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Abstra
t

We are 
on
erned with the derivation of the �-limit to a three-dimensional geometri-


ally exa
t Cosserat model as the relative thi
kness h > 0 of a 
at domain tends to zero.

The Cosserat bulk model involves already exa
t rotations as a se
ond independent �eld.

It is shown that the �-limit based on a natural s
aling assumption 
onsists of a mem-

brane like energy 
ontribution and a homogenized transverse shear energy both s
aling

with h, augmented by an additional 
urvature sti�ness due to the underlying Cosserat

bulk formulation, also s
aling with h. No spe
i�
 bending term appears in the dimen-

sional homogenization pro
ess. The formulation exhibits an internal length s
ale L




whi
h

survives the homogenization pro
ess. A major te
hni
al diÆ
ulty, whi
h we en
ounter

in applying the �-
onvergen
e arguments, is to establish equi-
oer
ivity of the sequen
e

of fun
tionals as the relative thi
kness h tends to zero. Usually, equi-
oer
ivity follows

from a lo
al 
oer
iveness assumption. While the three-dimensional problem is well-posed

for the Cosserat 
ouple modulus �




� 0, equi-
oer
ivity for
es us to assume a stri
tly

positive Cosserat 
ouple modulus �




> 0. The �-limit model determines the midsurfa
e

deformation m 2 H

1;2

(!;R

3

). For the 
ase of zero Cosserat 
ouple modulus �




= 0 we

obtain an estimate of the �� lim inf and �� lim sup, without equi-
oer
ivity whi
h is then

strenghtened to a �-
onvergen
e result for zero Cosserat 
ouple modulus. The 
lassi
al

linear Reissner-Mindlin model is "almost" the linearization of the �-limit for �




= 0 apart

from a stabilizing shear energy term.
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1 Introdu
tion

1.1 Aspe
ts of shell theory

The dimensional redu
tion of a given 
ontinuum-me
hani
al model is already an old and mature

subje
t and it has seen many "solutions". The di�erent approa
hes toward elasti
 shell theory

proposed in the literature and relevant referen
es thereof are, therefore, too numerous to list

here. One possible way to pro
eed is the so 
alled derivation approa
h, i.e., redu
ing a given

three-dimensional model via physi
ally reasonable 
onstitutive assumptions on the kinemati
s

to a two-dimensional model. This is opposed to either the intrinsi
 approa
h whi
h views

the shell from the onset as a two-dimensional surfa
e and invokes 
on
epts from di�erential

geometry or the asymptoti
 methods whi
h try to establish two-dimensional equations by

formal expansion of the three-dimensional solution in power series in terms of a small (thi
kness)

parameter. The intrinsi
 approa
h is 
losely related to the dire
t approa
h whi
h takes the

shell to be a two-dimensional medium with additional extrinsi
 dire
tors in the sense of a

restri
ted Cosserat surfa
e [19℄.

1

There, two-dimensional equilibrium in appropriate new

resultant stress and strain variables is postulated ab-initio more or less independent of three-

dimensional 
onsiderations, 
f. [2, 37, 25, 17, 16, 18, 60℄.

A detailed presentation of the di�erent approa
hes in 
lassi
al shell theories 
an be found

in the monograph [47℄. A thorough mathemati
al analysis of linear, in�nitesimal-displa
ement

shell theory, based on asymptoti
 methods is to be found in [13℄ and the extensive referen
es

therein, see also [12, 14, 2, 20, 22, 32, 3℄. Ex
ellent reviews and insightful dis
ussions of the

modelling and �nite element implementation may be found in [64, 61, 63, 38, 39, 75, 7, 11℄

and in the series of papers [65, 67, 68, 70, 69, 66℄. Properly invariant, geometri
ally exa
t,

elasti
 plate theories are derived by formal asymptoti
 methods in [27℄. This formal derivation

is extended to 
urvilinear shells in [43, 41℄. Apart from the pure bending 
ase [30, 31℄, whi
h

is rigourously justi�ed as the �-limit of the three-dimensional model and whi
h 
an be shown

to be intrinsi
ally well-posed, the obtained �nite-strain models have not yet been shown to be

well-posed. Indeed, the membrane energy 
ontribution is notoriously not Legendre-Hadamard

ellipti
. The di�erent membrane model formally justi�ed in [24℄ by �-
onvergen
e is geomet-

ri
ally exa
t and automati
ally quasi
onvex/ellipti
 but unfortunately does not 
oin
ide upon

linearization with the otherwise well-established in�nitesimal-displa
ement membrane model.

Moreover, this model does not des
ribe the detailed geometry of deformation in 
ompression

but redu
es to a tension-�eld theory [71℄.

There is no pla
e here to 
omment further on the relative merits of ea
h alternative approa
h.

The "rational" of des
end from three to two dimensions should in any 
ase be 
omplemented

by an investigation of the intrinsi
 mathemati
al properties of the obtained redu
ed models.

Today, the need to simulate the me
hani
al response of highly 
exible thin stru
tures allowing

easily for �nite rotations ex
ludes the use of 
lassi
al in�nitesimal-displa
ement models, either

1

Restri
ted, sin
e no material length s
ale usually enters the dire
t approa
h, only the relative thi
kness

h appears in the model. In terminology it is useful to distinguish between a "true" Cosserat model operating

on SO(3;R) and theories with any number of dire
tors.
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of Reissner-Mindlin (14.11) or Ki
hho�-Love type (14.14). Also, 
ertain "intermediary" models

allowing in prin
iple for bu
kling like the "nonlinear" von K�arm�an plates (see [12, p.403℄,

justi�ed by means of �-
onvergen
e in [29℄ as a very low energy limit of three-dimensional

elasti
ity) and penalized "nonlinear" Reissner-Mindlin models [21℄

2

or "semilinear" Kir
hho�-

Love plate models [46℄ are not geometri
ally exa
t (not frame-indi�erent). Nevertheless, the

nonlinear von K�arm�an plate has been su

esfully applied to the delamination problem of thin

�lms [55, 34, 33℄.

Mielke [44℄ established in the in�nitesimal-displa
ement 
ontext that by using more than

�ve ansatz-fun
tions in a dire
tor model it is possible to obtain exponential de
ay estimates

for the boundary layer and to establish therefore a St.Venant prin
iple for linearized plates.

While it is not 
lear how his methods 
an be transferred to the �nite-strain 
ase, they provide,

independent of me
hani
al/physi
al 
onsiderations, a strong motivation to use a dire
tor ansatz

also in the �nite-strain 
ase in order to better 
apture the boundary layer phenomena.

Indeed, so 
alled shear-deformable theories with independent dire
tors are usually pre-

ferred in the engineering 
ommunity. In view of an eÆ
ient �nite element implementation

one 
onsiders a hyperelasti
, variationally based formulation with se
ond-order Euler-Lagrange

equations and uses standard C

0

-
onforming elements. The prototype examples are models

based on the Reissner-Mindlin kinemati
al assumption. There are numerous proposals in

the engineering literature for a �nite-strain, geometri
ally exa
t plate formulation, see e.g.

[28, 64, 62, 63, 75, 7, 11℄. In many 
ases the need has been felt to devote spe
i�
 attention to

proper rotations R 2 SO(3;R), sin
e �nite rotations are the dominant deformation mode of a


exible stru
ture. This has led to the so 
alled drill-rotation formulation whi
h means that

proper rotations either appear in the formulation as independent �elds (leading to a restri
ted

Cosserat surfa
e) or they are an intermediary ingredient in the numeri
al treatment (
onstraint

Cosserat surfa
e, only 
ontinuum rotations matter �nally). While the 
omputational merit of

this approa
h is well do
umented, a mathemati
al analysis for su
h a family of �nite-strain

plate models is yet missing, both for the Cosserat surfa
e with independent rotations and the


onstraint model. It may be spe
ulated that those restri
ted Cosserat plates (obtained from


lassi
al non-polar bulk models or from dire
t modelling) though geometri
ally exa
t and al-

lowing for transverse shear and the des
ription of boundary layers, might not be well posed for


ertain membrane strain measures either, notably if Green-strains: F

T

F �11 or Hen
ky-strains:

lnF

T

F are used. Another drawba
k from a modelling point of view is that the in
lusion of

drill-rotations is most often done in an ad-ho
 fashion.

Addressing partly this problem, in [53℄ a geometri
ally exa
t, vis
oelasti
 membrane formu-

lation has been proposed by the �rst author, where the vis
oelasti
 e�e
t, operative through an

independent lo
al �eld of rotations, is driven by transverse shear. This formulation has been

shown to be lo
ally well-posed [51℄.

It is also observed experimentally that very thin stru
tures behave 
omparably sti�er

than absolutely thi
ker stru
tures while both have the same relative thi
kness. These non-


lassi
al size e�e
ts 
annot be negle
ted for very thin stru
tures [15℄. Su
h e�e
ts are not

a

ounted for neither in 
lassi
al theories nor in the vis
oelasti
 
ase.

In addition, 
lassi
al in�nitesimal-displa
ement or �nite-strain shell models predi
t unre-

alisti
ally high levels of smoothness, typi
ally m 2 W

1;4

(!;R

3

) for the midsurfa
e m in both

�nite-strain Kir
hho�-Love and Reissner-Mindlin models andm 2 H

2

(!;R

3

) in the �nite-strain

pure bending problem [30℄ and the von K�arm�an model. This implies at least C

0;�

(!) for the

midsurfa
em, whi
h rule out the des
ription of boundary layer e�e
ts and possible failure along

asymptoti
 lines of the surfa
e.

2

Con
eptually a von K�arm�an plate with one independent dire
tor

~

d 2 S

2

and addition of a penalisation term

�




�

h

~

d; �

x

mi

2

+ h

~

d; �

y

mi

2

�

; �




!1, with m : R

2

7! R

3

the sought midsurfa
e deformation.
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1.2 S
ope of study and outline of this 
ontribution

In [49℄ the �rst author has proposed a new shell model for very thin almost rigid materials

whi
h should remedy some of the aforementioned limitations with a view towards a subsequent

stringent mathemati
al analysis and possible stable �nite element implementation. It was the

goal to provide a model whi
h is both theoreti
ally and physi
ally sound, su
h that its numeri
al

implementation 
an 
on
entrate on real 
onvergen
e issues.

The formal derivation of the new plate model, summarized in Se
tion 8, however, still gave

rise to questions as far as the asymptoti
 
orre
tness and 
onvergen
e is 
on
erned. In this

paper we want to address this point by showing, that the �-limit of the Cosserat bulk model

(under 
ertain natural s
aling assumptions) is given by the 
orresponding formal derivation, if

energy 
ontributions s
aling with h are retained and if the 
oeÆ
ient of the transverse shear

energy is slightly modi�ed. Given that the information provided by the formal �-limit hinges

also on these s
aling assumptions, we think that our present result is a justi�
ation of the formal

derivation and the employed kinemati
al ansatz.

Central to our development is therefore the notion of �-
onvergen
e, a powerful theory

originally initiated by De Giorgi [35, 36℄ and espe
ially suited for a variational framework on

whi
h in turn the numeri
al treatment with �nite elements is based. This approa
h has thus

far provided the only known 
onvergen
e theorems for justifying lower dimensional nonlinear,

frame-indi�erent theories of elasti
 bodies.

In this 
ontribution, after presenting the notation, we introdu
e in Se
tion 2 the underly-

ing "parent" three-dimensional �nite-strain frame-indi�erent Cosserat model with size ef-

fe
ts and already appearing independent mi
rorotations R, i.e.a triad of rigid dire
-

tors (R

1

jR

2

jR

3

) = R 2 SO(3;R) and we re
all the obtained existen
e results for this Cosserat

bulk model. We then provide in Se
tion 3 the restri
tion of the bulk model to a thin domain

and introdu
e the s
aling to a �xed referen
e domain 


1

with 
onstant thi
kness on whi
h the

�-
onvergen
e pro
edure is based.

In Se
tion 4 we re
apitulate brie
y the relevant topi
s from �-
onvergen
e theory and we

introdu
e the �-limit for the res
aled formulation with respe
t to the two independent �elds

(';R) of deformations and mi
rorotations in Se
tion 5. Two limit 
ases, �




= 0 and �




= 1

deserve additional attention. Following we provide the analyti
al proof for the statements in

Se
tion 6. Se
tion 7 provides an estimate of the � � lim inf and � � lim sup in 
ase of zero

Cosserat 
ouple modulus whi
h is then strengthened to a full �-
onvergen
e statement.

In order to put the �-limit formulation into the proper framework, we provide in Se
tion

8 the Cosserat plate model originally derived by means of a formal ansatz. It is seen that

both formulations, within the same s
aling assumptions, di�er only by the 
oeÆ
ient of the

transverse shear energy. Therefore in Se
tion 9 we shortly review the form of the transverse

shear energy given in the literature and dis
uss the role of the shear 
orre
tion fa
tor � in

light of our development and dis
lose its intimate 
onne
tion with the Cosserat 
ouple modulus

�




. In Se
tion 10 we are able to draw an interesting 
onsequen
e for the numeri
al value of the

Cosserat 
ouple modulus �




, already for the bulk model. Se
tion 11 s
hemati
ally summarizes

the relations between the dis
ussed models.

In the Appendix we derive an upper bound for the � � lim sup of 
lassi
al linear elasti
ity

and it is shown that a linearization of the geometri
ally exa
t Cosserat �-limit model turns

into the linear membrane plate whi
h 
oin
ides with this � � lim sup upper bound. For the

exposition to be suÆ
iently self-
ontained we also relate the new �nite-strain Cosserat plate

model based on a formal ansatz to 
lassi
al approa
hes. Notably, we show that a linearization

of the new "formal" plate model with zero Cosserat 
ouple modulus �




= 0 results in the


lassi
al in�nitesimal-displa
ement Reissner-Mindlin model (without extra size e�e
ts and

therefore without drill-rotations) and shear 
orre
tion fa
tor � = 1. However, weaker boundary


onditions for the in
rement of the dire
tor in the linearized in�nitesimal-displa
ement Reissner-

Mindlin model (14.11) are motivated. Nevertheless, this new boundary 
ondition redu
es to

the 
lassi
al 
ondition on the in
rement of the normal in the linearized Kir
hho�-Love model

5



(14.14). Finally, the possible treatment of external loads is given.

1.3 Notation

1.3.1 Notation for bulk material

Let 
 � R

3

be a bounded open domain with Lips
hitz boundary �
 and let � be a smooth subset

of �
 with non-vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote

the s
alar produ
t on R

3

with asso
iated ve
tor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3� 3 se
ond order tensors, written with 
apital letters. The standard Eu
lidean

s
alar produ
t on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor

norm is kXk

2

= hX;Xi

M

3�3

. In the following we omit the index R

3

;M

3�3

. The identity tensor

on M

3�3

will be denoted by 11, so that tr [X ℄ = hX; 11i and tr [X ℄

2

= hX; 11i

2

. We let Sym and

PSym denote the symmetri
 and positive de�nite symmetri
 tensors respe
tively. We adopt the

usual abbreviations of Lie-group theory, i.e., GL(3;R) := fX 2 M

3�3

jdet[X ℄ 6= 0g the general

linear group, SL(3;R) := fX 2 GL(3;R) jdet[X ℄ = 1g; O(3) := fX 2 GL(3;R) j X

T

X =

11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X ℄ = 1g with 
orresponding Lie-algebras

so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri
 tensors and sl(3) := fX 2 M

3�3

jtr [X ℄ =

0g of tra
eless tensors. With AdjX we denote the tensor of transposed 
ofa
tors Cof(X) su
h

that AdjX = det[X ℄X

�1

= Cof(X)

T

if X 2 GL(3;R). We set sym(X) =

1

2

(X

T

+ X) and

skew(X) =

1

2

(X � X

T

) su
h that X = sym(X) + skew(X). For X 2 M

3�3

we set for the

deviatori
 part devX = X �

1

3

tr [X ℄ 11 2 sl(3) and for ve
tors �; � 2 R

n

we have the tensor

produ
t (� 
 �)

ij

= �

i

�

j

.

We write the polar de
omposition in the form F = RU = polar(F )U with R = polar(F )

the orthogonal part of F . For a se
ond order tensor X we de�ne the third order tensor h =

D

x

X(x) = (r(X(x):e

1

);r(X(x):e

2

);r(X(x):e

3

)) = (h

1

; h

2

; h

3

) 2 M

3�3

� M

3�3

� M

3�3

�

=

T(3). For third order tensors h 2 T(3) we set khk

2

=

P

3

i=1

kh

i

k

2

together with sym(h) :=

(sym h

1

; sym h

2

; sym h

3

) and tr [h℄ := (tr

�

h

1

�

; tr

�

h

2

�

; tr

�

h

3

�

) 2 R

3

. Moreover, for any se
ond

order tensor X we de�ne X �h := (Xh

1

; Xh

2

; Xh

3

) and h �X , 
orrespondingly. Quantities with a

bar, e.g. the mi
ropolar rotation R, represent the mi
ropolar repla
ement of the 
orresponding


lassi
al 
ontinuum rotation R. In general we work in the 
ontext of nonlinear, �nite-strain

elasti
ity. For the total deformation ' 2 C

1

(
;R

3

) we have the deformation gradient F = r' 2

C(
;M

3�3

). Furthermore, S

1

(F ) = D

F

W (F ) and S

2

(F ) = F

�1

D

F

W (F ) denote the �rst and

se
ond Piola Kir
hho� stress tensors, respe
tively. Total time derivatives are written

d

dt

X(t) =

_

X. The �rst and se
ond di�erential of a s
alar valued fun
tion W (F ) are written D

F

W (F ):H

and D

2

F

W (F ):(H;H), respe
tively. We employ the standard notation of Sobolev spa
es, i.e.

L

2

(
); H

1;2

(
); H

1;2

Æ

(
);W

1;q

(
), whi
h we use indi�erently for s
alar-valued fun
tions as well

as for ve
tor-valued and tensor-valued fun
tions. The setW

1;q

(
; SO(3;R)) denotes orthogonal

tensors whose 
omponents are in W

1;q

(
). Moreover, we set kXk

1

= sup

x2


kX(x)k. For

A 2 C

1

(
;M

3�3

) we de�ne CurlA(x) as the operation 
url applied row wise. We de�ne

H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the sense of tra
es

and by C

1

0

(
) we denote in�nitely di�erentiable fun
tions with 
ompa
t support in 
. We use


apital letters to denote possibly large positive 
onstants, e.g. C

+

;K and lower 
ase letters

to denote possibly small positive 
onstants, e.g. 


+

; d

+

. The smallest eigenvalue of a positive

de�nite symmetri
 tensor P is abbreviated by �

min

(P ).

1.3.2 Notation for plates and shells

Let ! � R

2

be a bounded open domain with Lips
hitz boundary �! and let 


0

be a smooth

subset of �! with non-vanishing 1-dimensional Hausdor� measure. The thi
kness of the plate

is taken to be h > 0 with dimension length (
ontrary to Ciarlet's de�nition of the thi
kness

to be 2", whi
h di�eren
e leads only to various di�erent 
onstants in the resulting formulas).

We denote by M

n�m

the set of matri
es mapping R

n

7! R

m

. For H 2 M

2�3

and � 2 R

3

we

employ also the notation (H j�) 2 M

3�3

to denote the matrix 
omposed of H and the 
olumn

6



�. Likewise (vj�j�) is the matrix 
omposed of the 
olumns v; �; �. This allows us to write for

' 2 C

1

R

3

;R

3

) : r' = ('

x

j'

y

j'

z

) = (�

x

'j�

y

'j�

z

'). The identity tensor on M

2�2

will be

denoted by 11

2

. The mapping m : ! � R

2

7! R

3

is the deformation of the midsurfa
e, rm

is the 
orresponding deformation gradient and ~n

m

is the outer unit normal on m. A matrix

X 2 M

3�3


an now be written as X = (X:e

2

jX:e

2

jX:e

3

) = (X

1

jX

2

jX

3

). We write v : R

2

7! R

3

for the displa
ement of the midsurfa
e, su
h that m(x; y) = (x; y; 0)

T

+ v(x; y). The standard

volume element is written dxdy dz = dV = d! dz.

2 The underlying �nite-strain three-dimensional Cosserat

model in variational form

In [54℄ a �nite-strain, fully frame-indi�erent, three-dimensional Cosserat mi
ropolar model is

introdu
ed. The two-�eld problem has been posed in a variational setting. The task is to �nd

a pair (';R) : 
 � R

3

7! R

3

� SO(3;R) of deformation ' and independent mi
rorotation

R 2 SO(3;R) minimizing the energy fun
tional I ,

I(';R) =

Z




W

mp

(R

T

r') +W


urv

(R

T

D

x

R)��

f

(')��

M

(R) dV

�

Z

�

S

�

N

(') dS�

Z

�

C

�

M




(R) dS 7! min : w.r.t. (';R) ; (2.1)

together with the Diri
hlet boundary 
ondition of pla
e for the deformation ' on �: '

j

�

= g

d

and three possible alternative boundary 
onditions for the mi
rorotations R on �,

R

j

�

=

8

>

<

>

:

R

d

; the 
ase of rigid pres
ription ;

polar(r') ; the 
ase of strong 
onsistent 
oupling ;

no 
ondition for R on �, indu
ed Neumann-type relations for R on � :

(2.2)

The 
onstitutive assumptions on the densities are

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

; U = R

T

F ; F = r' ;

W


urv

(K) = �

L

1+p




12

(1 + �

4

L

q




kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

; (2.3)

K = R

T

D

x

R :=

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

; the third order 
urvature tensor ;

under the minimal requirement p � 1; q � 0. The total elasti
ally stored energy W = W

mp

+

W


urv

is quadrati
 in the stret
h U and possibly super-quadrati
 in the 
urvature K. The strain

energyW

mp

depends on the deformation gradient F = r' and the mi
rorotationsR 2 SO(3;R),

whi
h do not ne
essarily 
oin
ide with the 
ontinuum rotations R = polar(F ). The 
urvature

energyW


urv

depends moreover on the spa
e derivatives D

x

R whi
h des
ribe the self-intera
tion

of the mi
rostru
ture.

3

In general, the mi
ropolar stret
h tensor U is not symmetri
 and

does not 
oin
ide with the symmetri
 
ontinuum stret
h tensor U = R

T

F =

p

F

T

F . By

abuse of notation we set k symKk

2

:=

P

3

i=1

k symK

i

k

2

for third order tensors K, 
f.(1.3.1).

Here 
 � R

3

is an open domain with boundary �
 and � � �
 is that part of the boundary,

where Diri
hlet 
onditions g

d

; R

d

for deformations and mi
rorotations or 
oupling 
onditions

for mi
rorotations, are pres
ribed. �

S

� �
 is a part of the boundary, where tra
tion boundary


onditions in the form of the potential of applied surfa
e for
es �

N

are given with � \ �

S

= ;.

In addition, �

C

� �
 is the part of the boundary where the potential of external surfa
e 
ouples

3

Observe that R

T

r(R:e

i

) 6= R

T

�

x

i

R 2 so(3;R).
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�

M




are applied with � \ �

C

= ;. On the free boundary �
 n f� [ �

S

[ �

C

g 
orresponding

natural boundary 
onditions for (';R) apply. The potential of the external applied volume

for
e is �

f

and �

M

takes on the role of the potential of applied external volume 
ouples. For

simpli
ity we assume

�

f

(') = hf; 'i ; �

M

(R) = hM;Ri ; �

N

(') = hN;'i ; �

M




(R) = hM




; Ri ; (2.4)

for the potentials of applied loads with given fun
tions f 2 L

2

(
;R

3

); M 2 L

2

(
;M

3�3

); N 2

L

2

(�

S

;R

3

); M




2 L

2

(�

C

;M

3�3

).

The parameters �; � > 0 are the Lam�e 
onstants of 
lassi
al isotropi
 elasti
ity, the addi-

tional parameter �




� 0 is 
alled the Cosserat 
ouple modulus. For �




> 0 the elasti
 strain

energy density W

mp

(U) is uniformly 
onvex in U . Moreover

8F 2 GL

+

(3;R) : W

mp

(U) =W

mp

(R

T

F ) � min(�; �




) kR

T

F � 11k

2

= min(�; �




) kF � Rk

2

� min(�; �




) inf

R2O(3;R)

kF �Rk

2

= min(�; �




) dist

2

(F;O(3;R))

= min(�; �




) dist

2

(F; SO(3;R)) = min(�; �




) kF � polar(F )k

2

= min(�; �




) kU � 11k

2

: (2.5)

In 
ontrast, for �




= 0 the strain energy density is only 
onvex w.r.t. F and does not satisfy

(2.5).

4

The parameter L




> 0 (with dimension length) introdu
es an internal length whi
h is


hara
teristi
 for the material, e.g. related to the grain size in a poly
rystal. The internal

length L




> 0 is responsible for size e�e
ts in the sense that smaller samples are relatively

sti�er than larger samples. We assume throughout that �

4

; �

5

; �

6

> 0; �

7

� 0. This implies

the 
oer
ivity of 
urvature

9 


+

> 0 8 K 2 T(3) : W


urv

(K) � 


+

kKk

1+p+q

; (2.6)

whi
h is a basi
 ingredient of the mathemati
al analysis.

The non-standard boundary 
ondition of strong 
onsistent 
oupling ensures that no

unwanted non-
lassi
al, polar e�e
ts may o

ur at the Diri
hlet boundary �. It implies for

the mi
ropolar stret
h that U

j

�

2 Sym and for the se
ond Piola-Kir
hho� stress tensor S

2

:=

F

�1

D

F

W

mp

(U) 2 Sym on � as in the 
lassi
al, non-polar 
ase. We refer to the weaker boundary


ondition U

j

�

2 Sym as weak 
onsistent 
oupling.

We mention, that a linearization of this Cosserat bulk model with �




= 0 for small dis-

pla
ement and small mi
rorotations 
ompletely de
ouples the two �elds of deformation and

mi
rorotations and leads to the 
lassi
al linear elasti
ity problem for the deformation.

5

For

more details on the modelling of the three-dimensional Cosserat model we refer the reader to

[54℄.

2.1 Mathemati
al results for the three-dimensional Cosserat bulk prob-

lem

For 
on
iseness we state only the obtained results for the 
ase without external loads. It 
an

be shown:

Theorem 2.1 (Existen
e for 3D-�nite-strain elasti
 Cosserat model with �




> 0)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

)

and R

d

2 W

1;1+p

(
; SO(3;R)). Then (2.1) with �




> 0; �

4

� 0; p � 1; q � 0 and either

4

The 
ondition F 2 GL

+

(3;R) is ne
essary, otherwise kF � polar(F )k

2

= dist

2

(F;O(3;R)) <

dist

2

(F; SO(3;R)), as 
an be easily seen for the re
e
tion F = diag(1;�1; 1).

5

Thinking in the 
ontext of an in�nitesimal-displa
ement Cosserat theory one might erroneously believe that

�




> 0 is stri
tly ne
essary also for a "true" �nite-strain Cosserat theory.

8



free or rigid pres
ription for R on � admits at least one minimizing solution pair (';R) 2

H

1

(
;R

3

)�W

1;1+p

(
; SO(3;R)). �

Using the extended Korn's inequality [48, 56℄, the following has been shown in [54, 50℄:

Theorem 2.2 (Existen
e for 3D-�nite-strain elasti
 Cosserat model with �




= 0)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

)

and R

d

2 W

1;1+p+q

(
; SO(3;R)). Then (2.1) with �




= 0; �

4

> 0; p � 1; q > 1 and

either free or rigid pres
ription for R on � admits at least one minimizing solution pair

(';R) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)). �

3 Formal dimensional redu
tion of the Cosserat bulk model

3.1 The three-dimensional Cosserat problem on a thin domain

The basi
 task of any shell theory is a 
onsistent redu
tion of some presumably "exa
t" 3D-

theory to 2D. The general three-dimensional problem (2.1) will now be adapted to a shell-like

theory. Let us assume that we are given a three-dimensional absolutely thin domain




h

:= ! � [�

h

2

;

h

2

℄; ! � R

2

; (3.1)

with transverse boundary �


trans

h

= ! � f�

h

2

;

h

2

g and lateral boundary �


lat

h

= �! �

[�

h

2

;

h

2

℄, where ! is a bounded open domain in R

2

with smooth boundary �! and h > 0 is the

thi
kness. Moreover, assume we are given a deformation ' and mi
rorotation R

3d

,

' : 


h

� R

3

7! R

3

; R

3d

: 


h

� R

3

7! SO(3;R) ; (3.2)

solving the following two-�eld minimization problem on the thin domain 


h

:

I(';r';R

3d

;D

x

R

3d

) =

Z




h

W

mp

(U) +W


urv

(K)� hf; 'i dV �

Z

�


trans

h

[f


s

�[�

h

2

;

h

2

℄g

hN;'i dS 7! min : w.r.t. (';R) ;

U = R

3d;T

F; '

j

�

h

0

= g

d

(x; y; z); �

h

0

= 


0

� [�

h

2

;

h

2

℄; 


0

� �!; 


s

\ 


0

= ; ;

U

j

�

h

0

= R

3d;T

r'

j

�

h

0

2 Sym(3) ; weak 
onsistent 
oupling boundary 
ondition or

R

3d

: free on �

h

0

, alternative Neumann-type boundary 
ondition ;

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

;

W


urv

(K) = �

L

1+p




12

(1 + �

4

L

q




kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

;

K = R

3d;T

D

x

R

3d

=

�

R

3d;T

r(R

3d

:e

1

); R

3d;T

r(R

3d

:e

2

); R

3d;T

r(R

3d

:e

3

)

�

:

Without loss of mathemati
al generality we assume that M;M




� 0 in (2.4), i.e. that no

external volume or surfa
e 
ouples are present in the bulk problem. We want to �nd a reasonable

approximation ('

s

; R

s

) of (';R

3d

) involving only two-dimensional quantities.
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3.2 Transformation on a �xed domain

In order to apply standard te
hniques of �-
onvergen
e, we transform the problem onto a �xed

domain 


1

, independent of the thi
kness h > 0. De�ne therefore




1

= ! � [�

1

2

;

1

2

℄ � R

3

; ! � R

2

: (3.3)

The s
aling transformation

� : � 2 


1

� R

3

7! R

3

; �(�

1

; �

2

; �

3

) := (�

1

; �

2

; h � �

3

) ;

r

�

�(�) =

0

�

1 0 0

0 1 0

0 0 h

1

A

; Cof r

�

�(�) =

0

�

h 0 0

0 h 0

0 0 1

1

A

; det[r

�

�(�)℄ = h ; (3.4)

�

�1

: � 2 


h

� R

3

7! R

3

; �

�1

(�

1

; �

2

; �

3

) := (�

1

; �

2

;

�

3

h

) ; r

�

[�

�1

(�)℄ =

0

�

1 0 0

0 1 0

0 0

1

h

1

A

;

is su
h that � maps 


1

into 


h

and �(


1

) = 


h

. We 
onsider the 
orrespondingly s
aled

fun
tion (subsequently, s
aled fun
tions de�ned on 


1

will be indi
ated with a supers
ript ℄)

'

℄

: 


1

! R

3

, de�ned by

'(�

1

; �

2

; �

3

) = '

℄

(�

�1

(�

1

; �

2

; �

3

)) 8 � 2 


h

; '

℄

(�) = '(�(�)) 8 � 2 


1

;

F

℄

(�) = r

�

'

℄

(�) = r

�

'(�(�)) � r

�

�(�) ;

r'(�

1

; �

2

; �

3

) = r'

℄

(�

�1

(�

1

; �

2

; �

3

)) �

0

�

1 0 0

0 1 0

0 0

1

h

1

A

; (3.5)

=

�

�

�

1

'

℄

(�

1

; �

2

; �

3

)j�

�

2

'

℄

(�

1

; �

2

; �

3

)j

1

h

�

�

3

'

℄

(�

1

; �

2

; �

3

)

�

=: r

h

�

'

℄

= F

℄

h

:

Similarly, we de�ne a s
aled rotation tensor R

3d;℄

: 


1

� R

3

7! SO(3;R) by

R

3d

(�

1

; �

2

; �

3

) = R

3d;℄

(�

�1

(�

1

; �

2

; �

3

)) 8� 2 


h

; R

3d;℄

(�) = R

3d

(�(�)) 8 � 2 


1

;

r

�

[R

3d

(�

1

; �

2

; �

3

):e

i

℄ = r

�

[R

3d;℄

(�):e

i

℄ � (r

�

�(�))

�1

(3.6)

=

�

�

�

1

[R

3d;℄

(�):e

i

℄j�

�

2

[R

3d;℄

(�):e

i

℄j

1

h

�

�

3

[R

3d;℄

(�):e

i

℄

�

=: r

h

�

[R

3d;℄

(�):e

i

℄ 2 M

3�3

;

D

h

�

R

3d;℄

h

(�) :=

�

r

h

�

[R

3d;℄

(�):e

1

℄; r

h

�

[R

3d;℄

(�):e

2

℄; r

h

�

[R

3d;℄

(�):e

3

℄

�

2 T(3) :

This de�nes the s
aled third order 
urvature tensor K

℄

h

: 


1

7! T(3)

K

℄

h

(�) =

�

R

3d;℄;T

(�)

�

�

�

1

[R

3d;℄

(�):e

1

℄j�

�

2

[R

3d;℄

(�):e

1

℄j

1

h

�

�

3

[R

3d;℄

(�):e

1

℄

�

;

R

3d;℄;T

(�)

�

�

�

1

[R

3d;℄

(�):e

2

℄j�

�

2

[R

3d;℄

(�):e

2

℄j

1

h

�

�

3

[R

3d;℄

(�):e

2

℄

�

; (3.7)

R

3d;℄;T

(�)

�

�

�

1

[R

3d;℄

(�):e

3

℄j�

�

2

[R

3d;℄

(�):e

3

℄j

1

h

�

�

3

[R

3d;℄

(�):e

3

℄

��

=

�

R

3d;℄;T

(�)r

h

�

[R

3d;℄

(�):e

1

℄; R

3d;℄;T

(�)r

h

�

[R

3d;℄

(�):e

2

℄; R

3d;℄;T

(�)r

h

�

[R

3d;℄

(�):e

3

℄

�

= R

3d;℄;T

D

h

�

R

3d;℄

(�) :
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Moreover, we de�ne similarly s
aled fun
tions by setting

f

℄

(�) := f(�(�)); g

℄

d

(�) = g

d

(�(�)) ; N

℄

(�) := N(�(�)) : (3.8)

In terms of the introdu
ed s
aled deformations and rotations

'

℄

: 


1

� R

3

7! R

3

; R

3d;℄

: 


1

� R

3

7! SO(3;R) ; (3.9)

the s
aled problem solves the following two-�eld minimization problem on the �xed domain 


1

:

I

℄

('

℄

;r'

℄

; R

3d;℄

;D

h

�

R

3d;℄

) =

Z

�2


1

h

W

mp

(U

℄

h

) +W


urv

(K

℄

h

)� hf

℄

; '

℄

i

i

det[r�(�)℄ dV

�

�

Z

�


trans

1

[f


s

�[�

1

2

;

1

2

℄g

hN

℄

; '

℄

i kCofr�(�):~nk dS

�

;

= h

Z

�2


1

W

mp

(U

℄

h

) +W


urv

(K

℄

h

)� hf

℄

; '

℄

i dV

�

�

Z

�


trans

1

hN

℄

; '

℄

i 1 dS

�

�

Z




s

�[�

1

2

;

1

2

℄

hN

℄

; '

℄

ih dS

�

7! min : w.r.t. ('

℄

; R

℄

) ;

U

℄

h

= R

3d;℄;T

F

℄

h

; '

℄

j

�

1

0

(�) = g

℄

d

(�) = g

d

(�(�)) = g

d

(�

1

; �

2

; h � �

3

) ; (3.10)

�

1

0

= 


0

� [�

1

2

;

1

2

℄; 


0

� �!; 


s

\ 


0

= ; ;

U

℄

h

j

�

1

0

= R

3d;℄;T

r

℄

�

'

℄

j

�

1

0

2 Sym(3) ; weak 
onsistent 
oupling boundary 
ondition or

R

3d;℄

: free on �

1

0

, alternative Neumann-type boundary 
ondition ;

W

mp

(U

℄

h

) = � k sym(U

℄

h

� 11)k

2

+ �




k skew(U

℄

h

)k

2

+

�

2

tr

h

sym(U

℄

h

� 11)

i

2

;

W


urv

(K

℄

h

) = �

L

1+p
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�

1 + �

4

L

q




kK

℄

h

k

q

�

�

�

5

k symK

℄

h

k

2

+ �

6

k skewK

℄

h

k

2

+ �

7

tr

h

K

℄

h

i

2

�

1+p

2

;

K

℄

h

= R

3d;℄;T

D

h

�

R

3d;℄

h

(�) :

3.3 The res
aled variational Cosserat bulk problem

Sin
e the energy

1

h

I

℄

would not be �nite for h ! 0 if tra
tions N

℄

on the transverse bound-

ary were present, the investigations are in prin
iple restri
ted to the 
ase of N

℄

= 0 on

�


trans

1

.

6

For 
on
iseness we therefore investigate �nally the following simpli�ed and res
aled

(N

℄

; f

℄

= 0; g

d

(�

1

; �

2

; �

3

) := g

d

(�

1

; �

2

)) two-�eld minimization problem on 


1

with respe
t to

�-
onvergen
e (without the fa
tor h > 0 now):

I

℄

h

('

℄

;r'

℄

; R

3d;℄

;D

h

�

R

3d;℄

) =

Z

�2


1

W

mp

(U

℄

h

) +W


urv

(K

℄

h

) dV

�

7! min : w.r.t. ('

℄

; R

℄

) ;

U

℄

h

= R

3d;℄;T

F

℄

h

; '

℄

j

�

1

0

(�) = g

℄

d

(�) = g

d

(�(�)) = g

d

(�

1

; �

2

; h � �

3

) = g

d

(�

1

; �

2

; 0) ;

�

1

0

= 


0

� [�

1

2

;

1

2

℄; 


0

� �!;

R

3d;℄

: free on �

1

0

, Neumann-type boundary 
ondition ; (3.11)

6

The thin plate limit h! 0 obviously 
annot support non-vanishing transverse surfa
e loads.
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W

mp

(U

℄

h

) = � k sym(U

℄

h

� 11)k

2

+ �




k skew(U

℄

h

)k

2

+

�

2

tr

h

sym(U

℄

h

� 11)

i

2

;

W


urv

(K

℄

h

) = �

L

1+p




12

�

1 + �

4

L

q




kK

℄

h

k

q

�

�

�

5

k symK

℄

h

k

2

+ �

6

k skewK

℄

h

k

2

+ �

7

tr

h

K

℄

h

i

2

�

1+p

2

;

K

℄

h

= R

3d;℄;T

D

h

�

R

3d;℄

(�) :

Here we assume that the boundary 
ondition g

d

is already independent of the transverse vari-

able. For simpli
ity, we restri
t furthermore attention to the weakest possible response, namely

the Neumann boundary 
onditions on the mi
rorotations R

℄

.

7

Moreover, for simpli
ity,

we assume

p � 1 ; q > 1 ; (3.12)

from now on, su
h that both 
ases �




> 0 and �




= 0 
an be 
onsidered simultanuously.

External loads of various sort 
an be treated by Remark 4.5.

Within the res
aled formulation (3.11) we want to investigate the possible limit behaviour

for h! 0 and �xed internal length L




> 0. While it does not make mu
h sense to let h! 0

at �xed in-plane elongation L > 0, sin
e from a physi
al 
onsideration, there is an absolute

lower bound on the thi
kness in terms of the internal length L




, we may 
onsider a sequen
e

of plates, with small relative thi
kness h kept 
onstant in a �rst pla
e, but whose in-plane

elongation L is in
reased together with a simultaneous in
rease of the dimensions of

the mi
rostru
ture, to the e�e
t that the internal length L




, transformed to a unit domain

! remains 
onstant.

8

In a se
ond step, the relative thi
kness h is de
reased.

3.4 On the 
hoi
e of the s
aling

As will be seen later, the �-limit, if it exists, is unique. The only 
hoi
e, whi
h in
uen
es

then the �nal form of the �-limit is given by the initial s
aling assumptions made on the

unknowns, in order to relate them to the �xed domain 


1

and the assumption on the s
aling

of the energies, here

1

h

I

℄

< 1. Our s
aling ansatz is 
onsistent with the one proposed in

[23, 29℄, but not 
onsistent with the one taken in [12℄, whi
h s
ales transverse 
omponents of

the displa
ement di�erent in order to extra
t more information from the �-limit. Sin
e we deal

with a "two-�eld" model there is no imminent possibility to s
ale the �elds di�erently.

The justi�
ation for our 
hoi
e is given by the apparent 
onsisten
y of the results with

formal developments and its linearization stability. Here we see that the s
aling assumptions

also introdu
e a 
ertain arbitrariness in the development. For example, starting from 
lassi
al

nonlinear elasti
ity, 
onsidering the present s
aling for the unknowns and assuming

1

h

5

I

℄

<1,

a nonlinear von K�arm�an plate 
an be rigourously justi�ed by �-
onvergen
e [29℄.

4 Re
apitulation of fa
ts from �-
onvergen
e

Let us brie
y re
apitulate the notions involved by using �-
onvergen
e. For a detailed treatment

we refer e.g. to [42, 10℄. We start by de�ning the lower and upper �-limit. In the following, X

will always denote a metri
 spa
e su
h that sequential 
ompa
tness and 
ompa
tness 
oin
ide.

Moreover, we set R := R[f�1g. We 
onsider now a sequen
e of energy fun
tionals I

h

j

: X 7!

R ; h

j

! 0.

7

We 
ould as well treat the rigid 
ase, i.e. R

℄

j

�

1

0

= R

d

. The 
ase of weak 
onsistent 
oupling would need

additional provisions, the three-dimensional existen
e result already needs additional 
ontrol in order to de�ne

the then ne
essary boundary terms.

8

This is tantamount to assuming that the building blo
ks of the larger plates are themselves enlarged with

the same ratio.
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De�nition 4.1 (Lower and upper �-limit)

Let X be a metri
 spa
e and let I

h

j

: X 7! R ; h

j

! 0 be a sequen
e of fun
tionals. For x 2 X

we de�ne

�� lim inf

h

j

I

h

j

: X 7! R ; �� lim inf

h

j

I

h

j

(x) := inf flim inf

h

j

I

h

j

(x

h

j

) ; x

h

j

! xg ;

�� lim sup

h

j

I

h

j

: X 7! R ; �� lim sup

h

j

I

h

j

(x) := inf flim sup

h

j

I

h

j

(x

h

j

) ; x

h

j

! xg : �

It is 
lear that � � lim inf

h

j

I

h

j

and � � lim sup

h

j

I

h

j

: X ! R always exist and are uniquely

determined.

De�nition 4.2 (�-
onvergen
e)

Let X be a metri
 spa
e. We say that a sequen
e of fun
tionals I

h

j

: X 7! R �-
onverges in

X to the limit fun
tional I

0

: X 7! R, if for all x 2 X we have

8x 2 X : 8x

h

j

! x : I

0

(x) � lim inf

h

j

!0

I

h

j

(x

h

j

) ; (lim inf-inequality)

8x 2 X : 9x

h

i

! x : I

0

(x) � lim sup

h

i

!0

I

h

i

(x

h

i

) ; (re
overy sequen
e) : �

Corollary 4.3

Let X be a metri
 spa
e. The sequen
e of fun
tionals I

h

j

: X 7! R �-
onverges in X to

I

0

: X 7! R if and only if

�� lim inf

h

j

I

h

j

= �� lim sup

h

j

I

h

j

= I

0

: �

Remark 4.4 (Lower semi
ontinuity of the �-limit)

The lower and upper �-limits are always lower semi
ontinuous, hen
e the �-limit is a lower

semi
ontinuous fun
tional. Moreover, if the �-limit exists, it is unique.

Remark 4.5 (Stability under 
ontinuous perturbations)

Assume that I

h

j

: X 7! R �-
onverges in X to I

0

: X 7! R and let � : X 7! R, independent

of h

j

, be 
ontinuous. If I

h

j

+� is �-
onvergent, then it holds

(�� lim

h

j

[I

h

j

+�℄)(x) = (�� lim

h

j

I

h

j

)(x) + �(x) = I

0

(x) + �(x) ; (4.13)

see [10, p.23℄or [42, Prop. 6.21℄. Note that in the general 
ase, the 
onstant fun
tional �


an in
uen
e whether or not �-
onvergen
e takes pla
e, whi
h ne
essitates the additional prior

assumption on existen
e of the �-limit, 
ompared to [10, p.23℄, 
f. [42, Prop. 6.17℄. �

Let us also re
apitulate the important equi-
oer
iveness property. First we re
all 
oer
ive-

ness of an integral fun
tional.

9

De�nition 4.6 (Coer
iveness)

The integral fun
tional I : X 7! R is 
oer
ive w.r.t. X , if for ea
h �xed C > 0 the 
losure of

the set fx 2 X j I(x) � Cg is 
ompa
t in X , i.e. I has 
ompa
t sub-levels. �

9

A typi
al instant of 
oer
iveness is given for X = L

p

(
;R

3

) ; 1 < p < 1 with 
 a bounded domain with

smooth boundary and

I(') =

(

R




W (r') dV if ' 2W

1;p

(
;R

3

) ; '

j

�


= 0 ;

+1 else ;

(4.14)

with the lo
al 
oer
ivity assumptionW (F ) � 


+

1

kr'k

p

� 


+

2

. Coer
iveness follows by Poin
ar�e's inequality

and Relli
h's 
ompa
t embedding W

1;p

(
;R

3

) � L

p

(
;R

3

). Re
all that linear elasti
ity does not satisfy a lo
al


oer
ivity 
ondition. This is the 
ause for some te
hni
al problems of the theory.

13



Following [42, p.70℄ we introdu
e

De�nition 4.7 (Equi-
oer
iveness)

The sequen
e of integral fun
tionals I

h

j

: X 7! R is equi-
oer
ive, if for ea
h �xed C > 0 there

exists a 
ompa
t setK

C

� X su
h that fx 2 X j I

h

j

(x) � Cg � K

C

, independent of h

j

> 0. �

Hen
e, if we know that I

h

j

is equi-
oer
ive over X and that along a sequen
e '

j

2 X it holds

that I

h

j

('

j

) � C, then we 
an extra
t a subsequen
e, '

j

k


onverging in the topology of X to

some limit element ' 2 X .

Theorem 4.8 (Chara
terization of equi-
oer
iveness)

The sequen
e of integral fun
tionals I

h

j

: X 7! R is equi-
oer
ive if and only if there exists a

lower semi
ontinuous 
oer
ive fun
tion 	 : X 7! R su
h that I

h

j

� 	 on X for every h

j

> 0.

Proof. [42, Prop. 7.7℄. �

The following theorem 
on
erns the 
onvergen
e of the minimum values of an equi-
oer
ive

sequen
e of fun
tions.

Theorem 4.9 (Coer
iveness of the �-limit)

Suppose that the sequen
e of integral fun
tionals I

h

j

: X 7! R is equi-
oer
ive. Then the upper

and lower �-limit are both 
oer
ive and

min

x2X

�

�� lim inf

h

j

I

h

j

�

(x) = lim inf

h

j

inf

x2X

I

h

j

(x) : (4.15)

If, in addition, the sequen
e of integral fun
tionals I

h

j

: X 7! R �-
onverges to a fun
tional

I

0

: X 7! R, then I

0

itself is 
oer
ive and

min

x2X

I

0

(x) = lim

h

j

inf

x2X

I

h

j

(x) : (4.16)

Proof. [42, Theo. 7.8℄. �

Note that equi-
oer
ivity is an additional feature in the development of �-
onvergen
e argu-

ments, whi
h allows to simplify proofs 
onsiderably through 
ompa
tness arguments. As far

as �-
onvergen
e is 
on
erned, it may be useful to re
all [10, p.19℄ that minimizers of the

�-limit variational problem may not be a limit of minimizers, so that �-
onvergen
e

must be interpreted as a 
hoi
e 
riterion. In addition, the �-limit of a 
onstant sequen
e

of fun
tionals J , whi
h is not lower semi
ontinuous, does not 
oin
ide with the 
onstant fun
-

tional J , instead one has (�� lim J)(x) < J(x). In this 
ase, (�� lim J)(x) = QJ(x), where QJ

is the quasi
onvex hull of J . In the 
ase of non lower semi
ontinuous fun
tionals, the �-limit is

therefore introdu
ing a di�erent physi
al setting. Fortunately, in our appli
ation, we are always

dealing with lower-semi
ontinuous fun
tions.

5 The "two-�eld" Cosserat �-limit

5.1 The spa
es and admissible sets

Now let us pro
eed to the investigation of the �-limit for the res
aled problem (3.11). We do not

use I

℄

h

j

dire
tly in our investigation of �-
onvergen
e, sin
e this would imply working with the

weak topology of H

1;2

(


1

;R

3

)�W

1;1+p+q

(


1

; SO(3;R)), whi
h does not give rise to a metri


spa
e. Instead, we de�ne the "bulk" spa
es X;X

0

and the "two-dimensional" spa
es X

!

; X

0

!

.

First, for p � 1; q > 1 we de�ne the number r > 1 by

1

1 + p+ q

+

1

r

=

1

2

) r =

2(1 + p+ q)

(1 + p+ q)� 2

; (5.17)
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su
h that L

1+p+q

� L

r

� L

2

. Note that for 1 + p+ q > 3 it holds that r < 6 whi
h implies the


ompa
t embedding H

1;2

(


1

;R

3

) � L

r

(


1

;R

3

). Now de�ne the spa
es

X := f(';R) 2 L

r

(


1

;R

3

)� L

1+p+q

(


1

; SO(3;R))g ;

X

0

:= f(';R) 2 H

1;2

(


1

;R

3

)�W

1;1+p+q

(


1

; SO(3;R)) ; (5.18)

X

!

:= f(';R) 2 L

r

(!;R

3

)� L

1+p+q

(!; SO(3;R))g ;

X

0

!

:= f(';R) 2 H

1;2

(!;R

3

)�W

1;1+p+q

(!; SO(3;R))g ;

and the admissible sets

A

0

:= f(';R) 2 H

1;2

(


1

;R

3

)�W

1;1+p+q

(


1

; SO(3;R)) ; '

j

�

1

0

(�) = g

℄

d

(�) g ; (5.19)

A

0

!

:= f(';R) 2 H

1;2

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)) ; '

j




0

(�

1

; �

2

) = g

℄

d

(�

1

; �

2

; 0) g ;

A

0




1

;!

:= f(';R) 2 H

1;2

(


1

;R

3

)�W

1;1+p+q

(!; SO(3;R)) ; '

j

�

1

0

(�) = g

℄

d

(�) g ;

We note the 
ompa
t embedding X

0

� X and the natural in
lusions X

!

� X and X

0

!

� X

0

.

Now we extend the res
aled energies to the spa
e X through rede�ning

I

℄

h

('

℄

;r'

℄

; R

℄

;D

h

�

R

℄

) =

(

I

℄

h

('

℄

;r'

℄

; R

℄

;D

h

�

R

℄

) if ('

℄

; R

℄

) 2 A

0

+1 else in X ;

(5.20)

by abuse of notation. This is a 
lassi
al tri
k used in appli
ations of �-
onvergen
e. It has the

additional virtue of in
orporating the boundary 
onditions already in the energy fun
tional.

In the following, �-
onvergen
e results will be shown with respe
t to the en
ompassing metri


spa
e X .

10

5.2 The transverse averaging operator

For ' 2 L

2

(


1

;R

3

) let us de�ne the averaging operator over the transverse variable �

3

Av : L

2

(


1

;R

3

) 7! L

2

(!;R

3

) ; Av :'(�

1

; �

2

) :=

Z

1=2

�1=2

'(�

1

; �

2

; �

3

) d�

3

: (5.21)

It is 
lear that averaging with respe
t to the transverse variable �

3


ommutes with di�erentiation

w.r.t. the planar variables �

1

; �

2

, i.e.

[Av :r

(�

1

;�

2

)

'(�

1

; �

2

; �

3

)℄(�

1

; �

2

) = r

(�

1

;�

2

)

[Av :'(�

1

�

1

�

1

)℄(�

1

; �

2

) ; (5.22)

for suitable regular fun
tions '. For a 
onvex fun
tion f : M

3�2

7! R Jensen's inequality

implies

Z

!

f(r

(�

1

;�

2

)

[Av :'℄(�

1

; �

2

)) d! =

Z

!

f([Av :r

(�

1

;�

2

)

'℄(�

1

; �

2

)) d!

�

Z

!

Z

1=2

�1=2

f(r

(�

1

;�

2

)

'(�

1

; �

2

; �

3

)) d�

3

d!

=

Z




1

f(r

(�

1

;�

2

)

'(�

1

; �

2

; �

3

)) dV

�

: (5.23)

10

Of 
ourse, X;X

0

as su
h are not ve
torspa
es, sin
e we 
annot add two rotations. Nevertheless,

L

r

(


1

; SO(3;R)) � L

r

(


1

;M

3�3

) and this spa
e is a Bana
h spa
e.

15



5.3 The �-limit variational "membrane" problem

We 
laim that for stri
tly positive Cosserat 
ouple modulus �




> 0 the �-limit for problem

(3.11) is given by the following limit energy fun
tional I

℄

0

: X 7! R,

I

℄

0

(';R) :=

8

<

:

R




1

W

hom

mp

(rAv :';R) +W

hom


urv

(K

s

) d! ��(Av :';R

3

) (';R) 2 A

0




1

;!

+1 else in X :

(5.24)

The proof will be given in Se
tion 6. If we identify the averaged deformation Av :' with the

deformation of the midsurfa
e m : ! � R

2

7! R

3

, this problem determines in fa
t a purely

two-dimensional minimization problem for the deformation of the midsurfa
e m : ! � R

2

7! R

3

and the mi
rorotation of the plate (shell) R : ! � R

2

7! SO(3;R) on !:

I

℄

0

(m;R) =

Z

!

W

hom

mp

(rm;R) +W

hom


urv

(K

s

) d! ��(m;R

3

) 7! min : w.r.t. (m;R) ; (5.25)

and the boundary 
onditions of pla
e for the midsurfa
e deformation m on the Diri
hlet part

of the lateral boundary 


0

� �!,

m

j




0

= g

d

(x; y; 0) = Av :g

d

(x; y; 0) ; simply supported (�xed, welded) : (5.26)

The boundary 
onditions for the mi
rorotations R are automati
ally determined in the varia-

tional pro
ess. The dimensionally homogenized lo
al density is

11 12

W

hom

mp

(rm;R) := � k sym((R

1

jR

2

)

T

rm� 11

2

)k

2

| {z }

"intrinsi
" shear-stret
h energy

+�




k skew((R

1

jR

2

)

T

rm)k

2

| {z }

"intrinsi
" �rst order drill energy

(5.27)

+ 2�

�




�+ �




�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

| {z }

homogenized transverse shear energy

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

| {z }

homogenized elongational stret
h energy

:

The dimensionally homogenized 
urvature density is given by

W

hom


urv

(K

s

) := inf

A2so(3;R)

W

�


urv

(R

T

�

�

1

R;R

T

�

�

2

R;A) ;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

= R

T

(x; y)D

x

R(x; y) ; (5.28)

K

s

= (K

1

s

;K

2

s

;K

3

s

) 2 T(3) ; the redu
ed third order 
urvature tensor ;

where W

�


urv

is an equivalent representation of the bulk 
urvature energy in terms of skew-

symmetri
 arguments

W


urv

(K) =W

�


urv

(R

T

�

�

1

R;R

T

�

�

2

R;R

T

�

�

3

R) ;

W

�


urv

: so(3;R) � so(3;R) � so(3;R) 7! R

+

; (5.29)

with R

T

�

�

i

R 2 so(3;R) sin
e �

�

i

[R

T

R℄ = �

�

i

11 = 0. We note that W

�


urv

remains a 
onvex

fun
tion in its argument and so isW

hom


urv

(K

s

). Moreover,W

hom


urv

(K

s

) =W


urv

(K

s

) forW


urv

(K) =




W (kKk).

11

k skew((R

1

jR

2

)

T

rm)k

2

=

�

hR

1

;m

y

i � hR

2

;m

x

i

�

2

. Note that k skew((R

1

jR

2

)

T

rm)k = 0 does not imply

that R

3

= ~n

m

.

12

In the following, "intrinsi
" refers to 
lassi
al surfa
e geometry, where intrinsi
 quantities are those whi
h

depend only on the �rst fundamental form I

m

= rm

T

rm 2 M

2�2

of the surfa
e. Then "intrinsi
" in our

terminology are terms, whi
h redu
e to su
h a dependen
e in the 
ontinuum limit R = polar(rmj~n). For

example (R

1

jR

2

)

T

rm =

p

rm

T

rm, in this 
ase.
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In (5.25) � denotes a general external loading fun
tional, 
ontinuous in the topology ofX , 
f.

Remark 4.5 and (14.19). It is 
lear that the limit fun
tional I

℄

0

is weakly lower semi
ontinuous

in the topology of X

0

= H

1;2

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)) by simple 
onvexity arguments.

We note the twofold appearan
e of the harmoni
 mean H,

13

1

2

H(�;

�

2

) =

��

2�+ �

; H(�; �




) = 2�

�




�+ �




: (5.30)

A major advantage of this formulation is that the dimensionally homogenized formulation re-

mains fully frame-indi�erent. Note that the limit fun
tional I

℄

0

is 
onsistent with the following

plane stress requirement (
.f. (6.48))

8 �

3

2 [�

1

2

;

1

2

℄ : S

1

(�

1

; �

2

; �

3

):e

3

= 0 ; (5.31)

i.e. a vanishing normal stress over the entire thi
kness of the plate, while for any given thi
kness

h > 0 from 3D-equilibrium one 
an only infer zero normal stresss at the upper and lower

fa
es

hR

T

(�

1

; �

2

;�1=2)S

1

(�

1

; �

2

;�1=2):e

3

; e

3

i = 0 : (5.32)

In this sense, the Cosserat "membrane" �-limit underestimates the real stresses,

notably the transverse shear stresses.

5.4 The borderline 
ase �




= 0

Sin
e it is not possible to establish equi-
oer
ivity for �




= 0, we are not in a position to state

a rigourous �-limit result based dire
tly on the proof of the result for �




> 0 in this 
ase.

However, sin
e the energy fun
tional I

℄

h

j

for �




> 0 is stri
tly bigger than the same fun
tional

for �




= 0, independent of h

j

> 0, it is easy to see [42, Prop. 6.7℄ that on X we have the

inequalities

�� lim inf I

℄

h

j

j

�




=0

� �� lim sup I

℄

h

j

j

�




=0

� lim

�




!0

�

�� lim I

℄

h

j

j

�




>0

�

=: I

℄;0

0

; (5.33)

where

I

℄;0

0

(';R) =

(

R

!

W

hom;0

mp

(rAv :';R) +W

hom


urv

(K

s

) d! ��(Av :';R

3

) (';R) 2 A

mem

0

+1 else in X ;

(5.34)

with A

mem

0

de�ned in (7.90) and the 
orresponding lo
al energy density in terms of m = Av :'

is

W

hom;0

mp

(rm;R) := � k sym(R

1

jR

2

)

T

rm� 11

2

k

2

| {z }

"intrinsi
" shear-stret
h energy

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

| {z }

homogenized elongational stret
h energy

:

(5.35)

Observe that the upper bound I

℄;0

0

for the � � lim sup energy fun
tional is not 
oer
ive

w.r.t. H

1;2

(!;R

3

) due to the now missing transverse shear 
ontribution, while it retains lower-

semi
ontinuity. This degeneration remains true for whatever form the �-limit for �




= 0 has,

should it exist. We 
omplement the investigation of the geometri
ally exa
t 
ase �




= 0 with

an estimate for the � � lim inf in Se
tion 7, whi
h shows altogether, that I

℄;0

0

is indeed the

�-limit for zero Cosserat 
ouple modulus �




= 0.

13

For a; b � 0 the harmoni
, arithmeti
 and geometri
 mean are de�ned as H(a; b) :=

2

1

a

+

1

b

; A(a; b) =

a+b

2

; G(a; b) =

p

a b, respe
tively and one has the 
hain of inequalities H(a; b) � G(a; b) � A(a; b).
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For � = �




, however, the limit energy W

hom

mp


oin
ides with the respe
tive plate energy

W

mp

derived in terms of the formal ansatz given in (8.1). If �




> 0, then 
oer
ivity and well-

posedness of the limit problem 
an be established by a lo
al 
oer
ivity argument and Poin
ar�e's

inequality or 
an be inferred from equi-
oer
iveness and Theorem 4.9.

The loss of 
oer
ivity for �




= 0 is primarily a loss of 
ontrol for the "transverse" 
ompo-

nents hm

x

; R

3

i ; hm

y

; R

3

i, while w.r.t. the remaining "in-plane" 
omponents 
ompa
tness for

minimizing sequen
es, whose midsurfa
e deformations are supposed to be already bounded in

L

r

(!), 
an be established (appropriate use of an extended Korn's se
ond inquality, 
.f. (7.102)).

As far as linearization 
onsisten
y is 
on
erned, it is an easy matter to show (see (14.11))

that the linearization for �




= 0 of the frame-indi�erent �-limit I

℄;0

0

w.r.t. small midsurfa
e

displa
ement v : ! � R

2

7! R

3

and small 
urvature de
ouples the �elds of in�nitesimal

midsurfa
e displa
ement and in�nitesimal mi
rorotations: after des
aling we are left with the


lassi
al in�nitesimal "membrane" plate problem for v : ! � R

2

7! R

3

Z

!

h

�

� k symr(v

1

; v

2

)k

2

+

��

2�+ �

tr [symr(v

1

; v

2

)℄

2

�

d!

� hf; hv; e

1

i � e

1

+ hv; e

2

i � e

2

i 7! min : w.r.t. v ; (5.36)

hv; e

i

i

j




0

= hu

d

(x; y; 0); e

i

i ; i = 1; 2 simply supported (horizontal 
omponents only) ;

whi
h leaves the verti
al midsurfa
e displa
ement v

3

indetermined due to the non-resistan
e of

a linear "membrane" plate to verti
al de
e
tions. This problem 
oin
ides with a linearization

14

of the nonlinear membrane plate problem proposed in [27, par.4.3℄, based on purely formal

asymptoti
 methods applied to the St.Venant-Kir
hho� energy. The variational problem (5.36)

is as well the �-limit of the 
lassi
al linear elasti
ity bulk problem (if 
orresponding s
aling

asumptions are made, 
ompare with [3, Th.4.2℄, [8℄ or [12, Th.1.11.2℄ and (14.2)). The 
lassi
al

linear bulk model in turn 
an be obtained as linearization for �




= 0 of the Cosserat bulk

problem. Hen
e, for �




= 0 ex
lusively, linearization and taking the �-limit 
ommute

with the �-limit of 
lassi
al linear elasti
ity.

15

5.5 The borderline 
ase �




=1

This 
ase is interesting, be
ause the rigourous �-limit for �




= 1 still gives rise to an inde-

pendent �eld of mi
rorotations R, while the Cosserat bulk problem for �




= 1 degenerates

into a 
onstraint theory (a so 
alled interdeterminate 
ouple-stress model), where R 
oin
ides

ne
essarily with the 
ontinuum rotations polar(F ) from the polar de
omposition.

The �-limit variational problem reads: �nd the deformation of the midsurfa
e m : ! �

R

2

7! R

3

and the mi
rorotation of the plate (shell) R : ! � R

2

7! SO(3;R) on ! su
h that for

I

℄;1

0

: X 7! R in terms of the averaged deformation m = Av :',

I

℄;1

0

(m;R) 7! min : w.r.t. (m;R) ; (5.37)

with

I

℄;1

0

(m;R) =

(

R

!

W

hom;1

mp

(rm;R) +W

hom


urv

(K

s

) d! ��(m;R

3

) (m;R) 2 A

0;1

!

+1 else in X ;

(5.38)

the admissible set

A

0;1

!

:= f(m;R) 2 H

1;2

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)) ; m

j




0

(�

1

; �

2

) = g

℄

d

(�

1

; �

2

; 0) ;

hR

1

;m

y

i = hR

2

;m

x

i g ; (5.39)

14

Expansion of the �rst fundamental form I

m

of the midsurfa
e m w.r.t. planar initial 
on�guration yields

I

m

� 11

2

= rm

T

rm � 11

2

� symr

(x;y)

(v

1

; v

2

) + O(krvk

2

). Hen
e 
ontrol on verti
al de
e
tions v

3

is lost

during linearization.

15

As is well known [14, p.464℄ this is not the 
ase with the membrane �-limit 
onsidered in [23℄, based on the

non-ellipti
 St.Venant-Kir
hho� energy.
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and the 
orresponding dimensionally homogenized lo
al energy density is

W

hom;1

mp

(rm;R) := � k(R

1

jR

2

)

T

rm� 11

2

k

2

| {z }

"intrinsi
" shear-stret
h energy

+ 2�

�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

| {z }

homogenized transverse shear energy

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

| {z }

homogenized elongational stret
h energy

: (5.40)

Note that �




= 1 e�e
tively rules out in-plane drill rotations [40, 28℄. Moreover, the

transverse shear energy is doubled, but transverse shear is still possible. In this sense, the

resulting homogenized transverse shear modulus ex
ludes what 
ould be 
alled "transverse

shear lo
king" in a

ordan
e with the "Poisson thi
kness lo
king" whi
h o

urs, if the 
orre
t

homogenized volumetri
 modulus is not taken.

16

6 Proof of �-
onvergen
e for positive Cosserat 
ouple mod-

ulus �




> 0

Let us 
ontinue by proving the 
laim on the form of the �-limit for stri
tly positive Cosserat


ouple modulus �




> 0 .

6.1 Equi-
oer
ivity of I

℄

h

j

, 
ompa
tness and dimensional redu
tion

Theorem 6.1 (Equi-
oer
ivity of I

℄

h

j

)

For positive Cosserat 
ouple modulus �




> 0 the sequen
e of res
aled energy fun
tionals I

℄

h

j

de�ned in (3.11) is equi-
oer
ive on the spa
e X .

Proof. It is 
lear that for given h > 0 the problem (3.11) admits a minimizing pair ('

℄

h

; R

℄

h

) 2

H

1;2

(


1

;R

3

)�W

1;1+p+q

(


1

; SO(3;R)) by the obvious s
aling transformation of the minimizing

solution of the bulk problem for values of p � 1; q > 1 and for both �




> 0 and �




= 0.
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This

is espe
ially true for Neumann boundary 
onditions on the mi
rorotations, sin
e for exa
t

rotations, kRk =

p

3. This leads to a 
ontrol of mi
rorotations in W

1;1+p+q

(


1

; SO(3;R))

already without spe
i�
ation of Diri
hlet boundary data on the mi
rorotations.

Consider now a sequen
e h

j

! 0 for j ! 1. By inspe
tion of the existen
e proof for

the Cosserat bulk problem, it will be
ome 
lear that for 
orresponding sequen
es ('

℄

h

j

; R

℄

h

j

) 2

H

1;2

(


1

;R

3

)�W

1;1+p+q

(


1

; SO(3;R)) = X

0

with I

℄

h

j

('

℄

h

j

; R

℄

h

j

) <1 bounded independent of

h

j

(not ne
essarily minimizers) we obtain a bound on the sequen
e ('

℄

h

j

; R

℄

h

j

) inX

0

, independent

of h

j

. To see this, note that for �




> 0, it is immediate that r

h

�

'

℄

= F

℄

h

is bounded in

L

2

(


1

;M

3�3

), independent of R

℄

h

j

on a

ount of the de
isive lo
al 
oer
ivity 
ondition

W

mp

(R

℄;T

h

j

F

℄

h

j

) � min(�




; �) kR

℄;T

h

j

F

℄

h

j

� 11k

2

= min(�




; �)

�

kF

℄

h

j

k

2

� 2hR

℄;T

h

j

F

℄

h

j

; 11i+ 3

�

� min(�




; �)

�

kF

℄

h

j

k

2

� 2

p

3kF

℄

h

j

k+ 3

�

; (6.41)

16

lim

�!1

1

2

H(�;

�

2

) = � <1 but lim

�!1

1

2

A(�;

�

2

) =1.

17

In 
ontrast to �-
onvergen
e arguments based on the St.Venant-Kir
hho� energy [23℄ whi
h might not admit

minimizers for any given h > 0.
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and after integration

1 > I

℄

h

j

('

℄

h

j

; R

℄

h

j

) >

Z




1

W

mp

(U

℄

h

j

) +W


urv

(K

℄

h

j

) dV

�

�

Z




1

W

mp

(U

℄

h

j

) dV

�

�

Z




1

min(�




; �)

�

kF

℄

h

j

k

2

� 2

p

3kF

℄

h

j

k+ 3

�

dV

�

(6.42)

� min(�




; �)

Z




1

��

k�

�

1

'

℄

k

2

+ k�

�

2

'

℄

k

2

+

1

h

j

2

k�

�

3

'

℄

k

2

�

�2

p

3

�

k�

�

1

'

℄

k+ k�

�

2

'

℄

k+

1

h

j

k�

�

3

'

℄

k

�

+ 3

�

dV

�

:

This implies a bound, independent of h

j

, for the gradient r'

℄

h

j

in L

2

(


1

;R

3

). The Diri
hlet

boundary 
onditions for '

℄

h

j

together with Poin
ar�e's inequality yield the boundedness of '

℄

h

j

in H

1;2

(


1

;R

3

).
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With a similar argument, based on the lo
al 
oer
ivity of 
urvature, the

bound on R

℄

h

j


an be obtained: we need only to observe that for a 
onstant 


+

> 0, depending

on the positivity of �

4

; �

5

; �

6

; �

7

, but independent of h

j

,

1 > I

℄

h

j

('

℄

h

j

; R

℄

h

j

) >

Z




1

W

mp

(U

℄

h

j

) +W


urv

(K

℄

h

j

) dV

�

�

Z




1

W


urv

(K

℄

h

j

) dV

�

(6.43)

�

Z




1




+

kK

℄

h

j

k

1+p+q

dV

�

= 


+

Z




1

kR

℄;T

h

j

D

h

j

�

R

℄

h

j

k

1+p+q

dV

�

= 


+

Z




1

kD

h

j

�

R

℄

h

j

k

1+p+q

dV

�

;

whi
h establishes a bound on the gradient of rotations r

h

j

�

[R

℄

h

j

(�):e

i

℄; i = 1; 2; 3, independent

of h

j

. Moreover, kR

℄

h

j

k =

p

3, establishing the W

1;1+p+q

(


1

; SO(3;R)) bound on R

℄

h

j

. Thus

we may obtain a subsequen
e, not relabelled, su
h that

'

℄

h

j

* '

℄

0

in H

1;2

(


1

;R

3

) ; R

℄

h

j

* R

℄

0

inW

1;1+p+q

(


1

; SO(3;R)) : (6.44)

Both weak limits ('

℄

0

; R

℄

0

) must be independent of the transverse 
oordinate �

3

, otherwise the

energy I

℄

h

j


ould not remain �nite for h

j

! 0, see (6.42) and 
ompare with the de�nition of D

h

j

�

in (3.6). Hen
e the solution must be found in terms of fun
tions de�ned on the two-dimensional

domain !. In this sense the domain of the limit problem is two-dimensional and the 
orrespond-

ing spa
e is X

!

. Sin
e the embedding X

0

� X is 
ompa
t, it is shown that the sequen
e of

energy fun
tionals I

℄

h

j

is equi-
oer
ive w.r.t. X . �

6.2 Lower bound-the lim inf-
ondition

If I

℄

0

is the �-limit of the sequen
e of energy fun
tionals I

℄

h

j

then we must have (lim inf-

inequality) that

I

℄

0

('

0

; R

0

) � lim inf

h

j

I

℄

h

j

('

℄

h

j

; R

℄

h

j

) ; (6.45)

whenever

'

℄

h

j

! '

℄

0

in L

r

(


1

;R

3

) ; R

℄

h

j

! R

℄

0

in L

1+p+q

(


1

; SO(3;R)) ; (6.46)

for arbitrary ('

℄

0

; R

℄

0

) 2 X . Observe that we 
an restri
t attention to sequen
es ('

℄

h

j

; R

℄

h

j

) 2 X

su
h that I

℄

h

j

('

℄

h

j

; R

℄

h

j

) < 1 sin
e otherwise the statement is true anyway. Sequen
es with

18

This argument fails for the limit 
ase �




= 0 sin
e lo
al 
oer
ivity does not hold.
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I

℄

h

j

('

℄

h

j

; R

℄

h

j

) < 1 are uniformly bounded in the spa
e X

0

, as seen previously. This implies

weak 
onvergen
e of a subsequen
e in X

0

. But we know already that the original sequen
es


onverge strongly in X to the limit ('

℄

0

; R

℄

0

) 2 X . Hen
e we must have as well weak 
onvergen
e

to '

℄

0

2 H

1;2

(!;R

3

) and R

℄

0

2 W

1;1+p+q

(!; SO(3;R)), independent of the transverse variable

�

3

.

In a �rst step we 
onsider now the lo
al energy 
ontribution: along sequen
es ('

℄

h

j

; R

℄

h

j

) 2

X with �nite energy I

℄

h

j

, the third 
olumn of the deformation gradientr

h

j

�

'

℄

h

j

remains bounded

but otherwise indetermined. Therefore, a trivial lower bound is obtained by minimizing the

e�e
t of the derivative in this dire
tion in the lo
al energy W

mp

. To 
ontinue our development,

we need some 
al
ulations: For smooth m : ! � R

2

7! R

3

; R : ! � R

2

7! SO(3;R) de�ne the

"dire
tor"-ve
tor b

�

2 R

3

formally through

W

hom

mp

(rm;R) =W

mp

(R

T

(rmjb

�

)) := inf

b2R

3

W

mp

(R

T

(rmjb)) : (6.47)

The ve
tor b

�

, whi
h realizes this in�mum, 
an be expli
itly determined. Set

~

F := (rmjb

�

).

The 
orresponding lo
al optimality 
ondition reads

8 Æb

�

2 R

3

: hDW

mp

(R

T

(rmjb

�

)); R

T

(0j0jÆb

�

)i = 0 )

hRDW

mp

(R

T

(rmjb

�

)); (0j0jÆb

�

)i = 0 )

RDW

mp

(R

T

(rmjb

�

)):e

3

= 0 ) D

~

F

W

mp

(R

T

(rmjb

�

)):e

3

= 0) (6.48)

S

1

((rmjb

�

); R):e

3

= 0 :

Sin
e

S

1

(F;R) = R

�

�

�

F

T

R+R

T

F � 2 11

�

+ 2�




skew(R

T

F ) + � tr

h

R

T

F � 11

i

11

�

(6.49)

and

R

T

~

F =

0

�

hR

1

;m

x

i hR

1

;m

y

i hR

1

; b

�

i

hR

2

;m

x

i hR

2

;m

y

i hR

2

; b

�

i

hR

3

;m

x

i hR

3

;m

y

i hR

3

; b

�

i

1

A

;

~

F

T

R+R

T

~

F � 2 11 =

0

�

2[hR

1

;m

x

i � 1℄ hR

1

;m

y

i+ hR

2

;m

x

i hR

1

; b

�

i+ hR

3

;m

x

i

hR

2

;m

x

i+ hR

1

;m

y

i 2[hR

2

;m

y

i � 1℄ hR

2

; b

�

i+ hR

3

;m

y

i

hR

3

;m

x

i+ hR

1

; b

�

i hR

3

;m

y

i+ hR

2

; b

�

i 2[hR

3

; b

�

i � 1℄

1

A

;

skew(R

T

~

F ) =

0

�

0

1

2

�

hR

1

;m

y

i � hR

2

;m

x

i

�

1

2

�

hR

1

; b

�

i � hR

3

;m

x

i

�

� 0

1

2

�

hR

2

; b

�

i � hR

3

;m

y

i

�

� � 0

1

A

; (6.50)

the (plane-stress) requirement S

1

:e

3

= 0 (6.48) implies

�

0

�

hR

1

; b

�

i+ hR

3

;m

x

i

hR

2

; b

�

i+ hR

3

;m

y

i

2[hR

3

; b

�

i � 1℄

1

A

+ �




0

�

hR

1

; b

�

i � hR

3

;m

x

i

hR

2

; b

�

i � hR

3

;m

y

i

0

1

A

+ �

�

hR

1

;m

x

i+ hR

2

;m

y

i+ hR

3

; b

�

i � 3

�

0

�

0

0

1

1

A

=

0

�

0

0

0

1

A

: (6.51)

The solution of the last system 
an 
onveniently be expressed in the orthonormal triad (R

1

; R

2

; R

3

)

as

b

�

=

�




� �

�+ �




hR

3

;m

x

iR

1

+

�




� �

�+ �




hR

3

;m

y

iR

2

+ %

�

m

R

3

;

%

�

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

: (6.52)
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Note that for R 2 SO(3;R) and rm 2 L

2

(


1

;R

3

) it follows that b

�

2 L

2

(


1

;R

3

). Reinserting

the solution b

�

we have

R

T

~

F =

0

�

hR

1

;m

x

i hR

1

;m

y

i

�




��

�+�




hR

3

;m

x

i
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2

;m

x

i hR

2
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i

�




��
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hR

3

;m

y
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3

;m

x

i hR

3
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y

i %

�

m

1

A

;

~

F

T

R+R

T

~

F � 2 11 =

0

B

B

B

�

2[hR

1

;m

x

i � 1℄ hR

1

;m

y

i+ hR

2

;m

x

i

�

1 +

�




��

�+�




�

hR

3

;m

x

i

hR

2

;m

x

i+ hR

1

;m

y

i 2[hR

2

;m

y

i � 1℄

�

1 +

�




��

�+�




�

hR

3

;m

y

i

�

1 +

�




��

�+�




�

hR

3

;m

x

i

�

1 +

�




��

�+�




�

hR

3

;m

y

i 2[%

�

m

� 1℄

1

C

C

C

A

;

skew(R

T

~

F ) =

0

B

B

�

0

1

2

�

hR

1

;m

y

i � hR

2

;m

x

i

�

1

2

��

�




��

�+�




� 1

�

hR

3

;m

x

i

�

� 0

1

2

��

�




��

�+�




� 1

�

hR

3

;m

y

i

�

� � 0

1

C

C

A

;

1 +

�




� �

�+ �




=

2�




�+ �




;

�




� �

�+ �




� 1 =

�2�

�+ �




: (6.53)

We obtain �nally for W

hom

mp

(rm;R) := W

mp

(R

T

(rmjb

�

)) with

~

U = R

T

(rmjb

�

) = R

T

~

F after

a lengthy but otherwise straightforward 
omputation

W

hom

mp

(rm;R) :=W

mp

(

~

U) = � k sym(

~

U � 11)k

2

+ �




k skew(

~

U)k

2

+

�

2

tr

h

sym(

~

U � 11)

i

2

= � k sym((R

1

jR

2

)

T

rm� 11

2

)k

2

+ �




k skew((R

1

jR

2

)

T

rm)k

2

(6.54)

+ 2�

�




�+ �




�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

:

Along the sequen
e ('

℄

h

j

; R

℄

h

j

) we have by 
onstru
tion,

W

mp

(R

℄;T

h

j

r

h

j

�

'

℄

h

j

) =W

mp

(R

℄;T

h

j

(r

(�

1

;�

2

)

'

℄

h

j

j

1

h

j

�

�

3

'

℄

h

j

)) �W

hom

mp

(r

(�

1

;�

2

)

'

℄

h

j

; R

℄

h

j

) : (6.55)

Hen
e, integrating and taking the lim inf also

lim inf

h

j

Z




1

W

mp

(R

℄;T

h

j

r

h

j

�

'

℄

h

j

) dV

�

� lim inf

h

j

Z




1

W

hom

mp

(r

(�

1

;�

2

)

'

℄

h

j

; R

℄

h

j

) dV

�

: (6.56)

Now we use weak 
onvergen
e of '

℄

h

j

and strong 
onvergen
e of R

℄

h

j

, together with the 
onvexity

w.r.t. rm and 
ontinuity w.r.t. R of

R




1

W

hom

mp

(rm;R) dV

�

to get lower semi-
ontinuity of

the right hand side in (6.56) and to obtain altogether

lim inf

h

j

Z




1

W

mp

(R

℄;T

h

j

r

h

j

�

'

℄

h

j

) dV

�

�

Z




1

W

hom

mp

(r

(�

1

;�

2

)

'

℄

0

; R

℄

0

) dV

�

: (6.57)

Next we are 
on
erned with the 
urvature 
ontribution: it is always possible to uniquely

rewrite the 
urvature energy expression in terms of skew-symmetri
 quantities

W

�


urv

: so(3;R) � so(3;R) � so(3;R) 7! R

+

;

W

�


urv

(R

T

�

�

1

R;R

T

�

�

2

R;R

T

�

�

3

R) :=W


urv

(K) ; (6.58)

where R

T

�

�

i

R 2 so(3;R) sin
e �

�

i

[R

T

R℄ = 0. We note thatW

�


urv

remains a 
onvex fun
tion in

its argument sin
e K 2 T(3) 
an be obtained by a linear mapping from (R

T

�

�

1

R;R

T

�

�

2

R;R

T

�

�

3

R) 2

22



so(3;R)�so(3;R)�so(3;R). We de�ne the "homogenized" (relaxed) 
urvature energy through

W

�;hom


urv

(R

T

�

�

1

R;R

T

�

�

2

R) : =W

�


urv

(R

T

�

�

1

R;R

T

�

�

2

R;A

�

)

= inf

A2so(3;R)

W

�


urv

(R

T

�

�

1

R;R

T

�

�

2

R;A) ; (6.59)

and set a

ordingly

W

hom


urv

(K

s

) :=W

�;hom


urv

(R

T

�

�

1

R;R

T

�

�

2

R) ;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

; (6.60)

in terms of the redu
ed 
urvature tensor K

s

2 T(3).

Similarly to (6.48) the in�nitesimal rotation A

�

2 so(3;R), whi
h realizes the in�mum in

(6.59), 
an be expli
itely determined. For the moment we refrain from giving the �nal result.

SuÆ
e it to note that W

hom


urv

is uniquely de�ned, remains 
onvex in its argument and has the

same growth as W


urv

. Then

W


urv

(R

℄;T

h

j

D

h

j

�

R

℄

h

j

) =W
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j
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j
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�

�

1

R

℄

h

j

; R

℄;T

h

j

�

�

2

R

℄

h

j

) : (6.61)

Integrating the last inequality, taking the lim inf on both sides and using that W

�;hom


urv

is 
onvex

in its argument, together with weak 
onvergen
e of the two in-plane 
omponents of the 
urvature

tensor, i.e.

(R

℄;T

h

j

�

�

1

R

℄

h

j

; R

℄;T

h

j

�

�

2
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℄;T

0

�

�

1
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℄;T
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�

�

2

R

℄
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; 0) in L

1+p+q
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1

;T(3)) ; (6.62)

we obtain

lim inf

h

j
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W
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�
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�

: (6.63)

Then, be
ause W


urv

;W

mp

� 0,

lim inf
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(6.64)

=
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W
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℄
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; R

℄

0

) +W
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urv
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℄;T

0
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0

) dV

�

;

where we used (6.57) and (6.63). Now we use that '

℄

0

is independent of the transverse variable

�

3

, whi
h allows us to insert the averaging operator without any 
hange to see that
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1

W
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(6.65)
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sin
e R

℄

0

is also independent of the transverse variable. Hen
e we obtain altogether the desired

lim inf-inequality

I

℄

0

('

℄

0
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) � lim inf
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℄
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) (6.66)

for

I

℄

0
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) :=
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6.3 Upper bound-the re
overy sequen
e

Now we show that the lower bound will a
tually be rea
hed. A suÆ
ient requirement for the

re
overy sequen
e is that

8 ('

0

; R

0

) 2 X = L

r
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℄

h

j

! '

0

in L

r

(


1

;R

3

) ; R

℄
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) : (6.67)

Observe that this is now only a 
ondition if I

℄

0

('

0

; R

0

) < 1. In this 
ase the uniform 
oer-


ivity of I

℄

h

j

('

℄

h

j

; R

℄

h

j

) over X

0

= H
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1
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3

) �W
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(


1

; SO(3;R)) implies that we 
an

restri
t attention to sequen
es ('

℄

h

j

; R

℄

h

j

) 
onverging weakly to some ('

0

; R

0

) 2 H

1;2

(!;R

3

)�

W

1;1+p+q

(!; SO(3;R)) = X

0

!

, de�ned over the two-dimensional domain ! only. Note, however,

that �nally it is strong 
onvergen
e in X whi
h matters.

The natural 
andidate for the re
overy sequen
e for the bulk deformation is given by the

"re
onstru
tion"

'

℄

h

j
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; �

2

; �
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) ; (6.68)

where, with the abbreviation m = '

0

= Av :'

0

at pla
es,

b

�

(�
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; �
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2�+ �

�
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0
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�

: (6.69)

Observe that b

�

2 L

2

(!;R

3

). Convergen
e of '

℄

h

j

in L

r

(


1

;R

3

) to the limit '

0

as h

j

! 0 is

obvious.

The re
onstru
tion for the rotation R

0

is, however, not obvious sin
e on the one

hand we have to maintain the rotation 
onstraint along the sequen
e and on the other hand

we must approa
h the lower bound, whi
h ex
ludes the simple re
onstru
tion R

℄

h

j

(�

1

; �

2

; �

3

) =

R

0

(�

1

; �

2

). In order to meet both requirements we 
onsider therefore

R

℄

h

j
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; �
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; �
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0
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1

; �

2

) � exp (h

j

�

3

A

�

(�

1

; �

2

)) ; (6.70)

where A

�

2 so(3;R) is the term obtained in (6.59), depending on the given R

0

and we note

that A

�

2 L

1+p+q

(!; so(3;R)) by the 
oer
ivity of W

�


urv

. It is 
lear that R

℄

h

j

2 SO(3;R), sin
e

exp : so(3;R) 7! SO(3;R) and we have the 
onvergen
e R

℄

h

j

! R

0

in L

1+p+q

(


1

; SO(3;R)) for

h

j

! 0.
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Sin
e neither b

�

nor A

�

need be di�erentiable, we have to 
onsider slightly modi�ed re
overy

sequen
es, however. With �xed " > 0 
hoose b

"

2 W

1;2

(!;R

3

) su
h that kb

"

� b

�

k

L

2

(!;R

3

)

< "

and similarly for A
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"
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h that kA
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�

k
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< ".

This allows us to present �nally our re
overy sequen
e
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This de�nition implies

r'

℄

h

j

;"

(�

1

; �

2

;�

3

) = (r'

0

(�

1

; �

2

)jh

j

b

"

(�

1

; �

2

)) + h

j

�

3

(rb

"

(�

1

; �

2

)j0) ;

R

℄;T

h

j

;"

�

�

1

R

℄

h

j

;"

= exp (h

j

�

3

A

"

)

T

R

T

0

�

�

�

1

R

0

exp (h

j

�
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�
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with �

�

i

A

"

2 so(3;R). In view of the prominent appearan
e of the exponential in these expres-

sions it is useful to brie
y re
apitulate the basi
 features of the matrix exponential exp a
ting

on so(3;R). We note

exp : so(3;R) 7! SO(3;R) is in�nitely di�erentiable ;

8A 2 so(3;R) : k exp(A)k =

p

3 )

exp : L

1+p+q

(


1

; so(3;R)) 7! L

1+p+q

(


1

; SO(3;R)) is 
ontinuous ;

D exp : so(3;R) 7! Lin(so(3;R);M

3�3

) is lo
ally 
ontinuous ;

8H 2 so(3;R) : D exp(0):H = H ;

8A;H 2 so(3;R) : exp(A)

T

�D exp(A):H 2 so(3;R) : (6.73)

Note that by appropriately 
hoosing h

j

; " > 0 we 
an arrange that strong 
onvergen
e of (6.72)

to the 
orre
t limit still obtains by using (6:73)
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. Now abbreviate
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We note that by the smoothness of A
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The abbreviations in (6.74) imply
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℄
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where we used that h

j

� b

"

in the de�nition of the re
overy deformation gradient (6.72)

1

is


an
elled by the fa
tor

1

h

j

in the de�nition of I

℄

h
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. When
e, adding and subtra
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Now take h

j

! 0 to obtain by the 
ontinuity of W
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in its �rst two arguments and (6.75)
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we get, by letting " ! 0 and using now the 
ontinuity of W
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Sin
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are two-dimensional (independent of the transverse variable), we may write as well
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whi
h shows the desired upper bound. Note that the appearan
e of the averaging operator Av

is not stri
tly ne
essary sin
e the limit problem for �




> 0 is independent of the transverse

variable anyhow. �

7 Proof of �-
onvergen
e for zero Cosserat 
ouple modu-

lus �




= 0 without equi-
oer
ivity

In this part we show that the the formal limit of �




! 0 of the �-limit for �




> 0 is in fa
t

the �-limit for �




= 0. First, we investigate a lower bound of the res
aled three-dimensional
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; �

2

; �

3

)k

2

+ k	

h

j

(�

1

; �

2

; �

3

)k

2

d!

3

5

d�

3

�

1=2

Z

�1=2

2

4




+

K

Z

!

kr

(�

1

;�

2

)

	

h

j

(�

1

; �

2

; �

3

)k

2

+ k	

h

j

(�

1

; �

2

; �

3

)k

2

d!

3

5

d�

3

; (7.109)

whi
h allows us to 
on
lude the boundedness of r

(�

1

;�

2

)

	

h

j

in L

2

(


1

;R

2

) and weak 
onvergen
e

of this sequen
e of gradients to a limit. By 
onstru
tion we know already that 	

h

j

! 	

0

2

L

2

(


1

;R

2

) (assumed strong 
onvergen
e of R

h

j

and '

℄

h

j

). Hen
e r

(�

1

;�

2

)

	

h

j


onverges weakly
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to r

(�

1

;�

2

)

	

0

. Sin
e we know as well that �

�

i

R

℄

h

j

* �

�

i

R

℄

0

in L

1+p+q

(


1

;M

3�3

); i = 1; 2 and

'

℄

h

j

! '

℄

0

in L

r

(


1

;R

3

) we obtain

D(R

℄

1;h

j

jR

℄

2;h

j

):�

℄

h

j

* D(R

℄

1;0

jR

℄

2;0

):�

℄

0

2 L

2

(


1

;M

2�2

) : (7.110)

Looking now ba
k at (7.102) shows that

(R

℄

1;h

j

jR

℄

2;h

j

)

T

r

(�

1

;�

2

)

'

℄

h

j

2 L

2

(


1

;M

2�2

) ; (7.111)

is a well de�ned expression for whi
h (7.99) holds. Due to the 
onvexity of W

hom;0

mp

in the

argument sym((R

1

jR

2

)

T

r

(�

1

;�

2

)

', we may pass to the limit in (7.98) to obtain

lim inf

h

j

Z




1

W

mp

(R

℄;T

h

j

r

h

j

�

'

℄

h

j

) dV

�

�

Z




1

W

hom;0

mp

(r

(�

1

;�

2

)

'

℄

0

; R

℄

0

) dV

�

: (7.112)

The 
onvexity of W

hom;0

mp

and Jensen's inequality (5.23) show then easily

Z

!

W

hom;0

mp

(r

(�

1

;�

2

)

Av :'(�

1

; �

2

); R) d! �

Z

!

Z

1=2

�1=2

W

hom;0

mp

(r

(�

1

;�

2

)

'(�

1

; �

2

; �

3

); R) d�

3

d!

=

Z




1

W

hom;0

mp

(r

(�

1

;�

2

)

'(�

1

; �

2

; �

3

); R) dV

�

(7.113)

Combining (7.113) with (7.112) shows

lim inf

h

j

Z




1

W

mp

(R

℄;T

h

j

r

h

j

�

'

℄

h

j

) dV

�

�

Z

!

W

hom;0

mp

(r

(�

1

;�

2

)

Av :'(�

1

; �

2

); R) d! : (7.114)

The proof of (7.91) is �nished along the lines of (6.57). Note that (7.111) does de�nitely not

yield 
ontrol of r

(�

1

;�

2

)

'

℄

h

j

in L

2

(


1

;M

3�2

). �

To �nish the proof of �-
onvergen
e for zero Cosserat 
ouple modulus we observe that we have

shown (
.f.(7.93)) in this se
tion that on X = L

r

(


1

;R

3

)� L

1+p+q

(


1

; SO(3;R))

I

℄;mem

0

� �� lim inf I

℄;mem

h

� �� lim inf I

℄

h

j

�




=0

� �� lim sup I

℄

h

j

�




=0

� lim

�




!0

�

�� lim I

℄

h

j

�




>0

�

=: I

℄;0

0

: (7.115)

Sin
e, however, I

℄;mem

0

= I

℄;0

0

, the last inequality is in fa
t an equality, whi
h shows that

�� lim I

℄

h

j

j

�




=0

= I

℄;0

0

: (7.116)

This gives us 
omplete information on the behaviour of sequen
es of minimizing problems for

�




= 0, should su
h sequen
es exist and 
onverge to a limit in the en
ompassing spa
e X . �

8 The new formal �nite-strain Cosserat thin plate model

with size e�e
ts

8.1 Statement of the formal Cosserat plate model

The proposed formal "rational" of dimensional des
end leads us to postulate the following

two-dimensional minimization problem for the deformation of the midsurfa
e m : ! � R

2

7! R

3
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and the mi
rorotation of the plate (shell) R : ! � R

2

7! SO(3;R) on !:

I(m;R) =

Z

!

hW

mp

(U)+hW


urv

(K

s

) +

h

3

12

W

bend

(K

b

) d!

��(m;R

3

) 7! min : w.r.t. (m;R) ; (8.1)

under the 
onstraints

U = R

T

b

F ;

b

F = (rmjR

3

) 2 M

3�3

; (8.2)

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

2 T(3) ; K

b

= K

3

s

;

and the boundary 
onditions of pla
e for the midsurfa
e deformation m on the Diri
hlet part

of the lateral boundary 


0

,

m

j




0

= g

d

(x; y; 0) ; simply supported (�xed, welded) : (8.3)

The three possible alternative boundary 
onditions for the mi
rorotations R on 


0

are

R

j




0

= polar((rmjrg

d

(x; y; 0):e

3

))

j




0

; strong form of redu
ed 
onsistent 
oupling ; (8.4)

8A 2 C

1

0

(


0

; so(3;R)) :

Z




0

hR

T

(rm(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds = 0 ; very weak 
onsistent 
oupling ;

R

3

j




0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; rigid dire
tor pres
ription :

The 
onstitutive assumptions on the redu
ed densities are

19

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

��

2�+ �

tr

�

sym(U � 11)

�

2

(8.5)

= � k sym((R

1

jR

2

)

T

rm� 11

2

)k

2

| {z }

shear-stret
h energy

+�




k skew((R

1

jR

2

)

T

rm)k

2

| {z }

�rst order drill energy

+

�(�+ �




)

2

�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

| {z }


lassi
al transverse shear energy

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

| {z }

elongational stret
h energy

;

W


urv

(K

s

) = �

L

1+p
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(1 + �

4

L
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kK

s

k

q
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�

�

5

k symK

s
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+ �

6

k skewK

s

k

2

+ �

7

tr [K
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℄
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�

1+p
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;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

;

K

s

= (K

1

s

;K

2

s

;K

3

s

) 2 T(3) ; the redu
ed third order 
urvature tensor ;

W

bend

(K

b

) = � k sym(K

b

)k

2

+ �




k skew(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

;

K

b

= R

T

(rR

3

j0) = K

3

s

; the se
ond order non-symmetri
 bending tensor :

The (relative) thi
kness of the plate (shell) is h > 0. The total elasti
ally stored energy density

due to membrane-strain, total plate-
urvature and spe
i�
 plate-bending

W = hW

mp

| {z }

membrane

+ hW


urv

| {z }


urvature

+

h

3

12

W

bend

| {z }

bending

; (8.6)
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k skew((R

1

jR

2

)

T

rm)k

2

=

�

hR

1

;m

y

i � hR

2

;m

x

i

�

2

.
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depends on the midsurfa
e deformation gradient rm and mi
rorotations R together with their

spa
e derivatives only through the frame-indi�erent measures U and K

s

. The mi
ropolar

stret
h tensor U of the plate is in general non-symmetri
, neither is the mi
ropolar

redu
ed third order 
urvature tensor K

s

. The three-dimensional plate deformation is

re
onstru
ted as

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

R(x; y):e

3

; (8.7)

where

%

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

(2�+ �)

= 1�

�

2�+ �

tr

�

U � 11

�

+

hN

di�

; R

3

i

(2�+ �)

| {z }

�rst order thi
kness 
hange due to elongational stret
h

;

%

b

= �

�

2�+ �

h(rR

3

j0); Ri+

hN

res

; R

3

i

(2�+ �)h

| {z }

non-symmetri
 shift of the midsurfa
e due to bending

= �

�

2�+ �

tr [K

b

℄ +

hN

res

; R

3

i

(2�+ �)h

(8.8)

and N

di�

; N

res

as de�ned in (14.3). To �rst order, the re
onstru
ted deformationgradient is

given by F

s

= (rmj%

m

R

3

). Here ! � R

2

is a domain with boundary �! and 


0

� �! is

that part of the boundary, where Diri
hlet 
onditions g

d

for deformations and mi
rorotations

and/or 
onsistent 
oupling 
onditions for mi
rorotations, respe
tively, are pres
ribed. The

redu
ed external loading fun
tional �(m;R

3

) is a linear form in (m;R

3

) de�ned in (14.19)

in terms of the underlying three-dimensional loads. The parameters �; � > 0 are the Lam�e


onstants of 
lassi
al elasti
ity, �




� 0 is 
alled the Cosserat 
ouple modulus and L




> 0

introdu
es the internal length. We assume throughout that �

5

> 0; �

6

> 0; �

7

� 0. We have

in
luded the so 
alled shear 
orre
tion fa
tor � (0 < � � 1) to keep in line with 
lassi
al

in�nitesimal-displa
ement plate models (14.11). In our formal derivation, however, we obtain

� = 1. The redu
ed model (8.1) is fully frame-indi�erent, meaning that

8 Q 2 SO(3;R) : W

mp

(Q

b

F ;QR) =W

mp

(

b

F ;R) ; K

s

(QR) = K

s

(R) : (8.9)

The non-invariant term %

m

is only needed to re
onstru
t the 3D-deformation, whi
h depends

on the non-invariant loading.

20

Strain and 
urvature parts are additively de
oupled, as

in the underlying parent Cosserat bulk model (2.1). We note the appearan
e of the harmoni


mean H and arithmeti
 mean A

1

2

H(�;

�

2

) =

��

2�+ �

; �A(�; �




) = �

�+ �




2

: (8.10)

8.2 Mathemati
al results for the formal Cosserat thin plate model

For 
on
iseness we state only the obtained results for the 
ase without external loads. It 
an

be shown dire
tly, without re
ourse to three-dimensional 
onsiderations [49℄:

Theorem 8.1 (Existen
e for 2D-Cosserat thin plate with �




> 0 and � > 0)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

)

and R

d

2 W

1;1+p

(!; SO(3;R)). Then (8.1) with �




> 0; � > 0; �

4

� 0; p � 1; q � 0 and

either free or rigid pres
ription for R on 


0

admits at least one minimizing solution pair

(m;R) 2 H

1

(!;R

3

)�W

1;1+p

(!; SO(3;R)). �

Using the extended Korn's inequality [48, 56℄, the following has been shown in [52℄:

20

Of 
ourse, if the external tra
tions are rotated as well, we obtain invarian
e: hQ:N

di�

;Q:R

3

i = hN

di�

; R

3

i.
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Theorem 8.2 (Existen
e for 2D-Cosserat thin plate with �




= 0 and � > 0)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

)

and R

d

2 W

1;1+p+q

(!; SO(3;R)). Then (8.1) with �




= 0; � > 0; �

4

> 0; p � 1; q > 0

and either free or rigid pres
ription for R on 


0

admits at least one minimizing solution pair

(m;R) 2 H

1

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)). �

9 On the form of the transverse shear energy for non-

vanishing thi
kness and the shear 
orre
tion fa
tor �

�-
onvergen
e des
ribes the thin shell limit, but misses of 
ourse the fa
t that in a
tual 
om-

putations of thin stru
tures one wants to des
ribe a material with �nite thi
kness, whi
h 
an

sustain some amount of transverse shear.

If we 
ompare the two di�erent limit models (5.25),(8.1) des
ribed herein, we see that

lim

h

j

!0

1

h

j

I(m;R) in (8.1) 
oin
ides with the �-limit I

℄

0

in (5.25) as far as the lo
al energy 
on-

tributionW

mp

is 
on
erned, apart from the 
oeÆ
ient of the transverse shear energy. How then

should the transverse shear 
ontribution a priori look like, starting from a three-dimensional

view-point?

21

There is a large number of papers 
on
erned with the e�e
tive (homogenized) 
oeÆ
ient

of the transverse shear energy for isotropi
 linear elasti
 bulk material. The transverse shear

deformation in the �nite-strain Cosserat approa
h is proportional to

�

hR

3

;m

x

i; hR

3

;m

y

i

�

. The


orresponding transverse shear energy is proportional to hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

. If we assume

no warping (transverse se
tions remain straight), i.e. an ansatz of the form '(x; y; z) =

m(x; y) + %

+

(z)R(x; y):e

3

with %

+

: R 7! R

+

and a 
onstant dire
tor R:e

3

over the thi
kness,

the transverse shear energy is generally over-estimated. This ansatz leads to a linear distribution

of the transverse shear-stresses in the plate.

From dire
t equilibrium 
onsiderations for the bulk it follows, however, that the dire
tor

should be S-shaped over the thi
kness. In
luding this e�e
t amounts to introdu
e warping.

This 
orresponds to a "weaker" kinemati
al ansatz '(x; y; z) = m(x; y) + %

+

(z)Q(z)R(x; y):e

3

with an additional independent rotation �eld Q 2 SO(3;R), depending only on the transverse

variable z [73, 74℄. It leads to a quadrati
 distribution of the transverse shear stresses in

thi
kness dire
tion. In order to relieve the e�e
t of not in
luding warping in the simpler ansatz,

the introdu
tion of the shear 
orre
tion fa
tor � 
an be motivated.

For both presented models, the transverse shear energy in our notation 
an be written in

the form

G

0

�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

; (9.11)

with a 
onstitutive 
oeÆ
ient G

0

, the transverse shear modulus [G

0

℄ = [N=m

2

℄.

22

Summa-

rizing, we have

G

0

= �A(�; �




) = �

�+ �




2

formal redu
tion (8.1) ;

G

0

= H(�; �




) = 2�

�




�+ �




�-limit (5.25) ; (9.12)

G

0

= �A(�; 0) = �

�

2


lassi
al linear Reissner-Mindlin (14.10) ;

21

The possible di�eren
e between W


urv

and W

hom


urv

is not our 
on
ern, sin
e the 
onstitutive 
oeÆ
ients of

W


urv

are rather a matter of 
onvenien
e at present, as long as 
oer
ivity of 
urvature is guaranteed.

22

Mindlin's notation [45, eq.7℄.
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with � � 0, the so 
alled shear 
orre
tion fa
tor.

23

There are various values for the shear


orre
tion fa
tor � proposed in the engineering literature, among them prominently

� =

�

2

12

� 0:8225 ; Mindlin's value [45℄ ;

� =

87

100

= 0:8700 ; Babuska's value for � = 0:3 ;

� =

10

12� 2�

� 0:8772 ; Zhilin's value for � = 0:3 [1℄ ;

� =

10

12

� 0:8333 ; Reissner's value [57, 58℄ ; (9.13)

� =

10

12� 7�

� 1:01 R�ossle's value for � = 0:3 ;

�

2

12

� � < 1 ; Altenba
h's estimate [1℄ :

These values for � are proposed in terms of best �tting of 
ertain simple in�nitesimal three-

dimensional quasistati
 or dynami
 test 
ases. Mindlin's value � =

�

2

12

is obtained from a best

�t of the �rst eigenfrequen
y of the linearized plate model as 
ompared to the three-dimensional

linear elasti
ity solution. Reissner's value appears through an additional assumption regard-

ing the stress distribution through the thi
kness [57, eq.10℄. Babuska's value [5℄ is based on

numeri
al "experiments". By dimensional analysis it 
an be shown [1℄ that � should depend

on the Lam�e 
onstants only through the Poisson ratio 0 < � <

1

2

. Another motivation for

the introdu
tion of � is obtained by trying to optimize the rate of 
onvergen
e of the linear

Reissner-Mindlin model to the solution of the linear elasti
ity model as h ! 0. This is the

argument for R�ossle's value [59℄. The fa
t that there � might be bigger than one 
annot easily

be a

epted from a purely engineering point of view.

For 0 � � =

4��




(�+�




)

2

� 1 it holds that �A(�; �




) = H(�; �




). Hen
e, in view of our dedu
tion

of the �-limit as 
ompared to the formal redu
tion and the general inequality H(�; �




) �

A(�; �




) together with the linearization 
onsisten
y of the �-limit (5.34) if �




= 0 it is strongly

suggested that � < 1, in a

ordan
e with engineering pra
ti
e, also in the �nite strain


ase.

The question of the form of the homogenized transverse shear energy is as well related to

the observation, that the �-limit energy fun
tional for �




= 0, should it exist, will ne
essarily

loose 
oer
ivity, whi
h 
an dire
tly be tra
ed to the missing transverse shear 
ontribution but

this loss of 
oer
ivity is not due to the missing drill-energy. In this respe
t, note that W

mp

(U)

in (8.5) leads to a 
oer
ive formulation w.r.t. the midsurfa
e deformation m also for �




= 0.

Moreover, in a linearized 
ontext, this energy is asymptoti
ally 
orre
t for �




= 0 and � = 1,


f. (14.11).

For numeri
al 
al
ulations, the "homogenized" energy I

℄;0

0

, whi
h is indeed the �-limit

energy fun
tional for �




= 0, 
an hardly be regarded as suitable in this 
ase. From a more

pra
ti
al, 
omputational viewpoint then, the introdu
tion of a stri
tly positive shear 
orre
tion

fa
tor 0 < � < 1 is fully justi�ed and provides exa
tly that ne
essary minimal 
hange of the

lo
al energy used in I

℄;0

0

, in order to re-establish �rst stri
t Legendre-Hadamard ellipti
ity w.r.t.

m (but not lo
al stri
t 
onvexity) and se
ond 
oer
ivity for the midsurfa
e in H

1;2

(!;R

3

). This

underlines the salient features of the formal derivation together with �




= 0 and 0 < � � 1.

23

"In the 
lassi
al Reissner-Mindlin model, the shear stresses �

13

; �

23

(= hR

3

;m

x

i; hR

3

;m

y

i) are 
onstant

through the thi
kness of the plate. However, three-dimensional tra
tion free boundary 
onditions at the upper

and lower fa
e of the shell imply that at these fa
es, the stresses have to be zero, hen
e also the shear stresses have

to be zero. An analysis of equilibrium for an elasti
 beam shows that the shear stress should be quadrati
 through

the thi
kness and vanish at the fa
es. A 
onstant shear stress distribution over the thi
kness overestimates

therefore the shear energy. A 
orre
tion fa
tor, known as the shear 
orre
tion fa
tor is often used to redu
e the

energy asso
iated with transverse shear and a

urate estimates of this fa
tor 
an be made for elasti
 beams and

shells. For nonlinear materials, however, it is diÆ
ult to estimate a shear 
orre
tion fa
tor." [6, p.554℄.
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Figure 1: The assumed Cosserat plate kinemati
s in
orporating transverse shear (R

3

6= ~n

m

),

thi
kness stret
h (%

m

6= 1) and drill-rotations. Re
onstru
ted three-dimensional deformation

'

s

: 


h

� R

3

7! R

3

, re
onstru
ted mi
rorotation R

3d

: 


h

� R

3

7! SO(3;R); R

3d

(x; y; z) =

R(x; y), midsurfa
e deformation m : ! � R

2

7! R

3

and mi
rorotation of the plate R : ! �

R

2

7! SO(3;R).

10 Consequen
es for the Cosserat 
ouple modulus �




It is generally a

epted in the engineering literature that really thin stru
tures 
annot support

a non-vanishing transverse shear 
ontribution. We introdu
e therefore the postulate

Postulate 10.1 (Vanishing transverse shear)

Regardless of material 
onstants, in the limit of arbitrarily thin, homogeneous isotropi
 stru
-

tures, i.e. for h! 0, transverse shear e�e
ts are altogether absent. �

Sin
e the �-limit faithfully des
ribes the leading order term for vanishing thi
kness, this pos-

tulate implies that the Cosserat 
ouple modulus �




must vanish as well, sin
e otherwise one

would have to deal with a remaining homogenized transverse shear 
ontribution in the thin

plate limit.

This statement has far rea
hing 
onsequen
es: it has never been possible to unequivo
ally

identify spe
i�
 values for the Cosserat 
ouple modulus �




> 0 in the experimentally oriented

literature. In light of our development the problem 
an be resolved in the following way: �




> 0

in the Cosserat bulk model is a numeri
al tuning or penalty parameter but not a

material 
onstant. That �




should be zero as a material 
onstant has been 
onje
tured by

the �rst author already in [49, 52℄. The unexpe
ted formal proof of this statement has been

rea
hed now by our �-
onvergen
e result.

A striking 
onsequen
e of this reasoning is that a linear Cosserat bulk model des
ribing

faithfully the behaviour of a material body, does not exist, sin
e for �




= 0 the

linearized �elds of in�nitesimal displa
ement and in�nitesimal mi
rorotation de
ouple, see [54℄.

In summary Postulate 10.1 implies that the in�nitesimal Cau
hy stress tensor � must

always be symmetri
.
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shear energy, if

formal

ansatz

(Ne�)

Reissner-Mindlin plate,

(p � 1; q > 0)

formal 2D-Cosserat plate, 2D-
lassi
al linear

internal length L




> 0,

3D-geometri
ally exa
t Cosserat model, 3D-linear elasti
ity,

u 2 H

1;2

(
;R

3

)

displa
ement u,

existen
e+uniqueness:

R 2W

1;1+p+q

(
; SO(3;R))

deformation ', mi
rorotation R,

�




= 0, lin.

triad of "dire
tors" (R

1

jR

2

jR

3

) = R,

existen
e: (�




= 0; p � 1; q > 1) (p � 1; q > 0)


ommutative

diagram

2D-linear

"membrane" plate,

horizontal midsurfa
e

displa
ement v,

existen
e+uniqueness:

v 2 H

1;2

(!;R

2

)

internal length L




> 0,

membrane, 
urvature and bending,

mi
rorotation R,

existen
e: (�




= 0; p � 1; q > 0)

R 2W

1;1+p+q

(!; SO(3;R))

� = 0,

�-limit

(Anzellotti,

Ciarlet,

present)

no drill energy,

midsurfa
e displa
ement v,

existen
e+uniqueness:

v 2 H

1;2

(!;R

3

),

� 2 H

1;2

(!;R

2

)

one "dire
tor" �,(p � 1; q > 0)

�




= 0, lin.

�




= 0, lin.

' 2 H

1;2

(
;R

3

),

(present)

�-limit

"two-�eld"

midsurfa
e deform. m,

mi
rorotation R,

geometri
ally exa
t,

internal length L




> 0,

R 2W

1;1+p+q

(!; SO(3;R))

same transverse

� =

4� �




(�+�




)

2

� 1

midsurfa
e deform. m,

displa
ement

loss of verti
al

2D-"membrane" Cosserat plate,

m 2 H

1;2

(!;R

3

),

(�




> 0)

membrane, 
urvature, no bending,

existen
e: (�




> 0; p � 1; q > 0)

m 2 H

1;2

(!;R

3

),

geometri
ally exa
t,

shear 
orre
tion: 0 < � � 1,

shear 
orre
tion: 0 < � � 1,

"membrane" plate,

only for


ertain

deform. m

identi
al

geometri
ally exa
t,

non-resistan
e

in 
ompression,

existen
e:

tension �eld theory,

midsurfa
e deform. m,

m 2W

1;4

(!;R

3

)!

m 
ontinuous

(Le Dret/Raoult)

2D-quasi
onvex

3D-nonlinear St. Venant-Kir
hho�,

geometri
ally exa
t,

deformation ',

existen
e:

' 2W

1;4

(
;R

3

)?

not quasi
onvex and not ellipti
,

2D-nonlinear

"membrane" plate,

geometri
ally exa
t,

not quasi
onvex,

midsurfa
e deform. m,

existen
e:

m 2W

1;4

(!;R

3

)?

�-limitlinearization

linearization

Fox/Raoult/Simo)

(Miara,

asymptoti
 analysis

formal

loss of verti
al

displa
ement


ommutative

diagram
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12 Open problems and dis
ussion

We have rigourously justi�ed the dimensional homogenization of a geometri
ally exa
t Cosserat

bulk model to its two-dimensional 
ounterpart by use of �-
onvergen
e arguments. In starting

from a "true" Cosserat bulk model, the appearan
e of an independent dire
tor �eld R

3

is

most natural. The argument is given for plates (
at referen
e 
on�guration) only, but it is

straightforward to extend the result to genuine shells with 
urvilinear referen
e 
on�guration

and it should be noted that the extension to shells is independent of geometri
al features of

the 
urvilinear referen
e 
on�guration. The in
lusion of transverse shear e�e
ts makes the

distin
tion between ellipti
, paraboli
 and hyperboli
 surfa
es in a 
ertain sense obsolete. A

wel
ome feature of the obtained �-limit is its linearization 
onsisten
y.

Perhaps not so 
lear is an extension to the weak 
onsistent 
oupling boundary 
ondition

in the Cosserat bulk problem, whi
h might have an in
uen
e on the form of the homogenized

transverse shear energy.

As a by-produ
t of our development, we have obtained information on the numeri
al value

of the Cosserat 
ouple modulus �




in the bulk model: it should be set to zero whi
h implies the

symmetry of the in�nitesimal Cau
hy stresses �. Moreover, for �




= 0, a value 0 < � < 1 for

the shear 
orre
tion fa
tor in the formal model is physi
ally 
onsistent, amounts to the in
lusion

of transverse shear and 
omputationally stabilizes the model. In this sense, the 
lassi
al linear

Reissner-Mindlin model, whi
h is not a �-limit of 
lassi
al linear elasti
ity 
an now be seen

as linearization of the geometri
ally exa
t Cosserat � � lim sup for �




= 0 with additional

transverse shear stabilization.

The proposed two-dimensional Cosserat "membrane" plate (shell) model may as well have

appli
ations in those 
ases, where 
lassi
al surfa
e theory is not suÆ
ient. This 
an be the 
ase,

if the surfa
e to be investigated is not smooth enough, i.e. m 62 H

2;2

(!;R

3

) in the presen
e of

failure along asymptoti
 lines of the surfa
e. Our �-limit formulation is in prin
iple well-posed

for midsurfa
e parametrizations m 2 H

1;2

(!;R

3

).

Future work should investigate the numeri
al virtues of the formulation with non-vanishing

transverse shear energy.
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14 Appendix

14.1 The �-limit for the res
aled linear bulk problem

�-limit investigations for the 
lassi
al linear bulk problem are already well-known [12, 3℄. How-

ever, while giving generi
ally 
onsistent results, they are based on di�erent s
aling assumptions.

In order to establish linearization 
onsisten
y of our formulation, it is therefore ne
essary to

use the same s
aling for the linear problem as for the �nite-strain problem.

While we want to draw �nally 
on
lusions as regards 
lassi
al linear elasti
ity, we study in

a �rst step a quadrati
 fun
tional whi
h is stri
tly bigger than that of linear elasti
ity if we put

�




> 0. Let us investigate therefore the �-limit of the sequen
e of quadrati
 energy fun
tionals
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This res
aled formulation 
an be easily obtained from the �nite strain formulation (3.11) by

setting R

3d;℄

(�) = 11 and negle
ting 
urvature 
ontributions altogether. Note that this is not

the res
aled formulation of a linear Cosserat bulk model, sin
e in�nitesimal rotations are absent.

The major advantage of this de�nition for J

℄

h

is that the �-limit J

℄

0


an be immediately

read of based on the �nite-strain development. The �-limit for problem (14.1) is given by
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the following two-dimensional minimization problem for the deformation of the midsurfa
e

m : ! � R

2
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The dimensionally homogenized quadrati
 density is
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Proof. The proof follows with minor 
hanges from the nonlinear proof of (5.25). One only has

to repla
e R by 11 and skip the 
urvature part. Equi-
oer
iveness follows from lo
al 
oer
ivity

for �




> 0. �

In terms of the midsurfa
e displa
ement v 2 R

3

we obtain equivalently the formulation
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The dimensionally homogenized quadrati
 density reads then
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Sin
e J

℄

h

for �




> 0 is stri
tly bigger than the same fun
tional for �




= 0, independent of h > 0,

it is easy to see [42, Prop. 6.7℄ that
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and we obtain an upper bound for the �� lim sup of 
lassi
al linear elasti
ity by taking �




= 0

in (14.4). Setting �




= 0 in (14.4) de
ouples the horizontal from the verti
al 
omponents in

whi
h 
ase one has to assume that body for
es have no verti
al 
omponent and boundary data

are purely horizontal in order for the remaining 
lassi
al linear "membrane" problem to be well-

posed. This is a degeneration of the 
lassi
al linearized formulation: a linear "membrane"

plate 
annot sustain its own weight without being pre-stressed, whi
h is well known.

14.2 Linearized plate models

14.2.1 Relations to the 
lassi
al in�nitesimal-displa
ementReissner-Mindlinmodel

Let us linearize a variant of the proposed new �nite-strain Cosserat plate (8.1) for situations

of small midsurfa
e deformations and small 
urvature. We assume here �

4

= 0; q = 0; p >

1.

24

We write m(x; y) = (x; y; 0)

T

+ v(x; y), with the displa
ement of the midsurfa
e of the

plate v : ! 7! R

3

and R = 11 + A + : : :, with A 2 so(3;R) the in�nitesimal-displa
ement

mi
rorotation. For the boundary deformation we write g

d
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onsequen
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). The 
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24

The linearization for the 
ase �

4

= 0; q = 0; p = 1; �




> 0 is similar to the stati
 mi
ropolar plate model

derived by Eringen [26, eq. 8.6℄.
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and the Cosserat mi
ropolar plate stret
h tensor expands like

U = R

T

^
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Sin
e p > 1, the additional Cosserat 
urvature 
ontribution has an exponent stri
tly bigger

than two su
h that a linearization w.r.t. zero 
urvature K

s

does not yield any 
ontribution of

this term. The 
onsistent 
oupling 
ondition is also expanded:
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We are formally left with the minimization problem for v 2 R
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(x; y; 0) ; simply supported (�xed, welded) ; (14.10)
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; alternatively: rigid dire
tor pres
ription :

Now 
onsider the 
ase of zero Cosserat 
ouple modulus �




= 0. In this 
ase in�nitesimal

in-plane rotations (linearized drilling degrees of freedom: A
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= �A
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) do not "survive" the

linearization pro
ess. Abbreviating now � = (�
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, we are left with the following

set of equations for the displa
ement of the midsurfa
e of the plate v : [0; T ℄� ! 7! R
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and the
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rement of the dire
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(x; y; 0) ; simply supported ; (14.11)
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; alternatively: rigid dire
tor pres
ription ;

with the so-
alled shear 
orre
tion fa
tor � = 1.

A further redu
tion arises if we assume only normal displa
ements: v

1

= v

2

= 0. The
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resulting minimization problem for the de
e
tion v

3

and the "dire
tor" � is
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; rigid dire
tor pres
ription :

In this last form with rigid boundary pres
ription, the Reissner-Mindlin plate-bending problem

is 
lassi
al and 
an be found in many textbooks, e.g. [9, p.281℄ or [72, 4℄ with Reissner's value

� =

5

6

. It should be noted, however, that in our formal, variationally based �nite-strain deriva-

tion with subsequent linearization there is no imminent reason to introdu
e � 6= 1. In fa
t, the

shear 
orre
tion fa
tor � 
an be seen as a tuning parameter of the in�nitesimal-displa
ement

model whi
h, for 
ertain types of loading,

25

allows to improve the order of 
onvergen
e of

the in�nitesimal-displa
ement Reissner-Mindlin solution to the three-dimensional linear elas-

ti
ity solution [59℄.

26

Note the novel non-standard Diri
hlet boundary 
ondition of linearized 
onsistent


oupling for the remaining in�nitesimal "dire
tor" �, motivated from the 
onsisten
y 
ondition

of the Cosserat bulk model. In 
ontrast to the standard rigid dire
tor pres
ription, the new


oupling 
ondition seems to redu
e the strength of the boundary layer. In a dire
t derivation

of the Reissner-Mindlin plate equations (14.11) there is no reason to introdu
e this weakened


ondition. However, a mathemati
al analysis based on the 
onsistent 
oupling 
ondition shows

that the new boundary 
ondition 
an only be satis�ed in the distributional sense on 


0

. Let us

de�ne therefore the admissible set
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� Div � d! = 0 g ; (14.13)

whi
h in
orporates the linearized 
onsistent 
oupling 
ondition in the distributional sense, the

standard Diri
hlet boundary 
ondition at 


0

, as well as an additional 
onsisten
y 
ondition for

the linearization.

27

One 
an easily show that (14.12) admits a minimizer inA

lin

. If k�k

L

2

(!;R

2

)

<

j!j, the solution is unique.

14.2.2 The 
lassi
al in�nitesimal-displa
ementKir
hho�-Love plate (Koiter model)

For the 
onvenien
e of the reader we also supply the similar system of equations for the 
lassi
al

in�nitesimal-displa
ement Kir
hho�-Love plate (also the Koiter model) whi
h 
an be derived as

25

Hen
e the shear 
orre
tion fa
tor � shows some similarity to the Cosserat 
ouple modulus �




, whose in
uen
e

on the solution of the three-dimensional problem is also strongly dependent on boundary 
onditions. For rather

thi
k plates, it is known that the shear energy in (14.11) is overestimated, therefore, one is led to redu
e the

shear energy 
ontribution a posteriori by taking � < 1.

26

It would be interesting to know the optimal shear 
orre
tion fa
tor 0 < � � 1 of the in�nitesimal-

displa
ement Reissner-Mindlin model with our redu
ed 
onsistent 
oupling boundary 
ondition. Su
h an opti-

mized parameter should also be bene�
ial for the �nite-strain Cosserat plate. However, it might turn out that

the new boundary 
ondition of weak 
onsistent 
oupling makes the arti�
ial introdu
tion of � < 1 super
uous.

Note as well, that � = 0 de
ouples the horizontal "membrane" displa
ement in (14.11) from the verti
al 
om-

ponent and the bending term. In this sense, � a
ts similarly as the Cosserat 
ouple modulus �




in the linear

Cosserat bulk model.

27

The unit "dire
tor" R

3

is expanded as R

3

= e

3

� �+ : : :. Any � with k�(x; y)k > 1 pointwise, is in
onsistent

with the minimal requirement 1 = kR

3

:e

1

k � k(e

3

+ �):e

1

k. As a 
onsequen
e, we impose

R

!

k�k

2

d! � j!j.
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linearization of the �nite-strain Kir
hho�-Love plate. In terms of the midsurfa
e displa
ement

v we have to �nd a solution of the minimization problem for v : ! � R
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(x; y; 0) ; simply supported (�xed, welded) ; (14.14)
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; rigid pres
ription of the in�nitesimal in
rement of the "normal" :

This energy 
an also be obtained formally from (14.12) by 
onstraining the linearized dire
tor

to the linearized normal of the plate, i.e. setting � = rv

3

. If this is done, we observe that

the new boundary 
ondition of 
onsistent 
oupling 
oin
ides in fa
t with the 
lassi
al boundary


ondition of the Kir
hho�-Love plate.

14.3 The treatment of external loads

14.3.1 Dead load body for
es for the thin plate

In the three-dimensional theory the dead load body for
es f(x; y; z) 2 R

3

were simply in
luded

by appending the potential with the term

R
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su
h that

^

f

0

;

^

f

1

are the zero and �rst moment of f in thi
kness dire
tion.

14.3.2 Tra
tion boundary 
onditions for the thin plate

In the three-dimensional theory the tra
tion boundary for
es N(x; y; z) 2 R

3

were simply

in
luded by appending the potential with the term
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su
h that
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are the zero and �rst moment of the tra
tions N at the lateral boundary
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in thi
kness dire
tion. Moreover, we abbreviate
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14.3.3 The external resultant loading fun
tional �

For a �rst approximation plate formulation we set to leading order:

f =

^

f

0

+N
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; resultant body for
e ;

M =
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di�

; resultant body 
ouple ; (14.18)

N =
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N

lat;0

; resultant surfa
e tra
tion ;

M




=
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N

lat;1

; resultant surfa
e 
ouple :
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The resultant dead load loading fun
tional � is then given by the linear form

�(m;R

3

) =

Z
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hf;mi+ hM;R

3

i d! +

Z




s

hN;mi+ hM




; R

3

i ds : (14.19)

If we denote the dependen
e of � on the loads of the underlying three-dimensional problem as

�(f;N ; m;R

3

), then it is easily seen that frame-indi�eren
e of the external loading fun
tional

is satis�ed in the sense that �(Q:f;Q:N ; Q:m;Q:R

3

) = �(f;N ; m;R

3

) for all rigid rotations

Q 2 SO(3;R). It is possible to use the same fun
tional form of the loading fun
tional for all

�nite-strain and in�nitesimal-displa
ement models. We only need to repla
e (m;R

3

) by

(m;~n

m

); (v;A

3

) for the di�erent �nite and linearized models, respe
tively.

14.3.4 The modi�ed external resultant loading fun
tional �

℄

In view of a possible mathemati
al analysis of the 
ase with zero Cosserat 
ouple modulus �




= 0

we need to modify (14.19) into a live load resultant loading fun
tional �

℄

, whi
h better

re
e
ts the observation that by arbitrary translation of a material in a 
onservative for
e �eld

only a �nite amount of work 
an be gained. This is 
ertainly true for any real physi
al �eld.

In the three-dimensional theory we have 
alled this the "prin
iple of bounded external

work". Therefore we de�ne the nonlinear form

�

℄

(m;R

3

) =

Z

!

hf;

m

1 + [kmk �K℄

+

i+ hM;R

3

i d! +

Z




s

hN;

m

1 + [kmk �K℄

+

i+ hM




; R

3

i ds :

(14.20)

HereK > 0 is a possibly large 
onstant and [�℄

+

denotes the positive part of its s
alar argument.

We note that (14.20) is automati
ally bounded, if f;M 2 L

1

(!;R

3

) and M




; N 2 L

1

(


s

;R

3

).

Moreover, the linearization of �

℄


oin
ides with the linearization of �
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