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Abstract. Motivated by the generalization of the Maslov index to tube domains and by numerous
applications of related index function in infinite-dimensional situations, we describe in this paper
a topologically oriented approach to an index function generalizing the Maslov index for bounded
symmetric domains of tube type to a variety of infinite-dimensional situations containing in particular
the class of all bounded symmetric domains of tube type in Banach spaces. The framework is that
of 3-graded Banach-Lie groups and corresponding Jordan triple systems.

Introduction

Let D be a finite-dimensional bounded symmetric domain of tube type and S its Shilov
boundary. In [CO01] and [Cl04] J. L. Clerc and the second author have defined a function

WS =17

called the Maslov index which is invariant under the action of the identity component H :=
Aut(D)o on the set S* of triples in the Shilov boundary. Their index function generalizes in
particular the classical Maslov index, which is obtained if D is the open unit ball in the space
Sym,,(C) of complex symmetric matrices and Aut(D)y = Sp,,(R) is the symplectic group. In
this case S can be identified with the set of Lagrangian subspaces of a 2n-dimensional symplectic
vector space W and the Maslov index is an integer 7(Ly, L2, L3) defined for Ly, Lo, and L3 € S.
For the applications to boundary value problems for differential operators and corresponding
index theories, it is important to allow W to be infinite-dimensional; but also for W = R?" with
the standard symplectic form, the Maslov index plays a non-trivial role, and our approach offers
new insight in this case as well. In the classical situation, this means we can identify S with the
set of unitary symmetric matrices.

Motivated by the generalization of the Maslov index to tube domains and by numerous
applications of related index function in infinite-dimensional situations (cf. [CLM94]), we describe
in this paper a topologically oriented approach to an index function generalizing the Maslov
index for bounded symmetric domains of tube type to a variety of infinite-dimensional situations
containing in particular the class of all bounded symmetric domains of tube type in Banach
spaces.

We start with the following group theoretic setup. We consider a Banach-Lie group G
endowed with an involution 7 and whose Lie algebra g is endowed with a 3-grading g =
g1 D go D g1 arising as the eigenspace decomposition of some adE, E € gg, and reversed
by 7. We then call (G,ad E,7) an involutive 3-graded Lie group.

We have subgroups G* and G° of G corresponding to g+ and go, and we thus obtain
a homogeneous manifold X := G/G°G~ into which we embed the Banach space V := g; by
the map = — expxG°G~. The involution 7 and the 3-grading provide on V the structure of a
Jordan triple by

{z,y,2} = 5[z, 9], 2].
If the operator Q(x):y — {x,y,z} on V is invertible, we call the element z invertible and we
say that e € V is a tripotent if {e,e,e} = e. We now write S for the set of invertible tripotents
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in V. If S is non-empty, then 7 induces an involution 7x on X such that S =V N X7 is the
set of Tx -fixed points in the open subset V' of X. We make the assumptions

(A1) H := Gj € GTG°G~ (where G}, denotes the identity component of G7), and that

(A2) S is invariant under the action of H on X.

A pair (z,w) € V? is called quasi-invertible if exp(—T.w)expz € GTG G~ (this can
also be expressed directly in Jordan theoretic terms). For a quasi-invertible pair we defined
Bg(z,w) € G° by exp(—T.w)expz € GTBg(z,w)"'G~. We write V2 for the set of all quasi-
invertible triples in V' and consider the function

dG: VT3 - GO: (;U:y:z) = BG('T:y)BG(Zay)_lBG(Zam)BG(yax)_lBG(yaZ)BG('TaZ)_l'

For S3 := 5%NV2 we show that ds(S3) C Z(Go)™ and that the assumption
(A3) da(S%) = {1}
is always satisfied for a quotient of the identity component Gy of G by a discrete central
elementary abelian 2-subgroup. For the group GLs(A) over a hermitian Banach-x-algebra
(A, *) we only have to factor the subgroup {1} (see Section II). The main goal of Section I is
the definition of an index map

pa: 83 — w1 (GO)

assigning to a quasi-invertible triple in S a homotopy class of a loop in the group G°. This map
is obtained by showing that [0,1] = V3 ¢+ (ts1,tss,ts3) is a path in V3, so that composing it
with dg yields a loop in G whose homotopy class is defined to be ug(s1, sz, s3)-

We show in Section II that all infinite-dimensional bounded symmetric domains D of tube
type are covered by our setup, where S is the corresponding “Shilov boundary”. This observation
builds heavily on results of W. Kaup and H. Upmeier (cf. [Up85]). If, in addition, D is finite-
dimensional, then we can compose dg with the determinant function det: GL(V) — C* and the
natural representation py: G — GL(V) to obtain a map det opy o dg: VT3 — C* which leads to
a map

ﬁgts% — 71'1((C><) = 7.

Up to a constant factor, this map is the Maslov index defined in [CQ01].

From its definition it is almost obvious that pg is constant on the connected components
of S, and in Section III we show that these connected components coincide with the orbits of H
on S2. We further show that each orbit contains a triple of the form (e, —e, o) with Q(e)o = —o.
In Section IV we then turn to the calculation of the index function. This is eventually reduced
to the case of the group SL»(C)/{£1} by observing that spang{e,o} is a Jordan sub-triple of
V' isomorphic to C with {z,y, 2z} = 27z and then using functorial properties of the index map.
The outcome is the interesting result that

pale,—e,0) = [xo,] with x, € Hom(T,G°), xo(t +Z) = expg(nt[r.e,0]).

In the last Section V we calculate the Maslov index for several classes of examples. If V = A
is a hermitian Banach-*-algebra and S = U(A) its unitary group, then a triple (s, s2,5s3) € S®
is quasi-invertible if and only if all differences s; —s;, are invertible. So our index function assigns
to each such triple a loop in the group G° = (4% x A*)/{£1} whose homotopy class is invariant
under the action of the group H = Uj 1(A4, ), and each triple is conjugate to one of the form
(1,—1,i(1 — 2p)), where p is a hermitian projection in A. Therefore the index map leads to a
map

mo(Idem(A4, ¥)) = 71(G°), [p] = [1,], where Idem(A4,x):={p€ A:p=p®=p*}

and [vy,] denotes the homotopy class of the projection loop defined by ~,(t + Z) = €2™ in
U(A). In this case D = Uy 1(A, *).0 is the unit ball for the largest C*-seminorm on A. This is
a symmetric Banach manifold, but it is bounded if and only if A is a C*-algebra. For complex
Banach algebras the projection loop construction leads to the Bott map

B Ko(A) = K»(A) = lim m (GLa(4)), [Pl = [
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and the main point in Bott periodicity is that this map is an isomorphism (cf. [Kar78]). It would
be very interesting to see if there are deeper connections between our index function pg and
topological K -theory for Banach algebras, in particular for real Banach algebras.

It is remarkable that our setup never needs that G is a complex group or that V is a
complex vector space. All the results in the present paper remain valid in the real setting, hence
in particular for the “Shilov boundaries” of real bounded symmetric domains, but the geometric
implications for this setting will be investigated in a future paper.

Our approach to the index function pug via involutive 3-graded Lie groups is closely related
to the geometry of inner 3-filtrations and 3-gradings developed in [BN04a], from where we use
several results. To keep this paper reasonably self-contained, we included an appendix on basic
results on Jordan triples used throughout and also a second appendix on the basic notions
concerning inner 3-filtrations of Lie algebras. The theory in [BN04a] is algebraic, it even works
over fields of positive characteristic # 2,3. Thinking of the index pg as a Jordan algebra version
of the Bott map, it would be interesting to see if there is an algebraic variant of ug which is
related to the Laurent polynomial constructions in the algebraic K -theory of rings.

I. The index function for quasi-invertible triples

In this section we introduce involutive 3-graded Banach—Lie groups and discuss the as-
sumptions (A1-3) mentioned in the introduction. We shall use Cayley transforms associated to
invertible tripotents to show that for each quasi-invertible triple (s1,s2,s3) € S% the line seg-
ment connecting it to (0,0,0) consists of quasi-invertible triples. With this information we can
define the index function pg: S3 — m (GP).

Three graded involutive Lie groups

Definition I.1.  An inner 3-grading of a Lie algebra g is a 3-grading g = g_1 ® go ® g1 for
which the derivation D € der(g) defined by g; = ker(D — jidg) for j =1,0,—1, is inner. Then
the elements E € gg with D = ad E are called grading elements. Note that gi» = {0} implies
in particular that the spaces g4 := g1 are abelian subalgebras of g.

A pair (G,D) of a Banach-Lie group G and an inner derivation D € adg is called a
3-graded Lie group if the eigenspaces g; := ker(D — jidy), j = —1,0,1, define a 3-grading.

A triple (G, D,T) consisting of a 3-graded Banach-Lie group (G,D) and an involutive
automorphism 7 of G whose differential L(r) reverses the grading, i.e., L(7).g; = g—; for
j=-—1,0,1, is called an involutive 3-graded Lie group. ]

Proposition 1.2.  Let (G,D) be a 3-graded Banach-Lie group. The subgroups
G i=expgs, G°:={g€G:(vj)Ad(g)g; = g;} = {g € G:Ad(9)D = D Ad(g)}

and P* := GG have the following properties:

(1) PFNP~ =G, PEPNGT = {1} and PT = G* x G°. All these groups are complemented
Lie subgroups of G .

(2) The multiplication map G x G° x G~ — G, (x,y,2) = zyz is a diffeomorphism onto an
open subset of G .

(3) X := G/P~ is a homogeneous Banach manifold and the map g1 — X,z — expzP~ is a
diffeomorphism onto an open subset.

(4) The orbits of the identity component Gy of G coincide with the connected components of X .

(5) For the inner 3-filtrations f+ = (g+,9+ + go) of g we have Gy, = P* and hence an
embedding

(1.1) X—>F, ¢gP —gj-
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of X into the set F of inner 3-filtrations of g.

Proof. (1) Since G° preserves the grading of g, it normalizes the subgroups G*, so that P*
are groups.
We consider the two inner 3-filtrations

f+ = (g+,g+ +go) and f— = (g—ag—+90)

defined by the 3-grading of g (cf. Appendix B for the definitions concerning inner 3-filtrations).
For a 3-filtration f = (f1,fo) let

Gy = {g € G:Ad(g).fo = fo, Ad(g) f1 = f1}

denote its stabilizer subgroup in G'. Then we clearly have P* C Gy, -

On the other hand each element g € Gy, also stabilizes the subset fl ={e € FreTfy}
of all inner 3-filtrations of g transversal to fi. According to [BN04a, Th. 1.6(2)], the group
GT acts transitively on the set fI containing f_. Hence there exists an element g, € GT with
g.f— = g+.f—. Then g;lg.fi = f+ implies that gj_lg also preserves the 3-grading given by

g+ =Ff+1, 9-=f-1 and go=ft0Nf-p0-

Therefore g7'g € G°, so that g € g4 G® C P*. This shows that P* = G}, and likewise we get
P~ = Gj_. From that we obtain

PtNnpP- :GHQG]& =G°.

Let E € go be a grading element, i.e., g; is the j-eigenspace of ad . Then we have for
x € g4 the relation

Ad(expz).E =e**E=E —[2,E] = E +z.

Since this element is contained in g 4+ go = f_ o if and only if z =0, we get
GtNP™ =G"nG; = {1},

and likewise G— NPT = {1}.

From P* = G5, we derive in particular that P* and G° are Lie subgroups of g with
the Lie algebras p* = g, + go which are the normalizers of the flags f+ on the Lie algebra
level ([Ne04, Lemmas IV.11, IV.12]). Clearly the Lie algebras of all these subgroups have closed
complements because

g=p T og_=p Do =go®(g+ +9-).

This means that they are complemented Lie subgroups.
(2) follows immediately from (1), the Inverse Function Theorem, and the fact that the map

(Gt xGo) xG™ =G, (,y,2) > zyz~"

is an orbit map for a smooth action of the group (G x Gp) x G~ on G.

(3) follows from (1) and (2).

(4) We know from (3) that the orbit of the base point in X under G is open. Hence the
orbit of a point gP~ under the group gGtg~! is open, and since all subgroups ¢gGtg~! are
contained in (g, all orbits of GGy in X are open. This implies that the Gy-orbits in X are the
connected components.

(5) follow from the proof of (1). ]
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Lemma 1.3. For v € g; and w € g_; the following are equivalent
(1) expwexpv € GTG°G~.
(2) The operators

1
Bi(v,w) :=1idg, +advadw + Z(adv)2(adw)2 € End(g1)

and

1
B_(w,v) :==idy_, +adwadv + Z(ad w)?(adv)? € End(g_;)

are invertible.

Proof. Consider the map 7:G — X,g — ¢gP~ and identify g; with the open subset
GT.P~ C X. Then n(g1) = GTG°G~. Therefore expwexpv € GTG°G~ is equivalent
to (expw).v € g1, and the assertion follows from [BN04a, Cor. 1.10]. ]

Definition I.4. Let (G,D,7) be an involutive 3-graded Banach-Lie group. We also write 7
for its derivative on the Lie algebra g. Then 7(g;) = g—;,j = —1,0,1, and the space V := g
carries a Jordan triple structure given by

{92} = 5[z, 7], 2]

(Theorem A.5). Using Proposition 1.2(3), we think of V' as an open subset of the homogeneous
space X and view X as a conformal completion of the Jordan triple V .
We call an element x € V' invertible if the operator

Q):V =V, yr Qz)(y) :=A{z,y,z}

is invertible and write V> for the set of invertible elements in V. For ¢ € V* the (Jordan
triple) inverse is defined by
* = Q(x) ..

The elements of the set
S:={zeV*a =z} ={reV*{x,x,2} =z}
are called involutions or invertible tripotents (cf. Definition A.1). |

Definition I.5.  (a) We have seen above that the multiplication map G* x G x G~ — G is
a diffeomorphism onto an open subset of the group G. Therefore we have smooth maps

pj:G+G0G_ -G with g=pi(9)polg)p_(9) for g¢geGTG°G™.
For z € g; and g € G with gexpz € GTG°G~ we define
Ja(9,2) = po(gexpz) € G°.

The function Jg is called the universal automorphy factor of G.
(b) For g € G we put g* := 7(g)"! and for z € g we put z* := —7.z. For w € g; and
g = (expw)* = expw* € G~ we then set

Bg(z,w) :== Jg((exp w)*,z)7 = po((eXp w)" exp Z)_l € Go

whenever expw*expz € GTG°G~. According to Lemma 1.3, this happens if and only if the
Bergman operators

1
B(v,w) := By(v,w*) =idy +advadw* + Z(adv)Q(adw*)Q

1
=idy +advadw™ + Z(ad v)?oro(adw)? o7 =idy —200w + Q(v)Q(w)
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and B(w,v) are invertible. In this case the pair (v,w) € V? is called quasi-invertible and we
write v Tw to denote quasi-invertibility. This notation is motivated by the fact that, in terms of
Appendix B, quasi-invertibility of (v, w) is equivalent to (exp(—7.w)expv.f_)Tf4, which means
that the 3-filtration expv.f_ is transversal to the 3-filtration exp(r.w).f+ = Tx(expw.f_).

(c) We write

VE:={(z,y) € V*: B(z,y), B(y,z) € GL(V)}

for the set of quasi-invertible pairsin V, and V2 := {(z,y, 2) € V3:(2,y), (y,2), (z,2z) € VZ} for
the set of quasi-invertible triples. For the set S of involutions in V we put S% := S> N VZ and
S% .= §* N V3. We then consider the functions

ca: V2 —=G° cq(z,y,2) = Bg(r,y)Ba(z,y) 'Ba(z, )
and dg: V2 = GO, (z,y,2) = ca(z,y,2)cq(z, z,y) 1 with
dG(l’, Y, Z) = BG(Z’, y)Bg(Z, y)ilBG(’% l’)BG(y, m)ilBG(ya Z)BG(iL“, Z)il‘ u

Lemma 1.6. For a quasi-invertible pair (v,w) in V and the adjoint representation py:G° —
GL(V) of G° on g1 =V we have B(v,w) = py(Bg(v,w)).

Proof. This follows from the proof of Theorem 2.10 in [BN04a]. ]

Lemma 1.7. The functions Bg, Jg and dg have the following properties:
(1) For z €V and g,9' € G with ¢'.z,99'.2 € V we have Jg(g9',2) = Ja(g,9" .2)Ja(g’,2). In
particular Jg(97 ', 9.2) = Jg(g,2)"* for z€V and gz € V.
If g.z,7(9)w € V, then Ba(g.z,7(9).w) = Ja(g, 2) Ba(z,w)Ja(r(g), w)*.
Bg(w, z) = Bg(z,w)* for expw*expz € GTG'G~.
dg(Zl, 23, 2’2) = dg(Zl, 22, 23)71 .
dG(Zl, 22723) = BG(Z:[,ZQ)BG(Z3,ZQ)ildG(Z3,ZI,ZQ)BG(Z3,ZQ)BG(Zl,ZQ)il.
dc(9.21,9.22,9-23) = Ja(g,21)da(21,29,23)Jc(g,21)™" for g € GT with g.z; € V for
j=1,2,3.
(7) For g€ G™, (v,w) € V2 and g.(v,w) € V? we have g.(v,w) € VZ.
Proof. The elementary proof of (1)-(3) can be found in [Ne99, Lemma XII.1.9].
(4) follows from

N

[

~ N N S
(=) [N
NSNS NG AN

_ 1y 1
dG(Z17Z37Z2) = CG(Z17Z37Z2)CG(Z17Z27Z3) b= (CG(Z17Z27Z3)CG(Z17Z37Z2) 1)

= dG(Zla 22, Z3)71-
(5) follows from

di (21,22, 23) = Ba(21, 22) Ba (23, 22) "' Bg (23, 21) Ba (22, 21) "' Bg (22, 23) Ba (21, 23) ™
(

(6) follows from (2).
(7) From (2) we derive Bg(g.2,.9w) = Ja(g, 2)Ba(z, w)Ja(g, w)*, and therefore

B(g.z,9.w) = pv(Ja(g,2))B(z,w)pv(Ja(g, w)")

is invertible (Lemma I.6). ]
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Proposition 1.8. If S # @, then the involution T induces an involution Tx on the homoge-

neous space X , and the following assertions hold:

(1) The fized point set X" :={z € X:7x(x) = x} is a submanifold of X .

(2) With respect to the embedding V — X we have S =X"NV.

(3) The group G™ preserves the subset X™ C X and the orbits of its identity component H := GJ
are the connected components of the manifold X7 .

(4) For the transversality relation T of inner 3-filtrations and §f € X™ the subgroup exp(fT7) of
H acts transitively on the set X7 Nf'.

Proof. (1) In the proof of Proposition 1.2 we have seen that P* coincide with the stabilizers
of the 3-filtrations f+ := (g+, g+ + go), so that we obtain an embedding of X into the set F of
inner 3-filtrations of g by X — F,gP~ — ¢.f— ([BNO4a, Th. 1.12]).

Suppose now that ¢ € X7 and that f € ¢ . Then 7(e;) = ¢1, and from 7x(e2d?.f) =
e (rx.f) for x € e; it follows that 7 acts on the affine space ¢’ by an affine involution.
Therefore it has a fixed point f. Then the affine space T C X is an open subset containing e,
and on this open set, the map 7x corresponds to the restriction 7|, . This shows that

(1.2) XTNfl =eMfie,

which is an affine subspace of the affine space §' . Hence X7 carries a natural manifold structure
given by the affine charts of the form X7 NfT = 7.

(2) If 7x denotes the restriction of the involution 7 to X, considered as a subspace of the
set J of inner 3-filtrations of g, then Proposition B.2 implies 75! (V)NV = V> with 7x (v) = v
for v € V*. From that we immediately get X" NV = 5.

(3) It is clear that the restriction of the action of the subgroup G™ of G on X preserves
the set X7. For ¢ € X” we have seen in (1) that there exists some 7-invariant § € e such
that /1 e is a neighborhoof of e. Since exp(f]) C H, all orbits of H in X7 are open, hence
coincide with the connected components.

(4) is an immediate consequence of (1.2) in the proof of (1). ]

Tripotents and partial Cayley transforms

In this subsection we introduce the partial Cayley transform C,. associated to a Jordan
tripotent, following the definition of O. Loos in [Lo77].

Definition 1.9.  (a) Let e € V' be a tripotent, f :=7(e), h:=[e, f] and g. := spang{h,e, f}.
Then
[h,e] =2{e,e,e} =2¢ and [h, f] =T[Th,e] = —7[h,e] = —27e = -2f,

so that g, = sl;(R) is a 3-dimensional subalgebra of g with g7 = R(e + f).
Write psp,(r): SLy(R) — SLy(R) for the universal covering morphism of SLy(R) and let
71¢:SLy(R) — G denote the unique homomorphism with

L) (o o) =e v (7 o) = aa @@ (g )=

The kernel of psp,(r) is annihilated by every homomorphism of §f42 (R) into the unit group
B* of some Banach algebra B because it factors through a homomorphism SL2(C) — (Bg)™,
where Bg is the complexification of B. Therefore the homomorphism Ad o factors through
a homomorphism 7%: SLy(R) — Aut(g) with & ° psr,(r) = Ad ond.

From

L6 oAd (] ) =reLmE0)or
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we derive on the group level that

(1 0)o() o)) =mlor for gestam,

(b) We define the partial Cayley transform by

C. := nf(% (_11 }) ) = exp (% ad(e — f)) € Aut(g).

If, in addition, e is invertible, we call C, the associated Cayley transform. ]

Remark I.10. We keep the notation of the preceding definition and write V =Vo @& V3 & V)
for the eigenspace decomposition of V' with respect to 2(eCe) (cf. Lemma C.1).

(a) Let v € V5 and w := 7(v). Then [h,v] = 2v implies that [h,w] = 7.[-h,v] = —2w.
From that it easily follows that

M = SpanR{w, [6, ’LU], [6, [67 w]]}

is a ge-submodule of g equivalent to the adjoint module ([Bou90, Ch. VIII, §1, no. 2, Prop. 1]).

(b) According to Lemma C.1, the tripotent e is invertible if and only if V' = V5. Suppose
this is the case. Then Q(e)? = 2(ele)? — ele = idy (Lemma A.2(4)), so that (V,e,Q(e)) is an
involutive unital Jordan algebra (Proposition A.5). Moreover, %h € go is a grading element by
Proposition C.4(1). We conclude that ad h is diagonalizable on g, and since ade and ad f are
nilpotent, the Lie algebra g is a locally finite g.-module, hence semisimple by Weyl’s Theorem.
Since the only eigenvalues of adh on g are {0,£2}, the Lie algebra g is a direct sum of trivial
and 3-dimensional g.-modules. ]

In the following lemma we collect some crucial properties of the partial Cayley trans-
form C,.

Lemma 1.11. For the partial Cayley transform associated to the tripotent e € V' the following

assertions hold:

(1) C®=idy and if e is invertible, then C* = id,.

(2) Identifying V with a subset of X, for v € V' the condition C.(v) € V is equivalent to the
quasi-invertibility of (e,v). For an element v € Vs this means that e — v is invertible in the
unital Jordan algebra (Va,e), and then

Ce(v) = (e +v)(e —v)™t.

(3) Ce(—e) =0, Cc(0) =Ce(f-) =€, Cele) =f4+ and Ce(f+) = —e.
(4)  On the subspace Vo CV we have C2 o1 = —Q(e).
(5) 7C.T=C 1.

Proof. (1) For I = (_01 (1)> the matrix \%(1 + I) € SLy(R) is of order 8 and its square

is I. Therefore the order of C, is at most 8 and we have

02: G

=t ((Y 5)) e (Guie-r)

If e is invertible, then g is a direct sum of trivial and 3-dimensional simple sl,(R)-modules

(Remark I.10(b)). On both types of modules the matrix <_01 é) € SLy(R) acts like an

involution, so that C? is an involution and therefore C? = id,.
(2) From the decomposition

AG)-00)(0 D(4)
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in SLy(R) we derive in Aut(g) the decomposition
(2.1) C. = exp(ad e) exp ((log v2) ad h) exp(— ad f).

Since exp(ade)exp ((logv2)adh) € Ad(PT) acts as an affine map on V C X, we see that
Ce(v) € V is equivalent to exp(—7.e).v = exp(—f).v € V, which means that (e,v) is quasi-
invertible (Definition 1.5, Lemma I1.3). If this is the case, then

exp(—f).v = B(v,e) *.(v — Q(v).e)
([BNO4a, 2.8]). In the Jordan algebra V() we have Q(v).c = Q(v)Q(e).e = P(v).e = v> and
B(v,e) =idy —2L(v) + P(v),
and in the unital Jordan algebra V(¢) x R with the identity 1 := (0,1) we have
1-2L(z)+ P(z) = P(1,1) —2P(1,z) + P(z,z) = P(1 — x),

i.e., the quasi-invertibility of (z,e) is equivalent to the quasi-invertibility of z in the Jordan
algebra V(¢) . In this algebra we have for any quasi-invertible pair (v,e):

exp(—f)w =Pl —-v)" . (v—2v?) =(1—-v)" v

For any element v in the unital Jordan algebra (V4,¢€), the Cayley transform therefore takes the
form
Cc(v) =e+2(e—v)lv=(e—v+20)(e—v)"" = (e+v)(e —v)" .

(3) We have C.(—e) = (e —e)(e — (—e))™t =0 and C.(0) =e.
We further have in V', as a subset of X, the relation 7x(e) = ¢ = e (Proposition B.2),
which leads to

exp(—ad f).e = exp(—ad 1.€).e = 7x exp(— ade)Tx.e = Tx exp(—ade).e = 7x.0 = 7x .f— = f,
so that
C..e = exp(ad e) exp(log V2 ad h) exp(— ad f).e = exp(ad e) exp(log V2ad h).f1 = f.
Moreover,
exp(—ad f).f4 = Tx exp(—ade)rx .f+ = Tx exp(—ade).f- = 7x exp(—ade).0
=7x.(—€) = (—e)* = —e,

and hence
C..f+ = exp(ad e) exp(log V2 ad h) exp(— ad f).f4
= exp(ade) exp(logvV2ad h).(—e) = e + 2(—e) = —e.
(4) Let v € Va. According to Remark I1.10(a), for w := 7. the space
M := spanp{w,[e,w],[e, [e,w]]} is a g.-submodule of g isomorphic to g. with the adjoint rep-
resentation. From the relation

(50) @ )G )=(0)

Ad(exp(e — f)) o 5(ade).f = Ad(exp(e — f)).(~e) = f,
and this leads to C?(1(ade)?)r.v = —C2Q(e).v = Tv.
(5) follows immediately from 7(e — f) = 7(e — 7(e)) = 7(e) —e¢ = f —e and C, €
exp(R(e — f)). .

we obtain
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Proposition 1.12.  For any tripotent e € V we have exp(g?).0 =] — 1,1[-e in V, considered
as a subset of X . In particular we have | —1,1[-S C H.0

Proof. We have seen above that (e, h, f) is an slz-triple, so that e + 7(e) corresponds to the

matrix <(1) é) and e to the matrix (8 é) . To calculate exp(t(e + 7(e)).0 in V C X, we
observe that
0 ¢ cosht sinht 1 tanht
exp(t 0> B <sinht cosht> Eexp(]Rf—l—]Rh)-(O 1 >’
which leads to exp(t(e + 7(e))).0 = tanht - e, and from that the assertion follows. n

Consider the following assumptions on the involutive 3-graded group G':
(A1) D:=H.0CV,ie, HCG'G'G~.
(A2)HS C V.
(43) d:(5%) = {1}.

Condition (A1) is well-known from the setting of groups of Harish-Chandra type. In view
of Proposition 1.8, condition (A2) is equivalent to the invariance of the subset X™ NV under the
action of the group H.

Proposition 1.13.  py odg(S3) = {1}. In particular, (A3) is satisfied if G° acts faithfully
on V.

Proof. For (z,y,2) € S% we derive from Lemma A.10(2) the relation
B(z,y) = B(l’,yn) =Q(z — y)Q(y)ila

so that we get with Lemma 1.6

=B xr

= Q- y)Q( -y Q- 2)Qy — ) Qy —2)Q(x — 2) 7

=Q—2)Q(z -y 'Rz —2)Qy —2) ' Q(z —y)Qz —2) 7" =1,
where the last equality follows from Proposition A.7. ]

In Proposition IV.4 below we shall use the results of Section III on H -orbits in S% to see
that the preceding result can be sharpened considerably to the observation that dg(S%) C Z(Gy).

In the following we shall also see interesting examples where (A3) is satisfied and G° does
not act faithfully on V. This holds in particular for the group G = GL2(A)/{£1}, where A is
a hermitian Banach-x-algebra (cf. Example IL.6 below).

Lemma 1.14. If (A1) is satisfied, then for each v € V with Hw CV we have D x Hv C VE.
If, in addition, (A2) holds, then D x (DU S) C V2.
Proof. Suppose that (Al) is satisfied, i.e. D= H.0CV andlet v € V with Hw C V. For
hi,hs € H and hy.0 € D it now follows that (h;.0, he.v) is quasi-invertible because (0, hl_lhg.’l})
is quasi-invertible (Lemma I.7(7)).

If, in addition, H.S C V, then the preceding argument applies with v =0 or v € §, and
the assertion follows. ]

Definition I.15.  Suppose that (A1-3) hold. For (z,y,z) € S% we consider the continuous
curve
az7y7z3[0,1] _>V37 t— (txatyatz)a

starting at (0,0,0) and ending at (z,y,z) € S%. Proposition I.12 and Lemma I.14 now implies
that im(a ) is contained in the open subset V3 of V?, so that the curve

dgoagy,::[0,1] = G°, tw dg(te,ty,tz),
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is defined. Since dz(0,0,0) =1 and dg(z,y,2) = 1 by (A3), this curve is a loop in G°.
We thus obtain a map

/LG:S‘gr — ﬂ'l(GO): (anyaZ) = [dG ° a%yvz]'

For reasons to be explained later, we call this map the topological (Maslov) index. Since the
path oy, . depends continuously on the triple (z,y,2), this map is constant on the connected
components of S3 | hence induces a map m(S3) — 71 (GY). n

We shall see in Example IV.2 below that for the case where D C V' is a finite-dimensional
irreducible bounded symmetric domain of tube type, the index map pug can be used to obtain
the Maslov index by composing with the homomorphism det opy:G® — C* to obtain a map

mi(detopy) o ug: S5 — m (C*) 2 Z.

Proposition 1.16.  The index map pg:S3 — 71 (G°) is an alternating function with values
in the abelian group w1 (G°), i.e.

B (To(1), To(2), To(3)) = MG(%;@;%)Sgn(U) for  (z1,z2,33) € 53,0 € Ss.
Proof.  From Lemma L.7(4) we immediately derive that [agy.] = 07} ] = [@e,20]) 7"
We further get from Lemma 1.7(5) a continuous path 3:[0,1] — G° with

-1
Oy 22 = B TR B )

and this loop in G° is homotopic to the loop ay 4 ., which leads to [ ;] = [z y,2]- Since the
symmetric group Ss is generated by the cycle (1 2 3) and the transposition (2 3), the assertion
follows. ]

II. Bounded symmetric domains and hermitian Banach-x-algebras

In this section we discuss two large classes of groups for which our assumptions (A1-3) are
satisfied. The groups of the first class are the complexifications G of the identity component
Aut(D)o of the group of biholomorphic maps of a bounded symmetric domain D in a Banach
space, and the second class contains the groups GLa(A)/{%£1} for a hermitian unital Banach- -
algebra A. In this case the corresponding domain D is bounded if and only if A is a C*-algebra.

Bounded symmetric domains in Banach spaces

Let V be a complex Banach space and D C V be a bounded symmetric domain, i.e., a
bounded open connected subset such that for each z € D there exists an involution j, € Aut(D),
the group of biholomorphic mappings of D, such that z is an isolated fixed point of j,. The
group Aut(D) carries a natural Banach—Lie group structure such that the transitive action on D
is real analytic ([Up85, Th. 13.14]). According to Kaup’s Riemann Mapping Theorem ([Ka83],
[Up85, Th. 20.23]), there is a norm on the space V' such that D is biholomorphic to the open
unit ball in V. Therefore we assume from now on that

D={zeV:|z| <1}

The identity component H := Aut(D)g of Aut(D) carries a natural Banach-Lie group structure
such that the transitive action of H on D is real analytic.

We think of L(H) as a Lie algebra of holomorphic vector fields on the domain D C V. It
is shown in [Up85, Th. 18.17] that the elements of L(H) are polynomial vector fields of degree
at most 2 and that

g:=L(H)+iL(H)
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carries a natural structure of a centerfree 3-graded Banach-Lie algebra on which there is a
grading reversing antilinear involution 7 for which L(H) = g7. The grading is given by the
degree of vector fields, where g; consists of vector fields of degree 1 — j. Since the unit ball D
is in particular cicular, g contains the Euler vector field corresponding to the function E(z) = z
on V', which defines the grading of g. We conclude that the grading of g is inner.

We then consider the complex Banach—Lie group

G := Aut(g)o.

Then L(G) = derg = adg = g (cf. [Up85, Lemma 9.9]) and the involution 7 on g induces by
conjugation an involution, also denoted 7, on GG. We thus obtain a situation as discussed in
Section I, where we considered a Banach-Lie group G endowed with an involution 7 reversing an
inner 3-grading on g. Clearly H = Aut(D)o = G follows from the equality of the Lie algebras
of both subgroups of G.

In this case the orbit H.0 of the base point 0 € V = g; in the homogeneous space
X = G/P~ coincides with the bounded symmetric domain D ([Up85, Th. 20.20]). Therefore
our assumption (A1) is satisfied.

Theorem II.1.  The closure D of D in V also is a closed subset of X .

Proof. Since X = /P~ is a quotient space and the inverse image of D in G is the product
set exp(D)P~ = exp(D)G°G~, it suffices to show that Y := exp(D)G°G~ is a closed subset
of G.

Let U C G be an open identity neighborhood with U - U contained in the open subset
GTG°G~. If 0 € V is identified with the base point P~ of the homogeneous space X = G/P~,
then this implies that UU.0 C V.

Since D C V is a bounded subset and ad E|g, = id, , there exists a ¢ > 0 with

exp(—tE).D C U.0.
For the identity neighborhood U’ := exp(tE)U exp(—tE) of G we then obtain
U'.D = exp(tE)U exp(—tE).D C exp(tE)UU.0 C V,
i.e., U'exp(D)G°G~ C GTG°G~, so that
exp(D)GG~ C U’ exp(D)G°G™ C GTG°G™.

Since the open subset GTG°G~ is homeomorphic to the topological product Gt x G° x G, it
follows that o
exp(D)G°G~ = (expD)G°G~

is the closure of (exp D)G°G™ in G. L]

By continuity we now obtain immediately
Corollary I1.2. H.D CD CV and in particular HS CV . ]

Proposition I11.3. If S # @, i.e., D is a bounded symmetric domain of tube type, then the
assumptions (A1-3) are satisfied for the involutive 3-graded group (G,ad E,T).

Proof.  Assumption (Al) follows from the realization of D as a bounded domain in V' C
G/P~. The preceding corollary implies that (A2) is satisfied. Further (A3) will follow from
the fact that the representation of G° on V is faithful (Proposition 1.13). To verify that
this representation is faithful, let g € G° act trivially on V. Then the adjoint action, which
corresponds to the action of g on a set of vector fields on V', is trivial. Therefore G C Aut(g)
implies g = 1. This proves that (A1-3) are satisfied. u
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Hermitian Banach- x-algebras
Definition II.4. A Banach-x-algebra is a pair (A,x*) of a complex Banach algebra together

with an antilinear isometric antiisomorphism *. It is called hermitian if the spectra of hermitian
elements are real. ]

The following simple lemma will be helpfull in evaluating dg(S%) for the group GLa(A4).
Lemma I1.5. Let (R,e) be a unital ring and a,b,c € R with a+b+c¢=0 and b € R*. Then

ab~te = cbla.

Proof. The relation a + b+ ¢ = 0 implies that ab~! + ¢b~! = —e, so that ab~! and cb~!
commute, and the assertion follows from ab 'cb~! = cb~'ab~! by multiplying with b from the
right. ]

Example I1.6. Let (A,*) be a hermitian Banach-x-algebra. First we consider G := GL2(A)
with the involution 7 given by
a b\ _ [ a -\
e a) -0 @

and whose fixed point set is denoted Uj1(A4,x) := GL2(A)". Its Lie algebra g = gl,(A) is

3-graded with
(0 A (A O d (0 0
g+ = 0 0 ) gdo = 0 A an g = 4 0/

) is a grading element, the grading is inner. On the Lie algebra level we

a b\ _(—-a* ¢
e d) =\ —a )

showing that 7 reverses the grading. The corresponding Jordan triple product in A = gy is
given by

1

Since F := (0 1

have

{z,y,2} = 5(ay"z + 2y™2).

On the group level we have

GLZ(A)+:<[1) f) GLQ(A)‘):(%X £X> and GLQ(A):C1 ‘1)>

Then

GLy(A)T GLy(A)° GLy(4)™ = { (‘; 2) € GLy(A):d € AX},

and any matrix in this set decomposes as

-6 Y
SRCHEERES

From
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we obtain

Butorn) - <1—z(1—w0*2)_1(—w*) l—ow*z>_1 _ (1 - . _E*z)1>'

Next we calculate dg on quasi-invertible unitary triples (si,s2,s3). For unitary elements
z,w € S quasi-invertibility means that 1 —w*z = 1 —w~!z is invertible, which means that w—z
is invertible. Therefore all differences s; — s, j # k, are invertible. Since
(81 — 82) + (82 - 83) + (83 - 81) = 0,

Lemma II.5 leads to

(1 = s185)(1 = s355) 7 (1 — s357) (1 — s257) 7 (1 — 5253) (1 — s183) ™"

=(1—s155") (1 —s355") "1 — 83571 ) (1 — s2s7H) 11 — szsgl)(l — slsgl)*1

= (52— 51)(52 = 83) (51— s3) (51 — 82) (53 — 52) (53 — 51)

—(81 — 82)(82 — 83)71(83 — 81)(81 — 82)71(82 — 83)(83 — 81)71 =-1

and we likewise get

(1- 5351)_1(1 — s5s3)(1 — 51‘53)_1(1 — s7s2)(1 — s§52)_1(1 — $551)
=(1- 52_151) ta - S5 53)(1 — 8] 153) ta - sy 52)(1 — 3 152) - 53_151)

= (82 — 81)(82 — 83) 1(81 — 83)(81 — 82) (83 — 82)(83 — 81) 1 =-1.

This shows that
-1 0
dg(s1,82,83) = ( 0 _1> .

Let oc« denote the largest C*-seminorm on A, ie., oc«(a) = ||[n(a)|| if n: A — C*(A)
is the universal map into the universal enveloping C*-algebra C*(A) of A. From [Bi04,
Lemma 8.2.7] we know that the orbit of H = G in X is contained in A and coincides with the
convex open set

D={a€ Aioc-(a) < 1}.

For the invertible tripotent e := 1 € A we have Q(e)a = a*, so that
S=U(4)={a€A*:a* =a '}

a b
c
which implies that g.z = (az + b)(cz + d)~! is contained in V = A, and hence that (A1) and
(A2) are satisfied.

If A is a C*-algebra, then Dis the open unit ball in A, and the transitivity of the holo-
morphic action of H on D implies that it is a bounded symmetric domain. From Corollary II.2
above we know that in this case the closure of D in X coincides with the closure of D in V'
which is invariant under the action of H .

This argument can be carried over to a general hermitian Banach x-algebra as follows.
Since n induces homomorphisms

GLy(A) —» GL2(C*(4)) and Uia(4,%) = Ui 1(C*(A), %),

We claim that if g = < ) € U11(A, %) and z € A with o¢-(z) <1, then cz+d e A%,

SH

we conclude from the case of C*-algebras that n(cz+d) = n(c)n(z)+n(d) is invertible in C*(A4),
which in turn implies that cz + d is invertible in A because the property n=!(C*(A4)*) = AX
characterizes hermitian Banach x-algebras (cf. [Bi04, Prop. 2.7.5], see also [Pt70/72] for the
Banach version of Biller’s results).

The domain D is bounded if and only if the natural homomorphism 7: A — C*(A) is an
embedding, i.e., if and only if A is a C*-algebra. [

As an immediate consequence of the discussion in Example I1.6, we obtain the following
theorem:
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Theorem I1.7. If (A, *) is a hermitian Banach-x-algebra, then

-1
a by _ [ a —c*
T(c d>_<—b* d*)
1 0

and E := 0 -1 define an involutive 3-graded Banach—Lie group (GL2(A),ad E,T) satisfy-

ing (A1/2). If we write 1 € M(A) for the identity matriz, then the group G := GLy(A)/{£1}
satisfies (A1-3) with respect to the induced involution. ]

ITI. Connected components and H-orbits in S%

We have already seen that the group H acts on X7 in such a way that its orbits are the
connected components (Proposition 1.8). Under the assumption (A2), the set S is a union of
such H-orbits. In the following we shall use this correspondence to get a better description of
the connected components in S%. In particular, we shall see that they coincide with the orbits
of H in S% and that each orbit contains a triple of the form (e, —e,o) with ¢* = Q(e)o = —0o
in the unital involutive Jordan algebra (V,e, Q(e)). Since o is an invertible tripotent, the latter
condition implies that

0 =Q(0)0 = —Q(0)Q(e)o = —P(0)o = —0*
and therefore 02 = —e. In the following we put Vi := {v € V:v* = Q(e)v = tv}.

Lemma II1.1. Let e € S and C. € Aut(g) denote the corresponding Cayley transform. For
v eV and v* = Q(e)v we have

7(Cew) = =Cev®  and 7(C;tw) = —C;to*.

In particular Co.v,C; v € g7 if v* = —v, where Ce.v refers to the linear action of C. on g.
The corresponding element g := exp(C;t.w) € H satisfies

g(=e)=C7 (v) = (v —e)(e +v)7".

Moreover, e + v is invertible whenever v* = —v.

Proof. The first equality follows from
70C,=Ctor=C%0r=~C.0Q(e)

on V (Lemma L.11(1),(4),(5)), and we likewise obtain on V the relation 70 C;! = Co o7 =
—C1Q(e).

From Lemma [.11(3) we know that C.(—e) = 0 for the action of C. on X, so that we
obtain for g = exp(C;1.v) € H that

Cl'v)=cC

€

“leddv 0= 07 1edd 0, (=€) = exp(C w).(—e) = g.(—e) € S.

€

In particular e + v is invertible (Lemma 1.11(2)). ]

Lemma III.2.

(1) The action of H on DU S preserves quasi-invertibility.

(2) If e€ S, then the stabilizer H, of e in H acts transitively on {f € S:eTf}.
(3) If g is complex and T is antilinear, then (e, f) € S% implies f € H.e.

(4) For (e, f) € S2 we have H.(e, f) = {(a,b) € S%:a € H.e}.
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(5) The H -orbit of (e,z,y) € S% contains an element of the form (e, —e,z) and
{z€8S:2T e} =C(V_NV™).

Proof. (1) follows from Lemma I.14.

(2) According to Proposition 1.8, we have S = X" N V. Further (z,w) € VZ is equivalent
to the transversality of the 3-filtrations exp z.f_ and 7(expw.f_) (cf. Definition I.5(b)). For
z,w € S C X7 this is equivalent to the quasi-invertibility of (z,w). Hence

{feS:eTf}C(expef)’,
and Proposition 1.8(2) implies that H, = Hexpej_ acts transitively on (expe.f_)"
We also give a second proof of (2) which is more direct and uses (1): The quasi-invertibility

of (e, f) implies that e — f is invertible in the unital involutive Jordan algebra (V,e, Q(e)), so
that = := C.(f) € X is an element of V' (Lemma I.11(2 )) We have

' =Ce(f) =(e+Nle—H =+ - )" =Cl(f)=Cc(f") =-Cc(f) =~z
(Lemma A.11), so that g := exp(C;1.x) € H satisfies g. ( e) = C-lx = f (Lemma I1.1). We
further get with Lemma 1.11(3) in X C F:

ge_cladwc() Cladxf _C f+:e.

(3) For e € S we consider the 3-dimensional subalgebra g. = spanc{e, 7(e),[e,7(e)]} C g.
Then E := }[e,7(e)] is a grading element with 7(E) = —E (Proposition C.4), and 7(iE) = iE
implies that T = exp(iRE) C H. We therefore obtain —e € exp(iRE).e C H.e, and the assertion
follows from (2) and eT —e.

(4) In view of (1), each element (a,b) € S? of the form (g.e,g.f) satisfies a € H.e and
bTa.

If, conversely, a = g.e and bTa, then (¢g71.b,g t.a) = (g 1.b,e), so that (2) implies the
existence of h € H, with h.f = g -1 .b, and then h( e,f) = (e,g t.b) = g '.(a,b) implies
(a,b) € H.(e,f).

(5) From (2) it follows that the H-orbit of (e,z,y) contains an element of the form
(e, —e,z). Then z is a unitary element in the involutive unital Jordan algebra (V,e,Q(e))
with involution v* := Q(e)v. The quasi-invertibility of (z,e) is equivalent to the invertibilty
of z £ e in the Jordan triple V' (Lemma A.9) and hence in the unital Jordan algebra (V,e).
Therefore e — (—2) = e + z is invertible, and we put v := —C.(—2) = C.;}(z) to obtain an
element v € V with C.(v) = z. We further obtain with Lemma A.11(1):

v* = (=Ce(=2))" = =Ce(=2)" = =Ce(=2") = =Ce(=27")
= —Ce((—2)7") = =(=Ce(=2)) = Ce(~2) = —v,
so that v € V_. If, conversely, v € V| then e—w is invertible (Lemma III.1) and z := C.(v) € S
is a unitary element for which z + e is invertible. Since v is invertible, Lemma A.11 implies

that z = C.(v) lies in the domain V* + e of C¢, so that also e — z is invertible, and hence
(e,—e,z) € 5. ]

Remark III.3. (a) The preceding lemma shows in particular that (e, f) € S% implies that
f€S_. =-S5, where S. denotes the connected component of S containing e. For (e, f,g) € S%
we even conclude that S, = S_;, = Sy = S_. =.5,. This leads to the disjoint decomposition

S% = U(Se)%;
€
so that it is no loss of generality if we consider only a fixed connected component S, of the set
S and study the index map on the subset (S.)3 of S%.

(b) For G = PSLy(R) = SL2(R)/{£1} with grading derivation
—1
o 1 0 a b _ (a -—c
p=ad(y b)) awa (0 0)=(5 )
V=R with {z,y,z2}=2yz and S ={%1}.

Here S2 = {(1,-1),(—1,1)} and the connected group H acts trivially. In this case we have
S1={1}#{-1}=5_4. [

we have
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Lemma II1.4. Fiz e € S and consider the associated Cayley transform C := C. € Aut(g).
Then the involution 7€ := CTC~! € Aut(g) satisfies:
1) 7 preserves the 3-grading of g.

EZ) ¢ =71C?, where 7 and C? are commuting involutions of g.

(3) The Lie subalgebra [ := C(g") = ch is adapted to the 3-grading of g and T -invariant.
@ 7 =-Q(e).

(6) For the stabilizer group H,._., the identity component L := (GTC)O and

CY% = exp (%(e - f)) € G we have
Ad(CY =C and L°:=LNG°=CY-H. .-(C% L.
Proof. (1) With Lemma I.11 we get in X C F:
(1) =77(0) = Crx(=e) = C(=e) =0 =f. and 79(f;) = Crx(e) = Cle) = f+.
Therefore 7¢ fixes the two filtrations f+ and hence the corresponding 3-grading of g.
(2) With Lemma 111 we get 7¢ = C7C~! = C?r = 7C~2 = 7C?, so that the two
involutions 7 and C? commute.
(3) That [ is adapted to the 3-grading of g follows directly from (1). Since 7 and 7¢
commutes by (2), [ is 7-invariant.
(4) follows from Lemma I1.11(4).

(5) The relation Ad(C%) = C is immediate from the definitions. Further C(%e) = f+ and
CYH(CY% ' =L lead to L= LN Gi, = cG “H,_, - (CG)~1, .

Proposition IT1.5. Let 0:Gx M — M be a smooth action of the Banach—Lie group G on the
Banach manifold M and To:TG x TM — TM its tangent map. If g.p :=To(1,p)(g x {0}) =
T, (M), then the orbit G.p of p is open.

Proof. For a smooth map f: N — M between Banach manifold for which the differential
df (x): Ty (N) — T (M) is surjective, the image of f is a neighborhood of f(x) ([De85,
Cor. 15.2]).

The condition g.p = T,(M) means that the differential of the orbit map G — M, g — g¢.p in
g = 1 is surjective, so that the aforementioned fact implies that the orbit G.p is a neighborhood
of p. This implies that G.p is open. ]
Proposition I11.6.  All orbits of (L°)o in V* :=V_NV* are open.

Proof. From Lemma II1.4(4) we immediately get V. C[;. Let v € V* C [; be an invertible
element. Then v~! € VX and

v =Q) lv=Qe)v t=—vteV.Cly.
Therefore V_Ow* = [V_, 7(v*)] C [l1,[-1] C ly. Since the map
Vo=V, e (@00%)w = {v,0%, 2} = wo®) .z =«

is bijective (cf. Lemma A.4(1)), the orbit map lp — V_,z — xz.v is surjective, and Proposi-
tion IIL.5 implies that the orbit L3.v in V_ is open. ]

In general the group L°, resp., H. _. is not connected, so that the orbits of this group
may also be unions of several connected components in V. If, fi. G = GLy(A)/{£1} for a
hermitian Banach-x-algebra A, then

B 1 /1 1 5 0 1
C_Ad(ﬁ<_1 1)) and  C _Ad(<_1 0))
cfa by (0 1 —a* 0 -1\ (—-d* -b*
T \e d)7 =10 v —d*)\1 0 )T = —a* )’
so that

=@ ={(§ s )ee e (p 4))

which is not connected if A* is not connected.

lead to
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Proposition ITI.7. The orbits of H in S, S% and S3 are open, hence coincide with the
connected components.
Proof. That the orbits of H in S are open follows from Proposition L.8.

For (e, f) € S%, Lemma II1.2(4) implies H.(e, f) = S2 N (H.e x S), and since H.e is open
in S, it follows that H.(e, f) is open in S?.

Let (e,g, f) € S3. In view of Lemma II1.2(5), we may assume that f = —e. So it remains
to see that if fT e, then H.(e,—e, f) is open in S3.

Conjugating everything with the Cayley transform C = C., we are lead to the quasi-
invertible triple (C(e),C(—e),C(f)) = (f_,f+,2) with z € VX (Lemma III.2, Corollary B.3)

We have to show that the orbit of the group LY in S¢ := C(S) C X7 is open. The Lie
algebra [ = C(h) is adapted to the grading of g (Lemma III.4), so that

[f:l: =168l and [f+7f_ = lp.
The argument in the proof of Proposition III.6 shows that the map [p — V,z — .z is surjective,
and since [y is the kernel of the surjective map
(=T, (SO)xT;_(S9)=h @1, x> a.(e,—€)=(v4,7_),

we see that the map [ — T}, (SY) x T;_(S¢) x T.(S¢) is surjective. In view of Proposition IIL.5,
this implies that the L-orbit of (fi,f_,2) in (S%)® is open and therefore that the H -orbit of
(e, —e, f) in S3 is open. [

So far we have seen that the H-orbits in S3 coincide with the connected components and

that each such orbit contains an element of the form (e, —e, C'(v)) for some v € C(V*). With
the aid of the following lemma, we shall be able to reduce this further to the case where v? = —e.

Lemma IT1.8. Let (A, e,*) be a real unital involutive Banach algebra and z € A_ such that
Az + e is invertible for each X\ € R. If, in addition, z is invertible, then there exists a hermitian
element © = x* € A with —z> = e*. Then o := ze 2% € A* satisfies 0> = —1 and o lies in
the same connected component of A* as z.
Proof. The assumption e+ Az € A* for A € R* implies that (z — Xe)(z + Xe) = 22 — A%e is
invertible, so that Spec(—2%)N] — 00, 0[= @.

Let Ac denote the complexification of (A, %), endowed with the antilinear involution given
by (z +iy)* := x* — iy*. On the open subset

0 :={w € Ac:Spec(w)N] — 0,0] = O}

we then have a holomorphic logarithm function

log: Q — Ac, log(w) = 2%” ?{ log(¢)(¢1 —w)~* d¢,
Y

where v is a piecewise smooth cycle in C\] — c0,0] with winding number 1 in each point of
Spec(w) ([Ru73, Ths. 10.20, 10.38]). In view of Spec(w*) = Spec(w), the domain €2 is invariant
under the involution, and we have

* ]‘ VaYya *\ — e
log()” =~ ¢ log(@C1 — w) ™ dC
wi J,
Since the winding number of 7 in each point of Spec(w) is —1, we obtain
* 1 *\ — *
log(w)" = 51 § 1og(Q)(CL — )™ dc = log(w”)
mi J,

Therefore = := log(—z?) is a hermitian element of Ac lying in the commutant of z. A
similar argument applies to the antilinear involution 7: Ac — Ac with A = {a € Ac:7(a) = a}
and shows that 7(logw) = log 7(w) for w € Q, hence in particular z € AT = A. We clearly
have e® = —2°.

1 1
For o := €7 t2%2 = 2¢7%2% we obtain

2 T, 2

1
BT = g, and o} =e 2% = —e.

* *—tlx
o, =z e 2" =—ze

For each t € R the element e~z lies in A*, so that z and o; lie in the same connected
component of A% . m
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Theorem II1.9.  If the involutive 3-graded Lie group (G,D,T) satisfies (A1/2), then each
connected component of S% contains an element of the form (e,—e,o) with o* = —o and

0'2 = —€.

Proof.  From Lemma II1.2(5) we know that each connected component of S2 contains an
element of the form (e,—e,C(v)) with v € V. Let A C (V,e) denote the closed unital
Jordan subalgebra generated by v and v—!. In view of [Jac68, Ch. I, Sect. 11, Th. 13], A is a
commutative associative algebra, hence a commutative Banach algebra in which v is invertible.
Further v* = —v implies that A is invariant under the involution, hence an involutive Banach
algebra.

We now consider the analytic map

nR—=V, A= (e—v) '

There exists an ¢ > 0 such that the Neumann series ) ° jA™v" converges to (e — Av) ! for
|A| < €. This implies that n(A\) € A for all these A. Since n is analytic and A is a closed
subspace of V', we conclude with the Principle of Analytic Continuation that im(n) C A, hence
that e — v is invertible in A for all A € R.

Now Lemma IIL.8 applies to the element v € A, and we find an element 0 € A” in the
same connected component as v, satisfying 02 = —e. Eventually Lemma III.2(5) implies that
(e, —e,C(0)) lies in the same connected component of S% as (e, —e,C(v)). Further o = —e
leads to o(e — o) = 0 — 0? = 0 + e, which means that C(0) = (e + 0)(e — o)~ = o. This
completes the proof. ]

IV. Evaluating the index map

In the preceding section we have reduced the problem to calculate the index function
pa:S3 — w1 (G°) to triples of the form (e, —e,o) with 6> = —e in the unital Jordan algebra
(V,e). The next step is to calculate the index function on these triples explicitly by showing that
ua (e, —e, o) is represented by the group homomorphism

Xo: T=R/Z = G°, t+ 7 expg(nt]o, T.€]).
Applying the representation py:G® — GL(V), this leads to the loop
T=R/Z - G° t+Z ™) = P(e™).

To obtain the explicit formula for the index, we first investigate functoriality properties of
the index and then calculate it explicitly for the group SL,(C)/{£1}.

Remark IV.1. (a) Let U and G be 3-graded Lie groups and ¢:U — G a homomorphism of
Lie groups compatible with the 3-grading.
We then have

(U*) = plexpus) = expL(p)us Cexpge = GE  and  o(U) C GY.

For a subset M C G we write Cg(M) for the centralizer of M in G and for a subset
M C Aut(g) we write Cq(M) = Ad_l(C’Aut(g)(M)) for the set of all those elements g € G
for which Ad(g) commutes with M. This means that for a grading element E € gy we have
G° = Cg(ad E). If there is a grading element Ey € uy for which Eg := L(p)Ey is a grading
element of g, then we thus obtain

p(U°) = ¢(Cy(ad Ey)) C Cg(ad Eg) = G°.
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Then ¢ induces a map UTUU~ — GTG°G~ compatible with the projection maps
p§:GTG°G~ — G in the sense that

pSop=pop!, j=+0-.
For z € u; and w € u_ the condition expwexpz € UTU°U~ therefore implies
(exp L(p)w)(exp L(p)2) € GTG°G™,
which shows that L(y) preserves quasi-invertibility, and for such pairs we have
o py (expwexpz) = p§ ((exp L(p)w)(exp L(p)2)).
(b) Now suppose, in addition, that U and G are involutive 3-graded Lie groups and

that @ o 7y = 7¢ o . Then we conclude that for quasi-invertible pairs (z,w) € uy the pair
(L(p).z,L(p).w)) is quasi-invertible with

¢(Bu(z,w)) = Ba(L(p)z, L(p)w).

This relation leads to

o(du(21,22,23)) = da(L(p)21, L(p) 22, L(p)23)

for quasi-invertible triples (z1,22,23) € (Vi)3-.
If U and G satisfy (A1-3), then we further get L(p)(Dy). To see that L(p) also maps
Su into S¢, we first observe that we have an induced map

px: Xy = U/UOU_ — Xg = G/GOG_

satisfying ¢x o 7 = 7§ o px for the corresponding involutions 7§ on Xy and 7§ on Xg.

Therefore px maps the fixed point set of 7{f into the fixed point set of 755 . On the open subset

Vi € Xy the map px coincides with L(y), and since Sy = Vy N (XU)Tl)f( , we see that
L(¢)Su C Sg-

Eventually this leads to the important relation

(4.1) T (ploo) o pu(s1, 52, 83) = pa(Llp)si, L(p)sz, L(p)ss)

for quasi-invertible triples (s1, s2,53) € (Sp)%-. n

In the following we shall use the preceding remark as a tool to calculate the index of special
triples in S2..

Lemma IV.2. Let e € S and consider the corresponding unital involutive Jordan algebra

(V,e,Q(e)). Suppose that o € V_N S is an element with 0> = —e. Then E := Re + Ro is a
real involutive Jordan subalgebra of V' isomorphic to (C,1) with the involution z* =Z and

gr:=E+7(E) + [E,7(E)] 25sl,(C)

with the 3-grading defined by the grading element <(1) _01> and the antilinear involution

(e 2)=(72)

Q ol
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There is a unique morphism n:sla(C) — g of involutive Lie algebras with

01 0 4
g — g _
e (0 0>—€ and n? (0 0)—0.

Proof. Clearly the map ng:C — V,x + iy — ze + yo is a morphism of involutive unital
Jordan algebras, where the involution on C is complex conjugation.

We recall from Theorem A.8 that gg is a Lie subalgebra of g. Since gg is generated by E
and 7(E), its center 3p coincides with the centralizer 35 of E + 7(E), and the quotient g7 :=
gr/3e is an involutive 3-graded Lie algebra whose 0-component has a faithful representation
on E. From that it easily follows that g, is isomorphic to the Tits-Kantor-Koecher Lie algebra
TKK(E) = TKK(C) 2 s[,(C) of the unital Jordan algebra C because it is an A; -graded Lie
algebra (cf. [Ne03, Ex. I.9(a),(c) for more details). Since all central extensions of the simple Lie
algebra sl>(C) are trivial, we conclude that 3z N [gg,gr] = {0}, so that gg Ngo = [E,7(E)]
implies 35 = {0} and therefore g = sl5(C).

In Definition 1.9 we have seen that the Lie algebra g. = span{e,7(e),[e,7(e)]} with 1-
dimensional grading spaces is isomorphic to sl3(R) with the involution

a by _(—-a c
Te\e a) =\ b —d)
Since the grading spaces gr N g; are complex one-dimensional, it follows that g. is a real form
of the complex Lie algebra gg .

Next we determine the involution 75 on gg =2 sl3(C) corresponding to the restriction of 7
to gg. Since the centroid

Cent(gr) = {p € End(g): (Vz € g) [¢,adz] = 0}

is isomorphic to C as an associative algebra, the involution 7 induces a field isomorphism 7' on
Cent(gg). The involution 75 is complex linear if this isomorphism is trivial and it is antilinear
otherwise. We denote the scalar multiplication with i on sl(C) by ¢, which is considered as an
element of Cent(gg). Then o =i.e leads to 7.0 = 7'(i)7(e). From

we derive 7'(i) = —i and hence that 75 is antilinear.
Therefore 75 is determined by its restriction to the real form g., and hence

(e )~ (7 %)

is the involution on sly(C) for which 72 is a morphism of involutive Lie algebras. n

Lemma IV.3. If G satisfies (A3), then the homomorphism 75:SL2(C) — G integrating 12
maps —1 to 1.

Proof. Since A := C is a hermitian Banach-x-algebra with respect to z* := Z, the discussion
of the special case of hermitian Banach-x-algebras in Example I1.6 implies that

dSLz(C)(l,—l,i) =-1¢€ SLQ((C).

Applying Remark IIL1 to 7%, we conclude that dsp,(c)(1,—1,i) is mapped to
da(e,—e,0) = 1. u
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Proposition IV.4.  Suppose that the involutive 3 -graded Lie group G satisfies (A1/2). Then
dc(S%) is contained in Z(Go)™ and generates an elementary abelian 2-group T which is discrete.
The group Go/T satisfies (A1-3).

Proof.  Since the connected components of S3 coincide with the H -orbits, Theorem IIL.9
implies that for each quasi-invertible triple (s1,s2,s3) € S% there exists an element g € H
and a triple of the form (e, —e,o) with @Q(e)o = —o such that (s1,s2,s3) = g.(e,—e,0). Then
Lemma I.7(6) implies that

dG(517827S3) = JG(gazl)dG(ea —G,U)JG(Q,Zl)_l-

To see that dg(si,s2,s3) € Z(G)™ is an involution, we may therefore assume w.l.0.g. that
(s1,82,53) = (e, —€,0) with Q(e)o = —0.

Let ng:sl,(C) — g denote the corresponding homomorphism of 3-graded Lie algebras
constructed in Lemma IV.2. From Example I1.6 we know that

dSL2((C)(17 —1,i) =-1¢€ SLQ((C).
Applying Remark IIL.1 to the homomorphism 7¢: SL»(C) — G integrating n¢ , we conclude that
dG(67 —-e€, U) = ﬁg(dSLz(C)(la -1, Z)) = ﬁf(_l)'

The involution on SL2(C) fixes —1, which leads to dg(e, —e,0) € G™. Since g decomposes as a
direct sum of sly(R)-modules isomorphic to the trivial and the adjoint modules (Remark 1.10(b)),
we have Ad(7¢(—1)) = 1, so that 7¢(—1) € Z(Gy). Therefore dg(e, —e,0) is a central -
invariant involution in Gy .

Further Lemma L.7 implies that the map dg:S% — Z(Go)" is constant on the H -orbits
and alternating.

The image of dg consists of central involutions, hence the group I' it generates is an
elementary abelian 2-group. Since the Banach-Lie group G contains no small subgroups, there
exists an identity neighborhood U C G with UNT = {1}, so that T is discrete.

We conclude that G := Gy /T is a Lie group with the same Lie algebra g, and since T is
7-invariant, this Lie group is involutive. Clearly (A1/2) also holds for this quotient group, and
de:(S3) CT leads to dz(S%) = {1} in G° = G§/T. .

Definition IV.5. In the following we write n&:SLy(C)/{£1} — G for the unique morphism
of 3-graded involutive Lie groups with L(n%) = n? whose existence follows from the simple
connectedness of SLy(C) and Lemma IV.3. [

According to Remark IV.1, we have
pa (e, —e,0) = (NS ) psey ey 13 (1, —1,9).

Therefore the calculation of the index map is essentially reduced to the calculation of the single

case pspy(c)/{+1}3(1, —1,4).
The next proposition provides the index function for SLo(C)/{£1}.

Proposition IV.6.  We consider the 3-graded involutive Lie group G := SLy(C)/{£1} which
satisfies (A1-3) by Theorem I1.7. We have an isomorphism

A0 z 0 . X X z 0 2
p:G —{:I:<0 Z1>.z€(C }—>(C, :i:(o Z1>'—>Z

and identify 71 (G°) accordingly with m (C*) =2 Z, where we use pex:C — C*, 2 — €*™* qas the
universal covering map. In these terms we have

NG(la _]-7 :tl) = :Fl
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Proof. In the following we shall use the explicit formulas from the discussion of hermitian
Banach algebras in Example I1.6. We have

1-zw 0
Bsp,y(c) (2, w) = ( 0 (1- zm)1> ’
which leads to
Bg(z,w) = (1 — zw)?
in terms of our identification of G° with C*. From that we further obtain for quasi-invertible
triples (z1, 22,23):
da(z1,22,23) = (1 — 2172)° (1 — 2372) *(1 — 2520)° (1 — 2071) *(1 — 22%3)*(1 — 2173) °

- (22) () (2)

- \1— 2z 1— 2123 1— 275/
We obtain in particular

1-— Zo\ 2 1-— 2 1 Z3\2
da(z1,22,0) = (%) and  dg(1l,-1,23) = (1_;2) (11:) )

For the curve
a1:[0,1] = C%, > (t,—t,0)
from (0,0,0) to (1,—1,0) this leads to dg(ay(t)) = (1 —?)(1 —¢*)~! = 1. For the path
a:[0,1] = C%,  t (1,1, £ti)
from (1,—1,0) to (1,—1,=+4) we obtain
datea(t) = (155) (1330) = (1) =™

This curve describes a loop in C* corresponding to the element F1 € Z = 7, (C™).
Concatenating the two paths «; and @, we obtain a path from (0,0,0) to (1,—1, i)
which lies in the contractible set

=3 . _
D7 = {(21,22,23) € C*: (Vj # k) |2 < 1,27 # 1}.
We conclude that this path is homotopic to the path
as:[0,1] = C%,  t s (t,—t, %ti),

and this implies the assertion. ]

Theorem IV.7. Lete€ S and o € S with Q(e)o = 0* = —o. Then the indez of (e, —e,0)
1s represented by the homomorphism

Xo: T =R/Z = G°, t s expg(—nt]o,T.€])
and composing with the representation py on V leads to the homomorphism
pvoxo:T=R/Z — GL(V), tw P(e™™).

Proof. In terms of the Lie group structure, the index of (1,—1,i) for SLy(C)/{£1} is
represented by the loop

0 —mit 0
[0,1] = SLo(C)?/{£1}, ¢+ exp ( 0 m't) .
In view of Remark IV.1, us(e, —e, o) can be represented by the homomorphism
G —it 0 _ _
R/Z - G, t+Zw—n; (exp( 0 m't)) = expg(—mt[o, T.€])

because h = [e,T.e] implies that ih = [ie,T.e] = [o,7.€] (cf. Definition 1.9). Applying the
representation py , we get the loop
]R/Z N GL(V), t+7 — e—27rt((7|:]e) — e—27rtL(a') — P(e—ﬂ'ta')

in the unital Jordan algebra (V,e). Here we use the relation P(e*) = ¢*£(*) which holds in every
Banach-Jordan algebra (cf. [FK94, Prop. I1.3.4]). ]
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Proposition IV.8.  Suppose that g is a complex Lie algebra and that T is antilinear. Then
(V,e,Q(e)) is a complex unital Jordan algebra and the involution (Q)(e)v = v* is antilinear. For
each hermitian projection p = p* = p? € V. let

Y R/Z — G°, t+ Z s exp(2mitp, 7.p])

denote the corresponding projection loop, which is a group homomorphism. We then have for the
involution o = e — 2p the projection loop formula

MG(ea —-e, _ig) = H’G(ea —-e, _ie) - [’YP]

Proof. We have V_ = iV, so that every unitary element in V_ is of the form io, where
o € V4 is a hermitian involution. Then p := %(e — o) is a hermitian idempotent in the Jordan
algebra (V,e) with 0 = e — 2p.

The index pg(e, —e, —io) can be calculated directly from the real 7-invariant subalgebra
generated by e and —io, which is isomorphic to sl2(C). As we have seen in Theorem IV.6, this
leads to the one-parameter subgroup T — G° corresponding to the element

wlio, T.e] € exp *(1).
In particular, the index pg(e, —e, —ie) corresponds to the element
lie, T.€] = mile, T.e] € exp (1),
and the difference is the element
(4.2) wlie —io, T.€] = wile — o, T.€] = 27wi[p, T.€] = 2wi[p, T.p],

which belongs to the Lie algebra g, := spanc{p, 7.p, [p, 7.p]} = s[2(C) (cf. Definition 1.9), where

h := [p,7.p] corresponds to € slx(C) which satisfies exp(2wih) = 1. From (4.2) we

1 0
0 -1
now derive the projection loop formula because [e, T.€] is central in gy (Remark I.11). [

V. The Maslov index for some examples

In this section we give more concrete formulas for the index function for several classes
of hermitian Banach-x%-algebras and discuss the case of finite-dimensional bounded symmetric
domains.

Example V.1. We take a closer look at the index function for the case G = GLy(A)/{£1}
for a hermitian Banach-x-algebra.

Then H = U;1(A,*)o and G® = (4% x AX)/{£1}. Note that —1 € A follows from the
connectedness of C*1. Therefore G§ 2 (A5 x Ay)/{£1}, and the covering map AJ x Ay — GY
leads to an exact sequence

(5.1) T (AX) x 1 (AX) = m (G°) — Z/27Z.

The exactness of this sequence follows from the long exact homotopy sequence of the covering.
We can also think of m;(G®) as the set of homotopy classes of paths v:[0,1] — GL2(A) starting
in 1 and ending either in 1 or —1.
The Maslov index of a triple (e, —e, —io), where ¢ is a hermitian involution, is given by
the loop
Xo :R/Z = G°, t+ 7= expg(rit[o, T.€]).



A topological Maslov index for 3-graded Lie groups 25

More explicitly we have

ra=[(55).(3 9)1-(5 %),

and since ¢ is an involution, we have expg (m' <g _00> ) =1.

Writing o as 1 — 2p for a hermitian projection p, we get the decomposition

o O0\_(1 0} 9 (P 0
0 -0/ \O0O -1 0 —p)’
and the latter element already leads to a loop in the group GL2(A). In this sense we get

Xl = [xal = ([vpls =[w))

where v, is the projection loop defined by p in A, where we consider the pair ([v,], —[7p]) as
an element of m (A*) x m(A*) according to (5.1). ]

Example V.2. For the special case A = C(X,C) we have A* = C(X,C”), and the exponen-
tial map '
exp,:C(X,C) = C(X,C%), [ e/

is the universal covering of the identity component A}, consisting of all maps X — C*

homotopic to a constant map. This shows that
m(A*) Zkerexp = C(X,Z).

On the other hand each hermitian projection p € A is a continuous function X — {0, 1}, so that
the index of (1,—1,—io) is of the form

Dxal + (v, —p) € bl + (C(X, Z) x C(X,Z)) C mi(G?).
In this case S =U(4) = C(X,T) and
mo(8) 2 mo(C(X,T)) = [X,T] = H'(X,Z)

is the set of homotopy classes of continuous maps X — T, resp., the first Cech cohomology
group. ]

Example V.3. If, moreover, X is a finite set, so that 4 := C(X,C) 2 C" for n := |X|, then
C(X,Z)=7Z" and

GO = (C™)™ x (C*)/{£1} = C*/(2miZ*>™ + mi(1,...,1)) = (C*)*"™.
Here we see in particular that m;(G°) is a free group, so that the sequence (5.1) does not split.m

Example V.4. Fix ¢ € [1,00] and let H be an infinite-dimensional Hilbert space. We consider
the hermitian Banach-* algebra A := By(H)+C1, where By(H) is the ideal of B(#) consisting
of all operators of Schatten class ¢q. For ¢ = oo the ideal B (H) coincides with the 