setting an internal length s
ale with units of length. It is to be noted that

we have de
oupled the 
urvature 
oming from inhomogeneous volume 
hanges and from pure

twisting. The values �

4

� 0; p > 0 and q � 0 are additional material 
onstants. The fa
tor

1

12

appears only for 
onvenien
e and �

5

> 0; �

6

; �

7

� 0; �

8

> 0 should be satis�ed as a minimal

requirement. We mean tr [K

p

℄

2

= ktr [K

p

℄k

2

by abuse of notation. This 
hoi
e for W


urv

does

not presuppose any knowledge of the magnitude of the mi
romorphi
 
urvature in the material

and is non-degenerate in the origin kK

p

k = 0; kr�

p

k = 0.

Some 
are has to be exerted in the �nite-strain regime: W


urv

should preferably be 
oer
ive

in the sense that we impose pointwise

9 


+

> 0 9 r > 1 : 8K

p

2 T(3) 8� 2 R

3

: W


urv

(K

p

; �) � 


+

k(K

p

; �)k

r

; (2.11)

or less demanding

9 r > 1 :

W


urv

(K

p

; �)

k(K

p

; �)k

r

!1 as k(K

p

; �)k ! 1 ; (2.12)

whi
h implies ne
essarily �

6

; �

8

> 0 in (2.10). Observe that our formulation of the mi
romor-

phi
 
urvature tensor is mathemati
ally 
onvenient in the sense that kK

p

k = kR

T

p

D

x

Pk = kD

x

Pk

provides pointwise 
ontrol of all �rst derivatives of P independent of the values of P itself.

11

Note that the presented formulation still in
ludes a �nite Cosserat mi
ropolar model as a

spe
ial 
ase, if we set P = R 2 SO(3;R). In this fashion, we have the following 
orresponden
e

of limit problems:

�

m

!1 ) mi
ro-in
ompressible model: manifold SL(3;R) ;

�

m

!1 ) mi
rostret
h model: manifold R

+

� SO(3;R) ; (2.13)

�

m

; �

m

!1 ) mi
ropolar model: manifold SO(3;R) ;

�

m

; �

m

; �




!1 ) higher (se
ond) gradient 
ontinua :

2.3 The mi
romorphi
 balan
e equations

For the 
hoi
es we have made we supply the resulting material form of the highly nonlinear

�eld equations on the referen
e 
on�guration (with �

4

= 0; p = 1) whi
h 
an be obtained after

some algebrai
 manipulations, see se
tion 7.3 (We have gathered the in
uen
e of the external

potentials in �(x; '; P )):

0 = Div

�

S

1

(F; P ) + 2�




P

�T

skew(P

�1

F )

�

+D

'

�(x; '(x); P )

R

3

; balan
e of for
es ;

0 = skew(U

�1

p

D

U

W

mp

(U)U

T

U

T

p

) + skew

�

R

T

p

Div

�

R

p

D

K

p

W


urv

(K

p

;r�

p

)

�

U

p

�

+ skew

�

D

K

p

W


urv

(K

p

;r�

p

)K

T

p

�

+ skew

�

R

T

p

D

P

�(x; '(x); P )U

p

�

M

3�3

;

rotational momentum ;

0 = dev sym

�

U

�1

p

D

U

W

mp

(U)U

T

U

T

p

�

� dev sym

�

D

U

p

W

foam

(U

p

; �

p

)U

T

p

�

(2.14)

+ dev sym

�

R

T

p

Div

�

R

p

D

K

p

W


urv

(K

p

;r�

p

)

�

U

p

�

+ dev sym

�

R

T

p

D

P

�(x; '(x); P )U

p

�

;

volumetri
 momentum ;

0 = tr

h

U

�1

p

D

U

W

mp

(U )U

T

U

T

p

i

�D

�

p

W

foam

(U

p

; �

p

) + DivD

r
�

p

W


urv

(K

p

;r�

p

) ; (2.15)

iso
hori
 momentum ;

11

This is not true for other possible basi
 invariant 
urvature expressions like P

�1

D

x

P or P

T

D

x

P or F

T

D

x

P ,

see Eringen [24, 1.5.4,1.5.11℄.

8



where S

1

is the �rst Piola-Kir
hho� stress (for �




= 0) with the fun
tional form

S

1

(F; P ) = P

�T

�

2� sym

�

P

�1

F � 11

�

+ � tr

�

P

�1

F � 11

�

11

�

; (2.16)

similar to [59, (P3)℄ and D

K

p

W


urv

(K

p

) is the material mi
romorphi
 moment tensor (or


ouple-stress tensor). Note that D

R

p

W

foam

(U

p

; �

p

) = 0, leaving no 
ontribution of the lo
al

foam energy in the rotational momentum equation.

In our subsequent variationally based mathemati
al development the nonlinear balan
e

equations will not play a prominent role. They be
ome more important, however, for our

numeri
al 
al
ulations.

Remark 2.1

Observe the 
hain of symmetry 
onditions for iso
hori
 ma
ros
opi
 relative elasti
 strain en-

ergies W

mp

(U):

U 2 Sym) D

U

W

mp

(U) 2 Sym) D

U

W

mp

(U)U

T

2 Sym, S

2

(F; P ) 2 Sym ;

S

2

(F; P ) := F

�1

D

F

W

mp

(P

�1

F ) 2 Sym : (2.17)

The reverse impli
ations are in general false.

2.4 The mi
romorphi
 mi
ro-in
ompressible balan
e equations

In the spe
ial 
ase P = P 2 SL(3;R); �

p

� 0, the balan
e equations have to in
orporate the

nonlinear 
onstraint det[P ℄ � 1. This 
an be done by suitably restri
ting the possible variations

of P , see (7.6) and set W

foam

(U

p

) :=W

foam

(U

p

; 0)

0 = Div

h�

S

1

(F; P ) + 2�




P

�T

skew(P

�1

F )

�i

+D

'

�(x; '(x); P )

R

3

;

0 = skew(U

�1

p

D

U

W

mp

(U)U

T

U

T

p

) + skew

�

R

T

p

Div

�

R

p

D

K

p

W


urv

(K

p

)

�

U

p

�

+ skew

�

D

K

p

W


urv

(K

p

)K

T

p

�

+ skew

�

R

T

p

D

P

�(x; '(x); P )U

p

�

M

3�3

;

0 = dev sym

�

U

�1

p

D

U

W

mp

(U)U

T

U

T

p

�

� dev sym

�

D

U

p

W

foam

(U

p

)U

T

p

�

(2.18)

+ dev sym

�

R

T

p

Div

�

R

p

D

K

p

W


urv

(K

p

)

�

U

p

�

+ dev sym

�

R

T

p

D

P

�(x; '(x); P )U

p

�

:

A similar form of the un
onventional

12

balan
e of angular momentum equation has been given

in [7, p.63℄ for the mi
ropolar 
ase.

2.5 Constitutive 
onsequen
es of the value for the Cosserat 
ouple

modulus

Looking at (2.9) with �




> 0 we see that the impli
ation of this 
hoi
e for �




at a �rst glan
e

is an inno
uous rise in the ma
ros
opi
 elasti
 strain energy W

mp

(U), if R

p

6= polar(F ), but

R

p

is generi
ally assumed to be independent of the 
ontinuum rotations polar(F ). The 
hoi
e

�




> 0 a
ts like a lo
al "elasti
 spring" between both 
ontinuum rotations and mi
rorotations.

Let us 
onsider the mathemati
al impli
ations of �




= 0 and 0 < �




� �, respe
tively,

in more detail. It is readily veri�ed that for the elasti
ity tensors (di�erentiating the stret
h

energy density W

mp

(U) at �xed P w.r.t. F )

�




> 0 : 8H 2 M

3�3

:D

2

F

W

mp

(P

�1

F ):(H;H) � 2�




kP

�1

Hk

2

� 2�




�

min

(P

�T

P

�1

) kHk

2

;

�




= 0 : 8H 2 M

3�3

:D

2

F

W

mp

(P

�1

F ):(H;H) � 2� k

1

2

(P

�1

H +H

T

P

�T

)k

2

: (2.19)

12

Sin
e we have not transformed the tensor equation into a related ve
tor format, whi
h is usually preferred

in the mi
ropolar 
ase. Following [7℄ we 
an identify an external volume 
ouple b




in the equilibrium ve
tor-

format with axl(skew(R

T

p

M)). Then b




is a volume 
ouple whi
h is not a dead load. We note that a term

skew

�

D

K

p

W


urv

(K

p

)K

T

p

�

does not dire
tly appear in derivations based on

b

K

p

sin
e e.g.

b

K

1

p

= axl(R

T

p

�

x

R

p

)

and variation along a one-parameter group of rotations yields

Æ

b

K

1

p

= axl((AR

p

)

T

�

x

R

p

+ R

T

p

�

x

[AR

p

℄) = axl(�R

T

p

A�

x

R

p

+ R

T

p

(�

x

A)R

p

+ R

T

p

A�

x

R

p

) = axl(R

T

p

(�

x

A)R

p

) :

This is not at varian
e with (2.18)

2

sin
e di�erentiation is 
arried out di�erently. Observe that

skew

�

D

K

p

W


urv

(K

p

)K

T

p

�

= 0 if �

5

= �

6

; �

7

= 0, i.e. if 
ouple stresses are proportional to the 
urvature

tensor.

9



Hen
e the 
hoi
e �




> 0 leads to uniform 
onvexity of W

mp

(P

�1

F ) w.r.t. F if P 2

L

1

(
;GL

+

(3;R)) and un
onditional elasti
 stability on the ma
ros
opi
 level: regard-

less of what spatial distribution of mi
rodeformations P (x) is given, the ma
ros
opi
 equation

of balan
e of linear momentum would then be uniquely solvable and this equation is insensi-

tive to any deterioration of the spatial features of the mi
rostru
ture as long as P is merely

essentially bounded. Uniform 
onvexity is diÆ
ult to a

ept from a 
onstitutive point of view,

sin
e uniform 
onvexity is impossible for a geometri
ally exa
t des
ription in the framework of

a 
lassi
al ma
ros
opi
 
ontinuum but 
lear from the above dis
ussion: the additional elasti


spring between mi
ro- and 
ontinuum rotation extremely rigidi�es the material and 
ompletely


hanges the type of the mathemati
al boundary value problem in 
omparison with the 
lassi
al

�nite elasti
ity theory.

Fortunately, su
h a far rea
hing unsatisfa
tory 
on
lusion does not hold for zero Cosserat


ouple modulus �




= 0, in whi
h 
ase we have for �; � 2 R

3

:

D

2

F

W

mp

(P

�1

F ):(� 
 �; � 
 �) = �

�

kP

�1

� 
 �k

2

+ hP

�1

� 
 �; � 
 P

�1

�i

�

= �

�

kP

�1

� 
 �k

2

+ hP

�1

�; �i

2

�

� � kP

�1

� 
 �k

2

; (2.20)

whi
h shows the physi
ally mu
h more appealing inequality

D

2

F

W

mp

(P

�1

F ):(� 
 �; � 
 �) � ��

min

(P

�T

P

�1

) k�k

2

� k�k

2

; (2.21)

expressing nothing but uniform Legendre-Hadamard ellipti
ity of the a
ousti
-tensor with

ellipti
ity 
onstant ��

min

(P

�T

P

�1

). As a result we see that for large mi
rostru
tural

expansion P , the ellipti
ity 
onstant may deteriorate, i.e. the larger the foam

is extended, the weaker it gets while the 
ompressed metalli
 foam gets sti�er.

The Legendre-Hadamard 
ondition has the most 
onvin
ing physi
al basis [2, p.461℄ be
ause it

implies the reality of wave speeds and the Baker-Eri
ksen inequalities (stress in
reases

with strain, [52, p.19℄).

13

3 Mathemati
al analysis

3.1 Statement of the �nite elasti
 mi
romorphi
 problem in varia-

tional form

Let us gather the obtained three-�eld problem posed in a variational form. The task is to

�nd a triple ('; P ; �

p

) : 
 � R

3

7! R

3

� SL(3;R) � R of ma
ros
opi
 deformation ' and

independent mi
rodeformation P = e

�

p

3

P , minimizing the energy fun
tional I with

I('; P ; �

p

) =

Z




W

mp

(P

�1

r') +W

foam

(U

p

; �

p

) +W


urv

(R

T

p

D

x

P ;r�

p

)��

f

(')� �

M

(P ) dV

�

Z

�

S

�

N

(') dS�

Z

�

C

�

M




(P ) dS 7! min : w.r.t. ('; P ; �

p

), (3.1)

under the 
onstraints

U

p

= R

T

p

P ; R

p

= polar(P ); U = P

�1

r' ; P = e

�

p

3

P ; (3.2)

and the Diri
hlet boundary 
onditions

'

j

�

= g

d

; R

p

j

�

= R

p

d

; U

p

j

�

= U

p

d

) P

j

�

= R

p

d

U

p

d

; �

p

j

�

= �

p

d

: (3.3)
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The preferred value �




= 0 for the ma
ros
opi
 
ase 
an as well be motivated by the following 
onsideration:

Consider the Green strains F

T

F � 11 = (U � 11)

T

(U � 11) + 2 sym(U � 11). Therefore

�

4

kF

T

F � 11k

2

=

�k symU � 11k

2

+O(kU � 11k

3

). Hen
e �




= 0 provides the 
orre
t �rst order approximation to a 
lassi
al St.

Venant-Kir
hho� material. With �




= 0 we ex
lusively re
over the fa
t of the 
lassi
al 
ontinuum theory that

W isotropi
 implies symmetry of the Biot stress tensor: D

U

W (U) 2 Sym. If we expand R = 11 + A+ : : : with

A 2 so(3) and write F = 11 +ru, then the mi
ropolar e�e
ts disappear to �rst order for �




= 0. In this sense,

�




= 0 is 
lose to 
lassi
al elasti
ity.

10



Here, the 
onstitutive assumptions on the densities are taken to be

W

mp

(U) = �

e

k sym(U � 11)k

2

+ �




k skew(U)k

2

+

�

e

2

tr

�

sym(U � 11)

�

2

;

W

foam

(U

p

; �

p

) = �

m

kU

p

� 11k

2

+

�

m

4

�

(e

�

p

� 1)

2

+ (e

��

p

� 1)

2

�

; (3.4)

W


urv

(K

p

;r�

p

) = �

L

1+p




12

(1 + �

4

L

q




kK

p

k

q

)

�

�

5

k symK

p

k

2

+ �

6

k skewK

p

k

2

+ �

7

tr [K

p

℄

2

�

1+p

2

+ �

L

1+p




12

�

�

�

8

kr�

p

k

1+p

+ �

8

L




kr�

p

k

2+p

�

;

K

p

= R

T

p

D

x

P =

�

R

T

p

r(P :e

1

); R

T

p

r(P :e

2

); R

T

p

r(P :e

3

)

�

; the third order 
urvature tensor :

The total elasti
ally stored energy W = W

mp

+W

foam

+W


urv

depends on the deformation

gradient F = r', and the mi
rodeformations P together with their spa
e derivatives. Here


 � R

3

is a domain with boundary �
 and � � �
 is that part of the boundary, where Diri
hlet


onditions g

d

; P

d

for displa
ements and mi
rodeformations, respe
tively, are pres
ribed, while

�

S

� �
 is a part of the boundary, where tra
tion boundary 
onditions in the form of the

potential of applied surfa
e for
es �

N

are given with � \ �

S

= ;. In addition, �

C

� �
 is

the part of the boundary where the potential of external surfa
e 
ouples �

M




are applied with

�\�

C

= ;. On the free boundary �
nf�[�

S

[�

C

g 
orresponding natural boundary 
onditions

for ('; P ) apply. The potential of the external applied volume for
e is �

f

and �

M

takes on the

role of the potential of applied external volume 
ouples.

The parameters �

e

; �

e

> 0 govern the relative elasti
 deformation, �




� 0 is 
alled

the Cosserat 
ouple modulus, �

m

; �

m

> 0 are the Lam�e 
onstants of a representative

volume element (RVE) of the substru
ture and L




> 0 introdu
es an internal length whi
h

is 
hara
teristi
 for the material, e.g. related to the 
ell size of the metalli
 foam. The

parameters �

i

; i = 1; ::; 8 are dimensionless weighting fa
tors. If not stated otherwise, we

assume that �

5

> 0; �

6

> 0; �

8

> 0; �

7

� 0.

A �nite Cosserat mi
ropolar theory is in
luded in the formulation (3.1),(3.2),(3.4) by re-

stri
ting it to P 2 SO(3;R) or setting �

m

; �

m

= 1, formally. Similarly, for �

m

= 1 only we

re
over the mi
ro-stret
h formulation with P 2 R

+

� SO(3;R) and for �

m

=1, we re
over the

mi
ro-in
ompressible formulation 
ase P 2 SL(3;R).

3.2 The external potentials

Traditionally, in the 
onservative, dead load 
ase one would have

�

f

(') = hf; 'i ; �

M

(P ) = hM;P i ; �

N

(') = hN;'i ; �

M




(P ) = hM




; P i ; (3.5)

for the potentials of applied loads with given fun
tions f 2 L

2

(
;R

3

); M 2 L

2

(
;M

3�3

); N 2

L

2

(�

S

;R

3

); M




2 L

2

(�

C

;M

3�3

).

For our treatment, we need to assume, however, that the external potentials, des
ribing

the 
on�guration dependent applied loads, are 
ontinuous with respe
t to the topology of

L

1

(
); L

1

(�

S

); L

1

(�

C

), respe
tively and satisfy in addition the 
ondition

9C

+

> 0 8' 2 L

1

(
;R

3

); P 2 L

1

(
;GL

+

(3;R)) :

Z




�

f

(')��

M

(P ) dV;

Z

�

S

�

N

(') dS;

Z

�

C

�

M




(P ) dS � C

+

: (3.6)

While 
ontinuity is satis�ed e.g. for the dead load 
ase �

f

(') = hf; 'i and f 2 L

1

(
),

the se
ond 
ondition (3.6) restri
ts attention to "bounded external work". If we want to

des
ribe a situation 
orresponding to the 
lassi
al dead load 
ase, we 
ould take

�

f

(') =

1

1 + [k'(x)k �K

+

℄

+

hf(x); '(x)i ; (3.7)

for some large positive 
onstant K

+

and [�℄

+

the positive part of a s
alar argument. It suÆ
es

now that f 2 L

1

(
), then

R




�

f

(') dV � C

+

, independent of ' 2 L

1

(
).

The new 
ondition (3.6) 
an be rephrased as saying that only a �nite amount of work


an be performed against the external loads, regardless of the magnitude of translation and

mi
rodeformation. This is 
ertainly true for any real �eld of applied loads.

14

14

In 
lassi
al �nite elasti
ity, su
h a 
ondition is not ne
essary, sin
e the elasti
 energy density is assumed a

11



3.3 The di�erent 
ases

We distinguish three di�erent situations:

I: �




> 0; �

4

� 0; p � 1; q � 0, elasti
 ma
ro-stability, lo
al �rst order mi
romorphi
. Fra
-

ture ex
luded.

II: �




= 0; �

4

> 0; p � 1; q > 1, elasti
 pre-stability, nonlo
al se
ond order mi
romorphi
,

ma
ros
opi
 spe
imens, in a sense 
lose to 
lassi
al elasti
ity, zero Cosserat 
ouple mod-

ulus. Fra
ture ex
luded.

III: �




= 0; �

4

= 0; 0 < p � 1; q = 0, elasti
 pre-stability, nonlo
al se
ond order mi
romor-

phi
 theory, ma
ros
opi
 spe
imens, in a sense 
lose to 
lassi
al elasti
ity, zero Cosserat


ouple modulus. Sin
e possibly ' 62 W

1;1

(
;R

3

), due to la
k of elasti
 
oer
ivity, in
lud-

ing fra
ture in multiaxial situations.

We refer to 0 < p < 1; q � 0 as the sub-
riti
al 
ase, to p = 1; q � 0 as the 
riti
al 
ase

and to p � 1; q > 1 as the super-
riti
al 
ase. We will mathemati
ally treat the �rst two


ases I/II.

3.4 Existen
e for the geometri
ally exa
t elasti
 mi
romorphi
 model

The following results extend the existen
e theorems for geometri
ally exa
t mi
romorphi
 mi
ro-

in
ompressible elasti
 solids given previously.

15

Theorem 3.1 (Existen
e for elasti
 mi
romorphi
 model: 
ase I.)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

)

and P

d

2 W

1;1+p

(
;GL

+

(3;R)). Moreover, let the applied external potentials satisfy (3.6).

Then (3.1) with material 
onstants 
onforming to 
ase I and p > 1 admits at least one mini-

mizing solution triple ('; P ; �

p

) 2 H

1

(
;R

3

)�W

1;1+p

(
; SL(3;R)) �W

1;2+p

(
;R).

Proof. We apply the dire
t methods of variations. The in
uen
e of the external potentials is

gathered in writing �('; P ). With the pres
ription of (g

d

; P

d

) it is 
lear that I <1 for exa
tly

this pair of fun
tions after de
omposing P

d

in its rotational, iso
hori
 stret
h and volumetri


stret
h. Sin
e (3.6) is assumed, it is also 
lear that I is bounded below for all ' 2 L

1

(
;R

3

)

and P 2 L

1

(
;GL

+

(3;R)).

We may therefore 
hoose de
reasing (in�mizing) sequen
es of triples

('

k

; P

k

; �

k

p

) 2 H

1

(
;R

3

)�W

1;1+p

(
; SL(3;R)) �W

1;2+p

(
;R) ; (3.8)

su
h that

lim

k!1

I('

k

; P

k

; �

k

p

) = inf

' 2 L

1

(
;R

3

);

P 2 L

1

(
; SL(3;R));

�

p

2 L

1

(
;R)

I('; P ; �

p

) : (3.9)

The total 
urvature 
ontribution W


urv

along this sequen
e is bounded independent of the

number k again on a

ount of (3.6).

16

Observe now that the mi
romorphi
 
urvature term K

p


ontrols P 2 W

1;1+p

(
; SL(3;R)),

sin
e kK

p

k = kR

T

p

D

x

Pk = kD

x

Pk, pointwise, the assumption that �

5

; �

6

> 0 and the appli-


ation of Poin
ar�es inequality with the Diri
hlet 
onditions on P . Moreover, sin
e �

8

> 0 we

priori to verify an unquali�ed 
oer
ivity 
ondition [65℄ of the type W (F ) � 


+

kFk

q

� C; q > 1, whi
h,

together with Diri
hlet 
onditions and Poin
ar�e's inequality 
ontrols the L

q

(
) part of the deformation.

Fields satisfying (3.6) are e.g. the gravity �eld of a �nite mass, the ele
tri
 �eld of a �nite 
harge et
.

Remark as well that (3.6) does not ex
lude lo
al, integrable singularities. The traditional dead load 
ase in

(3.5) must rather be interpreted as a linearization of the �nite external potential: write '(x) = x+ u(x), then

�(x;'(x)) = �(x; x+ u(x)) = �(x; x) + hD

'

�(x; x); ui+ : : : = 
onst:+ hf; ui+ : : : with f(x) = D

'

�(x; x). We

are not aware of a previous introdu
tion of a 
ondition similar to (3.6).

15

The proposed �nite results determine the ma
ros
opi
 deformation ' 2 H

1

(
;R

3

) and nothing more. This

means that dis
ontinuous ma
ros
opi
 deformations by 
avities or the formation of holes are not ex
luded

(possible mode I failure). If �




> 0, fra
ture is e�e
tively ruled out, whi
h is unrealisti
.

16

If (3.6) does not hold, one might have in�mizing sequen
es with unbounded 
urvature. The geometri
ally

exa
t mi
romorphi
 formulation is only 
onditionally 
oer
ive.

12



obtain boundedness of �

k

p

2 W

1;2+p

(
;R), again independent of k 2 N. This result remains

true already without spe
i�
ation of Diri
hlet boundary 
onditions for �

p

sin
e the term e

�

p

estimates any L

q

-norm of �

p

. For p > 1 Sobolev's embedding shows that we 
an 
hoose a

subsequen
e, not relabelled, su
h that strongly

�

k

p

!

b

�

p

2 C

0

(
;R) k !1 : (3.10)

Now we may extra
t a subsequen
e again denoted by P

k


onverging strongly in L

1+p

(
) to an

element

b

P 2 W

1;1+p

(
;M

3�3

) sin
e p > 0 by assumption. Moreover, a further subsequen
e


an be found, su
h that the 
urvature tensor K

p;k


onverges weakly to some




K

p

in L

1+p

(
).

For 1 < (1 + p) < 3 the embedding

W

1;1+p

(
) � L

3(1+p)

3�(1+p)

�Æ

(
) ; Æ � 0 ; (3.11)

for three spa
e dimensions is 
ompa
t for Æ > 0 and shows that the subsequen
e P

k


an be


hosen su
h that it 
onverges indeed strongly in the topology of L

6�Æ

(
), sin
e we have moreover

p � 1, whi
h implies immediately that

b

P 2 W

1;1+p

(
; SL(3;R)). If 1+ p � 3 we 
an use better

embeddings to have the same 
on
lusion.

Be
ause �




> 0, we have the simple algebrai
 estimate

W

mp

(P

�1;k

F

k

) � �




kP

�1;k

F

k

� 11k

2

= �




�

kP

�1;k

F

k

k

2

� 2hP

�1;k

F

k

; 11i+ 3

�

� �




�

kU

k

k

2

� 2

p

3kU

k

k+ 3

�

; (3.12)

implying the boundedness of the mi
romorphi
 stret
h U

k

= P

�1;k

F

k

in L

2

(
). Moreover, by

H�older's inequality, we obtain

kF

k

k

s;


= kP

k

P

�1;k

F

k

k

s;


� kP

k

k

r

1

;


kP

�1;k

F

k

k

r

2

;


;

1

s

=

1

r

1

+

1

r

2

;

= ke

�

k

p

3

P

k

k

r

1

;


kP

�1;k

F

k

k

r

2

;


;

� sup

x2


e

�

k

p

(x)

3

kP

k

k

r

1

;


kP

�1;k

F

k

k

r

2

;


: (3.13)

Sin
e P

k

is bounded in L

6

(
) (3.11) and P

�1;k

F

k

is bounded in L

2

(
) and �

k

p

is strongly


onverging in C

0

(
;R) (3.10), we may 
hoose r

1

= 6; r

2

= 2 to obtain boundedness of F

k

= r'

k

in L

s

(
); s =

3

2

. Using the Diri
hlet boundary 
onditions for '

k

and the generalized Poin
ar�e

inequality we get

k'

k

k

W

1;s

(
;R

3

)

� Const: (3.14)

By the boundedness of '

k

in W

1;s

(
;R

3

) we may extra
t a subsequen
e, not relabelled, su
h

that '

k

* '̂ 2 W

1;s

(
;R

3

). Furthermore, we may always obtain a subsequen
e of ('

k

; P

k

)

su
h that U

k

= P

�1;k

F

k


onverges weakly in L

2

(
) to some element

b

U on a

ount of the

boundedness of the stret
h energy and �




> 0.

We have already shown that for p � 1 the sequen
e P

k


onverges indeed strongly in L

r

(
)

to an element

b

P 2 W

1;1+p

(
; SL(3;R)). Therefore

P

�1;k

=

1

det[P

k

℄

AdjP

k

!

1

det[

b

P ℄

Adj

b

P =

b

P

�1

inL

r

2

(
; SL(3;R)) ;

r =

3(1 + p)

(3� (1 + p))

� Æ ; if 1 < (1 + p) < 3 ; (3.15)

and we obtain for p > 1 that P

�1;k

!

b

P

�1

strong in L

3+

~

Æ

(
; SL(3;R));

~

Æ > 0. Moreover,

P

�1;k

= e

�

�

k

p

3

P

�1;k

!

b

P

�1

= e

�

b

�

p

3

b

P

�1;k

; (3.16)

on a

ount of the strong 
onvergen
e of �

k

p

. Thus P

�1;k

F

k


onverges 
ertainly weakly to

b

P

�1

F

in L

1

(
) on a

ount of H�older's inequality (sharp). The weak limit in L

1

(
) must 
oin
ide

with the weak limit of U

k

in L

2

(
). Hen
e the identity

b

U =

b

P

�1

r'̂ holds.

13



Sin
e the mapping polar : GL

+

(3;R) 7! SO(3;R) is a bounded 
ontinuous fun
tion on

invertible matri
es with positive determinant, it generates a nonlinear superposition operator

polar(�) : L

r

(
;GL

+

(3;R)) 7! L

r

(
; SO(3;R)) ; (3.17)

whi
h, moreover, is 
ontinuous [3, p.101,Th.3.7℄. Thus R

k

= polar(P

k

) !

b

R = polar(

b

P )

strongly in L

r

(
) and a similar argument as for the sequen
e U

k

shows that

K

p;k

*




K

p

= polar(

b

P )

T

D

x

b

P ; (3.18)

in L

1+p

(
), weakly. Again on a

ount of P

k

!

b

P in L

r

(
; SL(3;R)) we infer now

U

k

p

=

q

P

k;T

P

k

!

q

b

P

T

b

P =

b

U

p

in L

r

(
; SL(3;R)) ; (3.19)

be
ause the map M

3�3

7! PSym(3); X 7!

p

X

T

X is 
ontinuous and has linear growth.

Sin
e the total energy is 
onvex in (U;U

p

;K

p

;r�

p

) and 
ontinuous w.r.t. �

p

, and the

external potential � is 
ontinuous w.r.t. strong 
onvergen
e in L

1

(
) on a

ount of (3.6), we

get

I('̂;

b

P;

b

�

p

) =

Z




W

mp

(

b

U) +W

foam

(

b

U

p

;

b

�

p

) +W


urv

(




K

p

;r

b

�

p

) dV ��('̂;

b

P )

� lim inf

k!1

Z




W

mp

(U

k

) +W

foam

(U

k

p

) +W


urv

(K

p;k

;r�

k

p

) dV ��('

k

; P

k

)

= lim

k!1

I('

k

; P

k

; �

k

p

) = inf

' 2 L

1

(
;R

3

);

P 2 L

1

(
; SL(3;R));

�

p

2 L

1

(
;R)

I('; P ; �

p

) ; (3.20)

whi
h implies that the limit triple ('̂;

b

P ;

b

�

p

) is a minimizer. Note that the limit mi
rodeforma-

tions P = e

�

p

3

R

p

U

p

may fail to be 
ontinuous, if p � 2 (non-existen
e or limit 
ase of Sobolev

embedding). Moreover, uniqueness 
annot be as
ertained, sin
e SL(3;R) is a nonlinear man-

ifold (and the 
onsidered problem is indeed highly nonlinear), su
h that 
onvex 
ombinations

in SL(3;R) may leave SL(3;R). Sin
e the fun
tional I is di�erentiable, the minimizing pair

is a stationary point and therefore a solution of the �eld equations (2.18). Note again that

the limit mi
rodeformations may fail to be 
ontinuously distributed in spa
e. That

under these unfavourable 
ir
umstan
es a minimizing solution may nevertheless be found is

entirely due to �




> 0 and p > 1. The proof simpli�es 
onsiderably in the geometri
ally exa
t

Cosserat mi
ropolar 
ase P 2 SO(3;R), in whi
h 
ase p � 1 is already suÆ
ient. �

We 
ontinue with the super-
riti
al 
ase whi
h is more appropriate for ma
ros
opi
 situations

and 
loser to 
lassi
al elasti
ity.

Theorem 3.2 (Existen
e for elasti
 mi
romorphi
 model: 
ase II.)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

)

and P

d

2 W

1;1+p+q

(
; SL(3;R)). Moreover, let the applied external potentials satisfy (3.6).

Then (3.1) with material 
onstants 
onforming to 
ase II admits at least one minimizing solution

triple ('; P ; �

p

) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SL(3;R)) �W

1;2+p

(
;R).

Proof. We repeat the arguments of 
ase I. However, the boundedness of in�mizing sequen
es

is not immediately 
lear. Boundedness of the mi
rodeformations P

k

holds true in the spa
e

W

1;1+p+q

(
; SL(3;R)) with 1 + p+ q > N = 3, hen
e we may extra
t a subsequen
e, not rela-

belled, su
h that P

k


onverges strongly to

b

P 2 C

0

(
; SL(3;R)) in the topology of C

0

(
; SL(3;R))

on a

ount of the Sobolev-embedding theorem. Sin
e P

�1;k

= e

�

�

k

p

3

P

�1;k

, we obtain as well

that

P

�1;k

!

b

P

�1

2 C

0

(
;GL

+

(3;R)) ; (3.21)

on a

ount of strong 
onvergen
e of �

k

p

.

Along su
h strongly 
onvergent sequen
e of mi
rodeformations, the sequen
e of deformations

'

k

is also bounded in H

1

(
;R

3

). However, this is not due to a basi
ally simple estimate as in

14




ase I, but only true after integration over the domain: at fa
e value we only 
ontrol 
ertain

mixed symmetri
 expressions in the deformation gradient. Let us de�ne u

k

2 H

1;2

(!;R

3

) by

'

k

= g

d

+ ('

k

� g

d

) = g

d

+ u

k

. Then we have

1 >I(g

d

; P

d

; �

p

d

) >

Z




W

mp

(U

k

) +W

foam

(U

k

p

; �

k

p

) +W


urv

(K

p;k

;r�

k

p

) dV ��('

k

; P

k

)

�

Z




W

mp

(U

k

) dV ��('

k

; P

k

) �

Z




W

mp

(U

k

) dV � C

�

Z




�

e

4

kP

�1;k

r'

k

+r'

T

k

P

�T;k

� 211k

2

dV � C (3.22)

=

Z




�

e

4

kP

�1;k

(ru

k

+rg

d

) + (ru

k

+rg

d

)

T

P

�T;k

� 211k

2

dV � C

=

Z




�

e

4

kP

�1;k

ru

k

+ru

T

k

P

�T;k

k

2

+

2�

e

4

hP

�1;k

ru

k

+ru

T

k

P

�T;k

; P

�1;k

rg

d

+rg

T

d

P

�T;k

� 211i

+

�

e

4

kP

�1;k

rg

d

+rg

T

d

P

�T;k

� 211k

2

dV � C

�

Z




�

e

4

kP

�1;k

ru

k

+ru

T

k

P

�T;k

k

2

�

�

e

4

�

" kP

�1;k

ru

k

+ru

T

k

P

�T;k

k

2

+

1

"

kP

�1;k

rg

d

+rg

T

d

P

�T;k

� 211k

2

�

+

�

e

4

kP

�1;k

rg

d

+rg

T

d

P

�T;k

� 211k

2

dV � C

�

Z




�

e

8

kP

�1;k

ru

k

+ru

T

k

P

�T;k

k

2

�

�

e

2

kP

�1;k

rg

d

+rg

T

d

P

�T;k

� 211k

2

+

�

e

4

kP

�1;k

rg

d

+rg

T

d

P

�T;k

� 211k

2

dV � C

=

Z




�

e

8

kP

�1;k

ru

k

+ru

T

k

P

�T;k

k

2

�

�

e

4

kP

�1;k

rg

d

+rg

T

d

P

�T;k

� 211k

2

dV � C

�

Z




�

e

8

kP

�1;k

ru

k

+ru

T

k

P

�T;k

k

2

dV � C

=

Z




�

e

8

k(P

�1;k

�

b

P

�1

+

b

P

�1

)ru

k

+ru

T

k

(P

�1;k

�

b

P

�1

+ P

�1

)

T

k

2

dV � C

�

Z




�

e

8

k

b

P

�1

ru

k

+ru

T

k

b

P

�T

k

2

| {z }


ombinations of derivatives

dV � C

2

k

b

P

�1

� P

�1;k

k

1

ku

k

k

2

H

1;2

(
)

� C

� (

�

e

8




K

� C

2

k

b

P

�1

� P

�1;k

k

1

) ku

k

k

2

H

1;2

(
)

� C ;

where we used Young's inequality with " =

1

2

, made use of the appropriate Diri
hlet boundary


onditions for u

k

and applied the extended Korn's inequality (7.1) in the improved version

of [66℄ yielding the positive 
onstant 


K

for the 
ontinuous mi
rodeformation

b

P

�1

. Sin
e

k

b

P

�1

� P

�1;k

k

1

! 0 for k ! 1 due to (3.21) we are able to 
on
lude the boundedness of

u

k

in H

1

(
). Hen
e, '

k

is bounded in H

1

(
). Now we obtain that U

k

*

b

U =

b

P

�1

r'̂ by


onstru
tion with the notations as in 
ase I. The remainder pro
eeds as in 
ase I. This �nishes

the argument. The limit mi
rodeformations

b

P are indeed found to be 
ontinuous. �

4 The in�nitesimal mi
romorphi
 elasti
 solid

4.1 The variational formulation

Starting from the proposed �nite-strain formulation and not intrinsi
ally linear (as below in

se
tion 4.5), we may obtain a linear, in�nitesimal mi
romorphi
 model by expanding all ap-

pearing variables to �rst order and keeping only quadrati
 terms in the energy expression.
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Thus we write F = 11 + ru; P = 11 + p; and the model turns into the problem of �nding

a pair (u; p) : 
 � R

3

7! R

3

� gl

+

(3;R) of ma
ros
opi
 displa
ement u and independent,

in�nitesimal mi
rodeformation p satisfying

Z




W

mp

("; p) +W


urv

(k

p

;rtr [p℄) dV 7! min : w.r.t. (u; p);

" = ru� p; p

j

�

= p

d

2 gl

+

(3;R) = M

3�3

; '

j

�

= g

d

; (4.1)

W

mp

("; p) = �

e

k sym "k

2

+ �




k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [sym p℄

2

= �

e

k symru� sym pk

2

+ �




k skew(ru� p)k

2

+

�

e

2

tr [ru� p℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [p℄

2

;

W


urv

(k

p

;rtr [p℄) = �

L

2




12

�

�

5

k sym k

p

k

2

+ �

6

k skew k

p

k

2

+ �

7

tr [k

p

℄

2

+ �

8

krtr [p℄k

2

�

;

k

p

= D

x

[dev p℄ = (r(dev p:e

1

);r(dev p:e

2

);r(dev p:e

3

)) :

Here, k

p

is the third order in�nitesimal 
urvature tensor, de�ned only on the purely distortional

part of the in�nitesimal mi
rodeformation dev p. If �

e

; �

m

> 0 and �




; �

e

; �

m

� 0 it is an easy

matter to show existen
e and uniqueness. For �




= 0 we have to invoke the 
lassi
al Korn's

�rst inequality. It should be observed that even if �




= 0 there remains a 
oupling of the two

�elds (u; p) due to the remaining 
oupling in the symmetri
 terms.

4.2 The linear system of balan
e equations

The linearized ma
ros
opi
 for
e balan
e equation is obtained by taking free variations with

respe
t to the total displa
ement u. Hen
e we obtain

Div �(ru; p) = 0; u

j

�

(x) = g

d

(x) � x ; (4.2)

with

�(ru; p) = 2�

e

(symru� sym p) + 2�




(skewru� skew p) + �

e

tr [ru� p℄ � 11 : (4.3)

The remaining system of nine balan
e equations for the nine additional 
omponents of p 2

gl

+

(3;R) = M

3�3

is obtained by taking free variations with respe
t to p whi
h results in

devDivD

k

p

W


urv

(k

p

;rtr [p℄) = dev (�2�

e

(symru� sym p)

� 2�




(skewru� skew p)� �

e

tr [ru� p℄ 11

+2�

m

sym p+ �

m

tr [p℄ � 11) ;

DivD

rtr[p℄

W


urv

(k

p

;rtr [p℄) = tr (�2�

e

(symru� sym p)

� 2�




(skewru� skew p)� �

e

tr [ru� p℄ 11

+2�

m

sym p+ �

m

tr [p℄ � 11) : (4.4)

This is equivalent to

0 = dev�(ru; p)� 2�

m

dev sym p+ devDivD

k

p

W


urv

(k

p

;rtr [p℄) ;

0 = tr [�(ru; p)℄� (2�

m

+ 3�

m

) tr [p℄ + DivD

rtr[p℄

W


urv

(k

p

;rtr [p℄) : (4.5)

4.3 Cal
ulation of 
onsistent e�e
tive elasti
 moduli

It is of prime importan
e to have values of �

e

; �

e

at hand whi
h are 
onsistent with the 
lassi
al

linear elasti
 model for long wave-length (large samples). Considering very large samples of

the 
ellular stru
ture amounts to letting L




� 0, the 
hara
teristi
 length, tend to zero. As a


onsequen
e of L




= 0 the two equations (4.5) loose the 
urvature terms and turn into

0 = dev �(ru; p)� 2�

m

dev sym p ; (4.6)

0 = tr [�(ru; p)℄� (2�

m

+ 3�

m

) tr [p℄ ;
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expressing an algebrai
 side-
ondition. Inserting formula (4.3) for � into (4.6) allows us to

obtain after some lengthy but straightforward 
omputations the following algebrai
 relations

tr [p℄ =

(2�

e

+ 3�

e

)

2(�

e

+ �

m

) + 3(�

e

+ �

m

)

tr [ru℄ ;

dev sym p =

�

e

(�

e

+ �

m

)

dev symru ; (4.7)

dev skew p = dev skewru ; (�




not involved!) ;

where we used that the operator dev is orthogonal to R � 11 and sym is orthogonal to skew and

dev skew = skew. Moreover,

tr [ru� p℄ =

�

1�

(2�

e

+ 3�

e

)

2(�

e

+ �

m

) + 3(�

e

+ �

m

)

�

tr [ru℄

=

(2�

m

+ 3�

m

)

(2�

m

+ 3�

m

) + (2�

e

+ 3�

e

)

tr [ru℄ : (4.8)

Reinserting the results into (4.3) yields, after taking dev on both sides

dev �(ru; p) = 2�

e

(dev symru� dev sym p) + 2�




(skewru� skew p)

= 2�

e

�

dev symru�

�

e

(�

e

+ �

m

)

dev symru

�

+ 2�




(skewru� 1 � skewru)

= 2�

e

�

1�

�

e

(�

e

+ �

m

)

�

dev symru = 2�

e

�

m

(�

e

+ �

m

)

dev symru : (4.9)

Similarly, reinserting the results into (4.3) yields, after taking the tra
e on both sides

tr [�(ru; p)℄ = 2�

e

tr [symru� sym p℄ + 2�




tr [skewru� skew p℄ + �

e

tr [ru� p℄ � tr [11℄

= 2�

e

tr [ru� p℄ + 3�

e

tr [ru� p℄ = (2�

e

+ 3�

e

) tr [ru� p℄

= (2�

e

+ 3�

e

)

(2�

m

+ 3�

m

)

(2�

m

+ 3�

m

) + (2�

e

+ 3�

e

)

tr [ru℄ : (4.10)

For a linear elasti
 isotropi
 solid, whi
h represents the ma
ros
opi
 stress-strain relation for

large samples, one has the 
lassi
al relation

� = 2� symru+ � tr [ru℄ � 11 )

dev � = 2� dev symru and tr [�℄ = (2�+ 3�) tr [ru℄ : (4.11)

Upon 
omparing 
oeÆ
ients of (4.11) with (4.9) and (4.10) we identify

2� = 2�

e

�

m

(�

e

+ �

m

)

;

(2�+ 3�) = (2�

e

+ 3�

e

)

(2�

m

+ 3�

m

)

(2�

m

+ 3�

m

) + (2�

e

+ 3�

e

)

: (4.12)

This implies that in our model the large s
ale shear modulus � is half the harmoni
 mean

17

of the relative elasti
 shear modulus �

e

and the mi
rostru
tural shear modulus �

m

,

while the large s
ale bulk modulus � =

2�+3�

3

is half the harmoni
 mean of the relative

elasti
 bulk modulus �

e

and the mi
rostru
tural bulk modulus �

m

.

Hen
e, solving in a �rst step for the relative elasti
 shear modulus �

e

and the relative

elasti
 bulk modulus �

e

=

2�

e

+3�

e

3

, yields

�

e

=

�

m

�

(�

m

� �)

; 3�

e

= (2�

e

+ 3�

e

) =

(2�+ 3�) (2�

m

+ 3�

m

)

(2�

m

+ 3�

m

)� (2�+ 3�)

: (4.13)

Therefore

�

e

=

�

m

�

(�

m

� �)

; 3�

e

=

(2�+ 3�) (2�

m

+ 3�

m

)

(2(�

m

� �) + 3(�

m

� �))

� 2

�

m

�

(�

m

� �)

: (4.14)

17

H(�; �) =

2

1

�

+

1

�

=

2��

�+�

for �; � > 0, 
ompare with the Reuss-bounds in homogenization theory.
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This result motivates that the "ma
ros
opi
" Lam�e moduli �; � must always be smaller than the

mi
ros
opi
 moduli �

m

; �

m

related to the response of a representative volume element (RVE)

of the substru
ture. This is physi
ally 
onsistent: the large-s
ale sample 
annot possibly be

sti�er than the 
onstitutive substru
ture. Let us 
onsider the interesting limit 
ases in (4.12):

mi
ro-in
ompressible: �

m

!1 ; �

m

<1 ) � = �

e

+

2�

2

3(�

m

� �)

;

mi
rostret
h: �

m

!1 ; �

m

<1 ) � = �

e

; � = �

e

;

mi
ropolar: �

m

!1 ; �

m

!1 ) � = �

e

; � = �

e

: (4.15)

4.4 Identi�
ation with Mindlin's representation

Many papers on linearized mi
romorphi
 models start from a representation of the free-energy

fun
tion based on Mindlin's work [55, 5.5℄, e.g.[45℄. A major drawba
k of Mindlin's representa-

tion is, however, that no a

ount has been taken, to ensure overall positivity of the quadrati


energy. This has to be 
he
ked additionally and 
an be quite labourous be
ause of many ap-

pearing 
oeÆ
ients. We 
onsider only the lo
al part (the part without 
urvature) of Mindlin's

representation. Let us de�ne

" = symru ; " := ru� p : (4.16)

Then Mindlin's lo
al energy 
ontributionW

Mind

mp

with seven material 
onstants b�;

b

�; b

1

; b

2

; b

3

; g

1

; g

2

reads

W

Mind

mp

(ru; p) =W

Mind

mp

("; ") =

b

�

2

tr ["℄

2

+ b� k"k

2

+

b

1

2

tr ["℄

2

+

b

2

2

k"k

2

+

b

3

2

h"; "

T

i

+ g

1

tr ["℄ tr ["℄ + 2 g

2

h"; "i : (4.17)

Note that this de�nes a quadrati
 form, whose positive-de�niteness is not ensured by taking

positive parameters b�;

b

�; : : :. In 
omparison, in (4.1) we have proposed a �ve material 
onstants

representation, whi
h automati
ally de�nes a positive quadrati
 form, if the 
oeÆ
ients are

positive themselves.
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The proposed quadrati
 representation in (4.1) reads

W

mp

("; p) = �

e

k sym "k

2

+ �




k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [sym p℄

2

= �

e

k sym "k

2

+ �




k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sym p� "+ "k

2

+

�

m

2

tr [sym p� "+ "℄

2

= �

e

k sym "k

2

+ �




k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

�

k sym p� "k

2

+ 2hsym p� "; "i+ k"k

2

�

+

�

m

2

�

tr [sym p� "℄

2

+ 2tr [sym p� "℄tr ["℄ + tr ["℄

2

�

(4.18)

= (�

e

+ �

m

) k sym "k

2

+ �




k skew "k

2

+

(�

e

+ �

m

)

2

tr [sym "℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"� sym p; "i � �

m

tr ["� sym p℄tr ["℄

= (�

e

+ �

m

) k sym "k

2

+ �




k skew "k

2

+

(�

e

+ �

m

)

2

tr [sym "℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄

= (�

e

+ �

m

) k

1

2

("+ "

T

)k

2

+ �




k

1

2

("� "

T

)k

2

+

(�

e

+ �

m

)

2

tr [sym "℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄
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This 
an be slightly weakened: 2�

e

+ 3�

e

� 0; 2�

m

+ 3�

m

� 0; �

e

; �

m

; �




� 0 is suÆ
ient.
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=

(�

e

+ �

m

)

4

k"+ "

T

k

2

+

�




4

k"� "

T

k

2

+

(�

e

+ �

m

)

2

tr ["℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄

=

(�

e

+ �

m

)

2

�

k"k

2

+ h"; "

T

i

�

+

�




2

�

k"k

2

� h"; "

T

i

�

+

(�

e

+ �

m

)

2

tr ["℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄

=

(�

e

+ �

m

+ �




)

2

k"k

2

+

(�

e

+ �

m

� �




)

2

h"; "

T

i+

(�

e

+ �

m

)

2

tr ["℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄ :

Hen
e, 
omparing with Mindlin's representation (4.17) we are able to identify

b� = �

m

;

b

� = �

m

; b

1

= �

e

+ �

m

;

b

2

= �

e

+ �

m

+ �




; b

3

= �

e

+ �

m

� �




;

g

1

= ��

m

; g

2

= ��

m

: (4.19)

Mindlin proposes [55, p.60℄

3b

1

+ b

2

+ b

3

� 0 ; b

2

+ b

3

� 0 ; b

2

� b

3

� 0 ;

() �

e

+ �

m

� 0 ; �

e

+ �

m

� 0 ; �




� 0) (4.20)

as ne
essary 
onditions for a positive de�nite energy fun
tion whi
h is (of 
ourse)

veri�ed for (4.1).

Remark 4.1

It is not 
lear to us, whether Mindlin's seven parameter representation of the lo
al strain-energy


an be obtained by 
onsistently linearizing a �nite-strain mi
romorphi
 model.

4.5 The intrinsi
ally linear mi
romorphi
 model

Several sets of generalized strain measures 
an be de�ned if one starts in an intrinsi
ally linear


ontext with no referen
e to some underlying �nite-strain mi
romorphi
 model. The strain

measures used in [35℄ are retained for the 
omputational part of this work:

" =

1

2

(ru+ (ru)

T

); " = ru� p; K = D

x

p ; (4.21)

i.e. the total strain " , the relative deformation " and the third{rankmi
ro{deformation

gradient tensor K.

19

Three generalized stress tensors may be introdu
ed in the virtual power

of internal and 
onta
t for
es:

�

(i)

(u; p) = h�; _"i+ hs;

_

"i+ hS;

_

Ki; �

(
)

(u; p) = ht; _ui+ hM; _pi ; (4.22)

where the se
ond{rank stress tensor � is symmetri
 but should not be 
onfused with the 
lassi
al

Cau
hy stress tensor. The additional stress tensors s and S respe
tively are se
ond and third{

rank tensors. The balan
e of momentum and balan
e of moment of momentum equations read,

in the absen
e of volume for
es or generalized 
ouples (nor double for
es):

Div(� + s) = 0; DivS + s = 0 : (4.23)

They are 
oupled thanks to the mi
ro{stress tensor s. Equilibrium at the boundary reads

t = (� + s):~n; M = S:~n ; (4.24)

where the outer surfa
e normal ve
tor is denoted by ~n.

19

Note that we have given up the de
oupling of the 
urvature into volumetri
 and distortional parts, 
ontrary

to (4.1).

19



In a linearized elasti
 mi
romorphi
 solid, the Helmholtz free energy is assumed to be a

quadrati
 form W

℄

lin

("; ";K) of the previous strain measures (4.21). The state laws are then

dedu
ed from the exploitation of the entropy prin
iple of thermodynami
s [33℄:

� = �

�W

℄

lin

�"

; s = �

�W

℄

lin

�"

; S = �

�W

℄

lin

�K

(4.25)

The most general form of the potential for an isotropi
 linear elasti
 mi
romorphi
 medium

has been proposed by Mindlin [55℄ based on su
h an intrinsi
ally linear development. Keeping

the original index notation for the proposed invariants of the strain tensors and the material

moduli, it reads:

W

℄
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K
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; (4.26)

from whi
h the 
onstitutive relations

� =

b

� tr ["℄ � 11 + 2b�"+ g

1

tr ["℄ � 11 + 2g

2

sym " ;

s = g

1

tr ["℄ � 11 + 2g

2

"+ b

1

tr ["℄ � 11 + b

2

"+ b

3

"

T

; (4.27)

and

S

pqr

= A

1

(K

rii

Æ

pq

+K

iip

Æ

qr

) +A

2

(K

iiq

Æ
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+K

iri

Æ

pq

) +A

3

K

jjr
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K
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Æ
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+A

5

(K
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Æ
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) +A
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K

iqi
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+ A
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K

pqr

+A
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(K
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+K

rpq

) +A

13

K

prq

+ A

14

K

qpr

+A

15

K

rqp

; (4.28)

are dedu
ed. Hen
e, the most general isotropi
 linear elasti
 relations involve 7 + 11 = 18


onstants. It should again be noted that the 
onstants b�;

b

� 
annot automati
ally be identi�ed

with the 
lassi
al Lam�e 
onstants, despite appearan
e. The 
oeÆ
ients A

i

have the dimension

of a bending sti�ness modulus: MPa:m

2

.

In order to a
hieve positivity for the 
urvature part of the energy and to simplify the

exposition at the same time, we take

A

1

= A

2

= A

3

= A

4

= A

5

= A

8

= A

11

= A

13

= A

14

= A

15

= 0; A

10

=

�L

2




6

; (4.29)

in our �nite element simulation. Another simpli�
ation of the lo
al energy expression seems to

be expedient. We assume further on, that with some number � 2 R

�




= 0 ; � = ��

m

; � = ��

m

; � 2 (0; 1) : (4.30)

For example, � = 0:9 means that the large-s
ale bulk behaviour is assumed to be about 10

per
ent weaker than the response of a representative volume element (RVE) on the small s
ale.

Taking into a

ount the homogenization formulas derived in (4.13) implies then that

�

e

=

�

1� �

�

m

; �

e

=

�

1� �

�

m

: (4.31)

Hen
e in terms of Mindlin's representation we obtain

b� =

1

�

� ;

b

� =

1

�

� ;

b

1

= �

e

+ �

m

=

�

1� �

�

m

+ �

m

=

1

1� �

�

m

=

1

� (1� �)

� ; (4.32)

b

2

= b

3

= �

e

+ �

m

=

1

� (1� �)

� ;

g

1

= �

1

�

� ; g

2

= �

1

�

� ;
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for given large-s
ale Lam�e moduli �; �.

5 Implementation

5.1 Finite Element method for the in�nitesimal mi
romorphi
 
on-

tinuum

The implementation of the in�nitesimal mi
romorphi
 model into a �nite element program is

illustrated here in the two{dimensional 
ase (plane strain or plane stress). The ve
tor of degrees

of freedom attributed to ea
h node is written:

[d:o:f℄ = [U

1

U

2

p

11

p

22

p

12

p

21

℄

T

: (5.1)

The asso
iated generalized strain ve
tor is:

[grad℄ = ["

11

"

22

"

33
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12
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121

K

122

K

211

K

212

K

221

K

222

℄

T

: (5.2)

The matrix [B℄ linking the strain ve
tor to the degrees of freedom reads as follows under plane

strain 
onditions:

[grad℄ = [B℄ [d:o:f℄ ; [B℄ =
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; (5.3)

where �

x

i

= � � =�x

i

. Plane strain 
onditions imply "

33

= "

33

= 0. In the 
ase of plane stress


onditions, "

33

and "

33

are introdu
ed as additional degrees of freedom shared by ea
h element.

The asso
iated rea
tions are �

33

and s

33

. Plane stress 
onditions are enfor
ed by pres
ribing

vanishing rea
tion stresses, but other 
onditions 
an also be 
onsidered. The generalized stress

ve
tor reads:

[
ux℄ = [�
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22
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33
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s
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s
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s
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s
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S
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℄

T

: (5.4)

The isotropi
 elasti
ity matrix linking the elasti
 part of the mi
ro{deformation gradient and

the third{rank stress tensor is written as:

2

6

6

6

6

6

6

6

6

6

6

4

M

111

M

112

M

121

M

122

M

211

M

212

M

221

M

222

3

7

7

7

7

7

7

7

7

7

7

5

= [A℄

2

6

6

6

6

6

6

6

6

6

6

4

K

111

K

112

K

121

K

122

K

211

K

212

K

221

K

222

3

7

7

7

7

7

7

7

7

7

7

5

; (5.5)
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where [A℄ equals

2
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6
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with AA = 2A

1

+ 2A

2

+ A

3

+ A

4

+ 2A

5

+A

8

+ A

10

+ 2A

11

+ A

13

+ A

14

+ A

15

. The notation

A

i;j;k

= A

i

+A

j

+A

k

is used.

The variational formulation of the mi
romorphi
 boundary value problem is a straightfor-

ward extension of the 
lassi
al one:

Z




h�; _"i+ hs;

_

"i+ hS;

_

Ki dV =

Z

�


ht; _ui+ hM; _pi dS ; (5.7)

with the boundary 
onditions (4.24). The �nite element formulation follows from the same

dis
retization of the variational problem as in the 
lassi
al 
ase.

An analyti
al solution of a simple boundary value problem for the linear elasti
 mi
romorphi



ontinuum is proposed in appendix 7.5, whi
h serves as validation test for the implementation

of the model.

5.2 Finite element simulations of hole size e�e
ts in metalli
 foams

One of the early goals of the me
hani
s of generalized 
ontinua was to 
ontrol the magnitude

of stress 
on
entrations at holes, edges or 
ra
ks. Indeed, Mindlin analysed the stress 
on
en-

tration 
oeÆ
ient at a hole in a plate in the 
ase of a 
ouple{stress medium [54℄. Contrary to

the 
lassi
al situation, the stress 
on
entration fa
tor is found to depend on the relative size of

the hole with respe
t to the value of the 
hara
teristi
 size even if the hole is embedded in an

in�nite matrix. The analyti
al solution of the more general problem of the spheri
al or 
ylin-

dri
al elasti
 in
lusion inside an in�nite matrix was solved only re
ently for in�nitesimal-strain

Cosserat elasti
ity [16, 15, 70℄. Finite element simulations within the in�nitesimal Cosserat

framework show that, 
ontrary to the 
lassi
al situation, the stress{strain state is generally not

homogeneous inside a spheri
al or 
ylindri
al elasti
 heterogeneity [32℄. The stress 
on
entra-

tion fa
tor at the equator of a 
ylindri
al hole in an in�nite linear elasti
 Cosserat matrix tends

asymptoti
ally to the 
lassi
al 
onstant value for large enough holes. For holes with a radius


lose to or smaller than the value of the intrinsi
 lengths of the Cosserat matrix, the fa
tor is

found to de
rease. The value for vanishingly small holes tends towards an asymptoti
 limit that

depends on the Cosserat intrinsi
 length s
ale and on the additional Cosserat 
ouple modulus

�




� 0. For stri
tly positive Cosserat 
ouple modulus �




> 0 it remains larger than

one, meaning that holes of any size indu
e stress 
on
entration in a traditional

in�nitesimal Cosserat medium. This behavior is illustrated by �gure 2.

The strain �eld around a 
ylindri
al hole in an in�nite mi
romorphi
 matrix under plane

stress 
onditions is now investigated using the �nite element method. The material parameters

used for the presented simulations are taken so as to represent large s
ale samples of ni
kel

foam studied at room temperature in [4, 21℄. This 
orresponds to

� = 165MPa � = 110MPa ; (5.8)

in terms of the Lam�e 
onstants. We 
hoose the fa
tor � = 0:9 appearing in (4.30) and the

Cosserat 
ouple modulus �




= 0. This implies

b� =

1

�

� = 183:MPa ;

b

� =

1

�

� = 122:MPa ; b

1

=

1

� (1� �)

� = 1222:MPa ;

b

2

= b

3

= �

e

+ �

m

=

1

� (1� �)

� = 1833:MPa ; (5.9)

g

1

= �

1

�

� = �122:MPa ; g

2

= �

1

�

� = �183:MPa ;
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Figure 2: (traditional linear Cosserat response) Strain 
on
entration at the "equator" of a 
ylin-

dri
al hole in an in�nite Cosserat medium under tensile loading by the stress "

1

in dire
tion 2.

The 
omponent plotted is "

22

="

1

22

. The material properties of the Cosserat equivalent medium

representing the ni
kel foam are taken to be �

e

= � = 165MPa; �

e

= � = 110MPa; �




=

1000MPa; L




= 1:35mm.

23



in terms of Mindlin's representation. The elasti
 
onstants b

i

a
t as well as penalty terms that

for
e the relative elasti
 deformation to remain small. This ensures that the mi
rodeforma-

tion is 
lose to the gradient of the displa
ement �eld so that the mi
romorphi
 model almost

degenerates into a se
ond gradient theory [33℄. A single additional parameter, namely the


hara
teristi
 length L




> 0, is introdu
ed in the six{rank tensor A by setting A

10

=

�L

2




6

in

Mindlin's representation and A

1

; A

2

; : : : = 0 for the remaining 
oeÆ
ients. The 
hara
teristi


length is set to L




= 1:35 mm in the following simulations. Hen
e

A

10

=

�L

2




6

= 50MPamm

2

: (5.10)

This value was identi�ed in the parti
ular 
ase of ni
kel foam with relative density �

?

=�

Ni

=

0:035 and mean 
ell diameter 500 �m. It is in a

ordan
e with results of strain �eld measure-

ments provided in [21℄.

Figure 3 shows the results of �nite element simulations of the tension of a plate with a

ma
hined 
ylindri
al hole. Tension is applied along the verti
al dire
tion 2 under plane stress


onditions. The �gure 3a shows the referen
e strain �eld "

22

around the hole expe
ted in the 
ase

of a 
lassi
al Cau
hy 
ontinuum. Only the mesh region surrounding the hole is shown. Verti
al

displa
ement is applied at the top of the mesh whi
h is not represented in the pi
ture. For

su
h a 
lassi
al simulation, the size of the hole does not matter. In 
ontrast, the �gures 3b and

3
 show the strain map "

22

around a hole embedded in an in�nite linear elasti
 mi
romorphi


matrix using the values of the elasti
 properties given by (5.9). The results are given for two

hole sizes: R = 1 mm and R = 0:3 mm respe
tively. For both 
omputations, the applied strain

at in�nity "

1

22

is the same and the material parameters 
orrespond to ea
h other. The size of

the hole is the only varying parameter. It 
learly appears that the strain �eld be
omes more

and more homogeneous when the hole size is redu
ed. For R = 0:3 mm, there is almost no

strain 
on
entration at the equator any longer.

For larger and larger holes, we have 
he
ked that the 
lassi
al solution of �gure 3a is retrieved

when using the mi
romorphi
 model. The striking feature of the numeri
al simulations is that

for vanishingly small holes, the mi
romorphi
 theory predi
ts a stri
tly homogeneous strain

�eld: tiny holes do not introdu
e any strain 
u
tuation. This 
an be seen more quantitatively

from the 
urves of �gure 4. The strain pro�le along the ligament x

2

= 0 is plotted for di�erent

values of the hole radius ranging from R = 10 mm to R = 0:1 mm. The 
urve obtained for

R = 10 mm is almost identi
al to the 
lassi
al result whi
h predi
ts a stress/strain 
on
entration

fa
tor of 3 at the equator (x

1

= R) under plane stress 
onditions. Strain lo
alization de
reases

for smaller holes. As a result, the strain 
on
entration fa
tor tends to 1 when the hole size

tends to zero. This is 
ontrary to the 
ase of the in�nitesimal Cosserat 
ontinuum (see �gure

2). These numeri
al results 
annot 
urrently be 
ompared to analyti
al solutions whi
h do

not seem to be available for a hole in a general linear mi
romorphi
 
ontinuum, to the best

knowledge of the authors. An analyti
al solution for the more restri
ted linear mi
rostret
h


ase has been derived in [18℄.

The interesting point is that, in a linear elasti
 mi
romorphi
 
ontinuum, there is a limit size

below whi
h no geometri
al heterogenities 
an be dete
ted. This limit size sets the resolution

of the 
ontinuum, in a way similar to the resolution of a mi
ros
ope. An equivalent parametri


study is possible by varying the intrinsi
 length s
ale parameter L




for a �xed radius size R.

This enables us in fa
t to identify the value of the 
hara
teristi
 length that leads to strain


on
entration around holes only when the holes are suÆ
iently larger than the 
ell size.

It must be noted that the �nite element simulations were not 
arried out on one quarter of

the sample but for the entire stru
ture, in 
ontrast to the 
lassi
al 
ase. The reason is that, in

spite of the symmetry 
onditions, it is not possible to know a priori what are the boundary


onditions p

11

or p

22

(or 
onversely the rea
tions M

11

or M

22

) to be pres
ribed on the lines

x

1

= 0 or x

2

= 0. This diÆ
ulty does not arise for a linear Cosserat 
ontinuum sin
e the

symmetry 
onditions imply that the in�nitesimal mi
rorotation vanishes at these boundaries.

The 
omputation time is therefore in
reased not only by the larger number of degrees of freedom

but also by the fa
t that the entire spe
imen must be meshed instead of one quarter. The mesh

size in the presented simulations is satisfa
tory in the sense that 
onvergen
e is a
hieved for the

generalized stress and strain �elds upon mesh re�nement, up to a pre
ision better than 1%.
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(a)

(b) (
)

0.2 0.6 1 1.4 1.8 2.2 2.6

Figure 3: Strain �eld "

22

="

1

22

around a 
ylindri
al hole in an in�nite matrix under tensile loading

"

1

22

under plane stress 
onditions: (a) 
lassi
al 
ontinuum (referen
e solution), (b) linear elasti


mi
romorphi
 
ontinuum for a hole radius R = 1 mm, (
) linear elasti
 mi
romorphi
 
ontinuum

for a hole radius R = 0:3 mm. The tensile dire
tion 2 is verti
al, the horizontal dire
tion is 1.

For the illustration, a magnif
ation fa
tor was applied so that the three holes have the same

apparent radius. Only the region of the mesh surrounding the hole is shown. The elasti
 moduli

usedfor the simulation are given by (5.9).
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Figure 4: Computed strain pro�le along the ligament x

2

= 0 for the linear mi
romorphi
 plate

with a 
ylindri
al hole of radius R. The position x

1

= R, 
alled "equator" is the lo
ation of

stress and strain maximum at least for large enough holes. The elasti
 moduli used for the

simulations are given by (5.9).

6 Final remarks

The presented variational �nite-strain mi
romorphi
 problem �ts neatly into the framework of

the dire
t methods of variations. The 
oer
ivity part for the deformation is, however, nontrivial

and for the value of the Cosserat 
ouple modulus �




= 0 additional diÆ
ulties arise whi
h 
an

only be 
ir
umvented by the use of the generalized Korn's �rst inequality. In both treated 
ases

I/II, more realisti
 assumptions on the applied external loads � are ne
essary to establish a

lower bound for the energy I and a 
ontrol of the 
urvature independent of the magnitude of

deformation.

Altogether, the quasistati
 �nite-strain mi
romorphi
 theory is established on �rm mathe-

mati
al grounds. With the same methods, the geometri
ally exa
t mi
rostret
h 
ase 
an also be

treated. An extension of the method to other 
hoi
es of strain and 
urvature measures needs to

be done, however, this might be a non-trivial task due to 
ertain de�
ien
ies of these measures.

The open 
ase III allows for dis
ontinuous ma
ros
opi
 deformations and might therefore be a

model problem allowing to des
ribe fra
ture.

Our variational framework is ideally suited for subsequent numeri
al treatment within the

�nite element method. This is shown by numeri
ally studying the linearized mi
romorphi


model meant to des
ribe the behaviour of ni
kel foams. In these 
al
ulations, the Cosserat


ouple modulus �




is indeed set to zero and the obtained result is 
ontrasted with the response

of a traditional in�nitesimal Cosserat model with high Cosserat 
ouple modulus �




. It seems

that the mi
romorphi
 model with zero Cosserat 
ouple modulus �




= 0 is indeed suÆ
ient to


apture the underlying physi
s. The importan
e of the 
hara
teristi
 size of the 
ells on the

response of the stru
ture is 
learly revealed.

A more a

urate des
ription for the foam is 
learly needed but this requires an extension of

the presented elasti
 model towards a 
onsistent elastoplasti
 
onstitutive setting as proposed

e.g in [33℄ for in�nitesimal and �nite deformations. The involved 
hara
teristi
 length(s) 
an
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be identi�ed using an inverse approa
h from the strain �eld measurements. An alternative way

is to derive the e�e
tive properties of an equivalent homogeneous mi
romorphi
 medium from

the knowledge of the detailed 
ell morphology based on homogenization pro
edures that are

now available for generalized 
ontinua [29℄.
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7 Appendix

7.1 Notation

Let 
 � R

3

be a bounded domain with Lips
hitz boundary �
 and let � be a smooth subset of �
 with non-

vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the s
alar produ
t on R

3

with

asso
iated ve
tor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3� 3 se
ond order tensors, written

with 
apital letters and by T(3) the set of all third order tensors. The standard Eu
lidean s
alar produ
t on

M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the

following we omit the index R

3

;M

3�3

. The identity tensor on M

3�3

will be denoted by 11, so that tr [X℄ = hX; 11i.

We let Sym and PSym denote the symmetri
 and positive de�nite symmetri
 tensors respe
tively. We adopt

the usual abbreviations of Lie-group theory, i.e., GL(3;R) := fX 2 M

3�3

jdet[X℄ 6= 0g the general linear

group, SL(3;R) := fX 2 GL(3;R) jdet[X℄ = 1g; O(3) := fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2

GL(3;R) jX

T

X = 11; det[X℄ = 1g with 
orresponding Lie-algebras so(3) := fX 2 M

3�3

jX

T

= �Xg of skew

symmetri
 tensors and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g of tra
eless tensors. We set sym(X) =

1

2

(X

T

+ X)

and skew(X) =

1

2

(X � X

T

) su
h that X = sym(X) + skew(X). For X 2 M

3�3

we set for the deviatori


part devX = X �

1

3

tr [X℄ 11 2 sl(3) and for ve
tors �; � 2 R

n

we have the tensor produ
t (� 
 �)

ij

=

�

i

�

j

. The operator axl : so(3;R) 7! R

3

is the 
anoni
al identi�
ation. We write the polar de
omposition in

the form F = RU = polar(F )U with R = polar(F ) the orthogonal part of F . For a se
ond order tensor

X we de�ne the third order tensor h = D

x

X(x) = (r(X(x):e

1

);r(X(x):e

2

);r(X(x):e

3

)) = (h

1

; h

2

; h

3

) 2

M

3�3

� M

3�3

� M

3�3

. For third order tensors h 2 T(3) we set khk

2

=

P

3

i=1

kh

i

k

2

together with sym(h) :=

(sym h

1

; sym h

2

; sym h

3

) and tr [h℄ := (tr

�

h

1

�

; tr

�

h

2

�

; tr

�

h

3

�

) 2 R

3

. Moreover, for any se
ond order tensor X we

de�ne X �h := (Xh

1

;Xh

2

;Xh

3

) and h�X 
orrespondingly. Quantities with a bar, e.g. the mi
ropolar rotation R

p

,

represent the mi
ropolar repla
ement of the 
orresponding 
lassi
al 
ontinuum rotation R. In general we work

in the 
ontext of nonlinear, �nite elasti
ity. For the total deformation ' 2 C

1

(
;R

3

) we have the deformation

gradient F = r' 2 C(
;M

3�3

) and we use r in general only for 
olumn-ve
tors in R

3

. Furthermore, S

1

(F )

and S

2

(F ) denote the �rst and se
ond Piola Kir
hho� stress tensors, respe
tively. Total time derivatives are

written

d

dt

X(t) =

_

X. The �rst and se
ond di�erential of a s
alar valued fun
tion W (F ) are written D

F

W (F ):H

and D

2

F

W (F ):(H;H), respe
tively. Sometimes we use also �

X

W (X) to denote the �rst derivative of W with

respe
t to X. We employ the standard notation of Sobolev spa
es, i.e. L

2

(
); H

1;2

(
); H

1;2

Æ

(
), whi
h we use
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indi�erently for s
alar-valued fun
tions as well as for ve
tor-valued and tensor-valued fun
tions. Moreover, we

set kXk

1

= sup

x2


kX(x)k. For X 2 C

1

(
;M

3�3

) we de�ne CurlX(x) and DivX(x) as the operation 
url

and Div applied row wise, respe
tively. For h 2 T(3) we de�ne Div h =

�

Div h

1

jDiv h

2

jDiv h

3

�

T

2 M

3�3

. We

de�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the sense of tra
es and

by C

1

0

(
) we denote in�nitely di�erentiable fun
tions with 
ompa
t support in 
. We use 
apital letters to

denote possibly large positive 
onstants, e.g. C

+

;K and lower 
ase letters to denote possibly small positive


onstants, e.g. 


+

; d

+

. The smallest eigenvalue of a positive de�nite symmetri
 tensor P is abbreviated by

�

min

(P ). Finally, w.r.t. abbreviates with respe
t to.

7.2 The 
oer
ivity inequality

The de
isive analyti
al tool for the treatment of 
ase II (super-
riti
al) is the following new non-trivial inequality

establishing 
oer
ivity:

Theorem 7.1 (Extended 3D-Korn's �rst inequality)

Let 
 � R

3

be a bounded Lips
hitz domain and let � � �
 be a smooth part of the boundary with non

vanishing 2-dimensional Hausdor� measure. De�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g and let F

p

; F

�1

p

2

C

1

(
;GL(3;R)). Moreover suppose that CurlF

p

2 C

1

(
;M

3�3

). Then

9 


+

> 0 8 � 2 H

1;2

Æ

(
;�) : kr�F

�1

p

(x) + F

�T

p

(x)r�

T

k

2

L

2

(
)

� 


+

k�k

2

H

1;2

(
)

:

Proof. The proof has been presented in [58℄. �

Remark 7.2

Note that for F

p

= r� we would only have to deal with the 
lassi
al Korn's inequality evaluated on the trans-

formed domain �(
). However, in general, F

p

is in
ompatible giving rise to a non-Riemannian manifold

stru
ture. Compare this to [10℄ for an interpretation and the physi
al relevan
e of the volume dislo
ation density

tensor CurlF

p

. A Riemannian version of Korn's inequality has also been given in [12℄.

Motivated by the investigations in [58℄ it has been shown re
ently by Pompe [66℄ that the extended Korn's

inequality 
an be viewed as a spe
ial 
ase of a general 
lass of 
oer
ivity inequalities for quadrati
 forms. He

was able to show that indeed F

p

; F

�1

p

2 C(
;GL(3;R)) is suÆ
ient for (7.1) to hold without any 
ondition on

the 
ompatibility.

However, taking the spe
ial stru
ture of the extended Korn's inequality again into a

ount, work in progress

suggests that 
ontinuity is not really ne
essary: instead F

p

; F

�1

p

2 L

1

(
;GL(3;R)) and CurlF

p

2 L

3+Æ

(
)

should suÆ
e, whereas F

p

; F

�1

p

2 L

1

(
;GL(3;R)) alone is not suÆ
ient, see the 
ounterexample presented in

[66℄. This possible improvement has no 
onsequen
es for the analysis, however.

In view of the important role of the extended Korn's �rst inequality let us agree in saying that an inhomogeneous

material 
hara
terized by a free energy density W : R

3

� M

3�3

7! R is elasti
ally pre-stable, whenever

9H 2 M

3�3

; H 6= 0 : D

2

F

W (x;F ):(H;H) = 0 and (7.1)

9 


+

> 0 9 G 2 GL

+

(3;R) 8H 2 M

3�3

: D

2

F

W (x;F ):(H;H) � 


+

kG(x)

T

H +H

T

G(x)k

2

:

In this terminology, in�nitesimal 
lassi
al elasti
ity is pre-stable with G = 11 and the extended Korn's �rst

inequality links the smoothness of G to the positive de�niteness of the elasti
 tangent sti�ness tensor.

7.3 Derivation of the geometri
ally exa
t mi
romorphi
 balan
e equa-

tions

The balan
e equations are obtained as for the mi
ro-in
ompressible 
ase with the only provision that we 
an

take as variation for U

p

2 PSym the following expression

d

dt

U

p

= T U

p

; T 2 Sym(3) ; (7.2)

instead of T 2 sl(3;R) \ Sym(3) for the mi
ro-in
ompressible 
ase based on U

p

. Note that any value of the

di�erential

d

dt

U

p


an be obtained as

d

dt

U

p

= T U

p

for some T 2 Sym(3) while T U

p

is not ne
essarily symmetri


if T is symmetri
.

7.4 Derivation of the geometri
ally exa
t mi
romorphi
 balan
e equa-

tions in the mi
ro-in
ompressible 
ase

Introdu
ing a 
onstraint nonlinear manifold like SL(3;R) for the mi
ro-in
ompressible 
ase 
ompli
ates the

derivation of the balan
e equations 
onsiderably.

The derivation of the for
e balan
e equation remains straight forward, however. Sin
e we 
an write P =

R

p

�U

p

and R

p

; U

p


an be pres
ribed arbitrarily, we may realize the variation of P through independent variation

of the orthogonal and iso
hori
 stret
h part:

P = R

p

� U

p

)

d

dt

P =

�

d

dt

R

p

�

U

p

+ R

p

�

d

dt

U

p

�

: (7.3)

Now take either

d

dt

U

p

= 0 or

d

dt

R

p

= 0. In the �rst 
ase, we have the variation

d

dt

P =

�

d

dt

R

p

�

U

p

= AR

p

U

p

= AP; A 2 so(3;R) ; arbitrary ; (7.4)
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and in the se
ond 
ase we have

d

dt

P = R

p

�

d

dt

U

p

�

= R

p

T U

p

; T 2 sl(3;R) \ Sym(3) : (7.5)

For the �rst 
ase, we 
onsider simultaneously in ea
h spa
e point a one parameter group of mi
rodeformations

d

dt

^

P (x; t) = A(x; t) �

^

P (x; t);

^

P (x; 0) = P (x); A 2 C

1

0

(
; sl(3;R)). The 
orresponding stationarity 
ondition is

obtained from

d

dt

j

t=0

I(';

^

P (x; t)) = 0. This yields three terms: the derivatives involving W

mp

(F;P ) and �(P ) are straightfor-

ward, using the de�nition of the one parameter group, and yield

d

dt

j

t=0

�(

^

P (x; t)) = hD

P

�(

^

P (x; t);

d

dt

^

P (x; t)i = hD

P

�(

^

P (x; t); A(x; t) �

^

P (x; t)i

= hD

P

�(P )P

T

; A(x; t)i (7.6)

= hD

P

�(P )U

p

R

T

p

; A(x; t)i = hR

p

R

T

p

D

P

�(P )U

p

R

T

p

; A(x; t)i

= hR

p

skew

�

R

T

p

D

P

�(P )U

p

�

R

T

p

; A(x; t)i ;

and

d

dt

j

t=0

W

mp

(F;

^

P (x; t)) = hD

U

W

mp

(U;U

p

);

d

dt

Ui

= hD

U

W

mp

(U;U

p

);

d

dt

[

^

P

�1

F ℄i = hD

U

W

mp

(U;U

p

); [

d

dt

^

P

�1

℄F i

= hD

U

W

mp

(U;U

p

);�

^

P

�1

[

d

dt

^

P ℄

^

P

�1

F i = �hD

U

W

mp

(U;U

p

);

^

P

�1

[

d

dt

^

P ℄Ui

= �hD

U

W

mp

(U;U

p

);

^

P

�1

A(x; t) �

^

P (x; t)Ui = �hD

U

W

mp

(U;U

p

)U

T

;

^

P

�1

A(x; t) �

^

P (x; t)i

= �h

^

P

�T

D

U

W

mp

(U;U

p

)U

T

^

P

T

; A(x; t)i = �hR

p

U

�1

p

D

U

W

mp

(U;U

p

)U

T

U

p

R

T

p

; A(x; t)i (7.7)

= �hR

p

skew

�

U

�1

p

D

U

W

mp

(U;U

p

)U

T

U

p

�

R

T

p

; A(x; t)i

= �hR

p

skew

�

U

�1

p

D

U

W

mp

(U;U

p

)U

T

U

T

p

�

R

T

p

; A(x; t)i

Here, h�; �i means additionally integration w.r.t. x. For the term 
ontaining the 
urvature part, we note

d

dt

j

t=0

Z




W


urv

(K

p

(x; t)) dV =

3

X

i=1

h�

K

i

p

W


urv

(K

1

p

;K

2

p

;K

3

p

); R

T

p

r(AP:e

i

) + (AR

p

)

T

r(P :e

i

)i

M

3�3

=

3

X

i=1

hR

p

�

K

i

p

W


urv

(K

1

p

;K

2

p

;K

3

p

);r(AP:e

i

)i

M

3�3

+ hR

p

�

K

i

p

W


urv

(K

1

p

;K

2

p

;K

3

p

)K

i;T

p

R

T

p

; A

T

i

M

3�3

(7.8)

=

3

X

i=1

�hDiv

h

R

p

�

K

i

p

W


urv

(K

1

p

;K

2

p

;K

3

p

)

i

; AP:e

i

i

R

3

+ hR

p

 

3

X

i=1

�

K

i

p

W


urv

(K

1

p

;K

2

p

;K

3

p

)K

i;T

p

!

R

T

p

; A

T

i

= �hDiv

h

R

p

D

K

p

W


urv

(K

p

)

i

; AP i

M

3�3

+ hR

p

 

3

X

i=1

�

K

i

p

W


urv

(K

1

p

;K

2

p

;K

3

p

)K

i;T

p

R

T

p

!

; A

T

i

= �hDiv

h

R

p

D

K

p

W


urv

(K

p

)

i

P

T

; Ai+ hR

p

 

3

X

i=1

�

K

i

p

W


urv

(K

1

p

;K

2

p

;K

3

p

)K

i;T

p

!

R

T

p

; A

T

i

= �hR

p

R

T

p

Div

h

R

p

D

K

p

W


urv

(K

p

)

i

U

p

R

T

p

; Ai � hR

p

skew

 

3

X

i=1

�

�

K

i

p

W


urv

(K

1

p

;K

2

p

;K

3

p

)K

i;T

p

�

!

R

T

p

; Ai

= �hR

p

skew

�

R

T

p

Div

h

R

p

D

K

p

W


urv

(K

p

)

i

U

p

�

R

T

p

; Ai � hR

p

skew

�

D

K

p

W


urv

(K

p

)K

T

p

�

R

T

p

; Ai :

Sin
e A 2 C

1

0

(
; so(3;R)) is arbitrary, equation (2.18)

2

follows. In order to obtain the remaining �ve equations

for the �ve independent 
omponents of U

p

2 SL(3;R) \ PSym(3) we 
onsider the se
ond possible independent

variation of P . With

d

dt

P = R

p

T U

p

; T 2 sl(3;R) \ Sym(3) ; (7.9)

we 
onsider simultaneously in ea
h spa
e point a one parameter group of mi
rodeformations

d

dt

^

P (x; t) =

R

p

T U

p

;

^

P (x; 0) = P (x); T 2 C

1

0

(
; sl(3;R)). The 
orresponding stationarity 
ondition is obtained from

d

dt

j

t=0

I(';

^

P (x; t)) = 0. This yields again three terms: the derivatives involving W

mp

(F; P ) and �(P ) are

straightforward, using the de�nition of the one parameter group, and yield

d

dt

j

t=0

�(

^

P (x; t)) = hD

P

�(

^

P (x; t);

d

dt

^

P (x; t)i

= hD

P

�(

^

P (x; t); R

p

T (x; t) � U

p

(x; t)i = hR

T

p

D

P

�(P )U

p

; T (x; t)i

= hdev sym

�

R

T

p

D

P

�(P )U

p

�

; T (x; t)i ; (7.10)
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and

d

dt

j

t=0

W

mp

(F;

^

P (x; t)) = hD

U

W

mp

(U;U

p

);

d

dt

Ui + hD

U

p

W

mp

(U;U

p

);

d

dt

U

p

i

= �hD

U

W

mp

(U;U

p

);

^

P

�1

[

d

dt

^

P ℄Ui+ hD

U

p

W

mp

(U;U

p

); T (x; t)U

p

i

= �hD

U

W

mp

(U;U

p

);

^

P

�1

R

p

T (x; t) � U

p

Ui+ hD

U

p

W

mp

(U;U

p

)U

T

p

; T (x; t)i

= �hD

U

W

mp

(U;U

p

)U

T

; U

�1

p

T (x; t)U

p

i + hD

U

p

W

mp

(U;U

p

)U

T

p

; T (x; t)i (7.11)

= �hU

�1

p

D

U

W

mp

(U;U

p

)U

T

U

p

; T (x; t)i + hD

U

p

W

mp

(U;U

p

)U

T

p

; T (x; t)i

= �hdev sym

�

U

�1

p

D

U

W

mp

(U;U

p

)U

T

U

p

�

; T (x; t)i + hdev sym

�

D

U

p

W

mp

(U;U

p

)U

T

p

�

; T (x; t)i :

For the term 
ontaining the 
urvature part, we note

d

dt

j

t=0

Z




W


urv

(K

p

(x; t)) dV =

3

X

i=1

h�

K

i

p

W


urv

(K

1

p

;K

2

p

;K

3

p

); R

T

p

r(R

p

TU

p

:e

i

) + (

d

dt

R

p

)

T

r(P :e

i

)i

M

3�3

(7.12)

=

3

X

i=1

hR

p

�

K

i

p

W


urv

(K

1

p

;K

2

p

;K

3

p

);r(TU

p

:e

i

)i

M

3�3

= �hdev sym

�

R

T

p

Div

h

R

p

D

K

p

W


urv

(K

p

)

i

U

p

�

; T i :

Sin
e T 2 C

1

0

(
; sl(3;R)) is arbitrary, equation (2.18)

3

follows. By splitting the possible variations of P 2

SL(3;R), we have impli
itly used the Cartan Lie-algebra de
omposition: sl(3;R) = so(3;R) � p; p = fT 2

sym(3) j tr [T ℄ = 0g.

7.5 Validation of the Finite Element implementation

Analyti
al solutions 
an be worked out for some parti
ular boundary value problems for the linearized elasti


mi
romorphi
 
ontinuum. They 
an be used to 
he
k the Finite Element implementation presented in this work.

An example is given here for an in�nite strip in dire
tion 1 and with 0 � x

2

� L, L being the thi
kness of the

strip. We look for displa
ement and mi
rodeformation �elds of the form:

u = u

2

(x

2

) e

2

; p = p

11

(x

2

) e

1


 e

1

+ p

22

(x

2

) e

2


 e

2

(7.13)

with respe
t to a Cartesian orhonormal basis (e

1

; e

2

; e

3

). As a result the non vanishing 
omponents of the strain

measures are

"

22

= u

0

2

; �"

11

= �p

11

; �"

22

= u

0

2

� p

22

;

K

112

= p

0

11

; K

222

= p

0

22

; (7.14)

where the prime indi
ates di�erentiation with respe
t to the x

2

variable. The 
orresponding non{vanishing

stress 
omponents follow from appli
ation of the linearized elasti
ity 
onstitutive equations (4.27):

�

11

=

^

�u

0

2

+ g

1

(u

0

2

� p

11

� p

22

) � 2g

1

p

11

; �

22

= (

^

� + 2�̂)u

0

2

+ g

1

(u

0

2

� p

11

� p

22

) + 2g

1

(u

0

2

� p

22

) ;

�

33

=

^

�u

0

2

+ g

1

(u

0

2

� p

11

� p

22

) ;

s

11

= g

1

u

0

2

+ b

1

(u

0

2

� p

11

� p

22

)� (b

2

+ b

3

)p

11

; s

33

= g

1

u

0

2

+ b

1

(u

0

2

� p

11

� p

22

) ;

s

22

= (g

1

+ 2g

2

)u

0

2

+ b

1

(u

0

2

� p

11

� p

22

) + (b

2

+ b

3

)(u

0

2

� p

22

) : (7.15)

In the spe
ial 
ase (4.29), the only non{vanishing 
omponents of the hyperstress tensors are

S

112

= Ap

0

11

; S

222

= Ap

0

22

: (7.16)

The stress tensors must ful�ll the linearized balan
e equation of momentum and generalized moment of momen-

tum (4.23) whi
h redu
e here to

�

0

22

+ s

0

22

= 0; S

0

112

+ s

11

= 0; S

0

222

+ s

22

= 0 : (7.17)

These equations lead to the following linear system of di�erential equations for the unknowns (u

2

; p

11

; p

22

):

0 =

�

�u

00

2

�

�

b

1

p

0

11

�

�

bp

0

22

;

0 = Ap

00

11

+

�

b

1

u

0

2

� bp

11

� b

1

p

22

;

0 = Ap

00

22

+

�

bu

0

2

� b

1

p

11

� bp

22

; (7.18)

where the following notations have been introdu
ed:

b = b

1

+ b

2

+ b

3

;

�

� =

^

�+ 2�̂+ 2g

1

+ 4g

2

+ b ;

�

b

1

= g

1

+ b

1

;

�

b = g

1

+ 2g

2

+ b :

When the displa
ement 
omponent u

2

is eliminated from the system (7.18), we get

0 = Ap

000

11

�Bp

0

11

�Cp

0

22

= 0 ;

0 = Ap

000

22

�Dp

0

11

�Dp

0

22

= 0 ; (7.19)

where the following notations were introdu
ed:

B =

1

A

(b�

�

b

2

1

�

�

); C =

1

A

(b�

�

b

2

�

�

); D =

1

A

(b

1

�

�

b

�

b

1

�

�

) : (7.20)
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Figure 5: Displa
ement and mi
rodeformation pro�les along the width of an in�nite strip

subje
ted to a pres
ribed mi
rodeformation p

2

= 0:01 at x

2

= 10mm. This test is used in the

validation pro
edure of the Finite Element implementation of linear mi
romorphi
 elasti
ity.

The used material parameters are given by (5.9).

There exists then a linear 
ombination p of p

11

and p

22

su
h that

p

000

= !

2

p

0

; (7.21)

provided that

!

4

� (B +C)!

2

� C

2

= 0 ; (7.22)

whi
h admits in general a single positive root. The solution of the system (7.18) is then a linear 
ombination

of 
osh(!x

2

) and sinh(!x

2

) fun
tions. The integration 
onstants are determined by the proper boundary


onditions. The �gure 5 gives the fun
tions u

2

(x

2

); p

11

(x

2

); p

22

(x

2

) over the segment [0; L℄ 
orresponding

to the following boundary 
onditions:

u

2

(0) = u

2

(L) = 0; p

11

(0) = p

11

(L) = 0; p

22

(0) = 0; p

22

(L) = p

0

(7.23)

The set of elasti
 
onstants used for this example is given by (5.9). The parti
ular 
ase L = 10mm; p

0

= 0:01

is illustrated in �gure 5.
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