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Abstrat

I investigate a geometrially exat generalized isotropi ontinua of miromorphi type

in the sense of Eringen. The two-�eld problem for the marodeformation ' and the "aÆne

mirodeformation" P 2 GL

+

(3;R) in the quasistati, elasti ase is presented in a varia-

tional form. The relative elasti stress-strain relation is taken for simpliity as physially

linear. The orresponding in�nitesimal strain problem obtained by linearization is also

presented. Fous of attention is shifted to the interpretation of the appearing material

onstants. I derive simple homogenization-like formulas whih relate the Lam�e onstants

of the substruture and the lassial Lam�e onstants obtained for arbitrarily large samples

with the e�etive parameters in the miromorphi model. The relation of the thus obtained

model to the intrinsially linear representation of Mindlin and Eringen is also established.

The results should be useful for �nite-element simulations of miromorphi ontinua.
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1 Introdution

This artile addresses the modelling and onstitutive impliations of geometrially exat

1

generalized ontinua ofmiromorphi type in the sense of Eringen in the elasti ase. General

ontinuum models involving independent rotations have already been introdued by the

Cosserat brothers [9℄ at the beginning of the last entury.

Their development has been largely forgotten for deades only to be redisovered in the early

sixties [42, 23, 1, 17, 15, 48, 49, 25, 37, 44, 50℄. At that time theoretial investigations on non-

lassial ontinuum theories were the main motivation [34℄. Sine then, the Cosserat onept

has been generalized in various diretions, for an overview of these so alled miroontinuum

theories we refer to [16, 14, 4, 3, 5, 26, 35℄. Reently, in [6, 7℄, the miromorphi balane

equations derived by Eringen have been formally justi�ed as a more realisti ontinuum model

based on moleular dynamis and ensemble averaging.

The miromorphi model inludes in a natural way size e�ets, i.e. small samples behave

omparatively sti�er than large samples. These e�ets have reently reeived muh attention

in onjuntion with nano-devies and foam-like strutures.

The mathematial analysis of general miromorphi solids in the stati ase is at present

restrited to the in�nitesimal, linear elasti models, see e.g. [29, 12, 27, 21, 22℄ for linear mi-

ropolar models and [32, 30, 31℄ for linear mirostreth models. The major diÆulty of the

mathematial treatment in the �nite-strain stati ase is related to the geometrially exat

formulation of the theory and the natural appearane of nonlinear manifolds neessary for

the adequate desription of the geometrial features of the mirostruture. Both soures of

�
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Fully frame-indi�erent.
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nonlinearity exlude the use of most tehniques employed for the linear ase. In addition, o-

erivity of the formulation w.r.t. deformations turns out to be a deliate problem related to

the possible frature of the material. This oerivity depends ruially on the level of smooth-

ness provided by the mirostruture. No general existene theorems for �nite miromorphi

models had been known until [39℄. The simpler, geometrially exat nonlinear miropolar ase

has been dealt with in [40℄.

This ontribution is organized as follows: �rst, we shortly review the basi onepts of the

geometrially exat elasti miromorphi theories with aÆne mirostruture in a variational

ontext, i.e. we formulate the quasistati ase as a two-�eld minimization problem. For sim-

pliity we restrit attention to a physially linear stress-(relative elasti) strain relation. We

present the linearization of this model and and ompare it to the intrinsially linear models of

Mindlin and Eringen. In ontrast to the latter models, positivity of the loal strain-energy is

automatially satis�ed at the expense of having only �ve independent material parameters in

ontrast to seven parameters in the intrinsially linear models. Four of these �ve parameters

an be diretly related to simple experiments, while the remaining Cosserat ouple modulus

�



� 0 must be viewed as a penalty-parameter without intrinsi physial signi�ane. This ou-

ple modulus is strongly related to penalty formulations of variational problems when turning

to numerial implementations. Usually, in �nite-element simulations of miromorphi ontinua,

values of material parameters are not disussed. Our result should prove useful in this ase.

The relevant notation is introdued in the appendix.

2 A �nite-strain elasti miromorphi model with aÆne

mirostruture

Let us now motivate a �nite-strain miromorphi approah.

2

For our development we hoose

a stritly Lagrangean desription. We �rst introdue an independent kinematial �eld of mi-

rodeformations P 2 GL

+

(3;R) together with its right polar deomposition

P = R

p

� U

p

= polar(P ) � U

p

= R

p

e

�

p

3

U

p

; det[P ℄ = e

�

p

;

U

p

=

U

p

det[U

p

℄

1=3

2 SL(3;R) ; P =

P

det[P ℄

1=3

2 SL(3;R) ; (2.1)

with R

p

2 SO(3;R); U

p

2 PSym(3;R) \ SL(3;R) and �

p

2 R. The mirodeformations P are

meant to desribe the substruture of the material whih an rotate, streth, shear and

shrink. We refer to R

p

as mirorotations.

The miromorphi theory we deal with an formally be obtained by introduing the mul-

tipliative deomposition of the marosopi deformation gradient F into independent

mirodeformation P and the miromorphi, nonsymmetri right streth tensor U

(�rst Cosserat deformation tensor) with

F = P � U ; U = P

�1

F ; U 2 GL

+

(3;R); (2.2)

leading altogether to a miro-ompressible, miromorphi formulation.

3

The notion miromorphi is prone to misunderstandings: the mirodeformation P must be

onsidered as a marosopi (average) quantity as the deformation gradient and the resulting

model is still phenomenologial. However, geometrial features of the real substruture to be

modelled determine the hoie of geometri manifolds for P . Sine the substruture of the

material an in priniple be rushed, the hoie P 2 GL

+

(3;R) is mandatory.

In the quasistati ase, the miromorphi theory is now derived from a two-�eld vari-

ational priniple by postulating the following "ation eulidienne" [9, p.156℄ I for the �-

nite marosopi deformation ' : [0; T ℄ � 
 7! R

3

and the independent mirodeformation

2

Following Eringen [14, p.13℄ we distinguish the general miromorphi ase: P 2 GL

+

(3;R) = R

+

�

SL(3;R) with 9 additional degrees of freedom (dof), the miro-inompressible miromorphi ase:

P 2 SL(3;R) with 8 dof, the mirostreth ase: P 2 R

+

� SO(3;R) with 4 dof and the miropolar ase:

P 2 SO(3;R) with only 3 additional dof.

3

The strain measure U whih is indued by this de�nition orresponds to C

T

KL

presented in (1:5:11)

1

of [14,

p.15℄.
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P : [0; T ℄� 
 7! GL

+

(3;R):

I('; P ) =

Z




W (F; P;D

x

P )��

f

(') ��

M

(P ) dV

�

Z

�

S

�

N

(') dS�

Z

�

C

�

M



(P ) dS 7! min : w.r.t. ('; P );

P

j

�

= P

d

; '

j

�

= g

d

(t) : (2.3)

The elastially stored energy density W depends on the marosopi deformation gradient

F as usual but in addition on the mirodeformation P together with their �rst order spae

derivatives, represented through the third order tensor D

x

P . Here 
 � R

3

is a domain with

boundary �
 and � � �
 is that part of the boundary, where Dirihlet onditions g; P

d

for

displaements and mirodeformations, respetively, an be presribed, while �

S

� �
 is a part

of the boundary, where tration boundary onditions in the form of the potential of applied

surfae fores �

N

are given with � \ �

S

= ;. The potential of external applied volume fore is

�

f

and �

M

takes on the role of the potential of applied external volume ouples.

4

In addition,

�

C

� �
 is the part of the boundary, where the potential of applied surfae ouples �

M



are

applied with � \ �

C

= ;. On the free boundary �
 n f� [ �

S

[ �

C

g orresponding natural

boundary onditions for ' and P apply, whih are obtained automatially in the variational

proess.

Variation of the ation I with respet to ' yields the traditional equation for balane of

linear momentum and variation of I with respet to P yields the additional balane of moment

of momentum.

The standard onlusion from frame-indi�erene (here: invariane of the free energy

under superposed rigid bodymotions (SRBM) not merely observer-invariane of the model

[47, 2, 38℄: 8Q 2 SO(3;R) : W (F; P;D

x

P ) = W (QF;QP;D

x

[QP ℄) leads to the redued

representation of the energy (speify Q = R

T

p

):

W (F; P ;D

x

P ) =W (R

T

p

F;R

T

p

P;R

T

p

D

x

P ) =W (U

p

U;U

p

; R

T

p

D

x

P ) =W

℄

(U;U

p

;K

p

;r�

p

) ; (2.4)

where for P = R

p

U

p

2 SL(3;R) we set

K

p

:= R

T

p

D

x

P =

�

R

T

p

r(P :e

1

); R

T

p

r(P :e

2

); R

T

p

r(P :e

3

)

�

2 M

3�3

� M

3�3

� M

3�3

; (2.5)

whih oinides with one spei� representation

5

of the third order right miropolar urva-

ture tensor (or torsion-urvature tensor, wryness tensor, seond Cosserat deformation tensor,

bending-twist tensor, et.), if P 2 SO(3;R).

For a geometrially exat (marosopially isotropi) theory we assume in the following an

additive split of the total free energy density into miromorphi loal streth (marosopi),

streth of the substruture (mirosopi) and miromorphi urvature part aording to

W

℄

= W

mp

(U)

| {z }

marosopi energy

+ W

foam

(U

p

; �

p

)

| {z }

mirosopi loal energy

+ W

urv

(K

p

;r�

p

)

| {z }

mirosopi interation energy

; (2.6)

sine a possible oupling between U and K

p

for entrosymmetri bodies an be ruled out [41,

p.14℄.

2.1 The elasti marosopi miromorphi strain energy density

For a marosopially small elasti strain theory

6

(physially linear), whih should already

over many ases of physial interest, we require that W

mp

(U) is a non-negative isotropi

4

appearing in a non-mehanial ontext e.g. as inuene of a magneti �eld on the polarization of a sub-

struture of the bulk.

5

Note that K

i

p

= R

p

T

r(P :e

i

) 62 so(3;R). Another representation of K

p

is given by K

p

:=

�

R

T

p

�

x

P ;R

T

p

�

y

P ;R

T

p

�

z

P

�

2 T(3). Sine �

x

(R

T

p

P ) = 0 for P = R

p

2 SO(3;R), it holds that K

p

2

so(3;R) � so(3;R) � so(3;R) in this ase. It is therefore possible to base all onsiderations of urvature in the

miropolar ase on a more ompat expression



K

p

:=

�

axl(R

T

p

�

x

R

p

)j axl(R

T

p

�

y

R

p

)j axl(R

T

p

�

z

R

p

)

�

2 M

3�3

.

This is the traditional miropolar approah, see e.g. [43, 18, 24℄. For us it is, however, not possible to use



K

p

,

sine we allow P 2 GL

+

(3;R).

6

By this we mean that the part of the deformation whih is superposed onto the substruture deformation

has small elasti strains.
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quadrati form. We assume moreover the marosopi streth energy density normalized to

W

mp

(11) = 0; D

U

W

mp

(U)

j

U=11

= 0 : (2.7)

For the loal energy ontribution elastially stored in the substruture we assume the nonlinear

expression

W

foam

(U

p

) = �

m

k

U

p

det[U

p

℄

(1=3)

� 11k

2

| {z }

isohori substruture energy

+

�

m

4

�

(det[U

p

℄� 1)

2

+ (

1

det[U

p

℄

� 1)

2

�

| {z }

volumetri energy

= �

m

kU

p

� 11k

2

+

�

m

4

�

(e

�

p

� 1)

2

+ (e

��

p

� 1)

2

�

=:W

foam

(U

p

; �

p

) ; (2.8)

avoiding self-interpenetration in a variational setting, sineW

foam

!1 as det[P ℄ = det[U

p

℄! 0

if �

m

> 0.

7

The most general form of W

mp

onsistent

8

with the requirement (2.7) is

W

mp

(U) = �

e

k sym(U � 11)k

2

+ �



k skew(U � 11)k

2

+

�

e

2

tr

�

sym(U � 11)

�

2

; (2.9)

with material onstants �

e

; �



; �

e

suh that �

e

; 3�

e

+ 2�

e

; �



� 0 from non-negativity [14℄ of

(2.9). It is important to realize that �

e

; �

e

are e�etive elasti onstants whih in

general do not oinide with the lassial Lam�e onstants �; � > 0. Here, I take the

lassial Lam�e onstants to be obtained from standard experiments of suÆiently large samples

of the materials, suh that length sale e�ets do not interfere. The so-alled Cosserat ouple

modulus �



(rotational ouple modulus) remains for the moment unspei�ed, but we note that

�



= 0 is physially possible, sine the miromorphi reation stress D

U

W

mp

(U) � U

T

is

not symmetri in general, i.e. the problem does not deouple. For omparison, in [14, p.111℄

for the in�nitesimal miropolar ase, the elasti moduli are taken to be �

e

= � +

�

2

; �



=

�

2

; �

e

= �, but in this formula � an neither be regarded as one of the Lam�e onstants.
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In

[11, 45, 46, 19, 10, 13℄ the abbreviation �



is used while in [24℄ it is �



= � and �



= G



in [33℄

for the miropolar theory.

By formal similarity with the lassial formulation we may all �

m

; �

m

the mirosopi

Lam�e moduli of the aÆne substruture, whih an be determined from lassial experiments,

e.g. dealing with a nikel-foam struture, they are the Lam�e-onstants of the smallest possible

representative volume element in the foam, e.g. omprising 4 unit-ells. In the analytial setion

we will show, how to obtain onsistent values for �

e

; �

e

if we know already �

m

; �

m

and �; �.

2.2 The nonlinear elasti urvature energy density

The urvature energy is responsible for the size-dependent resistane of the ell-struture against

loal twisting and inhomogeneous volume hange. Thus inhomogeneous mirostrutural rear-

rangements are penalized. For the urvature term, to be spei�, we assume the general form

W

urv

(K

p

;r�

p

) = �

L

1+p



12

(1 + �

4

L

q



kK

p

k

q

)

�

�

5

k symK

p

k

2

+ �

6

k skewK

p

k

2

+ �

7

tr [K

p

℄

2

�

1+p

2

+ �

L

1+p



12

�

�

8

kr�

p

k

1+p

+ �

8

L



kr�

p

k

2+p

�

(2.10)

where L



> 0 is setting an internal length sale with units of length, �

4

� 0; p > 0; q � 0 are

additional material onstants. The fator

1

12

appears only for onveniene and �

5

> 0; �

6

; �

7

�

0; �

8

> 0 should be satis�ed as a minimal requirement. We mean tr [K

p

℄

2

= ktr [K

p

℄k

2

by abuse

of notation. This hoie for W

urv

does not presuppose any knowledge of the magnitude of the

7

Note that

�

(det[U

p

℄� 1)

2

+ (

1

det[U

p

℄

� 1)

2

�

= 2 tr [U

p

� 11℄

2

+O(kU

p

� 11k

3

).

8

Mixed produts like hU � 11; U

p

� 11i and tr

�

U � 11

�

� tr

�

U

p

� 11

�

are exluded by non-negativity.

9

A simple de�nition of the Lam�e onstants in miropolar elastiity is that they should oinide with the

lassial Lam�e onstants for symmetri situations. Equivalently, they are obtained by the lassial formula

� =

E

2(1+�)

; � =

E�

(1+�)(1�2�)

, where E and � are uniquely determined from uniform tration experiments for

suÆiently large samples.

10

Uniform tration and uniform ompression do not ativate rotations, hene the lassial identi�ation of the

Lam�e onstants is ahieved independent of �



. Uniform tration alone allows to determine the Young modulus

E and the Poisson ratio � [8, p.126℄. Contrary to [20, p.411℄ we do not see the possibility to de�ne a spei�

"miropolar Young modulus" or "miropolar Poisson ratio".
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miromorphi urvature in the material and is non-degenerate in the origin kK

p

k = kr�

p

k = 0.

Some are has to be exerted in the �nite-strain regime: W

urv

should preferably be oerive

in the sense that we impose pointwise

9 

+

> 0 9 r > 1 : 8K

p

2 T(3) 8� 2 R

3

: W

urv

(K

p

; �) � 

+

k(K

p

; �)k

r

; (2.11)

or less demanding

9 r > 1 :

W

urv

(K

p

; �)

k(K

p

; �)k

r

!1 as k(K

p

; �)k ! 1 ; (2.12)

whih implies neessarily �

6

; �

8

> 0 in (2.10). Observe that our formulation of the miromor-

phi urvature tensor is mathematially onvenient in the sense that kK

p

k = kR

T

p

D

x

Pk = kD

x

Pk

provides pointwise ontrol of all �rst derivatives of P independent of the values of P itself.

11

Thus, oerivity of W

urv

ensures a ertain minimal level of smoothness of the mirostuture

without whih oerivity w.r.t. deformations annot be guaranteed. A lak of smoothness of

the mirostruture may therefore give rise to frature on the marosale.

Note that the presented formulation still inludes a �nite Cosserat miropolar model as a

speial ase, if we set P = R 2 SO(3;R). In this fashion, we have the following orrespondene

of limit problems:

�

m

!1 ) miro-inompressible model: manifold SL(3;R) ;

�

m

!1 ) mirostreth model: manifold R

+

� SO(3;R) ; (2.13)

�

m

; �

m

!1 ) miropolar model: manifold SO(3;R) ;

�



!1 ) higher gradient ontinua :

Note also that SO(3;R); R

+

�SO(3;R); SL(3;R) are the only onneted subgroups of GL

+

(3;R)

whih ontain SO(3;R).

3 The in�nitesimal miromorphi elasti solid

3.1 The variational formulation

Starting from the proposed �nite-strain formulation and not intrinsially linear, we may obtain a

linear, in�nitesimal miromorphi model by expanding all appearing variables to �rst order and

keeping only quadrati terms in the energy expression. Thus we write F = 11+ru; P = 11+ p;

and the model turns into the problem of �nding a pair (u; p) : 
 � R

3

7! R

3

� gl

+

(3;R) of

marosopi displaement u and independent, in�nitesimal mirodeformation p satisfying

Z




W

mp

("; p) +W

urv

(k

p

;rtr [p℄) dV 7! min : w.r.t. (u; p);

" = ru� p; p

j

�

= p

d

2 gl

+

(3;R) = M

3�3

; '

j

�

= g

d

; (3.14)

W

mp

("; p) = �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [sym p℄

2

= �

e

k symru� sym pk

2

+ �



k skew(ru� p)k

2

+

�

e

2

tr [ru� p℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [p℄

2

;

W

urv

(k

p

;rtr [p℄) = �

L

2



12

�

�

5

k sym k

p

k

2

+ �

6

k skew k

p

k

2

+ �

7

tr [k

p

℄

2

+ �

8

krtr [p℄k

2

�

;

k

p

= D

x

[dev p℄ = (r(dev p:e

1

);r(dev p:e

2

);r(dev p:e

3

)) :

Here, k

p

is the third order in�nitesimal urvature tensor, de�ned only on the purely distortional

part of the in�nitesimal mirodeformation dev p. If �

e

; �

m

> 0 and �



; �

e

; �

m

� 0 it is an easy

matter to show existene and uniqueness. For �



= 0 we have to invoke the lassial Korn's

�rst inequality.

It should be observed that even if �



= 0 there remains a oupling of the two �elds (u; p)

due to the remaining oupling in the symmetri terms.

11

This is not true for other possible basi invariant urvature expressions like P

�1

D

x

P or P

T

D

x

P or F

T

D

x

P ,

see [14, 1.5.4,1.5.11℄.
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3.2 The linear system of balane equations

The linearized marosopi fore balane equation is obtained by taking free variations with

respet to the displaement u. Hene we obtain

Div �(ru; p) = 0; u

j

�

(x) = g

d

(x) � x (3.15)

with

�(ru; p) = 2�

e

(symru� sym p) + 2�



(skewru� skew p) + �

e

tr [ru� p℄ � 11 : (3.16)

The remaining system of nine balane equations for the nine additional omponents of p 2

gl

+

(3;R) = M

3�3

is obtained by taking free variations with respet to p whih results in

devDivD

k

p

W

urv

(k

p

;rtr [p℄) = dev (�2�

e

(symru� sym p)

� 2�



(skewru� skew p)� �

e

tr [ru� p℄ 11

+2�

m

sym p+ �

m

tr [p℄ � 11) ;

DivD

rtr[p℄

W

urv

(k

p

;rtr [p℄) = tr (�2�

e

(symru� sym p)

� 2�



(skewru� skew p)� �

e

tr [ru� p℄ 11

+2�

m

sym p+ �

m

tr [p℄ � 11) ; (3.17)

whih is equivalent to

0 = dev�(ru; p)� 2�

m

dev sym p+ devDivD

k

p

W

urv

(k

p

;rtr [p℄) ;

0 = tr [�(ru; p)℄� (2�

m

+ 3�

m

) tr [p℄ + DivD

rtr[p℄

W

urv

(k

p

;rtr [p℄) : (3.18)

3.3 Calulation of onsistent e�etive elasti moduli

It is of prime importane to have values of �

e

; �

e

at hand whih are onsistent with the lassial

linear elasti model for long wave-length (large samples). Considering very large samples of

the ellular struture amounts to letting L



, the harateristi length, tend to zero. As a

onsequene of L



= 0 equation (3.18) looses the urvature terms and turns into

0 = dev �(ru; p)� 2�

m

dev sym p ; (3.19)

0 = tr [�(ru; p)℄� (2�

m

+ 3�

m

) tr [p℄ ;

expressing an algebrai side-ondition. Inserting formula (3.16) for � into (3.19) allows us to

obtain after some lengthy but straightforward omputations the following algebrai relations

tr [p℄ =

(2�

e

+ 3�

e

)

2(�

e

+ �

m

) + 3(�

e

+ �

m

)

tr [ru℄ ;

dev sym p =

�

e

(�

e

+ �

m

)

dev symru ; (3.20)

dev skew p = dev skewru ; (without �



) ;

where we used that dev is orthogonal to R � 11 and sym is orthogonal to skew and dev skew =

skew. Moreover,

tr [ru� p℄ =

�

1�

(2�

e

+ 3�

e

)

2(�

e

+ �

m

) + 3(�

e

+ �

m

)

�

tr [ru℄

=

(2�

m

+ 3�

m

)

(2�

m

+ 3�

m

) + (2�

e

+ 3�

e

)

tr [ru℄ : (3.21)

Reinserting the results into (3.16) yields, after taking dev on both sides

dev �(ru; p) = 2�

e

(dev symru� dev sym p) + 2�



(skewru� skew p)

= 2�

e

�

dev symru�

�

e

(�

e

+ �

m

)

dev symru

�

+ 2�



(skewru� 1 � skewru)

= 2�

e

�

1�

�

e

(�

e

+ �

m

)

�

dev symru = 2�

e

�

m

(�

e

+ �

m

)

dev symru : (3.22)
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Similarly, reinserting the results into (3.16) yields, after taking the trae on both sides

tr [�(ru; p)℄ = 2�

e

tr [symru� sym p℄ + 2�



tr [skewru� skew p℄ + �

e

tr [ru� p℄ � tr [11℄

= 2�

e

tr [ru� p℄ + 3�

e

tr [ru� p℄ = (2�

e

+ 3�

e

) tr [ru� p℄

= (2�

e

+ 3�

e

)

(2�

m

+ 3�

m

)

(2�

m

+ 3�

m

) + (2�

e

+ 3�

e

)

tr [ru℄ : (3.23)

For a lassial linear elasti isotropi solid, whih represents the marosopi stress-strain rela-

tion for large samples, one has the relation

� = 2� symru+ � tr [ru℄ � 11 )

dev � = 2� dev symru and tr [�℄ = (2�+ 3�) tr [ru℄ : (3.24)

Upon omparing oeÆients of (3.24) with (3.22) and (3.23) we identify

2� = 2�

e

�

m

(�

e

+ �

m

)

;

(2�+ 3�) = (2�

e

+ 3�

e

)

(2�

m

+ 3�

m

)

(2�

m

+ 3�

m

) + (2�

e

+ 3�

e

)

: (3.25)

This shows that the large sale shear modulus � is half the harmoni mean

12

of the

relative elasti shear modulus �

e

and the mirostrutural shear modulus �

m

, while

the large sale bulk modulus � =

2�+3�

3

is half the harmoni mean of the relative elasti

bulk modulus �

e

and the mirostrutural bulk modulus �

m

.

Hene, solving in a �rst step for the relative elasti shear modulus �

e

and the relative

elasti bulk modulus �

e

=

2�

e

+3�

e

3

, yields

�

e

=

�

m

�

(�

m

� �)

; 3�

e

= (2�

e

+ 3�

e

) =

(2�+ 3�) (2�

m

+ 3�

m

)

(2�

m

+ 3�

m

)� (2�+ 3�)

: (3.26)

Therefore

�

e

=

�

m

�

(�

m

� �)

; 3�

e

=

(2�+ 3�) (2�

m

+ 3�

m

)

(2(�

m

� �) + 3(�

m

� �))

� 2

�

m

�

(�

m

� �)

: (3.27)

This shows that the "marosopi" Lam�e moduli �; � must always be smaller than the miro-

sopi moduli �

m

; �

m

related to the response of a representative volume element (REV) of the

substruture. This is physially onsistent: the large-sale sample annot possibly be sti�er

than the onstitutive substruture.

Let us onsider the interesting limit ases in (3.25):

miroinompressible: �

m

!1 ; �

m

<1 ) � = �

e

+

2�

2

3(�

m

� �)

;

mirostreth: �

m

!1 ; �

m

<1 ) � = �

e

; � = �

e

;

miropolar: �

m

!1 ; �

m

!1 ) � = �

e

; � = �

e

: (3.28)

3.4 Identi�ation with Mindlin's representation

Many papers on linearized miromorphi models start from a representation of the free-energy

funtion based on Mindlin's work [36, 5.5℄, e.g. [28℄. A major drawbak of Mindlin's rep-

resentation is, however, that now aount has been taken, to ensure overall positivity of the

quadrati energy. This has to be heked additionally and an be quite labourous beause of

many appearing oeÆients. We onsider only the loal part (the part without urvature) of

Mindlin's representation. Let us de�ne

" = symru ; " := ru� p : (3.29)

Then Mindlin's loal energy ontribution with seven material onstants b�;

b

�; b

1

; b

2

; b

3

; g

1

; g

2

reads

W

Mind

(ru; p) =W

Mind

("; ") =

b

�

2

tr ["℄

2

+ b� k"k

2

+

b

1

2

tr ["℄

2

+

b

2

2

k"k

2

+

b

3

2

h"; "

T

i

+ g

1

tr ["℄ tr ["℄ + g

2

h"; "i : (3.30)

12

H(�; �) =

2

1

�

+

1

�

=

2��

�+�

for �; � > 0, ompare with the Reuss-bounds in homogenization theory.
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Note that this is a quadrati form, whose positiveness is not ensured by taking positive pa-

rameters! In omparison, I have proposed a �ve material onstants representation, whih au-

tomatially de�nes a positive quadrati form, if the oeÆients are positive themselves.

13

The

proposed quadrati representation in (3.14) reads

W

mp

("; p) = �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [sym p℄

2

= �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sym p� "+ "k

2

+

�

m

2

tr [sym p� "+ "℄

2

= �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

�

k sym p� "k

2

+ 2hsym p� "; "i+ k"k

2

�

+

�

m

2

�

tr [sym p� "℄

2

+ 2tr [sym p� "℄tr ["℄ + tr ["℄

2

�

(3.31)

= (�

e

+ �

m

) k sym "k

2

+ �



k skew "k

2

+

(�

e

+ �

m

)

2

tr [sym "℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"� sym p; "i � �

m

tr ["� sym p℄tr ["℄

= (�

e

+ �

m

) k sym "k

2

+ �



k skew "k

2

+

(�

e

+ �

m

)

2

tr [sym "℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄

= (�

e

+ �

m

) k

1

2

("+ "

T

)k

2

+ �



k

1

2

("� "

T

)k

2

+

(�

e

+ �

m

)

2

tr [sym "℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄

=

(�

e

+ �

m

)

4

k"+ "

T

k

2

+

�



4

k"� "

T

k

2

+

(�

e

+ �

m

)

2

tr ["℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄

=

(�

e

+ �

m

)

2

�

k"k

2

+ h"; "

T

i

�

+

�



2

�

k"k

2

� h"; "

T

i

�

+

(�

e

+ �

m

)

2

tr ["℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄

=

(�

e

+ �

m

+ �



)

2

k"k

2

+

(�

e

+ �

m

� �



)

2

h"; "

T

i+

(�

e

+ �

m

)

2

tr ["℄

2

+ �

m

k"k

2

+

�

m

2

tr ["℄

2

� 2�

m

h"; "i � �

m

tr ["℄tr ["℄ :m

Hene, omparing with Mindlin's representation (3.30) we an identify

b� = �

m

;

b

� = �

m

; b

1

= �

e

+ �

m

;

b

2

= �

e

+ �

m

+ �



; b

3

= �

e

+ �

m

� �



;

g

1

= ��

m

; g

2

= �2�

m

: (3.32)

Mindlin proposes [36, p.60℄

3b

1

+ b

2

+ b

3

� 0 ; b

2

+ b

3

� 0 ; b

2

� b

3

� 0 )

�

e

+ �

m

� 0 ; �

e

+ �

m

� 0 ; �



� 0 ; (3.33)

as neessary onditions for a positive de�nite energy funtion whih is veri�ed for (3.14).

Remark 3.1

It is not lear to the author, whether Mindlin's seven parameter representation of the loal

strain-energy ould be obtained by onsistently linearizing a �nite-strain miromorphi model.

13

This an be slightly weakened: 2�

e

+ 3�

e

� 0; 2�

m

+ 3�

m

� 0; �

e

; �

m

; �



� 0 is suÆient.
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3.5 Identi�ation with Eringen's formulation

In [14, 7.1.15℄ the following loal energy representation with seven independent parameters

~

�; ~�; ~� ; ~�; ~�; ~�; ~� has been taken:

W

Er

(ru; p) =W

Er

("; sym p) =

~

�

2

tr ["℄

2

+

(

~

�+ ~� + 2~�)

2

tr [sym p℄

2

+ (

~

�+ ~� ) tr ["℄ tr [sym p℄

+

~�

2

h"; "

T

i+ (~�+ ~� + ~� + ~�) k sym pk

2

+ 2(~�+ ~�) h"; sym pi+

(~�+ ~�)

2

k"k

2

: (3.34)

Again, positivity of this quadrati form has to be ensured a posteriori. Consider the �ve

parameter representation in (3.14)

W

mp

("; p) = �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [sym p℄

2

= �

e

k"k

2

+ (�



� �

e

) k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [sym p℄

2

=

�

e

+ �



2

k"k

2

+

�

e

� �



2

h"; "

T

i+

�

e

2

tr [sym "℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [sym p℄

2

:

(3.35)

Now, take

~

�+ ~� = 0; ~�+ ~� = 0. Then (3.34) redues to

W

Er

("; sym p) =

(~�+ ~�)

2

k"k

2

+

~

�

2

tr ["℄

2

+ ~� tr [sym p℄

2

+

~�

2

h"; "

T

i+ (~� � ~�) k sym pk

2

:

(3.36)

Identi�ation is now obtained by setting

(~�+ ~�) = �

e

+ �



;

~

� = �

e

; ~� = �

e

� �



; (~� � ~�) = �

m

; ~� =

�

m

2

: (3.37)

This implies notably

~� = 2�



; ~� = �

e

+ �

m

� �



= b

3

: (3.38)

It should be noted again, that despite notation, Eringen's ~� is neither the orresponding Lam�e

onstant related to the representative volume element of the substruture nor of the bulk or

the relative shear modulus, while

~

� is the orresponding relative modulus. Unfortunately, this

has led to some onfusion in the literature.

3.6 Formulation as a three-�eld problem

In a onstitutive ontext it is useful to learly separate inuenes due to volumetri hanges

and due to distortional e�ets. This an be most easily done if we inorporate an additional

urvature term due to only volumetri hanges of the substruture. Introduing the additive

split

p = dev p

| {z }

sl(3;R)

+

1

3

tr [p℄ � 11 = p+

1

3

�

p

� 11 ; p := dev p ; �

p

:= tr [p℄ ; (3.39)
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we may write the linearized miromorphi problem (3.14) equivalently as a three-�eld prob-

lem

Z




W

mp

("; p; �

p

) +W

urv

(k

p

;r�

p

) dV 7! min : w.r.t. (u; p; �

p

); '

j

�

= g

d

; (3.40)

" = ru� p�

1

3

�

p

11; p

j

�

= p

d

2 gl

+

(3;R) = M

3�3

; p 2 sl(3;R); �

p

2 R ;

W

mp

("; p) = �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sym pk

2

+

�

m

2

tr [sym p℄

2

= �

e

k symru� sym p�

1

3

�

p

� 11k

2

+ �



k skew(ru� p)k

2

+

�

e

2

tr

�

ru�

1

3

�

p

� 11

�

2

+ �

m

k sym pk

2

+

�

2�

m

+ 3�

m

6

�

�

2

p

;

W

urv

(k

p

;r�

p

) = �

L

2



12

�

�

5

k sym k

p

k

2

+ �

6

k skew k

p

k

2

+ �

7

tr [k

p

℄

2

+ �

8

kr�

p

k

2

�

;

k

p

= D

x

p = (r(p:e

1

);r(p:e

2

);r(p:e

3

)) ; in�nitesimal urvature tensor :

3.7 The in�nitesimal miro-inompressible miromorphi elasti solid

Starting with the �nite-strain formulation we may obtain a linear, in�nitesimal miroinom-

pressible, miromorphi model by expanding all appearing variables to �rst order and keeping

quadrati terms in the energy expression. Thus we write F = 11 +ru; P = 11 + p; tr [p℄ = 0

and the model turns into the problem of �nding a pair (u; p) : 
 � R

3

7! R

3

� sl(3;R) of

displaement u and independent, in�nitesimal mirodeformation p satisfying

Z




W

mp

("; p) +W

urv

(k

p

) dV 7! min : w.r.t. (u; p);

" = ru� p; p

j

�

= p

d

2 sl(3;R); '

j

�

= g

d

; (3.41)

W

mp

("; p) = �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k sympk

2

+

�

m

2

tr [sym p℄

2

= �

e

k symru� sym pk

2

+ �



k skew(ru� p)k

2

+

�

e

2

tr [symru℄

2

+ �

m

k sym pk

2

;

W

urv

(k

p

) = �

L

2



12

�

�

5

k sym k

p

k

2

+ �

6

k skew k

p

k

2

+ �

7

tr [k

p

℄

2

�

;

k

p

= D

x

p = (r(p:e

1

);r(p:e

2

);r(p:e

3

)) ; third order, in�nitesimal urvature tensor :

If �

e

; �

m

> 0 and �



; �

e

; �

m

� 0 it is an easy matter to show existene and uniqueness.

3.8 The in�nitesimal mirostreth elasti solid

Suh a model is obtained by assuming P = e

�

p

3

R

p

; �

p

2 R; R

p

2 SO(3;R) with independent

variables �

p

; R

p

and independent urvature parts K

p

= R

T

p

D

x

R

p

and r�

p

(x; y; z). Inserting

this assumption into the �nite-strain model and expanding e

�

p

3

= 1+

�

p

3

+ : : : ; R

p

= 11+A+ : : :

for small (A;�

p

) yields to �rst order the three-�eld problem

Z




W

mp

("; �

p

) +W

urv

(k

p

;r�

p

) dV 7! min : w.r.t. (u;A; �

p

); (3.42)

" = ru�A�

�

p

3

� 11; A

j

�

= A

d

2 so(3;R); �

p

j

�

= �

p;d

j

�

; '

j

�

= g

d

;

U

p

=

q

P

T

P =

q

e

2�

p

=3

R

T

p

R

p

= e

�

p

3

� 11 = (1 +

�

p

3

+ : : :) � 11 = 11 +

�

p

3

� 11 + : : : ;

W

mp

("; �

p

) = �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

+ �

m

k

�

p

3

� 11k

2

+

�

m

2

tr

�

�

p

3

� 11

�

2

= �

e

k symru�

�

p

3

� 11k

2

+ �



k skew(ru�A)k

2

+

�

e

2

tr

�

symru�

�

p

3

� 11

�

2

+

�

2�

m

+ 3�

m

6

�

�

2

p

;
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W

urv

(k

p

;r�

p

) = �

L

2



12

�

�

5

k sym k

p

k

2

+ �

6

k skew k

p

k

2

+ �

7

tr [k

p

℄

2

+ �

8

kr�

p

k

2

�

;

k

p

= D

x

A =

�

r(A:e

1

);r(A:e

2

);r(A:e

3

)

�

; in�nitesimal urvature tensor :

3.9 The in�nitesimal miropolar elasti solid

Suh a model is obtained by setting �

p

� 0 in (3.42). We are left with the two-�eld problem

Z




W

mp

(") +W

urv

(k

p

) dV 7! min : w.r.t. (u;A);

" = ru�A; A

j

�

= A

d

2 so(3;R); '

j

�

= g

d

; (3.43)

W

mp

(") = �

e

k sym "k

2

+ �



k skew "k

2

+

�

e

2

tr [sym "℄

2

= �

e

k symruk

2

+ �



k skew(ru�A)k

2

+

�

e

2

tr [symru℄

2

;

W

urv

(k

p

) = �

L

2



12

�

�

5

k sym k

p

k

2

+ �

6

k skew k

p

k

2

+ �

7

tr [k

p

℄

2

�

;

k

p

= D

x

A =

�

r(A:e

1

);r(A:e

2

);r(A:e

3

)

�

; miropolar urvature tensor :

Note that for �



= 0 the two �elds ompletely deouple whih must be seen as a de�ieny of

the in�nitesimal miropolar model. This allows us to appreiate the exeptional role played by

a oupling only through (in�nitesimal) rotations.

3.10 The in�nitesimal, non-polar lassial linear elasti solid

Only for ompleteness we note the lassial one-�eld linear elastiity formulation

Z




W

mp

(") dV 7! min : w.r.t. u; " = symru ; '

j

�

= g

d

; (3.44)

W

mp

(") = � k"k

2

+

�

2

tr ["℄

2

= � k symruk

2

+

�

2

tr [symru℄

2

:
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5 Notation

Let 
 � R

3

be a bounded domain with Lipshitz boundary �
 and let � be a smooth subset of �
 with non-

vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the salar produt on R

3

with

assoiated vetor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3� 3 seond order tensors, written

with apital letters and by T(3) the set of all third order tensors. The standard Eulidean salar produt on

M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the

following we omit the index R

3

;M

3�3

. The identity tensor on M

3�3

will be denoted by 11, so that tr [X℄ = hX; 11i.

We let Sym and PSym denote the symmetri and positive de�nite symmetri tensors respetively. We adopt

the usual abbreviations of Lie-group theory, i.e., GL(3;R) := fX 2 M

3�3

jdet[X℄ 6= 0g the general linear

group, SL(3;R) := fX 2 GL(3;R) jdet[X℄ = 1g; O(3) := fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2

GL(3;R) jX

T

X = 11; det[X℄ = 1g with orresponding Lie-algebras so(3) := fX 2 M

3�3

jX

T

= �Xg of skew

symmetri tensors and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g of traeless tensors. We set sym(X) =

1

2

(X

T

+ X)

and skew(X) =

1

2

(X �X

T

) suh that X = sym(X) + skew(X). For X 2 M

3�3

we set for the deviatori part

devX = X �

1

3

tr [X℄ 11 2 sl(3) and for vetors �; � 2 R

n

we have the tensor produt (�
 �)

ij

= �

i

�

j

. We write

the polar deomposition in the form F = RU = polar(F )U with R = polar(F ) the orthogonal part of F . For a

seond order tensor X we de�ne the third order tensor h = D

x

X(x) = (r(X(x):e

1

);r(X(x):e

2

);r(X(x):e

3

)) =

(h

1

; h

2

; h

3

) 2 M

3�3

� M

3�3

� M

3�3

. For third order tensors h 2 T(3) we set khk

2

=

P

3

i=1

kh

i

k

2

together

with sym(h) := (sym h

1

; symh

2

; sym h

3

) and tr [h℄ := (tr

�

h

1

�

; tr

�

h

2

�

; tr

�

h

3

�

) 2 R

3

. Moreover, for any seond

order tensor X we de�ne X � h := (Xh

1

;Xh

2

;Xh

3

) and h �X orrespondingly. Quantities with a bar, e.g. the

miropolar rotation R

p

, represent the miropolar replaement of the orresponding lassial ontinuum rotation

R. In general we work in the ontext of nonlinear, �nite elastiity. For the total deformation ' 2 C

1

(
;R

3

)

we have the deformation gradient F = r' 2 C(
;M

3�3

) and we use r in general only for olumn-vetors

in R

3

. The �rst di�erential of a salar valued funtion W (F ) is written D

F

W (F ):H. Sometimes we use also

�

X

W (X) to denote the �rst derivative of W with respet to X. For X 2 C

1

(
;M

3�3

) we de�ne DivX(x) as

the operation Div applied row wise. For h 2 T(3) we de�ne Div h =

�

Div h

1

jDiv h

2

jDiv h

3

�

T

2 M

3�3

. Finally,

w.r.t. abbreviates with respet to.
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