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Non-abelian extensions of topologi
al Lie algebras

Karl-Hermann Neeb

Abstra
t. In this paper we extend and adapt several results on extensions of Lie algebras to

topologi
al Lie algebras over topologi
al �elds of 
hara
teristi
 zero. In parti
ular we des
ribe the

set of equivalen
e 
lasses of extensions of the Lie algebra g by the Lie algebra n as a disjoint union

of aÆne spa
es with translation group H

2

(g;z(n))

[S℄

, where [S℄ denotes the equivalen
e 
lass of the


ontinuous outer a
tion S:g!dern . We also dis
uss topologi
al 
rossed modules and explain how

they are related to extensions of Lie algebras by showing that any 
ontinuous outer a
tion gives

rise to a 
rossed module whose obstru
tion 
lass in H

3

(g;z(n))

S

is the 
hara
teristi
 
lass of the


orresponding 
rossed module. The 
orresponden
e between 
rossed modules and extensions further

leads to a des
ription of n -extensions of g in terms of 
ertain z(n) -extensions of a Lie algebra

whi
h is an extension of g by n=z(n) . We dis
uss several types of examples, des
ribe appli
ations

to Lie algebras of ve
tor �elds on prin
ipal bundles, and in two appendi
es we des
ribe the set of

automorphisms and derivations of topologi
al Lie algebra extensions.

Introdu
tion

An extension of a Lie algebra g by a Lie algebra n is a short exa
t sequen
e of the form

n ,!

b

g !! g:

We think of the Lie algebra

b

g as 
onstru
ted from the two building blo
ks g and n . To any su
h

extension one naturally asso
iates its 
hara
teristi
 homomorphism s: g ! out(n) := der(n)= adn

indu
ed from the a
tion of

b

g on n . It turns out that, with respe
t to a natural equivalen
e

relation on extensions, equivalent ones have the same 
hara
teristi
 homomorphism, so that one

is interested in the set Ext(g; n)

s

of all equivalen
e 
lasses of extensions 
orresponding to a given

homomorphism s: g ! out(n). The pair (n; s) is also 
alled a g-kernel. It is well known that the

set Ext(g; n)

s

is non-empty only if a 
ertain 
ohomology 
lass �

s

2 H

3

(g; z(n))

s

vanishes, and

that if this is the 
ase, then Ext(g; n)

s

is an aÆne spa
e with translation group H

2

(g; z(n))

s

.

If n is abelian, these results go ba
k to Chevalley and Eilenberg ([CE48℄), and the general 
ase

has been developed a few years later in [Mo53℄ and [Ho54a℄; see also [Sh66℄ for Lie algebras over


ommutative base rings R with 2 2 R

�

.

In this note we extend and adapt these results to the setting of topologi
al Lie algebras

over topologi
al �elds of 
hara
teristi
 0, having in parti
ular lo
ally 
onvex Lie algebras over the

real or 
omplex numbers in mind, whi
h are the natural 
andidates for Lie algebras of in�nite-

dimensional Lie groups. In a subsequent paper we des
ribe 
orresponding results for in�nite-

dimensional Lie groups and explain the non-trivial link between the Lie group and the Lie algebra

pi
ture, the main point being how the information on group extensions 
an be obtained from

data asso
iated to the 
orresponding Lie algebras and the topology of the groups (
f. [Ne04℄). For

abelian extensions of Lie groups, this translation pro
edure between Lie group and Lie algebra

extensions has been studied in [Ne02/03℄, and our main goal is to redu
e the general 
ase to

abelian extensions. In the present paper this will be our guiding philosophy.

A serious diÆ
ulty arising in the topologi
al 
ontext is that a 
losed subspa
e W of a

topologi
al ve
tor spa
e V need not be topologi
ally split in the sense that the quotient map
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V ! V=W has a 
ontinuous linear se
tion � su
h that the map W � (V=W ) ! V; (w; x) 7!

w + �(x) is a topologi
al isomorphism. We 
all a 
ontinuous linear map f :V

1

! V

2

between

topologi
al ve
tor spa
es topologi
ally split if the subspa
e im(f) of V

2

is 
losed and split and

ker(f) is a topologi
ally split subspa
e of V

1

. The natural setup for extensions of topologi
al

Lie algebras is to assume that all morphisms are topologi
ally split, i.e., an extension q:

b

g ! g

of g by n is a Lie algebra 
ontaining n

�

=

ker q as a split ideal. This implies in parti
ular that

b

g

�

=

n � g as a topologi
al ve
tor spa
e. It is ne
essary to assume this be
ause otherwise we


annot expe
t to 
lassify extensions in terms of Lie algebras 
ohomology. A

ordingly one has

to re�ne the 
on
ept of a g-kernel to the 
on
ept of a 
ontinuous g-kernel: Here one starts

with the 
on
ept of a 
ontinuous outer a
tion S 
onsisting of a linear map S: g ! der n for

whi
h g � n ! n; (x; n) 7! S(x):n is 
ontinuous and there exists a 
ontinuous alternating map

!: g� g ! n with

[S(x); S(x

0

)℄� S([x; x

0

℄) = ad(!(x; x

0

)) for x; x

0

2 g:

Two 
ontinuous outer a
tions S

1

and S

2

are 
alled equivalent if there exists a 
ontinuous linear

map 
: g ! n with S

2

= S

1

+ ad Æ
 , and the equivalen
e 
lasses [S℄ are 
alled 
ontinuous g-

kernels. Every su
h g-kernel de�nes a homomorphism s: g ! out(n); x 7! S(x) + ad n , but this

map alone is not enough stru
ture to en
ode all 
ontinuity requirements.

Our approa
h to redu
e general extensions to abelian extensions leads to a new perspe
tive,

the key 
on
ept being the notion of a topologi
al 
rossed module, i.e., a topologi
ally split

morphism �: h !

b

g of topologi
al Lie algebras for whi
h h is endowed with a 
ontinuous

b

g-

module stru
ture (x; h) 7! x:h satisfying

�(x:h) = [x; �(h)℄ and �(h):h

0

= [h; h

0

℄ for x 2

b

g; h; h

0

2 h:

For any 
rossed module z := ker� is a 
entral subalgebra of h invariant under the

b

g -a
tion and

n := �(h) is an ideal of

b

g . Therefore ea
h 
rossed module leads to a four term exa
t sequen
e

0! z = ker�! h !

b

g ! g := 
oker�! 0:

Sin
e z is 
entral in h , the a
tion of

b

g on z fa
tors through an a
tion of g on this spa
e, so

that z is a g-module. One way to deal with 
rossed modules is to �x a Lie algebra g and an

g-module z and to 
onsider all 
rossed modules �: h !

b

g with g = 
oker� and ker�

�

=

z as

g-modules. On these 
rossed modules, thought as 4-term exa
t sequen
es, there is a natural

equivalen
e relation, and in the algebrai
 
ontext (all topologies are dis
rete) the equivalen
e


lasses are 
lassi�ed by a 
hara
teristi
 
lass �

�

2 H

3

(g; z) (
f. [Wa03℄, and also [Go53℄ for a

dis
ussion of 
rossed modules with abelian Lie algebras h in the algebrai
 
ontext).

Our point of view is di�erent in the sense that we think of a split 
rossed module as the

following data:

(1) an ideal n of the Lie algebra

b

g ,

(2) a topologi
ally split 
entral extension z ,!

b

n ! n , and

(3) a

b

g-module stru
ture on

b

n extending the given a
tion of n on

b

n and su
h that �:

b

n ! n is

b

g-equivariant.

Of 
ourse, both pi
tures des
ribe the same stru
tures, but from our point of view the


hara
teristi
 
lass �

�

2 H

3

(

b

g=n; z) of the 
rossed module has a quite immediate interpretation

as the obstru
tion to the existen
e of a Lie algebra extension z ,!

e

g

q

��!

b

g for whi
h q

�1

(n) is

b

g-equivariantly equivalent to the extension

b

n of n by z . All this is explained in Se
tion III.

In Se
tion IV we show that this interpretation of �

�

as an obstru
tion 
lass further leads

to a ni
e 
onne
tion to Lie algebra extensions. To any 
ontinuous g-kernel [S℄ we asso
iate

a natural 
rossed module �: n ! g

S

, where g

S

is an extension of g by the topologi
al Lie

algebra n

ad

:= n=z(n). The asso
iated 
hara
teristi
 
lass �

�

2 H

3

(g; z(n))

S

vanishes if and

only if Ext(g; n)

[S℄

is non-empty, be
ause it is the obstru
tion to the existen
e of an extension

q:

b

g

S

! g

S

of g

S

by z(n) for whi
h q

�1

(n

ad

) is g

S

-equivariantly equivalent to n as a 
entral

z(n)-extension of n

ad

. This provides a new interpretation of the 
ohomology 
lass �

�

as the

obstru
tion 
lass �(S) of the 
ontinuous outer a
tion S of g on

b

n .
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Along these lines we dis
uss in Se
tion V two types of examples of topologi
al 
rossed

modules, where we determine the 
hara
teristi
 
lass expli
itly in terms of a 3-
o
y
le of the

form �([x; y℄; z), where �: g� g ! z is an invariant symmetri
 bilinear z-valued form on the Lie

algebra g .

In Se
tion VI we re
all the relation between 
ovariant di�erentials, extensions of Lie algebras

and smooth prini
pal bundles (
f. [AMR00℄). We then use this relation to atta
h to a 
entral

extension of the stru
ture group of a prin
ipal bundle a 
rossed module of topologi
al Lie algebras

whose 
hara
teristi
 
lass 
an be represented by a 
losed 3-form on the underlying manifold. It

would be interesting to see how the 
orresponding 
ohomology 
lass relates to the 
urvature of

di�erential geometri
 gerbes with a 
urving, as dis
ussed in Se
tion 5.3 of [Bry93℄.

Although our main fo
us lies on topologi
al Lie algebras, we think that the 
onne
tions be-

tween extensions and 
rossed modules dis
ussed in this paper also adds new insight on the purely

algebrai
 level. On the algebrai
 level the idea to redu
e extensions of g by n 
orresponding to a

g-kernel (n; s) to abelian extensions of the Lie algebra g

s

:= s

�

(dern) � der(n)� g 
an already

be found in Mori's paper ([Mo53℄; the Redu
tion Theorem, Thm. 4).

Throughout this paper we shall use the 
al
ulus of 
ovariant di�erentials whi
h is introdu
ed

on a quite abstra
t level in Se
tion I as a means to perform 
al
ulations related to extensions of

Lie algebras. Here the main point is that if g is a Lie algebra and V a ve
tor spa
e, then for

ea
h linear map S: g ! End(V ) we have the so-
alled 
ovariant di�erential d

S

:= S

^

+d

g

on the

dire
t sum C

�

(g; V ) :=

L

r2N

0

C

r

(g; V ), where d

g

is the Lie algebra di�erential 
orresponding

to the trivial module stru
ture on V and S

^

denotes the maps C

r

(g; V )! C

r+1

(g; V ) indu
ed

by the evaluation map End(V )� V ! V on the level of Lie algebra 
o
hains. Then we have

d

2

S

� = R

S

^ �; where R

S

:= d

g

S +

1

2

[S; S℄

is the \
urvature" of S , vanishing if and only if S is a homomorphism of Lie algebras, and

R

S

^ is a map C

r

(g; V )! C

r+2

(g; V ) indu
ed by the evaluation map End(V )� V ! V . If, in

addition, V is a Lie algebra and S is of the form S = ad Æ� for some �: g ! V , then we have

d

2

S

� = [R

�

; �℄ and d

S

R

�

= 0;

where the latter equation is a quite abstra
t version of the Bian
hi identity that plays a 
entral

role in Yang{Mills Theory and General Relativity (
f. [Fa03℄ for a ni
e dis
ussion of beautiful

equations in these theories).

Sin
e lifting derivations and automorphisms to Lie algebra extensions plays a 
ru
ial role

in many 
onstru
tions involving in�nite-dimensional Lie algebras, we des
ribe in Appendix A the

Lie algebra der(

b

g; n) of derivations of an n-extension

b

g of g (i.e., the derivations of

b

g preserving

n) in terms of an exa
t sequen
e of the form

0! Z

1

(g; z(n))

S

! der(

b

g; n)! (der n� der g)

[S℄

I

��!H

2

(g; z(n))

S

! 0;

where I is a Lie algebra 1-
o
y
le for the natural representation of the Lie algebra

(der n � der g)

[S℄

on H

2

(g; z(n))

S

. We also dis
uss the problem to lift a
tions of a Lie alge-

bra h by derivations on n and g to a
tions on

b

g .

In Appendix B we des
ribe in an analogous manner the group Aut(

b

g; n) of automorphisms

of

b

g preserving n by an exa
t sequen
e of the form

0! Z

1

(g; z(n))

S

! Aut(

b

g; n)! (Aut(n)�Aut(g))

[S℄

I

��!H

2

(g; z(n))

S

! 0;

where I is a group 1-
o
y
le for the natural a
tion of the group (Aut(n) � Aut(g))

[S℄

on

H

2

(g; z(n))

S

.
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I. Basi
 de�nitions and tools

In this se
tion we introdu
e the basi
 
on
epts needed in our topologi
al setting. In parti
ular

we de�ne 
ontinuous Lie algebra 
ohomology and 
ovariant di�erentials. It turns out that the


al
ulus of 
ovariant di�erentials is extremely 
onvenient throughout the paper.

Topologi
al Lie algebras and their 
ohomology

Throughout this paper K is a topologi
al �eld, i.e., a �eld for whi
h addition, multipli
ation

and inversion are 
ontinuous. Ea
h �eld K is a topologi
al �eld with respe
t to the dis
rete

topology whi
h we do not ex
lude. We further assume that 
harK = 0.

A topologi
al ve
tor spa
e V is a K -ve
tor spa
e V together with a Hausdor� topology

su
h that addition, resp., s
alar multipli
ation of V are 
ontinuous with respe
t to the produ
t

topology on V � V , resp., K � V . For two topologi
al ve
tor spa
es we write Lin(V;W ) for

the spa
e of 
ontinuous linear maps V ! W and End(V ) for the set of 
ontinuous linear

endomorphisms of V . A topologi
al Lie algebra g is a K -Lie algebra whi
h is a topologi
al

ve
tor spa
e for whi
h the Lie bra
ket is a 
ontinuous bilinear map. A topologi
al g-module is

a g-module V whi
h is a topologi
al ve
tor spa
e for whi
h the module stru
ture, viewed as a

map g� V ! V , is 
ontinuous.

A subspa
e W of a topologi
al ve
tor spa
e V is 
alled (topologi
ally) split if it is 
losed

and there is a 
ontinuous linear map �:V=W ! V for whi
h the map

W � V=W ! V; (w; x) 7! w + �(x)

is an isomorphism of topologi
al ve
tor spa
es. Note that the 
losedness of W guarantees that

the quotient topology turns V=W into a Hausdor� spa
e whi
h is a topologi
al K -ve
tor spa
e

with respe
t to the indu
ed ve
tor spa
e stru
ture. A morphism f :V !W of topologi
al ve
tor

spa
es, i.e., a 
ontinuous linear map, is said to be (topologi
ally) split if the subspa
es ker(f) � V

and im(f) �W are topologi
ally split. A sequen
e

V

0

f

1

��!V

1

f

2

��!� � �

f

n

��!V

n

of morphisms of topologi
al ve
tor spa
es is 
alled topologi
ally split if all morphisms f

1

; : : : ; f

n

are topologi
ally split. In the following we shall mostly omit the adje
tive \topologi
al" when it

is 
lear that the splitting does not refer to a Lie algebra or module stru
ture.

Note that if K is dis
rete, then every K -ve
tor spa
e and every K -Lie algebra is topologi
al

with respe
t to the dis
rete topology. Further every subspa
e and every morphism is split, so

that all topologi
al splitting 
onditions are automati
ally satis�ed in the algebrai
 
ontext, i.e.,

when all spa
es and Lie algebras are dis
rete.

De�nition I.1. Let V be a topologi
al module of the topologi
al Lie algebra g . For p 2 N

0

,

let C

p

(g; V ) denote the spa
e of 
ontinuous alternating maps g

p

! V , i.e., the Lie algebra p-


o
hains with values in the module V . We use the 
onvention C

0

(g; V ) = V and observe that

C

1

(g; V ) = Lin(g; V ) is the spa
e of 
ontinuous linear maps g ! V . We then obtain a 
hain


omplex with the di�erential

d

g

:C

p

(g; V )! C

p+1

(g; V )

given on f 2 C

p

(g; V ) by

(d

g

f)(x

0

; : : : ; x

p

) :=

p

X

j=0

(�1)

j

x

j

:f(x

0

; : : : ; bx

j

; : : : ; x

p

)

+

X

i<j

(�1)

i+j

f([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

);
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where bx

j

denotes omission of x

j

. Note that the 
ontinuity of the bra
ket on g and the a
tion

on V imply that d

g

f is 
ontinuous.

We thus obtain a sub-
omplex of the algebrai
 Lie algebra 
omplex asso
iated to g and V .

Hen
e d

2

g

= 0, and the spa
e Z

p

(g; V ) := ker d

g

j

C

p

(g;V )

of p-
o
y
les 
ontains the spa
e

B

p

(g; V ) := d

g

(C

p�1

(g; V )) of p-
oboundaries (
f. [We95, Cor. 7.7.3℄). The quotient

H

p

(g; V ) := Z

p

(g; V )=B

p

(g; V )

is the p

th


ontinuous 
ohomology spa
e of g with values in the g-module V . We write [f ℄ :=

f +B

p

(g; V ) for the 
ohomology 
lass [f ℄ of the 
o
y
le f .

Multipli
ation of Lie algebra 
o
hains

Let g be a topologi
al Lie algebra and U; V;W be topologi
al g-modules. Further let

m:U � V ! W be a g-equivariant 
ontinuous bilinear map. There is a natural produ
t

C

p

(g; U)� C

q

(g; V )! C

p+q

(g;W ); (�; �) 7! � ^

m

� , de�ned by

(� ^

m

�)(x

1

; : : : ; x

p+q

) :=

1

p!q!

X

�2S

p+q

sgn(�)m

�

�(x

�(1)

; : : : ; x

�(p)

); �(x

�(p+1)

; : : : ; x

�(p+q)

)

�

:

Here we need that 
harK = 0 be
ause otherwise we might have p! = 0 or q! = 0. For p = q = 1

we have in parti
ular

(� ^

m

�)(x; y) = m(�(x); �(y)) �m(�(y); �(x)):

Writing

Alt(�)(x

1

; : : : ; x

p

) :=

X

�2S

p

sgn(�)�(x

�(1)

; : : : ; x

�(p)

)

for a p-linear map �: g

p

! V , we have

� ^

m

� =

1

p!q!

Alt(� �

m

�); where � �

m

� := m Æ (�� �)):

For a permutation � 2 S

p

and �

�

(x

1

; : : : ; x

p

) := �(x

�(1)

; : : : ; x

�(p)

) we observe that

Alt(�) = sgn(�)Alt(�

�

):

If U = V and � is alternating, then � �

m

� = �(� �

m

�)

�

for the permutation

� =

�

1 2 : : : p p+ 1 : : : p+ q

p+ 1 p+ 2 : : : p+ q 1 : : : p

�

of singature (�1)

pq

, and therefore

(1:1) � ^

m

� = (�1)

pq+1

� ^

m

�:

From [Ne03, Lemma F.1℄ we re
all for � 2 C

p

(g; U) and � 2 C

q

(g; V ) the relation

(1:2) d

g

(� ^ �) = d

g

� ^ � + (�1)

p

� ^ d

g

�:

Remark I.2. (a) Now let X and Y be further topologi
al g-modules and m

0

:W � X ! Y

a g-equivariant 
ontinuous bilinear map. For � 2 C

p

(g; U), � 2 C

q

(g; V ), 
 2 C

r

(g; X) and

� 2 S

p+q

we then have the relation

sgn(�)Alt((� �

m

�)

�

�

m

0


) = Alt((� �

m

�) �

m

0


);

whi
h leads to

(1:3) (� ^

m

�) ^

m

0


 =

1

(p+ q)!r!

Alt((� ^

m

�) �

m

0


) =

1

p!q!r!

Alt((� �

m

�) �

m

0


):

If we further have 
ontinuous equivariant bilinear maps n:V �X ! Z and n

0

:U�Z ! Y ,

satisfying the asso
iativity relation

m

0

Æ (m� id

X

) = n

0

Æ (id

U

�n);

i.e., (u �

m

v) �

m

0

x = u �

n

0

(v �

n

x) for all u 2 U; v 2 V; x 2 X , then (1.3) implies that

(1:4) (� ^

m

�) ^

m

0


 = � ^

n

0

(� ^

n


)

in C

p+q+r

(g; Y ).
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Example I.3. (In this example all topologies are dis
rete) Let V be a ve
tor spa
e, 
onsidered

as a trivial g-module and 
onsider gl(V ) also as a trivial g-module. We then have the two

bilinear maps

ev: End(V )� V ! V; ('; v) 7! '(v)

and the 
omposition

C: End(V )� End(V )! End(V ); (';  ) 7! ' :

These two maps satisfy the asso
iativity relation

ev Æ(C � id

V

) = ev Æ(id

End(V )

� ev);

whi
h means that

(' )(v) = '( (v)) for all ';  2 End(V ); v 2 V:

In view of Remark I.2, this leads for � 2 C

p

(g;End(V )), � 2 C

q

(g;End(V )) and 
 2 C

r

(g; V )

to

(� ^

C

�) ^

ev


 = � ^

ev

(� ^

ev


)

in C

p+q+r

(g; V ).

Covariant di�erentials

Now let V be a trivial topologi
al g-module and d

g

the 
orresponding Lie algebra di�er-

ential on the 
omplex C

�

(g; V ). Further let S 2 C

1




(g;End(V )), where C

1




(g;End(V )) denotes

the set of all linear maps T : g ! End(V ) for whi
h g� V ! V; (x; v) 7! T (x)(v) is 
ontinuous.

We then obtain maps

S

^

:C

p

(g; V )! C

p+1

(g; V ); � 7! S ^

ev

�:

We now 
onsider the 
orresponding 
ovariant di�erential

d

S

:= S

^

+ d

g

:C

p

(g; V )! C

p+1

(g; V ); p 2 N

0

:

The following lemma shows that if S is a Lie algebra homomorphism, then d

S

is the Lie algebra

di�erential 
orresponding to the g-module stru
ture on V de�ned by S .

Lemma I.4. The 
ovariant derivative is given by

(d

S

�)(x

0

; : : : ; x

p

) :=

p

X

j=0

(�1)

j

S(x

j

):�(x

0

; : : : ; bx

j

; : : : ; x

p

)

+

X

i<j

(�1)

i+j

�([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

):

Proof. Let �

k

2 S

p+1

�

=

S

f0;:::;pg

denote the 
y
le (k; k � 1; k � 2; : : : 2; 1; k). Then

sgn(�

k

) = (�1)

k

, and

(S

^

(�))(x

0

; : : : ; x

p

) =

1

p!

p

X

k=0

X

�(0)=k

sgn(�)S(x

k

):�(x

�(1)

; : : : ; x

�(p)

)

=

p

X

k=0

sgn(�

k

)S(x

k

):�(x

�

k

(1)

; : : : ; x

�

k

(p)

) =

p

X

k=0

(�1)

k

S(x

k

):�(x

0

; : : : ; bx

k

; : : : ; x

p

):

This implies the lemma.
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Proposition I.5. Let R

S

(x; y) = [S(x); S(y)℄� S([x; y℄) for x; y 2 g . Then

R

S

:= d

g

S +

1

2

[S; S℄ 2 C

2

(g;End(V ))

and for � 2 C

p

(g; V ) we have

(1:5) d

2

S

� = R

S

^

ev

�;

In parti
ular d

2

S

= 0 if and only if S is a homomorphism of Lie algebras, i.e., R

S

= 0 .

Proof. For � 2 C

p

(g; V ) we get

d

2

S

� = d

S

(S ^

ev

�+ d

g

�)

= (S ^

ev

(S ^

ev

�)) + S ^

ev

d

g

�+ d

g

(S ^

ev

�) + d

2

g

�

= (S ^

C

S) ^

ev

�+ S ^

ev

d

g

�+ (d

g

S ^

ev

�� S ^

ev

d

g

�)

= (S ^

C

S) ^

ev

�+ d

g

S ^

ev

� = (S ^

C

S + d

g

S) ^

ev

�:

To make this more expli
it, we observe that

(S ^

C

S)(x; y) = S(x)S(y)� S(y)S(x) = [S(x); S(y)℄ =

1

2

[S; S℄(x; y);

whi
h proves (1.5).

For v 2 V

�

=

C

0

(g; V ) we obtain in parti
ular (d

2

S

v)(x; y) = R

S

(x; y)v; showing that

d

2

S

= 0 on C

�

(g; V ) is equivalent to R

S

= 0; whi
h means that S: g ! (End(V ); [�; �℄) is a

homomorphism of Lie algebras.

We shall use the following notation for 
y
li
 sums

X


y
:

f(x

1

; x

2

; x

3

) := f(x

1

; x

2

; x

3

) + f(x

2

; x

3

; x

1

) + f(x

3

; x

1

; x

2

):

De�nition I.6. A Lie superalgebra (over a �eld K with 2; 3 2 K

�

) is a Z=2Z-graded ve
tor

spa
e g = g

0

� g

1

with a bilinear map [�; �℄ satisfying

(LS1) [�; �℄ = (�1)

pq+1

[�; �℄ for x 2 g

p

and y 2 g

q

.

(LS2) (�1)

pr

[[�; �℄; 
℄ + (�1)

qp

[[�; 
℄; �℄ + (�1)

qr

[[
; �℄; �℄ = 0 for � 2 g

p

, � 2 g

q

and 
 2 g

r

.

Note that (LS1) implies that

(1:6) [�; �℄ = 0 = [�; [�; �℄℄ for � 2 g

0

; � 2 g

1

:

The following lemma is the algebrai
 version of the 
orresponding result about Lie algebra

valued di�erential forms on manifolds ([BGV04, Se
t. 1.4℄, [KMS93, Thm. II.8.5℄).

Lemma I.7. Suppose that V is a Lie algebra, 
onsidered as a trivial g-module. The bilinear

bra
ket on C

�

(g; V ) :=

L

p2N

0

C

p

(g; V ) de�ned by

C

p

(g; V )� C

q

(g; V )! C

p+q

(g; V ); (�; �) 7! [�; �℄ := � ^

[�;�℄

�;

turns the Z=2Z-graded ve
tor spa
e C

�

(g; V ) = C

even

(g; V )�C

odd

(g; V ) into a Lie superalgebra.

Proof. (LS1) follows from (1.1). The relation (LS2) for deg� = p , deg� = q and deg 
 = r


an be obtained from (1.3) and the Ja
obi identity as follows. Let b

g

: g� g ! g denote the Lie

bra
ket on g . Then

[[�; �℄; 
℄ =

1

p!q!r!

Alt(b

g

Æ (b

g


 id

g

) Æ (�
 � 
 
))

by (1.3), and from this formula one easily derives [[�; �℄; 
℄ = (�1)

qr

[[�; 
℄; �℄+[�; [�; 
℄℄; so that

(LS2) now follows with (LS1).

The following proposition provides an abstra
t algebrai
 version of identities originating in

the 
ontext of di�erential forms ([BGV04, Prop. 1.15℄).
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Proposition I.8. Suppose that V is a Lie algebra, 
onsidered as a trivial g-module. Let

� 2 C

1

(g; V ) and de�ne S = ad Æ� . Then

(1:7) d

2

S

� = [R

�

; �℄ for � 2 C

p

(g; V );

and R

�

satis�es the abstra
t Bian
hi identity d

S

R

�

= 0 .

Proof. Sin
e ad:V ! End(V ) is a homomorphism of Lie algebras, the de�nition of R

�

and

Proposition I.5 immediately lead for � 2 C

p

(g; V ) to:

d

2

S

� = R

S

^

ev

� = (ad ÆR

�

) ^

ev

� = [R

�

; �℄

(Lemma I.7).

From (1.1) and (1.2) we further get

(1:8) d

g

[�; �℄ = [d

g

�; �℄ � [�; d

g

�℄ = [d

g

�; �℄ + [d

g

�; �℄ = 2[d

g

�; �℄:

Now the abstra
t Bian
hi identity follows with Lemma I.7 from

d

S

R

�

= (d

g

+ S

^

)R

�

= d

2

g

� +

1

2

d

g

[�; �℄ + S ^R

�

= [d

g

�; �℄ + [�;R

�

℄

= [d

g

�; �℄� [R

�

; �℄ = �

1

2

[[�; �℄; �℄ = 0:

The observations in the following lemma will be
ome 
ru
ial in the following. It is partly


ontained in [AMR00, Th. 5℄.

Lemma I.9. For topologi
al Lie algebras g and n the pres
ription


:(S; !) := (S + ad Æ
; ! + d

S


 +

1

2

[
; 
℄)

de�nes an a
tion of the abelian group C

1

(g; n) on C

1




(g; der n) � C

2

(g; n) with the following

properties:

(1) R

S+ad Æ


= R

S

+ ad Æ(d

S


 +

1

2

[
; 
℄) for S 2 C

1




(g; der n) and 
 2 C

1

(g; n) .

(2)

e

Z

2

(g; n) := f(S; !) 2 C

1




(g; dern)� C

2

(g; n):R

S

= ad Æ!g is an invariant subset.

(3) For (S; !) 2

e

Z

2

(g; n) we have d

S

! 2 Z

3

(g; z(n))

S

.

(4) The map

e

Z

2

(g; n)! Z

3

(g; z(n)); (S; !) 7! d

S

! is 
onstant on orbits of C

1

(g; n) .

Proof. First we observe that




1

:(


2

:(S; !)) = (S + ad Æ(


1

+ 


2

); !

00

);

where

!

00

= ! + d

S




2

+

1

2

[


2

; 


2

℄ + d

S+ad Æ


2




1

+

1

2

[


1

; 


1

℄

= ! + d

S




2

+

1

2

[


2

; 


2

℄ + d

S




1

+ [


2

; 


1

℄ +

1

2

[


1

; 


1

℄

= ! + d

S

(


1

+ 


2

) +

1

2

[


1

+ 


2

; 


1

+ 


2

℄:

This proves that we obtain an a
tion of C

1

(g; n) on C

1




(g; dern)� C

2

(g; n).

(1) For S

0

:= S + ad Æ
 we have

R

S

0

= d

g

S

0

+

1

2

[S

0

; S

0

℄ = R

S

+ d

g

(ad Æ
) +

1

2

([S; ad Æ
℄ + [ad Æ
; S℄ + [ad Æ
; ad Æ
℄)

= R

S

+ ad Æ(d

g


) + [S; ad Æ
℄ +

1

2

[ad Æ
; adÆ
℄

= R

S

+ ad Æ(d

g


 + S ^ 
 +

1

2

[
; 
℄) = R

S

+ ad Æ(d

S


 +

1

2

[
; 
℄):

(2) follows immediately from (1).
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(3) For S

1

:= ad ÆS: g! End(dern) we have:

ad Æ(d

S

!) = d

S

1

(ad Æ!) = d

S

1

(d

g

S +

1

2

[S; S℄) = 0

by applying Proposition I.8 with � := S and V := dern and using the abstra
t Bian
hi identity.

This proves that d

S

! has values in z(n).

We further obtain with Proposition I.8

d

S

(d

S

!) = d

2

S

! = [!; !℄ = 0;

where the last equality follows from (1.1), whi
h implies that the bra
ket is alternating on 
o
hains

of even degree (
f. [AMR00, Th. 8℄).

(4) For S

0

:= S +ad 
 and !

0

:= !+ d

S


 +

1

2

[
; 
℄ we obtain with (1) and Proposition I.6

that

d

S

0

!

0

= d

S

!

0

+ (S

0

� S) ^ !

0

= d

S

! + d

S

(d

S


 +

1

2

[
; 
℄) + [
; !

0

℄

= d

S

! + [!; 
℄ + [d

S


; 
℄� [!

0

; 
℄

= d

S

! + [! + d

S


 � !

0

; 
℄ = d

S

! �

1

2

[[
; 
℄; 
℄ = d

S

!:

Remark I.10. (Twisted 
ohomology) (a) Let g be a Lie algebra and V a g-module, where the

module stru
ture is given by the homomorphism S: g ! End(V ). Then we have the Lie algebra


omplex (C

�

(g; V ); d

S

).

This 
omplex 
an be twisted as follows. Instead of d

S

, we 
onsider for some � 2

C

1

(g;End(V )) the operator

d

�

:C

�

(g; V )! C

�

(g; V ); � 7! d

S

�+ � ^ �;

whi
h 
oin
ides with d

S

0

for S

0

:= S + �. For

T := ad ÆS: g! der(End(V ))

we then have

R

S

0

= R

S

+ d

g

� +

1

2

[�;�℄ + [S;�℄ = d

g

� +

1

2

[�;�℄ + [S;�℄ = d

T

� +

1

2

[�;�℄;

and d

2

�

vanishes if and only if this expression vanishes (Proposition I.8).

If the values of � lie in a 
ommutative subalgebra of End(V ), then this equation redu
es to

d

T

� = 0, whi
h means that � is a 1-
o
y
le with respe
t to the indu
ed a
tion of g on EndV .

Another spe
ial 
ase arises if V is a Lie algebra and � = ad Æ
 for some 
 2 C

1

(g; V ). In

this 
ase

R

S

0

= d

T

� +

1

2

[�;�℄ = ad Æ(d

S


 +

1

2

[
; 
℄):

(b) Twisted 
omplexes as above arise naturally in di�erential geometry, where one 
onsiders

the Lie algebra g := V(M) of smooth ve
tor �elds on a manifold and the algebra V := C

1

(M;R)

of smooth fun
tions on M , whi
h is a g-module with respe
t to S(X):f := X:f . Now any smooth

1-form 
 2 


1

(M;R) 
an be viewed as an element of C

1

(g; V ), and from the algebra stru
ture

on V we obtain an element � 2 C

1

(g;End(V )) by �(X)(f) := 
(X) � f . Then

d

�

� = d

S

�+ � ^ � = d�+ 
 ^ �

in the sense of exterior 
al
ulus. Therefore d

2

�

vanishes if and only if 0 = d

T

�, whi
h is the

operator of multipli
ation with the 2-form d
 in the asso
iative algebra 


�

(M;R). A more

dire
t way to see this is to use the relation

(d+ 


^

)

2

= d

2

+ d Æ 


^

+ 


^

Æ d+ (
 ^ 
)

^

= (d
)

^

:

(
) We get a related situation for V := C

1

(M; k) for some lo
ally 
onvex Lie algebra k .

Then V also is a module of g = V(M), and for 
 2 


1

(M; k) � C

1

(g; V ) we may 
onsider the

map � 2 C

1

(g;End(V )) given by �(X)(�) := [
; �℄ . Then (a) implies that d

2

�

= 0 is equivalent to

� satisfying the Maurer{Cartan equation d

T

�+

1

2

[�;�℄ = 0, whi
h is equivalent to d

S


+

1

2

[
; 
℄

having values in the 
enter of k .
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II. Extensions of topologi
al Lie algebras

In this se
tion we dis
uss a method to 
lassify (topologi
ally split) extensions of a Lie algebra

g by a Lie algebra n in terms of 
ontinuous Lie algebra 
ohomology. The 
onstru
tion of a Lie

algebra from a fa
tor system (S; !) is 
losely related to 
rossed modules, whi
h we dis
uss in

Se
tion III.

De�nition II.1. Let g and n be topologi
al Lie algebras. A topologi
ally split short exa
t

sequen
e

n ,!

b

g !! g

is 
alled a (topologi
ally split) extension of g by n . If we identify n with its image in

b

g , this

means that

b

g is a Lie algebra 
ontaining n as a topologi
ally split ideal su
h that

b

g=n

�

=

g .

Two extensions n ,!

b

g

1

!! g and n ,!

b

g

2

!! g are 
alled equivalent if there exists a

morphism ':

b

g

1

!

b

g

2

of topologi
al Lie algebras su
h that the diagram

n ,!

b

g

1

!! g

?

?

y

id

n

?

?

y

'

?

?

y

id

g

n ,!

b

g

2

!! g


ommutes. It is easy to see that this implies that ' is an isomorphism of topologi
al Lie algebras

(Exer
ise), hen
e de�nes an equivalen
e relation. We write Ext(g; n) for the set of equivalen
e


lasses of extensions of g by n .

We 
all an extension q:

b

g ! g with ker q = n trivial, or say that the extension splits, if

there exists a 
ontinuous Lie algebra homomorphism �: g !

b

g with q Æ � = id

g

. In this 
ase the

map

no

S

g !

b

g; (n; x) 7! n+ �(x)

is an isomorphism, where the semi-dire
t sum is de�ned by the homomorphism

S: g ! dern; S(x):n := [�(x); n℄:

Next we give a des
ription of Lie algebra extensions n ,!

b

g !! g in terms of data asso
iated

to g and n . Let q:

b

g ! g be an n-extension of g . We 
hoose a 
ontinuous linear se
tion �: g !

b

g

of q . Then the linear map

�: n� g !

b

g; (n; x) 7! n+ �(x)

is an isomorphism of topologi
al ve
tor spa
es. To express the Lie bra
ket in terms of this produ
t

stru
ture on

b

g , we de�ne the linear map

S: g ! dern; S(x) := ad

n

(�(x)) := (ad�(x)) j

n

and the alternating bilinear map

!: g� g ! n; !(x; y) := R

�

(x; y) := [�(x); �(y)℄ � �([x; y℄) = (

1

2

[�; �℄ + d

g

�)(x; y);

where the last expression has to be understood in the terminology introdu
ed in Se
tion I, and

d

g

refers to the trivial g-module stru
ture on

b

g . The 
ontinuity of � immediately implies the


ontinuity of ! , and S is 
ontinuous in the sense that the map g � n ! n; (x; n) 7! S(x):n is


ontinuous. Now � is an isomorphism of topologi
al Lie algebras if we endow n� g with the Lie

bra
ket

(2:1) [(n; x); (n

0

; x

0

)℄ := ([n; n

0

℄ + S(x):n

0

� S(x

0

):n+ !(x; x

0

); [x; x

0

℄):
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De�nition II.2. A 
ontinuous outer a
tion of g on n is a linear map S: g! der n for whi
h

the bilinear map

g� n ! n; (x; n) 7! S(x):n

is 
ontinuous, i.e., S 2 C

1




(g; dern), and there exists a 
ontinuous alternating map ! with

R

S

= ad Æ!: If, in addition, d

S

! = 0 (
f. Lemma I.4), then we 
all the pair (S; !) a 
ontinuous

fa
tor system for (g; n). We write Z

2

(g; n) for the set of all su
h 
ontinuous fa
tor systems and

Z

2

(g; n)

S

:= f! 2 C

2

(g; n):R

S

= ad Æ!; d

S

! = 0g:

On the set of all 
ontinuous outer a
tions S: g ! dern we de�ne an equivalen
e relation

by

S � S

0

() (9
 2 Lin(g; n)) S = S

0

+ ad

n

Æ
:

We write [S℄ for the equivalen
e 
lass of S , whi
h we 
all a 
ontinuous g-kernel, and out(g; n)

for the set of 
ontinuous g-kernels on n . Let

Q

n

: der(n)! out(n) := der(n)= ad n

denote the quotient homomorphism. Then we 
an atta
h to ea
h 
lass [S℄ the homomorphism

s := Q

n

Æ S: g! out(n)

be
ause Q

n

Æ ad

n

Æ� = 0 holds for ea
h linear map �: g ! n . As ad

n

(n) a
ts trivially on the


enter z(n), ea
h 
ontinuous outer a
tion S de�nes on z(n) the stru
ture of a topologi
al g-

module by x:z := S(x):z .

Remark II.3. If g and n are dis
rete, then for ea
h homomorphism s: g ! out(n) there

exists a linear map S: g ! dern with Q

n

Æ S = s and an alternating map ! 2 C

2

(g; n) with

R

S

= ad

n

Æ! . All outer a
tions are 
ontinuous and S � S

0

is equivalent to Q

n

Æ S = Q

n

Æ S

0

, so

that a 
ontinuous g-kernel is nothing but a homomorphism s: g ! out(n).

A version of the following lemma for Bana
h{Lie algebras 
an be found as Proposition 4.1

in [OR04℄.

Lemma II.4. For a 
ontinuous fa
tor system (S; !) let n �

(S;!)

g be the topologi
al produ
t

ve
tor spa
e n � g endowed with the bra
ket (2.1). Then n �

(S;!)

g is a topologi
al Lie algebra

and

q: n�

(S;!)

g ! g; (n; x) 7! x

de�nes a topologi
ally split extension of g by n .

Conversely, every topologi
ally split extension of g by n is equivalent to some n�

(S;!)

g .

Proof. The 
ontinuity of the bra
ket on n �

(S;!)

g follows from the 
ontinuity assumptions

on S and ! . It is 
lear that the bra
ket is bilinear, and [(n; x); (n; x)℄ = 0 follows from the

assumption that ! is alternating. Sin
e the bra
ket is alternating,

J((n; x); (n

0

; x

0

); (n

00

; x

00

)) :=

X


y
:

[[(n; x); (n

0

; x

0

)℄; (n

00

; x

00

)℄

is an alternating trilinear map (n � g)

3

! n � g . Therefore (2.1) de�nes a Lie bra
ket if and

only if J vanishes on all triples of the form (n; n

0

; n

00

), (x; n

0

; n

00

), (x; x

0

; n

00

) and (x; x

0

; x

00

),

where x; x

0

; x

00

2 g and n; n

0

; n

00

2 n , and we identify n and g with a subspa
e of n� g . As the

in
lusion map n ,! n�

(S;!)

g preserves the bra
ket, we have J(n; n

0

; n

00

) = 0.

It is 
lear that [n�

(S;!)

g; n℄ � n . Therefore J(x; n

0

; n

00

) = 0 follows from S(x) 2 dern for

ea
h x 2 g .

The vanishing of the expressions J(x; x

0

; n

00

) means that

S(x):(S(x

0

):n

00

)� S(x

0

):(S(x):n

00

) = [(0; x); (0; x

0

)℄:n

00

= [!(x; x

0

); n℄ + S([x; x

0

℄):n

00

;
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whi
h is R

S

= ad Æ! .

Finally

[[(0; x); (0; x

0

)℄; (0; x

00

)℄ = [(!(x; x

0

); [x; x

0

℄); (0; x

00

)℄ = (�S(x

00

):!(x; x

0

)+!([x; x

0

℄; x

00

); [[x; x

0

℄; x

00

℄)

implies that J(x; x

0

; x

00

) = (�(d

S

!)(x; x

0

; x

00

); 0) = (0; 0):

If, 
onversely, q:

b

g ! g is a topologi
ally split extension of g by n and �: g !

b

g a 
ontinuous

linear se
tion, then we de�ne ! and S as in the dis
ussion pre
eding (2.1). Then the map

g� n ! n; (x; n) 7! S(x)(n) = [�(x); n℄

is 
ontinuous. Further ! is 
ontinuous and alternating with ad Æ! = ad ÆR

�

= R

ad Æ�

= R

S

:

Eventually d

S

! = 0 follows from Proposition I.8, applied with V =

b

g .

This shows that (S; !) is a 
ontinuous fa
tor system, so that we obtain a 
orresponding

topologi
al Lie algebra n�

(S;!)

g . One readily veri�es that the map

�: n�

(S;!)

g !

b

g; (n; x) 7! n+ �(x)

is an isomorphism of topologi
al Lie algebras and an equivalen
e of n-extensions of g .

The following lemma des
ribes in how many ways we 
an parametrize the same Lie algebra

extension as a produ
t spa
e.

Lemma II.5. Let (�; �) 2 Aut(n)�Aut(g) and 
 2 C

1

(g; n) . Then the map

': n� g ! n� g; (n; x) 7! (�(n) + 
(�(x)); �(n))

is an isomorphism of Lie algebras n�

(S;!)

g! n�

(S

0

;!

0

)

g if and only if

(�; �):S = S

0

+ ad Æ
 and (�; �):! := � Æ ! Æ (� � �)

�1

= !

0

+ d

S

0


 +

1

2

[
; 
℄;

whi
h means that (�; �):(S; !) = 
:(S

0

; !

0

) . Here

((�; �):S)(x) := � Æ (S(�

�1

:x)) Æ �

�1

:

Proof. We have

'([(n; x); (n

0

; x

0

)℄)

= '([n; n

0

℄ + S(x):n

0

� S(x

0

):n+ !(x; x

0

); [x; x

0

℄)

= (�([n; n

0

℄) + �(S(x):n

0

)� �(S(x

0

):n) + �!(x; x

0

) + 
(�([x; x

0

℄)); �([x; x

0

℄))

and

['(n; x); '(n

0

; x

0

)℄

= [(�(n) + 
(�(x)); �(x)); (�(n

0

) + 
(�(x

0

)); �(x

0

))℄

= ([�(n) + 
(�(x)); �(n

0

) + 
(�(x

0

))℄ + S

0

(�(x)):(�(n

0

) + 
(�(x

0

)))

� S

0

(�(x

0

)):(�(n) + 
(�(x))) + !

0

(�(x); �(x

0

)); �([x; x

0

℄)):

Therefore the requirement that ' is a homomorphism of Lie algebras is equivalent to the two


onditions

S

0

(�(x)) Æ �+ ad 
(�(x)) Æ � = � Æ S(x) for x 2 g

and

�!(x; x

0

) + 
(�([x; x

0

℄))

= !

0

(�(x); �(x

0

)) + S

0

(�(x))
(�(x

0

))� S

0

(�(x

0

))
(�(x)) + [
(�(x)); 
(�(x

0

))℄; x; x

0

2 g:

The �rst 
ondition implies that

S

0

(x) + ad 
(x) = � Æ S(�

�1

(x)) Æ �

�1

= ((�; �):S)(x) for all x 2 g;

i.e., S

0

= (�; �):S � ad Æ
 . Similarly, the se
ond 
ondition 
an be written as

(�; �):! = !

0

+ d

S

0


 +

1

2

[
; 
℄:

This proves the lemma.
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Remark II.6. Suppose that S = S

0

+ad Æ
 for some 
 2 C

1

(g; n). In the Lie algebra n�

(S;!)

g

we repla
e the se
tion �: g ! n�

(S;!)

g; x 7! (0; x) by �

0

:= � + 
 . Then ! = R

�

, S = ad

n

Æ�

and S

0

= ad

n

Æ�

0

, so that Lemma I.9(1) yields

R

�

0

= R

�

+ d

S


 +

1

2

[
; 
℄:

Therefore the passage from a pair (S; !) to the 
orresponding pair obtained from 
hanging

the se
tion by adding 
 is given by the a
tion des
ribed in Lemma I.9.

Theorem II.7. The assignment

�:Z

2

(g; n)! Ext(g; n); (S; !) 7! [n�

(S;!)

g℄

fa
tors through a bije
tion

�:Z

2

(g; n)=C

1

(g; n)! Ext(g; n):

For every 
ontinuous outer a
tion S of g on n with Ext(g; n)

[S℄

6= � the map

Z

2

(g; n)

S

! Ext(g; n)

[S℄

; ! 7! [n�

(S;!)

g℄

is surje
tive and its �bers are the 
osets of B

2

(g; z(n))

S

in the aÆne spa
e Z

2

(g; n)

S

with

translation group Z

2

(g; z(n))

S

. Thus Ext(g; n)

[S℄

inherits the stru
ture of an aÆne spa
e with

translation group H

2

(g; z(n))

S

.

Proof. Lemma II.4 implies that � is surje
tive. A

ording to Lemma II.5, an equivalen
e

': n �

(S;!)

g ! n �

(S

0

;!

0

)

g has the form '(n; x) = (n + 
(x); x) with 
 2 C

1

(g; n) satisfying

(S; !) = 
:(S

0

; !

0

). This implies that the �bers of � are the orbits of C

1

(g; n), so that � fa
tors

through the bije
tion �.

If Ext(n; g)

[S℄

is not empty, then it follows from the pre
eding paragraph that ea
h extension

n�

(S

0

;!

0

)

g with S

0

� S is equivalent to one of the form n�

(S;!)

g , where ! 2 Z

2

(g; n)

S

.

All other extension 
lasses 
orresponding to [S℄ are given by Lie algebras of the form

n�

(S;!

0

)

g . The requirement ad Æ! = R

S

= ad Æ!

0

implies � := !

0

� ! 2 C

2

(g; z(n)). Therefore

0 = d

S

!

0

= d

S

! + d

S

� = d

S

�

implies � 2 Z

2

(g; z(n))

S

. This means that !

0

2 ! + Z

2

(g; z(n))

S

.

A

ording to Lemma II.5, an equivalen
e ': n�

(S;!)

g ! n�

(S;!

0

)

g has the form '(n; x) =

(n+ �(x); x) with � 2 C

1

(g; z(n)) satisfying ! � !

0

= d

S

�: This 
ompletes the proof.

Corollary II.8. For a 
ontinuous g-kernel [S℄ the map

H

2

(g; z(n))

S

� Ext(g; n)

[S℄

! Ext(g; n)

[S℄

; (�; [n�

(S;!)

g℄) 7! [n�

(S;!+�)

g℄

is a well-de�ned simply transitive a
tion, so that Ext(g; n)

[S℄


arries the stru
ture of an aÆne

spa
e with translation group H

2

(g; z(n))

S

.

Remark II.9. (Abelian extensions) Suppose that a is an abelian Lie algebra. Then the adjoint

representation of a is trivial and a 
ontinuous outer a
tion is the same as a 
ontinuous a
tion

S: g ! der a of g on a . For ! 2 C

2

(g; a) we have d

S

! = d

g

! , where d

g

is the Lie algebra

di�erential. Therefore the pair (S; !) is a 
ontinuous fa
tor system if and only if ! is a 2-
o
y
le.

In this 
ase we write a�

!

g for this Lie algebra, whi
h is a� g , endowed with the Lie bra
ket

[(a; x); (a

0

; x

0

)℄ = (x:a

0

� x

0

:a+ !(x; x

0

); [x; x

0

℄):

Further S � S

0

if and only if S = S

0

. Hen
e a 
ontinuous g-kernel [S℄ is the same

as a 
ontinuous g-module stru
ture S on a and Ext(g; a)

S

:= Ext(g; a)

[S℄

is the 
lass of all

a-extensions of g for whi
h the asso
iated g-module stru
ture on a is given by S .

A

ording to Corollary II.8, the equivalen
e 
lasses of extensions 
orrespond to 
ohomology


lasses of 
o
y
les, so that the map

H

2

(g; a)

S

! Ext(g; a)

S

; [!℄ 7! [a�

!

g℄

is a well-de�ned bije
tion. Note that the semidire
t sum a o

S

g is a natural base point in

Ext(g; a)

S

, whi
h leads to a ve
tor spa
e stru
ture instead of the aÆne spa
e stru
ture that we

have if n is non-abelian.
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Remark II.10. The group H

2

(g; z(n))

S

very mu
h depends on the outer a
tion S of g on n .

Let g = R

2

and n = R . Then C

2

(g; z(n)) is 1-dimensional. Further dim g = 2 implies

C

3

(g; z(n)) = f0g , so that ea
h 2-
o
hain is a 
o
y
le. Sin
e B

2

(g; z(n))

S

vanishes if the module

z(n) is trivial and 
oin
ides with Z

2

(g; z(n))

S

otherwise, we have

H

2

(g; z(n))

S

�

=

�

R for S(g):z(n) = f0g

f0g for S(g):z(n) 6= f0g.

De�nition II.11. Let S be a 
ontinuous outer a
tion of g on n and ! 2 C

2

(g; n) with

R

S

= ad Æ! . We have seen in Lemma I.9 that d

S

! 2 Z

3

(g; z(n))

S

. The 
orresponding


ohomology 
lass

�(S) := [d

S

!℄ 2 H

3

(g; z(n))

S

is 
alled the obstru
tion 
lass of the outer a
tion S .

If !

0

2 C

2

(g; n) also satis�es R

S

= ad Æ!

0

, then � := !

0

� ! 2 C

2

(g; z(n)) implies that

d

S

!

0

= d

S

! + d

S

�;

and therefore [d

S

!

0

℄ = [d

S

!℄ does not depend on the 
hoi
e of ! . Moreover, Lemma I.9 implies

that �(S) = �(S

0

) if S

0

� S , so that �([S℄) := [d

S

!℄ only depends on the equivalen
e 
lass

of S .

III. Topologi
al 
rossed modules

In this short se
tion we dis
uss 
rossed modules of topologi
al Lie algebras and explain their

relation to non-abelian extensions. The main result is Theorem III.5, exhibiting the 
hara
-

teristi
 
lass of a 
rossed module as an obstru
tion to the existen
e of a 
ertain extension. In

Proposition III.6 we use this aspe
t to give a another formula for the 
hara
teristi
 
lass.

De�nition III.1. A (split) morphism �: h !

b

g of topologi
al Lie algebras together with a


ontinuous

b

g -module stru
ture

b

g�h ! h; (x; h) 7! x:h on h is 
alled a (split) topologi
al 
rossed

module if the following 
onditions are satis�ed:

(CM1) �(x:h) = [x; �(h)℄ for x 2

b

g , h 2 h .

(CM2) �(h):h

0

= [h; h

0

℄ for h; h

0

2 h .

The 
onditions (CM1/2) express the 
ompatibility of the

b

g-module stru
ture on h with

the adjoint representations of

b

g and h .

Lemma III.2. If �: h !

b

g is a topologi
al 
rossed module, then the following assertions hold:

(1) im(�) is an ideal of

b

g .

(2) ker(�) � z(h) .

(3) ker(�) is a

b

g-submodule of h .

Proof. (1) follows from (CM1), (2) from (CM2), and (3) from (CM1).

Crossed modules for whi
h � is inje
tive are in
lusions of ideals and surje
tive 
rossed

modules are 
entral extensions. In this sense the 
on
ept of a 
rossed module interpolates between

ideals and 
entral extensions.

In the following we shall adopt the following perspe
tive on 
rossed modules. Let �: h !

b

g

be a topologi
ally split 
rossed module. Then n := im(�) is a topologi
ally split 
losed ideal

of

b

g and �: h ! n is a topologi
ally split 
entral extension of n by z := ker(�). In this sense

a topologi
ally split 
rossed module 
an be viewed as a topologi
ally split 
entral extension

�: h ! n of a topologi
ally split ideal n of

b

g for whi
h there exists a

b

g-module stru
ture on h

satisfying (CM1/2).

If, 
onversely, n is a topologi
ally split ideal of the Lie algebra

b

g and �:

b

n ! n is a

topologi
ally split 
entral extension of n by z , then we have a natural topologi
al n-module
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stru
ture on

b

n given by �(n):n

0

:= [n; n

0

℄ . To obtain the stru
ture of a 
rossed module for

�:

b

n !

b

g means that the a
tion of n on

b

n extends to a 
ontinuous

b

g -module stru
ture on

b

n for

whi
h � is equivariant. In the following we shall adopt this point of view. Moreover, we shall

write g :=

b

g=n for the 
okernel of � .

Let f 2 Z

2

(n; z) be a 
o
y
le with

b

n

�

=

z�

f

n (Remark II.9) and assume that

b

n = z�

f

n . We

write the

b

g-module stru
ture on z as (x; z) 7! x:z . Then the

b

g-module stru
ture on

b

n = z�

f

n

is given by

(3:1) x:(z; n) = (x:z + �(x; n); [x; n℄);

where �:

b

g� n ! z is a 
ontinuous bilinear map. Here (CM2) implies that for x 2 n we have

x:(z; n) = [(0; x); (z; n)℄ = (f(x; n); [x; n℄);

so that � j

n�n

= f .

Lemma III.3. (a) That a linear map �

x

2 Lin(n; z) de�nes a derivation

�(x):

b

n !

b

n; (z; n) 7! (x:z + �

x

(n); [x; n℄)

is equivalent to d

n

(�

x

) = x:f; where d

n

refers to the di�erential on C

0

(n;Lin(n; z))

�

=

Lin(n; z) .

Expli
itly this means that for n; n

0

2 n we have

x:f(n; n

0

)� f([x; n℄; n

0

)� f([n

0

; x℄; n) + �

x

([n; n

0

℄) = 0:

(b) Suppose that the linear map �:

b

g ! C

1

(n; z); x 7! �

x

satis�es (a). That � de�nes a

representation of

b

g on

b

n by

x:(z; n) := (x:z + �

x

(n); [x; n℄)

is equivalent to � being a 1-
o
y
le w.r.t. the natural

b

g-module stru
ture on C

1

(n; z)

�

=

Lin(n; z) .

Expli
itly this means that for x; x

0

2

b

g and n 2 n we have

x:�(x

0

; n)� x

0

:�(x; n)� �([x; x

0

℄; n) + �(x; [x

0

; n℄) + �(x

0

; [n; x℄) = 0:

Proof. (a) To apply Proposition A.1 in Appendix A, we �rst observe that

b

n is a 
entral

extension, so that (A.2) redu
es to x:f = d

n

(�

x

). The expli
it formula now follows from

x:f(n; n

0

)� f([x; n℄; n

0

)� f(n; [x; n

0

℄) = n:�

x

(n

0

)� n

0

:�

x

(n)� �

x

([n; n

0

℄) = ��

x

([n; n

0

℄):

(b) The �rst assertion follows from Proposition A.7, and the expli
it formula from

(d

bg

�)(x; x

0

)(n) = x:�(x

0

; n)� �(x

0

; [x; n℄)� x

0

:�(x; n) + �(x; [x

0

; n℄)� �([x; x

0

℄; n)

= x:�(x

0

; n)� x

0

:�(x; n) � �([x; x

0

℄; n) + �(x; [x

0

; n℄) + �(x

0

; [n; x℄) = 0:

Sin
e n is topologi
ally split and � j

n�n

is alternating, there exists a 
ontinuous alter-

nating extension

e

f 2 C

2

(

b

g; z) of � . Then d

bg

e

f 2 Z

3

(

b

g; z) is a 3-
o
y
le vanishing on n �

b

g

2

(Lemma III.3), so that it 
an be written as d

bg

e

f = q

�

� with � 2 Z

3

(g; z).

Lemma III.4. The 
ohomology 
lass �

�

:= [�℄ 2 H

3

(g; z) does not depend on the 
hoi
e of

e

f

and the 
o
y
le f 2 Z

2

(n; z) .

We 
all �

�

the 
hara
teristi
 
lass of the 
rossed module �:

b

n !

b

g .

Proof. If

e

f and

e

f

0

are both extensions of � 2 C

2

(

b

g; z), then

e

f

0

�

e

f vanishes on

b

g� n , hen
e


an be written as q

�

�

0

for some �

0

2 C

2

(g; z). Then

d

bg

e

f

0

� d

bg

e

f = d

bg

q

�

� = q

�

(d

bg

�)
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so that both lead to the same 
ohomology 
lass in H

3

(g; z).

Now let f

0

:= f + d

n


 2 Z

2

(n; z) be an equivalent 
o
y
le. Then

': z�

f

0

n! z�

f

n; (z; n) 7! (z + 
(n); n)

is an equivalen
e of 
entral extensions (Lemma II.5). If the a
tion of

b

g on z�

f

0

n is given by �

0

,

then the

b

g -equivarian
e of ' implies that

(x:z + x:
(n) + �(x; n); [x; n℄) = x:'(z; n) = '(x:(z; n)) = '(x:z + �

0

(x; n); [x; n℄)

= (x:z + �

0

(x; n) + 
([x; n℄); [x; n℄):

This means that

�

0

= � + x:
; where (x:
)(n) = x:
(n)� 
([x; n℄)

denotes the natural a
tion of

b

g on C

1

(n; z) = Lin(n; z). Sin
e n is topologi
ally split, there exists

an extension e
 2 C

1

(

b

g; z) of 
 . For x 2

b

g and n 2 n we then have

(d

bg

e
)(x; n) = x:e
(n)� n:e
(x) � e
([x; n℄) = x:
(n)� 
([x; n℄) = (x:
)(n);

so that

e

f+d

bg

e
 is an alternating 
ontinuous extension of �

0

. In view of the �rst part of the proof,

we may use this extension to 
al
ulate the 
ohomology 
lass asso
iated to �

0

, whi
h therefore is

given by fa
torization of d

bg

e

f+d

2

bg

e
 = d

bg

e

f to g , and therefore equal to the 
lass asso
iated to � .

Theorem III.5. For the topologi
ally split 
rossed module �:

b

n !

b

g and the 
orresponding

b

g-module z := ker� the following are equivalent:

(1) �

�

= 0 in H

3

(g; z) .

(2) If

b

n = z�

f

n for some f 2 Z

2

(n; z) and x:(z; n) = (x:z + �(x; n); [x; n℄) , then � extends to

a 
o
y
le in Z

2

(

b

g; z) .

(3) There exists a topologi
ally split abelian extension z ,!

e

g

q

��!

b

g and a

b

g-equivariant equiva-

len
e

b

n! q

�1

(n) of z-extensions of n .

Proof. (1) ) (2): If �

�

= 0 and

e

f 2 C

2

(

b

g; z) is an extension of � , then there exists a

� 2 C

2

(g; z) with d

bg

e

f = q

�

(d

g

�) = d

bg

(q

�

�), so that

e

f � q

�

� is an extension of � to a 
o
y
le

of

b

g .

(2) ) (3): Let

e

f 2 Z

2

(

b

g; z) be a 
o
y
le extending � and

e

g := a�

e

f

b

g the 
orresponding

extension of

b

g by a . Then the in
lusion

b

n = z�

f

n!

e

g; (z; n) 7! (z; n) indu
es a

b

g -equivariant

equivalen
e

b

n ! q

�1

(n).

(3) ) (1): Suppose that we have a

b

g-equivariant equivalen
e of z-extensions

b

n ! q

�1

(n) �

e

g:

Write

e

g = z �

e

f

b

g for some

e

f 2 Z

2

(

b

g; a). Our assertion means that

b

n

�

=

z �

f

n for f :=

e

f j

n�n

,

so that we may identify

b

n with the subspa
e z� n �

e

g , and that the representation of

b

g on this

subspa
e

b

n is given by

x:(z; n) = (x:z + �(x; n); [x; n℄):

Then

e

f is an extension of � , so that (1) follows from the de�nition of �

�

.

An alternative formula for the 
hara
teristi
 
lass

For the appli
ations to Lie algebra extensions in Se
tion IV below we shall also need another

formula for the 
hara
teristi
 
lass of a 
rossed module, whi
h is the traditional way to de�ne the


hara
teristi
 
lass (
f. [We03℄) by showing that the in
lusion z ,! z(

b

n) maps the 
hara
teristi



lass �

�

to the obstru
tion 
lass �(S) 2 H

3

(g; z(

b

n))

S

of the 
orresponding outer a
tion of g

on

b

n .
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Proposition III.6. Let �:

b

n !

b

g be a topologi
ally split 
rossed module, �: g = g !

b

g a


ontinuous linear se
tion, S: g! der

b

n the outer a
tion of g on

b

n de�ned by S(x)(n) := �(x):n ,

and !: g� g !

b

n a 
ontinuous alternating map with R

�

= � Æ ! . Then d

S

! 2 Z

3

(g; z) satis�es

�

�

= [d

S

!℄ .

Proof. First we pi
k f 2 Z

2

(n; z) with

b

n = z �

f

n . It is 
lear that d

�

! is a 
ontinuous

alternating trilinear map. We observe that

! = (!

z

; R

�

) with !

z

2 C

2

(g; z)

and write the a
tion of

b

g on

b

n as x:(z; n) = (x:z+ �(x; n); [x; n℄) with a 
ontinuous bilinear map

�:

b

g� n ! z . Then

(d

S

!)(x; x

0

; x

00

) =

X


y
:

�(x):

�

!

z

(x

0

; x

00

); R

�

(x

0

; x

00

)

�

�

�

!

z

([x; x

0

℄; x

00

); R

�

([x; x

0

℄; x

00

)

�

=

X


y
:

�

x:!

z

(x

0

; x

00

) + �(�(x); R

�

(x

0

; x

00

)); [�(x); R

�

(x

0

; x

00

)℄

�

�

�

!

z

([x; x

0

℄; x

00

); R

�

([x; x

0

℄; x

00

)

�

:

The n-
omponent of this expression is d

ad Æ�

(R

�

) = 0, by the abstra
t Bian
hi identity (apply

Proposition I.8 with V =

b

g). Therefore im(d

S

!) � z , and

(d

S

!)(x; x

0

; x

00

) = (d

S

!

z

)(x; x

0

; x

00

) +

X


y
:

�(�(x); R

�

(x

0

; x

00

)):

To 
ompare this with �

�

, let

e

f 2 C

2

(

b

g; z) be an alternating extension of � . In addition, we

may assume that �

�

e

f = !

z

(whi
h determines

e

f uniquely). We now show that q

�

(d

S

!) = d

bg

e

f ,

so that �

�

= [d

S

!℄ 2 H

3

(g; z). In fa
t, for x; x

0

; x

00

2 g we have

(d

bg

e

f)(�(x); �(x

0

); �(x

00

)) =

X


y
:

x:

e

f(�(x

0

); �(x

00

))�

e

f([�(x); �(x

0

)℄; �(x

00

))

=

X


y
:

x:

e

f(�(x

0

); �(x

00

))�

e

f(�([x; x

0

℄) +R

�

(x; x

0

); �(x

00

))

=

X


y
:

x:!

z

(x

0

; x

00

)� !

z

([x; x

0

℄; x

00

)�

e

f(R

�

(x; x

0

); �(x

00

))

=

X


y
:

x:!

z

(x

0

; x

00

)� !

z

([x; x

0

℄; x

00

) + �(�(x

00

); R

�

(x; x

0

))

= (d

S

!

z

)(x; x

0

; x

00

) +

X


y
:

�(�(x); R

�

(x

0

; x

00

)) = (d

S

!)(x; x

0

; x

00

):

IV. Appli
ations to general extensions of Lie algebras

Let S: g ! der n be a 
ontinuous outer a
tion and ! 2 C

2

(g; n) with R

S

= ad Æ! . In the

following we 
onsider ad n � dern as the topologi
al Lie algebra n

ad

:= n=z(n) endowed with

the quotient topology and view ad: n ! n

ad

as the quotient map. On the topologi
al produ
t

ve
tor spa
e

g

S

:= n

ad

� g

we de�ne an alternating 
ontinuous bilinear map by

[(adn; x); (adn

0

; x

0

)℄ :=

�

ad([n; n

0

℄ + S(x):n

0

� S(x

0

):n+ !(x; x

0

)); [x; x

0

℄)

=

�

[adn; adn

0

℄ + [S(x); adn

0

℄� [S(x

0

); adn℄ +R

S

(x; x

0

); [x; x

0

℄):

Note that the se
ond form of the bra
ket implies in parti
ular that it does not depend on ! . We

observe that

S

1

:= ad ÆS: g! dern

ad

is a linear map with R

S

1

= ad ÆR

S

:
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Lemma IV.1. g

S

is a Lie algebra with the following properties:

(1) The map q

S

: g

S

! g; (adn; x) 7! x is a topologi
ally split extension of g by n

ad

whi
h, up

to equivalen
e of extensions, only depends on the 
lass [S℄ 2 out(g; n) .

(2) The map �: g

S

! dern; (adn; x) 7! adn + S(x) de�nes a 
ontinuous g-module stru
ture

on n .

(3) The map �: n ! g

S

; n 7! (adn; 0) is a topologi
al 
rossed module whi
h is topologi
ally

split if and only if z(n) is topologi
ally split in n . Moreover, ker� = z(n) and 
oker(�) =

g

S

=n

ad

�

=

g:

Proof. We apply Proposition I.8 with (�; !) := (S;R

S

) to obtain the relation d

S

1

R

S

= 0

from the abstra
t Bian
hi identity. Hen
e g

S

is a Lie algebra isomorphi
 to n

ad

�

(S

1

;R

S

)

g .

(1) The �st part is immediate from the 
onstru
tion. To see that the Lie algebra g

S

depends, as an extension of g by n

ad

, only on the equivalen
e 
lass [S℄ , let 
: g ! n be a


ontinuous linear map and S

0

:= S � ad

n

Æ
 . Then (S

1

; R

S

) = (ad

n

Æ
):(S

0

1

; R

S

0

) holds in

Z

2

(g; n

ad

) (Lemma I.9), and Lemma II.5 shows that

 : g

S

! g

S

0

; (adn; x) 7! (ad(n+ 
(x)); x)

is an equivalen
e of extensions of g by n

ad

.

(2) The 
ontinuity of the module stru
ture follows from �(adn; x):n

0

= [n; n

0

℄ + S(x):n

0

.

That � is a homomorphism of Lie algebras follows from

�([(adn; x); (adn

0

; x

0

)℄) = [adn; adn

0

℄ + [S(x); adn

0

℄� [S(x

0

); adn℄ +R

S

(x; x

0

) + S([x; x

0

℄)

= [adn; adn

0

℄ + [S(x); adn

0

℄� [S(x

0

); adn℄ + [S(x); S(x

0

)℄

= [�(adn; x); �(adn

0

; x

0

)℄:

(3) is an immediate 
onsequen
e of (1) and (2).

Lemma IV.2. The map  = (�; q

S

): g

S

! der(n) � g is inje
tive and yields an isomorphism

of Lie algebras

g

S

�

=

f(d; x) 2 der(n)� g:S(x) 2 d+ adng:

Proof. Sin
e ker q

S

= n

ad

and (ker �)\ n

ad

= f0g , the map  is an inje
tive homomorphism

of Lie algebras.

For ea
h element (adn; x) 2 g

S

we have  (adn; x) = (adn+ S(x); x); whi
h prove \� ,"

and for any pair (d; x) 2 der(n) � g with d 2 S(x) + ad n we �nd an element n 2 n with

d = S(x) + adn , whi
h means that (d; x) =  (adn; x). This proves the lemma.

Lemma IV.3. Let q:

b

g ! g be a topologi
ally split extension of g by n 
orresponding to the


ontinuous g-kernel [S℄ and ad

n

the 
orresponding representation of

b

g on n . Assume further

that z(n) is topologi
ally split in n . Then the map


 = (ad

n

�S Æ q; q):

b

g ! der(n)� g; x 7! (ad

n

(x)� S(q(x)); q(x))

de�nes a topologi
ally split extension z(n) ,!

b

g




��!g

S

: This assignment has the following prop-

erties:

(1) If q

j

:

b

g

j

! g , j = 1; 2 , are equivalent extensions of g by n , then 


j

:

b

g

j

! g

S

are equivalent

extensions of g

S

by the g

S

-module z(n) . We thus obtain a map

� : Ext(g; n)

[S℄

! Ext(g

S

; z(n)):

(2) An extension 
:

b

g ! g

S

of g

S

by z(n) 
omes from an extension of g by n 
orresponding

to [S℄ if and only if there exists a g

S

-equivariant equivalen
e �: n ! 


�1

(n

ad

) of 
entral

extensions of n

ad

by z(n) .

Proof. That

b

g 
orresponds to [S℄ means that it is equivalent to a Lie algebra of the form

n�

(S;!)

g , where (S; !) is a 
ontinuous fa
tor system (De�nition II.2). This means that

(4:1) ad

n

(n; x) = ad(n) + S(x) = ad(n) + S(q(n; x));
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so that 
(n; x) = (adn; x): Now the expli
it formula for the bra
kets in n �

(S;!)

g and g

S

implies that 
 is a quotient morphism of topologi
al Lie algebras. Its kernel is z(n), so that the

assumption that this is a topologi
ally split ideal of n implies that 
 de�nes a topologi
ally split

extension of g

S

by z(n).

(1) If ':

b

g

1

!

b

g

2

is an equivalen
e of n-extensions of g , then the representations ad

j

n

,

j = 1; 2, of

b

g

j

on n satisfy ad

2

n

Æ' = ad

1

n

be
ause ' j

n

= id

n

. Therefore the quotient maps




j

= (ad

j

n

�S Æ q; q):

b

g

j

! g

S

satisfy 


2

Æ ' = (ad

2

n

Æ'� S Æ q Æ '; q

2

Æ ') = (ad

1

n

�S Æ q; q

1

) = 


1

: This means that ':

b

g

1

!

b

g

2

is an equivalen
e of extensions of g

S

by z(n).

(2) Suppose �rst that the extension 
:

b

g! g

S

by z(n) 
omes from the n-extension q:

b

g ! g


orresponding to [S℄ . We may assume that

b

g = n�

(S;!)

g (Lemma II.5). Then (4.1) shows that

(n; x) 2

b

g a
ts on n by adn+S(x) = �(adn; x). Therefore the in
lusion n ,!

b

g on the subspa
e




�1

(n

ad

) is equivariant with respe
t to the a
tion of

b

g

S

, and therefore in parti
ular for the a
tion

of n

ad

, so that it is an equivalen
e of 
entral extensions of n

ad

.

Suppose, 
onversely, that 
:

b

g! g

S

is an extension of g

S

by z(n) for whi
h there exists a

g

S

-equivariant equivalen
e �: n ! 


�1

(n

ad

) of 
entral extensions of n

ad

by z(n). Then

b

g=�(n) =

b

g=


�1

(n

ad

)

�

=

g

S

=n

ad

�

=

g;

so that we obtain by the quotient map q:

b

g ! g an extension of g by n . As the a
tion of

g

S

�

=

b

g=z(n) on n indu
ed by the adjoint representation of

b

g on n 
oin
ides with the given

a
tion

�: g

S

! dern; (adn; x) 7! adn+ S(x)

of g

S

on n be
ause � is g

S

-equivariant, the g-kernel of the extension q:

b

g ! g is [S℄ .

For the adjoint representation ad

n

of

b

g on n we have ad

n

= � Æ 
 and q = q

S

Æ 
 , so that

the 
orresponding map

b

g ! g

S


oin
ides with 
 . This means that 
:

b

g ! g

S

is asso
iated to

the extension q:

b

g ! g by the pro
ess des
ribed above.

For the following theorem we assume that the ideal z(n) of n is topologi
ally split, so that

we may assume that n = z(n)�

f

adn for some 
ontinuous 
o
y
le f 2 Z

2

(ad n; z(n)). Then the

a
tion of g

S

on n is des
ribed by a 
ontinuous bilinear map �: g

S

� n ! z(n) via

(adn; x):(z; adn

0

) = (x:z + �((adn; x); adn

0

); [adn+ S(x); adn

0

℄):

In the following we write

Z

2

(g

S

; z(n))

�

= f

e

f 2 Z

2

(g

S

; z(n)):

e

f j

g

S

�n

ad

= �g

for the set of all z(n)-valued 
o
y
les extending � .

Theorem IV.4. If the ideal z(n) of n is topologi
ally split, then the following assertions hold:

(1) For the 
ontinuous g-kernel [S℄ the 
ohomology 
lass �([S℄) = [d

S

!℄ 2 H

3

(g; z(n)) vanishes

if and only if Ext(g; n)

[S℄

6= � .

(2) If [d

S

!℄ = 0 , then ea
h topologi
ally split n-extension of g 
orresponding to [S℄ is equivalent

to an extension of the form

q: z(n)�

e

f

g

S

! g; (z; x) 7! q

S

(x);

e

f 2 Z

2

(g

S

; z(n))

�

:

The set Z

2

(g

S

; z(n))

�

is an aÆne spa
e on whi
h the ve
tor spa
e Z

2

(g; z(n))

S

a
ts simply

transitively by !:

e

f :=

e

f+q

�

S

!: Two n-extension of g 
orresponding to

e

f

1

;

e

f

2

2 Z

2

(g

S

; z(n))

�

are equivalent if and only if

e

f

2

�

e

f

1

2 q

�

S

B

2

(g; z(n)) .
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Proof. (1) In view of Proposition III.6, the 
hara
teristi
 
lass �

�

2 H

3

(g; z(n)) of the 
rossed

module �: n ! g

S

is represented by the 
o
y
le d

�

! , where �: g ! g

S

; x 7! (0; x) is the 
anoni
al

se
tion and !: g� g ! n is a 
ontinuous alternating map with R

S

= R

�

= � Æ! = ad Æ!: Hen
e

(d

�

!)(x; x

0

; x

00

) =

X


y
:

�(x):!(x

0

; x

00

)� !([x; x

0

℄; x

00

)

=

X


y
:

S(x):!(x

0

; x

00

)� !([x; x

0

℄; x

00

) = (d

S

!)(x; x

0

; x

00

)

(
f. Lemma II.4).

In view of Theorem III.5, �

�

vanishes if and only if � extends to a 
ontinuous 
o
y
le on

g

S

, i.e., if and only if Z

2

(g

S

; z(n))

�

6= �: Suppose that this 
ondition is satis�ed. Then we have

a surje
tive map

Z

2

(g

S

; z(n))

�

! Ext(g; n)

[S℄

;

e

f 7! [z(n)�

e

f

g

S

℄

(Lemma IV.3).

For two 
o
y
les

e

f

1

;

e

f

2

2 Z

2

(g

S

; z(n))

�

the di�eren
e

e

f

2

�

e

f

1

vanishes on g

S

� n

ad

, hen
e


an be written as q

�

S

! for some ! 2 Z

2

(g; z(n)). Conversely, for

e

f 2 Z

2

(g

S

; z(n))

�

and

! 2 Z

2

(g; z(n)) the 
o
y
le

e

f + q

�

S

! is also 
ontained in Z

2

(g

S

; z(n))

�

be
ause q

�

S

! vanishes

on g

S

� n

ad

. As the map q

�

S

:Z

2

(g; z(n)) ! Z

2

(g

S

; z(n)) is inje
tive, Z

2

(g

S

; z(n))

�

is an aÆne

spa
e with translation group Z

2

(g; z(n)) a
ting by !:

e

f :=

e

f + q

�

S

! .

Let

e

f

1

;

e

f

2

2 Z

2

(g

S

; z(n))

�

and q

j

:

b

g

j

! g the 
orresponding n-extensions of g . If ':

b

g

1

!

b

g

2

is an equivalen
e of n-extensions of g , then Lemma IV.3(1) implies that ' also is an

equivalen
e of z(n)-extensions of g

S

, hen
e 
an be written in the form

':

b

g

1

= z(n) �

e

f

1

g

S

!

b

g

2

= z(n)�

e

f

2

g

S

; (z; x) 7! (z + �(x); x);

where �: g

S

! z(n) satis�es d

g

S� =

e

f

1

�

e

f

2

: Sin
e ' �xes n = z(n)�

f

n

ad

�

b

g

j

pointwise, we have

n

ad

� ker� , so that � = q

�

S

� for some � 2 C

1

(g; z(n)). This means that

e

f

2

�

e

f

1

2 q

�

S

B

2

(g; z(n)).

If, 
onversely,

e

f

2

�

e

f

1

= d

g

S
(q

�

�) for some � 2 C

1

(g; z(n)), then

': z(n)�

e

f

1

g

S

! z(n)�

e

f

2

g

S

; (z; x) 7! (z + �(q

S

(x)); x)

is an equivalen
e of n-extensions of g .

Remark IV.5. If z(n) = f0g , then H

3

(g; z(n))

S

= f0g implies that ea
h 
ontinuous g-kernel

[S℄ 
orresponds to an extension of g by n and if S is given, then ! is determined uniquely by

R

S

= ad

n

Æ! . As we also have H

2

(g; z(n))

S

= f0g , this extension is unique up to equivalen
e

and given by g

S

.

Remark IV.6. In [Ho54a℄ G. Ho
hs
hild shows that for ea
h g-module V of a Lie algebra g

ea
h element of H

3

(g; V ) arises as an obstru
tion for a homomorphism s: g ! out(n), where n

is a Lie algebra with V = z(n). In [Ho54b℄ he analyzes for a �nite-dimensional Lie algebra g and

a �nite-dimensional module V the question of the existen
e of a �nite-dimensional Lie algebra

n with the above properties. In this 
ase the answer is aÆrmative if g is solvable, but if g is

semisimple, then all obstru
tions of homomorphism s: g! out(n) are trivial be
ause s lifts to a

homomorphism S: g ! dern by Levi's Theorem. The general result is that a 
ohomology 
lass

[!℄ 2 H

3

(g; V ) arises as an obstru
tion if and only if its restri
tion to a Levi 
omplement s in g

vanishes.
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V. Examples

In this se
tion we dis
uss some 
lasses of examples demonstrating the e�e
tiveness of the method

to determine the 
hara
teristi
 
lass of a 
rossed module. We also dis
uss in Se
tion VI some

relations to geometri
 situations arising in the theory of prin
ipal �ber bundles. The 
onstru
tions

in this se
tion are inspired by the 
onstru
tion of the gerbe 
orresponding to the 
anoni
al 3-


ohomology 
lass of a 
ompa
t simple Lie group ([Bry93, Se
t. 5.4℄).

Example V.1. Let g be a lo
ally 
onvex real Lie algebra. We 
onsider the smooth path algebra

b

g := P (g) := C

1

�

(I; g) := f� 2 C

1

(I; g): �(0) = 0g

of g endowed with its natural topology of uniform 
onvergen
e of all derivatives. Then evaluation

in 1 leads to a topologi
ally split short exa
t sequen
e n ,!

b

g !! g; where n := ker ev

1

is the ideal

of 
losed paths in P (g) and a 
ontinuous linear se
tion �: g ! P (g) is given by �(x)(t) := tx .

Note that n is larger than the Lie algebra C

1

(S

1

; g) whi
h 
orresponds to those elements � of

n for whi
h all derivatives have the same boundary values in 0 and 1.

Let �: g � g ! z be a 
ontinuous invariant bilinear form. We 
onsider z as a trivial

b

g-

module. Then the Lie algebra n has a 
entral extension

b

n := z �

!

n , where the 
o
y
le ! is

given by

!(�; �) :=

Z

1

0

�(�; �

0

) :=

Z

1

0

�(�; �

0

)(t) dt:

We de�ne e! 2 C

2

(

b

g; z) by

e!(�; �) :=

1

2

Z

1

0

�

�(�; �

0

)� �(�; �

0

)

�

=

1

2

Z

1

0

�

2�(�; �

0

)� �(�; �)

0

�

=

Z

1

0

�(�; �

0

)�

1

2

�(�; �)(1):

We observe that for (�; �) 2

b

g� n we have e!(�; �) = �(�; �) :=

R

1

0

�(�; �

0

):

For the following 
al
ulations we note that

X


y
:

Z

1

0

�([�; �℄; �

0

) =

Z

1

0

�([�; �℄; �

0

) + �([�; �℄; �

0

) + �([�; �℄; �

0

)

=

Z

1

0

�([�; �℄; �

0

) + �([�

0

; �℄; �℄) + �([�; �

0

℄; �) =

Z

1

0

�([�; �℄; �)

0

= �([�; �℄; �)(1)

and therefore

X


y
:

Z

1

0

�([�; �℄

0

; �) =

X


y
:

Z

1

0

�([�

0

; �℄; �) + �([�; �

0

℄; �) =

X


y
:

Z

1

0

�(�

0

; [�; �℄) + �([�; �℄; �

0

)

= �([�; �℄; �)(1) + �([�; �℄; �)(1) = 2�([�; �℄; �)(1) = 2�([�; �℄; �)(1):

Now

(d

bg

e!)(�; �; �) =

1

2

Z

1

0

X


y
:

�(�; [�; �℄

0

)� �([�; �℄; �

0

)

=

1

2

(2�([�; �℄; �)(1) � �([�; �℄; �)(1)) =

1

2

�([�; �℄; �)(1);

and this 
o
y
le vanishes on

b

g

2

� n . In view of Lemma III.3, this implies in parti
ular that

x:(z; n) := (�(x; n); [x; n℄)

de�nes a 
ontinuous representation of

b

g on

b

n . We have thus 
al
ulated the 
hara
teristi
 
lass

�

�

2 H

3

(g; z) of the 
rossed module �:

b

n !

b

g via the formula ev

�

1

�

�

= [d

bg

e!℄ . Hen
e it is

represented by the 
o
y
le

� 2 Z

3

(g; z); �(x; y; z) :=

1

2

�([x; y℄; z):

If g is �nite-dimensional simple and � is non-zero, then �

�

6= 0.
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Example V.2. In this example we dis
uss a more algebrai
ally oriented variation of the

pre
eding example. Here

b

g and g are dis
rete Lie algebras.

Let A be a 
ommutative algebra and

b

g := A
 g: Then ea
h non-zero 
hara
ter �:A! K

de�nes a surje
tive homomorphism q

g

:

b

g ! g . Let n := ker q

g

= (ker�)
 g be its kernel.

Let M be an A-module and D:A!M a module derivation, i.e., a linear map with

D(ab) = a:D(b) + b:D(a); a; b 2 A:

Further let I :M ! K a linear fun
tional with ID = � . Then we 
onsider the bilinear form

!

n

: n� n ! K ; (a
 x; b
 y) 7! I(aD(b))�(x; y)

whi
h is a restri
tion of the form

e!:

b

g�

b

g ! K ; (a
 x; b
 y) 7!

1

2

I(aD(b)� bD(a))�(x; y)

satisfying

e!(a
 x; b
 y) = �(a
 x)(b
 y) := I(aD(b))�(x; y)

for ab 2 ker� .

A typi
al example for this situation is given by A = C

1

�

(I;R), �(f) = f(1), M =

C

1

(I;R), Df = f

0

and I(f) =

R

1

0

f (Example V.1). The relation I ÆD = � follows from

ID(f) = I(f

0

) =

Z

1

0

f

0

= f(1) = �(f) for f 2 A:

For a 2 ker�; b; 
 2 A we have

aD(b
) + bD(a
) + 
D(ab) = D(ab
) 2 D(ker�) � ker I;

whi
h means that (a; b) 7! I(aD(b)) is a 
y
li
 
o
y
le on the ideal ker� . We therefore have

(d

bg

e!)(a
 x; a

0


 x

0

; a

00


 x

00

) =

X


y
:

e!(a

00


 x

00

; [a
 x; a

0


 x

0

℄) =

X


y
:

e!(a

00


 x

00

; aa

0


 [x; x

0

℄)

= �(x

00

; [x; x

0

℄)

1

2

X


y
:

I(a

00

D(aa

0

)� aa

0

Da

00

)

= �(x

00

; [x; x

0

℄)

1

2

X


y
:

I(a

00

aDa

0

+ a

0

a

00

Da� aa

0

Da

00

)

=

1

2

�(x

00

; [x; x

0

℄)

X


y
:

I(a

00

aDa

0

)

=

1

2

�(x

00

; [x; x

0

℄)I(aa

0

Da

00

+ a

0

a

00

Da+ a

00

aDa

0

)

=

1

2

�(x

00

; [x; x

0

℄)I(D(aa

0

a

00

)) =

1

2

�(x

00

; [x; x

0

℄)�(aa

0

a

00

):

This expression vanishes if one of the elements a; a

0

; a

00

is 
ontained in the ideal ker� . In view

of Lemma III.3, this implies in parti
ular that

x:(z; n) := (e!(x; n); [x; n℄)

de�nes a 
ontinuous representation of

b

g on

b

n , and we we have 
al
ulated the 
hara
teristi



lass �

�

2 H

3

(g; z) of the 
rossed module �:

b

n !

b

g via the formula q

�

g

�

�

= [d

bg

e!℄ . Hen
e it is

represented by the 
o
y
le

� 2 Z

3

(g; z); �(x; y; z) :=

1

2

�([x; y℄; z)

(
hoose a = a

0

= a

00

2 �

�1

(1)).
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VI. Some relations to prin
ipal bundles

In this se
tion we dis
uss the relation between 
ovariant di�erentials, extensions of Lie algebras

and smooth prini
pal bundles. This 
onne
tion is also brie
y tou
hed in [AMR00℄. Although the


al
ulus of 
ovariant di�erentials originates from the di�erential geometri
 
ontext of 
ovariant

derivatives and 
onne
tions on ve
tor bundles, it 
an be formulated very ni
ely in the abstra
t


ontext of Lie algebras, as we have seen in Se
tion I.

In the se
ond half of this se
tion we explain how a 
entral extension of the stru
ture group

of a prin
ipal bundle leads to a 
rossed module of topologi
al Lie algebra whose 
hara
teristi



lass 
an be represented by a 
losed 3-form on the underlying manifold.

Let M be a �nite-dimensional para
ompa
t smooth manifold, K a Lie group with Lie

algebra k and q

M

:P !M a smooth K -prin
ipal bundle. We write �:P �K ! P for the right

a
tion of K on P and Ad(P ) := P �

Ad

k for the asso
iated ve
tor bundle with typi
al �ber k

de�ned by the adjoint a
tion of K on k .

On the Lie algebra level we then have a short exa
t sequen
e

0! gau(P ) ,! aut(P )

q

g

������!V(M)! 0;

where aut(P ) := V(P )

K

� V(P ) denotes the Lie algebra of K -invariant ve
tor �elds on P ,

q

g

:V(P )

K

! V(M); q

g

(X)(q

M

(p)) := dq

M

(p)X(p) is the well-de�ned proje
tion homomorphism,

and its kernel gau(P ) is the Lie algebra of verti
al K -invariant ve
tor �elds. On all these Lie

algebras of ve
tor �elds we 
onsider the topology of lo
al uniform 
onvergen
e of all derivatives,

whi
h turs them into into lo
ally 
onvex topologi
al Lie algebras.

We put g := V(M),

b

g := aut(P ) and

n := C

1

(M;Ad(P )) := f� 2 C

1

(P; k): (8k 2 K)(8p 2 P ) �(pk) = Ad(k

�1

)�(p)g;

where the Lie algebra on the right hand side is endowed with the pointwise bra
ket [�; �℄(p) :=

[�(p); �(p)℄ , and aut(P ) � V(P ) a
ts on n by (X:�)(p) = d�(p)X(p).

On the spa
e 


r

(P; k) of k-valued smooth p-forms on P , we have a natural a
tion of the

group K by k:� := Ad(k)Æ�

�

k

� and the set 


r

(P; k)

K

of K -�xed points is of parti
ular interest.

Note that 


0

(P; k)

K

= C

1

(P; k)

K

= n . Ea
h element � 2 


r

(P; k)

K

de�nes an alternating

C

1

(M;R)-multilinear map

b

g

r

! n be
ause for X

j

2

b

g and k 2 K we have

�(X

1

; : : : ; X

r

)(p) = Ad(k):((�

�

k

�)(X

1

; : : : ; X

r

))(p) = Ad(k):�

p:k

((k:X

1

)(p:k); : : : ; (k:X

r

)(p:k))

= Ad(k):(�(X

1

; : : : ; X

r

)(p:k));

showing that �(X

1

; : : : ; X

r

) 2 n . A lo
alization argument shows that the above 
orresponden
e

leads to a bije
tion




r

(P; k)

K

! Alt

r

C

1

(M;R)

(

b

g; n) � C

r

(

b

g; n);

where Alt

r

C

1

(M;R)

(

b

g; n) denotes the set of all alternating C

1

(M;R)-multilinear maps

b

g

r

! n .

If _�: k ! V(P ) denotes the homomorphims of Lie algebras de�ned by the right a
tion of

K on P , then we 
all an r -form � on P horizontal if i

_�(x)

� = 0 holds for all x 2 k . In this

sense the spa
e




r

(P; k)

bas

:= f� 2 


r

(P; k)

K

: (8x 2 k) i

_�(x)

� = 0g

of basi
 forms 
an be identi�ed with the spa
e 


r

(M;Ad(P )) of smooth r -forms with values in

the ve
tor bundle Ad(P ) ([BGV04, Prop. 1.9℄). Note that 


0

(M;Ad(P )) = C

1

(M;Ad(P )) = n .

As above, we see that there is a natural bije
tion




r

(M;Ad(P ))! Alt

r

C

1

(M;R)

(g; n) � C

r

(g; n):
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A prini
pal 
onne
tion 1-form on P is an element � 2 


1

(P; k)

K

satisfying �( _�(x)) = x for

all x 2 k . Ea
h prin
ipal 
onne
tion 1-form � leads to a horizontal lifting map �:V(M)! aut(P )

de�ned by q Æ � = id

V(M)

and � Æ � = 0. Moreover, the restri
tion of � to gau(P ) de�nes a Lie

algebra isomorphism

��: gau(P )! n = C

1

(M;Ad(P )) � C

1

(P; k);

so that we may 
onsider �� as a linear proje
tion of

b

g = aut(P ) onto the ideal

n = C

1

(M;Ad(P )). To understand why we have to take �� instead of � , we note that the

group

N := ff 2 C

1

(P;K): (8p 2 P )(8k 2 K) f(p:k) = k

�1

f(p)kg

a
ts on P from the left by f:p := p:f(p). Hen
e p:f := p:f(p)

�1

de�nes a right a
tion

':P �N ! P and its derived a
tion leads to a homomorphism of Lie algebras _': n ,! gau(P )

satisfying h�; _'(�)i(p) = ��(p):

The following remark 
lari�es the role of the 
urvature of the 
onne
tion in the abstra
t


ontext.

Remark VI.1. Let q:

b

g ! g be an extension of the Lie algebra g by the Lie algebra n . Let

�: g !

b

g be a se
tion of q , and S := ad Æ� 2 C

1

(g;End(

b

g)).

We asso
iate to the se
tion �: g !

b

g the 
orresponding proje
tion map �:

b

g ! n given by

�(x) = x� �(q(x)). Sin
e n E

b

g is an ideal, it 
arries a natural

b

g -module stru
ture, and in this

sense we 
onsider � as a Lie algebra 1-
o
hain in C

1

(

b

g; n). We then have

d

bg

�(x; y) = x:�(y)� y:�(x) � �([x; y℄) = [x; y � �(q(y))℄ � [y; x� �(q(x))℄ � [x; y℄ + �(q([x; y℄))

= [x; y℄� [x; �(q(y))℄ + [y; �(q(x))℄ + �(q([x; y℄))

= [x; y℄� [x; �(q(y))℄ + [y; �(q(x))℄ + [�(q(x)); �(q(y))℄ �R

�

(q(x); q(y))

= [x� �(q(x)); y � �(q(y))℄ �R

�

(q(x); q(y)))

= [�(x); �(y)℄ �R

�

(q(x); q(y));

so that we get the formula

(6:1) �q

�

R

�

= d

bg

� �

1

2

[�; �℄:

We observe in parti
ular that ker � is a subalgebra if and only if R

�

= 0 if and only if d

bg

�

vanishes on ker � .

Let

R

�

:= d� +

1

2

[�; �℄ 2 


2

(P; k)

K

denote the 
urvature of � ([BGV04, Prop. 1.13℄, [KMS93, Th. III.11.2℄). In this 
ontext formula

(6.1), applied to the proje
tion ��:

b

g ! n leads to

q

�

g

R

�

= d

bg

� +

1

2

[�; �℄ = d� +

1

2

[�; �℄ = R

�

:

In this sense R

�

is related to the 
urvature R

�

of the prin
ipal 
onne
tion 1-form � . From

R

�

= q

�

g

R

�

it follows in parti
ular that R

�

is horizontal, hen
e an element of 


2

(M;Ad(P )).

For the 
urvature R

�

2 


2

(P; k)

K

� C

2

(

b

g; n) the abstra
t Bian
hi identity

0 = d

ad Æ�

R

�

= d

bg

R

�

+ [�;R

�

℄

(Proposition I.8) leads to the 
lassi
al Bian
hi identity

dR

�

= �[�;R

�

℄ = [R

�

; �℄ 2 


3

(P; k)

K
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(
f. [KMS93, Th. III.11.5℄). We refer to [Fa03℄ for an interesting dis
ussion of formulas like the

Bian
hi identity in General Relativity and Yang{Mills Theory.

Taking derivatives in 1 , the invarian
e relation �

�

k

� = Ad(k)

�1

� turns into

L

_�(x)

� = � adx Æ �:

In view of the Cartan formula for the Lie derivative, this leads to

i

_�(x)

d� = � adx Æ �:

Therefore the subspa
e 


r

(M;Ad(P )) is not mapped into 


r+1

(M;Ad(P )) by the exterior

di�erential whi
h 
oin
ides with the Lie algebra di�erential d

bg

, restri
ted to the subspa
es




r

(P; k)

K

� C

r

(

b

g; n). Nevertheless we identify 


r

(M;Ad(P )) with a subspa
e of C

r

(g; n) on

whi
h we have the 
ovariant di�erential d

S

de�ned by S(X):� := �(X):� for � 2 n � C

1

(P; k).

Then we have for � 2 C

r

(g; n) the relation

(d

S

�)(X

0

; : : : ; X

r

) = d(q

�

g

�)(�(X

0

); : : : ; �(X

r

));

where we use that [�(X

i

); �(X

j

)℄� �([X

i

; X

j

℄) is verti
al and q

�

g

� is horizontal. The pre
eding

relation means that

(6:2) d

S

� = �

�

(dq

�

g

�);

i.e., that d

S

� 
an be viewed as the horizontal 
omponent of the (r+1)-form dq

�

g

� . This is why

d

S

� is 
alled a 
ovariant di�erential.

Crossed modules obtained from 
entral extensions of K

Let Z

K

,!

b

K

q

K

��!K be a 
entral extensions of Lie groups and z

k

,!

b

k

q

k

��!k the 
orrespond-

ing 
entral extension of Lie algebras. It is an interesting problem to �nd 
omputable obstru
tions

for the existen
e of a

b

K -prin
ipal bundle with

b

P=Z

K

�

=

P (as K -prin
ipal bundles).

In this subse
tion we explain how this problem 
an be approa
hed on the Lie algebra level

and explain how one 
onstru
ts a de Rham 
ohomology 
lass in H

3

dR

(M; z

k

) whose vanishing is

ne
essary for the existen
e of the

b

K -bundle

b

P .

First we observe that the 
onjugation a
tion of

b

K on itself fa
tors through a smooth a
tion

of K on

b

K whi
h in turn leads to a smooth a
tion




Ad of K on the Lie algebra

b

k of

b

K . We

thus obtain an asso
iated ve
tor bundle




Ad(P ) := P �

K

b

k with typi
al �ber

b

k , and its spa
e of

global se
tions is

b

n := C

1

(M;




Ad(P )) = f� 2 C

1

(P;

b

k): (8k 2 K)(8p 2 P ) �(pk) =




Ad(k

�1

)�(p)g;

whi
h is a topologi
al Lie algebra with respe
t to the pointwise de�ned bra
ket. If

b

P exists, then

the natural map

Ad(

b

P ) =

b

P �

b

K

b

k ! P �

K

b

k; [p; x℄ 7! [pZ

K

; x℄

is an isomorphism of ve
tor bundles over M . It is a 
ru
ial point that this bundle exists, even if

b

P does not.

The quotient map q

k

:

b

k ! k indu
es a 
entral extension

z := C

1

(P; z

k

)

K

�

=

C

1

(M; z

k

) ,!

b

n !! n;

whi
h is topologi
ally split be
ause

0!M � z

k

!




Ad(P )! Ad(P )! 0
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is a short exa
t sequen
e of smooth ve
tor bundles over M .

From the embedding n ,! aut(P )

op

de�ned by the map aut(P )! n given by the 
onne
tion

1-form � , we further obtain a homomorphism

�:

b

n ! n � aut(P )

op

; � 7! q

k

Æ �

whi
h de�nes a 
rossed module be
ause the Lie algebra aut(P ) a
ts naturally on the spa
e

b

n � C

1

(P;

b

k) by derivations in su
h a way that � is equivariant. Moreover, the a
tion of

n � aut(P )

op

on

b

n 
orresponds to the natural a
tion of n on its 
entral extension

b

n by z . This

means that � de�nes a 
rossed module. As one readily veri�es that all morphisms and a
tions are


ontinuous with respe
t to the natural topologies, we even have a 
rossed module of topologi
al

Lie algebras. Its 
hara
teristi
 
lass �

�

is an element of H

3

(g; z), where z 
arries the natural

a
tion of g = V(M) by (X:f)(m) := df(m)X(m).

Let �: g !

b

g be a C

1

(M;R)-linear se
tion de�ned by a prin
ipal 
onne
tion 1-form �

and observe that � leads to an outer a
tion S: g ! der

b

n whi
h is C

1

(M;R)-linear. Further

q

�

g

R

�

= R

�

is the 
urvature of � , whi
h 
an be viewed as an Ad(P )-valued 2-form. Using smooth

partitions of unity, we �nd an




Ad(P )-valued 2-form 
 with q

k

Æ 
 = R

�

. Writing 
 = q

�

g

!

for a uniquely determined ! 2 C

2

(g;

b

n), we observe that the 
ondition q

k

Æ 
 = R

�

= q

�

g

R

�

is

equivalent to

(6:3) q

k

Æ ! = R

�

:

Lemma VI.2. The 
ohomology 
lass �

�

2 H

3

(g; z) is represented by the 
o
y
le d

S

! 2

Z

3

(g; z) , whi
h is a z

k

-valued 
losed 3-form on M . Moreover, the de Rham 
ohomology 
lass

[d

S

!℄ 2 H

3

dR

(M; z

k

) depends neither on the 
onne
tion 1-form � nor on the 
hoi
e of the lift 
 .

Proof. Proposition III.6 implies that �

�

2 H

3

(g; z) is represented by the 
o
y
le d

S

! 2

Z

3

(g; z). In view of (6.2), we have

d

S

! = �

�

(dq

�

g

!) = �

�

(d
);

whi
h shows that d

S

! 
an be interpreted as an element of




3

(M; z

k

) = 


3

(M;M � z

k

) � 


3

(M;




Ad(P ));

hen
e that d

S

! is a 
losed z

k

-valued 3-form on M .

Sin
e � splits topologi
ally, for any other C

1

(M;R)-linear se
tion �

0

: g !

b

g there exists

a 
ontinuous C

1

(M;R) linear map 
: g!

b

n with �

0

= � + q

k

Æ 
 , and then S

0

= S + ad Æ
 , so

that Lemma I.9 implies that d

S

0

!

0

= d

S

! holds for !

0

:= ! + d

S


 +

1

2

[
; 
℄ . Note that

R

�

0

= R

�+q

k

Æ


= R

�

+ q

k

Æ (d

S


 +

1

2

[
; 
℄) = q

k

Æ !

0

follows from [�; q

k

Æ 
℄ = q

k

Æ (S ^ 
) (
f. the proof of Lemma I.9). On the other hand, any other




00

= q

�

g

!

00

2 


2

(M;




Ad(P )) with q

k

Æ !

00

= R

�

satis�es

!

00

� ! 2 


2

(M; z

k

);

so that the de Rham 
ohomology 
lass [d

S

!℄ 2 H

3

dR

(M; z

k

) depends neither on the 
onne
tion

1-form � nor on the 
hoi
e of 
.

The following proposition shows that the de Rham 
lass [d

S

!℄ 2 H

3

dR

(M; z

k

) 
an be 
on-

sidered as an obstru
tion to the existen
e of a

b

K -bundle

b

P with

b

P=Z

K

�

=

P . It sharpens Theo-

rem III.5 in this geometri
 
ontext be
ause the natural map H

3

dR

(M; z

k

)! H

3

(V(M); C

1

(M; z

k

))

need not be inje
tive.
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Proposition VI.3. If there exists a smooth

b

K -prin
ipal bundle

b

P with

b

P=Z

K

�

=

P , then

[d

S

!℄ = 0 in H

3

dR

(M; z

k

) .

Proof. Suppose that there is a

b

K -bundle

b

P with

b

P=Z

K

�

=

P . Then we have a topologi
ally

split short exa
t sequen
e

0! C

1

(P; z

k

) ,! V(

b

P )

Z

K

!! V(P )! 0;

restri
ting to a topologi
ally split short exa
t sequen
e

0! C

1

(M; z

k

) ,! aut(

b

P ) = V(

b

P )

b

K

�

��!V(P )

K

= aut(P )! 0:

Moreover, the natural map Ad(

b

P ) =

b

P �

b

K

�

b

k !




Ad(P )

�

=

P �

K

b

k is an isomorphism of

ve
tor bundles over M .

Let

b

� 2 


1

(

b

P ;

b

k) be a prin
ipal 
onne
tion 1-form on the

b

K -bundle

b

P and b�:V(M) !

aut(

b

P ) the 
orresponding C

1

(M;R)-linear se
tion of the Lie algebra extension

0! gau(

b

P ) ,! aut(

b

P )

bq

g

��!V(M)! 0:

Then � := � Æ b� is a C

1

(M;R)-linear se
tion of q

g

: aut(P ) ! V(M), hen
e 
omes from a


onne
tion 1-form � .

From � Æ b� = � we dire
tly get � Æ R

b�

= R

�

, and sin
e R

b�

is

b

n-valued, this 
an be

written as R

�

= q

k

ÆR

b�

: From the independen
e of the 
ohomology 
lass [d

S

!℄ of the 
hoi
e of

! (Lemma VI.2) it now follows that

[d

S

!℄ = [d

S

R

b�

℄;

that vanishes a

ording to the abstra
t Bian
hi identity sin
e S = ad

bn

Æb� (Proposition I.8).

Problem VI. Whi
h 
losed z

k

-valued 3-forms on M arise as above from a 
entral extension

Z

K

,!

b

K !! K of the stru
ture group K of a prin
ipal bundle over M ? From the 
onstru
tion

it follows that if � = d

S

! arises as above, then we also get � + d
 for any 
 2 


2

(M; z

k

)

(Lemma VI.2). Therefore this is a question about de Rham 
ohomology 
lasses.

An answer to this question requires a more geometri
 version of the results in [Ho54b℄. It

is also related to the dis
ussion of di�erential geometri
 gerbes in [Bry93, Se
. 5℄. It should not

be too hard to verify that the 
lass [d

S

!℄ 
oin
ides with the image in H

3

dR

(M; z

k

) of the sheaf


ohomology 
lass in

�

H

2

(M;Z

K

)

�

=

�

H

2

(M;�

0

(Z

K

))�

�

H

3

(M;�

1

(Z

K

));

where we obtain from de Rham's Theorem a natural homomorphism

�

H

3

(M;�

1

(Z

K

))!

�

H

3

(M; z

k

)

�

=

H

3

dR

(M; z

k

):

If M is 2-
onn
eted, then Brylinski shows in [Bry93, Thm. 5.4.3℄ for the spe
ial 
ase Z

K

= C

�

that any integral 3-
ohomology 
lass 
omes from a smooth C

�

-gerbe on M , but it is not 
lear

to us whi
h of these gerbes 
ome from 
entral extensions of stru
ture groups of bundles.

Appendix A. Derivations of Lie algebra extensions

Let E : n ,!

b

g

q

��!g be a topologi
ally split Lie algebra extension. In this appendix we analyze

the Lie algebra of 
ontinuous derivations of

b

g preserving the ideal n . In the present paper we

shall use only Propositions A.1 and A.7 from this appendix (
f. Lemma III.3).
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In the following we write der g for the Lie algebra of 
ontinuous derivations of g . We

always identify n with an ideal of

b

g and de�ne

der(

b

g; n) := fD 2 der

b

g:D(n) � ng:

Then ea
h derivation D 2 der(

b

g; n) indu
es a derivation D

n

of n and a derivation D

g

of g

�

=

b

g=n ,

so that we obtain a Lie algebra homomorphism

�: der(

b

g; n)! der n� der g; D 7! (D

n

; D

g

):

To understand the Lie algebra der(

b

g; n), we have to analyze kernel and image of this homomor-

phism.

In the following we write

b

g = n �

(S;!)

g , where S: g ! dern is a 
ontinuous exterior

a
tion and ad Æ! = R

S

. We re
all that the Lie algebra dern � der g a
ts on the spa
es

Lin(g; n) = C

1

(g; n) and C

2

(g; n) by

�

(�; �):'

�

(x) := �('(x)) � '(�(x))

and

�

(�; �):'

�

(x; y) := �('(x; y)) � '(�(x); y) � '(x; �(y)):

We further have a representation on C

1




(g; der n), the set of linear maps ': g ! dern for whi
h

the 
orresponding map g� n ! n; (x; n) 7! '(x)(n) is 
ontinuous, by

�

(�; �):'

�

(x) := [�; '(x)℄ � '(�(x))

We write (�; �):['℄ = 0 if there exists some 
 2 C

1

(g; n) with (�; �):' = ad Æ
 . Sin
e

ad ÆC

1

(g; n) � C

1




(g; dern) is a subspa
e whi
h is invariant under dern� der g , the subspa
e

(dern� der g)

['℄

:= f(�; �) 2 der n� der g: (�; �):['℄ = 0g

is a subalgebra of der n� der g .

Proposition A.1. Let (�; �) 2 der n� der g and 
 2 C

1

(g; n) . Then the map

(A:1) D 2 End(n�

(S;!)

g); (n; x) 7! (�(n) + 
(x); �(x))

is a derivation if and only if

(A:2) (�; �):S = ad Æ
 and (�; �):! = d

S


:

If this is the 
ase, then �(D) = (�; �) and all derivations in �

�1

(�; �) are of the form (A.1)

for some 
 2 C

1

(g; n) .

Proof. We have

D([(n; x); (n

0

; x

0

)℄) = D([n; n

0

℄ + S(x):n

0

� S(x

0

):n+ !(x; x

0

); [x; x

0

℄)

= (�([n; n

0

℄) + �(S(x):n

0

)� �(S(x

0

):n) + �!(x; x

0

) + 
([x; x

0

℄); �([x; x

0

℄))

and

[D(n; x); (n

0

; x

0

)℄ = [(�(n) + 
(x); �(x)); (n

0

; x

0

)℄

= ([�(n) + 
(x); n

0

℄ + S(�(x)):n

0

� S(x

0

):(�(n) + 
(x)) + !(�(x); x

0

); [�(x); x

0

℄):

In view of � 2 der n and � 2 der g , the requirement that D is a derivation is equivalent

to the relations

(A:3) D([(0; x); (0; x

0

)℄) = [D(0; x); (0; x

0

)℄ + [(0; x); D(0; x

0

)℄

and

(A:4) D([(0; x); (n; 0)℄) = [D(0; x); (n; 0)℄ + [(0; x); D(n; 0)℄

for x; x

0

2 g and n 2 n . In view of the pre
eding 
al
ulations, 
ondition (A.3) means that

�!(x; x

0

) + 
([x; x

0

℄) = �S(x

0

):
(x) + S(x):
(x

0

) + !(�(x); x

0

) + !(x; �(x

0

));

i.e., (�; �):! = d

S


: Condition (A.4) means that

�(S(x):n) = [
(x); n℄ + S(�(x)):n + S(x):�(n);

i.e.,

((�; �):S)(x) = [�; S(x)℄� S(�(x)) = ad(
(x)):

If D is a derivation, then �(D) = (�; �) is obvious, and, 
onversely, every derivation in

�

�1

(�; �) 
an be written in the form (n; x) 7! (�(n) + 
(x); �(x)) for some 
 2 C

1

(g; n). This


ompletes the proof.
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Corollary A.2. The map 	:Z

1

(g; z(n))

S

! ker�;	(') := ' Æ q is a linear isomorphism. In

parti
ular ker� is an abelian Lie algebra.

Proof. In view of Proposition A.1, the derivations in the kernel of � are of the form

D(n; x) = (
(x); 0), i.e., D = 
 Æ q for some 
 2 C

1

(g; n). Moreover, su
h maps are derivations

if and only if

ad Æ
 = 0 and d

S


 = 0;

whi
h means that 
 2 Z

1

(g; z(n))

S

. This shows that 	 is bije
tive.

For D

1

; D

2

2 ker	 we have D

1

D

2

= 0, whi
h implies in parti
ular that ker	 is an abelian

Lie algebra.

Corollary A.3. im(�) � (der n� der g)

[S℄

.

Remark A.4. (a) If a := n is abelian, then gl(a) = der a and Proposition A.1 implies that

im(�) = f(�; �) 2 der a� der g: (�; �):S = 0; (�; �):! 2 B

2

(g; a)

S

g

= f' 2 (der a� der g)

S

:':[!℄ = 0g =: (gl(a)� der g)

S;[!℄

:

We therefore have a short exa
t sequen
e of Lie algebras

(A:5) Z

1

(g; a)

S

,! der(

b

g; a)!! (gl(a)� der g)

S;[!℄

:

with abelian kernel Z

1

(g; a)

S

.

For the spe
ial 
ase where the g-module a is trivial, the representation ad

a

of g on a is

trivial, and the exa
t sequen
e simpli�es to

Hom

Lie

(g; a) ,! der(

b

g; a)!! (gl(a)� der g)

[!℄

:

(b) If the pair (�; �) 2 der a� der g �xes not only the 
ohomology 
lass [!℄ , but also the


o
y
le ! , then we may take 
 = 0 in Proposition A.1 to obtain a lift to a derivation of

b

g , showing

that the extension (A.5) splits on the subalgebra (gl(a)� der g)

(S;!)

of (gl(a)� der g)

(S;[!℄)

.

If, moreover, g is abelian and a is a trivial g-module, then B

2

(g; a)

S

= f0g , and therefore

(gl(a)� der g)

S;[!℄

= (gl(a)� der g)

!

;

so that the extension splits.

Proposition A.5. For (�; �) 2 (der n� der g)

[S℄

and 
 2 C

1

(g; n) with (�; �):S = ad Æ
 we

have

(�; �):! � d

S


 2 Z

2

(g; z(n))

S

and the 
ohomology 
lass

I(�; �) := [(�; �):! � d

S


℄ 2 H

2

(g; z(n))

S

;

whi
h is independent of 
 , vanishes if and only if (�; �) 2 im(�) .

Further more, the map

I : (dern� der g)

[S℄

! H

2

(g; z(n))

S

is a Lie algebra 
o
y
le with respe
t to the natural representation of the Lie algebra

(der n� der g)

[S℄

on H

2

(g; z(n))

S

.

Proof. From (�; �):S = ad Æ
 we derive for Æ 2 C

r

(g; n) the relation

d

S

((�; �):Æ) = d

g

((�; �):Æ) + S ^ ((�; �):Æ) = (�; �):d

g

Æ + (�; �):(S ^ Æ)� ((�; �):S ^ Æ)

= (�; �):d

g

Æ + (�; �):(S ^ Æ)� [
; Æ℄ = (�; �):d

S

Æ � [
; Æ℄;
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so that

(A:6) [(�; �); d

S

℄ = ad 
 on C

�

(g; n) =

M

r2N

0

C

r

(g; n):

We now obtain

ad Æ((�; �):!) = (�; �):(ad Æ!) = (�; �):R

S

= (�; �):(d

g

S +

1

2

[S; S℄)

= d

g

((�; �):S) + [(�; �):S; S℄) = ad Æ(d

g


) + [ad Æ
; S℄ = ad Æ(d

g


) + [S; ad Æ
℄

= ad Æ(d

g


) + ad Æ(S ^ 
) = ad Æ(d

g


 + S ^ 
) = ad Æd

S


:

We 
on
lude that (�; �):! � d

S


 2 C

2

(g; z(n)). In view of Proposition I.5, we further have

d

S

((�; �):! � d

S


) = d

g

((�; �):!) + S ^ ((�; �):!) � d

2

S




= (�; �):(d

g

! + S ^ !)� ((�; �):S) ^ !)� [!; 
℄ = (�; �):d

S

! � [
; !℄� [!; 
℄ = 0

be
ause d

S

! = 0 and [
; !℄ = �[!; 
℄ . This proves that (�; �):! � d

S


 2 Z

2

(g; z(n))

S

; and we

de�ne

I(�; �) := [(�; �):! � d

S


℄ 2 H

2

(g; z(n))

S

:

If 


0

2 C

1

(g; n) also satis�es (�; �):S = ad Æ


0

, then 


0

�
 2 C

1

(g; z(n)) and d

S




0

�d

S


 2

B

2

(g; z(n))

S

, so that the 
ohomology 
lass I(�; �) does not depend on the 
hoi
e of 
 . Here we

already see that I(�; �) = 0 is equivalent to the existen
e to a 
 2 C

1

(g; n) with (�; �):S = ad Æ


and (�; �):! � d

S


 = 0, whi
h is equivalent to (�; �) 2 im(�).

To verify that I is a 
o
y
le, we �rst have to see how the representation of (dern�derg)

[S℄

on H

2

(g; z(n))

S

looks like. Pi
k 
 2 C

1

(g; n) with (�; �):S = ad Æ
 . Then (ad Æ
):z(n) = f0g

and (A.6) imply that (�; �) maps B

2

(g; z(n))

S

and Z

2

(g; z(n))

S

into themselves and hen
e

indu
es a map on H

2

(g; z(n))

S

.

For (�; �); (�

0

; �

0

) 2 (der n� der g)

[S℄

we now pi
k 
; 


0

2 C

1

(g; n) with

(�; �):S = ad Æ
 and (�

0

; �

0

):S = ad Æ


0

:

Then

[(�; �); (�

0

; �

0

)℄:S = (�; �):(ad Æ


0

)� (�

0

; �

0

):(ad Æ
) = ad Æ((�; �):


0

� (�

0

; �

0

):
):

With (A.6) we now get

I([(�; �); (�

0

; �

0

)℄) = [(�; �); (�

0

; �

0

)℄:! � d

S

((�; �):


0

� (�

0

; �

0

):
)℄

= [(�; �):((�

0

; �

0

):!)� (�

0

; �

0

):((�; �):!) � (�; �):(d

S




0

) + [
; 


0

℄ + (�

0

; �

0

):(d

S


)� [


0

; 
℄℄

= [(�; �):((�

0

; �

0

):! � d

S




0

)� (�

0

; �

0

):((�; �):! � d

S




0

)℄:

This show that I is a Lie algebra 1-
o
y
le.

Corollary A.6. For the topologi
ally split extension

b

g := n�

(S;!)

g of g by n , the sequen
e

0! Z

1

(g; z(n))

S

! der(

b

g; n)! (dern� der g)

[S℄

I

��!H

2

(g; z(n))

S

! 0

is exa
t.

Proposition A.7. Let  : h ! im(�) � dern� der

b

g be a homomorphism of Lie algebras and

endow C

1

(g; n) with the h-module stru
ture obtained from the a
tion of dern � der g on this

spa
e pulled ba
k via  . Further let �: h ! C

1

(g; n) be a linear map with

 (x):S = ad Æ�(x) and x:! = d

S

�(x); x 2 h:
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Then a 
o
y
le for the abelian extension

Z

1

(g; z(n))

S

,!  

�

der(

b

g; n)! h

of h by Z

1

(g; z(n))

S

is given by d

h

� 2 Z

2

(h; Z

1

(g; z(n))

S

): In parti
ular, a linear map

b

 : h !

der(

b

g; n) with

b

 (h)(a; x) = (h:a+ �(h)(x); h:x)

is a homomorphism if and only if � is a 1-
o
y
le.

Proof. First we observe that the map

b

 : h ! der(

b

g; n);

b

 (x)(n; y) = ( (x):n+ �(x)(y);  (x):y)

satis�es � Æ

b

 =  . As the map

�: h !  

�

der(

b

g; n); x 7! (

b

 (x); x)

is a se
tion of this abelian extension, we obtain a 
orresponding 
o
y
le by

�(x; x

0

) := [�(x); �(x

0

)℄� �([x; x

0

℄) = ([

b

 (x);

b

 (x

0

)℄�

b

 ([x; x

0

℄); 0):

To evaluate this 
o
y
le, we 
al
ulate

[

b

 (x);

b

 (x

0

)℄(n; y) =

b

 (x):( (x

0

):n+ �(x

0

)(y);  (x

0

):y)�

b

 (x

0

):( (x):n + �(x)(y);  (x):y)

=

�

 (x) (x

0

):n+  (x):�(x

0

)(y) + �(x)( (x

0

):y);  (x) (x

0

):y)

�

�

�

 (x

0

) (x):n +  (x

0

):�(x)(y) + �(x

0

)( (x):y);  (x

0

) (x):y)

�

=

�

 ([x; x

0

℄):n+ ( (x):�(x

0

))(y) � ( (x

0

):�(x))(y);  ([x; x

0

℄):y)

�

:

Identifying ker� with Z

1

(g; z(n))

S

, we see that the 
o
y
le � , as an element of the group

Z

2

(h; Z

1

(g; z(n))

S

), is given by

�(x; x

0

) =  (x):�(x

0

)�  (x

0

):�(x) � �([x; x

0

℄) = (d

h

�)(x; x

0

):

Remark A.8. We have seen in the pre
eding proposition that

b

 is a homomorphism of Lie

algebras if and only if d

h

� = 0. Other 
hoi
es �

0

for � have the form �

0

= � + � with

� 2 C

1

(h; Z

1

(g; z(n))

S

) be
ause ad

n

Æ�(x) = ad

n

Æ�

0

(x) for ea
h x 2 g and d

S

(�

0

(x)) =

d

S

(�(x)) = x:! . Then

d

h

�

0

= d

h

� + d

h

�;

and we see that there exists a �

0

with d

g

�

0

= 0 if and only if [d

h

�℄ = 0 in H

2

(h; Z

1

(g; z(n))

S

).

We obviously have [d

h

�℄ = 0 in H

2

(h; C

1

(g; n)), but this does not imply that [d

h

�℄ vanishes in

H

2

(h; Z

1

(g; z(n))

S

).

Example A.9. If g = K

2

and

b

g = z�

!

g is the 3-dimensional Heisenberg algebra de�ned by

a symple
ti
 form ! on K

2

, then der g

�

=

gl

2

(K ); der z

�

=

K ; and

(der z� der g)

[!℄

= (der z� der g)

!

= f(t; A) 2 K � gl

2

(K ):A:! = t!g

�

=

gl

2

(K )

is isomorphi
 to the 
onformal Lie algebra of ! , whi
h 
oin
ides with gl

2

(K ). Moreover,

b = Hom

Lie

(g; z) = Z

1

(g; z)

�

=

Lin(K

2

;K )

�

=

K

2

;

so that the exa
t sequen
e

Z

1

(g; z) = Hom

Lie

(g; z) ,! der(

b

g; z) = der

b

g !! (der z� der g)

[!℄

from Corollary A.6 turns into b

�

=

K

2

,! der(

b

g; z) !! gl

2

(K ) whi
h splits by Remark A.8, and

we obtain der(

b

g; z)

�

=

bo gl

2

(K ):
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Example A.10. (a) We 
onstru
t an example of a 
entral extension z ,!

b

g !! g , where the

sequen
e (A.5) does not split. Let g be the 3-dimensional Heisenberg algebra with basis p; q; z

satisfying

[p; q℄ = z; [p; z℄ = [q; z℄ = 0:

We 
laim that dimH

2

(g;K ) = 2: As g is 3-dimensional, the spa
e C

2

(g;K ) is 3-dimensional.

Further B

2

(g;K )

�

=

[g; g℄

�

is 1-dimensional. It 
onsists of all those alternating bilinear forms on

g whose radi
al 
ontains the 
ommutator algebra. Therefore it suÆ
es to show that ea
h 2-
hain

! 2 C

2

(g;K ) is 
losed. In fa
t, we have

(d!)(x; y; z) =

X


y
:

!([x; y℄; z):

This form is alternating, so that it vanishes if it vanishes on (p; q; z):

d!(p; q; z) = !([p; q℄; z) = !(z; z) = 0:

This proves C

2

(g;K ) = Z

2

(g;K ) , and therefore dimH

2

(g;K ) = 2:

Now we �x ! 2 Z

2

(g;K ) with

!(p; z) = 1; !(q; z) = !(q; z) = 0:

We then obtain a 
entral extension

b

g := K�

!

g of g by z := K . We show that the exa
t sequen
e

Hom

Lie

(

b

g; z)

�

=

Hom

Lie

(g; z)

�

=

Lin(g=z(g); z) ,! der(

b

g; z)!! (der z� der g)

[!℄

does not split.

In der g we have in parti
ular the 2-dimensional abelian subalgebra b := Hom

Lie

(g; z(g)) of

those derivations whi
h are trivial on z(g) and fa
tor through linear map g=z(g)

�

=

g=[g; g℄! z(g).

A basis for b is given by b

1

; b

2

with

b

1

(z) = b

1

(q) = 0; b

1

(p) = z and b

2

(z) = b

2

(p) = 0; b

2

(q) = z:

We have

(b

1

:!)(z; x) = �!(b

1

:z; x)� !(z; b

1

:x) = 0;

and

(b

1

:!)(p; q) = �!(b

1

:p; q)� !(p; b

1

:q) = �!(z; q) = 0;

whi
h implies that b

1

:! = 0. On the other hand

(b

2

:!)(z; x) = �!(b

2

:z; x)� !(z; b

2

:x) = 0

and

(b

2

:!)(p; q) = �!(b

2

:p; q)� !(p; b

2

:q) = �!(p; z) = �1:

Therfore b

2

:! is non-zero, but sin
e its radi
al 
ontains z , it is a 
oboundary. We now de�ne

�

b

1

:= 0 and �

b

2

(p) = �

b

2

(q) = 0; �

b

2

(z) = 1:

Then

(d

g

�

b

2

)(p; q) = ��

b

2

([p; q℄) = �1 = (b

2

:!)(p; q)

implies d

g

�

b

2

= b

2

:! .

Eventually we �nd

d

g

�(b

1

; b

2

) = b

1

:�

b

2

� b

2

:�

b

1

� �

[b

1

;b

2

℄

= b

1

:�

b

2

= ��

b

2

Æ b

1

6= 0:

This implies that d

g

� does not vanish on the abelian subalgebra b = spanfb

1

; b

2

g , so that the


entral extension

Hom

Lie

(g; z) ,!

b

b !! b

of b is not an abelian Lie algebra, hen
e does not split.

(b) We 
onsider the Heisenberg algebra g and a 
entral extension

b

g of g by z := K as in

(a) above. Then the a
tion of b = Hom

Lie

(g; z(g)) � der g preserves the 
lass [!℄ 2 H

2

(g; z), but

the a
tion of b on g does not lift to an a
tion of the abelian Lie algebra b on

b

g .

Let

b

b := go b be the semidire
t sum. Then [!℄ 2 H

2

(g; z)

b

, but there is no representation

b

S of b on

b

g lifting the representation on g .
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Remark A.11. (The lifting problem for abelian extensions) Let q:

b

g ! g be an abelian

extension of g by the g-module a , whi
h we write as

b

g = a�

!

g for some ! 2 Z

2

(g; a).

Suppose that we are given a homomorphism ': h ! g of Lie algebras. When does it lift to

b

g in the sense that there exists a morphism b': h !

b

g with q Æ b' = '?

The existen
e of the lift b' is equivalent to the triviality of the abelian extension

q

'

:'

�

b

g ! h; (x; h) 7! h;

where

'

�

b

g = f(x; h) 2

b

g� h: q(x) = '(h)g:

Sin
e the extension '

�

b

g 
an be des
ribed by the 
o
y
le '

�

! 2 Z

2

(h; a), a lift b' exists if and

only if ['

�

!℄ = f0g . Note that the h-module stru
ture on a depends on the homomorphism '

be
ause it is also pulled ba
k by ' , so that we 
annot simply write the obstru
tion as a map

Hom

Lie

(h; g)! H

2

(h; a)

be
ause the module stru
ture on a varies with ' .

Now assume that b'

1

and b'

2

are lifts of ' . Then a straight forward 
al
ulation shows that


 := b'

1

� b'

2

: h ! a is a Lie algebra 1-
o
y
le with respe
t to the module stru
ture on a given

by ' . We write a

'

for this h-module. In this sense the �ber of the map

Hom

Lie

(h;

b

g)! Hom

Lie

(h; g);  7! q Æ  

over ' is an aÆne spa
e whose translation group is Z

1

(h; a

'

).

Appendix B. Automorphisms of Lie algebra extensions

In this appendix we analyze the group of automorphisms of a topologi
ally split Lie algebra

extension

E : n ,!

b

g

q

��!g:

Our dis
ussion follows the 
orresponding results for groups in [Ro84℄. Identifying n with an ideal

of

b

g , the automorphism group of E is

Aut(

b

g; n) := f' 2 Aut(

b

g):'(n) = ng:

Ea
h automorphism of E indu
es an automorphism of n and g

�

=

b

g=n , so that we obtain a group

homomorphism

�:Aut(

b

g; n)! Aut(n)�Aut(g); ' 7! ('

n

; '

g

):

Let [S℄ be the 
ontinuous g-kernel on n 
orresponding to E and (Aut(n) � Aut(g))

[S℄

�

Aut(n)�Aut(g) the set of all pairs �xing [S℄ . Then im(�) � (Aut(n)�Aut(g))

[S℄

and there is

a 1-
o
y
le

I : (Aut(n)�Aut(g))

[S℄

! H

2

(g; z(n))

S

with respe
t to the natural (Aut(n)�Aut(g))

[S℄

-module stru
ture of H

2

(g; z(n))

S

su
h that the

sequen
e

1! Z

1

(g; z(n))

S

! Aut(

b

g; n)

�

��!(Aut(n)�Aut(g))

[S℄

I

��!H

2

(g; z(n))

S

is exa
t. This sequen
e 
ontains a good deal of information on the group Aut(

b

g; n).

In the following we write

b

g = n�

(S;!)

g (Lemma II.4). From Lemma II.5 we get:
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Lemma B.1. The map

	: (Z

1

(g; z(n))

S

;+)! ker(�); 	(
) := id

bg

+
 Æ q

is a group isomorphism.

Proof. Ea
h automorphism of

b

g indu
ing the identity on n and

b

g is of the form des
ribed

in Lemma II.5 with � = id

n

and � = id

g

, i.e., '(x) = x+ 
(q(x)) with 
 2 C

1

(g; n). Applying

this proposition with S

0

= S and !

0

= ! we get the 
onditions ad Æ
 = 0, i.e., 
 2 C

1

(g; z(n))

and 0 = d

S

0


 +

1

2

[
; 
℄ = d

S


 , so that 
 2 Z

1

(g; z(n))

S

. This implies the assertion.

We observe that the natural linear a
tion of the group

G := (Aut(n)�Aut(g))

[S℄

;

on C

1




(g; der n)� C

2

(g; n) by (�; �):(S; !) = (S

0

; !

0

) with

S

0

:= � Æ S Æ �

�1

and (�; �):! := � Æ ! Æ (� � �)

�1

satis�es

g:Z

2

(g; n)

S

= Z

2

(g; n)

g:S

;

hen
e preserves Z

2

(g; n)

[S℄

.

Moreover, G a
ts in a natural way on C

1

(g; n) by (�; �):
 := � Æ 
 Æ �

�1

, so that we 
an

form the semi-dire
t produ
t group C

1

(g; n)oG . For the a
tion of C

1

(g; n) on Z

2

(g; n)

[S℄

(
f.

Lemma I.9) we have

g:(
:(S; !)) = (g:
):(g:(S; !));

so that we even obtain an a
tion of C

1

(g; n)oG on Z

2

(g; n)

[S℄

and hen
e an a
tion of G on the

orbit spa
e

Ext(g; n)

[S℄

�

=

Z

2

(g; n)

[S℄

=C

1

(g; n)

whi
h is an aÆne spa
e with translation group H

2

(g; z(n))

S

(Theorem II.7).

Theorem B.2. The a
tion of G := (Aut(n) � Aut(g))

[S℄

on the aÆne spa
e Ext(g; n)

[S℄

�

=

Z

2

(g; n)

S

=B

2

(g; z(n))

S

is aÆne. For a �xed 
lass [(S; !)℄ 2 Ext(g; n)

[S℄

we obtain a 1-
o
y
le

I :G! H

2

(g; z(n))

S

by g:[(S; !)℄ = I(g):[(S; !)℄ . This 
o
y
le satis�es I

�1

(0) = im(�); and for g:S = S + ad Æ
 we

have

I(g) = [g:! � ! � d

S


 �

1

2

[
; 
℄℄ 2 H

2

(g; z(n))

S

:

Proof. For [�℄ 2 H

2

(g; z(n))

S

we have [�℄:[(S; !)℄ = [(S; !+�)℄; whi
h de�nes the aÆne spa
e

stru
ture on Ext(g; n)

[S℄

�

=

Z

2

(g; n)

[S℄

=C

1

(g; n) (Theorem II.7). Therefore

g:[(S; ! + �)℄ = [(g:S; g:! + g:�)℄ = [(S + ad Æ
; g:!+ g:�)℄

= [
:(S; g:! + g:� � d

S


 �

1

2

[
; 
℄)℄ = [(S; g:! + g:� � d

S


 �

1

2

[
; 
℄)℄:

We 
on
lude that G a
ts by aÆne maps with

g:[(S; !)℄ = [g:! � ! � d

S


 �

1

2

[
; 
℄℄:[(S; !)℄:

Hen
e I(g) := [g:! � ! � d

S


 �

1

2

[
; 
℄℄ de�nes a 1-
o
y
le I :G! H

2

(g; z(n))

S

.

It follows from Lemma II.5 that im(�) � G and that g 2 G is 
ontained in the image of

� if and only if there exists 
 2 C

1

(g; n) with g:(S; !) = 
:(S; !); i.e., g:[(S; !)℄ = [(S; !)℄ in

Ext(g; n)

[S℄

�

=

Z

2

(g; n)

[S℄

=C

1

(g; n). Therefore im(�) = I

�1

(0).
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Corollary B.3. We have an exa
t sequen
e

0! Z

1

(g; z(n))

S

! Aut(

b

g; n)! (Aut(n)�Aut(g))

[S℄

I

��!H

2

(g; z(n))

S

! 0;

where I is a group 1-
o
y
le for the natural a
tion of the group (Aut(n) � Aut(g))

[S℄

on

H

2

(g; z(n))

S

.

Remark B.4. We 
onsider the stabilizer

G

S

:= f(
; g) 2 C

1

(g; n)oG: g:S + ad Æ
 = Sg

of S in C

1

(g; n)oG . For (S; !) 2 Z

2

(g; n)

S

we then have

(
; g):(S; !) = (S; g:! + d

S


 +

1

2

[
; 
℄);

so that G

S

a
ts by aÆne maps on Z

2

(g; n)

S

. Sin
e the group C

1

(g; z(n)), resp., B

2

(g; z(n))

S

,

a
ts on Z

2

(g; n)

S

by translations, we obtain an abelian extension

C

1

(g; z(n)) ,! G

S

!! G = (Aut(n)�Aut(g))

[S℄

:

This extension is trivial if and only if there exists a map �:G ! C

1

(g; n) with (�(g); g) 2 G

S

,

�(1) = 0, and �(g

1

g

2

) = �(g

1

) + g

1

:�(g

2

). This means that � is a 1-
o
y
le lifting the trivial


o
y
le

G! C

1




(g; der n); g 7! S � g:S

in the sense that ad(�(g)) = S � g:S for ea
h g 2 G .

In general this abelian extension is non-trivial (
f. Example A.9). The 
orresponding


ohomology 
lass is an element of H

2

(g; C

1

(g; z(n))):

We also des
ribe a more 
oordinate free way to see the a
tion of G = (Aut(n)�Aut(g))

[S℄

on Ext(g; n)

[S℄

.

Lemma B.5. We write the extension n ,!

b

g !! g as the exa
t sequen
e E : n

�

��!

b

g

q

��!g: Then

(�; �) 2 im(�) if and only (�; �):E � E holds for the extension

(�; �):E : n

�Æ�

�1

������!

b

g

�Æq

������!g:

Proof. For ' 2 Aut(

b

g; n) we 
onsider the extension E

0

:= ('

n

; '

g

):E and put �

0

:= � Æ '

�1

n

and q

0

:= '

g

Æ q . Then the map ':

b

g !

b

g yields an equivalen
e of extensions

n

�Æ'

�1

n

������!

b

g

'

g

Æq

������! g

?

?

y

id

n

?

?

y

'

?

?

y

id

g

n

�

������!

b

g

q

������! g:

Therefore �('):E � E . If, 
onversely, (�; �):E � E , then there exists an equivalen
e of extensions

n

�Æ�

�1

���!

b

g

�Æq

��! g

?

?

y

id

n

?

?

y

'

?

?

y

id

g

n

�

��!

b

g

q

��! g:

This means that '

n

= � and '

g

= � .
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