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1 Introdu
tion

Amalgams in group theory have proved their importan
e in the 
lassi�
ation of the �nite simple

groups (see Se
tions 28 and 29 of Gorenstein, Lyons, Solomon [12℄). Originally one 
onsiders

the amalgam of the maximal paraboli
 subgroups of a Chevalley group of rank � 3 in its natural

a
tion on the asso
iated building and proves that the universal 
ompletion of the amalgam is

(some 
ontrolled 
entral extension of) the Chevalley group itself, see [8℄, [26℄, [28℄, [29℄. In

modern terms, see M�uhlherr [21℄, this essentially is implied by the fa
t that the building and

the opposites geometry of the 
orresponding twin building are simply 
onne
ted.

Sin
e the mid-1970's there has been interest in other types of amalgams as well, see Phan

[19℄, [20℄. Somehow mira
ulously amalgams of (twisted) Chevalley groups over �nite �elds were

studied that did not 
ome from the a
tion on the building. As
hba
her [3℄ was the �rst to

realize that Phan's amalgam in [19℄ arises as a version of the amalgam of rank one and rank two

paraboli
s of the a
tion of SU

n+1

(q

2

) on the geometry of nondegenerate subspa
es of a (n+ 1)-

dimensional unitary ve
tor spa
e over F

q

2
. In order to prove that the universal 
ompletion of

the amalgam is the group under 
onsideration, one 
omplies to a lemma by Tits [30℄ saying

that this essentially amounts to 
he
king that the geometry is simply 
onne
ted and residually


onne
ted, under the assumption that the geometry is 
ag-transitive.

Sin
e Phan's papers were a bit vague, there was a demand for a new proof of Phan's result

[19℄. Das [9℄ su

eeded partially and Bennett, Shpe
torov [5℄ su

eeded 
ompletely. After

preprints of the latter paper were 
ir
ulated around the 2001 
onferen
e in honor of Ernie

Shult, things started to develop at a high pa
e. People �nally realized the 
onne
tion between

M�uhlherr's [21℄ new proof of the Curtis-Tits theorem and As
hba
her's [3℄ geometry for the

Phan amalgam. Eventually Ho�man, Shpe
torov and the �rst author [13℄ 
onstru
ted a new

geometry resulting in the geometri
 part of a 
ompletely new Phan-type theorem. Re
ently the

�rst author [14℄ provided the group-theoreti
 part, a 
lassi�
ation of amalgams based on [5℄,

thus 
ompleting the new Phan-type theorem.

Later Bennett joined Ho�man, Shpe
torov and the �rst author [4℄ to develop a theory for

this new sort of geometries, 
alled 
ip
op geometries: Take your favorite spheri
al building and


onsider it as a twin building �a la Tits [31℄. The opposites geometry, whi
h was used by M�uhlherr

[21℄ to re-prove the Curtis-Tits theorem, 
onsists of the pairs of elements of the twin building

at 
odistan
e one (the neutral element of the asso
iated Weyl group). A 
ip is an involution of

that opposites geometry that inter
hanges the positive and the negative part, 
ips the distan
es

1
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and preserves the 
odistan
e. The 
ip
op geometry of the opposites geometry with respe
t to

the 
ip 
onsists of all those elements of the opposites geometry that are stabilized (or rather


ipped) by the 
ip.

In 
ase of As
hba
her's geometry for Phan's theorem the building geometry is the proje
tive

spa
e 
orresponding to the group SL

n+1

(q

2

) and the 
ip is a nondegenerate unitary polarity.

The 
orresponding 
ip
ip geometry then is the geometry on the nondegenerate subspa
es of

the proje
tive spa
e with respe
t to the polarity. Indeed, being opposite means that a subspa
e

and its polar have empty interse
tion whi
h in turn means that the subspa
e in question is

nondegenerate.

The rank of this geometry is always higher than the one of the asso
iated building, and hen
e

this approa
h 
overs more groups. This idea works �ne for the unitary groups (see As
hba
her

[3℄, Das [9℄, Bennett, Shpe
torov [5℄) and for the symple
ti
 groups (see Das [10℄ (�nite �elds,

odd 
hara
teristi
), Das [11℄ (�nite �elds, even 
hara
teristi
), Ho�man, Shpe
torov and the

�rst author [13℄ (�nite �elds of size at least 8; a by-produ
t of the new geometry), and the �rst

author [16℄ (all �elds)) although, stri
tly speaking, the symple
ti
 forms do not yield a 
ip
op

geometry. However, for the orthogonal ones over �nite �elds, we run into problems sin
e the

geometry of nondegenerate spa
es is, in general, not 
ag-transitive. The 
ag-transitive 
ase

for forms of Witt index at least one, i.e., over quadrati
ally 
losed �elds has been settled by

Altmann [1℄. See also Altmann and the �rst author [2℄ for the same results and some extensions

to real 
losed �elds.

As said before, in order to prove that the universal 
ompletion of the amalgam is the group

under 
onsideration, one 
omplies to a lemma by Tits [30℄ saying that this essentially amounts to


he
king that the geometry is simply 
onne
ted and residually 
onne
ted, under the assumption

of 
ag-transitivity. For intransitive geometries one 
an try to �nd a 
ag-transitive subgeometry

and to prove that this subgeometry is simply 
onne
ted and residually 
onne
ted. However, 
ag-

transitive subgeometries of the geometry of degenerate subspa
es of a �nite orthogonal 
lassi
al

group are not known to be simply 
onne
ted, although Ho�man and one of his PhD students

are 
urrently trying to establish simple 
onne
tivity.

Hen
e, to over
ome these diÆ
ulties, one should generalize the theory of amalgams either

to non 
ag-transitive geometries, or to non simply 
onne
ted ones. Sin
e the former is more

realisti
 (the latter would involve 
onstru
ting 
overs of non simply 
onne
ted geometries), we

have 
hosen to try that. The key idea is to use a theorem by Stroppel [27℄, whi
h seems not

to be so well known, but is very useful in this 
ontext. We also dis
uss the more diÆ
ult and

more general problem of the amalgam of rank k paraboli
s in non 
ag-transitive geometries. It

a
tually turns out that the most natural results o

ur if one abandons thinking in amalgams of

rank k paraboli
s, but adopts thinking in amalgams of 
ertain shapes instead. We then apply

our theory to the orthogonal 
lassi
al groups and give many examples.

In an appendix, we give another example of an amalgam of a rank two Chevalley group,

Di
kson's group G

2

(q), whose universal 
ompletion is the Chevalley group itself, by introdu
ing

a rank three geometry for it. The reason why we mention this here is to illustrate how wide

to range of appli
ations really is: in this 
ase we 
onsider singular points, but nonsingular

lines and planes with respe
t to the 
lassi
al representation of the asso
iated building, whi
h

is a generalized hexagon. In a se
ond appendix we report on re
ent resear
h by Ho�man and

Shpe
torov [18℄ for an interesting amalgam for G

2
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related to the sporadi
 simple Thompson group.

We 
on
lude this introdu
tion by the remark that in the mid-1980's, using fun
tional analysis

and Lie theory, Borovoi [6℄ and Satarov [23℄ have obtained related universal 
ompletion results

for amalgams in 
ompa
t Lie groups. In this 
ase, however, the geometry a
ted on is the building,

so their results on 
ompa
t Lie groups follow immediately from the simple 
onne
tivity of the

building. The 
lassi�
ation strategy for amalgams from [5℄ and [14℄ was used by the �rst author

in [17℄ when providing a 
lassi�
ation of the amalgams from [6℄ and [23℄, yielding a Phan-type

theorem for 
ompa
t Lie groups.

2 Preliminaries

In this se
tion, we de�ne the notions and review the results that we will need to develop our

theory. This se
tion has been inspired by [7℄, [24℄, [25℄.

2.1 Coset pregeometries

De�nition 2.1 (Pregeometry, geometry) A pregeometry G over the set I is a triple

(X; �; typ) 
onsisting of a set X, a symmetri
 and re
exive in
iden
e relation �, and a surje
-

tive type fun
tion typ : X ! I, subje
t to the following 
ondition:

(Pre) If x � y with typ(x) = typ(y), then x = y.

The set I is usually 
alled the type set. A 
ag in X is a set of pairwise in
ident elements.

The type of a 
ag F is the set typ(F ) := ftyp(x) : x 2 Fg. A 
hamber is a 
ag of type I,

a pennant is a 
ag of 
ardinality three. The rank of a 
ag F is jtyp(F )j and the 
orank is

equal to jI n typ(F )j.

A geometry is a pregeometry with the additional property that

(Geo) every 
ag is 
ontained in a 
hamber.

The pregeometry G is 
onne
ted if the graph (X; �) is 
onne
ted.

De�nition 2.2 (Lounge, hall) Let G = (X; �; typ) be a pregeometry over I. A subset W of

X is 
alled a lounge if ea
h subset V of W for whi
h typ : V ! I is a inje
tion, is a 
ag. A

lounge W with typ(W ) = I is 
alled a hall.

De�nition 2.3 (Residue) Let F be a 
ag of G, let us say of type J � I. Then the residue

G

F

of F is the pregeometry

(X

0

; �

jX

0

�X

0
; typ

jInJ

)

over InJ , with

X

0

:= fx 2 X : F [ fxg is a 
ag of G and typ(x) =2 typ(F )g:

De�nition 2.4 (Automorphism) Let G = (X; �; typ) be a pregeometry over I. An auto-

morphism of G is a permutation � of X with typ(�(x)) = typ(x), for all x 2 X, and with

x

�

� y

�

if and only if x � y, for all x; y 2 X.
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Moreover, a group G of automorphisms

of G is 
alled if for ea
h pair of 
ags 
, d with


ag-transitive, typ(
) = typ(d),


hamber-transitive, typ(
) = I = typ(d),

pennant-transitive, jtyp(
)j = 3 = jtyp(d)j and typ(
) = typ(d),

in
iden
e-transitive, or jtyp(
)j = 2 = jtyp(d)j and typ(
) = typ(d),

vertex-transitive jtyp(
)j = 1 = jtyp(d)j and typ(
) = typ(d)

there exists a � 2 G with �(
) = d.

If the group of all automorphisms of G is 
ag-transitive, 
hamber-transitive, in
iden
e-

transitive or vertex-transitive, then we say that G is 
ag-transitive, 
hamber-transitive,

in
iden
e-transitive or vertex-transitive, respe
tively.

The emphasis of the present paper is on geometries that are not vertex-transitive, and whi
h

we will 
all intransitive. Therefore, we �rst have a look how one 
an des
ribe su
h a geometry

group-theoreti
ally.

De�nition 2.5 (Coset Pregeometry) Let I be a set and let (T

i

)

i2I

be a family of sets. Also,

let G be a group and let (G

t;i

)

t2T

i

;i2I

be a family of subgroups of G. Then

(t

i2I;t2T

i

G=G

t;i

; �; typ)

with typ(G

t;i

) = i and

(Cos) gG

t;i

� hG

s;j

if and only if gG

t;i

\ hG

s;j

6= ; and either i 6= j or (t; i) = (s; j)

is a pregeometry over I, the 
oset pregeometry of G with respe
t to (G

t;i

)

t2T

i

;i2I

. Sin
e the

type fun
tion is 
ompletely determined by the indi
es, we also denote the 
oset pregeometry of

G with respe
t to (G

t;i

)

t2T

i

;i2I

by

((G=G

t;i

)

t2T

i

;i2I

; �):

The family (G

t;i

)

t2T

i

;i2I

forms a lounge. If jT

i

j = 1 for all i 2 I, then we write G

i

instead of

G

t;i

. The family (G

i

)

i2I

forms a 
hamber of the 
oset geometry, 
alled the base 
hamber.

Certainly, any 
oset pregeometry with jT

i

j = 1 for all i 2 I, whi
h means nothing else

than being vertex-transitive, is in
iden
e-transitive. Indeed, if gG

i

\ hG

j

6= ;, then 
hoose

a 2 gG

1

\hG

j

. It follows aG

i

= gG

i

and aG

j

= hG

j

and therefore the automorphism a

�1

maps

the in
ident pair gG

i

, hG

j

onto the in
ident pair G

i

, G

j

.

Note that the residue of a 
oset pregeometry in general is not a 
oset pregeometry. The

following lemma des
ribes a situation in whi
h it in fa
t is a 
oset pregeometry.

Lemma 2.6 (inspired by Buekenhout/Cohen [7℄)

The in
iden
e-transitive 
oset pregeometry G = ((G=G

i

)

i2I

; �) of G with respe
t to (G

i

)

i2I

,

satis�es the following properties.
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(i) For ea
h J ( I, there is a natural inje
tive homomorphism

�

J

: ((G

J

=G

J[fig

)

i2InJ

; �)! G

fG

j

jj2Jg

of geometries over I n J given by

�

J

(aG

J[fig

) = aG

i

for a 2 G

J

, i 2 I n J .

(ii) Given J ( I, the homomorphism �

J

is surje
tive if and only if, for all i 2 I n J , we have

\

j2J

(G

j

G

i

) = G

J

G

i

;

(iii) Let J ( I. If �

J[fig

is surje
tive for all i 2 I, then �

�1

J

is a homomorphism, i.e., �

J

is an

isomorphism. In parti
ular, if �

J

is surje
tive for all J ( I, then �

J

is an isomorphism for

all J ( I.

Proof. (i) Sin
e G

J[fig

� G

i

and a 2 aG

i

\ G

j

for all i 2 I n J , j 2 J , a 2 G

J

, the map �

J

is well de�ned. Suppose aG

J[fig

\ bG

J[fkg

6= ;. Then also aG

i

\ bG

k

6= ;, so �

J

is indeed a

homomorphism. Suppose that a; b 2 G

J

satisfy �

J

(aG

J[fig

) = �

J

(bG

J[fig

). Then aG

i

= bG

i

,

so that b

�1

a 2 G

i

. On the other hand, b

�1

a 2 G

J

, so b

�1

a 2 G

J[fig

when
e aG

J[fig

= bG

J[fig

.

This shows that �

J

is inje
tive.

(ii) Suppose that �

J

is surje
tive. If x 2

T

j2J

(G

j

G

i

) for some i 2 I n J , then xG

i

is an

element of G in
ident to fG

j

j j 2 Jg, so that we 
an �nd x

0

2 G

J

with �

J

(x

0

G

j[fig

) = xG

i

.

Then x

0

G

i

= xG

i

, so x 2 x

0

G

i

� G

J

G

i

, proving

T

j2J

(G

j

G

i

) = G

J

G

i

. The 
onverse is equally

straightforward.

(iii) Fix J � I and suppose that �

J[fig

is surje
tive for ea
h i 2 I. We need to show that

�

�1

J

is a homomorphism. If jInJ j has 
ardinality one, then there is nothing to show. Let xG

i

,

yG

j

, where i; j 2 I n J , x; y 2 G

J

, be in
ident elements of the residue G

fG

k

jk2Jg

in G of the 
ag

fG

k

j k 2 Jg, 
f. (i). Then y

�1

x 2 G

j

G

i

\G

J

. But the surje
tivity of �

J[fjg

and (ii) yield

G

j

G

i

\G

J

� G

j

G

i

\G

J

G

i

= G

j

G

i

\

\

k2J

G

k

G

i

=

\

k2fjg[J

G

k

G

i

= G

fjg[J

G

i

when
e

G

j

G

i

\G

J

� (G

fjg[J

G

i

) \G

J

= G

fjg[J

G

fig[J

so that

y

�1

x 2 G

fjg[J

G

fig[J

;

proving that yG

fjg[J

and xG

fig[J

are in
ident elements of ((G

J

=G

fig[J

)

i2InJ

; �). Hen
e (iii).

2

It is also possible to derive a relation between the transitivity of a 
oset pregeometry and

the fa
t that its residues are 
oset pregeometries.
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Lemma 2.7 (inspired by Buekenhout/Cohen [7℄)

Let G = ((G=G

i

)

i2I

; �) be an in
iden
e-transitive 
oset pregeometry of G over I. Let k � 3 be

�nite and smaller than or equal to jIj. For ea
h J � I of rank at most k, assume the group G

is transitive on the set of 
ags of G of type J . Then for ea
h J � I of rank at most k � 1 the

homomorphism �

J

is bije
tive and for ea
h J � I of rank at most k� 2 the homomorphism �

J

is an isomorphism.

Proof. Let J � I be of rank at most k � 1 and let aG

i

be an element of the residue G

fG

j

jj2Jg

.

Then

faG

i

g [ fG

j

j j 2 Jg

is a 
ag of G of rank at most k, so by the assumption on the transitivity of G there is

g 2 G

J

=

\

j2J

G

j

with g

�1

a 2 G

i

, when
e aG

i

= gG

i

. We obtain

aG

i

= gG

i

= �

J

(gG

J[fig

):

Therefore, �

J

is surje
tive, and hen
e bije
tive, 
f. Lemma 2.6(i). The 
laim now follows from

Lemma 2.6(iii). 2

Similar to the 
hara
terizations of vertex-transitivity there exist a large number of group-

theoreti
 
hara
terizations of various geometri
 properties of 
oset geometries, see e.g. [7℄. The

following one, the 
hara
terization of 
onne
tivity, is an easy but 
ru
ial observation for studying

amalgams.

Theorem 2.8 (inspired by Buekenhout/Cohen [7℄)

Let I 6= ;. The 
oset pregeometry ((G=G

t;i

)

t2T

i

;i2I

; �) is 
onne
ted if and only if

G = hG

t;i

j i 2 I; t 2 T

i

i:

Proof. Suppose that G is 
onne
ted. Take i 2 I and t 2 T

i

. If a 2 G, then there is a path

1G

t;i

; a

0

G

t

0

;i

0

; a

1

G

t

1

;i

1

; a

2

G

t

2

;i

2

; : : : ; a

m

G

t

m

;i

m

; aG

t;i


onne
ting the elements 1G

t;i

and aG

t;i

of G. Now

a

k

G

t

k

;i

k

\ a

k+1

G

t

k+1

;i

k+1

6= ;;

so

a

�1

k

a

k+1

2 G

t

k

;i

k

G

t

k+1

;i

k+1

for k = 0; : : : ;m� 1. Hen
e

a = (1

�1

a

0

)(a

�1

0

a

1

) � � � (a

�1

m�1

a

m

)(a

�1

m

a) 2 G

t;i

G

t

0

;i

0

� � �G

t

m�1

;i

m�1

G

t

m

;i

m

G

t;i

;

and so a 2 hG

t;i

j i 2 I; j 2 T

i

i. The 
onverse is obtained by reversing the above argument. The

only diÆ
ulty that 
an o

ur is that g

1

G

t

1

;i

and g

2

G

t

2

;i

are not in
ident, even if g

1

G

t

1

;i

\g

2

G

t

2

;i

6=
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;. This 
an be remedied by in
luding some 
oset gG

t;j

, j 6= i, between g

1

G

t

1

;i

and g

2

G

t

2

;i

into

the 
hain of in
iden
es, where g 2 g

1

G

t

1

;i

\ g

2

G

t

2

;i

. 2

Now we turn to the question whi
h pregeometries a
tually are 
oset pregeometries. Stroppel

gave the answer in [27℄. To this end let us introdu
e the notion of the sket
h of a pregeometry.

De�nition 2.9 (Sket
h) Let G = (X; �; typ) be a pregeometry over I, let G be a group of

automorphisms of G, and let W � X be a set of G-orbit representatives of X. We write

W =

[

i2I

W

i

with W

i

� typ

�1

(i). The sket
h of G with respe
t to G and W is the 
oset geometry

((G=G

w

)

w2W

i

;i2I

; �

0

):

Re
all that two a
tions

� : G! Aut M and �

0

: G! Aut M

0

are said to be equivalent if there is an isomorphism  :M !M

0

su
h that  Æ�(g)Æ 

�1

= �

0

(g)

for ea
h g 2 G or, equivalently,  Æ �(g) = �

0

(g) Æ  for all g 2 G. In this 
ase, we shall also say

that M and M

0

are isomorphi
 G-sets.

Theorem 2.10 (Stroppel's re
onstru
tion theorem [27℄)

Let G = (X; �; typ) be a pregeometry over I and let G be a group of automorphisms of G. For

ea
h i 2 I let

w

i

1

; : : : ; w

i

t

i

be G-orbit representatives of the elements of type i of G su
h that

(i) W :=

S

i2I

�

w

i

1

; : : : ; w

i

t

i

	

is a lounge and,

(ii) if V � W is a 
ag, the a
tion of G on the pregeometry over typ(V ) 
onsisting of all

elements of the G-orbits x

G

, x 2 V , is in
iden
e-transitive.

Then the bije
tion � between the sket
h of G with respe
t to G and W and the pregeometry G

given by

gG

w

i

j

7! gw

i

j

is an isomorphism between pregeometries and an isomorphism between G-sets. 2

For a vertex-transitive group G, the previous theorem is just the isomorphism theorem of

in
iden
e-transitive pregeometries, see [7℄.

The geometry 
onsisting of the G-orbits x

G

of elements of some �xed maximal 
ag V � W

as in (ii) of the theorem is 
alled the orbit geometry for (G; G; V ).



2 PRELIMINARIES 8

2.2 Fundamental group and simple 
onne
tivity

De�nition 2.11 (Fundamental group) Let G be a 
onne
ted pregeometry. A path of length

k in the geometry is a sequen
e of elements (x

0

; : : : ; x

k

) su
h that x

i

and x

i+1

are in
ident,

0 � i � k� 1. A 
y
le based at an element x is a path in whi
h x

0

= x

k

= x. Two paths based

at the same vertex are homotopi
ally equivalent if one 
an be obtained from the other via

the following operations (
alled elementary homotopies):

(i) inserting or deleting a repetition (i.e., a 
y
le of length 1),

(ii) inserting or deleting a return (i.e., a 
y
le of length 2), or

(iii) inserting or deleting a triangle (i.e., a 
y
le of length 3).

The equivalen
e 
lasses of 
y
les based at an element x form a group under the operation indu
ed

by 
on
atenation of 
y
les. This group is 
alled the fundamental group of G and denoted by

�

1

(G; x).

A 
y
le based at x that is homotopi
ally equivalent to the trivial 
y
le (x) is 
alled null-

homotopi
. Every 
y
le of length 1, 2, or 3 is null-homotopi
.

De�nition 2.12 (Covering) Suppose G and

b

G are two 
onne
ted geometries over the same

type set and suppose � :

b

G ! G is a homomorphism of geometries, i.e., � preserves the

types and sends in
ident elements to in
ident elements. A surje
tive homomorphism � between


onne
ted geometries

b

G and G is 
alled a 
overing if and only if for every nonempty 
ag

b

F

in

b

G the mapping � indu
es an isomorphism between the residue of

b

F in

b

G and the residue

of F = �(

b

F ) in G. Coverings of a geometry 
orrespond to the usual topologi
al 
overings of

the 
ag 
omplex. It is well-known and easy to see that a surje
tive homomorphism � between


onne
ted geometries

b

G and G is a 
overing if and only if for every element bx in

b

G the map �

indu
es an isomorphism between the residue of bx in

b

G and the residue of x = �(bx) in G. If � is

an isomorphism, then the 
overing is said to be trivial.

Consider the geometry via its 
olored in
iden
e graph and re
all the following results from

the theory of simpli
ial 
omplexes.

Theorem 2.13 (Chapter 8 of Seifert/Threlfall [24℄)

Let G be a 
onne
ted geometry and let x be an element of G. The geometry G does not admit

any nontrivial 
overing if and only if �

1

(G; x) is trivial. 2

A geometry satisfying the equivalent 
onditions in the previous theorem is 
alled simply


onne
ted.

The following 
onstru
tion 
an also be found in Chapter 8 of [24℄.

De�nition 2.14 (Fundamental 
over) Let � be a 
onne
ted graph and let x be some vertex

of �. The fundamental 
over

b

� of � based at x is de�ned as follows: The verti
es of

b

� are

the homotopy 
lasses of paths of � based at x where two verti
es [


1

℄ and [


2

℄ of

b

� are adja
ent

if and only if

�




�1

1




2

�

= [t

1

t

2

℄ where t

1

is the terminal vertex of 


1

and t

2

is the terminal vertex

of 


2

.
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De�nition 2.15 (Universal 
overing) Let � and

b

� be 
onne
ted graphs and let x 2 �, bx 2

b

�

be verti
es. A 
overing

� :

b

�! �

mapping bx onto x is 
alled universal if, for any 
overing

� : �

1

! � and any x

1

2 �

�1

(x);

there exists a unique 
overing map

� :

b

�! �

1

with � = � Æ � and �(bx) = x

1

.

(

b

�; bx)

� //

�

$$I
II

IIIIII
(�

1

; x

1

)

�

��
(�; x)

Theorem 2.16 (Chapter 8 of Seifert/Threlfall [24℄)

Let � be a 
onne
ted graph, let x be a vertex of �, and let

b

� be the fundamental 
over of �

based at x. Then the fundamental 
overing � :

b

�! � is universal. 2

2.3 Amalgams

De�nition 2.17 (Amalgam) An amalgam of groups A over a �nite set I = f0; 1; : : : ; ng

and asso
iated nonempty sets J

i

, i 2 I, is a family of groups (G

j;i

)

j2J

i

;i2I

with monomorphisms,


alled identi�
ations,

�

j

i+1

;i+1

j

i

;i

: G

j

i

;i

! G

j

i+1

;i+1

for some (j

i

; i) and (j

i+1

; i+1) su
h that for ea
h G

j

i

;i

there exist identi�
ations whose 
ompo-

sition embeds G

j

i

;i

into some G

j

n

;n

.

Example 2.18 An amalgam with I = f0; 1; 2g, J

0

= f1; 2g, J

1

= f1; 2; 3; 4g, J

0

= f1; 2; 3; 4g
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an be depi
ted in the following diagram. The identi�
ation maps are given by arrows.

G

1;1

�

1;2

1;1 //

��3
33

33
33

33
33

33
33

3
G

1;2

G

2;1

//

""E
EE

EE
EE

E
G

2;2

G

1;0

�

1;1

1;0

EE����������������

��3
33

33
33

33
33

33
33

3
G

3;2

G

2;0

�

2;1

2;0

EE����������������
//

""E
EE

EE
EE

E
G

3;1

EE����������������
//
G

4;2

G

4;1

�

4;2

4;1

<<yyyyyyyy

�

3;2

4;1

EE����������������

Note that the de�nition of an amalgam does not imply

�

3;2

2;1

Æ �

2;1

2;0

= �

3;2

4;1

Æ �

4;1

2;0

in the above example.

Two amalgams A and B are similar if they share the same set I, the same sets J

i

and if

for all (j

i

; i) and (j

i+1

; i + 1) the identi�
ation

A

�

j

i+1

;i+1

j

i

;i

exists if and only if the identi�
ation

B

�

j

i+1

;i+1

j

i

;i

exists, i.e., if they 
an be depi
ted by the same diagram.

De�nition 2.19 (Homomorphism) Let A = (G

j;i

)

j;i

and B = (H

j;i

)

j;i

be similar amalgams.

A map  : tA ! tB will be 
alled an amalgam homomorphism from A to B if

(i) for every i 2 I and j 2 J

i

the restri
tion of  to G

j;i

is a homomorphism from G

j;i

to H

j;i

and

(ii)  Æ

A

�

j

i+1

;i+1

j

i

;i

=

B

�

j

i+1

;i+1

j

i

;i

Æ  

jG

j

i

;i

in 
ase the respe
tive identi�
ations exist.

If  is bije
tive and its inverse map  

�1

is also an amalgam homomorphism, then  is 
alled

an amalgam isomorphism. An automorphism of A is an isomorphism of A onto itself. As

usual, the automorphisms of A form the automorphism group, Aut(A).

De�nition 2.20 (Quotient, 
over) An amalgam B = (H

j;i

)

j;i

is a quotient of the amalgam

A = (G

j;i

)

j;i

if there is an amalgam homomorphism � from A to B su
h that the restri
tion of

� to any G

j;n

maps G

j;n

onto H

j;n

. The map � : tA ! tB is 
alled a 
overing, A is 
alled

a 
over of B. Two 
overings (A

1

; �

1

) and (A

2

; �

2

) of A are 
alled equivalent if there is an

isomorphism  of A

1

onto A

2

, su
h that �

1

= �

2

Æ  .

Noti
e that a 
overing � : tA ! tB between amalgams need not map G

j;i

surje
tively onto

H

j;i

for i 6= n.
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De�nition 2.21 (Completion) Let A be an amalgam. A pair (G;�) 
onsisting of a group G

and a map � : tA ! G is 
alled a 
ompletion of A, and � is 
alled a 
ompletion map, if

(i) for all i 2 I and j 2 J

i

the restri
tion of � to G

j;i

is a homomorphism of G

i

to G;

(ii) �

jG

j

i+1

;i+1

Æ �

j

i+1

;i+1

j

i

;i

= �

jG

j

i

;i

if the 
orresponding identi�
ation exist; and

(iii) �(tA) generates G.

A 
ompletion is 
alled faithful if for ea
h i 2 I and j 2 J

i

the restri
tion of � to G

j;i

is inje
tive.

Coming ba
k to Example 2.18, the de�nition of a 
ompletion does require that

�

jG

3;2

Æ �

3;2

2;1

Æ �

2;1

2;0

= �

jG

3;2

Æ �

3;2

4;1

Æ �

4;1

2;0

;

although by de�nition of an amalgam we do not ne
essarily have

�

3;2

2;1

Æ �

2;1

2;0

= �

3;2

4;1

Æ �

4;1

2;0

:

Proposition 2.22

Let A = (G

j;i

)

j;i

be an amalgam of groups, let F (A) = h(u

g

)

g2A

i be the free group on the

elements of A and let

S

1

= fu

x

u

y

= u

z

; whenever xy = z in some G

j;i

g

and

S

2

= fu

x

= u

y

; whenever �(x) = y for some identi�
ation �g

be relations for F . Then for ea
h 
ompletion (G;�) of A there exists a unique group epimorphism

b� : U(A)! G

with � = b� Æ  where

U(A) = h(u

g

)

g2A

j S

1

; S

2

i and  : tA ! U(A) : g 7! u

g

:

tA

 

//

�

##F
FFFF

FFFF U(A)

b�

��
G

Proof. The map A to U(A) given by  : g 7! u

g

turns the group U(A) into a 
ompletion of A.

If (G;�) is an arbitrary 
ompletion of A then the map

b� : u

g

7! �(g)

leads to a group epimorphism b� from U(A) to G be
ause

b�(u

g

u

h

) = b�(u

gh

) = �(gh) = �(g)�(h) = b�(u

g

)b�(u

h

)
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if u

gh

exists; otherwise de�ne

b�(u

g

u

h

) := �(g)�(h) = b�(u

g

)b�(u

h

):

Clearly, b� is uniquely determined by the requirement

�(g) = (b� Æ  )(g) = b�(u

g

):

2

De�nition 2.23 (Universal Completion) Let A = (G

j;i

)

j;i

be an amalgam of groups. Then

 : tA ! U(A) : g 7! u

g

for U(A) as in Proposition 2.22 is 
alled the universal 
ompletion of A. The amalgam A


ollapses if U(A) = 1

Example 2.24 (inspired by [22℄) Consider the groups

G

1

=




y; z j y

�1

zy = z

2

�

;

G

2

=




z; x j z

�1

xz = x

2

�

;

G

3

=




x; y j x

�1

yx = y

2

�

;

whi
h are nontrivial and pairwise isomorphi
. Let A be the amalgam given by G

1

, G

2

, G

3

and

the interse
tions

G

1

\G

2

= hzi

�

=

Z;

G

1

\G

3

= hyi

�

=

Z;

G

2

\G

3

= hxi

�

=

Z

where the identi�
ation maps are given by the in
lusion maps. Then U(A) = 1, so A 
ollapses.

hzi

//

  A
AA

AA
AA

A
G

1

1

??

//

��

hyi

>>}}}}}}}}

  A
AA

AA
AA

A
G

2

hxi

>>}}}}}}}}
//
G

3

It does not make any di�eren
e whether or not we add the identi�
ation of the trivial group on

the left hand side, as any 
ompletion map identi�es the di�erent neutral elements of all groups

anyway, sin
e the restri
tions have to be group homomorphisms.

Noti
e that if B is a quotient of A then U(B) is isomorphi
 to a fa
tor group of U(A). In

parti
ular, if B does not 
ollapse then neither does A. Also, an amalgam A admits a faithful


ompletion if and only if its universal 
ompletion is faithful.
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De�nition 2.25 (Amalgams for transitive geometries) Suppose G is a geometry and G �

Aut G is an in
iden
e-transitive group. Corresponding to G and G and some maximal 
ag F ,

there is an amalgam A = A(G; G; F ), the amalgam of paraboli
s with respe
t to G, G,

F , de�ned as the family (G

E

)

E�F

, where G

E

denotes the stabilizer of E � F in G, together

with the natural in
lusions as identi�
ation maps. In 
ase G is 
ag-transitive, the amalgam A

is independent (up to 
onjugation) of the 
hoi
e of F .

For example, let G be a rank four geometry with a 
ag p, l, �, �. Then the amalgam of

paraboli
s looks as follows:

G

p;l

""D
DD

DD
DD

D

��2
22

22
22

22
22

22
22

2

G

p;l;�

;;vvvvvvvvv
//

##H
HH

HH
HH

HH
G

p;�

//

��2
22

22
22

22
22

22
22

2
G

p

G

p;l;�;�

::ttttttttt
//

%%J
JJJJJJJJ

��7
77

77
77

77
77

77
77

77
G

p;l;�

DD																

##H
HH

HH
HH

HH

��5
55

55
55

55
55

55
55

5
G

l;�

//

""E
EE

EE
EE

E
G

l

G

p;�;�

DD																
//

��5
55

55
55

55
55

55
55

5
G

p;�

EE����������������

""E
EE

EE
EE

E
G

�

G

l;�;�

DD																
//

##H
HH

HH
HH

HH
G

l;�

EE����������������
//
G

�

G

�;�

<<zzzzzzzz

EE����������������

If jIj = n is �nite and k < n the amalgam A

(k)

= A

(k)

(G; G; F ) is the subamalgam of

A 
onsisting of all paraboli
s of rank less or equal k. It is 
alled the amalgam of rank k

paraboli
s. Of 
ourse, A

(n�1)

= A.

More generally, for F as above suppose W � 2

F

su
h that 2

F

3 U

0

� U 2 W implies

U

0

2 W, i.e., W is a subset of the power set of F that is 
losed under passing to supersets. A set

W � 2

F

with those properties is 
alled a shape. The amalgam of shape W with respe
t

to G, G, F is the family (G

U

)

U2W

, where G

U

is the stabilizer of U 2 W in G, with the natural

in
lusion maps as identi�
ation maps. It is denoted by A

W

(G; G).

De�nition 2.26 (Amalgams for intransitive geometries) Suppose G = (X; �; typ) is a ge-

ometry over I, the group G is a group of automorphisms of G, and for ea
h i 2 I let w

i

1

, : : :, w

i

t

i

be G-orbit representatives of the elements of type i of G su
h that

(i) W :=

S

i2I

�

w

i

1

; : : : ; w

i

t

i

	

is a lounge and,

(ii) if V �W is a 
ag, the a
tion of G on the pregeometry over I 
onsisting of all elements of

the G-orbits x

G

, x 2 V , is in
iden
e-transitive.

Then the amalgam A = A(G; G;W ) is de�ned as the family (G

U

)

U�W a 
ag

, where G

U

denotes

the stabilizer of U �W in G with the natural in
lusion maps as identi�
ation maps.
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For example, let G be a rank three geometry with W equal to p, q, l, �. Then the amalgam

of paraboli
s looks as follows:

G

p;l

//

��2
22

22
22

22
22

22
22

2
G

p

G

q;l

//

!!D
DD

DD
DD

D
G

q

G

p;l;�

EE
















//

��4
44

44
44

44
44

44
44

4
G

p;�

FF����������������

!!D
DD

DD
DD

D
G

l

G

q;l;�

EE
















//

##G
GGGGGGG
G

q;�

FF����������������
//
G

�

G

l;�

==zzzzzzzz

FF����������������

If jIj = n is �nite and k < n the amalgam A

(k)

= A

(k)

(G; G;W ) is the subamalgam of

A 
onsisting of all paraboli
s of rank less or equal k. It is 
alled the amalgam of rank k

paraboli
s. Of 
ourse, A

(n�1)

= A.

More generally, for W as above suppose W � 2

W

with the properties that ea
h U 2 W is

a 
ag and if U

0

� W is a 
ag with U

0

� U 2 W, then also U

0

2 W, i.e., W is a subset of the

power set of W 
onsisting of 
ags that is 
losed under passing to super
ags. A set W � 2

W

with those properties is 
alled a shape. The amalgam of shape W for (G; G;W ) is de�ned

on the family (G

U

)

U2W

with the natural in
lusion maps as identi�
ation maps. It is denoted

by A

W

(G; G;W ).

3 Theory of intransitive 
ip
op geometries

We now use the foregoing notions, de�nitions and basi
 results to develop some theory of intran-

sitive 
ip
op geometries, that results in 
riteria to 
on
lude that 
ertain 
ompletions of 
ertain

amalgams are universal.

Theorem 3.1 (Fundamental theorem of geometri
 
overing theory)

Let G = (X; �; typ) be a 
onne
ted geometry over I of rank at least three and let G be a group

of automorphisms of G. For ea
h i 2 I let

w

i

1

; : : : ; w

i

t

i

be G-orbit representatives of the elements of type i of G su
h that

(i) W :=

S

i2I

�

w

i

1

; : : : ; w

i

t

i

	

is a lounge and,

(ii) if V � W is a 
ag, the a
tion of G on the pregeometry over typ(V ) 
onsisting of all

elements of the G-orbits x

G

, x 2 V , is in
iden
e-transitive and pennant-transitive.
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Let A = A(G; G;W ) be the amalgam of paraboli
s. Then the 
oset pregeometry

b

G = ((U(A)=G

w

i

j

)

1�j�t;i2I

; �)

is a simply 
onne
ted geometry that admits a universal 
overing � :

b

G ! G indu
ed by the

natural epimorphism U(A)! G. Moreover, U(A) is of the form �

1

(G):G.

Proof. The 
ompletion

� : tA ! G

and, thus, the 
ompletion

b

� : tA ! U(A)

is inje
tive. Therefore the natural epimorphism

 : U(A)! G

indu
es an isomorphism between the amalgam

b

�(A) inside U(A) and the amalgam �(A) inside

G. Hen
e the epimorphism  : U(A)! G indu
es a quotient map between pregeometries

� :

b

G = ((U(A)=G

w

i

j

)

i2I;1�j�t

i

; �)! ((G=G

w

i

j

)

i2I;1�j�t

i

; �):

The latter 
oset pregeometry is isomorphi
 to G by the Re
onstru
tion Theorem 2.10. Noti
e

that U(A) a
ts on G

�

=

((G=G

w

i

j

)

i2I;1�j�t

i

; �) via

gG

w

i

j

7!  (u)gG

w

i

j

for u 2 U(A):

We want to prove that this quotient map a
tually is a 
overing map. The pregeometry

b

G is


onne
ted by Theorem 2.8, be
ause U(A) is generated by

b

�(A). Our goal is to apply Lemma

2.7 in order to establish the isomorphism of the residues. By hypothesis (ii) we 
an assume that

G, and hen
e

b

G, is in
iden
e-transitive. Then the group U(A) is pennant-transitive on

b

G. For,

let (a; b; 
) and (x; y; z) be 
ags of type J for some subset J of I of 
ardinality three. Then, by

in
iden
e-transitivity of U(A) on

b

G, we 
an assume a = x and b = y. By pennant-transitivity

of G on G there exists an element u of U(A) mapping (�(a) = �(x); �(b) = �(y); �(
)) onto

(�(a) = �(x); �(b) = �(y); �(z)). This element u is 
ontained in G

a

=  

�1

(G

�(a)

)

�

=

G

�(a)

. By

Lemma 2.7 and using the in
iden
e-transitivity of

b

G and of G the map � indu
es a bije
tion

between the residue

b

G

a

and the residue G

�(a)

, so the element u maps (a = x; b = y; 
) onto

(a = x; b = y; z). Hen
e U(A) is pennant-transitive on

b

G. Another appli
ation of Lemma

2.7, this time using the pennant-transitivity of

b

G and G, implies that � :

b

G ! G indu
es

isomorphisms between the residues of 
ags of rank one. So the map � :

b

G ! G indeed is a


overing of pregeometries. Sin
e G a
tually is a geometry the pregeometry

b

G is also a geometry.

Now we want to show that the 
overing

� :

b

G ! G

indu
ed by the 
anoni
al map U(A) ! G is universal. Denote the fundamental 
over of G at

some vertex w

i

j

of W by G

0

and let

� : G

0

! G
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be the 
orresponding 
overing map. If bw

i

j

2 �

�1

(w

i

j

), w

i

j

2 �

�1

(w

i

j

), we will a
hieve the

universality of � by showing that � = � Æ � for a unique isomorphism

� :

b

G ! G

0

with �( bw

i

j

) = w

i

j

.

(

b

G; bw

i

j

)

� //

�

��

(G; w

i

j

)

(G

0

; w

i

j

)

�

::uuuuuuuuu

The simple 
onne
tivity of

b

G then is implied by the universal property. For g 2 G

w

i

j

de�ne an

automorphism

bg

(j;i)

: G

0

! G

0

: q

1

(G; w

i

j

) 3 [
℄ 7! [g(
)℄ :

The latter is also a homotopy 
lass of paths in G starting at w

i

j

, be
ause g 2 G

w

i

j

stabilizes

w

i

j

. The fundamental 
over G

0

of G based at w

i

j

is isomorphi
 to the fundamental 
over G

1

of G based at some arbitrary w

i

0

j

0

2 W . Therefore we 
an de�ne automorphisms on G

0

using

the automorphisms on G

1


oming from elements g 2 G

w

i

0

j

0

. To this end �x a maximal 
ag

V � W 
ontaining w

i

j

. Let y 2 V be in
ident to to both w

i

j

and w

i

0

j

0

and for g 2 G

w

i

0

j

0

de�ne an

automorphism

bg

(j

0

;i

0

)

: G

0

! G

0

: ([
℄) 7!

h

w

i

j

; y; w

i

0

j

0

; g(y); g(
)

i

:

Sin
e, for a di�erent 
hoi
e y

0

2 V in
ident to both w

i

j

and w

i

0

j

0

, the 
y
les (y; y

0

; w

i

j

; y) and

(y; y

0

; w

i

0

j

0

; y) are null-homotopi
, the automorphism bg

(j

0

;i

0

)

does not depend on the parti
ular


hoi
e of y 2 V . In parti
ular, if w

i

0

j

0

2 V , we 
an 
hoose y = w

i

0

j

0

or y = w

i

j

.

Also, for in
ident w

i

0

j

0

and w

i

00

j

00

, let y be an element of V in
ident to w

i

j

, w

i

0

j

0

and w

i

00

j

00

. Sin
e

the 
y
les (y;w

i

0

j

0

; w

i

00

j

00

; y) and (g(y); w

i

0

j

0

; w

i

00

j

00

; g(y)) are null-homotopi
, for g 2 G

w

i

0

j

0

\ G

w

i

00

j

00

we

have

h

w

i

j

; y; w

i

0

j

0

; g(y); g(
)

i

=

h

w

i

j

; y; w

i

00

j

00

; g(y); g(
)

i

and so

bg

(j

0

;i

0

)

= bg

(j

00

;i

00

)

:

Hen
e

b: tA !

b

G :=

D

d

tA

E

� Aut G

0

is a 
ompletion map from A to

b

G. If bg

�1

1

bg

2

a
ts trivially on

b

G

0

, then g

�1

1

g

2

a
ts trivially on G,

thus g

1

= g

2

, as G a
ts faithfully on G. Thereforebembeds A in

b

G.

The geometry G

0

together with the group

b

G of automorphisms satis�es the hypothesis of

the Re
onstru
tion Theorem 2.10, so the geometry G

0

is isomorphi
 to the 
oset pregeometry

((

b

G=G

w

i

j

)

i2I;1�j�t

i

; �). The natural epimorphsim

b

G ! G indu
es a 
overing map from G

0

onto

G. Moreover, the natural epimorphism U(A) !

b

G yields a quotient map

b

G ! G

0

. Sin
e G

0
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is universal by Theorem 2.16 and therefore simply 
onne
ted, this quotient map is a uniquely

determined isomorphism. Hen
e the 
overing � : G ! G is universal.

It remains to establish the stru
ture of

b

G

�

=

U(A) to be of the form �

1

(G):G. However, this

is evident by Theorem 2.16. 2

Corollary 3.2 (Tits' lemma)

Let G = (X; �; typ) be a geometry over I and let G be a group of automorphisms of G. For ea
h

i 2 I let

w

i

1

; : : : ; w

i

t

i

be G-orbit representatives of the elements of type i of G su
h that

(i) W :=

S

i2I

�

w

i

1

; : : : ; w

i

t

i

	

is a lounge and,

(ii) if V � W is a 
ag, the a
tion of G on the pregeometry over typ(V ) 
onsisting of all

elements of the G-orbits x

G

, x 2 V , is in
iden
e-transitive and pennant-transitive.

Let A(G; G;W ) be the amalgam of paraboli
s of G with respe
t to G and W . The geometry G

is simply 
onne
ted if and only if the 
anoni
al epimorphism

U(A(G; G;W ))! G

is an isomorphism. 2

Theorem 3.3

Let G = (X; �; typ) be a geometry over some �nite set I and let G be a group of automorphisms

of G. For ea
h i 2 I let

w

i

1

; : : : ; w

i

t

i

be G-orbit representatives of the elements of type i of G su
h that

(i) W :=

S

i2I

�

w

i

1

; : : : ; w

i

t

i

	

is a lounge and,

(ii) if V � W is a 
ag, the a
tion of G on the pregeometry over typ(V ) 
onsisting of all

elements of the G-orbits x

G

, x 2 V , is 
ag-transitive.

LetW � 2

W

be a shape, assume that for ea
h 
ag U 2 2

W

nW the residue G

U

is simply 
onne
ted,

and let A(G; G;W ) and A

W

(G; G;W ) be the amalgam of maximal paraboli
s respe
tively the

amalgam of shape W of G with respe
t to G and W . Then

G = U(A

W

(G; G;W )):

In parti
ular, if ; 62 W, we have

G = U(A(G; G;W )) = U(A

W

(G; G;W )):
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Proof. We will pro
eed by indu
tion on the number of 
ags in the set 2

W

nW. If the set of


ags 
ontained in 2

W

nW is empty, then ; � W, so the amalgam A

W

(G; G;W ) 
ontains the

stabilizer in G of the empty 
ag, i.e., G. Hen
e G = U(A

W

(G; G;W )). If there exists a 
ag in

2

W

nW, then the empty 
ag is also 
ontained in 2

W

nW, be
ause by de�nition the shape W is


losed under taking super
ags. Hen
e in that 
ase G is simply 
onne
ted and by Corollary 3.2

we have G = U(A(G; G;W )). We will now prove that U(A(G; G;W )) = U(A

W

(G; G;W )).

If the empty 
ag is the only 
ag 
ontained in 2

W

nW, then A(G; G;W ) = A

W

(G; G;W ), so

their universal 
ompletions 
oin
ide. If there exists a nonempty 
ag in 2

W

nW, then there also

exists a (nonempty) 
ag U in 2

W

nW su
h thatW

0

:= fUg[W is a shape. Then A

W

0

(G; G;W ) =

A

W

(G; G;W ) [ G

U

. By 
onne
tivity of G

U

, the group G

U

is a 
ompletion of the amalgam

A(G

U

; G

U

;W

U

), where

W

U

:=W \ typ

�1

(Intyp(U)):

As G

U

is simply 
onne
ted, we even have

G

U

= U(A(G

U

; G

U

;W

U

)):

Sin
e A(G

U

; G

U

;W

U

) � A

W

(G; G;W ), we have

U(A

W

(G; G;W )) = U(A

W

(G; G;W ) [ U(A(G

U

; G

U

;W

U

)))

= U(A

W

(G; G;W ) [G

U

)

= U(A

W

0

(G; G;W )):

Hen
e, by indu
tion, we have U(A

W

(G; G;W )) = U(A(G; G;W )), �nishing the proof. 2

Corollary 3.4

Let G = (X; �; typ) be a geometry over some �nite set I, let G be a group of automorphisms of

G, for ea
h i 2 I let

w

i

1

; : : : ; w

i

t

i

be G-orbit representatives of the elements of type i of G su
h that

(i) W :=

S

i2I

�

w

i

1

; : : : ; w

i

t

i

	

is a lounge and,

(ii) if V � W is a 
ag, the a
tion of G on the geometry typ(W ) 
onsisting of all elements of

the G-orbits x

G

, x 2 V , is 
ag-transitive.

Let k � jIj, assume that all residues of rank greater or equal k with respe
t to subsets of W are

simply 
onne
ted, and let A(G; G;W ) and A

(k)

(G; G;W ) be the amalgam of maximal paraboli
s

respe
tively rank k paraboli
s of G with respe
t to G and W . Then

G = U(A(G; G;W )) = U(A

(k)

(G; G;W )):

2
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4 Intransitive geometries: an example

4.1 Some standard te
hniques

In this subse
tion, we 
olle
t some general results on simple 
onne
tivity and null-homotopi



y
les that have been established in re
ent papers dealing with simple 
onne
tivity of 
ag-

transitive geometries.

A geometri
 
y
le in the geometry G is a 
y
le 
ompletely 
ontained in the residue G

x

of

some element x.

Proposition 4.1 (Lemma 3.2 of [5℄)

Every geometri
 
y
le is null-homotopi
. 2

Corollary 4.2 (Lemma 3.3 of [5℄)

If two 
y
les based at the same element are obtained from one another by inserting or erasing

a geometri
 
y
le then they are homotopi
. 2

De�nition 4.3 (Basi
 diagram) Let G be a geometry over the set I. Let i; j 2 I, then

we de�ne i � j if there exists a 
ag f of 
otype fi; jg su
h that the residue of f is a geometry


ontaining two elements that are not in
ident. Then the graph (I;�) is 
alled the basi
 diagram

of G.

Let G be a geometry with basi
 diagram

1

Æ

2

Æ � � � ;

i.e., the node 1 has a unique neighbor in the basi
 diagram of G. Then the 1-graph (also 
alled

the 
ollinearity graph) of G is the graph whose verti
es are the elements of type 1, where two

su
h elements are adja
ent if they are in
ident with a 
ommon element of type 2.

De�nition 4.4 (Dire
t sum of pregeometries) Let G = (X; �; typ), G

0

= (X

0

; �

0

; typ

0

) be

pregeometries over I and I

0

. The dire
t sum

G � G

0

is a pregeometry over I t I

0

� whose element set is X tX

0

,

� whose type fun
tion is typ [ typ

0

and

� whose in
iden
e relation is the symmetri
 relation �

�

with �

�

j

X�X

= � and �

�

j

X

0

�X

0

= �

0

and �

�

j

X�X

0

= X �X

0

, i.e., elements of X are in
ident with elements of X

0

.

Lemma 4.5 (Lemma 5.1 of [13℄)

Let G be a geometry of rank n � 3 with basi
 diagram

1

Æ

2

Æ Æ � � � Æ

n

Æ
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and assume that for ea
h element x of type n the 1-graph of G

x

is 
onne
ted. Furthermore,

suppose that if the residue G

x

of some element x has a dis
onne
ted diagram falling into the two


onne
ted 
omponents �

1

and �

2

, then G

x

is equal to the dire
t sum

typ(�

1

)

G

x

�

typ(�

2

)

G

x

:

Then every 
y
le of G based at some element of type 1 or 2 is homotopi
ally equivalent to a


y
le passing ex
lusively through elements of type 1 or 2. 2

Lemma 4.6 (Lemma 7.2 of [13℄)

Assume that G = G

1

� G

2

with G

1


onne
ted of rank at least two. Then G is simply 
onne
ted.

2

4.2 Generalities about orthogonal spa
es

Let n � 1 and let V be an (n+ 1)-dimensional ve
tor spa
e over some �eld F of 
hara
teristi


distin
t from 2 endowed with some nondegenerate symmetri
 bilinear form f = (�; �). By

G

orth

A

= G

orth

A

(n; F; f)

we denote the pregeometry on the proper subspa
es of V that are nondegenerate with respe
t

to (�; �) with symmetrized 
ontainment as in
iden
e and the ve
tor spa
e dimension as the type.

Arbitrary �elds of 
hara
teristi
 not two

We will be using standard terminology. In parti
ular, ea
h �nite-dimensional ve
tor spa
e

over some �nite �eld admits two isometry 
lasses of nondegenerate quadrati
 forms, one 
alled

hyperboli
 (also positive or of plus type), the other 
alled ellipti
 (also negative or of

minus type).

Re
all the following rules for determining the type of an orthogonal sum of nondegenerate

orthogonal spa
es over a �nite �eld:

+�+ = +;

+�� = �;

��� = +:

The names hyperboli
 and ellipti
 are a generalization of the 
lassi
al usual in
iden
e-theoreti


meaning: if a nondegenerate subspa
e of even dimension 2n � 2 interse
ts the null-set of a

quadrati
 form in a quadri
 with Witt index n or n � 1, respe
tively, then the subspa
e is

hyperboli
 or ellipti
, respe
tively. We extend this as follows. If a one-spa
e takes only square

values or non square values, respe
tively, with respe
t to the quadrati
 form, then this one-spa
e

is hyperboli
 or ellipti
, respe
tively. Now these assignments of hyperboli
 and ellipti
, together

with the above rules, determine the plus/minus type of all nondegenerate subspa
es (in
luding

the whole spa
e and the zero spa
e).
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Theorem 4.7

The pregeometry G

orth

A

(n; F; f) is a geometry.

Proof. We have to prove that ea
h 
ag 
an be embedded in a 
ag of 
ardinality n. To this end

let F = fx

1

; : : : ; x

t

g be a 
ag of G

orth

A

. We 
an assume that the nondegenerate subspa
e x

1

of

V has dimension one. Indeed, if it has not, then we 
an �nd a nondegenerate one-dimensional

subspa
e x

0

of x

1

and study the 
ag F

0

= F [fx

0

g instead. Now observe that the residue of the

nondegenerate one-dimensional subspa
e x

1

is isomorphi
 to G

orth

A

(n�1; F; f

0

) for some indu
ed

form f

0

via the map that sends an element U of the residue of x

1

to U \ x

?

1

. Hen
e indu
tion

applies. 2

Lemma 4.8

If l is a line and p is a point not on l, then there are at most two points of G

orth

A

on l whi
h are

not 
ollinear to p. In other words, if F is the �eld F

q

of q elements, there exist at least q � 3

points on l 
ollinear to p.

Proof. Let U be the 3-spa
e ha; li and let W = U \ a

?

. The spa
e W has rank at least one as

U has rank at least two. Hen
e there are at most two singular points on W and, thus, there are

at least q � 1 nondegenerate lines in U through a. The line l has at most two singular points,

so at least q� 3 of the nondegenerate lines in W through a interse
t l is a nonsingular point. 2

Proposition 4.9

Let n � 3 or n = 2 and jFj � 5. Then the 
ollinearity graph of G

orth

A

(n; F; f) has diameter two.

Proof. If n � 3, then the dimension of the ve
tor spa
e V is at least 4. Fix two points hai

and hbi whi
h are not 
ollinear, i.e., the spa
e ha; bi is singular with respe
t to (�; �). However

ha; bi is a two-dimensional subspa
e of V whi
h is not totally singular, be
ause (a; a) and (b; b)

are distin
t from zero. Therefore the radi
al of ha; bi is a one-dimensional spa
e. The dimension

of ha; bi

?

is greater or equal to 2. Consequently, the orthogonal 
omplement of ha; bi 
ontains a

point, say h
i. Consider the two two-dimensional subspa
es ha; 
i and hb; 
i. Sin
e hai and hbi

are perpendi
ular to h
i, both ha; 
i and hb; 
i are lines. The distan
e between hai and h
i is

one and so is the distan
e between h
i and hbi. Thus the distan
e between hai and hbi is two.

Certainly G

orth

A


ontains a pair of non
ollinear points, so we have proved the 
laim for n � 3.

If n = 2, let hai and hbi be two arbitrary points in V . If the spa
e l = ha; bi is a line then

the distan
e between hai and hbi is one. Otherwise pi
k a point h~ai in hai

?

. The spa
e ha; ~ai is

a line and the point hbi is not on ha; ~ai. The point hbi is 
ollinear with at least two points on

ha; ~ai by Lemma 4.8. Pi
k one of these points, say the point h
i. We have established that the

distan
e between hai and hbi is two. 2

Corollary 4.10

Let n � 2 and jFj � 5. Then G

orth

A

(n; F; f) is residually 
onne
ted. 2

It is shown in [2℄ that, if n � 3 and F not equal to F

3

or F

5

, then the geometry G

orth

A

(n; F; f)

is simply 
onne
ted. If the �eld F is quadrati
ally 
losed, then G

orth

A

(n; F; f) is 
ag-transitive
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and one 
an apply Corollary 3.2 (Tits' lemma) to obtain presentations of 
ag-transitive groups

of automorphisms of that geometry, see [2℄. Also, in some 
ases like for real 
losed �elds, it is

possible to pass to suitable simply 
onne
ted 
ag-transitive parts of G

orth

A

(n; F; f) in order to

obtain presentations of groups of automorphisms.

Finite �elds of 
hara
teristi
 not two

For a �nite �eld F however, no 
ag-transitive part of G

orth

A

(n; F; f) is known to be simply 
on-

ne
ted, so we deal with intransitive geometries instead. The main tool for our proof of simple


onne
tivity is the following lemma. It is 
lear that it would fail for transitive geometries as,

roughly speaking, one loses half the points when passing to a transitive geometry.

Lemma 4.11

Let n � 2, let F be a �nite �eld of odd order q, let p be a point of G

orth

A

(n; F; f), let l be an ellipti


line su
h that hp; li is a nondegenerate plane, and let m be a hyperboli
 line su
h that hp;mi is

a nondegenerate plane. Then there exist at least

q�1

2

ellipti
 lines through p interse
ting l in a

a point of G

orth

A

(n; F; f) and at least

q�5

2

hyperboli
 lines through p interse
ting m in a point of

G

orth

A

(n; F; f).

Proof. Consider the two-dimensional nondegenerate spa
e p

?

\ hp; li. It 
ontains

q+1

2

or

q�1

2

points of positive type and

q+1

2

or

q�1

2

points of � type. Therefore, there exist at least

q�1

2

ellipti
 lines through p interse
ting p

?

\ hp; li and, thus, also l. The 
laim follows as all points

on an ellipti
 line are nondegenerate.

The number

q�5

2

=

q�1

2

� 2 of hyperboli
 lines through p interse
ting m in a point of

G

orth

A

(n; F; f) is obtained in exa
tly the same way plus the observation that two of the hyperboli


lines through p and p

?

\ hp;mi 
ould interse
t m in a singular point. 2

4.3 Positive form in dimension at least �ve

Let q be odd and let V be a ve
tor spa
e over F

q

of dimension n+ 1 at least �ve endowed with

a nondegenerate positive symmetri
 bilinear form f and let

G

orth

A

(n; F

q

; f) = (X; �; typ)

be the pregeometry on all nondegenerate subspa
es of V . Let

W =

�

p; p

0

; l; �; U; U

1

; U

2

; : : : ; U

t

	

be a lounge where p is a positive point, p

0

is a negative point, l is a negative line, � is a positive

or negative plane, U is a positive four-dimensional subspa
e of V , and the U

i

are arbitrary

nondegenerate proper subspa
es of V of dimension at least three. Let

(G

orth

A

)

W

= (Y; �

jY�Y

; typ

jY

)

be a pregeometry with

Y = fx 2 X j there exists a g 2 SO

n+1

(F

q

; f) with x 2 g(W )g :
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Proposition 4.12

The pregeometry (G

orth

A

)

W

is a geometry of rank jtyp(W )j � 3 with linear diagram and a


ollinearity graph of diameter two. Moreover, for ea
h element x of maximal type the 
ollinearity

graph of the residue (G

orth

A

)

W

x

is 
onne
ted. Furthermore, if the residue (G

orth

A

)

W

x

of some element

x has a dis
onne
ted diagram falling into the two 
onne
ted 
omponents �

1

and �

2

, then G

x

is

equal to the dire
t sum

typ(�

1

)

(G

orth

A

)

W

x

�

typ(�

2

)

(G

orth

A

)

W

x

:

Proof. To prove the statement on the 
ollinearity graph of (G

orth

A

)

W

let p and p

0

be points of

(G

orth

A

)

W

. Then there exists an ellipti
 line l through p

0

with hp; li nondegenerate. By Lemma

4.11 there exist

q�1

2

ellipti
 lines through p interse
ting l in a point of (G

orth

A

)

W

. Sin
e q is

odd, there exists at least one, and the 
laim is proved. The same argument implies that the


ollinearity graph of the residue of an element x of maximal type, whi
h is at least four, is


onne
ted. 2

The pre
eding proposition allows us to apply Lemma 4.5, so we 
an study the 
ollinearity

graph of (G

orth

A

)

W

in order to establish the simple 
onne
tivity of (G

orth

A

)

W

.

Lemma 4.13

Let q > 7. Then any triangle in the 
ollinearity graph of (G

orth

A

)

W

is homotopi
ally trivial.

Proof. Let a, b, 
 denote the points of a triangle. If ha; b; 
i is nondegenerate, then its polar

ha; b; 
i

?


ontains a nondegenerate two-dimensional subspa
e of V and, thus, points of positive

type and of negative type. Choosing a positive point p of that line if ha; b; 
i is positive and


hoosing a negative point p of that line if ha; b; 
i is negative, we obtain a positive spa
e ha; b; 
; pi


ontaining the triangle a, b, 
. Therefore that triangle is geometri
, when
e null-homotopi
 by

Proposition 4.1.

Now suppose the triangle a, b, 
 spans a degenerate spa
e ha; b; 
i with one-dimensional

radi
al x. Noti
e �rst that any line not passing through x is ellipti
. If a, b, 
 are all of positive

type 
onsider an arbitrary nondegenerate four-dimensional subspa
e of V 
ontaining ha; b; 
i.

That four-dimensional spa
e ne
essarily is of negative type, so its polar 
ontains a negative

point p. But ha; pi, hb; pi, h
; pi then are ellipti
 lines and the three-dimensional spa
es ha; b; pi,

hb; 
; pi, ha; 
; pi are nondegenerate, so the original triangle a, b, 
 is null-homotopi
. If all of

a, b, 
 are negative points, then we 
an 
hoose any positive point p on the line hb; 
i su
h that

ha; pi does not 
ontain x. Then ha; pi is an ellipti
 line and we have de
omposed the triangle a,

b, 
 into two triangles in whi
h positive points o

ur. If b and 
 are of negative type and a is

of positive type we 
an again 
hoose any positive point p on the line hb; 
i su
h that ha; pi does

not 
ontain x, de
omposing the triangle a, b, 
 into two triangles with one negative point and

two positive points.

We are left with the 
ase of one negative point, say a, and two positive points, say b and 
.

If neither b nor 
 are perpendi
ular to a, we 
an 
hoose the point b

0

on ha; bi perpendi
ular to

a, whi
h is a positive point as it is perpendi
ular to the negative point on the ellipti
 (negative)

line ha; bi. Sin
e 
 is not perpendi
ular to a, the line hb

0

; 
i does not pass through x and, thus, is

ellipti
. The triangle b, b

0

, 
 
onsists of positive points only and hen
e is null-homotopi
, so we


an assume a ? b in our original triangle. The spa
e ha; b; 
i is 
ontained in a four-dimensional



4 INTRANSITIVE GEOMETRIES: AN EXAMPLE 24

nondegenerate negative spa
e whi
h is in turn 
ontained in a �ve-dimensional nondegenerate

positive spa
e W (whi
h may be equal to V ). The spa
e U := hb; 
i

?

\W is a three-dimensional

negative spa
e. As b ? a the spa
e ha; Ui equals b

?

\ W , whi
h is a nondegenerate four-

dimensional positive spa
e. Through a there are q + 1 tangent planes of ha; Ui. Moreover, in

U there are q + 1 tangent lines. If all tangent planes through a would pass through a tangent

line of U , we would have that a equals the proje
tion of 
 onto ha; Ui with respe
t to the dire
t

de
omposition hbi � ha; Ui of W , whi
h would imply that a, b, 
 are linearly dependent. So

there exists a nondegenerate plane of ha; Ui through a that interse
ts U in a tangent line of

U . Sin
e U is a negative spa
e tangent lines of U 
ontain q negative points besides the radi
al.

We have to �nd a point p among those q points that spans an ellipti
 line together with a and

nondegenerate three-dimensional spa
es with ha; bi and ha; 
i. Sin
e b ? a and b ? p, the spa
e

ha; b; pi is automati
ally nondegenerate if ha; pi is an ellipti
 line. The spa
e ha; 
; pi has a Gram

matrix of the form

0

�

� � �

� � 0

� 0 


1

A

with respe
t to the basis a, 
, p for a nonzero 
onstant 
 and a variable �. Hen
e there are at

most two 
hoi
es of p for whi
h ha; 
; pi is degenerate. Hen
e there exist q � 2� 2�

q�1

2

points

p on a 
ommon ellipti
 line with a. Indeed, there are q negative points, two of whi
h might give

rise to a nondegenerate spa
e ha; 
; pi, two of whi
h might give rise to a nongenerate spa
e ha; pi

and

q�1

2

of whi
h might span hyperboli
 lines together with a. This number is positive sin
e

q > 7. 2

Lemma 4.14

Let q > 3. Then any quadrangle of the 
ollinearity graph of (G

orth

A

)

W

is homotopi
ally trivial.

Proof. Let a, b, 
, d be a quadrangle and let l := ab and m := 
d. If l and m interse
t in a

point e, then the quadrangle a, b, 
, d de
omposes into two triangles a, d, e and b, 
, e.

Therefore we 
an assume hl;mi is four-dimensional. Our goal is to prove that the point line

geometry 
onsisting of the points of l and m and the ellipti
 lines in hl;mi interse
ting l and m

is 
onne
ted. The fa
t that a, b, 
, d is null-homotopi
 then follows, as any path from a to b

via points on l and m and ellipti
 lines interse
ting both l and m de
omposes the quadrangle

a, b, 
, d into triangles. We have to 
onsider the following �ve 
ases of possible stru
ture for

hl;mi: (i) two-dimensional radi
al, ellipti
 line as 
omplement; (ii) two-dimensional radi
al,

hyperboli
 line as 
omplement; (iii) one-dimensional radi
al; (iv) nondegenerate negative spa
e;

(v) nondegenerate positive spa
e. In the �rst 
ase any line not through the radi
al is ellipti
 and

there is nothing to prove. The se
ond 
ase 
annot o

ur as the lines l and m are ellipti
. In the

third 
ase let x denote the radi
al of hl;mi. The planes hl; xi and hm;xi interse
t in a line, s say.

Denote the interse
tion of l and s by y and the interse
tion of m and s by z. All lines in hl; xi

through z ex
ept s are ellipti
, when
e z is in the same 
onne
ted 
omponent as any point on l

distin
t from y. By symmetry, y is in the same 
onne
ted 
omponent as any point on m distin
t

from z. Now let p be any point on l distin
t from y and 
onsider the plane hp;mi. This plane

is a 
omplement in hl;mi of x, so it is nondegenerate. By Lemma 4.11 there exist

q�1

2

ellipti


lines through p in hp;mi. This is at least two if q is larger than three, so there exists an ellipti




4 INTRANSITIVE GEOMETRIES: AN EXAMPLE 25

line through p interse
ting m in a point distin
t from z and, thus, the geometry 
onsisting of

the points of l and m and the ellipti
 lines of hl;mi interse
ting l and m is 
onne
ted. In 
ase

four we 
an apply the same argument as above by using tangent planes of the ellipti
 quadri



ontaining l or m. In the �fth 
ase the spa
e hl;mi is an obje
t of the geometry (G

orth

A

)

W

, so

the quadrangle a, b, 
, d is geometri
 and hen
e, by Lemma 4.1, null-homotopi
. 2

Lemma 4.15

Any pentagon of the 
ollinearity graph of (G

orth

A

)

W

is homotopi
ally trivial.

Proof. Let a, b, 
, d, e be a pentagon and let l := 
d. If ha; li is nondegenerate, then there

exist

q�1

2

ellipti
 lines through a interse
ting l, whi
h is at least one, and if ha; li is degenerate,

then there exist q ellipti
 lines through a interse
ting l, as in ha; li ea
h 
omplement of the

radi
al is an ellipti
 line. In both 
ases we have de
omposed the pentagon a, b, 
, d, e into two

quadrangles. 2

By Proposition 4.12, the three lemmas we have proved the following theorem.

Theorem 4.16

Let q � 9. Then the geometry (G

orth

A

)

W

is simply 
onne
ted. 2

Theorem 4.17

Let q � 9 be odd, let n � 4, let V be an (n+1)-dimensional ve
tor spa
e over F

q

endowed with

a nondegenerate positive symmetri
 bilinear form f . Let G = (G

orth

A

)

W

, let G = SO

n+1

(F

q

; f)

and let A = A(G; G;W ) be the amalgam of maximal paraboli
s of (G

orth

A

)

W

. Then U(A) =

SO

n+1

(F

q

; f).

Proof. This follows by Theorem 4.16 and Corollary 3.2. 2

4.4 Negative form in dimension at least �ve

Let q be odd and let V be a ve
tor spa
e over F

q

of dimension n+ 1 at least �ve endowed with

a nondegenerate negative symmetri
 bilinear form f and let

G

orth

A

(n; F

q

; f) = (X; �; typ)

be the pregeometry on all nondegenerate subspa
es of V . Let

W =

�

p; p

0

; l; �; U; U

1

; U

2

; : : : ; U

t

	

be a lounge where p is a positive point, p

0

is a negative point, l is a negative line, � is a positive

or negative plane, U is a positive four-dimensional subspa
e of V , and the U

i

are arbitrary

nondegenerate proper subspa
es of V of dimension at least three. Let

(G

orth

A

)

W

= (Y; �

jY�Y

; typ

jY

)

be a pregeometry with

Y = fx 2 X j there exists a g 2 SO

n+1

(F

q

; f) with x 2 g(W )g :
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Theorem 4.18

Let q � 9. Then the geometry (G

orth

A

)

W

is simply 
onne
ted.

Proof. The proof is almost the same as the proof of Theorem 4.16, i.e., it follows by versions

of Lemmas 4.13, 4.14 and 4.15. The 
ru
ial step is �nding a version of the proof of Lemma 4.13

that works. This, however, simply amounts to inter
hanging the words positive and negative in

a suitable way. The other two lemmas 
an be 
opied literally. 2

Theorem 4.19

Let q � 9 be odd, let n � 4, let V be an (n+1)-dimensional ve
tor spa
e over F

q

endowed with

a nondegenerate negative symmetri
 bilinear form f . Let G = (G

orth

A

)

W

, let G = SO

n+1

(F

q

; f)

and let A = A(G; G;W ) be the amalgam of maximal paraboli
s of (G

orth

A

)

W

. Then U(A) =

SO

n+1

(F

q

; f). 2

4.5 Negative form in dimension four

Let q be odd and let V be a ve
tor spa
e over F

q

of dimension four endowed with a nondegenerate

negative symmetri
 bilinear form f and let

G

orth

A

(n; F

q

; f) = (X; �; typ)

be the pregeometry on all nondegenerate subspa
es of V . Let

W =

�

p; p

0

; l; �; �

0

	

be a lounge where p is a positive point, p

0

is a negative point, l is a negative line, � is a positive

plane, and �

0

is a negative plane. Let

(G

orth

A

)

W

= (Y; �

jY�Y

; typ

jY

)

be a pregeometry with

Y = fx 2 X j there exists a g 2 SO

n+1

(F

q

; f) with x 2 g(W )g :

Lemma 4.20

Let q � 7. Then any triangle in the 
ollinearity graph of (G

orth

A

)

W

is homotopi
ally trivial.

Proof. Let a; b; 
 be a triangle in a degenerate plane with one-dimensional radi
al p. Let � be

a nondegenerate plane through ab. There are two degenerate planes through b
, namely ha; b; 
i

and some plane �

b


; likewise there are two degenerate planes ha; b; 
i and �

a


through a
. The

planes �

a


and �

b


meet � in two lines l

a


and l

b


, respe
tively, through a and b. Sin
e, in �,

there are at least

q�1

2

ellipti
 lines through any nonsingular point, we �nd two ellipti
 lines l

a

and l

b

through a and b, respe
tively, distin
t from l

a


, l

b


, and habi. Let d be the interse
tion

of l

a

with l

b

. The plane h
; d; pi is nondegenerate sin
e the only degenerate plane through the

tangent line 
p is ha; b; 
i. Hen
e there is some point 


0

on 
p with the property that 


0

d is

ellipti
. It is now 
lear that, sin
e all triangles a, b, d and a, 


0

, d and b, 


0

, d are 
ontained

in nondegenerate planes, that a, b, 


0

is null-homotopi
. But the automorphism group of the



4 INTRANSITIVE GEOMETRIES: AN EXAMPLE 27

quadri
 
ontains a group of order q � 1 �xing ab pointwise, �xing p and a
ting transitively on

the points of p
 ex
ept for p and the interse
tion p
 \ ab. So we 
on
lude that also a, b, 
 is

null-homotopi
. 2

Theorem 4.21

Let q > 7. Then (G

orth

A

)

W

is simply 
onne
ted.

Proof. Case (iv) of Lemma 4.14 shows that any quadrangle of (G

orth

A

)

W

is null-homotopi
 and

Lemma 4.15 shows that any pentagon of (G

orth

A

)

W

is null-homotopi
. 2

Theorem 4.22

Let q � 9 be odd, let V be a four-dimensional ve
tor spa
e over F

q

endowed with a positive

nondegenerate form f . Let G = (G

orth

A

)

W

, let G = SO

4

(F

q

; f) and let A = A(G; G;W ) be the

amalgam of maximal paraboli
s of (G

orth

A

)

W

. Then U(A) = SO

4

(F

q

; f). 2

4.6 Smaller amalgams

Theorem 4.23

Let q � 9 be odd, let n � 6, let V be an (n+1)-dimensional ve
tor spa
e over F

q

endowed with

a nondegenerate positive symmetri
 bilinear form f . Assume that W is a lounge 
ontaining

positive and negative hyperplanes, negative hyperlines, a positive or negative 
odimension three

spa
e and a positive 
odimension four spa
e. Let G = (G

orth

A

)

W

, let G = SO

n+1

(F

q

; f) and let

A

n�2

= A

n�2

(G; G;W ) be the amalgam of rank n� 2 paraboli
s of (G

orth

A

)

W

. Then

U(A

n�2

) = SO

n+1

(F

q

; f):

Proof. In view of Theorem 4.16 in order to apply Corollary 3.4, we have to prove that all

residues of 
ags of rank one are simply 
onne
ted. If the 
ag x of rank one is not a point of

(G

orth

A

)

W

, then the simple 
onne
tivity of (G

orth

A

)

W

x

follows from Theorem 4.16 or Lemma 4.6

a

ording to whether x is a hyperplane or not. So assume x is a point. If it is a positive

point, then the dual of the residue (G

orth

A

)

W

x

is simply 
onne
ted by Theorem 4.16 and hen
e

also (G

orth

A

)

W

x

is simply 
onne
ted. If x is a negative point, then the hyperline in the residue

(G

orth

A

)

W

x

be
omes a positive hyperline, while the 
odimension four subspa
e of (G

orth

A

)

W

x

be
omes

negative. After dualizing (G

orth

A

)

W

x

, the simple 
onne
tivity of (G

orth

A

)

W

x

follows by Theorem 4.18.

2

In prin
iple, the theorem would also work for n = 5, but then by assumption W would have

to 
ontain a negative line and a positive 
odimension four spa
e, whi
h would be a positive line.

But this would 
ontradi
t the fa
t, that W 
ontains a positive and a negative point, be
ause

the 
onne
ting line between those two points 
annot be both positive and negative.

Theorem 4.24

Let q � 9 be odd, let n � 4, let V be an (n+1)-dimensional ve
tor spa
e over F

q

endowed with

a nondegenerate positive symmetri
 bilinear form f . Let

G

orth

A

(n; F

q

; f) = (X; �; typ)
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be the pregeometry on all nondegenerate subspa
es of V . Let

W =

�

p; p

0

; l; �; U; U

1

; U

2

; : : : ; U

t

	

be a lounge where p is a positive point, p

0

is a negative point, l is a negative line, � is a positive

or negative plane, U is a positive four-dimensional subspa
e of V , and the U

i

are arbitrary

nondegenerate proper subspa
es of V of dimension at least three. Let G = SO

n+1

(F

q

; f) and let

(G

orth

A

)

W

= (Y; �

jY�Y

; typ

jY

)

be a pregeometry with

Y = fx 2 X j there exists a g 2 G with x 2 g(W )g :

Let W � 2

W

be a shape 
ontaining p, p

0

, every 
ag of 
orank two, and the 
ag 
onsisting of all

elements of type greater or equal four. Then

G = U(A

W

(G; G;W ):

Proof. This follows from Theorem 3.4 plus Theorem 4.16 and Lemmas 3.2 and 4.6. 2

A Appendix: A transitive geometry for G

2

(q)

In the sequel we study a rank three geometry related to the split Cayley hexagon over a �nite

�eld. Its simple 
onne
tivity 
an be proven with methods dealing with �nite quadri
s as before.

To be pre
ise, we 
onsider the group G

2

(q). Let H(q) be the asso
iated generalized hexagon.

This hexagons 
an be represented on a proje
tive nondegenerate quadri
 Q(6; q) in proje
tive

6-spa
e PG(6; q). An ideal line of H(q) is a line of Q(6; q) that is not a line of H(q). An ideal

plane of H(q) is a plane of Q(6; q) that does not 
ontain any line of H(q). Ideal lines and planes


an also be de�ned only using the geometry of the hexagon H(q), see [32℄. The rank 3 geometry

that we will 
onsider 
onsists of the points of the split Cayley hexagon H(q), the ideal lines, and

the ideal planes, with natural in
iden
e. The planes of the quadri
 Q(6; q) that 
ontain a line

pen
il of the hexagon will be referred to as \degenerate" planes. Every ideal line lies in a unique

degenerate plane, and in every su
h plane there is a unique point with the property that every

line through that point in that plane is a hexagon line. We 
all that point the ideal 
enter of

the ideal line.

We will apply Lemma 4.5 in order to study 
y
les in the 
ollinearity graph. Therefore, we

need that the residue of an ideal plane is 
onne
ted. This is true sin
e an ideal plane in the rank

3 geometry is just a proje
tive plane.

Lemma A.1

Let a; b; 
; d be a quadrangle with the property that no two 
onse
utive sides have ideal 
enters

in
ident with the same hexagon line. Then a; b; 
; d is null-homotopi
, provided q � 4.
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Proof. Indeed, the spa
e fa; b; 
g

?

is three dimensional and meets the quadri
 in a quadrati



one C with vertex b. Our assumptions imply that d is not 
ollinear with b on the quadri
.

Hen
e d

?

meets C in a nondegenerate 
oni
. Let e be any point of that 
oni
, 
hosen in su
h

a way that none of the planes abe; b
e; 
de; ade are degenerate (this is possible sin
e there is a

unique degenerate plane through every ideal line, and sin
e q � 4). Then e is, on the quadri
,


ollinear with all of a; b; 
; d. If one of the lines ae; be; 
e; de were a hexagon line, say ae, then

ae would 
ontain the ideal 
enters of ab and ad, a 
ontradi
tion. Hen
e all lines ae; be; 
e; de

are ideal and all of the triangles a; b; e and b; 
; e and 
; d; e and a; d; e are 
ontained in an ideal

plane. Hen
e all these triangles are null homotopi
 and the 
laim follows. 2

Two ideal lines the ideal 
enters of whi
h are not in
ident with the same hexagon line will

be 
alled in general position.

Lemma A.2

Let a; b; 
 be a triangle in a degenerate plane. Then a; b; 
 is null-homotopi
.

Proof. Indeed, 
hoose a point d at hexagon-distan
e 4 from both a and b and opposite 
. This is

possible by the following argument. The points a and b are 
ontained in a tra
e, say in the tra
e

of some point d. If 
 is 
ontained in the tra
e of d as well, then 
 2 ab by the 2-regularity of the

hexagon. In that 
ase, however, the triangle a, b, 
 is geometri
 and hen
e, by Proposition 4.1,

null-homotopi
. Therefore we 
an assume that 
 is not 
ontained in the tra
e of d, when
e it is

opposite d. Then the lines ad and bd are ideal and the triangle a; b; d is null-homotopi
. Choose

a hexagon line l through d at hexagon-distan
e 5 from a and b. Choose a hexagon line l

0

through


 at hexagon-distan
e 5 from a (and hen
e also from b) and opposite l. Finally, let e be a point

at hexagon-distan
e 3 from both l and l

0

, and at hexagon-distan
e 4 from both 
 and d. Then

the ideal lines 
e and de are in general position, and so are the ideal lines de and bd; bd and b
;

de and ad; ad and a
; a
 and 
e; b
 and 
e. By Lemma A.1 above, the quadrangles a; 
; e; d and

b; 
; e; d are null-homotopi
, whi
h implies that the quadrangle a; 
; b; d is null-homotopi
. Sin
e

the triangle a; b; d is null-homotopi
, we 
on
lude that also the triangle a; b; 
 is null-homotopi
.

2

Lemma A.3

Every quadrangle a; b; 
; d is null-homotopi
.

Proof. Suppose �rst that the pairs fa; 
g and fb; dg are opposite pairs of points (in the

hexagon). Then the proof of Lemma A.1 applies, taking into a

ount that we now do not have

the restri
tion of e to be 
hosen su
h that abe, et
., is nondegenerate, but instead, we require

that e is su
h that ae, be, 
e nor de is a hexagon line. This 
an be a
hieved sin
e this is so for

at most two 
hoi
es of e. Indeed, if there exist points e, e

0

in ha; b; 
; di

?

su
h that ae and be

0

are hexagon lines, then ha; b; ei and ha; b; e

0

i are planes of the quadri
, Sin
e both planes 
ontain

hexagon lines, they are both degenerate. However, both ha; b; ei and ha; b; e

0

i 
ontain the ideal

line ab, whi
h in turn is 
ontained in a unique degenerate plane. Hen
e ha; b; ei = ha; b; e

0

i and,

thus, e = e

0

.

Hen
e we may assume that a and 
 are 
ollinear on the quadri
. If a
 is ideal, then we are

done by the fa
t that all triangles are now null-homotopi
. Hen
e we may assume that a
 is a
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hexagon line. Clearly, we may assume that b and d are not 
ollinear on the quadri
 as otherwise

a; b; 
; d lie in a plane of the quadri
 and then ad meets b
 in some point e. The triangles a; b; e

and 
; d; e are null-homotopi
 by Lemma A.2, hen
e the result.

Let x be a point at hexagon-distan
e 5 from a
 and opposite all of a; b; 
 and d. This 
an

be 
hosen as follows: 
onsider a line l at hexagon-distan
e 3 from both b and d, but di�erent

from a
. Consider any point x

0

on l, at hexagon-distan
e 4 from both b and d, and then one 
an


hoose x suitable but 
ollinear with x

0

(and using q � 4). Choose two lines m and n through x

opposite a
. Let e and f be in
ident withm and n, respe
tively, and at hexagon-distan
e 4 from

a and 
, respe
tively. We 
laim that the pentagon a; b; 
; f; e is null-homotopi
. Indeed, b is, on

the quadri
, 
ollinear to some point of the ideal line ef , but in the hexagon not 
ollinear to any

point of ef (as otherwise x and b are not opposite). If both eb and fb are ideal lines, then we have

the null-homotopi
 triangles a; b; e and b; e; f and b; 
; f . If e is opposite b and bf is an ideal line,

then b; 
; f is null-homotopi
, but also a; b; f; e is null-homotopi
 be
ause f is 
learly opposite a,

and b is opposite e by assumption; so we may apply the previous paragraph in our present proof.

If both e and f are opposite b, then, likewise, we have the null-homotopi
 quadrangles a; b; g; e

and b; 
; f; g, with g a point on ef at hexagon-distan
e 4 from b (or, equivalently, 
ollinear

on the quadri
 with b). Now the pentagon a; b; 
; f; e is null-homotopi
 Similarly, the pentagon

a; d; 
; f; e is null-homotopi
. But this now implies that the quadrangle a; b; 
; d is null-homotopi
.

2

Lemma A.4

Every pentagon a; b; 
; d; e is null-homotopi
.

Proof. Certainly, there is a point f on 
d 
ollinear on the quadri
 with a. If af is an ideal line,

then we have subdivided our pentagon into either two null-homotopi
 quadrangles, or one null

homotopi
 quadrangle and a null-homotopi
 triangle. So we may assume that af is a hexagon

line. First we suppose that 
 6= f 6= d. If the ideal 
enter of 
d is in
ident with af , then a
d

is a degenerate plane and hen
e we 
an �nd a point g in that plane su
h that ag, 
g and dg

are ideal lines. We then have subdivided our pentagon onto the null-homotopi
 
ir
uits a; b; 
; g

and 
; d; g and a; e; d; g. So we may assume that the ideal 
enter x of 
d is o� af . We 
onsider

any point h on the line fx, with f 6= h 6= x. Then ah, dh and 
h are ideal lines and we have

subdivided our pentagon onto the null homotopi
 
ir
uits a; b; 
; h and 
; d; h and a; e; d; h.

Hen
e we may at last assume that f = 
 and so that a
 is a hexagon line. Similarly as above,

we may also assume that the ideal 
enter x of 
d is not in
ident with a
. We 
hoose an arbitrary

point k on 
x, 
 6= k 6= x. Then dk and ak are ideal lines. Inside the degenerate plane a
x, we


an easily �nd a point m su
h that am, 
m and km are ideal lines. We have now subdivided

our pentagon into the quadrangles a; b; 
;m and 
; d; k;m and a; e; d; k, and the triangle a; k;m,

whi
h are all null-homotopi
.

The result follows. 2

Lemma A.5

Every hexagon a; b; 
; d; e; f is null-homotopi
.
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Proof. This is similar to the proof of Lemma A.4. We just have to add one to the girth of

every 
ir
uit we 
onsidered 
ontaining e (it now also 
ontains f). 2

Theorem A.6

Let q � 4. Then the geometry G 
onsisting of the points, the ideal lines and the ideal planes of

the split Cayley hexagon H(q) is simply 
onne
ted.

Proof. Let a

1

; a

2

; : : : ; a

n

be a 
ir
uit, with n � 6 in view of the foregoing lemmas. We prove

the assertion by means of indu
tion on n. For n = 6, this is the previous lemma. Now let n � 7.

On the ideal line a

4

a

5

there is at least one point b 
ollinear on the quadri
 with a

1

. If a

1

b is

an ideal line, then we apply indu
tion on the 
ir
uit a

1

; b; a

5

; a

6

; : : : ; a

n

(where possibly b = a

4

),

and, together with the fa
t that a

1

; a

2

; a

3

; a

4

; b (with possibly a

4

= b) is null-homotopi
, this

implies the result.

So we may assume that a

1

b is a hexagon line. Then there is a point 
 with a

1


 and b
 ideal

lines, and we 
an apply indu
tion on the 
ir
uit a

1

; 
; b; a

5

; a

6

; : : : ; a

n

(with possibly a

5

= b),

whi
h, together with the fa
t that a

1

; a

2

; a

3

; a

4

; b; 
 is null-homotopi
 by the previous lemma,

implies the assertion. 2

Theorem A.7

Let q � 4, let G = G

2

(q) and let G be the geometry 
onsisting of the points, the ideal lines and

the ideal planes of the split Cayley hexagon H(q). Let F be a maximal 
ag of G. Then

G

�

=

U(A(G; G; F ):

Proof. This follows by Theorem A.6 and Lemma 3.2. 2

We now des
ribe the amalgam in more detail. The stabilizer of a point is a paraboli
 subgroup

G

1

:= q

5

: GL

2

(q). The stabilizer of an ideal line is a group G

2

:= q

3

: GL

2

(q), and the stabilizer

of an ideal plane is G

3

:= SL

3

(q). The amalgam is de�ned in su
h a way that G

1;2

, whi
h 
omes

from the interse
tion G

1

\G

2

in G

2

(q), is isomorphi
 to a group of order q

4

(q � 1)

2

; the other

two groups G

2;3

and G

1;3

are the line and point stabilizer, respe
tively, in SL

3

(q) in the natural

a
tion on a proje
tive plane of order q. The group G

1;2;3

is a 
ag stabilizer in the latter.

Note that the geometry G has a linear diagram of the form

point

q

Æ

line

q

Æ

Af

�

plane

q�1

Æ ;

where the Af

�

denotes the dual of an aÆne generalized quadrangle. In our 
ase, we delete a

line, all points on it, and all lines 
on
urrent with it from an orthogonal quadrangle Q(4; q).



B APPENDIX: AN INTRANSITIVE GEOMETRY FOR G

2

(3) 32

B Appendix: An intransitive geometry for G

2

(3)

Here is another appli
ation of our new theory. In [18℄ Ho�man and Shpe
torov study an amalgam

of maximal subgroups of

b

G = Aut(G

2

(3)) given by a 
ertain 
hoi
e of subgroups

b

L = 2

3

� L

3

(2) : 2;

b

N = 2

1+4

:(S

3

� S

3

);

M = G

2

(2) = U

3

(3) : 2

whi
h 
orresponds to an amalgam of subgroups of G = G

2

(3) given by

L =

b

L \G = 2

3

� L

3

(2);

N =

b

N \G = 2

1+4

:(3� 3):2;

M = G

2

(2) = U

3

(3) : 2;

K = eMe

�1

for e 2 O

2

(

b

L)nO

2

(L)

where O

2

(

b

L) denotes the largest normal subgroup of

b

L that is a 2-group. The groups

b

G

1

=

b

L;

b

G

2

=

b

N;

b

G

3

= M

de�ne a 
ag-transitive 
oset geometry G of rank three for

b

G = Aut(G

2

(3)), whi
h is simply 
on-

ne
ted by [18℄. The subgroup G = G

2

(3) of

b

G does not a
t 
ag-transitively on G. Nevertheless,

the groups

G

1;1

= L;

G

1;2

= N;

G

1;3

= M;

G

2;3

= K

de�ne an intransitive 
oset geometry of rank three for G = G

2

(3), whi
h is isomorphi
 to G

by [18℄ and, hen
e, simply 
onne
ted. Corollary 3.2 implies that

b

G is the universal 
ompletion

of the amalgam given by

b

L,

b

N and M and their interse
tions as indi
ated in De�nition 2.25

and that G is the universal 
ompletion of the amalgam given by L, N , M and K and their

interse
tions ex
luding M \K as indi
ated in De�nition 2.26.
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