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Abstra
t. Motivated by the generalization of the Maslov index to tube domains and by numerous

appli
ations of related index fun
tion in in�nite-dimensional situations, we des
ribe in this paper

a topologi
ally oriented approa
h to an index fun
tion generalizing the Maslov index for bounded

symmetri
 domains of tube type to a variety of in�nite-dimensional situations 
ontaining in parti
ular

the 
lass of all bounded symmetri
 domains of tube type in Bana
h spa
es. The framework is that

of 3-graded Bana
h{Lie groups and 
orresponding Jordan triple systems.

Introdu
tion

Let D be a �nite-dimensional bounded symmetri
 domain of tube type and S its Shilov

boundary. In [C�01℄ and [Cl04℄ J. L. Cler
 and the se
ond author have de�ned a fun
tion

�:S

3

! Z


alled the Maslov index whi
h is invariant under the a
tion of the identity 
omponent H :=

Aut(D)

0

on the set S

3

of triples in the Shilov boundary. Their index fun
tion generalizes in

parti
ular the 
lassi
al Maslov index, whi
h is obtained if D is the open unit ball in the spa
e

Sym

n

(C ) of 
omplex symmetri
 matri
es and Aut(D)

0

= Sp

2n

(R) is the symple
ti
 group. In

this 
ase S 
an be identi�ed with the set of Lagrangian subspa
es of a 2n-dimensional symple
ti


ve
tor spa
e W and the Maslov index is an integer �(L

1

; L

2

; L

3

) de�ned for L

1

; L

2

; and L

3

2 S .

For the appli
ations to boundary value problems for di�erential operators and 
orresponding

index theories, it is important to allow W to be in�nite-dimensional; but also for W = R

2n

with

the standard symple
ti
 form, the Maslov index plays a non-trivial role, and our approa
h o�ers

new insight in this 
ase as well. In the 
lassi
al situation, this means we 
an identify S with the

set of unitary symmetri
 matri
es.

Motivated by the generalization of the Maslov index to tube domains and by numerous

appli
ations of related index fun
tion in in�nite-dimensional situations (
f. [CLM94℄), we des
ribe

in this paper a topologi
ally oriented approa
h to an index fun
tion generalizing the Maslov

index for bounded symmetri
 domains of tube type to a variety of in�nite-dimensional situations


ontaining in parti
ular the 
lass of all bounded symmetri
 domains of tube type in Bana
h

spa
es.

We start with the following group theoreti
 setup. We 
onsider a Bana
h{Lie group G

endowed with an involution � and whose Lie algebra g is endowed with a 3-grading g =

g

�1

� g

0

� g

1

arising as the eigenspa
e de
omposition of some adE , E 2 g

0

, and reversed

by � . We then 
all (G; adE; �) an involutive 3-graded Lie group.

We have subgroups G

�

and G

0

of G 
orresponding to g

�

and g

0

, and we thus obtain

a homogeneous manifold X := G=G

0

G

�

into whi
h we embed the Bana
h spa
e V := g

1

by

the map x 7! expxG

0

G

�

. The involution � and the 3-grading provide on V the stru
ture of a

Jordan triple by

fx; y; zg :=

1

2

[[x; �:y℄; z℄:

If the operator Q(x): y 7! fx; y; xg on V is invertible, we 
all the element x invertible and we

say that e 2 V is a tripotent if fe; e; eg = e . We now write S for the set of invertible tripotents
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in V . If S is non-empty, then � indu
es an involution �

X

on X su
h that S = V \X

�

is the

set of �

X

-�xed points in the open subset V of X . We make the assumptions

(A1)H := G

�

0

� G

+

G

0

G

�

(where G

�

0

denotes the identity 
omponent of G

�

), and that

(A2) S is invariant under the a
tion of H on X .

A pair (z; w) 2 V

2

is 
alled quasi-invertible if exp(��:w) exp z 2 G

+

G

0

G

�

(this 
an

also be expressed dire
tly in Jordan theoreti
 terms). For a quasi-invertible pair we de�ned

B

G

(z; w) 2 G

0

by exp(��:w) exp z 2 G

+

B

G

(z; w)

�1

G

�

. We write V

3

>

for the set of all quasi-

invertible triples in V and 
onsider the fun
tion

d

G

:V

3

>

! G

0

; (x; y; z) 7! B

G

(x; y)B

G

(z; y)

�1

B

G

(z; x)B

G

(y; x)

�1

B

G

(y; z)B

G

(x; z)

�1

:

For S

3

>

:= S

3

\ V

3

>

we show that d

G

(S

3

>

) � Z(G

0

)

�

and that the assumption

(A3) d

G

(S

3

>

) = f1g

is always satis�ed for a quotient of the identity 
omponent G

0

of G by a dis
rete 
entral

elementary abelian 2-subgroup. For the group GL

2

(A) over a hermitian Bana
h-�-algebra

(A; �) we only have to fa
tor the subgroup f�1g (see Se
tion II). The main goal of Se
tion I is

the de�nition of an index map

�

G

:S

3

>

! �

1

(G

0

)

assigning to a quasi-invertible triple in S a homotopy 
lass of a loop in the group G

0

. This map

is obtained by showing that [0; 1℄! V

3

; t 7! (ts

1

; ts

2

; ts

3

) is a path in V

3

>

, so that 
omposing it

with d

G

yields a loop in G

0

whose homotopy 
lass is de�ned to be �

G

(s

1

; s

2

; s

3

).

We show in Se
tion II that all in�nite-dimensional bounded symmetri
 domains D of tube

type are 
overed by our setup, where S is the 
orresponding \Shilov boundary". This observation

builds heavily on results of W. Kaup and H. Upmeier (
f. [Up85℄). If, in addition, D is �nite-

dimensional, then we 
an 
ompose d

G

with the determinant fun
tion det:GL(V )! C

�

and the

natural representation �

V

:G

0

! GL(V ) to obtain a map det Æ�

V

Æ d

G

:V

3

>

! C

�

whi
h leads to

a map

e�

G

:S

3

>

! �

1

(C

�

)

�

=

Z:

Up to a 
onstant fa
tor, this map is the Maslov index de�ned in [C�01℄.

From its de�nition it is almost obvious that �

G

is 
onstant on the 
onne
ted 
omponents

of S

3

>

, and in Se
tion III we show that these 
onne
ted 
omponents 
oin
ide with the orbits of H

on S

3

>

. We further show that ea
h orbit 
ontains a triple of the form (e;�e; �) with Q(e)� = �� .

In Se
tion IV we then turn to the 
al
ulation of the index fun
tion. This is eventually redu
ed

to the 
ase of the group SL

2

(C )=f�1g by observing that span

R

fe; �g is a Jordan sub-triple of

V isomorphi
 to C with fx; y; zg = xyz and then using fun
torial properties of the index map.

The out
ome is the interesting result that

�

G

(e;�e; �) = [�

�

℄ with �

�

2 Hom(T; G

0

); �

�

(t+Z) = exp

G

(�t[�:e; �℄):

In the last Se
tion V we 
al
ulate the Maslov index for several 
lasses of examples. If V = A

is a hermitian Bana
h-�-algebra and S = U(A) its unitary group, then a triple (s

1

; s

2

; s

3

) 2 S

3

is quasi-invertible if and only if all di�eren
es s

j

�s

k

are invertible. So our index fun
tion assigns

to ea
h su
h triple a loop in the group G

0

�

=

(A

�

�A

�

)=f�1g whose homotopy 
lass is invariant

under the a
tion of the group H = U

1;1

(A; �)

0

, and ea
h triple is 
onjugate to one of the form

(1;�1; i(1� 2p)), where p is a hermitian proje
tion in A . Therefore the index map leads to a

map

�

0

(Idem(A; �))! �

1

(G

0

); [p℄ 7! [


p

℄; where Idem(A; �) := fp 2 A: p = p

2

= p

�

g

and [


p

℄ denotes the homotopy 
lass of the proje
tion loop de�ned by 


p

(t + Z) = e

2�itp

in

U(A). In this 
ase D = U

1;1

(A; �):0 is the unit ball for the largest C

�

-seminorm on A . This is

a symmetri
 Bana
h manifold, but it is bounded if and only if A is a C

�

-algebra. For 
omplex

Bana
h algebras the proje
tion loop 
onstru
tion leads to the Bott map

�:K

0

(A)! K

2

(A) = lim

�!

�

1

(GL

n

(A)); [p℄ 7! [


p

℄
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and the main point in Bott periodi
ity is that this map is an isomorphism (
f. [Kar78℄). It would

be very interesting to see if there are deeper 
onne
tions between our index fun
tion �

G

and

topologi
al K -theory for Bana
h algebras, in parti
ular for real Bana
h algebras.

It is remarkable that our setup never needs that G is a 
omplex group or that V is a


omplex ve
tor spa
e. All the results in the present paper remain valid in the real setting, hen
e

in parti
ular for the \Shilov boundaries" of real bounded symmetri
 domains, but the geometri


impli
ations for this setting will be investigated in a future paper.

Our approa
h to the index fun
tion �

G

via involutive 3-graded Lie groups is 
losely related

to the geometry of inner 3-�ltrations and 3-gradings developed in [BN04a℄, from where we use

several results. To keep this paper reasonably self-
ontained, we in
luded an appendix on basi


results on Jordan triples used throughout and also a se
ond appendix on the basi
 notions


on
erning inner 3-�ltrations of Lie algebras. The theory in [BN04a℄ is algebrai
, it even works

over �elds of positive 
hara
teristi
 6= 2; 3. Thinking of the index �

G

as a Jordan algebra version

of the Bott map, it would be interesting to see if there is an algebrai
 variant of �

G

whi
h is

related to the Laurent polynomial 
onstru
tions in the algebrai
 K -theory of rings.

I. The index fun
tion for quasi-invertible triples

In this se
tion we introdu
e involutive 3-graded Bana
h{Lie groups and dis
uss the as-

sumptions (A1-3) mentioned in the introdu
tion. We shall use Cayley transforms asso
iated to

invertible tripotents to show that for ea
h quasi-invertible triple (s

1

; s

2

; s

3

) 2 S

3

>

the line seg-

ment 
onne
ting it to (0; 0; 0) 
onsists of quasi-invertible triples. With this information we 
an

de�ne the index fun
tion �

G

:S

3

>

! �

1

(G

0

).

Three graded involutive Lie groups

De�nition I.1. An inner 3-grading of a Lie algebra g is a 3-grading g = g

�1

� g

0

� g

1

for

whi
h the derivation D 2 der(g) de�ned by g

j

= ker(D � j id

g

) for j = 1; 0;�1, is inner. Then

the elements E 2 g

0

with D = adE are 
alled grading elements. Note that g

�2

= f0g implies

in parti
ular that the spa
es g

�

:= g

�1

are abelian subalgebras of g .

A pair (G;D) of a Bana
h{Lie group G and an inner derivation D 2 ad g is 
alled a

3-graded Lie group if the eigenspa
es g

j

:= ker(D � j id

g

), j = �1; 0; 1, de�ne a 3-grading.

A triple (G;D; �) 
onsisting of a 3-graded Bana
h{Lie group (G;D) and an involutive

automorphism � of G whose di�erential L(�) reverses the grading, i.e., L(�):g

j

= g

�j

for

j = �1; 0; 1, is 
alled an involutive 3-graded Lie group.

Proposition I.2. Let (G;D) be a 3-graded Bana
h{Lie group. The subgroups

G

�

:= exp g

�

; G

0

:= fg 2 G: (8j)Ad(g)g

j

= g

j

g = fg 2 G: Ad(g)D = DAd(g)g

and P

�

:= G

�

G

0

have the following properties:

(1) P

+

\ P

�

= G

0

, P

�

\G

�

= f1g and P

�

�

=

G

�

oG

0

. All these groups are 
omplemented

Lie subgroups of G .

(2) The multipli
ation map G

+

�G

0

�G

�

! G; (x; y; z) 7! xyz is a di�eomorphism onto an

open subset of G .

(3) X := G=P

�

is a homogeneous Bana
h manifold and the map g

1

! X; x 7! expxP

�

is a

di�eomorphism onto an open subset.

(4) The orbits of the identity 
omponent G

0

of G 
oin
ide with the 
onne
ted 
omponents of X .

(5) For the inner 3-�ltrations f

�

= (g

�

; g

�

+ g

0

) of g we have G

f

�

= P

�

and hen
e an

embedding

(1:1) X ! F ; gP

�

7! g:f

�
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of X into the set F of inner 3-�ltrations of g .

Proof. (1) Sin
e G

0

preserves the grading of g , it normalizes the subgroups G

�

, so that P

�

are groups.

We 
onsider the two inner 3-�ltrations

f

+

:= (g

+

; g

+

+ g

0

) and f

�

:= (g

�

; g

�

+ g

0

)

de�ned by the 3-grading of g (
f. Appendix B for the de�nitions 
on
erning inner 3-�ltrations).

For a 3-�ltration f = (f

1

; f

0

) let

G

f

:= fg 2 G: Ad(g):f

0

= f

0

;Ad(g):f

1

= f

1

g

denote its stabilizer subgroup in G . Then we 
learly have P

�

� G

f

�

.

On the other hand ea
h element g 2 G

f

+

also stabilizes the subset f

>

+

= fe 2 F : e>f

+

g

of all inner 3-�ltrations of g transversal to f

+

. A

ording to [BN04a, Th. 1.6(2)℄, the group

G

+

a
ts transitively on the set f

>

+


ontaining f

�

. Hen
e there exists an element g

+

2 G

+

with

g:f

�

= g

+

:f

�

. Then g

�1

+

g:f

�

= f

�

implies that g

�1

+

g also preserves the 3-grading given by

g

+

= f

+;1

; g

�

= f

�;1

and g

0

= f

+;0

\ f

�;0

:

Therefore g

�1

+

g 2 G

0

, so that g 2 g

+

G

0

� P

+

. This shows that P

+

= G

f

+

and likewise we get

P

�

= G

f

�

. From that we obtain

P

+

\ P

�

= G

f

+

\G

f

�

= G

0

:

Let E 2 g

0

be a grading element, i.e., g

j

is the j -eigenspa
e of adE . Then we have for

x 2 g

+

the relation

Ad(expx):E = e

adx

:E = E � [x;E℄ = E + x:

Sin
e this element is 
ontained in g

�

+ g

0

= f

�;0

if and only if x = 0, we get

G

+

\ P

�

= G

+

\G

f

�

= f1g;

and likewise G

�

\ P

+

= f1g .

From P

�

= G

f

�

we derive in parti
ular that P

�

and G

0

are Lie subgroups of g with

the Lie algebras p

�

= g

+

+ g

0

whi
h are the normalizers of the 
ags f

�

on the Lie algebra

level ([Ne04, Lemmas IV.11, IV.12℄). Clearly the Lie algebras of all these subgroups have 
losed


omplements be
ause

g = p

+

� g

�

= p

�

� g

+

= g

0

� (g

+

+ g

�

):

This means that they are 
omplemented Lie subgroups.

(2) follows immediately from (1), the Inverse Fun
tion Theorem, and the fa
t that the map

(G

+

oG

0

)�G

�

! G; (x; y; z) 7! xyz

�1

is an orbit map for a smooth a
tion of the group (G

+

oG

0

)�G

�

on G .

(3) follows from (1) and (2).

(4) We know from (3) that the orbit of the base point in X under G

+

is open. Hen
e the

orbit of a point gP

�

under the group gG

+

g

�1

is open, and sin
e all subgroups gG

+

g

�1

are


ontained in G

0

, all orbits of G

0

in X are open. This implies that the G

0

-orbits in X are the


onne
ted 
omponents.

(5) follow from the proof of (1).
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Lemma I.3. For v 2 g

1

and w 2 g

�1

the following are equivalent

(1) expw exp v 2 G

+

G

0

G

�

.

(2) The operators

B

+

(v; w) := id

g

1

+ad v adw +

1

4

(ad v)

2

(adw)

2

2 End(g

1

)

and

B

�

(w; v) := id

g

�1

+adw ad v +

1

4

(adw)

2

(ad v)

2

2 End(g

�1

)

are invertible.

Proof. Consider the map �:G ! X; g 7! gP

�

and identify g

1

with the open subset

G

+

:P

�

� X . Then �

�1

(g

1

) = G

+

G

0

G

�

: Therefore expw exp v 2 G

+

G

0

G

�

is equivalent

to (expw):v 2 g

1

, and the assertion follows from [BN04a, Cor. 1.10℄.

De�nition I.4. Let (G;D; �) be an involutive 3-graded Bana
h{Lie group. We also write �

for its derivative on the Lie algebra g . Then �(g

j

) = g

�j

; j = �1; 0; 1; and the spa
e V := g

+


arries a Jordan triple stru
ture given by

fx; y; zg :=

1

2

[[x; �:y℄; z℄

(Theorem A.5). Using Proposition I.2(3), we think of V as an open subset of the homogeneous

spa
e X and view X as a 
onformal 
ompletion of the Jordan triple V .

We 
all an element x 2 V invertible if the operator

Q(x):V ! V; y 7! Q(x)(y) := fx; y; xg

is invertible and write V

�

for the set of invertible elements in V . For x 2 V

�

the (Jordan

triple) inverse is de�ned by

x

℄

:= Q(x)

�1

:x:

The elements of the set

S := fx 2 V

�

:x

℄

= xg = fx 2 V

�

: fx; x; xg = xg

are 
alled involutions or invertible tripotents (
f. De�nition A.1).

De�nition I.5. (a) We have seen above that the multipli
ation map G

+

�G

0

�G

�

! G is

a di�eomorphism onto an open subset of the group G . Therefore we have smooth maps

p

j

:G

+

G

0

G

�

! G

j

with g = p

+

(g)p

0

(g)p

�

(g) for g 2 G

+

G

0

G

�

:

For z 2 g

1

and g 2 G with g exp z 2 G

+

G

0

G

�

we de�ne

J

G

(g; z) := p

0

(g exp z) 2 G

0

:

The fun
tion J

G

is 
alled the universal automorphy fa
tor of G .

(b) For g 2 G we put g

�

:= �(g)

�1

and for x 2 g we put x

�

:= ��:x . For w 2 g

1

and

g = (expw)

�

= expw

�

2 G

�

we then set

B

G

(z; w) := J

G

�

(expw)

�

; z)

�1

= p

0

�

(expw)

�

exp z

�

�1

2 G

0

whenever expw

�

exp z 2 G

+

G

0

G

�

. A

ording to Lemma I.3, this happens if and only if the

Bergman operators

B(v; w) := B

+

(v; w

�

) = id

V

+ad v adw

�

+

1

4

(ad v)

2

(adw

�

)

2

= id

V

+ad v adw

�

+

1

4

(ad v)

2

Æ � Æ (adw)

2

Æ � = id

V

�2v�w +Q(v)Q(w)
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and B(w; v) are invertible. In this 
ase the pair (v; w) 2 V

2

is 
alled quasi-invertible and we

write v>w to denote quasi-invertibility. This notation is motivated by the fa
t that, in terms of

Appendix B, quasi-invertibility of (v; w) is equivalent to (exp(��:w) exp v:f

�

)>f

+

, whi
h means

that the 3-�ltration exp v:f

�

is transversal to the 3-�ltration exp(�:w):f

+

= �

X

(expw:f

�

).

(
) We write

V

2

>

:= f(x; y) 2 V

2

:B(x; y); B(y; x) 2 GL(V )g

for the set of quasi-invertible pairs in V , and V

3

>

:= f(x; y; z) 2 V

3

: (x; y); (y; z); (x; z) 2 V

2

>

g for

the set of quasi-invertible triples. For the set S of involutions in V we put S

2

>

:= S

2

\ V

2

>

and

S

3

>

:= S

3

\ V

3

>

: We then 
onsider the fun
tions




G

:V

3

>

! G

0

; 


G

(x; y; z) := B

G

(x; y)B

G

(z; y)

�1

B

G

(z; x)

and d

G

:V

3

>

! G

0

; (x; y; z) 7! 


G

(x; y; z)


G

(x; z; y)

�1

with

d

G

(x; y; z) = B

G

(x; y)B

G

(z; y)

�1

B

G

(z; x)B

G

(y; x)

�1

B

G

(y; z)B

G

(x; z)

�1

:

Lemma I.6. For a quasi-invertible pair (v; w) in V and the adjoint representation �

V

:G

0

!

GL(V ) of G

0

on g

1

= V we have B(v; w) = �

V

(B

G

(v; w)):

Proof. This follows from the proof of Theorem 2.10 in [BN04a℄.

Lemma I.7. The fun
tions B

G

, J

G

and d

G

have the following properties:

(1) For z 2 V and g; g

0

2 G with g

0

:z; gg

0

:z 2 V we have J

G

(gg

0

; z) = J

G

(g; g

0

:z)J

G

(g

0

; z): In

parti
ular J

G

(g

�1

; g:z) = J

G

(g; z)

�1

for z 2 V and g:z 2 V .

(2) If g:z; �(g):w 2 V , then B

G

(g:z; �(g):w) = J

G

(g; z)B

G

(z; w)J

G

(�(g); w)

�

:

(3) B

G

(w; z) = B

G

(z; w)

�

for expw

�

exp z 2 G

+

G

0

G

�

.

(4) d

G

(z

1

; z

3

; z

2

) = d

G

(z

1

; z

2

; z

3

)

�1

.

(5) d

G

(z

1

; z

2

; z

3

) = B

G

(z

1

; z

2

)B

G

(z

3

; z

2

)

�1

d

G

(z

3

; z

1

; z

2

)B

G

(z

3

; z

2

)B

G

(z

1

; z

2

)

�1

:

(6) d

G

(g:z

1

; g:z

2

; g:z

3

) = J

G

(g; z

1

)d

G

(z

1

; z

2

; z

3

)J

G

(g; z

1

)

�1

for g 2 G

�

with g:z

j

2 V for

j = 1; 2; 3 .

(7) For g 2 G

�

, (v; w) 2 V

2

>

and g:(v; w) 2 V

2

we have g:(v; w) 2 V

2

>

:

Proof. The elementary proof of (1)-(3) 
an be found in [Ne99, Lemma XII.1.9℄.

(4) follows from

d

G

(z

1

; z

3

; z

2

) = 


G

(z

1

; z

3

; z

2

)


G

(z

1

; z

2

; z

3

)

�1

=

�




G

(z

1

; z

2

; z

3

)


G

(z

1

; z

3

; z

2

)

�1

�

�1

= d

G

(z

1

; z

2

; z

3

)

�1

:

(5) follows from

d

G

(z

1

; z

2

; z

3

) = B

G

(z

1

; z

2

)B

G

(z

3

; z

2

)

�1

B

G

(z

3

; z

1

)B

G

(z

2

; z

1

)

�1

B

G

(z

2

; z

3

)B

G

(z

1

; z

3

)

�1

= B

G

(z

1

; z

2

)B

G

(z

3

; z

2

)

�1

�

B

G

(z

3

; z

1

)B

G

(z

2

; z

1

)

�1

B

G

(z

2

; z

3

)

B

G

(z

1

; z

3

)

�1

B

G

(z

1

; z

2

)B

G

(z

3

; z

2

)

�1

�

B

G

(z

3

; z

2

)B

G

(z

1

; z

2

)

�1

= B

G

(z

1

; z

2

)B

G

(z

3

; z

2

)

�1

d

G

(z

3

; z

1

; z

2

)B

G

(z

3

; z

2

)B

G

(z

1

; z

2

)

�1

:

(6) follows from (2).

(7) From (2) we derive B

G

(g:z; :gw) = J

G

(g; z)B

G

(z; w)J

G

(g; w)

�

, and therefore

B(g:z; g:w) = �

V

(J

G

(g; z))B(z; w)�

V

(J

G

(g; w)

�

)

is invertible (Lemma I.6).
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Proposition I.8. If S 6= � , then the involution � indu
es an involution �

X

on the homoge-

neous spa
e X , and the following assertions hold:

(1) The �xed point set X

�

:= fx 2 X : �

X

(x) = xg is a submanifold of X .

(2) With respe
t to the embedding V ,! X we have S = X

�

\ V:

(3) The group G

�

preserves the subset X

�

� X and the orbits of its identity 
omponent H := G

�

0

are the 
onne
ted 
omponents of the manifold X

�

.

(4) For the transversality relation > of inner 3-�ltrations and f 2 X

�

the subgroup exp(f

�

1

) of

H a
ts transitively on the set X

�

\ f

>

.

Proof. (1) In the proof of Proposition I.2 we have seen that P

�


oin
ide with the stabilizers

of the 3-�ltrations f

�

:= (g

�

; g

�

+ g

0

), so that we obtain an embedding of X into the set F of

inner 3-�ltrations of g by X ! F ; gP

�

7! g:f

�

([BN04a, Th. 1.12℄).

Suppose now that e 2 X

�

and that f 2 e

>

. Then �(e

1

) = e

1

, and from �

X

(e

adx

:f) =

e

ad �:x

:(�

X

:f) for x 2 e

1

it follows that � a
ts on the aÆne spa
e e

>

by an aÆne involution.

Therefore it has a �xed point f . Then the aÆne spa
e f

>

� X is an open subset 
ontaining e ,

and on this open set, the map �

X


orresponds to the restri
tion � j

f

1

. This shows that

(1:2) X

�

\ f

>

= e

ad f

�

1

:e;

whi
h is an aÆne subspa
e of the aÆne spa
e f

>

. Hen
e X

�


arries a natural manifold stru
ture

given by the aÆne 
harts of the form X

�

\ f

>

�

=

f

�

1

.

(2) If �

X

denotes the restri
tion of the involution � to X , 
onsidered as a subspa
e of the

set F of inner 3-�ltrations of g , then Proposition B.2 implies �

�1

X

(V )\V = V

�

with �

X

(v) = v

℄

for v 2 V

�

. From that we immediately get X

�

\ V = S .

(3) It is 
lear that the restri
tion of the a
tion of the subgroup G

�

of G on X preserves

the set X

�

. For e 2 X

�

we have seen in (1) that there exists some � -invariant f 2 e

>

su
h

that e

ad f

�

1

:e is a neighborhoof of e . Sin
e exp(f

�

1

) � H , all orbits of H in X

�

are open, hen
e


oin
ide with the 
onne
ted 
omponents.

(4) is an immediate 
onsequen
e of (1.2) in the proof of (1).

Tripotents and partial Cayley transforms

In this subse
tion we introdu
e the partial Cayley transform C

e

asso
iated to a Jordan

tripotent, following the de�nition of O. Loos in [Lo77℄.

De�nition I.9. (a) Let e 2 V be a tripotent, f := �(e), h := [e; f ℄ and g

e

:= span

R

fh; e; fg .

Then

[h; e℄ = 2fe; e; eg = 2e and [h; f ℄ = � [�h; e℄ = �� [h; e℄ = �2�e = �2f;

so that g

e

�

=

sl

2

(R) is a 3-dimensional subalgebra of g with g

�

e

= R(e + f).

Write p

SL

2

(R)

:

f

SL

2

(R) ! SL

2

(R) for the universal 
overing morphism of SL

2

(R) and let

e�

G

e

:

f

SL

2

(R) ! G denote the unique homomorphism with

L(e�

G

e

)

�

0 1

0 0

�

= e; L(e�

G

e

)

�

0 0

1 0

�

= f and L(e�

G

e

)

�

1 0

0 �1

�

= h:

The kernel of p

SL

2

(R)

is annihilated by every homomorphism of

f

SL

2

(R) into the unit group

B

�

of some Bana
h algebra B be
ause it fa
tors through a homomorphism SL

2

(C ) ! (B

C

)

�

,

where B

C

is the 
omplexi�
ation of B . Therefore the homomorphism Ad Æe�

G

e

fa
tors through

a homomorphism �

G

e

: SL

2

(R) ! Aut(g) with �

G

e

Æ p

SL

2

(R)

= Ad Æe�

G

e

.

From

L(�

G

e

) ÆAd

�

0 1

1 0

�

= � Æ L(�

G

e

)(�) Æ �
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we derive on the group level that

�

G

e

�

�

0 1

1 0

�

g

�

0 1

1 0

�

�

= ��

G

e

(g)� for g 2 SL

2

(R):

(b) We de�ne the partial Cayley transform by

C

e

:= �

G

e

�

1

p

2

�

1 1

�1 1

�

�

= exp

�

�

4

ad(e� f)

�

2 Aut(g):

If, in addition, e is invertible, we 
all C

e

the asso
iated Cayley transform.

Remark I.10. We keep the notation of the pre
eding de�nition and write V = V

2

� V

1

� V

0

for the eigenspa
e de
omposition of V with respe
t to 2(e�e) (
f. Lemma C.1).

(a) Let v 2 V

2

and w := �(v). Then [h; v℄ = 2v implies that [h;w℄ = �:[�h; v℄ = �2w .

From that it easily follows that

M := span

R

fw; [e; w℄; [e; [e; w℄℄g

is a g

e

-submodule of g equivalent to the adjoint module ([Bou90, Ch. VIII, x1, no. 2, Prop. 1℄).

(b) A

ording to Lemma C.1, the tripotent e is invertible if and only if V = V

2

. Suppose

this is the 
ase. Then Q(e)

2

= 2(e�e)

2

� e�e = id

V

(Lemma A.2(4)), so that (V; e;Q(e)) is an

involutive unital Jordan algebra (Proposition A.5). Moreover,

1

2

h 2 g

0

is a grading element by

Proposition C.4(1). We 
on
lude that adh is diagonalizable on g , and sin
e ad e and ad f are

nilpotent, the Lie algebra g is a lo
ally �nite g

e

-module, hen
e semisimple by Weyl's Theorem.

Sin
e the only eigenvalues of adh on g are f0;�2g , the Lie algebra g is a dire
t sum of trivial

and 3-dimensional g

e

-modules.

In the following lemma we 
olle
t some 
ru
ial properties of the partial Cayley trans-

form C

e

.

Lemma I.11. For the partial Cayley transform asso
iated to the tripotent e 2 V the following

assertions hold:

(1) C

8

e

= id

g

and if e is invertible, then C

4

e

= id

g

.

(2) Identifying V with a subset of X , for v 2 V the 
ondition C

e

(v) 2 V is equivalent to the

quasi-invertibility of (e; v) . For an element v 2 V

2

this means that e� v is invertible in the

unital Jordan algebra (V

2

; e) , and then

C

e

(v) = (e+ v)(e� v)

�1

:

(3) C

e

(�e) = 0 , C

e

(0) = C

e

(f

�

) = e , C

e

(e) = f

+

and C

e

(f

+

) = �e .

(4) On the subspa
e V

2

� V we have C

2

e

Æ � = �Q(e) .

(5) �C

e

� = C

�1

e

.

Proof. (1) For I =

�

0 1

�1 0

�

the matrix

1

p

2

(1 + I) 2 SL

2

(R) is of order 8 and its square

is I . Therefore the order of C

e

is at most 8 and we have

C

2

e

= �

G

e

�

�

0 1

�1 0

�

�

= exp

�

�

2

ad(e� f)

�

:

If e is invertible, then g is a dire
t sum of trivial and 3-dimensional simple sl

2

(R)-modules

(Remark I.10(b)). On both types of modules the matrix

�

0 1

�1 0

�

2 SL

2

(R) a
ts like an

involution, so that C

2

e

is an involution and therefore C

4

e

= id

g

.

(2) From the de
omposition

1

p

2

�

1 1

�1 1

�

=

�

1 1

1 0

��

p

2 0

0

1

p

2

��

1 0

�1 1

�
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in SL

2

(R) we derive in Aut(g) the de
omposition

(2:1) C

e

= exp(ad e) exp

�

(log

p

2) adh

�

exp(� ad f):

Sin
e exp(ad e) exp

�

(log

p

2) adh

�

2 Ad(P

+

) a
ts as an aÆne map on V � X , we see that

C

e

(v) 2 V is equivalent to exp(��:e):v = exp(�f):v 2 V , whi
h means that (e; v) is quasi-

invertible (De�nition I.5, Lemma I.3). If this is the 
ase, then

exp(�f):v = B(v; e)

�1

:(v �Q(v):e)

([BN04a, 2.8℄). In the Jordan algebra V

(e)

we have Q(v):e = Q(v)Q(e):e = P (v):e = v

2

and

B(v; e) = id

V

�2L(v) + P (v);

and in the unital Jordan algebra V

(e)

� R with the identity 1 := (0; 1) we have

1� 2L(x) + P (x) = P (1;1)� 2P (1; x) + P (x; x) = P (1� x);

i.e., the quasi-invertibility of (x; e) is equivalent to the quasi-invertibility of x in the Jordan

algebra V

(e)

. In this algebra we have for any quasi-invertible pair (v; e):

exp(�f):v = P (1� v)

�1

:(v � v

2

) = (1� v)

�1

v:

For any element v in the unital Jordan algebra (V

2

; e), the Cayley transform therefore takes the

form

C

e

(v) = e+ 2(e� v)

�1

v = (e� v + 2v)(e� v)

�1

= (e+ v)(e� v)

�1

:

(3) We have C

e

(�e) = (e� e)(e� (�e))

�1

= 0 and C

e

(0) = e:

We further have in V , as a subset of X , the relation �

X

(e) = e

℄

= e (Proposition B.2),

whi
h leads to

exp(� ad f):e = exp(� ad �:e):e = �

X

exp(� ad e)�

X

:e = �

X

exp(� ad e):e = �

X

:0 = �

X

:f

�

= f

+

;

so that

C

e

:e = exp(ad e) exp(log

p

2 adh) exp(� ad f):e = exp(ad e) exp(log

p

2 adh):f

+

= f

+

:

Moreover,

exp(� ad f):f

+

= �

X

exp(� ad e)�

X

:f

+

= �

X

exp(� ad e):f

�

= �

X

exp(� ad e):0

= �

X

:(�e) = (�e)

℄

= �e;

and hen
e

C

e

:f

+

= exp(ad e) exp(log

p

2 adh) exp(� ad f):f

+

= exp(ad e) exp(log

p

2 adh):(�e) = e+ 2(�e) = �e:

(4) Let v 2 V

2

. A

ording to Remark I.10(a), for w := �:v the spa
e

M := span

R

fw; [e; w℄; [e; [e; w℄℄g is a g

e

-submodule of g isomorphi
 to g

e

with the adjoint rep-

resentation. From the relation

�

0 1

�1 0

��

0 �1

0 0

��

0 �1

1 0

�

=

�

0 0

1 0

�

we obtain

Ad(exp(e� f)) Æ

1

2

(ad e)

2

:f = Ad(exp(e� f)):(�e) = f;

and this leads to C

2

e

�

1

2

(ad e)

2

�

�:v = �C

2

e

Q(e):v = �:v .

(5) follows immediately from �(e � f) = �(e � �(e)) = �(e) � e = f � e and C

e

2

exp(R(e � f)).
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Proposition I.12. For any tripotent e 2 V we have exp(g

�

e

):0 =℄� 1; 1[�e in V , 
onsidered

as a subset of X . In parti
ular we have ℄� 1; 1[�S � H:0

Proof. We have seen above that (e; h; f) is an sl

2

-triple, so that e+ �(e) 
orresponds to the

matrix

�

0 1

1 0

�

and e to the matrix

�

0 1

0 0

�

. To 
al
ulate exp(t(e + �(e)):0 in V � X , we

observe that

exp

�

0 t

t 0

�

=

�


osh t sinh t

sinh t 
osh t

�

2 exp(Rf + Rh) �

�

1 tanh t

0 1

�

;

whi
h leads to exp(t(e+ �(e))):0 = tanh t � e; and from that the assertion follows.

Consider the following assumptions on the involutive 3-graded group G :

(A1)D := H:0 � V , i.e., H � G

+

G

0

G

�

.

(A2)H:S � V .

(A3) d

G

(S

3

>

) = f1g .

Condition (A1) is well-known from the setting of groups of Harish-Chandra type. In view

of Proposition I.8, 
ondition (A2) is equivalent to the invarian
e of the subset X

�

\V under the

a
tion of the group H .

Proposition I.13. �

V

Æ d

G

(S

3

>

) = f1g . In parti
ular, (A3) is satis�ed if G

0

a
ts faithfully

on V .

Proof. For (x; y; z) 2 S

3

>

we derive from Lemma A.10(2) the relation

B(x; y) = B(x; y

℄

) = Q(x� y)Q(y)

�1

;

so that we get with Lemma I.6

�

V

(d

G

(x; y; z)) = B(x; y)B(z; y)

�1

B(z; x)B(y; x)

�1

B(y; z)B(x; z)

�1

= B(x; y

�1

)B(z; y

�1

)

�1

B(z; x

�1

)B(y; x

�1

)

�1

B(y; z

�1

)B(x; z

�1

)

�1

= Q(x� y)Q(z � y)

�1

Q(z � x)Q(y � x)

�1

Q(y � z)Q(x� z)

�1

= Q(y � x)Q(z � y)

�1

Q(x� z)Q(y � x)

�1

Q(z � y)Q(x� z)

�1

= 1;

where the last equality follows from Proposition A.7.

In Proposition IV.4 below we shall use the results of Se
tion III on H -orbits in S

3

>

to see

that the pre
eding result 
an be sharpened 
onsiderably to the observation that d

G

(S

3

>

) � Z(G

0

).

In the following we shall also see interesting examples where (A3) is satis�ed and G

0

does

not a
t faithfully on V . This holds in parti
ular for the group G = GL

2

(A)=f�1g , where A is

a hermitian Bana
h-�-algebra (
f. Example II.6 below).

Lemma I.14. If (A1) is satis�ed, then for ea
h v 2 V with H:v � V we have D �H:v � V

2

>

:

If, in addition, (A2) holds, then D � (D [ S) � V

2

>

:

Proof. Suppose that (A1) is satis�ed, i.e. D = H:0 � V and let v 2 V with H:v � V . For

h

1

; h

2

2 H and h

1

:0 2 D it now follows that (h

1

:0; h

2

:v) is quasi-invertible be
ause (0; h

�1

1

h

2

:v)

is quasi-invertible (Lemma I.7(7)).

If, in addition, H:S � V , then the pre
eding argument applies with v = 0 or v 2 S , and

the assertion follows.

De�nition I.15. Suppose that (A1-3) hold. For (x; y; z) 2 S

3

>

we 
onsider the 
ontinuous


urve

�

x;y;z

: [0; 1℄! V

3

; t 7! (tx; ty; tz);

starting at (0; 0; 0) and ending at (x; y; z) 2 S

3

>

. Proposition I.12 and Lemma I.14 now implies

that im(�

x;y;z

) is 
ontained in the open subset V

3

>

of V

3

, so that the 
urve

d

G

Æ �

x;y;z

: [0; 1℄! G

0

; t 7! d

G

(tx; ty; tz);
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is de�ned. Sin
e d

G

(0; 0; 0) = 1 and d

G

(x; y; z) = 1 by (A3), this 
urve is a loop in G

0

.

We thus obtain a map

�

G

:S

3

>

! �

1

(G

0

); (x; y; z) 7! [d

G

Æ �

x;y;z

℄:

For reasons to be explained later, we 
all this map the topologi
al (Maslov) index. Sin
e the

path �

x;y;z

depends 
ontinuously on the triple (x; y; z), this map is 
onstant on the 
onne
ted


omponents of S

3

>

, hen
e indu
es a map �

0

(S

3

>

)! �

1

(G

0

):

We shall see in Example IV.2 below that for the 
ase where D � V is a �nite-dimensional

irredu
ible bounded symmetri
 domain of tube type, the index map �

G


an be used to obtain

the Maslov index by 
omposing with the homomorphism det Æ�

V

:G

0

! C

�

to obtain a map

�

1

(det Æ�

V

) Æ �

G

:S

3

>

! �

1

(C

�

)

�

=

Z:

Proposition I.16. The index map �

G

:S

3

>

! �

1

(G

0

) is an alternating fun
tion with values

in the abelian group �

1

(G

0

) , i.e.

�

G

(x

�(1)

; x

�(2)

; x

�(3)

) = �

G

(x

1

; x

2

; x

3

)

sgn(�)

for (x

1

; x

2

; x

3

) 2 S

3

>

; � 2 S

3

:

Proof. From Lemma I.7(4) we immediately derive that [�

x;y;z

℄ = [�

�1

x;z;x

℄ = [�

x;z;x

℄

�1

:

We further get from Lemma I.7(5) a 
ontinuous path �: [0; 1℄! G

0

with

�

y;z;x

= � � �

x;y;z

� �

�1

;

and this loop in G

0

is homotopi
 to the loop �

x;y;z

, whi
h leads to [�

y;z;x

℄ = [�

x;y;z

℄: Sin
e the

symmetri
 group S

3

is generated by the 
y
le (1 2 3) and the transposition (2 3), the assertion

follows.

II. Bounded symmetri
 domains and hermitian Bana
h-�-algebras

In this se
tion we dis
uss two large 
lasses of groups for whi
h our assumptions (A1-3) are

satis�ed. The groups of the �rst 
lass are the 
omplexi�
ations G of the identity 
omponent

Aut(D)

0

of the group of biholomorphi
 maps of a bounded symmetri
 domain D in a Bana
h

spa
e, and the se
ond 
lass 
ontains the groups GL

2

(A)=f�1g for a hermitian unital Bana
h-�-

algebra A . In this 
ase the 
orresponding domain D is bounded if and only if A is a C

�

-algebra.

Bounded symmetri
 domains in Bana
h spa
es

Let V be a 
omplex Bana
h spa
e and D � V be a bounded symmetri
 domain, i.e., a

bounded open 
onne
ted subset su
h that for ea
h z 2 D there exists an involution j

z

2 Aut(D),

the group of biholomorphi
 mappings of D , su
h that z is an isolated �xed point of j

z

. The

group Aut(D) 
arries a natural Bana
h{Lie group stru
ture su
h that the transitive a
tion on D

is real analyti
 ([Up85, Th. 13.14℄). A

ording to Kaup's Riemann Mapping Theorem ([Ka83℄,

[Up85, Th. 20.23℄), there is a norm on the spa
e V su
h that D is biholomorphi
 to the open

unit ball in V . Therefore we assume from now on that

D = fz 2 V : kzk < 1g:

The identity 
omponent H := Aut(D)

0

of Aut(D) 
arries a natural Bana
h{Lie group stru
ture

su
h that the transitive a
tion of H on D is real analyti
.

We think of L(H) as a Lie algebra of holomorphi
 ve
tor �elds on the domain D � V . It

is shown in [Up85, Th. 18.17℄ that the elements of L(H) are polynomial ve
tor �elds of degree

at most 2 and that

g := L(H) + iL(H)
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arries a natural stru
ture of a 
enterfree 3-graded Bana
h{Lie algebra on whi
h there is a

grading reversing antilinear involution � for whi
h L(H) = g

�

. The grading is given by the

degree of ve
tor �elds, where g

j


onsists of ve
tor �elds of degree 1� j . Sin
e the unit ball D

is in parti
ular 
i
ular, g 
ontains the Euler ve
tor �eld 
orresponding to the fun
tion E(z) = z

on V , whi
h de�nes the grading of g . We 
on
lude that the grading of g is inner.

We then 
onsider the 
omplex Bana
h{Lie group

G := Aut(g)

0

:

Then L(G) = der g = ad g

�

=

g (
f. [Up85, Lemma 9.9℄) and the involution � on g indu
es by


onjugation an involution, also denoted � , on G . We thus obtain a situation as dis
ussed in

Se
tion I, where we 
onsidered a Bana
h{Lie group G endowed with an involution � reversing an

inner 3-grading on g . Clearly H = Aut(D)

0

= G

�

0

follows from the equality of the Lie algebras

of both subgroups of G .

In this 
ase the orbit H:0 of the base point 0 2 V

�

=

g

1

in the homogeneous spa
e

X = G=P

�


oin
ides with the bounded symmetri
 domain D ([Up85, Th. 20.20℄). Therefore

our assumption (A1) is satis�ed.

Theorem II.1. The 
losure D of D in V also is a 
losed subset of X .

Proof. Sin
e X = G=P

�

is a quotient spa
e and the inverse image of D in G is the produ
t

set exp(D)P

�

= exp(D)G

0

G

�

; it suÆ
es to show that Y := exp(D)G

0

G

�

is a 
losed subset

of G .

Let U � G be an open identity neighborhood with U � U 
ontained in the open subset

G

+

G

0

G

�

. If 0 2 V is identi�ed with the base point P

�

of the homogeneous spa
e X = G=P

�

,

then this implies that UU:0 � V .

Sin
e D � V is a bounded subset and adE j

g

1

= id

g

1

, there exists a t > 0 with

exp(�tE):D � U:0:

For the identity neighborhood U

0

:= exp(tE)U exp(�tE) of G we then obtain

U

0

:D = exp(tE)U exp(�tE):D � exp(tE)UU:0 � V;

i.e., U

0

exp(D)G

0

G

�

� G

+

G

0

G

�

; so that

exp(D)G

0

G

�

� U

0

exp(D)G

0

G

�

� G

+

G

0

G

�

:

Sin
e the open subset G

+

G

0

G

�

is homeomorphi
 to the topologi
al produ
t G

+

�G

0

�G

�

, it

follows that

exp(D)G

0

G

�

= (expD)G

0

G

�

is the 
losure of (expD)G

0

G

�

in G .

By 
ontinuity we now obtain immediately

Corollary II.2. H:D � D � V and in parti
ular H:S � V .

Proposition II.3. If S 6= � , i.e., D is a bounded symmetri
 domain of tube type, then the

assumptions (A1-3) are satis�ed for the involutive 3-graded group (G; adE; �) .

Proof. Assumption (A1) follows from the realization of D as a bounded domain in V �

G=P

�

. The pre
eding 
orollary implies that (A2) is satis�ed. Further (A3) will follow from

the fa
t that the representation of G

0

on V is faithful (Proposition I.13). To verify that

this representation is faithful, let g 2 G

0

a
t trivially on V . Then the adjoint a
tion, whi
h


orresponds to the a
tion of g on a set of ve
tor �elds on V , is trivial. Therefore G � Aut(g)

implies g = 1 . This proves that (A1-3) are satis�ed.
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Hermitian Bana
h-�-algebras

De�nition II.4. A Bana
h-�-algebra is a pair (A; �) of a 
omplex Bana
h algebra together

with an antilinear isometri
 antiisomorphism � . It is 
alled hermitian if the spe
tra of hermitian

elements are real.

The following simple lemma will be helpfull in evaluating d

G

(S

3

>

) for the group GL

2

(A).

Lemma II.5. Let (R; e) be a unital ring and a; b; 
 2 R with a+ b+ 
 = 0 and b 2 R

�

. Then

ab

�1


 = 
b

�1

a:

Proof. The relation a + b + 
 = 0 implies that ab

�1

+ 
b

�1

= �e , so that ab

�1

and 
b

�1


ommute, and the assertion follows from ab

�1


b

�1

= 
b

�1

ab

�1

by multiplying with b from the

right.

Example II.6. Let (A; �) be a hermitian Bana
h-�-algebra. First we 
onsider G := GL

2

(A)

with the involution � given by

�

�

a b


 d

�

=

�

a

�

�


�

�b

�

d

�

�

�1

and whose �xed point set is denoted U

1;1

(A; �) := GL

2

(A)

�

: Its Lie algebra g = gl

2

(A) is

3-graded with

g

+

=

�

0 A

0 0

�

; g

0

=

�

A 0

0 A

�

and g

�

=

�

0 0

A 0

�

:

Sin
e E :=

�

1 0

0 �1

�

is a grading element, the grading is inner. On the Lie algebra level we

have

�

�

a b


 d

�

=

�

�a

�




�

b

�

�d

�

�

;

showing that � reverses the grading. The 
orresponding Jordan triple produ
t in A

�

=

g

+

is

given by

fx; y; zg =

1

2

(xy

�

z + zy

�

x):

On the group level we have

GL

2

(A)

+

=

�

1 A

0 1

�

; GL

2

(A)

0

=

�

A

�

0

0 A

�

�

and GL

2

(A)

�

=

�

1 0

A 1

�

:

Then

GL

2

(A)

+

GL

2

(A)

0

GL

2

(A)

�

=

n

�

a b


 d

�

2 GL

2

(A): d 2 A

�

o

;

and any matrix in this set de
omposes as

�

a b


 d

�

=

�

1 bd

�1

0 1

��

a� bd

�1


 0

0 d

��

1 0

d

�1


 1

�

:

From

�

1 0

�w

�

1

��

1 z

0 1

�

=

�

1 z

�w

�

1� w

�

z

�
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we obtain

B

G

(z; w) =

�

1� z(1� w

�

z)

�1

(�w

�

) 0

0 1� w

�

z

�

�1

=

�

1� zw

�

0

0 (1� w

�

z)

�1

�

:

Next we 
al
ulate d

G

on quasi-invertible unitary triples (s

1

; s

2

; s

3

). For unitary elements

z; w 2 S quasi-invertibility means that 1�w

�

z = 1�w

�1

z is invertible, whi
h means that w�z

is invertible. Therefore all di�eren
es s

j

� s

k

, j 6= k , are invertible. Sin
e

(s

1

� s

2

) + (s

2

� s

3

) + (s

3

� s

1

) = 0;

Lemma II.5 leads to

(1� s

1

s

�

2

)(1� s

3

s

�

2

)

�1

(1� s

3

s

�

1

)(1� s

2

s

�

1

)

�1

(1� s

2

s

�

3

)(1� s

1

s

�

3

)

�1

= (1� s

1

s

�1

2

)(1� s

3

s

�1

2

)

�1

(1� s

3

s

�1

1

)(1� s

2

s

�1

1

)

�1

(1� s

2

s

�1

3

)(1� s

1

s

�1

3

)

�1

= (s

2

� s

1

)(s

2

� s

3

)

�1

(s

1

� s

3

)(s

1

� s

2

)

�1

(s

3

� s

2

)(s

3

� s

1

)

�1

= �(s

1

� s

2

)(s

2

� s

3

)

�1

(s

3

� s

1

)(s

1

� s

2

)

�1

(s

2

� s

3

)(s

3

� s

1

)

�1

= �1

and we likewise get

(1� s

�

2

s

1

)

�1

(1� s

�

2

s

3

)(1� s

�

1

s

3

)

�1

(1� s

�

1

s

2

)(1� s

�

3

s

2

)

�1

(1� s

�

3

s

1

)

= (1� s

�1

2

s

1

)

�1

(1� s

�1

2

s

3

)(1� s

�1

1

s

3

)

�1

(1� s

�1

1

s

2

)(1� s

�1

3

s

2

)

�1

(1� s

�1

3

s

1

)

= (s

2

� s

1

)(s

2

� s

3

)

�1

(s

1

� s

3

)(s

1

� s

2

)

�1

(s

3

� s

2

)(s

3

� s

1

)

�1

= �1:

This shows that

d

G

(s

1

; s

2

; s

3

) =

�

�1 0

0 �1

�

:

Let �

C

�

denote the largest C

�

-seminorm on A , i.e., �

C

�

(a) = k�(a)k if �:A ! C

�

(A)

is the universal map into the universal enveloping C

�

-algebra C

�

(A) of A . From [Bi04,

Lemma 8.2.7℄ we know that the orbit of H = G

�

0

in X is 
ontained in A and 
oin
ides with the


onvex open set

D = fa 2 A:�

C

�

(a) < 1g:

For the invertible tripotent e := 1 2 A we have Q(e)a = a

�

, so that

S = U(A) = fa 2 A

�

: a

�

= a

�1

g:

We 
laim that if g =

�

a b


 d

�

2 U

1;1

(A; �) and z 2 A with �

C

�

(z) � 1, then 
z+d 2 A

�

;

whi
h implies that g:z = (az + b)(
z + d)

�1

is 
ontained in V = A , and hen
e that (A1) and

(A2) are satis�ed.

If A is a C

�

-algebra, then D is the open unit ball in A , and the transitivity of the holo-

morphi
 a
tion of H on D implies that it is a bounded symmetri
 domain. From Corollary II.2

above we know that in this 
ase the 
losure of D in X 
oin
ides with the 
losure of D in V

whi
h is invariant under the a
tion of H .

This argument 
an be 
arried over to a general hermitian Bana
h �-algebra as follows.

Sin
e � indu
es homomorphisms

GL

2

(A)! GL

2

(C

�

(A)) and U

1;1

(A; �)! U

1;1

(C

�

(A); �);

we 
on
lude from the 
ase of C

�

-algebras that �(
z+d) = �(
)�(z)+�(d) is invertible in C

�

(A),

whi
h in turn implies that 
z + d is invertible in A be
ause the property �

�1

(C

�

(A)

�

) = A

�


hara
terizes hermitian Bana
h �-algebras (
f. [Bi04, Prop. 2.7.5℄, see also [Pt70/72℄ for the

Bana
h version of Biller's results).

The domain D is bounded if and only if the natural homomorphism �:A ! C

�

(A) is an

embedding, i.e., if and only if A is a C

�

-algebra.

As an immediate 
onsequen
e of the dis
ussion in Example II.6, we obtain the following

theorem:
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Theorem II.7. If (A; �) is a hermitian Bana
h-�-algebra, then

�

�

a b


 d

�

=

�

a

�

�


�

�b

�

d

�

�

�1

and E :=

�

1 0

0 �1

�

de�ne an involutive 3-graded Bana
h{Lie group (GL

2

(A); adE; �) satisfy-

ing (A1/2). If we write 1 2 M

2

(A) for the identity matrix, then the group G := GL

2

(A)=f�1g

satis�es (A1-3) with respe
t to the indu
ed involution.

III. Conne
ted 
omponents and H -orbits in S

3

>

We have already seen that the group H a
ts on X

�

in su
h a way that its orbits are the


onne
ted 
omponents (Proposition I.8). Under the assumption (A2), the set S is a union of

su
h H -orbits. In the following we shall use this 
orresponden
e to get a better des
ription of

the 
onne
ted 
omponents in S

3

>

. In parti
ular, we shall see that they 
oin
ide with the orbits

of H in S

3

>

and that ea
h orbit 
ontains a triple of the form (e;�e; �) with �

�

= Q(e)� = ��

in the unital involutive Jordan algebra (V; e;Q(e)). Sin
e � is an invertible tripotent, the latter


ondition implies that

� = Q(�)� = �Q(�)Q(e)� = �P (�)� = ��

3

and therefore �

2

= �e . In the following we put V

�

:= fv 2 V : v

�

= Q(e)v = �vg .

Lemma III.1. Let e 2 S and C

e

2 Aut(g) denote the 
orresponding Cayley transform. For

v 2 V and v

�

= Q(e)v we have

�(C

e

:v) = �C

e

:v

�

and �(C

�1

e

:v) = �C

�1

e

:v

�

:

In parti
ular C

e

:v; C

�1

e

:v 2 g

�

if v

�

= �v , where C

e

:v refers to the linear a
tion of C

e

on g .

The 
orresponding element g := exp(C

�1

e

:v) 2 H satis�es

g:(�e) = C

�1

e

(v) = (v � e)(e+ v)

�1

:

Moreover, e+ v is invertible whenever v

�

= �v .

Proof. The �rst equality follows from

� Æ C

e

= C

�1

e

Æ � = C

3

e

Æ � = �C

e

ÆQ(e)

on V (Lemma I.11(1),(4),(5)), and we likewise obtain on V the relation � Æ C

�1

e

= C

e

Æ � =

�C

�1

e

Q(e):

From Lemma I.11(3) we know that C

e

(�e) = 0 for the a
tion of C

e

on X , so that we

obtain for g = exp(C

�1

e

:v) 2 H that

C

�1

e

(v) = C

�1

e

e

ad v

:0 = C

�1

e

e

ad v

C

e

:(�e) = exp(C

�1

e

:v):(�e) = g:(�e) 2 S:

In parti
ular e+ v is invertible (Lemma I.11(2)).

Lemma III.2.

(1) The a
tion of H on D [ S preserves quasi-invertibility.

(2) If e 2 S , then the stabilizer H

e

of e in H a
ts transitively on ff 2 S: e>fg .

(3) If g is 
omplex and � is antilinear, then (e; f) 2 S

2

>

implies f 2 H:e .

(4) For (e; f) 2 S

2

>

we have H:(e; f) = f(a; b) 2 S

2

>

: a 2 H:eg .
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(5) The H -orbit of (e; x; y) 2 S

3

>


ontains an element of the form (e;�e; z) and

fz 2 S: z>� eg = C

e

(V

�

\ V

�

):

Proof. (1) follows from Lemma I.14.

(2) A

ording to Proposition I.8, we have S = X

�

\ V . Further (z; w) 2 V

2

>

is equivalent

to the transversality of the 3-�ltrations exp z:f

�

and �(expw:f

�

) (
f. De�nition I.5(b)). For

z; w 2 S � X

�

this is equivalent to the quasi-invertibility of (z; w). Hen
e

ff 2 S: e>fg � (exp e:f

�

)

>

;

and Proposition I.8(2) implies that H

e

= H

exp e:f

�

a
ts transitively on (exp e:f

�

)

>

.

We also give a se
ond proof of (2) whi
h is more dire
t and uses (1): The quasi-invertibility

of (e; f) implies that e� f is invertible in the unital involutive Jordan algebra (V; e;Q(e)), so

that x := C

e

(f) 2 X is an element of V (Lemma I.11(2)). We have

x

�

= C

e

(f)

�

= ((e+ f)(e� f)

�1

)

�

= (e+ f

�

)(e� f

�

)

�1

= C

e

(f

�

) = C

e

(f

�1

) = �C

e

(f) = �x

(Lemma A.11), so that g := exp(C

�1

e

:x) 2 H satis�es g:(�e) = C

�1

e

:x = f (Lemma II.1). We

further get with Lemma I.11(3) in X � F :

g:e = C

�1

e

e

adx

C

e

(e) = C

�1

e

e

adx

:f

+

= C

�1

e

:f

+

= e:

(3) For e 2 S we 
onsider the 3-dimensional subalgebra g

e

= span

C

fe; �(e); [e; �(e)℄g � g .

Then E :=

1

2

[e; �(e)℄ is a grading element with �(E) = �E (Proposition C.4), and �(iE) = iE

implies that T

�

=

exp(iRE) � H . We therefore obtain �e 2 exp(iRE):e � H:e; and the assertion

follows from (2) and e>� e .

(4) In view of (1), ea
h element (a; b) 2 S

2

of the form (g:e; g:f) satis�es a 2 H:e and

b>a .

If, 
onversely, a = g:e and b>a , then (g

�1

:b; g

�1

:a) = (g

�1

:b; e), so that (2) implies the

existen
e of h 2 H

e

with h:f = g

�1

:b , and then h:(e; f) = (e; g

�1

:b) = g

�1

:(a; b) implies

(a; b) 2 H:(e; f).

(5) From (2) it follows that the H -orbit of (e; x; y) 
ontains an element of the form

(e;�e; z). Then z is a unitary element in the involutive unital Jordan algebra (V; e;Q(e))

with involution v

�

:= Q(e)v . The quasi-invertibility of (z;�e) is equivalent to the invertibilty

of z � e in the Jordan triple V (Lemma A.9) and hen
e in the unital Jordan algebra (V; e).

Therefore e � (�z) = e + z is invertible, and we put v := �C

e

(�z) = C

�1

e

(z) to obtain an

element v 2 V with C

e

(v) = z . We further obtain with Lemma A.11(1):

v

�

= (�C

e

(�z))

�

= �C

e

(�z)

�

= �C

e

(�z

�

) = �C

e

(�z

�1

)

= �C

e

((�z)

�1

) = �(�C

e

(�z)) = C

e

(�z) = �v;

so that v 2 V

�

. If, 
onversely, v 2 V

�

�

, then e�v is invertible (Lemma III.1) and z := C

e

(v) 2 S

is a unitary element for whi
h z + e is invertible. Sin
e v is invertible, Lemma A.11 implies

that z = C

e

(v) lies in the domain V

�

+ e of C

e

, so that also e � z is invertible, and hen
e

(e;�e; z) 2 S

3

>

.

Remark III.3. (a) The pre
eding lemma shows in parti
ular that (e; f) 2 S

2

>

implies that

f 2 S

�e

= �S

e

, where S

e

denotes the 
onne
ted 
omponent of S 
ontaining e . For (e; f; g) 2 S

3

>

we even 
on
lude that S

e

= S

�g

= S

f

= S

�e

= S

g

: This leads to the disjoint de
omposition

S

3

>

=

[

e

(S

e

)

3

>

;

so that it is no loss of generality if we 
onsider only a �xed 
onne
ted 
omponent S

e

of the set

S and study the index map on the subset (S

e

)

3

>

of S

3

>

.

(b) For G = PSL

2

(R) = SL

2

(R)=f�1g with grading derivation

D = ad

�

1 0

0 �1

�

and �

�

a b


 d

�

=

�

a �


�b d

�

�1

we have

V

�

=

R with fx; y; zg = xyz and S = f�1g:

Here S

2

>

= f(1;�1); (�1; 1)g and the 
onne
ted group H a
ts trivially. In this 
ase we have

S

1

= f1g 6= f�1g = S

�1

.
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Lemma III.4. Fix e 2 S and 
onsider the asso
iated Cayley transform C := C

e

2 Aut(g) .

Then the involution �

C

:= C�C

�1

2 Aut(g) satis�es:

(1) �

C

preserves the 3-grading of g .

(2) �

C

= �C

2

, where � and C

2

are 
ommuting involutions of g .

(3) The Lie subalgebra l := C(g

�

) = g

�

C

is adapted to the 3-grading of g and � -invariant.

(4) �

C

j

V

= �Q(e) .

(5) For the stabilizer group H

e;�e

, the identity 
omponent L := (G

�

C

)

0

and

C

G

= exp

�

�

4

(e� f)

�

2 G we have

Ad(C

G

) = C and L

0

:= L \G

0

= C

G

�H

e;�e

� (C

G

)

�1

:

Proof. (1) With Lemma I.11 we get in X � F :

�

C

(f

�

) = �

C

(0) = C�

X

(�e) = C(�e) = 0 = f

�

and �

C

(f

+

) = C�

X

(e) = C(e) = f

+

:

Therefore �

C

�xes the two �ltrations f

�

and hen
e the 
orresponding 3-grading of g .

(2) With Lemma I.11 we get �

C

= C�C

�1

= C

2

� = �C

�2

= �C

2

; so that the two

involutions � and C

2


ommute.

(3) That l is adapted to the 3-grading of g follows dire
tly from (1). Sin
e � and �

C


ommutes by (2), l is � -invariant.

(4) follows from Lemma I.11(4).

(5) The relation Ad(C

G

) = C is immediate from the de�nitions. Further C(�e) = f

�

and

C

G

H(C

G

)

�1

= L lead to L

0

= L \G

f

�

= C

G

�H

e;�e

� (C

G

)

�1

:

Proposition III.5. Let �:G�M !M be a smooth a
tion of the Bana
h{Lie group G on the

Bana
h manifold M and T�:TG� TM ! TM its tangent map. If g:p := T�(1; p)(g� f0g) =

T

p

(M) , then the orbit G:p of p is open.

Proof. For a smooth map f :N ! M between Bana
h manifold for whi
h the di�erential

df(x):T

x

(N) ! T

f(x)

(M) is surje
tive, the image of f is a neighborhood of f(x) ([De85,

Cor. 15.2℄).

The 
ondition g:p = T

p

(M) means that the di�erential of the orbit map G!M; g 7! g:p in

g = 1 is surje
tive, so that the aforementioned fa
t implies that the orbit G:p is a neighborhood

of p . This implies that G:p is open.

Proposition III.6. All orbits of (L

0

)

0

in V

�

�

:= V

�

\ V

�

are open.

Proof. From Lemma III.4(4) we immediately get V

�

� l

1

. Let v 2 V

�

�

� l

1

be an invertible

element. Then v

�1

2 V

�

�

and

v

℄

= Q(v)

�1

v = Q(e)v

�1

= �v

�1

2 V

�

� l

1

:

Therefore V

�

�v

℄

= [V

�

; �(v

℄

)℄ � [l

1

; l

�1

℄ � l

0

: Sin
e the map

V

�

! V

�

; x 7! (x�v

℄

):v = fv; v

℄

; xg = (v�v

℄

):x = x

is bije
tive (
f. Lemma A.4(1)), the orbit map l

0

! V

�

; x 7! x:v is surje
tive, and Proposi-

tion III.5 implies that the orbit L

0

0

:v in V

�

is open.

In general the group L

0

, resp., H

e;�e

is not 
onne
ted, so that the orbits of this group

may also be unions of several 
onne
ted 
omponents in V

�

�

. If, f.i. G = GL

2

(A)=f�1g for a

hermitian Bana
h-�-algebra A , then

C = Ad

�

1

p

2

�

1 1

�1 1

�

�

and C

2

= Ad

�

�

0 1

�1 0

�

�

lead to

�

C

�

a b


 d

�

=

�

0 1

�1 0

��

�a

�




�

b

�

�d

�

��

0 �1

1 0

�

=

�

�d

�

�b

�

�


�

�a

�

�

;

so that

L

0

= (G

0

)

�

C

=

n

�

a 0

0 �a

��

�

: a 2 A

�

o

=f�1g

�

=

(A

�

=f�1g)o

n

�

�

1 0

0 �1

�

o

;

whi
h is not 
onne
ted if A

�

is not 
onne
ted.
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Proposition III.7. The orbits of H in S , S

2

>

and S

3

>

are open, hen
e 
oin
ide with the


onne
ted 
omponents.

Proof. That the orbits of H in S are open follows from Proposition I.8.

For (e; f) 2 S

2

>

, Lemma III.2(4) implies H:(e; f) = S

2

>

\ (H:e�S); and sin
e H:e is open

in S , it follows that H:(e; f) is open in S

2

.

Let (e; g; f) 2 S

3

>

. In view of Lemma III.2(5), we may assume that f = �e . So it remains

to see that if f>� e , then H:(e;�e; f) is open in S

3

.

Conjugating everything with the Cayley transform C = C

e

, we are lead to the quasi-

invertible triple (C(e); C(�e); C(f)) = (f

�

; f

+

; z) with z 2 V

�

�

(Lemma III.2, Corollary B.3)

We have to show that the orbit of the group L

0

in S

C

:= C(S) � X

�

C

is open. The Lie

algebra l = C(h) is adapted to the grading of g (Lemma III.4), so that

l

f

�

= l

�

� l

0

and l

f

+

;f

�

= l

0

:

The argument in the proof of Proposition III.6 shows that the map l

0

! V; x 7! x:z is surje
tive,

and sin
e l

0

is the kernel of the surje
tive map

l! T

f

+

(S

C

)� T

f

�

(S

C

) = l

1

� l

�1

; x 7! x:(e;�e) = (x

+

; x

�

);

we see that the map l! T

f

+

(S

C

)�T

f

�

(S

C

)�T

z

(S

C

) is surje
tive. In view of Proposition III.5,

this implies that the L-orbit of (f

+

; f

�

; z) in (S

C

)

3

is open and therefore that the H -orbit of

(e;�e; f) in S

3

is open.

So far we have seen that the H -orbits in S

3

>


oin
ide with the 
onne
ted 
omponents and

that ea
h su
h orbit 
ontains an element of the form (e;�e; C(v)) for some v 2 C(V

�

�

). With

the aid of the following lemma, we shall be able to redu
e this further to the 
ase where v

2

= �e .

Lemma III.8. Let (A; e; �) be a real unital involutive Bana
h algebra and z 2 A

�

su
h that

�z+ e is invertible for ea
h � 2 R . If, in addition, z is invertible, then there exists a hermitian

element x = x

�

2 A with �z

2

= e

x

. Then � := ze

�

1

2

x

2 A

�

�

satis�es �

2

= �1 and � lies in

the same 
onne
ted 
omponent of A

�

�

as z .

Proof. The assumption e+ �z 2 A

�

for � 2 R

�

implies that (z � �e)(z + �e) = z

2

� �

2

e is

invertible, so that Spe
(�z

2

)\℄�1; 0[= �.

Let A

C

denote the 
omplexi�
ation of (A; �), endowed with the antilinear involution given

by (x+ iy)

�

:= x

�

� iy

�

: On the open subset


 := fw 2 A

C

: Spe
(w)\℄ �1; 0℄ = �g

we then have a holomorphi
 logarithm fun
tion

log: 
! A

C

; log(w) =

1

2�i

I




log(�)(�1 � w)

�1

d�;

where 
 is a pie
ewise smooth 
y
le in C n℄ � 1; 0℄ with winding number 1 in ea
h point of

Spe
(w) ([Ru73, Ths. 10.20, 10.38℄). In view of Spe
(w

�

) = Spe
(w) , the domain 
 is invariant

under the involution, and we have

log(w)

�

= �

1

2�i

I




log(�)(�1� w

�

)

�1

d�:

Sin
e the winding number of 
 in ea
h point of Spe
(w) is �1, we obtain

log(w)

�

=

1

2�i

I




log(�)(�1 � w

�

)

�1

d� = log(w

�

):

Therefore x := log(�z

2

) is a hermitian element of A

C

lying in the 
ommutant of z . A

similar argument applies to the antilinear involution � :A

C

! A

C

with A = fa 2 A

C

: �(a) = ag

and shows that �(logw) = log �(w) for w 2 
, hen
e in parti
ular x 2 A

�

C

= A . We 
learly

have e

x

= �z

2

.

For �

t

:= e

�t

1

2

x

z = ze

�t

1

2

x

we obtain

�

�

t

= z

�

e

�t

1

2

x

= �ze

�t

1

2

x

= ��

t

and �

2

1

= e

�x

z

2

= �e:

For ea
h t 2 R the element e

�tx

z lies in A

�

�

, so that z and �

1

lie in the same 
onne
ted


omponent of A

�

�

.
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Theorem III.9. If the involutive 3-graded Lie group (G;D; �) satis�es (A1/2), then ea
h


onne
ted 
omponent of S

3

>


ontains an element of the form (e;�e; �) with �

�

= �� and

�

2

= �e .

Proof. From Lemma III.2(5) we know that ea
h 
onne
ted 
omponent of S

3

>


ontains an

element of the form (e;�e; C(v)) with v 2 V

�

�

. Let A � (V; e) denote the 
losed unital

Jordan subalgebra generated by v and v

�1

. In view of [Ja
68, Ch. I, Se
t. 11, Th. 13℄, A is a


ommutative asso
iative algebra, hen
e a 
ommutative Bana
h algebra in whi
h v is invertible.

Further v

�

= �v implies that A is invariant under the involution, hen
e an involutive Bana
h

algebra.

We now 
onsider the analyti
 map

�:R ! V; � 7! (e� �v)

�1

:

There exists an " > 0 su
h that the Neumann series

P

1

n=0

�

n

v

n


onverges to (e � �v)

�1

for

j�j < " . This implies that �(�) 2 A for all these � . Sin
e � is analyti
 and A is a 
losed

subspa
e of V , we 
on
lude with the Prin
iple of Analyti
 Continuation that im(�) � A , hen
e

that e� �v is invertible in A for all � 2 R .

Now Lemma III.8 applies to the element v 2 A , and we �nd an element � 2 A

�

�

in the

same 
onne
ted 
omponent as v , satisfying �

2

= �e . Eventually Lemma III.2(5) implies that

(e;�e; C(�)) lies in the same 
onne
ted 
omponent of S

3

>

as (e;�e; C(v)). Further �

2

= �e

leads to �(e � �) = � � �

2

= � + e; whi
h means that C(�) = (e + �)(e � �)

�1

= � . This


ompletes the proof.

IV. Evaluating the index map

In the pre
eding se
tion we have redu
ed the problem to 
al
ulate the index fun
tion

�

G

:S

3

>

! �

1

(G

0

) to triples of the form (e;�e; �) with �

2

= �e in the unital Jordan algebra

(V; e). The next step is to 
al
ulate the index fun
tion on these triples expli
itly by showing that

�

G

(e;�e; �) is represented by the group homomorphism

�

�

:T

�

=

R=Z! G

0

; t+Z 7! exp

G

(�t[�; �:e℄):

Applying the representation �

V

:G

0

! GL(V ), this leads to the loop

T

�

=

R=Z! G

0

; t+ Z 7! e

�t2L(�)

= P (e

�t�

):

To obtain the expli
it formula for the index, we �rst investigate fun
toriality properties of

the index and then 
al
ulate it expli
itly for the group SL

2

(C )=f�1g .

Remark IV.1. (a) Let U and G be 3-graded Lie groups and ':U ! G a homomorphism of

Lie groups 
ompatible with the 3-grading.

We then have

'(U

�

) = '(exp u

�

) = expL(')u

�

� exp g

�

= G

�

and '(U

0

0

) � G

0

0

:

For a subset M � G we write C

G

(M) for the 
entralizer of M in G and for a subset

M � Aut(g) we write C

G

(M) := Ad

�1

(C

Aut(g)

(M)) for the set of all those elements g 2 G

for whi
h Ad(g) 
ommutes with M . This means that for a grading element E 2 g

0

we have

G

0

= C

G

(adE). If there is a grading element E

U

2 u

0

for whi
h E

G

:= L(')E

U

is a grading

element of g , then we thus obtain

'(U

0

) = '(C

U

(adE

U

)) � C

G

(adE

G

) = G

0

:
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Then ' indu
es a map U

+

U

0

U

�

! G

+

G

0

G

�


ompatible with the proje
tion maps

p

G

j

:G

+

G

0

G

�

! G

j

in the sense that

p

G

j

Æ ' = ' Æ p

U

j

; j = +; 0;�:

For z 2 u

+

and w 2 u

�

the 
ondition expw exp z 2 U

+

U

0

U

�

therefore implies

(expL(')w)(expL(')z) 2 G

+

G

0

G

�

;

whi
h shows that L(') preserves quasi-invertibility, and for su
h pairs we have

' Æ p

U

0

(expw exp z) = p

G

0

((expL(')w)(expL(')z)):

(b) Now suppose, in addition, that U and G are involutive 3-graded Lie groups and

that ' Æ �

U

= �

G

Æ ' . Then we 
on
lude that for quasi-invertible pairs (z; w) 2 u

+

the pair

(L('):z;L('):w)) is quasi-invertible with

'(B

U

(z; w)) = B

G

(L(')z;L(')w):

This relation leads to

'(d

U

(z

1

; z

2

; z

3

)) = d

G

(L(')z

1

;L(')z

2

;L(')z

3

)

for quasi-invertible triples (z

1

; z

2

; z

3

) 2 (V

U

)

3

>

.

If U and G satisfy (A1-3), then we further get L(')(D

U

). To see that L(') also maps

S

U

into S

G

, we �rst observe that we have an indu
ed map

'

X

:X

U

:= U=U

0

U

�

! X

G

:= G=G

0

G

�

satisfying '

X

Æ �

U

X

= �

G

X

Æ '

X

for the 
orresponding involutions �

U

X

on X

U

and �

G

X

on X

G

.

Therefore '

X

maps the �xed point set of �

X

U

into the �xed point set of �

X

G

. On the open subset

V

U

� X

U

the map '

X


oin
ides with L('), and sin
e S

U

= V

U

\ (X

U

)

�

X

U

, we see that

L(')S

U

� S

G

:

Eventually this leads to the important relation

(4:1) �

1

(' j

U

0

) Æ �

U

(s

1

; s

2

; s

3

) = �

G

(L(')s

1

;L(')s

2

;L(')s

3

)

for quasi-invertible triples (s

1

; s

2

; s

3

) 2 (S

U

)

3

>

.

In the following we shall use the pre
eding remark as a tool to 
al
ulate the index of spe
ial

triples in S

3

>

.

Lemma IV.2. Let e 2 S and 
onsider the 
orresponding unital involutive Jordan algebra

(V; e;Q(e)) . Suppose that � 2 V

�

\ S is an element with �

2

= �e . Then E := Re + R� is a

real involutive Jordan subalgebra of V isomorphi
 to (C ; 1) with the involution z

�

= z and

g

E

:= E + �(E) + [E; �(E)℄

�

=

sl

2

(C )

with the 3-grading de�ned by the grading element

�

1 0

0 �1

�

and the antilinear involution

�

�

a b


 �a

�

=

�

�a 


b a

�

:
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There is a unique morphism �

g

�

: sl

2

(C )! g of involutive Lie algebras with

�

g

�

�

0 1

0 0

�

= e and �

g

�

�

0 i

0 0

�

= �:

Proof. Clearly the map �

E

: C ! V; x + iy 7! xe + y� is a morphism of involutive unital

Jordan algebras, where the involution on C is 
omplex 
onjugation.

We re
all from Theorem A.8 that g

E

is a Lie subalgebra of g . Sin
e g

E

is generated by E

and �(E), its 
enter z

E


oin
ides with the 
entralizer z

E

of E + �(E), and the quotient g

0

E

:=

g

E

=z

E

is an involutive 3-graded Lie algebra whose 0-
omponent has a faithful representation

on E . From that it easily follows that g

0

E

is isomorphi
 to the Tits-Kantor-Koe
her Lie algebra

TKK(E) = TKK(C )

�

=

sl

2

(C ) of the unital Jordan algebra C be
ause it is an A

1

-graded Lie

algebra (
f. [Ne03, Ex. I.9(a),(
) for more details). Sin
e all 
entral extensions of the simple Lie

algebra sl

2

(C ) are trivial, we 
on
lude that z

E

\ [g

E

; g

E

℄ = f0g , so that g

E

\ g

0

= [E; �(E)℄

implies z

E

= f0g and therefore g

E

�

=

sl

2

(C ).

In De�nition I.9 we have seen that the Lie algebra g

e

= spanfe; �(e); [e; �(e)℄g with 1-

dimensional grading spa
es is isomorphi
 to sl

2

(R) with the involution

�

e

�

a b


 d

�

=

�

�a 


b �d

�

:

Sin
e the grading spa
es g

E

\ g

j

are 
omplex one-dimensional, it follows that g

e

is a real form

of the 
omplex Lie algebra g

E

.

Next we determine the involution �

E

on g

E

�

=

sl

2

(C ) 
orresponding to the restri
tion of �

to g

E

. Sin
e the 
entroid

Cent(g

E

) = f' 2 End(g): (8x 2 g

E

) ['; adx℄ = 0g

is isomorphi
 to C as an asso
iative algebra, the involution � indu
es a �eld isomorphism �

0

on

Cent(g

E

). The involution �

E

is 
omplex linear if this isomorphism is trivial and it is antilinear

otherwise. We denote the s
alar multipli
ation with i on sl

2

(C ) by i , whi
h is 
onsidered as an

element of Cent(g

E

). Then � = i:e leads to �:� = �

0

(i)�(e): From

�ie = �� = Q(e)� =

1

2

[[e; �:�℄; e℄ = �

1

2

(ad e)

2

�:� = �

1

2

(ad e)

2

�

0

(i)�(e)

= ��

0

(i)

1

2

(ad e)

2

�(e) = �

0

(i)Q(e)e = �

0

(i)e

we derive �

0

(i) = �i and hen
e that �

E

is antilinear.

Therefore �

E

is determined by its restri
tion to the real form g

e

, and hen
e

�

a b


 d

�

7!

�

�a 


b �d

�

is the involution on sl

2

(C ) for whi
h �

g

�

is a morphism of involutive Lie algebras.

Lemma IV.3. If G satis�es (A3), then the homomorphism e�

G

�

: SL

2

(C ) ! G integrating �

g

�

maps �1 to 1 .

Proof. Sin
e A := C is a hermitian Bana
h-�-algebra with respe
t to z

�

:= z , the dis
ussion

of the spe
ial 
ase of hermitian Bana
h-�-algebras in Example II.6 implies that

d

SL

2

(C )

(1;�1; i) = �1 2 SL

2

(C ):

Applying Remark III.1 to e�

G

�

, we 
on
lude that d

SL

2

(C )

(1;�1; i) is mapped to

d

G

(e;�e; �) = 1 .
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Proposition IV.4. Suppose that the involutive 3-graded Lie group G satis�es (A1/2). Then

d

G

(S

3

>

) is 
ontained in Z(G

0

)

�

and generates an elementary abelian 2-group � whi
h is dis
rete.

The group G

0

=� satis�es (A1-3).

Proof. Sin
e the 
onne
ted 
omponents of S

3

>


oin
ide with the H -orbits, Theorem III.9

implies that for ea
h quasi-invertible triple (s

1

; s

2

; s

3

) 2 S

3

>

there exists an element g 2 H

and a triple of the form (e;�e; �) with Q(e)� = �� su
h that (s

1

; s

2

; s

3

) = g:(e;�e; �): Then

Lemma I.7(6) implies that

d

G

(s

1

; s

2

; s

3

) = J

G

(g; z

1

)d

G

(e;�e; �)J

G

(g; z

1

)

�1

:

To see that d

G

(s

1

; s

2

; s

3

) 2 Z(G)

�

is an involution, we may therefore assume w.l.o.g. that

(s

1

; s

2

; s

3

) = (e;�e; �) with Q(e)� = �� .

Let �

g

�

: sl

2

(C ) ,! g denote the 
orresponding homomorphism of 3-graded Lie algebras


onstru
ted in Lemma IV.2. From Example II.6 we know that

d

SL

2

(C )

(1;�1; i) = �1 2 SL

2

(C ):

Applying Remark III.1 to the homomorphism e�

G

�

: SL

2

(C )! G integrating �

g

�

, we 
on
lude that

d

G

(e;�e; �) = e�

G

�

(d

SL

2

(C )

(1;�1; i)) = e�

G

�

(�1):

The involution on SL

2

(C ) �xes �1 , whi
h leads to d

G

(e;�e; �) 2 G

�

. Sin
e g de
omposes as a

dire
t sum of sl

2

(R)-modules isomorphi
 to the trivial and the adjoint modules (Remark I.10(b)),

we have Ad(e�

G

�

(�1)) = 1; so that e�

G

�

(�1) 2 Z(G

0

). Therefore d

G

(e;�e; �) is a 
entral � -

invariant involution in G

0

.

Further Lemma I.7 implies that the map d

G

:S

3

>

! Z(G

0

)

�

is 
onstant on the H -orbits

and alternating.

The image of d

G


onsists of 
entral involutions, hen
e the group � it generates is an

elementary abelian 2-group. Sin
e the Bana
h{Lie group G 
ontains no small subgroups, there

exists an identity neighborhood U � G with U \ � = f1g , so that � is dis
rete.

We 
on
lude that

b

G := G

0

=� is a Lie group with the same Lie algebra g , and sin
e � is

� -invariant, this Lie group is involutive. Clearly (A1/2) also holds for this quotient group, and

d

G

(S

3

>

) � � leads to d

b

G

(S

3

>

) = f1g in

b

G

0

= G

0

0

=�.

De�nition IV.5. In the following we write �

G

�

: SL

2

(C )=f�1g ! G for the unique morphism

of 3-graded involutive Lie groups with L(�

G

�

) = �

g

�

whose existen
e follows from the simple


onne
tedness of SL

2

(C ) and Lemma IV.3.

A

ording to Remark IV.1, we have

�

G

(e;�e; �) = �

1

(�

G

�

)�

SL

2

(C )=f�1g

(1;�1; i):

Therefore the 
al
ulation of the index map is essentially redu
ed to the 
al
ulation of the single


ase �

SL

2

(C )=f�1g

(1;�1; i):

The next proposition provides the index fun
tion for SL

2

(C )=f�1g .

Proposition IV.6. We 
onsider the 3-graded involutive Lie group G := SL

2

(C )=f�1g whi
h

satis�es (A1-3) by Theorem II.7. We have an isomorphism

�:G

0

=

n

�

�

z 0

0 z

�1

�

: z 2 C

�

o

! C

�

; �

�

z 0

0 z

�1

�

7! z

2

and identify �

1

(G

0

) a

ordingly with �

1

(C

�

)

�

=

Z; where we use p

C

�
: C ! C

�

; z 7! e

2�iz

as the

universal 
overing map. In these terms we have

�

G

(1;�1;�i) = �1:
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Proof. In the following we shall use the expli
it formulas from the dis
ussion of hermitian

Bana
h algebras in Example II.6. We have

B

SL

2

(C )

(z; w) =

�

1� zw 0

0 (1� zw)

�1

�

;

whi
h leads to

B

G

(z; w) = (1� zw)

2

in terms of our identi�
ation of G

0

with C

�

. From that we further obtain for quasi-invertible

triples (z

1

; z

2

; z

3

):

d

G

(z

1

; z

2

; z

3

) = (1� z

1

z

2

)

2

(1� z

3

z

2

)

�2

(1� z

3

z

1

)

2

(1� z

2

z

1

)

�2

(1� z

2

z

3

)

2

(1� z

1

z

3

)

�2

=

�

1� z

1

z

2

1� z

2

z

1

�

2

�

1� z

3

z

1

1� z

1

z

3

�

2

�

1� z

2

z

3

1� z

3

z

2

�

2

:

We obtain in parti
ular

d

G

(z

1

; z

2

; 0) =

�

1� z

1

z

2

1� z

2

z

1

�

2

and d

G

(1;�1; z

3

) =

�

1� z

3

1� z

3

�

2

�

1 + z

3

1 + z

3

�

2

:

For the 
urve

�

1

: [0; 1℄! C

3

>

; t 7! (t;�t; 0)

from (0; 0; 0) to (1;�1; 0) this leads to d

G

(�

1

(t)) = (1� t

2

)(1� t

2

)

�1

= 1: For the path

�

2

: [0; 1℄! C

3

>

; t 7! (1;�1;�ti)

from (1;�1; 0) to (1;�1;�i) we obtain

d

G

(�

2

(t)) =

�

1� it

1� it

�

2

�

1� it

1� it

�

2

=

�

1� it

1� it

�

4

= e

8i arg(1�it)

:

This 
urve des
ribes a loop in C

�


orresponding to the element �1 2 Z

�

=

�

1

(C

�

).

Con
atenating the two paths �

1

and �

2

, we obtain a path from (0; 0; 0) to (1;�1;�i)

whi
h lies in the 
ontra
tible set

D

3

>

= f(z

1

; z

2

; z

3

) 2 C

3

: (8j 6= k) jz

j

j � 1; z

j

z

k

6= 1g:

We 
on
lude that this path is homotopi
 to the path

�

3

: [0; 1℄! C

3

>

; t 7! (t;�t;�ti);

and this implies the assertion.

Theorem IV.7. Let e 2 S and � 2 S with Q(e)� = �

�

= �� . Then the index of (e;�e; �)

is represented by the homomorphism

�

�

:T = R=Z! G

0

; t 7! exp

G

(��t[�; �:e℄)

and 
omposing with the representation �

V

on V leads to the homomorphism

�

V

Æ �

�

:T = R=Z! GL(V ); t 7! P (e

��t�

):

Proof. In terms of the Lie group stru
ture, the index of (1;�1; i) for SL

2

(C )=f�1g is

represented by the loop

[0; 1℄! SL

2

(C )

0

=f�1g; t 7! exp

�

��it 0

0 �it

�

:

In view of Remark IV.1, �

G

(e;�e; �) 
an be represented by the homomorphism

R=Z! G; t+Z 7! �

G

�

�

exp

�

��it 0

0 �it

�

�

= exp

G

(��t[�; �:e℄)

be
ause h = [e; �:e℄ implies that ih = [ie; �:e℄ = [�; �:e℄ (
f. De�nition I.9). Applying the

representation �

V

, we get the loop

R=Z! GL(V ); t+Z 7! e

�2�t(��e)

= e

�2�tL(�)

= P (e

��t�

)

in the unital Jordan algebra (V; e). Here we use the relation P (e

x

) = e

2L(x)

whi
h holds in every

Bana
h{Jordan algebra (
f. [FK94, Prop. II.3.4℄).
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Proposition IV.8. Suppose that g is a 
omplex Lie algebra and that � is antilinear. Then

(V; e;Q(e)) is a 
omplex unital Jordan algebra and the involution Q(e)v = v

�

is antilinear. For

ea
h hermitian proje
tion p = p

�

= p

2

2 V

+

let




p

:R=Z! G

0

; t+Z 7! exp(2�it[p; �:p℄)

denote the 
orresponding proje
tion loop, whi
h is a group homomorphism. We then have for the

involution � = e� 2p the proje
tion loop formula

�

G

(e;�e;�i�) = �

G

(e;�e;�ie)� [


p

℄

Proof. We have V

�

= iV

+

, so that every unitary element in V

�

is of the form i� , where

� 2 V

+

is a hermitian involution. Then p :=

1

2

(e� �) is a hermitian idempotent in the Jordan

algebra (V; e) with � = e� 2p .

The index �

G

(e;�e;�i�) 
an be 
al
ulated dire
tly from the real � -invariant subalgebra

generated by e and �i� , whi
h is isomorphi
 to sl

2

(C ). As we have seen in Theorem IV.6, this

leads to the one-parameter subgroup T! G

0


orresponding to the element

�[i�; �:e℄ 2 exp

�1

(1):

In parti
ular, the index �

G

(e;�e;�ie) 
orresponds to the element

�[ie; �:e℄ = �i[e; �:e℄ 2 exp

�1

(1);

and the di�eren
e is the element

(4:2) �[ie� i�; �:e℄ = �i[e� �; �:e℄ = 2�i[p; �:e℄ = 2�i[p; �:p℄;

whi
h belongs to the Lie algebra g

p

:= span

C

fp; �:p; [p; �:p℄g

�

=

sl

2

(C ) (
f. De�nition I.9), where

h := [p; �:p℄ 
orresponds to

�

1 0

0 �1

�

2 sl

2

(C ) whi
h satis�es exp(2�ih) = 1 . From (4.2) we

now derive the proje
tion loop formula be
ause [e; �:e℄ is 
entral in g

0

(Remark I.11).

V. The Maslov index for some examples

In this se
tion we give more 
on
rete formulas for the index fun
tion for several 
lasses

of hermitian Bana
h-�-algebras and dis
uss the 
ase of �nite-dimensional bounded symmetri


domains.

Example V.1. We take a 
loser look at the index fun
tion for the 
ase G = GL

2

(A)=f�1g

for a hermitian Bana
h-�-algebra.

Then H = U

1;1

(A; �)

0

and G

0

= (A

�

�A

�

)=f�1g . Note that �1 2 A

�

0

follows from the


onne
tedness of C

�

1 . Therefore G

0

0

�

=

(A

�

0

�A

�

0

)=f�1g; and the 
overing map A

�

0

�A

�

0

! G

0

0

leads to an exa
t sequen
e

(5:1) �

1

(A

�

)� �

1

(A

�

) ,! �

1

(G

0

)!! Z=2Z:

The exa
tness of this sequen
e follows from the long exa
t homotopy sequen
e of the 
overing.

We 
an also think of �

1

(G

0

) as the set of homotopy 
lasses of paths 
: [0; 1℄! GL

2

(A) starting

in 1 and ending either in 1 or �1 .

The Maslov index of a triple (e;�e;�i�), where � is a hermitian involution, is given by

the loop

�

�

: R=Z! G

0

; t+Z 7!= exp

G

(�it[�; �:e℄):
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More expli
itly we have

[�; �:e℄ =

h

�

0 �

0 0

�

;

�

0 0

1 0

�

i

=

�

� 0

0 ��

�

;

and sin
e � is an involution, we have exp

G

�

�i

�

� 0

0 ��

�

�

= 1:

Writing � as 1� 2p for a hermitian proje
tion p , we get the de
omposition

�

� 0

0 ��

�

=

�

1 0

0 �1

�

� 2

�

p 0

0 �p

�

;

and the latter element already leads to a loop in the group GL

2

(A). In this sense we get

[�

�

℄ = [�

1

℄� ([


p

℄;�[


p

℄);

where 


p

is the proje
tion loop de�ned by p in A , where we 
onsider the pair ([


p

℄;�[


p

℄) as

an element of �

1

(A

�

)� �

1

(A

�

) a

ording to (5.1).

Example V.2. For the spe
ial 
ase A = C(X; C ) we have A

�

= C(X; C

�

), and the exponen-

tial map

exp

A

:C(X; C )! C(X; C

�

); f 7! e

2�if

is the universal 
overing of the identity 
omponent A

�

0

, 
onsisting of all maps X ! C

�

homotopi
 to a 
onstant map. This shows that

�

1

(A

�

)

�

=

ker exp = C(X;Z):

On the other hand ea
h hermitian proje
tion p 2 A is a 
ontinuous fun
tion X ! f0; 1g , so that

the index of (1;�1;�i�) is of the form

[�

1

℄ + (p;�p) 2 [�

1

℄ + (C(X;Z)� C(X;Z))� �

1

(G

0

):

In this 
ase S = U(A) = C(X;T) and

�

0

(S)

�

=

�

0

(C(X;T))

�

=

[X;T℄

�

=

�

H

1

(X;Z)

is the set of homotopy 
lasses of 
ontinuous maps X ! T , resp., the �rst

�

Ce
h 
ohomology

group.

Example V.3. If, moreover, X is a �nite set, so that A := C(X; C )

�

=

C

n

for n := jX j , then

C(X;Z)

�

=

Z

n

and

G

0

�

=

(C

�

)

n

� (C

�

)=f�1g

�

=

C

2n

=(2�iZ

2n

+ �i(1; : : : ; 1))

�

=

(C

�

)

2n

:

Here we see in parti
ular that �

1

(G

0

) is a free group, so that the sequen
e (5.1) does not split.

Example V.4. Fix q 2 [1;1℄ and let H be an in�nite-dimensional Hilbert spa
e. We 
onsider

the hermitian Bana
h-� algebra A := B

q

(H)+C 1 , where B

q

(H) is the ideal of B(H) 
onsisting

of all operators of S
hatten 
lass q . For q = 1 the ideal B

1

(H) 
oin
ides with the spa
e of


ompa
t operators on H .

We write

GL

q

(H) := (B

q

(H) + 1) \GL(H)

for the group of all invertible operators in 1+B

q

(H) and re
all that

�

1

(GL

q

(H))

�

=

lim

�!

�

1

(GL

n

(C ))

�

=

Z
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(
f. [Ne04, Ths. A.10/11℄). Ea
h proje
tion loop 
orresponding to a 1-dimensional subspa
e of

H generates this group.

Sin
e B

q

(H) is an ideal of A 
omplemented by C 1 , we have

A

�

�

=

GL

q

(H)� C

�

and therefore

�

1

(A

�

)

�

=

�

1

(GL

q

(H))�Z

�

=

Z

2

:

A

ordingly we write A

�

�A

�

�

=

GL

q

(H)

2

� (C

�

)

2

and

G

0

�

=

GL

q

(H)

2

�

�

(C

�

� C

�

)=f�(1; 1)g

�

with

�

1

(G

0

)

�

=

Z

2

� f(n;m) 2

1

2

Z

2

:n�m 2 2Zg:

�

=

Z

2

� (Z

2

+Z

1

2

(1; 1)):

If p 2 A is a hermitian proje
tion, then either p or 1 � p has �nite rank. If p has �nite

rank, then the 
orresponding proje
tion loop 


p

satis�es

[


p

℄ = tr p = dim(p:H) 2 Z

�

=

�

1

(GL

q

(H)):

If 1� p has �nite rank, then p = (p� 1) + 1 leads to

[


p

℄ = (tr(p� 1); 1) 2 Z

2

�

=

�

1

(GL

q

(H)) � �

1

(C

�

):

Therefore the index of (1;�1;�i(1� 2p)) is given by

�

G

(1;�1;�i(1� 2p)) =

�

(� tr p; tr p; (

1

2

;

1

2

)) for rk p <1

(� tr(p� 1); tr(p� 1); (

1

2

;

1

2

)� (1;�1)) for rk p =1

Example V.5. For von Neumann algebras, one has re�ned information on the relation between

proje
tions and loops in A

�

(
f. [ASS71℄): Let H be a separable Hilbert spa
e and A � B(H)

a von Neumann algebra. Then the following assertions hold:

(a) For two proje
tions p; q 2 Idem(A; �) the 
ondition p � q and 1�p � 1�q is equivalent

to lying in the same path 
omponent of Idem(A; �).

(b) �

1

(A

�

) is generated by Hom(T; A

�

) and hen
e by the proje
tion loops.

(
) If A is a fa
tor of in�nite type, then A

�

is simply 
onne
ted.

(d) If A is a fa
tor of type II

1

, then �

1

(A

�

)

�

=

R , where �

1

(Z(A

�

) 
orresponds to

Z . For a proje
tion p 2 Idem(A; �) the proje
tion loop 


p

then 
orresponds to the element

tr p 2 [0; 1℄ � R

�

=

�

1

(A

�

). In parti
ular we have [


p

℄ = [


q

℄ if and only if tr p = tr q ([ASS71,

Th. 3.3℄)

Example V.6. If D is a �nite-dimensional bounded symmetri
 domain of tube type and

H = Aut(D)

0

, then the 
orresponding Jordan triple V 
ontains invertible tripotents. We assume

that D is irredu
ible of rank r , i.e., H is a simple Lie group of real rank r and G = H

C

.

Let us �x e 2 S , so that (V; e;Q(e)) is a unital involutive Jordan algebra. The real form

V

+

:= fv 2 V : v

�

= vg is a eu
lidean Jordan algebra. Therefore the set V

�

+

of invertible

hermitian elements and its 
onne
ted 
omponents 
ontain the involutions of the form e � 2p ,

where p is a hermitian proje
tion whose rank lies in f0; 1; 2; : : : ; rg . It follows in parti
ular that

there are r+1 
onne
ted 
omponents (
f. [FK94℄). In this 
ase the index fun
tion is determined

by its values on the triples (e;�e;�i(e�2p)), where p is a �xed hermitian proje
tion of rank k .

Sin
e in this 
ase the representation �

V

is faithful, we have already seen in Remark IV.7

that the homotopy 
lass �

G

(e;�e;�i(e� 2p)) 2 �

1

(G

0

) is represented by the loop

T = R=Z! GL(V ); t+Z 7! e

2�it

� e

��it4(p�p)

= e

2�it(id

V

�2(p�p))

:
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In view of the Pier
e de
omposition of V , the operator 2p�p = 2p�e = 2L(p) is diagonalizable

with possible eigenvalues f0; 1; 2g , so that the formula above de�nes indeed a loop. We further

have

e

2�it(id

V

�2(p�p))

= e

2�itL(e�2p)

= P (e

�it(e�2p)

):

For the determinant fun
tion det:GL(V ) ! C

�

and a linear endomorhism D 2 End(V )

with integral eigenvalues, 
omposition of the loop t 7! e

2�itD

with det leads to the loop e

2�it trD

in C

�

, whi
h 
orresponds to the element trD 2 Z

�

=

�

1

(C

�

). For n := dimV we therefore get

the fun
tion

�

1

(det) Æ �

G

:S

3

>

! �

1

(C

�

)

�

=

Z

with

(e;�e;�i(e� 2p)) 7! trL(e� 2p) = n� 2 trL(p) = n� 2k

n

r

=

n

r

(r � 2k);

whi
h is, up to the fa
tor

n

r

, the Maslov index de�ned in [C�01℄.

Problem V. (a) Is �

G

a 
o
y
le in the sense that

�

G

(z

1

; z

2

; z

3

) = �

G

(z

1

; z

2

; z

4

) + �

G

(z

2

; z

3

; z

4

) + �

G

(z

1

; z

4

; z

3

)?

(b) Is the index fun
tion invariant under the full group G

�

? This would follow if G

0

a
ts

trivially on �

1

(G

0

), but this is 
ertainly not always the 
ase be
ause G may be of the form

G = G

1

�G

2

with G

2

� G

0

and G

2


an be any Lie group.

If A is a hermitian Bana
h-�-algebra, then GL

2

(A)

0

�

=

A

�

� A

�

. In this 
ase the

problem from above leads to the question whether �

0

(A

�

) a
t trivially on �

1

(A

�

). This is

not always the 
ase, as we see for A = M

2

(R) with the involution a 7! a

>

. In this 
ase

�

0

(A

�

) = �

0

(GL

2

(R))

�

=

Z=2Z and �

1

(A

�

) = �

1

(GL

2

(R)) = �

1

(SL

2

(R))

�

=

Z , where the group

�

0

(A

�

) a
ts by inversion on �

1

(A

�

).

Appendix A. Jordan triple systems and Jordan algebras

In this appendix we 
olle
t some basi
 fa
ts on Jordan algebras and Jordan triples over a

�eld K with 2; 3 2 K

�

.

De�nition A.1. (a) A ve
tor spa
e V over a �eld K is said to be a Jordan triple system

(JTS) if it is endowed with a trilinear map f�g:V � V � V ! V satisfying:

(JT1) fx; y; zg = fz; y; xg .

(JT2) fa; b; fx; y; zgg = ffa; b; xg; y; zg� fx; fb; a; yg; zg+ fx; y; fa; b; zgg for all a; b; x; y; z 2 V .

For x; y 2 V we de�ne operators x�y , Q(x) and Q(x; z) on V by

(x�y):z := fx; y; zg; Q(x)(y) := fx; y; xg; Q(x; z)(y) := fx; y; zg:

The Bergman operator of V is de�ned by

B(x; y) := 1� 2x�y +Q(x)Q(y):

We de�ne the set of invertible elements of V by V

�

:= fv 2 V :Q(v) 2 GL(V )g and the

inversion map by V

�

! V

�

; v 7! v

℄

:= Q(v)

�1

:v: The elements of the set

S := fv 2 V

�

: v

℄

= vg = fv 2 V

�

: fv; v; vg = vg

are 
alled involutions, resp., invertible tripotents.
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Lemma A.2. If 3 2 K

�

and (V; f�; �; �g) is a Jordan triple system, then the following formulas

hold for x; y; z 2 V :

(1) Q(x):fy; x; zg = fQ(x):y; z; xg = fx; y;Q(x):zg .

(2) Q(x)(y�x) = (x�y)Q(x) = Q(Q(x):y; x) .

(3) [Q(x)Q(y); x�y℄ = 0 .

(4) 2(x�y)

2

�Q(x)Q(y) = x�(Q(y)x) = (Q(x)y)�y .

(5) Q(x;Q(z)y) = 2(z�y)Q(x; z)�Q(z)(y�x) .

(6) Q(Q(x)y) = Q(x)Q(y)Q(x) .

(7) For x 2 V

�

we have Q(x)

�1

and (x

℄

)

℄

= x .

(8) B(x; y)Q(x) = Q(x�Q(x):y) .

(9) B(x; y)Q(z)B(y; x) = Q(B(x; y):z) .

Proof. (1)-(5) 
an be found in [Ro00, Prop. I.2.1℄, (6) is [Ro00, Prop. I.4.1℄, and (8),(9) are

[Ro00, Props. I.5.1/2℄.

(1) From (JT2) we derive with (JT1)

fx; y; fx; z; xgg = ffx; y; xg; z; xg� fx; fy; x; zg; xg+ fx; z; fx; y; xgg

= 2ffx; y; xg; z; xg� fx; fy; x; zg; xg

= 2fx; y; fx; z; xgg� 2fx; fy; x; zg; xg+ 2ffx; z; xg; y; xg� fx; fy; x; zg; xg

= 4fx; y; fx; z; xgg� 3fx; fy; x; zg; xg:

This implies

3fx; y; fx; z; xgg = 3fx; fy; x; zg; xg;

so that 3 2 K

�

leads to

fx; y; fx; z; xgg = fx; fy; x; zg; xg:

This proves that the �rst and third term are equal. The equality of the �rst and the se
ond term

now follows from (JT1).

(2) follows dire
tly from (1).

(3) is an immediate 
onsequen
e of (2).

(4) First we observe that

fx; y; fx; y; zgg = ffx; y; xg; y; zg� fx; fy; x; yg; zg+ fx; y; fx; y; zgg

implies that

(Q(x)y)�y = x�(Q(y)x):

We further have

ffx; y; xg; y; zg = fz; y; fx; y; xgg = ffz; y; xg; y; xg� fx; fy; z; yg; xg+ fx; y; fz; y; xgg

= 2ffz; y; xg; y; xg� fx; fy; z; yg; xg

whi
h leads to

(Q(x)y)�y = 2(x�y)

2

�Q(x)Q(y):

(5) is the identity

fx; a; fz; y; zgg= 2ffx; a; zg; y; zg� fz; fa; x; yg; zg:

(6) From (5) we obtain by repla
ing z by x and x by Q(x)y with (2) the relation

Q(Q(x)y) = Q(Q(x)y;Q(x)y) = 2(x�y)Q(Q(x)y; x)�Q(x)(y�Q(x)y)

= 2(x�y)(x�y)Q(x) �Q(x)(2(y�x)

2

�Q(y)Q(x))

= 2(x�y)

2

Q(x) � 2Q(x)(y�x)

2

+Q(x)Q(y)Q(x)

= Q(x)Q(y)Q(x):
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(7) Using (6), we get

Q(x

℄

) = Q(Q(x)

�1

:x) = Q(x)

�1

Q(x)Q(x)

�1

= Q(x)

�1

;

and further

(x

℄

)

℄

= Q(x

℄

):x

℄

= Q(x)

�1

:x

℄

= x:

(8) From B(x; y) = 1� 2x�y +Q(x)Q(y) we derive with (2) that

B(x; y)Q(x) = Q(x)� 2(x�y)Q(x) +Q(x)Q(y)Q(x) = Q(x)� 2Q(Q(x):y; x) +Q(x)Q(y)Q(x)

= Q(x�Q(x):y):

(9) [Ro00, p.444℄

Theorem A.3. Suppose that 2; 3 2 K

�

.

(a) If J is a Jordan algebra, then J is a Jordan triple system with respe
t to

fx; y; zg = (xy)z + x(yz)� y(xz); i.e., x�y = L(xy) + [L(x); L(y)℄;

where we write L(x)y := xy for the left multipli
ations in J . We have

Q(x) = P (x) := 2L(x)

2

� L(x

2

):

(b) If V is a Jordan triple system and a 2 V , then

x �

a

y := fx; a; yg

de�nes on V the stru
ture of a Jordan algebra whose quadrati
 representation is given by

P (v) := 2L(v)

2

� L(v

2

) = Q(v)Q(a):

The Jordan triple stru
ture determined by the Jordan produ
t �

a

is given by

fx; y; zg

a

= fx; fa; y; ag; zg= fx;Q(a):y; zg:

It 
oin
ides with the original one if Q(a) = 1 .

Proof. (
f. [Ja
68, Ch. I, Se
ts. 8,12℄) This is proved in [Ne03, Theorem C.4℄, up to the

formula for the quadrati
 representation, whi
h follows from

P (v) = 2L(v)

2

� L(v

2

) = 2(v�a)

2

� (Q(v)a)�a = Q(v)Q(a)

(Lemma A.2(4)).

Lemma A.4. In a Jordan triple system V the following assertions hold:

(1) x�x

℄

= id

V

for ea
h x 2 V

�

.

(2) S = fx 2 V :x�x = id

V

g .

(3) Q(e)

2

= id

V

holds for ea
h e 2 S .

Proof. (1) In view of Lemma A.2(2), we have

Q(x) = Q(x; x) = Q(x;Q(x)x

℄

) = (x�x

℄

)Q(x);

so that the invertibility of Q(x) implies (1).

(2), (3) If e 2 S , then e = e

℄

and (1) imply e�e = id

V

.

If, 
onversely, e�e = id

V

, then Q(e)e = fe; e; eg = e . Further Lemma A.2(4) implies

2 id

V

�Q(e)

2

= e�Q(e)e = e�e = id

V

;

whi
h leads to Q(e)

2

= id

V

. Hen
e e is invertible and e

℄

= Q(e)

�1

e = Q(e)e = e .
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Proposition A.5. (a) Let (V; f�; �; �g) be a Jordan triple system and e 2 S an invertible

tripotent. Then

ab := fa; e; bg; a

�

:= fe; a; eg

de�nes on V the stru
ture of an involutive Jordan algebra and the Jordan triple stru
ture 
an be

re
onstru
ted from (V; e; �) by

fx; y; zg = (xy

�

)z + x(y

�

z)� y

�

(xz); x; y; z 2 V:

The set S of involutions of the Jordan triple V 
oin
ides with the set

S = fv 2 V : v

�

= v

�1

g

of unitary elements of the unital involutive Jordan algebra (V; e; �) .

(b) If (V; e; �) is a unital involutive Jordan algebra, then

fx; y; zg := (xy

�

)z + x(y

�

z)� y

�

(xz); x; y; z 2 V

de�nes a Jordan triple stru
ture on V with

ab = fa; e; bg and a

�

= fe; a; eg:

Proof. (a) It follows from Theorem A.3 that ab := fa; e; bg de�nes on V a Jordan algebra

stru
ture with multipli
ation maps L(a) = a�e . In parti
ular L(e) = e�e = id

V

, so that e is

an identity of V . Moreover, Q(e)

2

= id

V

follows from Lemma A.4(3). Next

(a

2

)

�

= Q(e)Q(a)e = Q(e)Q(a)Q(e)e = Q(Q(e)a)e = Q(a

�

)e = (a

�

)

2

;

and polarization leads to (ab)

�

= a

�

b

�

for a; b 2 V:

Finally Theorem A.3(b) entails

(xy

�

)z + x(y

�

z)� y

�

(xz) = fx;Q(e)y

�

; zg = fx;Q(e)

2

y; zg = fx; y; zg:

The 
ondition z 2 S means z

℄

= z , so that the des
ription of the set S in terms of the

involutive Jordan algebra follows from (z

℄

)

�

= Q(e)Q(z)

�1

z = P (z)

�1

z = z

�1

.

Remark A.6. If a 2 V

�

is invertible, then xy := fx; a

℄

; yg de�nes on V the stru
ture of a

Jordan algebra with identity a be
ause L(a) = a�a

℄

= id

V

(Lemma A.4).

Proposition A.7. Let V be a Jordan triple and a; b; 
 2 V with 
 2 V

�

and a+ b+ 
 = 0 .

Then

Q(a)Q(
)

�1

Q(b) = Q(b)Q(
)

�1

Q(a):

Proof. We 
onsider the unital Jordan algebra (V; 
) with the produ
t xy := fx; 


℄

; yg

(Remark A.6). Then the quadrati
 representation of this Jordan algebra is given by

P (v) = Q(v)Q(


℄

) = Q(v)Q(
)

�1

:

Therefore it suÆ
es to show that P (a)P (b) = P (b)P (a): As b = �
 � a and 
 is the identity

element, we have

P (b) = P (�
� a) = P (
+ a) = P (
) + 2P (
; a) + P (a) = id

V

+2L(a) + P (a);

and this operator 
ommutes with P (a) be
ause L(a) 
ommutes with L(a

2

).



A topologi
al Maslov index for 3 -graded Lie groups 31

Theorem A.8. If g = g

1

�g

0

�g

�1

is a 3-graded Lie algebra with an involutive automorphism

� satisfying �(g

j

) = g

�j

for j = 0;�1 , then V := g

1

is a Jordan triple system with respe
t to

fx; y; zg :=

1

2

�

[x; �:y℄; z

�

.

If E � V is a Jordan subtriple, then g

E

:= E + �(E) + [E; �(E)℄ � g is a � -invariant

3-graded subalgebra.

Proof. The �rst part is 
ontained in [Ne03, Theorem C.3℄.

For the se
ond part, let E � V be a Jordan subtriple. Then the elements [v; �w℄ 2 g

0

,

v; w 2 E , a
t on V as the operators v�w , hen
e preserve the Jordan subtriple E . We 
on
lude

that [[E; �(E)℄; E℄ � E , and by applying � , we also obtain [[E; �(E)℄; �(E)℄ � �(E). We further

have

[[v; �w℄; [v

0

; �w

0

℄℄ = [[[v; �w℄; v

0

℄; �w

0

℄ + [v

0

; [[v; �w℄; �w

0

℄℄;

showing that [E; �(E)℄ is a subalgebra of g

0

. Therefore g

E

is a subalgebra of g .

Lemma A.9. In a unital Jordan algebra (V; e) we have for invertible elements v; w 2 V

�

the

relations

L(v

�1

) = P (v)

�1

L(v) = L(v)P (v)

�1

and P (v

�1

+ w

�1

) = P (w)

�1

P (v + w)P (v)

�1

:

Proof. First we observe that the 
anoni
al Jordan triple stru
ture on V turns it into a Jordan

triple system with Q(x) = P (x) for all x 2 V and L(x) = x�e (Theorem A.3). Putting x = e ,

y = v and z = v

�1

in Lemma A.2(5), we get with Lemma A.4:

L(v

�1

) = v

�1

�e = (Q(v)

�1

:v)�e = Q(e;Q(v

�1

):v) = 2(v

�1

�v)Q(e; v

�1

)�Q(v

�1

)(v�e)

= 2Q(e; v

�1

)�Q(v

�1

)L(v) = 2L(v

�1

)�Q(v

�1

)L(v);

and therefore L(v

�1

) = Q(v)

�1

L(v) (
f. [Ja
68, Ch. I, Se
t. 11, Th. 13℄). Note that the Jordan

identity [L(v); L(v

2

)℄ = 0 means that Q(v) = P (v) 
ommutes with L(v).

To derive the se
ond identity, we �rst 
al
ulate

P (e+ v

�1

)P (v) =

�

P (e) + 2P (e; v

�1

) + P (v

�1

)

�

P (v) = P (v) + 2L(v

�1

)P (v) + id

V

= P (v) + 2L(v) + id

V

= P (e+ v):

Now we 
onsider the unital Jordan algebra (V;w) with the isotopi
 produ
t a �

w

b :=

fa; w

�1

; bg and the quadrati
 representation

e

P (v) = Q(v)Q(w)

�1

= P (v)P (w)

�1

(Theorem A.3, Lemma A.4). Then we obtain with the formula in the pre
eding paragraph and

P (w):v

�1

= P (w)P (v)

�1

:v =

e

P (v)

�1

:v

the relation

P (v

�1

+ w

�1

) = P

�

P (w)

�1

:(P (w):v

�1

+ w)

�

= P (w)

�1

P (P (w):v

�1

+ w)P (w)

�1

= P (w)

�1

e

P (w + P (w):v

�1

) = P (w)

�1

e

P (w +

e

P (v)

�1

:v)

= P (w)

�1

e

P (w + v)

e

P (v)

�1

= P (w)

�1

P (w + v)P (w)

�1

P (w)P (v)

�1

= P (w)

�1

P (w + v)P (v)

�1

:



32 Karl-Hermann Neeb, Bent �rsted

Lemma A.10. For invertible elements x; y in the Jordan triple V we have

(1) Q(x)Q(x

℄

+ y

℄

)Q(y) = Q(x+ y) and

(2) B(x; y

℄

) = Q(x� y)Q(y)

�1

.

Proof. (1) We 
onsider on V the unital Jordan algebra stru
ture de�ned by ab := fa; x

℄

; bg

with unit x (Remark A.6). Then the quadrati
 representation of the unital Jordan algebra

(V; x) is given by P (v) = Q(v)Q(x)

�1

and the Jordan inversion by v

�1

= P (v)

�1

:v = Q(x)v

℄

(Theorem A.3). Hen
e Lemma A.9 leads to

Q(x)Q(x

℄

+ y

℄

)Q(x) = Q(Q(x)x

℄

+Q(x)y

℄

) = Q(x+ y

℄

) = P (x+ y

℄

)Q(x)

= P (x+ y)P (y

℄

)Q(x) = P (x+ y)P (y)

�1

Q(x) = Q(x+ y)Q(y)

�1

Q(x):

This 
ompletes the proof.

(2) In view of Lemma A.2(8) and (1), assertion (2) follows from

B(x; y

℄

) = Q(x�Q(x)y

℄

)Q(x)

�1

= Q(x)Q(x

℄

� y

℄

)Q(x)Q(x)

�1

= Q(x)Q(x

℄

� y

℄

) = Q(x� y)Q(y)

�1

:

Lemma A.11. Let (V; e) be a unital Jordan algebra and V

�

the set of invertible elements

in V . Then the Cayley transform

C:V

�

+ e! V

�

� e; z 7! (e+ z)(e� z)

�1

is a bije
tive map with C

�1

(z) = �C(�z) whi
h further satis�es

(1) C(z)

�1

= C(�z) for z � e 2 V

�

and C

2

(z) = �z

�1

if z; e� z 2 V

�

.

(2) P (C(z)) = P (e+ z)P (e� z)

�1

for z � e 2 V

�

.

(3) 
(e;�e; z) = 4P (C(z))

�1

for z � e 2 V

�

.

(4) d(e;�e; z) = P (C(z))

�1

P (C(z))

�

for z � e 2 V

�

.

Proof. (1) From

C(z) + e = (e+ z + e� z)(e� z)

�1

= 2(e� z)

�1

2 V

�

we see that C(�C(z)) is de�ned, and an easy 
al
ulation leads to C(�C(z)) = �z for z 2 V

�

+e .

This implies that �C is an involution of the subset V

�

� e of V and that

C

�1

(z) = �C(�z) = �(e� z)(e+ z)

�1

= (z � e)(z + e)

�1

:

Moreover, if C(z) is invertible, then we have

C(z)

�1

= (e� z)(e+ z)

�1

= C(�z);

showing also that this happens if and only if e� z are invertible. If z and z � e are invertible,

then z

�1

� e is invertible and we get

C(z

�1

) = (e+ z

�1

)(e� z

�1

)

�1

= (z + e)(z � e)

�1

= �C(z);

showing that C

2

(z

�1

) = C(�C(z)) = �z and therefore C

2

(z) = �z

�1

:

(2) For z � e 2 V

�

we get with Lemma A.9:

P (C(z)) = P (C(z) + e� e) = P (2(e� z)

�1

� e)

= P (e� 2(e� z)

�1

) = P (e�

1

2

(e� z))P (�

1

2

(e� z))

�1

= P (

1

2

(e+ z))P (�

1

2

(e� z))

�1

= P (e+ z)P (e� z)

�1

:

(3) In view of Lemma A.10(2), we have


(e;�e; z) = B(e;�e)B(z;�e)

�1

B(z; e) = B(e;�e

�1

)B(z;�e

�1

)

�1

B(z; e

�1

)

= Q(e+ e)Q(z + e)

�1

Q(z � e)Q(e) = P (2e)P (z + e)

�1

P (z � e)P (e)

= 4P (z � e)P (z + e)

�1

= 4P (C(z))

�1

:

(4) is an immediate 
onsequen
e of (3) and

d(e;�e; z) = 
(e;�e; z)
(e; z;�e)

�1

= 
(e;�e; z)(
(e;�e; z)

�1

)

�
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Appendix B. Transversality of 3-�ltrations

Let g be a Lie algebra over a �eld K not of 
hara
teristi
 2 or 3. In this appendix we

shall explain some general fa
t on inner 3-�ltrations of Lie algebras. We shall 
losely follow the

setup in [BN04a℄, from whi
h we shall re�ne one result that is 
ru
ial for the present paper.

Our basi
 obje
ts are on the one hand 3-graded Lie algebras, i.e., Lie algebras of the form

g = g

1

� g

0

� g

�1

satisfying the relations [g

�

; g

�

℄ � g

�+�

for �; � 2 f�1; 0; 1g , and on the

other hand 3-�ltered Lie algebras, i.e., Lie algebras g with a 
ag f : f0g = f

2

� f

1

� f

0

� g

of subalgebras su
h that [f

�

; f

�

℄ � f

�+�

. For simpli
ity we shall also write these 
ags as pairs

f = (f

1

; f

0

). If g is 3-graded, then the 3-grading is the eigenspa
e de
omposition for a unique

derivation D 2 der(g) with D(X) = iX for X 2 g

i

. The derivation D is 
alled the 
hara
teristi


element of the grading, and if D = ad(E), E will be 
alled an Euler operator. For a 3-grading

g = g

�1

� g

0

� g

1

with 
orresponding derivation D there are two naturally asso
iated �ltrations

f

+

:= f

+

(D) := (g

1

; g

1

� g

0

) and f

�

:= f

�

(D) := (g

�1

; g

�1

� g

0

). We write

F = ff

+

(D) : D 2 Gg

for the spa
e of inner 3-�ltrations of g . The spa
e F 
arries an interesting geometri
 stru
ture.

First we have a transversality relation > on F �F de�ned by

e = (e

1

; e

0

) > f = (f

1

; f

0

) , g = e

1

� f

0

= f

1

� e

0

:

A key result on the stru
ture of 3-graded Lie algebras ([BN04a, Th. 1.6℄) asserts that the set

of transversal pairs in F 
orresponds to the set of inner 3-gradings of g , where the 3-grading

asso
iated to the pair (e; f) is determined by

(B:1) g

1

= e

1

; g

0

= e

0

\ f

0

and g

�1

= f

1

:

For e 2 F we write

e

>

:= ff 2 F : e>fg

for the set of �ltrations transversal to e .

The group Aut(g) a
ts naturally on F by g:(e

1

; e

0

) := (g:e

1

; g:e

0

), preserving the transver-

sality relation, and it also a
ts on G . For any inner 3-�ltration e and x 2 e

1

we have (adx)

3

= 0

be
ause adx(g) � e

0

and (adx)

2

(g) � e

1

. Sin
e 2 and 3 are invertible in K ,

e

adx

:= 1+ adx+

1

2

(adx)

2

de�nes an automorphism of g . In [BN04a℄ we show that the set e

>

of �ltrations transversal to

a given �ltration e 
arries a natural stru
ture of an aÆne spa
e over K with translation group

e

ad e

1 �

=

(e

1

;+) whi
h a
ts as a subgroup of Aut(g) on F .

We �x an inner 3-grading g = g

1

�g

0

�g

�1

of g and 
onsider an involutive automorphism

� of g with �(g

i

) = g

�i

for i = �1; 0; 1. For the asso
iated 
ags f

+

= (g

1

; g

0

+ g

1

) and

f

�

= (g

�1

; g

0

+ g

�1

) this means that �:f

�

= f

�

in F . Hen
e the involution g 7! �:g := �g� of

Aut(g) preserves G(f

+

; f

�

). We also write g

�

:= �g� to simplify the notation.

De�nition B.1. On the ve
tor spa
e V := g

1

we de�ne by fx; y; zg :=

1

2

[[x; �:y℄; z℄ the

stru
ture of a Jordan triple system (Theorem A.5). In terms of Lie triple systems we then have

on V the relations

Q(x):y = �

1

2

(adx)

2

Æ � and x�y =

1

2

ad[x; �:y℄ j

V

=

1

2

adx ad(�:y) j

V

whi
h shows in parti
ular that the set V

�

of invertible elements in the Jordan triple V does not

depend on the involution � . The 
orresponding Bergman operator is given by

B(x; y) = 1� 2x�y +Q(x)Q(y) = 1� adx ad �:y +

1

4

(adx)

2

(ad �:y)

2

:

The following proposition is a slight re�nement of [BN04a, 5.2℄.
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Proposition B.2. Let � be an involution of g with �(g

i

) = g

�i

for i = �1; 0; 1 and f

�

the


orresponding two 3-�ltrations. We identify the Jordan triple V = g

1

with the subset e

ad f

+

:f

�

of F via the map v 7! e

ad v

:f

�

. Let �

F

denote the involution of the set F indu
ed by the

involution � . Then

�

�1

F

(V ) \ V = V

�

is the set of invertible elements in V , and for v 2 V

�

we have

�

F

(v) = v

℄

= Q(v)

�1

:v:

Proof. With respe
t to the 3-grading of g , we write ea
h automorphism g 2 Aut(g) as a

matrix g = (g

ij

) with g

ij

2 Hom(g

j

; g

i

). Let E 2 g

0

be su
h that adE is a derivation de�ning

the grading of g . For x 2 V we de�ne

d

g

(x) := (e

� ad x

g

�1

)

11

; 


g

(x) := (ge

adx

)

�1;�1

and n

g

(x) := (e

� adx

g

�1

E)

1

:

In view of [BN04, Cor. 1.10, Th. 2.8℄, g:x 2 V is equivalent to the invertibility of d

g

(x) and




g

(x), and in this 
ase

g:x = d

g

(x)

�1

n

g

(x):

For g := � we have g

ij

= 0 for i 6= �j , and therefore

d

�

(x) := (e

� adx

�)

11

=

1

2

(adx)

2

� j

g

1

= �Q(x):

Further




�

(x) := (�e

adx

)

�1;�1

= �

1

2

(adx)

2

j

g

�1

= ��Q(x)� j

g

�1

:

This shows that �

F

:x 2 V is equivalent to x 2 V

�

. Eventually the fa
t that � reverses the

grading implies �:E +E 2 z(g), so that

n

�

(x) = (e

� ad x

�:E)

1

= (e

� adx

:(�E))

1

= [x;E℄ = �x:

We 
on
lude that

�

F

(x) = d

�

(x)

�1

n

�

(x) = �Q(x)

�1

:(�x) = Q(x)

�1

:x = x

℄

:

Remark B.3. Let x 2 V = g

1

. Then the pairs (f

+

; f

�

) and (f

+

; e

adx

:f

�

) are transversal,

so that the triple (f

+

; f

�

; e

adx

:f

�

) is transversal if and only if e

adx

:f

�

is transversal to f

�

, i.e.,

�

F

(e

adx

:f

�

) is transversal to f

+

= �

F

(f

�

). In view of Proposition B.2, this is equivalent to

x 2 V

�

.

Appendix C. Tripotents and the Peir
e de
omposition

In this appendix we brie
y dis
uss the Peir
e de
omposition of a Jordan triple with respe
t

to a tripotent e and the representation of the 
orresponding sl

2

-subalgebra on g .

Lemma C.1. (Peir
e de
omposition) For ea
h tripotent e 2 V the operator 2e�e is diagonal-

izability with eigenvalues in f0; 1; 2g , and for the 
orresponding eigenspa
es V

�

we have

(C:1) fV

�

; V

�

; V




g � V

���+


:

The tripotent e is invertible if and only if V = V

2

.

Proof. We put D := e�e . First Lemma A.2(4) leads to the relation

2(e�e)

2

�Q(e)

2

= e�(Q(e)e) = e�e;
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and hen
e to

(C:2) 2D

2

�D = Q(e)

2

:

On the other hand, Lemma A.2(2) yields Q(e) = DQ(e) = Q(e)D , so that multipli
ation of

(C.2) with D entails

2D

3

�D

2

= DQ(e)

2

= Q(e)

2

= 2D

2

�D;

and further

0 = 2D

3

� 3D

2

+D = D(D � 1)(2D � 1):

Sin
e the three roots of this polynomial are di�erent, D is diagonalizable with eigenvalues in

f0;

1

2

; 1g . The relation (C.1) is a 
onsequen
e of the fa
t that D is a Lie triple derivation by

(JT2).

If e is invertible, then Q(e)

2

= 2D

2

� D = D(2D � 1) is invertible, so that D = id

V

,

i.e., V = V

2

. If, 
onversely, V = V

2

, i.e., D = 1 , then Q(e)

2

= id

V

implies that Q(e) is an

involution, hen
e invertible.

In the following g denotes a 3-graded Lie algebra with involution � reversing the grading

and V = g

1


arries the Jordan triple stru
ture from Theorem A.8.

De�nition C.2. A triple (e; h; f) of elements of g is 
alled an sl

2

-triple if

[e; f ℄ = h; [h; e℄ = 2e and [h; f ℄ = �2f:

It is 
alled a graded sl

2

-triple if e 2 g

1

and f 2 g

�1

.

Lemma C.3. If e 2 V = g

1

is a tripotent, then (e; [e; �:e℄; �:e) is a graded sl

2

-triple.

Proof. We have [h; e℄ = 2fe; e; eg = 2e and [h; f ℄ = � [�h; e℄ = �� [h; e℄ = �2�e = �2f:

Proposition C.4. Let g be a 3-graded Lie algebra.

(1) If x 2 g

1

is su
h that the linear map (adx)

2

: g

�1

! g

1

is bije
tive, then there exist unique

elements y 2 g

�1

and h in g su
h that (x; h; y) is a graded sl

2

-triple. In this 
ase

1

2

h 2 g

0

is a grading element.

(2) If (x; h; y) is a graded sl

2

-triple su
h that

1

2

h 2 g

0

is a grading element, then (adx)

2

: g

�1

!

g

1

is bije
tive.

Proof. (1) Our assumption implies that there exists a unqiue element y 2 g

�1

with

�

1

2

(adx)

2

:y = x . This implies already the uniqueness assertion. To prove existen
e, we put

h := [x; y℄ 2 g

0

. The de�nition of y then implies that

[h; x℄ = �(adx)

2

:y = 2x:

Further

[x; [h; y℄℄ = [[x; h℄; y℄ + [h; [x; y℄℄ = [�2x; y℄ = �2h

leads to

�

1

2

(adx)

2

:[h; y℄ = [x; h℄ = �2x;

and hen
e to [h; y℄ = �2y by the inje
tivity of (adx)

2

on g

�1

.

We re
all the following formulas from elementary sl

2

-theory ([Bou90, Ch. VIII, x1, no. 1,

Lemma 1℄):

[adh; (adx)

n

℄ = 2n(adx)

n

; [adh; (ad y)

n

℄ = �2n(ad y)

n

and

(C:3) [ad y; (adx)

n

℄ = �n(adx)

n�1

�

adh+ (n� 1) id

�

= �n

�

adh� (n� 1) id

�

(adx)

n�1

:
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For w 2 g

�1

we have (adx)

3

:w = 0 and therefore

0 = ad y(adx)

3

:w = [ad y; (adx)

3

℄:w = �3(adx)

2

�

adh+ 21

�

:w:

Sin
e (adx)

2

j

g

�1

is inje
tive, we get [h;w℄ = �2w . This further leads to [h; (adx)

2

:w℄ =

2(adx)

2

:w and hen
e to [h; v℄ = 2v for all v 2 g

1

.

This implies that [h; [g

1

; g

�1

℄℄ = f0g and in parti
ular [h; [x; g

�1

℄℄ = f0g . Sin
e the map

(adx)

2

: g

�1

! g

1

is bije
tive,

adx j

[x;g

�1

℄

: [x; g

�1

℄! g

1

also is bije
tive. Thus adx([x; g

�1

℄) = g

1

and hen
e

g

0

= [x; g

�1

℄� (ker adx \ g

0

):

For z 2 g

0

\ ker adx the operators ad z and adx 
ommutes, so that

(adx)

2

([y; z℄) 2 � ad z(adx)

2

:y = �2 ad z:x = 0;

and therefore [y; z℄ = 0. This also implies that [h; z℄ = 0, and we 
on
lude that h 2 z(g

0

).

Hen
e

1

2

h is a grading element.

(2) For w 2 g

�1

the relations [y; w℄ = 0 and [h;w℄ = �2w imply that w generates an at

most 3-dimensional submodule for the Lie subalgebra g

x

:= span

K

fx; y; hg ([Bou90, Ch. VIII,

x1, no. 1, Lemma 1℄).

For n = 2 we get with (C.3) and [y; w℄ = 0:

ad y(adx)

2

:w = [ad y; (adx)

2

℄:w = �2(adx)

�

adh+ id

�

:w = 2adx:w:

Therefore (adx)

2

:w = 0 implies [x;w℄ = 0, so that 0 = [h;w℄ = �

1

2

w . We 
on
lude that

(adx)

2

j

g

�1

is inje
tive.

For w 2 g

1

the relations [h;w℄ = 2w and [x;w℄ = 0, together with the relation

(C:4) [adx; (ad y)

n

℄ = n(ad y)

n�1

�

adh� (n� 1) id

�

= n

�

adh+ (n� 1) id

�

(ad y)

n�1

leads to

(adx)

2

(ad y)

2

:w = (adx):[adx; (ad y)

2

℄:w = (adx):(2 ad y:w) = 2 ad[x; y℄:w = 4w;

and hen
e to w 2 (adx)

2

(g

�1

).
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