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Karl-Hermann Neeb, Bent �rsted

Abstrat. Motivated by the generalization of the Maslov index to tube domains and by numerous

appliations of related index funtion in in�nite-dimensional situations, we desribe in this paper

a topologially oriented approah to an index funtion generalizing the Maslov index for bounded

symmetri domains of tube type to a variety of in�nite-dimensional situations ontaining in partiular

the lass of all bounded symmetri domains of tube type in Banah spaes. The framework is that

of 3-graded Banah{Lie groups and orresponding Jordan triple systems.

Introdution

Let D be a �nite-dimensional bounded symmetri domain of tube type and S its Shilov

boundary. In [C�01℄ and [Cl04℄ J. L. Cler and the seond author have de�ned a funtion

�:S

3

! Z

alled the Maslov index whih is invariant under the ation of the identity omponent H :=

Aut(D)

0

on the set S

3

of triples in the Shilov boundary. Their index funtion generalizes in

partiular the lassial Maslov index, whih is obtained if D is the open unit ball in the spae

Sym

n

(C ) of omplex symmetri matries and Aut(D)

0

= Sp

2n

(R) is the sympleti group. In

this ase S an be identi�ed with the set of Lagrangian subspaes of a 2n-dimensional sympleti

vetor spae W and the Maslov index is an integer �(L

1

; L

2

; L

3

) de�ned for L

1

; L

2

; and L

3

2 S .

For the appliations to boundary value problems for di�erential operators and orresponding

index theories, it is important to allow W to be in�nite-dimensional; but also for W = R

2n

with

the standard sympleti form, the Maslov index plays a non-trivial role, and our approah o�ers

new insight in this ase as well. In the lassial situation, this means we an identify S with the

set of unitary symmetri matries.

Motivated by the generalization of the Maslov index to tube domains and by numerous

appliations of related index funtion in in�nite-dimensional situations (f. [CLM94℄), we desribe

in this paper a topologially oriented approah to an index funtion generalizing the Maslov

index for bounded symmetri domains of tube type to a variety of in�nite-dimensional situations

ontaining in partiular the lass of all bounded symmetri domains of tube type in Banah

spaes.

We start with the following group theoreti setup. We onsider a Banah{Lie group G

endowed with an involution � and whose Lie algebra g is endowed with a 3-grading g =

g

�1

� g

0

� g

1

arising as the eigenspae deomposition of some adE , E 2 g

0

, and reversed

by � . We then all (G; adE; �) an involutive 3-graded Lie group.

We have subgroups G

�

and G

0

of G orresponding to g

�

and g

0

, and we thus obtain

a homogeneous manifold X := G=G

0

G

�

into whih we embed the Banah spae V := g

1

by

the map x 7! expxG

0

G

�

. The involution � and the 3-grading provide on V the struture of a

Jordan triple by

fx; y; zg :=

1

2

[[x; �:y℄; z℄:

If the operator Q(x): y 7! fx; y; xg on V is invertible, we all the element x invertible and we

say that e 2 V is a tripotent if fe; e; eg = e . We now write S for the set of invertible tripotents
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in V . If S is non-empty, then � indues an involution �

X

on X suh that S = V \X

�

is the

set of �

X

-�xed points in the open subset V of X . We make the assumptions

(A1)H := G

�

0

� G

+

G

0

G

�

(where G

�

0

denotes the identity omponent of G

�

), and that

(A2) S is invariant under the ation of H on X .

A pair (z; w) 2 V

2

is alled quasi-invertible if exp(��:w) exp z 2 G

+

G

0

G

�

(this an

also be expressed diretly in Jordan theoreti terms). For a quasi-invertible pair we de�ned

B

G

(z; w) 2 G

0

by exp(��:w) exp z 2 G

+

B

G

(z; w)

�1

G

�

. We write V

3

>

for the set of all quasi-

invertible triples in V and onsider the funtion

d

G

:V

3

>

! G

0

; (x; y; z) 7! B

G

(x; y)B

G

(z; y)

�1

B

G

(z; x)B

G

(y; x)

�1

B

G

(y; z)B

G

(x; z)

�1

:

For S

3

>

:= S

3

\ V

3

>

we show that d

G

(S

3

>

) � Z(G

0

)

�

and that the assumption

(A3) d

G

(S

3

>

) = f1g

is always satis�ed for a quotient of the identity omponent G

0

of G by a disrete entral

elementary abelian 2-subgroup. For the group GL

2

(A) over a hermitian Banah-�-algebra

(A; �) we only have to fator the subgroup f�1g (see Setion II). The main goal of Setion I is

the de�nition of an index map

�

G

:S

3

>

! �

1

(G

0

)

assigning to a quasi-invertible triple in S a homotopy lass of a loop in the group G

0

. This map

is obtained by showing that [0; 1℄! V

3

; t 7! (ts

1

; ts

2

; ts

3

) is a path in V

3

>

, so that omposing it

with d

G

yields a loop in G

0

whose homotopy lass is de�ned to be �

G

(s

1

; s

2

; s

3

).

We show in Setion II that all in�nite-dimensional bounded symmetri domains D of tube

type are overed by our setup, where S is the orresponding \Shilov boundary". This observation

builds heavily on results of W. Kaup and H. Upmeier (f. [Up85℄). If, in addition, D is �nite-

dimensional, then we an ompose d

G

with the determinant funtion det:GL(V )! C

�

and the

natural representation �

V

:G

0

! GL(V ) to obtain a map det Æ�

V

Æ d

G

:V

3

>

! C

�

whih leads to

a map

e�

G

:S

3

>

! �

1

(C

�

)

�

=

Z:

Up to a onstant fator, this map is the Maslov index de�ned in [C�01℄.

From its de�nition it is almost obvious that �

G

is onstant on the onneted omponents

of S

3

>

, and in Setion III we show that these onneted omponents oinide with the orbits of H

on S

3

>

. We further show that eah orbit ontains a triple of the form (e;�e; �) with Q(e)� = �� .

In Setion IV we then turn to the alulation of the index funtion. This is eventually redued

to the ase of the group SL

2

(C )=f�1g by observing that span

R

fe; �g is a Jordan sub-triple of

V isomorphi to C with fx; y; zg = xyz and then using funtorial properties of the index map.

The outome is the interesting result that

�

G

(e;�e; �) = [�

�

℄ with �

�

2 Hom(T; G

0

); �

�

(t+Z) = exp

G

(�t[�:e; �℄):

In the last Setion V we alulate the Maslov index for several lasses of examples. If V = A

is a hermitian Banah-�-algebra and S = U(A) its unitary group, then a triple (s

1

; s

2

; s

3

) 2 S

3

is quasi-invertible if and only if all di�erenes s

j

�s

k

are invertible. So our index funtion assigns

to eah suh triple a loop in the group G

0

�

=

(A

�

�A

�

)=f�1g whose homotopy lass is invariant

under the ation of the group H = U

1;1

(A; �)

0

, and eah triple is onjugate to one of the form

(1;�1; i(1� 2p)), where p is a hermitian projetion in A . Therefore the index map leads to a

map

�

0

(Idem(A; �))! �

1

(G

0

); [p℄ 7! [

p

℄; where Idem(A; �) := fp 2 A: p = p

2

= p

�

g

and [

p

℄ denotes the homotopy lass of the projetion loop de�ned by 

p

(t + Z) = e

2�itp

in

U(A). In this ase D = U

1;1

(A; �):0 is the unit ball for the largest C

�

-seminorm on A . This is

a symmetri Banah manifold, but it is bounded if and only if A is a C

�

-algebra. For omplex

Banah algebras the projetion loop onstrution leads to the Bott map

�:K

0

(A)! K

2

(A) = lim

�!

�

1

(GL

n

(A)); [p℄ 7! [

p

℄



A topologial Maslov index for 3 -graded Lie groups 3

and the main point in Bott periodiity is that this map is an isomorphism (f. [Kar78℄). It would

be very interesting to see if there are deeper onnetions between our index funtion �

G

and

topologial K -theory for Banah algebras, in partiular for real Banah algebras.

It is remarkable that our setup never needs that G is a omplex group or that V is a

omplex vetor spae. All the results in the present paper remain valid in the real setting, hene

in partiular for the \Shilov boundaries" of real bounded symmetri domains, but the geometri

impliations for this setting will be investigated in a future paper.

Our approah to the index funtion �

G

via involutive 3-graded Lie groups is losely related

to the geometry of inner 3-�ltrations and 3-gradings developed in [BN04a℄, from where we use

several results. To keep this paper reasonably self-ontained, we inluded an appendix on basi

results on Jordan triples used throughout and also a seond appendix on the basi notions

onerning inner 3-�ltrations of Lie algebras. The theory in [BN04a℄ is algebrai, it even works

over �elds of positive harateristi 6= 2; 3. Thinking of the index �

G

as a Jordan algebra version

of the Bott map, it would be interesting to see if there is an algebrai variant of �

G

whih is

related to the Laurent polynomial onstrutions in the algebrai K -theory of rings.

I. The index funtion for quasi-invertible triples

In this setion we introdue involutive 3-graded Banah{Lie groups and disuss the as-

sumptions (A1-3) mentioned in the introdution. We shall use Cayley transforms assoiated to

invertible tripotents to show that for eah quasi-invertible triple (s

1

; s

2

; s

3

) 2 S

3

>

the line seg-

ment onneting it to (0; 0; 0) onsists of quasi-invertible triples. With this information we an

de�ne the index funtion �

G

:S

3

>

! �

1

(G

0

).

Three graded involutive Lie groups

De�nition I.1. An inner 3-grading of a Lie algebra g is a 3-grading g = g

�1

� g

0

� g

1

for

whih the derivation D 2 der(g) de�ned by g

j

= ker(D � j id

g

) for j = 1; 0;�1, is inner. Then

the elements E 2 g

0

with D = adE are alled grading elements. Note that g

�2

= f0g implies

in partiular that the spaes g

�

:= g

�1

are abelian subalgebras of g .

A pair (G;D) of a Banah{Lie group G and an inner derivation D 2 ad g is alled a

3-graded Lie group if the eigenspaes g

j

:= ker(D � j id

g

), j = �1; 0; 1, de�ne a 3-grading.

A triple (G;D; �) onsisting of a 3-graded Banah{Lie group (G;D) and an involutive

automorphism � of G whose di�erential L(�) reverses the grading, i.e., L(�):g

j

= g

�j

for

j = �1; 0; 1, is alled an involutive 3-graded Lie group.

Proposition I.2. Let (G;D) be a 3-graded Banah{Lie group. The subgroups

G

�

:= exp g

�

; G

0

:= fg 2 G: (8j)Ad(g)g

j

= g

j

g = fg 2 G: Ad(g)D = DAd(g)g

and P

�

:= G

�

G

0

have the following properties:

(1) P

+

\ P

�

= G

0

, P

�

\G

�

= f1g and P

�

�

=

G

�

oG

0

. All these groups are omplemented

Lie subgroups of G .

(2) The multipliation map G

+

�G

0

�G

�

! G; (x; y; z) 7! xyz is a di�eomorphism onto an

open subset of G .

(3) X := G=P

�

is a homogeneous Banah manifold and the map g

1

! X; x 7! expxP

�

is a

di�eomorphism onto an open subset.

(4) The orbits of the identity omponent G

0

of G oinide with the onneted omponents of X .

(5) For the inner 3-�ltrations f

�

= (g

�

; g

�

+ g

0

) of g we have G

f

�

= P

�

and hene an

embedding

(1:1) X ! F ; gP

�

7! g:f

�
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of X into the set F of inner 3-�ltrations of g .

Proof. (1) Sine G

0

preserves the grading of g , it normalizes the subgroups G

�

, so that P

�

are groups.

We onsider the two inner 3-�ltrations

f

+

:= (g

+

; g

+

+ g

0

) and f

�

:= (g

�

; g

�

+ g

0

)

de�ned by the 3-grading of g (f. Appendix B for the de�nitions onerning inner 3-�ltrations).

For a 3-�ltration f = (f

1

; f

0

) let

G

f

:= fg 2 G: Ad(g):f

0

= f

0

;Ad(g):f

1

= f

1

g

denote its stabilizer subgroup in G . Then we learly have P

�

� G

f

�

.

On the other hand eah element g 2 G

f

+

also stabilizes the subset f

>

+

= fe 2 F : e>f

+

g

of all inner 3-�ltrations of g transversal to f

+

. Aording to [BN04a, Th. 1.6(2)℄, the group

G

+

ats transitively on the set f

>

+

ontaining f

�

. Hene there exists an element g

+

2 G

+

with

g:f

�

= g

+

:f

�

. Then g

�1

+

g:f

�

= f

�

implies that g

�1

+

g also preserves the 3-grading given by

g

+

= f

+;1

; g

�

= f

�;1

and g

0

= f

+;0

\ f

�;0

:

Therefore g

�1

+

g 2 G

0

, so that g 2 g

+

G

0

� P

+

. This shows that P

+

= G

f

+

and likewise we get

P

�

= G

f

�

. From that we obtain

P

+

\ P

�

= G

f

+

\G

f

�

= G

0

:

Let E 2 g

0

be a grading element, i.e., g

j

is the j -eigenspae of adE . Then we have for

x 2 g

+

the relation

Ad(expx):E = e

adx

:E = E � [x;E℄ = E + x:

Sine this element is ontained in g

�

+ g

0

= f

�;0

if and only if x = 0, we get

G

+

\ P

�

= G

+

\G

f

�

= f1g;

and likewise G

�

\ P

+

= f1g .

From P

�

= G

f

�

we derive in partiular that P

�

and G

0

are Lie subgroups of g with

the Lie algebras p

�

= g

+

+ g

0

whih are the normalizers of the ags f

�

on the Lie algebra

level ([Ne04, Lemmas IV.11, IV.12℄). Clearly the Lie algebras of all these subgroups have losed

omplements beause

g = p

+

� g

�

= p

�

� g

+

= g

0

� (g

+

+ g

�

):

This means that they are omplemented Lie subgroups.

(2) follows immediately from (1), the Inverse Funtion Theorem, and the fat that the map

(G

+

oG

0

)�G

�

! G; (x; y; z) 7! xyz

�1

is an orbit map for a smooth ation of the group (G

+

oG

0

)�G

�

on G .

(3) follows from (1) and (2).

(4) We know from (3) that the orbit of the base point in X under G

+

is open. Hene the

orbit of a point gP

�

under the group gG

+

g

�1

is open, and sine all subgroups gG

+

g

�1

are

ontained in G

0

, all orbits of G

0

in X are open. This implies that the G

0

-orbits in X are the

onneted omponents.

(5) follow from the proof of (1).
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Lemma I.3. For v 2 g

1

and w 2 g

�1

the following are equivalent

(1) expw exp v 2 G

+

G

0

G

�

.

(2) The operators

B

+

(v; w) := id

g

1

+ad v adw +

1

4

(ad v)

2

(adw)

2

2 End(g

1

)

and

B

�

(w; v) := id

g

�1

+adw ad v +

1

4

(adw)

2

(ad v)

2

2 End(g

�1

)

are invertible.

Proof. Consider the map �:G ! X; g 7! gP

�

and identify g

1

with the open subset

G

+

:P

�

� X . Then �

�1

(g

1

) = G

+

G

0

G

�

: Therefore expw exp v 2 G

+

G

0

G

�

is equivalent

to (expw):v 2 g

1

, and the assertion follows from [BN04a, Cor. 1.10℄.

De�nition I.4. Let (G;D; �) be an involutive 3-graded Banah{Lie group. We also write �

for its derivative on the Lie algebra g . Then �(g

j

) = g

�j

; j = �1; 0; 1; and the spae V := g

+

arries a Jordan triple struture given by

fx; y; zg :=

1

2

[[x; �:y℄; z℄

(Theorem A.5). Using Proposition I.2(3), we think of V as an open subset of the homogeneous

spae X and view X as a onformal ompletion of the Jordan triple V .

We all an element x 2 V invertible if the operator

Q(x):V ! V; y 7! Q(x)(y) := fx; y; xg

is invertible and write V

�

for the set of invertible elements in V . For x 2 V

�

the (Jordan

triple) inverse is de�ned by

x

℄

:= Q(x)

�1

:x:

The elements of the set

S := fx 2 V

�

:x

℄

= xg = fx 2 V

�

: fx; x; xg = xg

are alled involutions or invertible tripotents (f. De�nition A.1).

De�nition I.5. (a) We have seen above that the multipliation map G

+

�G

0

�G

�

! G is

a di�eomorphism onto an open subset of the group G . Therefore we have smooth maps

p

j

:G

+

G

0

G

�

! G

j

with g = p

+

(g)p

0

(g)p

�

(g) for g 2 G

+

G

0

G

�

:

For z 2 g

1

and g 2 G with g exp z 2 G

+

G

0

G

�

we de�ne

J

G

(g; z) := p

0

(g exp z) 2 G

0

:

The funtion J

G

is alled the universal automorphy fator of G .

(b) For g 2 G we put g

�

:= �(g)

�1

and for x 2 g we put x

�

:= ��:x . For w 2 g

1

and

g = (expw)

�

= expw

�

2 G

�

we then set

B

G

(z; w) := J

G

�

(expw)

�

; z)

�1

= p

0

�

(expw)

�

exp z

�

�1

2 G

0

whenever expw

�

exp z 2 G

+

G

0

G

�

. Aording to Lemma I.3, this happens if and only if the

Bergman operators

B(v; w) := B

+

(v; w

�

) = id

V

+ad v adw

�

+

1

4

(ad v)

2

(adw

�

)

2

= id

V

+ad v adw

�

+

1

4

(ad v)

2

Æ � Æ (adw)

2

Æ � = id

V

�2v�w +Q(v)Q(w)
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and B(w; v) are invertible. In this ase the pair (v; w) 2 V

2

is alled quasi-invertible and we

write v>w to denote quasi-invertibility. This notation is motivated by the fat that, in terms of

Appendix B, quasi-invertibility of (v; w) is equivalent to (exp(��:w) exp v:f

�

)>f

+

, whih means

that the 3-�ltration exp v:f

�

is transversal to the 3-�ltration exp(�:w):f

+

= �

X

(expw:f

�

).

() We write

V

2

>

:= f(x; y) 2 V

2

:B(x; y); B(y; x) 2 GL(V )g

for the set of quasi-invertible pairs in V , and V

3

>

:= f(x; y; z) 2 V

3

: (x; y); (y; z); (x; z) 2 V

2

>

g for

the set of quasi-invertible triples. For the set S of involutions in V we put S

2

>

:= S

2

\ V

2

>

and

S

3

>

:= S

3

\ V

3

>

: We then onsider the funtions



G

:V

3

>

! G

0

; 

G

(x; y; z) := B

G

(x; y)B

G

(z; y)

�1

B

G

(z; x)

and d

G

:V

3

>

! G

0

; (x; y; z) 7! 

G

(x; y; z)

G

(x; z; y)

�1

with

d

G

(x; y; z) = B

G

(x; y)B

G

(z; y)

�1

B

G

(z; x)B

G

(y; x)

�1

B

G

(y; z)B

G

(x; z)

�1

:

Lemma I.6. For a quasi-invertible pair (v; w) in V and the adjoint representation �

V

:G

0

!

GL(V ) of G

0

on g

1

= V we have B(v; w) = �

V

(B

G

(v; w)):

Proof. This follows from the proof of Theorem 2.10 in [BN04a℄.

Lemma I.7. The funtions B

G

, J

G

and d

G

have the following properties:

(1) For z 2 V and g; g

0

2 G with g

0

:z; gg

0

:z 2 V we have J

G

(gg

0

; z) = J

G

(g; g

0

:z)J

G

(g

0

; z): In

partiular J

G

(g

�1

; g:z) = J

G

(g; z)

�1

for z 2 V and g:z 2 V .

(2) If g:z; �(g):w 2 V , then B

G

(g:z; �(g):w) = J

G

(g; z)B

G

(z; w)J

G

(�(g); w)

�

:

(3) B

G

(w; z) = B

G

(z; w)

�

for expw

�

exp z 2 G

+

G

0

G

�

.

(4) d

G

(z

1

; z

3

; z

2

) = d

G

(z

1

; z

2

; z

3

)

�1

.

(5) d

G

(z

1

; z

2

; z

3

) = B

G

(z

1

; z

2

)B

G

(z

3

; z

2

)

�1

d

G

(z

3

; z

1

; z

2

)B

G

(z

3

; z

2

)B

G

(z

1

; z

2

)

�1

:

(6) d

G

(g:z

1

; g:z

2

; g:z

3

) = J

G

(g; z

1

)d

G

(z

1

; z

2

; z

3

)J

G

(g; z

1

)

�1

for g 2 G

�

with g:z

j

2 V for

j = 1; 2; 3 .

(7) For g 2 G

�

, (v; w) 2 V

2

>

and g:(v; w) 2 V

2

we have g:(v; w) 2 V

2

>

:

Proof. The elementary proof of (1)-(3) an be found in [Ne99, Lemma XII.1.9℄.

(4) follows from

d

G

(z

1

; z

3

; z

2

) = 

G

(z

1

; z

3

; z

2

)

G

(z

1

; z

2

; z

3

)

�1

=

�



G

(z

1

; z

2

; z

3

)

G

(z

1

; z

3

; z

2

)

�1

�

�1

= d

G

(z

1

; z

2

; z

3

)

�1

:

(5) follows from

d

G

(z

1

; z

2

; z

3

) = B

G

(z

1

; z

2

)B

G

(z

3

; z

2

)

�1

B

G

(z

3

; z

1

)B

G

(z

2

; z

1

)

�1

B

G

(z

2

; z

3

)B

G

(z

1

; z

3

)

�1

= B

G

(z

1

; z

2

)B

G

(z

3

; z

2

)

�1

�

B

G

(z

3

; z

1

)B

G

(z

2

; z

1

)

�1

B

G

(z

2

; z

3

)

B

G

(z

1

; z

3

)

�1

B

G

(z

1

; z

2

)B

G

(z

3

; z

2

)

�1

�

B

G

(z

3

; z

2

)B

G

(z

1

; z

2

)

�1

= B

G

(z

1

; z

2

)B

G

(z

3

; z

2

)

�1

d

G

(z

3

; z

1

; z

2

)B

G

(z

3

; z

2

)B

G

(z

1

; z

2

)

�1

:

(6) follows from (2).

(7) From (2) we derive B

G

(g:z; :gw) = J

G

(g; z)B

G

(z; w)J

G

(g; w)

�

, and therefore

B(g:z; g:w) = �

V

(J

G

(g; z))B(z; w)�

V

(J

G

(g; w)

�

)

is invertible (Lemma I.6).
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Proposition I.8. If S 6= � , then the involution � indues an involution �

X

on the homoge-

neous spae X , and the following assertions hold:

(1) The �xed point set X

�

:= fx 2 X : �

X

(x) = xg is a submanifold of X .

(2) With respet to the embedding V ,! X we have S = X

�

\ V:

(3) The group G

�

preserves the subset X

�

� X and the orbits of its identity omponent H := G

�

0

are the onneted omponents of the manifold X

�

.

(4) For the transversality relation > of inner 3-�ltrations and f 2 X

�

the subgroup exp(f

�

1

) of

H ats transitively on the set X

�

\ f

>

.

Proof. (1) In the proof of Proposition I.2 we have seen that P

�

oinide with the stabilizers

of the 3-�ltrations f

�

:= (g

�

; g

�

+ g

0

), so that we obtain an embedding of X into the set F of

inner 3-�ltrations of g by X ! F ; gP

�

7! g:f

�

([BN04a, Th. 1.12℄).

Suppose now that e 2 X

�

and that f 2 e

>

. Then �(e

1

) = e

1

, and from �

X

(e

adx

:f) =

e

ad �:x

:(�

X

:f) for x 2 e

1

it follows that � ats on the aÆne spae e

>

by an aÆne involution.

Therefore it has a �xed point f . Then the aÆne spae f

>

� X is an open subset ontaining e ,

and on this open set, the map �

X

orresponds to the restrition � j

f

1

. This shows that

(1:2) X

�

\ f

>

= e

ad f

�

1

:e;

whih is an aÆne subspae of the aÆne spae f

>

. Hene X

�

arries a natural manifold struture

given by the aÆne harts of the form X

�

\ f

>

�

=

f

�

1

.

(2) If �

X

denotes the restrition of the involution � to X , onsidered as a subspae of the

set F of inner 3-�ltrations of g , then Proposition B.2 implies �

�1

X

(V )\V = V

�

with �

X

(v) = v

℄

for v 2 V

�

. From that we immediately get X

�

\ V = S .

(3) It is lear that the restrition of the ation of the subgroup G

�

of G on X preserves

the set X

�

. For e 2 X

�

we have seen in (1) that there exists some � -invariant f 2 e

>

suh

that e

ad f

�

1

:e is a neighborhoof of e . Sine exp(f

�

1

) � H , all orbits of H in X

�

are open, hene

oinide with the onneted omponents.

(4) is an immediate onsequene of (1.2) in the proof of (1).

Tripotents and partial Cayley transforms

In this subsetion we introdue the partial Cayley transform C

e

assoiated to a Jordan

tripotent, following the de�nition of O. Loos in [Lo77℄.

De�nition I.9. (a) Let e 2 V be a tripotent, f := �(e), h := [e; f ℄ and g

e

:= span

R

fh; e; fg .

Then

[h; e℄ = 2fe; e; eg = 2e and [h; f ℄ = � [�h; e℄ = �� [h; e℄ = �2�e = �2f;

so that g

e

�

=

sl

2

(R) is a 3-dimensional subalgebra of g with g

�

e

= R(e + f).

Write p

SL

2

(R)

:

f

SL

2

(R) ! SL

2

(R) for the universal overing morphism of SL

2

(R) and let

e�

G

e

:

f

SL

2

(R) ! G denote the unique homomorphism with

L(e�

G

e

)

�

0 1

0 0

�

= e; L(e�

G

e

)

�

0 0

1 0

�

= f and L(e�

G

e

)

�

1 0

0 �1

�

= h:

The kernel of p

SL

2

(R)

is annihilated by every homomorphism of

f

SL

2

(R) into the unit group

B

�

of some Banah algebra B beause it fators through a homomorphism SL

2

(C ) ! (B

C

)

�

,

where B

C

is the omplexi�ation of B . Therefore the homomorphism Ad Æe�

G

e

fators through

a homomorphism �

G

e

: SL

2

(R) ! Aut(g) with �

G

e

Æ p

SL

2

(R)

= Ad Æe�

G

e

.

From

L(�

G

e

) ÆAd

�

0 1

1 0

�

= � Æ L(�

G

e

)(�) Æ �
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we derive on the group level that

�

G

e

�

�

0 1

1 0

�

g

�

0 1

1 0

�

�

= ��

G

e

(g)� for g 2 SL

2

(R):

(b) We de�ne the partial Cayley transform by

C

e

:= �

G

e

�

1

p

2

�

1 1

�1 1

�

�

= exp

�

�

4

ad(e� f)

�

2 Aut(g):

If, in addition, e is invertible, we all C

e

the assoiated Cayley transform.

Remark I.10. We keep the notation of the preeding de�nition and write V = V

2

� V

1

� V

0

for the eigenspae deomposition of V with respet to 2(e�e) (f. Lemma C.1).

(a) Let v 2 V

2

and w := �(v). Then [h; v℄ = 2v implies that [h;w℄ = �:[�h; v℄ = �2w .

From that it easily follows that

M := span

R

fw; [e; w℄; [e; [e; w℄℄g

is a g

e

-submodule of g equivalent to the adjoint module ([Bou90, Ch. VIII, x1, no. 2, Prop. 1℄).

(b) Aording to Lemma C.1, the tripotent e is invertible if and only if V = V

2

. Suppose

this is the ase. Then Q(e)

2

= 2(e�e)

2

� e�e = id

V

(Lemma A.2(4)), so that (V; e;Q(e)) is an

involutive unital Jordan algebra (Proposition A.5). Moreover,

1

2

h 2 g

0

is a grading element by

Proposition C.4(1). We onlude that adh is diagonalizable on g , and sine ad e and ad f are

nilpotent, the Lie algebra g is a loally �nite g

e

-module, hene semisimple by Weyl's Theorem.

Sine the only eigenvalues of adh on g are f0;�2g , the Lie algebra g is a diret sum of trivial

and 3-dimensional g

e

-modules.

In the following lemma we ollet some ruial properties of the partial Cayley trans-

form C

e

.

Lemma I.11. For the partial Cayley transform assoiated to the tripotent e 2 V the following

assertions hold:

(1) C

8

e

= id

g

and if e is invertible, then C

4

e

= id

g

.

(2) Identifying V with a subset of X , for v 2 V the ondition C

e

(v) 2 V is equivalent to the

quasi-invertibility of (e; v) . For an element v 2 V

2

this means that e� v is invertible in the

unital Jordan algebra (V

2

; e) , and then

C

e

(v) = (e+ v)(e� v)

�1

:

(3) C

e

(�e) = 0 , C

e

(0) = C

e

(f

�

) = e , C

e

(e) = f

+

and C

e

(f

+

) = �e .

(4) On the subspae V

2

� V we have C

2

e

Æ � = �Q(e) .

(5) �C

e

� = C

�1

e

.

Proof. (1) For I =

�

0 1

�1 0

�

the matrix

1

p

2

(1 + I) 2 SL

2

(R) is of order 8 and its square

is I . Therefore the order of C

e

is at most 8 and we have

C

2

e

= �

G

e

�

�

0 1

�1 0

�

�

= exp

�

�

2

ad(e� f)

�

:

If e is invertible, then g is a diret sum of trivial and 3-dimensional simple sl

2

(R)-modules

(Remark I.10(b)). On both types of modules the matrix

�

0 1

�1 0

�

2 SL

2

(R) ats like an

involution, so that C

2

e

is an involution and therefore C

4

e

= id

g

.

(2) From the deomposition

1

p

2

�

1 1

�1 1

�

=

�

1 1

1 0

��

p

2 0

0

1

p

2

��

1 0

�1 1

�
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in SL

2

(R) we derive in Aut(g) the deomposition

(2:1) C

e

= exp(ad e) exp

�

(log

p

2) adh

�

exp(� ad f):

Sine exp(ad e) exp

�

(log

p

2) adh

�

2 Ad(P

+

) ats as an aÆne map on V � X , we see that

C

e

(v) 2 V is equivalent to exp(��:e):v = exp(�f):v 2 V , whih means that (e; v) is quasi-

invertible (De�nition I.5, Lemma I.3). If this is the ase, then

exp(�f):v = B(v; e)

�1

:(v �Q(v):e)

([BN04a, 2.8℄). In the Jordan algebra V

(e)

we have Q(v):e = Q(v)Q(e):e = P (v):e = v

2

and

B(v; e) = id

V

�2L(v) + P (v);

and in the unital Jordan algebra V

(e)

� R with the identity 1 := (0; 1) we have

1� 2L(x) + P (x) = P (1;1)� 2P (1; x) + P (x; x) = P (1� x);

i.e., the quasi-invertibility of (x; e) is equivalent to the quasi-invertibility of x in the Jordan

algebra V

(e)

. In this algebra we have for any quasi-invertible pair (v; e):

exp(�f):v = P (1� v)

�1

:(v � v

2

) = (1� v)

�1

v:

For any element v in the unital Jordan algebra (V

2

; e), the Cayley transform therefore takes the

form

C

e

(v) = e+ 2(e� v)

�1

v = (e� v + 2v)(e� v)

�1

= (e+ v)(e� v)

�1

:

(3) We have C

e

(�e) = (e� e)(e� (�e))

�1

= 0 and C

e

(0) = e:

We further have in V , as a subset of X , the relation �

X

(e) = e

℄

= e (Proposition B.2),

whih leads to

exp(� ad f):e = exp(� ad �:e):e = �

X

exp(� ad e)�

X

:e = �

X

exp(� ad e):e = �

X

:0 = �

X

:f

�

= f

+

;

so that

C

e

:e = exp(ad e) exp(log

p

2 adh) exp(� ad f):e = exp(ad e) exp(log

p

2 adh):f

+

= f

+

:

Moreover,

exp(� ad f):f

+

= �

X

exp(� ad e)�

X

:f

+

= �

X

exp(� ad e):f

�

= �

X

exp(� ad e):0

= �

X

:(�e) = (�e)

℄

= �e;

and hene

C

e

:f

+

= exp(ad e) exp(log

p

2 adh) exp(� ad f):f

+

= exp(ad e) exp(log

p

2 adh):(�e) = e+ 2(�e) = �e:

(4) Let v 2 V

2

. Aording to Remark I.10(a), for w := �:v the spae

M := span

R

fw; [e; w℄; [e; [e; w℄℄g is a g

e

-submodule of g isomorphi to g

e

with the adjoint rep-

resentation. From the relation

�

0 1

�1 0

��

0 �1

0 0

��

0 �1

1 0

�

=

�

0 0

1 0

�

we obtain

Ad(exp(e� f)) Æ

1

2

(ad e)

2

:f = Ad(exp(e� f)):(�e) = f;

and this leads to C

2

e

�

1

2

(ad e)

2

�

�:v = �C

2

e

Q(e):v = �:v .

(5) follows immediately from �(e � f) = �(e � �(e)) = �(e) � e = f � e and C

e

2

exp(R(e � f)).
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Proposition I.12. For any tripotent e 2 V we have exp(g

�

e

):0 =℄� 1; 1[�e in V , onsidered

as a subset of X . In partiular we have ℄� 1; 1[�S � H:0

Proof. We have seen above that (e; h; f) is an sl

2

-triple, so that e+ �(e) orresponds to the

matrix

�

0 1

1 0

�

and e to the matrix

�

0 1

0 0

�

. To alulate exp(t(e + �(e)):0 in V � X , we

observe that

exp

�

0 t

t 0

�

=

�

osh t sinh t

sinh t osh t

�

2 exp(Rf + Rh) �

�

1 tanh t

0 1

�

;

whih leads to exp(t(e+ �(e))):0 = tanh t � e; and from that the assertion follows.

Consider the following assumptions on the involutive 3-graded group G :

(A1)D := H:0 � V , i.e., H � G

+

G

0

G

�

.

(A2)H:S � V .

(A3) d

G

(S

3

>

) = f1g .

Condition (A1) is well-known from the setting of groups of Harish-Chandra type. In view

of Proposition I.8, ondition (A2) is equivalent to the invariane of the subset X

�

\V under the

ation of the group H .

Proposition I.13. �

V

Æ d

G

(S

3

>

) = f1g . In partiular, (A3) is satis�ed if G

0

ats faithfully

on V .

Proof. For (x; y; z) 2 S

3

>

we derive from Lemma A.10(2) the relation

B(x; y) = B(x; y

℄

) = Q(x� y)Q(y)

�1

;

so that we get with Lemma I.6

�

V

(d

G

(x; y; z)) = B(x; y)B(z; y)

�1

B(z; x)B(y; x)

�1

B(y; z)B(x; z)

�1

= B(x; y

�1

)B(z; y

�1

)

�1

B(z; x

�1

)B(y; x

�1

)

�1

B(y; z

�1

)B(x; z

�1

)

�1

= Q(x� y)Q(z � y)

�1

Q(z � x)Q(y � x)

�1

Q(y � z)Q(x� z)

�1

= Q(y � x)Q(z � y)

�1

Q(x� z)Q(y � x)

�1

Q(z � y)Q(x� z)

�1

= 1;

where the last equality follows from Proposition A.7.

In Proposition IV.4 below we shall use the results of Setion III on H -orbits in S

3

>

to see

that the preeding result an be sharpened onsiderably to the observation that d

G

(S

3

>

) � Z(G

0

).

In the following we shall also see interesting examples where (A3) is satis�ed and G

0

does

not at faithfully on V . This holds in partiular for the group G = GL

2

(A)=f�1g , where A is

a hermitian Banah-�-algebra (f. Example II.6 below).

Lemma I.14. If (A1) is satis�ed, then for eah v 2 V with H:v � V we have D �H:v � V

2

>

:

If, in addition, (A2) holds, then D � (D [ S) � V

2

>

:

Proof. Suppose that (A1) is satis�ed, i.e. D = H:0 � V and let v 2 V with H:v � V . For

h

1

; h

2

2 H and h

1

:0 2 D it now follows that (h

1

:0; h

2

:v) is quasi-invertible beause (0; h

�1

1

h

2

:v)

is quasi-invertible (Lemma I.7(7)).

If, in addition, H:S � V , then the preeding argument applies with v = 0 or v 2 S , and

the assertion follows.

De�nition I.15. Suppose that (A1-3) hold. For (x; y; z) 2 S

3

>

we onsider the ontinuous

urve

�

x;y;z

: [0; 1℄! V

3

; t 7! (tx; ty; tz);

starting at (0; 0; 0) and ending at (x; y; z) 2 S

3

>

. Proposition I.12 and Lemma I.14 now implies

that im(�

x;y;z

) is ontained in the open subset V

3

>

of V

3

, so that the urve

d

G

Æ �

x;y;z

: [0; 1℄! G

0

; t 7! d

G

(tx; ty; tz);
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is de�ned. Sine d

G

(0; 0; 0) = 1 and d

G

(x; y; z) = 1 by (A3), this urve is a loop in G

0

.

We thus obtain a map

�

G

:S

3

>

! �

1

(G

0

); (x; y; z) 7! [d

G

Æ �

x;y;z

℄:

For reasons to be explained later, we all this map the topologial (Maslov) index. Sine the

path �

x;y;z

depends ontinuously on the triple (x; y; z), this map is onstant on the onneted

omponents of S

3

>

, hene indues a map �

0

(S

3

>

)! �

1

(G

0

):

We shall see in Example IV.2 below that for the ase where D � V is a �nite-dimensional

irreduible bounded symmetri domain of tube type, the index map �

G

an be used to obtain

the Maslov index by omposing with the homomorphism det Æ�

V

:G

0

! C

�

to obtain a map

�

1

(det Æ�

V

) Æ �

G

:S

3

>

! �

1

(C

�

)

�

=

Z:

Proposition I.16. The index map �

G

:S

3

>

! �

1

(G

0

) is an alternating funtion with values

in the abelian group �

1

(G

0

) , i.e.

�

G

(x

�(1)

; x

�(2)

; x

�(3)

) = �

G

(x

1

; x

2

; x

3

)

sgn(�)

for (x

1

; x

2

; x

3

) 2 S

3

>

; � 2 S

3

:

Proof. From Lemma I.7(4) we immediately derive that [�

x;y;z

℄ = [�

�1

x;z;x

℄ = [�

x;z;x

℄

�1

:

We further get from Lemma I.7(5) a ontinuous path �: [0; 1℄! G

0

with

�

y;z;x

= � � �

x;y;z

� �

�1

;

and this loop in G

0

is homotopi to the loop �

x;y;z

, whih leads to [�

y;z;x

℄ = [�

x;y;z

℄: Sine the

symmetri group S

3

is generated by the yle (1 2 3) and the transposition (2 3), the assertion

follows.

II. Bounded symmetri domains and hermitian Banah-�-algebras

In this setion we disuss two large lasses of groups for whih our assumptions (A1-3) are

satis�ed. The groups of the �rst lass are the omplexi�ations G of the identity omponent

Aut(D)

0

of the group of biholomorphi maps of a bounded symmetri domain D in a Banah

spae, and the seond lass ontains the groups GL

2

(A)=f�1g for a hermitian unital Banah-�-

algebra A . In this ase the orresponding domain D is bounded if and only if A is a C

�

-algebra.

Bounded symmetri domains in Banah spaes

Let V be a omplex Banah spae and D � V be a bounded symmetri domain, i.e., a

bounded open onneted subset suh that for eah z 2 D there exists an involution j

z

2 Aut(D),

the group of biholomorphi mappings of D , suh that z is an isolated �xed point of j

z

. The

group Aut(D) arries a natural Banah{Lie group struture suh that the transitive ation on D

is real analyti ([Up85, Th. 13.14℄). Aording to Kaup's Riemann Mapping Theorem ([Ka83℄,

[Up85, Th. 20.23℄), there is a norm on the spae V suh that D is biholomorphi to the open

unit ball in V . Therefore we assume from now on that

D = fz 2 V : kzk < 1g:

The identity omponent H := Aut(D)

0

of Aut(D) arries a natural Banah{Lie group struture

suh that the transitive ation of H on D is real analyti.

We think of L(H) as a Lie algebra of holomorphi vetor �elds on the domain D � V . It

is shown in [Up85, Th. 18.17℄ that the elements of L(H) are polynomial vetor �elds of degree

at most 2 and that

g := L(H) + iL(H)
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arries a natural struture of a enterfree 3-graded Banah{Lie algebra on whih there is a

grading reversing antilinear involution � for whih L(H) = g

�

. The grading is given by the

degree of vetor �elds, where g

j

onsists of vetor �elds of degree 1� j . Sine the unit ball D

is in partiular iular, g ontains the Euler vetor �eld orresponding to the funtion E(z) = z

on V , whih de�nes the grading of g . We onlude that the grading of g is inner.

We then onsider the omplex Banah{Lie group

G := Aut(g)

0

:

Then L(G) = der g = ad g

�

=

g (f. [Up85, Lemma 9.9℄) and the involution � on g indues by

onjugation an involution, also denoted � , on G . We thus obtain a situation as disussed in

Setion I, where we onsidered a Banah{Lie group G endowed with an involution � reversing an

inner 3-grading on g . Clearly H = Aut(D)

0

= G

�

0

follows from the equality of the Lie algebras

of both subgroups of G .

In this ase the orbit H:0 of the base point 0 2 V

�

=

g

1

in the homogeneous spae

X = G=P

�

oinides with the bounded symmetri domain D ([Up85, Th. 20.20℄). Therefore

our assumption (A1) is satis�ed.

Theorem II.1. The losure D of D in V also is a losed subset of X .

Proof. Sine X = G=P

�

is a quotient spae and the inverse image of D in G is the produt

set exp(D)P

�

= exp(D)G

0

G

�

; it suÆes to show that Y := exp(D)G

0

G

�

is a losed subset

of G .

Let U � G be an open identity neighborhood with U � U ontained in the open subset

G

+

G

0

G

�

. If 0 2 V is identi�ed with the base point P

�

of the homogeneous spae X = G=P

�

,

then this implies that UU:0 � V .

Sine D � V is a bounded subset and adE j

g

1

= id

g

1

, there exists a t > 0 with

exp(�tE):D � U:0:

For the identity neighborhood U

0

:= exp(tE)U exp(�tE) of G we then obtain

U

0

:D = exp(tE)U exp(�tE):D � exp(tE)UU:0 � V;

i.e., U

0

exp(D)G

0

G

�

� G

+

G

0

G

�

; so that

exp(D)G

0

G

�

� U

0

exp(D)G

0

G

�

� G

+

G

0

G

�

:

Sine the open subset G

+

G

0

G

�

is homeomorphi to the topologial produt G

+

�G

0

�G

�

, it

follows that

exp(D)G

0

G

�

= (expD)G

0

G

�

is the losure of (expD)G

0

G

�

in G .

By ontinuity we now obtain immediately

Corollary II.2. H:D � D � V and in partiular H:S � V .

Proposition II.3. If S 6= � , i.e., D is a bounded symmetri domain of tube type, then the

assumptions (A1-3) are satis�ed for the involutive 3-graded group (G; adE; �) .

Proof. Assumption (A1) follows from the realization of D as a bounded domain in V �

G=P

�

. The preeding orollary implies that (A2) is satis�ed. Further (A3) will follow from

the fat that the representation of G

0

on V is faithful (Proposition I.13). To verify that

this representation is faithful, let g 2 G

0

at trivially on V . Then the adjoint ation, whih

orresponds to the ation of g on a set of vetor �elds on V , is trivial. Therefore G � Aut(g)

implies g = 1 . This proves that (A1-3) are satis�ed.



A topologial Maslov index for 3 -graded Lie groups 13

Hermitian Banah-�-algebras

De�nition II.4. A Banah-�-algebra is a pair (A; �) of a omplex Banah algebra together

with an antilinear isometri antiisomorphism � . It is alled hermitian if the spetra of hermitian

elements are real.

The following simple lemma will be helpfull in evaluating d

G

(S

3

>

) for the group GL

2

(A).

Lemma II.5. Let (R; e) be a unital ring and a; b;  2 R with a+ b+  = 0 and b 2 R

�

. Then

ab

�1

 = b

�1

a:

Proof. The relation a + b +  = 0 implies that ab

�1

+ b

�1

= �e , so that ab

�1

and b

�1

ommute, and the assertion follows from ab

�1

b

�1

= b

�1

ab

�1

by multiplying with b from the

right.

Example II.6. Let (A; �) be a hermitian Banah-�-algebra. First we onsider G := GL

2

(A)

with the involution � given by

�

�

a b

 d

�

=

�

a

�

�

�

�b

�

d

�

�

�1

and whose �xed point set is denoted U

1;1

(A; �) := GL

2

(A)

�

: Its Lie algebra g = gl

2

(A) is

3-graded with

g

+

=

�

0 A

0 0

�

; g

0

=

�

A 0

0 A

�

and g

�

=

�

0 0

A 0

�

:

Sine E :=

�

1 0

0 �1

�

is a grading element, the grading is inner. On the Lie algebra level we

have

�

�

a b

 d

�

=

�

�a

�



�

b

�

�d

�

�

;

showing that � reverses the grading. The orresponding Jordan triple produt in A

�

=

g

+

is

given by

fx; y; zg =

1

2

(xy

�

z + zy

�

x):

On the group level we have

GL

2

(A)

+

=

�

1 A

0 1

�

; GL

2

(A)

0

=

�

A

�

0

0 A

�

�

and GL

2

(A)

�

=

�

1 0

A 1

�

:

Then

GL

2

(A)

+

GL

2

(A)

0

GL

2

(A)

�

=

n

�

a b

 d

�

2 GL

2

(A): d 2 A

�

o

;

and any matrix in this set deomposes as

�

a b

 d

�

=

�

1 bd

�1

0 1

��

a� bd

�1

 0

0 d

��

1 0

d

�1

 1

�

:

From

�

1 0

�w

�

1

��

1 z

0 1

�

=

�

1 z

�w

�

1� w

�

z

�
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we obtain

B

G

(z; w) =

�

1� z(1� w

�

z)

�1

(�w

�

) 0

0 1� w

�

z

�

�1

=

�

1� zw

�

0

0 (1� w

�

z)

�1

�

:

Next we alulate d

G

on quasi-invertible unitary triples (s

1

; s

2

; s

3

). For unitary elements

z; w 2 S quasi-invertibility means that 1�w

�

z = 1�w

�1

z is invertible, whih means that w�z

is invertible. Therefore all di�erenes s

j

� s

k

, j 6= k , are invertible. Sine

(s

1

� s

2

) + (s

2

� s

3

) + (s

3

� s

1

) = 0;

Lemma II.5 leads to

(1� s

1

s

�

2

)(1� s

3

s

�

2

)

�1

(1� s

3

s

�

1

)(1� s

2

s

�

1

)

�1

(1� s

2

s

�

3

)(1� s

1

s

�

3

)

�1

= (1� s

1

s

�1

2

)(1� s

3

s

�1

2

)

�1

(1� s

3

s

�1

1

)(1� s

2

s

�1

1

)

�1

(1� s

2

s

�1

3

)(1� s

1

s

�1

3

)

�1

= (s

2

� s

1

)(s

2

� s

3

)

�1

(s

1

� s

3

)(s

1

� s

2

)

�1

(s

3

� s

2

)(s

3

� s

1

)

�1

= �(s

1

� s

2

)(s

2

� s

3

)

�1

(s

3

� s

1

)(s

1

� s

2

)

�1

(s

2

� s

3

)(s

3

� s

1

)

�1

= �1

and we likewise get

(1� s

�

2

s

1

)

�1

(1� s

�

2

s

3

)(1� s

�

1

s

3

)

�1

(1� s

�

1

s

2

)(1� s

�

3

s

2

)

�1

(1� s

�

3

s

1

)

= (1� s

�1

2

s

1

)

�1

(1� s

�1

2

s

3

)(1� s

�1

1

s

3

)

�1

(1� s

�1

1

s

2

)(1� s

�1

3

s

2

)

�1

(1� s

�1

3

s

1

)

= (s

2

� s

1

)(s

2

� s

3

)

�1

(s

1

� s

3

)(s

1

� s

2

)

�1

(s

3

� s

2

)(s

3

� s

1

)

�1

= �1:

This shows that

d

G

(s

1

; s

2

; s

3

) =

�

�1 0

0 �1

�

:

Let �

C

�

denote the largest C

�

-seminorm on A , i.e., �

C

�

(a) = k�(a)k if �:A ! C

�

(A)

is the universal map into the universal enveloping C

�

-algebra C

�

(A) of A . From [Bi04,

Lemma 8.2.7℄ we know that the orbit of H = G

�

0

in X is ontained in A and oinides with the

onvex open set

D = fa 2 A:�

C

�

(a) < 1g:

For the invertible tripotent e := 1 2 A we have Q(e)a = a

�

, so that

S = U(A) = fa 2 A

�

: a

�

= a

�1

g:

We laim that if g =

�

a b

 d

�

2 U

1;1

(A; �) and z 2 A with �

C

�

(z) � 1, then z+d 2 A

�

;

whih implies that g:z = (az + b)(z + d)

�1

is ontained in V = A , and hene that (A1) and

(A2) are satis�ed.

If A is a C

�

-algebra, then D is the open unit ball in A , and the transitivity of the holo-

morphi ation of H on D implies that it is a bounded symmetri domain. From Corollary II.2

above we know that in this ase the losure of D in X oinides with the losure of D in V

whih is invariant under the ation of H .

This argument an be arried over to a general hermitian Banah �-algebra as follows.

Sine � indues homomorphisms

GL

2

(A)! GL

2

(C

�

(A)) and U

1;1

(A; �)! U

1;1

(C

�

(A); �);

we onlude from the ase of C

�

-algebras that �(z+d) = �()�(z)+�(d) is invertible in C

�

(A),

whih in turn implies that z + d is invertible in A beause the property �

�1

(C

�

(A)

�

) = A

�

haraterizes hermitian Banah �-algebras (f. [Bi04, Prop. 2.7.5℄, see also [Pt70/72℄ for the

Banah version of Biller's results).

The domain D is bounded if and only if the natural homomorphism �:A ! C

�

(A) is an

embedding, i.e., if and only if A is a C

�

-algebra.

As an immediate onsequene of the disussion in Example II.6, we obtain the following

theorem:
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Theorem II.7. If (A; �) is a hermitian Banah-�-algebra, then

�

�

a b

 d

�

=

�

a

�

�

�

�b

�

d

�

�

�1

and E :=

�

1 0

0 �1

�

de�ne an involutive 3-graded Banah{Lie group (GL

2

(A); adE; �) satisfy-

ing (A1/2). If we write 1 2 M

2

(A) for the identity matrix, then the group G := GL

2

(A)=f�1g

satis�es (A1-3) with respet to the indued involution.

III. Conneted omponents and H -orbits in S

3

>

We have already seen that the group H ats on X

�

in suh a way that its orbits are the

onneted omponents (Proposition I.8). Under the assumption (A2), the set S is a union of

suh H -orbits. In the following we shall use this orrespondene to get a better desription of

the onneted omponents in S

3

>

. In partiular, we shall see that they oinide with the orbits

of H in S

3

>

and that eah orbit ontains a triple of the form (e;�e; �) with �

�

= Q(e)� = ��

in the unital involutive Jordan algebra (V; e;Q(e)). Sine � is an invertible tripotent, the latter

ondition implies that

� = Q(�)� = �Q(�)Q(e)� = �P (�)� = ��

3

and therefore �

2

= �e . In the following we put V

�

:= fv 2 V : v

�

= Q(e)v = �vg .

Lemma III.1. Let e 2 S and C

e

2 Aut(g) denote the orresponding Cayley transform. For

v 2 V and v

�

= Q(e)v we have

�(C

e

:v) = �C

e

:v

�

and �(C

�1

e

:v) = �C

�1

e

:v

�

:

In partiular C

e

:v; C

�1

e

:v 2 g

�

if v

�

= �v , where C

e

:v refers to the linear ation of C

e

on g .

The orresponding element g := exp(C

�1

e

:v) 2 H satis�es

g:(�e) = C

�1

e

(v) = (v � e)(e+ v)

�1

:

Moreover, e+ v is invertible whenever v

�

= �v .

Proof. The �rst equality follows from

� Æ C

e

= C

�1

e

Æ � = C

3

e

Æ � = �C

e

ÆQ(e)

on V (Lemma I.11(1),(4),(5)), and we likewise obtain on V the relation � Æ C

�1

e

= C

e

Æ � =

�C

�1

e

Q(e):

From Lemma I.11(3) we know that C

e

(�e) = 0 for the ation of C

e

on X , so that we

obtain for g = exp(C

�1

e

:v) 2 H that

C

�1

e

(v) = C

�1

e

e

ad v

:0 = C

�1

e

e

ad v

C

e

:(�e) = exp(C

�1

e

:v):(�e) = g:(�e) 2 S:

In partiular e+ v is invertible (Lemma I.11(2)).

Lemma III.2.

(1) The ation of H on D [ S preserves quasi-invertibility.

(2) If e 2 S , then the stabilizer H

e

of e in H ats transitively on ff 2 S: e>fg .

(3) If g is omplex and � is antilinear, then (e; f) 2 S

2

>

implies f 2 H:e .

(4) For (e; f) 2 S

2

>

we have H:(e; f) = f(a; b) 2 S

2

>

: a 2 H:eg .
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(5) The H -orbit of (e; x; y) 2 S

3

>

ontains an element of the form (e;�e; z) and

fz 2 S: z>� eg = C

e

(V

�

\ V

�

):

Proof. (1) follows from Lemma I.14.

(2) Aording to Proposition I.8, we have S = X

�

\ V . Further (z; w) 2 V

2

>

is equivalent

to the transversality of the 3-�ltrations exp z:f

�

and �(expw:f

�

) (f. De�nition I.5(b)). For

z; w 2 S � X

�

this is equivalent to the quasi-invertibility of (z; w). Hene

ff 2 S: e>fg � (exp e:f

�

)

>

;

and Proposition I.8(2) implies that H

e

= H

exp e:f

�

ats transitively on (exp e:f

�

)

>

.

We also give a seond proof of (2) whih is more diret and uses (1): The quasi-invertibility

of (e; f) implies that e� f is invertible in the unital involutive Jordan algebra (V; e;Q(e)), so

that x := C

e

(f) 2 X is an element of V (Lemma I.11(2)). We have

x

�

= C

e

(f)

�

= ((e+ f)(e� f)

�1

)

�

= (e+ f

�

)(e� f

�

)

�1

= C

e

(f

�

) = C

e

(f

�1

) = �C

e

(f) = �x

(Lemma A.11), so that g := exp(C

�1

e

:x) 2 H satis�es g:(�e) = C

�1

e

:x = f (Lemma II.1). We

further get with Lemma I.11(3) in X � F :

g:e = C

�1

e

e

adx

C

e

(e) = C

�1

e

e

adx

:f

+

= C

�1

e

:f

+

= e:

(3) For e 2 S we onsider the 3-dimensional subalgebra g

e

= span

C

fe; �(e); [e; �(e)℄g � g .

Then E :=

1

2

[e; �(e)℄ is a grading element with �(E) = �E (Proposition C.4), and �(iE) = iE

implies that T

�

=

exp(iRE) � H . We therefore obtain �e 2 exp(iRE):e � H:e; and the assertion

follows from (2) and e>� e .

(4) In view of (1), eah element (a; b) 2 S

2

of the form (g:e; g:f) satis�es a 2 H:e and

b>a .

If, onversely, a = g:e and b>a , then (g

�1

:b; g

�1

:a) = (g

�1

:b; e), so that (2) implies the

existene of h 2 H

e

with h:f = g

�1

:b , and then h:(e; f) = (e; g

�1

:b) = g

�1

:(a; b) implies

(a; b) 2 H:(e; f).

(5) From (2) it follows that the H -orbit of (e; x; y) ontains an element of the form

(e;�e; z). Then z is a unitary element in the involutive unital Jordan algebra (V; e;Q(e))

with involution v

�

:= Q(e)v . The quasi-invertibility of (z;�e) is equivalent to the invertibilty

of z � e in the Jordan triple V (Lemma A.9) and hene in the unital Jordan algebra (V; e).

Therefore e � (�z) = e + z is invertible, and we put v := �C

e

(�z) = C

�1

e

(z) to obtain an

element v 2 V with C

e

(v) = z . We further obtain with Lemma A.11(1):

v

�

= (�C

e

(�z))

�

= �C

e

(�z)

�

= �C

e

(�z

�

) = �C

e

(�z

�1

)

= �C

e

((�z)

�1

) = �(�C

e

(�z)) = C

e

(�z) = �v;

so that v 2 V

�

. If, onversely, v 2 V

�

�

, then e�v is invertible (Lemma III.1) and z := C

e

(v) 2 S

is a unitary element for whih z + e is invertible. Sine v is invertible, Lemma A.11 implies

that z = C

e

(v) lies in the domain V

�

+ e of C

e

, so that also e � z is invertible, and hene

(e;�e; z) 2 S

3

>

.

Remark III.3. (a) The preeding lemma shows in partiular that (e; f) 2 S

2

>

implies that

f 2 S

�e

= �S

e

, where S

e

denotes the onneted omponent of S ontaining e . For (e; f; g) 2 S

3

>

we even onlude that S

e

= S

�g

= S

f

= S

�e

= S

g

: This leads to the disjoint deomposition

S

3

>

=

[

e

(S

e

)

3

>

;

so that it is no loss of generality if we onsider only a �xed onneted omponent S

e

of the set

S and study the index map on the subset (S

e

)

3

>

of S

3

>

.

(b) For G = PSL

2

(R) = SL

2

(R)=f�1g with grading derivation

D = ad

�

1 0

0 �1

�

and �

�

a b

 d

�

=

�

a �

�b d

�

�1

we have

V

�

=

R with fx; y; zg = xyz and S = f�1g:

Here S

2

>

= f(1;�1); (�1; 1)g and the onneted group H ats trivially. In this ase we have

S

1

= f1g 6= f�1g = S

�1

.
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Lemma III.4. Fix e 2 S and onsider the assoiated Cayley transform C := C

e

2 Aut(g) .

Then the involution �

C

:= C�C

�1

2 Aut(g) satis�es:

(1) �

C

preserves the 3-grading of g .

(2) �

C

= �C

2

, where � and C

2

are ommuting involutions of g .

(3) The Lie subalgebra l := C(g

�

) = g

�

C

is adapted to the 3-grading of g and � -invariant.

(4) �

C

j

V

= �Q(e) .

(5) For the stabilizer group H

e;�e

, the identity omponent L := (G

�

C

)

0

and

C

G

= exp

�

�

4

(e� f)

�

2 G we have

Ad(C

G

) = C and L

0

:= L \G

0

= C

G

�H

e;�e

� (C

G

)

�1

:

Proof. (1) With Lemma I.11 we get in X � F :

�

C

(f

�

) = �

C

(0) = C�

X

(�e) = C(�e) = 0 = f

�

and �

C

(f

+

) = C�

X

(e) = C(e) = f

+

:

Therefore �

C

�xes the two �ltrations f

�

and hene the orresponding 3-grading of g .

(2) With Lemma I.11 we get �

C

= C�C

�1

= C

2

� = �C

�2

= �C

2

; so that the two

involutions � and C

2

ommute.

(3) That l is adapted to the 3-grading of g follows diretly from (1). Sine � and �

C

ommutes by (2), l is � -invariant.

(4) follows from Lemma I.11(4).

(5) The relation Ad(C

G

) = C is immediate from the de�nitions. Further C(�e) = f

�

and

C

G

H(C

G

)

�1

= L lead to L

0

= L \G

f

�

= C

G

�H

e;�e

� (C

G

)

�1

:

Proposition III.5. Let �:G�M !M be a smooth ation of the Banah{Lie group G on the

Banah manifold M and T�:TG� TM ! TM its tangent map. If g:p := T�(1; p)(g� f0g) =

T

p

(M) , then the orbit G:p of p is open.

Proof. For a smooth map f :N ! M between Banah manifold for whih the di�erential

df(x):T

x

(N) ! T

f(x)

(M) is surjetive, the image of f is a neighborhood of f(x) ([De85,

Cor. 15.2℄).

The ondition g:p = T

p

(M) means that the di�erential of the orbit map G!M; g 7! g:p in

g = 1 is surjetive, so that the aforementioned fat implies that the orbit G:p is a neighborhood

of p . This implies that G:p is open.

Proposition III.6. All orbits of (L

0

)

0

in V

�

�

:= V

�

\ V

�

are open.

Proof. From Lemma III.4(4) we immediately get V

�

� l

1

. Let v 2 V

�

�

� l

1

be an invertible

element. Then v

�1

2 V

�

�

and

v

℄

= Q(v)

�1

v = Q(e)v

�1

= �v

�1

2 V

�

� l

1

:

Therefore V

�

�v

℄

= [V

�

; �(v

℄

)℄ � [l

1

; l

�1

℄ � l

0

: Sine the map

V

�

! V

�

; x 7! (x�v

℄

):v = fv; v

℄

; xg = (v�v

℄

):x = x

is bijetive (f. Lemma A.4(1)), the orbit map l

0

! V

�

; x 7! x:v is surjetive, and Proposi-

tion III.5 implies that the orbit L

0

0

:v in V

�

is open.

In general the group L

0

, resp., H

e;�e

is not onneted, so that the orbits of this group

may also be unions of several onneted omponents in V

�

�

. If, f.i. G = GL

2

(A)=f�1g for a

hermitian Banah-�-algebra A , then

C = Ad

�

1

p

2

�

1 1

�1 1

�

�

and C

2

= Ad

�

�

0 1

�1 0

�

�

lead to

�

C

�

a b

 d

�

=

�

0 1

�1 0

��

�a

�



�

b

�

�d

�

��

0 �1

1 0

�

=

�

�d

�

�b

�

�

�

�a

�

�

;

so that

L

0

= (G

0

)

�

C

=

n

�

a 0

0 �a

��

�

: a 2 A

�

o

=f�1g

�

=

(A

�

=f�1g)o

n

�

�

1 0

0 �1

�

o

;

whih is not onneted if A

�

is not onneted.
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Proposition III.7. The orbits of H in S , S

2

>

and S

3

>

are open, hene oinide with the

onneted omponents.

Proof. That the orbits of H in S are open follows from Proposition I.8.

For (e; f) 2 S

2

>

, Lemma III.2(4) implies H:(e; f) = S

2

>

\ (H:e�S); and sine H:e is open

in S , it follows that H:(e; f) is open in S

2

.

Let (e; g; f) 2 S

3

>

. In view of Lemma III.2(5), we may assume that f = �e . So it remains

to see that if f>� e , then H:(e;�e; f) is open in S

3

.

Conjugating everything with the Cayley transform C = C

e

, we are lead to the quasi-

invertible triple (C(e); C(�e); C(f)) = (f

�

; f

+

; z) with z 2 V

�

�

(Lemma III.2, Corollary B.3)

We have to show that the orbit of the group L

0

in S

C

:= C(S) � X

�

C

is open. The Lie

algebra l = C(h) is adapted to the grading of g (Lemma III.4), so that

l

f

�

= l

�

� l

0

and l

f

+

;f

�

= l

0

:

The argument in the proof of Proposition III.6 shows that the map l

0

! V; x 7! x:z is surjetive,

and sine l

0

is the kernel of the surjetive map

l! T

f

+

(S

C

)� T

f

�

(S

C

) = l

1

� l

�1

; x 7! x:(e;�e) = (x

+

; x

�

);

we see that the map l! T

f

+

(S

C

)�T

f

�

(S

C

)�T

z

(S

C

) is surjetive. In view of Proposition III.5,

this implies that the L-orbit of (f

+

; f

�

; z) in (S

C

)

3

is open and therefore that the H -orbit of

(e;�e; f) in S

3

is open.

So far we have seen that the H -orbits in S

3

>

oinide with the onneted omponents and

that eah suh orbit ontains an element of the form (e;�e; C(v)) for some v 2 C(V

�

�

). With

the aid of the following lemma, we shall be able to redue this further to the ase where v

2

= �e .

Lemma III.8. Let (A; e; �) be a real unital involutive Banah algebra and z 2 A

�

suh that

�z+ e is invertible for eah � 2 R . If, in addition, z is invertible, then there exists a hermitian

element x = x

�

2 A with �z

2

= e

x

. Then � := ze

�

1

2

x

2 A

�

�

satis�es �

2

= �1 and � lies in

the same onneted omponent of A

�

�

as z .

Proof. The assumption e+ �z 2 A

�

for � 2 R

�

implies that (z � �e)(z + �e) = z

2

� �

2

e is

invertible, so that Spe(�z

2

)\℄�1; 0[= �.

Let A

C

denote the omplexi�ation of (A; �), endowed with the antilinear involution given

by (x+ iy)

�

:= x

�

� iy

�

: On the open subset


 := fw 2 A

C

: Spe(w)\℄ �1; 0℄ = �g

we then have a holomorphi logarithm funtion

log: 
! A

C

; log(w) =

1

2�i

I



log(�)(�1 � w)

�1

d�;

where  is a pieewise smooth yle in C n℄ � 1; 0℄ with winding number 1 in eah point of

Spe(w) ([Ru73, Ths. 10.20, 10.38℄). In view of Spe(w

�

) = Spe(w) , the domain 
 is invariant

under the involution, and we have

log(w)

�

= �

1

2�i

I



log(�)(�1� w

�

)

�1

d�:

Sine the winding number of  in eah point of Spe(w) is �1, we obtain

log(w)

�

=

1

2�i

I



log(�)(�1 � w

�

)

�1

d� = log(w

�

):

Therefore x := log(�z

2

) is a hermitian element of A

C

lying in the ommutant of z . A

similar argument applies to the antilinear involution � :A

C

! A

C

with A = fa 2 A

C

: �(a) = ag

and shows that �(logw) = log �(w) for w 2 
, hene in partiular x 2 A

�

C

= A . We learly

have e

x

= �z

2

.

For �

t

:= e

�t

1

2

x

z = ze

�t

1

2

x

we obtain

�

�

t

= z

�

e

�t

1

2

x

= �ze

�t

1

2

x

= ��

t

and �

2

1

= e

�x

z

2

= �e:

For eah t 2 R the element e

�tx

z lies in A

�

�

, so that z and �

1

lie in the same onneted

omponent of A

�

�

.
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Theorem III.9. If the involutive 3-graded Lie group (G;D; �) satis�es (A1/2), then eah

onneted omponent of S

3

>

ontains an element of the form (e;�e; �) with �

�

= �� and

�

2

= �e .

Proof. From Lemma III.2(5) we know that eah onneted omponent of S

3

>

ontains an

element of the form (e;�e; C(v)) with v 2 V

�

�

. Let A � (V; e) denote the losed unital

Jordan subalgebra generated by v and v

�1

. In view of [Ja68, Ch. I, Set. 11, Th. 13℄, A is a

ommutative assoiative algebra, hene a ommutative Banah algebra in whih v is invertible.

Further v

�

= �v implies that A is invariant under the involution, hene an involutive Banah

algebra.

We now onsider the analyti map

�:R ! V; � 7! (e� �v)

�1

:

There exists an " > 0 suh that the Neumann series

P

1

n=0

�

n

v

n

onverges to (e � �v)

�1

for

j�j < " . This implies that �(�) 2 A for all these � . Sine � is analyti and A is a losed

subspae of V , we onlude with the Priniple of Analyti Continuation that im(�) � A , hene

that e� �v is invertible in A for all � 2 R .

Now Lemma III.8 applies to the element v 2 A , and we �nd an element � 2 A

�

�

in the

same onneted omponent as v , satisfying �

2

= �e . Eventually Lemma III.2(5) implies that

(e;�e; C(�)) lies in the same onneted omponent of S

3

>

as (e;�e; C(v)). Further �

2

= �e

leads to �(e � �) = � � �

2

= � + e; whih means that C(�) = (e + �)(e � �)

�1

= � . This

ompletes the proof.

IV. Evaluating the index map

In the preeding setion we have redued the problem to alulate the index funtion

�

G

:S

3

>

! �

1

(G

0

) to triples of the form (e;�e; �) with �

2

= �e in the unital Jordan algebra

(V; e). The next step is to alulate the index funtion on these triples expliitly by showing that

�

G

(e;�e; �) is represented by the group homomorphism

�

�

:T

�

=

R=Z! G

0

; t+Z 7! exp

G

(�t[�; �:e℄):

Applying the representation �

V

:G

0

! GL(V ), this leads to the loop

T

�

=

R=Z! G

0

; t+ Z 7! e

�t2L(�)

= P (e

�t�

):

To obtain the expliit formula for the index, we �rst investigate funtoriality properties of

the index and then alulate it expliitly for the group SL

2

(C )=f�1g .

Remark IV.1. (a) Let U and G be 3-graded Lie groups and ':U ! G a homomorphism of

Lie groups ompatible with the 3-grading.

We then have

'(U

�

) = '(exp u

�

) = expL(')u

�

� exp g

�

= G

�

and '(U

0

0

) � G

0

0

:

For a subset M � G we write C

G

(M) for the entralizer of M in G and for a subset

M � Aut(g) we write C

G

(M) := Ad

�1

(C

Aut(g)

(M)) for the set of all those elements g 2 G

for whih Ad(g) ommutes with M . This means that for a grading element E 2 g

0

we have

G

0

= C

G

(adE). If there is a grading element E

U

2 u

0

for whih E

G

:= L(')E

U

is a grading

element of g , then we thus obtain

'(U

0

) = '(C

U

(adE

U

)) � C

G

(adE

G

) = G

0

:
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Then ' indues a map U

+

U

0

U

�

! G

+

G

0

G

�

ompatible with the projetion maps

p

G

j

:G

+

G

0

G

�

! G

j

in the sense that

p

G

j

Æ ' = ' Æ p

U

j

; j = +; 0;�:

For z 2 u

+

and w 2 u

�

the ondition expw exp z 2 U

+

U

0

U

�

therefore implies

(expL(')w)(expL(')z) 2 G

+

G

0

G

�

;

whih shows that L(') preserves quasi-invertibility, and for suh pairs we have

' Æ p

U

0

(expw exp z) = p

G

0

((expL(')w)(expL(')z)):

(b) Now suppose, in addition, that U and G are involutive 3-graded Lie groups and

that ' Æ �

U

= �

G

Æ ' . Then we onlude that for quasi-invertible pairs (z; w) 2 u

+

the pair

(L('):z;L('):w)) is quasi-invertible with

'(B

U

(z; w)) = B

G

(L(')z;L(')w):

This relation leads to

'(d

U

(z

1

; z

2

; z

3

)) = d

G

(L(')z

1

;L(')z

2

;L(')z

3

)

for quasi-invertible triples (z

1

; z

2

; z

3

) 2 (V

U

)

3

>

.

If U and G satisfy (A1-3), then we further get L(')(D

U

). To see that L(') also maps

S

U

into S

G

, we �rst observe that we have an indued map

'

X

:X

U

:= U=U

0

U

�

! X

G

:= G=G

0

G

�

satisfying '

X

Æ �

U

X

= �

G

X

Æ '

X

for the orresponding involutions �

U

X

on X

U

and �

G

X

on X

G

.

Therefore '

X

maps the �xed point set of �

X

U

into the �xed point set of �

X

G

. On the open subset

V

U

� X

U

the map '

X

oinides with L('), and sine S

U

= V

U

\ (X

U

)

�

X

U

, we see that

L(')S

U

� S

G

:

Eventually this leads to the important relation

(4:1) �

1

(' j

U

0

) Æ �

U

(s

1

; s

2

; s

3

) = �

G

(L(')s

1

;L(')s

2

;L(')s

3

)

for quasi-invertible triples (s

1

; s

2

; s

3

) 2 (S

U

)

3

>

.

In the following we shall use the preeding remark as a tool to alulate the index of speial

triples in S

3

>

.

Lemma IV.2. Let e 2 S and onsider the orresponding unital involutive Jordan algebra

(V; e;Q(e)) . Suppose that � 2 V

�

\ S is an element with �

2

= �e . Then E := Re + R� is a

real involutive Jordan subalgebra of V isomorphi to (C ; 1) with the involution z

�

= z and

g

E

:= E + �(E) + [E; �(E)℄

�

=

sl

2

(C )

with the 3-grading de�ned by the grading element

�

1 0

0 �1

�

and the antilinear involution

�

�

a b

 �a

�

=

�

�a 

b a

�

:
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There is a unique morphism �

g

�

: sl

2

(C )! g of involutive Lie algebras with

�

g

�

�

0 1

0 0

�

= e and �

g

�

�

0 i

0 0

�

= �:

Proof. Clearly the map �

E

: C ! V; x + iy 7! xe + y� is a morphism of involutive unital

Jordan algebras, where the involution on C is omplex onjugation.

We reall from Theorem A.8 that g

E

is a Lie subalgebra of g . Sine g

E

is generated by E

and �(E), its enter z

E

oinides with the entralizer z

E

of E + �(E), and the quotient g

0

E

:=

g

E

=z

E

is an involutive 3-graded Lie algebra whose 0-omponent has a faithful representation

on E . From that it easily follows that g

0

E

is isomorphi to the Tits-Kantor-Koeher Lie algebra

TKK(E) = TKK(C )

�

=

sl

2

(C ) of the unital Jordan algebra C beause it is an A

1

-graded Lie

algebra (f. [Ne03, Ex. I.9(a),() for more details). Sine all entral extensions of the simple Lie

algebra sl

2

(C ) are trivial, we onlude that z

E

\ [g

E

; g

E

℄ = f0g , so that g

E

\ g

0

= [E; �(E)℄

implies z

E

= f0g and therefore g

E

�

=

sl

2

(C ).

In De�nition I.9 we have seen that the Lie algebra g

e

= spanfe; �(e); [e; �(e)℄g with 1-

dimensional grading spaes is isomorphi to sl

2

(R) with the involution

�

e

�

a b

 d

�

=

�

�a 

b �d

�

:

Sine the grading spaes g

E

\ g

j

are omplex one-dimensional, it follows that g

e

is a real form

of the omplex Lie algebra g

E

.

Next we determine the involution �

E

on g

E

�

=

sl

2

(C ) orresponding to the restrition of �

to g

E

. Sine the entroid

Cent(g

E

) = f' 2 End(g): (8x 2 g

E

) ['; adx℄ = 0g

is isomorphi to C as an assoiative algebra, the involution � indues a �eld isomorphism �

0

on

Cent(g

E

). The involution �

E

is omplex linear if this isomorphism is trivial and it is antilinear

otherwise. We denote the salar multipliation with i on sl

2

(C ) by i , whih is onsidered as an

element of Cent(g

E

). Then � = i:e leads to �:� = �

0

(i)�(e): From

�ie = �� = Q(e)� =

1

2

[[e; �:�℄; e℄ = �

1

2

(ad e)

2

�:� = �

1

2

(ad e)

2

�

0

(i)�(e)

= ��

0

(i)

1

2

(ad e)

2

�(e) = �

0

(i)Q(e)e = �

0

(i)e

we derive �

0

(i) = �i and hene that �

E

is antilinear.

Therefore �

E

is determined by its restrition to the real form g

e

, and hene

�

a b

 d

�

7!

�

�a 

b �d

�

is the involution on sl

2

(C ) for whih �

g

�

is a morphism of involutive Lie algebras.

Lemma IV.3. If G satis�es (A3), then the homomorphism e�

G

�

: SL

2

(C ) ! G integrating �

g

�

maps �1 to 1 .

Proof. Sine A := C is a hermitian Banah-�-algebra with respet to z

�

:= z , the disussion

of the speial ase of hermitian Banah-�-algebras in Example II.6 implies that

d

SL

2

(C )

(1;�1; i) = �1 2 SL

2

(C ):

Applying Remark III.1 to e�

G

�

, we onlude that d

SL

2

(C )

(1;�1; i) is mapped to

d

G

(e;�e; �) = 1 .
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Proposition IV.4. Suppose that the involutive 3-graded Lie group G satis�es (A1/2). Then

d

G

(S

3

>

) is ontained in Z(G

0

)

�

and generates an elementary abelian 2-group � whih is disrete.

The group G

0

=� satis�es (A1-3).

Proof. Sine the onneted omponents of S

3

>

oinide with the H -orbits, Theorem III.9

implies that for eah quasi-invertible triple (s

1

; s

2

; s

3

) 2 S

3

>

there exists an element g 2 H

and a triple of the form (e;�e; �) with Q(e)� = �� suh that (s

1

; s

2

; s

3

) = g:(e;�e; �): Then

Lemma I.7(6) implies that

d

G

(s

1

; s

2

; s

3

) = J

G

(g; z

1

)d

G

(e;�e; �)J

G

(g; z

1

)

�1

:

To see that d

G

(s

1

; s

2

; s

3

) 2 Z(G)

�

is an involution, we may therefore assume w.l.o.g. that

(s

1

; s

2

; s

3

) = (e;�e; �) with Q(e)� = �� .

Let �

g

�

: sl

2

(C ) ,! g denote the orresponding homomorphism of 3-graded Lie algebras

onstruted in Lemma IV.2. From Example II.6 we know that

d

SL

2

(C )

(1;�1; i) = �1 2 SL

2

(C ):

Applying Remark III.1 to the homomorphism e�

G

�

: SL

2

(C )! G integrating �

g

�

, we onlude that

d

G

(e;�e; �) = e�

G

�

(d

SL

2

(C )

(1;�1; i)) = e�

G

�

(�1):

The involution on SL

2

(C ) �xes �1 , whih leads to d

G

(e;�e; �) 2 G

�

. Sine g deomposes as a

diret sum of sl

2

(R)-modules isomorphi to the trivial and the adjoint modules (Remark I.10(b)),

we have Ad(e�

G

�

(�1)) = 1; so that e�

G

�

(�1) 2 Z(G

0

). Therefore d

G

(e;�e; �) is a entral � -

invariant involution in G

0

.

Further Lemma I.7 implies that the map d

G

:S

3

>

! Z(G

0

)

�

is onstant on the H -orbits

and alternating.

The image of d

G

onsists of entral involutions, hene the group � it generates is an

elementary abelian 2-group. Sine the Banah{Lie group G ontains no small subgroups, there

exists an identity neighborhood U � G with U \ � = f1g , so that � is disrete.

We onlude that

b

G := G

0

=� is a Lie group with the same Lie algebra g , and sine � is

� -invariant, this Lie group is involutive. Clearly (A1/2) also holds for this quotient group, and

d

G

(S

3

>

) � � leads to d

b

G

(S

3

>

) = f1g in

b

G

0

= G

0

0

=�.

De�nition IV.5. In the following we write �

G

�

: SL

2

(C )=f�1g ! G for the unique morphism

of 3-graded involutive Lie groups with L(�

G

�

) = �

g

�

whose existene follows from the simple

onnetedness of SL

2

(C ) and Lemma IV.3.

Aording to Remark IV.1, we have

�

G

(e;�e; �) = �

1

(�

G

�

)�

SL

2

(C )=f�1g

(1;�1; i):

Therefore the alulation of the index map is essentially redued to the alulation of the single

ase �

SL

2

(C )=f�1g

(1;�1; i):

The next proposition provides the index funtion for SL

2

(C )=f�1g .

Proposition IV.6. We onsider the 3-graded involutive Lie group G := SL

2

(C )=f�1g whih

satis�es (A1-3) by Theorem II.7. We have an isomorphism

�:G

0

=

n

�

�

z 0

0 z

�1

�

: z 2 C

�

o

! C

�

; �

�

z 0

0 z

�1

�

7! z

2

and identify �

1

(G

0

) aordingly with �

1

(C

�

)

�

=

Z; where we use p

C

�
: C ! C

�

; z 7! e

2�iz

as the

universal overing map. In these terms we have

�

G

(1;�1;�i) = �1:
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Proof. In the following we shall use the expliit formulas from the disussion of hermitian

Banah algebras in Example II.6. We have

B

SL

2

(C )

(z; w) =

�

1� zw 0

0 (1� zw)

�1

�

;

whih leads to

B

G

(z; w) = (1� zw)

2

in terms of our identi�ation of G

0

with C

�

. From that we further obtain for quasi-invertible

triples (z

1

; z

2

; z

3

):

d

G

(z

1

; z

2

; z

3

) = (1� z

1

z

2

)

2

(1� z

3

z

2

)

�2

(1� z

3

z

1

)

2

(1� z

2

z

1

)

�2

(1� z

2

z

3

)

2

(1� z

1

z

3

)

�2

=

�

1� z

1

z

2

1� z

2

z

1

�

2

�

1� z

3

z

1

1� z

1

z

3

�

2

�

1� z

2

z

3

1� z

3

z

2

�

2

:

We obtain in partiular

d

G

(z

1

; z

2

; 0) =

�

1� z

1

z

2

1� z

2

z

1

�

2

and d

G

(1;�1; z

3

) =

�

1� z

3

1� z

3

�

2

�

1 + z

3

1 + z

3

�

2

:

For the urve

�

1

: [0; 1℄! C

3

>

; t 7! (t;�t; 0)

from (0; 0; 0) to (1;�1; 0) this leads to d

G

(�

1

(t)) = (1� t

2

)(1� t

2

)

�1

= 1: For the path

�

2

: [0; 1℄! C

3

>

; t 7! (1;�1;�ti)

from (1;�1; 0) to (1;�1;�i) we obtain

d

G

(�

2

(t)) =

�

1� it

1� it

�

2

�

1� it

1� it

�

2

=

�

1� it

1� it

�

4

= e

8i arg(1�it)

:

This urve desribes a loop in C

�

orresponding to the element �1 2 Z

�

=

�

1

(C

�

).

Conatenating the two paths �

1

and �

2

, we obtain a path from (0; 0; 0) to (1;�1;�i)

whih lies in the ontratible set

D

3

>

= f(z

1

; z

2

; z

3

) 2 C

3

: (8j 6= k) jz

j

j � 1; z

j

z

k

6= 1g:

We onlude that this path is homotopi to the path

�

3

: [0; 1℄! C

3

>

; t 7! (t;�t;�ti);

and this implies the assertion.

Theorem IV.7. Let e 2 S and � 2 S with Q(e)� = �

�

= �� . Then the index of (e;�e; �)

is represented by the homomorphism

�

�

:T = R=Z! G

0

; t 7! exp

G

(��t[�; �:e℄)

and omposing with the representation �

V

on V leads to the homomorphism

�

V

Æ �

�

:T = R=Z! GL(V ); t 7! P (e

��t�

):

Proof. In terms of the Lie group struture, the index of (1;�1; i) for SL

2

(C )=f�1g is

represented by the loop

[0; 1℄! SL

2

(C )

0

=f�1g; t 7! exp

�

��it 0

0 �it

�

:

In view of Remark IV.1, �

G

(e;�e; �) an be represented by the homomorphism

R=Z! G; t+Z 7! �

G

�

�

exp

�

��it 0

0 �it

�

�

= exp

G

(��t[�; �:e℄)

beause h = [e; �:e℄ implies that ih = [ie; �:e℄ = [�; �:e℄ (f. De�nition I.9). Applying the

representation �

V

, we get the loop

R=Z! GL(V ); t+Z 7! e

�2�t(��e)

= e

�2�tL(�)

= P (e

��t�

)

in the unital Jordan algebra (V; e). Here we use the relation P (e

x

) = e

2L(x)

whih holds in every

Banah{Jordan algebra (f. [FK94, Prop. II.3.4℄).
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Proposition IV.8. Suppose that g is a omplex Lie algebra and that � is antilinear. Then

(V; e;Q(e)) is a omplex unital Jordan algebra and the involution Q(e)v = v

�

is antilinear. For

eah hermitian projetion p = p

�

= p

2

2 V

+

let



p

:R=Z! G

0

; t+Z 7! exp(2�it[p; �:p℄)

denote the orresponding projetion loop, whih is a group homomorphism. We then have for the

involution � = e� 2p the projetion loop formula

�

G

(e;�e;�i�) = �

G

(e;�e;�ie)� [

p

℄

Proof. We have V

�

= iV

+

, so that every unitary element in V

�

is of the form i� , where

� 2 V

+

is a hermitian involution. Then p :=

1

2

(e� �) is a hermitian idempotent in the Jordan

algebra (V; e) with � = e� 2p .

The index �

G

(e;�e;�i�) an be alulated diretly from the real � -invariant subalgebra

generated by e and �i� , whih is isomorphi to sl

2

(C ). As we have seen in Theorem IV.6, this

leads to the one-parameter subgroup T! G

0

orresponding to the element

�[i�; �:e℄ 2 exp

�1

(1):

In partiular, the index �

G

(e;�e;�ie) orresponds to the element

�[ie; �:e℄ = �i[e; �:e℄ 2 exp

�1

(1);

and the di�erene is the element

(4:2) �[ie� i�; �:e℄ = �i[e� �; �:e℄ = 2�i[p; �:e℄ = 2�i[p; �:p℄;

whih belongs to the Lie algebra g

p

:= span

C

fp; �:p; [p; �:p℄g

�

=

sl

2

(C ) (f. De�nition I.9), where

h := [p; �:p℄ orresponds to

�

1 0

0 �1

�

2 sl

2

(C ) whih satis�es exp(2�ih) = 1 . From (4.2) we

now derive the projetion loop formula beause [e; �:e℄ is entral in g

0

(Remark I.11).

V. The Maslov index for some examples

In this setion we give more onrete formulas for the index funtion for several lasses

of hermitian Banah-�-algebras and disuss the ase of �nite-dimensional bounded symmetri

domains.

Example V.1. We take a loser look at the index funtion for the ase G = GL

2

(A)=f�1g

for a hermitian Banah-�-algebra.

Then H = U

1;1

(A; �)

0

and G

0

= (A

�

�A

�

)=f�1g . Note that �1 2 A

�

0

follows from the

onnetedness of C

�

1 . Therefore G

0

0

�

=

(A

�

0

�A

�

0

)=f�1g; and the overing map A

�

0

�A

�

0

! G

0

0

leads to an exat sequene

(5:1) �

1

(A

�

)� �

1

(A

�

) ,! �

1

(G

0

)!! Z=2Z:

The exatness of this sequene follows from the long exat homotopy sequene of the overing.

We an also think of �

1

(G

0

) as the set of homotopy lasses of paths : [0; 1℄! GL

2

(A) starting

in 1 and ending either in 1 or �1 .

The Maslov index of a triple (e;�e;�i�), where � is a hermitian involution, is given by

the loop

�

�

: R=Z! G

0

; t+Z 7!= exp

G

(�it[�; �:e℄):



A topologial Maslov index for 3 -graded Lie groups 25

More expliitly we have

[�; �:e℄ =

h

�

0 �

0 0

�

;

�

0 0

1 0

�

i

=

�

� 0

0 ��

�

;

and sine � is an involution, we have exp

G

�

�i

�

� 0

0 ��

�

�

= 1:

Writing � as 1� 2p for a hermitian projetion p , we get the deomposition

�

� 0

0 ��

�

=

�

1 0

0 �1

�

� 2

�

p 0

0 �p

�

;

and the latter element already leads to a loop in the group GL

2

(A). In this sense we get

[�

�

℄ = [�

1

℄� ([

p

℄;�[

p

℄);

where 

p

is the projetion loop de�ned by p in A , where we onsider the pair ([

p

℄;�[

p

℄) as

an element of �

1

(A

�

)� �

1

(A

�

) aording to (5.1).

Example V.2. For the speial ase A = C(X; C ) we have A

�

= C(X; C

�

), and the exponen-

tial map

exp

A

:C(X; C )! C(X; C

�

); f 7! e

2�if

is the universal overing of the identity omponent A

�

0

, onsisting of all maps X ! C

�

homotopi to a onstant map. This shows that

�

1

(A

�

)

�

=

ker exp = C(X;Z):

On the other hand eah hermitian projetion p 2 A is a ontinuous funtion X ! f0; 1g , so that

the index of (1;�1;�i�) is of the form

[�

1

℄ + (p;�p) 2 [�

1

℄ + (C(X;Z)� C(X;Z))� �

1

(G

0

):

In this ase S = U(A) = C(X;T) and

�

0

(S)

�

=

�

0

(C(X;T))

�

=

[X;T℄

�

=

�

H

1

(X;Z)

is the set of homotopy lasses of ontinuous maps X ! T , resp., the �rst

�

Ceh ohomology

group.

Example V.3. If, moreover, X is a �nite set, so that A := C(X; C )

�

=

C

n

for n := jX j , then

C(X;Z)

�

=

Z

n

and

G

0

�

=

(C

�

)

n

� (C

�

)=f�1g

�

=

C

2n

=(2�iZ

2n

+ �i(1; : : : ; 1))

�

=

(C

�

)

2n

:

Here we see in partiular that �

1

(G

0

) is a free group, so that the sequene (5.1) does not split.

Example V.4. Fix q 2 [1;1℄ and let H be an in�nite-dimensional Hilbert spae. We onsider

the hermitian Banah-� algebra A := B

q

(H)+C 1 , where B

q

(H) is the ideal of B(H) onsisting

of all operators of Shatten lass q . For q = 1 the ideal B

1

(H) oinides with the spae of

ompat operators on H .

We write

GL

q

(H) := (B

q

(H) + 1) \GL(H)

for the group of all invertible operators in 1+B

q

(H) and reall that

�

1

(GL

q

(H))

�

=

lim

�!

�

1

(GL

n

(C ))

�

=

Z
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(f. [Ne04, Ths. A.10/11℄). Eah projetion loop orresponding to a 1-dimensional subspae of

H generates this group.

Sine B

q

(H) is an ideal of A omplemented by C 1 , we have

A

�

�

=

GL

q

(H)� C

�

and therefore

�

1

(A

�

)

�

=

�

1

(GL

q

(H))�Z

�

=

Z

2

:

Aordingly we write A

�

�A

�

�

=

GL

q

(H)

2

� (C

�

)

2

and

G

0

�

=

GL

q

(H)

2

�

�

(C

�

� C

�

)=f�(1; 1)g

�

with

�

1

(G

0

)

�

=

Z

2

� f(n;m) 2

1

2

Z

2

:n�m 2 2Zg:

�

=

Z

2

� (Z

2

+Z

1

2

(1; 1)):

If p 2 A is a hermitian projetion, then either p or 1 � p has �nite rank. If p has �nite

rank, then the orresponding projetion loop 

p

satis�es

[

p

℄ = tr p = dim(p:H) 2 Z

�

=

�

1

(GL

q

(H)):

If 1� p has �nite rank, then p = (p� 1) + 1 leads to

[

p

℄ = (tr(p� 1); 1) 2 Z

2

�

=

�

1

(GL

q

(H)) � �

1

(C

�

):

Therefore the index of (1;�1;�i(1� 2p)) is given by

�

G

(1;�1;�i(1� 2p)) =

�

(� tr p; tr p; (

1

2

;

1

2

)) for rk p <1

(� tr(p� 1); tr(p� 1); (

1

2

;

1

2

)� (1;�1)) for rk p =1

Example V.5. For von Neumann algebras, one has re�ned information on the relation between

projetions and loops in A

�

(f. [ASS71℄): Let H be a separable Hilbert spae and A � B(H)

a von Neumann algebra. Then the following assertions hold:

(a) For two projetions p; q 2 Idem(A; �) the ondition p � q and 1�p � 1�q is equivalent

to lying in the same path omponent of Idem(A; �).

(b) �

1

(A

�

) is generated by Hom(T; A

�

) and hene by the projetion loops.

() If A is a fator of in�nite type, then A

�

is simply onneted.

(d) If A is a fator of type II

1

, then �

1

(A

�

)

�

=

R , where �

1

(Z(A

�

) orresponds to

Z . For a projetion p 2 Idem(A; �) the projetion loop 

p

then orresponds to the element

tr p 2 [0; 1℄ � R

�

=

�

1

(A

�

). In partiular we have [

p

℄ = [

q

℄ if and only if tr p = tr q ([ASS71,

Th. 3.3℄)

Example V.6. If D is a �nite-dimensional bounded symmetri domain of tube type and

H = Aut(D)

0

, then the orresponding Jordan triple V ontains invertible tripotents. We assume

that D is irreduible of rank r , i.e., H is a simple Lie group of real rank r and G = H

C

.

Let us �x e 2 S , so that (V; e;Q(e)) is a unital involutive Jordan algebra. The real form

V

+

:= fv 2 V : v

�

= vg is a eulidean Jordan algebra. Therefore the set V

�

+

of invertible

hermitian elements and its onneted omponents ontain the involutions of the form e � 2p ,

where p is a hermitian projetion whose rank lies in f0; 1; 2; : : : ; rg . It follows in partiular that

there are r+1 onneted omponents (f. [FK94℄). In this ase the index funtion is determined

by its values on the triples (e;�e;�i(e�2p)), where p is a �xed hermitian projetion of rank k .

Sine in this ase the representation �

V

is faithful, we have already seen in Remark IV.7

that the homotopy lass �

G

(e;�e;�i(e� 2p)) 2 �

1

(G

0

) is represented by the loop

T = R=Z! GL(V ); t+Z 7! e

2�it

� e

��it4(p�p)

= e

2�it(id

V

�2(p�p))

:
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In view of the Piere deomposition of V , the operator 2p�p = 2p�e = 2L(p) is diagonalizable

with possible eigenvalues f0; 1; 2g , so that the formula above de�nes indeed a loop. We further

have

e

2�it(id

V

�2(p�p))

= e

2�itL(e�2p)

= P (e

�it(e�2p)

):

For the determinant funtion det:GL(V ) ! C

�

and a linear endomorhism D 2 End(V )

with integral eigenvalues, omposition of the loop t 7! e

2�itD

with det leads to the loop e

2�it trD

in C

�

, whih orresponds to the element trD 2 Z

�

=

�

1

(C

�

). For n := dimV we therefore get

the funtion

�

1

(det) Æ �

G

:S

3

>

! �

1

(C

�

)

�

=

Z

with

(e;�e;�i(e� 2p)) 7! trL(e� 2p) = n� 2 trL(p) = n� 2k

n

r

=

n

r

(r � 2k);

whih is, up to the fator

n

r

, the Maslov index de�ned in [C�01℄.

Problem V. (a) Is �

G

a oyle in the sense that

�

G

(z

1

; z

2

; z

3

) = �

G

(z

1

; z

2

; z

4

) + �

G

(z

2

; z

3

; z

4

) + �

G

(z

1

; z

4

; z

3

)?

(b) Is the index funtion invariant under the full group G

�

? This would follow if G

0

ats

trivially on �

1

(G

0

), but this is ertainly not always the ase beause G may be of the form

G = G

1

�G

2

with G

2

� G

0

and G

2

an be any Lie group.

If A is a hermitian Banah-�-algebra, then GL

2

(A)

0

�

=

A

�

� A

�

. In this ase the

problem from above leads to the question whether �

0

(A

�

) at trivially on �

1

(A

�

). This is

not always the ase, as we see for A = M

2

(R) with the involution a 7! a

>

. In this ase

�

0

(A

�

) = �

0

(GL

2

(R))

�

=

Z=2Z and �

1

(A

�

) = �

1

(GL

2

(R)) = �

1

(SL

2

(R))

�

=

Z , where the group

�

0

(A

�

) ats by inversion on �

1

(A

�

).

Appendix A. Jordan triple systems and Jordan algebras

In this appendix we ollet some basi fats on Jordan algebras and Jordan triples over a

�eld K with 2; 3 2 K

�

.

De�nition A.1. (a) A vetor spae V over a �eld K is said to be a Jordan triple system

(JTS) if it is endowed with a trilinear map f�g:V � V � V ! V satisfying:

(JT1) fx; y; zg = fz; y; xg .

(JT2) fa; b; fx; y; zgg = ffa; b; xg; y; zg� fx; fb; a; yg; zg+ fx; y; fa; b; zgg for all a; b; x; y; z 2 V .

For x; y 2 V we de�ne operators x�y , Q(x) and Q(x; z) on V by

(x�y):z := fx; y; zg; Q(x)(y) := fx; y; xg; Q(x; z)(y) := fx; y; zg:

The Bergman operator of V is de�ned by

B(x; y) := 1� 2x�y +Q(x)Q(y):

We de�ne the set of invertible elements of V by V

�

:= fv 2 V :Q(v) 2 GL(V )g and the

inversion map by V

�

! V

�

; v 7! v

℄

:= Q(v)

�1

:v: The elements of the set

S := fv 2 V

�

: v

℄

= vg = fv 2 V

�

: fv; v; vg = vg

are alled involutions, resp., invertible tripotents.
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Lemma A.2. If 3 2 K

�

and (V; f�; �; �g) is a Jordan triple system, then the following formulas

hold for x; y; z 2 V :

(1) Q(x):fy; x; zg = fQ(x):y; z; xg = fx; y;Q(x):zg .

(2) Q(x)(y�x) = (x�y)Q(x) = Q(Q(x):y; x) .

(3) [Q(x)Q(y); x�y℄ = 0 .

(4) 2(x�y)

2

�Q(x)Q(y) = x�(Q(y)x) = (Q(x)y)�y .

(5) Q(x;Q(z)y) = 2(z�y)Q(x; z)�Q(z)(y�x) .

(6) Q(Q(x)y) = Q(x)Q(y)Q(x) .

(7) For x 2 V

�

we have Q(x)

�1

and (x

℄

)

℄

= x .

(8) B(x; y)Q(x) = Q(x�Q(x):y) .

(9) B(x; y)Q(z)B(y; x) = Q(B(x; y):z) .

Proof. (1)-(5) an be found in [Ro00, Prop. I.2.1℄, (6) is [Ro00, Prop. I.4.1℄, and (8),(9) are

[Ro00, Props. I.5.1/2℄.

(1) From (JT2) we derive with (JT1)

fx; y; fx; z; xgg = ffx; y; xg; z; xg� fx; fy; x; zg; xg+ fx; z; fx; y; xgg

= 2ffx; y; xg; z; xg� fx; fy; x; zg; xg

= 2fx; y; fx; z; xgg� 2fx; fy; x; zg; xg+ 2ffx; z; xg; y; xg� fx; fy; x; zg; xg

= 4fx; y; fx; z; xgg� 3fx; fy; x; zg; xg:

This implies

3fx; y; fx; z; xgg = 3fx; fy; x; zg; xg;

so that 3 2 K

�

leads to

fx; y; fx; z; xgg = fx; fy; x; zg; xg:

This proves that the �rst and third term are equal. The equality of the �rst and the seond term

now follows from (JT1).

(2) follows diretly from (1).

(3) is an immediate onsequene of (2).

(4) First we observe that

fx; y; fx; y; zgg = ffx; y; xg; y; zg� fx; fy; x; yg; zg+ fx; y; fx; y; zgg

implies that

(Q(x)y)�y = x�(Q(y)x):

We further have

ffx; y; xg; y; zg = fz; y; fx; y; xgg = ffz; y; xg; y; xg� fx; fy; z; yg; xg+ fx; y; fz; y; xgg

= 2ffz; y; xg; y; xg� fx; fy; z; yg; xg

whih leads to

(Q(x)y)�y = 2(x�y)

2

�Q(x)Q(y):

(5) is the identity

fx; a; fz; y; zgg= 2ffx; a; zg; y; zg� fz; fa; x; yg; zg:

(6) From (5) we obtain by replaing z by x and x by Q(x)y with (2) the relation

Q(Q(x)y) = Q(Q(x)y;Q(x)y) = 2(x�y)Q(Q(x)y; x)�Q(x)(y�Q(x)y)

= 2(x�y)(x�y)Q(x) �Q(x)(2(y�x)

2

�Q(y)Q(x))

= 2(x�y)

2

Q(x) � 2Q(x)(y�x)

2

+Q(x)Q(y)Q(x)

= Q(x)Q(y)Q(x):
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(7) Using (6), we get

Q(x

℄

) = Q(Q(x)

�1

:x) = Q(x)

�1

Q(x)Q(x)

�1

= Q(x)

�1

;

and further

(x

℄

)

℄

= Q(x

℄

):x

℄

= Q(x)

�1

:x

℄

= x:

(8) From B(x; y) = 1� 2x�y +Q(x)Q(y) we derive with (2) that

B(x; y)Q(x) = Q(x)� 2(x�y)Q(x) +Q(x)Q(y)Q(x) = Q(x)� 2Q(Q(x):y; x) +Q(x)Q(y)Q(x)

= Q(x�Q(x):y):

(9) [Ro00, p.444℄

Theorem A.3. Suppose that 2; 3 2 K

�

.

(a) If J is a Jordan algebra, then J is a Jordan triple system with respet to

fx; y; zg = (xy)z + x(yz)� y(xz); i.e., x�y = L(xy) + [L(x); L(y)℄;

where we write L(x)y := xy for the left multipliations in J . We have

Q(x) = P (x) := 2L(x)

2

� L(x

2

):

(b) If V is a Jordan triple system and a 2 V , then

x �

a

y := fx; a; yg

de�nes on V the struture of a Jordan algebra whose quadrati representation is given by

P (v) := 2L(v)

2

� L(v

2

) = Q(v)Q(a):

The Jordan triple struture determined by the Jordan produt �

a

is given by

fx; y; zg

a

= fx; fa; y; ag; zg= fx;Q(a):y; zg:

It oinides with the original one if Q(a) = 1 .

Proof. (f. [Ja68, Ch. I, Sets. 8,12℄) This is proved in [Ne03, Theorem C.4℄, up to the

formula for the quadrati representation, whih follows from

P (v) = 2L(v)

2

� L(v

2

) = 2(v�a)

2

� (Q(v)a)�a = Q(v)Q(a)

(Lemma A.2(4)).

Lemma A.4. In a Jordan triple system V the following assertions hold:

(1) x�x

℄

= id

V

for eah x 2 V

�

.

(2) S = fx 2 V :x�x = id

V

g .

(3) Q(e)

2

= id

V

holds for eah e 2 S .

Proof. (1) In view of Lemma A.2(2), we have

Q(x) = Q(x; x) = Q(x;Q(x)x

℄

) = (x�x

℄

)Q(x);

so that the invertibility of Q(x) implies (1).

(2), (3) If e 2 S , then e = e

℄

and (1) imply e�e = id

V

.

If, onversely, e�e = id

V

, then Q(e)e = fe; e; eg = e . Further Lemma A.2(4) implies

2 id

V

�Q(e)

2

= e�Q(e)e = e�e = id

V

;

whih leads to Q(e)

2

= id

V

. Hene e is invertible and e

℄

= Q(e)

�1

e = Q(e)e = e .
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Proposition A.5. (a) Let (V; f�; �; �g) be a Jordan triple system and e 2 S an invertible

tripotent. Then

ab := fa; e; bg; a

�

:= fe; a; eg

de�nes on V the struture of an involutive Jordan algebra and the Jordan triple struture an be

reonstruted from (V; e; �) by

fx; y; zg = (xy

�

)z + x(y

�

z)� y

�

(xz); x; y; z 2 V:

The set S of involutions of the Jordan triple V oinides with the set

S = fv 2 V : v

�

= v

�1

g

of unitary elements of the unital involutive Jordan algebra (V; e; �) .

(b) If (V; e; �) is a unital involutive Jordan algebra, then

fx; y; zg := (xy

�

)z + x(y

�

z)� y

�

(xz); x; y; z 2 V

de�nes a Jordan triple struture on V with

ab = fa; e; bg and a

�

= fe; a; eg:

Proof. (a) It follows from Theorem A.3 that ab := fa; e; bg de�nes on V a Jordan algebra

struture with multipliation maps L(a) = a�e . In partiular L(e) = e�e = id

V

, so that e is

an identity of V . Moreover, Q(e)

2

= id

V

follows from Lemma A.4(3). Next

(a

2

)

�

= Q(e)Q(a)e = Q(e)Q(a)Q(e)e = Q(Q(e)a)e = Q(a

�

)e = (a

�

)

2

;

and polarization leads to (ab)

�

= a

�

b

�

for a; b 2 V:

Finally Theorem A.3(b) entails

(xy

�

)z + x(y

�

z)� y

�

(xz) = fx;Q(e)y

�

; zg = fx;Q(e)

2

y; zg = fx; y; zg:

The ondition z 2 S means z

℄

= z , so that the desription of the set S in terms of the

involutive Jordan algebra follows from (z

℄

)

�

= Q(e)Q(z)

�1

z = P (z)

�1

z = z

�1

.

Remark A.6. If a 2 V

�

is invertible, then xy := fx; a

℄

; yg de�nes on V the struture of a

Jordan algebra with identity a beause L(a) = a�a

℄

= id

V

(Lemma A.4).

Proposition A.7. Let V be a Jordan triple and a; b;  2 V with  2 V

�

and a+ b+  = 0 .

Then

Q(a)Q()

�1

Q(b) = Q(b)Q()

�1

Q(a):

Proof. We onsider the unital Jordan algebra (V; ) with the produt xy := fx; 

℄

; yg

(Remark A.6). Then the quadrati representation of this Jordan algebra is given by

P (v) = Q(v)Q(

℄

) = Q(v)Q()

�1

:

Therefore it suÆes to show that P (a)P (b) = P (b)P (a): As b = � � a and  is the identity

element, we have

P (b) = P (�� a) = P (+ a) = P () + 2P (; a) + P (a) = id

V

+2L(a) + P (a);

and this operator ommutes with P (a) beause L(a) ommutes with L(a

2

).
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Theorem A.8. If g = g

1

�g

0

�g

�1

is a 3-graded Lie algebra with an involutive automorphism

� satisfying �(g

j

) = g

�j

for j = 0;�1 , then V := g

1

is a Jordan triple system with respet to

fx; y; zg :=

1

2

�

[x; �:y℄; z

�

.

If E � V is a Jordan subtriple, then g

E

:= E + �(E) + [E; �(E)℄ � g is a � -invariant

3-graded subalgebra.

Proof. The �rst part is ontained in [Ne03, Theorem C.3℄.

For the seond part, let E � V be a Jordan subtriple. Then the elements [v; �w℄ 2 g

0

,

v; w 2 E , at on V as the operators v�w , hene preserve the Jordan subtriple E . We onlude

that [[E; �(E)℄; E℄ � E , and by applying � , we also obtain [[E; �(E)℄; �(E)℄ � �(E). We further

have

[[v; �w℄; [v

0

; �w

0

℄℄ = [[[v; �w℄; v

0

℄; �w

0

℄ + [v

0

; [[v; �w℄; �w

0

℄℄;

showing that [E; �(E)℄ is a subalgebra of g

0

. Therefore g

E

is a subalgebra of g .

Lemma A.9. In a unital Jordan algebra (V; e) we have for invertible elements v; w 2 V

�

the

relations

L(v

�1

) = P (v)

�1

L(v) = L(v)P (v)

�1

and P (v

�1

+ w

�1

) = P (w)

�1

P (v + w)P (v)

�1

:

Proof. First we observe that the anonial Jordan triple struture on V turns it into a Jordan

triple system with Q(x) = P (x) for all x 2 V and L(x) = x�e (Theorem A.3). Putting x = e ,

y = v and z = v

�1

in Lemma A.2(5), we get with Lemma A.4:

L(v

�1

) = v

�1

�e = (Q(v)

�1

:v)�e = Q(e;Q(v

�1

):v) = 2(v

�1

�v)Q(e; v

�1

)�Q(v

�1

)(v�e)

= 2Q(e; v

�1

)�Q(v

�1

)L(v) = 2L(v

�1

)�Q(v

�1

)L(v);

and therefore L(v

�1

) = Q(v)

�1

L(v) (f. [Ja68, Ch. I, Set. 11, Th. 13℄). Note that the Jordan

identity [L(v); L(v

2

)℄ = 0 means that Q(v) = P (v) ommutes with L(v).

To derive the seond identity, we �rst alulate

P (e+ v

�1

)P (v) =

�

P (e) + 2P (e; v

�1

) + P (v

�1

)

�

P (v) = P (v) + 2L(v

�1

)P (v) + id

V

= P (v) + 2L(v) + id

V

= P (e+ v):

Now we onsider the unital Jordan algebra (V;w) with the isotopi produt a �

w

b :=

fa; w

�1

; bg and the quadrati representation

e

P (v) = Q(v)Q(w)

�1

= P (v)P (w)

�1

(Theorem A.3, Lemma A.4). Then we obtain with the formula in the preeding paragraph and

P (w):v

�1

= P (w)P (v)

�1

:v =

e

P (v)

�1

:v

the relation

P (v

�1

+ w

�1

) = P

�

P (w)

�1

:(P (w):v

�1

+ w)

�

= P (w)

�1

P (P (w):v

�1

+ w)P (w)

�1

= P (w)

�1

e

P (w + P (w):v

�1

) = P (w)

�1

e

P (w +

e

P (v)

�1

:v)

= P (w)

�1

e

P (w + v)

e

P (v)

�1

= P (w)

�1

P (w + v)P (w)

�1

P (w)P (v)

�1

= P (w)

�1

P (w + v)P (v)

�1

:
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Lemma A.10. For invertible elements x; y in the Jordan triple V we have

(1) Q(x)Q(x

℄

+ y

℄

)Q(y) = Q(x+ y) and

(2) B(x; y

℄

) = Q(x� y)Q(y)

�1

.

Proof. (1) We onsider on V the unital Jordan algebra struture de�ned by ab := fa; x

℄

; bg

with unit x (Remark A.6). Then the quadrati representation of the unital Jordan algebra

(V; x) is given by P (v) = Q(v)Q(x)

�1

and the Jordan inversion by v

�1

= P (v)

�1

:v = Q(x)v

℄

(Theorem A.3). Hene Lemma A.9 leads to

Q(x)Q(x

℄

+ y

℄

)Q(x) = Q(Q(x)x

℄

+Q(x)y

℄

) = Q(x+ y

℄

) = P (x+ y

℄

)Q(x)

= P (x+ y)P (y

℄

)Q(x) = P (x+ y)P (y)

�1

Q(x) = Q(x+ y)Q(y)

�1

Q(x):

This ompletes the proof.

(2) In view of Lemma A.2(8) and (1), assertion (2) follows from

B(x; y

℄

) = Q(x�Q(x)y

℄

)Q(x)

�1

= Q(x)Q(x

℄

� y

℄

)Q(x)Q(x)

�1

= Q(x)Q(x

℄

� y

℄

) = Q(x� y)Q(y)

�1

:

Lemma A.11. Let (V; e) be a unital Jordan algebra and V

�

the set of invertible elements

in V . Then the Cayley transform

C:V

�

+ e! V

�

� e; z 7! (e+ z)(e� z)

�1

is a bijetive map with C

�1

(z) = �C(�z) whih further satis�es

(1) C(z)

�1

= C(�z) for z � e 2 V

�

and C

2

(z) = �z

�1

if z; e� z 2 V

�

.

(2) P (C(z)) = P (e+ z)P (e� z)

�1

for z � e 2 V

�

.

(3) (e;�e; z) = 4P (C(z))

�1

for z � e 2 V

�

.

(4) d(e;�e; z) = P (C(z))

�1

P (C(z))

�

for z � e 2 V

�

.

Proof. (1) From

C(z) + e = (e+ z + e� z)(e� z)

�1

= 2(e� z)

�1

2 V

�

we see that C(�C(z)) is de�ned, and an easy alulation leads to C(�C(z)) = �z for z 2 V

�

+e .

This implies that �C is an involution of the subset V

�

� e of V and that

C

�1

(z) = �C(�z) = �(e� z)(e+ z)

�1

= (z � e)(z + e)

�1

:

Moreover, if C(z) is invertible, then we have

C(z)

�1

= (e� z)(e+ z)

�1

= C(�z);

showing also that this happens if and only if e� z are invertible. If z and z � e are invertible,

then z

�1

� e is invertible and we get

C(z

�1

) = (e+ z

�1

)(e� z

�1

)

�1

= (z + e)(z � e)

�1

= �C(z);

showing that C

2

(z

�1

) = C(�C(z)) = �z and therefore C

2

(z) = �z

�1

:

(2) For z � e 2 V

�

we get with Lemma A.9:

P (C(z)) = P (C(z) + e� e) = P (2(e� z)

�1

� e)

= P (e� 2(e� z)

�1

) = P (e�

1

2

(e� z))P (�

1

2

(e� z))

�1

= P (

1

2

(e+ z))P (�

1

2

(e� z))

�1

= P (e+ z)P (e� z)

�1

:

(3) In view of Lemma A.10(2), we have

(e;�e; z) = B(e;�e)B(z;�e)

�1

B(z; e) = B(e;�e

�1

)B(z;�e

�1

)

�1

B(z; e

�1

)

= Q(e+ e)Q(z + e)

�1

Q(z � e)Q(e) = P (2e)P (z + e)

�1

P (z � e)P (e)

= 4P (z � e)P (z + e)

�1

= 4P (C(z))

�1

:

(4) is an immediate onsequene of (3) and

d(e;�e; z) = (e;�e; z)(e; z;�e)

�1

= (e;�e; z)((e;�e; z)

�1

)

�
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Appendix B. Transversality of 3-�ltrations

Let g be a Lie algebra over a �eld K not of harateristi 2 or 3. In this appendix we

shall explain some general fat on inner 3-�ltrations of Lie algebras. We shall losely follow the

setup in [BN04a℄, from whih we shall re�ne one result that is ruial for the present paper.

Our basi objets are on the one hand 3-graded Lie algebras, i.e., Lie algebras of the form

g = g

1

� g

0

� g

�1

satisfying the relations [g

�

; g

�

℄ � g

�+�

for �; � 2 f�1; 0; 1g , and on the

other hand 3-�ltered Lie algebras, i.e., Lie algebras g with a ag f : f0g = f

2

� f

1

� f

0

� g

of subalgebras suh that [f

�

; f

�

℄ � f

�+�

. For simpliity we shall also write these ags as pairs

f = (f

1

; f

0

). If g is 3-graded, then the 3-grading is the eigenspae deomposition for a unique

derivation D 2 der(g) with D(X) = iX for X 2 g

i

. The derivation D is alled the harateristi

element of the grading, and if D = ad(E), E will be alled an Euler operator. For a 3-grading

g = g

�1

� g

0

� g

1

with orresponding derivation D there are two naturally assoiated �ltrations

f

+

:= f

+

(D) := (g

1

; g

1

� g

0

) and f

�

:= f

�

(D) := (g

�1

; g

�1

� g

0

). We write

F = ff

+

(D) : D 2 Gg

for the spae of inner 3-�ltrations of g . The spae F arries an interesting geometri struture.

First we have a transversality relation > on F �F de�ned by

e = (e

1

; e

0

) > f = (f

1

; f

0

) , g = e

1

� f

0

= f

1

� e

0

:

A key result on the struture of 3-graded Lie algebras ([BN04a, Th. 1.6℄) asserts that the set

of transversal pairs in F orresponds to the set of inner 3-gradings of g , where the 3-grading

assoiated to the pair (e; f) is determined by

(B:1) g

1

= e

1

; g

0

= e

0

\ f

0

and g

�1

= f

1

:

For e 2 F we write

e

>

:= ff 2 F : e>fg

for the set of �ltrations transversal to e .

The group Aut(g) ats naturally on F by g:(e

1

; e

0

) := (g:e

1

; g:e

0

), preserving the transver-

sality relation, and it also ats on G . For any inner 3-�ltration e and x 2 e

1

we have (adx)

3

= 0

beause adx(g) � e

0

and (adx)

2

(g) � e

1

. Sine 2 and 3 are invertible in K ,

e

adx

:= 1+ adx+

1

2

(adx)

2

de�nes an automorphism of g . In [BN04a℄ we show that the set e

>

of �ltrations transversal to

a given �ltration e arries a natural struture of an aÆne spae over K with translation group

e

ad e

1 �

=

(e

1

;+) whih ats as a subgroup of Aut(g) on F .

We �x an inner 3-grading g = g

1

�g

0

�g

�1

of g and onsider an involutive automorphism

� of g with �(g

i

) = g

�i

for i = �1; 0; 1. For the assoiated ags f

+

= (g

1

; g

0

+ g

1

) and

f

�

= (g

�1

; g

0

+ g

�1

) this means that �:f

�

= f

�

in F . Hene the involution g 7! �:g := �g� of

Aut(g) preserves G(f

+

; f

�

). We also write g

�

:= �g� to simplify the notation.

De�nition B.1. On the vetor spae V := g

1

we de�ne by fx; y; zg :=

1

2

[[x; �:y℄; z℄ the

struture of a Jordan triple system (Theorem A.5). In terms of Lie triple systems we then have

on V the relations

Q(x):y = �

1

2

(adx)

2

Æ � and x�y =

1

2

ad[x; �:y℄ j

V

=

1

2

adx ad(�:y) j

V

whih shows in partiular that the set V

�

of invertible elements in the Jordan triple V does not

depend on the involution � . The orresponding Bergman operator is given by

B(x; y) = 1� 2x�y +Q(x)Q(y) = 1� adx ad �:y +

1

4

(adx)

2

(ad �:y)

2

:

The following proposition is a slight re�nement of [BN04a, 5.2℄.
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Proposition B.2. Let � be an involution of g with �(g

i

) = g

�i

for i = �1; 0; 1 and f

�

the

orresponding two 3-�ltrations. We identify the Jordan triple V = g

1

with the subset e

ad f

+

:f

�

of F via the map v 7! e

ad v

:f

�

. Let �

F

denote the involution of the set F indued by the

involution � . Then

�

�1

F

(V ) \ V = V

�

is the set of invertible elements in V , and for v 2 V

�

we have

�

F

(v) = v

℄

= Q(v)

�1

:v:

Proof. With respet to the 3-grading of g , we write eah automorphism g 2 Aut(g) as a

matrix g = (g

ij

) with g

ij

2 Hom(g

j

; g

i

). Let E 2 g

0

be suh that adE is a derivation de�ning

the grading of g . For x 2 V we de�ne

d

g

(x) := (e

� ad x

g

�1

)

11

; 

g

(x) := (ge

adx

)

�1;�1

and n

g

(x) := (e

� adx

g

�1

E)

1

:

In view of [BN04, Cor. 1.10, Th. 2.8℄, g:x 2 V is equivalent to the invertibility of d

g

(x) and



g

(x), and in this ase

g:x = d

g

(x)

�1

n

g

(x):

For g := � we have g

ij

= 0 for i 6= �j , and therefore

d

�

(x) := (e

� adx

�)

11

=

1

2

(adx)

2

� j

g

1

= �Q(x):

Further



�

(x) := (�e

adx

)

�1;�1

= �

1

2

(adx)

2

j

g

�1

= ��Q(x)� j

g

�1

:

This shows that �

F

:x 2 V is equivalent to x 2 V

�

. Eventually the fat that � reverses the

grading implies �:E +E 2 z(g), so that

n

�

(x) = (e

� ad x

�:E)

1

= (e

� adx

:(�E))

1

= [x;E℄ = �x:

We onlude that

�

F

(x) = d

�

(x)

�1

n

�

(x) = �Q(x)

�1

:(�x) = Q(x)

�1

:x = x

℄

:

Remark B.3. Let x 2 V = g

1

. Then the pairs (f

+

; f

�

) and (f

+

; e

adx

:f

�

) are transversal,

so that the triple (f

+

; f

�

; e

adx

:f

�

) is transversal if and only if e

adx

:f

�

is transversal to f

�

, i.e.,

�

F

(e

adx

:f

�

) is transversal to f

+

= �

F

(f

�

). In view of Proposition B.2, this is equivalent to

x 2 V

�

.

Appendix C. Tripotents and the Peire deomposition

In this appendix we briey disuss the Peire deomposition of a Jordan triple with respet

to a tripotent e and the representation of the orresponding sl

2

-subalgebra on g .

Lemma C.1. (Peire deomposition) For eah tripotent e 2 V the operator 2e�e is diagonal-

izability with eigenvalues in f0; 1; 2g , and for the orresponding eigenspaes V

�

we have

(C:1) fV

�

; V

�

; V



g � V

���+

:

The tripotent e is invertible if and only if V = V

2

.

Proof. We put D := e�e . First Lemma A.2(4) leads to the relation

2(e�e)

2

�Q(e)

2

= e�(Q(e)e) = e�e;
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and hene to

(C:2) 2D

2

�D = Q(e)

2

:

On the other hand, Lemma A.2(2) yields Q(e) = DQ(e) = Q(e)D , so that multipliation of

(C.2) with D entails

2D

3

�D

2

= DQ(e)

2

= Q(e)

2

= 2D

2

�D;

and further

0 = 2D

3

� 3D

2

+D = D(D � 1)(2D � 1):

Sine the three roots of this polynomial are di�erent, D is diagonalizable with eigenvalues in

f0;

1

2

; 1g . The relation (C.1) is a onsequene of the fat that D is a Lie triple derivation by

(JT2).

If e is invertible, then Q(e)

2

= 2D

2

� D = D(2D � 1) is invertible, so that D = id

V

,

i.e., V = V

2

. If, onversely, V = V

2

, i.e., D = 1 , then Q(e)

2

= id

V

implies that Q(e) is an

involution, hene invertible.

In the following g denotes a 3-graded Lie algebra with involution � reversing the grading

and V = g

1

arries the Jordan triple struture from Theorem A.8.

De�nition C.2. A triple (e; h; f) of elements of g is alled an sl

2

-triple if

[e; f ℄ = h; [h; e℄ = 2e and [h; f ℄ = �2f:

It is alled a graded sl

2

-triple if e 2 g

1

and f 2 g

�1

.

Lemma C.3. If e 2 V = g

1

is a tripotent, then (e; [e; �:e℄; �:e) is a graded sl

2

-triple.

Proof. We have [h; e℄ = 2fe; e; eg = 2e and [h; f ℄ = � [�h; e℄ = �� [h; e℄ = �2�e = �2f:

Proposition C.4. Let g be a 3-graded Lie algebra.

(1) If x 2 g

1

is suh that the linear map (adx)

2

: g

�1

! g

1

is bijetive, then there exist unique

elements y 2 g

�1

and h in g suh that (x; h; y) is a graded sl

2

-triple. In this ase

1

2

h 2 g

0

is a grading element.

(2) If (x; h; y) is a graded sl

2

-triple suh that

1

2

h 2 g

0

is a grading element, then (adx)

2

: g

�1

!

g

1

is bijetive.

Proof. (1) Our assumption implies that there exists a unqiue element y 2 g

�1

with

�

1

2

(adx)

2

:y = x . This implies already the uniqueness assertion. To prove existene, we put

h := [x; y℄ 2 g

0

. The de�nition of y then implies that

[h; x℄ = �(adx)

2

:y = 2x:

Further

[x; [h; y℄℄ = [[x; h℄; y℄ + [h; [x; y℄℄ = [�2x; y℄ = �2h

leads to

�

1

2

(adx)

2

:[h; y℄ = [x; h℄ = �2x;

and hene to [h; y℄ = �2y by the injetivity of (adx)

2

on g

�1

.

We reall the following formulas from elementary sl

2

-theory ([Bou90, Ch. VIII, x1, no. 1,

Lemma 1℄):

[adh; (adx)

n

℄ = 2n(adx)

n

; [adh; (ad y)

n

℄ = �2n(ad y)

n

and

(C:3) [ad y; (adx)

n

℄ = �n(adx)

n�1

�

adh+ (n� 1) id

�

= �n

�

adh� (n� 1) id

�

(adx)

n�1

:
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For w 2 g

�1

we have (adx)

3

:w = 0 and therefore

0 = ad y(adx)

3

:w = [ad y; (adx)

3

℄:w = �3(adx)

2

�

adh+ 21

�

:w:

Sine (adx)

2

j

g

�1

is injetive, we get [h;w℄ = �2w . This further leads to [h; (adx)

2

:w℄ =

2(adx)

2

:w and hene to [h; v℄ = 2v for all v 2 g

1

.

This implies that [h; [g

1

; g

�1

℄℄ = f0g and in partiular [h; [x; g

�1

℄℄ = f0g . Sine the map

(adx)

2

: g

�1

! g

1

is bijetive,

adx j

[x;g

�1

℄

: [x; g

�1

℄! g

1

also is bijetive. Thus adx([x; g

�1

℄) = g

1

and hene

g

0

= [x; g

�1

℄� (ker adx \ g

0

):

For z 2 g

0

\ ker adx the operators ad z and adx ommutes, so that

(adx)

2

([y; z℄) 2 � ad z(adx)

2

:y = �2 ad z:x = 0;

and therefore [y; z℄ = 0. This also implies that [h; z℄ = 0, and we onlude that h 2 z(g

0

).

Hene

1

2

h is a grading element.

(2) For w 2 g

�1

the relations [y; w℄ = 0 and [h;w℄ = �2w imply that w generates an at

most 3-dimensional submodule for the Lie subalgebra g

x

:= span

K

fx; y; hg ([Bou90, Ch. VIII,

x1, no. 1, Lemma 1℄).

For n = 2 we get with (C.3) and [y; w℄ = 0:

ad y(adx)

2

:w = [ad y; (adx)

2

℄:w = �2(adx)

�

adh+ id

�

:w = 2adx:w:

Therefore (adx)

2

:w = 0 implies [x;w℄ = 0, so that 0 = [h;w℄ = �

1

2

w . We onlude that

(adx)

2

j

g

�1

is injetive.

For w 2 g

1

the relations [h;w℄ = 2w and [x;w℄ = 0, together with the relation

(C:4) [adx; (ad y)

n

℄ = n(ad y)

n�1

�

adh� (n� 1) id

�

= n

�

adh+ (n� 1) id

�

(ad y)

n�1

leads to

(adx)

2

(ad y)

2

:w = (adx):[adx; (ad y)

2

℄:w = (adx):(2 ad y:w) = 2 ad[x; y℄:w = 4w;

and hene to w 2 (adx)

2

(g

�1

).
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