Intransitive geometries

Ralf Gramlich Hendrik Van Maldeghem

October 18, 2004

1 Introduction

Amalgams in group theory have proved their importance in the classification of the finite simple
groups (see Sections 28 and 29 of Gorenstein, Lyons, Solomon [12]). Originally one considers
the amalgam of the maximal parabolic subgroups of a Chevalley group of rank > 3 in its natural
action on the associated building and proves that the universal completion of the amalgam is
(some controlled central extension of) the Chevalley group itself, see [8], [26], [28], [29]. In
modern terms, see Mithlherr [21], this essentially is implied by the fact that the building and
the opposites geometry of the corresponding twin building are simply connected.

Since the mid-1970’s there has been interest in other types of amalgams as well, see Phan
[19], [20]. Somehow miraculously amalgams of (twisted) Chevalley groups over finite fields were
studied that did not come from the action on the building. Aschbacher [3] was the first to
realize that Phan’s amalgam in [19] arises as a version of the amalgam of rank one and rank two
parabolics of the action of SU,,;1(¢?) on the geometry of nondegenerate subspaces of a (n + 1)-
dimensional unitary vector space over Fy2. In order to prove that the universal completion of
the amalgam is the group under consideration, one complies to a lemma by Tits [30] saying
that this essentially amounts to checking that the geometry is simply connected and residually
connected, under the assumption that the geometry is flag-transitive.

Since Phan’s papers were a bit vague, there was a demand for a new proof of Phan’s result
[19]. Das [9] succeeded partially and Bennett, Shpectorov [5] succeeded completely. After
preprints of the latter paper were circulated around the 2001 conference in honor of Ernie
Shult, things started to develop at a high pace. People finally realized the connection between
Mihlherr’s [21] new proof of the Curtis-Tits theorem and Aschbacher’s [3] geometry for the
Phan amalgam. Eventually Hoffman, Shpectorov and the first author [13] constructed a new
geometry resulting in the geometric part of a completely new Phan-type theorem. Recently the
first author [14] provided the group-theoretic part, a classification of amalgams based on [5],
thus completing the new Phan-type theorem.

Later Bennett joined Hoffman, Shpectorov and the first author [4] to develop a theory for
this new sort of geometries, called flipflop geometries: Take your favorite spherical building and
consider it as a twin building & la Tits [31]. The opposites geometry, which was used by Miihlherr
[21] to re-prove the Curtis-Tits theorem, consists of the pairs of elements of the twin building
at codistance one (the neutral element of the associated Weyl group). A flip is an involution of
that opposites geometry that interchanges the positive and the negative part, flips the distances
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and preserves the codistance. The flipflop geometry of the opposites geometry with respect to
the flip consists of all those elements of the opposites geometry that are stabilized (or rather
flipped) by the flip.

In case of Aschbacher’s geometry for Phan’s theorem the building geometry is the projective
space corresponding to the group SL,1(¢?) and the flip is a nondegenerate unitary polarity.
The corresponding flipflip geometry then is the geometry on the nondegenerate subspaces of
the projective space with respect to the polarity. Indeed, being opposite means that a subspace
and its polar have empty intersection which in turn means that the subspace in question is
nondegenerate.

The rank of this geometry is always higher than the one of the associated building, and hence
this approach covers more groups. This idea works fine for the unitary groups (see Aschbacher
(3], Das [9], Bennett, Shpectorov [5]) and for the symplectic groups (see Das [10] (finite fields,
odd characteristic), Das [11] (finite fields, even characteristic), Hoffman, Shpectorov and the
first author [13] (finite fields of size at least 8; a by-product of the new geometry), and the first
author [16] (all fields)) although, strictly speaking, the symplectic forms do not yield a flipflop
geometry. However, for the orthogonal ones over finite fields, we run into problems since the
geometry of nondegenerate spaces is, in general, not flag-transitive. The flag-transitive case
for forms of Witt index at least one, i.e., over quadratically closed fields has been settled by
Altmann [1]. See also Altmann and the first author [2] for the same results and some extensions
to real closed fields.

As said before, in order to prove that the universal completion of the amalgam is the group
under consideration, one complies to a lemma by Tits [30] saying that this essentially amounts to
checking that the geometry is simply connected and residually connected, under the assumption
of flag-transitivity. For intransitive geometries one can try to find a flag-transitive subgeometry
and to prove that this subgeometry is simply connected and residually connected. However, flag-
transitive subgeometries of the geometry of degenerate subspaces of a finite orthogonal classical
group are not known to be simply connected, although Hoffman and one of his PhD students
are currently trying to establish simple connectivity.

Hence, to overcome these difficulties, one should generalize the theory of amalgams either
to non flag-transitive geometries, or to non simply connected ones. Since the former is more
realistic (the latter would involve constructing covers of non simply connected geometries), we
have chosen to try that. The key idea is to use a theorem by Stroppel [27], which seems not
to be so well known, but is very useful in this context. We also discuss the more difficult and
more general problem of the amalgam of rank k£ parabolics in non flag-transitive geometries. It
actually turns out that the most natural results occur if one abandons thinking in amalgams of
rank k parabolics, but adopts thinking in amalgams of certain shapes instead. We then apply
our theory to the orthogonal classical groups and give many examples.

In an appendix, we give another example of an amalgam of a rank two Chevalley group,
Dickson’s group G2(q), whose universal completion is the Chevalley group itself, by introducing
a rank three geometry for it. The reason why we mention this here is to illustrate how wide
to range of applications really is: in this case we consider singular points, but nonsingular
lines and planes with respect to the classical representation of the associated building, which
is a generalized hexagon. In a second appendix we report on recent research by Hoffman and
Shpectorov [18] for an interesting amalgam for G2(3) coming from an intransitive geometry
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related to the sporadic simple Thompson group.

We conclude this introduction by the remark that in the mid-1980’s, using functional analysis
and Lie theory, Borovoi [6] and Satarov [23] have obtained related universal completion results
for amalgams in compact Lie groups. In this case, however, the geometry acted on is the building,
80 their results on compact Lie groups follow immediately from the simple connectivity of the
building. The classification strategy for amalgams from [5] and [14] was used by the first author
in [17] when providing a classification of the amalgams from [6] and [23], yielding a Phan-type
theorem for compact Lie groups.

2 Preliminaries

In this section, we define the notions and review the results that we will need to develop our
theory. This section has been inspired by [7], [24], [25].

2.1 Coset pregeometries

Definition 2.1 (Pregeometry, geometry) A pregeometry G over the set [ is a triple
(X, *,typ) consisting of a set X, a symmetric and reflexive incidence relation *, and a surjec-
tive type function typ : X — I, subject to the following condition:

(Pre) If z xy with typ(z) = typ(y), then z = y.

The set [ is usually called the type set. A flag in X is a set of pairwise incident elements.
The type of a flag F' is the set typ(F) := {typ(z) : z € F}. A chamber is a flag of type I,
a pennant is a flag of cardinality three. The rank of a flag F' is |[typ(F')| and the corank is

equal to |I'\ typ(F)|.
A geometry is a pregeometry with the additional property that

(Geo) every flag is contained in a chamber.

The pregeometry G is connected if the graph (X, %) is connected.

Definition 2.2 (Lounge, hall) Let G = (X, *,typ) be a pregeometry over I. A subset W of
X is called a lounge if each subset V of W for which typ : V' — [ is a injection, is a flag. A
lounge W with typ(W) = I is called a hall.

Definition 2.3 (Residue) Let F be a flag of G, let us say of type J C I. Then the residue
Gr of F is the pregeometry

(X', # X7 x7 tYP 1\ )
over I\J, with

X'":={x e X : FU{x} is a flag of G and typ(z) ¢ typ(F)}.

Definition 2.4 (Automorphism) Let G = (X, *,typ) be a pregeometry over I. An auto-
morphism of G is a permutation o of X with typ(c(z)) = typ(z), for all z € X, and with
2% x y? if and only if z x y, for all z,y € X.
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Moreover, a group G of automorphisms

of G is called if for each pair of flags ¢, d with

flag-transitive, typ(c) = typ(d),

chamber-transitive, typ(c) = I = typ(d),

pennant-transitive, ltyp(c)| = 3 = |typ(d)| and typ(c) = typ(d),

incidence-transitive, or ltyp(c)| = 2 = |typ(d)| and typ(c) = typ(d),

vertex-transitive ltyp(c)| = 1 = |typ(d)| and typ(c) = typ(d)
there exists a o € G with o(c) = d.

If the group of all automorphisms of G is flag-transitive, chamber-transitive, incidence-
transitive or vertex-transitive, then we say that G is flag-transitive, chamber-transitive,
incidence-transitive or vertex-transitive, respectively.

The emphasis of the present paper is on geometries that are not vertex-transitive, and which
we will call intransitive. Therefore, we first have a look how one can describe such a geometry
group-theoretically.

Definition 2.5 (Coset Pregeometry) Let I be a set and let (73);c; be a family of sets. Also,
let G be a group and let (G%)icr, jer be a family of subgroups of G. Then

(Wier ter; G/ G5 %, typ)
with typ(G%) =4 and
(Cos) gGY x hG*7 if and only if gG** N hG*T # () and either i # j or (,i) = (s, §)

is a pregeometry over I, the coset pregeometry of G with respect to (Gt’i)tETi,iel. Since the
type function is completely determined by the indices, we also denote the coset pregeometry of
G with respect to (G"")er; jer by

((G/Gt’i)teTi,z'ela *)

The family (Gt’i)tETi7i€[ forms a lounge. If |T;] = 1 for all ¢ € I, then we write G; instead of
G%'. The family (G;);c; forms a chamber of the coset geometry, called the base chamber.

Certainly, any coset pregeometry with |7;| = 1 for all 4 € I, which means nothing else
than being vertex-transitive, is incidence-transitive. Indeed, if ¢gG; N hG; # 0, then choose
a € gG1NhGj. It follows aG; = gG; and aGj = hG; and therefore the automorphism a~ ! maps
the incident pair gG;, hG; onto the incident pair G;, G;.

Note that the residue of a coset pregeometry in general is not a coset pregeometry. The
following lemma describes a situation in which it in fact is a coset pregeometry.

Lemma 2.6 (inspired by Buekenhout/Cohen [7])
The incidence-transitive coset pregeometry G = ((G/G;)icr,*) of G with respect to (G;)icr,
satisfies the following properties.
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(i) For each J C I, there is a natural injective homomorphism
ay: ((Gr/Grogiy)iena, *) = YGia;jeny
of geometries over I\ J given by
ay(aG jupy) = aG;
forae Gy,iel\J.

(ii) Given J C I, the homomorphism « is surjective if and only if, for all i € I \ J, we have

((G;Gi) = G,G;
jeJ

(iii) Let J C I. If ayyyy Is surjective for all i € I, then a;l is a homomorphism, i.e., ay is an
isomorphism. In particular, if oy is surjective for all J C I, then o is an isomorphism for
all J C I.

Proof. (i) Since Gy € G and a € aG; NGy foralli € I'\ J, j € J, a € G, the map «a;
is well defined. Suppose aG juiy NOG k) # (). Then also aG; N bGy # (), so ay is indeed a
homomorphism. Suppose that a,b € G satisfy a;(aG jupy) = s (bGyugy)- Then aGi = bGi,
so that b~ 'a € G;. On the other hand, b='a € G, s0 b~ 'a € G jugiy whence aG rypy = bG 7y -
This shows that a is injective.

(ii) Suppose that a; is surjective. If z € (;c,(G;G;) for some i € I'\ J, then zG; is an
element of G incident to {G; | j € J}, so that we can find 2’ € Gy with ay(2'Gupy) = 2Gi.
Then z'G; = zG;, so x € ©'G; C G;G;, proving Njecs(GjGi) = G,G;. The converse is equally
straightforward.

(iii) Fix J C I and suppose that aju{s} 1s surjective for each ¢ € I. We need to show that
;' is a homomorphism. If |\ J| has cardinality one, then there is nothing to show. Let zGj,
yGj, where i,j € I\ J, x,y € G, be incident elements of the residue G¢, res) in G of the flag
{Gi | k € J}, cf. (i). Then y 'z € G;G;N G ;. But the surjectivity of ayy;) and (ii) yield

GjGZ' NGy C GjGi NG;G; = GjGZ' N m GrG; = ﬂ GrG; = G{j}uJGi
keJ ke{jlug

whence
GiGiN Gy C(GjusGi) NGy = GrusGiyug
so that
y 'z e GiwaGiiyurs
proving that yGy;u; and 2Gy;u, are incident elements of ((Gy/Gyus)ier\s,*). Hence (iii).
O

It is also possible to derive a relation between the transitivity of a coset pregeometry and
the fact that its residues are coset pregeometries.
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Lemma 2.7 (inspired by Buekenhout/Cohen [7])

Let G = ((G/G,)ier, *) be an incidence-transitive coset pregeometry of G over I. Let k > 3 be
finite and smaller than or equal to |I|. For each J C I of rank at most k, assume the group G
is transitive on the set of flags of G of type J. Then for each J C I of rank at most k — 1 the
homomorphism « is bijective and for each J C I of rank at most k — 2 the homomorphism oy
is an isomorphism.

Proof. Let J C I be of rank at most k£ — 1 and let aG; be an element of the residue ¢, je -
Then
{aGi}U{G; |j e J}

is a flag of G of rank at most k, so by the assumption on the transitivity of G there is
g€Gr=()G;
JjEJ
with ¢ 'a € G;, whence aG; = gG;. We obtain
aG; = gGi = ay(9G jugy)-

Therefore, o is surjective, and hence bijective, cf. Lemma 2.6(i). The claim now follows from
Lemma 2.6(iii). O

Similar to the characterizations of vertex-transitivity there exist a large number of group-
theoretic characterizations of various geometric properties of coset geometries, see e.g. [7]. The
following one, the characterization of connectivity, is an easy but crucial observation for studying
amalgams.

Theorem 2.8 (inspired by Buekenhout/Cohen [7])
Let I # 0. The coset pregeometry ((G/G"")er: e, *) Is connected if and only if

G = (G

i€ 1t eT;).
Proof. Suppose that G is connected. Take ¢ € I and t € T;. If a € G, then there is a path
1GY,agG", a1 G ap G2 L G 0GP
connecting the elements 1G>* and aG** of G. Now
QR G ) gy Gl £

SO
a;;lak-pl € Gtk,ik Gtk+1’ik+l

for k=0,...,m — 1. Hence

a=(1"Yap)(ag ar) - (a,} jam)(a,,ta) € GHIGHA ... Gim=tsim-1Glm.im Gt

and so a € (GY | i € I,j € T;). The converse is obtained by reversing the above argument. The
only difficulty that can occur is that g; G'** and goG®* are not incident, even if g; G*'N g, G2 #£
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(). This can be remedied by including some coset ¢gG»J, j # i, between ¢G> and ¢oG**** into
the chain of incidences, where g € g; G N go G2, O

Now we turn to the question which pregeometries actually are coset pregeometries. Stroppel
gave the answer in [27]. To this end let us introduce the notion of the sketch of a pregeometry.

Definition 2.9 (Sketch) Let G = (X, x,typ) be a pregeometry over I, let G be a group of
automorphisms of G, and let W C X be a set of G-orbit representatives of X. We write

w=Jw,
el
with W; C typ~!(i). The sketch of G with respect to G and W is the coset geometry
(G/Gw)wewier, ¥')-
Recall that two actions

¢:G—Aut M and ¢ :G— Aut M’

are said to be equivalent if there is an isomorphism v : M — M’ such that 9o¢(g)oyy 1t = ¢'(g)
for each g € G or, equivalently, ¥ o ¢(g) = ¢'(g) o4 for all g € G. In this case, we shall also say
that M and M’ are isomorphic G-sets.

Theorem 2.10 (Stroppel’s reconstruction theorem [27])
Let G = (X, %, typ) be a pregeometry over I and let G be a group of automorphisms of G. For
each i € I let

be G-orbit representatives of the elements of type 1 of G such that
(i) Wi=Ue {wl,... wi} is a lounge and,

(ii) if V. C W is a flag, the action of G on the pregeometry over typ(V) consisting of all
elements of the G-orbits z°, x € V, is incidence-transitive.

Then the bijection ® between the sketch of G with respect to G and W and the pregeometry G
given by .
9G i guj
J

is an isomorphism between pregeometries and an isomorphism between G-sets. O

For a vertex-transitive group G, the previous theorem is just the isomorphism theorem of
incidence-transitive pregeometries, see [7].

The geometry consisting of the G-orbits ¢ of elements of some fixed maximal flag V C W
as in (ii) of the theorem is called the orbit geometry for (G,G,V).
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2.2 Fundamental group and simple connectivity

Definition 2.11 (Fundamental group) Let G be a connected pregeometry. A path of length
k in the geometry is a sequence of elements (zg,...,z;) such that z; and x;11 are incident,
0 <i<k—1. A cycle based at an element z is a path in which zy = z; = x. Two paths based
at the same vertex are homotopically equivalent if one can be obtained from the other via
the following operations (called elementary homotopies):

(i) inserting or deleting a repetition (i.e., a cycle of length 1),
(ii) inserting or deleting a return (i.e., a cycle of length 2), or
(iii) inserting or deleting a triangle (i.e., a cycle of length 3).

The equivalence classes of cycles based at an element « form a group under the operation induced
by concatenation of cycles. This group is called the fundamental group of G and denoted by
(G, T).

A cycle based at x that is homotopically equivalent to the trivial cycle (z) is called null-
homotopic. Every cycle of length 1, 2, or 3 is null-homotopic.

Definition 2.12 (Covering) Suppose G and QA are two connected geometries over the same
type set and suppose ¢ : G — Gisa homomorphism of geometries, i.e., ¢ preserves the
types and sends incident elements to incident elements. A surjective homomorphlsm ¢ between
connected geometries G and G is called a covering if and only if for every nonempty flag F
in G the mapping ¢ induces an isomorphism between the residue of F in G and the residue
of F' = ¢(ﬁ) in G. Coverings of a geometry correspond to the usual topological coverings of
the flag complex. It is well-known and easy to see that a surjective homomorphism ¢ between
connected geometries Gand G is a covering if and only if for every element T in G the map ¢
induces an isomorphism between the residue of T in G and the residue of 7 = $(x)in G. If ¢ is
an isomorphism, then the covering is said to be trivial.

Consider the geometry via its colored incidence graph and recall the following results from
the theory of simplicial complexes.

Theorem 2.13 (Chapter 8 of Seifert/Threlfall [24])
Let G be a connected geometry and let x be an element of G. The geometry G does not admit
any nontrivial covering if and only if m1(G, ) is trivial. O

A geometry satisfying the equivalent conditions in the previous theorem is called simply
connected.

The following construction can also be found in Chapter 8 of [24].

Definition 2.14 (Fundamental cover) Let I' be a connected graph and let z be some vertex
of T. The fundamental cover ' of T based at z is defined as follows: The vertices of T' are
the homotopy classes of paths of I' based at = where two vertices [y;] and [7y2] of [ are adjacent
if and only if [fyl_ 172] = [t1t2] where ¢; is the terminal vertex of v; and ¢2 is the terminal vertex

of Y2
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Definition 2.15 (Universal covering) Let I’ and T be connected graphsand let x € T, T € T
be vertices. A covering R
m:I' =T

mapping Z onto z is called universal if, for any covering
a:I'1 = andany z;€a (z),
there exists a unique covering map
ﬁ =14

with 7 = @ o f and (%) = ;.

Theorem 2.16 (Chapter 8 of Seifert/Threlfall [24])
Let I" be a connected graph, let © be a vertex of I'; and let I' be the fundamental cover of I

based at x. Then the fundamental covering  : T — T is universal. O

2.3 Amalgams

Definition 2.17 (Amalgam) An amalgam of groups A over a finite set I = {0,1,...,n}

and associated nonempty sets J;, ¢ € I, is a family of groups (G} ;)je.; icr with monomorphisms,

called identifications, o
¢§:;1,Z+1 : Gji;i - Gji+1,i+1

for some (j;, @) and (j;41,%+ 1) such that for each G, ; there exist identifications whose compo-

sition embeds G, ; into some G, ;.

Example 2.18 An amalgam with I = {0,1,2}, Jy = {1,2}, J; = {1,2,3,4}, Jy = {1,2,3,4}
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can be depicted in the following diagram. The identification maps are given by arrows.

oy
G11¢>G12

in the above example.

Two amalgams A and B are similar if they share the same set I, the same sets J; and if
for all (j;,7) and (j;4+1,7 + 1) the identification A¢y i1 ovists if and only if the identification
¢]Z+1’l+ exists, i.e., if they can be depicted by the same diagram.
Definition 2.19 (Homomorphism) Let A = (G;;);; and B = (H,;);; be similar amalgams.
A map 9 : UA — UB will be called an amalgam homomorphism from A to B if

(i) for every i € I and j € J; the restriction of ¢ to G;; is a homomorphism from G;; to Hj;
and

.. ]z+177/+1 ]z+1,l+ . . . . . .
(ii) Yo ady B#; °1|g;, ; in case the respective identifications exist.

If 4 is bijective and its inverse map 9! is also an amalgam homomorphism, then 1 is called
an amalgam isomorphism. An automorphism of A is an isomorphism of 4 onto itself. As
usual, the automorphisms of 4 form the automorphism group, Aut(.A).

Definition 2.20 (Quotient, cover) An amalgam B = (H;;);; is a quotient of the amalgam
A = (Gj;)j; if there is an amalgam homomorphism 7 from A to B such that the restriction of
7 to any G, maps Gj, onto H;,. The map m : UA — LB is called a covering, A is called
a cover of B. Two coverings (A;,7) and (Asg,m2) of A are called equivalent if there is an
isomorphism 1 of A; onto Ay, such that m; = w5 0 9.

Notice that a covering 7 : LA — LB between amalgams need not map G;; surjectively onto
H 5,0 for 4 7é n.
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Definition 2.21 (Completion) Let A be an amalgam. A pair (G, 7) consisting of a group G
and a map 7 : UA — G is called a completion of A, and 7 is called a completion map, if

(i) for all i € I and j € J; the restriction of 7w to G;; is a homomorphism of G; to G;
(ii) TG,y poit © ¢§2;1’i+1 =G, ; if the corresponding identification exist; and
(iii) m(LA) generates G.
A completion is called faithful if for each 7 € I and j € J; the restriction of 7 to G ; is injective.
Coming back to Example 2.18, the definition of a completion does require that
3,2 2,1 _ 3,2 4,1
'IT|G3,2 o ¢2,1 © ¢2,0 - 7r|G3,2 © ¢4,1 © ¢2,07
although by definition of an amalgam we do not necessarily have
32 21 32 41
¢2,1 °© ¢2,0 = ¢4,1 °© ¢2,0-

Proposition 2.22
Let A = (Gj;)j; be an amalgam of groups, let F(A) = ((ug)gca) be the free group on the
elements of A and let

Sl = {uwuy = Uy, whenever Ty =z in some G],Z}

and
Sy = {uy = uy, whenever ¢(x) =y for some identification ¢}

be relations for F'. Then for each completion (G, ) of A there exists a unique group epimorphism
T:UA) -G
with m = 7 o 1) where

U(A) = ((ug)gea | S1,52) and ¢ : UA = U(A) : g = uy.

LA —2U(A)

R,

G

Proof. The map A to U(A) given by ¢ : g — ug turns the group U(.A) into a completion of A.
If (G, m) is an arbitrary completion of A then the map

T :ug = m(g)
leads to a group epimorphism 7 from U(A) to G because

7 (ugup) = T(ugn) = m(gh) = m(g)m(h) = T(uy)(un)
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if ugp, exists; otherwise define
F(ugun) = m(g)m(h) = F(ug) 7 (un).
Clearly, 7 is uniquely determined by the requirement

m(g) = (T o) (g) = T(uy).

Definition 2.23 (Universal Completion) Let A = (G};);; be an amalgam of groups. Then
P UA—=UA) g — yy

for U(A) as in Proposition 2.22 is called the universal completion of A. The amalgam A
collapses if U(A) =1

Example 2.24 (inspired by [22]) Consider the groups

G = (y,zly l2y=27),
Gy = <z,a; | 27 lzz = m2> ,
G3 = <$7y | x_lyw = y2>a

which are nontrivial and pairwise isomorphic. Let A be the amalgam given by G, G2, G3 and
the intersections

GinNnGy = (Z) =7
GiNnGs = (y) =7Z,
GoNG3z = (z)=2Z

where the identification maps are given by the inclusion maps. Then U(A) = 1, so A collapses.

It does not make any difference whether or not we add the identification of the trivial group on
the left hand side, as any completion map identifies the different neutral elements of all groups
anyway, since the restrictions have to be group homomorphisms.

Notice that if B is a quotient of A then U(B) is isomorphic to a factor group of U(A). In
particular, if B does not collapse then neither does A. Also, an amalgam A admits a faithful
completion if and only if its universal completion is faithful.
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Definition 2.25 (Amalgams for transitive geometries) Suppose G is a geometry and G <
Aut G is an incidence-transitive group. Corresponding to G and G and some maximal flag F,
there is an amalgam A = A(G, G, F), the amalgam of parabolics with respect to g, G,
F, defined as the family (Gg)ecr, where Gg denotes the stabilizer of £ C F in G, together
with the natural inclusions as identification maps. In case G is flag-transitive, the amalgam A
is independent (up to conjugation) of the choice of F.

For example, let G be a rank four geometry with a flag p, [, m, II. Then the amalgam of
parabolics looks as follows:

If [I| = n is finite and k& < n the amalgam Ay = A)(G,G, F) is the subamalgam of
A consisting of all parabolics of rank less or equal k. It is called the amalgam of rank &
parabolics. Of course, Ag,_1) = A.

More generally, for F' as above suppose W C 2! such that 2/ 5 U’ > U € W implies
U' €W, ie., W is a subset of the power set of F' that is closed under passing to supersets. A set
W C 2% with those properties is called a shape. The amalgam of shape YV with respect
to G, G, F is the family (Gy)yew, where Gy is the stabilizer of U € W in G, with the natural
inclusion maps as identification maps. It is denoted by Aw (G, G).

Definition 2.26 (Amalgams for intransitive geometries) Suppose G = (X, x, typ) is a ge-
ometry over I, the group G is a group of automorphisms of G, and for each ¢ € I let wi, ..., wj,
be G-orbit representatives of the elements of type ¢ of G such that

(i) W=Ues {wi, ... ,w%i} is a lounge and,

(ii) if V. C W is a flag, the action of G on the pregeometry over I consisting of all elements of
the G-orbits ¢, z € V, is incidence-transitive.

Then the amalgam A = A(G, G, W) is defined as the family (Gv),cyy 5 flag’ where Gy denotes
the stabilizer of U C W in G with the natural inclusion maps as identification maps.
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For example, let G be a rank three geometry with W equal to p, ¢, [, w. Then the amalgam
of parabolics looks as follows:
Gy —= Gy

Gq,l Gq
Gp,lﬂr Gpﬂr Gy
Gq L \Ci q,m Gr
/
Gir

If |[I| = n is finite and k& < n the amalgam A = Ay (G,G, W) is the subamalgam of
A consisting of all parabolics of rank less or equal k. It is called the amalgam of rank k
parabolics. Of course, A, ) = A.

More generally, for W as above suppose W C 2" with the properties that each U € W is
a flag and if U' C W is a flag with U’ D U € W, then also U’ € W, i.e., W is a subset of the
power set of W consisting of flags that is closed under passing to superflags. A set W C 2"
with those properties is called a shape. The amalgam of shape W for (G,G, W) is defined
on the family (Gy)yey with the natural inclusion maps as identification maps. It is denoted
by Aw(G,G,W).

3 Theory of intransitive flipflop geometries

We now use the foregoing notions, definitions and basic results to develop some theory of intran-
sitive flipflop geometries, that results in criteria to conclude that certain completions of certain
amalgams are universal.

Theorem 3.1 (Fundamental theorem of geometric covering theory)
Let G = (X, x,typ) be a connected geometry over I of rank at least three and let G be a group
of automorphisms of G. For each i € I let

be G-orbit representatives of the elements of type ¢ of G such that
(i) W= U {wl,...,w},} is a lounge and,

(ii) if V. C W is a flag, the action of G on the pregeometry over typ(V) consisting of all
elements of the G-orbits z, x € V, is incidence-transitive and pennant-transitive.
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Let A= A(G,G,W) be the amalgam of parabolics. Then the coset pregeometry
G = (UA)/Gyihgi<rier )

is a simply connected geometry that admits a universal covering = : G — G induced by the
natural epimorphism U(A) — G. Moreover, U(A) is of the form 71 (G).G.

Proof. The completion

$:UA—= G
and, thus, the completion R
¢:UA—=U(A)
is injective. Therefore the natural epimorphism
Pp:UA) - G

induces an isomorphism between the amalgam ¢(A) inside 2/(A) and the amalgam ¢(.A) inside
G. Hence the epimorphism v : U(A) — G induces a quotient map between pregeometries

G =(UA )/ G, )ze[1<]<t17 *) = ((G/G, )ze[l<]<t1, *).

The latter coset pregeometry is isomorphic to G by the Reconstruction Theorem 2.10. Notice
that U(A) acts on G = ((G/G,, )lg 1<j<t;» *) via

9G i = P(u)gG,i for welU(A).
J J

We want to prove that this quotient map actually is a covering map. The pregeometry G is
connected by Theorem 2.8, because U(.A) is generated by $( A). Our goal is to apply Lemma
2.7 in order to establish the isomorphism of the residues. By hypothesis (ii) we can assume that
G, and hence g is incidence-transitive. Then the group U(.A) is pennant-transitive on g For,
let (a,b,c) and (z,y, z) be flags of type J for some subset J of I of cardinality three. Then, by
incidence-transitivity of #(.A) on G. , we can assume ¢ = ¢ and b = y. By pennant-transitivity
of G on G there exists an element u of U(A) mapping (7(a) = n(z),n(b) = 7(y),n(c)) onto
(m(a) = w(z), 7(b) = w(y),w(z)). This element u is contained in G, = @b*l(Gﬁ(a)) = Gr)- By
Lemma 2.7 and using the incidence-transitivity of Q\ and of G the map 7 induces a bijection
between the residue G, and the residue Gr(a), SO the element v maps (¢ = z,b = y,c) onto
(@ = z,b = y,z). Hence U(A) is pennant transitive on G. Another application of Lemma
2.7, this time using the pennant-transitivity of g and G, implies that =« i g — G induces
isomorphisms between the residues of flags of rank one. So the map 7 : g — G indeed is a
covering of pregeometries. Since G actually is a geometry the pregeometry G is also a geometry.

Now we want to show that the covering

7r:§—>g

induced by the canonical map U(A) — G is universal. Denote the fundamental cover of G at
some vertex w;- of W by Gy and let

$»:Go— G
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be the corresponding covering map. If '&7; € W*I(w;.-), U;- € d)*l(w;.-), we will achieve the

universality of m by showing that @ = ¢ o « for a unique isomorphism
a:G =Gy

with a(’&?é) = E;

(Go, @)

The simple connectivity of G then is implied by the universal property. For g € G\,i define an
J

automorphism N )
99D 2 G — Go : I (G, w') 3 [7] = [g()].

The latter is also a homotopy class of paths in G starting at w;'-, because g € Gw; stabilizes

w; The fundamental cover Gy of G based at w;'- is isomorphic to the fundamental cover G;

of G based at some arbitrary w;'-', € W. Therefore we can define automorphisms on Gy using

the automorphisms on G; coming from elements g € G . To this end fix a maximal flag
]'I

V C W containing w§ Let y € V be incident to to both w§ and w;,, and for g € G+ define an
j/

automorphism
G Go = Go : (W) = |wl g, wi 9(y), 9(7)

Since, for a different choice y' € V incident to both w§ and wél,, the cycles (y,y’ ,w;'-,y) and

) ,wi-',, are null-homotopic, the automorphism gY"") does not depend on the particular

Yy, Wiy Y

il il
N4 N j’ j’

Also, for incident w;-, and w;,,, let y be an element of V' incident to w

€V, we can choose y = w i
i

choice of y € V. In particular, if w ory=uw
! 1 .

% w;-, and w;-,,. Since

i

the cycles (y,w;'-',,w;-',l,,y) and (g(y),w ',,w;'-',',,g(y)) are null-homotopic, for g € Gw]i.’, N Gwi’,’, we

J i
have
wﬁ,y,wﬁi,g(y),g(v)} = [wé,y,wﬁlfug(y),g(v)]
and so
/g%j’,i’) - ’g%j”:i”)‘
Hence

~UA— G = <DT4> < Aut Gy

is a completion map from A to G. If /g\fl”g\g acts trivially on é\o, then g Lgo acts trivially on G,
thus g1 = g9, as G acts faithfully on G. Therefore” embeds A in G.

The geometry Gy together with the group G of automorphisms satisfies the hypothesis of
the Reconstruction Theorem 2.10, so the geometry Gy is isomorphic to the coset pregeometry
((@/Gw;)iel,léjétm %). The natural epimorphsim G — G induces a covering map from Gy onto

G. Moreover, the natural epimorphism U(A) — G yields a quotient map G — Go. Since Gy
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is universal by Theorem 2.16 and therefore simply connected, this quotient map is a uniquely
determined isomorphism. Hence the covering 7 : G — G is universal.

It remains to establish the structure of G = /() to be of the form m(G).G. However, this
is evident by Theorem 2.16. O

Corollary 3.2 (Tits’ lemma)
Let G = (X, %, typ) be a geometry over I and let G be a group of automorphisms of G. For each
1 €1 let

be G-orbit representatives of the elements of type 1 of G such that
(i) W:=Uer {wl,... wi} is a lounge and,

(ii) if V. C W is a flag, the action of G on the pregeometry over typ(V) consisting of all
elements of the G-orbits z, x € V, is incidence-transitive and pennant-transitive.

Let A(G,G,W) be the amalgam of parabolics of G with respect to G and W. The geometry G
is simply connected if and only if the canonical epimorphism

UAG,G,W)) -G
is an isomorphism. O

Theorem 3.3
Let G = (X, %, typ) be a geometry over some finite set I and let G be a group of automorphisms
of G. For each i € I let

.l

be G-orbit representatives of the elements of type 1 of G such that
(1) W= Uier {wi, - ,w%i} is a lounge and,

(i) if V. C W is a flag, the action of G on the pregeometry over typ(V) consisting of all
elements of the G-orbits ¥, z € V, is flag-transitive.

Let W C 2% be a shape, assume that for each flag U € 2W\W the residue Gy is simply connected,
and let A(G,G,W) and Aw(G,G,W) be the amalgam of maximal parabolics respectively the
amalgam of shape W of G with respect to G and W. Then

G=UAnW(G,G,W)).
In particular, if ) ¢ W, we have

G = U(AG, G, W)) = U(Aw(G, G, W)).
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Proof. We will proceed by induction on the number of flags in the set 2"V \W. If the set of
flags contained in 2'\W is empty, then ) C W, so the amalgam Ay (G, G, W) contains the
stabilizer in G of the empty flag, i.e., G. Hence G = U(Aw (G, G, W)). If there exists a flag in
2"\ W, then the empty flag is also contained in 2"V'\W, because by definition the shape W is
closed under taking superflags. Hence in that case G is simply connected and by Corollary 3.2
we have G = U(A(G,G,W)). We will now prove that U(A(G,G,W)) =U(Aw(G, G, W)).

If the empty flag is the only flag contained in 2V'\W, then A(G,G, W) = Aw(G,G, W), so
their universal completions coincide. If there exists a nonempty flag in 2V \W, then there also
exists a (nonempty) flag U in 2V \W such that W' := {U}UW is a shape. Then Ay (G, G, W) =
Aw(G,G, W) U Gy. By connectivity of Gy, the group Gy is a completion of the amalgam
A(Gy, Gy, Wy ), where

Wy =W N typ~ (I\typ(V)).

As Gy is simply connected, we even have
Gy = U(A(Gu, Gy, Wu)).
Since A(Gr, G, W) € Aw(G, G, W), we have
UAW(G, G W) = UAW(G, G, W) UU(A(Gy, Gu, Wr)))

= UAW(G,G,W)UGY)
= UAW(G,G,W)).

Hence, by induction, we have U(Aw (G, G, W)) = U(A(G, G, W)), finishing the proof. O

Corollary 3.4
Let G = (X, %, typ) be a geometry over some finite set I, let G be a group of automorphisms of
G, for each i € I let

W,

be G-orbit representatives of the elements of type ¢ of G such that
(i) W=Uer {wi,... ,w};i} is a lounge and,

(ii) if V C W is a flag, the action of G on the geometry typ(W) consisting of all elements of
the G-orbits ¥, x € V, is flag-transitive.

Let k < |I|, assume that all residues of rank greater or equal k with respect to subsets of W are
simply connected, and let A(G,G,W) and A(;)(G, G, W) be the amalgam of maximal parabolics
respectively rank k parabolics of G with respect to G and W. Then

G =U(A(G,G,W)) = U(Au)(G,G,W)).
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4 Intransitive geometries: an example

4.1 Some standard techniques

In this subsection, we collect some general results on simple connectivity and null-homotopic
cycles that have been established in recent papers dealing with simple connectivity of flag-
transitive geometries.

A geometric cycle in the geometry G is a cycle completely contained in the residue G, of
some element x.

Proposition 4.1 (Lemma 3.2 of [5])
Every geometric cycle is null-homotopic. O

Corollary 4.2 (Lemma 3.3 of [5])
If two cycles based at the same element are obtained from one another by inserting or erasing
a geometric cycle then they are homotopic. O

Definition 4.3 (Basic diagram) Let G be a geometry over the set I. Let 4,5 € I, then
we define 7 ~ j if there exists a flag f of cotype {7, j} such that the residue of f is a geometry
containing two elements that are not incident. Then the graph (I, ~) is called the basic diagram
of G.

Let G be a geometry with basic diagram

1 2

o— .
o ?

i.e., the node 1 has a unique neighbor in the basic diagram of G. Then the 1-graph (also called
the collinearity graph) of G is the graph whose vertices are the elements of type 1, where two
such elements are adjacent if they are incident with a common element of type 2.

Definition 4.4 (Direct sum of pregeometries) Let G = (X, *,typ), G’ = (X', ', typ’) be
pregeometries over I and I'. The direct sum

gad

is a pregeometry over I LI I’
e whose element set is X LI X',
e whose type function is typ U typ’ and

e whose incidence relation is the symmetric relation g with xg|xxx = * and *g|x/xx = *
and *g|xxx = X x X', i.e., elements of X are incident with elements of X"

Lemma 4.5 (Lemma 5.1 of [13])
Let G be a geometry of rank n > 3 with basic diagram

1 2 n
o o ++» O——— 0
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and assume that for each element x of type n the 1-graph of G, is connected. Furthermore,
suppose that if the residue G, of some element = has a disconnected diagram falling into the two
connected components Ay and As, then G, is equal to the direct sum

typ(a1) 9z @ typ(as) Ya-

Then every cycle of G based at some element of type 1 or 2 is homotopically equivalent to a
cycle passing exclusively through elements of type 1 or 2. O

Lemma 4.6 (Lemma 7.2 of [13])
Assume that G = Gy & Go with G; connected of rank at least two. Then G is simply connected.
O

4.2 Generalities about orthogonal spaces

Let n > 1 and let V' be an (n + 1)-dimensional vector space over some field F of characteristic
distinct from 2 endowed with some nondegenerate symmetric bilinear form f = (-,-). By

ga = gt (n, F, f)

we denote the pregeometry on the proper subspaces of V that are nondegenerate with respect
to (-,-) with symmetrized containment as incidence and the vector space dimension as the type.

Arbitrary fields of characteristic not two

We will be using standard terminology. In particular, each finite-dimensional vector space
over some finite field admits two isometry classes of nondegenerate quadratic forms, one called
hyperbolic (also positive or of plus type), the other called elliptic (also negative or of
minus type).

Recall the following rules for determining the type of an orthogonal sum of nondegenerate
orthogonal spaces over a finite field:

+e+ = +,
+e- = -,
-—e- = +.

The names hyperbolic and elliptic are a generalization of the classical usual incidence-theoretic
meaning: if a nondegenerate subspace of even dimension 2n > 2 intersects the null-set of a
quadratic form in a quadric with Witt index n or n — 1, respectively, then the subspace is
hyperbolic or elliptic, respectively. We extend this as follows. If a one-space takes only square
values or non square values, respectively, with respect to the quadratic form, then this one-space
is hyperbolic or elliptic, respectively. Now these assignments of hyperbolic and elliptic, together
with the above rules, determine the plus/minus type of all nondegenerate subspaces (including
the whole space and the zero space).
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Theorem 4.7
The pregeometry G (n, T, f) is a geometry.

Proof. We have to prove that each flag can be embedded in a flag of cardinality n. To this end
let ¥ = {x1,...,2¢} be a flag of gg{th. We can assume that the nondegenerate subspace z; of
V has dimension one. Indeed, if it has not, then we can find a nondegenerate one-dimensional
subspace z( of 1 and study the flag F' = FU{z,} instead. Now observe that the residue of the
nondegenerate one-dimensional subspace z; is isomorphic to gg{th(n —1,F, f") for some induced
form f’ via the map that sends an element U of the residue of z; to U N xf Hence induction
applies. O

Lemma 4.8

If| is a line and p is a point not on [, then there are at most two points of gg{th on | which are
not collinear to p. In other words, if F is the field F, of q elements, there exist at least ¢ — 3
points on [ collinear to p.

Proof. Let U be the 3-space (a,l) and let W = U Na*. The space W has rank at least one as
U has rank at least two. Hence there are at most two singular points on W and, thus, there are
at least ¢ — 1 nondegenerate lines in U through a. The line [ has at most two singular points,
so at least ¢ — 3 of the nondegenerate lines in W through «a intersect [ is a nonsingular point. O

Proposition 4.9
Let n >3 or n =2 and |F| > 5. Then the collinearity graph of G§'*"(n,F, f) has diameter two.

Proof. If n > 3, then the dimension of the vector space V is at least 4. Fix two points (a)
and (b) which are not collinear, i.e., the space (a,b) is singular with respect to (-,-). However
(a,b) is a two-dimensional subspace of V' which is not totally singular, because (a,a) and (b, b)
are distinct from zero. Therefore the radical of (a,b) is a one-dimensional space. The dimension
of {a,b)" is greater or equal to 2. Consequently, the orthogonal complement of (a,b) contains a
point, say (c). Consider the two two-dimensional subspaces (a,c) and (b,c). Since (a) and (b)
are perpendicular to (c), both (a,c) and (b,c) are lines. The distance between (a) and (c) is
one and so is the distance between (c) and (b). Thus the distance between (a) and (b) is two.
Certainly gg{th contains a pair of noncollinear points, so we have proved the claim for n > 3.
If n = 2, let (a) and (b) be two arbitrary points in V. If the space | = (a,b) is a line then
the distance between (a) and (b) is one. Otherwise pick a point (@) in (a)™. The space (a,a) is
a line and the point (b) is not on (a,a). The point (b) is collinear with at least two points on
(a,a) by Lemma 4.8. Pick one of these points, say the point (c). We have established that the
distance between (a) and (b) is two. O

Corollary 4.10
Let n > 2 and |F| > 5. Then G¥™M(n,F, f) is residually connected. O

It is shown in [2] that, if n > 3 and F not equal to F3 or Fs, then the geometry G5 (n, F, f)
is simply connected. If the field F is quadratically closed, then G¥(n,F, f) is flag-transitive
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and one can apply Corollary 3.2 (Tits’ lemma) to obtain presentations of flag-transitive groups
of automorphisms of that geometry, see [2]. Also, in some cases like for real closed fields, it is
possible to pass to suitable simply connected flag-transitive parts of gg{th(n,m f) in order to
obtain presentations of groups of automorphisms.

Finite fields of characteristic not two

For a finite field F however, no flag-transitive part of G5 (n, F, f) is known to be simply con-

nected, so we deal with intransitive geometries instead. The main tool for our proof of simple
connectivity is the following lemma. It is clear that it would fail for transitive geometries as,
roughly speaking, one loses half the points when passing to a transitive geometry.

Lemma 4.11

Let n > 2, let IF be a finite field of odd order g, let p be a point of G5*"(n, I, f), let | be an elliptic
line such that (p,l) is a nondegenerate plane, and let m be a hyperbolic line such that (p,m) is
a nondegenerate plane. Then there exist at least q%l elliptic lines through p intersecting l in a

a point of G5 (n, F, f) and at least % hyperbolic lines through p intersecting m in a point of

Gt (n, F, f).
g+1

Proof. Consider the two-dimensional nondegenerate space p= N (p,1). It contains = or L=

i

points of positive type and qzi or ‘12;1 points of — type. Therefore, there exist at least “5—
elliptic lines through p intersecting p~ N (p,1) and, thus, also /. The claim follows as all points
on an elliptic line are nondegenerate.

The number ‘12;5 = ‘12;1 — 2 of hyperbolic lines through p intersecting m in a point of
gg{th(n, F, f) is obtained in exactly the same way plus the observation that two of the hyperbolic

lines through p and p* N (p,m) could intersect m in a singular point. O

4.3 Positive form in dimension at least five

Let g be odd and let V' be a vector space over I, of dimension n + 1 at least five endowed with
a nondegenerate positive symmetric bilinear form f and let

GA™ (n, Fy, f) = (X, %, typ)
be the pregeometry on all nondegenerate subspaces of V. Let
W = {paplala T, Ua Ula U23 RN Ut}

be a lounge where p is a positive point, p’ is a negative point, [ is a negative line, 7 is a positive
or negative plane, U is a positive four-dimensional subspace of V, and the U; are arbitrary
nondegenerate proper subspaces of V' of dimension at least three. Let

G = (Y, )y <y typy)
be a pregeometry with

Y = {z € X | there exists a g € SO, 41(Fy, f) with z € g(W)}.
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Proposition 4.12

The pregeometry (GF'™)W is a geometry of rank |typ(W)| > 3 with linear diagram and a
collinearity graph of diameter two. Moreover, for each element x of maximal type the collinearity
graph of the residue (G§*™)}V is connected. Furthermore, if the residue (G5™)Y of some element
z has a disconnected diagram falling into the two connected components A, and Ay, then G, is
equal to the direct sum

typ(A1) (gorth) D typ(As) (gorth)

Proof. 'To prove the statement on the collinearity graph of (gg{th)W let p and p’ be points of
(G™)W. Then there exists an elliptic line [ through p’ with (p,l) nondegenerate. By Lemma
4.11 there exist 4= L elliptic lines through p intersecting [ in a point of (GF*™)W. Since ¢ is
odd, there exists at least one, and the claim is proved. The same argument implies that the
collinearity graph of the residue of an element z of maximal type, which is at least four, is
connected. O

The preceding proposition allows us to apply Lemma 4.5, so we can study the collinearity

graph of (G™)W in order to establish the simple connectivity of (G5)"W.
Lemma 4.13

Let ¢ > 7. Then any triangle in the collinearity graph of (gg{th)W is homotopically trivial.

Proof. Let a, b, ¢ denote the points of a triangle. If (a,b,c) is nondegenerate, then its polar
(a,b, c)J‘ contains a nondegenerate two-dimensional subspace of V' and, thus, points of positive
type and of negative type. Choosing a positive point p of that line if (a,b,c) is positive and
choosing a negative point p of that line if (a, b, ¢) is negative, we obtain a positive space (a, b, ¢, p)
containing the triangle a, b, c. Therefore that triangle is geometric, whence null-homotopic by
Proposition 4.1.

Now suppose the triangle a, b, ¢ spans a degenerate space (a,b,c) with one-dimensional
radical z. Notice first that any line not passing through «x is elliptic. If a, b, ¢ are all of positive
type consider an arbitrary nondegenerate four-dimensional subspace of V' containing (a, b, c).
That four-dimensional space necessarily is of negative type, so its polar contains a negative
point p. But (a,p), (b,p), (c,p) then are elliptic lines and the three-dimensional spaces (a, b, p),
(b,c,p), (a,c,p) are nondegenerate, so the original triangle a, b, ¢ is null-homotopic. If all of
a, b, ¢ are negative points, then we can choose any positive point p on the line (b, ¢) such that
(a,p) does not contain z. Then (a,p) is an elliptic line and we have decomposed the triangle a,
b, ¢ into two triangles in which positive points occur. If b and ¢ are of negative type and a is
of positive type we can again choose any positive point p on the line (b, c) such that (a,p) does
not contain x, decomposing the triangle a, b, ¢ into two triangles with one negative point and
two positive points.

We are left with the case of one negative point, say a, and two positive points, say b and c.
If neither b nor ¢ are perpendicular to a, we can choose the point b’ on (a,b) perpendicular to
a, which is a positive point as it is perpendicular to the negative point on the elliptic (negative)
line (a,b). Since c is not perpendicular to a, the line (b, ¢) does not pass through z and, thus, is
elliptic. The triangle b, b, ¢ consists of positive points only and hence is null-homotopic, so we
can assume ¢ L b in our original triangle. The space (a, b, ¢) is contained in a four-dimensional
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nondegenerate negative space which is in turn contained in a five-dimensional nondegenerate
positive space W (which may be equal to V'). The space U := (b, c}J‘ NW is a three-dimensional
negative space. As b L a the space (a,U) equals b~ N W, which is a nondegenerate four-
dimensional positive space. Through a there are ¢ + 1 tangent planes of (a,U). Moreover, in
U there are ¢ + 1 tangent lines. If all tangent planes through a would pass through a tangent
line of U, we would have that a equals the projection of ¢ onto (a,U) with respect to the direct
decomposition (b) @ (a,U) of W, which would imply that a, b, ¢ are linearly dependent. So
there exists a nondegenerate plane of (a,U) through a that intersects U in a tangent line of
U. Since U is a negative space tangent lines of U contain g negative points besides the radical.
We have to find a point p among those ¢ points that spans an elliptic line together with a and
nondegenerate three-dimensional spaces with (a,b) and (a,c). Since b L a and b L p, the space
(a, b, p) is automatically nondegenerate if (a, p) is an elliptic line. The space (a, ¢, p) has a Gram
matrix of the form

¥ ko«
* % 0
a 0 ¢

with respect to the basis a, ¢, p for a nonzero constant ¢ and a variable o. Hence there are at
most two choices of p for which (a, ¢, p) is degenerate. Hence there exist ¢ —2 — 2 — '12;1 points
p on a common elliptic line with a. Indeed, there are ¢ negative points, two of which might give
rise to a nondegenerate space (a, ¢, p), two of which might give rise to a nongenerate space (a, p)
and % of which might span hyperbolic lines together with a. This number is positive since
q>"T. O

Lemma 4.14
Let ¢ > 3. Then any quadrangle of the collinearity graph of (GF*™)W is homotopically trivial.

Proof. Let a, b, ¢, d be a quadrangle and let [ := ab and m := cd. If [ and m intersect in a
point e, then the quadrangle a, b, ¢, d decomposes into two triangles a, d, e and b, ¢, e.
Therefore we can assume (I, m) is four-dimensional. Our goal is to prove that the point line
geometry consisting of the points of [ and m and the elliptic lines in ([, m) intersecting [ and m
is connected. The fact that a, b, ¢, d is null-homotopic then follows, as any path from a to b
via points on [ and m and elliptic lines intersecting both [ and m decomposes the quadrangle
a, b, ¢, d into triangles. We have to counsider the following five cases of possible structure for
(I,m): (i) two-dimensional radical, elliptic line as complement; (ii) two-dimensional radical,
hyperbolic line as complement; (iii) one-dimensional radical; (iv) nondegenerate negative space;
(v) nondegenerate positive space. In the first case any line not through the radical is elliptic and
there is nothing to prove. The second case cannot occur as the lines [ and m are elliptic. In the
third case let z denote the radical of (I, m). The planes (I, x) and (m, x) intersect in a line, s say.
Denote the intersection of [ and s by y and the intersection of m and s by z. All lines in (I, z)
through z except s are elliptic, whence z is in the same connected component as any point on /
distinct from y. By symmetry, y is in the same connected component as any point on m distinct
from z. Now let p be any point on [ distinct from y and consider the plane (p,m). This plane
is a complement in (I, m) of z, so it is nondegenerate. By Lemma 4.11 there exist ‘12;1 elliptic
lines through p in (p,m). This is at least two if ¢ is larger than three, so there exists an elliptic
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line through p intersecting m in a point distinct from z and, thus, the geometry consisting of
the points of [ and m and the elliptic lines of ([, m) intersecting [ and m is connected. In case
four we can apply the same argument as above by using tangent planes of the elliptic quadric
containing [ or m. In the fifth case the space (I, m) is an object of the geometry (G™)W so
the quadrangle a, b, ¢, d is geometric and hence, by Lemma 4.1, null-homotopic. O

Lemma 4.15
Any pentagon of the collinearity graph of (GF™)W is homotopically trivial.

Proof. Let a, b, ¢, d, e be a pentagon and let [ := cd. If (a,l) is nondegenerate, then there
exist %1 elliptic lines through « intersecting [, which is at least one, and if (a,l) is degenerate,
then there exist ¢ elliptic lines through a intersecting [, as in (a,l) each complement of the
radical is an elliptic line. In both cases we have decomposed the pentagon a, b, ¢, d, e into two
quadrangles. O

By Proposition 4.12, the three lemmas we have proved the following theorem.

Theorem 4.16
Let ¢ > 9. Then the geometry (G*™)W is simply connected. O

Theorem 4.17
Let ¢ > 9 be odd, let n > 4, let V' be an (n + 1)-dimensional vector space over F, endowed with

a nondegenerate positive symmetric bilinear form f. Let G = (GF™)W | let G = SOp41(Fy, f)
and let A = A(G,G,W) be the amalgam of maximal parabolics of (GF™")W. Then U(A) =

SOp+1(Fy, f)-
Proof. This follows by Theorem 4.16 and Corollary 3.2. O

4.4 Negative form in dimension at least five

Let ¢ be odd and let V' be a vector space over I, of dimension n + 1 at least five endowed with
a nondegenerate negative symmetric bilinear form f and let

GI™ (n, Fy, f) = (X, %, typ)
be the pregeometry on all nondegenerate subspaces of V. Let
W = {pap,al7 T, Ua U17 U27 RS Ut}

be a lounge where p is a positive point, p’ is a negative point, [ is a negative line, 7 is a positive
or negative plane, U is a positive four-dimensional subspace of V, and the U; are arbitrary
nondegenerate proper subspaces of V' of dimension at least three. Let

(G = (Y, 5y x> typ)y)

be a pregeometry with

Y = {z € X | there exists a g € SO, 41(Fy, f) with z € g(W)}.
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Theorem 4.18
Let ¢ > 9. Then the geometry (gg{th)W is simply connected.

Proof. The proof is almost the same as the proof of Theorem 4.16, i.e., it follows by versions
of Lemmas 4.13, 4.14 and 4.15. The crucial step is finding a version of the proof of Lemma 4.13
that works. This, however, simply amounts to interchanging the words positive and negative in
a suitable way. The other two lemmas can be copied literally. O

Theorem 4.19
Let ¢ > 9 be odd, let n > 4, let V' be an (n + 1)-dimensional vector space over F, endowed with

a nondegenerate negative symmetric bilinear form f. Let G = (GF"™W | let G = SOp41(Fy, f)
and let A = A(G,G,W) be the amalgam of maximal parabolics of (GF™")W. Then U(A) =

SOn41(Fg, f). O

4.5 Negative form in dimension four

Let g be odd and let V' be a vector space over [, of dimension four endowed with a nondegenerate
negative symmetric bilinear form f and let

GA™ (n, Fy, f) = (X, %, typ)
be the pregeometry on all nondegenerate subspaces of V. Let

W = {p,p,l,m 7'}

be a lounge where p is a positive point, p’ is a negative point, [ is a negative line, 7 is a positive
plane, and 7’ is a negative plane. Let

(GI™)™ = (Y, %y v typ)y)

be a pregeometry with
Y = {z € X | there exists a g € SO, 41(Fy, f) with z € g(W)}.

Lemma 4.20
Let ¢ > 7. Then any triangle in the collinearity graph of (GS*™)W is homotopically trivial.

Proof. Let a,b,c be a triangle in a degenerate plane with one-dimensional radical p. Let m be
a nondegenerate plane through ab. There are two degenerate planes through bc, namely (a, b, c)
and some plane my.; likewise there are two degenerate planes (a, b, c) and w4 through ac. The
planes m,. and m,. meet 7 in two lines [, and [p., respectively, through a and b. Since, in 7,
there are at least q%l elliptic lines through any nonsingular point, we find two elliptic lines [,
and [, through a and b, respectively, distinct from I, Iy, and (ab). Let d be the intersection
of I, with . The plane (c,d,p) is nondegenerate since the only degenerate plane through the
tangent line c¢p is (a,b,c). Hence there is some point ¢’ on ¢p with the property that ¢'d is
elliptic. It is now clear that, since all triangles a, b, d and a, ¢/, d and b, ¢/, d are contained
in nondegenerate planes, that a, b, ¢’ is null-homotopic. But the automorphism group of the
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quadric contains a group of order ¢ — 1 fixing ab pointwise, fixing p and acting transitively on
the points of pc except for p and the intersection pc N ab. So we conclude that also a, b, ¢ is
null-homotopic. O

Theorem 4.21
Let ¢ > 7. Then (GY*™)W is simply connected.

Proof. Case (iv) of Lemma 4.14 shows that any quadrangle of (G¥*)"" is null-homotopic and

Lemma 4.15 shows that any pentagon of (G3™")" is null-homotopic. O

Theorem 4.22

Let ¢ > 9 be odd, let V' be a four-dimensional vector space over I, endowed with a positive
nondegenerate form f. Let G = (GF™M)W | let G = SO4(F,, f) and let A = A(G,G,W) be the
amalgam of maximal parabolics of (GGF™)W. Then U(A) = SO4(F,, f). O

4.6 Smaller amalgams

Theorem 4.23

Let g > 9 be odd, let n > 6, let V' be an (n + 1)-dimensional vector space over F, endowed with
a nondegenerate positive symmetric bilinear form f. Assume that W is a lounge containing
positive and negative hyperplanes, negative hyperlines, a positive or negative codimension three
space and a positive codimension four space. Let G = (GF™W, let G = SOy, 41(F,, f) and let
Ap—o = Ap—2(G,G,W) be the amalgam of rank n — 2 parabolics of (GS**)W'. Then

U(An—2) = SOn41(Fy, f).

Proof. In view of Theorem 4.16 in order to apply Corollary 3.4, we have to prove that all
residues of flags of rank one are simply connected. If the flag x of rank one is not a point of
(Gt )W then the simple connectivity of (GG*™)W follows from Theorem 4.16 or Lemma 4.6
according to whether z is a hyperplane or not. So assume z is a point. If it is a positive
point, then the dual of the residue (G¥™)Y is simply connected by Theorem 4.16 and hence

also (gg{th)g" is simply connected. If z is a negative point, then the hyperline in the residue
(GF™)Y becomes a positive hyperline, while the codimension four subspace of (GF™) becomes
negative. After dualizing (G™)!, the simple connectivity of (G5*)Y follows by Theorem 4.18.

a

In principle, the theorem would also work for n = 5, but then by assumption W would have
to contain a negative line and a positive codimension four space, which would be a positive line.
But this would contradict the fact, that W contains a positive and a negative point, because
the connecting line between those two points cannot be both positive and negative.

Theorem 4.24
Let g > 9 be odd, let n > 4, let V' be an (n + 1)-dimensional vector space over F, endowed with
a nondegenerate positive symmetric bilinear form f. Let

GA™ (n, By, f) = (X, %, typ)
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be the pregeometry on all nondegenerate subspaces of V. Let
W= {paplala T, Ua Ula U23 R Ut}

be a lounge where p is a positive point, p’ is a negative point, | is a negative line, 7 is a positive
or negative plane, U is a positive four-dimensional subspace of V, and the U; are arbitrary
nondegenerate proper subspaces of V' of dimension at least three. Let G = SOy, 1(Fy, f) and let

(GI™)™ = (Y, %)y xy» typpy)
be a pregeometry with
Y ={x € X | there exists a g € G withx € g(W)}.

Let W C 2V be a shape containing p, p', every flag of corank two, and the flag consisting of all
elements of type greater or equal four. Then

G =UAW(G, G, ).

Proof. This follows from Theorem 3.4 plus Theorem 4.16 and Lemmas 3.2 and 4.6. O

A Appendix: A transitive geometry for Gs(q)

In the sequel we study a rank three geometry related to the split Cayley hexagon over a finite
field. Its simple connectivity can be proven with methods dealing with finite quadrics as before.
To be precise, we consider the group G2(q). Let H(q) be the associated generalized hexagon.
This hexagons can be represented on a projective nondegenerate quadric Q(6,q) in projective
6-space PG(6,¢). An ideal line of H(g) is a line of Q(6,¢) that is not a line of H(g). An ideal
plane of H(g) is a plane of (6, ¢) that does not contain any line of H(g). Ideal lines and planes
can also be defined only using the geometry of the hexagon H(g), see [32]. The rank 3 geometry
that we will consider consists of the points of the split Cayley hexagon H(q), the ideal lines, and
the ideal planes, with natural incidence. The planes of the quadric Q(6,¢) that contain a line
pencil of the hexagon will be referred to as “degenerate” planes. Every ideal line lies in a unique
degenerate plane, and in every such plane there is a unique point with the property that every
line through that point in that plane is a hexagon line. We call that point the ideal center of
the ideal line.

We will apply Lemma 4.5 in order to study cycles in the collinearity graph. Therefore, we
need that the residue of an ideal plane is connected. This is true since an ideal plane in the rank
3 geometry is just a projective plane.

Lemma A.1
Let a,b, c,d be a quadrangle with the property that no two consecutive sides have ideal centers
incident with the same hexagon line. Then a,b,c,d is null-homotopic, provided q > 4.
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Proof. Indeed, the space {a,b,c}* is three dimensional and meets the quadric in a quadratic
cone C with vertex b. Our assumptions imply that d is not collinear with b on the quadric.
Hence d* meets C in a nondegenerate conic. Let e be any point of that conic, chosen in such
a way that none of the planes abe, bce, cde, ade are degenerate (this is possible since there is a
unique degenerate plane through every ideal line, and since ¢ > 4). Then e is, on the quadric,
collinear with all of a,b,c,d. If one of the lines ae, be, ce, de were a hexagon line, say ae, then
ae would contain the ideal centers of ab and ad, a contradiction. Hence all lines ae, be, ce, de
are ideal and all of the triangles a,b,e and b, c,e and ¢,d, e and a,d, e are contained in an ideal
plane. Hence all these triangles are null homotopic and the claim follows. O

Two ideal lines the ideal centers of which are not incident with the same hexagon line will
be called in general position.

Lemma A.2
Let a,b, c be a triangle in a degenerate plane. Then a,b, c is null-homotopic.

Proof. Indeed, choose a point d at hexagon-distance 4 from both a and b and opposite c. This is
possible by the following argument. The points a and b are contained in a trace, say in the trace
of some point d. If ¢ is contained in the trace of d as well, then ¢ € ab by the 2-regularity of the
hexagon. In that case, however, the triangle a, b, ¢ is geometric and hence, by Proposition 4.1,
null-homotopic. Therefore we can assume that ¢ is not contained in the trace of d, whence it is
opposite d. Then the lines ad and bd are ideal and the triangle a, b, d is null-homotopic. Choose
a hexagon line [ through d at hexagon-distance 5 from a and b. Choose a hexagon line I’ through
¢ at hexagon-distance 5 from a (and hence also from b) and opposite [. Finally, let e be a point
at hexagon-distance 3 from both [ and {’, and at hexagon-distance 4 from both ¢ and d. Then
the ideal lines ce and de are in general position, and so are the ideal lines de and bd; bd and bc;
de and ad; ad and ac; ac and ce; be and ce. By Lemma A.1 above, the quadrangles a, ¢, e, d and
b, c, e, d are null-homotopic, which implies that the quadrangle a, ¢, b, d is null-homotopic. Since
the triangle a, b, d is null-homotopic, we conclude that also the triangle a, b, ¢ is null-homotopic.
O

Lemma A.3
Every quadrangle a, b, c,d is null-homotopic.

Proof. Suppose first that the pairs {a,c} and {b,d} are opposite pairs of points (in the
hexagon). Then the proof of Lemma A.1l applies, taking into account that we now do not have
the restriction of e to be chosen such that abe, etc., is nondegenerate, but instead, we require
that e is such that ae, be, ce nor de is a hexagon line. This can be achieved since this is so for
at most two choices of e. Indeed, if there exist points e, € in (a,b,c,d)> such that ae and be’
are hexagon lines, then (a, b, e) and (a, b, ¢’} are planes of the quadric, Since both planes contain
hexagon lines, they are both degenerate. However, both (a,b,e) and (a, b, e') contain the ideal
line ab, which in turn is contained in a unique degenerate plane. Hence (a,b,e) = (a,b,€’) and,
thus, e = €.

Hence we may assume that a and ¢ are collinear on the quadric. If ac is ideal, then we are
done by the fact that all triangles are now null-homotopic. Hence we may assume that ac is a
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hexagon line. Clearly, we may assume that b and d are not collinear on the quadric as otherwise
a,b,c,d lie in a plane of the quadric and then ad meets bc in some point e. The triangles a, b, e
and ¢, d, e are null-homotopic by Lemma A.2, hence the result.

Let = be a point at hexagon-distance 5 from ac and opposite all of a,b,c and d. This can
be chosen as follows: consider a line [ at hexagon-distance 3 from both b and d, but different
from ac. Consider any point ' on [, at hexagon-distance 4 from both b and d, and then one can
choose z suitable but collinear with 2’ (and using ¢ > 4). Choose two lines m and n through z
opposite ac. Let e and f be incident with m and n, respectively, and at hexagon-distance 4 from
a and c, respectively. We claim that the pentagon a,b, ¢, f, e is null-homotopic. Indeed, b is, on
the quadric, collinear to some point of the ideal line ef, but in the hexagon not collinear to any
point of ef (as otherwise x and b are not opposite). If both eb and fb are ideal lines, then we have
the null-homotopic triangles a, b, e and b, e, f and b, ¢, f. If e is opposite b and bf is an ideal line,
then b, ¢, f is null-homotopic, but also a, b, f, e is null-homotopic because f is clearly opposite a,
and b is opposite e by assumption; so we may apply the previous paragraph in our present proof.
If both e and f are opposite b, then, likewise, we have the null-homotopic quadrangles a,b, g, ¢
and b,c, f,g, with g a point on ef at hexagon-distance 4 from b (or, equivalently, collinear
on the quadric with b). Now the pentagon a, b, ¢, f, e is null-homotopic Similarly, the pentagon
a,d,c, f,e is null-homotopic. But this now implies that the quadrangle a, b, ¢, d is null-homotopic.
O

Lemma A.4
Every pentagon a,b, c,d, e is null-homotopic.

Proof. Certainly, there is a point f on cd collinear on the quadric with a. If af is an ideal line,
then we have subdivided our pentagon into either two null-homotopic quadrangles, or one null
homotopic quadrangle and a null-homotopic triangle. So we may assume that af is a hexagon
line. First we suppose that ¢ # f # d. If the ideal center of cd is incident with af, then acd
is a degenerate plane and hence we can find a point ¢ in that plane such that ag, cg and dg
are ideal lines. We then have subdivided our pentagon onto the null-homotopic circuits a, b, ¢, g
and ¢,d, g and a,e,d,g. So we may assume that the ideal center = of cd is off af. We consider
any point h on the line fx, with f # h # x. Then ah, dh and ch are ideal lines and we have
subdivided our pentagon onto the null homotopic circuits a, b, ¢, h and ¢,d, h and a,e,d, h.

Hence we may at last assume that f = ¢ and so that ac is a hexagon line. Similarly as above,
we may also assume that the ideal center x of ¢d is not incident with ac. We choose an arbitrary
point k on cx, ¢ # k # x. Then dk and ak are ideal lines. Inside the degenerate plane acx, we
can easily find a point m such that am, ¢m and km are ideal lines. We have now subdivided
our pentagon into the quadrangles a,b,c,m and c,d, k, m and a,e,d, k, and the triangle a, k, m,
which are all null-homotopic.

The result follows. O

Lemma A.5
Every hexagon a,b,c,d, e, f is null-homotopic.
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Proof. This is similar to the proof of Lemma A.4. We just have to add one to the girth of
every circuit we considered containing e (it now also contains f). 0

Theorem A.6
Let ¢ > 4. Then the geometry G consisting of the points, the ideal lines and the ideal planes of
the split Cayley hexagon H(q) is simply connected.

Proof. Let aj,a9,...,a, be a circuit, with n > 6 in view of the foregoing lemmas. We prove
the assertion by means of induction on n. For n = 6, this is the previous lemma. Now let n > 7.
On the ideal line a4as there is at least one point b collinear on the quadric with a;. If a1b is
an ideal line, then we apply induction on the circuit ay, b, as, ag, - . . , a, (where possibly b = ay),
and, together with the fact that a1, a2, a3, as,b (with possibly a4 = b) is null-homotopic, this
implies the result.

So we may assume that a1b is a hexagon line. Then there is a point ¢ with a;c and bc ideal

lines, and we can apply induction on the circuit ay,ec,b,as,aq,...,a, (with possibly a5 = b),
which, together with the fact that ai,as,as,aq, b, c is null-homotopic by the previous lemma,
implies the assertion. O
Theorem A.7

Let ¢ > 4, let G = Go(q) and let G be the geometry consisting of the points, the ideal lines and
the ideal planes of the split Cayley hexagon H(q). Let F' be a maximal flag of G. Then

G=U(AG,G,F).
Proof. This follows by Theorem A.6 and Lemma 3.2. O

We now describe the amalgam in more detail. The stabilizer of a point is a parabolic subgroup
G1 := ¢° : GL3(q). The stabilizer of an ideal line is a group Gz := ¢* : GL2(q), and the stabilizer
of an ideal plane is G'3 := SL3(g). The amalgam is defined in such a way that G 2, which comes
from the intersection G; N Gy in Ga(q), is isomorphic to a group of order ¢*(¢ — 1)?; the other
two groups G2 3 and (1 3 are the line and point stabilizer, respectively, in SL3(¢) in the natural
action on a projective plane of order g. The group G123 is a flag stabilizer in the latter.

Note that the geometry G has a linear diagram of the form

point line Af* plane
oO———FOC——O0 ,
q q q—1

where the Af* denotes the dual of an affine generalized quadrangle. In our case, we delete a
line, all points on it, and all lines concurrent with it from an orthogonal quadrangle Q(4, q).
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B Appendix: An intransitive geometry for Gs(3)

Here is another application of our new theory. In [18] Hoffman and Shpectorov study an amalgam
of maximal subgroups of G = Aut(G2(3)) given by a certain choice of subgroups

= 23.L3(2):2,
= 21+4.(S3 X 53),

< 2~

which corresponds to an amalgam of subgroups of G = G4(3) given by
L = LNG=2%Ls2),
N = NnG=2"(3x3).2,
M = G2(2) == U3(3) . 2,
K = eMe™'  fore e Oy(L)\Oy(L)

where Og(f) denotes the largest normal subgroup of L that is a 2-group. The groups

Gy L,
é;’\2 = [\}a
Gy = M

define a flag-transitive coset geometry G of rank three for G = Aut(G2(3)), which is simply con-
nected by [18]. The subgroup G = G3(3) of G does not act flag-transitively on G. Nevertheless,
the groups

oLl —
oLz —
QL3 —
G023 —

x gz

define an intransitive coset geometry of rank three for G = G2(3), which is isomorphic to G
by [18] and, hence, simply connected. Corollary 3.2 implies that @ is the universal completion
of the amalgam given by E, N and M and their intersections as indicated in Definition 2.25
and that G is the universal completion of the amalgam given by L, N, M and K and their
intersections excluding M N K as indicated in Definition 2.26.
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