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Abstract

We are concerned with the derivation of the I'-limit to a three-dimensional geometri-
cally exact Cosserat model as the relative thickness h > 0 of a flat domain tends to zero.
The Cosserat bulk model involves already exact rotations as a second independent field.
It is shown that the I'-limit based on a natural scaling assumption consists of a mem-
brane like energy contribution and a homogenized transverse shear energy both scaling
with h, augmented by an additional curvature stiffness due to the underlying Cosserat
bulk formulation, also scaling with h. No specific bending term appears in the dimen-
sional homogenization process. The formulation exhibits an internal length scale L. which
survives the homogenization process. A major technical difficulty, which we encounter
in applying the I'-convergence arguments, is to establish equi-coercivity of the sequence
of functionals as the relative thickness h tends to zero. Usually, equi-coercivity follows
from a local coerciveness assumption. While the three-dimensional problem is well-posed
for the Cosserat couple modulus p. > 0, equi-coercivity forces us to assume a strictly
positive Cosserat couple modulus g, > 0. The [-limit model determines the midsurface
deformation m € H"?(w,R?®). For the case of zero Cosserat couple modulus p. = 0 we
obtain an estimate of the I' —lim inf and I" — lim sup, without equi-coercivity which is then
strenghtened to a I'-convergence result for zero Cosserat couple modulus. The classical
linear Reissner-Mindlin model is ”almost” the linearization of the I'-limit for u. = 0 apart
from a stabilizing shear energy term.
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1 Introduction

1.1 Aspects of shell theory

The dimensional reduction of a given continuum-mechanical model is already an old and mature
subject and it has seen many ”solutions”. The different approaches toward elastic shell theory
proposed in the literature and relevant references thereof are, therefore, too numerous to list
here. One possible way to proceed is the so called derivation approach, i.e., reducing a given
three-dimensional model via physically reasonable constitutive assumptions on the kinematics
to a two-dimensional model. This is opposed to either the intrinsic approach which views
the shell from the onset as a two-dimensional surface and invokes concepts from differential
geometry or the asymptotic methods which try to establish two-dimensional equations by
formal expansion of the three-dimensional solution in power series in terms of a small (thickness)
parameter. The intrinsic approach is closely related to the direct approach which takes the
shell to be a two-dimensional medium with additional extrinsic directors in the sense of a
restricted Cosserat surface [19].! There, two-dimensional equilibrium in appropriate new
resultant stress and strain variables is postulated ab-initio more or less independent of three-
dimensional considerations, cf. [2, 37, 25, 17, 16, 18, 60].

A detailed presentation of the different approaches in classical shell theories can be found
in the monograph [47]. A thorough mathematical analysis of linear, infinitesimal-displacement
shell theory, based on asymptotic methods is to be found in [13] and the extensive references
therein, see also [12, 14, 2, 20, 22, 32, 3]. Excellent reviews and insightful discussions of the
modelling and finite element implementation may be found in [64, 61, 63, 38, 39, 75, 7, 11]
and in the series of papers [65, 67, 68, 70, 69, 66]. Properly invariant, geometrically exact,
elastic plate theories are derived by formal asymptotic methods in [27]. This formal derivation
is extended to curvilinear shells in [43, 41]. Apart from the pure bending case [30, 31], which
is rigourously justified as the I'-limit of the three-dimensional model and which can be shown
to be intrinsically well-posed, the obtained finite-strain models have not yet been shown to be
well-posed. Indeed, the membrane energy contribution is notoriously not Legendre-Hadamard
elliptic. The different membrane model formally justified in [24] by T'-convergence is geomet-
rically exact and automatically quasiconvex/elliptic but unfortunately does not coincide upon
linearization with the otherwise well-established infinitesimal-displacement membrane model.
Moreover, this model does not describe the detailed geometry of deformation in compression
but reduces to a tension-field theory [71].

There is no place here to comment further on the relative merits of each alternative approach.
The ”rational” of descend from three to two dimensions should in any case be complemented
by an investigation of the intrinsic mathematical properties of the obtained reduced models.
Today, the need to simulate the mechanical response of highly flexible thin structures allowing
easily for finite rotations excludes the use of classical infinitesimal-displacement models, either

IRestricted, since no material length scale usually enters the direct approach, only the relative thickness
h appears in the model. In terminology it is useful to distinguish between a ”true” Cosserat model operating
on SO(3,R) and theories with any number of directors.



of Reissner-Mindlin (14.11) or Kichhoff-Love type (14.14). Also, certain ”intermediary” models
allowing in principle for buckling like the ”nonlinear” von Kdrmdn plates (see [12, p.403],
justified by means of I'-convergence in [29] as a very low energy limit of three-dimensional
elasticity) and penalized ”nonlinear” Reissner-Mindlin models [21]? or ”semilinear” Kirchhoff-
Love plate models [46] are not geometrically exact (not frame-indifferent). Nevertheless, the
nonlinear von Karméan plate has been succesfully applied to the delamination problem of thin
films [55, 34, 33].

Mielke [44] established in the infinitesimal-displacement context that by using more than
five ansatz-functions in a director model it is possible to obtain exponential decay estimates
for the boundary layer and to establish therefore a St.Venant principle for linearized plates.
While it is not clear how his methods can be transferred to the finite-strain case, they provide,
independent of mechanical /physical considerations, a strong motivation to use a director ansatz
also in the finite-strain case in order to better capture the boundary layer phenomena.

Indeed, so called shear-deformable theories with independent directors are usually pre-
ferred in the engineering community. In view of an efficient finite element implementation
one considers a hyperelastic, variationally based formulation with second-order Euler-Lagrange
equations and uses standard C°-conforming elements. The prototype examples are models
based on the Reissner-Mindlin kinematical assumption. There are numerous proposals in
the engineering literature for a finite-strain, geometrically exact plate formulation, see e.g.
[28, 64, 62, 63, 75, 7, 11]. In many cases the need has been felt to devote specific attention to
proper rotations R € SO(3,R), since finite rotations are the dominant deformation mode of a
flexible structure. This has led to the so called drill-rotation formulation which means that
proper rotations either appear in the formulation as independent fields (leading to a restricted
Cosserat surface) or they are an intermediary ingredient in the numerical treatment (constraint
Cosserat surface, only continuum rotations matter finally). While the computational merit of
this approach is well documented, a mathematical analysis for such a family of finite-strain
plate models is yet missing, both for the Cosserat surface with independent rotations and the
constraint model. It may be speculated that those restricted Cosserat plates (obtained from
classical non-polar bulk models or from direct modelling) though geometrically exact and al-
lowing for transverse shear and the description of boundary layers, might not be well posed for
certain membrane strain measures either, notably if Green-strains: F7 F — 11 or Hencky-strains:
In FTF are used. Another drawback from a modelling point of view is that the inclusion of
drill-rotations is most often done in an ad-hoc fashion.

Addressing partly this problem, in [53] a geometrically exact, viscoelastic membrane formu-
lation has been proposed by the first author, where the viscoelastic effect, operative through an
independent local field of rotations, is driven by transverse shear. This formulation has been
shown to be locally well-posed [51].

It is also observed experimentally that very thin structures behave comparably stiffer
than absolutely thicker structures while both have the same relative thickness. These non-
classical size effects cannot be neglected for very thin structures [15]. Such effects are not
accounted for neither in classical theories nor in the viscoelastic case.

In addition, classical infinitesimal-displacement or finite-strain shell models predict unre-
alistically high levels of smoothness, typically m € Wh%(w,R?) for the midsurface m in both
finite-strain Kirchhoff-Love and Reissner-Mindlin models and m € H?(w,R?) in the finite-strain
pure bending problem [30] and the von Kdrman model. This implies at least C%%(w) for the
midsurface m, which rule out the description of boundary layer effects and possible failure along
asymptotic lines of the surface.

2Conceptually a von Karmén plate with one independent director d € S2 and addition of a penalisation term
- 2 - 2
fhe ((d,amm> + (d,0ym) ) , te — 00, with m : R? s R? the sought midsurface deformation.



1.2 Scope of study and outline of this contribution

In [49] the first author has proposed a new shell model for very thin almost rigid materials
which should remedy some of the aforementioned limitations with a view towards a subsequent
stringent mathematical analysis and possible stable finite element implementation. It was the
goal to provide a model which is both theoretically and physically sound, such that its numerical
implementation can concentrate on real convergence issues.

The formal derivation of the new plate model, summarized in Section 8, however, still gave
rise to questions as far as the asymptotic correctness and convergence is concerned. In this
paper we want to address this point by showing, that the I'-limit of the Cosserat bulk model
(under certain natural scaling assumptions) is given by the corresponding formal derivation, if
energy contributions scaling with h are retained and if the coefficient of the transverse shear
energy is slightly modified. Given that the information provided by the formal I'-limit hinges
also on these scaling assumptions, we think that our present result is a justification of the formal
derivation and the employed kinematical ansatz.

Central to our development is therefore the notion of I'-convergence, a powerful theory
originally initiated by De Giorgi [35, 36] and especially suited for a variational framework on
which in turn the numerical treatment with finite elements is based. This approach has thus
far provided the only known convergence theorems for justifying lower dimensional nonlinear,
frame-indifferent theories of elastic bodies.

In this contribution, after presenting the notation, we introduce in Section 2 the underly-
ing ”parent” three-dimensional finite-strain frame-indifferent Cosserat model with size ef-
fects and already appearing independent microrotations R, i.c.a triad of rigid direc-
tors (R;|R2|R3) = R € SO(3,R) and we recall the obtained existence results for this Cosserat
bulk model. We then provide in Section 3 the restriction of the bulk model to a thin domain
and introduce the scaling to a fixed reference domain 2; with constant thickness on which the
I'-convergence procedure is based.

In Section 4 we recapitulate briefly the relevant topics from I'-convergence theory and we
introduce the I'-limit for the rescaled formulation with respect to the two independent fields
(¢, R) of deformations and microrotations in Section 5. Two limit cases, y. = 0 and . = oo
deserve additional attention. Following we provide the analytical proof for the statements in
Section 6. Section 7 provides an estimate of the I' — liminf and I' — limsup in case of zero
Cosserat couple modulus which is then strengthened to a full I'-convergence statement.

In order to put the I'-limit formulation into the proper framework, we provide in Section
8 the Cosserat plate model originally derived by means of a formal ansatz. It is seen that
both formulations, within the same scaling assumptions, differ only by the coefficient of the
transverse shear energy. Therefore in Section 9 we shortly review the form of the transverse
shear energy given in the literature and discuss the role of the shear correction factor k in
light of our development and disclose its intimate connection with the Cosserat couple modulus
te. In Section 10 we are able to draw an interesting consequence for the numerical value of the
Cosserat couple modulus p.., already for the bulk model. Section 11 schematically summarizes
the relations between the discussed models.

In the Appendix we derive an upper bound for the I" — lim sup of classical linear elasticity
and it is shown that a linearization of the geometrically exact Cosserat I'-limit model turns
into the linear membrane plate which coincides with this I' — lim sup upper bound. For the
exposition to be sufficiently self-contained we also relate the new finite-strain Cosserat plate
model based on a formal ansatz to classical approaches. Notably, we show that a linearization
of the new ”formal” plate model with zero Cosserat couple modulus p. = 0 results in the
classical infinitesimal-displacement Reissner-Mindlin model (without extra size effects and
therefore without drill-rotations) and shear correction factor kK = 1. However, weaker boundary
conditions for the increment of the director in the linearized infinitesimal-displacement Reissner-
Mindlin model (14.11) are motivated. Nevertheless, this new boundary condition reduces to
the classical condition on the increment of the normal in the linearized Kirchhoff-Love model



(14.14). Finally, the possible treatment of external loads is given.

1.3 Notation
1.3.1 Notation for bulk material

Let Q C R? be a bounded open domain with Lipschitz boundary €2 and let I' be a smooth subset
of 99 with non-vanishing 2-dimensional Hausdorff measure. For a,b € R® we let (a, b)ps denote
the scalar product on R® with associated vector norm ||a||%s = (a,a)ps. We denote by M>*3
the set of real 3 x 3 second order tensors, written with capital letters. The standard Euclidean
scalar product on MP*? is given by (X,Y)ymxs = tr [XYT], and thus the Frobenius tensor
norm is || X||* = (X, X)ypxs . In the following we omit the index R* , M?*?. The identity tensor
on MP*3 will be denoted by 1L, so that tr [X] = (X, 1) and tr[X]* = (X, ). We let Sym and
PSym denote the symmetric and positive definite symmetric tensors respectively. We adopt the
usual abbreviations of Lie-group theory, i.e., GL(3,R) := {X € M?*? |det[X] # 0} the general
linear group, SL(3,R) := {X € GL(3,R) |det[X] = 1}, O(3) := {X € GL(3,R) | XTX =
1}, SO3,R) := {X € GL(3,R) |XTX = 1, det[X] = 1} with corresponding Lie-algebras
50(3) := {X € M?*3 | XT = — X} of skew symmetric tensors and sl(3) := {X € M?*? |tr [X] =
0} of traceless tensors. With Adj X we denote the tensor of transposed cofactors Cof(X) such
that Adj X = det[X] X = Cof(X)T if X € GL(3,R). We set sym(X) = +(XT + X) and
skew(X) = £(X — X7) such that X = sym(X) + skew(X). For X € M?*3 we set for the
deviatoric part dev X = X — & tr[X]1l € s[(3) and for vectors {,n € R” we have the tensor
product (§ ® 1) = & nj-

We write the polar decomposition in the form F' = RU = polar(F)U with R = polar(F)
the orthogonal part of F. For a second order tensor X we define the third order tensor h =
DX (z) = (V(X(2).e1),V(X(7).e2),V(X(z).e3)) = (h',h%,h3) € M3*3 x MP*3 x MP*3 =
%(3). For third order tensors h € (3) we set [|p||> = 327, ||h¥||*> together with sym(h) :=
(symb',symh?, symb3) and tr[h] := (tr [h'], tr [h?],tr [h?]) € R3. Moreover, for any second
order tensor X we define X -h := (Xh', Xh?, Xh?) and h- X, correspondingly. Quantities with a
bar, e.g. the micropolar rotation R, represent the micropolar replacement of the corresponding
classical continuum rotation R. In general we work in the context of nonlinear, finite-strain
elasticity. For the total deformation ¢ € C'(Q, R*) we have the deformation gradient F' = Vip €
C(Q,M?*3). Furthermore, S, (F) = DpW (F) and So(F) = F~'!DpW (F) denote the first and
second Piola Kirchhoff stress tensors, respectively. Total time derivatives are written %X (t) =
X. The first and second differential of a scalar valued function W (F) are written DpW (F).H
and D%W (F).(H,H), respectively. We employ the standard notation of Sobolev spaces, i.e.
L2(Q), H2(Q), H3? (), W4(Q), which we use indifferently for scalar-valued functions as well
as for vector-valued and tensor-valued functions. The set W14(Q,SO(3,R)) denotes orthogonal
tensors whose components are in W4(Q). Moreover, we set || X = sup,cq || X (2)||. For
A € CY(Q,M?**?) we define Curl A(z) as the operation curl applied row wise. We define
H2(Q,T) := {¢ € H"2(Q) | ¢}, = 0}, where ¢, = 0 is to be understood in the sense of traces
and by C§°(€2) we denote infinitely differentiable functions with compact support in 2. We use
capital letters to denote possibly large positive constants, e.g. CT, K and lower case letters
to denote possibly small positive constants, e.g. ¢™,d™. The smallest eigenvalue of a positive
definite symmetric tensor P is abbreviated by Apin(P).

1.3.2 Notation for plates and shells

Let w C R? be a bounded open domain with Lipschitz boundary dw and let 7o be a smooth
subset of Jw with non-vanishing 1-dimensional Hausdorff measure. The thickness of the plate
is taken to be h > 0 with dimension length (contrary to Ciarlet’s definition of the thickness
to be 2e, which difference leads only to various different constants in the resulting formulas).
We denote by M™*™ the set of matrices mapping R” — R™. For H € M?*3 and ¢ € R® we
employ also the notation (H|¢) € M?*3 to denote the matrix composed of H and the column



&. Likewise (v|¢|n) is the matrix composed of the columns v, ¢, n. This allows us to write for
v € C'R3R?) : Vo = (0elpylp:) = (0:0|0,0|0:¢). The identity tensor on M?*? will be
denoted by 1I,. The mapping m : w C R?> — R® is the deformation of the midsurface, Vim
is the corresponding deformation gradient and 7, is the outer unit normal on m. A matrix
X € M?*3 can now be written as X = (X.es|X.e2|X.e3) = (X1]|X2|X3). We write v : R? — R®
for the displacement of the midsurface, such that m(z,y) = (z,v,0)” + v(z,y). The standard
volume element is written dxdydz = dV = dwdz.

2 The underlying finite-strain three-dimensional Cosserat
model in variational form

In [54] a finite-strain, fully frame-indifferent, three-dimensional Cosserat micropolar model is
introduced. The two-field problem has been posed in a variational setting. The task is to find
a pair (p,R) : @ C R® = R® x SO(3,R) of deformation ¢ and independent microrotation
R € SO(3, R) minimizing the energy functional I,

(. F) = / W (B Vip) + Wears (B DLR) — TL1 () — Iy (B) dV
Q

—/HN(<p) dS — [II5z (R)dS = min. w.r.t. (o, R), (2.1)

s Fe

together with the Dirichlet boundary condition of place for the deformation ¢ on I': ¢|. = gq
and three possible alternative boundary conditions for the microrotations R on T,

Ry, the case of rigid prescription ,
R, = { polar(Vip), the case of strong consistent coupling, (2.2)

no condition for R on I, induced Neumann-type relations for R on I'.

The constitutive assumptions on the densities are

_ _ . . A _ .
Wap(0) = p | sym(T = )| + e || skew(@)|[* + 5 tr [sym(@ - )], T=F'F, F =V,

1+
I+p =t

L ‘ _ ‘
Wears(8) = p == (1+ s LLIAINY) (as | sym S + ag [|skew K2 + ar e [8°) ©, (2.3)

R= RTDXR = (RTV(R.el),RTV(R.eg),RTV(R.eg)) , the third order curvature tensor,

under the minimal requirement p > 1, ¢ > 0. The total elastically stored energy W = W, +
Weury is quadratic in the stretch U and possibly super-quadratic in the curvature £. The strain
energy W, depends on the deformation gradient F' = Vip and the microrotations R €SO(3,R),
which do not necessarily coincide with the continuum rotations R = polar(F'). The curvature
energy Weury depends moreover on the space derivatives D, R which describe the self-interaction
of the microstructure.? In general, the micropolar stretch tensor U is not symmetric and
does not coincide with the symmetric continuum stretch tensor U = R’F = VFTF. By
abuse of notation we set || sym §||* := Z?Zl || sym &¢]|? for third order tensors &, cf.(1.3.1).
Here Q C R? is an open domain with boundary 9Q and I' C 91 is that part of the boundary,
where Dirichlet conditions gq, Rq for deformations and microrotations or coupling conditions
for microrotations, are prescribed. I's C 9 is a part of the boundary, where traction boundary
conditions in the form of the potential of applied surface forces Il are given with TNTg = (.
In addition, I'c C 012 is the part of the boundary where the potential of external surface couples

3Observe that ETV(R.CZ') # ET(?ME € s0(3,R).



Iy, are applied with T'NT'c = ). On the free boundary 92\ {T UT's UT'c} corresponding
natural boundary conditions for (p, R) apply. The potential of the external applied volume
force is II; and Il takes on the role of the potential of applied external volume couples. For

simplicity we assume

for the potentials of applied loads with given functions f € L2(Q2,R3), M € L?>(Q,M3*3), N €
Lz(Fs,R3), M. € L2(F0,M3X3).

The parameters g, A > 0 are the Lamé constants of classical isotropic elasticity, the addi-
tional parameter p. > 0 is called the Cosserat couple modulus. For i, > 0 the elastic strain

energy density Wimp(U) is uniformly convex in U. Moreover

= =T . =T : . =11
VF € GLY3,R) : Wanp(D) = Wanp(B' F) > min(js, 1) B F — 12 = min(je, o) |F — T
> min(p, ) inf )||F — R||? = min(p, p.) dist®(F, O(3, R))

REO(3,R
= min(p, p.) dist® (F,SO(3, R)) = min(p, ) ||F — polar(F)||?
= min(y, ue) U — T (2.5)

In contrast, for p. = 0 the strain energy density is only convex w.r.t. F' and does not satisfy
(2.5).

The parameter L. > 0 (with dimension length) introduces an internal length which is
characteristic for the material, e.g. related to the grain size in a polycrystal. The internal
length L. > 0 is responsible for size effects in the sense that smaller samples are relatively
stiffer than larger samples. We assume throughout that a4, as,as > 0,7 > 0. This implies
the coercivity of curvature

e >0 VRETB): Weun(R) >t |8 TP, (2.6)

which is a basic ingredient of the mathematical analysis.

The non-standard boundary condition of strong consistent coupling ensures that no
unwanted non-classical, polar effects may occur at the Dirichlet boundary I". It implies for
the micropolar stretch that U}, € Sym and for the second Piola-Kirchhoff stress tensor Sy :=
FDpWp (U) € Sym on I as in the classical, non-polar case. We refer to the weaker boundary
condition U|F € Sym as weak consistent coupling.

We mention, that a linearization of this Cosserat bulk model with p. = 0 for small dis-
placement and small microrotations completely decouples the two fields of deformation and
microrotations and leads to the classical linear elasticity problem for the deformation.®> For
more details on the modelling of the three-dimensional Cosserat model we refer the reader to
[54].

2.1 Mathematical results for the three-dimensional Cosserat bulk prob-
lem

For conciseness we state only the obtained results for the case without external loads. It can
be shown:

Theorem 2.1 (Existence for 3D-finite-strain elastic Cosserat model with p. > 0)
Let Q C R® be a bounded Lipschitz domain and assume for the boundary data gq € H*(Q2,R?)
and Ry € WH*P(Q,SO(3,R)). Then (2.1) with . > 0, a4 > 0,p > 1,q > 0 and either

4The condition F € GL%(3,R) is necessary, otherwise [|FF — polar(F)||? = dist?(F,0(3,R)) <
dist?(F,SO(3,R)), as can be easily seen for the reflection F = diag(1,—1,1).

5Thinking in the context of an infinitesimal-displacement Cosserat theory one might erroneously believe that
e > 0 is strictly necessary also for a ”true” finite-strain Cosserat theory.



free or rigid prescription for R on I' admits at least one minimizing solution pair (p, R) €
HY(Q,R?) x WhP(Q,SO(3,R)). [ ]

Using the extended Korn’s inequality [48, 56], the following has been shown in [54, 50]:

Theorem 2.2 (Existence for 3D-finite-strain elastic Cosserat model with p. = 0)

Let Q C R? be a bounded Lipschitz domain and assume for the boundary data gq € H*(Q2,R?)
and Rq € WHitrte(Q SO(3,R)). Then (2.1) with pu. = 0,y > 0,p > 1,q > 1 and
either free or rigid prescription for R on I' admits at least one minimizing solution pair
(o, R) € HY(Q,R?) x Whitrte(Q SO(3,R)). [

3 Formal dimensional reduction of the Cosserat bulk model

3.1 The three-dimensional Cosserat problem on a thin domain

The basic task of any shell theory is a consistent reduction of some presumably ”exact” 3D-
theory to 2D. The general three-dimensional problem (2.1) will now be adapted to a shell-like
theory. Let us assume that we are given a three-dimensional absolutely thin domain

h h ‘
Qp=wx[-=,=], wCRk, (3.1
272
with transverse boundary 9Qi™" = w x {—3, E} and lateral boundary 9Q)** = dw x

[—4, 4] where w is a bounded open domain in R?* with smooth boundary 0w and h > 0 is the

thickness. Moreover, assume we are given a deformation ¢ and microrotation }_23d,
3 3 »3d 3
p: QU CR =R, R :Q, CR — SO(3,R), (3.2)

solving the following two-field minimization problem on the thin domain €2j,:

1o, Ve, B DR / Wonp () + Weey (8) — (f, ) AV — / (N, ) dS > min. w.r.t. (o, F),
o=y, x[~ 4,51}

n

2727

U|rg = §3d7TV4p|FS € Sym(3), weak consistent coupling boundary condition or

— =3d,T
U=R F7 ()O\Fh :gd(mayaz)a Fg:’}/ox[_ ’yocawa 73070:w7
0

d . .
R : freeon 1"3 , alternative Neumann-type boundary condition ,

_ _ ‘ A _ ‘
Wi (U) = p || sym(U = W)|* + pre || skew(D)||* + 5 tr [sym(U - n)*,

1+p 1tp

L; ‘ . ‘
Weurs(8) = =55 (1+a4L‘1||ﬁ|| ) (a5||symﬁ||2+a6||skewﬁ||z+a7tr[ﬁ]z) o
—3d,T 3d,T, —3d,T,

a=R*""DR" (R V(R &), BV ER" ),R”’TV(R”.eg)).

Without loss of mathematical generality we assume that M, M, = 0 in (2.4), i.e. that no
external volume or surface couples are present in the bulk problem. We want to find a reasonable

approximation (¢, Ry) of (@,RM) involving only two-dimensional quantities.



3.2 Transformation on a fixed domain

In order to apply standard techniques of I'-convergence, we transform the problem onto a fixed
domain 2, independent of the thickness h > 0. Define therefore

11 ‘
lewx[—§,§]c]}£3, WC]RZ (33)
The scaling transformation

CineQ CR =R, ((n,n,m3) = (n,m2, b m3),

100 h 0 0
Vi) = (0 1 0>, Cof V,((n) = (0 h 0), det[V,C(n)] = h, (3.4)
00 0 0 1

h
is such that ¢ maps ; into Q) and ((Q;) = Q. We consider the correspondingly scaled

function (subsequently, scaled functions defined on ; will be indicated with a superscript £)
©* : Q; — R3, defined by

P(61,6,8) =9 (&, &, 6)) VEE U ¢'(n) =¢(C(n) VYne,
FHn) = Voot (n) = Vep(C(n) - Vel(n)
) | )

1
= (3771@"(711,712,ns)lanzsou(m,nz,na)lﬁansw"(nhnz,ns)) =: Vot = F}.

471 éEQhCR3 H]Rga 471(51752753) (51752763

O O =
O = O

)7 VE[Cil(g)] = (

O O

O O =
o = O

Vip(&1,&,&) = Vo (CTH(&,&,8)) - (

O O

Similarly, we define a scaled rotation tensor R 0 C R = SO(3,R) by

3d g 3d, 4 —3d

(m) =R"(Cn) Vnel,
VelR" (61,6, ) ] = Vo [R () ] - (V,Cm) (3.6)

= (00 B (0 (B ()01 0, [ 1))
= VAR () ei] € M,
DR, () = (VAR (-1, VAR (n)-ea], VAR () e]) € (3).

(Y&, &,8)) YE€E; R

—3d,4

(61762763)

This defines the scaled third order curvature tensor Rgl O~ F(3)

sh0 = (B ) (0, ¥ )xll0, B )l 0, B )] )
R 1) (0, [ )20 B ) el 00 B )] 3.)
B 1) (00 [0 el o0 B ) .00, B ) 1))
= (B VR m).er], B ) VAR ()], B () VIR () ]

—3duTDh—3dn( ).
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Moreover, we define similarly scaled functions by setting

) = fCm),  ghtn) =gaCm),  Ni(n) = N(E®)). (3.8)

In terms of the introduced scaled deformations and rotations

3d,f4

o O CR =R, R77:Q CR — SO(3,R), (3.9)

the scaled problem solves the following two-field minimization problem on the fixed domain ;:

PV B DY) = [ (W @) + Woan(8)) = (,69)] detlTe(m]av,
neR
- v lcor el as,.

ot Uy, <=4, 41}

—n / Wonp (T5) + Weure (85) — (f%, ) AV,

nEQL
- / (N* "y 1dS, — / (N*, ") hdS, +~ min. w.r.t. ((pn,ﬁﬂ),
oQyrane Vs X[~ 3,3]
v =R F, Pley (1) = 94(n) = ga(Cm) = gaCm,m2,h-ma). (3.10)
Th=a0 % [=5i5h 0Co, %Nw=0,
Uh|F1 — R Vngo?ré € Sym(3), weak consistent coupling boundary condition or
RSd’ﬁ : free on F(l), alternative Neumann-type boundary condition ,

=t =4 A 2
Wanp (T3) = p || sym(T}, — W)|> + pe || skew (T3] + St sym(T;, — )] :

1+p

2

14+p ‘ 2
(1+a4Lq||ﬁﬁ|| ) <a5||symﬁ§§||2+a6||skewﬁ§§||2+a7tr [ﬁg] > :

12
ﬁ’}i _ 3d,ﬁ7 DhR3d ﬂ( )

L
Wcurv (Rt}t) =K

3.3 The rescaled variational Cosserat bulk problem

Since the energy 3 L 7% would not be finite for h — 0 if tractions N* on the transverse bound-
ary were present, the investigations are in principle restricted to the case of N¥ = 0 on
oQtrans 6 For conciseness we therefore investigate finally the following simplified and rescaled
(N”, =0, ga(é1,&,8) == ga(é1,&)) two-field minimization problem on ; with respect to
I'-convergence (without the factor A > 0 now):

In( # ch”,Rgdﬂ DhRgdﬂ / Wmp Uh)—l—Wcurv(ﬁh)dV — min. w.r.t. (@”,Rﬂ),

LIS

ot ad T
U =R"7F, ¢ () =gi0) = ga(Cm) = galm,m2,h-13) = galn, 12,0),
0

11
Iy _70><[—§ 5] Yo C Ow,

s, free on I'j, Neumann-type boundary condition , (3.11)

R

6The thin plate limit h — 0 obviously cannot support non-vanishing transverse surface loads.
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Waap (U1) = pllsym(@, = W + pie | skew(@3)|? + 5 tx [sym(@, — 1)] ",
14p s

L . 2 2
Woars (8) = n=5— (14 g LY 15517) (a5||symﬁ2||2+a6||skewﬁ%||2+a7tr %] ) ,

= T D}$R3d’ﬁ(n) ‘

Here we assume that the boundary condition gq is already independent of the transverse vari-
able. For simplicity, we restrict furthermore attention to the weakest possible response, namely

the Neumann boundary conditions on the microrotations R .7 Moreover, for simplicity,
we assume

p>1, ¢>1, (3.12)

from now on, such that both cases p. > 0 and g, = 0 can be considered simultanuously.
External loads of various sort can be treated by Remark 4.5.

Within the rescaled formulation (3.11) we want to investigate the possible limit behaviour
for h — 0 and fixed internal length L. > 0. While it does not make much sense to let » — 0
at fixed in-plane elongation L > 0, since from a physical consideration, there is an absolute
lower bound on the thickness in terms of the internal length L., we may consider a sequence
of plates, with small relative thickness h kept constant in a first place, but whose in-plane
elongation L is increased together with a simultaneous increase of the dimensions of
the microstructure, to the effect that the internal length L., transformed to a unit domain
w remains constant.® In a second step, the relative thickness h is decreased.

3.4 On the choice of the scaling

As will be seen later, the I'-limit, if it exists, is unique. The only choice, which influences
then the final form of the I'-limit is given by the initial scaling assumptions made on the
unknowns, in order to relate them to the fixed domain 2; and the assumption on the scaling
of the energies, here %]ﬁ < 00. Our scaling ansatz is consistent with the one proposed in
[23, 29], but not consistent with the one taken in [12], which scales transverse components of
the displacement different in order to extract more information from the I'-limit. Since we deal
with a ”two-field” model there is no imminent possibility to scale the fields differently.

The justification for our choice is given by the apparent consistency of the results with
formal developments and its linearization stability. Here we see that the scaling assumptions
also introduce a certain arbitrariness in the development. For example, starting from classical
nonlinear elasticity, considering the present scaling for the unknowns and assuming %[ < o0,
a nonlinear von Kédrmdn plate can be rigourously justified by I'-convergence [29].

4 Recapitulation of facts from I'-convergence

Let us briefly recapitulate the notions involved by using I'-convergence. For a detailed treatment
we refer e.g. to [42, 10]. We start by defining the lower and upper I'-limit. In the following, X
will always denote a metric space such that sequential compactness and compactness coincide.
Moreover, we set R := RU{#+00}. We consider now a sequence of energy functionals In; : X —
R, hj — 0.

“We could as well treat the rigid case, i.e. Ef L= Rq. The case of weak consistent coupling would need
r

additional provisions, the three-dimensional existenoce result already needs additional control in order to define
the then necessary boundary terms.

8This is tantamount to assuming that the building blocks of the larger plates are themselves enlarged with
the same ratio.
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Definition 4.1 (Lower and upper I'-limit)
Let X be a metric space and let I, : X — R, h; — 0 be a sequence of functionals. For x € X
we define

r —lir%inflhj :X—R, T _linilzinfjhj (x) == inf{lir%inflhj(a:hj), Th, = T},
[ —limsup Ip; : X —R, T —limsup Iy, (x) := inf {limsup Ip; (zn;), xn; — }. [ |
h; j i

It is clear that [' — liminfy, I}, and ' — lim supy,; In; : X — R always exist and are uniquely
determined.

Definition 4.2 (['-convergence) _
Let X be a metric space. We say that a sequence of functionals I, : X — R I'-converges in
X to the limit functional Iy : X — R, if for all z € X we have

VeeX: Va, - x: Iy(r) < lihm i%f Iy, (zh;), (lim inf-inequality)
i

VeeX:Jaop, > a: Ip(z) >limsup Iy, (zh,), (recovery sequence) . [ ]
h;—0

Corollary 4.3 _
Let X be a metric space. The sequence of functionals I,; : X — R I'-converges in X to
Iy : X — R if and only if

F—lir%inflhj =T —limsup Ip; = Io. [ |
j .

h;

Remark 4.4 (Lower semicontinuity of the I'-limit)
The lower and upper I'-limits are always lower semicontinuous, hence the I'-limit is a lower
semicontinuous functional. Moreover, if the I'-limit exists, it is unique.

Remark 4.5 (Stability under continuous perturbations) _
Assume that I; : X — R TI'-converges in X to I : X — R and let II : X — R, independent
of hj, be continuous. If Ip,; + 11 is I'-convergent, then it holds

(€ = lim{Ly, +1)(z) = (= lim 1)) + (&) = Jo(a) +1L(@), (4.13)

see [10, p.23Jor [42, Prop. 6.21]. Note that in the general case, the constant functional II
can influence whether or not I'-convergence takes place, which necessitates the additional prior
assumption on existence of the I'-limit, compared to [10, p.23], cf. [42, Prop. 6.17]. |

Let us also recapitulate the important equi-coerciveness property. First we recall coercive-
ness of an integral functional.’

Definition 4.6 (Coerciveness)
The integral functional I : X — R is coercive w.r.t. X, if for each fixed C' > 0 the closure of
the set {x € X |I(xz) < C} is compact in X, i.e. I has compact sub-levels. [ ]

9A typical instant of coerciveness is given for X = LP(Q,R?),1 < p < co with 2 a bounded domain with
smooth boundary and

Io) = {fQ W(Vg)dV  ifg e WhP(Q,R3), ¢, =0, (4.14)

+00 else,
with the local coercivity assumption W (F) > ¢ ||[Vip||P — ¢f . Coerciveness follows by Poincaré’s inequality

and Rellich’s compact embedding WP (Q,R?) C LP(Q2,R?). Recall that linear elasticity does not satisfy a local
coercivity condition. This is the cause for some technical problems of the theory.
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Following [42, p.70] we introduce

Definition 4.7 (Equi-coerciveness) _
The sequence of integral functionals I, : X — R is equi-coercive, if for each fixed C' > 0 there
exists a compact set Ko C X such that {x € X | I, (x) < C} C K¢, independent ofh; > 0. B

Hence, if we know that Ij,; is equi-coercive over X and that along a sequence ¢; € X it holds
that Ip; (¢;) < C, then we can extract a subsequence, p;, converging in the topology of X to
some limit element ¢ € X.

Theorem 4.8 (Characterization of equi-coerciveness)
The sequence of integral functionals Iy, : X — R is equi-coercive if and only if there exists a

lower semicontinuous coercive function ¥ : X — R such that In; > ¥ on X for every hj > 0.

Proof. [42, Prop. 7.7]. |
The following theorem concerns the convergence of the minimum values of an equi-coercive
sequence of functions.

Theorem 4.9 (Coerciveness of the I'-limit)
Suppose that the sequence of integral functionals Ip,; : X — R is equi-coercive. Then the upper
and lower I'-limit are both coercive and

;Iéi)I(l (F - lir%]inf Ih],> (z) = lir%]inf xlg( Iy, (). (4.15)
If, in addition, the sequence of integral functionals Iy, : X R I'-converges to a functional
Iy : X — R, then I itself is coercive and

in I, =lim inf I, (z). 4.16
min lo(z) = lim inf In, (z) (4.16)

Proof. [42, Theo. 7.8]. |
Note that equi-coercivity is an additional feature in the development of I'-convergence argu-
ments, which allows to simplify proofs considerably through compactness arguments. As far
as [-convergence is concerned, it may be useful to recall [10, p.19] that minimizers of the
[-limit variational problem may not be a limit of minimizers, so that I'-convergence
must be interpreted as a choice criterion. In addition, the I'-limit of a constant sequence
of functionals J, which is not lower semicontinuous, does not coincide with the constant func-
tional J, instead one has (I' —lim J)(z) < J(z). In this case, (I'—lim J)(z) = QJ(z), where Q.J
is the quasiconvex hull of J. In the case of non lower semicontinuous functionals, the I'-limit is

therefore introducing a different physical setting. Fortunately, in our application, we are always
dealing with lower-semicontinuous functions.

5 The ”two-field” Cosserat I'-limit

5.1 The spaces and admissible sets

Now let us proceed to the investigation of the I-limit for the rescaled problem (3.11). We do not
use Igj directly in our investigation of I'-convergence, since this would imply working with the
weak topology of HY2(Q,R3) x WhHitrta(Q, SO(3,R)), which does not give rise to a metric
space. Instead, we define the "bulk” spaces X, X' and the ”two-dimensional” spaces X,,, X/,.
First, for p > 1, ¢ > 1 we define the number r > 1 by

1 1 1 2(1+p+gq)

== = r=—" Y 5.17
l+p+q r 2 (I+p+q) —2 (5.17)
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such that L'tP*t2. L™ C L?. Note that for 1 + p+ ¢ > 3 it holds that r < 6 which implies the
compact embedding H'?(Q;,R3) C L"(2;,R?). Now define the spaces

X :={(¢,R) € L" (21, R’) x L'P*7(Q,,S0(3,R))},

X" :={(p,R) € H"?(Q,R®) x WH+PT4(Q, SO(3,R)), (5.18)
X, :={(p,R) € L"(w,R?) x L}*P+(,SO(3,R))},
X! :={(p,R) € H"*(w,R*) x WhHP*4(y, SO(3,R))},

and the admissible sets
= {(pR) € H'*(2,R®) x WHH7H(0,,S0(3,R), ¢, (1) =050}, (5.19)
={(¢,R) € H"*(w, ) x WH'H1(w0, SO(3,R)), ¢y, (m1,72) = gfi(m,m2,0) },
010 = (0 R) € HY? (2, B) x WHHPH(0,S0(3,R), o, () = gi(n)

We note the compact embedding X’ C X and the natural inclusions X, C X and X/ C X'.
Now we extend the rescaled energies to the space X through redefining

. . oot ¢ pt -t . ¢ Pt ’
I,g(cpﬂ,V@ﬂ,Ru,DgRu) _ {Ih(Qo , Vo', R 7D17;R ) if (p*, R") e A (5.20)

400 else in X,

by abuse of notation. This is a classical trick used in applications of I'-convergence. It has the
additional virtue of incorporating the boundary conditions already in the energy functional.
In the following, I'-convergence results will be shown with respect to the encompassing metric
space X .10

5.2 The transverse averaging operator

For ¢ € L?(Q,R3) let us define the averaging operator over the transverse variable 73

1/2
Av:L*(Q,R’) = L*(w,R®),  Av.o(n,m2) :2/1/2 @(n1,m2,n3) dns . (5.21)

It is clear that averaging with respect to the transverse variable 3 commutes with differentiation
w.r.t. the planar variables 1, 1., i.e.

[AV -me)‘P(Tha 12, 773)] (Th ) T’2) = v(nmz) [AV -‘P(mmm)] (Th ’ TIQ) ’ (522)
for suitable regular functions ¢. For a convex function f : M?*? — R Jensen’s inequality
implies

/ £ (Vs [AV )01, 72)) dio = / FAY Ny @l (1, 72)) o

1/2
/ / v(nmz)(p Thﬂlzﬂl?,))dﬁa’ dw

1/2

0 f(v(nmz)(p(nl: 12, 773)) dV?? . (523)

100f course, X,X’ as such are not vectorspaces, since we cannot add two rotations. Nevertheless,
L™(91,S0(3,R)) C L"(Q1,M3%3) and this space is a Banach space.
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5.3 The I'-limit variational ”membrane” problem

We claim that for strictly positive Cosserat couple modulus fte > 0 the T-limit for problem
(3.11) is given by the following limit energy functional I : X = R,

o [T AT ) W) do - A 0. Re) (T € A
Ii(p, R) == (5.24)
+oo else in X .

The proof will be given in Section 6. If we identify the averaged deformation Av.p with the
deformation of the midsurface m : w C R% ~ R3, this problem determines in fact a purely
two-dimensional minimization problem for the deformation of the midsurface m : w C R? — R?
and the microrotation of the plate (shell) R : w C R? —~ SO(3,R) on w:

curv

I (m,R) /WhOm (Vm, R) + Whem(g)dw — II(m, R3) — min. w.r.t. (m,R),  (5.25)
and the boundary conditions of place for the midsurface deformation m on the Dirichlet part
of the lateral boundary o C dw,

m, = ga(z,y,0) = Av.gq(z,y,0), simply supported (fixed, welded) . (5.26)

The boundary conditions for the microrotations R are automatically determined in the varia-
tional process. The dimensionally homogenized local density is!! 12

Wan™ (Vm,R) = p || Sym((Rlle)TVm )| +pc || SkeW((RlIRz)TVm)II2 (5.27)
”intrinsic” shear stretch energy ”intrinsic” first order drill energy
e ( — P R— 2) B = 5 \T 2
2 R R t Ry|R2)" Vm — 1
2 ((Rayma)” o+ (Rsymy)”) +o =t [sym(| )" Vm 2)]”
~ ~ ~ homogenized elongational stretch energy

homogenized transverse shear energy

The dimensionally homogenized curvature density is given by

hom L * =T = 5L )
Wcurv ( ) - Aej?(g R) Wcurv (R aﬂ1R7 R aﬂ2R7 A) )

=T — —T — T _
R = (R (V(R.e1)[0), R (V(R.e2)|0), R (V(R.e3)|0)) — R (2,y)DR(z,y), (5.28)
R = (R, 8%, 8%) € T(3), the reduced third order curvature tensor,

where W, is an equivalent representation of the bulk curvature energy in terms of skew-

symmetric arguments

WCHYV( ) Wc*urv(RTaﬂlﬁaﬁTaﬂzﬁa ET&BR);
We . : 50(3,R) x s0(3,R) x s0(3,R) — RT, (5.29)

curv :
with TzTamE € s50(3,R) since 0,, [E'R = Op: 1 = 0. We note that W, remains a convex
function in its argument and so is Whom( s)- Moreover Whom (&) = Weury (Rs) for Weyry (R) =

Py curv curv
WS-

Y skew((R1|R2)TVm)||? = ((R1,my) — (Ez,mz))Z. Note that || skew((R1|R2)T Vm)|| = 0 does not imply
that R3 = fiy,.

121n the following, ”intrinsic” refers to classical surface geometry, where intrinsic quantities are those which
depend only on the first fundamental form I,, = VmTVm € M?*?2 of the surface. Then ”intrinsic” in our
terminology are terms, which reduce to such a dependence in the continuum limit R = polar(Vm|i). For
example (R1|R2)TVm = vVVmTVm, in this case.
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In (5.25) II denotes a general external loading functional, continuous in the topology of X, cf.
Remark 4.5 and (14.19). It is clear that the limit functional Ig is weakly lower semicontinuous
in the topology of X' = H2(Q,R?) x Whitr+a(Q SO(3,R)) by simple convexity arguments.
We note the twofold appearance of the harmonic mean 7,

A BA

1 e
— — ) = = 2 . .
2”H(u, 2) TS H(p, pre) = 2p P (5.30)

A major advantage of this formulation is that the dimensionally homogenized formulation re-
mains fully frame-indifferent. Note that the limit functional I} is consistent with the following
plane stress requirement (c.f. (6.48))

11

V’B € [_575] : Sl(’hﬂhﬂh)-% - 07 (531)
i.e. a vanishing normal stress over the entire thickness of the plate, while for any given thickness
h > 0 from 3D-equilibrium one can only infer zero normal stresss at the upper and lower
faces

B (71,70, £1/2)81 (71, 7, £1/2).5, €5) = 0. (5.32)

In this sense, the Cosserat “membrane” I'-limit underestimates the real stresses,
notably the transverse shear stresses.

5.4 The borderline case p. =0

Since it is not possible to establish equi-coercivity for u. = 0, we are not in a position to state
a rigourous I'-limit result based directly on the proof of the result for g, > 0 in this case.
However, since the energy functional I ,ﬂ” for p. > 0 is strictly bigger than the same functional

for p. = 0, independent of h; > 0, it is easy to see [42, Prop. 6.7] that on X we have the
inequalities

T — lim inf 1}1” <T—limsupl} < lim (r —lim I? ) — 50, (5.33)

pe=0 I pe=0 — pe—0 il e >0

where

/. Wrﬁ%mvo(v Av.p, R) + Whom(g ) dw — II(Av .o, R3) (¢, R) € ARe™

Ii°(p,R) = { (5.34)

+00 else in X |

with AJ™ defined in (7.90) and the corresponding local energy density in terms of m = Av .
is

LA
20+ A

”intrinsic” shear-stretch energy homogenized elongational stretch energy

(5.35)

tr [sym((Ri|R2) Vm — ]12)]2

Wi (Vm, B) = o || sym(Ra| Bo) 'V — L] +

Observe that the upper bound 1370 for the I' — limsup energy functional is not coercive
w.r.t. HY?(w,R?) due to the now missing transverse shear contribution, while it retains lower-
semicontinuity. This degeneration remains true for whatever form the I'-limit for p. = 0 has,
should it exist. We complement the investigation of the geometrically exact case p. = 0 with
an estimate for the I' — liminf in Section 7, which shows altogether, that I5° is indeed the
[-limit for zero Cosserat couple modulus pu. = 0.

3For a,b > 0 the harmonic, arithmetic and geometric mean are defined as #H(a,b) := i , Aa,b) =

“T"'b ,  G(a,b) = Vab, respectively and one has the chain of inequalities #(a, b) < G(a,b) < A(a,b).

al-
I
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For u = p., however, the limit energy Wl?l%m coincides with the respective plate energy
Whp derived in terms of the formal ansatz given in (8.1). If g > 0, then coercivity and well-
posedness of the limit problem can be established by a local coercivity argument and Poincaré’s
inequality or can be inferred from equi-coerciveness and Theorem 4.9.

The loss of coercivity for u. = 0 is primarily a loss of control for the ”transverse” compo-
nents (mg, R3), (my, R3), while w.r.t. the remaining ”in-plane” components compactness for
minimizing sequences, whose midsurface deformations are supposed to be already bounded in
L"(w), can be established (appropriate use of an extended Korn’s second inquality, c.f. (7.102)).

As far as linearization consistency is concerned, it is an easy matter to show (see (14.11))
that the linearization for p. = 0 of the frame-indifferent I'-limit Ig’o w.r.t. small midsurface
displacement v : w C R? — R?® and small curvature decouples the fields of infinitesimal
midsurface displacement and infinitesimal microrotations: after descaling we are left with the
classical infinitesimal ”membrane” plate problem for v : w C R? — R3

A
/h <u||symV(v1,v2)||2+ 5 H tr [symV(vl,vz)] > dw

A+ A
w
—(f,(v,e1) -e1 + (v,e3) - e3) = min. w.r.t. v, (5.36)
(v, ei)|70 = (u(z,y,0),e;), i=1,2 simply supported (horizontal components only) ,

which leaves the vertical midsurface displacement vs indetermined due to the non-resistance of
a linear "membrane” plate to vertical deflections. This problem coincides with a linearization'
of the nonlinear membrane plate problem proposed in [27, par.4.3], based on purely formal
asymptotic methods applied to the St.Venant-Kirchhoff energy. The variational problem (5.36)
is as well the [-limit of the classical linear elasticity bulk problem (if corresponding scaling
asumptions are made, compare with [3, Th.4.2], [8] or [12, Th.1.11.2] and (14.2)). The classical
linear bulk model in turn can be obtained as linearization for u. = 0 of the Cosserat bulk
problem. Hence, for i, = 0 exclusively, linearization and taking the I'-limit commute
with the I'-limit of classical linear elasticity.'®

5.5 The borderline case . = o0

This case is interesting, because the rigourous I'-limit for g, = oo still gives rise to an inde-
pendent field of microrotations R, while the Cosserat bulk problem for p. = oo degenerates
into a constraint theory (a so called interdeterminate couple-stress model), where R coincides
necessarily with the continuum rotations polar(F') from the polar decomposition.

The I'-limit variational problem reads: find the deformation of the midsurface m : w C
R?  R? and the microrotation of the plate (shell) R : w C R? + SO(3,R) on w such that for
Ig’oo : X — R in terms of the averaged deformation m = Av .¢p,

12°°(m, R) = min. w.r.t. (m,R), (5.37)
with

curv

12 (m, (5.38)

[, Whom:e©(Vm, R) + WhoR (&) dw — II(m, Rs) (m,R) € A>®
+00 else in X |
the admissible set
A:‘;oo = {(maﬁ) € HLQ(W: R3) X W171+p+q (w7 80(37 ]R)) My, (7717 772) = gg(nla 2, 0) ;

(Ri,my) = (Ra,mz) 1}, (5.39)

MExpansion of the first fundamental form I, of the midsurface m w.r.t. planar initial configuration yields
Iy — 1y = VmTVm — 1y ~ sym Vg y(v1,v2) + O(]|Vv||?). Hence control on vertical deflections wv3 is lost
during linearization.

15 As is well known [14, p.464] this is not the case with the membrane T-limit considered in [23], based on the
non-elliptic St.Venant-Kirchhoff energy.
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and the corresponding dimensionally homogenized local energy density is

Wheneo (Vm, B) o= |(FaRa) ' Vm = al? + 21 (R, me)” + (Bs,my)”)

”intrinsic” shear-stretch energy

~~
homogenized transverse shear energy

U

+2u+)\

tr [sym((Ru[Rs)" Vim — nz)]i . (5.40)

e

homogenized elongational stretch energy

Note that pu. = oo effectively rules out in-plane drill rotations [40, 28]. Moreover, the
transverse shear energy is doubled, but transverse shear is still possible. In this sense, the
resulting homogenized transverse shear modulus excludes what could be called ”transverse
shear locking” in accordance with the ”Poisson thickness locking” which occurs, if the correct
homogenized volumetric modulus is not taken.'6

6 Proof of ['-convergence for positive Cosserat couple mod-
ulus p. >0

Let us continue by proving the claim on the form of the I'-limit for strictly positive Cosserat
couple modulus g, >0 .

6.1 Equi-coercivity of I,ﬁj, compactness and dimensional reduction

Theorem 6.1 (Equi-coercivity of I}ij)
For positive Cosserat couple modulus p. > 0 the sequence of rescaled energy functionals I, ,E]_
defined in (3.11) is equi-coercive on the space X.

Proof. It is clear that for given h > 0 the problem (3.11) admits a minimizing pair (@i,ﬁi) €
HY2(Qq, R3) x WHitrta(Q, SO(3,R)) by the obvious scaling transformation of the minimizing
solution of the bulk problem for values of p > 1,¢ > 1 and for both . > 0 and . = 0.17 This
is especially true for Neumann boundary conditions on the microrotations, since for exact
rotations, ||R|| = /3. This leads to a control of microrotations in Wh*tP+e(Q; SO(3,R))
already without specification of Dirichlet boundary data on the microrotations.

Consider now a sequence h; — 0 for j — oo. By inspection of the existence proof for

the Cosserat bulk problem, it will become clear that for corresponding sequences (g@%j ,Rij) €
HY2(Q1, ) x WHHP9(0,,80(3, R) = X' with I£ (¢} ,Rj,) < oo bounded independent of
hj (not necessarily minimizers) we obtain a bound on the sequence (go’,iz]_ , Rij) in X', independent
of hj. To see this, note that for p. > 0, it is immediate that Vf;np” = F,f is bounded in

L?(Q,M3*3), independent of }_%2;,- on account of the decisive local coercivity condition

-t . -7 : . : —t, 7
Wonp (B ) > min(pie, o) [R5 Ff, — WP = min(ue, o) (|FE, 2 — 283 FE 1) +3)

> min(ue, 1) (I, 12 = 2V3IIFE || +3) (6.41)

16lim>\~>oo %H(iu‘: %) = p < oo but limy; o %A(lu‘r %) = 0.
I7In contrast to I-convergence arguments based on the St.Venant-Kirchhoff energy [23] which might not admit
minimizers for any given h > 0.
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and after integration

o

— —
o0 > If (¢, Ry,) > /Q Wonp (T, ) + Weure (8,) AV > /Q Wanp(U,) AV,
1 1

> | minue, ) (I1EF P = 2VBIEE [ +3) v, (6.42)
1

, ‘ .1 ‘
> min(ieon) | ([uamwnz T l0meI? + —2||6nssoﬁ||2]
Q1 h]’
1
~2V3 (100,71 + 10l + - 100l +3) V.
J

This implies a bound, independent of h;, for the gradient Vgoglj in L?(Q,R?). The Dirichlet
boundary conditions for @ij together with Poincaré’s inequality yield the boundedness of @ij
in H42(Q;,R%).*® With a similar argument, based on the local coercivity of curvature, the

bound on Eij can be obtained: we need only to observe that for a constant ¢t > 0, depending
on the positivity of a4, as, ag, @z, but independent of h;,

0o > It (¢h ,R;,) > /Q Wnp(Th,) + Weury (85, ) AV, > /Q Weurs (8, ) AV, (6.43)

8T .5 it
> [ et rav, = o [ RO, rrav, = o [ oyE, reerav,
1 1 1

which establishes a bound on the gradient of rotations V’n” [Rij (n).ei], i = 1,2, 3, independent

of hj. Moreover, ||§ij|| = /3, establishing the W1H1TP+4(Q; SO(3,R)) bound on }_Bl,iz]_. Thus
we may obtain a subsequence, not relabelled, such that

g = oh inHYA(0,B), B, —Ry inWHPH(Q; SO(3,R). (6.44)

Both weak limits (@g,ﬁﬁ) must be independent of the transverse coordinate 73, otherwise the
energy I ,g]_ could not remain finite for h; — 0, see (6.42) and compare with the definition of Dl;j

in (3.6). Hence the solution must be found in terms of functions defined on the two-dimensional
domain w. In this sense the domain of the limit problem is two-dimensional and the correspond-
ing space is X,. Since the embedding X’ C X is compact, it is shown that the sequence of
energy functionals I, 2], is equi-coercive w.r.t. X. |

6.2 Lower bound-the lim inf-condition

If [g is the I'-limit of the sequence of energy functionals Igj then we must have (liminf-
inequality) that

1§(o, Ro) < liminf Ij (¢}, . R,), (6.45)
J
whenever

gi b mLT(QL,E), R, - Ry in LYPT(0,S0(3,R), (6.46)

for arbitrary (wg,ﬁg) € X. Observe that we can restrict attention to sequences (@%j,ﬁij) €X

such that I ,gj (@ij,ﬁij) < oo since otherwise the statement is true anyway. Sequences with

8 This argument fails for the limit case j. = 0 since local coercivity does not hold.
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I}ij (wij,ﬁij) < oo are uniformly bounded in the space X', as seen previously. This implies
weak convergence of a subsequence in X'. But we know already that the original sequences
converge strongly in X to the limit (gog,}_%g) € X. Hence we must have as well weak convergence
to ph € HY?(w,R?) and Rg € Whitrta(y SO(3,R)), independent of the transverse variable
n3.

In a first step we consider now the local energy contribution: along sequences (L,ol,iZ ,ﬁij ) €

X with finite energy It hy? the third column of the deformation gradient Vn <ph remains bounded
but otherwise indetermined. Therefore, a trivial lower bound is obtained foy minimizing the
effect of the derivative in this direction in the local energy Wy,,. To continue our development,
we need some calculations: For smooth m : w C R? = R*, R: w C R? = SO(3,R) define the
”director”-vector b* € R? formally through

W (Vim, R) = Winp (B (Vim|b*)) := inf, Wanp (R (Vb)) . (6.47)

The vector b*, which realizes this infimum, can be explicitly determined. Set F := (Vimn|b*).
The corresponding local optimality condition reads

Vob* € R (DWip(R' (Vm|b*)), R (0[0|5b*)) =0 =
(R DWrp (B’ (Vim[6*)), (0[0]8b")) = 0 =
RDWnp(B (Vm|b*)).es =0 = DpWinp(R' (Vm|b*)).es=0=  (6.48)
S1((Vm|b*),R).es = 0.
Since
SIF,R) =R (u (FTR +R'F-2 11) + 2. skew(R' F) + At [ETF - ]1] 11) (6.49)
and
(Ri,me) (Ri,my)

R R R, 0%)
(Roym,) (Roym,) (Rayb >)
(Rsymg) (Ryymy) (s b)

2((Ri,me) = 1] (Ry,my) +(Rayma)  (Ry,b") + <R37m$>>

~

=
esh
Il

FTR+R F-21 = | (Ro,ma) + (R1,my)  2[(Raymy)—1]  (Ro,b*) + (Rs,my)
(Rg,m$> + (ﬁl, b*> <R3,my> + (ﬁz, b*> 2[<R3, b*> — ].]
T~ 0 % ((Rlamy> - (Rlamw» % (<Elab*> - <E37mw>))
skew(R F) = | * 0 L ((Ry,b%) — (Rs,m,)) | (6.50)
* * 0

the (plane-stress) requirement Sy.e3 = 0 (6.48) implies
(B, b%) + (Bs,ma) (B, b7) — (Bosma)
K <R27b:> + <R3:my> + phe <R27b*> - <R3>my>
2[(R3,b*) — 1] 0

0 0
+ A ((El,mﬁ + <1'_22,my) + (Eg, b*) - 3) (0) = (0) - (651)
1

0

The solution of the last system can conveniently be expressed in the orthonormal triad (Rl , R, , Rg)
as

b*_Z+M6(R3,mw)R1+H+/Z(§3,my>}_%2+g;}_%3,

A _
=1 — 2| . 52
o = 1= 5y ((Vml0), 7) 2] (6:52)
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Note that for R € SO(3,R) and Vim € L%(Q;,R?) it follows that b* € L?(2;,R®). Reinserting
the solution b* we have

<R17 mw) <R17 my> Z:__JCL <R37 mw)

—T ~ __ __ LA
R F= <§27m$> <§2amy> ZiJ:(R3amy> )
(Rs,my) (Rs,my) O
2[(1'_31,777,%) - 1] (Elam?) + (EQ:mw> 1+ Ziuﬂ (Eg,mﬁ
FTR+R'F-21= | (B,m,) + Rimy)  2[(Roomy) — 1] (1+L52) (By,my) |
(14 te52) (Rg,me) (14252 (Rs,my) 2[5, — 1]
L [0 H (@)~ Boma) § (G 1) Rem)
skew(R' F) = | 0 (4t -1) ®emy) | -
* %
c 2 c c -2
pp e B SR o BT Ry TR (6.53)
[ ol R e 1 M+ e M+ e

We obtain finally for W2 (Vim, R) := Wip(B' (Vm[b*)) with U = B (Vm|b*) = ' F after
a lengthy but otherwise straightforward computation

_ ~ ~ ~ A ~ 2
Wi (T, ) i= Wy ) = | sym(@ = WP + o | skew @ + 5 [sym(@ - )]

= || sym((Ri|R2)" Vim — o) |1 + pec || skeW((_ B> )Tvm)ll2 (6.54)
fe oY 2 — 2

Along the sequence (@ij ,}_22],) we have by construction,

m -
me(Rh vhJ Lph, ) me(Rh (v(mw)(ph | 77390]7, )) Z Wr?l(;) (v(m)m)(p?zj:Rh]—)' (655)
Hence, integrating and taking the lim inf also

limy inf / W (By,) V19 @) dV, > lim inf / 7 hom v(m,m)@&”,ﬁij)dvn. (6.56)

Now we use weak convergence of @ij and strong convergence of }_22]_ , together with the convexity

w.r.t. Vm and continuity w.r.t. R of fQ Whom(Vm R)dV, to get lower semi-continuity of
the right hand side in (6.56) and to obtain altogether

i / W (B Vit )4V, 2 [ WS, T 2V, (6.57)

1951

Next we are concerned with the curvature contribution: it is always possible to uniquely
rewrite the curvature energy expression in terms of skew-symmetric quantities
Wy 50(3,R) x50(3,R) x s0(3,R) = R",

Wee B OB R 0, B R 04 F) := Weur(8) (6.58)

where RT&”R € 50(3,R) since 0, [R R] = 0. We note that W, , remains a convex function in

curv

its argument since & € T(3) can be obtained by a linear mapping from (TzTamTz, }_BT&EE, TzTanst) €
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50(3,R) x s50(3,R) x s0(3, R). We define the "homogenized” (relaxed) curvature energy through

*,hom * —=T = 5L 55 *
webkom( B o R 0,,R) : =W, (R 0, R, 0,,R,A")

curv curv

= Weo(B 0p B R 0,,R,A), (6.59)
and set accordingly
Whom(8,) = Wehom(R'9,, R, R 0,,R),
8 = (R{(V(R0)|0), R (V(Ree2)|0). B (V(Rees)|0)) (6.60)

in terms of the reduced curvature tensor K € T(3).

Similarly to (6.48) the infinitesimal rotation A* € so(3,R), which realizes the infimum in
(6.59), can be explicitely determined. For the moment we refrain from giving the final result.
Suffice it to note that W™ is uniquely defined, remains convex in its argument and has the
same growth as Weyry. Then

1o, =t
h_thj 8773th)
whom il g Jf BhTo R
> Wekem(Ry 0, R, Ry, 05Ky, (6.61)

curv

Weury (By) DRy ) = Weeo (R 0, R, Ry 0, R,

Integrating the last inequality, taking the lim inf on both sides and using that W3 ko™ is convex
in its argument, together with weak convergence of the two in-plane components of the curvature

tensor, i.e.

—ﬁ7T _ﬂ —ﬁ7T _ﬂ _ﬂyT _ﬂ —ﬁ7T —ﬁ .
(th 6771 th ’ th 6772 th ’ 0) - (RO a771 Ro: RO 6772 RO: 0) in LtHPta (Ql ) 3:(3)) ’ (6'62)
we obtain
* hom 8T i BT -
llm lnf Wcurv R dV > Wcurv th 8771 th 5 th 8772 th) an
/ whom RETDRE) AV, . (6.63)

Then, because Weyrv, Winp > 0,

livy inf / W (B, vgupij) + Weure (B DU R}, ) AV

> hmlnf/me Rh VhJcph )dv, %—llmlnf/T/VCurv Rh DhJRh )dV

> [ Wa (b T V. + [ Wi @ DY) av, (6.64)
Ql Q1

— hom i pt hom (BT H Bt

_/me (v(m-'lz)(pO:RO) Wcurv (RO DRO) dV??;
Q

where we used (6.57) and (6.63). Now we use that <pg is independent of the transverse variable
713, which allows us to insert the averaging operator without any change to see that

m( -
/Who V(rnnz)(pO:RO /Who v(nmz) Av 9007R0) dV?? - /Who v(nmz) Av "pngO) dw

(6.65)
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since Eﬁ is also independent of the transverse variable. Hence we obtain altogether the desired
lim inf-inequality

yoll - —t
for

n m n m B! 5
1} (00, Ro) := / WRO (V1 AV 00, Ro) + WE (Ry DRy) AV,

curv

Q

m n m B! e
— / WRO (V1 AV 00, Ro) + WE (Ry DRy) dw . ]

curv

w

6.3 Upper bound-the recovery sequence

Now we show that the lower bound will actually be reached. A sufficient requirement for the
recovery sequence is that

V (o, Ro) € X = L™ (0, R®) x L'*79(Q,S0(3, R))
Elnp’,iz]_ — o in L"(Q,R%), Rij — Ry in L'TPT9(Q;,SO(3,R)) :
limsup I} (¢4, Rp,) < I (90, Ro) (6.67)
Observe that this is now only a condition if Ig (¢0,Ro) < oo. In this case the uniform coer-
civity of I,g]_ (@ij,ﬁij) over X' = HV2(Q;,R?) x Whitr+a(Q, SO(3,R)) implies that we can

restrict attention to sequences (wij,ﬁij) converging weakly to some (¢g, Ro) € H"?(w, R?) x

Whitrta(y SO(3,R)) = X/, defined over the two-dimensional domain w only. Note, however,
that finally it is strong convergence in X which matters.

The natural candidate for the recovery sequence for the bulk deformation is given by the
"reconstruction”

h, (M, 712,m3) := mi, 1) + By 113 % (01, m2) = o1, m2) + hyma 07 (m12) (6.68)

where, with the abbreviation m = pg = Av .y at places,

b* (1, m2) = ZC+_NIZ (Ro,3,mz) Ro1 + ZC+_u/j (Ro,3,my) Ro 2 + 0}, Ros ,
A _
*=1- —2|. .

Observe that b* € L*(w,R?). Convergence of np’,iz]_ in L"(21,R?) to the limit ¢y as hj — 0 is
obvious. .

The reconstruction for the rotation R, is, however, not obvious since on the one
hand we have to maintain the rotation constraint along the sequence and on the other hand

we must approach the lower bound, which excludes the simple reconstruction RL_ (m,m2,1m3) =

Ry (n1,72). In order to meet both requirements we consider therefore

-t .
Ry, (m,m2,m3) == Ro(m,n2) - exp (hjns A*(n1,n2)) (6.70)

where A* € s0(3,R) is the term obtained in (6.59), depending on the given Ry and we note
that A* € L'*PT9(w, s0(3,R)) by the coercivity of W . . It is clear that }_Bij € SO(3,R), since

curv-
exp : 50(3,R) — SO(3,R) and we have the convergence EL_ — Ry in L'*PT9(Q;,S0(3,R)) for
hj — 0.
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Since neither b* nor A* need be differentiable, we have to consider slightly modified recovery
sequences, however. With fixed e > 0 choose b. € W' ?(w,R?) such that ||b. — b*[| 12 rs) < €
and similarly for A* choose A. € WP+ (w, 50(3,R)) such that ||A. — A*|| L14r+a(w s0(3,R)) < €.
This allows us to present finally our recovery sequence

. (1, 18) = o (i, 1) + hj s be (11, 11)
_ﬂ J—
Ry, (1,m2,m3) = Ro(m,n2) - exp (hjnz A= (m1,m2)) - (6.71)

This definition implies
Vg, - m2) = (Vipo (11, m2) [ be(n1,12)) + o s (Vb (1, 12)10)
Ry 0, R, . = exp (hjns A)" Ry [0y, Ro exp (hjns Ac) + Ro D exp (hy s Ax) [hy 10y, Ac])
Rh 56772 Rh e =exp(hjns A" Eg [On, Ro exp (hjns Ae) + Ro Dexp (hjns Ac) [h; 130y, AL]]
h,-,sans th,s = exp (h; 13 A)" E({ [Ons Ro exp (hjns Az) + Ro Dexp (hyns A:) [h; Ac]]
= hj exp (hjns A-)" Dexp (hyns Ac) [A:], (6.72)

with 0,; A- € s0(3,R). In view of the prominent appearance of the exponential in these expres-
sions it is useful to briefly recapitulate the basic features of the matrix exponential exp acting
on s50(3,R). We note

exp : 50(3,R) — SO(3,R) is infinitely differentiable,

VAeso(3,R): [exp(4)]=v3 =

exp : LYPT9(Qy 50(3,R)) — L*TPT9(Q;,SO(3,R)) is continuous,

Dexp : s0(3,R) — Lin(so(3, R), M**?) is locally continuous,

VHeso3,R): Dexp(0).H=H,

VA, H € 50(3,R) :exp(A)T - Dexp(A4).H € 50(3,R). (6.73)

Note that by appropriately choosing hj,e > 0 we can arrange that strong convergence of (6.72)
to the correct limit still obtains by using (6.73)3. Now abbreviate

U = Ry (Voo lm,mo)|b*) € MP*3
Vi, = B (Vo (o) [be (m,m2)) + by s (Ve (1, 12)[0)] € MEX3 . (6.74)
Vo := Ry (Voo (1, 112) b (1, 112)) € MPX3
e =R, 0,R; .€s03,R), i=123,
€ =Ry 0, Ro € 50(3,R), i=1,2,
Apype = exp (hyns A-(m,m2))" Dexp (hjns A (m,m2)) [Ac] € 50(3,R),
§ o= Rh th RhJ <(m1,m2,m3) € T(3)
fo(n,m) = Ry DRo(1,12) € T(3) .
We note that by the smoothness of A. € WH1tPH4(w 50(3, R))
|l An; e = Acllprrtaqar so@r)) = 0 if hj =0,
1€ . = Ellrtrto(en sozmy — 0 i hj =0, (6.75)
Vs, = Vollnz(uwsws) = 0 if by =0,

~€ ~
||th - U||L2(Ql,l\/113><3) -0 if hj,{:‘ —0.
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The abbreviations in (6.74) imply

* —i
Iu (Qoth’ h],s /me Vh +Wcurv(egz]1g7egz2s’ h Rh ,EansRh E) dVU

/me Vh + Wc*urv(egl]lga 7]?’57 Ahj,s) an 5 (676)

where we used that h; - b. in the definition of the recovery deformation gradient (6.72), is
cancelled by the factor % in the definition of }ij. Whence, adding and subtracting W, (U)

~ € =
me U) + Wanp (V1)) = Wanp (U) + W

curv

-t
I (eh B, ) (61,62 Ay, ) dv,

Jo

iy ~£ iy ity
L@an l] 'F vv}np([] + L/hj - []) - L@an(l]) + I/1/0111'V(’€%hj) d\/ﬂ

since me and Wey,v are both positive, we get from the triangle inequality

< / Waap @) + Wap (@ + Vi, = T) = Wanp (D)) + Wey (€ €2, Ay, ) AV,

expanding the quadratic energy Wy, we obtain

me (0) + [Waap (T) + (DWaap (D), V., = T

+D me(U)(vh U Vh - U)| + CuI‘V(Egl]167Egl2€7Ahj75) dV?? (677)

Waap (D) + 1D Wanp @) [V, = Tll + C [V, =TI + W5,

curv

(Eils’kizs’Ath) an

for ||vh — Tl < 1 we have

/ Wap(@) + (€ + 1DWop @) [V, = Ul + W (651, 652, A, )V,

since |Dme(ﬁ)|| < 0Oy ||U|| we obtain

/ W (@) + (€4 [1T1) V5, = Ul + W (67, 652, A, )V,

and by Holder’s inequality we get

me @)+ Weure (67 67 Ay ) AV + (€ + 012200 [V, = Tllazgan) -

curv

gh2

j,€? "hj,e?

Continuing the estimate with regard to W (En ! Ahj75) and adding and subtracting ﬁo

curv
we may obtain

= = * * *
[Igj (()0?7,]4’57 th,s) S /me(U) + Wcurv(e(l)’ Eg’ A ) + Wcurv(egzls’ hJ e Ah] ,E)
Q1
Wc*urv(e(l)a E(2)7 A*) an

+ (c+ 102200 ) Vs, = Vo + Vo = Ullzzen)

me O) + W

curv

(kg £, A7) AV,
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W (B 67 Ay ) = Wt (66,65, A9 |1 ) (6.78)
+ ”Wc*urv(k(l)a E(2)7 Af) - Wc*urv(e(l)a E%, A*)HLl(Ql)

+ (C+ Tl200)) (IVh, = Vollzzon + Vo = Ullizan)) -

Now take h; — 0 to obtain by the continuity of W(,,, in its first two arguments and (6.75),

. _ﬁ == * y *
11]17'1-1 S%p I}ij (‘pgzj,s’th,s) S /me(U) + Wcurv(ktl)ve(Z)’A )dVTI
i o0
+ ||Wc*urv(e(1)7 Egv Af) - Wc*urv(e(l)a E(2)7 A*)||L1(Q1) (679)
iy ~ £ =
+(C+ 0z Vo = Tllzzgan) -

Since

T T2 Bl i N T

IVo = UIlI" = [[Ro (Voo (1, m2)[be) — R (Vo (111, m2)[07)|

= (1R ((Vipo(n1,m2)[b=) = (Tipo (1, m)[5)) |1
= |(Veo (m,12)1b) = (Vepo (1m,m2) [0)|I* = [|b- — b7, (6.80)

we get, by letting ¢ — 0 and using now the continuity of W7, ., in its last argument together
with ||4: — A*||L1+p+q(w750(37R)) < g, the bound

h;—0

limsup I} (¢h . Rp,.) < / Wnp(T) + Wy (85, 8, A7) AV, = / Winp(U) + WEhom (6, €3) AV,
1951
= [ Wl (Vien R + WER (R aV, . (6.81)

Since y, Ry are two-dimensional (independent of the transverse variable), we may write as well

hhm S]‘(l)p [lg] ((p%j,s’ th,s) S / Wr}rllz) (v(mv’?z) Ay -0, RO) + nguorv (RO) dVU
 ad

= /Wr}rllz)m(v(mv’?z) Av '(vaEO) + nguorrzzl(ﬁo) dw = [g((PO,EO) ’ (682)

which shows the desired upper bound. Note that the appearance of the averaging operator Av
is not strictly necessary since the limit problem for p. > 0 is independent of the transverse
variable anyhow. [ |

7 Proof of I'-convergence for zero Cosserat couple modu-
lus p. = 0 without equi-coercivity

In this part we show that the the formal limit of p. — 0 of the I'-limit for g, > 0 is in fact
the I-limit for . = 0. First, we investigate a lower bound of the rescaled three-dimensional
formulation for the limit case p. = 0. We consider a family of functionals I, £7mem : X' = R,
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where all transverse shear terms have been omitted, more precisely

Ihmem (f gt B DhR3du / Wonp (U @) + Weury (82) V) =5 min. w.r.t. (o, T,

LIS
—  —=3d4,T
Un =R F 6, () = gi) = 9a(Cn) = galm e,k -1s) = ga,m2,0),
—4 ot ot
—4mem Eﬁz,ll Uh12 0 < 3(” 577190“) < 3(” 6772()0ﬁ> 0
U = Upn Uh 22 110 = | (R, f‘%@’) (R, 877290‘1) _3(”0
0 0 Uh,33 0 0 %(Rb‘ 7 76773()011)
11
I} -,z 0
’YOX[ 272]7 70C W,
R free on ['y, Neumann-type boundary condition, (7.83)
—f,mem ﬁ7 m A f,mem 2 mem —3d,f
Wanp (U3"") = el sym(@,"" = W12 + 5 tr [sym(@"" = 1)) = wimem (Vi , B™),
1 14p
Weurv (R) = pu 1+ a4 L1||& Al kew &5 || &) )
e (85) = o (1o LE8510) (s 1 sym 851 + e [l skew 85 + ozt [8] ) |

—3d,4,T ,=53d,f
8, =R"" DR ().
Accordingly, we define the admissible set

—f,mem

Apem .= f(p R) € X | sym U, € L*(Q,M**3), R € Wh'TP+(Q, SO(3,R)),
@t () = g3(n) = ga(m,12,0) }. (7.84)

Asin (5.20) we extend the rescaled energies to the larger space X through redefining

[il?mem(‘»ou: V‘Puaﬁﬂ’ Dlnlﬁﬂ) - {{fl(’:em((pu, V(pﬁ, Rﬁ,D%Ru) lefls(;pfn X).E Amem (7:85)
Observe that
IE(6F Ve B DIR) > e o, Vit BT DUR™), (7.86)
which implies [42, Prop. 6.7] that
I~ lim inf A lim inf e (7.87)

Hence I' — lim inf Ig’mem provides a lower bound for I' — lim inf I'gl _,- Putting inequalities
(5.33) and (7.87) together, we obtain the natural chain of inequalities on X

[ —liminf I;™" <T —liminf I}

<T-limsuplf, _ < lim (F ~lm I, >0) — b0, (7.88)

pe—0

7.1 Conjecture on the corresponding form of I' — lim inf

We conjecture that the I' — lim inf for (7.83) is given by the following energy functional I; dmem
X — R,
5™ (¢, R) =
f Wr}rllllji)mp(v(nwz) Av -90(7717 2, n3)’l—_%) Wchl:)rrxrll( S) dw (‘P, ) Amem
o (7.89)

+00 else in X,
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where Whom0 is defined in (5.35) and the admissible set is now

AP = {(p, F) € X | sym (i) Voo Av 9 € L2(0, MP<?), B € WHHPH(i, SO, R)),
ot (1) = gi(n) = galn,12,0) } . (7.90)
0

Note that this I' — liminf conjecture makes no statement about the behaviour through the

thickness of the in-plane components of the deformation: the limit problem I;™®™ as such
would not be entirely two-dimensional.
7.2 A lower bound for the "membrane” lower bound
We show presently that
15" (9o, Ro) < lim inf e (gh R, ), (7.91)
i J 2

whenever

¢ eh mL(,E), R, —Ry inL'PT(Q,,50(3,R), (7.92)

for arbitrary (@%,Rg) € X. Observe that we can restrict attention to sequences (‘PL:RL—) € X

such that I, ,’i’jmem(goij,ﬁij) < oo since otherwise the statement is true anyway. The statement
(7.91) implies that

mem < p— lim inf rpmem, (7.93)

which is ”almost” the conjecture (7.89) since I:™*™ could be strictly smaller. If I @ij , EL_) <
00, then equicoercivity w.r.t. rotations remains untouched by a change from Wiy, to W™ in
the local energy. Hence, as usual by now, we can restrict attention to sequences of rotations
Rij converging weakly to some Ry € WH1HPT4(w SO(3,R)), defined over the two-dimensional
domain w only. However, we cannot conclude that ¢ is independent of the transverse
variable, contrary to the case with p. > 0.

mem (

Along sequences (Lp%j,ﬁij) € X with finite energy the product th(th73,an3<p§”> remains
bounded but otherwise indeterminate. Therefore, a trivial lower bound is obtained by mini-
mizing the effect in the 33-component in the local energy Wis™. To do this, we need some
calculations: for smooth ¢ : Q1 = R*, R : w C R? — SO(3,R) define the ”director”-vector

b* = (0,0, 0")" € R® with b(g) = (0,0, 0)" € R?* formally through
m %) mem =T % . mem —T
W™ (Vs s B) = Wig™ (R (Vo 010*)) = Inf Wip™ (B (Voo 010(0))) . (7-94)
The real number p*, which realizes this infimum, can be explicitly determined. Without giving

the calculation, which follows as in (6.48) we obtain

A —
* = 1 _—— —_ 2 - 1 -
Y 2,u + 2\ [((v(n1v172)(p|0)7R> ]

A —
T [sym((B1|R2)" Viy,nn e — 12)] . (7.95)
Note that if R € SO(3, R) and sym((R;|R2)? V, ,.p¢—12) € L?(Q1, R?) one has o* € L%(y, R?).
We obtain for Whem™O(V, .0, R) := Wy (T%T(V(,,lm)apw*)) after a lengthy but straightforward
computation

Waan™ (Vyinn 0, B) = pl| sym((Bi|R2) " Vg — o) | (7.96)

— = 2
+ tr [sym((R1[R2)" Ve — 12)] "

BA
24+ A
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Along the sequence (@ij ,Tz’,‘”) we have therefore by construction,
mem mem 1 m -
W™ (B, V13 0h,) = W™ By (Vw051 700 01,)) = W™ (Voo 01, Bi,) - (7.97)
j
Hence, integrating and taking the lim inf also

lim inf / Wanp(By,, Wik )dV, > lim inf / WhomO(, ok R, )dVy. (7.98)

2 2 Ql
As in (6.57) (and subsequently) the proof of statement (7.91) would be finished, if we could
show weak convergence of V(,,l,,z)cpgz]_ in L?(Q, M3*3) whenever cp’,iz]_ — @} strong in L"(Q;,R?)

and I ,’i’jmem(goij,ﬁij) < 00. Boundedness and weak convergence of V(,n,,m)(p%j in L2(Qq, M3*3)
is, however, not clear at all, since we now basically control only the ”intrinsic” term

| sym((R1|R2)1'V,, ¢ — 1L2)]|? in the integrand. Instead, we will prove a weaker statement,
namely that

-t i B
(Rth |R27hj)Tv(nm2)(p§Lj - (R1,0|R270)Tv(n1m2)90§) € L2(017M2X2)7 (799)

after showing, that the above expression makes sense along the sequence, since V(,”M)goij is not

yet explained if we know only that @ij € L"(Q,R3).
In order to give a precise meaning to the expression in (7.99) along the sequence we define
first for smooth ¢ € C>®(Q;,R?) and R € WhHiTP+e(Q; SO(3,R)) an intermediate function ¥,

v Ql — ]RZ ) \Il(nhn27773) = <§R27Z§> (7100)

This implies that ¥ € WhHiTr+7(Q, R?). It holds

— = <R178 1¢> (EMa 2¢) D D L (6 1R1,¢) <a 2R1,¢)>
) St = (7500 (Rronn) » PP = (G50 R
_ (0 (B1,9) O0n(Ri, )\ _ & (& _
V= <a7711 <R;;¢> 622 <R;:¢>> o (R1|R2)Tv(nmz)¢+ D(R1|R2)-¢- (7.101)
The last equality shows
(R1[R2) Vg1 ® = Vigin ¥ = D(R1[R2).00. (7.102)

We note the local estimate

[[8ym Vi UlI* = || sym((Ra| R2)" Vigyow @) + sym(D(Ry[Rz).6)|*
(B1|R) Vigunw 9)I° + 2|l sym(D(R:1 [Rz).9)|1”
< 2| sym((R1[Rz)" Vi, @)l + 21D (Ba| Rz).- 4|l (7.103)
(B1|R2) " Vo O)I° + 21 D(Ru| R - [l

The last inequality implies after integration and Holder’s inequality (reminder r = %,
c.f. (5.17))

/ 5y ¥y, W[ AV,
Q1

<2 / | sym((Ri|R2) " Virwn O)I> AV + 20 Bl Sy11 4040y 1011700 m5) - (7.104)
Q
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Moreover,
/Ilsynﬂvm,nzﬁl’ll2 +[[e]Pdv, < 2/ [ sym((Ri[R2)" Viy,n 0)II* AV,
Ql Q1

+ 2[Rl sareraia) 19111, 29 + 2[18ll72(, 25> (7-105)

. — 2 — 2 - = .
since [[¥]J2 = (By,9)° + (Bos )’ < IIR2N6I2 + IRel2ll9ll? = 2]|]12. Furthermore, adding
and subtracting 11,

/ Isym Vi, ¥ + 2|2V,
Q1

<2 / | sym((Ri[Ra)" Vi, O)I? AV + 20[RISy11 4540y 191700y me) + 2110117200, 29
Q

=2 / | sym((Ba [Ba)T Vi — 1> + 1)|2dV,
Q

+ 2||§||%V1,1+p+q(91) ||¢||%r(91,]1{3) +2 ||¢||%2(91,R3)

< / 4| sym((Ba[Ba) Vi — 1) + 4| |2V, (7.106)
Q

+ 2||§||%v1>1+p+q(91) ||¢||iT(Ql,R3) +2 ||¢||2Lz(Ql,R3) -

Hence, considering cpij instead of ¢ we obtain along the sequence (@%j ,RL_) € X with

e (gh Ry ) < 00, (7.107)
the additional uniform bound
sy o ¥ + 1917 2V,

Q

4 4 mem —t
< SIE ) + [ 4l av, (7.108)
Q1

-
+ 2||th||%/v1,l+p+q(91) ||(pg7,j||2L"(Ql7R3) +2 ||(p§1j||iZ(Ql7R3) <.

The classical Korn’s second inequality without boundary conditions implies therefore that

o0 > / 15500 Vo @, |12 + 1, 12 AV,
Q1

1/2
= / {/||Sym%m‘l’hj(771,772,773)“2+||‘I’hj(m,nz,n3)||2dw} dns

—-1/2 Lw

1/2
> / e / N i, (s 1)+ 120, (1, s )| o | s, (7.100)
—-1/2 w

which allows us to conclude the boundedness of V,,, ., ¥p; in L?(Q;,R?) and weak convergence
of this sequence of gradients to a limit. By construction we know already that ¥,, — ¥o €

L?(9,R?) (assumed strong convergence of Rj; and ‘Pij)- Hence V,,,, ¥n,; converges weakly
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t0 Vi ne Wo. Since we know as well that 6771.}_%2], - Gml_fﬁ in L1Pra(Q M3*3) i = 1,2 and
‘Pi]« — @b in L"(, R?) we obtain
=t Bt =t ‘
D(R} B )-8, — D(Ry o|Rs0)-65 € L* (1, M%) (7.110)
Looking now back at (7.102) shows that
-t Bt
(Rth |R2,hj)Tv(771,772)(p§7,j € L2(Ql7 M2XQ) ’ (7111)
is a well defined expression for which (7.99) holds. Due to the convexity of WI};%“O in the
argument sym((R;1|R2)T'V,,,., ¢, we may pass to the limit in (7.98) to obtain
m -
limn 1nf / Wonp( Rh vh 195, ) AV, > / WhomO(y, o 0h, Ro)dV,. (7.112)
1951
The convexity of W™ and Jensen’s inequality (5.23) show then easily
1/2 .
/ Wr?l%mp(v(mmz) Av -<P(771 d 772 dw < / / 12 Whom, v('l1772)90(n17 n2, 773) R) d773 dw

= [ W et mon) VAV, (7.113)
1
Combining (7.113) with (7.112) shows

hmmf/me Rh V’”g@h )dv, > / WI};%“O(V(M,,Z) Av.o(i,m2), R)dw. (7.114)

The proof of (7.91) is finished along the lines of (6.57). Note that (7.111) does definitely not
yield control of V(mm)go%j in L2(Q, MP*2), -

To finish the proof of I'-convergence for zero Cosserat couple modulus we observe that we have
shown (c.f.(7.93)) in this section that on X = L"(Q,R®) x L1TP+4(Q;,SO(3,R))

IP™™ < T —liminf I7™™ < T — liminf I,’ilu )

<T-lmsuplf, _ < lim (F ~limIf, >0) =100, (7.115)

fre—0

,mem Iﬁ7

Since, however, Ig 0 0, the last inequality is in fact an equality, which shows that

—lim I} ; =12, (7.116)
pe=

This gives us complete information on the behaviour of sequences of minimizing problems for
e = 0, should such sequences exist and converge to a limit in the encompassing space X. B

8 The new formal finite-strain Cosserat thin plate model
with size effects

8.1 Statement of the formal Cosserat plate model

The proposed formal ”rational” of dimensional descend leads us to postulate the following
two-dimensional minimization problem for the deformation of the midsurface m : w C R? — R3
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and the microrotation of the plate (shell) R :w C R? — SO(3,R) on w:

_ _ B3
I(m, R) = / h me(U)-l-h Wcurv(ﬁs) + E Wbend(-ﬁb) dw

—II(m, R3) = min. w.r.t. (m,R), (8.1)

under the constraints
U=R'F, F=(VmRs)eM", (8.2)
Ry = (ET(V(Rel)m), ET(V(R@)|0),}_2T(V(§.e3)|0)> €X(3), Ry =48,

and the boundary conditions of place for the midsurface deformation m on the Dirichlet part
of the lateral boundary ~o,

mp,, = ga(x,y,0), simply supported (fixed, welded) . (8.3)
The three possible alternative boundary conditions for the microrotations R on 7, are

EHO = polar((Vm|Vga(z,y,0).e3)),, , strong form of reduced consistent coupling, (8.4)
VAeC;®(v,s0(3,R)) :

/ (RT (Vm(z,y)|Vga(z,y,0).e3), A(z,y))ds =0, very weak consistent coupling,

Yo

R, = Vyga(x,y,0).e3
o ||Vga(e,y,0).es]’

rigid director prescription.

The constitutive assumptions on the reduced densities are!'?
— — 9 S B — 2
Wip(U) = || sym(U — 1) ||* + pe || skew(U)]|* + S tr [sym(U — 1)] (8.5)

= pu ||sym((R1|Rx)" Vim — 1)|” +puc || skew((Ri[Rz)" Vim)||?

shear-stretch energy first order drill energy

+ C = =
g SRR (R )+ (Ram,)”) +
2
classical transv;se shear energy
L}:+p q q 2 2 2 #
Weury (Rs) = 1 B (14 aq LY||86]]9) (a5 [| sym Rq||” + a || skew Ks||* + ar tr [Rs] ) ,
S S N
Ry = (R (V(R.e1)[0), R (V(R.e2)|0), R (V(R.e3)|0)) ,
£ = (AL, 82, &%) € T(3), the reduced third order curvature tensor,

HA
2+ A

tr [sym((Rﬂﬁz)TVm - ]12)]2 )

U
2u+ A

elongational stretch energy

Whend(Ro) = p || sym(8)[|* + e || skew (&) [|* + tr [sym(&)]”

R = RT(VR3|O) =%, the second order non-symmetric bending tensor.

The (relative) thickness of the plate (shell) is & > 0. The total elastically stored energy density
due to membrane-strain, total plate-curvature and specific plate-bending

h3
W= hWhp +hWeury + EWbend , (8.6)
membrane curvature S——

bending

19| skew((R1[R2)"Vm)||2 = ((Ry,my) — (R, ma))”.
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depends on the midsurface deformation gradient Vim and microrotations R together with their
space derivatives only through the frame-indifferent measures U and £,. The micropolar
stretch tensor U of the plate is in general non-symmetric, neither is the micropolar
reduced third order curvature tensor £;. The three-dimensional plate deformation is
reconstructed as

22 —
pular.2) = m(e) + (20nle0) + 5 o)) R, (8.7
where
A - (Naigr, Rs) A (Naigr, Rs)
=1- Vm|0),R) — 2] 4 ATy A g q] 4 S T8
Om 2N+/\[<( m|0), R) ] (21 + A) 2M+)\rr ] (2 + A)
first order thickness chang;due to elongational stretch
A =53 - (Nres:}_z3> A (Nres:§3>
= - VR;3|0),R) + 28/ — tr [Ry] + e 30 8.8
o 2t x (VEs(0), B) + (5 P, S S R C I (88)

e

non-symmetric shift of the midsurface due to bending

and Nyif, Nyes as defined in (14.3). To first order, the reconstructed deformationgradient is
given by F, = (Vm|g,, R3). Here w C R? is a domain with boundary dw and vy C Ow is
that part of the boundary, where Dirichlet conditions g4 for deformations and microrotations
and/or consistent coupling conditions for microrotations, respectively, are prescribed. The
reduced external loading functional II(m, R3) is a linear form in (m, R3) defined in (14.19)
in terms of the underlying three-dimensional loads. The parameters g, A > 0 are the Lamé
constants of classical elasticity, p. > 0 is called the Cosserat couple modulus and L. > 0
introduces the internal length. We assume throughout that as > 0,a > 0,a7 > 0. We have
included the so called shear correction factor x (0 < k < 1) to keep in line with classical
infinitesimal-displacement plate models (14.11). In our formal derivation, however, we obtain
% = 1. The reduced model (8.1) is fully frame-indifferent, meaning that

VQeSOB,R) :  Wup(QF,QR) = Wip(F,R), £:(QR) = £,(R). (8.9)

The non-invariant term g,, is only needed to reconstruct the 3D-deformation, which depends
on the non-invariant loading.?® Strain and curvature parts are additively decoupled, as
in the underlying parent Cosserat bulk model (2.1). We note the appearance of the harmonic
mean H and arithmetic mean A

1 AL pA

K+ fhe

5 (8.10)

5 5 , BA pe) = K

8.2 Mathematical results for the formal Cosserat thin plate model

For conciseness we state only the obtained results for the case without external loads. It can
be shown directly, without recourse to three-dimensional considerations [49]:

Theorem 8.1 (Existence for 2D-Cosserat thin plate with p. > 0 and x > 0)

Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H'(w, R?)
and Rqy € WY *P(w,SO(3,R)). Then (8.1) with . > 0,k > 0, a4 > 0,p > 1,¢ > 0 and
either free or rigid prescription for R on vy admits at least one minimizing solution pair
(m,R) € H' (w,R®) x WhHtP(w, SO(3, R)). [ |

Using the extended Korn’s inequality [48, 56], the following has been shown in [52]:

200f course, if the external tractions are rotated as well, we obtain invariance: (Q.Ng;g, Q.E3> = (Ndiﬁv,ﬁg,).
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Theorem 8.2 (Existence for 2D-Cosserat thin plate with y. =0 and x > 0)

Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H'(w,R?)
and Rq € WhtPtd(w SO(3,R)). Then (8.1) with p. = 0,6 > 0,y > 0,p > 1,¢ > 0
and either free or rigid prescription for R on 7y admits at least one minimizing solution pair
(m,R) € H' (w,R®) x Whitrta(y SO(3, R)). [ |

9 On the form of the transverse shear energy for non-
vanishing thickness and the shear correction factor

[-convergence describes the thin shell limit, but misses of course the fact that in actual com-
putations of thin structures one wants to describe a material with finite thickness, which can
sustain some amount of transverse shear.

If we compare the two different limit models (5.25),(8.1) described herein, we see that
limp; 0 hijl(m,R) in (8.1) coincides with the I-limit Ig in (5.25) as far as the local energy con-
tribution Wy, is concerned, apart from the coefficient of the transverse shear energy. How then
should the transverse shear contribution a priori look like, starting from a three-dimensional
view-point??!

There is a large number of papers concerned with the effective (homogenized) coefficient
of the transverse shear energy for isotropic linear elastic bulk material. The transverse shear
deformation in the finite-strain Cosserat approach is proportional to ((Rs,ms), (R3,my)). The

corresponding transverse shear energy is proportional to (Rs, m@)2 + (R3, my)z. If we assume
no warping (transverse sections remain straight), i.e. an ansatz of the form ¢(z,y,2) =
m(z,y) + ot (2) R(z,y).es with ot : R = R* and a constant director R.ez over the thickness,
the transverse shear energy is generally over-estimated. This ansatz leads to a linear distribution
of the transverse shear-stresses in the plate.

From direct equilibrium considerations for the bulk it follows, however, that the director
should be S-shaped over the thickness. Including this effect amounts to introduce warping.
This corresponds to a ”weaker” kinematical ansatz o(z,y, z) = m(z,y) + o7 (2) Q(2) R(x,y).e3
with an additional independent rotation field @ € SO(3,R), depending only on the transverse
variable z [73, 74]. It leads to a quadratic distribution of the transverse shear stresses in
thickness direction. In order to relieve the effect of not including warping in the simpler ansatz,
the introduction of the shear correction factor x can be motivated.

For both presented models, the transverse shear energy in our notation can be written in
the form

— 2 2
G ((Rs,ma)” + (Ro,my)°) (9.11)
with a constitutive coefficient G’, the transverse shear modulus [G'] = [N/m?].?? Summa-
rizing, we have
G = A, ne) = K K -;uC formal reduction (8.1),
G = H(u, po) = 2u —< [-limit (5.25) | 9.12
(1, ptc) e mit (5.25) (9.12)
G' =k A(p,0) = Ii% classical linear Reissner-Mindlin (14.10) ,

21The possible difference between Weyry and Wchl?r‘}} is not our concern, since the constitutive coefficients of
Weurv are rather a matter of convenience at present, as long as coercivity of curvature is guaranteed.

22Mindlin’s notation [45, eq.7].
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with k£ > 0, the so called shear correction factor.??> There are various values for the shear
correction factor k proposed in the engineering literature, among them prominently

2

K = % ~ 0.8225 Mindlin’s value [45] ,
K = % =0.8700, Babuska’s value for v = 0.3,
10 o B
K= 5o ™ 0.8772, Zhilin’s value for v =0.3 [1] ,
10
k=15~ 0.8333, Reissner’s value [57, 58], (9.13)
10 . _
K = o~ 1.01 Rossle’s value for v = 0.3,
2
12 <k<1, Altenbach’s estimate [1].

These values for x are proposed in terms of best fitting of certain simple infinitesimal three-
dimensional quasistatic or dynamic test cases. Mindlin’s value k = 7{—; is obtained from a best
fit of the first eigenfrequency of the linearized plate model as compared to the three-dimensional
linear elasticity solution. Reissner’s value appears through an additional assumption regard-
ing the stress distribution through the thickness [57, eq.10]. Babuska’s value [5] is based on
numerical ”experiments”. By dimensional analysis it can be shown [1] that & should depend
on the Lamé constants only through the Poisson ratio 0 < v < % Another motivation for
the introduction of k is obtained by trying to optimize the rate of convergence of the linear
Reissner-Mindlin model to the solution of the linear elasticity model as h — 0. This is the
argument for Rossle’s value [59]. The fact that there x might be bigger than one cannot easily
be accepted from a purely engineering point of view.

For0 <k = (tfﬁf)? < 1it holds that k A(u, pe) = H(i, pie)- Hence, in view of our deduction
of the I'-limit as compared to the formal reduction and the general inequality H(u,pu.) <
A(u, pe) together with the linearization consistency of the I'-limit (5.34) if u. = 0 it is strongly
suggested that x < 1, in accordance with engineering practice, also in the finite strain
case.

The question of the form of the homogenized transverse shear energy is as well related to
the observation, that the I'-limit energy functional for p. = 0, should it exist, will necessarily
loose coercivity, which can directly be traced to the missing transverse shear contribution but
this loss of coercivity is not due to the missing drill-energy. In this respect, note that Wy, (U)
in (8.5) leads to a coercive formulation w.r.t. the midsurface deformation m also for p. = 0.
Moreover, in a linearized context, this energy is asymptotically correct for p. = 0 and k = 1,
cf. (14.11).

For numerical calculations, the "homogenized” energy Ig’o, which is indeed the I'-limit
energy functional for pu. = 0, can hardly be regarded as suitable in this case. From a more
practical, computational viewpoint then, the introduction of a strictly positive shear correction
factor 0 < k < 1 is fully justified and provides exactly that necessary minimal change of the
local energy used in Ig’o, in order to re-establish first strict Legendre-Hadamard ellipticity w.r.t.
m (but not local strict convexity) and second coercivity for the midsurface in H*2(w,R?*). This
underlines the salient features of the formal derivation together with p. =0 and 0 < k < 1.

237In the classical Reissner-Mindlin model, the shear stresses o13,023(= (R3,ms), (R3,my)) are constant
through the thickness of the plate. However, three-dimensional traction free boundary conditions at the upper
and lower face of the shell imply that at these faces, the stresses have to be zero, hence also the shear stresses have
to be zero. An analysis of equilibrium for an elastic beam shows that the shear stress should be quadratic through
the thickness and vanish at the faces. A constant shear stress distribution over the thickness overestimates
therefore the shear energy. A correction factor, known as the shear correction factor is often used to reduce the
energy associated with transverse shear and accurate estimates of this factor can be made for elastic beams and
shells. For nonlinear materials, however, it is difficult to estimate a shear correction factor.” [6, p.554].

36



Drill: in-plane

rotations
Rey |/ _
n R.e;

(@5, R)

the plate in its deformed
present configuration
€3

€ m
ado
€1
h

Qh:mx['ia];]

the plate in its planar reference
configuration

Figure 1: The assumed Cosserat plate kinematics incorporating transverse shear (R3 # i),
thickness stretch (g, # 1) and drill-rotations. Reconstructed three-dimensional deformation

w5+ U C R® = R?, reconstructed microrotation B 0, C R = SO(3,R), I_%Sd(:v_,y,z) =

R(z,y), midsurface deformation m : w C R? ~ R® and microrotation of the plate R : w C
R? — SO(3, R).

10 Consequences for the Cosserat couple modulus p.

It is generally accepted in the engineering literature that really thin structures cannot support
a non-vanishing transverse shear contribution. We introduce therefore the postulate

Postulate 10.1 (Vanishing transverse shear)
Regardless of material constants, in the limit of arbitrarily thin, homogeneous isotropic struc-
tures, i.e. for h — 0, transverse shear effects are altogether absent. |

Since the I-limit faithfully describes the leading order term for vanishing thickness, this pos-
tulate implies that the Cosserat couple modulus p. must vanish as well, since otherwise one
would have to deal with a remaining homogenized transverse shear contribution in the thin
plate limit.

This statement has far reaching consequences: it has never been possible to unequivocally
identify specific values for the Cosserat couple modulus p. > 0 in the experimentally oriented
literature. In light of our development the problem can be resolved in the following way: p. > 0
in the Cosserat bulk model is a numerical tuning or penalty parameter but not a
material constant. That p. should be zero as a material constant has been conjectured by
the first author already in [49, 52]. The unexpected formal proof of this statement has been
reached now by our I'-convergence result.

A striking consequence of this reasoning is that a linear Cosserat bulk model describing
faithfully the behaviour of a material body, does not exist, since for y. = 0 the
linearized fields of infinitesimal displacement and infinitesimal microrotation decouple, see [54].
In summary Postulate 10.1 implies that the infinitesimal Cauchy stress tensor o must
always be symmetric.

37



microrotation R,
existence: (uc =0,p>1, ¢ > 0)

m € H"?(w,R?),
R e whitrta(y SO(3,R))

existence+uniqueness:
v € H 2 (w,R?),
0 € H 2(w,R?)

3D-geometrically exact Cosserat model, 3D-linear elasticity, 3D-nonlinear St. Venant-Kirchhoff,
internal length L. > 0, o displacement u, geometrically exact,
deformation ¢, microrotation R, pe = 0, lin. existence+uniqueness: deformation ¢,
triad of "directors” (R1|R2|R3) = R, ’ u € HY2(Q,R?) linearization not quasiconvex and not elliptic,
existence: (e =0,p>1,9>1) (p>1,¢>0) - existence:
p € HY2(Q,RY), p € Whi(Q,R?)?
R e whiltrte(Q, SO(3,R))
(pe > 0) commutative T-limit commutative formal
?two-field” diagram (Anzellotti, diagram asymptotic analysis
I-limit Ciarlet, (Miara,
(present) present) Fox/Raoult/Simo)
2D-"membrane” Cosserat plate, 2D-linear 2D-nonlinear
geometrically exact, ?membrane” plate, ?membrane” plate,
formal internal length L. > 0, horizontal midsurface geometrically exact,
ansatz membrane, curvature, no bending, fte = 0, lin. displacement v, . L not quasiconvex, L.
(Neff) midsurface deform. m, % 7 7 | existence+tuniqueness: linearization | midsyurface deform. m, [-limit
microrotation R, (p>1,¢>0) | V€ HY2(w,R?) ) existence: (Le Dret/Raoult)
o existence: (pe >0,p>1,¢>0) =7 loss of vertical |, ¢ w4 (w,R3)?
& 1.2 3 displacement
m € H*(w,R?),
R e whltrta(y, SO(3,R))
only fork
same transverse k=0, certain \
shear4energy, if loss of vertical deform. m",
= _fHle <« i i i
K= bz S 1 displacement identical \
formal 2D-Cosserat plate, 2D-classical linear 2D-quasiconvex
geometrically exact, Reissner-Mindlin plate, ”membrane” plate,
internal length L. > 0, no drill energy, geometrically exact,
membrane, curvature and bending, pe = 0, lin. shear correction: 0 < Kk <1, non-resistance
shear correction: 0 < Kk <1, midsurface displacement v, in compression,
midsurface deform. m, (p>1,¢>0) one "director” 6, tension field theory,

midsurface deform. m,
existence:

m € Whi(w,R3)!

m continuous

90U9SI9AU0D-] pUE S[OPOUI [RUOIS

IT

IAJOAO JT)RWAYDS

P I9MO[ U93M)3( SUOIJR[AI JO MAI

-Uoumil



12 Open problems and discussion

We have rigourously justified the dimensional homogenization of a geometrically exact Cosserat
bulk model to its two-dimensional counterpart by use of I'-convergence arguments. In starting
from a ”true” Cosserat bulk model, the appearance of an independent director field Rs is
most natural. The argument is given for plates (flat reference configuration) only, but it is
straightforward to extend the result to genuine shells with curvilinear reference configuration
and it should be noted that the extension to shells is independent of geometrical features of
the curvilinear reference configuration. The inclusion of transverse shear effects makes the
distinction between elliptic, parabolic and hyperbolic surfaces in a certain sense obsolete. A
welcome feature of the obtained I'-limit is its linearization consistency.

Perhaps not so clear is an extension to the weak consistent coupling boundary condition
in the Cosserat bulk problem, which might have an influence on the form of the homogenized
transverse shear energy.

As a by-product of our development, we have obtained information on the numerical value
of the Cosserat couple modulus g, in the bulk model: it should be set to zero which implies the
symmetry of the infinitesimal Cauchy stresses o. Moreover, for p. = 0, a value 0 < k < 1 for
the shear correction factor in the formal model is physically consistent, amounts to the inclusion
of transverse shear and computationally stabilizes the model. In this sense, the classical linear
Reissner-Mindlin model, which is not a I'-limit of classical linear elasticity can now be seen
as linearization of the geometrically exact Cosserat I' — limsup for u. = 0 with additional
transverse shear stabilization.

The proposed two-dimensional Cosserat ”membrane” plate (shell) model may as well have
applications in those cases, where classical surface theory is not sufficient. This can be the case,
if the surface to be investigated is not smooth enough, i.e. m ¢ H??(w,R®) in the presence of
failure along asymptotic lines of the surface. Our I'-limit formulation is in principle well-posed
for midsurface parametrizations m € H'?(w, R3).

Future work should investigate the numerical virtues of the formulation with non-vanishing
transverse shear energy.
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14 Appendix

14.1 The I'-limit for the rescaled linear bulk problem

[-limit investigations for the classical linear bulk problem are already well-known [12, 3]. How-
ever, while giving generically consistent results, they are based on different scaling assumptions.
In order to establish linearization consistency of our formulation, it is therefore necessary to
use the same scaling for the linear problem as for the finite-strain problem.

While we want to draw finally conclusions as regards classical linear elasticity, we study in
a first step a quadratic functional which is strictly bigger than that of linear elasticity if we put
te > 0. Let us investigate therefore the I'-limit of the sequence of quadratic energy functionals
defined for ¢* € H*(Q,R?)

J}i(w") = / Wnn(F,f) —(f*, " dV, — min. w.r.t. o

1
F}g = am‘Pu(Tha772:773)|677290ﬁ(771:7727773)|Ean3§0u(7}1,7727773)> ) (141)

of () = gi(m) = 9a(C() = ga(m,m2, 1 - 13) = ga(m,712,0),
0
11
I = —=, =
’YOX[ 272]7 70C8w7
; t > t 2, A t §
Win(F}) = | sym(Ff = WI? + e | skew(Ff = DI + 5 tr [sym(EF} — 1))

This rescaled formulation can be easily obtained from the finite strain formulation (3.11) by

setting Rw’u(n) = 11 and neglecting curvature contributions altogether. Note that this is not
the rescaled formulation of a linear Cosserat bulk model, since infinitesimal rotations are absent.

The major advantage of this definition for JE is that the I'-limit Jg can be immediately
read of based on the finite-strain development. The I'-limit for problem (14.1) is given by
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the following two-dimensional minimization problem for the deformation of the midsurface
m:w CR2— R on w:

JE LT, R) » R,

Jg(m) = /T/Vl}l‘;l’m(Vm) —(f*,m) dw + min. w.r.t. m, my, = ga(m,n2,0). (14.2)

The dimensionally homogenized quadratic density is
W™ (Vm) = pl|sym((eile2)” Vim — 12)|1* + e || skew((ex|e2) " Vim — 1L,)|” (14.3)

Hec pA
B+ pe 2p+ A

+ 2 (<eg,m$)2 + (eg,my>2) + tr [sym((e1]es)” Vm — ]12)]2 )

Proof. The proof follows with minor changes from the nonlinear proof of (5.25). One only has
to replace R by 1l and skip the curvature part. Equi-coerciveness follows from local coercivity
for p. > 0. |

In terms of the midsurface displacement v € R® we obtain equivalently the formulation

Jg(’l}) = //W\l}llr(l)m(vv) - (fuav> dw — min. w.r.t. v, U"vo = gd(nl:n270) - (771:772a0)T

(14.4)
The dimensionally homogenized quadratic density reads then
W™ (Vo) = p |l sym ¥y, ) (01, 02)|I* + pe || skew Y, oy (01, 02)]°
M 2 2 2 2
+2u P +Cuc (1;37,71 + ’Ugynz) + —211 Y tr [sym V(n1,me) (V1 ’1)2)] . (14.5)

Since J,’i for p. > 0 is strictly bigger than the same functional for . = 0, independent of A > 0,
it is easy to see [42, Prop. 6.7] that

D—liminf Jj, _ <T-lmsupJj < lim (0—tmgi, )= (14.6)
and we obtain an upper bound for the I' — lim sup of classical linear elasticity by taking pu. =0
in (14.4). Setting ., = 0 in (14.4) decouples the horizontal from the vertical components in
which case one has to assume that body forces have no vertical component and boundary data
are purely horizontal in order for the remaining classical linear ”membrane” problem to be well-
posed. This is a degeneration of the classical linearized formulation: a linear ”membrane”
plate cannot sustain its own weight without being pre-stressed, which is well known.

14.2 Linearized plate models
14.2.1 Relations to the classical infinitesimal-displacement Reissner-Mindlin model

Let us linearize a variant of the proposed new finite-strain Cosserat plate (8.1) for situations
of small midsurface deformations and small curvature. We assume here oy = 0, ¢ = 0, p >
1.2+ We write m(z,y) = (z,y,0)7 + v(x,y), with the displacement of the midsurface of the
plate v : w + R® and R = I + A+ ..., with A € s0(3,R) the infinitesimal-displacement
microrotation. For the boundary deformation we write gq(z,y,2) = (z,y,2)T + ul(z,y, 2),
with the consequence, that Vga.es = (uf _,ug .,1+u§ ). The curvature tensors are expanded
as

Ry =R (VRs|0) = (1 +A+.. )7 (V[As + A es + .. ]|0) = (VA3]0) + ...,
Rs ~ ((V(A.1)]0), (V(A.e2)]0), (V(A.e5)[0)) € T(3), (14.7)

24The linearization for the case a4 = 0, ¢ = 0, p = 1, e > 0 is similar to the static micropolar plate model
derived by Eringen [26, eq. 8.6].
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and the Cosserat micropolar plate stretch tensor expands like

U=RF=R (VmRs)=@+A+.)7 ((27) + Vol +T+...).e5))

~L+ (Volds) —A+.... (14.8)

Since p > 1, the additional Cosserat curvature contribution has an exponent strictly bigger

than two such that a linearization w.r.t. zero curvature £ does not yield any contribution of
this term. The consistent coupling condition is also expanded:

R, = polar(Vim|Vgg.e3),
L+ A+... =polar(l + (Vv|d,u?) +...) = 1L + skew((Vv|d,u?)) + ... = (14.9)
A, = skew((Vv]9.u))

70 ‘70 :

We are formally left with the minimization problem for v € R® and A € so(3, R):

[ (llsvmnC(TolAIP + el skew((Fole) = P + 322 e fsym( (Ve 22)° )

h3
12
— (v, A3) = min. w.r.t. (v, A),

(s sym( (TP + s lskew (TR0 + 5225 e fsm((THafo))] ) o

v, = u(z,y,0), simply supported (fixed, welded), (14.10)

4.,

T
— ul, —vz, ul, —v
skew((Vv|8zud))‘m, lin. coupling = A3HO = ( Lz 5 i 22 5 37‘1/,0 ,

3100 (u‘f)z,ugyz, 0)", alternatively: rigid director prescription.

Now consider the case of zero Cosserat couple modulus g, = 0. In this case infinitesimal
in-plane rotations (linearized drilling degrees of freedom: A;5 = —A4;) do not ”survive” the
linearization process. Abbreviating now 8 = (;,6,,0)7 = — A3, we are left with the following
set of equations for the displacement of the midsurface of the plate v : [0,T] x @ — R? and the
infinitesimal increment of the director, the infinitesimal ”director”, 8 : w — R3:

/h pllsym V(vy, v)||* + & g IVus — 0> + tr [sym V (v, va)]?
w S—

BA
2+ A

transverse shear energy

3
+ % (u | sym Vo||* + 2:1  trlsym V9]2> dw — TI(v, —6) + min . w.r.t. (v,6),
vl,, = u(2,5,0),  simply supported, (14.11)

d d T
Uy, — U3 Uz, —Usy . . . .
-0, = 0 linearized consistent coupling
lvo 2 ) 2 ) ’ ’
-0 = (uf,,ug,, 07 alternatively: rigid director prescription
[vo = \U1,25 %2 2> ) y: rig P P )

with the so-called shear correction factor x = 1.
A further reduction arises if we assume only normal displacements: v; = vs = 0. The
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resulting minimization problem for the deflection vs and the ”director” € is

/h % Vs —0))* + % <u || sym V8> + %tr [sym v0]2> dw
w
—I(vs - €3, —60) = min. w.r.t. (vs,6), (14.12)
V3|, = ug , simply supported,
T
-0, = ol ; V3,0 , U ; Y3y ,0 linearized consistent coupling,

-0, = (u‘f’z,ugvz,())T, rigid director prescription .

In this last form with rigid boundary prescription, the Reissner-Mindlin plate-bending problem
is classical and can be found in many textbooks, e.g. [9, p.281] or [72, 4] with Reissner’s value
K= %. It should be noted, however, that in our formal, variationally based finite-strain deriva-
tion with subsequent linearization there is no imminent reason to introduce & # 1. In fact, the
shear correction factor £ can be seen as a tuning parameter of the infinitesimal-displacement
model which, for certain types of loading,?® allows to improve the order of convergence of
the infinitesimal-displacement Reissner-Mindlin solution to the three-dimensional linear elas-
ticity solution [59].2

Note the novel non-standard Dirichlet boundary condition of linearized consistent
coupling for the remaining infinitesimal ”director” €, motivated from the consistency condition
of the Cosserat bulk model. In contrast to the standard rigid director prescription, the new
coupling condition seems to reduce the strength of the boundary layer. In a direct derivation
of the Reissner-Mindlin plate equations (14.11) there is no reason to introduce this weakened
condition. However, a mathematical analysis based on the consistent coupling condition shows
that the new boundary condition can only be satisfied in the distributional sense on 7g. Let us
define therefore the admissible set

A= {vs € H'(w,R), 0 € H' (w,R°) | v3, = ug, /||9||2dw < |wl,
w

2 us
Vo e C (v, R): /(—20 — <U,§7Z> ,O)rz —v3 -Divpdw =0}, (14.13)

,Z
Yo
which incorporates the linearized consistent coupling condition in the distributional sense, the
standard Dirichlet boundary condition at g, as well as an additional consistency condition for
the linearization.?” One can easily show that (14.12) admits a minimizer in A"™. If ||0]| ,2(, r2) <
|w]|, the solution is unique.

14.2.2 The classical infinitesimal-displacement Kirchhoff-Love plate (Koiter model)

For the convenience of the reader we also supply the similar system of equations for the classical
infinitesimal-displacement Kirchhoff-Love plate (also the Koiter model) which can be derived as

25Hence the shear correction factor x shows some similarity to the Cosserat couple modulus g, whose influence
on the solution of the three-dimensional problem is also strongly dependent on boundary conditions. For rather
thick plates, it is known that the shear energy in (14.11) is overestimated, therefore, one is led to reduce the
shear energy contribution a posteriori by taking x < 1.

261t would be interesting to know the optimal shear correction factor 0 < x < 1 of the infinitesimal-
displacement Reissner-Mindlin model with our reduced consistent coupling boundary condition. Such an opti-
mized parameter should also be beneficial for the finite-strain Cosserat plate. However, it might turn out that
the new boundary condition of weak consistent coupling makes the artificial introduction of k < 1 superfluous.
Note as well, that x = 0 decouples the horizontal "membrane” displacement in (14.11) from the vertical com-
ponent and the bending term. In this sense, x acts similarly as the Cosserat couple modulus p. in the linear
Cosserat bulk model.

27The unit ”director” Rj is expanded as R3 = ez — 0 +.... Any 0 with ||0(x,y)|| > 1 pointwise, is inconsistent
with the minimal requirement 1 = |[R3.e1|| > ||(e3 + 0).e1]|. As a consequence, we impose [, [|0]|* dw < |w].
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linearization of the finite-strain Kirchhoff-Love plate. In terms of the midsurface displacement
v we have to find a solution of the minimization problem for v : w C R? —€ R3:

A A
[ (llsvn Vo el + 522 o sy Vo)

w
h3 A
+ 15 (,u | D?vs3||* + QHM‘F )\tr [D2v3]2> dw —II(v,—Vuz) = min. w.rt. v,

=u(z,y,0), simply supported (fixed, welded), (14.14)

Yy

T
d d
ul, —v3, u§. —v
1z ~U3a Uz —Usy . : d d T
—Vug = ( 5 , 5 ,0) , lin. coupling = —Vuws| = (uy ., u;;,0)",

—Vug = (u‘iz, u%z, 0)", rigid prescription of the infinitesimal increment of the ”normal” .

This energy can also be obtained formally from (14.12) by constraining the linearized director
to the linearized normal of the plate, i.e. setting & = Vwvs. If this is done, we observe that
the new boundary condition of consistent coupling coincides in fact with the classical boundary
condition of the Kirchhoff-Love plate.

14.3 The treatment of external loads
14.3.1 Dead load body forces for the thin plate

In the three-dimensional theory the dead load body forces f(z,y,2) € R® were simply included
by appending the potential with the term th flx,y,2) @(x,y,z)dV. We define

. R/2 . R/2
fw)y= [ fewads flew= [ i), (14.15)

—h/2 —h/2

such that fo, fl are the zero and first moment of f in thickness direction.

14.3.2 Traction boundary conditions for the thin plate

In the three-dimensional theory the traction boundary forces N(z,y,z) € R® were simply
included by appending the potential with the term fan;m“su{wsx[—g,g]}N(ma y,2) - p(x,y,z)dS.
We define

h/2 h/2

Nlat,o(:v,y) = N(x,y,z)dz, ]\Aflam(:v,y) ::/ zN(z,y,z)dz, (14.16)
—h/2 —h/2

such that Nlatyg, Nlat,l are the zero and first moment of the tractions N at the lateral boundary
vs in thickness direction. Moreover, we abbreviate

h h 1 h h
Nies i= [N(x,y,§)+N(a:,y,—§)], Naig = i[N(l",y;?—N(%y;—i)]- (1417)

14.3.3 The external resultant loading functional II

For a first approximation plate formulation we set to leading order:

f= fo + Nres » resultant body force,

M = fl + h Ngigr , resultant body couple, (14.18)
N = Nlat,o , resultant surface traction,

M, = Nlat 1, resultant surface couple.
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The resultant dead load loading functional II is then given by the linear form

M(m, Ty) = / (F,m) + (0, Ty) dw + / (N, m) + (M., Bs) ds. (14.19)

s

If we denote the dependence of II on the loads of the underlying three-dimensional problem as
II(f, N; m, R3), then it is easily seen that frame-indifference of the external loading functional
is satisfied in the sense that II(Q.f, Q.N; Q.m,Q.R3) = II(f, N; m, R3) for all rigid rotations
@ € SO(3,R). It is possible to use the same functional form of the loading functional for all
finite-strain and infinitesimal-displacement models. We only need to replace (m, R3) by
(m,7,,), (v, A3) for the different finite and linearized models, respectively.

14.3.4 The modified external resultant loading functional II*

In view of a possible mathematical analysis of the case with zero Cosserat couple modulus p. =0
we need to modify (14.19) into a live load resultant loading functional IT¥, which better
reflects the observation that by arbitrary translation of a material in a conservative force field
only a finite amount of work can be gained. This is certainly true for any real physical field.
In the three-dimensional theory we have called this the ”principle of bounded external
work”. Therefore we define the nonlinear form

m

L+ [[[m]| = K],

Hu(m,ﬁg) :/‘V)<7,m>+<ﬁ,§3> dw+/ <N, )+<MC,§3>C{S.

+ s
(14.20)

Here K > 0 is a possibly large constant and [-], denotes the positive part of its scalar argument.

We note that (14.20) is automatically bounded, if f, M € L*(w,R*) and M., N € L'(v,,R?).
Moreover, the linearization of II* coincides with the linearization of II
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