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Abstrat

We are onerned with the derivation of the �-limit to a three-dimensional geometri-

ally exat Cosserat model as the relative thikness h > 0 of a at domain tends to zero.

The Cosserat bulk model involves already exat rotations as a seond independent �eld.

It is shown that the �-limit based on a natural saling assumption onsists of a mem-

brane like energy ontribution and a homogenized transverse shear energy both saling

with h, augmented by an additional urvature sti�ness due to the underlying Cosserat

bulk formulation, also saling with h. No spei� bending term appears in the dimen-

sional homogenization proess. The formulation exhibits an internal length sale L



whih

survives the homogenization proess. A major tehnial diÆulty, whih we enounter

in applying the �-onvergene arguments, is to establish equi-oerivity of the sequene

of funtionals as the relative thikness h tends to zero. Usually, equi-oerivity follows

from a loal oeriveness assumption. While the three-dimensional problem is well-posed

for the Cosserat ouple modulus �



� 0, equi-oerivity fores us to assume a stritly

positive Cosserat ouple modulus �



> 0. The �-limit model determines the midsurfae

deformation m 2 H

1;2

(!;R

3

). For the ase of zero Cosserat ouple modulus �



= 0 we

obtain an estimate of the �� lim inf and �� lim sup, without equi-oerivity whih is then

strenghtened to a �-onvergene result for zero Cosserat ouple modulus. The lassial

linear Reissner-Mindlin model is "almost" the linearization of the �-limit for �



= 0 apart

from a stabilizing shear energy term.
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1 Introdution

1.1 Aspets of shell theory

The dimensional redution of a given ontinuum-mehanial model is already an old and mature

subjet and it has seen many "solutions". The di�erent approahes toward elasti shell theory

proposed in the literature and relevant referenes thereof are, therefore, too numerous to list

here. One possible way to proeed is the so alled derivation approah, i.e., reduing a given

three-dimensional model via physially reasonable onstitutive assumptions on the kinematis

to a two-dimensional model. This is opposed to either the intrinsi approah whih views

the shell from the onset as a two-dimensional surfae and invokes onepts from di�erential

geometry or the asymptoti methods whih try to establish two-dimensional equations by

formal expansion of the three-dimensional solution in power series in terms of a small (thikness)

parameter. The intrinsi approah is losely related to the diret approah whih takes the

shell to be a two-dimensional medium with additional extrinsi diretors in the sense of a

restrited Cosserat surfae [19℄.

1

There, two-dimensional equilibrium in appropriate new

resultant stress and strain variables is postulated ab-initio more or less independent of three-

dimensional onsiderations, f. [2, 37, 25, 17, 16, 18, 60℄.

A detailed presentation of the di�erent approahes in lassial shell theories an be found

in the monograph [47℄. A thorough mathematial analysis of linear, in�nitesimal-displaement

shell theory, based on asymptoti methods is to be found in [13℄ and the extensive referenes

therein, see also [12, 14, 2, 20, 22, 32, 3℄. Exellent reviews and insightful disussions of the

modelling and �nite element implementation may be found in [64, 61, 63, 38, 39, 75, 7, 11℄

and in the series of papers [65, 67, 68, 70, 69, 66℄. Properly invariant, geometrially exat,

elasti plate theories are derived by formal asymptoti methods in [27℄. This formal derivation

is extended to urvilinear shells in [43, 41℄. Apart from the pure bending ase [30, 31℄, whih

is rigourously justi�ed as the �-limit of the three-dimensional model and whih an be shown

to be intrinsially well-posed, the obtained �nite-strain models have not yet been shown to be

well-posed. Indeed, the membrane energy ontribution is notoriously not Legendre-Hadamard

ellipti. The di�erent membrane model formally justi�ed in [24℄ by �-onvergene is geomet-

rially exat and automatially quasionvex/ellipti but unfortunately does not oinide upon

linearization with the otherwise well-established in�nitesimal-displaement membrane model.

Moreover, this model does not desribe the detailed geometry of deformation in ompression

but redues to a tension-�eld theory [71℄.

There is no plae here to omment further on the relative merits of eah alternative approah.

The "rational" of desend from three to two dimensions should in any ase be omplemented

by an investigation of the intrinsi mathematial properties of the obtained redued models.

Today, the need to simulate the mehanial response of highly exible thin strutures allowing

easily for �nite rotations exludes the use of lassial in�nitesimal-displaement models, either

1

Restrited, sine no material length sale usually enters the diret approah, only the relative thikness

h appears in the model. In terminology it is useful to distinguish between a "true" Cosserat model operating

on SO(3;R) and theories with any number of diretors.
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of Reissner-Mindlin (14.11) or Kihho�-Love type (14.14). Also, ertain "intermediary" models

allowing in priniple for bukling like the "nonlinear" von K�arm�an plates (see [12, p.403℄,

justi�ed by means of �-onvergene in [29℄ as a very low energy limit of three-dimensional

elastiity) and penalized "nonlinear" Reissner-Mindlin models [21℄

2

or "semilinear" Kirhho�-

Love plate models [46℄ are not geometrially exat (not frame-indi�erent). Nevertheless, the

nonlinear von K�arm�an plate has been suesfully applied to the delamination problem of thin

�lms [55, 34, 33℄.

Mielke [44℄ established in the in�nitesimal-displaement ontext that by using more than

�ve ansatz-funtions in a diretor model it is possible to obtain exponential deay estimates

for the boundary layer and to establish therefore a St.Venant priniple for linearized plates.

While it is not lear how his methods an be transferred to the �nite-strain ase, they provide,

independent of mehanial/physial onsiderations, a strong motivation to use a diretor ansatz

also in the �nite-strain ase in order to better apture the boundary layer phenomena.

Indeed, so alled shear-deformable theories with independent diretors are usually pre-

ferred in the engineering ommunity. In view of an eÆient �nite element implementation

one onsiders a hyperelasti, variationally based formulation with seond-order Euler-Lagrange

equations and uses standard C

0

-onforming elements. The prototype examples are models

based on the Reissner-Mindlin kinematial assumption. There are numerous proposals in

the engineering literature for a �nite-strain, geometrially exat plate formulation, see e.g.

[28, 64, 62, 63, 75, 7, 11℄. In many ases the need has been felt to devote spei� attention to

proper rotations R 2 SO(3;R), sine �nite rotations are the dominant deformation mode of a

exible struture. This has led to the so alled drill-rotation formulation whih means that

proper rotations either appear in the formulation as independent �elds (leading to a restrited

Cosserat surfae) or they are an intermediary ingredient in the numerial treatment (onstraint

Cosserat surfae, only ontinuum rotations matter �nally). While the omputational merit of

this approah is well doumented, a mathematial analysis for suh a family of �nite-strain

plate models is yet missing, both for the Cosserat surfae with independent rotations and the

onstraint model. It may be speulated that those restrited Cosserat plates (obtained from

lassial non-polar bulk models or from diret modelling) though geometrially exat and al-

lowing for transverse shear and the desription of boundary layers, might not be well posed for

ertain membrane strain measures either, notably if Green-strains: F

T

F �11 or Henky-strains:

lnF

T

F are used. Another drawbak from a modelling point of view is that the inlusion of

drill-rotations is most often done in an ad-ho fashion.

Addressing partly this problem, in [53℄ a geometrially exat, visoelasti membrane formu-

lation has been proposed by the �rst author, where the visoelasti e�et, operative through an

independent loal �eld of rotations, is driven by transverse shear. This formulation has been

shown to be loally well-posed [51℄.

It is also observed experimentally that very thin strutures behave omparably sti�er

than absolutely thiker strutures while both have the same relative thikness. These non-

lassial size e�ets annot be negleted for very thin strutures [15℄. Suh e�ets are not

aounted for neither in lassial theories nor in the visoelasti ase.

In addition, lassial in�nitesimal-displaement or �nite-strain shell models predit unre-

alistially high levels of smoothness, typially m 2 W

1;4

(!;R

3

) for the midsurfae m in both

�nite-strain Kirhho�-Love and Reissner-Mindlin models andm 2 H

2

(!;R

3

) in the �nite-strain

pure bending problem [30℄ and the von K�arm�an model. This implies at least C

0;�

(!) for the

midsurfaem, whih rule out the desription of boundary layer e�ets and possible failure along

asymptoti lines of the surfae.

2

Coneptually a von K�arm�an plate with one independent diretor

~

d 2 S

2

and addition of a penalisation term

�



�

h

~

d; �

x

mi

2

+ h

~

d; �

y

mi

2

�

; �



!1, with m : R

2

7! R

3

the sought midsurfae deformation.
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1.2 Sope of study and outline of this ontribution

In [49℄ the �rst author has proposed a new shell model for very thin almost rigid materials

whih should remedy some of the aforementioned limitations with a view towards a subsequent

stringent mathematial analysis and possible stable �nite element implementation. It was the

goal to provide a model whih is both theoretially and physially sound, suh that its numerial

implementation an onentrate on real onvergene issues.

The formal derivation of the new plate model, summarized in Setion 8, however, still gave

rise to questions as far as the asymptoti orretness and onvergene is onerned. In this

paper we want to address this point by showing, that the �-limit of the Cosserat bulk model

(under ertain natural saling assumptions) is given by the orresponding formal derivation, if

energy ontributions saling with h are retained and if the oeÆient of the transverse shear

energy is slightly modi�ed. Given that the information provided by the formal �-limit hinges

also on these saling assumptions, we think that our present result is a justi�ation of the formal

derivation and the employed kinematial ansatz.

Central to our development is therefore the notion of �-onvergene, a powerful theory

originally initiated by De Giorgi [35, 36℄ and espeially suited for a variational framework on

whih in turn the numerial treatment with �nite elements is based. This approah has thus

far provided the only known onvergene theorems for justifying lower dimensional nonlinear,

frame-indi�erent theories of elasti bodies.

In this ontribution, after presenting the notation, we introdue in Setion 2 the underly-

ing "parent" three-dimensional �nite-strain frame-indi�erent Cosserat model with size ef-

fets and already appearing independent mirorotations R, i.e.a triad of rigid dire-

tors (R

1

jR

2

jR

3

) = R 2 SO(3;R) and we reall the obtained existene results for this Cosserat

bulk model. We then provide in Setion 3 the restrition of the bulk model to a thin domain

and introdue the saling to a �xed referene domain 


1

with onstant thikness on whih the

�-onvergene proedure is based.

In Setion 4 we reapitulate briey the relevant topis from �-onvergene theory and we

introdue the �-limit for the resaled formulation with respet to the two independent �elds

(';R) of deformations and mirorotations in Setion 5. Two limit ases, �



= 0 and �



= 1

deserve additional attention. Following we provide the analytial proof for the statements in

Setion 6. Setion 7 provides an estimate of the � � lim inf and � � lim sup in ase of zero

Cosserat ouple modulus whih is then strengthened to a full �-onvergene statement.

In order to put the �-limit formulation into the proper framework, we provide in Setion

8 the Cosserat plate model originally derived by means of a formal ansatz. It is seen that

both formulations, within the same saling assumptions, di�er only by the oeÆient of the

transverse shear energy. Therefore in Setion 9 we shortly review the form of the transverse

shear energy given in the literature and disuss the role of the shear orretion fator � in

light of our development and dislose its intimate onnetion with the Cosserat ouple modulus

�



. In Setion 10 we are able to draw an interesting onsequene for the numerial value of the

Cosserat ouple modulus �



, already for the bulk model. Setion 11 shematially summarizes

the relations between the disussed models.

In the Appendix we derive an upper bound for the � � lim sup of lassial linear elastiity

and it is shown that a linearization of the geometrially exat Cosserat �-limit model turns

into the linear membrane plate whih oinides with this � � lim sup upper bound. For the

exposition to be suÆiently self-ontained we also relate the new �nite-strain Cosserat plate

model based on a formal ansatz to lassial approahes. Notably, we show that a linearization

of the new "formal" plate model with zero Cosserat ouple modulus �



= 0 results in the

lassial in�nitesimal-displaement Reissner-Mindlin model (without extra size e�ets and

therefore without drill-rotations) and shear orretion fator � = 1. However, weaker boundary

onditions for the inrement of the diretor in the linearized in�nitesimal-displaement Reissner-

Mindlin model (14.11) are motivated. Nevertheless, this new boundary ondition redues to

the lassial ondition on the inrement of the normal in the linearized Kirhho�-Love model

5



(14.14). Finally, the possible treatment of external loads is given.

1.3 Notation

1.3.1 Notation for bulk material

Let 
 � R

3

be a bounded open domain with Lipshitz boundary �
 and let � be a smooth subset

of �
 with non-vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote

the salar produt on R

3

with assoiated vetor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3� 3 seond order tensors, written with apital letters. The standard Eulidean

salar produt on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor

norm is kXk

2

= hX;Xi

M

3�3

. In the following we omit the index R

3

;M

3�3

. The identity tensor

on M

3�3

will be denoted by 11, so that tr [X ℄ = hX; 11i and tr [X ℄

2

= hX; 11i

2

. We let Sym and

PSym denote the symmetri and positive de�nite symmetri tensors respetively. We adopt the

usual abbreviations of Lie-group theory, i.e., GL(3;R) := fX 2 M

3�3

jdet[X ℄ 6= 0g the general

linear group, SL(3;R) := fX 2 GL(3;R) jdet[X ℄ = 1g; O(3) := fX 2 GL(3;R) j X

T

X =

11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X ℄ = 1g with orresponding Lie-algebras

so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri tensors and sl(3) := fX 2 M

3�3

jtr [X ℄ =

0g of traeless tensors. With AdjX we denote the tensor of transposed ofators Cof(X) suh

that AdjX = det[X ℄X

�1

= Cof(X)

T

if X 2 GL(3;R). We set sym(X) =

1

2

(X

T

+ X) and

skew(X) =

1

2

(X � X

T

) suh that X = sym(X) + skew(X). For X 2 M

3�3

we set for the

deviatori part devX = X �

1

3

tr [X ℄ 11 2 sl(3) and for vetors �; � 2 R

n

we have the tensor

produt (� 
 �)

ij

= �

i

�

j

.

We write the polar deomposition in the form F = RU = polar(F )U with R = polar(F )

the orthogonal part of F . For a seond order tensor X we de�ne the third order tensor h =

D

x

X(x) = (r(X(x):e

1

);r(X(x):e

2

);r(X(x):e

3

)) = (h

1

; h

2

; h

3

) 2 M

3�3

� M

3�3

� M

3�3

�

=

T(3). For third order tensors h 2 T(3) we set khk

2

=

P

3

i=1

kh

i

k

2

together with sym(h) :=

(sym h

1

; sym h

2

; sym h

3

) and tr [h℄ := (tr

�

h

1

�

; tr

�

h

2

�

; tr

�

h

3

�

) 2 R

3

. Moreover, for any seond

order tensor X we de�ne X �h := (Xh

1

; Xh

2

; Xh

3

) and h �X , orrespondingly. Quantities with a

bar, e.g. the miropolar rotation R, represent the miropolar replaement of the orresponding

lassial ontinuum rotation R. In general we work in the ontext of nonlinear, �nite-strain

elastiity. For the total deformation ' 2 C

1

(
;R

3

) we have the deformation gradient F = r' 2

C(
;M

3�3

). Furthermore, S

1

(F ) = D

F

W (F ) and S

2

(F ) = F

�1

D

F

W (F ) denote the �rst and

seond Piola Kirhho� stress tensors, respetively. Total time derivatives are written

d

dt

X(t) =

_

X. The �rst and seond di�erential of a salar valued funtion W (F ) are written D

F

W (F ):H

and D

2

F

W (F ):(H;H), respetively. We employ the standard notation of Sobolev spaes, i.e.

L

2

(
); H

1;2

(
); H

1;2

Æ

(
);W

1;q

(
), whih we use indi�erently for salar-valued funtions as well

as for vetor-valued and tensor-valued funtions. The setW

1;q

(
; SO(3;R)) denotes orthogonal

tensors whose omponents are in W

1;q

(
). Moreover, we set kXk

1

= sup

x2


kX(x)k. For

A 2 C

1

(
;M

3�3

) we de�ne CurlA(x) as the operation url applied row wise. We de�ne

H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the sense of traes

and by C

1

0

(
) we denote in�nitely di�erentiable funtions with ompat support in 
. We use

apital letters to denote possibly large positive onstants, e.g. C

+

;K and lower ase letters

to denote possibly small positive onstants, e.g. 

+

; d

+

. The smallest eigenvalue of a positive

de�nite symmetri tensor P is abbreviated by �

min

(P ).

1.3.2 Notation for plates and shells

Let ! � R

2

be a bounded open domain with Lipshitz boundary �! and let 

0

be a smooth

subset of �! with non-vanishing 1-dimensional Hausdor� measure. The thikness of the plate

is taken to be h > 0 with dimension length (ontrary to Ciarlet's de�nition of the thikness

to be 2", whih di�erene leads only to various di�erent onstants in the resulting formulas).

We denote by M

n�m

the set of matries mapping R

n

7! R

m

. For H 2 M

2�3

and � 2 R

3

we

employ also the notation (H j�) 2 M

3�3

to denote the matrix omposed of H and the olumn

6



�. Likewise (vj�j�) is the matrix omposed of the olumns v; �; �. This allows us to write for

' 2 C

1

R

3

;R

3

) : r' = ('

x

j'

y

j'

z

) = (�

x

'j�

y

'j�

z

'). The identity tensor on M

2�2

will be

denoted by 11

2

. The mapping m : ! � R

2

7! R

3

is the deformation of the midsurfae, rm

is the orresponding deformation gradient and ~n

m

is the outer unit normal on m. A matrix

X 2 M

3�3

an now be written as X = (X:e

2

jX:e

2

jX:e

3

) = (X

1

jX

2

jX

3

). We write v : R

2

7! R

3

for the displaement of the midsurfae, suh that m(x; y) = (x; y; 0)

T

+ v(x; y). The standard

volume element is written dxdy dz = dV = d! dz.

2 The underlying �nite-strain three-dimensional Cosserat

model in variational form

In [54℄ a �nite-strain, fully frame-indi�erent, three-dimensional Cosserat miropolar model is

introdued. The two-�eld problem has been posed in a variational setting. The task is to �nd

a pair (';R) : 
 � R

3

7! R

3

� SO(3;R) of deformation ' and independent mirorotation

R 2 SO(3;R) minimizing the energy funtional I ,

I(';R) =

Z




W

mp

(R

T

r') +W

urv

(R

T

D

x

R)��

f

(')��

M

(R) dV

�

Z

�

S

�

N

(') dS�

Z

�

C

�

M



(R) dS 7! min : w.r.t. (';R) ; (2.1)

together with the Dirihlet boundary ondition of plae for the deformation ' on �: '

j

�

= g

d

and three possible alternative boundary onditions for the mirorotations R on �,

R

j

�

=

8

>

<

>

:

R

d

; the ase of rigid presription ;

polar(r') ; the ase of strong onsistent oupling ;

no ondition for R on �, indued Neumann-type relations for R on � :

(2.2)

The onstitutive assumptions on the densities are

W

mp

(U) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

; U = R

T

F ; F = r' ;

W

urv

(K) = �

L

1+p



12

(1 + �

4

L

q



kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

; (2.3)

K = R

T

D

x

R :=

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

; the third order urvature tensor ;

under the minimal requirement p � 1; q � 0. The total elastially stored energy W = W

mp

+

W

urv

is quadrati in the streth U and possibly super-quadrati in the urvature K. The strain

energyW

mp

depends on the deformation gradient F = r' and the mirorotationsR 2 SO(3;R),

whih do not neessarily oinide with the ontinuum rotations R = polar(F ). The urvature

energyW

urv

depends moreover on the spae derivatives D

x

R whih desribe the self-interation

of the mirostruture.

3

In general, the miropolar streth tensor U is not symmetri and

does not oinide with the symmetri ontinuum streth tensor U = R

T

F =

p

F

T

F . By

abuse of notation we set k symKk

2

:=

P

3

i=1

k symK

i

k

2

for third order tensors K, f.(1.3.1).

Here 
 � R

3

is an open domain with boundary �
 and � � �
 is that part of the boundary,

where Dirihlet onditions g

d

; R

d

for deformations and mirorotations or oupling onditions

for mirorotations, are presribed. �

S

� �
 is a part of the boundary, where tration boundary

onditions in the form of the potential of applied surfae fores �

N

are given with � \ �

S

= ;.

In addition, �

C

� �
 is the part of the boundary where the potential of external surfae ouples

3

Observe that R

T

r(R:e

i

) 6= R

T

�

x

i

R 2 so(3;R).

7



�

M



are applied with � \ �

C

= ;. On the free boundary �
 n f� [ �

S

[ �

C

g orresponding

natural boundary onditions for (';R) apply. The potential of the external applied volume

fore is �

f

and �

M

takes on the role of the potential of applied external volume ouples. For

simpliity we assume

�

f

(') = hf; 'i ; �

M

(R) = hM;Ri ; �

N

(') = hN;'i ; �

M



(R) = hM



; Ri ; (2.4)

for the potentials of applied loads with given funtions f 2 L

2

(
;R

3

); M 2 L

2

(
;M

3�3

); N 2

L

2

(�

S

;R

3

); M



2 L

2

(�

C

;M

3�3

).

The parameters �; � > 0 are the Lam�e onstants of lassial isotropi elastiity, the addi-

tional parameter �



� 0 is alled the Cosserat ouple modulus. For �



> 0 the elasti strain

energy density W

mp

(U) is uniformly onvex in U . Moreover

8F 2 GL

+

(3;R) : W

mp

(U) =W

mp

(R

T

F ) � min(�; �



) kR

T

F � 11k

2

= min(�; �



) kF � Rk

2

� min(�; �



) inf

R2O(3;R)

kF �Rk

2

= min(�; �



) dist

2

(F;O(3;R))

= min(�; �



) dist

2

(F; SO(3;R)) = min(�; �



) kF � polar(F )k

2

= min(�; �



) kU � 11k

2

: (2.5)

In ontrast, for �



= 0 the strain energy density is only onvex w.r.t. F and does not satisfy

(2.5).

4

The parameter L



> 0 (with dimension length) introdues an internal length whih is

harateristi for the material, e.g. related to the grain size in a polyrystal. The internal

length L



> 0 is responsible for size e�ets in the sense that smaller samples are relatively

sti�er than larger samples. We assume throughout that �

4

; �

5

; �

6

> 0; �

7

� 0. This implies

the oerivity of urvature

9 

+

> 0 8 K 2 T(3) : W

urv

(K) � 

+

kKk

1+p+q

; (2.6)

whih is a basi ingredient of the mathematial analysis.

The non-standard boundary ondition of strong onsistent oupling ensures that no

unwanted non-lassial, polar e�ets may our at the Dirihlet boundary �. It implies for

the miropolar streth that U

j

�

2 Sym and for the seond Piola-Kirhho� stress tensor S

2

:=

F

�1

D

F

W

mp

(U) 2 Sym on � as in the lassial, non-polar ase. We refer to the weaker boundary

ondition U

j

�

2 Sym as weak onsistent oupling.

We mention, that a linearization of this Cosserat bulk model with �



= 0 for small dis-

plaement and small mirorotations ompletely deouples the two �elds of deformation and

mirorotations and leads to the lassial linear elastiity problem for the deformation.

5

For

more details on the modelling of the three-dimensional Cosserat model we refer the reader to

[54℄.

2.1 Mathematial results for the three-dimensional Cosserat bulk prob-

lem

For oniseness we state only the obtained results for the ase without external loads. It an

be shown:

Theorem 2.1 (Existene for 3D-�nite-strain elasti Cosserat model with �



> 0)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

)

and R

d

2 W

1;1+p

(
; SO(3;R)). Then (2.1) with �



> 0; �

4

� 0; p � 1; q � 0 and either

4

The ondition F 2 GL

+

(3;R) is neessary, otherwise kF � polar(F )k

2

= dist

2

(F;O(3;R)) <

dist

2

(F; SO(3;R)), as an be easily seen for the reetion F = diag(1;�1; 1).

5

Thinking in the ontext of an in�nitesimal-displaement Cosserat theory one might erroneously believe that

�



> 0 is stritly neessary also for a "true" �nite-strain Cosserat theory.

8



free or rigid presription for R on � admits at least one minimizing solution pair (';R) 2

H

1

(
;R

3

)�W

1;1+p

(
; SO(3;R)). �

Using the extended Korn's inequality [48, 56℄, the following has been shown in [54, 50℄:

Theorem 2.2 (Existene for 3D-�nite-strain elasti Cosserat model with �



= 0)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

)

and R

d

2 W

1;1+p+q

(
; SO(3;R)). Then (2.1) with �



= 0; �

4

> 0; p � 1; q > 1 and

either free or rigid presription for R on � admits at least one minimizing solution pair

(';R) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)). �

3 Formal dimensional redution of the Cosserat bulk model

3.1 The three-dimensional Cosserat problem on a thin domain

The basi task of any shell theory is a onsistent redution of some presumably "exat" 3D-

theory to 2D. The general three-dimensional problem (2.1) will now be adapted to a shell-like

theory. Let us assume that we are given a three-dimensional absolutely thin domain




h

:= ! � [�

h

2

;

h

2

℄; ! � R

2

; (3.1)

with transverse boundary �


trans

h

= ! � f�

h

2

;

h

2

g and lateral boundary �


lat

h

= �! �

[�

h

2

;

h

2

℄, where ! is a bounded open domain in R

2

with smooth boundary �! and h > 0 is the

thikness. Moreover, assume we are given a deformation ' and mirorotation R

3d

,

' : 


h

� R

3

7! R

3

; R

3d

: 


h

� R

3

7! SO(3;R) ; (3.2)

solving the following two-�eld minimization problem on the thin domain 


h

:

I(';r';R

3d

;D

x

R

3d

) =

Z




h

W

mp

(U) +W

urv

(K)� hf; 'i dV �

Z

�


trans

h

[f

s

�[�

h

2

;

h

2

℄g

hN;'i dS 7! min : w.r.t. (';R) ;

U = R

3d;T

F; '

j

�

h

0

= g

d

(x; y; z); �

h

0

= 

0

� [�

h

2

;

h

2

℄; 

0

� �!; 

s

\ 

0

= ; ;

U

j

�

h

0

= R

3d;T

r'

j

�

h

0

2 Sym(3) ; weak onsistent oupling boundary ondition or

R

3d

: free on �

h

0

, alternative Neumann-type boundary ondition ;

W

mp

(U) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

;

W

urv

(K) = �

L

1+p



12

(1 + �

4

L

q



kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

;

K = R

3d;T

D

x

R

3d

=

�

R

3d;T

r(R

3d

:e

1

); R

3d;T

r(R

3d

:e

2

); R

3d;T

r(R

3d

:e

3

)

�

:

Without loss of mathematial generality we assume that M;M



� 0 in (2.4), i.e. that no

external volume or surfae ouples are present in the bulk problem. We want to �nd a reasonable

approximation ('

s

; R

s

) of (';R

3d

) involving only two-dimensional quantities.

9



3.2 Transformation on a �xed domain

In order to apply standard tehniques of �-onvergene, we transform the problem onto a �xed

domain 


1

, independent of the thikness h > 0. De�ne therefore




1

= ! � [�

1

2

;

1

2

℄ � R

3

; ! � R

2

: (3.3)

The saling transformation

� : � 2 


1

� R

3

7! R

3

; �(�

1

; �

2

; �

3

) := (�

1

; �

2

; h � �

3

) ;

r

�

�(�) =

0

�

1 0 0

0 1 0

0 0 h

1

A

; Cof r

�

�(�) =

0

�

h 0 0

0 h 0

0 0 1

1

A

; det[r

�

�(�)℄ = h ; (3.4)

�

�1

: � 2 


h

� R

3

7! R

3

; �

�1

(�

1

; �

2

; �

3

) := (�

1

; �

2

;

�

3

h

) ; r

�

[�

�1

(�)℄ =

0

�

1 0 0

0 1 0

0 0

1

h

1

A

;

is suh that � maps 


1

into 


h

and �(


1

) = 


h

. We onsider the orrespondingly saled

funtion (subsequently, saled funtions de�ned on 


1

will be indiated with a supersript ℄)

'

℄

: 


1

! R

3

, de�ned by

'(�

1

; �

2

; �

3

) = '

℄

(�

�1

(�

1

; �

2

; �

3

)) 8 � 2 


h

; '

℄

(�) = '(�(�)) 8 � 2 


1

;

F

℄

(�) = r

�

'

℄

(�) = r

�

'(�(�)) � r

�

�(�) ;

r'(�

1

; �

2

; �

3

) = r'

℄

(�

�1

(�

1

; �

2

; �

3

)) �

0

�

1 0 0

0 1 0

0 0

1

h

1

A

; (3.5)

=

�

�

�

1

'

℄

(�

1

; �

2

; �

3

)j�

�

2

'

℄

(�

1

; �

2

; �

3

)j

1

h

�

�

3

'

℄

(�

1

; �

2

; �

3

)

�

=: r

h

�

'

℄

= F

℄

h

:

Similarly, we de�ne a saled rotation tensor R

3d;℄

: 


1

� R

3

7! SO(3;R) by

R

3d

(�

1

; �

2

; �

3

) = R

3d;℄

(�

�1

(�

1

; �

2

; �

3

)) 8� 2 


h

; R

3d;℄

(�) = R

3d

(�(�)) 8 � 2 


1

;

r

�

[R

3d

(�

1

; �

2

; �

3

):e

i

℄ = r

�

[R

3d;℄

(�):e

i

℄ � (r

�

�(�))

�1

(3.6)

=

�

�

�

1

[R

3d;℄

(�):e

i

℄j�

�

2

[R

3d;℄

(�):e

i

℄j

1

h

�

�

3

[R

3d;℄

(�):e

i

℄

�

=: r

h

�

[R

3d;℄

(�):e

i

℄ 2 M

3�3

;

D

h

�

R

3d;℄

h

(�) :=

�

r

h

�

[R

3d;℄

(�):e

1

℄; r

h

�

[R

3d;℄

(�):e

2

℄; r

h

�

[R

3d;℄

(�):e

3

℄

�

2 T(3) :

This de�nes the saled third order urvature tensor K

℄

h

: 


1

7! T(3)

K

℄

h

(�) =

�

R

3d;℄;T

(�)

�

�

�

1

[R

3d;℄

(�):e

1

℄j�

�

2

[R

3d;℄

(�):e

1

℄j

1

h

�

�

3

[R

3d;℄

(�):e

1

℄

�

;

R

3d;℄;T

(�)

�

�

�

1

[R

3d;℄

(�):e

2

℄j�

�

2

[R

3d;℄

(�):e

2

℄j

1

h

�

�

3

[R

3d;℄

(�):e

2

℄

�

; (3.7)

R

3d;℄;T

(�)

�

�

�

1

[R

3d;℄

(�):e

3

℄j�

�

2

[R

3d;℄

(�):e

3

℄j

1

h

�

�

3

[R

3d;℄

(�):e

3

℄

��

=

�

R

3d;℄;T

(�)r

h

�

[R

3d;℄

(�):e

1

℄; R

3d;℄;T

(�)r

h

�

[R

3d;℄

(�):e

2

℄; R

3d;℄;T

(�)r

h

�

[R

3d;℄

(�):e

3

℄

�

= R

3d;℄;T

D

h

�

R

3d;℄

(�) :

10



Moreover, we de�ne similarly saled funtions by setting

f

℄

(�) := f(�(�)); g

℄

d

(�) = g

d

(�(�)) ; N

℄

(�) := N(�(�)) : (3.8)

In terms of the introdued saled deformations and rotations

'

℄

: 


1

� R

3

7! R

3

; R

3d;℄

: 


1

� R

3

7! SO(3;R) ; (3.9)

the saled problem solves the following two-�eld minimization problem on the �xed domain 


1

:

I

℄

('

℄

;r'

℄

; R

3d;℄

;D

h

�

R

3d;℄

) =

Z

�2


1

h

W

mp

(U

℄

h

) +W

urv

(K

℄

h

)� hf

℄

; '

℄

i

i

det[r�(�)℄ dV

�

�

Z

�


trans

1

[f

s

�[�

1

2

;

1

2

℄g

hN

℄

; '

℄

i kCofr�(�):~nk dS

�

;

= h

Z

�2


1

W

mp

(U

℄

h

) +W

urv

(K

℄

h

)� hf

℄

; '

℄

i dV

�

�

Z

�


trans

1

hN

℄

; '

℄

i 1 dS

�

�

Z



s

�[�

1

2

;

1

2

℄

hN

℄

; '

℄

ih dS

�

7! min : w.r.t. ('

℄

; R

℄

) ;

U

℄

h

= R

3d;℄;T

F

℄

h

; '

℄

j

�

1

0

(�) = g

℄

d

(�) = g

d

(�(�)) = g

d

(�

1

; �

2

; h � �

3

) ; (3.10)

�

1

0

= 

0

� [�

1

2

;

1

2

℄; 

0

� �!; 

s

\ 

0

= ; ;

U

℄

h

j

�

1

0

= R

3d;℄;T

r

℄

�

'

℄

j

�

1

0

2 Sym(3) ; weak onsistent oupling boundary ondition or

R

3d;℄

: free on �

1

0

, alternative Neumann-type boundary ondition ;

W

mp

(U

℄

h

) = � k sym(U

℄

h

� 11)k

2

+ �



k skew(U

℄

h

)k

2

+

�

2

tr

h

sym(U

℄

h

� 11)

i

2

;

W

urv

(K

℄

h

) = �

L

1+p



12

�

1 + �

4

L

q



kK

℄

h

k

q

�

�

�

5

k symK

℄

h

k

2

+ �

6

k skewK

℄

h

k

2

+ �

7

tr

h

K

℄

h

i

2

�

1+p

2

;

K

℄

h

= R

3d;℄;T

D

h

�

R

3d;℄

h

(�) :

3.3 The resaled variational Cosserat bulk problem

Sine the energy

1

h

I

℄

would not be �nite for h ! 0 if trations N

℄

on the transverse bound-

ary were present, the investigations are in priniple restrited to the ase of N

℄

= 0 on

�


trans

1

.

6

For oniseness we therefore investigate �nally the following simpli�ed and resaled

(N

℄

; f

℄

= 0; g

d

(�

1

; �

2

; �

3

) := g

d

(�

1

; �

2

)) two-�eld minimization problem on 


1

with respet to

�-onvergene (without the fator h > 0 now):

I

℄

h

('

℄

;r'

℄

; R

3d;℄

;D

h

�

R

3d;℄

) =

Z

�2


1

W

mp

(U

℄

h

) +W

urv

(K

℄

h

) dV

�

7! min : w.r.t. ('

℄

; R

℄

) ;

U

℄

h

= R

3d;℄;T

F

℄

h

; '

℄

j

�

1

0

(�) = g

℄

d

(�) = g

d

(�(�)) = g

d

(�

1

; �

2

; h � �

3

) = g

d

(�

1

; �

2

; 0) ;

�

1

0

= 

0

� [�

1

2

;

1

2

℄; 

0

� �!;

R

3d;℄

: free on �

1

0

, Neumann-type boundary ondition ; (3.11)

6

The thin plate limit h! 0 obviously annot support non-vanishing transverse surfae loads.
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W

mp

(U

℄

h

) = � k sym(U

℄

h

� 11)k

2

+ �



k skew(U

℄

h

)k

2

+

�

2

tr

h

sym(U

℄

h

� 11)

i

2

;

W

urv

(K

℄

h

) = �

L

1+p



12

�

1 + �

4

L

q



kK

℄

h

k

q

�

�

�

5

k symK

℄

h

k

2

+ �

6

k skewK

℄

h

k

2

+ �

7

tr

h

K

℄

h

i

2

�

1+p

2

;

K

℄

h

= R

3d;℄;T

D

h

�

R

3d;℄

(�) :

Here we assume that the boundary ondition g

d

is already independent of the transverse vari-

able. For simpliity, we restrit furthermore attention to the weakest possible response, namely

the Neumann boundary onditions on the mirorotations R

℄

.

7

Moreover, for simpliity,

we assume

p � 1 ; q > 1 ; (3.12)

from now on, suh that both ases �



> 0 and �



= 0 an be onsidered simultanuously.

External loads of various sort an be treated by Remark 4.5.

Within the resaled formulation (3.11) we want to investigate the possible limit behaviour

for h! 0 and �xed internal length L



> 0. While it does not make muh sense to let h! 0

at �xed in-plane elongation L > 0, sine from a physial onsideration, there is an absolute

lower bound on the thikness in terms of the internal length L



, we may onsider a sequene

of plates, with small relative thikness h kept onstant in a �rst plae, but whose in-plane

elongation L is inreased together with a simultaneous inrease of the dimensions of

the mirostruture, to the e�et that the internal length L



, transformed to a unit domain

! remains onstant.

8

In a seond step, the relative thikness h is dereased.

3.4 On the hoie of the saling

As will be seen later, the �-limit, if it exists, is unique. The only hoie, whih inuenes

then the �nal form of the �-limit is given by the initial saling assumptions made on the

unknowns, in order to relate them to the �xed domain 


1

and the assumption on the saling

of the energies, here

1

h

I

℄

< 1. Our saling ansatz is onsistent with the one proposed in

[23, 29℄, but not onsistent with the one taken in [12℄, whih sales transverse omponents of

the displaement di�erent in order to extrat more information from the �-limit. Sine we deal

with a "two-�eld" model there is no imminent possibility to sale the �elds di�erently.

The justi�ation for our hoie is given by the apparent onsisteny of the results with

formal developments and its linearization stability. Here we see that the saling assumptions

also introdue a ertain arbitrariness in the development. For example, starting from lassial

nonlinear elastiity, onsidering the present saling for the unknowns and assuming

1

h

5

I

℄

<1,

a nonlinear von K�arm�an plate an be rigourously justi�ed by �-onvergene [29℄.

4 Reapitulation of fats from �-onvergene

Let us briey reapitulate the notions involved by using �-onvergene. For a detailed treatment

we refer e.g. to [42, 10℄. We start by de�ning the lower and upper �-limit. In the following, X

will always denote a metri spae suh that sequential ompatness and ompatness oinide.

Moreover, we set R := R[f�1g. We onsider now a sequene of energy funtionals I

h

j

: X 7!

R ; h

j

! 0.

7

We ould as well treat the rigid ase, i.e. R

℄

j

�

1

0

= R

d

. The ase of weak onsistent oupling would need

additional provisions, the three-dimensional existene result already needs additional ontrol in order to de�ne

the then neessary boundary terms.

8

This is tantamount to assuming that the building bloks of the larger plates are themselves enlarged with

the same ratio.
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De�nition 4.1 (Lower and upper �-limit)

Let X be a metri spae and let I

h

j

: X 7! R ; h

j

! 0 be a sequene of funtionals. For x 2 X

we de�ne

�� lim inf

h

j

I

h

j

: X 7! R ; �� lim inf

h

j

I

h

j

(x) := inf flim inf

h

j

I

h

j

(x

h

j

) ; x

h

j

! xg ;

�� lim sup

h

j

I

h

j

: X 7! R ; �� lim sup

h

j

I

h

j

(x) := inf flim sup

h

j

I

h

j

(x

h

j

) ; x

h

j

! xg : �

It is lear that � � lim inf

h

j

I

h

j

and � � lim sup

h

j

I

h

j

: X ! R always exist and are uniquely

determined.

De�nition 4.2 (�-onvergene)

Let X be a metri spae. We say that a sequene of funtionals I

h

j

: X 7! R �-onverges in

X to the limit funtional I

0

: X 7! R, if for all x 2 X we have

8x 2 X : 8x

h

j

! x : I

0

(x) � lim inf

h

j

!0

I

h

j

(x

h

j

) ; (lim inf-inequality)

8x 2 X : 9x

h

i

! x : I

0

(x) � lim sup

h

i

!0

I

h

i

(x

h

i

) ; (reovery sequene) : �

Corollary 4.3

Let X be a metri spae. The sequene of funtionals I

h

j

: X 7! R �-onverges in X to

I

0

: X 7! R if and only if

�� lim inf

h

j

I

h

j

= �� lim sup

h

j

I

h

j

= I

0

: �

Remark 4.4 (Lower semiontinuity of the �-limit)

The lower and upper �-limits are always lower semiontinuous, hene the �-limit is a lower

semiontinuous funtional. Moreover, if the �-limit exists, it is unique.

Remark 4.5 (Stability under ontinuous perturbations)

Assume that I

h

j

: X 7! R �-onverges in X to I

0

: X 7! R and let � : X 7! R, independent

of h

j

, be ontinuous. If I

h

j

+� is �-onvergent, then it holds

(�� lim

h

j

[I

h

j

+�℄)(x) = (�� lim

h

j

I

h

j

)(x) + �(x) = I

0

(x) + �(x) ; (4.13)

see [10, p.23℄or [42, Prop. 6.21℄. Note that in the general ase, the onstant funtional �

an inuene whether or not �-onvergene takes plae, whih neessitates the additional prior

assumption on existene of the �-limit, ompared to [10, p.23℄, f. [42, Prop. 6.17℄. �

Let us also reapitulate the important equi-oeriveness property. First we reall oerive-

ness of an integral funtional.

9

De�nition 4.6 (Coeriveness)

The integral funtional I : X 7! R is oerive w.r.t. X , if for eah �xed C > 0 the losure of

the set fx 2 X j I(x) � Cg is ompat in X , i.e. I has ompat sub-levels. �

9

A typial instant of oeriveness is given for X = L

p

(
;R

3

) ; 1 < p < 1 with 
 a bounded domain with

smooth boundary and

I(') =

(

R




W (r') dV if ' 2W

1;p

(
;R

3

) ; '

j

�


= 0 ;

+1 else ;

(4.14)

with the loal oerivity assumptionW (F ) � 

+

1

kr'k

p

� 

+

2

. Coeriveness follows by Poinar�e's inequality

and Rellih's ompat embedding W

1;p

(
;R

3

) � L

p

(
;R

3

). Reall that linear elastiity does not satisfy a loal

oerivity ondition. This is the ause for some tehnial problems of the theory.

13



Following [42, p.70℄ we introdue

De�nition 4.7 (Equi-oeriveness)

The sequene of integral funtionals I

h

j

: X 7! R is equi-oerive, if for eah �xed C > 0 there

exists a ompat setK

C

� X suh that fx 2 X j I

h

j

(x) � Cg � K

C

, independent of h

j

> 0. �

Hene, if we know that I

h

j

is equi-oerive over X and that along a sequene '

j

2 X it holds

that I

h

j

('

j

) � C, then we an extrat a subsequene, '

j

k

onverging in the topology of X to

some limit element ' 2 X .

Theorem 4.8 (Charaterization of equi-oeriveness)

The sequene of integral funtionals I

h

j

: X 7! R is equi-oerive if and only if there exists a

lower semiontinuous oerive funtion 	 : X 7! R suh that I

h

j

� 	 on X for every h

j

> 0.

Proof. [42, Prop. 7.7℄. �

The following theorem onerns the onvergene of the minimum values of an equi-oerive

sequene of funtions.

Theorem 4.9 (Coeriveness of the �-limit)

Suppose that the sequene of integral funtionals I

h

j

: X 7! R is equi-oerive. Then the upper

and lower �-limit are both oerive and

min

x2X

�

�� lim inf

h

j

I

h

j

�

(x) = lim inf

h

j

inf

x2X

I

h

j

(x) : (4.15)

If, in addition, the sequene of integral funtionals I

h

j

: X 7! R �-onverges to a funtional

I

0

: X 7! R, then I

0

itself is oerive and

min

x2X

I

0

(x) = lim

h

j

inf

x2X

I

h

j

(x) : (4.16)

Proof. [42, Theo. 7.8℄. �

Note that equi-oerivity is an additional feature in the development of �-onvergene argu-

ments, whih allows to simplify proofs onsiderably through ompatness arguments. As far

as �-onvergene is onerned, it may be useful to reall [10, p.19℄ that minimizers of the

�-limit variational problem may not be a limit of minimizers, so that �-onvergene

must be interpreted as a hoie riterion. In addition, the �-limit of a onstant sequene

of funtionals J , whih is not lower semiontinuous, does not oinide with the onstant fun-

tional J , instead one has (�� lim J)(x) < J(x). In this ase, (�� lim J)(x) = QJ(x), where QJ

is the quasionvex hull of J . In the ase of non lower semiontinuous funtionals, the �-limit is

therefore introduing a di�erent physial setting. Fortunately, in our appliation, we are always

dealing with lower-semiontinuous funtions.

5 The "two-�eld" Cosserat �-limit

5.1 The spaes and admissible sets

Now let us proeed to the investigation of the �-limit for the resaled problem (3.11). We do not

use I

℄

h

j

diretly in our investigation of �-onvergene, sine this would imply working with the

weak topology of H

1;2

(


1

;R

3

)�W

1;1+p+q

(


1

; SO(3;R)), whih does not give rise to a metri

spae. Instead, we de�ne the "bulk" spaes X;X

0

and the "two-dimensional" spaes X

!

; X

0

!

.

First, for p � 1; q > 1 we de�ne the number r > 1 by

1

1 + p+ q

+

1

r

=

1

2

) r =

2(1 + p+ q)

(1 + p+ q)� 2

; (5.17)
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suh that L

1+p+q

� L

r

� L

2

. Note that for 1 + p+ q > 3 it holds that r < 6 whih implies the

ompat embedding H

1;2

(


1

;R

3

) � L

r

(


1

;R

3

). Now de�ne the spaes

X := f(';R) 2 L

r

(


1

;R

3

)� L

1+p+q

(


1

; SO(3;R))g ;

X

0

:= f(';R) 2 H

1;2

(


1

;R

3

)�W

1;1+p+q

(


1

; SO(3;R)) ; (5.18)

X

!

:= f(';R) 2 L

r

(!;R

3

)� L

1+p+q

(!; SO(3;R))g ;

X

0

!

:= f(';R) 2 H

1;2

(!;R

3

)�W

1;1+p+q

(!; SO(3;R))g ;

and the admissible sets

A

0

:= f(';R) 2 H

1;2

(


1

;R

3

)�W

1;1+p+q

(


1

; SO(3;R)) ; '

j

�

1

0

(�) = g

℄

d

(�) g ; (5.19)

A

0

!

:= f(';R) 2 H

1;2

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)) ; '

j



0

(�

1

; �

2

) = g

℄

d

(�

1

; �

2

; 0) g ;

A

0




1

;!

:= f(';R) 2 H

1;2

(


1

;R

3

)�W

1;1+p+q

(!; SO(3;R)) ; '

j

�

1

0

(�) = g

℄

d

(�) g ;

We note the ompat embedding X

0

� X and the natural inlusions X

!

� X and X

0

!

� X

0

.

Now we extend the resaled energies to the spae X through rede�ning

I

℄

h

('

℄

;r'

℄

; R

℄

;D

h

�

R

℄

) =

(

I

℄

h

('

℄

;r'

℄

; R

℄

;D

h

�

R

℄

) if ('

℄

; R

℄

) 2 A

0

+1 else in X ;

(5.20)

by abuse of notation. This is a lassial trik used in appliations of �-onvergene. It has the

additional virtue of inorporating the boundary onditions already in the energy funtional.

In the following, �-onvergene results will be shown with respet to the enompassing metri

spae X .

10

5.2 The transverse averaging operator

For ' 2 L

2

(


1

;R

3

) let us de�ne the averaging operator over the transverse variable �

3

Av : L

2

(


1

;R

3

) 7! L

2

(!;R

3

) ; Av :'(�

1

; �

2

) :=

Z

1=2

�1=2

'(�

1

; �

2

; �

3

) d�

3

: (5.21)

It is lear that averaging with respet to the transverse variable �

3

ommutes with di�erentiation

w.r.t. the planar variables �

1

; �

2

, i.e.

[Av :r

(�

1

;�

2

)

'(�

1

; �

2

; �

3

)℄(�

1

; �

2

) = r

(�

1

;�

2

)

[Av :'(�

1

�

1

�

1

)℄(�

1

; �

2

) ; (5.22)

for suitable regular funtions '. For a onvex funtion f : M

3�2

7! R Jensen's inequality

implies

Z

!

f(r

(�

1

;�

2

)

[Av :'℄(�

1

; �

2

)) d! =

Z

!

f([Av :r

(�

1

;�

2

)

'℄(�

1

; �

2

)) d!

�

Z

!

Z

1=2

�1=2

f(r

(�

1

;�

2

)

'(�

1

; �

2

; �

3

)) d�

3

d!

=

Z




1

f(r

(�

1

;�

2

)

'(�

1

; �

2

; �

3

)) dV

�

: (5.23)

10

Of ourse, X;X

0

as suh are not vetorspaes, sine we annot add two rotations. Nevertheless,

L

r

(


1

; SO(3;R)) � L

r

(


1

;M

3�3

) and this spae is a Banah spae.
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5.3 The �-limit variational "membrane" problem

We laim that for stritly positive Cosserat ouple modulus �



> 0 the �-limit for problem

(3.11) is given by the following limit energy funtional I

℄

0

: X 7! R,

I

℄

0

(';R) :=

8

<

:

R




1

W

hom

mp

(rAv :';R) +W

hom

urv

(K

s

) d! ��(Av :';R

3

) (';R) 2 A

0




1

;!

+1 else in X :

(5.24)

The proof will be given in Setion 6. If we identify the averaged deformation Av :' with the

deformation of the midsurfae m : ! � R

2

7! R

3

, this problem determines in fat a purely

two-dimensional minimization problem for the deformation of the midsurfae m : ! � R

2

7! R

3

and the mirorotation of the plate (shell) R : ! � R

2

7! SO(3;R) on !:

I

℄

0

(m;R) =

Z

!

W

hom

mp

(rm;R) +W

hom

urv

(K

s

) d! ��(m;R

3

) 7! min : w.r.t. (m;R) ; (5.25)

and the boundary onditions of plae for the midsurfae deformation m on the Dirihlet part

of the lateral boundary 

0

� �!,

m

j



0

= g

d

(x; y; 0) = Av :g

d

(x; y; 0) ; simply supported (�xed, welded) : (5.26)

The boundary onditions for the mirorotations R are automatially determined in the varia-

tional proess. The dimensionally homogenized loal density is

11 12

W

hom

mp

(rm;R) := � k sym((R

1

jR

2

)

T

rm� 11

2

)k

2

| {z }

"intrinsi" shear-streth energy

+�



k skew((R

1

jR

2

)

T

rm)k

2

| {z }

"intrinsi" �rst order drill energy

(5.27)

+ 2�

�



�+ �



�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

| {z }

homogenized transverse shear energy

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

| {z }

homogenized elongational streth energy

:

The dimensionally homogenized urvature density is given by

W

hom

urv

(K

s

) := inf

A2so(3;R)

W

�

urv

(R

T

�

�

1

R;R

T

�

�

2

R;A) ;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

= R

T

(x; y)D

x

R(x; y) ; (5.28)

K

s

= (K

1

s

;K

2

s

;K

3

s

) 2 T(3) ; the redued third order urvature tensor ;

where W

�

urv

is an equivalent representation of the bulk urvature energy in terms of skew-

symmetri arguments

W

urv

(K) =W

�

urv

(R

T

�

�

1

R;R

T

�

�

2

R;R

T

�

�

3

R) ;

W

�

urv

: so(3;R) � so(3;R) � so(3;R) 7! R

+

; (5.29)

with R

T

�

�

i

R 2 so(3;R) sine �

�

i

[R

T

R℄ = �

�

i

11 = 0. We note that W

�

urv

remains a onvex

funtion in its argument and so isW

hom

urv

(K

s

). Moreover,W

hom

urv

(K

s

) =W

urv

(K

s

) forW

urv

(K) =



W (kKk).

11

k skew((R

1

jR

2

)

T

rm)k

2

=

�

hR

1

;m

y

i � hR

2

;m

x

i

�

2

. Note that k skew((R

1

jR

2

)

T

rm)k = 0 does not imply

that R

3

= ~n

m

.

12

In the following, "intrinsi" refers to lassial surfae geometry, where intrinsi quantities are those whih

depend only on the �rst fundamental form I

m

= rm

T

rm 2 M

2�2

of the surfae. Then "intrinsi" in our

terminology are terms, whih redue to suh a dependene in the ontinuum limit R = polar(rmj~n). For

example (R

1

jR

2

)

T

rm =

p

rm

T

rm, in this ase.

16



In (5.25) � denotes a general external loading funtional, ontinuous in the topology ofX , f.

Remark 4.5 and (14.19). It is lear that the limit funtional I

℄

0

is weakly lower semiontinuous

in the topology of X

0

= H

1;2

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)) by simple onvexity arguments.

We note the twofold appearane of the harmoni mean H,

13

1

2

H(�;

�

2

) =

��

2�+ �

; H(�; �



) = 2�

�



�+ �



: (5.30)

A major advantage of this formulation is that the dimensionally homogenized formulation re-

mains fully frame-indi�erent. Note that the limit funtional I

℄

0

is onsistent with the following

plane stress requirement (.f. (6.48))

8 �

3

2 [�

1

2

;

1

2

℄ : S

1

(�

1

; �

2

; �

3

):e

3

= 0 ; (5.31)

i.e. a vanishing normal stress over the entire thikness of the plate, while for any given thikness

h > 0 from 3D-equilibrium one an only infer zero normal stresss at the upper and lower

faes

hR

T

(�

1

; �

2

;�1=2)S

1

(�

1

; �

2

;�1=2):e

3

; e

3

i = 0 : (5.32)

In this sense, the Cosserat "membrane" �-limit underestimates the real stresses,

notably the transverse shear stresses.

5.4 The borderline ase �



= 0

Sine it is not possible to establish equi-oerivity for �



= 0, we are not in a position to state

a rigourous �-limit result based diretly on the proof of the result for �



> 0 in this ase.

However, sine the energy funtional I

℄

h

j

for �



> 0 is stritly bigger than the same funtional

for �



= 0, independent of h

j

> 0, it is easy to see [42, Prop. 6.7℄ that on X we have the

inequalities

�� lim inf I

℄

h

j

j

�



=0

� �� lim sup I

℄

h

j

j

�



=0

� lim

�



!0

�

�� lim I

℄

h

j

j

�



>0

�

=: I

℄;0

0

; (5.33)

where

I

℄;0

0

(';R) =

(

R

!

W

hom;0

mp

(rAv :';R) +W

hom

urv

(K

s

) d! ��(Av :';R

3

) (';R) 2 A

mem

0

+1 else in X ;

(5.34)

with A

mem

0

de�ned in (7.90) and the orresponding loal energy density in terms of m = Av :'

is

W

hom;0

mp

(rm;R) := � k sym(R

1

jR

2

)

T

rm� 11

2

k

2

| {z }

"intrinsi" shear-streth energy

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

| {z }

homogenized elongational streth energy

:

(5.35)

Observe that the upper bound I

℄;0

0

for the � � lim sup energy funtional is not oerive

w.r.t. H

1;2

(!;R

3

) due to the now missing transverse shear ontribution, while it retains lower-

semiontinuity. This degeneration remains true for whatever form the �-limit for �



= 0 has,

should it exist. We omplement the investigation of the geometrially exat ase �



= 0 with

an estimate for the � � lim inf in Setion 7, whih shows altogether, that I

℄;0

0

is indeed the

�-limit for zero Cosserat ouple modulus �



= 0.

13

For a; b � 0 the harmoni, arithmeti and geometri mean are de�ned as H(a; b) :=

2

1

a

+

1

b

; A(a; b) =

a+b

2

; G(a; b) =

p

a b, respetively and one has the hain of inequalities H(a; b) � G(a; b) � A(a; b).
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For � = �



, however, the limit energy W

hom

mp

oinides with the respetive plate energy

W

mp

derived in terms of the formal ansatz given in (8.1). If �



> 0, then oerivity and well-

posedness of the limit problem an be established by a loal oerivity argument and Poinar�e's

inequality or an be inferred from equi-oeriveness and Theorem 4.9.

The loss of oerivity for �



= 0 is primarily a loss of ontrol for the "transverse" ompo-

nents hm

x

; R

3

i ; hm

y

; R

3

i, while w.r.t. the remaining "in-plane" omponents ompatness for

minimizing sequenes, whose midsurfae deformations are supposed to be already bounded in

L

r

(!), an be established (appropriate use of an extended Korn's seond inquality, .f. (7.102)).

As far as linearization onsisteny is onerned, it is an easy matter to show (see (14.11))

that the linearization for �



= 0 of the frame-indi�erent �-limit I

℄;0

0

w.r.t. small midsurfae

displaement v : ! � R

2

7! R

3

and small urvature deouples the �elds of in�nitesimal

midsurfae displaement and in�nitesimal mirorotations: after desaling we are left with the

lassial in�nitesimal "membrane" plate problem for v : ! � R

2

7! R

3

Z

!

h

�

� k symr(v

1

; v

2

)k

2

+

��

2�+ �

tr [symr(v

1

; v

2

)℄

2

�

d!

� hf; hv; e

1

i � e

1

+ hv; e

2

i � e

2

i 7! min : w.r.t. v ; (5.36)

hv; e

i

i

j



0

= hu

d

(x; y; 0); e

i

i ; i = 1; 2 simply supported (horizontal omponents only) ;

whih leaves the vertial midsurfae displaement v

3

indetermined due to the non-resistane of

a linear "membrane" plate to vertial deetions. This problem oinides with a linearization

14

of the nonlinear membrane plate problem proposed in [27, par.4.3℄, based on purely formal

asymptoti methods applied to the St.Venant-Kirhho� energy. The variational problem (5.36)

is as well the �-limit of the lassial linear elastiity bulk problem (if orresponding saling

asumptions are made, ompare with [3, Th.4.2℄, [8℄ or [12, Th.1.11.2℄ and (14.2)). The lassial

linear bulk model in turn an be obtained as linearization for �



= 0 of the Cosserat bulk

problem. Hene, for �



= 0 exlusively, linearization and taking the �-limit ommute

with the �-limit of lassial linear elastiity.

15

5.5 The borderline ase �



=1

This ase is interesting, beause the rigourous �-limit for �



= 1 still gives rise to an inde-

pendent �eld of mirorotations R, while the Cosserat bulk problem for �



= 1 degenerates

into a onstraint theory (a so alled interdeterminate ouple-stress model), where R oinides

neessarily with the ontinuum rotations polar(F ) from the polar deomposition.

The �-limit variational problem reads: �nd the deformation of the midsurfae m : ! �

R

2

7! R

3

and the mirorotation of the plate (shell) R : ! � R

2

7! SO(3;R) on ! suh that for

I

℄;1

0

: X 7! R in terms of the averaged deformation m = Av :',

I

℄;1

0

(m;R) 7! min : w.r.t. (m;R) ; (5.37)

with

I

℄;1

0

(m;R) =

(

R

!

W

hom;1

mp

(rm;R) +W

hom

urv

(K

s

) d! ��(m;R

3

) (m;R) 2 A

0;1

!

+1 else in X ;

(5.38)

the admissible set

A

0;1

!

:= f(m;R) 2 H

1;2

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)) ; m

j



0

(�

1

; �

2

) = g

℄

d

(�

1

; �

2

; 0) ;

hR

1

;m

y

i = hR

2

;m

x

i g ; (5.39)

14

Expansion of the �rst fundamental form I

m

of the midsurfae m w.r.t. planar initial on�guration yields

I

m

� 11

2

= rm

T

rm � 11

2

� symr

(x;y)

(v

1

; v

2

) + O(krvk

2

). Hene ontrol on vertial deetions v

3

is lost

during linearization.

15

As is well known [14, p.464℄ this is not the ase with the membrane �-limit onsidered in [23℄, based on the

non-ellipti St.Venant-Kirhho� energy.
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and the orresponding dimensionally homogenized loal energy density is

W

hom;1

mp

(rm;R) := � k(R

1

jR

2

)

T

rm� 11

2

k

2

| {z }

"intrinsi" shear-streth energy

+ 2�

�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

| {z }

homogenized transverse shear energy

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

| {z }

homogenized elongational streth energy

: (5.40)

Note that �



= 1 e�etively rules out in-plane drill rotations [40, 28℄. Moreover, the

transverse shear energy is doubled, but transverse shear is still possible. In this sense, the

resulting homogenized transverse shear modulus exludes what ould be alled "transverse

shear loking" in aordane with the "Poisson thikness loking" whih ours, if the orret

homogenized volumetri modulus is not taken.

16

6 Proof of �-onvergene for positive Cosserat ouple mod-

ulus �



> 0

Let us ontinue by proving the laim on the form of the �-limit for stritly positive Cosserat

ouple modulus �



> 0 .

6.1 Equi-oerivity of I

℄

h

j

, ompatness and dimensional redution

Theorem 6.1 (Equi-oerivity of I

℄

h

j

)

For positive Cosserat ouple modulus �



> 0 the sequene of resaled energy funtionals I

℄

h

j

de�ned in (3.11) is equi-oerive on the spae X .

Proof. It is lear that for given h > 0 the problem (3.11) admits a minimizing pair ('

℄

h

; R

℄

h

) 2

H

1;2

(


1

;R

3

)�W

1;1+p+q

(


1

; SO(3;R)) by the obvious saling transformation of the minimizing

solution of the bulk problem for values of p � 1; q > 1 and for both �



> 0 and �



= 0.

17

This

is espeially true for Neumann boundary onditions on the mirorotations, sine for exat

rotations, kRk =

p

3. This leads to a ontrol of mirorotations in W

1;1+p+q

(


1

; SO(3;R))

already without spei�ation of Dirihlet boundary data on the mirorotations.

Consider now a sequene h

j

! 0 for j ! 1. By inspetion of the existene proof for

the Cosserat bulk problem, it will beome lear that for orresponding sequenes ('

℄

h

j

; R

℄

h

j

) 2

H

1;2

(


1

;R

3

)�W

1;1+p+q

(


1

; SO(3;R)) = X

0

with I

℄

h

j

('

℄

h

j

; R

℄

h

j

) <1 bounded independent of

h

j

(not neessarily minimizers) we obtain a bound on the sequene ('

℄

h

j

; R

℄

h

j

) inX

0

, independent

of h

j

. To see this, note that for �



> 0, it is immediate that r

h

�

'

℄

= F

℄

h

is bounded in

L

2

(


1

;M

3�3

), independent of R

℄

h

j

on aount of the deisive loal oerivity ondition

W

mp

(R

℄;T

h

j

F

℄

h

j

) � min(�



; �) kR

℄;T

h

j

F

℄

h

j

� 11k

2

= min(�



; �)

�

kF

℄

h

j

k

2

� 2hR

℄;T

h

j

F

℄

h

j

; 11i+ 3

�

� min(�



; �)

�

kF

℄

h

j

k

2

� 2

p

3kF

℄

h

j

k+ 3

�

; (6.41)

16

lim

�!1

1

2

H(�;

�

2

) = � <1 but lim

�!1

1

2

A(�;

�

2

) =1.

17

In ontrast to �-onvergene arguments based on the St.Venant-Kirhho� energy [23℄ whih might not admit

minimizers for any given h > 0.
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and after integration

1 > I

℄

h

j

('

℄

h

j

; R

℄

h

j

) >

Z




1

W

mp

(U

℄

h

j

) +W

urv

(K

℄

h

j

) dV

�

�

Z




1

W

mp

(U

℄

h

j

) dV

�

�

Z




1

min(�



; �)

�

kF

℄

h

j

k

2

� 2

p

3kF

℄

h

j

k+ 3

�

dV

�

(6.42)

� min(�



; �)

Z




1

��

k�

�

1

'

℄

k

2

+ k�

�

2

'

℄

k

2

+

1

h

j

2

k�

�

3

'

℄

k

2

�

�2

p

3

�

k�

�

1

'

℄

k+ k�

�

2

'

℄

k+

1

h

j

k�

�

3

'

℄

k

�

+ 3

�

dV

�

:

This implies a bound, independent of h

j

, for the gradient r'

℄

h

j

in L

2

(


1

;R

3

). The Dirihlet

boundary onditions for '

℄

h

j

together with Poinar�e's inequality yield the boundedness of '

℄

h

j

in H

1;2

(


1

;R

3

).

18

With a similar argument, based on the loal oerivity of urvature, the

bound on R

℄

h

j

an be obtained: we need only to observe that for a onstant 

+

> 0, depending

on the positivity of �

4

; �

5

; �

6

; �

7

, but independent of h

j

,

1 > I

℄

h

j

('

℄

h

j

; R

℄

h

j

) >

Z




1

W

mp

(U

℄

h

j

) +W

urv

(K

℄

h

j

) dV

�

�

Z




1

W

urv

(K

℄

h

j

) dV

�

(6.43)

�

Z




1



+

kK

℄

h

j

k

1+p+q

dV

�

= 

+

Z




1

kR

℄;T

h

j

D

h

j

�

R

℄

h

j

k

1+p+q

dV

�

= 

+

Z




1

kD

h

j

�

R

℄

h

j

k

1+p+q

dV

�

;

whih establishes a bound on the gradient of rotations r

h

j

�

[R

℄

h

j

(�):e

i

℄; i = 1; 2; 3, independent

of h

j

. Moreover, kR

℄

h

j

k =

p

3, establishing the W

1;1+p+q

(


1

; SO(3;R)) bound on R

℄

h

j

. Thus

we may obtain a subsequene, not relabelled, suh that

'

℄

h

j

* '

℄

0

in H

1;2

(


1

;R

3

) ; R

℄

h

j

* R

℄

0

inW

1;1+p+q

(


1

; SO(3;R)) : (6.44)

Both weak limits ('

℄

0

; R

℄

0

) must be independent of the transverse oordinate �

3

, otherwise the

energy I

℄

h

j

ould not remain �nite for h

j

! 0, see (6.42) and ompare with the de�nition of D

h

j

�

in (3.6). Hene the solution must be found in terms of funtions de�ned on the two-dimensional

domain !. In this sense the domain of the limit problem is two-dimensional and the orrespond-

ing spae is X

!

. Sine the embedding X

0

� X is ompat, it is shown that the sequene of

energy funtionals I

℄

h

j

is equi-oerive w.r.t. X . �

6.2 Lower bound-the lim inf-ondition

If I

℄

0

is the �-limit of the sequene of energy funtionals I

℄

h

j

then we must have (lim inf-

inequality) that

I

℄

0

('

0

; R

0

) � lim inf

h

j

I

℄

h

j

('

℄

h

j

; R

℄

h

j

) ; (6.45)

whenever

'

℄

h

j

! '

℄

0

in L

r

(


1

;R

3

) ; R

℄

h

j

! R

℄

0

in L

1+p+q

(


1

; SO(3;R)) ; (6.46)

for arbitrary ('

℄

0

; R

℄

0

) 2 X . Observe that we an restrit attention to sequenes ('

℄

h

j

; R

℄

h

j

) 2 X

suh that I

℄

h

j

('

℄

h

j

; R

℄

h

j

) < 1 sine otherwise the statement is true anyway. Sequenes with

18

This argument fails for the limit ase �



= 0 sine loal oerivity does not hold.
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I

℄

h

j

('

℄

h

j

; R

℄

h

j

) < 1 are uniformly bounded in the spae X

0

, as seen previously. This implies

weak onvergene of a subsequene in X

0

. But we know already that the original sequenes

onverge strongly in X to the limit ('

℄

0

; R

℄

0

) 2 X . Hene we must have as well weak onvergene

to '

℄

0

2 H

1;2

(!;R

3

) and R

℄

0

2 W

1;1+p+q

(!; SO(3;R)), independent of the transverse variable

�

3

.

In a �rst step we onsider now the loal energy ontribution: along sequenes ('

℄

h

j

; R

℄

h

j

) 2

X with �nite energy I

℄

h

j

, the third olumn of the deformation gradientr

h

j

�

'

℄

h

j

remains bounded

but otherwise indetermined. Therefore, a trivial lower bound is obtained by minimizing the

e�et of the derivative in this diretion in the loal energy W

mp

. To ontinue our development,

we need some alulations: For smooth m : ! � R

2

7! R

3

; R : ! � R

2

7! SO(3;R) de�ne the

"diretor"-vetor b

�

2 R

3

formally through

W

hom

mp

(rm;R) =W

mp

(R

T

(rmjb

�

)) := inf

b2R

3

W

mp

(R

T

(rmjb)) : (6.47)

The vetor b

�

, whih realizes this in�mum, an be expliitly determined. Set

~

F := (rmjb

�

).

The orresponding loal optimality ondition reads

8 Æb

�

2 R

3

: hDW

mp

(R

T

(rmjb

�

)); R

T

(0j0jÆb

�

)i = 0 )

hRDW

mp

(R

T

(rmjb

�

)); (0j0jÆb

�

)i = 0 )

RDW

mp

(R

T

(rmjb

�

)):e

3

= 0 ) D

~

F

W

mp

(R

T

(rmjb

�

)):e

3

= 0) (6.48)

S

1

((rmjb

�

); R):e

3

= 0 :

Sine

S

1

(F;R) = R

�

�

�

F

T

R+R

T

F � 2 11

�

+ 2�



skew(R

T

F ) + � tr

h

R

T

F � 11

i

11

�

(6.49)

and

R

T

~

F =

0

�

hR

1

;m

x

i hR

1

;m

y

i hR

1

; b

�

i

hR

2

;m

x

i hR

2

;m

y

i hR

2

; b

�

i
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3

;m

x

i hR

3

;m

y

i hR

3

; b

�

i

1

A

;

~

F

T

R+R

T

~

F � 2 11 =

0

�

2[hR

1

;m

x

i � 1℄ hR

1

;m

y

i+ hR

2

;m

x

i hR

1

; b

�

i+ hR

3

;m

x

i

hR

2

;m

x

i+ hR

1

;m

y

i 2[hR

2

;m

y

i � 1℄ hR

2

; b

�

i+ hR

3

;m

y

i

hR

3

;m

x

i+ hR

1

; b

�

i hR

3

;m

y

i+ hR

2

; b

�

i 2[hR

3

; b

�

i � 1℄

1

A

;

skew(R

T

~

F ) =

0

�

0

1

2

�

hR

1

;m

y

i � hR

2

;m

x

i

�

1

2

�

hR

1

; b

�

i � hR

3

;m

x

i

�

� 0

1

2

�

hR

2

; b

�

i � hR

3

;m

y

i

�

� � 0

1

A

; (6.50)

the (plane-stress) requirement S

1

:e

3

= 0 (6.48) implies

�

0

�

hR

1

; b

�

i+ hR

3

;m

x

i

hR

2

; b

�

i+ hR

3

;m

y

i

2[hR

3

; b

�

i � 1℄

1

A

+ �



0

�

hR

1

; b

�

i � hR

3

;m

x

i

hR

2

; b

�

i � hR

3

;m

y

i

0

1

A

+ �

�

hR

1

;m

x

i+ hR

2

;m

y

i+ hR

3

; b

�

i � 3

�

0

�

0

0

1

1

A

=

0

�

0

0

0

1

A

: (6.51)

The solution of the last system an onveniently be expressed in the orthonormal triad (R

1

; R

2

; R

3

)

as

b

�

=

�



� �

�+ �



hR

3

;m

x

iR

1

+

�



� �

�+ �



hR

3

;m

y

iR

2

+ %

�

m

R

3

;

%

�

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

: (6.52)
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Note that for R 2 SO(3;R) and rm 2 L

2

(


1

;R

3

) it follows that b

�

2 L

2

(


1

;R

3

). Reinserting

the solution b

�

we have

R

T

~

F =

0

�

hR

1

;m

x

i hR

1

;m

y

i

�



��

�+�



hR

3

;m

x

i

hR

2

;m

x

i hR

2

;m

y

i

�



��

�+�



hR

3

;m

y

i

hR

3

;m

x

i hR

3

;m

y

i %

�

m

1

A

;

~

F

T

R+R

T

~

F � 2 11 =

0

B

B

B

�

2[hR

1

;m

x

i � 1℄ hR

1

;m

y

i+ hR

2

;m

x

i

�

1 +

�



��

�+�



�

hR

3

;m

x

i

hR

2

;m

x

i+ hR

1

;m

y

i 2[hR

2

;m

y

i � 1℄

�

1 +

�



��

�+�



�

hR

3

;m

y

i

�

1 +

�



��

�+�



�

hR

3

;m

x

i

�

1 +

�



��

�+�



�

hR

3

;m

y

i 2[%

�

m

� 1℄

1

C

C

C

A

;

skew(R

T

~

F ) =

0

B

B

�

0

1

2

�

hR

1

;m

y

i � hR

2

;m

x

i

�

1

2

��

�



��

�+�



� 1

�

hR

3
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x

i

�

� 0

1

2

��

�



��

�+�



� 1

�

hR

3

;m

y

i

�

� � 0

1

C

C

A

;

1 +

�



� �

�+ �



=

2�



�+ �



;

�



� �

�+ �



� 1 =

�2�

�+ �



: (6.53)

We obtain �nally for W

hom

mp

(rm;R) := W

mp

(R

T

(rmjb

�

)) with

~

U = R

T

(rmjb

�

) = R

T

~

F after

a lengthy but otherwise straightforward omputation

W

hom

mp

(rm;R) :=W

mp

(

~

U) = � k sym(

~

U � 11)k

2

+ �



k skew(

~

U)k

2

+

�

2

tr

h

sym(

~

U � 11)

i

2

= � k sym((R

1

jR

2

)

T

rm� 11

2

)k

2

+ �



k skew((R

1

jR

2

)

T

rm)k

2

(6.54)

+ 2�

�



�+ �



�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

:

Along the sequene ('

℄

h

j

; R

℄

h

j

) we have by onstrution,

W

mp

(R

℄;T

h

j

r

h

j

�

'

℄

h

j

) =W

mp

(R

℄;T

h

j

(r

(�

1

;�

2

)

'

℄

h

j

j

1

h

j

�

�

3

'

℄

h

j

)) �W

hom

mp

(r

(�

1

;�

2

)

'

℄

h

j

; R

℄

h

j

) : (6.55)

Hene, integrating and taking the lim inf also

lim inf

h

j

Z




1

W

mp

(R

℄;T

h

j

r

h

j

�

'

℄

h

j

) dV

�

� lim inf

h

j

Z




1

W

hom

mp

(r

(�

1

;�

2

)

'

℄

h

j

; R

℄

h

j

) dV

�

: (6.56)

Now we use weak onvergene of '

℄

h

j

and strong onvergene of R

℄

h

j

, together with the onvexity

w.r.t. rm and ontinuity w.r.t. R of

R




1

W

hom

mp

(rm;R) dV

�

to get lower semi-ontinuity of

the right hand side in (6.56) and to obtain altogether

lim inf

h

j

Z




1

W

mp

(R

℄;T

h

j

r

h

j

�

'

℄

h

j

) dV

�

�

Z




1

W

hom

mp

(r

(�

1

;�

2

)

'

℄

0

; R

℄

0

) dV

�

: (6.57)

Next we are onerned with the urvature ontribution: it is always possible to uniquely

rewrite the urvature energy expression in terms of skew-symmetri quantities

W

�

urv

: so(3;R) � so(3;R) � so(3;R) 7! R

+

;

W

�

urv

(R

T

�

�

1

R;R

T

�

�

2

R;R

T

�

�

3

R) :=W

urv

(K) ; (6.58)

where R

T

�

�

i

R 2 so(3;R) sine �

�

i

[R

T

R℄ = 0. We note thatW

�

urv

remains a onvex funtion in

its argument sine K 2 T(3) an be obtained by a linear mapping from (R

T

�

�

1

R;R

T

�

�

2

R;R

T

�

�

3

R) 2
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so(3;R)�so(3;R)�so(3;R). We de�ne the "homogenized" (relaxed) urvature energy through

W

�;hom

urv

(R

T

�

�

1

R;R

T

�

�

2

R) : =W

�

urv

(R

T

�

�

1
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T

�

�

2

R;A

�

)

= inf

A2so(3;R)

W

�

urv

(R

T

�

�

1
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T

�

�

2

R;A) ; (6.59)

and set aordingly

W

hom

urv

(K

s

) :=W
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T

�

�

1

R;R

T

�

�

2
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K
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=

�
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1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

; (6.60)

in terms of the redued urvature tensor K

s

2 T(3).

Similarly to (6.48) the in�nitesimal rotation A

�

2 so(3;R), whih realizes the in�mum in

(6.59), an be expliitely determined. For the moment we refrain from giving the �nal result.

SuÆe it to note that W

hom

urv

is uniquely de�ned, remains onvex in its argument and has the

same growth as W

urv

. Then

W

urv
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℄;T
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j

D
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�

1

R

℄

h
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; R

℄;T

h

j

�

�

2

R

℄

h

j

) : (6.61)

Integrating the last inequality, taking the lim inf on both sides and using that W

�;hom

urv

is onvex

in its argument, together with weak onvergene of the two in-plane omponents of the urvature

tensor, i.e.

(R

℄;T

h

j

�

�

1

R

℄

h

j

; R

℄;T

h

j
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2
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; 0)* (R

℄;T
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1
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℄

0
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℄;T

0

�

�

2

R

℄

0

; 0) in L

1+p+q

(


1

;T(3)) ; (6.62)

we obtain

lim inf
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j
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℄
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�

: (6.63)

Then, beause W

urv

;W

mp

� 0,
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W
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D
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D
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j

�
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(6.64)

=
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1

W
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;�

2

)
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℄

0

; R

℄

0

) +W

hom

urv

(R

℄;T

0

DR

℄

0

) dV

�

;

where we used (6.57) and (6.63). Now we use that '

℄

0

is independent of the transverse variable

�

3

, whih allows us to insert the averaging operator without any hange to see that
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1

W
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2
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℄
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℄
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2

)
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�

=
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!

W
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(�

1
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2

)
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℄

0

; R

℄

0

) d! ;

(6.65)
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sine R

℄

0

is also independent of the transverse variable. Hene we obtain altogether the desired

lim inf-inequality

I

℄

0
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℄

0
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℄
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) � lim inf
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j

I

℄

h

j
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) (6.66)

for

I

℄

0
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) :=
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!
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)
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0

) +W
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(R

T

0

DR

0

) d! : �

6.3 Upper bound-the reovery sequene

Now we show that the lower bound will atually be reahed. A suÆient requirement for the

reovery sequene is that

8 ('

0

; R

0

) 2 X = L

r

(


1

;R

3

)� L

1+p+q

(


1

; SO(3;R))

9'

℄

h

j

! '

0

in L

r

(


1

;R

3

) ; R

℄

h

j

! R

0

in L
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j
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℄

h

j

; R

℄

h

j

) � I

℄

0

('

0

; R

0

) : (6.67)

Observe that this is now only a ondition if I

℄

0

('

0

; R

0

) < 1. In this ase the uniform oer-

ivity of I

℄

h

j

('

℄

h

j

; R

℄

h

j

) over X

0

= H

1;2

(


1

;R

3

) �W

1;1+p+q

(


1

; SO(3;R)) implies that we an

restrit attention to sequenes ('

℄

h

j

; R

℄

h

j

) onverging weakly to some ('

0

; R

0

) 2 H

1;2

(!;R

3

)�

W

1;1+p+q

(!; SO(3;R)) = X

0

!

, de�ned over the two-dimensional domain ! only. Note, however,

that �nally it is strong onvergene in X whih matters.

The natural andidate for the reovery sequene for the bulk deformation is given by the

"reonstrution"

'

℄

h

j

(�

1

; �

2

; �

3

) := m(�
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; �

2

) + h
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3
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�
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2
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j

�
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; �
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) ; (6.68)

where, with the abbreviation m = '

0

= Av :'

0

at plaes,

b

�
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: (6.69)

Observe that b

�

2 L

2

(!;R

3

). Convergene of '

℄

h

j

in L

r

(


1

;R

3

) to the limit '

0

as h

j

! 0 is

obvious.

The reonstrution for the rotation R

0

is, however, not obvious sine on the one

hand we have to maintain the rotation onstraint along the sequene and on the other hand

we must approah the lower bound, whih exludes the simple reonstrution R

℄

h

j

(�

1

; �

2

; �

3

) =

R

0

(�

1

; �

2

). In order to meet both requirements we onsider therefore

R

℄
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2

) � exp (h

j
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)) ; (6.70)

where A

�

2 so(3;R) is the term obtained in (6.59), depending on the given R

0

and we note

that A

�

2 L

1+p+q

(!; so(3;R)) by the oerivity of W

�

urv

. It is lear that R

℄

h

j

2 SO(3;R), sine

exp : so(3;R) 7! SO(3;R) and we have the onvergene R

℄

h

j

! R

0

in L

1+p+q

(


1

; SO(3;R)) for

h

j

! 0.
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Sine neither b

�

nor A

�

need be di�erentiable, we have to onsider slightly modi�ed reovery

sequenes, however. With �xed " > 0 hoose b

"

2 W

1;2

(!;R

3

) suh that kb

"

� b

�

k

L

2

(!;R
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)

< "

and similarly for A

�

hoose A

"

2W
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(!; so(3;R)) suh that kA

"

�A

�

k

L
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(!;so(3;R))

< ".

This allows us to present �nally our reovery sequene
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This de�nition implies
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2 so(3;R). In view of the prominent appearane of the exponential in these expres-

sions it is useful to briey reapitulate the basi features of the matrix exponential exp ating
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The abbreviations in (6.74) imply
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whih shows the desired upper bound. Note that the appearane of the averaging operator Av

is not stritly neessary sine the limit problem for �



> 0 is independent of the transverse

variable anyhow. �

7 Proof of �-onvergene for zero Cosserat ouple modu-

lus �



= 0 without equi-oerivity

In this part we show that the the formal limit of �
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= 0. First, we investigate a lower bound of the resaled three-dimensional
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Note that this � � lim inf onjeture makes no statement about the behaviour through the
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whih is "almost" the onjeture (7.89) sine I
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after showing, that the above expression makes sense along the sequene, sine r
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The last equality shows
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the additional uniform bound
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is a well de�ned expression for whih (7.99) holds. Due to the onvexity of W
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Combining (7.113) with (7.112) shows
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The proof of (7.91) is �nished along the lines of (6.57). Note that (7.111) does de�nitely not
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This gives us omplete information on the behaviour of sequenes of minimizing problems for
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= 0, should suh sequenes exist and onverge to a limit in the enompassing spae X . �

8 The new formal �nite-strain Cosserat thin plate model

with size e�ets

8.1 Statement of the formal Cosserat plate model

The proposed formal "rational" of dimensional desend leads us to postulate the following

two-dimensional minimization problem for the deformation of the midsurfae m : ! � R
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)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

2 T(3) ; K

b

= K

3

s

;

and the boundary onditions of plae for the midsurfae deformation m on the Dirihlet part

of the lateral boundary 

0

,

m

j



0

= g

d

(x; y; 0) ; simply supported (�xed, welded) : (8.3)

The three possible alternative boundary onditions for the mirorotations R on 

0

are

R

j



0

= polar((rmjrg

d

(x; y; 0):e

3

))

j



0

; strong form of redued onsistent oupling ; (8.4)

8A 2 C

1

0

(

0

; so(3;R)) :

Z



0

hR

T

(rm(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds = 0 ; very weak onsistent oupling ;

R

3

j



0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; rigid diretor presription :

The onstitutive assumptions on the redued densities are
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W

mp

(U) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+

��

2�+ �

tr

�

sym(U � 11)

�

2

(8.5)

= � k sym((R

1

jR

2

)

T

rm� 11

2

)k

2

| {z }

shear-streth energy

+�



k skew((R

1

jR

2

)

T

rm)k

2

| {z }

�rst order drill energy

+

�(�+ �



)

2

�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

| {z }

lassial transverse shear energy

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

| {z }

elongational streth energy

;

W

urv

(K

s

) = �

L

1+p



12

(1 + �

4

L

q



kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

;

K

s

= (K

1

s

;K

2

s

;K

3

s

) 2 T(3) ; the redued third order urvature tensor ;

W

bend

(K

b

) = � k sym(K

b

)k

2

+ �



k skew(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

;

K

b

= R

T

(rR

3

j0) = K

3

s

; the seond order non-symmetri bending tensor :

The (relative) thikness of the plate (shell) is h > 0. The total elastially stored energy density

due to membrane-strain, total plate-urvature and spei� plate-bending

W = hW

mp

| {z }

membrane

+ hW

urv

| {z }

urvature

+

h

3

12

W

bend

| {z }

bending

; (8.6)
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k skew((R

1

jR

2

)

T

rm)k

2

=

�

hR

1

;m

y

i � hR

2

;m

x

i

�

2

.
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depends on the midsurfae deformation gradient rm and mirorotations R together with their

spae derivatives only through the frame-indi�erent measures U and K

s

. The miropolar

streth tensor U of the plate is in general non-symmetri, neither is the miropolar

redued third order urvature tensor K

s

. The three-dimensional plate deformation is

reonstruted as

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

R(x; y):e

3

; (8.7)

where

%

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

(2�+ �)

= 1�

�

2�+ �

tr

�

U � 11

�

+

hN

di�

; R

3

i

(2�+ �)

| {z }

�rst order thikness hange due to elongational streth

;

%

b

= �

�

2�+ �

h(rR

3

j0); Ri+

hN

res

; R

3

i

(2�+ �)h

| {z }

non-symmetri shift of the midsurfae due to bending

= �

�

2�+ �

tr [K

b

℄ +

hN

res

; R

3

i

(2�+ �)h

(8.8)

and N

di�

; N

res

as de�ned in (14.3). To �rst order, the reonstruted deformationgradient is

given by F

s

= (rmj%

m

R

3

). Here ! � R

2

is a domain with boundary �! and 

0

� �! is

that part of the boundary, where Dirihlet onditions g

d

for deformations and mirorotations

and/or onsistent oupling onditions for mirorotations, respetively, are presribed. The

redued external loading funtional �(m;R

3

) is a linear form in (m;R

3

) de�ned in (14.19)

in terms of the underlying three-dimensional loads. The parameters �; � > 0 are the Lam�e

onstants of lassial elastiity, �



� 0 is alled the Cosserat ouple modulus and L



> 0

introdues the internal length. We assume throughout that �

5

> 0; �

6

> 0; �

7

� 0. We have

inluded the so alled shear orretion fator � (0 < � � 1) to keep in line with lassial

in�nitesimal-displaement plate models (14.11). In our formal derivation, however, we obtain

� = 1. The redued model (8.1) is fully frame-indi�erent, meaning that

8 Q 2 SO(3;R) : W

mp

(Q

b

F ;QR) =W

mp

(

b

F ;R) ; K

s

(QR) = K

s

(R) : (8.9)

The non-invariant term %

m

is only needed to reonstrut the 3D-deformation, whih depends

on the non-invariant loading.

20

Strain and urvature parts are additively deoupled, as

in the underlying parent Cosserat bulk model (2.1). We note the appearane of the harmoni

mean H and arithmeti mean A

1

2

H(�;

�

2

) =

��

2�+ �

; �A(�; �



) = �

�+ �



2

: (8.10)

8.2 Mathematial results for the formal Cosserat thin plate model

For oniseness we state only the obtained results for the ase without external loads. It an

be shown diretly, without reourse to three-dimensional onsiderations [49℄:

Theorem 8.1 (Existene for 2D-Cosserat thin plate with �



> 0 and � > 0)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

)

and R

d

2 W

1;1+p

(!; SO(3;R)). Then (8.1) with �



> 0; � > 0; �

4

� 0; p � 1; q � 0 and

either free or rigid presription for R on 

0

admits at least one minimizing solution pair

(m;R) 2 H

1

(!;R

3

)�W

1;1+p

(!; SO(3;R)). �

Using the extended Korn's inequality [48, 56℄, the following has been shown in [52℄:

20

Of ourse, if the external trations are rotated as well, we obtain invariane: hQ:N

di�

;Q:R

3

i = hN

di�

; R

3

i.
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Theorem 8.2 (Existene for 2D-Cosserat thin plate with �



= 0 and � > 0)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

)

and R

d

2 W

1;1+p+q

(!; SO(3;R)). Then (8.1) with �



= 0; � > 0; �

4

> 0; p � 1; q > 0

and either free or rigid presription for R on 

0

admits at least one minimizing solution pair

(m;R) 2 H

1

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)). �

9 On the form of the transverse shear energy for non-

vanishing thikness and the shear orretion fator �

�-onvergene desribes the thin shell limit, but misses of ourse the fat that in atual om-

putations of thin strutures one wants to desribe a material with �nite thikness, whih an

sustain some amount of transverse shear.

If we ompare the two di�erent limit models (5.25),(8.1) desribed herein, we see that

lim

h

j

!0

1

h

j

I(m;R) in (8.1) oinides with the �-limit I

℄

0

in (5.25) as far as the loal energy on-

tributionW

mp

is onerned, apart from the oeÆient of the transverse shear energy. How then

should the transverse shear ontribution a priori look like, starting from a three-dimensional

view-point?

21

There is a large number of papers onerned with the e�etive (homogenized) oeÆient

of the transverse shear energy for isotropi linear elasti bulk material. The transverse shear

deformation in the �nite-strain Cosserat approah is proportional to

�

hR

3

;m

x

i; hR

3

;m

y

i

�

. The

orresponding transverse shear energy is proportional to hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

. If we assume

no warping (transverse setions remain straight), i.e. an ansatz of the form '(x; y; z) =

m(x; y) + %

+

(z)R(x; y):e

3

with %

+

: R 7! R

+

and a onstant diretor R:e

3

over the thikness,

the transverse shear energy is generally over-estimated. This ansatz leads to a linear distribution

of the transverse shear-stresses in the plate.

From diret equilibrium onsiderations for the bulk it follows, however, that the diretor

should be S-shaped over the thikness. Inluding this e�et amounts to introdue warping.

This orresponds to a "weaker" kinematial ansatz '(x; y; z) = m(x; y) + %

+

(z)Q(z)R(x; y):e

3

with an additional independent rotation �eld Q 2 SO(3;R), depending only on the transverse

variable z [73, 74℄. It leads to a quadrati distribution of the transverse shear stresses in

thikness diretion. In order to relieve the e�et of not inluding warping in the simpler ansatz,

the introdution of the shear orretion fator � an be motivated.

For both presented models, the transverse shear energy in our notation an be written in

the form

G

0

�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

; (9.11)

with a onstitutive oeÆient G

0

, the transverse shear modulus [G

0

℄ = [N=m

2

℄.

22

Summa-

rizing, we have

G

0

= �A(�; �



) = �

�+ �



2

formal redution (8.1) ;

G

0

= H(�; �



) = 2�

�



�+ �



�-limit (5.25) ; (9.12)

G

0

= �A(�; 0) = �

�

2

lassial linear Reissner-Mindlin (14.10) ;

21

The possible di�erene between W

urv

and W

hom

urv

is not our onern, sine the onstitutive oeÆients of

W

urv

are rather a matter of onveniene at present, as long as oerivity of urvature is guaranteed.

22

Mindlin's notation [45, eq.7℄.
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with � � 0, the so alled shear orretion fator.

23

There are various values for the shear

orretion fator � proposed in the engineering literature, among them prominently

� =

�

2

12

� 0:8225 ; Mindlin's value [45℄ ;

� =

87

100

= 0:8700 ; Babuska's value for � = 0:3 ;

� =

10

12� 2�

� 0:8772 ; Zhilin's value for � = 0:3 [1℄ ;

� =

10

12

� 0:8333 ; Reissner's value [57, 58℄ ; (9.13)

� =

10

12� 7�

� 1:01 R�ossle's value for � = 0:3 ;

�

2

12

� � < 1 ; Altenbah's estimate [1℄ :

These values for � are proposed in terms of best �tting of ertain simple in�nitesimal three-

dimensional quasistati or dynami test ases. Mindlin's value � =

�

2

12

is obtained from a best

�t of the �rst eigenfrequeny of the linearized plate model as ompared to the three-dimensional

linear elastiity solution. Reissner's value appears through an additional assumption regard-

ing the stress distribution through the thikness [57, eq.10℄. Babuska's value [5℄ is based on

numerial "experiments". By dimensional analysis it an be shown [1℄ that � should depend

on the Lam�e onstants only through the Poisson ratio 0 < � <

1

2

. Another motivation for

the introdution of � is obtained by trying to optimize the rate of onvergene of the linear

Reissner-Mindlin model to the solution of the linear elastiity model as h ! 0. This is the

argument for R�ossle's value [59℄. The fat that there � might be bigger than one annot easily

be aepted from a purely engineering point of view.

For 0 � � =

4��



(�+�



)

2

� 1 it holds that �A(�; �



) = H(�; �



). Hene, in view of our dedution

of the �-limit as ompared to the formal redution and the general inequality H(�; �



) �

A(�; �



) together with the linearization onsisteny of the �-limit (5.34) if �



= 0 it is strongly

suggested that � < 1, in aordane with engineering pratie, also in the �nite strain

ase.

The question of the form of the homogenized transverse shear energy is as well related to

the observation, that the �-limit energy funtional for �



= 0, should it exist, will neessarily

loose oerivity, whih an diretly be traed to the missing transverse shear ontribution but

this loss of oerivity is not due to the missing drill-energy. In this respet, note that W

mp

(U)

in (8.5) leads to a oerive formulation w.r.t. the midsurfae deformation m also for �



= 0.

Moreover, in a linearized ontext, this energy is asymptotially orret for �



= 0 and � = 1,

f. (14.11).

For numerial alulations, the "homogenized" energy I

℄;0

0

, whih is indeed the �-limit

energy funtional for �



= 0, an hardly be regarded as suitable in this ase. From a more

pratial, omputational viewpoint then, the introdution of a stritly positive shear orretion

fator 0 < � < 1 is fully justi�ed and provides exatly that neessary minimal hange of the

loal energy used in I

℄;0

0

, in order to re-establish �rst strit Legendre-Hadamard elliptiity w.r.t.

m (but not loal strit onvexity) and seond oerivity for the midsurfae in H

1;2

(!;R

3

). This

underlines the salient features of the formal derivation together with �



= 0 and 0 < � � 1.

23

"In the lassial Reissner-Mindlin model, the shear stresses �

13

; �

23

(= hR

3

;m

x

i; hR

3

;m

y

i) are onstant

through the thikness of the plate. However, three-dimensional tration free boundary onditions at the upper

and lower fae of the shell imply that at these faes, the stresses have to be zero, hene also the shear stresses have

to be zero. An analysis of equilibrium for an elasti beam shows that the shear stress should be quadrati through

the thikness and vanish at the faes. A onstant shear stress distribution over the thikness overestimates

therefore the shear energy. A orretion fator, known as the shear orretion fator is often used to redue the

energy assoiated with transverse shear and aurate estimates of this fator an be made for elasti beams and

shells. For nonlinear materials, however, it is diÆult to estimate a shear orretion fator." [6, p.554℄.
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Figure 1: The assumed Cosserat plate kinematis inorporating transverse shear (R

3

6= ~n

m

),

thikness streth (%

m

6= 1) and drill-rotations. Reonstruted three-dimensional deformation

'

s

: 


h

� R

3

7! R

3

, reonstruted mirorotation R

3d

: 


h

� R

3

7! SO(3;R); R

3d

(x; y; z) =

R(x; y), midsurfae deformation m : ! � R

2

7! R

3

and mirorotation of the plate R : ! �

R

2

7! SO(3;R).

10 Consequenes for the Cosserat ouple modulus �



It is generally aepted in the engineering literature that really thin strutures annot support

a non-vanishing transverse shear ontribution. We introdue therefore the postulate

Postulate 10.1 (Vanishing transverse shear)

Regardless of material onstants, in the limit of arbitrarily thin, homogeneous isotropi stru-

tures, i.e. for h! 0, transverse shear e�ets are altogether absent. �

Sine the �-limit faithfully desribes the leading order term for vanishing thikness, this pos-

tulate implies that the Cosserat ouple modulus �



must vanish as well, sine otherwise one

would have to deal with a remaining homogenized transverse shear ontribution in the thin

plate limit.

This statement has far reahing onsequenes: it has never been possible to unequivoally

identify spei� values for the Cosserat ouple modulus �



> 0 in the experimentally oriented

literature. In light of our development the problem an be resolved in the following way: �



> 0

in the Cosserat bulk model is a numerial tuning or penalty parameter but not a

material onstant. That �



should be zero as a material onstant has been onjetured by

the �rst author already in [49, 52℄. The unexpeted formal proof of this statement has been

reahed now by our �-onvergene result.

A striking onsequene of this reasoning is that a linear Cosserat bulk model desribing

faithfully the behaviour of a material body, does not exist, sine for �



= 0 the

linearized �elds of in�nitesimal displaement and in�nitesimal mirorotation deouple, see [54℄.

In summary Postulate 10.1 implies that the in�nitesimal Cauhy stress tensor � must

always be symmetri.
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shear energy, if

formal

ansatz

(Ne�)

Reissner-Mindlin plate,

(p � 1; q > 0)

formal 2D-Cosserat plate, 2D-lassial linear

internal length L



> 0,

3D-geometrially exat Cosserat model, 3D-linear elastiity,

u 2 H

1;2

(
;R

3

)

displaement u,

existene+uniqueness:

R 2W

1;1+p+q

(
; SO(3;R))

deformation ', mirorotation R,

�



= 0, lin.

triad of "diretors" (R

1

jR

2

jR

3

) = R,

existene: (�



= 0; p � 1; q > 1) (p � 1; q > 0)

ommutative

diagram

2D-linear

"membrane" plate,

horizontal midsurfae

displaement v,

existene+uniqueness:

v 2 H

1;2

(!;R

2

)

internal length L



> 0,

membrane, urvature and bending,

mirorotation R,

existene: (�



= 0; p � 1; q > 0)

R 2W

1;1+p+q

(!; SO(3;R))

� = 0,

�-limit

(Anzellotti,

Ciarlet,

present)

no drill energy,

midsurfae displaement v,

existene+uniqueness:

v 2 H

1;2

(!;R

3

),

� 2 H

1;2

(!;R

2

)

one "diretor" �,(p � 1; q > 0)

�



= 0, lin.

�



= 0, lin.

' 2 H

1;2

(
;R

3

),

(present)

�-limit

"two-�eld"

midsurfae deform. m,

mirorotation R,

geometrially exat,

internal length L



> 0,

R 2W

1;1+p+q

(!; SO(3;R))

same transverse

� =

4� �



(�+�



)

2

� 1

midsurfae deform. m,

displaement

loss of vertial

2D-"membrane" Cosserat plate,

m 2 H

1;2

(!;R

3

),

(�



> 0)

membrane, urvature, no bending,

existene: (�



> 0; p � 1; q > 0)

m 2 H

1;2

(!;R

3

),

geometrially exat,

shear orretion: 0 < � � 1,

shear orretion: 0 < � � 1,

"membrane" plate,

only for

ertain

deform. m

idential

geometrially exat,

non-resistane

in ompression,

existene:

tension �eld theory,

midsurfae deform. m,

m 2W

1;4

(!;R

3

)!

m ontinuous

(Le Dret/Raoult)

2D-quasionvex

3D-nonlinear St. Venant-Kirhho�,

geometrially exat,

deformation ',

existene:

' 2W

1;4

(
;R

3

)?

not quasionvex and not ellipti,

2D-nonlinear

"membrane" plate,

geometrially exat,

not quasionvex,

midsurfae deform. m,

existene:

m 2W

1;4

(!;R

3

)?

�-limitlinearization

linearization

Fox/Raoult/Simo)

(Miara,

asymptoti analysis

formal

loss of vertial

displaement

ommutative

diagram

3
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12 Open problems and disussion

We have rigourously justi�ed the dimensional homogenization of a geometrially exat Cosserat

bulk model to its two-dimensional ounterpart by use of �-onvergene arguments. In starting

from a "true" Cosserat bulk model, the appearane of an independent diretor �eld R

3

is

most natural. The argument is given for plates (at referene on�guration) only, but it is

straightforward to extend the result to genuine shells with urvilinear referene on�guration

and it should be noted that the extension to shells is independent of geometrial features of

the urvilinear referene on�guration. The inlusion of transverse shear e�ets makes the

distintion between ellipti, paraboli and hyperboli surfaes in a ertain sense obsolete. A

welome feature of the obtained �-limit is its linearization onsisteny.

Perhaps not so lear is an extension to the weak onsistent oupling boundary ondition

in the Cosserat bulk problem, whih might have an inuene on the form of the homogenized

transverse shear energy.

As a by-produt of our development, we have obtained information on the numerial value

of the Cosserat ouple modulus �



in the bulk model: it should be set to zero whih implies the

symmetry of the in�nitesimal Cauhy stresses �. Moreover, for �



= 0, a value 0 < � < 1 for

the shear orretion fator in the formal model is physially onsistent, amounts to the inlusion

of transverse shear and omputationally stabilizes the model. In this sense, the lassial linear

Reissner-Mindlin model, whih is not a �-limit of lassial linear elastiity an now be seen

as linearization of the geometrially exat Cosserat � � lim sup for �



= 0 with additional

transverse shear stabilization.

The proposed two-dimensional Cosserat "membrane" plate (shell) model may as well have

appliations in those ases, where lassial surfae theory is not suÆient. This an be the ase,

if the surfae to be investigated is not smooth enough, i.e. m 62 H

2;2

(!;R

3

) in the presene of

failure along asymptoti lines of the surfae. Our �-limit formulation is in priniple well-posed

for midsurfae parametrizations m 2 H

1;2

(!;R

3

).

Future work should investigate the numerial virtues of the formulation with non-vanishing

transverse shear energy.
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14 Appendix

14.1 The �-limit for the resaled linear bulk problem

�-limit investigations for the lassial linear bulk problem are already well-known [12, 3℄. How-

ever, while giving generially onsistent results, they are based on di�erent saling assumptions.

In order to establish linearization onsisteny of our formulation, it is therefore neessary to

use the same saling for the linear problem as for the �nite-strain problem.

While we want to draw �nally onlusions as regards lassial linear elastiity, we study in

a �rst step a quadrati funtional whih is stritly bigger than that of linear elastiity if we put

�



> 0. Let us investigate therefore the �-limit of the sequene of quadrati energy funtionals
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This resaled formulation an be easily obtained from the �nite strain formulation (3.11) by

setting R

3d;℄

(�) = 11 and negleting urvature ontributions altogether. Note that this is not

the resaled formulation of a linear Cosserat bulk model, sine in�nitesimal rotations are absent.

The major advantage of this de�nition for J

℄

h

is that the �-limit J

℄

0

an be immediately

read of based on the �nite-strain development. The �-limit for problem (14.1) is given by
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the following two-dimensional minimization problem for the deformation of the midsurfae
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The dimensionally homogenized quadrati density is
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Proof. The proof follows with minor hanges from the nonlinear proof of (5.25). One only has

to replae R by 11 and skip the urvature part. Equi-oeriveness follows from loal oerivity

for �



> 0. �

In terms of the midsurfae displaement v 2 R

3

we obtain equivalently the formulation
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The dimensionally homogenized quadrati density reads then
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Sine J

℄

h

for �



> 0 is stritly bigger than the same funtional for �



= 0, independent of h > 0,

it is easy to see [42, Prop. 6.7℄ that
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and we obtain an upper bound for the �� lim sup of lassial linear elastiity by taking �



= 0

in (14.4). Setting �



= 0 in (14.4) deouples the horizontal from the vertial omponents in

whih ase one has to assume that body fores have no vertial omponent and boundary data

are purely horizontal in order for the remaining lassial linear "membrane" problem to be well-

posed. This is a degeneration of the lassial linearized formulation: a linear "membrane"

plate annot sustain its own weight without being pre-stressed, whih is well known.

14.2 Linearized plate models

14.2.1 Relations to the lassial in�nitesimal-displaementReissner-Mindlinmodel

Let us linearize a variant of the proposed new �nite-strain Cosserat plate (8.1) for situations

of small midsurfae deformations and small urvature. We assume here �

4

= 0; q = 0; p >

1.

24
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24

The linearization for the ase �

4

= 0; q = 0; p = 1; �



> 0 is similar to the stati miropolar plate model

derived by Eringen [26, eq. 8.6℄.
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and the Cosserat miropolar plate streth tensor expands like
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Sine p > 1, the additional Cosserat urvature ontribution has an exponent stritly bigger

than two suh that a linearization w.r.t. zero urvature K

s

does not yield any ontribution of

this term. The onsistent oupling ondition is also expanded:
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Z

!

h

�

� k sym((rvjA

3

))k

2

+ �



k skew((rvjA

3

)�A)k

2

+

��

2�+ �

tr

�

sym((rvjA

3

))

�

2

�

+

h

3

12

�

� k sym((rA

3

j0))k

2

+ �



k skew((rA

3

j0))k

2

+

��

2�+ �

tr

�

sym((rA

3

j0))

�

2

�

d!

��(v;A

3

) 7! min : w.r.t. (v;A);

v

j



0

= u

d

(x; y; 0) ; simply supported (�xed, welded) ; (14.10)

A

j



0

= skew((rvj�

z

u

d

))

j



0

; lin. oupling ) A

3

j



0

=

 

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0

!

T

;

A

3

j



0

= (u

d

1;z

; u

d

2;z

; 0)

T

; alternatively: rigid diretor presription :

Now onsider the ase of zero Cosserat ouple modulus �



= 0. In this ase in�nitesimal

in-plane rotations (linearized drilling degrees of freedom: A

12

= �A

21

) do not "survive" the

linearization proess. Abbreviating now � = (�

1

; �

2

; 0)

T

= �A

3

, we are left with the following

set of equations for the displaement of the midsurfae of the plate v : [0; T ℄� ! 7! R

3

and the

in�nitesimal inrement of the diretor, the in�nitesimal "diretor", � : ! 7! R

3

:

Z

!

h

0

B

B

�

� k symr(v

1

; v

2

)k

2

+ �

�

2

krv

3

� �k

2

| {z }

transverse shear energy

+

��

2�+ �

tr [symr(v

1

; v

2

)℄

2

1

C

C

A

+

h

3

12

�

� k symr�k

2

+

��

2�+ �

tr [symr�℄

2

�

d! ��(v;��) 7! min : w.r.t. (v; �) ;

v

j



0

= u

d

(x; y; 0) ; simply supported ; (14.11)

��

j



0

=

 

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0

!

T

; linearized onsistent oupling ;

��

j



0

= (u

d

1;z

; u

d

2;z

; 0)

T

; alternatively: rigid diretor presription ;

with the so-alled shear orretion fator � = 1.

A further redution arises if we assume only normal displaements: v

1

= v

2

= 0. The
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resulting minimization problem for the deetion v

3

and the "diretor" � is

Z

!

h

��

2

krv

3

� �k

2

+

h

3

12

�

� k symr�k

2

+

��

2�+ �

tr [symr�℄

2

�

d!

��(v

3

� e

3

;��) 7! min : w.r.t. (v

3

; �); (14.12)

v

3
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0

= u

d

3

; simply supported ;

��

j



0

=

 

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0

!

T

linearized onsistent oupling ;

��

j



0

= (u

d

1;z

; u

d

2;z

; 0)

T

; rigid diretor presription :

In this last form with rigid boundary presription, the Reissner-Mindlin plate-bending problem

is lassial and an be found in many textbooks, e.g. [9, p.281℄ or [72, 4℄ with Reissner's value

� =

5

6

. It should be noted, however, that in our formal, variationally based �nite-strain deriva-

tion with subsequent linearization there is no imminent reason to introdue � 6= 1. In fat, the

shear orretion fator � an be seen as a tuning parameter of the in�nitesimal-displaement

model whih, for ertain types of loading,

25

allows to improve the order of onvergene of

the in�nitesimal-displaement Reissner-Mindlin solution to the three-dimensional linear elas-

tiity solution [59℄.

26

Note the novel non-standard Dirihlet boundary ondition of linearized onsistent

oupling for the remaining in�nitesimal "diretor" �, motivated from the onsisteny ondition

of the Cosserat bulk model. In ontrast to the standard rigid diretor presription, the new

oupling ondition seems to redue the strength of the boundary layer. In a diret derivation

of the Reissner-Mindlin plate equations (14.11) there is no reason to introdue this weakened

ondition. However, a mathematial analysis based on the onsistent oupling ondition shows

that the new boundary ondition an only be satis�ed in the distributional sense on 

0

. Let us

de�ne therefore the admissible set

A

lin

:= fv

3

2 H

1

(!;R); � 2 H

1

(!;R

2

) j v

3

j



0

= u

d

3

;

Z

!

k�k

2

d! � j!j ;

8� 2 C

1

0

(

0

;R

2

) :

Z



0

h�2� �

�

u

d

1;z

u

d

2;z

�

; �i

R

2

� v

3

� Div � d! = 0 g ; (14.13)

whih inorporates the linearized onsistent oupling ondition in the distributional sense, the

standard Dirihlet boundary ondition at 

0

, as well as an additional onsisteny ondition for

the linearization.

27

One an easily show that (14.12) admits a minimizer inA

lin

. If k�k

L

2

(!;R

2

)

<

j!j, the solution is unique.

14.2.2 The lassial in�nitesimal-displaementKirhho�-Love plate (Koiter model)

For the onveniene of the reader we also supply the similar system of equations for the lassial

in�nitesimal-displaement Kirhho�-Love plate (also the Koiter model) whih an be derived as

25

Hene the shear orretion fator � shows some similarity to the Cosserat ouple modulus �



, whose inuene

on the solution of the three-dimensional problem is also strongly dependent on boundary onditions. For rather

thik plates, it is known that the shear energy in (14.11) is overestimated, therefore, one is led to redue the

shear energy ontribution a posteriori by taking � < 1.

26

It would be interesting to know the optimal shear orretion fator 0 < � � 1 of the in�nitesimal-

displaement Reissner-Mindlin model with our redued onsistent oupling boundary ondition. Suh an opti-

mized parameter should also be bene�ial for the �nite-strain Cosserat plate. However, it might turn out that

the new boundary ondition of weak onsistent oupling makes the arti�ial introdution of � < 1 superuous.

Note as well, that � = 0 deouples the horizontal "membrane" displaement in (14.11) from the vertial om-

ponent and the bending term. In this sense, � ats similarly as the Cosserat ouple modulus �



in the linear

Cosserat bulk model.

27

The unit "diretor" R

3

is expanded as R

3

= e

3

� �+ : : :. Any � with k�(x; y)k > 1 pointwise, is inonsistent

with the minimal requirement 1 = kR

3

:e

1

k � k(e

3

+ �):e

1

k. As a onsequene, we impose

R

!

k�k

2

d! � j!j.
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linearization of the �nite-strain Kirhho�-Love plate. In terms of the midsurfae displaement

v we have to �nd a solution of the minimization problem for v : ! � R

2

7!2 R

3

:

Z

!

h

�

� k symr(v

1

; v

2

)k

2

+

��

2�+ �

tr [symr(v

1

; v

2

)℄

2

�

+

h

3

12

�

� kD

2

v

3

k

2

+

��

2�+ �

tr

�

D

2

v

3

�

2

�

d! ��(v;�rv

3

) 7! min : w.r.t. v ;

v

j



0

= u

d

(x; y; 0) ; simply supported (�xed, welded) ; (14.14)
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3;x

2

;

u

d

2;z
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2
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!

T

; lin. oupling) �rv
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0

= (u

d

1;z

; u

d

2;z

; 0)

T

;

�rv

3

j



0

= (u

d

1;z

; u

d

2;z

; 0)

T

; rigid presription of the in�nitesimal inrement of the "normal" :

This energy an also be obtained formally from (14.12) by onstraining the linearized diretor

to the linearized normal of the plate, i.e. setting � = rv

3

. If this is done, we observe that

the new boundary ondition of onsistent oupling oinides in fat with the lassial boundary

ondition of the Kirhho�-Love plate.

14.3 The treatment of external loads

14.3.1 Dead load body fores for the thin plate

In the three-dimensional theory the dead load body fores f(x; y; z) 2 R

3

were simply inluded

by appending the potential with the term

R




h

f(x; y; z) � '(x; y; z) dV. We de�ne

^

f

0

(x; y) :=

Z

h=2

�h=2

f(x; y; z) dz ;

^

f

1

(x; y) :=

Z

h=2

�h=2

z f(x; y; z) dz ; (14.15)

suh that

^

f

0

;

^

f

1

are the zero and �rst moment of f in thikness diretion.

14.3.2 Tration boundary onditions for the thin plate

In the three-dimensional theory the tration boundary fores N(x; y; z) 2 R

3

were simply

inluded by appending the potential with the term

R

�


trans

h

[f

s

�[�

h

2

;

h

2

℄g

N(x; y; z) � '(x; y; z) dS.

We de�ne

^

N

lat;0

(x; y) :=

Z

h=2

�h=2

N(x; y; z) dz ;

^

N

lat;1

(x; y) :=

Z

h=2

�h=2

z N(x; y; z) dz ; (14.16)

suh that

^

N

lat;0

;

^

N

lat;1

are the zero and �rst moment of the trations N at the lateral boundary



s

in thikness diretion. Moreover, we abbreviate

N

res

:= [N(x; y;

h

2

) +N(x; y;�

h

2

)℄ ; N

di�

:=

1

2

[N(x; y;

h

2

)�N(x; y;�

h

2

)℄ : (14.17)

14.3.3 The external resultant loading funtional �

For a �rst approximation plate formulation we set to leading order:

f =

^

f

0

+N

res

; resultant body fore ;

M =

^

f

1

+ hN

di�

; resultant body ouple ; (14.18)

N =

^

N

lat;0

; resultant surfae tration ;

M



=

^

N

lat;1

; resultant surfae ouple :
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The resultant dead load loading funtional � is then given by the linear form

�(m;R

3

) =

Z

!

hf;mi+ hM;R

3

i d! +

Z



s

hN;mi+ hM



; R

3

i ds : (14.19)

If we denote the dependene of � on the loads of the underlying three-dimensional problem as

�(f;N ; m;R

3

), then it is easily seen that frame-indi�erene of the external loading funtional

is satis�ed in the sense that �(Q:f;Q:N ; Q:m;Q:R

3

) = �(f;N ; m;R

3

) for all rigid rotations

Q 2 SO(3;R). It is possible to use the same funtional form of the loading funtional for all

�nite-strain and in�nitesimal-displaement models. We only need to replae (m;R

3

) by

(m;~n

m

); (v;A

3

) for the di�erent �nite and linearized models, respetively.

14.3.4 The modi�ed external resultant loading funtional �

℄

In view of a possible mathematial analysis of the ase with zero Cosserat ouple modulus �



= 0

we need to modify (14.19) into a live load resultant loading funtional �

℄

, whih better

reets the observation that by arbitrary translation of a material in a onservative fore �eld

only a �nite amount of work an be gained. This is ertainly true for any real physial �eld.

In the three-dimensional theory we have alled this the "priniple of bounded external

work". Therefore we de�ne the nonlinear form

�

℄

(m;R

3

) =

Z

!

hf;

m

1 + [kmk �K℄

+

i+ hM;R

3

i d! +

Z



s

hN;

m

1 + [kmk �K℄

+

i+ hM



; R

3

i ds :

(14.20)

HereK > 0 is a possibly large onstant and [�℄

+

denotes the positive part of its salar argument.

We note that (14.20) is automatially bounded, if f;M 2 L

1

(!;R

3

) and M



; N 2 L

1

(

s

;R

3

).

Moreover, the linearization of �

℄

oinides with the linearization of �
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