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Abstract

I investigate a geometrically exact generalized isotropic continua of micromorphic type
in the sense of Eringen. The two-field problem for the macrodeformation ¢ and the ”affine
microdeformation” P € GLT(3,R) in the quasistatic, elastic case is presented in a varia-
tional form. The relative elastic stress-strain relation is taken for simplicity as physically
linear. The corresponding infinitesimal strain problem obtained by linearization is also
presented. Focus of attention is shifted to the interpretation of the appearing material
constants. I derive simple homogenization-like formulas which relate the Lamé constants
of the substructure and the classical Lamé constants obtained for arbitrarily large samples
with the effective parameters in the micromorphic model. The relation of the thus obtained
model to the intrinsically linear representation of Mindlin and Eringen is also established.
The results should be useful for finite-element simulations of micromorphic continua.
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1 Introduction

This article addresses the modelling and constitutive implications of geometrically exact!
generalized continua of micromorphic type in the sense of Eringen in the elastic case. General
continuum models involving independent rotations have already been introduced by the
Cosserat brothers [9] at the beginning of the last century.

Their development has been largely forgotten for decades only to be rediscovered in the early
sixties [42, 23, 1, 17, 15, 48, 49, 25, 37, 44, 50]. At that time theoretical investigations on non-
classical continuum theories were the main motivation [34]. Since then, the Cosserat concept
has been generalized in various directions, for an overview of these so called microcontinuum
theories we refer to [16, 14, 4, 3, 5, 26, 35]. Recently, in [6, 7], the micromorphic balance
equations derived by Eringen have been formally justified as a more realistic continuum model
based on molecular dynamics and ensemble averaging.

The micromorphic model includes in a natural way size effects, i.e. small samples behave
comparatively stiffer than large samples. These effects have recently received much attention
in conjunction with nano-devices and foam-like structures.

The mathematical analysis of general micromorphic solids in the static case is at present
restricted to the infinitesimal, linear elastic models, see e.g. [29, 12, 27, 21, 22] for linear mi-
cropolar models and [32, 30, 31] for linear microstretch models. The major difficulty of the
mathematical treatment in the finite-strain static case is related to the geometrically exact
formulation of the theory and the natural appearance of nonlinear manifolds necessary for
the adequate description of the geometrical features of the microstructure. Both sources of
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nonlinearity exclude the use of most techniques employed for the linear case. In addition, co-
ercivity of the formulation w.r.t. deformations turns out to be a delicate problem related to
the possible fracture of the material. This coercivity depends crucially on the level of smooth-
ness provided by the microstructure. No general existence theorems for finite micromorphic
models had been known until [39]. The simpler, geometrically exact nonlinear micropolar case
has been dealt with in [40].

This contribution is organized as follows: first, we shortly review the basic concepts of the
geometrically exact elastic micromorphic theories with affine microstructure in a variational
context, i.e. we formulate the quasistatic case as a two-field minimization problem. For sim-
plicity we restrict attention to a physically linear stress-(relative elastic) strain relation. We
present the linearization of this model and and compare it to the intrinsically linear models of
Mindlin and Eringen. In contrast to the latter models, positivity of the local strain-energy is
automatically satisfied at the expense of having only five independent material parameters in
contrast to seven parameters in the intrinsically linear models. Four of these five parameters
can be directly related to simple experiments, while the remaining Cosserat couple modulus
e > 0 must be viewed as a penalty-parameter without intrinsic physical significance. This cou-
ple modulus is strongly related to penalty formulations of variational problems when turning
to numerical implementations. Usually, in finite-element simulations of micromorphic continua,
values of material parameters are not discussed. Our result should prove useful in this case.
The relevant notation is introduced in the appendix.

2 A finite-strain elastic micromorphic model with affine
microstructure
Let us now motivate a finite-strain micromorphic approach.? For our development we choose

a strictly Lagrangean description. We first introduce an independent kinematical field of mi-
crodeformations P € GLT (3, R) together with its right polar decomposition

P=R,-U,=polar(P)-U, = R, e U,, det[P]=e",

_ U — P

U,=—2— €SL(3,R), P= € SL(3,R), 2.1
" det[U,]'/? 3B det[P]"/? 3B @1)

with R, € SO(3,R), U, € PSym(3,R) NSL(3,R) and @, € R. The microdeformations P are
meant to describe the substructure of the material which can rotate, stretch, shear and
shrink. We refer to R, as microrotations.

The micromorphic theory we deal with can formally be obtained by introducing the mul-
tiplicative decomposition of the macroscopic deformation gradient F' into independent
microdeformation P and the micromorphic, nonsymmetric right stretch tensor U
(first Cosserat deformation tensor) with

F=P.U, U=P'F, UeGL"(3,R), (2.2)
leading altogether to a micro-compressible, micromorphic formulation.?

The notion micromorphic is prone to misunderstandings: the microdeformation P must be
considered as a macroscopic (average) quantity as the deformation gradient and the resulting
model is still phenomenological. However, geometrical features of the real substructure to be
modelled determine the choice of geometric manifolds for P. Since the substructure of the
material can in principle be crushed, the choice P € GL'(3,R) is mandatory.

In the quasistatic case, the micromorphic theory is now derived from a two-field vari-
ational principle by postulating the following action euclidienne” [9, p.156] I for the fi-
nite macroscopic deformation ¢ : [0,7] x @ — R® and the independent microdeformation

2Following Eringen [14, p.13] we distinguish the general micromorphic case: P ¢ GL*(3,R) = RT -
SL(3,R) with 9 additional degrees of freedom (dof), the micro-incompressible micromorphic case:
P € SL(3,R) with 8 dof, the microstretch case: P € Rt .SO(3,R) with 4 dof and the micropolar case:
P € S0(3,R) with only 3 additional dof.

3The strain measure U which is induced by this definition corresponds to €% presented in (1.5.11); of [14,
p.15].



P:[0,T] x O — GLT (3, R):
I(p,P) = / W (F, P,D,P) — T (p) — Iy (P) dV

—/HN(cp) dS— [ M (P)dS — min. w.rt. (¢, P),
e
s

Pr.=Fa, ¢ =9at). (2.3)

The elastically stored energy density W depends on the macroscopic deformation gradient
F as usual but in addition on the microdeformation P together with their first order space
derivatives, represented through the third order tensor D, P. Here  C R® is a domain with
boundary 99 and I' C 0f2 is that part of the boundary, where Dirichlet conditions g, Py for
displacements and microdeformations, respectively, can be prescribed, while I's C 012 is a part
of the boundary, where traction boundary conditions in the form of the potential of applied
surface forces Il are given with ' I's = (). The potential of external applied volume force is
II; and I takes on the role of the potential of applied external volume couples.* In addition,
I'c C 00 is the part of the boundary, where the potential of applied surface couples I, are
applied with 'NT¢ = @. On the free boundary 0 \ {T’ UT's U ¢} corresponding natural
boundary conditions for ¢ and P apply, which are obtained automatically in the variational
process.

Variation of the action I with respect to ¢ yields the traditional equation for balance of
linear momentum and variation of I with respect to P yields the additional balance of moment
of momentum.

The standard conclusion from frame-indifference (here: invariance of the free energy
under superposed rigid body motions (SRBM) not merely observer-invariance of the model
[47, 2, 38]: V@ € SO(3,R) : W(F,P,DiP) = W(QF,QP,D[QP]) leads to the reduced

representation of the energy (specify @ = Rp ):
W(F,P,D,P) = W(R, F, R, P,RyDP) = W(U,U, Uy, RoD,P) = WX T, U, &, Vai,), (2.4)
where for P = R, U, € SL(3,R) we set
PP (BloP »'op o m 3%3 3%3 3x3
Ry = RoDP = (R,;V(P.e1), Ry (Poey), ByV(Pues)) € MP*3 x MP*3 x MP*3 | (2.5)

which coincides with one specific representation® of the third order right micropolar curva-
ture tensor (or torsion-curvature tensor, wryness tensor, second Cosserat deformation tensor,
bending-twist tensor, etc.), if P € SO(3,R).

For a geometrically exact (macroscopically isotropic) theory we assume in the following an
additive split of the total free energy density into micromorphic local stretch (macroscopic),
stretch of the substructure (microscopic) and micromorphic curvature part according to

Wi= Wip@) + Weoam(Up, @) +  Weur(8p, Va,) (2.6)
—— —_— ————— — ——m———
macroscopic energy  microscopic local energy = microscopic interaction energy
since a possible coupling between U and &, for centrosymmetric bodies can be ruled out [41,
p.14].
2.1 The elastic macroscopic micromorphic strain energy density

For a macroscopically small elastic strain theory® (physically linear), which should already
cover many cases of physical interest, we require that Wy,,(U) is a non-negative isotropic

4appearing in a non-mechanical context e.g. as influence of a magnetic field on the polarization of a sub-
structure of the bulk.

"Note that & = ETV(P.ei) ¢ s0(3,R).  Another representation of £, is given by &, :=
(Ff 0. P, Ry ay?,ﬁfaz?) € T(3). Since .(R.P) = 0 for P = K, € SO(3,R), it holds that §, €
50(3,R) x s0(3,R) X s0(3,R) in this case. It is therefore possible to base all considerations of curvature in the
micropolar case on a more compact expression Ry := (axl(ﬁf@zﬁp)\ axl(ﬁgayﬁpﬂ axl(ﬁf@zﬁp)) € MBEx3.
This is the traditional micropolar approach, see e.g. [43, 18, 24]. For us it is, however, not possible to use ;i;,
since we allow P € GL*(3,R).

6By this we mean that the part of the deformation which is superposed onto the substructure deformation
has small elastic strains.



quadratic form. We assume moreover the macroscopic stretch energy density normalized to

Winp(1) =0,  DgWinp (D) =0. (2.7)

TU=1

For the local energy contribution elastically stored in the substructure we assume the nonlinear
expression

U, A 1
Wi (Up) = " | = WP 4 20 (@etfU] = 1P + (e — 1)
e det[U,] /) E ? det[U,] )
isochoric subs;;ucture energy volumetric energy

m |77 A" a -7 7 =
= U = WP+ = (™ = 1) + (7% = 1)°) = Wioam (Up, @p),  (28)

avoiding self-interpenetration in a variational setting, since Wigam — 00 as det[P] = det[Up] — 0
if A™ > 0.7 The most general form of Wy,, consistent® with the requirement (2.7) is

Woao(0) = e[| sym(@ — W + el skew(@ ~ D) + 2 tr [sym(@ ~0)]*,  (29)
with material constants g, e, Ae such that pe, 3\e + 2pe, . > 0 from non-negativity [14] of
(2.9). It is important to realize that pu.,\. are effective elastic constants which in
general do not coincide with the classical Lamé constants u, A > 0. Here, I take the
classical Lamé constants to be obtained from standard experiments of sufficiently large samples
of the materials, such that length scale effects do not interfere. The so-called Cosserat couple
modulus p. (rotational couple modulus) remains for the moment unspecified, but we note that

pe = 0 is physically possible, since the micromorphic reaction stress DWW, (U) -UT is
not symmetric in general, i.e. the problem does not decouple. For comparison, in [14, p.111]
for the infinitesimal micropolar case, the elastic moduli are taken to be pe = p + 5, pe =
£, Xe = A, but in this formula p can neither be regarded as one of the Lamé constants.” ' In
[11, 45, 46, 19, 10, 13] the abbreviation g, is used while in [24] it is g, = @ and p. = G, in [33]
for the micropolar theory.

By formal similarity with the classical formulation we may call g™, \™ the microscopic
Lamé moduli of the affine substructure, which can be determined from classical experiments,
e.g. dealing with a nickel-foam structure, they are the Lamé-constants of the smallest possible
representative volume element in the foam, e.g. comprising 4 unit-cells. In the analytical section
we will show, how to obtain consistent values for u., A, if we know already g™, A™ and p, A.

2.2 The nonlinear elastic curvature energy density

The curvature energy is responsible for the size-dependent resistance of the cell-structure against
local twisting and inhomogeneous volume change. Thus inhomogeneous microstructural rear-
rangements are penalized. For the curvature term, to be specific, we assume the general form

Lite | Lt

Weurs (8, V&) = p == (1+ s LE IR, 1) (s [|sym & |12 + a || skew &2 + a7 tr[8,]°)
1+p )

+u {2 (a8||vap||l+l’+048Lc||vap||2+p) (2.10)

where L. > 0 is setting an internal length scale with units of length, a4 > 0,p > 0,9 > 0 are
additional material constants. The factor 11—2 appears only for convenience and a; > 0, ag, ar >
0,ag > 0 should be satisfied as a minimal requirement. We mean tr[&,]” = [|tr[&,]|? by abuse
of notation. This choice for We,,v does not presuppose any knowledge of the magnitude of the

Note that ((det[Up] ~ 1) + (g - 1)2) = 2tr[U, — 1]% + O(||U, — 1|]?).

8Mixed products like (U — 1, U, — 1) and tr [U — 1] - tr [Up — 1] are excluded by non-negativity.

9A simple definition of the Lamé constants in micropolar elasticity is that they should coincide with the
classical Lamé constants for symmetric situations. Equivalently, they are obtained by the classical formula
= 2(15:;»1/) s A= (1+Vf('1’72u) , where E and v are uniquely determined from uniform traction experiments for
sufficiently large samples.

10Uniform traction and uniform compression do not activate rotations, hence the classical identification of the
Lamé constants is achieved independent of y.. Uniform traction alone allows to determine the Young modulus
E and the Poisson ratio v [8, p.126]. Contrary to [20, p.411] we do not see the possibility to define a specific
”micropolar Young modulus” or ”micropolar Poisson ratio”.




micromorphic curvature in the material and is non-degenerate in the origin ||&,|| = ||V@,|| = 0.
Some care has to be exerted in the finite-strain regime: W¢,;, should preferably be coercive
in the sense that we impose pointwise

Fet>03Ir>1: VR, €TB)VEER 1 Weurn (8,8 > ¢ (8, 9|7, (2.11)
or less demanding
Jr > 1 W—)w as || (8, )l = oo, (2.12)

which implies necessarily ag, ag > 0 in (2.10). Observe that our formulation of the micromor-
phic curvature tensor is mathematically convenient in the sense that ||&,|| = ||§ZDXF|| = ||D.P||
provides pointwise control of all first derivatives of P independent of the values of P itself.'!
Thus, coercivity of Wey,v ensures a certain minimal level of smoothness of the microstucture
without which coercivity w.r.t. deformations cannot be guaranteed. A lack of smoothness of
the microstructure may therefore give rise to fracture on the macroscale.

Note that the presented formulation still includes a finite Cosserat micropolar model as a
special case, if we set P = R € SO(3,R). In this fashion, we have the following correspondence
of limit problems:

AT — 0 micro-incompressible model: manifold SL(3,R),

microstretch model: manifold R" - SO(3,R) , (2.13)

micropolar model: manifold SO(3,R),

[T e
pt AT = 00

LR

e — 00 higher gradient continua.

Note also that SO(3,R), R* -SO(3, R), SL(3, R) are the only connected subgroups of GLT (3, R)
which contain SO(3, R).

3 The infinitesimal micromorphic elastic solid

3.1 The variational formulation

Starting from the proposed finite-strain formulation and not intrinsically linear, we may obtain a
linear, infinitesimal micromorphic model by expanding all appearing variables to first order and
keeping only quadratic terms in the energy expression. Thus we write F' = 1 + Vu, P = 1l +p,
and the model turns into the problem of finding a pair (u,p) : @ C R® — R® x gl™(3,R) of
macroscopic displacement u and independent, infinitesimal microdeformation p satisfying

/ Wi (5 0) + Weurs (£, Vtr [p]) AV > min. w.r.t. (u,p),
Q

e=Vu—p, pp=pacol (3R =M"° o =g, (3.14)

_ i A . o m .
Wop(E.2) = pe 1 sym[? + g [ skew2[2 + 2 tr rymel? + e | sym pl + St sym
A A
= pte || sym Vu — symp||* + pre || skew(Vu = p) ||* + 5 tr [Vu — pJ*

5 AT ;
+ ™ || symp|l® + S-trp)
Lﬁ 2 2 2 2
Wears (&, Vir[p]) = 7% (a5 lsym e, + as || skew b ||* + az tr[6,]° + as [ Ve [pl]?) |

t, = D[devp] = (V(dev p.e1), V(devp.es), V(dev p.e3)) .

Here, £, is the third order infinitesimal curvature tensor, defined only on the purely distortional
part of the infinitesimal microdeformation dev p. If pe, p™ > 0 and pe, Ae, A™ > 0 it is an easy
matter to show existence and uniqueness. For p. = 0 we have to invoke the classical Korn’s
first inequality.

It should be observed that even if pu. = 0 there remains a coupling of the two fields (u, p)
due to the remaining coupling in the symmetric terms.

1 This is not true for other possible basic invariant curvature expressions like ?71Dx? or ?TDX? or FTDX?,
see [14, 1.5.4,1.5.11].



3.2 The linear system of balance equations

The linearized macroscopic force balance equation is obtained by taking free variations with
respect to the displacement u. Hence we obtain

Divo(Vu,p) =0, wu.(z) =ga(r) — = (3.15)
with
o(Vu,p) = 2p, (sym Vu — symp) + 2p. (skew Vu — skewp) + A tr[Vu —p] - L. (3.16)

The remaining system of nine balance equations for the nine additional components of p €
gl™(3,R) = MP*? is obtained by taking free variations with respect to p which results in

dev Div De, Weury (€, Vir [p]) = dev (=2p, (sym Vu — sym p)
— 2. (skew Vu — skewp) — Ao tr [Vu — p] 1
+2u™ symp + A" trp] - 1) ,
Div Dy [p)Weury (8, Vir [p]) = tr (=2p, (sym Vu — symp)
— 241 (skew Vu —skew p) — A tr[Vu —p| 1
+2u™ symp + A tr[p] - 1) , (3.17)

which is equivalent to

0 =devo(Vu,p) — 2p™ devsymp + dev Div Dy, Weur (8, Vir [p]),
0 = tr[o(Vu,p)] — (2™ + 3A™) tr [p] + Div Dyu(p) Weury (€, Vtr [p]) . (3.18)

3.3 Calculation of consistent effective elastic moduli

It is of prime importance to have values of pe, A, at hand which are consistent with the classical
linear elastic model for long wave-length (large samples). Considering very large samples of
the cellular structure amounts to letting L., the characteristic length, tend to zero. As a
consequence of L. = 0 equation (3.18) looses the curvature terms and turns into

0 =devo(Vu,p) — 2u™ devsymp, (3.19)
0 = tr[o(Vu, p)] — (2™ + 3A™) tx [,

expressing an algebraic side-condition. Inserting formula (3.16) for ¢ into (3.19) allows us to
obtain after some lengthy but straightforward computations the following algebraic relations

(2pte + 3XAe)
tr[p] = tr [V,
T = S ey 30 oy TV
[he
devsymp = —— = devsym Vu, 3.20
(ke + pm) (3:20)
dev skew p = dev skew Vu, (without pu.),

where we used that dev is orthogonal to R - 1l and sym is orthogonal to skew and devskew =
skew. Moreover,

_ (2pte + 3)e)
¥l = (1 g s st ) 17
- (2™ + 3X7) o [V (3.21)

(2™ + 3A™) + (2pe + 3Xe)
Reinserting the results into (3.16) yields, after taking dev on both sides

devo(Vu,p) = 2p, (devsym Vu — devsym p) + 2p. (skew Vu — skew p)

He

= 2Ue <dev symVuy — ——
(pe + pm)

dev sym Vu) + 2p. (skew Vu — 1 - skew Vu)

m

He [

= 2, <1 — 7> devsym Vu = 2y, —— = devsym Vu. 3.22
(ke + pm) (ke + p™) (322)



Similarly, reinserting the results into (3.16) yields, after taking the trace on both sides

tr [0(Vu,p)] = 2pe tr [sym Vu — sym p| + 2, tr [skew Vu — skew p] + A tr [Vu — p] - tr [11]
= 24 tr [Vu — p] + 3o tr [Vu — p] = (2pe + 3A) tr [Vu — p]
(2™ + 3A™)
(2™ + 3A™) + (2pe + 3Ae)

For a classical linear elastic isotropic solid, which represents the macroscopic stress-strain rela-
tion for large samples, one has the relation

= (2pe + 3Xe) tr[Vu] . (3.23)

o=2pusymVu+ Atr[Vu] -1 =

devo =2p devsymVu  and  tr[o] = (2 + 3X) tr [Vu]. (3.24)
Upon comparing coefficients of (3.24) with (3.22) and (3.23) we identify
20 =2pe =,
‘ (pe + pm)

(2™ + 3A™)

2+ 3X) = (2pe + 3 .
(2p+3%) = (2pe + )(2um+3>\m)+(2ue+3>\e)

(3.25)

This shows that the large scale shear modulus p is half the harmonic mean!? of the
relative elastic shear modulus p. and the microstructural shear modulus p™, while
the large scale bulk modulus x = @ is half the harmonic mean of the relative elastic
bulk modulus k. and the microstructural bulk modulus <™.

Hence, solving in a first step for the relative elastic shear modulus u, and the relative

elastic bulk modulus k. = %, yields
G (21 + 3A) (2p™ + 3A™)
Therefore
pt p (2 + 37) (20 + 3A™) P p
pe = ——H 3\, = ) . 3.27
= 1) e — )+ 300 =) (=10 (3:20)

This shows that the ”macroscopic” Lamé moduli u, A must always be smaller than the micro-
scopic moduli g™, A™ related to the response of a representative volume element (REV) of the
substructure. This is physically consistent: the large-scale sample cannot possibly be stiffer
than the constitutive substructure.

Let us consider the interesting limit cases in (3.25):

202

3(pm —p)’
microstretch: p™ — o0, A" <oo = A=A, U=,

microincompressible: A" — o0, pm<oo = A=A+

micropolar: y™ o0, A" =00 = A=A, U=fe. (3.28)

3.4 Identification with Mindlin’s representation

Many papers on linearized micromorphic models start from a representation of the free-energy
function based on Mindlin’s work [36, 5.5], e.g. [28]. A major drawback of Mindlin’s rep-
resentation is, however, that now account has been taken, to ensure overall positivity of the
quadratic energy. This has to be checked additionally and can be quite labourous because of
many appearing coefficients. We consider only the local part (the part without curvature) of
Mindlin’s representation. Let us define

e =symVu, g:=Vu-—p. (3.29)

Then Mindlin’s local energy contribution with seven material constants ﬂ,x,bl,bz,bg,gl,gg
reads

~

: : A 9 . b ‘ b- . b
WM (T, p) = W e 2) = Surel? + Al + Do + 2] + 2 )
+ g1 tr[e] tr[E] + g2 (¢,E) . (3.30)
29 (a, B) = Lil = % for a;, B > 0, compare with the Reuss-bounds in homogenization theory.
a B



Note that this is a quadratic form, whose positiveness is not ensured by taking positive pa-
rameters! In comparison, I have proposed a five material constants representation, which au-
tomatically defines a positive quadratic form, if the coefficients are positive themselves.!® The
proposed quadratic representation in (3.14) reads

_ _ _ A 2 AT 2
Winp (8,0) = pte || sym||* + pue || skew |* + 5 tr[syme]” + | sympl||® + 5 tr [symp]

Ae

= pte || symz||® + e || skew 2> + Sotr [symz]” + p

l

symp —e + ¢||?

m

A 2
+ Ttr [symp — e + €]

A
= pte || symz||® + . || skew z||* + Tetr [symz]’

+ ™ ([lsymp — el|* + 2(symp — €,¢) + |[e]|?)

A :
+ > (tr [symp — e]” + 2tr [symp — e]tr [] + tr [5]2) (3.31)
Ae + A" —
= e+ ) [ symz? + e ke 22 + B g o 2

m Am

b el + A el

—2p™ (e — symp, ) — X tr [e — sym p|tr [¢]

(e + A7)
2

= (e + ™) [|sym||? + p || skew ]2 + tr [symz)”

A ;
+ ™ [e]l? + tr [e]? — 2u™(z, &) — A™ tr [E]tr [¢]

N 1 _ Ae + AT _
= (e + ™) I5E+EDN + pell;E-EDI° + (72)& [symz]”
Am
+ u™ [e]l? + tr [e]® — 2u™ (g, &) — A™ tr [E]tr [¢]
e+ u™ c e Ae +A™)
:(/'L +/'L )||E+ET||2+N—||8—8T||2+( + )tr[a]2
4 4 2
)\m
+ 1™ [e])? + otr [e]” — 2u™ (7, e) — A™ tr [E]tr [¢]
€ m C — — = )‘6 )‘m Y
= 2B (g 4 g2, 270) + 2 (e - 2.27y) + Qe E A e

m

+ 1™ |lel)? + )\7 tr[e]® — 2u™ (g, &) — A™ tr [g]tr [¢]

e+ m+c — e+ m— c) )= = )\e+)\m -
— (H’ //’2 M ) ||€||2 + (H‘ //’2 M )<6,6T> + ( 5 )tI' [E]Z

A ;
+ p [le])? + St [€]” — 2u™ (2, &) — A™ tr [E]tr [e] .m
Hence, comparing with Mindlin’s representation (3.30) we can identify
ﬁ:uma X:Ama b1:>\e+)\m7

by = pe + 1™ + pe, bs = pe + ™ — pc,
g1 = —A", g2 = —2p™. (3.32)

Mindlin proposes [36, p.60]

3by +b2+b3 >0, ba+b3>0, by—03>0 =
e+ ™ >0, pe+pm >0, pe>0, (3.33)

as necessary conditions for a positive definite energy function which is verified for (3.14).

Remark 3.1
It is not clear to the author, whether Mindlin’s seven parameter representation of the local
strain-energy could be obtained by consistently linearizing a finite-strain micromorphic model.

13This can be slightly weakened: 2ue + 3Xe > 0,2u™ + 3A™ > 0, pe, ™, pe > 0 is sufficient.



3.5 Identification with Eringen’s formulation

In [14 7.1. 15] the following local energy representation with seven independent parameters

(A+7+20) tr [sym p)” + (X + 7) tr [2] tr [sym p]

2
(&) + (A+5+36 +17) | sympl”
(i +F)

R 2. (3.34)

+2(i+6) (,symp) +
Again, positivity of this quadratic form has to be ensured a posteriori. Consider the five
parameter representation in (3.14)

“l

- . A _ L am
Winp (,0) = pte || symE||* + pe || skew |* + 5 [symz]® + ™ || sympl||* + 5 tr [symp]”

m

iy s A . , A )
= pe [EI* + (e — pe) | skew E[|* + = tr [sym E]” + ™ || sympl|* + -tr [sym p)

8+ (& € C j— = Ae m Am
= BB + BB @) + S trfsym)® | sympll? + St fsymp]”

(3.35)

Now, take X + 7 = 0, ji+ 6 = 0. Then (3.34) reduces to

i +n 2 - 2 B _
W (e symp) = XD ey D 4 v fsympl® + £ @2 4+ G- ) llsympl
(3.36)
Identification is now obtained by setting
I 5 . I m . AT
(B+R) = petpc, A=y L=pe—pe, (—p)=p", 7=—. (3.37)
This implies notably
R=2pc, 71=He+tp" —pc=D0s. (3.38)

It should be noted again, that despite notation, Eringen’s [ is neither the corresponding Lamé
constant related to the representative volume element of the substructure nor of the bulk or
the relative shear modulus, while X is the corresponding relative modulus. Unfortunately, this
has led to some confusion in the literature.

3.6 Formulation as a three-field problem

In a constitutive context it is useful to clearly separate influences due to volumetric changes
and due to distortional effects. This can be most easily done if we incorporate an additional
curvature term due to only volumetric changes of the substructure. Introducing the additive
split

1 1
p=devp+ctrp]- I =%+ sa, -1, p:=devp, a,:=trlp|, (3.39)

s[(3,R)



we may write the linearized micromorphic problem (3.14) equivalently as a three-field prob-
lem

/ Winp (8,0, @) + Weury (8p, Vap) dV = min. wrt. (u,p,@p), @, = da, (3.40)
Q

1
E:Vu—ﬁ—gapll, P =pa €973, R) = M*** pesi(3,R), @, € R,

A ‘ Am .
Winp (,0) = pte || sym||* + pe || skew z||* + 5 [symz]® + p™ || symp|| + 5 tr [sym p]*

1
= pe ||sym Vu — symp — gap ’ Il”2 + pre || skew(Vu — 1_3)||2

2™ + 3)\m> L,

A 1. .

+?etr [Vu—gap-]l] + ™ || symp||? + ( 5 @, ,

W, ) = e 2 2 2 @ I°
curv (&, Vap) = pro (as [ sym&[|” + ag [ skew & [|° + ar tr[t,]” + as [IVap|©)

t, =Dip= (V(p.e1),V(P.€2),V(P-e3)), infinitesimal curvature tensor.

3.7 The infinitesimal micro-incompressible micromorphic elastic solid

Starting with the finite-strain formulation we may obtain a linear, infinitesimal microincom-
pressible, micromorphic model by expanding all appearing variables to first order and keeping
quadratic terms in the energy expression. Thus we write F = 1l + Vu, P = L + 7, tr[p] = 0
and the model turns into the problem of finding a pair (u,p) : @ C R® — R® x s[(3,R) of
displacement u and independent, infinitesimal microdeformation p satisfying

/ Winp(E,D) + Weury (8) AV = min . wr.t. (u,p),
Q

g =Vu-—Dp, ﬁ‘r =Dq € 5[(3,]R), Plr = 9d (341)
- _ _ A e m _ Am e
Wonp E.5) = pe | syme® + g | skew |? + 3 e [symf® + ™ [ symp|® + 5 tr [sym )
A A ~
= pte || sym Vu — sympl|” + pic || skew(Vu — p)||> + 5 tr [sym Vu)? + ™ || symp|?,

L? .
Wear (&) = n 75 (as | symll? + ag || skewt, |2 + ar tr[6,]°) |

t, =Dp=(V(pe1),V(p.e2),V(p.e3)), third order, infinitesimal curvature tensor.

If pre, p™ > 0 and pe, Ae, A™ > 0 it is an easy matter to show existence and uniqueness.

3.8 The infinitesimal microstretch elastic solid

Such a model is obtained by assuming P = e R,, @, € R, R, € SO(3,R) with independent

i
— —T. —
variables @, R, and independent curvature parts 8, = R, DR, and Va,(z,y,z). Inserting

Sp @
3 23

this assumption into the finite-strain model and expanding e® = 1+=>+..., Rp =0+A+...

for small (4,@,) yields to first order the three-field problem
/ Winp (B, @p) + Weury (€, V@) AV = min. w.r.t. (u, A,@,), (3.42)
Q
R er = Zd € 50(3, ]R), aplr = apvd\rd Pl =94,
U,=\P P=\/e@/ R R,=cF S IR B T O Lo
- — =12 =12 >‘e =12 map 2 A" ap ?
Wonp (2, ) = i | symalP + e | skew? + 52 trfsyme 4 |2 mpP + 504w (%2

— ‘ Y — 2
= pe || sym Vu — % S+ e || skew(Vu — A)||2 + ?tr {symVu - % . ]1]

2u™ 4+ 3\ _,
+ <76 ) a,,
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L2
Wearv (8, Va,) = n 75 (as | sym I + ag || skew &y |2 + ar tr [6,]° + as|[Va, |I?) |

b, = DyA = (V(A.e1),V(A.e2),V(A.e3)), infinitesimal curvature tensor.

3.9 The infinitesimal micropolar elastic solid

Such a model is obtained by setting @, = 0 in (3.42). We are left with the two-field problem

/ Winp (B) + Weury (8y) dV = min . w.r.t. (u, 4),
Q
£ =Vu-— Z, er = Zd S 50(3, ]R), Plr =9d (343)
Ae ‘
Wonp(B) = pe || sym&||? + . || skew 5||* + 5 tr [symz]”

_ A, A
= pte || sym Vu||* + . || skew(Vu — A)|* + 5 tr [sym Vu]®,

L2 .
Wears(8) = n 75 (a5 llsymy|I? + ag | skew &2 + ar tr 6] |

b, = DA = (V(A.e1),V(A.e2),V(A.e3)), micropolar curvature tensor.

Note that for p. = 0 the two fields completely decouple which must be seen as a deficiency of
the infinitesimal micropolar model. This allows us to appreciate the exceptional role played by
a coupling only through (infinitesimal) rotations.

3.10 The infinitesimal, non-polar classical linear elastic solid

Only for completeness we note the classical one-field linear elasticity formulation
/ Winp(e) dV = min. wr.t. u, e=symVu, ¢ . =gd, (3.44)
Q

A . . A
Wap(e) = ullel + 5 tr[e]? = pul| sym Vu* + 3 tr [sym V.
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5 Notation

Let 2 C R? be a bounded domain with Lipschitz boundary 852 and let I' be a smooth subset of 99 with non-
vanishing 2-dimensional Hausdorff measure. For a,b € R® we let (a,b)gs denote the scalar product on R® with
associated vector norm HaHﬂi3 = (a,a)gs. We denote by M?*3 the set of real 3 x 3 second order tensors, written
with capital letters and by T(3) the set of all third order tensors. The standard Euclidean scalar product on
MB*3 is given by (X, Y )ysxs = tr [XYT], and thus the Frobenius tensor norm is [|X||> = (X, X)ysxs. In the
following we omit the index R?, M?%3. The identity tensor on M?X3 will be denoted by 1L, so that tr [X] = (X, 11).
We let Sym and PSym denote the symmetric and positive definite symmetric tensors respectively. We adopt
the usual abbreviations of Lie-group theory, i.e., GL(3,R) := {X € M3*3 |det[X] # 0} the general linear
group, SL(3,R) := {X € GL(3,R) |det[X] = 1}, O(3) := {X € GL(3,R) | XTX = 1}, SO(3,R) := {X €
GL(3,R) |XTX =1, det[X] = 1} with corresponding Lie-algebras so(3) := {X € M?*3 |XT = — X} of skew
symmetric tensors and sl(3) := {X € M®X3 |tr[X] = 0} of traceless tensors. We set sym(X) = %(XT + X)
and skew(X) = %(X — X7T) such that X = sym(X) + skew(X). For X € M?X3 we set for the deviatoric part

dev X = X — % tr [X] 1 € s((3) and for vectors £&,n € R™ we have the tensor product (£ ®n);; = & n;. We write
the polar decomposition in the form F = RU = polar(F) U with R = polar(F') the orthogonal part of F. For a
second order tensor X we define the third order tensor h = Dy X (z) = (V(X(z).e1), V(X (z).e2), V(X (x).e3)) =
(h1,52,53) € MBX3 x MPX3 x M3*3. For third order tensors h € T(3) we set [|h]|2 = 2 ||h7]|? together
with sym(h) := (symb!,symb?,symh3) and tr[h] := (tr [h'],tr [h?],tr [3]) € R3. Moreover, for any second
order tensor X we define X - h := (Xh', Xh2, Xb3) and b - X correspondingly. Quantities with a bar, e.g. the
micropolar rotation Ep, represent the micropolar replacement of the corresponding classical continuum rotation
R. In general we work in the context of nonlinear, finite elasticity. For the total deformation ¢ € C''(Q,R?)
we have the deformation gradient F = Vip € C(Q,M>*3) and we use V in general only for column-vectors
in R3. The first differential of a scalar valued function W (F) is written DpW (F).H. Sometimes we use also
Ox W (X) to denote the first derivative of W with respect to X. For X € C1(Q,M3*3) we define Div X (z) as
the operation Div applied row wise. For h € (3) we define Divh = (Div h!|Div h?| Div h3)T € M3*3, Finally,
w.r.t. abbreviates with respect to.
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