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1 Introdution

Amalgams in group theory have proved their importane in the lassi�ation of the �nite simple

groups (see Setions 28 and 29 of Gorenstein, Lyons, Solomon [12℄). Originally one onsiders

the amalgam of the maximal paraboli subgroups of a Chevalley group of rank � 3 in its natural

ation on the assoiated building and proves that the universal ompletion of the amalgam is

(some ontrolled entral extension of) the Chevalley group itself, see [8℄, [26℄, [28℄, [29℄. In

modern terms, see M�uhlherr [21℄, this essentially is implied by the fat that the building and

the opposites geometry of the orresponding twin building are simply onneted.

Sine the mid-1970's there has been interest in other types of amalgams as well, see Phan

[19℄, [20℄. Somehow miraulously amalgams of (twisted) Chevalley groups over �nite �elds were

studied that did not ome from the ation on the building. Ashbaher [3℄ was the �rst to

realize that Phan's amalgam in [19℄ arises as a version of the amalgam of rank one and rank two

parabolis of the ation of SU

n+1

(q

2

) on the geometry of nondegenerate subspaes of a (n+ 1)-

dimensional unitary vetor spae over F

q

2
. In order to prove that the universal ompletion of

the amalgam is the group under onsideration, one omplies to a lemma by Tits [30℄ saying

that this essentially amounts to heking that the geometry is simply onneted and residually

onneted, under the assumption that the geometry is ag-transitive.

Sine Phan's papers were a bit vague, there was a demand for a new proof of Phan's result

[19℄. Das [9℄ sueeded partially and Bennett, Shpetorov [5℄ sueeded ompletely. After

preprints of the latter paper were irulated around the 2001 onferene in honor of Ernie

Shult, things started to develop at a high pae. People �nally realized the onnetion between

M�uhlherr's [21℄ new proof of the Curtis-Tits theorem and Ashbaher's [3℄ geometry for the

Phan amalgam. Eventually Ho�man, Shpetorov and the �rst author [13℄ onstruted a new

geometry resulting in the geometri part of a ompletely new Phan-type theorem. Reently the

�rst author [14℄ provided the group-theoreti part, a lassi�ation of amalgams based on [5℄,

thus ompleting the new Phan-type theorem.

Later Bennett joined Ho�man, Shpetorov and the �rst author [4℄ to develop a theory for

this new sort of geometries, alled ipop geometries: Take your favorite spherial building and

onsider it as a twin building �a la Tits [31℄. The opposites geometry, whih was used by M�uhlherr

[21℄ to re-prove the Curtis-Tits theorem, onsists of the pairs of elements of the twin building

at odistane one (the neutral element of the assoiated Weyl group). A ip is an involution of

that opposites geometry that interhanges the positive and the negative part, ips the distanes
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and preserves the odistane. The ipop geometry of the opposites geometry with respet to

the ip onsists of all those elements of the opposites geometry that are stabilized (or rather

ipped) by the ip.

In ase of Ashbaher's geometry for Phan's theorem the building geometry is the projetive

spae orresponding to the group SL

n+1

(q

2

) and the ip is a nondegenerate unitary polarity.

The orresponding ipip geometry then is the geometry on the nondegenerate subspaes of

the projetive spae with respet to the polarity. Indeed, being opposite means that a subspae

and its polar have empty intersetion whih in turn means that the subspae in question is

nondegenerate.

The rank of this geometry is always higher than the one of the assoiated building, and hene

this approah overs more groups. This idea works �ne for the unitary groups (see Ashbaher

[3℄, Das [9℄, Bennett, Shpetorov [5℄) and for the sympleti groups (see Das [10℄ (�nite �elds,

odd harateristi), Das [11℄ (�nite �elds, even harateristi), Ho�man, Shpetorov and the

�rst author [13℄ (�nite �elds of size at least 8; a by-produt of the new geometry), and the �rst

author [16℄ (all �elds)) although, stritly speaking, the sympleti forms do not yield a ipop

geometry. However, for the orthogonal ones over �nite �elds, we run into problems sine the

geometry of nondegenerate spaes is, in general, not ag-transitive. The ag-transitive ase

for forms of Witt index at least one, i.e., over quadratially losed �elds has been settled by

Altmann [1℄. See also Altmann and the �rst author [2℄ for the same results and some extensions

to real losed �elds.

As said before, in order to prove that the universal ompletion of the amalgam is the group

under onsideration, one omplies to a lemma by Tits [30℄ saying that this essentially amounts to

heking that the geometry is simply onneted and residually onneted, under the assumption

of ag-transitivity. For intransitive geometries one an try to �nd a ag-transitive subgeometry

and to prove that this subgeometry is simply onneted and residually onneted. However, ag-

transitive subgeometries of the geometry of degenerate subspaes of a �nite orthogonal lassial

group are not known to be simply onneted, although Ho�man and one of his PhD students

are urrently trying to establish simple onnetivity.

Hene, to overome these diÆulties, one should generalize the theory of amalgams either

to non ag-transitive geometries, or to non simply onneted ones. Sine the former is more

realisti (the latter would involve onstruting overs of non simply onneted geometries), we

have hosen to try that. The key idea is to use a theorem by Stroppel [27℄, whih seems not

to be so well known, but is very useful in this ontext. We also disuss the more diÆult and

more general problem of the amalgam of rank k parabolis in non ag-transitive geometries. It

atually turns out that the most natural results our if one abandons thinking in amalgams of

rank k parabolis, but adopts thinking in amalgams of ertain shapes instead. We then apply

our theory to the orthogonal lassial groups and give many examples.

In an appendix, we give another example of an amalgam of a rank two Chevalley group,

Dikson's group G

2

(q), whose universal ompletion is the Chevalley group itself, by introduing

a rank three geometry for it. The reason why we mention this here is to illustrate how wide

to range of appliations really is: in this ase we onsider singular points, but nonsingular

lines and planes with respet to the lassial representation of the assoiated building, whih

is a generalized hexagon. In a seond appendix we report on reent researh by Ho�man and

Shpetorov [18℄ for an interesting amalgam for G

2

(3) oming from an intransitive geometry
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related to the sporadi simple Thompson group.

We onlude this introdution by the remark that in the mid-1980's, using funtional analysis

and Lie theory, Borovoi [6℄ and Satarov [23℄ have obtained related universal ompletion results

for amalgams in ompat Lie groups. In this ase, however, the geometry ated on is the building,

so their results on ompat Lie groups follow immediately from the simple onnetivity of the

building. The lassi�ation strategy for amalgams from [5℄ and [14℄ was used by the �rst author

in [17℄ when providing a lassi�ation of the amalgams from [6℄ and [23℄, yielding a Phan-type

theorem for ompat Lie groups.

2 Preliminaries

In this setion, we de�ne the notions and review the results that we will need to develop our

theory. This setion has been inspired by [7℄, [24℄, [25℄.

2.1 Coset pregeometries

De�nition 2.1 (Pregeometry, geometry) A pregeometry G over the set I is a triple

(X; �; typ) onsisting of a set X, a symmetri and reexive inidene relation �, and a surje-

tive type funtion typ : X ! I, subjet to the following ondition:

(Pre) If x � y with typ(x) = typ(y), then x = y.

The set I is usually alled the type set. A ag in X is a set of pairwise inident elements.

The type of a ag F is the set typ(F ) := ftyp(x) : x 2 Fg. A hamber is a ag of type I,

a pennant is a ag of ardinality three. The rank of a ag F is jtyp(F )j and the orank is

equal to jI n typ(F )j.

A geometry is a pregeometry with the additional property that

(Geo) every ag is ontained in a hamber.

The pregeometry G is onneted if the graph (X; �) is onneted.

De�nition 2.2 (Lounge, hall) Let G = (X; �; typ) be a pregeometry over I. A subset W of

X is alled a lounge if eah subset V of W for whih typ : V ! I is a injetion, is a ag. A

lounge W with typ(W ) = I is alled a hall.

De�nition 2.3 (Residue) Let F be a ag of G, let us say of type J � I. Then the residue

G

F

of F is the pregeometry

(X

0

; �

jX

0

�X

0
; typ

jInJ

)

over InJ , with

X

0

:= fx 2 X : F [ fxg is a ag of G and typ(x) =2 typ(F )g:

De�nition 2.4 (Automorphism) Let G = (X; �; typ) be a pregeometry over I. An auto-

morphism of G is a permutation � of X with typ(�(x)) = typ(x), for all x 2 X, and with

x

�

� y

�

if and only if x � y, for all x; y 2 X.
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Moreover, a group G of automorphisms

of G is alled if for eah pair of ags , d with

ag-transitive, typ() = typ(d),

hamber-transitive, typ() = I = typ(d),

pennant-transitive, jtyp()j = 3 = jtyp(d)j and typ() = typ(d),

inidene-transitive, or jtyp()j = 2 = jtyp(d)j and typ() = typ(d),

vertex-transitive jtyp()j = 1 = jtyp(d)j and typ() = typ(d)

there exists a � 2 G with �() = d.

If the group of all automorphisms of G is ag-transitive, hamber-transitive, inidene-

transitive or vertex-transitive, then we say that G is ag-transitive, hamber-transitive,

inidene-transitive or vertex-transitive, respetively.

The emphasis of the present paper is on geometries that are not vertex-transitive, and whih

we will all intransitive. Therefore, we �rst have a look how one an desribe suh a geometry

group-theoretially.

De�nition 2.5 (Coset Pregeometry) Let I be a set and let (T

i

)

i2I

be a family of sets. Also,

let G be a group and let (G

t;i

)

t2T

i

;i2I

be a family of subgroups of G. Then

(t

i2I;t2T

i

G=G

t;i

; �; typ)

with typ(G

t;i

) = i and

(Cos) gG

t;i

� hG

s;j

if and only if gG

t;i

\ hG

s;j

6= ; and either i 6= j or (t; i) = (s; j)

is a pregeometry over I, the oset pregeometry of G with respet to (G

t;i

)

t2T

i

;i2I

. Sine the

type funtion is ompletely determined by the indies, we also denote the oset pregeometry of

G with respet to (G

t;i

)

t2T

i

;i2I

by

((G=G

t;i

)

t2T

i

;i2I

; �):

The family (G

t;i

)

t2T

i

;i2I

forms a lounge. If jT

i

j = 1 for all i 2 I, then we write G

i

instead of

G

t;i

. The family (G

i

)

i2I

forms a hamber of the oset geometry, alled the base hamber.

Certainly, any oset pregeometry with jT

i

j = 1 for all i 2 I, whih means nothing else

than being vertex-transitive, is inidene-transitive. Indeed, if gG

i

\ hG

j

6= ;, then hoose

a 2 gG

1

\hG

j

. It follows aG

i

= gG

i

and aG

j

= hG

j

and therefore the automorphism a

�1

maps

the inident pair gG

i

, hG

j

onto the inident pair G

i

, G

j

.

Note that the residue of a oset pregeometry in general is not a oset pregeometry. The

following lemma desribes a situation in whih it in fat is a oset pregeometry.

Lemma 2.6 (inspired by Buekenhout/Cohen [7℄)

The inidene-transitive oset pregeometry G = ((G=G

i

)

i2I

; �) of G with respet to (G

i

)

i2I

,

satis�es the following properties.
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(i) For eah J ( I, there is a natural injetive homomorphism

�

J

: ((G

J

=G

J[fig

)

i2InJ

; �)! G

fG

j

jj2Jg

of geometries over I n J given by

�

J

(aG

J[fig

) = aG

i

for a 2 G

J

, i 2 I n J .

(ii) Given J ( I, the homomorphism �

J

is surjetive if and only if, for all i 2 I n J , we have

\

j2J

(G

j

G

i

) = G

J

G

i

;

(iii) Let J ( I. If �

J[fig

is surjetive for all i 2 I, then �

�1

J

is a homomorphism, i.e., �

J

is an

isomorphism. In partiular, if �

J

is surjetive for all J ( I, then �

J

is an isomorphism for

all J ( I.

Proof. (i) Sine G

J[fig

� G

i

and a 2 aG

i

\ G

j

for all i 2 I n J , j 2 J , a 2 G

J

, the map �

J

is well de�ned. Suppose aG

J[fig

\ bG

J[fkg

6= ;. Then also aG

i

\ bG

k

6= ;, so �

J

is indeed a

homomorphism. Suppose that a; b 2 G

J

satisfy �

J

(aG

J[fig

) = �

J

(bG

J[fig

). Then aG

i

= bG

i

,

so that b

�1

a 2 G

i

. On the other hand, b

�1

a 2 G

J

, so b

�1

a 2 G

J[fig

whene aG

J[fig

= bG

J[fig

.

This shows that �

J

is injetive.

(ii) Suppose that �

J

is surjetive. If x 2

T

j2J

(G

j

G

i

) for some i 2 I n J , then xG

i

is an

element of G inident to fG

j

j j 2 Jg, so that we an �nd x

0

2 G

J

with �

J

(x

0

G

j[fig

) = xG

i

.

Then x

0

G

i

= xG

i

, so x 2 x

0

G

i

� G

J

G

i

, proving

T

j2J

(G

j

G

i

) = G

J

G

i

. The onverse is equally

straightforward.

(iii) Fix J � I and suppose that �

J[fig

is surjetive for eah i 2 I. We need to show that

�

�1

J

is a homomorphism. If jInJ j has ardinality one, then there is nothing to show. Let xG

i

,

yG

j

, where i; j 2 I n J , x; y 2 G

J

, be inident elements of the residue G

fG

k

jk2Jg

in G of the ag

fG

k

j k 2 Jg, f. (i). Then y

�1

x 2 G

j

G

i

\G

J

. But the surjetivity of �

J[fjg

and (ii) yield

G

j

G

i

\G

J

� G

j

G

i

\G

J

G

i

= G

j

G

i

\

\

k2J

G

k

G

i

=

\

k2fjg[J

G

k

G

i

= G

fjg[J

G

i

whene

G

j

G

i

\G

J

� (G

fjg[J

G

i

) \G

J

= G

fjg[J

G

fig[J

so that

y

�1

x 2 G

fjg[J

G

fig[J

;

proving that yG

fjg[J

and xG

fig[J

are inident elements of ((G

J

=G

fig[J

)

i2InJ

; �). Hene (iii).

2

It is also possible to derive a relation between the transitivity of a oset pregeometry and

the fat that its residues are oset pregeometries.
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Lemma 2.7 (inspired by Buekenhout/Cohen [7℄)

Let G = ((G=G

i

)

i2I

; �) be an inidene-transitive oset pregeometry of G over I. Let k � 3 be

�nite and smaller than or equal to jIj. For eah J � I of rank at most k, assume the group G

is transitive on the set of ags of G of type J . Then for eah J � I of rank at most k � 1 the

homomorphism �

J

is bijetive and for eah J � I of rank at most k� 2 the homomorphism �

J

is an isomorphism.

Proof. Let J � I be of rank at most k � 1 and let aG

i

be an element of the residue G

fG

j

jj2Jg

.

Then

faG

i

g [ fG

j

j j 2 Jg

is a ag of G of rank at most k, so by the assumption on the transitivity of G there is

g 2 G

J

=

\

j2J

G

j

with g

�1

a 2 G

i

, whene aG

i

= gG

i

. We obtain

aG

i

= gG

i

= �

J

(gG

J[fig

):

Therefore, �

J

is surjetive, and hene bijetive, f. Lemma 2.6(i). The laim now follows from

Lemma 2.6(iii). 2

Similar to the haraterizations of vertex-transitivity there exist a large number of group-

theoreti haraterizations of various geometri properties of oset geometries, see e.g. [7℄. The

following one, the haraterization of onnetivity, is an easy but ruial observation for studying

amalgams.

Theorem 2.8 (inspired by Buekenhout/Cohen [7℄)

Let I 6= ;. The oset pregeometry ((G=G

t;i

)

t2T

i

;i2I

; �) is onneted if and only if

G = hG

t;i

j i 2 I; t 2 T

i

i:

Proof. Suppose that G is onneted. Take i 2 I and t 2 T

i

. If a 2 G, then there is a path

1G

t;i

; a

0

G

t

0

;i

0

; a

1

G

t

1

;i

1

; a

2

G

t

2

;i

2

; : : : ; a

m

G

t

m

;i

m

; aG

t;i

onneting the elements 1G

t;i

and aG

t;i

of G. Now

a

k

G

t

k

;i

k

\ a

k+1

G

t

k+1

;i

k+1

6= ;;

so

a

�1

k

a

k+1

2 G

t

k

;i

k

G

t

k+1

;i

k+1

for k = 0; : : : ;m� 1. Hene

a = (1

�1

a

0

)(a

�1

0

a

1

) � � � (a

�1

m�1

a

m

)(a

�1

m

a) 2 G

t;i

G

t

0

;i

0

� � �G

t

m�1

;i

m�1

G

t

m

;i

m

G

t;i

;

and so a 2 hG

t;i

j i 2 I; j 2 T

i

i. The onverse is obtained by reversing the above argument. The

only diÆulty that an our is that g

1

G

t

1

;i

and g

2

G

t

2

;i

are not inident, even if g

1

G

t

1

;i

\g

2

G

t

2

;i

6=
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;. This an be remedied by inluding some oset gG

t;j

, j 6= i, between g

1

G

t

1

;i

and g

2

G

t

2

;i

into

the hain of inidenes, where g 2 g

1

G

t

1

;i

\ g

2

G

t

2

;i

. 2

Now we turn to the question whih pregeometries atually are oset pregeometries. Stroppel

gave the answer in [27℄. To this end let us introdue the notion of the sketh of a pregeometry.

De�nition 2.9 (Sketh) Let G = (X; �; typ) be a pregeometry over I, let G be a group of

automorphisms of G, and let W � X be a set of G-orbit representatives of X. We write

W =

[

i2I

W

i

with W

i

� typ

�1

(i). The sketh of G with respet to G and W is the oset geometry

((G=G

w

)

w2W

i

;i2I

; �

0

):

Reall that two ations

� : G! Aut M and �

0

: G! Aut M

0

are said to be equivalent if there is an isomorphism  :M !M

0

suh that  Æ�(g)Æ 

�1

= �

0

(g)

for eah g 2 G or, equivalently,  Æ �(g) = �

0

(g) Æ  for all g 2 G. In this ase, we shall also say

that M and M

0

are isomorphi G-sets.

Theorem 2.10 (Stroppel's reonstrution theorem [27℄)

Let G = (X; �; typ) be a pregeometry over I and let G be a group of automorphisms of G. For

eah i 2 I let

w

i

1

; : : : ; w

i

t

i

be G-orbit representatives of the elements of type i of G suh that

(i) W :=

S

i2I

�

w

i

1

; : : : ; w

i

t

i

	

is a lounge and,

(ii) if V � W is a ag, the ation of G on the pregeometry over typ(V ) onsisting of all

elements of the G-orbits x

G

, x 2 V , is inidene-transitive.

Then the bijetion � between the sketh of G with respet to G and W and the pregeometry G

given by

gG

w

i

j

7! gw

i

j

is an isomorphism between pregeometries and an isomorphism between G-sets. 2

For a vertex-transitive group G, the previous theorem is just the isomorphism theorem of

inidene-transitive pregeometries, see [7℄.

The geometry onsisting of the G-orbits x

G

of elements of some �xed maximal ag V � W

as in (ii) of the theorem is alled the orbit geometry for (G; G; V ).
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2.2 Fundamental group and simple onnetivity

De�nition 2.11 (Fundamental group) Let G be a onneted pregeometry. A path of length

k in the geometry is a sequene of elements (x

0

; : : : ; x

k

) suh that x

i

and x

i+1

are inident,

0 � i � k� 1. A yle based at an element x is a path in whih x

0

= x

k

= x. Two paths based

at the same vertex are homotopially equivalent if one an be obtained from the other via

the following operations (alled elementary homotopies):

(i) inserting or deleting a repetition (i.e., a yle of length 1),

(ii) inserting or deleting a return (i.e., a yle of length 2), or

(iii) inserting or deleting a triangle (i.e., a yle of length 3).

The equivalene lasses of yles based at an element x form a group under the operation indued

by onatenation of yles. This group is alled the fundamental group of G and denoted by

�

1

(G; x).

A yle based at x that is homotopially equivalent to the trivial yle (x) is alled null-

homotopi. Every yle of length 1, 2, or 3 is null-homotopi.

De�nition 2.12 (Covering) Suppose G and

b

G are two onneted geometries over the same

type set and suppose � :

b

G ! G is a homomorphism of geometries, i.e., � preserves the

types and sends inident elements to inident elements. A surjetive homomorphism � between

onneted geometries

b

G and G is alled a overing if and only if for every nonempty ag

b

F

in

b

G the mapping � indues an isomorphism between the residue of

b

F in

b

G and the residue

of F = �(

b

F ) in G. Coverings of a geometry orrespond to the usual topologial overings of

the ag omplex. It is well-known and easy to see that a surjetive homomorphism � between

onneted geometries

b

G and G is a overing if and only if for every element bx in

b

G the map �

indues an isomorphism between the residue of bx in

b

G and the residue of x = �(bx) in G. If � is

an isomorphism, then the overing is said to be trivial.

Consider the geometry via its olored inidene graph and reall the following results from

the theory of simpliial omplexes.

Theorem 2.13 (Chapter 8 of Seifert/Threlfall [24℄)

Let G be a onneted geometry and let x be an element of G. The geometry G does not admit

any nontrivial overing if and only if �

1

(G; x) is trivial. 2

A geometry satisfying the equivalent onditions in the previous theorem is alled simply

onneted.

The following onstrution an also be found in Chapter 8 of [24℄.

De�nition 2.14 (Fundamental over) Let � be a onneted graph and let x be some vertex

of �. The fundamental over

b

� of � based at x is de�ned as follows: The verties of

b

� are

the homotopy lasses of paths of � based at x where two verties [

1

℄ and [

2

℄ of

b

� are adjaent

if and only if

�



�1

1



2

�

= [t

1

t

2

℄ where t

1

is the terminal vertex of 

1

and t

2

is the terminal vertex

of 

2

.
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De�nition 2.15 (Universal overing) Let � and

b

� be onneted graphs and let x 2 �, bx 2

b

�

be verties. A overing

� :

b

�! �

mapping bx onto x is alled universal if, for any overing

� : �

1

! � and any x

1

2 �

�1

(x);

there exists a unique overing map

� :

b

�! �

1

with � = � Æ � and �(bx) = x

1

.

(

b

�; bx)

� //

�

$$I
II

IIIIII
(�

1

; x

1

)

�

��
(�; x)

Theorem 2.16 (Chapter 8 of Seifert/Threlfall [24℄)

Let � be a onneted graph, let x be a vertex of �, and let

b

� be the fundamental over of �

based at x. Then the fundamental overing � :

b

�! � is universal. 2

2.3 Amalgams

De�nition 2.17 (Amalgam) An amalgam of groups A over a �nite set I = f0; 1; : : : ; ng

and assoiated nonempty sets J

i

, i 2 I, is a family of groups (G

j;i

)

j2J

i

;i2I

with monomorphisms,

alled identi�ations,

�

j

i+1

;i+1

j

i

;i

: G

j

i

;i

! G

j

i+1

;i+1

for some (j

i

; i) and (j

i+1

; i+1) suh that for eah G

j

i

;i

there exist identi�ations whose ompo-

sition embeds G

j

i

;i

into some G

j

n

;n

.

Example 2.18 An amalgam with I = f0; 1; 2g, J

0

= f1; 2g, J

1

= f1; 2; 3; 4g, J

0

= f1; 2; 3; 4g
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an be depited in the following diagram. The identi�ation maps are given by arrows.

G

1;1

�

1;2

1;1 //

��3
33

33
33

33
33

33
33

3
G

1;2

G

2;1

//

""E
EE

EE
EE

E
G

2;2

G

1;0

�

1;1

1;0

EE����������������

��3
33

33
33

33
33

33
33

3
G

3;2

G

2;0

�

2;1

2;0

EE����������������
//

""E
EE

EE
EE

E
G

3;1

EE����������������
//
G

4;2

G

4;1

�

4;2

4;1

<<yyyyyyyy

�

3;2

4;1

EE����������������

Note that the de�nition of an amalgam does not imply

�

3;2

2;1

Æ �

2;1

2;0

= �

3;2

4;1

Æ �

4;1

2;0

in the above example.

Two amalgams A and B are similar if they share the same set I, the same sets J

i

and if

for all (j

i

; i) and (j

i+1

; i + 1) the identi�ation

A

�

j

i+1

;i+1

j

i

;i

exists if and only if the identi�ation

B

�

j

i+1

;i+1

j

i

;i

exists, i.e., if they an be depited by the same diagram.

De�nition 2.19 (Homomorphism) Let A = (G

j;i

)

j;i

and B = (H

j;i

)

j;i

be similar amalgams.

A map  : tA ! tB will be alled an amalgam homomorphism from A to B if

(i) for every i 2 I and j 2 J

i

the restrition of  to G

j;i

is a homomorphism from G

j;i

to H

j;i

and

(ii)  Æ

A

�

j

i+1

;i+1

j

i

;i

=

B

�

j

i+1

;i+1

j

i

;i

Æ  

jG

j

i

;i

in ase the respetive identi�ations exist.

If  is bijetive and its inverse map  

�1

is also an amalgam homomorphism, then  is alled

an amalgam isomorphism. An automorphism of A is an isomorphism of A onto itself. As

usual, the automorphisms of A form the automorphism group, Aut(A).

De�nition 2.20 (Quotient, over) An amalgam B = (H

j;i

)

j;i

is a quotient of the amalgam

A = (G

j;i

)

j;i

if there is an amalgam homomorphism � from A to B suh that the restrition of

� to any G

j;n

maps G

j;n

onto H

j;n

. The map � : tA ! tB is alled a overing, A is alled

a over of B. Two overings (A

1

; �

1

) and (A

2

; �

2

) of A are alled equivalent if there is an

isomorphism  of A

1

onto A

2

, suh that �

1

= �

2

Æ  .

Notie that a overing � : tA ! tB between amalgams need not map G

j;i

surjetively onto

H

j;i

for i 6= n.
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De�nition 2.21 (Completion) Let A be an amalgam. A pair (G;�) onsisting of a group G

and a map � : tA ! G is alled a ompletion of A, and � is alled a ompletion map, if

(i) for all i 2 I and j 2 J

i

the restrition of � to G

j;i

is a homomorphism of G

i

to G;

(ii) �

jG

j

i+1

;i+1

Æ �

j

i+1

;i+1

j

i

;i

= �

jG

j

i

;i

if the orresponding identi�ation exist; and

(iii) �(tA) generates G.

A ompletion is alled faithful if for eah i 2 I and j 2 J

i

the restrition of � to G

j;i

is injetive.

Coming bak to Example 2.18, the de�nition of a ompletion does require that

�

jG

3;2

Æ �

3;2

2;1

Æ �

2;1

2;0

= �

jG

3;2

Æ �

3;2

4;1

Æ �

4;1

2;0

;

although by de�nition of an amalgam we do not neessarily have

�

3;2

2;1

Æ �

2;1

2;0

= �

3;2

4;1

Æ �

4;1

2;0

:

Proposition 2.22

Let A = (G

j;i

)

j;i

be an amalgam of groups, let F (A) = h(u

g

)

g2A

i be the free group on the

elements of A and let

S

1

= fu

x

u

y

= u

z

; whenever xy = z in some G

j;i

g

and

S

2

= fu

x

= u

y

; whenever �(x) = y for some identi�ation �g

be relations for F . Then for eah ompletion (G;�) of A there exists a unique group epimorphism

b� : U(A)! G

with � = b� Æ  where

U(A) = h(u

g

)

g2A

j S

1

; S

2

i and  : tA ! U(A) : g 7! u

g

:

tA

 

//

�

##F
FFFF

FFFF U(A)

b�

��
G

Proof. The map A to U(A) given by  : g 7! u

g

turns the group U(A) into a ompletion of A.

If (G;�) is an arbitrary ompletion of A then the map

b� : u

g

7! �(g)

leads to a group epimorphism b� from U(A) to G beause

b�(u

g

u

h

) = b�(u

gh

) = �(gh) = �(g)�(h) = b�(u

g

)b�(u

h

)
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if u

gh

exists; otherwise de�ne

b�(u

g

u

h

) := �(g)�(h) = b�(u

g

)b�(u

h

):

Clearly, b� is uniquely determined by the requirement

�(g) = (b� Æ  )(g) = b�(u

g

):

2

De�nition 2.23 (Universal Completion) Let A = (G

j;i

)

j;i

be an amalgam of groups. Then

 : tA ! U(A) : g 7! u

g

for U(A) as in Proposition 2.22 is alled the universal ompletion of A. The amalgam A

ollapses if U(A) = 1

Example 2.24 (inspired by [22℄) Consider the groups

G

1

=




y; z j y

�1

zy = z

2

�

;

G

2

=




z; x j z

�1

xz = x

2

�

;

G

3

=




x; y j x

�1

yx = y

2

�

;

whih are nontrivial and pairwise isomorphi. Let A be the amalgam given by G

1

, G

2

, G

3

and

the intersetions

G

1

\G

2

= hzi

�

=

Z;

G

1

\G

3

= hyi

�

=

Z;

G

2

\G

3

= hxi

�

=

Z

where the identi�ation maps are given by the inlusion maps. Then U(A) = 1, so A ollapses.

hzi

//

  A
AA

AA
AA

A
G

1

1

??

//

��

hyi

>>}}}}}}}}

  A
AA

AA
AA

A
G

2

hxi

>>}}}}}}}}
//
G

3

It does not make any di�erene whether or not we add the identi�ation of the trivial group on

the left hand side, as any ompletion map identi�es the di�erent neutral elements of all groups

anyway, sine the restritions have to be group homomorphisms.

Notie that if B is a quotient of A then U(B) is isomorphi to a fator group of U(A). In

partiular, if B does not ollapse then neither does A. Also, an amalgam A admits a faithful

ompletion if and only if its universal ompletion is faithful.
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De�nition 2.25 (Amalgams for transitive geometries) Suppose G is a geometry and G �

Aut G is an inidene-transitive group. Corresponding to G and G and some maximal ag F ,

there is an amalgam A = A(G; G; F ), the amalgam of parabolis with respet to G, G,

F , de�ned as the family (G

E

)

E�F

, where G

E

denotes the stabilizer of E � F in G, together

with the natural inlusions as identi�ation maps. In ase G is ag-transitive, the amalgam A

is independent (up to onjugation) of the hoie of F .

For example, let G be a rank four geometry with a ag p, l, �, �. Then the amalgam of

parabolis looks as follows:

G

p;l

""D
DD

DD
DD

D

��2
22

22
22

22
22

22
22

2

G

p;l;�

;;vvvvvvvvv
//

##H
HH

HH
HH

HH
G

p;�

//

��2
22

22
22

22
22

22
22

2
G

p

G

p;l;�;�

::ttttttttt
//

%%J
JJJJJJJJ

��7
77

77
77

77
77

77
77

77
G

p;l;�

DD																

##H
HH

HH
HH

HH

��5
55

55
55

55
55

55
55

5
G

l;�

//

""E
EE

EE
EE

E
G

l

G

p;�;�

DD																
//

��5
55

55
55

55
55

55
55

5
G

p;�

EE����������������

""E
EE

EE
EE

E
G

�

G

l;�;�

DD																
//

##H
HH

HH
HH

HH
G

l;�

EE����������������
//
G

�

G

�;�

<<zzzzzzzz

EE����������������

If jIj = n is �nite and k < n the amalgam A

(k)

= A

(k)

(G; G; F ) is the subamalgam of

A onsisting of all parabolis of rank less or equal k. It is alled the amalgam of rank k

parabolis. Of ourse, A

(n�1)

= A.

More generally, for F as above suppose W � 2

F

suh that 2

F

3 U

0

� U 2 W implies

U

0

2 W, i.e., W is a subset of the power set of F that is losed under passing to supersets. A set

W � 2

F

with those properties is alled a shape. The amalgam of shape W with respet

to G, G, F is the family (G

U

)

U2W

, where G

U

is the stabilizer of U 2 W in G, with the natural

inlusion maps as identi�ation maps. It is denoted by A

W

(G; G).

De�nition 2.26 (Amalgams for intransitive geometries) Suppose G = (X; �; typ) is a ge-

ometry over I, the group G is a group of automorphisms of G, and for eah i 2 I let w

i

1

, : : :, w

i

t

i

be G-orbit representatives of the elements of type i of G suh that

(i) W :=

S

i2I

�

w

i

1

; : : : ; w

i

t

i

	

is a lounge and,

(ii) if V �W is a ag, the ation of G on the pregeometry over I onsisting of all elements of

the G-orbits x

G

, x 2 V , is inidene-transitive.

Then the amalgam A = A(G; G;W ) is de�ned as the family (G

U

)

U�W a ag

, where G

U

denotes

the stabilizer of U �W in G with the natural inlusion maps as identi�ation maps.
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For example, let G be a rank three geometry with W equal to p, q, l, �. Then the amalgam

of parabolis looks as follows:

G

p;l

//

��2
22

22
22

22
22

22
22

2
G

p

G

q;l

//

!!D
DD

DD
DD

D
G

q

G

p;l;�

EE
















//

��4
44

44
44

44
44

44
44

4
G

p;�

FF����������������

!!D
DD

DD
DD

D
G

l

G

q;l;�

EE
















//

##G
GGGGGGG
G

q;�

FF����������������
//
G

�

G

l;�

==zzzzzzzz

FF����������������

If jIj = n is �nite and k < n the amalgam A

(k)

= A

(k)

(G; G;W ) is the subamalgam of

A onsisting of all parabolis of rank less or equal k. It is alled the amalgam of rank k

parabolis. Of ourse, A

(n�1)

= A.

More generally, for W as above suppose W � 2

W

with the properties that eah U 2 W is

a ag and if U

0

� W is a ag with U

0

� U 2 W, then also U

0

2 W, i.e., W is a subset of the

power set of W onsisting of ags that is losed under passing to superags. A set W � 2

W

with those properties is alled a shape. The amalgam of shape W for (G; G;W ) is de�ned

on the family (G

U

)

U2W

with the natural inlusion maps as identi�ation maps. It is denoted

by A

W

(G; G;W ).

3 Theory of intransitive ipop geometries

We now use the foregoing notions, de�nitions and basi results to develop some theory of intran-

sitive ipop geometries, that results in riteria to onlude that ertain ompletions of ertain

amalgams are universal.

Theorem 3.1 (Fundamental theorem of geometri overing theory)

Let G = (X; �; typ) be a onneted geometry over I of rank at least three and let G be a group

of automorphisms of G. For eah i 2 I let

w

i

1

; : : : ; w

i

t

i

be G-orbit representatives of the elements of type i of G suh that

(i) W :=

S

i2I

�

w

i

1

; : : : ; w

i

t

i

	

is a lounge and,

(ii) if V � W is a ag, the ation of G on the pregeometry over typ(V ) onsisting of all

elements of the G-orbits x

G

, x 2 V , is inidene-transitive and pennant-transitive.
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Let A = A(G; G;W ) be the amalgam of parabolis. Then the oset pregeometry

b

G = ((U(A)=G

w

i

j

)

1�j�t;i2I

; �)

is a simply onneted geometry that admits a universal overing � :

b

G ! G indued by the

natural epimorphism U(A)! G. Moreover, U(A) is of the form �

1

(G):G.

Proof. The ompletion

� : tA ! G

and, thus, the ompletion

b

� : tA ! U(A)

is injetive. Therefore the natural epimorphism

 : U(A)! G

indues an isomorphism between the amalgam

b

�(A) inside U(A) and the amalgam �(A) inside

G. Hene the epimorphism  : U(A)! G indues a quotient map between pregeometries

� :

b

G = ((U(A)=G

w

i

j

)

i2I;1�j�t

i

; �)! ((G=G

w

i

j

)

i2I;1�j�t

i

; �):

The latter oset pregeometry is isomorphi to G by the Reonstrution Theorem 2.10. Notie

that U(A) ats on G

�

=

((G=G

w

i

j

)

i2I;1�j�t

i

; �) via

gG

w

i

j

7!  (u)gG

w

i

j

for u 2 U(A):

We want to prove that this quotient map atually is a overing map. The pregeometry

b

G is

onneted by Theorem 2.8, beause U(A) is generated by

b

�(A). Our goal is to apply Lemma

2.7 in order to establish the isomorphism of the residues. By hypothesis (ii) we an assume that

G, and hene

b

G, is inidene-transitive. Then the group U(A) is pennant-transitive on

b

G. For,

let (a; b; ) and (x; y; z) be ags of type J for some subset J of I of ardinality three. Then, by

inidene-transitivity of U(A) on

b

G, we an assume a = x and b = y. By pennant-transitivity

of G on G there exists an element u of U(A) mapping (�(a) = �(x); �(b) = �(y); �()) onto

(�(a) = �(x); �(b) = �(y); �(z)). This element u is ontained in G

a

=  

�1

(G

�(a)

)

�

=

G

�(a)

. By

Lemma 2.7 and using the inidene-transitivity of

b

G and of G the map � indues a bijetion

between the residue

b

G

a

and the residue G

�(a)

, so the element u maps (a = x; b = y; ) onto

(a = x; b = y; z). Hene U(A) is pennant-transitive on

b

G. Another appliation of Lemma

2.7, this time using the pennant-transitivity of

b

G and G, implies that � :

b

G ! G indues

isomorphisms between the residues of ags of rank one. So the map � :

b

G ! G indeed is a

overing of pregeometries. Sine G atually is a geometry the pregeometry

b

G is also a geometry.

Now we want to show that the overing

� :

b

G ! G

indued by the anonial map U(A) ! G is universal. Denote the fundamental over of G at

some vertex w

i

j

of W by G

0

and let

� : G

0

! G
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be the orresponding overing map. If bw

i

j

2 �

�1

(w

i

j

), w

i

j

2 �

�1

(w

i

j

), we will ahieve the

universality of � by showing that � = � Æ � for a unique isomorphism

� :

b

G ! G

0

with �( bw

i

j

) = w

i

j

.

(

b

G; bw

i

j

)

� //

�

��

(G; w

i

j

)

(G

0

; w

i

j

)

�

::uuuuuuuuu

The simple onnetivity of

b

G then is implied by the universal property. For g 2 G

w

i

j

de�ne an

automorphism

bg

(j;i)

: G

0

! G

0

: q

1

(G; w

i

j

) 3 [℄ 7! [g()℄ :

The latter is also a homotopy lass of paths in G starting at w

i

j

, beause g 2 G

w

i

j

stabilizes

w

i

j

. The fundamental over G

0

of G based at w

i

j

is isomorphi to the fundamental over G

1

of G based at some arbitrary w

i

0

j

0

2 W . Therefore we an de�ne automorphisms on G

0

using

the automorphisms on G

1

oming from elements g 2 G

w

i

0

j

0

. To this end �x a maximal ag

V � W ontaining w

i

j

. Let y 2 V be inident to to both w

i

j

and w

i

0

j

0

and for g 2 G

w

i

0

j

0

de�ne an

automorphism

bg

(j

0

;i

0

)

: G

0

! G

0

: ([℄) 7!

h

w

i

j

; y; w

i

0

j

0

; g(y); g()

i

:

Sine, for a di�erent hoie y

0

2 V inident to both w

i

j

and w

i

0

j

0

, the yles (y; y

0

; w

i

j

; y) and

(y; y

0

; w

i

0

j

0

; y) are null-homotopi, the automorphism bg

(j

0

;i

0

)

does not depend on the partiular

hoie of y 2 V . In partiular, if w

i

0

j

0

2 V , we an hoose y = w

i

0

j

0

or y = w

i

j

.

Also, for inident w

i

0

j

0

and w

i

00

j

00

, let y be an element of V inident to w

i

j

, w

i

0

j

0

and w

i

00

j

00

. Sine

the yles (y;w

i

0

j

0

; w

i

00

j

00

; y) and (g(y); w

i

0

j

0

; w

i

00

j

00

; g(y)) are null-homotopi, for g 2 G

w

i

0

j

0

\ G

w

i

00

j

00

we

have

h

w

i

j

; y; w

i

0

j

0

; g(y); g()

i

=

h

w

i

j

; y; w

i

00

j

00

; g(y); g()

i

and so

bg

(j

0

;i

0

)

= bg

(j

00

;i

00

)

:

Hene

b: tA !

b

G :=

D

d

tA

E

� Aut G

0

is a ompletion map from A to

b

G. If bg

�1

1

bg

2

ats trivially on

b

G

0

, then g

�1

1

g

2

ats trivially on G,

thus g

1

= g

2

, as G ats faithfully on G. Thereforebembeds A in

b

G.

The geometry G

0

together with the group

b

G of automorphisms satis�es the hypothesis of

the Reonstrution Theorem 2.10, so the geometry G

0

is isomorphi to the oset pregeometry

((

b

G=G

w

i

j

)

i2I;1�j�t

i

; �). The natural epimorphsim

b

G ! G indues a overing map from G

0

onto

G. Moreover, the natural epimorphism U(A) !

b

G yields a quotient map

b

G ! G

0

. Sine G

0
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is universal by Theorem 2.16 and therefore simply onneted, this quotient map is a uniquely

determined isomorphism. Hene the overing � : G ! G is universal.

It remains to establish the struture of

b

G

�

=

U(A) to be of the form �

1

(G):G. However, this

is evident by Theorem 2.16. 2

Corollary 3.2 (Tits' lemma)

Let G = (X; �; typ) be a geometry over I and let G be a group of automorphisms of G. For eah

i 2 I let

w

i

1

; : : : ; w

i

t

i

be G-orbit representatives of the elements of type i of G suh that

(i) W :=

S

i2I

�

w

i

1

; : : : ; w

i

t

i

	

is a lounge and,

(ii) if V � W is a ag, the ation of G on the pregeometry over typ(V ) onsisting of all

elements of the G-orbits x

G

, x 2 V , is inidene-transitive and pennant-transitive.

Let A(G; G;W ) be the amalgam of parabolis of G with respet to G and W . The geometry G

is simply onneted if and only if the anonial epimorphism

U(A(G; G;W ))! G

is an isomorphism. 2

Theorem 3.3

Let G = (X; �; typ) be a geometry over some �nite set I and let G be a group of automorphisms

of G. For eah i 2 I let

w

i

1

; : : : ; w

i

t

i

be G-orbit representatives of the elements of type i of G suh that

(i) W :=

S

i2I

�

w

i

1

; : : : ; w

i

t

i

	

is a lounge and,

(ii) if V � W is a ag, the ation of G on the pregeometry over typ(V ) onsisting of all

elements of the G-orbits x

G

, x 2 V , is ag-transitive.

LetW � 2

W

be a shape, assume that for eah ag U 2 2

W

nW the residue G

U

is simply onneted,

and let A(G; G;W ) and A

W

(G; G;W ) be the amalgam of maximal parabolis respetively the

amalgam of shape W of G with respet to G and W . Then

G = U(A

W

(G; G;W )):

In partiular, if ; 62 W, we have

G = U(A(G; G;W )) = U(A

W

(G; G;W )):
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Proof. We will proeed by indution on the number of ags in the set 2

W

nW. If the set of

ags ontained in 2

W

nW is empty, then ; � W, so the amalgam A

W

(G; G;W ) ontains the

stabilizer in G of the empty ag, i.e., G. Hene G = U(A

W

(G; G;W )). If there exists a ag in

2

W

nW, then the empty ag is also ontained in 2

W

nW, beause by de�nition the shape W is

losed under taking superags. Hene in that ase G is simply onneted and by Corollary 3.2

we have G = U(A(G; G;W )). We will now prove that U(A(G; G;W )) = U(A

W

(G; G;W )).

If the empty ag is the only ag ontained in 2

W

nW, then A(G; G;W ) = A

W

(G; G;W ), so

their universal ompletions oinide. If there exists a nonempty ag in 2

W

nW, then there also

exists a (nonempty) ag U in 2

W

nW suh thatW

0

:= fUg[W is a shape. Then A

W

0

(G; G;W ) =

A

W

(G; G;W ) [ G

U

. By onnetivity of G

U

, the group G

U

is a ompletion of the amalgam

A(G

U

; G

U

;W

U

), where

W

U

:=W \ typ

�1

(Intyp(U)):

As G

U

is simply onneted, we even have

G

U

= U(A(G

U

; G

U

;W

U

)):

Sine A(G

U

; G

U

;W

U

) � A

W

(G; G;W ), we have

U(A

W

(G; G;W )) = U(A

W

(G; G;W ) [ U(A(G

U

; G

U

;W

U

)))

= U(A

W

(G; G;W ) [G

U

)

= U(A

W

0

(G; G;W )):

Hene, by indution, we have U(A

W

(G; G;W )) = U(A(G; G;W )), �nishing the proof. 2

Corollary 3.4

Let G = (X; �; typ) be a geometry over some �nite set I, let G be a group of automorphisms of

G, for eah i 2 I let

w

i

1

; : : : ; w

i

t

i

be G-orbit representatives of the elements of type i of G suh that

(i) W :=

S

i2I

�

w

i

1

; : : : ; w

i

t

i

	

is a lounge and,

(ii) if V � W is a ag, the ation of G on the geometry typ(W ) onsisting of all elements of

the G-orbits x

G

, x 2 V , is ag-transitive.

Let k � jIj, assume that all residues of rank greater or equal k with respet to subsets of W are

simply onneted, and let A(G; G;W ) and A

(k)

(G; G;W ) be the amalgam of maximal parabolis

respetively rank k parabolis of G with respet to G and W . Then

G = U(A(G; G;W )) = U(A

(k)

(G; G;W )):

2
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4 Intransitive geometries: an example

4.1 Some standard tehniques

In this subsetion, we ollet some general results on simple onnetivity and null-homotopi

yles that have been established in reent papers dealing with simple onnetivity of ag-

transitive geometries.

A geometri yle in the geometry G is a yle ompletely ontained in the residue G

x

of

some element x.

Proposition 4.1 (Lemma 3.2 of [5℄)

Every geometri yle is null-homotopi. 2

Corollary 4.2 (Lemma 3.3 of [5℄)

If two yles based at the same element are obtained from one another by inserting or erasing

a geometri yle then they are homotopi. 2

De�nition 4.3 (Basi diagram) Let G be a geometry over the set I. Let i; j 2 I, then

we de�ne i � j if there exists a ag f of otype fi; jg suh that the residue of f is a geometry

ontaining two elements that are not inident. Then the graph (I;�) is alled the basi diagram

of G.

Let G be a geometry with basi diagram

1

Æ

2

Æ � � � ;

i.e., the node 1 has a unique neighbor in the basi diagram of G. Then the 1-graph (also alled

the ollinearity graph) of G is the graph whose verties are the elements of type 1, where two

suh elements are adjaent if they are inident with a ommon element of type 2.

De�nition 4.4 (Diret sum of pregeometries) Let G = (X; �; typ), G

0

= (X

0

; �

0

; typ

0

) be

pregeometries over I and I

0

. The diret sum

G � G

0

is a pregeometry over I t I

0

� whose element set is X tX

0

,

� whose type funtion is typ [ typ

0

and

� whose inidene relation is the symmetri relation �

�

with �

�

j

X�X

= � and �

�

j

X

0

�X

0

= �

0

and �

�

j

X�X

0

= X �X

0

, i.e., elements of X are inident with elements of X

0

.

Lemma 4.5 (Lemma 5.1 of [13℄)

Let G be a geometry of rank n � 3 with basi diagram

1

Æ

2

Æ Æ � � � Æ

n

Æ
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and assume that for eah element x of type n the 1-graph of G

x

is onneted. Furthermore,

suppose that if the residue G

x

of some element x has a disonneted diagram falling into the two

onneted omponents �

1

and �

2

, then G

x

is equal to the diret sum

typ(�

1

)

G

x

�

typ(�

2

)

G

x

:

Then every yle of G based at some element of type 1 or 2 is homotopially equivalent to a

yle passing exlusively through elements of type 1 or 2. 2

Lemma 4.6 (Lemma 7.2 of [13℄)

Assume that G = G

1

� G

2

with G

1

onneted of rank at least two. Then G is simply onneted.

2

4.2 Generalities about orthogonal spaes

Let n � 1 and let V be an (n+ 1)-dimensional vetor spae over some �eld F of harateristi

distint from 2 endowed with some nondegenerate symmetri bilinear form f = (�; �). By

G

orth

A

= G

orth

A

(n; F; f)

we denote the pregeometry on the proper subspaes of V that are nondegenerate with respet

to (�; �) with symmetrized ontainment as inidene and the vetor spae dimension as the type.

Arbitrary �elds of harateristi not two

We will be using standard terminology. In partiular, eah �nite-dimensional vetor spae

over some �nite �eld admits two isometry lasses of nondegenerate quadrati forms, one alled

hyperboli (also positive or of plus type), the other alled ellipti (also negative or of

minus type).

Reall the following rules for determining the type of an orthogonal sum of nondegenerate

orthogonal spaes over a �nite �eld:

+�+ = +;

+�� = �;

��� = +:

The names hyperboli and ellipti are a generalization of the lassial usual inidene-theoreti

meaning: if a nondegenerate subspae of even dimension 2n � 2 intersets the null-set of a

quadrati form in a quadri with Witt index n or n � 1, respetively, then the subspae is

hyperboli or ellipti, respetively. We extend this as follows. If a one-spae takes only square

values or non square values, respetively, with respet to the quadrati form, then this one-spae

is hyperboli or ellipti, respetively. Now these assignments of hyperboli and ellipti, together

with the above rules, determine the plus/minus type of all nondegenerate subspaes (inluding

the whole spae and the zero spae).
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Theorem 4.7

The pregeometry G

orth

A

(n; F; f) is a geometry.

Proof. We have to prove that eah ag an be embedded in a ag of ardinality n. To this end

let F = fx

1

; : : : ; x

t

g be a ag of G

orth

A

. We an assume that the nondegenerate subspae x

1

of

V has dimension one. Indeed, if it has not, then we an �nd a nondegenerate one-dimensional

subspae x

0

of x

1

and study the ag F

0

= F [fx

0

g instead. Now observe that the residue of the

nondegenerate one-dimensional subspae x

1

is isomorphi to G

orth

A

(n�1; F; f

0

) for some indued

form f

0

via the map that sends an element U of the residue of x

1

to U \ x

?

1

. Hene indution

applies. 2

Lemma 4.8

If l is a line and p is a point not on l, then there are at most two points of G

orth

A

on l whih are

not ollinear to p. In other words, if F is the �eld F

q

of q elements, there exist at least q � 3

points on l ollinear to p.

Proof. Let U be the 3-spae ha; li and let W = U \ a

?

. The spae W has rank at least one as

U has rank at least two. Hene there are at most two singular points on W and, thus, there are

at least q � 1 nondegenerate lines in U through a. The line l has at most two singular points,

so at least q� 3 of the nondegenerate lines in W through a interset l is a nonsingular point. 2

Proposition 4.9

Let n � 3 or n = 2 and jFj � 5. Then the ollinearity graph of G

orth

A

(n; F; f) has diameter two.

Proof. If n � 3, then the dimension of the vetor spae V is at least 4. Fix two points hai

and hbi whih are not ollinear, i.e., the spae ha; bi is singular with respet to (�; �). However

ha; bi is a two-dimensional subspae of V whih is not totally singular, beause (a; a) and (b; b)

are distint from zero. Therefore the radial of ha; bi is a one-dimensional spae. The dimension

of ha; bi

?

is greater or equal to 2. Consequently, the orthogonal omplement of ha; bi ontains a

point, say hi. Consider the two two-dimensional subspaes ha; i and hb; i. Sine hai and hbi

are perpendiular to hi, both ha; i and hb; i are lines. The distane between hai and hi is

one and so is the distane between hi and hbi. Thus the distane between hai and hbi is two.

Certainly G

orth

A

ontains a pair of nonollinear points, so we have proved the laim for n � 3.

If n = 2, let hai and hbi be two arbitrary points in V . If the spae l = ha; bi is a line then

the distane between hai and hbi is one. Otherwise pik a point h~ai in hai

?

. The spae ha; ~ai is

a line and the point hbi is not on ha; ~ai. The point hbi is ollinear with at least two points on

ha; ~ai by Lemma 4.8. Pik one of these points, say the point hi. We have established that the

distane between hai and hbi is two. 2

Corollary 4.10

Let n � 2 and jFj � 5. Then G

orth

A

(n; F; f) is residually onneted. 2

It is shown in [2℄ that, if n � 3 and F not equal to F

3

or F

5

, then the geometry G

orth

A

(n; F; f)

is simply onneted. If the �eld F is quadratially losed, then G

orth

A

(n; F; f) is ag-transitive



4 INTRANSITIVE GEOMETRIES: AN EXAMPLE 22

and one an apply Corollary 3.2 (Tits' lemma) to obtain presentations of ag-transitive groups

of automorphisms of that geometry, see [2℄. Also, in some ases like for real losed �elds, it is

possible to pass to suitable simply onneted ag-transitive parts of G

orth

A

(n; F; f) in order to

obtain presentations of groups of automorphisms.

Finite �elds of harateristi not two

For a �nite �eld F however, no ag-transitive part of G

orth

A

(n; F; f) is known to be simply on-

neted, so we deal with intransitive geometries instead. The main tool for our proof of simple

onnetivity is the following lemma. It is lear that it would fail for transitive geometries as,

roughly speaking, one loses half the points when passing to a transitive geometry.

Lemma 4.11

Let n � 2, let F be a �nite �eld of odd order q, let p be a point of G

orth

A

(n; F; f), let l be an ellipti

line suh that hp; li is a nondegenerate plane, and let m be a hyperboli line suh that hp;mi is

a nondegenerate plane. Then there exist at least

q�1

2

ellipti lines through p interseting l in a

a point of G

orth

A

(n; F; f) and at least

q�5

2

hyperboli lines through p interseting m in a point of

G

orth

A

(n; F; f).

Proof. Consider the two-dimensional nondegenerate spae p

?

\ hp; li. It ontains

q+1

2

or

q�1

2

points of positive type and

q+1

2

or

q�1

2

points of � type. Therefore, there exist at least

q�1

2

ellipti lines through p interseting p

?

\ hp; li and, thus, also l. The laim follows as all points

on an ellipti line are nondegenerate.

The number

q�5

2

=

q�1

2

� 2 of hyperboli lines through p interseting m in a point of

G

orth

A

(n; F; f) is obtained in exatly the same way plus the observation that two of the hyperboli

lines through p and p

?

\ hp;mi ould interset m in a singular point. 2

4.3 Positive form in dimension at least �ve

Let q be odd and let V be a vetor spae over F

q

of dimension n+ 1 at least �ve endowed with

a nondegenerate positive symmetri bilinear form f and let

G

orth

A

(n; F

q

; f) = (X; �; typ)

be the pregeometry on all nondegenerate subspaes of V . Let

W =

�

p; p

0

; l; �; U; U

1

; U

2

; : : : ; U

t

	

be a lounge where p is a positive point, p

0

is a negative point, l is a negative line, � is a positive

or negative plane, U is a positive four-dimensional subspae of V , and the U

i

are arbitrary

nondegenerate proper subspaes of V of dimension at least three. Let

(G

orth

A

)

W

= (Y; �

jY�Y

; typ

jY

)

be a pregeometry with

Y = fx 2 X j there exists a g 2 SO

n+1

(F

q

; f) with x 2 g(W )g :
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Proposition 4.12

The pregeometry (G

orth

A

)

W

is a geometry of rank jtyp(W )j � 3 with linear diagram and a

ollinearity graph of diameter two. Moreover, for eah element x of maximal type the ollinearity

graph of the residue (G

orth

A

)

W

x

is onneted. Furthermore, if the residue (G

orth

A

)

W

x

of some element

x has a disonneted diagram falling into the two onneted omponents �

1

and �

2

, then G

x

is

equal to the diret sum

typ(�

1

)

(G

orth

A

)

W

x

�

typ(�

2

)

(G

orth

A

)

W

x

:

Proof. To prove the statement on the ollinearity graph of (G

orth

A

)

W

let p and p

0

be points of

(G

orth

A

)

W

. Then there exists an ellipti line l through p

0

with hp; li nondegenerate. By Lemma

4.11 there exist

q�1

2

ellipti lines through p interseting l in a point of (G

orth

A

)

W

. Sine q is

odd, there exists at least one, and the laim is proved. The same argument implies that the

ollinearity graph of the residue of an element x of maximal type, whih is at least four, is

onneted. 2

The preeding proposition allows us to apply Lemma 4.5, so we an study the ollinearity

graph of (G

orth

A

)

W

in order to establish the simple onnetivity of (G

orth

A

)

W

.

Lemma 4.13

Let q > 7. Then any triangle in the ollinearity graph of (G

orth

A

)

W

is homotopially trivial.

Proof. Let a, b,  denote the points of a triangle. If ha; b; i is nondegenerate, then its polar

ha; b; i

?

ontains a nondegenerate two-dimensional subspae of V and, thus, points of positive

type and of negative type. Choosing a positive point p of that line if ha; b; i is positive and

hoosing a negative point p of that line if ha; b; i is negative, we obtain a positive spae ha; b; ; pi

ontaining the triangle a, b, . Therefore that triangle is geometri, whene null-homotopi by

Proposition 4.1.

Now suppose the triangle a, b,  spans a degenerate spae ha; b; i with one-dimensional

radial x. Notie �rst that any line not passing through x is ellipti. If a, b,  are all of positive

type onsider an arbitrary nondegenerate four-dimensional subspae of V ontaining ha; b; i.

That four-dimensional spae neessarily is of negative type, so its polar ontains a negative

point p. But ha; pi, hb; pi, h; pi then are ellipti lines and the three-dimensional spaes ha; b; pi,

hb; ; pi, ha; ; pi are nondegenerate, so the original triangle a, b,  is null-homotopi. If all of

a, b,  are negative points, then we an hoose any positive point p on the line hb; i suh that

ha; pi does not ontain x. Then ha; pi is an ellipti line and we have deomposed the triangle a,

b,  into two triangles in whih positive points our. If b and  are of negative type and a is

of positive type we an again hoose any positive point p on the line hb; i suh that ha; pi does

not ontain x, deomposing the triangle a, b,  into two triangles with one negative point and

two positive points.

We are left with the ase of one negative point, say a, and two positive points, say b and .

If neither b nor  are perpendiular to a, we an hoose the point b

0

on ha; bi perpendiular to

a, whih is a positive point as it is perpendiular to the negative point on the ellipti (negative)

line ha; bi. Sine  is not perpendiular to a, the line hb

0

; i does not pass through x and, thus, is

ellipti. The triangle b, b

0

,  onsists of positive points only and hene is null-homotopi, so we

an assume a ? b in our original triangle. The spae ha; b; i is ontained in a four-dimensional
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nondegenerate negative spae whih is in turn ontained in a �ve-dimensional nondegenerate

positive spae W (whih may be equal to V ). The spae U := hb; i

?

\W is a three-dimensional

negative spae. As b ? a the spae ha; Ui equals b

?

\ W , whih is a nondegenerate four-

dimensional positive spae. Through a there are q + 1 tangent planes of ha; Ui. Moreover, in

U there are q + 1 tangent lines. If all tangent planes through a would pass through a tangent

line of U , we would have that a equals the projetion of  onto ha; Ui with respet to the diret

deomposition hbi � ha; Ui of W , whih would imply that a, b,  are linearly dependent. So

there exists a nondegenerate plane of ha; Ui through a that intersets U in a tangent line of

U . Sine U is a negative spae tangent lines of U ontain q negative points besides the radial.

We have to �nd a point p among those q points that spans an ellipti line together with a and

nondegenerate three-dimensional spaes with ha; bi and ha; i. Sine b ? a and b ? p, the spae

ha; b; pi is automatially nondegenerate if ha; pi is an ellipti line. The spae ha; ; pi has a Gram

matrix of the form

0

�

� � �

� � 0

� 0 

1

A

with respet to the basis a, , p for a nonzero onstant  and a variable �. Hene there are at

most two hoies of p for whih ha; ; pi is degenerate. Hene there exist q � 2� 2�

q�1

2

points

p on a ommon ellipti line with a. Indeed, there are q negative points, two of whih might give

rise to a nondegenerate spae ha; ; pi, two of whih might give rise to a nongenerate spae ha; pi

and

q�1

2

of whih might span hyperboli lines together with a. This number is positive sine

q > 7. 2

Lemma 4.14

Let q > 3. Then any quadrangle of the ollinearity graph of (G

orth

A

)

W

is homotopially trivial.

Proof. Let a, b, , d be a quadrangle and let l := ab and m := d. If l and m interset in a

point e, then the quadrangle a, b, , d deomposes into two triangles a, d, e and b, , e.

Therefore we an assume hl;mi is four-dimensional. Our goal is to prove that the point line

geometry onsisting of the points of l and m and the ellipti lines in hl;mi interseting l and m

is onneted. The fat that a, b, , d is null-homotopi then follows, as any path from a to b

via points on l and m and ellipti lines interseting both l and m deomposes the quadrangle

a, b, , d into triangles. We have to onsider the following �ve ases of possible struture for

hl;mi: (i) two-dimensional radial, ellipti line as omplement; (ii) two-dimensional radial,

hyperboli line as omplement; (iii) one-dimensional radial; (iv) nondegenerate negative spae;

(v) nondegenerate positive spae. In the �rst ase any line not through the radial is ellipti and

there is nothing to prove. The seond ase annot our as the lines l and m are ellipti. In the

third ase let x denote the radial of hl;mi. The planes hl; xi and hm;xi interset in a line, s say.

Denote the intersetion of l and s by y and the intersetion of m and s by z. All lines in hl; xi

through z exept s are ellipti, whene z is in the same onneted omponent as any point on l

distint from y. By symmetry, y is in the same onneted omponent as any point on m distint

from z. Now let p be any point on l distint from y and onsider the plane hp;mi. This plane

is a omplement in hl;mi of x, so it is nondegenerate. By Lemma 4.11 there exist

q�1

2

ellipti

lines through p in hp;mi. This is at least two if q is larger than three, so there exists an ellipti
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line through p interseting m in a point distint from z and, thus, the geometry onsisting of

the points of l and m and the ellipti lines of hl;mi interseting l and m is onneted. In ase

four we an apply the same argument as above by using tangent planes of the ellipti quadri

ontaining l or m. In the �fth ase the spae hl;mi is an objet of the geometry (G

orth

A

)

W

, so

the quadrangle a, b, , d is geometri and hene, by Lemma 4.1, null-homotopi. 2

Lemma 4.15

Any pentagon of the ollinearity graph of (G

orth

A

)

W

is homotopially trivial.

Proof. Let a, b, , d, e be a pentagon and let l := d. If ha; li is nondegenerate, then there

exist

q�1

2

ellipti lines through a interseting l, whih is at least one, and if ha; li is degenerate,

then there exist q ellipti lines through a interseting l, as in ha; li eah omplement of the

radial is an ellipti line. In both ases we have deomposed the pentagon a, b, , d, e into two

quadrangles. 2

By Proposition 4.12, the three lemmas we have proved the following theorem.

Theorem 4.16

Let q � 9. Then the geometry (G

orth

A

)

W

is simply onneted. 2

Theorem 4.17

Let q � 9 be odd, let n � 4, let V be an (n+1)-dimensional vetor spae over F

q

endowed with

a nondegenerate positive symmetri bilinear form f . Let G = (G

orth

A

)

W

, let G = SO

n+1

(F

q

; f)

and let A = A(G; G;W ) be the amalgam of maximal parabolis of (G

orth

A

)

W

. Then U(A) =

SO

n+1

(F

q

; f).

Proof. This follows by Theorem 4.16 and Corollary 3.2. 2

4.4 Negative form in dimension at least �ve

Let q be odd and let V be a vetor spae over F

q

of dimension n+ 1 at least �ve endowed with

a nondegenerate negative symmetri bilinear form f and let

G

orth

A

(n; F

q

; f) = (X; �; typ)

be the pregeometry on all nondegenerate subspaes of V . Let

W =

�

p; p

0

; l; �; U; U

1

; U

2

; : : : ; U

t

	

be a lounge where p is a positive point, p

0

is a negative point, l is a negative line, � is a positive

or negative plane, U is a positive four-dimensional subspae of V , and the U

i

are arbitrary

nondegenerate proper subspaes of V of dimension at least three. Let

(G

orth

A

)

W

= (Y; �

jY�Y

; typ

jY

)

be a pregeometry with

Y = fx 2 X j there exists a g 2 SO

n+1

(F

q

; f) with x 2 g(W )g :
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Theorem 4.18

Let q � 9. Then the geometry (G

orth

A

)

W

is simply onneted.

Proof. The proof is almost the same as the proof of Theorem 4.16, i.e., it follows by versions

of Lemmas 4.13, 4.14 and 4.15. The ruial step is �nding a version of the proof of Lemma 4.13

that works. This, however, simply amounts to interhanging the words positive and negative in

a suitable way. The other two lemmas an be opied literally. 2

Theorem 4.19

Let q � 9 be odd, let n � 4, let V be an (n+1)-dimensional vetor spae over F

q

endowed with

a nondegenerate negative symmetri bilinear form f . Let G = (G

orth

A

)

W

, let G = SO

n+1

(F

q

; f)

and let A = A(G; G;W ) be the amalgam of maximal parabolis of (G

orth

A

)

W

. Then U(A) =

SO

n+1

(F

q

; f). 2

4.5 Negative form in dimension four

Let q be odd and let V be a vetor spae over F

q

of dimension four endowed with a nondegenerate

negative symmetri bilinear form f and let

G

orth

A

(n; F

q

; f) = (X; �; typ)

be the pregeometry on all nondegenerate subspaes of V . Let

W =

�

p; p

0

; l; �; �

0

	

be a lounge where p is a positive point, p

0

is a negative point, l is a negative line, � is a positive

plane, and �

0

is a negative plane. Let

(G

orth

A

)

W

= (Y; �

jY�Y

; typ

jY

)

be a pregeometry with

Y = fx 2 X j there exists a g 2 SO

n+1

(F

q

; f) with x 2 g(W )g :

Lemma 4.20

Let q � 7. Then any triangle in the ollinearity graph of (G

orth

A

)

W

is homotopially trivial.

Proof. Let a; b;  be a triangle in a degenerate plane with one-dimensional radial p. Let � be

a nondegenerate plane through ab. There are two degenerate planes through b, namely ha; b; i

and some plane �

b

; likewise there are two degenerate planes ha; b; i and �

a

through a. The

planes �

a

and �

b

meet � in two lines l

a

and l

b

, respetively, through a and b. Sine, in �,

there are at least

q�1

2

ellipti lines through any nonsingular point, we �nd two ellipti lines l

a

and l

b

through a and b, respetively, distint from l

a

, l

b

, and habi. Let d be the intersetion

of l

a

with l

b

. The plane h; d; pi is nondegenerate sine the only degenerate plane through the

tangent line p is ha; b; i. Hene there is some point 

0

on p with the property that 

0

d is

ellipti. It is now lear that, sine all triangles a, b, d and a, 

0

, d and b, 

0

, d are ontained

in nondegenerate planes, that a, b, 

0

is null-homotopi. But the automorphism group of the
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quadri ontains a group of order q � 1 �xing ab pointwise, �xing p and ating transitively on

the points of p exept for p and the intersetion p \ ab. So we onlude that also a, b,  is

null-homotopi. 2

Theorem 4.21

Let q > 7. Then (G

orth

A

)

W

is simply onneted.

Proof. Case (iv) of Lemma 4.14 shows that any quadrangle of (G

orth

A

)

W

is null-homotopi and

Lemma 4.15 shows that any pentagon of (G

orth

A

)

W

is null-homotopi. 2

Theorem 4.22

Let q � 9 be odd, let V be a four-dimensional vetor spae over F

q

endowed with a positive

nondegenerate form f . Let G = (G

orth

A

)

W

, let G = SO

4

(F

q

; f) and let A = A(G; G;W ) be the

amalgam of maximal parabolis of (G

orth

A

)

W

. Then U(A) = SO

4

(F

q

; f). 2

4.6 Smaller amalgams

Theorem 4.23

Let q � 9 be odd, let n � 6, let V be an (n+1)-dimensional vetor spae over F

q

endowed with

a nondegenerate positive symmetri bilinear form f . Assume that W is a lounge ontaining

positive and negative hyperplanes, negative hyperlines, a positive or negative odimension three

spae and a positive odimension four spae. Let G = (G

orth

A

)

W

, let G = SO

n+1

(F

q

; f) and let

A

n�2

= A

n�2

(G; G;W ) be the amalgam of rank n� 2 parabolis of (G

orth

A

)

W

. Then

U(A

n�2

) = SO

n+1

(F

q

; f):

Proof. In view of Theorem 4.16 in order to apply Corollary 3.4, we have to prove that all

residues of ags of rank one are simply onneted. If the ag x of rank one is not a point of

(G

orth

A

)

W

, then the simple onnetivity of (G

orth

A

)

W

x

follows from Theorem 4.16 or Lemma 4.6

aording to whether x is a hyperplane or not. So assume x is a point. If it is a positive

point, then the dual of the residue (G

orth

A

)

W

x

is simply onneted by Theorem 4.16 and hene

also (G

orth

A

)

W

x

is simply onneted. If x is a negative point, then the hyperline in the residue

(G

orth

A

)

W

x

beomes a positive hyperline, while the odimension four subspae of (G

orth

A

)

W

x

beomes

negative. After dualizing (G

orth

A

)

W

x

, the simple onnetivity of (G

orth

A

)

W

x

follows by Theorem 4.18.

2

In priniple, the theorem would also work for n = 5, but then by assumption W would have

to ontain a negative line and a positive odimension four spae, whih would be a positive line.

But this would ontradit the fat, that W ontains a positive and a negative point, beause

the onneting line between those two points annot be both positive and negative.

Theorem 4.24

Let q � 9 be odd, let n � 4, let V be an (n+1)-dimensional vetor spae over F

q

endowed with

a nondegenerate positive symmetri bilinear form f . Let

G

orth

A

(n; F

q

; f) = (X; �; typ)
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be the pregeometry on all nondegenerate subspaes of V . Let

W =

�

p; p

0

; l; �; U; U

1

; U

2

; : : : ; U

t

	

be a lounge where p is a positive point, p

0

is a negative point, l is a negative line, � is a positive

or negative plane, U is a positive four-dimensional subspae of V , and the U

i

are arbitrary

nondegenerate proper subspaes of V of dimension at least three. Let G = SO

n+1

(F

q

; f) and let

(G

orth

A

)

W

= (Y; �

jY�Y

; typ

jY

)

be a pregeometry with

Y = fx 2 X j there exists a g 2 G with x 2 g(W )g :

Let W � 2

W

be a shape ontaining p, p

0

, every ag of orank two, and the ag onsisting of all

elements of type greater or equal four. Then

G = U(A

W

(G; G;W ):

Proof. This follows from Theorem 3.4 plus Theorem 4.16 and Lemmas 3.2 and 4.6. 2

A Appendix: A transitive geometry for G

2

(q)

In the sequel we study a rank three geometry related to the split Cayley hexagon over a �nite

�eld. Its simple onnetivity an be proven with methods dealing with �nite quadris as before.

To be preise, we onsider the group G

2

(q). Let H(q) be the assoiated generalized hexagon.

This hexagons an be represented on a projetive nondegenerate quadri Q(6; q) in projetive

6-spae PG(6; q). An ideal line of H(q) is a line of Q(6; q) that is not a line of H(q). An ideal

plane of H(q) is a plane of Q(6; q) that does not ontain any line of H(q). Ideal lines and planes

an also be de�ned only using the geometry of the hexagon H(q), see [32℄. The rank 3 geometry

that we will onsider onsists of the points of the split Cayley hexagon H(q), the ideal lines, and

the ideal planes, with natural inidene. The planes of the quadri Q(6; q) that ontain a line

penil of the hexagon will be referred to as \degenerate" planes. Every ideal line lies in a unique

degenerate plane, and in every suh plane there is a unique point with the property that every

line through that point in that plane is a hexagon line. We all that point the ideal enter of

the ideal line.

We will apply Lemma 4.5 in order to study yles in the ollinearity graph. Therefore, we

need that the residue of an ideal plane is onneted. This is true sine an ideal plane in the rank

3 geometry is just a projetive plane.

Lemma A.1

Let a; b; ; d be a quadrangle with the property that no two onseutive sides have ideal enters

inident with the same hexagon line. Then a; b; ; d is null-homotopi, provided q � 4.



A APPENDIX: A TRANSITIVE GEOMETRY FOR G

2

(Q) 29

Proof. Indeed, the spae fa; b; g

?

is three dimensional and meets the quadri in a quadrati

one C with vertex b. Our assumptions imply that d is not ollinear with b on the quadri.

Hene d

?

meets C in a nondegenerate oni. Let e be any point of that oni, hosen in suh

a way that none of the planes abe; be; de; ade are degenerate (this is possible sine there is a

unique degenerate plane through every ideal line, and sine q � 4). Then e is, on the quadri,

ollinear with all of a; b; ; d. If one of the lines ae; be; e; de were a hexagon line, say ae, then

ae would ontain the ideal enters of ab and ad, a ontradition. Hene all lines ae; be; e; de

are ideal and all of the triangles a; b; e and b; ; e and ; d; e and a; d; e are ontained in an ideal

plane. Hene all these triangles are null homotopi and the laim follows. 2

Two ideal lines the ideal enters of whih are not inident with the same hexagon line will

be alled in general position.

Lemma A.2

Let a; b;  be a triangle in a degenerate plane. Then a; b;  is null-homotopi.

Proof. Indeed, hoose a point d at hexagon-distane 4 from both a and b and opposite . This is

possible by the following argument. The points a and b are ontained in a trae, say in the trae

of some point d. If  is ontained in the trae of d as well, then  2 ab by the 2-regularity of the

hexagon. In that ase, however, the triangle a, b,  is geometri and hene, by Proposition 4.1,

null-homotopi. Therefore we an assume that  is not ontained in the trae of d, whene it is

opposite d. Then the lines ad and bd are ideal and the triangle a; b; d is null-homotopi. Choose

a hexagon line l through d at hexagon-distane 5 from a and b. Choose a hexagon line l

0

through

 at hexagon-distane 5 from a (and hene also from b) and opposite l. Finally, let e be a point

at hexagon-distane 3 from both l and l

0

, and at hexagon-distane 4 from both  and d. Then

the ideal lines e and de are in general position, and so are the ideal lines de and bd; bd and b;

de and ad; ad and a; a and e; b and e. By Lemma A.1 above, the quadrangles a; ; e; d and

b; ; e; d are null-homotopi, whih implies that the quadrangle a; ; b; d is null-homotopi. Sine

the triangle a; b; d is null-homotopi, we onlude that also the triangle a; b;  is null-homotopi.

2

Lemma A.3

Every quadrangle a; b; ; d is null-homotopi.

Proof. Suppose �rst that the pairs fa; g and fb; dg are opposite pairs of points (in the

hexagon). Then the proof of Lemma A.1 applies, taking into aount that we now do not have

the restrition of e to be hosen suh that abe, et., is nondegenerate, but instead, we require

that e is suh that ae, be, e nor de is a hexagon line. This an be ahieved sine this is so for

at most two hoies of e. Indeed, if there exist points e, e

0

in ha; b; ; di

?

suh that ae and be

0

are hexagon lines, then ha; b; ei and ha; b; e

0

i are planes of the quadri, Sine both planes ontain

hexagon lines, they are both degenerate. However, both ha; b; ei and ha; b; e

0

i ontain the ideal

line ab, whih in turn is ontained in a unique degenerate plane. Hene ha; b; ei = ha; b; e

0

i and,

thus, e = e

0

.

Hene we may assume that a and  are ollinear on the quadri. If a is ideal, then we are

done by the fat that all triangles are now null-homotopi. Hene we may assume that a is a
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hexagon line. Clearly, we may assume that b and d are not ollinear on the quadri as otherwise

a; b; ; d lie in a plane of the quadri and then ad meets b in some point e. The triangles a; b; e

and ; d; e are null-homotopi by Lemma A.2, hene the result.

Let x be a point at hexagon-distane 5 from a and opposite all of a; b;  and d. This an

be hosen as follows: onsider a line l at hexagon-distane 3 from both b and d, but di�erent

from a. Consider any point x

0

on l, at hexagon-distane 4 from both b and d, and then one an

hoose x suitable but ollinear with x

0

(and using q � 4). Choose two lines m and n through x

opposite a. Let e and f be inident withm and n, respetively, and at hexagon-distane 4 from

a and , respetively. We laim that the pentagon a; b; ; f; e is null-homotopi. Indeed, b is, on

the quadri, ollinear to some point of the ideal line ef , but in the hexagon not ollinear to any

point of ef (as otherwise x and b are not opposite). If both eb and fb are ideal lines, then we have

the null-homotopi triangles a; b; e and b; e; f and b; ; f . If e is opposite b and bf is an ideal line,

then b; ; f is null-homotopi, but also a; b; f; e is null-homotopi beause f is learly opposite a,

and b is opposite e by assumption; so we may apply the previous paragraph in our present proof.

If both e and f are opposite b, then, likewise, we have the null-homotopi quadrangles a; b; g; e

and b; ; f; g, with g a point on ef at hexagon-distane 4 from b (or, equivalently, ollinear

on the quadri with b). Now the pentagon a; b; ; f; e is null-homotopi Similarly, the pentagon

a; d; ; f; e is null-homotopi. But this now implies that the quadrangle a; b; ; d is null-homotopi.

2

Lemma A.4

Every pentagon a; b; ; d; e is null-homotopi.

Proof. Certainly, there is a point f on d ollinear on the quadri with a. If af is an ideal line,

then we have subdivided our pentagon into either two null-homotopi quadrangles, or one null

homotopi quadrangle and a null-homotopi triangle. So we may assume that af is a hexagon

line. First we suppose that  6= f 6= d. If the ideal enter of d is inident with af , then ad

is a degenerate plane and hene we an �nd a point g in that plane suh that ag, g and dg

are ideal lines. We then have subdivided our pentagon onto the null-homotopi iruits a; b; ; g

and ; d; g and a; e; d; g. So we may assume that the ideal enter x of d is o� af . We onsider

any point h on the line fx, with f 6= h 6= x. Then ah, dh and h are ideal lines and we have

subdivided our pentagon onto the null homotopi iruits a; b; ; h and ; d; h and a; e; d; h.

Hene we may at last assume that f =  and so that a is a hexagon line. Similarly as above,

we may also assume that the ideal enter x of d is not inident with a. We hoose an arbitrary

point k on x,  6= k 6= x. Then dk and ak are ideal lines. Inside the degenerate plane ax, we

an easily �nd a point m suh that am, m and km are ideal lines. We have now subdivided

our pentagon into the quadrangles a; b; ;m and ; d; k;m and a; e; d; k, and the triangle a; k;m,

whih are all null-homotopi.

The result follows. 2

Lemma A.5

Every hexagon a; b; ; d; e; f is null-homotopi.
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Proof. This is similar to the proof of Lemma A.4. We just have to add one to the girth of

every iruit we onsidered ontaining e (it now also ontains f). 2

Theorem A.6

Let q � 4. Then the geometry G onsisting of the points, the ideal lines and the ideal planes of

the split Cayley hexagon H(q) is simply onneted.

Proof. Let a

1

; a

2

; : : : ; a

n

be a iruit, with n � 6 in view of the foregoing lemmas. We prove

the assertion by means of indution on n. For n = 6, this is the previous lemma. Now let n � 7.

On the ideal line a

4

a

5

there is at least one point b ollinear on the quadri with a

1

. If a

1

b is

an ideal line, then we apply indution on the iruit a

1

; b; a

5

; a

6

; : : : ; a

n

(where possibly b = a

4

),

and, together with the fat that a

1

; a

2

; a

3

; a

4

; b (with possibly a

4

= b) is null-homotopi, this

implies the result.

So we may assume that a

1

b is a hexagon line. Then there is a point  with a

1

 and b ideal

lines, and we an apply indution on the iruit a

1

; ; b; a

5

; a

6

; : : : ; a

n

(with possibly a

5

= b),

whih, together with the fat that a

1

; a

2

; a

3

; a

4

; b;  is null-homotopi by the previous lemma,

implies the assertion. 2

Theorem A.7

Let q � 4, let G = G

2

(q) and let G be the geometry onsisting of the points, the ideal lines and

the ideal planes of the split Cayley hexagon H(q). Let F be a maximal ag of G. Then

G

�

=

U(A(G; G; F ):

Proof. This follows by Theorem A.6 and Lemma 3.2. 2

We now desribe the amalgam in more detail. The stabilizer of a point is a paraboli subgroup

G

1

:= q

5

: GL

2

(q). The stabilizer of an ideal line is a group G

2

:= q

3

: GL

2

(q), and the stabilizer

of an ideal plane is G

3

:= SL

3

(q). The amalgam is de�ned in suh a way that G

1;2

, whih omes

from the intersetion G

1

\G

2

in G

2

(q), is isomorphi to a group of order q

4

(q � 1)

2

; the other

two groups G

2;3

and G

1;3

are the line and point stabilizer, respetively, in SL

3

(q) in the natural

ation on a projetive plane of order q. The group G

1;2;3

is a ag stabilizer in the latter.

Note that the geometry G has a linear diagram of the form

point

q

Æ

line

q

Æ

Af

�

plane

q�1

Æ ;

where the Af

�

denotes the dual of an aÆne generalized quadrangle. In our ase, we delete a

line, all points on it, and all lines onurrent with it from an orthogonal quadrangle Q(4; q).
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B Appendix: An intransitive geometry for G

2

(3)

Here is another appliation of our new theory. In [18℄ Ho�man and Shpetorov study an amalgam

of maximal subgroups of

b

G = Aut(G

2

(3)) given by a ertain hoie of subgroups

b

L = 2

3

� L

3

(2) : 2;

b

N = 2

1+4

:(S

3

� S

3

);

M = G

2

(2) = U

3

(3) : 2

whih orresponds to an amalgam of subgroups of G = G

2

(3) given by

L =

b

L \G = 2

3

� L

3

(2);

N =

b

N \G = 2

1+4

:(3� 3):2;

M = G

2

(2) = U

3

(3) : 2;

K = eMe

�1

for e 2 O

2

(

b

L)nO

2

(L)

where O

2

(

b

L) denotes the largest normal subgroup of

b

L that is a 2-group. The groups

b

G

1

=

b

L;

b

G

2

=

b

N;

b

G

3

= M

de�ne a ag-transitive oset geometry G of rank three for

b

G = Aut(G

2

(3)), whih is simply on-

neted by [18℄. The subgroup G = G

2

(3) of

b

G does not at ag-transitively on G. Nevertheless,

the groups

G

1;1

= L;

G

1;2

= N;

G

1;3

= M;

G

2;3

= K

de�ne an intransitive oset geometry of rank three for G = G

2

(3), whih is isomorphi to G

by [18℄ and, hene, simply onneted. Corollary 3.2 implies that

b

G is the universal ompletion

of the amalgam given by

b

L,

b

N and M and their intersetions as indiated in De�nition 2.25

and that G is the universal ompletion of the amalgam given by L, N , M and K and their

intersetions exluding M \K as indiated in De�nition 2.26.
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