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Non-abelian extensions of topologial Lie algebras

Karl-Hermann Neeb

Abstrat. In this paper we extend and adapt several results on extensions of Lie algebras to

topologial Lie algebras over topologial �elds of harateristi zero. In partiular we desribe the

set of equivalene lasses of extensions of the Lie algebra g by the Lie algebra n as a disjoint union

of aÆne spaes with translation group H

2

(g;z(n))

[S℄

, where [S℄ denotes the equivalene lass of the

ontinuous outer ation S:g!dern . We also disuss topologial rossed modules and explain how

they are related to extensions of Lie algebras by showing that any ontinuous outer ation gives

rise to a rossed module whose obstrution lass in H

3

(g;z(n))

S

is the harateristi lass of the

orresponding rossed module. The orrespondene between rossed modules and extensions further

leads to a desription of n -extensions of g in terms of ertain z(n) -extensions of a Lie algebra

whih is an extension of g by n=z(n) . We disuss several types of examples, desribe appliations

to Lie algebras of vetor �elds on prinipal bundles, and in two appendies we desribe the set of

automorphisms and derivations of topologial Lie algebra extensions.

Introdution

An extension of a Lie algebra g by a Lie algebra n is a short exat sequene of the form

n ,!

b

g !! g:

We think of the Lie algebra

b

g as onstruted from the two building bloks g and n . To any suh

extension one naturally assoiates its harateristi homomorphism s: g ! out(n) := der(n)= adn

indued from the ation of

b

g on n . It turns out that, with respet to a natural equivalene

relation on extensions, equivalent ones have the same harateristi homomorphism, so that one

is interested in the set Ext(g; n)

s

of all equivalene lasses of extensions orresponding to a given

homomorphism s: g ! out(n). The pair (n; s) is also alled a g-kernel. It is well known that the

set Ext(g; n)

s

is non-empty only if a ertain ohomology lass �

s

2 H

3

(g; z(n))

s

vanishes, and

that if this is the ase, then Ext(g; n)

s

is an aÆne spae with translation group H

2

(g; z(n))

s

.

If n is abelian, these results go bak to Chevalley and Eilenberg ([CE48℄), and the general ase

has been developed a few years later in [Mo53℄ and [Ho54a℄; see also [Sh66℄ for Lie algebras over

ommutative base rings R with 2 2 R

�

.

In this note we extend and adapt these results to the setting of topologial Lie algebras

over topologial �elds of harateristi 0, having in partiular loally onvex Lie algebras over the

real or omplex numbers in mind, whih are the natural andidates for Lie algebras of in�nite-

dimensional Lie groups. In a subsequent paper we desribe orresponding results for in�nite-

dimensional Lie groups and explain the non-trivial link between the Lie group and the Lie algebra

piture, the main point being how the information on group extensions an be obtained from

data assoiated to the orresponding Lie algebras and the topology of the groups (f. [Ne04℄). For

abelian extensions of Lie groups, this translation proedure between Lie group and Lie algebra

extensions has been studied in [Ne02/03℄, and our main goal is to redue the general ase to

abelian extensions. In the present paper this will be our guiding philosophy.

A serious diÆulty arising in the topologial ontext is that a losed subspae W of a

topologial vetor spae V need not be topologially split in the sense that the quotient map
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V ! V=W has a ontinuous linear setion � suh that the map W � (V=W ) ! V; (w; x) 7!

w + �(x) is a topologial isomorphism. We all a ontinuous linear map f :V

1

! V

2

between

topologial vetor spaes topologially split if the subspae im(f) of V

2

is losed and split and

ker(f) is a topologially split subspae of V

1

. The natural setup for extensions of topologial

Lie algebras is to assume that all morphisms are topologially split, i.e., an extension q:

b

g ! g

of g by n is a Lie algebra ontaining n

�

=

ker q as a split ideal. This implies in partiular that

b

g

�

=

n � g as a topologial vetor spae. It is neessary to assume this beause otherwise we

annot expet to lassify extensions in terms of Lie algebras ohomology. Aordingly one has

to re�ne the onept of a g-kernel to the onept of a ontinuous g-kernel: Here one starts

with the onept of a ontinuous outer ation S onsisting of a linear map S: g ! der n for

whih g � n ! n; (x; n) 7! S(x):n is ontinuous and there exists a ontinuous alternating map

!: g� g ! n with

[S(x); S(x

0

)℄� S([x; x

0

℄) = ad(!(x; x

0

)) for x; x

0

2 g:

Two ontinuous outer ations S

1

and S

2

are alled equivalent if there exists a ontinuous linear

map : g ! n with S

2

= S

1

+ ad Æ , and the equivalene lasses [S℄ are alled ontinuous g-

kernels. Every suh g-kernel de�nes a homomorphism s: g ! out(n); x 7! S(x) + ad n , but this

map alone is not enough struture to enode all ontinuity requirements.

Our approah to redue general extensions to abelian extensions leads to a new perspetive,

the key onept being the notion of a topologial rossed module, i.e., a topologially split

morphism �: h !

b

g of topologial Lie algebras for whih h is endowed with a ontinuous

b

g-

module struture (x; h) 7! x:h satisfying

�(x:h) = [x; �(h)℄ and �(h):h

0

= [h; h

0

℄ for x 2

b

g; h; h

0

2 h:

For any rossed module z := ker� is a entral subalgebra of h invariant under the

b

g -ation and

n := �(h) is an ideal of

b

g . Therefore eah rossed module leads to a four term exat sequene

0! z = ker�! h !

b

g ! g := oker�! 0:

Sine z is entral in h , the ation of

b

g on z fators through an ation of g on this spae, so

that z is a g-module. One way to deal with rossed modules is to �x a Lie algebra g and an

g-module z and to onsider all rossed modules �: h !

b

g with g = oker� and ker�

�

=

z as

g-modules. On these rossed modules, thought as 4-term exat sequenes, there is a natural

equivalene relation, and in the algebrai ontext (all topologies are disrete) the equivalene

lasses are lassi�ed by a harateristi lass �

�

2 H

3

(g; z) (f. [Wa03℄, and also [Go53℄ for a

disussion of rossed modules with abelian Lie algebras h in the algebrai ontext).

Our point of view is di�erent in the sense that we think of a split rossed module as the

following data:

(1) an ideal n of the Lie algebra

b

g ,

(2) a topologially split entral extension z ,!

b

n ! n , and

(3) a

b

g-module struture on

b

n extending the given ation of n on

b

n and suh that �:

b

n ! n is

b

g-equivariant.

Of ourse, both pitures desribe the same strutures, but from our point of view the

harateristi lass �

�

2 H

3

(

b

g=n; z) of the rossed module has a quite immediate interpretation

as the obstrution to the existene of a Lie algebra extension z ,!

e

g

q

��!

b

g for whih q

�1

(n) is

b

g-equivariantly equivalent to the extension

b

n of n by z . All this is explained in Setion III.

In Setion IV we show that this interpretation of �

�

as an obstrution lass further leads

to a nie onnetion to Lie algebra extensions. To any ontinuous g-kernel [S℄ we assoiate

a natural rossed module �: n ! g

S

, where g

S

is an extension of g by the topologial Lie

algebra n

ad

:= n=z(n). The assoiated harateristi lass �

�

2 H

3

(g; z(n))

S

vanishes if and

only if Ext(g; n)

[S℄

is non-empty, beause it is the obstrution to the existene of an extension

q:

b

g

S

! g

S

of g

S

by z(n) for whih q

�1

(n

ad

) is g

S

-equivariantly equivalent to n as a entral

z(n)-extension of n

ad

. This provides a new interpretation of the ohomology lass �

�

as the

obstrution lass �(S) of the ontinuous outer ation S of g on

b

n .
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Along these lines we disuss in Setion V two types of examples of topologial rossed

modules, where we determine the harateristi lass expliitly in terms of a 3-oyle of the

form �([x; y℄; z), where �: g� g ! z is an invariant symmetri bilinear z-valued form on the Lie

algebra g .

In Setion VI we reall the relation between ovariant di�erentials, extensions of Lie algebras

and smooth prinipal bundles (f. [AMR00℄). We then use this relation to attah to a entral

extension of the struture group of a prinipal bundle a rossed module of topologial Lie algebras

whose harateristi lass an be represented by a losed 3-form on the underlying manifold. It

would be interesting to see how the orresponding ohomology lass relates to the urvature of

di�erential geometri gerbes with a urving, as disussed in Setion 5.3 of [Bry93℄.

Although our main fous lies on topologial Lie algebras, we think that the onnetions be-

tween extensions and rossed modules disussed in this paper also adds new insight on the purely

algebrai level. On the algebrai level the idea to redue extensions of g by n orresponding to a

g-kernel (n; s) to abelian extensions of the Lie algebra g

s

:= s

�

(dern) � der(n)� g an already

be found in Mori's paper ([Mo53℄; the Redution Theorem, Thm. 4).

Throughout this paper we shall use the alulus of ovariant di�erentials whih is introdued

on a quite abstrat level in Setion I as a means to perform alulations related to extensions of

Lie algebras. Here the main point is that if g is a Lie algebra and V a vetor spae, then for

eah linear map S: g ! End(V ) we have the so-alled ovariant di�erential d

S

:= S

^

+d

g

on the

diret sum C

�

(g; V ) :=

L

r2N

0

C

r

(g; V ), where d

g

is the Lie algebra di�erential orresponding

to the trivial module struture on V and S

^

denotes the maps C

r

(g; V )! C

r+1

(g; V ) indued

by the evaluation map End(V )� V ! V on the level of Lie algebra ohains. Then we have

d

2

S

� = R

S

^ �; where R

S

:= d

g

S +

1

2

[S; S℄

is the \urvature" of S , vanishing if and only if S is a homomorphism of Lie algebras, and

R

S

^ is a map C

r

(g; V )! C

r+2

(g; V ) indued by the evaluation map End(V )� V ! V . If, in

addition, V is a Lie algebra and S is of the form S = ad Æ� for some �: g ! V , then we have

d

2

S

� = [R

�

; �℄ and d

S

R

�

= 0;

where the latter equation is a quite abstrat version of the Bianhi identity that plays a entral

role in Yang{Mills Theory and General Relativity (f. [Fa03℄ for a nie disussion of beautiful

equations in these theories).

Sine lifting derivations and automorphisms to Lie algebra extensions plays a ruial role

in many onstrutions involving in�nite-dimensional Lie algebras, we desribe in Appendix A the

Lie algebra der(

b

g; n) of derivations of an n-extension

b

g of g (i.e., the derivations of

b

g preserving

n) in terms of an exat sequene of the form

0! Z

1

(g; z(n))

S

! der(

b

g; n)! (der n� der g)

[S℄

I

��!H

2

(g; z(n))

S

! 0;

where I is a Lie algebra 1-oyle for the natural representation of the Lie algebra

(der n � der g)

[S℄

on H

2

(g; z(n))

S

. We also disuss the problem to lift ations of a Lie alge-

bra h by derivations on n and g to ations on

b

g .

In Appendix B we desribe in an analogous manner the group Aut(

b

g; n) of automorphisms

of

b

g preserving n by an exat sequene of the form

0! Z

1

(g; z(n))

S

! Aut(

b

g; n)! (Aut(n)�Aut(g))

[S℄

I

��!H

2

(g; z(n))

S

! 0;

where I is a group 1-oyle for the natural ation of the group (Aut(n) � Aut(g))

[S℄

on

H

2

(g; z(n))

S

.
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I. Basi de�nitions and tools

In this setion we introdue the basi onepts needed in our topologial setting. In partiular

we de�ne ontinuous Lie algebra ohomology and ovariant di�erentials. It turns out that the

alulus of ovariant di�erentials is extremely onvenient throughout the paper.

Topologial Lie algebras and their ohomology

Throughout this paper K is a topologial �eld, i.e., a �eld for whih addition, multipliation

and inversion are ontinuous. Eah �eld K is a topologial �eld with respet to the disrete

topology whih we do not exlude. We further assume that harK = 0.

A topologial vetor spae V is a K -vetor spae V together with a Hausdor� topology

suh that addition, resp., salar multipliation of V are ontinuous with respet to the produt

topology on V � V , resp., K � V . For two topologial vetor spaes we write Lin(V;W ) for

the spae of ontinuous linear maps V ! W and End(V ) for the set of ontinuous linear

endomorphisms of V . A topologial Lie algebra g is a K -Lie algebra whih is a topologial

vetor spae for whih the Lie braket is a ontinuous bilinear map. A topologial g-module is

a g-module V whih is a topologial vetor spae for whih the module struture, viewed as a

map g� V ! V , is ontinuous.

A subspae W of a topologial vetor spae V is alled (topologially) split if it is losed

and there is a ontinuous linear map �:V=W ! V for whih the map

W � V=W ! V; (w; x) 7! w + �(x)

is an isomorphism of topologial vetor spaes. Note that the losedness of W guarantees that

the quotient topology turns V=W into a Hausdor� spae whih is a topologial K -vetor spae

with respet to the indued vetor spae struture. A morphism f :V !W of topologial vetor

spaes, i.e., a ontinuous linear map, is said to be (topologially) split if the subspaes ker(f) � V

and im(f) �W are topologially split. A sequene

V

0

f

1

��!V

1

f

2

��!� � �

f

n

��!V

n

of morphisms of topologial vetor spaes is alled topologially split if all morphisms f

1

; : : : ; f

n

are topologially split. In the following we shall mostly omit the adjetive \topologial" when it

is lear that the splitting does not refer to a Lie algebra or module struture.

Note that if K is disrete, then every K -vetor spae and every K -Lie algebra is topologial

with respet to the disrete topology. Further every subspae and every morphism is split, so

that all topologial splitting onditions are automatially satis�ed in the algebrai ontext, i.e.,

when all spaes and Lie algebras are disrete.

De�nition I.1. Let V be a topologial module of the topologial Lie algebra g . For p 2 N

0

,

let C

p

(g; V ) denote the spae of ontinuous alternating maps g

p

! V , i.e., the Lie algebra p-

ohains with values in the module V . We use the onvention C

0

(g; V ) = V and observe that

C

1

(g; V ) = Lin(g; V ) is the spae of ontinuous linear maps g ! V . We then obtain a hain

omplex with the di�erential

d

g

:C

p

(g; V )! C

p+1

(g; V )

given on f 2 C

p

(g; V ) by

(d

g

f)(x

0

; : : : ; x

p

) :=

p

X

j=0

(�1)

j

x

j

:f(x

0

; : : : ; bx

j

; : : : ; x

p

)

+

X

i<j

(�1)

i+j

f([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

);
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where bx

j

denotes omission of x

j

. Note that the ontinuity of the braket on g and the ation

on V imply that d

g

f is ontinuous.

We thus obtain a sub-omplex of the algebrai Lie algebra omplex assoiated to g and V .

Hene d

2

g

= 0, and the spae Z

p

(g; V ) := ker d

g

j

C

p

(g;V )

of p-oyles ontains the spae

B

p

(g; V ) := d

g

(C

p�1

(g; V )) of p-oboundaries (f. [We95, Cor. 7.7.3℄). The quotient

H

p

(g; V ) := Z

p

(g; V )=B

p

(g; V )

is the p

th

ontinuous ohomology spae of g with values in the g-module V . We write [f ℄ :=

f +B

p

(g; V ) for the ohomology lass [f ℄ of the oyle f .

Multipliation of Lie algebra ohains

Let g be a topologial Lie algebra and U; V;W be topologial g-modules. Further let

m:U � V ! W be a g-equivariant ontinuous bilinear map. There is a natural produt

C

p

(g; U)� C

q

(g; V )! C

p+q

(g;W ); (�; �) 7! � ^

m

� , de�ned by

(� ^

m

�)(x

1

; : : : ; x

p+q

) :=

1

p!q!

X

�2S

p+q

sgn(�)m

�

�(x

�(1)

; : : : ; x

�(p)

); �(x

�(p+1)

; : : : ; x

�(p+q)

)

�

:

Here we need that harK = 0 beause otherwise we might have p! = 0 or q! = 0. For p = q = 1

we have in partiular

(� ^

m

�)(x; y) = m(�(x); �(y)) �m(�(y); �(x)):

Writing

Alt(�)(x

1

; : : : ; x

p

) :=

X

�2S

p

sgn(�)�(x

�(1)

; : : : ; x

�(p)

)

for a p-linear map �: g

p

! V , we have

� ^

m

� =

1

p!q!

Alt(� �

m

�); where � �

m

� := m Æ (�� �)):

For a permutation � 2 S

p

and �

�

(x

1

; : : : ; x

p

) := �(x

�(1)

; : : : ; x

�(p)

) we observe that

Alt(�) = sgn(�)Alt(�

�

):

If U = V and � is alternating, then � �

m

� = �(� �

m

�)

�

for the permutation

� =

�

1 2 : : : p p+ 1 : : : p+ q

p+ 1 p+ 2 : : : p+ q 1 : : : p

�

of singature (�1)

pq

, and therefore

(1:1) � ^

m

� = (�1)

pq+1

� ^

m

�:

From [Ne03, Lemma F.1℄ we reall for � 2 C

p

(g; U) and � 2 C

q

(g; V ) the relation

(1:2) d

g

(� ^ �) = d

g

� ^ � + (�1)

p

� ^ d

g

�:

Remark I.2. (a) Now let X and Y be further topologial g-modules and m

0

:W � X ! Y

a g-equivariant ontinuous bilinear map. For � 2 C

p

(g; U), � 2 C

q

(g; V ),  2 C

r

(g; X) and

� 2 S

p+q

we then have the relation

sgn(�)Alt((� �

m

�)

�

�

m

0

) = Alt((� �

m

�) �

m

0

);

whih leads to

(1:3) (� ^

m

�) ^

m

0

 =

1

(p+ q)!r!

Alt((� ^

m

�) �

m

0

) =

1

p!q!r!

Alt((� �

m

�) �

m

0

):

If we further have ontinuous equivariant bilinear maps n:V �X ! Z and n

0

:U�Z ! Y ,

satisfying the assoiativity relation

m

0

Æ (m� id

X

) = n

0

Æ (id

U

�n);

i.e., (u �

m

v) �

m

0

x = u �

n

0

(v �

n

x) for all u 2 U; v 2 V; x 2 X , then (1.3) implies that

(1:4) (� ^

m

�) ^

m

0

 = � ^

n

0

(� ^

n

)

in C

p+q+r

(g; Y ).
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Example I.3. (In this example all topologies are disrete) Let V be a vetor spae, onsidered

as a trivial g-module and onsider gl(V ) also as a trivial g-module. We then have the two

bilinear maps

ev: End(V )� V ! V; ('; v) 7! '(v)

and the omposition

C: End(V )� End(V )! End(V ); (';  ) 7! ' :

These two maps satisfy the assoiativity relation

ev Æ(C � id

V

) = ev Æ(id

End(V )

� ev);

whih means that

(' )(v) = '( (v)) for all ';  2 End(V ); v 2 V:

In view of Remark I.2, this leads for � 2 C

p

(g;End(V )), � 2 C

q

(g;End(V )) and  2 C

r

(g; V )

to

(� ^

C

�) ^

ev

 = � ^

ev

(� ^

ev

)

in C

p+q+r

(g; V ).

Covariant di�erentials

Now let V be a trivial topologial g-module and d

g

the orresponding Lie algebra di�er-

ential on the omplex C

�

(g; V ). Further let S 2 C

1



(g;End(V )), where C

1



(g;End(V )) denotes

the set of all linear maps T : g ! End(V ) for whih g� V ! V; (x; v) 7! T (x)(v) is ontinuous.

We then obtain maps

S

^

:C

p

(g; V )! C

p+1

(g; V ); � 7! S ^

ev

�:

We now onsider the orresponding ovariant di�erential

d

S

:= S

^

+ d

g

:C

p

(g; V )! C

p+1

(g; V ); p 2 N

0

:

The following lemma shows that if S is a Lie algebra homomorphism, then d

S

is the Lie algebra

di�erential orresponding to the g-module struture on V de�ned by S .

Lemma I.4. The ovariant derivative is given by

(d

S

�)(x

0

; : : : ; x

p

) :=

p

X

j=0

(�1)

j

S(x

j

):�(x

0

; : : : ; bx

j

; : : : ; x

p

)

+

X

i<j

(�1)

i+j

�([x

i

; x

j

℄; x

0

; : : : ; bx

i

; : : : ; bx

j

; : : : ; x

p

):

Proof. Let �

k

2 S

p+1

�

=

S

f0;:::;pg

denote the yle (k; k � 1; k � 2; : : : 2; 1; k). Then

sgn(�

k

) = (�1)

k

, and

(S

^

(�))(x

0

; : : : ; x

p

) =

1

p!

p

X

k=0

X

�(0)=k

sgn(�)S(x

k

):�(x

�(1)

; : : : ; x

�(p)

)

=

p

X

k=0

sgn(�

k

)S(x

k

):�(x

�

k

(1)

; : : : ; x

�

k

(p)

) =

p

X

k=0

(�1)

k

S(x

k

):�(x

0

; : : : ; bx

k

; : : : ; x

p

):

This implies the lemma.
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Proposition I.5. Let R

S

(x; y) = [S(x); S(y)℄� S([x; y℄) for x; y 2 g . Then

R

S

:= d

g

S +

1

2

[S; S℄ 2 C

2

(g;End(V ))

and for � 2 C

p

(g; V ) we have

(1:5) d

2

S

� = R

S

^

ev

�;

In partiular d

2

S

= 0 if and only if S is a homomorphism of Lie algebras, i.e., R

S

= 0 .

Proof. For � 2 C

p

(g; V ) we get

d

2

S

� = d

S

(S ^

ev

�+ d

g

�)

= (S ^

ev

(S ^

ev

�)) + S ^

ev

d

g

�+ d

g

(S ^

ev

�) + d

2

g

�

= (S ^

C

S) ^

ev

�+ S ^

ev

d

g

�+ (d

g

S ^

ev

�� S ^

ev

d

g

�)

= (S ^

C

S) ^

ev

�+ d

g

S ^

ev

� = (S ^

C

S + d

g

S) ^

ev

�:

To make this more expliit, we observe that

(S ^

C

S)(x; y) = S(x)S(y)� S(y)S(x) = [S(x); S(y)℄ =

1

2

[S; S℄(x; y);

whih proves (1.5).

For v 2 V

�

=

C

0

(g; V ) we obtain in partiular (d

2

S

v)(x; y) = R

S

(x; y)v; showing that

d

2

S

= 0 on C

�

(g; V ) is equivalent to R

S

= 0; whih means that S: g ! (End(V ); [�; �℄) is a

homomorphism of Lie algebras.

We shall use the following notation for yli sums

X

y:

f(x

1

; x

2

; x

3

) := f(x

1

; x

2

; x

3

) + f(x

2

; x

3

; x

1

) + f(x

3

; x

1

; x

2

):

De�nition I.6. A Lie superalgebra (over a �eld K with 2; 3 2 K

�

) is a Z=2Z-graded vetor

spae g = g

0

� g

1

with a bilinear map [�; �℄ satisfying

(LS1) [�; �℄ = (�1)

pq+1

[�; �℄ for x 2 g

p

and y 2 g

q

.

(LS2) (�1)

pr

[[�; �℄; ℄ + (�1)

qp

[[�; ℄; �℄ + (�1)

qr

[[; �℄; �℄ = 0 for � 2 g

p

, � 2 g

q

and  2 g

r

.

Note that (LS1) implies that

(1:6) [�; �℄ = 0 = [�; [�; �℄℄ for � 2 g

0

; � 2 g

1

:

The following lemma is the algebrai version of the orresponding result about Lie algebra

valued di�erential forms on manifolds ([BGV04, Set. 1.4℄, [KMS93, Thm. II.8.5℄).

Lemma I.7. Suppose that V is a Lie algebra, onsidered as a trivial g-module. The bilinear

braket on C

�

(g; V ) :=

L

p2N

0

C

p

(g; V ) de�ned by

C

p

(g; V )� C

q

(g; V )! C

p+q

(g; V ); (�; �) 7! [�; �℄ := � ^

[�;�℄

�;

turns the Z=2Z-graded vetor spae C

�

(g; V ) = C

even

(g; V )�C

odd

(g; V ) into a Lie superalgebra.

Proof. (LS1) follows from (1.1). The relation (LS2) for deg� = p , deg� = q and deg  = r

an be obtained from (1.3) and the Jaobi identity as follows. Let b

g

: g� g ! g denote the Lie

braket on g . Then

[[�; �℄; ℄ =

1

p!q!r!

Alt(b

g

Æ (b

g


 id

g

) Æ (�
 � 
 ))

by (1.3), and from this formula one easily derives [[�; �℄; ℄ = (�1)

qr

[[�; ℄; �℄+[�; [�; ℄℄; so that

(LS2) now follows with (LS1).

The following proposition provides an abstrat algebrai version of identities originating in

the ontext of di�erential forms ([BGV04, Prop. 1.15℄).
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Proposition I.8. Suppose that V is a Lie algebra, onsidered as a trivial g-module. Let

� 2 C

1

(g; V ) and de�ne S = ad Æ� . Then

(1:7) d

2

S

� = [R

�

; �℄ for � 2 C

p

(g; V );

and R

�

satis�es the abstrat Bianhi identity d

S

R

�

= 0 .

Proof. Sine ad:V ! End(V ) is a homomorphism of Lie algebras, the de�nition of R

�

and

Proposition I.5 immediately lead for � 2 C

p

(g; V ) to:

d

2

S

� = R

S

^

ev

� = (ad ÆR

�

) ^

ev

� = [R

�

; �℄

(Lemma I.7).

From (1.1) and (1.2) we further get

(1:8) d

g

[�; �℄ = [d

g

�; �℄ � [�; d

g

�℄ = [d

g

�; �℄ + [d

g

�; �℄ = 2[d

g

�; �℄:

Now the abstrat Bianhi identity follows with Lemma I.7 from

d

S

R

�

= (d

g

+ S

^

)R

�

= d

2

g

� +

1

2

d

g

[�; �℄ + S ^R

�

= [d

g

�; �℄ + [�;R

�

℄

= [d

g

�; �℄� [R

�

; �℄ = �

1

2

[[�; �℄; �℄ = 0:

The observations in the following lemma will beome ruial in the following. It is partly

ontained in [AMR00, Th. 5℄.

Lemma I.9. For topologial Lie algebras g and n the presription

:(S; !) := (S + ad Æ; ! + d

S

 +

1

2

[; ℄)

de�nes an ation of the abelian group C

1

(g; n) on C

1



(g; der n) � C

2

(g; n) with the following

properties:

(1) R

S+ad Æ

= R

S

+ ad Æ(d

S

 +

1

2

[; ℄) for S 2 C

1



(g; der n) and  2 C

1

(g; n) .

(2)

e

Z

2

(g; n) := f(S; !) 2 C

1



(g; dern)� C

2

(g; n):R

S

= ad Æ!g is an invariant subset.

(3) For (S; !) 2

e

Z

2

(g; n) we have d

S

! 2 Z

3

(g; z(n))

S

.

(4) The map

e

Z

2

(g; n)! Z

3

(g; z(n)); (S; !) 7! d

S

! is onstant on orbits of C

1

(g; n) .

Proof. First we observe that



1

:(

2

:(S; !)) = (S + ad Æ(

1

+ 

2

); !

00

);

where

!

00

= ! + d

S



2

+

1

2

[

2

; 

2

℄ + d

S+ad Æ

2



1

+

1

2

[

1

; 

1

℄

= ! + d

S



2

+

1

2

[

2

; 

2

℄ + d

S



1

+ [

2

; 

1

℄ +

1

2

[

1

; 

1

℄

= ! + d

S

(

1

+ 

2

) +

1

2

[

1

+ 

2

; 

1

+ 

2

℄:

This proves that we obtain an ation of C

1

(g; n) on C

1



(g; dern)� C

2

(g; n).

(1) For S

0

:= S + ad Æ we have

R

S

0

= d

g

S

0

+

1

2

[S

0

; S

0

℄ = R

S

+ d

g

(ad Æ) +

1

2

([S; ad Æ℄ + [ad Æ; S℄ + [ad Æ; ad Æ℄)

= R

S

+ ad Æ(d

g

) + [S; ad Æ℄ +

1

2

[ad Æ; adÆ℄

= R

S

+ ad Æ(d

g

 + S ^  +

1

2

[; ℄) = R

S

+ ad Æ(d

S

 +

1

2

[; ℄):

(2) follows immediately from (1).
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(3) For S

1

:= ad ÆS: g! End(dern) we have:

ad Æ(d

S

!) = d

S

1

(ad Æ!) = d

S

1

(d

g

S +

1

2

[S; S℄) = 0

by applying Proposition I.8 with � := S and V := dern and using the abstrat Bianhi identity.

This proves that d

S

! has values in z(n).

We further obtain with Proposition I.8

d

S

(d

S

!) = d

2

S

! = [!; !℄ = 0;

where the last equality follows from (1.1), whih implies that the braket is alternating on ohains

of even degree (f. [AMR00, Th. 8℄).

(4) For S

0

:= S +ad  and !

0

:= !+ d

S

 +

1

2

[; ℄ we obtain with (1) and Proposition I.6

that

d

S

0

!

0

= d

S

!

0

+ (S

0

� S) ^ !

0

= d

S

! + d

S

(d

S

 +

1

2

[; ℄) + [; !

0

℄

= d

S

! + [!; ℄ + [d

S

; ℄� [!

0

; ℄

= d

S

! + [! + d

S

 � !

0

; ℄ = d

S

! �

1

2

[[; ℄; ℄ = d

S

!:

Remark I.10. (Twisted ohomology) (a) Let g be a Lie algebra and V a g-module, where the

module struture is given by the homomorphism S: g ! End(V ). Then we have the Lie algebra

omplex (C

�

(g; V ); d

S

).

This omplex an be twisted as follows. Instead of d

S

, we onsider for some � 2

C

1

(g;End(V )) the operator

d

�

:C

�

(g; V )! C

�

(g; V ); � 7! d

S

�+ � ^ �;

whih oinides with d

S

0

for S

0

:= S + �. For

T := ad ÆS: g! der(End(V ))

we then have

R

S

0

= R

S

+ d

g

� +

1

2

[�;�℄ + [S;�℄ = d

g

� +

1

2

[�;�℄ + [S;�℄ = d

T

� +

1

2

[�;�℄;

and d

2

�

vanishes if and only if this expression vanishes (Proposition I.8).

If the values of � lie in a ommutative subalgebra of End(V ), then this equation redues to

d

T

� = 0, whih means that � is a 1-oyle with respet to the indued ation of g on EndV .

Another speial ase arises if V is a Lie algebra and � = ad Æ for some  2 C

1

(g; V ). In

this ase

R

S

0

= d

T

� +

1

2

[�;�℄ = ad Æ(d

S

 +

1

2

[; ℄):

(b) Twisted omplexes as above arise naturally in di�erential geometry, where one onsiders

the Lie algebra g := V(M) of smooth vetor �elds on a manifold and the algebra V := C

1

(M;R)

of smooth funtions on M , whih is a g-module with respet to S(X):f := X:f . Now any smooth

1-form  2 


1

(M;R) an be viewed as an element of C

1

(g; V ), and from the algebra struture

on V we obtain an element � 2 C

1

(g;End(V )) by �(X)(f) := (X) � f . Then

d

�

� = d

S

�+ � ^ � = d�+  ^ �

in the sense of exterior alulus. Therefore d

2

�

vanishes if and only if 0 = d

T

�, whih is the

operator of multipliation with the 2-form d in the assoiative algebra 


�

(M;R). A more

diret way to see this is to use the relation

(d+ 

^

)

2

= d

2

+ d Æ 

^

+ 

^

Æ d+ ( ^ )

^

= (d)

^

:

() We get a related situation for V := C

1

(M; k) for some loally onvex Lie algebra k .

Then V also is a module of g = V(M), and for  2 


1

(M; k) � C

1

(g; V ) we may onsider the

map � 2 C

1

(g;End(V )) given by �(X)(�) := [; �℄ . Then (a) implies that d

2

�

= 0 is equivalent to

� satisfying the Maurer{Cartan equation d

T

�+

1

2

[�;�℄ = 0, whih is equivalent to d

S

+

1

2

[; ℄

having values in the enter of k .
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II. Extensions of topologial Lie algebras

In this setion we disuss a method to lassify (topologially split) extensions of a Lie algebra

g by a Lie algebra n in terms of ontinuous Lie algebra ohomology. The onstrution of a Lie

algebra from a fator system (S; !) is losely related to rossed modules, whih we disuss in

Setion III.

De�nition II.1. Let g and n be topologial Lie algebras. A topologially split short exat

sequene

n ,!

b

g !! g

is alled a (topologially split) extension of g by n . If we identify n with its image in

b

g , this

means that

b

g is a Lie algebra ontaining n as a topologially split ideal suh that

b

g=n

�

=

g .

Two extensions n ,!

b

g

1

!! g and n ,!

b

g

2

!! g are alled equivalent if there exists a

morphism ':

b

g

1

!

b

g

2

of topologial Lie algebras suh that the diagram

n ,!

b

g

1

!! g

?

?

y

id

n

?

?

y

'

?

?

y

id

g

n ,!

b

g

2

!! g

ommutes. It is easy to see that this implies that ' is an isomorphism of topologial Lie algebras

(Exerise), hene de�nes an equivalene relation. We write Ext(g; n) for the set of equivalene

lasses of extensions of g by n .

We all an extension q:

b

g ! g with ker q = n trivial, or say that the extension splits, if

there exists a ontinuous Lie algebra homomorphism �: g !

b

g with q Æ � = id

g

. In this ase the

map

no

S

g !

b

g; (n; x) 7! n+ �(x)

is an isomorphism, where the semi-diret sum is de�ned by the homomorphism

S: g ! dern; S(x):n := [�(x); n℄:

Next we give a desription of Lie algebra extensions n ,!

b

g !! g in terms of data assoiated

to g and n . Let q:

b

g ! g be an n-extension of g . We hoose a ontinuous linear setion �: g !

b

g

of q . Then the linear map

�: n� g !

b

g; (n; x) 7! n+ �(x)

is an isomorphism of topologial vetor spaes. To express the Lie braket in terms of this produt

struture on

b

g , we de�ne the linear map

S: g ! dern; S(x) := ad

n

(�(x)) := (ad�(x)) j

n

and the alternating bilinear map

!: g� g ! n; !(x; y) := R

�

(x; y) := [�(x); �(y)℄ � �([x; y℄) = (

1

2

[�; �℄ + d

g

�)(x; y);

where the last expression has to be understood in the terminology introdued in Setion I, and

d

g

refers to the trivial g-module struture on

b

g . The ontinuity of � immediately implies the

ontinuity of ! , and S is ontinuous in the sense that the map g � n ! n; (x; n) 7! S(x):n is

ontinuous. Now � is an isomorphism of topologial Lie algebras if we endow n� g with the Lie

braket

(2:1) [(n; x); (n

0

; x

0

)℄ := ([n; n

0

℄ + S(x):n

0

� S(x

0

):n+ !(x; x

0

); [x; x

0

℄):
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De�nition II.2. A ontinuous outer ation of g on n is a linear map S: g! der n for whih

the bilinear map

g� n ! n; (x; n) 7! S(x):n

is ontinuous, i.e., S 2 C

1



(g; dern), and there exists a ontinuous alternating map ! with

R

S

= ad Æ!: If, in addition, d

S

! = 0 (f. Lemma I.4), then we all the pair (S; !) a ontinuous

fator system for (g; n). We write Z

2

(g; n) for the set of all suh ontinuous fator systems and

Z

2

(g; n)

S

:= f! 2 C

2

(g; n):R

S

= ad Æ!; d

S

! = 0g:

On the set of all ontinuous outer ations S: g ! dern we de�ne an equivalene relation

by

S � S

0

() (9 2 Lin(g; n)) S = S

0

+ ad

n

Æ:

We write [S℄ for the equivalene lass of S , whih we all a ontinuous g-kernel, and out(g; n)

for the set of ontinuous g-kernels on n . Let

Q

n

: der(n)! out(n) := der(n)= ad n

denote the quotient homomorphism. Then we an attah to eah lass [S℄ the homomorphism

s := Q

n

Æ S: g! out(n)

beause Q

n

Æ ad

n

Æ� = 0 holds for eah linear map �: g ! n . As ad

n

(n) ats trivially on the

enter z(n), eah ontinuous outer ation S de�nes on z(n) the struture of a topologial g-

module by x:z := S(x):z .

Remark II.3. If g and n are disrete, then for eah homomorphism s: g ! out(n) there

exists a linear map S: g ! dern with Q

n

Æ S = s and an alternating map ! 2 C

2

(g; n) with

R

S

= ad

n

Æ! . All outer ations are ontinuous and S � S

0

is equivalent to Q

n

Æ S = Q

n

Æ S

0

, so

that a ontinuous g-kernel is nothing but a homomorphism s: g ! out(n).

A version of the following lemma for Banah{Lie algebras an be found as Proposition 4.1

in [OR04℄.

Lemma II.4. For a ontinuous fator system (S; !) let n �

(S;!)

g be the topologial produt

vetor spae n � g endowed with the braket (2.1). Then n �

(S;!)

g is a topologial Lie algebra

and

q: n�

(S;!)

g ! g; (n; x) 7! x

de�nes a topologially split extension of g by n .

Conversely, every topologially split extension of g by n is equivalent to some n�

(S;!)

g .

Proof. The ontinuity of the braket on n �

(S;!)

g follows from the ontinuity assumptions

on S and ! . It is lear that the braket is bilinear, and [(n; x); (n; x)℄ = 0 follows from the

assumption that ! is alternating. Sine the braket is alternating,

J((n; x); (n

0

; x

0

); (n

00

; x

00

)) :=

X

y:

[[(n; x); (n

0

; x

0

)℄; (n

00

; x

00

)℄

is an alternating trilinear map (n � g)

3

! n � g . Therefore (2.1) de�nes a Lie braket if and

only if J vanishes on all triples of the form (n; n

0

; n

00

), (x; n

0

; n

00

), (x; x

0

; n

00

) and (x; x

0

; x

00

),

where x; x

0

; x

00

2 g and n; n

0

; n

00

2 n , and we identify n and g with a subspae of n� g . As the

inlusion map n ,! n�

(S;!)

g preserves the braket, we have J(n; n

0

; n

00

) = 0.

It is lear that [n�

(S;!)

g; n℄ � n . Therefore J(x; n

0

; n

00

) = 0 follows from S(x) 2 dern for

eah x 2 g .

The vanishing of the expressions J(x; x

0

; n

00

) means that

S(x):(S(x

0

):n

00

)� S(x

0

):(S(x):n

00

) = [(0; x); (0; x

0

)℄:n

00

= [!(x; x

0

); n℄ + S([x; x

0

℄):n

00

;
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whih is R

S

= ad Æ! .

Finally

[[(0; x); (0; x

0

)℄; (0; x

00

)℄ = [(!(x; x

0

); [x; x

0

℄); (0; x

00

)℄ = (�S(x

00

):!(x; x

0

)+!([x; x

0

℄; x

00

); [[x; x

0

℄; x

00

℄)

implies that J(x; x

0

; x

00

) = (�(d

S

!)(x; x

0

; x

00

); 0) = (0; 0):

If, onversely, q:

b

g ! g is a topologially split extension of g by n and �: g !

b

g a ontinuous

linear setion, then we de�ne ! and S as in the disussion preeding (2.1). Then the map

g� n ! n; (x; n) 7! S(x)(n) = [�(x); n℄

is ontinuous. Further ! is ontinuous and alternating with ad Æ! = ad ÆR

�

= R

ad Æ�

= R

S

:

Eventually d

S

! = 0 follows from Proposition I.8, applied with V =

b

g .

This shows that (S; !) is a ontinuous fator system, so that we obtain a orresponding

topologial Lie algebra n�

(S;!)

g . One readily veri�es that the map

�: n�

(S;!)

g !

b

g; (n; x) 7! n+ �(x)

is an isomorphism of topologial Lie algebras and an equivalene of n-extensions of g .

The following lemma desribes in how many ways we an parametrize the same Lie algebra

extension as a produt spae.

Lemma II.5. Let (�; �) 2 Aut(n)�Aut(g) and  2 C

1

(g; n) . Then the map

': n� g ! n� g; (n; x) 7! (�(n) + (�(x)); �(n))

is an isomorphism of Lie algebras n�

(S;!)

g! n�

(S

0

;!

0

)

g if and only if

(�; �):S = S

0

+ ad Æ and (�; �):! := � Æ ! Æ (� � �)

�1

= !

0

+ d

S

0

 +

1

2

[; ℄;

whih means that (�; �):(S; !) = :(S

0

; !

0

) . Here

((�; �):S)(x) := � Æ (S(�

�1

:x)) Æ �

�1

:

Proof. We have

'([(n; x); (n

0

; x

0

)℄)

= '([n; n

0

℄ + S(x):n

0

� S(x

0

):n+ !(x; x

0

); [x; x

0

℄)

= (�([n; n

0

℄) + �(S(x):n

0

)� �(S(x

0

):n) + �!(x; x

0

) + (�([x; x

0

℄)); �([x; x

0

℄))

and

['(n; x); '(n

0

; x

0

)℄

= [(�(n) + (�(x)); �(x)); (�(n

0

) + (�(x

0

)); �(x

0

))℄

= ([�(n) + (�(x)); �(n

0

) + (�(x

0

))℄ + S

0

(�(x)):(�(n

0

) + (�(x

0

)))

� S

0

(�(x

0

)):(�(n) + (�(x))) + !

0

(�(x); �(x

0

)); �([x; x

0

℄)):

Therefore the requirement that ' is a homomorphism of Lie algebras is equivalent to the two

onditions

S

0

(�(x)) Æ �+ ad (�(x)) Æ � = � Æ S(x) for x 2 g

and

�!(x; x

0

) + (�([x; x

0

℄))

= !

0

(�(x); �(x

0

)) + S

0

(�(x))(�(x

0

))� S

0

(�(x

0

))(�(x)) + [(�(x)); (�(x

0

))℄; x; x

0

2 g:

The �rst ondition implies that

S

0

(x) + ad (x) = � Æ S(�

�1

(x)) Æ �

�1

= ((�; �):S)(x) for all x 2 g;

i.e., S

0

= (�; �):S � ad Æ . Similarly, the seond ondition an be written as

(�; �):! = !

0

+ d

S

0

 +

1

2

[; ℄:

This proves the lemma.
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Remark II.6. Suppose that S = S

0

+ad Æ for some  2 C

1

(g; n). In the Lie algebra n�

(S;!)

g

we replae the setion �: g ! n�

(S;!)

g; x 7! (0; x) by �

0

:= � +  . Then ! = R

�

, S = ad

n

Æ�

and S

0

= ad

n

Æ�

0

, so that Lemma I.9(1) yields

R

�

0

= R

�

+ d

S

 +

1

2

[; ℄:

Therefore the passage from a pair (S; !) to the orresponding pair obtained from hanging

the setion by adding  is given by the ation desribed in Lemma I.9.

Theorem II.7. The assignment

�:Z

2

(g; n)! Ext(g; n); (S; !) 7! [n�

(S;!)

g℄

fators through a bijetion

�:Z

2

(g; n)=C

1

(g; n)! Ext(g; n):

For every ontinuous outer ation S of g on n with Ext(g; n)

[S℄

6= � the map

Z

2

(g; n)

S

! Ext(g; n)

[S℄

; ! 7! [n�

(S;!)

g℄

is surjetive and its �bers are the osets of B

2

(g; z(n))

S

in the aÆne spae Z

2

(g; n)

S

with

translation group Z

2

(g; z(n))

S

. Thus Ext(g; n)

[S℄

inherits the struture of an aÆne spae with

translation group H

2

(g; z(n))

S

.

Proof. Lemma II.4 implies that � is surjetive. Aording to Lemma II.5, an equivalene

': n �

(S;!)

g ! n �

(S

0

;!

0

)

g has the form '(n; x) = (n + (x); x) with  2 C

1

(g; n) satisfying

(S; !) = :(S

0

; !

0

). This implies that the �bers of � are the orbits of C

1

(g; n), so that � fators

through the bijetion �.

If Ext(n; g)

[S℄

is not empty, then it follows from the preeding paragraph that eah extension

n�

(S

0

;!

0

)

g with S

0

� S is equivalent to one of the form n�

(S;!)

g , where ! 2 Z

2

(g; n)

S

.

All other extension lasses orresponding to [S℄ are given by Lie algebras of the form

n�

(S;!

0

)

g . The requirement ad Æ! = R

S

= ad Æ!

0

implies � := !

0

� ! 2 C

2

(g; z(n)). Therefore

0 = d

S

!

0

= d

S

! + d

S

� = d

S

�

implies � 2 Z

2

(g; z(n))

S

. This means that !

0

2 ! + Z

2

(g; z(n))

S

.

Aording to Lemma II.5, an equivalene ': n�

(S;!)

g ! n�

(S;!

0

)

g has the form '(n; x) =

(n+ �(x); x) with � 2 C

1

(g; z(n)) satisfying ! � !

0

= d

S

�: This ompletes the proof.

Corollary II.8. For a ontinuous g-kernel [S℄ the map

H

2

(g; z(n))

S

� Ext(g; n)

[S℄

! Ext(g; n)

[S℄

; (�; [n�

(S;!)

g℄) 7! [n�

(S;!+�)

g℄

is a well-de�ned simply transitive ation, so that Ext(g; n)

[S℄

arries the struture of an aÆne

spae with translation group H

2

(g; z(n))

S

.

Remark II.9. (Abelian extensions) Suppose that a is an abelian Lie algebra. Then the adjoint

representation of a is trivial and a ontinuous outer ation is the same as a ontinuous ation

S: g ! der a of g on a . For ! 2 C

2

(g; a) we have d

S

! = d

g

! , where d

g

is the Lie algebra

di�erential. Therefore the pair (S; !) is a ontinuous fator system if and only if ! is a 2-oyle.

In this ase we write a�

!

g for this Lie algebra, whih is a� g , endowed with the Lie braket

[(a; x); (a

0

; x

0

)℄ = (x:a

0

� x

0

:a+ !(x; x

0

); [x; x

0

℄):

Further S � S

0

if and only if S = S

0

. Hene a ontinuous g-kernel [S℄ is the same

as a ontinuous g-module struture S on a and Ext(g; a)

S

:= Ext(g; a)

[S℄

is the lass of all

a-extensions of g for whih the assoiated g-module struture on a is given by S .

Aording to Corollary II.8, the equivalene lasses of extensions orrespond to ohomology

lasses of oyles, so that the map

H

2

(g; a)

S

! Ext(g; a)

S

; [!℄ 7! [a�

!

g℄

is a well-de�ned bijetion. Note that the semidiret sum a o

S

g is a natural base point in

Ext(g; a)

S

, whih leads to a vetor spae struture instead of the aÆne spae struture that we

have if n is non-abelian.
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Remark II.10. The group H

2

(g; z(n))

S

very muh depends on the outer ation S of g on n .

Let g = R

2

and n = R . Then C

2

(g; z(n)) is 1-dimensional. Further dim g = 2 implies

C

3

(g; z(n)) = f0g , so that eah 2-ohain is a oyle. Sine B

2

(g; z(n))

S

vanishes if the module

z(n) is trivial and oinides with Z

2

(g; z(n))

S

otherwise, we have

H

2

(g; z(n))

S

�

=

�

R for S(g):z(n) = f0g

f0g for S(g):z(n) 6= f0g.

De�nition II.11. Let S be a ontinuous outer ation of g on n and ! 2 C

2

(g; n) with

R

S

= ad Æ! . We have seen in Lemma I.9 that d

S

! 2 Z

3

(g; z(n))

S

. The orresponding

ohomology lass

�(S) := [d

S

!℄ 2 H

3

(g; z(n))

S

is alled the obstrution lass of the outer ation S .

If !

0

2 C

2

(g; n) also satis�es R

S

= ad Æ!

0

, then � := !

0

� ! 2 C

2

(g; z(n)) implies that

d

S

!

0

= d

S

! + d

S

�;

and therefore [d

S

!

0

℄ = [d

S

!℄ does not depend on the hoie of ! . Moreover, Lemma I.9 implies

that �(S) = �(S

0

) if S

0

� S , so that �([S℄) := [d

S

!℄ only depends on the equivalene lass

of S .

III. Topologial rossed modules

In this short setion we disuss rossed modules of topologial Lie algebras and explain their

relation to non-abelian extensions. The main result is Theorem III.5, exhibiting the hara-

teristi lass of a rossed module as an obstrution to the existene of a ertain extension. In

Proposition III.6 we use this aspet to give a another formula for the harateristi lass.

De�nition III.1. A (split) morphism �: h !

b

g of topologial Lie algebras together with a

ontinuous

b

g -module struture

b

g�h ! h; (x; h) 7! x:h on h is alled a (split) topologial rossed

module if the following onditions are satis�ed:

(CM1) �(x:h) = [x; �(h)℄ for x 2

b

g , h 2 h .

(CM2) �(h):h

0

= [h; h

0

℄ for h; h

0

2 h .

The onditions (CM1/2) express the ompatibility of the

b

g-module struture on h with

the adjoint representations of

b

g and h .

Lemma III.2. If �: h !

b

g is a topologial rossed module, then the following assertions hold:

(1) im(�) is an ideal of

b

g .

(2) ker(�) � z(h) .

(3) ker(�) is a

b

g-submodule of h .

Proof. (1) follows from (CM1), (2) from (CM2), and (3) from (CM1).

Crossed modules for whih � is injetive are inlusions of ideals and surjetive rossed

modules are entral extensions. In this sense the onept of a rossed module interpolates between

ideals and entral extensions.

In the following we shall adopt the following perspetive on rossed modules. Let �: h !

b

g

be a topologially split rossed module. Then n := im(�) is a topologially split losed ideal

of

b

g and �: h ! n is a topologially split entral extension of n by z := ker(�). In this sense

a topologially split rossed module an be viewed as a topologially split entral extension

�: h ! n of a topologially split ideal n of

b

g for whih there exists a

b

g-module struture on h

satisfying (CM1/2).

If, onversely, n is a topologially split ideal of the Lie algebra

b

g and �:

b

n ! n is a

topologially split entral extension of n by z , then we have a natural topologial n-module
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struture on

b

n given by �(n):n

0

:= [n; n

0

℄ . To obtain the struture of a rossed module for

�:

b

n !

b

g means that the ation of n on

b

n extends to a ontinuous

b

g -module struture on

b

n for

whih � is equivariant. In the following we shall adopt this point of view. Moreover, we shall

write g :=

b

g=n for the okernel of � .

Let f 2 Z

2

(n; z) be a oyle with

b

n

�

=

z�

f

n (Remark II.9) and assume that

b

n = z�

f

n . We

write the

b

g-module struture on z as (x; z) 7! x:z . Then the

b

g-module struture on

b

n = z�

f

n

is given by

(3:1) x:(z; n) = (x:z + �(x; n); [x; n℄);

where �:

b

g� n ! z is a ontinuous bilinear map. Here (CM2) implies that for x 2 n we have

x:(z; n) = [(0; x); (z; n)℄ = (f(x; n); [x; n℄);

so that � j

n�n

= f .

Lemma III.3. (a) That a linear map �

x

2 Lin(n; z) de�nes a derivation

�(x):

b

n !

b

n; (z; n) 7! (x:z + �

x

(n); [x; n℄)

is equivalent to d

n

(�

x

) = x:f; where d

n

refers to the di�erential on C

0

(n;Lin(n; z))

�

=

Lin(n; z) .

Expliitly this means that for n; n

0

2 n we have

x:f(n; n

0

)� f([x; n℄; n

0

)� f([n

0

; x℄; n) + �

x

([n; n

0

℄) = 0:

(b) Suppose that the linear map �:

b

g ! C

1

(n; z); x 7! �

x

satis�es (a). That � de�nes a

representation of

b

g on

b

n by

x:(z; n) := (x:z + �

x

(n); [x; n℄)

is equivalent to � being a 1-oyle w.r.t. the natural

b

g-module struture on C

1

(n; z)

�

=

Lin(n; z) .

Expliitly this means that for x; x

0

2

b

g and n 2 n we have

x:�(x

0

; n)� x

0

:�(x; n)� �([x; x

0

℄; n) + �(x; [x

0

; n℄) + �(x

0

; [n; x℄) = 0:

Proof. (a) To apply Proposition A.1 in Appendix A, we �rst observe that

b

n is a entral

extension, so that (A.2) redues to x:f = d

n

(�

x

). The expliit formula now follows from

x:f(n; n

0

)� f([x; n℄; n

0

)� f(n; [x; n

0

℄) = n:�

x

(n

0

)� n

0

:�

x

(n)� �

x

([n; n

0

℄) = ��

x

([n; n

0

℄):

(b) The �rst assertion follows from Proposition A.7, and the expliit formula from

(d

bg

�)(x; x

0

)(n) = x:�(x

0

; n)� �(x

0

; [x; n℄)� x

0

:�(x; n) + �(x; [x

0

; n℄)� �([x; x

0

℄; n)

= x:�(x

0

; n)� x

0

:�(x; n) � �([x; x

0

℄; n) + �(x; [x

0

; n℄) + �(x

0

; [n; x℄) = 0:

Sine n is topologially split and � j

n�n

is alternating, there exists a ontinuous alter-

nating extension

e

f 2 C

2

(

b

g; z) of � . Then d

bg

e

f 2 Z

3

(

b

g; z) is a 3-oyle vanishing on n �

b

g

2

(Lemma III.3), so that it an be written as d

bg

e

f = q

�

� with � 2 Z

3

(g; z).

Lemma III.4. The ohomology lass �

�

:= [�℄ 2 H

3

(g; z) does not depend on the hoie of

e

f

and the oyle f 2 Z

2

(n; z) .

We all �

�

the harateristi lass of the rossed module �:

b

n !

b

g .

Proof. If

e

f and

e

f

0

are both extensions of � 2 C

2

(

b

g; z), then

e

f

0

�

e

f vanishes on

b

g� n , hene

an be written as q

�

�

0

for some �

0

2 C

2

(g; z). Then

d

bg

e

f

0

� d

bg

e

f = d

bg

q

�

� = q

�

(d

bg

�)
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so that both lead to the same ohomology lass in H

3

(g; z).

Now let f

0

:= f + d

n

 2 Z

2

(n; z) be an equivalent oyle. Then

': z�

f

0

n! z�

f

n; (z; n) 7! (z + (n); n)

is an equivalene of entral extensions (Lemma II.5). If the ation of

b

g on z�

f

0

n is given by �

0

,

then the

b

g -equivariane of ' implies that

(x:z + x:(n) + �(x; n); [x; n℄) = x:'(z; n) = '(x:(z; n)) = '(x:z + �

0

(x; n); [x; n℄)

= (x:z + �

0

(x; n) + ([x; n℄); [x; n℄):

This means that

�

0

= � + x:; where (x:)(n) = x:(n)� ([x; n℄)

denotes the natural ation of

b

g on C

1

(n; z) = Lin(n; z). Sine n is topologially split, there exists

an extension e 2 C

1

(

b

g; z) of  . For x 2

b

g and n 2 n we then have

(d

bg

e)(x; n) = x:e(n)� n:e(x) � e([x; n℄) = x:(n)� ([x; n℄) = (x:)(n);

so that

e

f+d

bg

e is an alternating ontinuous extension of �

0

. In view of the �rst part of the proof,

we may use this extension to alulate the ohomology lass assoiated to �

0

, whih therefore is

given by fatorization of d

bg

e

f+d

2

bg

e = d

bg

e

f to g , and therefore equal to the lass assoiated to � .

Theorem III.5. For the topologially split rossed module �:

b

n !

b

g and the orresponding

b

g-module z := ker� the following are equivalent:

(1) �

�

= 0 in H

3

(g; z) .

(2) If

b

n = z�

f

n for some f 2 Z

2

(n; z) and x:(z; n) = (x:z + �(x; n); [x; n℄) , then � extends to

a oyle in Z

2

(

b

g; z) .

(3) There exists a topologially split abelian extension z ,!

e

g

q

��!

b

g and a

b

g-equivariant equiva-

lene

b

n! q

�1

(n) of z-extensions of n .

Proof. (1) ) (2): If �

�

= 0 and

e

f 2 C

2

(

b

g; z) is an extension of � , then there exists a

� 2 C

2

(g; z) with d

bg

e

f = q

�

(d

g

�) = d

bg

(q

�

�), so that

e

f � q

�

� is an extension of � to a oyle

of

b

g .

(2) ) (3): Let

e

f 2 Z

2

(

b

g; z) be a oyle extending � and

e

g := a�

e

f

b

g the orresponding

extension of

b

g by a . Then the inlusion

b

n = z�

f

n!

e

g; (z; n) 7! (z; n) indues a

b

g -equivariant

equivalene

b

n ! q

�1

(n).

(3) ) (1): Suppose that we have a

b

g-equivariant equivalene of z-extensions

b

n ! q

�1

(n) �

e

g:

Write

e

g = z �

e

f

b

g for some

e

f 2 Z

2

(

b

g; a). Our assertion means that

b

n

�

=

z �

f

n for f :=

e

f j

n�n

,

so that we may identify

b

n with the subspae z� n �

e

g , and that the representation of

b

g on this

subspae

b

n is given by

x:(z; n) = (x:z + �(x; n); [x; n℄):

Then

e

f is an extension of � , so that (1) follows from the de�nition of �

�

.

An alternative formula for the harateristi lass

For the appliations to Lie algebra extensions in Setion IV below we shall also need another

formula for the harateristi lass of a rossed module, whih is the traditional way to de�ne the

harateristi lass (f. [We03℄) by showing that the inlusion z ,! z(

b

n) maps the harateristi

lass �

�

to the obstrution lass �(S) 2 H

3

(g; z(

b

n))

S

of the orresponding outer ation of g

on

b

n .
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Proposition III.6. Let �:

b

n !

b

g be a topologially split rossed module, �: g = g !

b

g a

ontinuous linear setion, S: g! der

b

n the outer ation of g on

b

n de�ned by S(x)(n) := �(x):n ,

and !: g� g !

b

n a ontinuous alternating map with R

�

= � Æ ! . Then d

S

! 2 Z

3

(g; z) satis�es

�

�

= [d

S

!℄ .

Proof. First we pik f 2 Z

2

(n; z) with

b

n = z �

f

n . It is lear that d

�

! is a ontinuous

alternating trilinear map. We observe that

! = (!

z

; R

�

) with !

z

2 C

2

(g; z)

and write the ation of

b

g on

b

n as x:(z; n) = (x:z+ �(x; n); [x; n℄) with a ontinuous bilinear map

�:

b

g� n ! z . Then

(d

S

!)(x; x

0

; x

00

) =

X

y:

�(x):

�

!

z

(x

0

; x

00

); R

�

(x

0

; x

00

)

�

�

�

!

z

([x; x

0

℄; x

00

); R

�

([x; x

0

℄; x

00

)

�

=

X

y:

�

x:!

z

(x

0

; x

00

) + �(�(x); R

�

(x

0

; x

00

)); [�(x); R

�

(x

0

; x

00

)℄

�

�

�

!

z

([x; x

0

℄; x

00

); R

�

([x; x

0

℄; x

00

)

�

:

The n-omponent of this expression is d

ad Æ�

(R

�

) = 0, by the abstrat Bianhi identity (apply

Proposition I.8 with V =

b

g). Therefore im(d

S

!) � z , and

(d

S

!)(x; x

0

; x

00

) = (d

S

!

z

)(x; x

0

; x

00

) +

X

y:

�(�(x); R

�

(x

0

; x

00

)):

To ompare this with �

�

, let

e

f 2 C

2

(

b

g; z) be an alternating extension of � . In addition, we

may assume that �

�

e

f = !

z

(whih determines

e

f uniquely). We now show that q

�

(d

S

!) = d

bg

e

f ,

so that �

�

= [d

S

!℄ 2 H

3

(g; z). In fat, for x; x

0

; x

00

2 g we have

(d

bg

e

f)(�(x); �(x

0

); �(x

00

)) =

X

y:

x:

e

f(�(x

0

); �(x

00

))�

e

f([�(x); �(x

0

)℄; �(x

00

))

=

X

y:

x:

e

f(�(x

0

); �(x

00

))�

e

f(�([x; x

0

℄) +R

�

(x; x

0

); �(x

00

))

=

X

y:

x:!

z

(x

0

; x

00

)� !

z

([x; x

0

℄; x

00

)�

e

f(R

�

(x; x

0

); �(x

00

))

=

X

y:

x:!

z

(x

0

; x

00

)� !

z

([x; x

0

℄; x

00

) + �(�(x

00

); R

�

(x; x

0

))

= (d

S

!

z

)(x; x

0

; x

00

) +

X

y:

�(�(x); R

�

(x

0

; x

00

)) = (d

S

!)(x; x

0

; x

00

):

IV. Appliations to general extensions of Lie algebras

Let S: g ! der n be a ontinuous outer ation and ! 2 C

2

(g; n) with R

S

= ad Æ! . In the

following we onsider ad n � dern as the topologial Lie algebra n

ad

:= n=z(n) endowed with

the quotient topology and view ad: n ! n

ad

as the quotient map. On the topologial produt

vetor spae

g

S

:= n

ad

� g

we de�ne an alternating ontinuous bilinear map by

[(adn; x); (adn

0

; x

0

)℄ :=

�

ad([n; n

0

℄ + S(x):n

0

� S(x

0

):n+ !(x; x

0

)); [x; x

0

℄)

=

�

[adn; adn

0

℄ + [S(x); adn

0

℄� [S(x

0

); adn℄ +R

S

(x; x

0

); [x; x

0

℄):

Note that the seond form of the braket implies in partiular that it does not depend on ! . We

observe that

S

1

:= ad ÆS: g! dern

ad

is a linear map with R

S

1

= ad ÆR

S

:
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Lemma IV.1. g

S

is a Lie algebra with the following properties:

(1) The map q

S

: g

S

! g; (adn; x) 7! x is a topologially split extension of g by n

ad

whih, up

to equivalene of extensions, only depends on the lass [S℄ 2 out(g; n) .

(2) The map �: g

S

! dern; (adn; x) 7! adn + S(x) de�nes a ontinuous g-module struture

on n .

(3) The map �: n ! g

S

; n 7! (adn; 0) is a topologial rossed module whih is topologially

split if and only if z(n) is topologially split in n . Moreover, ker� = z(n) and oker(�) =

g

S

=n

ad

�

=

g:

Proof. We apply Proposition I.8 with (�; !) := (S;R

S

) to obtain the relation d

S

1

R

S

= 0

from the abstrat Bianhi identity. Hene g

S

is a Lie algebra isomorphi to n

ad

�

(S

1

;R

S

)

g .

(1) The �st part is immediate from the onstrution. To see that the Lie algebra g

S

depends, as an extension of g by n

ad

, only on the equivalene lass [S℄ , let : g ! n be a

ontinuous linear map and S

0

:= S � ad

n

Æ . Then (S

1

; R

S

) = (ad

n

Æ):(S

0

1

; R

S

0

) holds in

Z

2

(g; n

ad

) (Lemma I.9), and Lemma II.5 shows that

 : g

S

! g

S

0

; (adn; x) 7! (ad(n+ (x)); x)

is an equivalene of extensions of g by n

ad

.

(2) The ontinuity of the module struture follows from �(adn; x):n

0

= [n; n

0

℄ + S(x):n

0

.

That � is a homomorphism of Lie algebras follows from

�([(adn; x); (adn

0

; x

0

)℄) = [adn; adn

0

℄ + [S(x); adn

0

℄� [S(x

0

); adn℄ +R

S

(x; x

0

) + S([x; x

0

℄)

= [adn; adn

0

℄ + [S(x); adn

0

℄� [S(x

0

); adn℄ + [S(x); S(x

0

)℄

= [�(adn; x); �(adn

0

; x

0

)℄:

(3) is an immediate onsequene of (1) and (2).

Lemma IV.2. The map  = (�; q

S

): g

S

! der(n) � g is injetive and yields an isomorphism

of Lie algebras

g

S

�

=

f(d; x) 2 der(n)� g:S(x) 2 d+ adng:

Proof. Sine ker q

S

= n

ad

and (ker �)\ n

ad

= f0g , the map  is an injetive homomorphism

of Lie algebras.

For eah element (adn; x) 2 g

S

we have  (adn; x) = (adn+ S(x); x); whih prove \� ,"

and for any pair (d; x) 2 der(n) � g with d 2 S(x) + ad n we �nd an element n 2 n with

d = S(x) + adn , whih means that (d; x) =  (adn; x). This proves the lemma.

Lemma IV.3. Let q:

b

g ! g be a topologially split extension of g by n orresponding to the

ontinuous g-kernel [S℄ and ad

n

the orresponding representation of

b

g on n . Assume further

that z(n) is topologially split in n . Then the map

 = (ad

n

�S Æ q; q):

b

g ! der(n)� g; x 7! (ad

n

(x)� S(q(x)); q(x))

de�nes a topologially split extension z(n) ,!

b

g



��!g

S

: This assignment has the following prop-

erties:

(1) If q

j

:

b

g

j

! g , j = 1; 2 , are equivalent extensions of g by n , then 

j

:

b

g

j

! g

S

are equivalent

extensions of g

S

by the g

S

-module z(n) . We thus obtain a map

� : Ext(g; n)

[S℄

! Ext(g

S

; z(n)):

(2) An extension :

b

g ! g

S

of g

S

by z(n) omes from an extension of g by n orresponding

to [S℄ if and only if there exists a g

S

-equivariant equivalene �: n ! 

�1

(n

ad

) of entral

extensions of n

ad

by z(n) .

Proof. That

b

g orresponds to [S℄ means that it is equivalent to a Lie algebra of the form

n�

(S;!)

g , where (S; !) is a ontinuous fator system (De�nition II.2). This means that

(4:1) ad

n

(n; x) = ad(n) + S(x) = ad(n) + S(q(n; x));
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so that (n; x) = (adn; x): Now the expliit formula for the brakets in n �

(S;!)

g and g

S

implies that  is a quotient morphism of topologial Lie algebras. Its kernel is z(n), so that the

assumption that this is a topologially split ideal of n implies that  de�nes a topologially split

extension of g

S

by z(n).

(1) If ':

b

g

1

!

b

g

2

is an equivalene of n-extensions of g , then the representations ad

j

n

,

j = 1; 2, of

b

g

j

on n satisfy ad

2

n

Æ' = ad

1

n

beause ' j

n

= id

n

. Therefore the quotient maps



j

= (ad

j

n

�S Æ q; q):

b

g

j

! g

S

satisfy 

2

Æ ' = (ad

2

n

Æ'� S Æ q Æ '; q

2

Æ ') = (ad

1

n

�S Æ q; q

1

) = 

1

: This means that ':

b

g

1

!

b

g

2

is an equivalene of extensions of g

S

by z(n).

(2) Suppose �rst that the extension :

b

g! g

S

by z(n) omes from the n-extension q:

b

g ! g

orresponding to [S℄ . We may assume that

b

g = n�

(S;!)

g (Lemma II.5). Then (4.1) shows that

(n; x) 2

b

g ats on n by adn+S(x) = �(adn; x). Therefore the inlusion n ,!

b

g on the subspae



�1

(n

ad

) is equivariant with respet to the ation of

b

g

S

, and therefore in partiular for the ation

of n

ad

, so that it is an equivalene of entral extensions of n

ad

.

Suppose, onversely, that :

b

g! g

S

is an extension of g

S

by z(n) for whih there exists a

g

S

-equivariant equivalene �: n ! 

�1

(n

ad

) of entral extensions of n

ad

by z(n). Then

b

g=�(n) =

b

g=

�1

(n

ad

)

�

=

g

S

=n

ad

�

=

g;

so that we obtain by the quotient map q:

b

g ! g an extension of g by n . As the ation of

g

S

�

=

b

g=z(n) on n indued by the adjoint representation of

b

g on n oinides with the given

ation

�: g

S

! dern; (adn; x) 7! adn+ S(x)

of g

S

on n beause � is g

S

-equivariant, the g-kernel of the extension q:

b

g ! g is [S℄ .

For the adjoint representation ad

n

of

b

g on n we have ad

n

= � Æ  and q = q

S

Æ  , so that

the orresponding map

b

g ! g

S

oinides with  . This means that :

b

g ! g

S

is assoiated to

the extension q:

b

g ! g by the proess desribed above.

For the following theorem we assume that the ideal z(n) of n is topologially split, so that

we may assume that n = z(n)�

f

adn for some ontinuous oyle f 2 Z

2

(ad n; z(n)). Then the

ation of g

S

on n is desribed by a ontinuous bilinear map �: g

S

� n ! z(n) via

(adn; x):(z; adn

0

) = (x:z + �((adn; x); adn

0

); [adn+ S(x); adn

0

℄):

In the following we write

Z

2

(g

S

; z(n))

�

= f

e

f 2 Z

2

(g

S

; z(n)):

e

f j

g

S

�n

ad

= �g

for the set of all z(n)-valued oyles extending � .

Theorem IV.4. If the ideal z(n) of n is topologially split, then the following assertions hold:

(1) For the ontinuous g-kernel [S℄ the ohomology lass �([S℄) = [d

S

!℄ 2 H

3

(g; z(n)) vanishes

if and only if Ext(g; n)

[S℄

6= � .

(2) If [d

S

!℄ = 0 , then eah topologially split n-extension of g orresponding to [S℄ is equivalent

to an extension of the form

q: z(n)�

e

f

g

S

! g; (z; x) 7! q

S

(x);

e

f 2 Z

2

(g

S

; z(n))

�

:

The set Z

2

(g

S

; z(n))

�

is an aÆne spae on whih the vetor spae Z

2

(g; z(n))

S

ats simply

transitively by !:

e

f :=

e

f+q

�

S

!: Two n-extension of g orresponding to

e

f

1

;

e

f

2

2 Z

2

(g

S

; z(n))

�

are equivalent if and only if

e

f

2

�

e

f

1

2 q

�

S

B

2

(g; z(n)) .
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Proof. (1) In view of Proposition III.6, the harateristi lass �

�

2 H

3

(g; z(n)) of the rossed

module �: n ! g

S

is represented by the oyle d

�

! , where �: g ! g

S

; x 7! (0; x) is the anonial

setion and !: g� g ! n is a ontinuous alternating map with R

S

= R

�

= � Æ! = ad Æ!: Hene

(d

�

!)(x; x

0

; x

00

) =

X

y:

�(x):!(x

0

; x

00

)� !([x; x

0

℄; x

00

)

=

X

y:

S(x):!(x

0

; x

00

)� !([x; x

0

℄; x

00

) = (d

S

!)(x; x

0

; x

00

)

(f. Lemma II.4).

In view of Theorem III.5, �

�

vanishes if and only if � extends to a ontinuous oyle on

g

S

, i.e., if and only if Z

2

(g

S

; z(n))

�

6= �: Suppose that this ondition is satis�ed. Then we have

a surjetive map

Z

2

(g

S

; z(n))

�

! Ext(g; n)

[S℄

;

e

f 7! [z(n)�

e

f

g

S

℄

(Lemma IV.3).

For two oyles

e

f

1

;

e

f

2

2 Z

2

(g

S

; z(n))

�

the di�erene

e

f

2

�

e

f

1

vanishes on g

S

� n

ad

, hene

an be written as q

�

S

! for some ! 2 Z

2

(g; z(n)). Conversely, for

e

f 2 Z

2

(g

S

; z(n))

�

and

! 2 Z

2

(g; z(n)) the oyle

e

f + q

�

S

! is also ontained in Z

2

(g

S

; z(n))

�

beause q

�

S

! vanishes

on g

S

� n

ad

. As the map q

�

S

:Z

2

(g; z(n)) ! Z

2

(g

S

; z(n)) is injetive, Z

2

(g

S

; z(n))

�

is an aÆne

spae with translation group Z

2

(g; z(n)) ating by !:

e

f :=

e

f + q

�

S

! .

Let

e

f

1

;

e

f

2

2 Z

2

(g

S

; z(n))

�

and q

j

:

b

g

j

! g the orresponding n-extensions of g . If ':

b

g

1

!

b

g

2

is an equivalene of n-extensions of g , then Lemma IV.3(1) implies that ' also is an

equivalene of z(n)-extensions of g

S

, hene an be written in the form

':

b

g

1

= z(n) �

e

f

1

g

S

!

b

g

2

= z(n)�

e

f

2

g

S

; (z; x) 7! (z + �(x); x);

where �: g

S

! z(n) satis�es d

g

S� =

e

f

1

�

e

f

2

: Sine ' �xes n = z(n)�

f

n

ad

�

b

g

j

pointwise, we have

n

ad

� ker� , so that � = q

�

S

� for some � 2 C

1

(g; z(n)). This means that

e

f

2

�

e

f

1

2 q

�

S

B

2

(g; z(n)).

If, onversely,

e

f

2

�

e

f

1

= d

g

S
(q

�

�) for some � 2 C

1

(g; z(n)), then

': z(n)�

e

f

1

g

S

! z(n)�

e

f

2

g

S

; (z; x) 7! (z + �(q

S

(x)); x)

is an equivalene of n-extensions of g .

Remark IV.5. If z(n) = f0g , then H

3

(g; z(n))

S

= f0g implies that eah ontinuous g-kernel

[S℄ orresponds to an extension of g by n and if S is given, then ! is determined uniquely by

R

S

= ad

n

Æ! . As we also have H

2

(g; z(n))

S

= f0g , this extension is unique up to equivalene

and given by g

S

.

Remark IV.6. In [Ho54a℄ G. Hohshild shows that for eah g-module V of a Lie algebra g

eah element of H

3

(g; V ) arises as an obstrution for a homomorphism s: g ! out(n), where n

is a Lie algebra with V = z(n). In [Ho54b℄ he analyzes for a �nite-dimensional Lie algebra g and

a �nite-dimensional module V the question of the existene of a �nite-dimensional Lie algebra

n with the above properties. In this ase the answer is aÆrmative if g is solvable, but if g is

semisimple, then all obstrutions of homomorphism s: g! out(n) are trivial beause s lifts to a

homomorphism S: g ! dern by Levi's Theorem. The general result is that a ohomology lass

[!℄ 2 H

3

(g; V ) arises as an obstrution if and only if its restrition to a Levi omplement s in g

vanishes.
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V. Examples

In this setion we disuss some lasses of examples demonstrating the e�etiveness of the method

to determine the harateristi lass of a rossed module. We also disuss in Setion VI some

relations to geometri situations arising in the theory of prinipal �ber bundles. The onstrutions

in this setion are inspired by the onstrution of the gerbe orresponding to the anonial 3-

ohomology lass of a ompat simple Lie group ([Bry93, Set. 5.4℄).

Example V.1. Let g be a loally onvex real Lie algebra. We onsider the smooth path algebra

b

g := P (g) := C

1

�

(I; g) := f� 2 C

1

(I; g): �(0) = 0g

of g endowed with its natural topology of uniform onvergene of all derivatives. Then evaluation

in 1 leads to a topologially split short exat sequene n ,!

b

g !! g; where n := ker ev

1

is the ideal

of losed paths in P (g) and a ontinuous linear setion �: g ! P (g) is given by �(x)(t) := tx .

Note that n is larger than the Lie algebra C

1

(S

1

; g) whih orresponds to those elements � of

n for whih all derivatives have the same boundary values in 0 and 1.

Let �: g � g ! z be a ontinuous invariant bilinear form. We onsider z as a trivial

b

g-

module. Then the Lie algebra n has a entral extension

b

n := z �

!

n , where the oyle ! is

given by

!(�; �) :=

Z

1

0

�(�; �

0

) :=

Z

1

0

�(�; �

0

)(t) dt:

We de�ne e! 2 C

2

(

b

g; z) by

e!(�; �) :=

1

2

Z

1

0

�

�(�; �

0

)� �(�; �

0

)

�

=

1

2

Z

1

0

�

2�(�; �

0

)� �(�; �)

0

�

=

Z

1

0

�(�; �

0

)�

1

2

�(�; �)(1):

We observe that for (�; �) 2

b

g� n we have e!(�; �) = �(�; �) :=

R

1

0

�(�; �

0

):

For the following alulations we note that

X

y:

Z

1

0

�([�; �℄; �

0

) =

Z

1

0

�([�; �℄; �

0

) + �([�; �℄; �

0

) + �([�; �℄; �

0

)

=

Z

1

0

�([�; �℄; �

0

) + �([�

0

; �℄; �℄) + �([�; �

0

℄; �) =

Z

1

0

�([�; �℄; �)

0

= �([�; �℄; �)(1)

and therefore

X

y:

Z

1

0

�([�; �℄

0

; �) =

X

y:

Z

1

0

�([�

0

; �℄; �) + �([�; �

0

℄; �) =

X

y:

Z

1

0

�(�

0

; [�; �℄) + �([�; �℄; �

0

)

= �([�; �℄; �)(1) + �([�; �℄; �)(1) = 2�([�; �℄; �)(1) = 2�([�; �℄; �)(1):

Now

(d

bg

e!)(�; �; �) =

1

2

Z

1

0

X

y:

�(�; [�; �℄

0

)� �([�; �℄; �

0

)

=

1

2

(2�([�; �℄; �)(1) � �([�; �℄; �)(1)) =

1

2

�([�; �℄; �)(1);

and this oyle vanishes on

b

g

2

� n . In view of Lemma III.3, this implies in partiular that

x:(z; n) := (�(x; n); [x; n℄)

de�nes a ontinuous representation of

b

g on

b

n . We have thus alulated the harateristi lass

�

�

2 H

3

(g; z) of the rossed module �:

b

n !

b

g via the formula ev

�

1

�

�

= [d

bg

e!℄ . Hene it is

represented by the oyle

� 2 Z

3

(g; z); �(x; y; z) :=

1

2

�([x; y℄; z):

If g is �nite-dimensional simple and � is non-zero, then �

�

6= 0.
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Example V.2. In this example we disuss a more algebraially oriented variation of the

preeding example. Here

b

g and g are disrete Lie algebras.

Let A be a ommutative algebra and

b

g := A
 g: Then eah non-zero harater �:A! K

de�nes a surjetive homomorphism q

g

:

b

g ! g . Let n := ker q

g

= (ker�)
 g be its kernel.

Let M be an A-module and D:A!M a module derivation, i.e., a linear map with

D(ab) = a:D(b) + b:D(a); a; b 2 A:

Further let I :M ! K a linear funtional with ID = � . Then we onsider the bilinear form

!

n

: n� n ! K ; (a
 x; b
 y) 7! I(aD(b))�(x; y)

whih is a restrition of the form

e!:

b

g�

b

g ! K ; (a
 x; b
 y) 7!

1

2

I(aD(b)� bD(a))�(x; y)

satisfying

e!(a
 x; b
 y) = �(a
 x)(b
 y) := I(aD(b))�(x; y)

for ab 2 ker� .

A typial example for this situation is given by A = C

1

�

(I;R), �(f) = f(1), M =

C

1

(I;R), Df = f

0

and I(f) =

R

1

0

f (Example V.1). The relation I ÆD = � follows from

ID(f) = I(f

0

) =

Z

1

0

f

0

= f(1) = �(f) for f 2 A:

For a 2 ker�; b;  2 A we have

aD(b) + bD(a) + D(ab) = D(ab) 2 D(ker�) � ker I;

whih means that (a; b) 7! I(aD(b)) is a yli oyle on the ideal ker� . We therefore have

(d

bg

e!)(a
 x; a

0


 x

0

; a

00


 x

00

) =

X

y:

e!(a

00


 x

00

; [a
 x; a

0


 x

0

℄) =

X

y:

e!(a

00


 x

00

; aa

0


 [x; x

0

℄)

= �(x

00

; [x; x

0

℄)

1

2

X

y:

I(a

00

D(aa

0

)� aa

0

Da

00

)

= �(x

00

; [x; x

0

℄)

1

2

X

y:

I(a

00

aDa

0

+ a

0

a

00

Da� aa

0

Da

00

)

=

1

2

�(x

00

; [x; x

0

℄)

X

y:

I(a

00

aDa

0

)

=

1

2

�(x

00

; [x; x

0

℄)I(aa

0

Da

00

+ a

0

a

00

Da+ a

00

aDa

0

)

=

1

2

�(x

00

; [x; x

0

℄)I(D(aa

0

a

00

)) =

1

2

�(x

00

; [x; x

0

℄)�(aa

0

a

00

):

This expression vanishes if one of the elements a; a

0

; a

00

is ontained in the ideal ker� . In view

of Lemma III.3, this implies in partiular that

x:(z; n) := (e!(x; n); [x; n℄)

de�nes a ontinuous representation of

b

g on

b

n , and we we have alulated the harateristi

lass �

�

2 H

3

(g; z) of the rossed module �:

b

n !

b

g via the formula q

�

g

�

�

= [d

bg

e!℄ . Hene it is

represented by the oyle

� 2 Z

3

(g; z); �(x; y; z) :=

1

2

�([x; y℄; z)

(hoose a = a

0

= a

00

2 �

�1

(1)).
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VI. Some relations to prinipal bundles

In this setion we disuss the relation between ovariant di�erentials, extensions of Lie algebras

and smooth prinipal bundles. This onnetion is also briey touhed in [AMR00℄. Although the

alulus of ovariant di�erentials originates from the di�erential geometri ontext of ovariant

derivatives and onnetions on vetor bundles, it an be formulated very niely in the abstrat

ontext of Lie algebras, as we have seen in Setion I.

In the seond half of this setion we explain how a entral extension of the struture group

of a prinipal bundle leads to a rossed module of topologial Lie algebra whose harateristi

lass an be represented by a losed 3-form on the underlying manifold.

Let M be a �nite-dimensional paraompat smooth manifold, K a Lie group with Lie

algebra k and q

M

:P !M a smooth K -prinipal bundle. We write �:P �K ! P for the right

ation of K on P and Ad(P ) := P �

Ad

k for the assoiated vetor bundle with typial �ber k

de�ned by the adjoint ation of K on k .

On the Lie algebra level we then have a short exat sequene

0! gau(P ) ,! aut(P )

q

g

������!V(M)! 0;

where aut(P ) := V(P )

K

� V(P ) denotes the Lie algebra of K -invariant vetor �elds on P ,

q

g

:V(P )

K

! V(M); q

g

(X)(q

M

(p)) := dq

M

(p)X(p) is the well-de�ned projetion homomorphism,

and its kernel gau(P ) is the Lie algebra of vertial K -invariant vetor �elds. On all these Lie

algebras of vetor �elds we onsider the topology of loal uniform onvergene of all derivatives,

whih turs them into into loally onvex topologial Lie algebras.

We put g := V(M),

b

g := aut(P ) and

n := C

1

(M;Ad(P )) := f� 2 C

1

(P; k): (8k 2 K)(8p 2 P ) �(pk) = Ad(k

�1

)�(p)g;

where the Lie algebra on the right hand side is endowed with the pointwise braket [�; �℄(p) :=

[�(p); �(p)℄ , and aut(P ) � V(P ) ats on n by (X:�)(p) = d�(p)X(p).

On the spae 


r

(P; k) of k-valued smooth p-forms on P , we have a natural ation of the

group K by k:� := Ad(k)Æ�

�

k

� and the set 


r

(P; k)

K

of K -�xed points is of partiular interest.

Note that 


0

(P; k)

K

= C

1

(P; k)

K

= n . Eah element � 2 


r

(P; k)

K

de�nes an alternating

C

1

(M;R)-multilinear map

b

g

r

! n beause for X

j

2

b

g and k 2 K we have

�(X

1

; : : : ; X

r

)(p) = Ad(k):((�

�

k

�)(X

1

; : : : ; X

r

))(p) = Ad(k):�

p:k

((k:X

1

)(p:k); : : : ; (k:X

r

)(p:k))

= Ad(k):(�(X

1

; : : : ; X

r

)(p:k));

showing that �(X

1

; : : : ; X

r

) 2 n . A loalization argument shows that the above orrespondene

leads to a bijetion




r

(P; k)

K

! Alt

r

C

1

(M;R)

(

b

g; n) � C

r

(

b

g; n);

where Alt

r

C

1

(M;R)

(

b

g; n) denotes the set of all alternating C

1

(M;R)-multilinear maps

b

g

r

! n .

If _�: k ! V(P ) denotes the homomorphims of Lie algebras de�ned by the right ation of

K on P , then we all an r -form � on P horizontal if i

_�(x)

� = 0 holds for all x 2 k . In this

sense the spae




r

(P; k)

bas

:= f� 2 


r

(P; k)

K

: (8x 2 k) i

_�(x)

� = 0g

of basi forms an be identi�ed with the spae 


r

(M;Ad(P )) of smooth r -forms with values in

the vetor bundle Ad(P ) ([BGV04, Prop. 1.9℄). Note that 


0

(M;Ad(P )) = C

1

(M;Ad(P )) = n .

As above, we see that there is a natural bijetion




r

(M;Ad(P ))! Alt

r

C

1

(M;R)

(g; n) � C

r

(g; n):
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A prinipal onnetion 1-form on P is an element � 2 


1

(P; k)

K

satisfying �( _�(x)) = x for

all x 2 k . Eah prinipal onnetion 1-form � leads to a horizontal lifting map �:V(M)! aut(P )

de�ned by q Æ � = id

V(M)

and � Æ � = 0. Moreover, the restrition of � to gau(P ) de�nes a Lie

algebra isomorphism

��: gau(P )! n = C

1

(M;Ad(P )) � C

1

(P; k);

so that we may onsider �� as a linear projetion of

b

g = aut(P ) onto the ideal

n = C

1

(M;Ad(P )). To understand why we have to take �� instead of � , we note that the

group

N := ff 2 C

1

(P;K): (8p 2 P )(8k 2 K) f(p:k) = k

�1

f(p)kg

ats on P from the left by f:p := p:f(p). Hene p:f := p:f(p)

�1

de�nes a right ation

':P �N ! P and its derived ation leads to a homomorphism of Lie algebras _': n ,! gau(P )

satisfying h�; _'(�)i(p) = ��(p):

The following remark lari�es the role of the urvature of the onnetion in the abstrat

ontext.

Remark VI.1. Let q:

b

g ! g be an extension of the Lie algebra g by the Lie algebra n . Let

�: g !

b

g be a setion of q , and S := ad Æ� 2 C

1

(g;End(

b

g)).

We assoiate to the setion �: g !

b

g the orresponding projetion map �:

b

g ! n given by

�(x) = x� �(q(x)). Sine n E

b

g is an ideal, it arries a natural

b

g -module struture, and in this

sense we onsider � as a Lie algebra 1-ohain in C

1

(

b

g; n). We then have

d

bg

�(x; y) = x:�(y)� y:�(x) � �([x; y℄) = [x; y � �(q(y))℄ � [y; x� �(q(x))℄ � [x; y℄ + �(q([x; y℄))

= [x; y℄� [x; �(q(y))℄ + [y; �(q(x))℄ + �(q([x; y℄))

= [x; y℄� [x; �(q(y))℄ + [y; �(q(x))℄ + [�(q(x)); �(q(y))℄ �R

�

(q(x); q(y))

= [x� �(q(x)); y � �(q(y))℄ �R

�

(q(x); q(y)))

= [�(x); �(y)℄ �R

�

(q(x); q(y));

so that we get the formula

(6:1) �q

�

R

�

= d

bg

� �

1

2

[�; �℄:

We observe in partiular that ker � is a subalgebra if and only if R

�

= 0 if and only if d

bg

�

vanishes on ker � .

Let

R

�

:= d� +

1

2

[�; �℄ 2 


2

(P; k)

K

denote the urvature of � ([BGV04, Prop. 1.13℄, [KMS93, Th. III.11.2℄). In this ontext formula

(6.1), applied to the projetion ��:

b

g ! n leads to

q

�

g

R

�

= d

bg

� +

1

2

[�; �℄ = d� +

1

2

[�; �℄ = R

�

:

In this sense R

�

is related to the urvature R

�

of the prinipal onnetion 1-form � . From

R

�

= q

�

g

R

�

it follows in partiular that R

�

is horizontal, hene an element of 


2

(M;Ad(P )).

For the urvature R

�

2 


2

(P; k)

K

� C

2

(

b

g; n) the abstrat Bianhi identity

0 = d

ad Æ�

R

�

= d

bg

R

�

+ [�;R

�

℄

(Proposition I.8) leads to the lassial Bianhi identity

dR

�

= �[�;R

�

℄ = [R

�

; �℄ 2 


3

(P; k)

K
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(f. [KMS93, Th. III.11.5℄). We refer to [Fa03℄ for an interesting disussion of formulas like the

Bianhi identity in General Relativity and Yang{Mills Theory.

Taking derivatives in 1 , the invariane relation �

�

k

� = Ad(k)

�1

� turns into

L

_�(x)

� = � adx Æ �:

In view of the Cartan formula for the Lie derivative, this leads to

i

_�(x)

d� = � adx Æ �:

Therefore the subspae 


r

(M;Ad(P )) is not mapped into 


r+1

(M;Ad(P )) by the exterior

di�erential whih oinides with the Lie algebra di�erential d

bg

, restrited to the subspaes




r

(P; k)

K

� C

r

(

b

g; n). Nevertheless we identify 


r

(M;Ad(P )) with a subspae of C

r

(g; n) on

whih we have the ovariant di�erential d

S

de�ned by S(X):� := �(X):� for � 2 n � C

1

(P; k).

Then we have for � 2 C

r

(g; n) the relation

(d

S

�)(X

0

; : : : ; X

r

) = d(q

�

g

�)(�(X

0

); : : : ; �(X

r

));

where we use that [�(X

i

); �(X

j

)℄� �([X

i

; X

j

℄) is vertial and q

�

g

� is horizontal. The preeding

relation means that

(6:2) d

S

� = �

�

(dq

�

g

�);

i.e., that d

S

� an be viewed as the horizontal omponent of the (r+1)-form dq

�

g

� . This is why

d

S

� is alled a ovariant di�erential.

Crossed modules obtained from entral extensions of K

Let Z

K

,!

b

K

q

K

��!K be a entral extensions of Lie groups and z

k

,!

b

k

q

k

��!k the orrespond-

ing entral extension of Lie algebras. It is an interesting problem to �nd omputable obstrutions

for the existene of a

b

K -prinipal bundle with

b

P=Z

K

�

=

P (as K -prinipal bundles).

In this subsetion we explain how this problem an be approahed on the Lie algebra level

and explain how one onstruts a de Rham ohomology lass in H

3

dR

(M; z

k

) whose vanishing is

neessary for the existene of the

b

K -bundle

b

P .

First we observe that the onjugation ation of

b

K on itself fators through a smooth ation

of K on

b

K whih in turn leads to a smooth ation



Ad of K on the Lie algebra

b

k of

b

K . We

thus obtain an assoiated vetor bundle



Ad(P ) := P �

K

b

k with typial �ber

b

k , and its spae of

global setions is

b

n := C

1

(M;



Ad(P )) = f� 2 C

1

(P;

b

k): (8k 2 K)(8p 2 P ) �(pk) =



Ad(k

�1

)�(p)g;

whih is a topologial Lie algebra with respet to the pointwise de�ned braket. If

b

P exists, then

the natural map

Ad(

b

P ) =

b

P �

b

K

b

k ! P �

K

b

k; [p; x℄ 7! [pZ

K

; x℄

is an isomorphism of vetor bundles over M . It is a ruial point that this bundle exists, even if

b

P does not.

The quotient map q

k

:

b

k ! k indues a entral extension

z := C

1

(P; z

k

)

K

�

=

C

1

(M; z

k

) ,!

b

n !! n;

whih is topologially split beause

0!M � z

k

!



Ad(P )! Ad(P )! 0
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is a short exat sequene of smooth vetor bundles over M .

From the embedding n ,! aut(P )

op

de�ned by the map aut(P )! n given by the onnetion

1-form � , we further obtain a homomorphism

�:

b

n ! n � aut(P )

op

; � 7! q

k

Æ �

whih de�nes a rossed module beause the Lie algebra aut(P ) ats naturally on the spae

b

n � C

1

(P;

b

k) by derivations in suh a way that � is equivariant. Moreover, the ation of

n � aut(P )

op

on

b

n orresponds to the natural ation of n on its entral extension

b

n by z . This

means that � de�nes a rossed module. As one readily veri�es that all morphisms and ations are

ontinuous with respet to the natural topologies, we even have a rossed module of topologial

Lie algebras. Its harateristi lass �

�

is an element of H

3

(g; z), where z arries the natural

ation of g = V(M) by (X:f)(m) := df(m)X(m).

Let �: g !

b

g be a C

1

(M;R)-linear setion de�ned by a prinipal onnetion 1-form �

and observe that � leads to an outer ation S: g ! der

b

n whih is C

1

(M;R)-linear. Further

q

�

g

R

�

= R

�

is the urvature of � , whih an be viewed as an Ad(P )-valued 2-form. Using smooth

partitions of unity, we �nd an



Ad(P )-valued 2-form 
 with q

k

Æ 
 = R

�

. Writing 
 = q

�

g

!

for a uniquely determined ! 2 C

2

(g;

b

n), we observe that the ondition q

k

Æ 
 = R

�

= q

�

g

R

�

is

equivalent to

(6:3) q

k

Æ ! = R

�

:

Lemma VI.2. The ohomology lass �

�

2 H

3

(g; z) is represented by the oyle d

S

! 2

Z

3

(g; z) , whih is a z

k

-valued losed 3-form on M . Moreover, the de Rham ohomology lass

[d

S

!℄ 2 H

3

dR

(M; z

k

) depends neither on the onnetion 1-form � nor on the hoie of the lift 
 .

Proof. Proposition III.6 implies that �

�

2 H

3

(g; z) is represented by the oyle d

S

! 2

Z

3

(g; z). In view of (6.2), we have

d

S

! = �

�

(dq

�

g

!) = �

�

(d
);

whih shows that d

S

! an be interpreted as an element of




3

(M; z

k

) = 


3

(M;M � z

k

) � 


3

(M;



Ad(P ));

hene that d

S

! is a losed z

k

-valued 3-form on M .

Sine � splits topologially, for any other C

1

(M;R)-linear setion �

0

: g !

b

g there exists

a ontinuous C

1

(M;R) linear map : g!

b

n with �

0

= � + q

k

Æ  , and then S

0

= S + ad Æ , so

that Lemma I.9 implies that d

S

0

!

0

= d

S

! holds for !

0

:= ! + d

S

 +

1

2

[; ℄ . Note that

R

�

0

= R

�+q

k

Æ

= R

�

+ q

k

Æ (d

S

 +

1

2

[; ℄) = q

k

Æ !

0

follows from [�; q

k

Æ ℄ = q

k

Æ (S ^ ) (f. the proof of Lemma I.9). On the other hand, any other




00

= q

�

g

!

00

2 


2

(M;



Ad(P )) with q

k

Æ !

00

= R

�

satis�es

!

00

� ! 2 


2

(M; z

k

);

so that the de Rham ohomology lass [d

S

!℄ 2 H

3

dR

(M; z

k

) depends neither on the onnetion

1-form � nor on the hoie of 
.

The following proposition shows that the de Rham lass [d

S

!℄ 2 H

3

dR

(M; z

k

) an be on-

sidered as an obstrution to the existene of a

b

K -bundle

b

P with

b

P=Z

K

�

=

P . It sharpens Theo-

rem III.5 in this geometri ontext beause the natural map H

3

dR

(M; z

k

)! H

3

(V(M); C

1

(M; z

k

))

need not be injetive.
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Proposition VI.3. If there exists a smooth

b

K -prinipal bundle

b

P with

b

P=Z

K

�

=

P , then

[d

S

!℄ = 0 in H

3

dR

(M; z

k

) .

Proof. Suppose that there is a

b

K -bundle

b

P with

b

P=Z

K

�

=

P . Then we have a topologially

split short exat sequene

0! C

1

(P; z

k

) ,! V(

b

P )

Z

K

!! V(P )! 0;

restriting to a topologially split short exat sequene

0! C

1

(M; z

k

) ,! aut(

b

P ) = V(

b

P )

b

K

�

��!V(P )

K

= aut(P )! 0:

Moreover, the natural map Ad(

b

P ) =

b

P �

b

K

�

b

k !



Ad(P )

�

=

P �

K

b

k is an isomorphism of

vetor bundles over M .

Let

b

� 2 


1

(

b

P ;

b

k) be a prinipal onnetion 1-form on the

b

K -bundle

b

P and b�:V(M) !

aut(

b

P ) the orresponding C

1

(M;R)-linear setion of the Lie algebra extension

0! gau(

b

P ) ,! aut(

b

P )

bq

g

��!V(M)! 0:

Then � := � Æ b� is a C

1

(M;R)-linear setion of q

g

: aut(P ) ! V(M), hene omes from a

onnetion 1-form � .

From � Æ b� = � we diretly get � Æ R

b�

= R

�

, and sine R

b�

is

b

n-valued, this an be

written as R

�

= q

k

ÆR

b�

: From the independene of the ohomology lass [d

S

!℄ of the hoie of

! (Lemma VI.2) it now follows that

[d

S

!℄ = [d

S

R

b�

℄;

that vanishes aording to the abstrat Bianhi identity sine S = ad

bn

Æb� (Proposition I.8).

Problem VI. Whih losed z

k

-valued 3-forms on M arise as above from a entral extension

Z

K

,!

b

K !! K of the struture group K of a prinipal bundle over M ? From the onstrution

it follows that if � = d

S

! arises as above, then we also get � + d for any  2 


2

(M; z

k

)

(Lemma VI.2). Therefore this is a question about de Rham ohomology lasses.

An answer to this question requires a more geometri version of the results in [Ho54b℄. It

is also related to the disussion of di�erential geometri gerbes in [Bry93, Se. 5℄. It should not

be too hard to verify that the lass [d

S

!℄ oinides with the image in H

3

dR

(M; z

k

) of the sheaf

ohomology lass in

�

H

2

(M;Z

K

)

�

=

�

H

2

(M;�

0

(Z

K

))�

�

H

3

(M;�

1

(Z

K

));

where we obtain from de Rham's Theorem a natural homomorphism

�

H

3

(M;�

1

(Z

K

))!

�

H

3

(M; z

k

)

�

=

H

3

dR

(M; z

k

):

If M is 2-onneted, then Brylinski shows in [Bry93, Thm. 5.4.3℄ for the speial ase Z

K

= C

�

that any integral 3-ohomology lass omes from a smooth C

�

-gerbe on M , but it is not lear

to us whih of these gerbes ome from entral extensions of struture groups of bundles.

Appendix A. Derivations of Lie algebra extensions

Let E : n ,!

b

g

q

��!g be a topologially split Lie algebra extension. In this appendix we analyze

the Lie algebra of ontinuous derivations of

b

g preserving the ideal n . In the present paper we

shall use only Propositions A.1 and A.7 from this appendix (f. Lemma III.3).
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In the following we write der g for the Lie algebra of ontinuous derivations of g . We

always identify n with an ideal of

b

g and de�ne

der(

b

g; n) := fD 2 der

b

g:D(n) � ng:

Then eah derivation D 2 der(

b

g; n) indues a derivation D

n

of n and a derivation D

g

of g

�

=

b

g=n ,

so that we obtain a Lie algebra homomorphism

�: der(

b

g; n)! der n� der g; D 7! (D

n

; D

g

):

To understand the Lie algebra der(

b

g; n), we have to analyze kernel and image of this homomor-

phism.

In the following we write

b

g = n �

(S;!)

g , where S: g ! dern is a ontinuous exterior

ation and ad Æ! = R

S

. We reall that the Lie algebra dern � der g ats on the spaes

Lin(g; n) = C

1

(g; n) and C

2

(g; n) by

�

(�; �):'

�

(x) := �('(x)) � '(�(x))

and

�

(�; �):'

�

(x; y) := �('(x; y)) � '(�(x); y) � '(x; �(y)):

We further have a representation on C

1



(g; der n), the set of linear maps ': g ! dern for whih

the orresponding map g� n ! n; (x; n) 7! '(x)(n) is ontinuous, by

�

(�; �):'

�

(x) := [�; '(x)℄ � '(�(x))

We write (�; �):['℄ = 0 if there exists some  2 C

1

(g; n) with (�; �):' = ad Æ . Sine

ad ÆC

1

(g; n) � C

1



(g; dern) is a subspae whih is invariant under dern� der g , the subspae

(dern� der g)

['℄

:= f(�; �) 2 der n� der g: (�; �):['℄ = 0g

is a subalgebra of der n� der g .

Proposition A.1. Let (�; �) 2 der n� der g and  2 C

1

(g; n) . Then the map

(A:1) D 2 End(n�

(S;!)

g); (n; x) 7! (�(n) + (x); �(x))

is a derivation if and only if

(A:2) (�; �):S = ad Æ and (�; �):! = d

S

:

If this is the ase, then �(D) = (�; �) and all derivations in �

�1

(�; �) are of the form (A.1)

for some  2 C

1

(g; n) .

Proof. We have

D([(n; x); (n

0

; x

0

)℄) = D([n; n

0

℄ + S(x):n

0

� S(x

0

):n+ !(x; x

0

); [x; x

0

℄)

= (�([n; n

0

℄) + �(S(x):n

0

)� �(S(x

0

):n) + �!(x; x

0

) + ([x; x

0

℄); �([x; x

0

℄))

and

[D(n; x); (n

0

; x

0

)℄ = [(�(n) + (x); �(x)); (n

0

; x

0

)℄

= ([�(n) + (x); n

0

℄ + S(�(x)):n

0

� S(x

0

):(�(n) + (x)) + !(�(x); x

0

); [�(x); x

0

℄):

In view of � 2 der n and � 2 der g , the requirement that D is a derivation is equivalent

to the relations

(A:3) D([(0; x); (0; x

0

)℄) = [D(0; x); (0; x

0

)℄ + [(0; x); D(0; x

0

)℄

and

(A:4) D([(0; x); (n; 0)℄) = [D(0; x); (n; 0)℄ + [(0; x); D(n; 0)℄

for x; x

0

2 g and n 2 n . In view of the preeding alulations, ondition (A.3) means that

�!(x; x

0

) + ([x; x

0

℄) = �S(x

0

):(x) + S(x):(x

0

) + !(�(x); x

0

) + !(x; �(x

0

));

i.e., (�; �):! = d

S

: Condition (A.4) means that

�(S(x):n) = [(x); n℄ + S(�(x)):n + S(x):�(n);

i.e.,

((�; �):S)(x) = [�; S(x)℄� S(�(x)) = ad((x)):

If D is a derivation, then �(D) = (�; �) is obvious, and, onversely, every derivation in

�

�1

(�; �) an be written in the form (n; x) 7! (�(n) + (x); �(x)) for some  2 C

1

(g; n). This

ompletes the proof.
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Corollary A.2. The map 	:Z

1

(g; z(n))

S

! ker�;	(') := ' Æ q is a linear isomorphism. In

partiular ker� is an abelian Lie algebra.

Proof. In view of Proposition A.1, the derivations in the kernel of � are of the form

D(n; x) = ((x); 0), i.e., D =  Æ q for some  2 C

1

(g; n). Moreover, suh maps are derivations

if and only if

ad Æ = 0 and d

S

 = 0;

whih means that  2 Z

1

(g; z(n))

S

. This shows that 	 is bijetive.

For D

1

; D

2

2 ker	 we have D

1

D

2

= 0, whih implies in partiular that ker	 is an abelian

Lie algebra.

Corollary A.3. im(�) � (der n� der g)

[S℄

.

Remark A.4. (a) If a := n is abelian, then gl(a) = der a and Proposition A.1 implies that

im(�) = f(�; �) 2 der a� der g: (�; �):S = 0; (�; �):! 2 B

2

(g; a)

S

g

= f' 2 (der a� der g)

S

:':[!℄ = 0g =: (gl(a)� der g)

S;[!℄

:

We therefore have a short exat sequene of Lie algebras

(A:5) Z

1

(g; a)

S

,! der(

b

g; a)!! (gl(a)� der g)

S;[!℄

:

with abelian kernel Z

1

(g; a)

S

.

For the speial ase where the g-module a is trivial, the representation ad

a

of g on a is

trivial, and the exat sequene simpli�es to

Hom

Lie

(g; a) ,! der(

b

g; a)!! (gl(a)� der g)

[!℄

:

(b) If the pair (�; �) 2 der a� der g �xes not only the ohomology lass [!℄ , but also the

oyle ! , then we may take  = 0 in Proposition A.1 to obtain a lift to a derivation of

b

g , showing

that the extension (A.5) splits on the subalgebra (gl(a)� der g)

(S;!)

of (gl(a)� der g)

(S;[!℄)

.

If, moreover, g is abelian and a is a trivial g-module, then B

2

(g; a)

S

= f0g , and therefore

(gl(a)� der g)

S;[!℄

= (gl(a)� der g)

!

;

so that the extension splits.

Proposition A.5. For (�; �) 2 (der n� der g)

[S℄

and  2 C

1

(g; n) with (�; �):S = ad Æ we

have

(�; �):! � d

S

 2 Z

2

(g; z(n))

S

and the ohomology lass

I(�; �) := [(�; �):! � d

S

℄ 2 H

2

(g; z(n))

S

;

whih is independent of  , vanishes if and only if (�; �) 2 im(�) .

Further more, the map

I : (dern� der g)

[S℄

! H

2

(g; z(n))

S

is a Lie algebra oyle with respet to the natural representation of the Lie algebra

(der n� der g)

[S℄

on H

2

(g; z(n))

S

.

Proof. From (�; �):S = ad Æ we derive for Æ 2 C

r

(g; n) the relation

d

S

((�; �):Æ) = d

g

((�; �):Æ) + S ^ ((�; �):Æ) = (�; �):d

g

Æ + (�; �):(S ^ Æ)� ((�; �):S ^ Æ)

= (�; �):d

g

Æ + (�; �):(S ^ Æ)� [; Æ℄ = (�; �):d

S

Æ � [; Æ℄;
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so that

(A:6) [(�; �); d

S

℄ = ad  on C

�

(g; n) =

M

r2N

0

C

r

(g; n):

We now obtain

ad Æ((�; �):!) = (�; �):(ad Æ!) = (�; �):R

S

= (�; �):(d

g

S +

1

2

[S; S℄)

= d

g

((�; �):S) + [(�; �):S; S℄) = ad Æ(d

g

) + [ad Æ; S℄ = ad Æ(d

g

) + [S; ad Æ℄

= ad Æ(d

g

) + ad Æ(S ^ ) = ad Æ(d

g

 + S ^ ) = ad Æd

S

:

We onlude that (�; �):! � d

S

 2 C

2

(g; z(n)). In view of Proposition I.5, we further have

d

S

((�; �):! � d

S

) = d

g

((�; �):!) + S ^ ((�; �):!) � d

2

S



= (�; �):(d

g

! + S ^ !)� ((�; �):S) ^ !)� [!; ℄ = (�; �):d

S

! � [; !℄� [!; ℄ = 0

beause d

S

! = 0 and [; !℄ = �[!; ℄ . This proves that (�; �):! � d

S

 2 Z

2

(g; z(n))

S

; and we

de�ne

I(�; �) := [(�; �):! � d

S

℄ 2 H

2

(g; z(n))

S

:

If 

0

2 C

1

(g; n) also satis�es (�; �):S = ad Æ

0

, then 

0

� 2 C

1

(g; z(n)) and d

S



0

�d

S

 2

B

2

(g; z(n))

S

, so that the ohomology lass I(�; �) does not depend on the hoie of  . Here we

already see that I(�; �) = 0 is equivalent to the existene to a  2 C

1

(g; n) with (�; �):S = ad Æ

and (�; �):! � d

S

 = 0, whih is equivalent to (�; �) 2 im(�).

To verify that I is a oyle, we �rst have to see how the representation of (dern�derg)

[S℄

on H

2

(g; z(n))

S

looks like. Pik  2 C

1

(g; n) with (�; �):S = ad Æ . Then (ad Æ):z(n) = f0g

and (A.6) imply that (�; �) maps B

2

(g; z(n))

S

and Z

2

(g; z(n))

S

into themselves and hene

indues a map on H

2

(g; z(n))

S

.

For (�; �); (�

0

; �

0

) 2 (der n� der g)

[S℄

we now pik ; 

0

2 C

1

(g; n) with

(�; �):S = ad Æ and (�

0

; �

0

):S = ad Æ

0

:

Then

[(�; �); (�

0

; �

0

)℄:S = (�; �):(ad Æ

0

)� (�

0

; �

0

):(ad Æ) = ad Æ((�; �):

0

� (�

0

; �

0

):):

With (A.6) we now get

I([(�; �); (�

0

; �

0

)℄) = [(�; �); (�

0

; �

0

)℄:! � d

S

((�; �):

0

� (�

0

; �

0

):)℄

= [(�; �):((�

0

; �

0

):!)� (�

0

; �

0

):((�; �):!) � (�; �):(d

S



0

) + [; 

0

℄ + (�

0

; �

0

):(d

S

)� [

0

; ℄℄

= [(�; �):((�

0

; �

0

):! � d

S



0

)� (�

0

; �

0

):((�; �):! � d

S



0

)℄:

This show that I is a Lie algebra 1-oyle.

Corollary A.6. For the topologially split extension

b

g := n�

(S;!)

g of g by n , the sequene

0! Z

1

(g; z(n))

S

! der(

b

g; n)! (dern� der g)

[S℄

I

��!H

2

(g; z(n))

S

! 0

is exat.

Proposition A.7. Let  : h ! im(�) � dern� der

b

g be a homomorphism of Lie algebras and

endow C

1

(g; n) with the h-module struture obtained from the ation of dern � der g on this

spae pulled bak via  . Further let �: h ! C

1

(g; n) be a linear map with

 (x):S = ad Æ�(x) and x:! = d

S

�(x); x 2 h:
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Then a oyle for the abelian extension

Z

1

(g; z(n))

S

,!  

�

der(

b

g; n)! h

of h by Z

1

(g; z(n))

S

is given by d

h

� 2 Z

2

(h; Z

1

(g; z(n))

S

): In partiular, a linear map

b

 : h !

der(

b

g; n) with

b

 (h)(a; x) = (h:a+ �(h)(x); h:x)

is a homomorphism if and only if � is a 1-oyle.

Proof. First we observe that the map

b

 : h ! der(

b

g; n);

b

 (x)(n; y) = ( (x):n+ �(x)(y);  (x):y)

satis�es � Æ

b

 =  . As the map

�: h !  

�

der(

b

g; n); x 7! (

b

 (x); x)

is a setion of this abelian extension, we obtain a orresponding oyle by

�(x; x

0

) := [�(x); �(x

0

)℄� �([x; x

0

℄) = ([

b

 (x);

b

 (x

0

)℄�

b

 ([x; x

0

℄); 0):

To evaluate this oyle, we alulate

[

b

 (x);

b

 (x

0

)℄(n; y) =

b

 (x):( (x

0

):n+ �(x

0

)(y);  (x

0

):y)�

b

 (x

0

):( (x):n + �(x)(y);  (x):y)

=

�

 (x) (x

0

):n+  (x):�(x

0

)(y) + �(x)( (x

0

):y);  (x) (x

0

):y)

�

�

�

 (x

0

) (x):n +  (x

0

):�(x)(y) + �(x

0

)( (x):y);  (x

0

) (x):y)

�

=

�

 ([x; x

0

℄):n+ ( (x):�(x

0

))(y) � ( (x

0

):�(x))(y);  ([x; x

0

℄):y)

�

:

Identifying ker� with Z

1

(g; z(n))

S

, we see that the oyle � , as an element of the group

Z

2

(h; Z

1

(g; z(n))

S

), is given by

�(x; x

0

) =  (x):�(x

0

)�  (x

0

):�(x) � �([x; x

0

℄) = (d

h

�)(x; x

0

):

Remark A.8. We have seen in the preeding proposition that

b

 is a homomorphism of Lie

algebras if and only if d

h

� = 0. Other hoies �

0

for � have the form �

0

= � + � with

� 2 C

1

(h; Z

1

(g; z(n))

S

) beause ad

n

Æ�(x) = ad

n

Æ�

0

(x) for eah x 2 g and d

S

(�

0

(x)) =

d

S

(�(x)) = x:! . Then

d

h

�

0

= d

h

� + d

h

�;

and we see that there exists a �

0

with d

g

�

0

= 0 if and only if [d

h

�℄ = 0 in H

2

(h; Z

1

(g; z(n))

S

).

We obviously have [d

h

�℄ = 0 in H

2

(h; C

1

(g; n)), but this does not imply that [d

h

�℄ vanishes in

H

2

(h; Z

1

(g; z(n))

S

).

Example A.9. If g = K

2

and

b

g = z�

!

g is the 3-dimensional Heisenberg algebra de�ned by

a sympleti form ! on K

2

, then der g

�

=

gl

2

(K ); der z

�

=

K ; and

(der z� der g)

[!℄

= (der z� der g)

!

= f(t; A) 2 K � gl

2

(K ):A:! = t!g

�

=

gl

2

(K )

is isomorphi to the onformal Lie algebra of ! , whih oinides with gl

2

(K ). Moreover,

b = Hom

Lie

(g; z) = Z

1

(g; z)

�

=

Lin(K

2

;K )

�

=

K

2

;

so that the exat sequene

Z

1

(g; z) = Hom

Lie

(g; z) ,! der(

b

g; z) = der

b

g !! (der z� der g)

[!℄

from Corollary A.6 turns into b

�

=

K

2

,! der(

b

g; z) !! gl

2

(K ) whih splits by Remark A.8, and

we obtain der(

b

g; z)

�

=

bo gl

2

(K ):
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Example A.10. (a) We onstrut an example of a entral extension z ,!

b

g !! g , where the

sequene (A.5) does not split. Let g be the 3-dimensional Heisenberg algebra with basis p; q; z

satisfying

[p; q℄ = z; [p; z℄ = [q; z℄ = 0:

We laim that dimH

2

(g;K ) = 2: As g is 3-dimensional, the spae C

2

(g;K ) is 3-dimensional.

Further B

2

(g;K )

�

=

[g; g℄

�

is 1-dimensional. It onsists of all those alternating bilinear forms on

g whose radial ontains the ommutator algebra. Therefore it suÆes to show that eah 2-hain

! 2 C

2

(g;K ) is losed. In fat, we have

(d!)(x; y; z) =

X

y:

!([x; y℄; z):

This form is alternating, so that it vanishes if it vanishes on (p; q; z):

d!(p; q; z) = !([p; q℄; z) = !(z; z) = 0:

This proves C

2

(g;K ) = Z

2

(g;K ) , and therefore dimH

2

(g;K ) = 2:

Now we �x ! 2 Z

2

(g;K ) with

!(p; z) = 1; !(q; z) = !(q; z) = 0:

We then obtain a entral extension

b

g := K�

!

g of g by z := K . We show that the exat sequene

Hom

Lie

(

b

g; z)

�

=

Hom

Lie

(g; z)

�

=

Lin(g=z(g); z) ,! der(

b

g; z)!! (der z� der g)

[!℄

does not split.

In der g we have in partiular the 2-dimensional abelian subalgebra b := Hom

Lie

(g; z(g)) of

those derivations whih are trivial on z(g) and fator through linear map g=z(g)

�

=

g=[g; g℄! z(g).

A basis for b is given by b

1

; b

2

with

b

1

(z) = b

1

(q) = 0; b

1

(p) = z and b

2

(z) = b

2

(p) = 0; b

2

(q) = z:

We have

(b

1

:!)(z; x) = �!(b

1

:z; x)� !(z; b

1

:x) = 0;

and

(b

1

:!)(p; q) = �!(b

1

:p; q)� !(p; b

1

:q) = �!(z; q) = 0;

whih implies that b

1

:! = 0. On the other hand

(b

2

:!)(z; x) = �!(b

2

:z; x)� !(z; b

2

:x) = 0

and

(b

2

:!)(p; q) = �!(b

2

:p; q)� !(p; b

2

:q) = �!(p; z) = �1:

Therfore b

2

:! is non-zero, but sine its radial ontains z , it is a oboundary. We now de�ne

�

b

1

:= 0 and �

b

2

(p) = �

b

2

(q) = 0; �

b

2

(z) = 1:

Then

(d

g

�

b

2

)(p; q) = ��

b

2

([p; q℄) = �1 = (b

2

:!)(p; q)

implies d

g

�

b

2

= b

2

:! .

Eventually we �nd

d

g

�(b

1

; b

2

) = b

1

:�

b

2

� b

2

:�

b

1

� �

[b

1

;b

2

℄

= b

1

:�

b

2

= ��

b

2

Æ b

1

6= 0:

This implies that d

g

� does not vanish on the abelian subalgebra b = spanfb

1

; b

2

g , so that the

entral extension

Hom

Lie

(g; z) ,!

b

b !! b

of b is not an abelian Lie algebra, hene does not split.

(b) We onsider the Heisenberg algebra g and a entral extension

b

g of g by z := K as in

(a) above. Then the ation of b = Hom

Lie

(g; z(g)) � der g preserves the lass [!℄ 2 H

2

(g; z), but

the ation of b on g does not lift to an ation of the abelian Lie algebra b on

b

g .

Let

b

b := go b be the semidiret sum. Then [!℄ 2 H

2

(g; z)

b

, but there is no representation

b

S of b on

b

g lifting the representation on g .
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Remark A.11. (The lifting problem for abelian extensions) Let q:

b

g ! g be an abelian

extension of g by the g-module a , whih we write as

b

g = a�

!

g for some ! 2 Z

2

(g; a).

Suppose that we are given a homomorphism ': h ! g of Lie algebras. When does it lift to

b

g in the sense that there exists a morphism b': h !

b

g with q Æ b' = '?

The existene of the lift b' is equivalent to the triviality of the abelian extension

q

'

:'

�

b

g ! h; (x; h) 7! h;

where

'

�

b

g = f(x; h) 2

b

g� h: q(x) = '(h)g:

Sine the extension '

�

b

g an be desribed by the oyle '

�

! 2 Z

2

(h; a), a lift b' exists if and

only if ['

�

!℄ = f0g . Note that the h-module struture on a depends on the homomorphism '

beause it is also pulled bak by ' , so that we annot simply write the obstrution as a map

Hom

Lie

(h; g)! H

2

(h; a)

beause the module struture on a varies with ' .

Now assume that b'

1

and b'

2

are lifts of ' . Then a straight forward alulation shows that

 := b'

1

� b'

2

: h ! a is a Lie algebra 1-oyle with respet to the module struture on a given

by ' . We write a

'

for this h-module. In this sense the �ber of the map

Hom

Lie

(h;

b

g)! Hom

Lie

(h; g);  7! q Æ  

over ' is an aÆne spae whose translation group is Z

1

(h; a

'

).

Appendix B. Automorphisms of Lie algebra extensions

In this appendix we analyze the group of automorphisms of a topologially split Lie algebra

extension

E : n ,!

b

g

q

��!g:

Our disussion follows the orresponding results for groups in [Ro84℄. Identifying n with an ideal

of

b

g , the automorphism group of E is

Aut(

b

g; n) := f' 2 Aut(

b

g):'(n) = ng:

Eah automorphism of E indues an automorphism of n and g

�

=

b

g=n , so that we obtain a group

homomorphism

�:Aut(

b

g; n)! Aut(n)�Aut(g); ' 7! ('

n

; '

g

):

Let [S℄ be the ontinuous g-kernel on n orresponding to E and (Aut(n) � Aut(g))

[S℄

�

Aut(n)�Aut(g) the set of all pairs �xing [S℄ . Then im(�) � (Aut(n)�Aut(g))

[S℄

and there is

a 1-oyle

I : (Aut(n)�Aut(g))

[S℄

! H

2

(g; z(n))

S

with respet to the natural (Aut(n)�Aut(g))

[S℄

-module struture of H

2

(g; z(n))

S

suh that the

sequene

1! Z

1

(g; z(n))

S

! Aut(

b

g; n)

�

��!(Aut(n)�Aut(g))

[S℄

I

��!H

2

(g; z(n))

S

is exat. This sequene ontains a good deal of information on the group Aut(

b

g; n).

In the following we write

b

g = n�

(S;!)

g (Lemma II.4). From Lemma II.5 we get:
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Lemma B.1. The map

	: (Z

1

(g; z(n))

S

;+)! ker(�); 	() := id

bg

+ Æ q

is a group isomorphism.

Proof. Eah automorphism of

b

g induing the identity on n and

b

g is of the form desribed

in Lemma II.5 with � = id

n

and � = id

g

, i.e., '(x) = x+ (q(x)) with  2 C

1

(g; n). Applying

this proposition with S

0

= S and !

0

= ! we get the onditions ad Æ = 0, i.e.,  2 C

1

(g; z(n))

and 0 = d

S

0

 +

1

2

[; ℄ = d

S

 , so that  2 Z

1

(g; z(n))

S

. This implies the assertion.

We observe that the natural linear ation of the group

G := (Aut(n)�Aut(g))

[S℄

;

on C

1



(g; der n)� C

2

(g; n) by (�; �):(S; !) = (S

0

; !

0

) with

S

0

:= � Æ S Æ �

�1

and (�; �):! := � Æ ! Æ (� � �)

�1

satis�es

g:Z

2

(g; n)

S

= Z

2

(g; n)

g:S

;

hene preserves Z

2

(g; n)

[S℄

.

Moreover, G ats in a natural way on C

1

(g; n) by (�; �): := � Æ  Æ �

�1

, so that we an

form the semi-diret produt group C

1

(g; n)oG . For the ation of C

1

(g; n) on Z

2

(g; n)

[S℄

(f.

Lemma I.9) we have

g:(:(S; !)) = (g:):(g:(S; !));

so that we even obtain an ation of C

1

(g; n)oG on Z

2

(g; n)

[S℄

and hene an ation of G on the

orbit spae

Ext(g; n)

[S℄

�

=

Z

2

(g; n)

[S℄

=C

1

(g; n)

whih is an aÆne spae with translation group H

2

(g; z(n))

S

(Theorem II.7).

Theorem B.2. The ation of G := (Aut(n) � Aut(g))

[S℄

on the aÆne spae Ext(g; n)

[S℄

�

=

Z

2

(g; n)

S

=B

2

(g; z(n))

S

is aÆne. For a �xed lass [(S; !)℄ 2 Ext(g; n)

[S℄

we obtain a 1-oyle

I :G! H

2

(g; z(n))

S

by g:[(S; !)℄ = I(g):[(S; !)℄ . This oyle satis�es I

�1

(0) = im(�); and for g:S = S + ad Æ we

have

I(g) = [g:! � ! � d

S

 �

1

2

[; ℄℄ 2 H

2

(g; z(n))

S

:

Proof. For [�℄ 2 H

2

(g; z(n))

S

we have [�℄:[(S; !)℄ = [(S; !+�)℄; whih de�nes the aÆne spae

struture on Ext(g; n)

[S℄

�

=

Z

2

(g; n)

[S℄

=C

1

(g; n) (Theorem II.7). Therefore

g:[(S; ! + �)℄ = [(g:S; g:! + g:�)℄ = [(S + ad Æ; g:!+ g:�)℄

= [:(S; g:! + g:� � d

S

 �

1

2

[; ℄)℄ = [(S; g:! + g:� � d

S

 �

1

2

[; ℄)℄:

We onlude that G ats by aÆne maps with

g:[(S; !)℄ = [g:! � ! � d

S

 �

1

2

[; ℄℄:[(S; !)℄:

Hene I(g) := [g:! � ! � d

S

 �

1

2

[; ℄℄ de�nes a 1-oyle I :G! H

2

(g; z(n))

S

.

It follows from Lemma II.5 that im(�) � G and that g 2 G is ontained in the image of

� if and only if there exists  2 C

1

(g; n) with g:(S; !) = :(S; !); i.e., g:[(S; !)℄ = [(S; !)℄ in

Ext(g; n)

[S℄

�

=

Z

2

(g; n)

[S℄

=C

1

(g; n). Therefore im(�) = I

�1

(0).
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Corollary B.3. We have an exat sequene

0! Z

1

(g; z(n))

S

! Aut(

b

g; n)! (Aut(n)�Aut(g))

[S℄

I

��!H

2

(g; z(n))

S

! 0;

where I is a group 1-oyle for the natural ation of the group (Aut(n) � Aut(g))

[S℄

on

H

2

(g; z(n))

S

.

Remark B.4. We onsider the stabilizer

G

S

:= f(; g) 2 C

1

(g; n)oG: g:S + ad Æ = Sg

of S in C

1

(g; n)oG . For (S; !) 2 Z

2

(g; n)

S

we then have

(; g):(S; !) = (S; g:! + d

S

 +

1

2

[; ℄);

so that G

S

ats by aÆne maps on Z

2

(g; n)

S

. Sine the group C

1

(g; z(n)), resp., B

2

(g; z(n))

S

,

ats on Z

2

(g; n)

S

by translations, we obtain an abelian extension

C

1

(g; z(n)) ,! G

S

!! G = (Aut(n)�Aut(g))

[S℄

:

This extension is trivial if and only if there exists a map �:G ! C

1

(g; n) with (�(g); g) 2 G

S

,

�(1) = 0, and �(g

1

g

2

) = �(g

1

) + g

1

:�(g

2

). This means that � is a 1-oyle lifting the trivial

oyle

G! C

1



(g; der n); g 7! S � g:S

in the sense that ad(�(g)) = S � g:S for eah g 2 G .

In general this abelian extension is non-trivial (f. Example A.9). The orresponding

ohomology lass is an element of H

2

(g; C

1

(g; z(n))):

We also desribe a more oordinate free way to see the ation of G = (Aut(n)�Aut(g))

[S℄

on Ext(g; n)

[S℄

.

Lemma B.5. We write the extension n ,!

b

g !! g as the exat sequene E : n

�

��!

b

g

q

��!g: Then

(�; �) 2 im(�) if and only (�; �):E � E holds for the extension

(�; �):E : n

�Æ�

�1

������!

b

g

�Æq

������!g:

Proof. For ' 2 Aut(

b

g; n) we onsider the extension E

0

:= ('

n

; '

g

):E and put �

0

:= � Æ '

�1

n

and q

0

:= '

g

Æ q . Then the map ':

b

g !

b

g yields an equivalene of extensions

n

�Æ'

�1

n

������!

b

g

'

g

Æq

������! g

?

?

y

id

n

?

?

y

'

?

?

y

id

g

n

�

������!

b

g

q

������! g:

Therefore �('):E � E . If, onversely, (�; �):E � E , then there exists an equivalene of extensions

n

�Æ�

�1

���!

b

g

�Æq

��! g

?

?

y

id

n

?

?

y

'

?

?

y

id

g

n

�

��!

b

g

q

��! g:

This means that '

n

= � and '

g

= � .
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