
De�ning amalgams of ompat Lie groups

Ralf Gramlih

November 15, 2004

Abstrat

For n � 2 let � be a Dynkin diagram of rank n and let I = f1; : : : ; ng be the set of labels of

�. A group G admits a weak Phan system of type � over C if G is generated by subgroups U

i

,

i 2 I, whih are entral quotients of simply onneted ompat semisimple Lie groups of rank one,

and ontains subgroups U

i;j

= hU

i

; U

j

i, i 6= j 2 I, whih are entral quotients of simply onneted

ompat semisimple Lie groups of rank two suh that U

i

and U

j

are rank one subgroups of U

i;j

orresponding to a hoie of a maximal torus and a fundamental system of roots for U

i;j

. It is shown

in this artile that G then is a entral quotient of the simply onneted ompat semisimple Lie group

whose omplexi�ation is the simply onneted omplex semisimple Lie group of type �.

1 Introdution

In 1977 Kok-Wee Phan [27℄ gave a method for identifying a group G as a quotient of the �nite unitary

group SU

n+1

(q

2

) by �nding a generating on�guration of subgroups

SU

3

(q

2

) and SU

2

(q

2

)� SU

2

(q

2

)

in G. We begin by looking at the on�guration of subgroups in SU

n+1

(q

2

) to motivate our later de�nition.

Suppose n � 2 and suppose q is a prime power. Consider G = SU

n+1

(q

2

) ating as matries on a

Hermitian (n + 1)-dimensional vetor spae over F

q

2

with respet to an orthonormal basis and let U

i

�

=

SU

2

(q

2

), i = 1; 2; : : : ; n, be the subgroups of G, represented as matrix groups with respet to the hosen

orthonormal basis, orresponding to the (2� 2)-bloks along the main diagonal. Let T

i

be the diagonal

subgroup in U

i

, whih is a maximal torus of U

i

of size q+1. When q 6= 2 the following hold for 1 � i; j � n:

(P1) if ji� jj > 1, then [x; y℄ = 1 for all x 2 U

i

and y 2 U

j

;

(P2) if ji� jj = 1, then hU

i

; U

j

i is isomorphi to SU

3

(q

2

); moreover [x; y℄ = 1 for all x 2 T

i

and y 2 T

j

;

and

(P3) the subgroups U

i

, 1 � i � n, generate G.

Suppose now G is an arbitrary group ontaining a system of subgroups U

i

�

=

SU

2

(q

2

), and suppose a

maximal torus T

i

of size q+1 is hosen in eah U

i

. If the onditions (P1){(P3) above hold for G, we will

say that G ontains a Phan system of type A

n

over F

q

2

. Ashbaher alled this on�guration a generating

system of type I in [1℄.

In [27℄ Kok-Wee Phan proved the following result:
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Phan's Theorem:

Let q � 5 and let n � 3. If G ontains a Phan system of type A

n

over F

q

2

, then G is isomorphi to a

entral quotient of SU

n+1

(q

2

).

In [28℄ Phan proved similar results for �nite groups orresponding to all simply laed Dynkin diagrams.

For the seond-generation proof of the lassi�ation of the �nite simple groups [11℄, [12℄, [13℄, [14℄, [15℄ the

question was raised whether one ould generalize and unify Phan's results. After a number of partially

suessful attempts by several people of reproving Phan's theorems (see, e.g., [9℄), the program desribed

in [2℄ led to new proofs of some of Phan's old results, see [3℄, [19℄, and to new unexpeted Phan-type

theorems, see [16℄, [17℄.

The purpose of the present artile is to apply the methods from the program [2℄, whih have originally

been developed for �nite groups, to ompat Lie groups, yielding a generalization of a result by Borovoi

[4℄ on generators and relations in ompat Lie groups. The methods and ideas used in this paper have

been adopted from [3℄, [17℄, [18℄.

To be able to properly state the result, we have to �x the setting and to de�ne some notions. Let G be

a simply onneted ompat semisimple Lie group of rank two, i.e., G is isomorphi to SU

2

(C ) � SU

2

(C )

or SU

3

(C ) or Spin

5

(R)

�

=

U

2

(H ) or G

2;�14

by [21℄, see also 94.33 of [31℄. Let T be a maximal torus of

G, let � = �(G

C

; T

C

) be its root system, and let f�; �g be a fundamental system of roots of �, f. [5℄ or

[24℄. To the simple roots �, � orresponds a pair of semisimple subgroups G

�

and G

�

of G normalized by

T and isomorphi to SU

2

(C )

�

=

Spin

3

(R)

�

=

U

1

(H ), whih is alled a standard pair of G. If � and � have

di�erent length, then the standard pair (G

�

; G

�

) is not onjugate to the standard pair (G

�

; G

�

), so, by

onvention, we assume that in a standard pair (G

�

; G

�

) the root � is shorter than the root � if they have

di�erent lengths. A standard pair in a entral quotient of G is de�ned as the image of a standard pair of

G under the natural homomorphism. Note that the images of a standard pair in the quotient have the

same isomorphism types as in G modulo some entral subgroups.

Moreover, for n � 2 let � be a Dynkin diagram of rank n (see [6℄ for a omplete list) and let

I = f1; : : : ; ng be the set of labels of �. A group G admits a weak Phan system of type � over C if G is

generated by subgroups U

i

, i 2 I , whih are entral quotients of simply onneted ompat semisimple

Lie groups of rank one, and ontains subgroups U

i;j

= hU

i

; U

j

i, i 6= j 2 I , whih are entral quotients

of simply onneted ompat semisimple Lie groups of rank two suh that (U

i

; U

j

) or (U

j

; U

i

) forms a

standard pair in U

i;j

. In partiular the groups U

i

and U

i;j

have the following isomorphism types:

(1) U

i

�

=

SU

2

(C ) or U

i

�

=

SO

3

(R) for all 1 � i � n;

(2) hU

i

; U

j

i

�

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(U

i

� U

j

)=Z; in ase

i

Æ

j

Æ, where Z is a entral subgroup of U

i

� U

j

,

SU

3

(C ) or PSU

3

(C ); in ase

i

Æ

j

Æ,

U

2

(H ) or SO

5

(R); in ase

i

Æ

<

j

Æ or

i

Æ

>

j

Æ,

G

2;�14

; in ase

i

Æ

<

j

Æ or

i

Æ

>

j

Æ.

Main Theorem.

Let � be a Dynkin diagram and let G be a group admitting a weak Phan system of type � over C . Then G

is a entral quotient of the simply onneted ompat semisimple Lie group whose omplexi�ation is the

simply onneted omplex semisimple Lie group of type �. In partiular, for irreduible Dynkin diagrams,

the group G is a entral quotient of
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� SU

n+1

(C ), if � = A

n

,

� Spin

2n+1

(R), if � = B

n

,

� U

n

(H ), if � = C

n

,

� Spin

2n

(R), if � = D

n

,

� E

6;�78

, if � = E

6

,

� E

7;�133

, if � = E

7

,

� E

8;�248

, if � = E

8

,

� F

4;�52

, if � = F

4

.

While the theorem is true for all Dynkin diagrams, it is a tautology for Dynkin diagrams of rank at

most two. In partiular, the theorem does not yield an interesting haraterization of the group G

2;�14

.

This artile is organized as follows. In Setion 2 we remind the reader of the de�nition of a geometry

and an amalgam and state some important lemmas. In Setion 3 we reall the result by Borovoi [4℄ and

give an alternative proof using geometri overing theory. In Setion 4 we study Phan systems and Phan

amalgams, indiate how to pass from one onept to the other and, moreover, prove a result on uniqueness

of overs of Phan amalgams. In Setion 5, �nally, we lassify the unique overs of Phan amalgams from

Setion 4 and prove the Main Theorem. In Setion 6 we point out a question for further researh.

Aknowledgement: The author would like to express his gratitude to Karl Heinrih Hofmann for

o�ering a thorough overview over the area of ompat Lie groups, for several insightful disussions and

for guiding the author via e-mail through the library of the Institute at Oberwolfah. Thanks are also due

to Linus Kramer and Karl-Hermann Neeb for help and information and additional literature. Moreover,

the author would like to thank Christoph M�uller, Helge Gl�okner, Linus Kramer, and Karl-Hermann

Neeb for proof-reading the paper. Finally, the author would like to point out that without the fruitful

interation in the Seminar Sophus Lie of the funtional analysis group at the TU Darmstadt, the author

would never have thought of applying his results from �nite group theory to ompat Lie groups.

2 Geometries, amalgams and some lemmas

In this setion we ollet relevant de�nitions and results from inidene geometry and the theory of

amalgams. See [20℄ for a short introdution to the topi. A thorough introdution to inidene geometry

an be found in [8℄.

Geometries

De�nition 2.1 A pregeometry G over the set I is a triple (X; �; typ) onsisting of a set X , a sym-

metri and reexive inidene relation �, and a surjetive type funtion typ : X ! I , subjet to the

following ondition:

(Pre) If x � y with typ(x) = typ(y), then x = y.
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The set I is usually alled the type set. A ag in X is a set of pairwise inident elements. The type

of a ag F is the set typ(F ) := ftyp(x) : x 2 Fg. A hamber is a ag of type I . The rank of a ag

F is jtyp(F )j and the orank is equal to jI n typ(F )j. The ardinality of I is alled the rank of G. The

pregeometry G is onneted if the graph (X; �) is onneted.

A geometry is a pregeometry with the additional property that

(Geo) every ag is ontained in a hamber.

Let G = (X; �; typ) be a pregeometry over I . An automorphism of G is a permutation � of X with

typ(�(x)) = typ(x), for all x 2 X , and with �(x) ��(y) if and only if x � y, for all x; y 2 X . A group G of

automorphisms of G is alled ag-transitive if for eah pair F , F

0

of ags of G with typ(F ) = typ(F

0

)

there exists a g 2 G with g(F ) = F

0

. A group G of automorphisms of G is alled hamber-transitive

if for eah pair F , F

0

of ags of G with typ(F ) = I = typ(F

0

) there exists a g 2 G with g(F ) = F

0

.

Flag-transitivity implies hamber-transitivity, for a geometry ag-transitivity and hamber-transitivity

oinide, and a ag-transitive pregeometry ontaining a hamber automatially is a geometry, f. [8℄.

Let F be a ag of G, say of type J � I . Then the residue G

F

of F is the pregeometry

(X

0

; �

jX

0

�X

0
; typ

jInJ

)

over InJ , with

X

0

:= fx 2 X : F [ fxg is a ag of G and typ(x) =2 typ(F )g:

De�nition 2.2 Let G and

b

G be onneted geometries over the same type set and let � :

b

G ! G be

a homomorphism of geometries, i.e., � preserves the types and sends inident elements to inident

elements. A surjetive homomorphism � between onneted geometries

b

G and G is alled a overing if

and only if for every nonempty ag

b

F in

b

G the map � indues an isomorphism between the residue of

b

F in

b

G and the residue of F = �(

b

F ) in G. Coverings of a geometry orrespond to the usual topologial

overings of the ag omplex. If � is an isomorphism, then the overing is said to be trivial. A onneted

geometry G is alled simply onneted if any overing

b

G ! G of that geometry is trivial.

De�nition 2.3 Let I be a set, let G be a group and let (G

i

)

i2I

be a family of subgroups of G. Then

(t

i2I

G=G

i

; �; typ) with typ(G

i

) = i and

(Cos) gG

i

� hG

j

if and only if gG

i

\ hG

j

6= ;

is a pregeometry over I , the oset pregeometry of G with respet to (G

i

)

i2I

. Sine the type funtion is

ompletely determined by the indies, we also denote the oset pregeometry of G with respet to (G

i

)

i2I

by

((G=G

i

)

i2I

; �):

The family (G

i

)

i2I

forms a hamber. A oset pregeometry that is a geometry is alled a oset geometry.

De�nition 2.4 A building geometry is a oset geometry ((G=G

i

)

i2I

; �) where G is a Chevalley group,

I is the set of labels of the orresponding Dynkin diagram and (G

i

)

i2I

is the olletion of the maximal

paraboli subgroups of G, f. [36℄ or [37℄. The onept of building geometries is equivalent to the onept

of Tits buildings, see [7℄ or [8℄.
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By Theorem IV.5.2 of [7℄ or by Theorem 13.32 of [37℄, a building geometry of rank at least three is

simply onneted. In the present paper, we are interested in building geometries oming from simply on-

neted omplex semisimple Lie groups. For example, the building geometry of the group SL

n+1

(C ) is iso-

morphi to the omplex projetive geometry P(C

n+1

). The building geometries of the groups Spin

2n+1

(C ),

Sp

2n

(C ), Spin

2n

(C ) are isomorphi to the respetive polar geometries, i.e., the inidene geometries of the

totally isotropi subspaes of nondegenerate symmetri bilinear, respetively alternating bilinear forms

of Witt index n over C .

Amalgams

De�nition 2.5 An amalgam A of groups is a set with a partial operation of multipliation and a

olletion of subsets (H

i

)

i2I

, for some index set I , suh that the following onditions hold:

(1) A =

S

i2I

H

i

;

(2) the produt ab is de�ned if and only if a; b 2 H

i

for some i 2 I ;

(3) the restrition of the multipliation to eah H

i

turns H

i

into a group; and

(4) H

i

\H

j

is a subgroup in both H

i

and H

j

for all i; j 2 I .

It follows that the groups H

i

share the same identity element, whih is then the only identity element

in A, and that a

�1

2 A is well-de�ned for every a 2 A. Notie that the above de�nition of an amalgam

of groups �ts well into the general onept of an amalgam of groups, see [35℄.

An amalgam B =

S

i2I

H

i

is a quotient of the amalgam A =

S

i2I

G

i

if there is a homomorphism �

from A to B suh that the restrition of � to every G

i

maps G

i

onto H

i

. The amalgam A together with

the homomorphism � is alled a over of the amalgam B. Two overs (A

1

; �

1

) and (A

2

; �

2

) of A are

alled equivalent if there is an isomorphism � of A

1

onto A

2

, suh that �

1

= �

2

Æ �.

De�nition 2.6 A group H is alled a ompletion of an amalgam A if there exists a map � : A ! H

suh that

(1) for all i 2 I the restrition of � to H

i

is a homomorphism of H

i

to H ; and

(2) �(A) generates H .

Among all ompletions of A there is a largest one whih an be de�ned as the group having the

following presentation:

U(A) = ht

h

j h 2 A; t

x

t

y

= t

z

; whenever xy = z in Ai:

Obviously, U(A) is a ompletion of A sine one an take � to be the mapping h 7! t

h

. Every ompletion

of A is isomorphi to a quotient of U(A), and beause of that U(A) is alled the universal ompletion.

An amalgam A ollapses if U(A) = 1.

Example 2.7 Consider the groups

G

1

= hy; z j y

�1

zy = z

2

i;

G

2

= hz; x j z

�1

xz = x

2

i;

G

3

= hx; y j x

�1

yx = y

2

i;
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whih are nontrivial and pairwise isomorphi. Let A be the amalgam given by G

1

, G

2

, G

3

and the

intersetions

G

1

\G

2

= hzi

�

=

Z;

G

1

\G

3

= hyi

�

=

Z;

G

2

\G

3

= hxi

�

=

Z:

Then U(A) = 1 by Exerises 2.2.7 and 2.2.10 of [29℄, so A ollapses.

hzi

//

  A
AA

AA
AA

A
G

1

1

??��������
//

��>
>>

>>
>>

> hyi

>>}}}}}}}}

  A
AA

AA
AA

A
G

2

hxi

>>}}}}}}}}
//
G

3

Some lemmas

Lemma 2.8 (Tits' Lemma) Let G be a onneted geometry over I of rank at least three, let G be a

ag-transitive group of automorphisms of G, and let F be a maximal ag of G. Let A(G; G; F ) be the

amalgam of stabilizers in G of the elements of F . The geometry G is simply onneted if and only if the

anonial epimorphism U(A(G; G; F )) ! G is an isomorphism.

Proof. See Corollary 1.4.6 of [20℄ or Corollary 1 of [38℄. 2

De�nition 2.9 Let A = P

1

[ P

2

and A

0

= P

0

1

[ P

0

2

be amalgams of rank two. The amalgams A and

A

0

are of the same type if there exist isomorphisms �

i

: P

i

! P

0

i

suh that �

i

(P

1

\ P

2

) = P

0

1

\ P

0

2

for

i = 1; 2.

Lemma 2.10 (Goldshmidt's Lemma) Let A = (P

1

; P

2

; P

1

\ P

2

) be an amalgam of rank two, let

A

i

= Stab

Aut (P

i

)

(P

1

\P

2

) for i = 1; 2, and let �

i

: A

i

! Aut (P

1

\P

2

) be homomorphisms mapping a 2 A

i

onto its restrition to P

1

\P

2

. Then there is a one-to-one orrespondene between isomorphism lasses of

amalgams of the same type as A and �

2

(A

2

)-�

1

(A

1

) double osets in Aut (P

1

\P

2

). In other words, there

is a one-to-one orrespondene between the di�erent isomorphism types of amalgams P

1

 - (P

1

\P

2

) ,! P

2

and the double osets �

2

(A

2

)nAut (P

1

\ P

2

)=�

2

(A

1

).

Proof. See Lemma 2.7 of [10℄ or Proposition 8.3.2 of [20℄. 2

De�nition 2.11 Let A = (H

i

)

i2I

be an amalgam. A ompletion G of A is alled harateristi if and

only if every automorphism of A extends to an automorphism of G.

Notie that, sine G is generated by the image of A under the orresponding ompletion map, this

extension of an automorphism is unique. Clearly, the universal ompletion is always harateristi as is

the trivial ompletion.
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Lemma 2.12 (Bennett-Shpetorov Lemma) For i = 1; 2, let A

i

be an amalgam and let G

i

be a

ompletion of A

i

with ompletion map �

i

. Suppose there exist isomorphisms  : A

1

! A

2

and � : G

1

!

G

2

suh that � Æ �

1

= �

2

Æ  . If G

1

is a harateristi ompletion of A

1

, then for any isomorphism

 

0

: A

1

! A

2

there exists a unique isomorphism �

0

: G

1

! G

2

suh that �

0

Æ �

1

= �

2

Æ  

0

.

A

1

�

1 //

 

��
 

0

		

G

1

�

��
�

0

		
A

2

�

2 //
G

2

Proof. See Lemma 6.4 of [3℄. 2

3 Generators and relations

Let us reall here the results by Borovoi [4℄. Let G be a simply onneted ompat semisimple Lie group,

let T be a maximal torus of G, let � = �(G

C

; T

C

) be its root system, and let � be a system of fundamental

roots of �. To eah root � 2 � orresponds some semisimple group G

�

� G of rank one suh that T

normalizes G

�

. For simple roots �, �, we denote by G

��

the group generated by the groups G

�

and G

�

,

and by �

��

its root system relative to the torus T

��

= T \G

��

. The group G

��

is a semisimple group

of rank two and f�; �g is a fundamental system of �

��

.

Then the following assertion holds:

Theorem 3.1 (Theorem of Borovoi [4℄) Let G be a simply onneted ompat semisimple Lie group,

let T be a maximal torus of G, let � = �(G

C

; T

C

) be its root system, and let � be a system of fundamental

roots of �. Then the natural epimorphism U(A) ! G is an isomorphism where A = (G

��

)

�;�2�

is the

amalgam of rank one and rank two subgroups of G.

Borovoi's proof onsists of omputations of redued words in the group U(A) given by generators

and relations. Using the theory of Tits buildings and geometri overing theory one gets the following

alternative proof:

Geometri proof of Theorem 3.1. For rank at most two there is nothing to show, so we an assume

that the rank is at least three. By the Iwasawa deomposition (see Theorem VI.5.1 of [21℄ or Theorem

III.6.32 of [22℄) the group G ats hamber-transitively on the building geometry G of type � orresponding

to G

C

. Let F be a hamber of G stabilized by the torus T of G, so that the stabilizers of subags of

orank one and two of F with respet to the natural ation of G on G are exatly the groups G

�

T and

G

��

T . By the simple onnetedness of building geometries of rank at least three (f. Theorem IV.5.2 of

[7℄ or Theorem 13.32 of [37℄) plus Tits' Lemma (Lemma 2.8) the group G equals the universal ompletion

of the amalgam (G

��

T )

�;�2�

. Finally, by Lemma 29.3 of [12℄ (or by a redution argument as in the proof

of Theorem 2 of [16℄ or in the proof of Theorem 4.3.6 of [18℄) the torus T an be reonstruted from the

rank two tori T

��

, �; � 2 �, and so the group G atually equals the universal ompletion of the amalgam

(G

��

)

�;�2�

. 2

Proposition 3.2 Let n � 2 and let G be a simply onneted ompat semisimple Lie group. Then the

group G is a harateristi ompletion of the amalgam (G

��

)

��2�

of rank one and rank two subgroups.
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Proof. By Theorem 3.1 the group G is the universal ompletion of the amalgam (G

��

)

��2�

. Therefore

any automorphism of the amalgam extends to G, making G a harateristi ompletion. 2

A result similar to Theorem 3.1 has been proved by Satarov [32℄ for speial unitary groups over

quadrati extensions of real losed �elds. This ase has already been overed by Borovoi's remark after

his Theorem in [4℄. Here, too, the group ats hamber-transitively on the building geometry, so our proof

above applies as well.

4 Phan systems and Phan amalgams

De�nition 4.1 Let G be a simply onneted ompat semisimple Lie group of rank two, i.e., G is

isomorphi to SU

2

(C ) � SU

2

(C ) or SU

3

(C ) or Spin

5

(R)

�

=

U

2

(H ) or G

2;�14

by [21℄, see also 94.33 of [31℄.

Let T be a maximal torus of G, let � = �(G

C

; T

C

) be its root system, and let f�; �g be a fundamental

root system of �. To the simple roots �, � orresponds a pair of semisimple subgroups G

�

and G

�

of

G normalized by T and isomorphi to SU

2

(C )

�

=

Spin

3

(R)

�

=

U

1

(H ) alled a standard pair of G. If

� and � have di�erent length, then the standard pair (G

�

; G

�

) is not onjugate to the standard pair

(G

�

; G

�

), so when speaking of a standard pair (G

�

; G

�

), we assume � to be shorter than � if the roots

have di�erent lengths.

A standard pair in a entral quotient of G is de�ned as the image of a standard pair of G under

the natural homomorphism. Note that the images of a standard pair in the quotient are isomorphi to

SU

2

(C ) or to SO

3

(R).

Lemma 4.2 Standard pairs are onjugate.

Proof. This follows immediately from the fat that maximal tori are onjugate, f. Theorem 6.25 of

[24℄, and the fat that, if �; � 2 � and �

1

; �

1

2 � have the same lengths and the same angle, there exists

an element w of the Weyl group with w(�

1

) = � and w(�

1

) = �, f. [6℄. 2

De�nition 4.3 Let n � 2, let � be a Dynkin diagram of rank n (see [6℄ for a omplete list) and let

I = f1; : : : ; ng be the set of labels of �. A group G admits a weak Phan system of type � over

C if G is generated by subgroups U

i

�

=

SU

2

(C ) or U

i

�

=

SO

3

(R), i 2 I , whih are entral quotients of

simply onneted ompat semisimple Lie groups of rank one, and ontains subgroups U

i;j

= hU

i

; U

j

i,

i 6= j 2 I , whih are entral quotients of simply onneted ompat semisimple Lie groups of rank two

suh that (U

i

; U

j

) or (U

j

; U

i

) forms a standard pair in U

i;j

. In partiular, any U

i;j

is isomorphi to a

entral quotient of SU

2

(C )�SU

2

(C ) or to SU

3

(C ) or PSU

3

(C ) or U

2

(H )

�

=

Spin

5

(R) or SO

5

(R) or G

2;�14

depending on the subdiagram of � indued on i and j.

The paramount examples for groups with a weak Phan system are the simply onneted ompat

semisimple Lie groups together with the amalgam (G

��

)

��2�

of rank one and rank two subgroups. Any

entral quotient of suh a group of rank at least two also admits a weak Phan system.

De�nition 4.4 A Phan amalgam is an amalgam A = (L

��

)

�;�2�

, where L

��

is a group isomorphi

to a entral quotient of G

��

where it is required that L

�

and L

�

are the images of G

�

, respetively

G

�

under the natural epimorphism from G

��

onto L

��

. A Phan amalgam is alled irreduible if it is

obtained from the natural amalgam (G

��

)

�;�2�

of a simply onneted ompat almost simple Lie group,

i.e., if the Dynkin diagram of that group is onneted or, equivalently, if the orresponding root system is
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irreduible, f. [6℄. A omplete list of the ompat almost simple Lie groups an be found in [21℄ or [31℄.

A Phan amalgam is alled strongly nonollapsing if there exists a ompletion � : A ! G suh that

the kernel of the restrition �

jL

�

i

is entral for eah i 2 I . The rank of a Phan amalgam is de�ned to be

the rank of the orresponding fundamental system �. The amalgam (G

��

)

�;�2�

is alled a standard

Phan amalgam.

If a group G ontains a weak Phan system U

1

; : : : ; U

n

, then A = (U

i;j

)

i;j2I

is a strongly nonollapsing

Phan amalgam. The onverse is also true: a Phan amalgam admitting a faithful ompletion G turns the

group G into a group with a weak Phan system of the respetive type.

De�nition 4.5 A Phan amalgam (L

��

)

�;�2�

is alled unambiguous if every L

��

is isomorphi to the

orresponding G

��

.

Proposition 4.6 Every Phan amalgam A has an unambiguous overing

b

A that is unique up to equiv-

alene of overings. Furthermore, every (strongly) nonollapsing Phan amalgam A has a unique (up to

equivalene of overings) unambiguous (strongly) nonollapsing overing

b

A.

Proof. We will proeed by indution on jSj, where S is a subset of

�

�

1

�

[

�

�

2

�

whih is losed under

taking subsets and A = (L

J

)

J2S

. Our basis is the ase S = ; whih vauously yields an unambiguous

amalgam. Suppose now that S is non-empty, and that for every subset S

0

( S the laim holds. Let J be

an element of S whih is maximal with respet to inlusion and de�ne S

0

= S n fJg and A

0

= (L

J

0

)

J

0

2S

0

.

Then S

0

is losed under taking subsets, and A

0

is a subamalgam in A.

By the indutive assumption, there is a unique unambiguous overing amalgam (

b

A

0

= (

b

L

J

0

)

J

0

2S

0

; �

0

)

of A

0

. We will �nd an unambiguous overing (

b

A; �) of A by gluing a opy of G

J

to

b

A

0

and by extending �

0

to the new member of the amalgam. To glue G

J

to the amalgam

b

A

0

, we need to onstrut an isomorphism

from the subamalgam

b

L = (

b

L

J

0

)

J

0

(J

of

b

A

0

onto the orresponding amalgam G = (G

J

0

)

J

0

(J

of subgroups

of G

J

. By the de�nition of a Phan amalgam, there is a homomorphism  from G

J

onto L

J

mapping G

onto L = (L

J

0

)

J

0

(J

. Note that (

b

L; �

0

j

b

L

) and (G;  j

G

) are two unambiguous overings of L. By indution,

the uniqueness of the unambiguous overing holds so that there is an amalgam isomorphism � from

b

L

onto G suh that  Æ � = �

0

j

b

L

. Clearly, � tells us how to glue G

J

to

b

A

0

to produe

b

A and, furthermore,

as � we an take the union of  and �

0

. The ondition  Æ � = �

0

j

b

L

guarantees that  and �

0

agree

on the intersetion

b

L

�

�

=

G. Finally, notie that

b

A is an unambiguous Phan amalgam, so (

b

A; �) is an

unambiguous overing of A. This ompletes the proof of the existene of an unambiguous overing

b

A.

Now we will prove the uniqueness. Suppose we have two suh overings

b

B = (B

J

)

J2S

and

b

C = (C

J

)

J2S

with orresponding amalgam homomorphism �

1

and �

2

onto A. Selet J as an element of S whih is

maximal with respet to inlusion, and de�ne S

0

= S n fJg. Let A

0

,

b

B

0

and

b

C

0

be the subamalgams of

shape S

0

in A,

b

B and

b

C, respetively. By indution, there exists an isomorphism � from

b

B

0

onto

b

C

0

suh

that �

1

j

b

B

0

= �

2

Æ �. It suÆes to extend � to B

J

.

We have to deal with two ases: First, let us assume that J = f�; �g where � and � are orthogonal

roots. In this ase, B

��

�

=

C

��

�

=

G

��

is isomorphi to a diret produt of B

�

�

=

C

�

�

=

G

�

and

B

�

�

=

C

�

�

=

G

�

. Clearly � is already known on B

�

and B

�

, and so � extends uniquely to B

��

.

This extension, also denoted �, is a well-de�ned amalgam isomorphism from B to C, and furthermore,

�

1

= �

2

Æ � holds.

In the seond ase, B

J

�

=

C

J

�

=

G

J

is isomorphi to a simply onneted ompat almost simple Lie

group of rank one or two. By the universality of the overing �

1

: B

J

! L

J

, as B

J

is simply onneted,
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there exists a unique isomorphism  : B

J

! C

J

suh that �

1

= �

2

Æ  .

C

J

�

2

!!B
BB

BB
BB

B
B

J

�

1

��

 

oo

L

J

Consider a mapping � from L

J

to L

J

de�ned as follows: For u 2 L

J

, let �(u) = (�

2

Æ Æ�

�1

1

)(u). Notie

that � is a well-de�ned automorphism of L

J

, beause the osets of the kernel of �

1

are mapped by  

to osets of the kernel of �

2

. Every automorphism of L

J

lifts to a unique automorphism of C

J

. Indeed,

both L

J

and C

J

are perfet by a orollary of Gotô's Commutator Theorem (see Corollary 6.56 of [24℄)

and, by Theorem 2.1 of [30℄, the group C

J

, whih is isomorphi to SU

2

(C )

�

=

Spin

3

(R)

�

=

U

1

(H ) or to

SU

3

(C ) or to Spin

5

(R)

�

=

U

2

(H ), is the universal perfet entral extension of L

J

, f. [25℄ or [33℄, [34℄.

Alternatively, one an argue as follows: Every automorphism of L

J

is ontinuous by Corollary 6.56 of [24℄

and van der Waerden's Continuity Theorem (f. Theorem 5.64 of [24℄), whih lifts to a unique ontinuous

automorphism of C

J

by [26℄, see also [23℄. Finally, this lift in fat is the unique abstrat lift of �, as any

automorphism of C

J

again is ontinuous.

Thus, there is a unique automorphism � of C

J

suh that �

2

Æ� = � Æ�

2

. De�ne � : B

J

! C

J

: �(b) =

(�

�1

Æ  )(b). First of all, by de�nition we have �

1

j

B

J

= �

2

Æ �, as

�

2

Æ � = �

2

Æ �

�1

Æ  

= �

�1

Æ �

2

Æ  

= �

1

j

B

J

Æ  

�1

Æ �

�1

2

j

L

J

Æ �

2

Æ  

= �

1

j

B

J

:

Seond, for every J

0

� J we have that �

�1

Æ �

jB

J

0

is a lifting to B

J

0

of the identity automorphism of L

J

0

and, by the above, it is the identity. For �

�1

Æ �

jB

J

0

=  

�1

Æ � Æ �

jB

J

0

and, the following onsidered on

B

J

0

= ker(�

1

jB

J

0

),

 

�1

Æ �

2

�1

jC

J

0

Æ � Æ �

2

Æ �

jB

J

0

=  

�1

Æ �

2

�1

jC

J

0

Æ �

2

Æ  Æ �

1

�1

jB

J

0

Æ �

2

Æ �

jB

J

0

= �

1

�1

jB

J

0

Æ �

2

Æ �

jB

J

0

= id:

This shows that � and � agree on every subgroup B

J

0

, whih allows us to extend � to the entire

b

B by

de�ning it on B

J

as �. Finally, if A is (strongly) nonollapsing, so is its unambiguous overing

b

A, �nishing

the proof. 2

5 Uniqueness of unambiguous amalgams

Let A = (L

Infi;jg

)

(i;j)2I

be an unambiguous strongly nonollapsing irreduible Phan amalgam of rank at

least two. We will establish the uniqueness of the respetive amalgams A up to isomorphism in a series

of lemmas. The amalgams of rank two are unique by de�nition.
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Rank three

Assume the rank of A to be three. Sine A is unambiguous, eah subgroup L

Infig

oinides with L

Infi;jg

\

L

Infi;kg

for fi; j; kg = f1; 2; 3g. We want to prove the uniqueness of the amalgam A = (L

Infi;jg

)

i;j2f1;2;3g

.

For A

3

, i.e., for the diagram

L

Inf1g

Æ

L

Inf2g

Æ

L

Inf3g

Æ , reall the isomorphisms

L

Inf2;3g

�

=

SU

3

(C );

L

Inf1;3g

�

=

SU

2

(C ) � SU

2

(C );

L

Inf1;2g

�

=

SU

3

(C );

L

Inf3g

= L

Inf2;3g

\ L

Inf1;3g

�

=

SU

2

(C );

L

Inf2g

= L

Inf2;3g

\ L

Inf1;2g

�

=

SU

2

(C );

L

Inf1g

= L

Inf1;3g

\ L

Inf1;2g

�

=

SU

2

(C ):

For B

3

, i.e., for the diagram

L

Inf1g

Æ

L

Inf2g

Æ

>

L

Inf3g

Æ , reall the isomorphisms

L

Inf2;3g

�

=

Spin

5

(R);

L

Inf1;3g

�

=

SU

2

(C ) � Spin

3

(R);

L

Inf1;2g

�

=

SU

3

(C );

L

Inf3g

= L

Inf2;3g

\ L

Inf1;3g

�

=

Spin

3

(R);

L

Inf2g

= L

Inf2;3g

\ L

Inf1;2g

�

=

SU

2

(C );

L

Inf1g

= L

Inf1;3g

\ L

Inf1;2g

�

=

SU

2

(C ):

For C

3

, i.e., for the diagram

L

Inf1g

Æ

L

Inf2g

Æ

<

L

Inf3g

Æ , reall the isomorphisms

L

Inf2;3g

�

=

U

2

(H );

L

Inf1;3g

�

=

SU

2

(C ) �U

1

(H );

L

Inf1;2g

�

=

SU

3

(C );

L

Inf3g

= L

Inf2;3g

\ L

Inf1;3g

�

=

U

1

(H );

L

Inf2g

= L

Inf2;3g

\ L

Inf1;2g

�

=

SU

2

(C );

L

Inf1g

= L

Inf1;3g

\ L

Inf1;2g

�

=

SU

2

(C ):

Assume there exists another amalgam A

0

= (L

0

Infi;jg

)

i;j2f1;2;3g

. Aording to Goldshmidt's Lemma

(Lemma 2.10) the amalgams B = (L

Inf2;3g

; L

Inf1;2g

; L

Inf2g

) and B

0

= (L

0

Inf2;3g

; L

0

Inf1;2g

; L

0

Inf2g

) are

isomorphi via some amalgam isomorphism  , beause every automorphism of the group L

Inf2g

�

=

SU

2

(C )

is indued by some automorphism of the group L

Inf1;2g

�

=

SU

3

(C ). Indeed, L

Inf2g

is embedded as the

stabilizer of a vetor of length one of the natural module of L

Inf1;2g

. Clearly,  (L

Inf2g

) =  (L

Inf2;3g

\

L

Inf1;2g

) = L

0

Inf2;3g

\ L

0

Inf1;2g

= L

0

Inf2g

. The groups L

Inf1g

and L

Inf2g

form a standard pair in L

Inf1;2g

,

and hene  (L

Inf1g

) and L

0

Inf2g

=  (L

Inf2g

) form a standard pair in L

0

Inf1;2g

=  (L

Inf1;2g

). Certainly

also L

0

Inf1g

and L

0

Inf2g

form a standard pair in L

0

Inf1;2g

. Therefore, by Lemma 4.2, there exists an

automorphism of L

0

Inf1;2g

that maps  (L

Inf1g

) onto L

0

Inf1g

and that normalizes L

0

Inf2g

. Thus, we an

assume  (L

Inf1g

) = L

0

Inf1g

.
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Before we an ontinue we have to study the amalgam A a bit more arefully. De�ne

D

1

= N

L

Inf1g

(L

Inf2g

) and D

3

= N

L

Inf3g

(L

Inf2g

)

where the groups L

Inf2g

, L

Inf1g

are onsidered as subgroups of L

Inf1;2g

and the groups L

Inf3g

, L

Inf2g

are

onsidered as subgroups of L

Inf2:3g

. Sine L

Inf2g

and L

Inf1g

form a standard pair in L

Inf1;2g

, it follows

that D

1

is a maximal torus in L

Inf1g

�

=

SU

2

(C ). Similarly, D

3

is a maximal torus in L

Inf3g

. We also

de�ne

D

1

2

= N

L

Inf2g

(L

Inf1g

) and D

3

2

= N

L

Inf2g

(L

Inf3g

):

Again, these are two maximal tori in L

Inf2g

�

=

SU

2

(C ). The following lemma gives us an extra ondition

on A that holds beause A is strongly nonollapsing.

Lemma 5.1 D

1

2

= D

3

2

.

Proof. Let G be a nontrivial ompletion of A and let � be the orresponding map from A to G. Sine A

is assumed to be strongly nonollapsing, we may assume that � is injetive on every L

Infig

. Observe that

D

i

2

= C

L

f1;3g

(D

i

) for i = 1; 3. Thus, �(D

i

2

) = C

�(L

Inf2g

)

(�(D

i

)). Sine D

1

and D

3

ommute elementwise

in L

Inf1;3g

, we have that �(D

1

) and �(D

3

) ommute elementwise as well. Sine L

Inf2g

is invariant under

D

1

= N

L

Inf1g

(L

Inf2g

) (in L

Inf1;2g

) and sine � is injetive on L

Inf2g

, it follows that D

3

2

= C

L

Inf2g

(D

3

)

is invariant under D

1

(again as subgroups of L

Inf1;2g

) and �(D

3

2

) = C

�(L

Inf2g

)

(�(D

3

)) is invariant under

�(D

1

). Here, injetivity of � is needed for the following argument. D

1

and D

3

ommute as subgroups of

L

Inf1;3g

. The group L

Inf2g

is invariant under D

1

as a subgroup of L

Inf1;2g

. Sine L

Inf1;3g

and L

Inf1;2g

are not ontained in a ommon group of the amalgam A, we annot onlude that D

1

leaves D

3

2

invariant.

However, in G, sine L

Inf2g

, D

1

, D

3

, D

3

2

are embedded via �, we an draw that onlusion.

But now the maximal torus D

1

of L

Inf1g

�

=

SU

2

(C ) leaves invariant the maximal tori D

1

2

and D

3

2

of

L

Inf2g

�

=

SU

2

(C ). Analysis of the group L

Inf1;2g

�

=

SU

3

(C ) shows that D

1

2

= D

3

2

. 2

In view of this lemma we an use the notation

D

2

= D

1

2

= D

3

2

:

Sine N

L

Inf2g

(L

Inf1g

) = D

1

2

= D

2

= D

3

2

= N

L

Inf2g

(L

Inf3g

), the onsiderations made before Lemma 5.1

imply  (D

2

) = D

0

2

. Let d be a nontrivial element of D

0

2

of order distint from two. Denote by W the

natural three-dimensional module of L

0

Inf1;2g

, and reall that L

0

Inf2g

and L

0

Inf3g

form a standard pair

of L

0

Inf2;3g

. As D

0

2

� L

0

Inf2g

, the group D

0

2

�xes a non-isotropi vetor u of length one of W �xed by

L

0

Inf2g

. Sine D

0

2

normalizes L

0

Inf3g

, it also stabilizes hvi, where v is a non-isotropi vetor of length

one of W �xed by L

0

Inf3g

. Moreover, sine L

0

Inf2g

and L

0

Inf3g

form a standard pair, u is perpendiular

to v in W . Let hwi be the one-dimensional subspae of W that is perpendiular to both u and v and

assume w has length one. Then u, v, w is an orthonormal basis of W , and d ats diagonally with

respet to that basis via diag(1; a; a

�1

). Sine the order of d is distint from two, we have a 6= a

�1

,

so the one-dimensional subspaes of W stabilized by d are preisely hui, hvi, hwi. It follows, sine

D

0

2

=  (D

2

) = N

 (L

Inf2g

)

( (L

Inf3g

)) = N

L

0

Inf2g

( (L

Inf3g

)), that  (L

Inf3g

) is the stabilizer of either v or

w.

In the former ase we have  (L

Inf3g

) = L

0

Inf3g

, and we have proved A

�

=

A

0

, sine L

Inf1;3g

=

L

Inf3g

� L

Inf1g

and L

0

Inf1;3g

= L

0

Inf3g

� L

0

Inf1g

.
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In the latter ase onsider the element g of L

0

Inf2g

whose matrix with respet to the orthonormal basis

u, v, w has the form

0

�

1 0 0

0 0 �1

0 1 0

1

A

:

Conjugation with g indues the ation of the ontragredient automorphism on L

0

Inf2g

. By the de�ning

relation

A

�1

=

�

A

T

of unitary matries the ation of the ontragredient automorphism of L

0

Inf2g

oinides with the �eld

involution. Therefore, we an de�ne an automorphism � of B

0

that ats trivially on L

0

Inf1;2g

and as

the omposition of the �eld automorphism and onjugation by g on L

0

Inf2;3g

, sine by the above this

automorphism ats trivially on L

0

Inf2g

= L

0

Inf2;3g

\ L

0

Inf1;2g

. Moreover, � interhanges hvi and hwi, so it

maps  (L

Inf3g

) onto L

0

Inf3g

.

We have proved the following.

Proposition 5.2 Let A be a strongly nonollapsing unambiguous irreduible Phan amalgam of rank

three. Then A is unique up to isomorphism, i.e., A is isomorphi to a standard Phan amalgam. 2

Rank at least four

Let A = (L

Infi;jg

)

1�i<j�n

be a strongly nonollapsing unambiguous irreduible Phan amalgam of rank

at least four. We omplete the proof of the uniqueness of A by indution, the ase of rank three from

Proposition 5.2 being the basis of indution.

Lemma 5.3 Let n � 4 and let A be a strongly nonollapsing unambiguous irreduible Phan amalgam of

rank n. Then there exists a unique amalgam

B

A

= A [H

1

[H

2

with

H

1

= hL

Infi;jg

j 1 � i < j � n� 1i and

H

2

= hL

Infi;jg

j 2 � i < j � ni:

The group H

1

is isomorphi to SU

n

(C ) unless the ase of the Dynkin diagram F

4

, where H

1

is isomorphi

to Spin

7

(R), while the group H

2

is isomorphi to

SU

n

(C ) for the diagram A

n

;

Spin

2n�1

(R) for the diagram B

n

;

U

n�1

(H ) for the diagram C

n

;

Spin

2n�2

(R) for the diagram D

n

;

Spin

10

(R) for the diagram E

6

;

Spin

12

(R) for the diagram E

7

;

Spin

14

(R) for the diagram E

8

;

U

3

(H ) for the diagram F

4

:

13



Proof. Let

B

1

:= (L

Infi;jg

)

1�i<j�n�1

;

B

2

:= (L

Infi;jg

)

2�i<j�n

; and

C := B

1

\ B

2

:

By the indutive assumption, both B

1

and B

2

are isomorphi to some standard Phan amalgam and hene

there exist faithful ompletions �

i

: B

i

! H

i

where the isomorphism types of H

1

and H

2

are given as in

the hypothesis. We want to glue H

1

and H

2

to the amalgam A via �

1

and �

2

. Let K

i

:= h�

i

(C)i. Sine,

again by the indutive assumption, the amalgam C is isomorphi to a standard Phan amalgam, we have

K

i

�

=

SU

n�1

(C ) or, in ase of the diagram F

4

, we have K

i

�

=

Spin

5

(R)

�

=

U

2

(H ). By Proposition 3.2 the

group K

i

is a harateristi ompletion of the amalgam C, so there exists an isomorphism � : K

1

! K

2

that takes �

1

(C) to �

2

(C). Let  be the restrition of � to �

1

(C). Applying the Bennett-Shpetorov

Lemma (Lemma 2.12) with � : K

1

! K

2

and  : �

1

(C) ! �

2

(C) as above and  

0

: �

1

(C) ! �

2

(C)

with  

0

= �

2

Æ �

1

�1

jC

, there exists a unique isomorphism �

0

: K

1

! K

2

suh that �

0

j�

1

(C)

=  

0

. Thus,

�

0

Æ �

1

jC

= �

2

j

C

. Identifying K

1

with K

2

via �

0

we obtain our unique amalgam B. 2

Let us now turn to the uniqueness of the amalgam A. Suppose we have strongly nonollapsing

unambiguous irreduible Phan amalgams A and A

0

orresponding to the same diagram. Extend A and

A

0

to amalgams B

A

= A [ H

1

[ H

2

and B

0

A

0

= A

0

[ H

0

1

[ H

0

2

as in Lemma 5.3. By Goldshmidt's

Lemma (Lemma 2.10) there exists an isomorphism � from H

1

[ H

2

onto H

0

1

[ H

0

2

. By the indutive

assumption (L

Infi;jg

)

1<i<j<n

is isomorphi to a standard Phan amalgam embedded in H

1

\H

2

. Similarly

(L

0

Infi;jg

)

1<i<j<n

and �(L

Infi;jg

)

1<i<j<n

are isomorphi to standard Phan amalgams embedded in H

0

1

\

H

0

2

. These two amalgams orrespond to two hoies of a maximal torus of H

0

1

\H

0

2

, whih are onjugate

by Theorem 6.27 of [24℄. So, orreting � if neessary by an inner automorphism of H

0

1

\ H

0

2

, we may

assume that �(L

Infig

) = L

0

Infig

for 1 < i < n and �(L

Infi;jg

) = L

0

Infi;jg

for 1 < i < j < n. Also, by

studying the standard Phan amalgam inside H

0

1

, we have

�

�

L

Inf1g

�

= �

�

C

H

1

�

hL

Inf3g

; : : : ; L

Infn�1g

i

��

= C

�(H

1

)

�

�

�

hL

Inf3g

; : : : ; L

Infn�1g

i

��

= C

H

0

1

�

hL

0

Inf3g

; : : : ; L

0

Infn�1g

i

�

= L

0

Inf1g

:

By a similar argument, �(L

Infng

) = L

0

Infng

. Therefore � extends to an isomorphism from A to A

0

.

Indeed, � is already de�ned on all L

Infi;jg

with 2 � i < j � n � 1. Also, inside the standard Phan

amalgam of H

0

1

we see that �(L

Inf1;ig

) = L

0

Inf1;ig

for i < n, sine L

Inf1;ig

= hL

Inf1g

; L

Infig

i. Similarly,

in the standard Phan amalgam of H

0

2

we see that �(L

Infi;ng

) = L

0

Infi;ng

for 1 < i. It remains to realize

that L

Inf1;ng

is the diret produt of L

Inf1g

and L

Infng

, so that � extends to an isomorphism of A to A

0

.

Thus we have shown:

Proposition 5.4 Let n � 4, and let A be a strongly nonollapsing unambiguous irreduible Phan amal-

gam of rank n. Then A is unique up to isomorphism, i.e., A is isomorphi to a standard Phan amalgam.

2
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Proof of the Main Theorem. The weak Phan system of G gives rise to a strongly nonollapsing Phan

amalgam A, whih by Proposition 4.6 is overed by a unique strongly nonollapsing unambiguous Phan

amalgam

b

A. This strongly nonollapsing unambiguous Phan amalgam

b

A is isomorphi to a standard

Phan amalgam by Propositions 5.2 and 5.4 applied to the irreduible omponents of � of rank at least

three and by De�nition 4.4 applied to the irreduible omponents of � of rank at most two. Finally, the

�rst laim follows by Theorem 3.1. The seond laim follows immediately from the �rst laim by the

lassi�ation of irreduible Dynkin diagrams, see [6℄, and by [21℄ or by 94.33 of [31℄. 2

6 Open problem

Let G

C

be a simply onneted omplex semisimple Lie group and let G be its split real form. Then,

by the Iwasawa deomposition (see Theorem VI.5.1 of [21℄ or Theorem III.6.32 of [22℄), the maximal

ompat subgroup K of G ats ag-transitively on the building geometrry of G. Our proof of Theorem

3.1 implies that G equals the universal ompletion of ertain split real forms of omplex Lie groups of

rank one and two.

The question is whether it is possible to lassify the ouring amalgams in order to obtain a result

like our Main Theorem.
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