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Abstra
t

For n � 2 let � be a Dynkin diagram of rank n and let I = f1; : : : ; ng be the set of labels of

�. A group G admits a weak Phan system of type � over C if G is generated by subgroups U

i

,

i 2 I, whi
h are 
entral quotients of simply 
onne
ted 
ompa
t semisimple Lie groups of rank one,

and 
ontains subgroups U

i;j

= hU

i

; U

j

i, i 6= j 2 I, whi
h are 
entral quotients of simply 
onne
ted


ompa
t semisimple Lie groups of rank two su
h that U

i

and U

j

are rank one subgroups of U

i;j


orresponding to a 
hoi
e of a maximal torus and a fundamental system of roots for U

i;j

. It is shown

in this arti
le that G then is a 
entral quotient of the simply 
onne
ted 
ompa
t semisimple Lie group

whose 
omplexi�
ation is the simply 
onne
ted 
omplex semisimple Lie group of type �.

1 Introdu
tion

In 1977 Kok-Wee Phan [27℄ gave a method for identifying a group G as a quotient of the �nite unitary

group SU

n+1

(q

2

) by �nding a generating 
on�guration of subgroups

SU

3

(q

2

) and SU

2

(q

2

)� SU

2

(q

2

)

in G. We begin by looking at the 
on�guration of subgroups in SU

n+1

(q

2

) to motivate our later de�nition.

Suppose n � 2 and suppose q is a prime power. Consider G = SU

n+1

(q

2

) a
ting as matri
es on a

Hermitian (n + 1)-dimensional ve
tor spa
e over F

q

2

with respe
t to an orthonormal basis and let U

i

�

=

SU

2

(q

2

), i = 1; 2; : : : ; n, be the subgroups of G, represented as matrix groups with respe
t to the 
hosen

orthonormal basis, 
orresponding to the (2� 2)-blo
ks along the main diagonal. Let T

i

be the diagonal

subgroup in U

i

, whi
h is a maximal torus of U

i

of size q+1. When q 6= 2 the following hold for 1 � i; j � n:

(P1) if ji� jj > 1, then [x; y℄ = 1 for all x 2 U

i

and y 2 U

j

;

(P2) if ji� jj = 1, then hU

i

; U

j

i is isomorphi
 to SU

3

(q

2

); moreover [x; y℄ = 1 for all x 2 T

i

and y 2 T

j

;

and

(P3) the subgroups U

i

, 1 � i � n, generate G.

Suppose now G is an arbitrary group 
ontaining a system of subgroups U

i

�

=

SU

2

(q

2

), and suppose a

maximal torus T

i

of size q+1 is 
hosen in ea
h U

i

. If the 
onditions (P1){(P3) above hold for G, we will

say that G 
ontains a Phan system of type A

n

over F

q

2

. As
hba
her 
alled this 
on�guration a generating

system of type I in [1℄.

In [27℄ Kok-Wee Phan proved the following result:
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Phan's Theorem:

Let q � 5 and let n � 3. If G 
ontains a Phan system of type A

n

over F

q

2

, then G is isomorphi
 to a


entral quotient of SU

n+1

(q

2

).

In [28℄ Phan proved similar results for �nite groups 
orresponding to all simply la
ed Dynkin diagrams.

For the se
ond-generation proof of the 
lassi�
ation of the �nite simple groups [11℄, [12℄, [13℄, [14℄, [15℄ the

question was raised whether one 
ould generalize and unify Phan's results. After a number of partially

su

essful attempts by several people of reproving Phan's theorems (see, e.g., [9℄), the program des
ribed

in [2℄ led to new proofs of some of Phan's old results, see [3℄, [19℄, and to new unexpe
ted Phan-type

theorems, see [16℄, [17℄.

The purpose of the present arti
le is to apply the methods from the program [2℄, whi
h have originally

been developed for �nite groups, to 
ompa
t Lie groups, yielding a generalization of a result by Borovoi

[4℄ on generators and relations in 
ompa
t Lie groups. The methods and ideas used in this paper have

been adopted from [3℄, [17℄, [18℄.

To be able to properly state the result, we have to �x the setting and to de�ne some notions. Let G be

a simply 
onne
ted 
ompa
t semisimple Lie group of rank two, i.e., G is isomorphi
 to SU

2

(C ) � SU

2

(C )

or SU

3

(C ) or Spin

5

(R)

�

=

U

2

(H ) or G

2;�14

by [21℄, see also 94.33 of [31℄. Let T be a maximal torus of

G, let � = �(G

C

; T

C

) be its root system, and let f�; �g be a fundamental system of roots of �, 
f. [5℄ or

[24℄. To the simple roots �, � 
orresponds a pair of semisimple subgroups G

�

and G

�

of G normalized by

T and isomorphi
 to SU

2

(C )

�

=

Spin

3

(R)

�

=

U

1

(H ), whi
h is 
alled a standard pair of G. If � and � have

di�erent length, then the standard pair (G

�

; G

�

) is not 
onjugate to the standard pair (G

�

; G

�

), so, by


onvention, we assume that in a standard pair (G

�

; G

�

) the root � is shorter than the root � if they have

di�erent lengths. A standard pair in a 
entral quotient of G is de�ned as the image of a standard pair of

G under the natural homomorphism. Note that the images of a standard pair in the quotient have the

same isomorphism types as in G modulo some 
entral subgroups.

Moreover, for n � 2 let � be a Dynkin diagram of rank n (see [6℄ for a 
omplete list) and let

I = f1; : : : ; ng be the set of labels of �. A group G admits a weak Phan system of type � over C if G is

generated by subgroups U

i

, i 2 I , whi
h are 
entral quotients of simply 
onne
ted 
ompa
t semisimple

Lie groups of rank one, and 
ontains subgroups U

i;j

= hU

i

; U

j

i, i 6= j 2 I , whi
h are 
entral quotients

of simply 
onne
ted 
ompa
t semisimple Lie groups of rank two su
h that (U

i

; U

j

) or (U

j

; U

i

) forms a

standard pair in U

i;j

. In parti
ular the groups U

i

and U

i;j

have the following isomorphism types:

(1) U

i

�

=

SU

2

(C ) or U

i

�

=

SO

3

(R) for all 1 � i � n;

(2) hU

i

; U

j

i

�

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(U

i

� U

j

)=Z; in 
ase

i

Æ

j

Æ, where Z is a 
entral subgroup of U

i

� U

j

,

SU

3

(C ) or PSU

3

(C ); in 
ase

i

Æ

j

Æ,

U

2

(H ) or SO

5

(R); in 
ase

i

Æ

<

j

Æ or

i

Æ

>

j

Æ,

G

2;�14

; in 
ase

i

Æ

<

j

Æ or

i

Æ

>

j

Æ.

Main Theorem.

Let � be a Dynkin diagram and let G be a group admitting a weak Phan system of type � over C . Then G

is a 
entral quotient of the simply 
onne
ted 
ompa
t semisimple Lie group whose 
omplexi�
ation is the

simply 
onne
ted 
omplex semisimple Lie group of type �. In parti
ular, for irredu
ible Dynkin diagrams,

the group G is a 
entral quotient of
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� SU

n+1

(C ), if � = A

n

,

� Spin

2n+1

(R), if � = B

n

,

� U

n

(H ), if � = C

n

,

� Spin

2n

(R), if � = D

n

,

� E

6;�78

, if � = E

6

,

� E

7;�133

, if � = E

7

,

� E

8;�248

, if � = E

8

,

� F

4;�52

, if � = F

4

.

While the theorem is true for all Dynkin diagrams, it is a tautology for Dynkin diagrams of rank at

most two. In parti
ular, the theorem does not yield an interesting 
hara
terization of the group G

2;�14

.

This arti
le is organized as follows. In Se
tion 2 we remind the reader of the de�nition of a geometry

and an amalgam and state some important lemmas. In Se
tion 3 we re
all the result by Borovoi [4℄ and

give an alternative proof using geometri
 
overing theory. In Se
tion 4 we study Phan systems and Phan

amalgams, indi
ate how to pass from one 
on
ept to the other and, moreover, prove a result on uniqueness

of 
overs of Phan amalgams. In Se
tion 5, �nally, we 
lassify the unique 
overs of Phan amalgams from

Se
tion 4 and prove the Main Theorem. In Se
tion 6 we point out a question for further resear
h.

A
knowledgement: The author would like to express his gratitude to Karl Heinri
h Hofmann for

o�ering a thorough overview over the area of 
ompa
t Lie groups, for several insightful dis
ussions and

for guiding the author via e-mail through the library of the Institute at Oberwolfa
h. Thanks are also due

to Linus Kramer and Karl-Hermann Neeb for help and information and additional literature. Moreover,

the author would like to thank Christoph M�uller, Helge Gl�o
kner, Linus Kramer, and Karl-Hermann

Neeb for proof-reading the paper. Finally, the author would like to point out that without the fruitful

intera
tion in the Seminar Sophus Lie of the fun
tional analysis group at the TU Darmstadt, the author

would never have thought of applying his results from �nite group theory to 
ompa
t Lie groups.

2 Geometries, amalgams and some lemmas

In this se
tion we 
olle
t relevant de�nitions and results from in
iden
e geometry and the theory of

amalgams. See [20℄ for a short introdu
tion to the topi
. A thorough introdu
tion to in
iden
e geometry


an be found in [8℄.

Geometries

De�nition 2.1 A pregeometry G over the set I is a triple (X; �; typ) 
onsisting of a set X , a sym-

metri
 and re
exive in
iden
e relation �, and a surje
tive type fun
tion typ : X ! I , subje
t to the

following 
ondition:

(Pre) If x � y with typ(x) = typ(y), then x = y.
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The set I is usually 
alled the type set. A 
ag in X is a set of pairwise in
ident elements. The type

of a 
ag F is the set typ(F ) := ftyp(x) : x 2 Fg. A 
hamber is a 
ag of type I . The rank of a 
ag

F is jtyp(F )j and the 
orank is equal to jI n typ(F )j. The 
ardinality of I is 
alled the rank of G. The

pregeometry G is 
onne
ted if the graph (X; �) is 
onne
ted.

A geometry is a pregeometry with the additional property that

(Geo) every 
ag is 
ontained in a 
hamber.

Let G = (X; �; typ) be a pregeometry over I . An automorphism of G is a permutation � of X with

typ(�(x)) = typ(x), for all x 2 X , and with �(x) ��(y) if and only if x � y, for all x; y 2 X . A group G of

automorphisms of G is 
alled 
ag-transitive if for ea
h pair F , F

0

of 
ags of G with typ(F ) = typ(F

0

)

there exists a g 2 G with g(F ) = F

0

. A group G of automorphisms of G is 
alled 
hamber-transitive

if for ea
h pair F , F

0

of 
ags of G with typ(F ) = I = typ(F

0

) there exists a g 2 G with g(F ) = F

0

.

Flag-transitivity implies 
hamber-transitivity, for a geometry 
ag-transitivity and 
hamber-transitivity


oin
ide, and a 
ag-transitive pregeometry 
ontaining a 
hamber automati
ally is a geometry, 
f. [8℄.

Let F be a 
ag of G, say of type J � I . Then the residue G

F

of F is the pregeometry

(X

0

; �

jX

0

�X

0
; typ

jInJ

)

over InJ , with

X

0

:= fx 2 X : F [ fxg is a 
ag of G and typ(x) =2 typ(F )g:

De�nition 2.2 Let G and

b

G be 
onne
ted geometries over the same type set and let � :

b

G ! G be

a homomorphism of geometries, i.e., � preserves the types and sends in
ident elements to in
ident

elements. A surje
tive homomorphism � between 
onne
ted geometries

b

G and G is 
alled a 
overing if

and only if for every nonempty 
ag

b

F in

b

G the map � indu
es an isomorphism between the residue of

b

F in

b

G and the residue of F = �(

b

F ) in G. Coverings of a geometry 
orrespond to the usual topologi
al


overings of the 
ag 
omplex. If � is an isomorphism, then the 
overing is said to be trivial. A 
onne
ted

geometry G is 
alled simply 
onne
ted if any 
overing

b

G ! G of that geometry is trivial.

De�nition 2.3 Let I be a set, let G be a group and let (G

i

)

i2I

be a family of subgroups of G. Then

(t

i2I

G=G

i

; �; typ) with typ(G

i

) = i and

(Cos) gG

i

� hG

j

if and only if gG

i

\ hG

j

6= ;

is a pregeometry over I , the 
oset pregeometry of G with respe
t to (G

i

)

i2I

. Sin
e the type fun
tion is


ompletely determined by the indi
es, we also denote the 
oset pregeometry of G with respe
t to (G

i

)

i2I

by

((G=G

i

)

i2I

; �):

The family (G

i

)

i2I

forms a 
hamber. A 
oset pregeometry that is a geometry is 
alled a 
oset geometry.

De�nition 2.4 A building geometry is a 
oset geometry ((G=G

i

)

i2I

; �) where G is a Chevalley group,

I is the set of labels of the 
orresponding Dynkin diagram and (G

i

)

i2I

is the 
olle
tion of the maximal

paraboli
 subgroups of G, 
f. [36℄ or [37℄. The 
on
ept of building geometries is equivalent to the 
on
ept

of Tits buildings, see [7℄ or [8℄.
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By Theorem IV.5.2 of [7℄ or by Theorem 13.32 of [37℄, a building geometry of rank at least three is

simply 
onne
ted. In the present paper, we are interested in building geometries 
oming from simply 
on-

ne
ted 
omplex semisimple Lie groups. For example, the building geometry of the group SL

n+1

(C ) is iso-

morphi
 to the 
omplex proje
tive geometry P(C

n+1

). The building geometries of the groups Spin

2n+1

(C ),

Sp

2n

(C ), Spin

2n

(C ) are isomorphi
 to the respe
tive polar geometries, i.e., the in
iden
e geometries of the

totally isotropi
 subspa
es of nondegenerate symmetri
 bilinear, respe
tively alternating bilinear forms

of Witt index n over C .

Amalgams

De�nition 2.5 An amalgam A of groups is a set with a partial operation of multipli
ation and a


olle
tion of subsets (H

i

)

i2I

, for some index set I , su
h that the following 
onditions hold:

(1) A =

S

i2I

H

i

;

(2) the produ
t ab is de�ned if and only if a; b 2 H

i

for some i 2 I ;

(3) the restri
tion of the multipli
ation to ea
h H

i

turns H

i

into a group; and

(4) H

i

\H

j

is a subgroup in both H

i

and H

j

for all i; j 2 I .

It follows that the groups H

i

share the same identity element, whi
h is then the only identity element

in A, and that a

�1

2 A is well-de�ned for every a 2 A. Noti
e that the above de�nition of an amalgam

of groups �ts well into the general 
on
ept of an amalgam of groups, see [35℄.

An amalgam B =

S

i2I

H

i

is a quotient of the amalgam A =

S

i2I

G

i

if there is a homomorphism �

from A to B su
h that the restri
tion of � to every G

i

maps G

i

onto H

i

. The amalgam A together with

the homomorphism � is 
alled a 
over of the amalgam B. Two 
overs (A

1

; �

1

) and (A

2

; �

2

) of A are


alled equivalent if there is an isomorphism � of A

1

onto A

2

, su
h that �

1

= �

2

Æ �.

De�nition 2.6 A group H is 
alled a 
ompletion of an amalgam A if there exists a map � : A ! H

su
h that

(1) for all i 2 I the restri
tion of � to H

i

is a homomorphism of H

i

to H ; and

(2) �(A) generates H .

Among all 
ompletions of A there is a largest one whi
h 
an be de�ned as the group having the

following presentation:

U(A) = ht

h

j h 2 A; t

x

t

y

= t

z

; whenever xy = z in Ai:

Obviously, U(A) is a 
ompletion of A sin
e one 
an take � to be the mapping h 7! t

h

. Every 
ompletion

of A is isomorphi
 to a quotient of U(A), and be
ause of that U(A) is 
alled the universal 
ompletion.

An amalgam A 
ollapses if U(A) = 1.

Example 2.7 Consider the groups

G

1

= hy; z j y

�1

zy = z

2

i;

G

2

= hz; x j z

�1

xz = x

2

i;

G

3

= hx; y j x

�1

yx = y

2

i;
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whi
h are nontrivial and pairwise isomorphi
. Let A be the amalgam given by G

1

, G

2

, G

3

and the

interse
tions

G

1

\G

2

= hzi

�

=

Z;

G

1

\G

3

= hyi

�

=

Z;

G

2

\G

3

= hxi

�

=

Z:

Then U(A) = 1 by Exer
ises 2.2.7 and 2.2.10 of [29℄, so A 
ollapses.

hzi

//

  A
AA

AA
AA

A
G

1

1

??��������
//

��>
>>

>>
>>

> hyi

>>}}}}}}}}

  A
AA

AA
AA

A
G

2

hxi

>>}}}}}}}}
//
G

3

Some lemmas

Lemma 2.8 (Tits' Lemma) Let G be a 
onne
ted geometry over I of rank at least three, let G be a


ag-transitive group of automorphisms of G, and let F be a maximal 
ag of G. Let A(G; G; F ) be the

amalgam of stabilizers in G of the elements of F . The geometry G is simply 
onne
ted if and only if the


anoni
al epimorphism U(A(G; G; F )) ! G is an isomorphism.

Proof. See Corollary 1.4.6 of [20℄ or Corollary 1 of [38℄. 2

De�nition 2.9 Let A = P

1

[ P

2

and A

0

= P

0

1

[ P

0

2

be amalgams of rank two. The amalgams A and

A

0

are of the same type if there exist isomorphisms �

i

: P

i

! P

0

i

su
h that �

i

(P

1

\ P

2

) = P

0

1

\ P

0

2

for

i = 1; 2.

Lemma 2.10 (Golds
hmidt's Lemma) Let A = (P

1

; P

2

; P

1

\ P

2

) be an amalgam of rank two, let

A

i

= Stab

Aut (P

i

)

(P

1

\P

2

) for i = 1; 2, and let �

i

: A

i

! Aut (P

1

\P

2

) be homomorphisms mapping a 2 A

i

onto its restri
tion to P

1

\P

2

. Then there is a one-to-one 
orresponden
e between isomorphism 
lasses of

amalgams of the same type as A and �

2

(A

2

)-�

1

(A

1

) double 
osets in Aut (P

1

\P

2

). In other words, there

is a one-to-one 
orresponden
e between the di�erent isomorphism types of amalgams P

1

 - (P

1

\P

2

) ,! P

2

and the double 
osets �

2

(A

2

)nAut (P

1

\ P

2

)=�

2

(A

1

).

Proof. See Lemma 2.7 of [10℄ or Proposition 8.3.2 of [20℄. 2

De�nition 2.11 Let A = (H

i

)

i2I

be an amalgam. A 
ompletion G of A is 
alled 
hara
teristi
 if and

only if every automorphism of A extends to an automorphism of G.

Noti
e that, sin
e G is generated by the image of A under the 
orresponding 
ompletion map, this

extension of an automorphism is unique. Clearly, the universal 
ompletion is always 
hara
teristi
 as is

the trivial 
ompletion.
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Lemma 2.12 (Bennett-Shpe
torov Lemma) For i = 1; 2, let A

i

be an amalgam and let G

i

be a


ompletion of A

i

with 
ompletion map �

i

. Suppose there exist isomorphisms  : A

1

! A

2

and � : G

1

!

G

2

su
h that � Æ �

1

= �

2

Æ  . If G

1

is a 
hara
teristi
 
ompletion of A

1

, then for any isomorphism

 

0

: A

1

! A

2

there exists a unique isomorphism �

0

: G

1

! G

2

su
h that �

0

Æ �

1

= �

2

Æ  

0

.

A

1

�

1 //

 

��
 

0

		

G

1

�

��
�

0

		
A

2

�

2 //
G

2

Proof. See Lemma 6.4 of [3℄. 2

3 Generators and relations

Let us re
all here the results by Borovoi [4℄. Let G be a simply 
onne
ted 
ompa
t semisimple Lie group,

let T be a maximal torus of G, let � = �(G

C

; T

C

) be its root system, and let � be a system of fundamental

roots of �. To ea
h root � 2 � 
orresponds some semisimple group G

�

� G of rank one su
h that T

normalizes G

�

. For simple roots �, �, we denote by G

��

the group generated by the groups G

�

and G

�

,

and by �

��

its root system relative to the torus T

��

= T \G

��

. The group G

��

is a semisimple group

of rank two and f�; �g is a fundamental system of �

��

.

Then the following assertion holds:

Theorem 3.1 (Theorem of Borovoi [4℄) Let G be a simply 
onne
ted 
ompa
t semisimple Lie group,

let T be a maximal torus of G, let � = �(G

C

; T

C

) be its root system, and let � be a system of fundamental

roots of �. Then the natural epimorphism U(A) ! G is an isomorphism where A = (G

��

)

�;�2�

is the

amalgam of rank one and rank two subgroups of G.

Borovoi's proof 
onsists of 
omputations of redu
ed words in the group U(A) given by generators

and relations. Using the theory of Tits buildings and geometri
 
overing theory one gets the following

alternative proof:

Geometri
 proof of Theorem 3.1. For rank at most two there is nothing to show, so we 
an assume

that the rank is at least three. By the Iwasawa de
omposition (see Theorem VI.5.1 of [21℄ or Theorem

III.6.32 of [22℄) the group G a
ts 
hamber-transitively on the building geometry G of type � 
orresponding

to G

C

. Let F be a 
hamber of G stabilized by the torus T of G, so that the stabilizers of sub
ags of


orank one and two of F with respe
t to the natural a
tion of G on G are exa
tly the groups G

�

T and

G

��

T . By the simple 
onne
tedness of building geometries of rank at least three (
f. Theorem IV.5.2 of

[7℄ or Theorem 13.32 of [37℄) plus Tits' Lemma (Lemma 2.8) the group G equals the universal 
ompletion

of the amalgam (G

��

T )

�;�2�

. Finally, by Lemma 29.3 of [12℄ (or by a redu
tion argument as in the proof

of Theorem 2 of [16℄ or in the proof of Theorem 4.3.6 of [18℄) the torus T 
an be re
onstru
ted from the

rank two tori T

��

, �; � 2 �, and so the group G a
tually equals the universal 
ompletion of the amalgam

(G

��

)

�;�2�

. 2

Proposition 3.2 Let n � 2 and let G be a simply 
onne
ted 
ompa
t semisimple Lie group. Then the

group G is a 
hara
teristi
 
ompletion of the amalgam (G

��

)

��2�

of rank one and rank two subgroups.
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Proof. By Theorem 3.1 the group G is the universal 
ompletion of the amalgam (G

��

)

��2�

. Therefore

any automorphism of the amalgam extends to G, making G a 
hara
teristi
 
ompletion. 2

A result similar to Theorem 3.1 has been proved by Satarov [32℄ for spe
ial unitary groups over

quadrati
 extensions of real 
losed �elds. This 
ase has already been 
overed by Borovoi's remark after

his Theorem in [4℄. Here, too, the group a
ts 
hamber-transitively on the building geometry, so our proof

above applies as well.

4 Phan systems and Phan amalgams

De�nition 4.1 Let G be a simply 
onne
ted 
ompa
t semisimple Lie group of rank two, i.e., G is

isomorphi
 to SU

2

(C ) � SU

2

(C ) or SU

3

(C ) or Spin

5

(R)

�

=

U

2

(H ) or G

2;�14

by [21℄, see also 94.33 of [31℄.

Let T be a maximal torus of G, let � = �(G

C

; T

C

) be its root system, and let f�; �g be a fundamental

root system of �. To the simple roots �, � 
orresponds a pair of semisimple subgroups G

�

and G

�

of

G normalized by T and isomorphi
 to SU

2

(C )

�

=

Spin

3

(R)

�

=

U

1

(H ) 
alled a standard pair of G. If

� and � have di�erent length, then the standard pair (G

�

; G

�

) is not 
onjugate to the standard pair

(G

�

; G

�

), so when speaking of a standard pair (G

�

; G

�

), we assume � to be shorter than � if the roots

have di�erent lengths.

A standard pair in a 
entral quotient of G is de�ned as the image of a standard pair of G under

the natural homomorphism. Note that the images of a standard pair in the quotient are isomorphi
 to

SU

2

(C ) or to SO

3

(R).

Lemma 4.2 Standard pairs are 
onjugate.

Proof. This follows immediately from the fa
t that maximal tori are 
onjugate, 
f. Theorem 6.25 of

[24℄, and the fa
t that, if �; � 2 � and �

1

; �

1

2 � have the same lengths and the same angle, there exists

an element w of the Weyl group with w(�

1

) = � and w(�

1

) = �, 
f. [6℄. 2

De�nition 4.3 Let n � 2, let � be a Dynkin diagram of rank n (see [6℄ for a 
omplete list) and let

I = f1; : : : ; ng be the set of labels of �. A group G admits a weak Phan system of type � over

C if G is generated by subgroups U

i

�

=

SU

2

(C ) or U

i

�

=

SO

3

(R), i 2 I , whi
h are 
entral quotients of

simply 
onne
ted 
ompa
t semisimple Lie groups of rank one, and 
ontains subgroups U

i;j

= hU

i

; U

j

i,

i 6= j 2 I , whi
h are 
entral quotients of simply 
onne
ted 
ompa
t semisimple Lie groups of rank two

su
h that (U

i

; U

j

) or (U

j

; U

i

) forms a standard pair in U

i;j

. In parti
ular, any U

i;j

is isomorphi
 to a


entral quotient of SU

2

(C )�SU

2

(C ) or to SU

3

(C ) or PSU

3

(C ) or U

2

(H )

�

=

Spin

5

(R) or SO

5

(R) or G

2;�14

depending on the subdiagram of � indu
ed on i and j.

The paramount examples for groups with a weak Phan system are the simply 
onne
ted 
ompa
t

semisimple Lie groups together with the amalgam (G

��

)

��2�

of rank one and rank two subgroups. Any


entral quotient of su
h a group of rank at least two also admits a weak Phan system.

De�nition 4.4 A Phan amalgam is an amalgam A = (L

��

)

�;�2�

, where L

��

is a group isomorphi


to a 
entral quotient of G

��

where it is required that L

�

and L

�

are the images of G

�

, respe
tively

G

�

under the natural epimorphism from G

��

onto L

��

. A Phan amalgam is 
alled irredu
ible if it is

obtained from the natural amalgam (G

��

)

�;�2�

of a simply 
onne
ted 
ompa
t almost simple Lie group,

i.e., if the Dynkin diagram of that group is 
onne
ted or, equivalently, if the 
orresponding root system is
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irredu
ible, 
f. [6℄. A 
omplete list of the 
ompa
t almost simple Lie groups 
an be found in [21℄ or [31℄.

A Phan amalgam is 
alled strongly non
ollapsing if there exists a 
ompletion � : A ! G su
h that

the kernel of the restri
tion �

jL

�

i

is 
entral for ea
h i 2 I . The rank of a Phan amalgam is de�ned to be

the rank of the 
orresponding fundamental system �. The amalgam (G

��

)

�;�2�

is 
alled a standard

Phan amalgam.

If a group G 
ontains a weak Phan system U

1

; : : : ; U

n

, then A = (U

i;j

)

i;j2I

is a strongly non
ollapsing

Phan amalgam. The 
onverse is also true: a Phan amalgam admitting a faithful 
ompletion G turns the

group G into a group with a weak Phan system of the respe
tive type.

De�nition 4.5 A Phan amalgam (L

��

)

�;�2�

is 
alled unambiguous if every L

��

is isomorphi
 to the


orresponding G

��

.

Proposition 4.6 Every Phan amalgam A has an unambiguous 
overing

b

A that is unique up to equiv-

alen
e of 
overings. Furthermore, every (strongly) non
ollapsing Phan amalgam A has a unique (up to

equivalen
e of 
overings) unambiguous (strongly) non
ollapsing 
overing

b

A.

Proof. We will pro
eed by indu
tion on jSj, where S is a subset of

�

�

1

�

[

�

�

2

�

whi
h is 
losed under

taking subsets and A = (L

J

)

J2S

. Our basis is the 
ase S = ; whi
h va
uously yields an unambiguous

amalgam. Suppose now that S is non-empty, and that for every subset S

0

( S the 
laim holds. Let J be

an element of S whi
h is maximal with respe
t to in
lusion and de�ne S

0

= S n fJg and A

0

= (L

J

0

)

J

0

2S

0

.

Then S

0

is 
losed under taking subsets, and A

0

is a subamalgam in A.

By the indu
tive assumption, there is a unique unambiguous 
overing amalgam (

b

A

0

= (

b

L

J

0

)

J

0

2S

0

; �

0

)

of A

0

. We will �nd an unambiguous 
overing (

b

A; �) of A by gluing a 
opy of G

J

to

b

A

0

and by extending �

0

to the new member of the amalgam. To glue G

J

to the amalgam

b

A

0

, we need to 
onstru
t an isomorphism

from the subamalgam

b

L = (

b

L

J

0

)

J

0

(J

of

b

A

0

onto the 
orresponding amalgam G = (G

J

0

)

J

0

(J

of subgroups

of G

J

. By the de�nition of a Phan amalgam, there is a homomorphism  from G

J

onto L

J

mapping G

onto L = (L

J

0

)

J

0

(J

. Note that (

b

L; �

0

j

b

L

) and (G;  j

G

) are two unambiguous 
overings of L. By indu
tion,

the uniqueness of the unambiguous 
overing holds so that there is an amalgam isomorphism � from

b

L

onto G su
h that  Æ � = �

0

j

b

L

. Clearly, � tells us how to glue G

J

to

b

A

0

to produ
e

b

A and, furthermore,

as � we 
an take the union of  and �

0

. The 
ondition  Æ � = �

0

j

b

L

guarantees that  and �

0

agree

on the interse
tion

b

L

�

�

=

G. Finally, noti
e that

b

A is an unambiguous Phan amalgam, so (

b

A; �) is an

unambiguous 
overing of A. This 
ompletes the proof of the existen
e of an unambiguous 
overing

b

A.

Now we will prove the uniqueness. Suppose we have two su
h 
overings

b

B = (B

J

)

J2S

and

b

C = (C

J

)

J2S

with 
orresponding amalgam homomorphism �

1

and �

2

onto A. Sele
t J as an element of S whi
h is

maximal with respe
t to in
lusion, and de�ne S

0

= S n fJg. Let A

0

,

b

B

0

and

b

C

0

be the subamalgams of

shape S

0

in A,

b

B and

b

C, respe
tively. By indu
tion, there exists an isomorphism � from

b

B

0

onto

b

C

0

su
h

that �

1

j

b

B

0

= �

2

Æ �. It suÆ
es to extend � to B

J

.

We have to deal with two 
ases: First, let us assume that J = f�; �g where � and � are orthogonal

roots. In this 
ase, B

��

�

=

C

��

�

=

G

��

is isomorphi
 to a dire
t produ
t of B

�

�

=

C

�

�

=

G

�

and

B

�

�

=

C

�

�

=

G

�

. Clearly � is already known on B

�

and B

�

, and so � extends uniquely to B

��

.

This extension, also denoted �, is a well-de�ned amalgam isomorphism from B to C, and furthermore,

�

1

= �

2

Æ � holds.

In the se
ond 
ase, B

J

�

=

C

J

�

=

G

J

is isomorphi
 to a simply 
onne
ted 
ompa
t almost simple Lie

group of rank one or two. By the universality of the 
overing �

1

: B

J

! L

J

, as B

J

is simply 
onne
ted,
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there exists a unique isomorphism  : B

J

! C

J

su
h that �

1

= �

2

Æ  .

C

J

�

2

!!B
BB

BB
BB

B
B

J

�

1

��

 

oo

L

J

Consider a mapping � from L

J

to L

J

de�ned as follows: For u 2 L

J

, let �(u) = (�

2

Æ Æ�

�1

1

)(u). Noti
e

that � is a well-de�ned automorphism of L

J

, be
ause the 
osets of the kernel of �

1

are mapped by  

to 
osets of the kernel of �

2

. Every automorphism of L

J

lifts to a unique automorphism of C

J

. Indeed,

both L

J

and C

J

are perfe
t by a 
orollary of Gotô's Commutator Theorem (see Corollary 6.56 of [24℄)

and, by Theorem 2.1 of [30℄, the group C

J

, whi
h is isomorphi
 to SU

2

(C )

�

=

Spin

3

(R)

�

=

U

1

(H ) or to

SU

3

(C ) or to Spin

5

(R)

�

=

U

2

(H ), is the universal perfe
t 
entral extension of L

J

, 
f. [25℄ or [33℄, [34℄.

Alternatively, one 
an argue as follows: Every automorphism of L

J

is 
ontinuous by Corollary 6.56 of [24℄

and van der Waerden's Continuity Theorem (
f. Theorem 5.64 of [24℄), whi
h lifts to a unique 
ontinuous

automorphism of C

J

by [26℄, see also [23℄. Finally, this lift in fa
t is the unique abstra
t lift of �, as any

automorphism of C

J

again is 
ontinuous.

Thus, there is a unique automorphism � of C

J

su
h that �

2

Æ� = � Æ�

2

. De�ne � : B

J

! C

J

: �(b) =

(�

�1

Æ  )(b). First of all, by de�nition we have �

1

j

B

J

= �

2

Æ �, as

�

2

Æ � = �

2

Æ �

�1

Æ  

= �

�1

Æ �

2

Æ  

= �

1

j

B

J

Æ  

�1

Æ �

�1

2

j

L

J

Æ �

2

Æ  

= �

1

j

B

J

:

Se
ond, for every J

0

� J we have that �

�1

Æ �

jB

J

0

is a lifting to B

J

0

of the identity automorphism of L

J

0

and, by the above, it is the identity. For �

�1

Æ �

jB

J

0

=  

�1

Æ � Æ �

jB

J

0

and, the following 
onsidered on

B

J

0

= ker(�

1

jB

J

0

),

 

�1

Æ �

2

�1

jC

J

0

Æ � Æ �

2

Æ �

jB

J

0

=  

�1

Æ �

2

�1

jC

J

0

Æ �

2

Æ  Æ �

1

�1

jB

J

0

Æ �

2

Æ �

jB

J

0

= �

1

�1

jB

J

0

Æ �

2

Æ �

jB

J

0

= id:

This shows that � and � agree on every subgroup B

J

0

, whi
h allows us to extend � to the entire

b

B by

de�ning it on B

J

as �. Finally, if A is (strongly) non
ollapsing, so is its unambiguous 
overing

b

A, �nishing

the proof. 2

5 Uniqueness of unambiguous amalgams

Let A = (L

Infi;jg

)

(i;j)2I

be an unambiguous strongly non
ollapsing irredu
ible Phan amalgam of rank at

least two. We will establish the uniqueness of the respe
tive amalgams A up to isomorphism in a series

of lemmas. The amalgams of rank two are unique by de�nition.
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Rank three

Assume the rank of A to be three. Sin
e A is unambiguous, ea
h subgroup L

Infig


oin
ides with L

Infi;jg

\

L

Infi;kg

for fi; j; kg = f1; 2; 3g. We want to prove the uniqueness of the amalgam A = (L

Infi;jg

)

i;j2f1;2;3g

.

For A

3

, i.e., for the diagram

L

Inf1g

Æ

L

Inf2g

Æ

L

Inf3g

Æ , re
all the isomorphisms

L

Inf2;3g

�

=

SU

3

(C );

L

Inf1;3g

�

=

SU

2

(C ) � SU

2

(C );

L

Inf1;2g

�

=

SU

3

(C );

L

Inf3g

= L

Inf2;3g

\ L

Inf1;3g

�

=

SU

2

(C );

L

Inf2g

= L

Inf2;3g

\ L

Inf1;2g

�

=

SU

2

(C );

L

Inf1g

= L

Inf1;3g

\ L

Inf1;2g

�

=

SU

2

(C ):

For B

3

, i.e., for the diagram

L

Inf1g

Æ

L

Inf2g

Æ

>

L

Inf3g

Æ , re
all the isomorphisms

L

Inf2;3g

�

=

Spin

5

(R);

L

Inf1;3g

�

=

SU

2

(C ) � Spin

3

(R);

L

Inf1;2g

�

=

SU

3

(C );

L

Inf3g

= L

Inf2;3g

\ L

Inf1;3g

�

=

Spin

3

(R);

L

Inf2g

= L

Inf2;3g

\ L

Inf1;2g

�

=

SU

2

(C );

L

Inf1g

= L

Inf1;3g

\ L

Inf1;2g

�

=

SU

2

(C ):

For C

3

, i.e., for the diagram

L

Inf1g

Æ

L

Inf2g

Æ

<

L

Inf3g

Æ , re
all the isomorphisms

L

Inf2;3g

�

=

U

2

(H );

L

Inf1;3g

�

=

SU

2

(C ) �U

1

(H );

L

Inf1;2g

�

=

SU

3

(C );

L

Inf3g

= L

Inf2;3g

\ L

Inf1;3g

�

=

U

1

(H );

L

Inf2g

= L

Inf2;3g

\ L

Inf1;2g

�

=

SU

2

(C );

L

Inf1g

= L

Inf1;3g

\ L

Inf1;2g

�

=

SU

2

(C ):

Assume there exists another amalgam A

0

= (L

0

Infi;jg

)

i;j2f1;2;3g

. A

ording to Golds
hmidt's Lemma

(Lemma 2.10) the amalgams B = (L

Inf2;3g

; L

Inf1;2g

; L

Inf2g

) and B

0

= (L

0

Inf2;3g

; L

0

Inf1;2g

; L

0

Inf2g

) are

isomorphi
 via some amalgam isomorphism  , be
ause every automorphism of the group L

Inf2g

�

=

SU

2

(C )

is indu
ed by some automorphism of the group L

Inf1;2g

�

=

SU

3

(C ). Indeed, L

Inf2g

is embedded as the

stabilizer of a ve
tor of length one of the natural module of L

Inf1;2g

. Clearly,  (L

Inf2g

) =  (L

Inf2;3g

\

L

Inf1;2g

) = L

0

Inf2;3g

\ L

0

Inf1;2g

= L

0

Inf2g

. The groups L

Inf1g

and L

Inf2g

form a standard pair in L

Inf1;2g

,

and hen
e  (L

Inf1g

) and L

0

Inf2g

=  (L

Inf2g

) form a standard pair in L

0

Inf1;2g

=  (L

Inf1;2g

). Certainly

also L

0

Inf1g

and L

0

Inf2g

form a standard pair in L

0

Inf1;2g

. Therefore, by Lemma 4.2, there exists an

automorphism of L

0

Inf1;2g

that maps  (L

Inf1g

) onto L

0

Inf1g

and that normalizes L

0

Inf2g

. Thus, we 
an

assume  (L

Inf1g

) = L

0

Inf1g

.
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Before we 
an 
ontinue we have to study the amalgam A a bit more 
arefully. De�ne

D

1

= N

L

Inf1g

(L

Inf2g

) and D

3

= N

L

Inf3g

(L

Inf2g

)

where the groups L

Inf2g

, L

Inf1g

are 
onsidered as subgroups of L

Inf1;2g

and the groups L

Inf3g

, L

Inf2g

are


onsidered as subgroups of L

Inf2:3g

. Sin
e L

Inf2g

and L

Inf1g

form a standard pair in L

Inf1;2g

, it follows

that D

1

is a maximal torus in L

Inf1g

�

=

SU

2

(C ). Similarly, D

3

is a maximal torus in L

Inf3g

. We also

de�ne

D

1

2

= N

L

Inf2g

(L

Inf1g

) and D

3

2

= N

L

Inf2g

(L

Inf3g

):

Again, these are two maximal tori in L

Inf2g

�

=

SU

2

(C ). The following lemma gives us an extra 
ondition

on A that holds be
ause A is strongly non
ollapsing.

Lemma 5.1 D

1

2

= D

3

2

.

Proof. Let G be a nontrivial 
ompletion of A and let � be the 
orresponding map from A to G. Sin
e A

is assumed to be strongly non
ollapsing, we may assume that � is inje
tive on every L

Infig

. Observe that

D

i

2

= C

L

f1;3g

(D

i

) for i = 1; 3. Thus, �(D

i

2

) = C

�(L

Inf2g

)

(�(D

i

)). Sin
e D

1

and D

3


ommute elementwise

in L

Inf1;3g

, we have that �(D

1

) and �(D

3

) 
ommute elementwise as well. Sin
e L

Inf2g

is invariant under

D

1

= N

L

Inf1g

(L

Inf2g

) (in L

Inf1;2g

) and sin
e � is inje
tive on L

Inf2g

, it follows that D

3

2

= C

L

Inf2g

(D

3

)

is invariant under D

1

(again as subgroups of L

Inf1;2g

) and �(D

3

2

) = C

�(L

Inf2g

)

(�(D

3

)) is invariant under

�(D

1

). Here, inje
tivity of � is needed for the following argument. D

1

and D

3


ommute as subgroups of

L

Inf1;3g

. The group L

Inf2g

is invariant under D

1

as a subgroup of L

Inf1;2g

. Sin
e L

Inf1;3g

and L

Inf1;2g

are not 
ontained in a 
ommon group of the amalgam A, we 
annot 
on
lude that D

1

leaves D

3

2

invariant.

However, in G, sin
e L

Inf2g

, D

1

, D

3

, D

3

2

are embedded via �, we 
an draw that 
on
lusion.

But now the maximal torus D

1

of L

Inf1g

�

=

SU

2

(C ) leaves invariant the maximal tori D

1

2

and D

3

2

of

L

Inf2g

�

=

SU

2

(C ). Analysis of the group L

Inf1;2g

�

=

SU

3

(C ) shows that D

1

2

= D

3

2

. 2

In view of this lemma we 
an use the notation

D

2

= D

1

2

= D

3

2

:

Sin
e N

L

Inf2g

(L

Inf1g

) = D

1

2

= D

2

= D

3

2

= N

L

Inf2g

(L

Inf3g

), the 
onsiderations made before Lemma 5.1

imply  (D

2

) = D

0

2

. Let d be a nontrivial element of D

0

2

of order distin
t from two. Denote by W the

natural three-dimensional module of L

0

Inf1;2g

, and re
all that L

0

Inf2g

and L

0

Inf3g

form a standard pair

of L

0

Inf2;3g

. As D

0

2

� L

0

Inf2g

, the group D

0

2

�xes a non-isotropi
 ve
tor u of length one of W �xed by

L

0

Inf2g

. Sin
e D

0

2

normalizes L

0

Inf3g

, it also stabilizes hvi, where v is a non-isotropi
 ve
tor of length

one of W �xed by L

0

Inf3g

. Moreover, sin
e L

0

Inf2g

and L

0

Inf3g

form a standard pair, u is perpendi
ular

to v in W . Let hwi be the one-dimensional subspa
e of W that is perpendi
ular to both u and v and

assume w has length one. Then u, v, w is an orthonormal basis of W , and d a
ts diagonally with

respe
t to that basis via diag(1; a; a

�1

). Sin
e the order of d is distin
t from two, we have a 6= a

�1

,

so the one-dimensional subspa
es of W stabilized by d are pre
isely hui, hvi, hwi. It follows, sin
e

D

0

2

=  (D

2

) = N

 (L

Inf2g

)

( (L

Inf3g

)) = N

L

0

Inf2g

( (L

Inf3g

)), that  (L

Inf3g

) is the stabilizer of either v or

w.

In the former 
ase we have  (L

Inf3g

) = L

0

Inf3g

, and we have proved A

�

=

A

0

, sin
e L

Inf1;3g

=

L

Inf3g

� L

Inf1g

and L

0

Inf1;3g

= L

0

Inf3g

� L

0

Inf1g

.

12



In the latter 
ase 
onsider the element g of L

0

Inf2g

whose matrix with respe
t to the orthonormal basis

u, v, w has the form

0

�

1 0 0

0 0 �1

0 1 0

1

A

:

Conjugation with g indu
es the a
tion of the 
ontragredient automorphism on L

0

Inf2g

. By the de�ning

relation

A

�1

=

�

A

T

of unitary matri
es the a
tion of the 
ontragredient automorphism of L

0

Inf2g


oin
ides with the �eld

involution. Therefore, we 
an de�ne an automorphism � of B

0

that a
ts trivially on L

0

Inf1;2g

and as

the 
omposition of the �eld automorphism and 
onjugation by g on L

0

Inf2;3g

, sin
e by the above this

automorphism a
ts trivially on L

0

Inf2g

= L

0

Inf2;3g

\ L

0

Inf1;2g

. Moreover, � inter
hanges hvi and hwi, so it

maps  (L

Inf3g

) onto L

0

Inf3g

.

We have proved the following.

Proposition 5.2 Let A be a strongly non
ollapsing unambiguous irredu
ible Phan amalgam of rank

three. Then A is unique up to isomorphism, i.e., A is isomorphi
 to a standard Phan amalgam. 2

Rank at least four

Let A = (L

Infi;jg

)

1�i<j�n

be a strongly non
ollapsing unambiguous irredu
ible Phan amalgam of rank

at least four. We 
omplete the proof of the uniqueness of A by indu
tion, the 
ase of rank three from

Proposition 5.2 being the basis of indu
tion.

Lemma 5.3 Let n � 4 and let A be a strongly non
ollapsing unambiguous irredu
ible Phan amalgam of

rank n. Then there exists a unique amalgam

B

A

= A [H

1

[H

2

with

H

1

= hL

Infi;jg

j 1 � i < j � n� 1i and

H

2

= hL

Infi;jg

j 2 � i < j � ni:

The group H

1

is isomorphi
 to SU

n

(C ) unless the 
ase of the Dynkin diagram F

4

, where H

1

is isomorphi


to Spin

7

(R), while the group H

2

is isomorphi
 to

SU

n

(C ) for the diagram A

n

;

Spin

2n�1

(R) for the diagram B

n

;

U

n�1

(H ) for the diagram C

n

;

Spin

2n�2

(R) for the diagram D

n

;

Spin

10

(R) for the diagram E

6

;

Spin

12

(R) for the diagram E

7

;

Spin

14

(R) for the diagram E

8

;

U

3

(H ) for the diagram F

4

:

13



Proof. Let

B

1

:= (L

Infi;jg

)

1�i<j�n�1

;

B

2

:= (L

Infi;jg

)

2�i<j�n

; and

C := B

1

\ B

2

:

By the indu
tive assumption, both B

1

and B

2

are isomorphi
 to some standard Phan amalgam and hen
e

there exist faithful 
ompletions �

i

: B

i

! H

i

where the isomorphism types of H

1

and H

2

are given as in

the hypothesis. We want to glue H

1

and H

2

to the amalgam A via �

1

and �

2

. Let K

i

:= h�

i

(C)i. Sin
e,

again by the indu
tive assumption, the amalgam C is isomorphi
 to a standard Phan amalgam, we have

K

i

�

=

SU

n�1

(C ) or, in 
ase of the diagram F

4

, we have K

i

�

=

Spin

5

(R)

�

=

U

2

(H ). By Proposition 3.2 the

group K

i

is a 
hara
teristi
 
ompletion of the amalgam C, so there exists an isomorphism � : K

1

! K

2

that takes �

1

(C) to �

2

(C). Let  be the restri
tion of � to �

1

(C). Applying the Bennett-Shpe
torov

Lemma (Lemma 2.12) with � : K

1

! K

2

and  : �

1

(C) ! �

2

(C) as above and  

0

: �

1

(C) ! �

2

(C)

with  

0

= �

2

Æ �

1

�1

jC

, there exists a unique isomorphism �

0

: K

1

! K

2

su
h that �

0

j�

1

(C)

=  

0

. Thus,

�

0

Æ �

1

jC

= �

2

j

C

. Identifying K

1

with K

2

via �

0

we obtain our unique amalgam B. 2

Let us now turn to the uniqueness of the amalgam A. Suppose we have strongly non
ollapsing

unambiguous irredu
ible Phan amalgams A and A

0


orresponding to the same diagram. Extend A and

A

0

to amalgams B

A

= A [ H

1

[ H

2

and B

0

A

0

= A

0

[ H

0

1

[ H

0

2

as in Lemma 5.3. By Golds
hmidt's

Lemma (Lemma 2.10) there exists an isomorphism � from H

1

[ H

2

onto H

0

1

[ H

0

2

. By the indu
tive

assumption (L

Infi;jg

)

1<i<j<n

is isomorphi
 to a standard Phan amalgam embedded in H

1

\H

2

. Similarly

(L

0

Infi;jg

)

1<i<j<n

and �(L

Infi;jg

)

1<i<j<n

are isomorphi
 to standard Phan amalgams embedded in H

0

1

\

H

0

2

. These two amalgams 
orrespond to two 
hoi
es of a maximal torus of H

0

1

\H

0

2

, whi
h are 
onjugate

by Theorem 6.27 of [24℄. So, 
orre
ting � if ne
essary by an inner automorphism of H

0

1

\ H

0

2

, we may

assume that �(L

Infig

) = L

0

Infig

for 1 < i < n and �(L

Infi;jg

) = L

0

Infi;jg

for 1 < i < j < n. Also, by

studying the standard Phan amalgam inside H

0

1

, we have

�

�

L

Inf1g

�

= �

�

C

H

1

�

hL

Inf3g

; : : : ; L

Infn�1g

i

��

= C

�(H

1

)

�

�

�

hL

Inf3g

; : : : ; L

Infn�1g

i

��

= C

H

0

1

�

hL

0

Inf3g

; : : : ; L

0

Infn�1g

i

�

= L

0

Inf1g

:

By a similar argument, �(L

Infng

) = L

0

Infng

. Therefore � extends to an isomorphism from A to A

0

.

Indeed, � is already de�ned on all L

Infi;jg

with 2 � i < j � n � 1. Also, inside the standard Phan

amalgam of H

0

1

we see that �(L

Inf1;ig

) = L

0

Inf1;ig

for i < n, sin
e L

Inf1;ig

= hL

Inf1g

; L

Infig

i. Similarly,

in the standard Phan amalgam of H

0

2

we see that �(L

Infi;ng

) = L

0

Infi;ng

for 1 < i. It remains to realize

that L

Inf1;ng

is the dire
t produ
t of L

Inf1g

and L

Infng

, so that � extends to an isomorphism of A to A

0

.

Thus we have shown:

Proposition 5.4 Let n � 4, and let A be a strongly non
ollapsing unambiguous irredu
ible Phan amal-

gam of rank n. Then A is unique up to isomorphism, i.e., A is isomorphi
 to a standard Phan amalgam.

2
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Proof of the Main Theorem. The weak Phan system of G gives rise to a strongly non
ollapsing Phan

amalgam A, whi
h by Proposition 4.6 is 
overed by a unique strongly non
ollapsing unambiguous Phan

amalgam

b

A. This strongly non
ollapsing unambiguous Phan amalgam

b

A is isomorphi
 to a standard

Phan amalgam by Propositions 5.2 and 5.4 applied to the irredu
ible 
omponents of � of rank at least

three and by De�nition 4.4 applied to the irredu
ible 
omponents of � of rank at most two. Finally, the

�rst 
laim follows by Theorem 3.1. The se
ond 
laim follows immediately from the �rst 
laim by the


lassi�
ation of irredu
ible Dynkin diagrams, see [6℄, and by [21℄ or by 94.33 of [31℄. 2

6 Open problem

Let G

C

be a simply 
onne
ted 
omplex semisimple Lie group and let G be its split real form. Then,

by the Iwasawa de
omposition (see Theorem VI.5.1 of [21℄ or Theorem III.6.32 of [22℄), the maximal


ompa
t subgroup K of G a
ts 
ag-transitively on the building geometrry of G. Our proof of Theorem

3.1 implies that G equals the universal 
ompletion of 
ertain split real forms of 
omplex Lie groups of

rank one and two.

The question is whether it is possible to 
lassify the o

uring amalgams in order to obtain a result

like our Main Theorem.
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