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Abstract

We prove the local existence and uniqueness to a geometrically exact, observer-invariant
membrane-plate model introduced by the author. The model consists of an elliptic partial
differential system of equations describing the equilibrium response of the membrane which is
nonlinearly coupled with a viscoelastic evolution equation for exact rotations, taking on the
role of an orthonormal triad of directors. This coupling introduces a viscoelastic transverse
shear resistance.

Refined elliptic regularity results together with a new extended Korn’s first inequality for
plates and shells allow to proceed by a fixed point argument in appropriately chosen Sobolev-
spaces in order to prove existence and uniqueness.
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1 Introduction

1.1 A finite viscoelastic membrane-plate model

We study a geometrically exact, observer-invariant membrane-plate model that has been derived
in [34] which incorporates viscoelastic transverse shear resistance due to an additional field of
independently evolving rotations R € SO(3,R).! The model in a variational formulation reads:
find the deformation of the midsurface of the membrane-plate m : [0,T] x @ ~ R3 and the
independent local viscoelastic rotation R : [0,7] x @ — SO(3,R) such that m minimizes on @

/hW(F,}_%) — (f,m)dw ~ min.w.r.t. m at given R, (1.1)

with prescribed Dirichlet boundary conditions for simple support m (t,z,y) = ga(t,z,y), (x,y) €
Yo C Ow. The constitutive assumptions on the densities are

_ o A o 2
W (F,R) = % IFTR+ R F — 21| + g [FTR +RF- 211] , (1.2)

(Nair, R3)
2u+ A

A
1_
20+ A

F = (Vm|omRs), om= [(Vm|0), R) — 2] +

The local viscoelastic evolution for the ”moving three-frame” R(t,z,y) € SO(3,R) is given by

dg = %) r T 5
1 B0 = vt .skew (B™)-R(t), B™ =B or B, vT=v"(F,R)eR", (13)

B0 = uFR', B = [M(Q 1-FR)+A3—(FR ,W)1])| FE', R(0) € SOB3,K).
This evolution equation guarantees that indeed exact rotations are determined whatever form the
resultant (res) generator of the group B™ € M**3 has. By ¢ we mean the observer-invariant
(corotated) time derivative on SO(3, R)

dg ‘_ d - ~ d
LIRE] = RO -00) RO), &= 1100] Q1) (14)

where Q(t) € SO(3,R) is the rotation of the current frame with respect to the inertial frame and
@ is the corresponding angular velocity. Without loss of generality, we confine attention to the
d

inertial frame, i.e. @ = 0 and ((ll—‘g = ;- The term vt € RT represents a scalar valued function

. . . . . =0 . o i, . .
introducing viscoelasticity and specified subsequently. R is the initial condition for the viscoelastic
rotation part. Transverse shear (Rs # fi,,, where i, is the unit normal to the surface given by

. . 0 0 . . . . X
m) occurs viscoelastically. Byrewy or B¢ are alternative constitutive choices for B™* in (1.3).

B™*Y is mechanically motivated (mech) while Bie>? is in addition thermodynamically consistent
(tc). This notation derives from the underlying modelling paper [34].

Here, w C R? denotes the flat referential domain of the membrane-plate with smooth boundary
Ow and 9 C Ow is a part of the boundary supposed to have full one-dimensional Hausdorff measure.
The relative thickness of the plate is b > 0, f denotes the applied resultant body loading while
Naigr denotes a resultant surface couple (see (6.7)). The function g, accounts for thickness
stretch of the membrane which is linearly coupled to the membrane stretch [((Vm|0), R) — 2],
such that locally stretching the membrane decreases the thickness.

The three-dimensional deformation ¢ : @ X [—%, %] — R® of the underlying thin structure is

supposed to be reconstructed by

— h h
@s(wayaz) = m(m,y) +ng(£13,y) Rg(l’,y), zZ € [_57 5]7

(1.5)
where R3 := R.e3 and corresponding reconstructed deformation gradient V(e Ps(2,y,0) ==
F = (Vm|om R3), evaluated at the midsurface z = 0. Viewing (1.5) as an ansatz for the three-
dimensional deformation with yet indetermined p,, and inserting this ansatz into the underlying
three-dimensional problem the form of the factor g,, turns out to be an exact analytical conse-
quence of the thickness-averaged three-dimensional stress conditions at the upper and lower face
of the plate. The other notation is found in the appendix.

!The rotations R € SO(3,R) can be thought of as a viscoelastically adjusted orthonormal triad of directors.
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Figure 1: The assumed membrane-plate kinematics incorporating viscoelastic transverse shear
(R3 # 7im), instantaneous (elastic) thickness stretch (on, # 1) and viscoelastic drill-rotations.
Reconstructed three-dimensional deformation s(z,y,2) = m(z,y) + 2z om(x,y) R3, midsurface

deformation m, independent viscoelastic rotation R.

The introduced problem (1.1,1.2,1.3) is observer-invariant (geometrically exact) in the sense
that if the pair (m, R) is a solution then for arbitrary Q(t) € SO(3,R) the rigidly rotated pair
(Q(t).m,Q(t)R) is also a solution to rotated data. This requirement is crucial for a consistent
description in continuum mechanics but violated by whatever infinitesimal-displacement models.
This necessary requirement introduces automatically a certain type of nonlinearity which we aim
to analyze.

It is also important to note that after all W (F, R) depends at most quadratically on Vm, the
membrane deformation gradient, at given R, despite appearance in (1.2). This can be seen by a
lengthy but straightforward calculation given in (6.3). It shows that in terms of what will be called
the reduced reconstructed deformation gradient F= (Vm|R3) and Ngig = 0 in fact

W(ER) = pllsym (FTR - 1) 2+ 5 tr fsym (F7R — 1)

o A P 2

— 1t ||sym FTR—IL) 2+u7tr[sm(FTR—Il)] : 1.6

pllsym P+ G o [ (1.6)

showing the apparent change of the Lamé moduli for the three-dimensional structure (i, A) to the
reduced (homogenized) moduli of the two-dimensional structure (u, %) Note that % =

2H(p, 3) with H the harmonic mean. This is a characteristic feature of lower-dimensional the-
ories which otherwise would not be asymptotically correct.

The goal of this contribution is to prove the well-posedness of (1.1,1.2,1.3). More precisely, we
show the following result, for which we choose the positive function vt in the viscoelastic flow part
1.3 formally similar to a conventional Norton-Hoff formulation of viscoplasticity theory

(1.7)

5o N o . lIskew (Bres) |

1 kew(u FRV)-01"\ " 1l skew (B7) || —01" 1
Y lns ew(uFR )| - ] _[ns ew (B") || -
n

with 69 = 1[MPa], non-dimensional parameters 7o, kg > 1 and 7 plays the role of a relaxation time
with units [] = sec. Within this setting we show



Theorem 1.1 (Local existence and uniqueness for problem (1.1,1.2,1.3))
Let h > 0 and w C R? be a bounded smooth domain and suppose for the displacement boundary

data gq € C'(R, H*?(w,R?)) and for the resultant body force f € C*(R, H"? (w,R?)). Assume for

the initial condition R € H??(w,S0(3))). Then there exists a time t; > 0 such that the initial
boundary value problem (1.1,1.2,1.3) with vT in the form (1.7), pure displacement boundary data
and Ngijg = 0 admits a unique solution

(m, R) € C([0,t:], H**(w,R%)) x C*([0, 1], H**(w,SO(3))). u

1.2 Relation to existing work

The dimensional reduction of a given model is already an old and mature subject and it has seen
many ”solutions”. The different approaches toward elastic shell theory proposed in the literature
and relevant references thereof are, therefore, too numerous to list here. In any case our proposal
falls within the so called derivation approach, i.e., reducing a given three-dimensional model via
(physically) reasonable constitutive assumptions to a two-dimensional model as opposed to either
the intrinsic approach which views the shell from the onset as a two-dimensional surface and
invokes concepts from differential geometry or the asymptotic methods which try to establish
two-dimensional equations by formal expansion of the three-dimensional solution in power series in
terms of a small parameter. The intrinsic approach is closely related to the direct approach which
takes the shell to be a directed medium in the sense of a restricted Cosserat-theory [12].2 A
detailed presentation of the classical shell theories can be found in [28]. A thorough mathematical
analysis of linear, infinitesimal shell theory, based on asymptotic methods is to be found in [8] and
the extensive references therein, see also [7, 10, 1, 13, 14]. Reviews and insightful discussions of
the modelling and finite element implementation may be found in [41, 39, 40, 23, 24, 2, 4] and
in the series of papers [42, 44, 45, 47, 46, 43, 11]. Properly invariant elastic plate theories for
membrane and bending are derived by formal asymptotic methods in [21] and extended to the case
of curvilinear coordinates in [27, 26].

The mathematical analysis establishing the wellposedness of all the infinitesimal linearized
models is fairly well established and will not be our concern.

In the finite-strain, geometrically exact elastic case, mostly based on the Saint Venant-Kirchhoff
free energy density p||E|> + 3tr [E)” where E = $(FTF — 1), the formal asymptotic methods
are still successful in that they identify again leading membrane and bending terms. As far as
the occurring membrane contribution is concerned, it is the form (3.50) which is given e.g. in
[22, 21, 27]. However, variational methods based on scaling assumptions and I'-convergence [15]
suggest a fundamentally different membrane term which leads to a non-resistance of the membrane
plate/shell in compression.? The non-resistance to compression in this analysis is related to the use
of the quasiconvex hull* QWy of a dimensionally reduced St.Venant Kirchhoff energy, see (3.52).
This quasiconvex hull, surprisingly enough, can be given in closed form [17, 25] and shows to be
in general positive but zero in the compression range.

The classical linear models proposed in the literature lead to effective numerical schemes only
if the thickness h of the structure is still appreciable, i.e. classical bending terms are present and
regularize the computation. However, there is an abundance of new applications where very thin
structures are used, e.g. very thin metal layers on a substrate (in computer hardware, for the
characteristic non dimensional relative thickness h < 5-107*). See [3] for an application to thin
films.

Since locally rotating the thin structure is energetically ”cheap” compared to stretching, we
are forced to consider models including finite rotations in an objective manner. But the proposed
finite-strain membrane terms found in the literature are either non-elliptic and the remaining
(minimization) problem is not well-posed or they lead to the aforementioned non-resistance in
compression. We view the model (1.1,1.2,1.3) as a partial answer to these problems. A different
approach to the same problem has been taken in [35], where balance equations for rotations are
prescribed instead of evolution equations as in (1.3).

2Restricted, since no material length scale enters the direct approach, only the thickness h appears.

3They remark [16, p.550]: ”...then the corresponding nonlinear membranes offer no resistance to crumpling. This
is an empirical fact, witnessed by anyone who ever played with a deflated balloon.”

47 . the fact that this function is not quasiconvex already implied that it had to be relaxed in order to give rise
to a well posed problem.” [16, p.575].



1.3 Preliminaries and general mathematical framework

Let us outline how we show that the nonlinear problem (1.1,1.2,1.3) admits a unique local solution.
Since we will heavily use elliptic regularity, we confine attention to the case without external surface
tractions.> At ”frozen” rotations R € SO(3,R) the corresponding system of elastic balance of linear
momentum proves to be a linear, second order, strictly Legendre-Hadamard elliptic boundary value
problem with non-constant coefficients set by R. This system has variational structure in the
sense that the equilibrium part of (1.1,1.2,1.3) is equivalent to the elastic minimization problem

Vte[0,T]: I(m(t),R(t)) = min. wr.t. m, m(t) € gs(t) + H:*(w,R%;y0), (1.8)
where
I )= [ WW(ER) - Fmdo, F = (Vim[Fa), (1.9)
W (F,R) := % IFTR+ R F — 21| + 8A tr [FTE +RF - 211]2 .
(2p+ A)

The weak form of the corresponding equilibrium equation is given by

Lemma 1.2 (Weak form of static elastic problem)
A minimizer m € HV?(w,R?) of (1.8) is a weak solution to the equilibrium problem

0= / W(DeW (F,R), (VO0)) — (F,d)dw Vo€ H-(w, B) . (1.10)

If the appearing quantities are smooth enough, this is equivalent to the strong form

2p
20+ A

0=hDivR {M(FT}_%+§TF—211)+ tr [FTR—1j1| + f. (1.11)
For the reduced reconstructed deformation gradient F = (Vm|R3) it holds that
FTR = (Vm|R3)"R = ((Vm|0) + (0]0[Rs))” & = (Vm|0)"R + (0[0]es) , (1.12)

and we have also the alternative representation

_ _ A _
h Div R {,u((Vm|O)TR + R (Vm|0)) + 22’1 Tt [(Vm|0)"R]1| = (1.13)
— 7 +h Div [2<u+32u“i)\>ﬁ} . m

Note the appearance of a ”virtual” body force contribution on the right hand side in (1.13) due
to the inhomogeneities inherent in R which can be seen as a permanent source of internal stresses.
This weak form (1.13) can be written in the shortcut form

h Div D(R(z,y)).(Vm|0) = —f + h DivV (R(z,y)), my,, =ga, (1.14)

where we introduced the corresponding elasticity tensor D and the additional right-hand side
contribution V' according to the next definition in line with (1.13):

Definition 1.3 (Homogenized two-dimensional elasticity tensor)
We define the two dimensional elasticity tensor D : ME*? — Lin(MB*3 MB3*3) and the right hand
side V : M3*3 s M2*3 by

_ _ - 20U\ —
VHeM>*3: D(R).H::R[N(HTR+RTH) + 2ul:_)\tr [H'R|1| ,
_ ) _
=2 1.1
V(R) (“+32M+A> R, (1.15)

5The case with non-vanishing transverse surface tractions Ngjg can be easily included since it involves only a
modification of the resultant body force.



respectively. Note that D is a nonlinear mapping with respect to R, while V remains linear and

2u\
D(1).H = |u(HT + H) + ’:L/\ tr [H]1L (1.16)
is the two-dimensional homogenized elasticity tensor of linear elasticity. |

A startling difficulty which we encounter in the treatment of (1.13) is that the elasticity tensor
D = D(R), although turning out to be uniformly Legendre-Hadamard elliptic, does not induce a
pointwise uniformly positive bilinear form on the symmetrized strains as in (3.49) for R = 11, (4 =
0). To see nevertheless the uniform Legendre-Hadamard ellipticity, we prove

Lemma 1.4 (Uniform Legendre-Hadamard ellipticity)
Assume that R : w — SO(3,R). Then the system (1.13) with elasticity tensor D given by Definition
1.3 is uniformly Legendre-Hadamard elliptic in the sense that

et >0VEE R, neR . (D(R(x,y))-(€ @1]0), (€ ®@n|0)) > c* [I€]lks lInllzz (1.17)
and the ellipticity constant is independent of R(z,y).

Proof. Set /) = (1,72,0)” with n € R? implying £ ® i} = (£ ® |0). For I given by Definition 1.3
we have

(DR () © 110), (€ & l0)) = D, W (Vinf ), B)(€ & 010), (€ 2 7[0)
= BIR (€ 0l0) + (€00 I + gsoser [R (€ nio) + (€0 0" R

> EVR" (¢ 2 n)0) + (€ @ n]0) "R

= u|R" €@ nl0)|> + 1 (R (€ ©1]0), (€ ©7|0)"R)
= pll€2n0)|? +p® £2n,HeOR) (1.18)
= pllE@ NP +n@®" £®77 A19R £

> g 0 ll2 + B &) = o IAllEs = s 1€)s InllZe

The uniformity of the estimate is only true since rotations R(z,y) € SO(3,R) leave length constant:

IR.&]l = ll¢]l- u

Despite the missing pointwise uniform positivity, we prove the existence, uniqueness and reg-
ularity of solutions to the boundary value problem (1.13). The existence part for (1.13) relies
heavily on the following Theorem recently proved by the author extending Korn’s first inequality
to non-constant coefficients and overcoming the lack of uniform positivity of (1.8). This theorem
has been proved in the context of multiplicative plasticity, from which the notation F), originates.

Theorem 1.5 (Extended 3D-Korn’s first inequality)

Let Q C R® be a bounded Lipschitz domain and let T' C 8§ be a smooth part of the boundary with
non vanishing 2-dimensional Hausdorff measure. Define Hy*(Q,T) := {¢ € H'*(Q) | ¢, = 0}
and let Fp, F,* € C*(9,GL(3,R)). Moreover suppose that Curl F,, € C* (2, M?*?). Then

Jet >0V e HA(Q,D) :
(VO F, (@) + B, T (@) (V) 1720y > ¢ 19112 q) - (1.19)

Proof. The proof has been presented in [31]. |

Remark 1.6

Note that for F,, = VO we would only have to deal with the classical Korn’s inequality evaluated
on the transformed domain ©(Q). This is the compatible case. However, in general, F), is
incompatible such that the problem can be viewed as posed on a non-Riemannian manifold .
Compare to [5] for an interpretation and the physical relevance of the quantity Curl F},. It comes
as no surprise that in finite plasticity the incompatibility of F}, should play an important role.



Motivated by the investigations in [31], it has been shown recently by Pompe [38] that the
extended Korn’s inequality can be viewed as a special case of a general class of coercive inequalities
for quadratic forms. He was able to show that indeed F,, F,* € C(Q,GL(3,R)) is sufficient for
Theorem 1.5 to hold without any condition on the compatibility.

However, taking the special structure of the extended Korn’s inequality again into account, work
in progress suggests that continuity is not really necessary: instead F,,,Fp_1 € L>®(Q,GL(3,R))
and Curl F,, € L*™(Q) should suffice, whereas F,, F,* € L>(, GL(3,R)) alone is not sufficient,
see the counterexample presented in [38]. The possible improvement has no bearing on our further
development. [ |

As a consequence of the three-dimensional coercivity inequality it is possible to prove

Theorem 1.7 (Extended Korn’s inequality for rigid shells)
Let w C R? be a bounded domain with smooth boundary and let vy C Ow be a part of the

boundary with non vanishing 1-dimensional Hausdorff measure. Define HY? (w,R3;790) = {0 €
H"?(w,R%), | ¢, =0} and let Fy, F, ' € WY?+0(w5, GL(3,R)). Then

It >0 Voe HN(w, R qy) :
1(Vel0)F, " () + F, T () (Vl0) T [[F20) > ¢ 1811320y » (1.20)

and the constant is bounded away from zero for F,, F,* bounded in W"** (&5, GL(3, R)).

Proof. The idea is to extend the function ¢ in a suitable manner to three dimensions and to
use Theorem 1.5 in the strengthened form proposed in [38]. The Sobolev embedding shows that
F, € WH2%9(5, GL(3, R)) may be identified with a continuous function. A contradiction argument
as in [32] shows that the constant is bounded away from zero since W12+° (@, GL(3,R)) is com-
pactly embedded in C(@w, GL(3,R)). For details consult [29, 33]. [ ]

Continuing with our general development we observe that the solution m of (1.13) depends
nonlinearly on R. Despite this nonlinearity, we establish Lipschitz-continuous-dependence of the
solution to (1.8) with respect to the data and coefficients R, by looking at the weak problem (1.13)
in the form (1.14) and using sharp elliptic estimates.

The conceptual idea to treat the nonlinear coupled viscoelastic evolution problem is straight-

forward: the ordinary differential equation may be written in the following form

%R(t) =f(F(R),R)-R, (1.21)
with J : MB*3 x MB*3 s Lin(M?*3 ME*3) where F(R) = (Vm(R)|Rs). Here m(R) is the solution
of the elliptic boundary value problem (1.13) at given R. It remains to show that the right hand
side of (1.21) as a function of R is locally Lipschitz-continuous in appropriate spaces allowing
to apply the local existence and uniqueness theorem for nonlinear evolution equations in Banach
spaces based on Banach’s fixed point theorem, cf. (6.2).

2 Local existence and uniqueness proof

2.1 First step: the static elastic subproblem

We have already indicated that in the static case for frozen variables R the elastic equilibrium
system in (1.13) is a linear, strictly Legendre-Hadamard elliptic second order boundary value
problem with non-constant coefficients and variational structure.® We exploit this structure and
apply the direct methods of the calculus of variations to show that there exists a unique weak
solution to (1.13) at frozen variables R which satisfies an additional uniform estimate.

Theorem 2.1 (Existence of minimizers)
Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H'(w,R?)

and for the rotations R € W'P(w,SO(3,R)), p > 2. Moreover, assume for the resultant body force

6This corresponds essentially to the elastic trial step in current algorithmic formulations of viscoplasticity.



f € L?(w,R3). Then the variational problem
I(m,R) ~ min. w.r.t. m, m € gq+ H*(w,R%;v),

I(m, ) ;:/ WW(FR) - (F,m)dw, F=(Vm[Rs), T=R'F, (2.1)

w
_ . ; ¥ . 2
W (F,R) := % IFTR+R F—21|* + S [FTR +R'F-21
2p
2u+ X\’

_ A* .
:u||sym(U—]l)||2+?trW—]l] , AY =

admits at least one minimizing midsurface deformation m € H'(w,R?).

Proof. With the prescription of gq it is clear that I(gq, R) < oo. Consider any sequence of
functions m* € H'?(w,R?) for which the energy remains bounded. At face value, along the
sequence, we only control certain mixed symmetric expressions in the reconstructed deformation
gradient (Vmy|R3). Let us define vy, € HY2(w,R*) by m* = gq + (m* — ga) = g4 + vx. Then we
have

00 > I(mk,R) = /hW(U}c) — (7, my) dw > /thp(Uk) dw — C||mk||L2(w)

w w

_T p— —_ — -
Z/h%HR (mG|R3)+(mG|R3)TR—2]1||2dw—0||mk||H1,2(w)

w

—_T — — —
= [ WIE (T + (Vs R R

T _ I
—dh %tr [R (Vmg[Rs) + (Vmi|Rs)" R +4h%H]le dw = C'flmi || 2 (w)

—T —
> /h AR (Vimgl0) + (Vingl0)TR? dw — O [lmillsnegey + Co (2.2)

/h — ||R V’Uk;|0) + (VUHO)TRH% dw — C; ||'Uk||H1-2(w) + Cy

~~

combinations of derivatives
> M —C C
24 ‘K okl 2 o, 2( 1okl 12wy + Co,

where we made use of the zero boundary conditions for v on 7y and applied the extended Korn’s
inequality Theorem 1.7 (note again that RfT = R) yielding the positive constant c}; for the
continuous microrotation B. We conclude that I is bounded below and that the sequence vy is
bounded in H'(w). Hence, my is bounded as well in H!(w).
Since I is bounded below, we can consider an infimizing sequence mj € H'?(w, R®) with
lim I(mg, R) = inf I(m,R). (2.3)

k— 00 meH2(w,R3)
Due to the boundedness of mj we may extract a subsequence, not relabelled, such that mj; — m €
H'(w,R?).
. _ _T J— = —T
Now we obtain that Uy, = R (Vmg|R3) = U = R (Vi|R3) by construction. Since the total
energy is convex in U (indeed quadratic in the non-symmetric U) we get

160, = [ WW (@) = (Fori) do < tygmint [ 0W(T) = Fome) o

w w
= lim I(mg,R), (2.4)
k—o0
which implies that the weak limit 7n is a minimizer. ]

Corollary 2.2 (Uniqueness of minimizers)

Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H'(w,R?) and
R € WhP(w,SO(3,R)), p > 2. Moreover, let f € L?(w,R*). Then the variational problem (2.1)
has a unique minimizing midsurface deformation m € H'(w,R?).



Proof. We show that the functional I(m, R) is strictly convex w.r.t. m € H%2(w,R®). This can
be seen by computing the second derivative of I. Since I is quadratic w.r.t. m the bilinear form
induced by the second derivative is given for ¢ € H%?(w, R®) by

D21 .6.6) = [ WENTHO T+ R (Vo) + ow (Vo) B+ B (Vel0)] d

> [ WBIVa0) R+ B (VO do. (25)

For the displacement problem we have zero boundary conditions for ¢ on 7. Hence, applying
Theorem 1.7 yields uniform positivity. ]

Lemma 2.3 (Uniform Garding-type estimate for the minimizer)

Let w C R? be a bounded smooth domain and assume for the boundary data now g4 € H*?(w, R?)
and R € M with M defined in GA.3 below and order of elliptic regularity k = 1. Moreover, let
f € L*(w,R%). Then the unique minimizing solution m € H'?(w) to (2.1) satisfies the (rough)
estimate

3 C/T/t(”gd”&z,w ||7||2w) >0 VReM

mlly 5.0 < Chlgals g0 1Tls.0) - (1 + lgally o + 17l ) (2.6)

and C(lgalls 5., 171l .,) is a continuous function of ||galls , ,and |||, -

Proof. Idea: recall the estimates (2.2) of Theorem 2.1 which bounds m from above. With the
assumptions on the coefficients R we have by Theorem 1.7 that the appearing constants in Theorem
2.1 are bounded independent of the coefficients for R bounded in H??2(w); notably the constant
c}; is bounded away from zero in this case. The bound from above can be made explicit by taking
as comparison function gq.

Since we have to keep track of the appearing constants, however, we must proceed in more
detail: Set m = v + gq with v € H%?(w,R?) and let F' = (Vm/|R3). To simplify notation we write
Vu for (V(,,,)v]|0). We have algebraically

_ _ _ D G _ 2
W(F,R) = % IR'F+F'R-21)*+ St R F+F'R-2 11]

—T — —T —T
> % IR Vo + Vo ' R|” = 2p|[R"|I* [|Vol| [[Vgall = 2uV3 [[R™ || [|V]|+

—T —
LR Vga+ ViR - 21 (2.7)

Integrating over w and making use of Theorem 1.7 with R,RT € H*?(w,S0(3,R)) C C%2(w) we
get for all m € H ?(w, R?)

— — — ——1
/ h W(F,R) — (Fm) dw > p b (R) ol ~2uh 1B 12 (190 lloollvll o)

extended 2D-Korn

—T —-T —1
= 2uh VEIR [ el + [ 0 5 IR VGF + VouTt "~ 21 do (2.8
w

—Ifll2w) (1ollL2(w) + ll9allL2w)) -

Since m is a minimizer, we have by estimating from above and using (X, 11)* < 3||X |2

/ hW(ET) - (F,m) dw <

3" —T — _
(5+%) [ 1 IR a0+ Vo B 21 o+ [Flusco laallezc

< % / h R Vg + VgIR - 21| dwt (2.9)
w
3"

=T —T —
hlw| (IIR 13 1V9all% +2V3IIR" [lo [V galloo +3) + 122 w) llgallz2w)-
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This implies together with estimate (2.8) (the term with A cancels and h < 1 without loss of
generality) the inequality

3X*h ——1, . T —
ol (I 112 1V gall2 + 2V3IR o IVgalloo +3) + 2[[Fllz2ce) lgallzee) > (2:10)

— —T
ihf (B) 1ol — 20 b IR 12 11V gallocllell 20y
— 1 —
=2k VIR e lell 20y = IFll2y o1l
P . — 1, —1 —
> phef (B) 1ol — 2093 (1+ 1R 1Z) (IR oo + 1galloo + [Fllzze | - ol -

Hence a rough estimate yields
* i 2 T
5N bl (14 1B oo IVgalloo) + 2[[Fllz20) Ngallzzy > (2.11)
+ (P 2 =12 =7 —=
i h e B) ol =5 (14 IR 1) IR e + I galloo + [Fllizen | - ol -

After further rearranging we get a quadratic inequality in [[v]|g1.2 ()

. 5 —1 . —1 —
02 ol = iy (14 IR ) (I oo + 19 alloe + 1Tz Mol
K
50" |w 1 2 2 _
22 R v SR — " - 2.12
oy (IR e 19galo) = s Pl alzaco (2.12)

Since 0 > 2? —br — c = x < b+ +/c, the former yields (with Young’s inequality on f,g and
e + ¢ < (c¢1 + ¢2) for positive constants ¢y, ¢2)

=T
v ol (T IR N IV galc)
+ (1 =T —
weg (B) R oo + IV galloo + 11 Fllz2(w)

—T -
lollinaoy < | = (1+ B 112) + (2.13)

57 (}_%)

1 17N> () + llgallzz(w)
o — =
1 heg(B) R ||oo + IVgalloo + 11l L2(w)

T —
IR oo + 19 galloo + 1l 220)

Since ||R|| = | || = v/3 we obtain

5-4
ci(R)

50 w| (1+ V3 [|Vgallso) N

"\ wk®) V3

vllEew) <

1 ”r j—
i@ e + llgdllmm)] VB IVgalloe + [Flliz | - (2:14)
K

With the embedding H™?(w) < C™~ % (@) we get the estimate for v from which we obtain easily
the desired estimate in terms of m. [ ]

2.2 Second step: higher regularity and continuous dependence
2.2.1 Definitions and assumptions

In order to simplify the investigation of the elliptic system (1.13) with respect to regularity and
continuous dependence and to place it in a more general context we introduce the

Definition 2.4 (General assumption, GA)
GA.1 Q C R" is a bounded domain with smooth boundary and space dimension n.

GA.2 We call k € N the order of elliptic regularity, and assume throughout that 2 - (k + 1) > n.

GA.3 (Local boundedness of the elasticity tensor and part of the right hand side) There exists
K >0

D - M3><3 — Lin(M3X3 M3><3) V- M3><3 *—)M3><3

11



M= {A: Q= M | |All 50 < K},
3Cm: VAeM: (DA 120 IVAli120 < Om

GA.4 (Uniform Legendre-Hadamard ellipticity on M) For all £ € R®, n € R? it holds

el >0:VaeeQ: VAe M (D(A(x)).(€ ®n|0), (€ @nl0)) > cf o - I€]IRs lImllRe-

GA.5 (Local Lipschitz continuity)
FJLym: VA BeM: [DA) - ]D)(B)”kJrl,z@ SLam-|lA- B||Ic+1,2797
FJLym: VA BeM: [[V(A) - V(B)||k+l72,Q SLam-|lA- B||k+172,9'

If (GA.1,GA.2,GA.3,GA.4,GA.5) holds we say that GA holds. Note that condition GA.5 al-
ready implies GA.3 but for convenience GA.3 is stated separately. |

2.2.2 The difference of two solutions

The difference of two solutions m4, mpg of (1.13) for different data (forces fa, fg, boundary dis-
placement g4, gp and rotations A, B), is governed by the system

h Div D(A(2)).(V(ms — mps)|0) = h Div (D(B(z)) — D(A(x)).(Yms|0)
+ fa— fe+h Div(V(A) —V(B)), (2.15)

(ma —mp),, =94 —9B-

Therefore we investigate now the following general elliptic problem, where the data f,g do in
general not coincide with the actual resultant body force f and the actual Dirichlet data gq. We
have

Lemma 2.5 (General linear system)

Let R € H*?(w,S0(3)) be given and set A = R. Suppose that D has the form postulated in
Definition 1.3 and assume for the generalized Dirichlet boundary data g € H>?(w) and for some
generalized body force f € L*(w). Then the linear problem

Div D(4).Vu = f, w,, =g, (2.16)
has a unique weak solution u € H'?(w).

Proof. The same ideas as in Theorem 2.1 and Corollary 2.2 carry over. As corresponding energy
expression we have only to take

W (F,R) = ||FTR+R FI? + 8 "o [FTR+R F] . n

Now we provide the specialization of the elliptic regularity result to the situation treated in Lemma
2.5.

Theorem 2.6 (Improved Hilbert space elliptic regularity with L2-part)
Assume GA and A € M. Consider the linear divergence form elliptic system

DivID(A).Vu = f(z), wu,, = g(z). (2.17)

Assume that (2.17) admits at least one weak solution v € H"2(Q) for all g € H**22(Q) and all
f € H%2(Q). Then the following estimate is valid:

||U||k+2,2,9 < CH(Q, ||]D(A)||k+1,2,9) ) (||g||k+2,2,9 + ||f||k29 + ||U||29) ) (2.18)

and the appearing constant C* (Q, [|D(A)|l, 1 ».) is uniform on M.

12



Proof. The transformation v = u — g allows us to consider

DivID(A).Vo = f(z) + DivD(4).Vyg , =0. (2.19)

Yo

If we apply Theorem 6.1 to (2.19) we get the estimate

||’U||k+272,9 §0+(Q:Cj)P(HD(A)”k+172,Q) (” Div ]D)(A)-Vgllk,m + ||f||k,27Q + ||U||2,Q)

SC+(Qac:_)P(||D(A)||k+172,Q) (”]D)(A)“kJrl,ZQ ||g||k+272,Q + ||f||k29 + ||U||zQ)
<CH O, D) PUDA gy 2,0) L+ DAy .0]

(lglle2.0.0 + 1l 0.0+ Ml g + llglls ) - (2.20)

This yields for u =v + g

llle 22,0 <2 (14 CHEQ D PUDA) |41 2.0) [1+ DA 1411 2.0])
(gl 22,0 + 1120 + a0 ) - (2.21)
Now take
CH OB 512.0) =2 (14 CHO, ) PUDA) 1 0) [T+ DA 1411 5.0]) -

This ends the proof since C*(Q, ¢f) is uniformly bounded above on M by (GA.4) and Theorem
6.1. |
Theorem 2.7 (Uniform estimates for bounded coefficients)
Assume GA and A € M. Consider the linear divergence form elliptic system

DivID(A).Vu = f(z), wu,, = g(z). (2.22)

Assume that (2.22) has a unique weak solution v € H?(Q) for all g € H*22(Q) and all f €
H*2(Q). In addition assume that a uniform Gérding type L?(Q)-estimate on M is available, i.e.,

A0 >0 YAeM: ullg < Cu (9l om0 + 1l 20) - (2.23)

with max(ky, k2) < k. Then the following uniform estimate is true:

lllesa2.0 < C@Q M) (9l + 1fllkan) (2:24)

and the appearing constant C* (2, M) is uniform on M.

Proof. An application of Theorem 2.6 will give the result. |

Theorem 2.8 (Lipschitz-continuous dependence of solutions)
Assume GA and let A,B € M. Assume for the boundary data ga,gp € H**%2(Q) and for the
body forces fa, fg € H*2(Q). Consider the two systems

Div D(A(z)).Vu = fa(xz) + DivV (A) Div D(B(z)).Vu = fg(z) + DivV (B)
Ujpq = gA(w) Ujpq = gB(m)' (2'25)

Assume that both systems verify the assumptions made in Theorem 2.7. Denote the (unique)
solutions ua,up € HY?(Q), respectively. Then the following estimate holds:

lua = uBllrsn0 SCT QM) (14 1Bl g + 198lkiona + I1felzg)  (2:26)
(”A - B||1;+1,2,Q +llga — 9B||k+2,2,9 +1fa— fB||k,27Q) )

with CT(Q, M) uniformly bounded on M.
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Proof. Consider
Div D(A(z)).Vua = fa(z) + DivV (4) Div D(B(z)).Vup = fp(x) + DivV(B)
Udjpn = 9A(T) UB|y = 98(T). (2.27)
Taking the difference of the two equations leads us to consider
Div D(A(z)).V(ug —up) = Div (D(B(z)) — D(A(z)).Vug) + fa — f + Div(V(A) — V(B))
(ua —uB)|y, = ga — 9B- (2.28)

By the assumption on A and the elasticity tensor D(A) we know that the system (2.28) has a
unique solution (u4 —up). Together with the regularity assumption made for A and D(A) in GA
we can apply Theorem 2.7 to (2.28) and get the estimate

lua = uBllysa0 < €O M) (I DivD(B) = D(A4).Vup 5.0 + | DIv(V(B) = V(A) 5.0+
l9a = 98llis20.0 + 14 = folliog)

< CH@Q,M)- (IDA) = BBl s1 0.0 luBligozg + 1VB) = V(A1 o0+

194 = 98l 22.0 + 14 = Follsg) - (2.29)

Again with Theorem 2.7 applied to the solution up we have
sl zne < CHOM) - (l05llesnn + 1 fslkan +IVBnza) - (230)
Combining these two estimates and using (GA.5) for D,V ends the argument. [ ]

Corollary 2.9 (Lipschitz-continuous solution operator; time dependent coefficients)

Assume that for a given family of coefficients M := {A; € M|t > 0}, the family of related elasticity
tensors D(A;) verifies all conditions of Theorem 2.7. For given constants K, Ko, K3 > 0 define the
set of admissible boundary data ® := {g € H*+2:2(Q)| 91151220 < K2} and the set of admissible

body loads § := {f € H*2(Q)] | fllg 2.0 < K3} Let the boundary data g, € & and the body forces
ft € § be given. Then the family of corresponding linear elliptic systems (parametrized by t € R)

Div ]D)(At)cht = ft(l’) + Div V(At) y (ptlan = gt(l’) (231)

allows for a Lipschitz-continuous solution operator T on 9 x & x § such that ; = T'(Ay, g, ft)
and

IT(A, g4, £4) = T(B, g8, fB)lly 220 <CHOQM) - (14 1Bllsr 0 + 198220 + 1F5ll0)
(”A - B||1;+1,2,Q +llga — 9B||k+2,2,9 +1fa— fB||k,27Q) )
(2.32)

for AAB €M, ga,gB €6, fa,fs € F. The corresponding Lipschitz constant L™ on M x & x F
has the form

L = CH@,M) - (14 1Bl 0.0+ 198l 0 + 1 f5lli20) - (2.33)
On M x & x § the Lipschitz-constant is uniformly bounded by
LT =CTO,M)(1+ K, + K2+ K3). (2.34)

Hence a family of elliptic systems of the above type has corresponding solution operators with uni-
form Lipschitz-constant whenever || Al 5 o, 194l 1220, fall; 5. are bounded due to Theorem
2.7. |

Remark 2.10 (Nonlinear solution operator)

Let Ay € M and f;,g: as before. Then the mapping (ft,g:) — T(Ao, g, ft) is linear while the
mapping A; — T(A¢, go, fo) Is nonlinear. Hence the solution depends nonlinearly on the (time
dependent) elasticity tensor although the problem is linear for frozen (fixed at time t) elasticity
tensor D(Ay, ). [ ]

The previous development has been fairly general. Therefore, in the final part of the proof we
specialize  to w C R? in Definition 2.4 and set n = 2.
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2.3 Third step: the coupled nonlinear viscoelastic evolution problem

In this final part of the proof we consider the coupled viscoelastic evolution problem. The coupled
problem (1.1,1.2,1.3) is formally equivalent to

SR() = F(V.T @), 000, T0), (D) - R(), (2.35)

with
FoMP3 x M3 s Lin(MP*3 MP*3) | f(F,R(t)) = v - skew(B™(t)) € s0(3,R),  (2.36)

where B™*, defined in (1.3), is an expression depending on R and on the (reduced) reconstructed
deformation gradient F' = (Vm|R3) = (V.T(R,gq, f)|Rs). Here T(R,gq, f) is, at this stage,
formally defined to be the solution operator of the static equilibrium part (1.13) in (1.1,1.2,1.3).

The choice for vt in (1.7) implies that | € C3(MP*® x MP*3 Lin(MP*®, MP*?)), considered
pointwise.

Remark 2.11 (Flow rule on Sobolev space)
Set M := {v € H¥1.2(w)] vllg412.0 < K} Then due to Sobolev’s embedding theorem it is easy

to see that for f € CFH2(MP*3 x M3*3 , M°*?) and forall v1,vy € M the estimate

IF(01) = F02)l1 0,0 < sup_IF©llcrszqorpoxo) - CF (@, M) -llor = valljyyn,»  (2:37)
llglI<K

holds. [ |

It remains to identify the precise spaces on which to consider this evolution problem in the frame-
work of a local existence and uniqueness result for ordinary differential equations in Banach-spaces,
cf. Theorem 6.2. We let

U:=H**(w,GL(3,R)), X = H**(w,S0(3,R)) (2.38)

and set Y := H*?(w,R3) and Z := HY?(w,R?). Assume that A° = R’ € X is given and for
positive constants K1, Ko, K3 let

M:={Ae X||[A= A0y, <Ki}, YV:={y€Y|llyllyy, < K2},
Z:={z€Z||2ll 4, < K3} (2.39)

Observe that by construction of the flow rule £ R(t) = X, - R(t) with X, € s0(3) we know a priori
that R(x,t) € SO(3,R). Assume for the Dirichlet boundary data gq € C*([0,7],)) and for the
resultant body forces f € C'([0,7], Z). In view of the specifications of spaces and data we show
presently that the nonlinear, infinite-dimensional evolution problem

d

TR = F(VoT(R(1), 9a(8), F(£), R(O)) - (), (2.40)

fits into the formal framework set forth in Theorem 6.2.

First we proceed to show that it is possible to define a solution operator m = T'(R, g4, f) to the
static equilibrium part (1.13) of (1.1,1.2,1.3) and that this operator is indeed Lipschitz-continuous
on the bounded set M x Y x Z. We have

Lemma 2.12 (Existence of solution operator T')
For given local rotation R € H?*?(w,SO(3,R)), Dirichlet boundary data g4 € H*?(w,R?®) and
resultant body force f € H%?(w,R?) the elliptic problem (1.13) admits an operator T with

T : H*?(w,S0(3,R)) x H>?(w,R®) x H"?(w,R®) s H>?(w,R?) (2.41)

such that m = T(R, g4, f) is the unique solution to (1.13).
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Proof. Due to Theorem 2.1 and Corollary 1.2 we know that solutions m = m(R, gq, f) of (1.13)
exist. With Definition 1.3 it is obvious that D,V € C*°. Remark 2.11 shows that (GA.3) and
(GA.5) are satisfied for D,V on M. Moreover, by Corollary 1.4 we see that (GA.4) is true. If
we choose the order of elliptic regularity k¥ = 1 for the space dimension n = 2 then (GA.2) holds
as well. The domain w C R? has smooth boundary, therefore (GA.1) holds. Theorem 2.2 may
therefore be applied and shows that the solutions of the boundary value problem (1.13) are unique,
which establishes existence of the solution operator.

Now the asserted regularity part: Lemma 2.3 proves a uniform H'?(w) estimate for the solu-
tion m if gg € Y, f € Z on M. With Lemma 2.5 we make sure that the assumptions needed for
elliptic regularity in Theorem 2.7 are verified. Hence Theorem 2.7 establishes higher regularity if
the data are smooth; for k = 1 we obtain H>?(w,R?). [ |

Lemma 2.13 (Lipschitz continuity of solution operator T')
Under the same assumptions as in Lemma 2.12 the solution operator T is uniformly Lipschitz-
continuous on the bounded set

MxYxZC H**(w,S0(3,R)) x H>?(w,R®) x H"?(w,R3). (2.42)

Proof. Taking into account Lemma 2.12 we are entitled to apply Theorem 2.8 and Corollary 2.9.
This shows

||T(A7 ga, fA) - T(BagBa fB)||]g+2727w S
C* (w0, M) (14 1Bl e + 98 lis 0 + 1B sz, (2.43)

(114 = Blly 120 + 1194 = 981200 + 154 = follis) -

Hence, T(R,gq, f) is a Lipschitz continuous operator with uniform Lipschitz constant LT on
MxYxZ. [ ]

By restricting the former estimate on T to the first gradient of T" we obtain

Corollary 2.14 (Lipschitz continuity for the gradient of T')

The gradient V,T (R, gq, f) satisfies a similar uniform Lipschitz estimate as T does, namely
IVaT(A, 94, fa) = VaT(B, 98, fB)|lj112.0 <
(w0, M)+ (1 1Bl 20+ 198 s o + 1Bl (2.44)
(14 = Bllg 10,0 + 94 = 98llxs20 + 12 = folliz) - n
Hence on M x Y X Z we get

||VwT(A,gA, .fA) - VZT(BagBa fB)||k+172,w < (245)
O (@, M) (U4 Ky +55) (14 = Bl + 194~ 5l + 14— Folln)
This is enough to see that the operator G(R, gq, f) := V.T(R, gq, f) satisfies the assumptions of

Theorem 6.2.
Moreover, Remark 2.11 applied to f € C3(MB*3 x M3*3 ME*6) shows that f, viewed as a

function f : U x X = Lin(X, X) is locally Lipschitz-continuous on M. Therefore, we may finally
apply Theorem 6.2 giving us a unique local in time solution R € C([0,#], M) to the ordinary

differential system of equations (2.35). Since m(t) = T (R(t), ga(t), f(t)), the pair
(m7R) € C([07 tl]: H3,2(w7 ]Rg )) X Cl ([07 t1]7 H272(w7 SO(3))) ’ (246)

is the unique local in time solution of (1.1,1.2,1.3). Thus we have finally proved Theorem 1.1. W
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3 A glimpse on the modelling

3.1 The non-elliptic relaxation limit

In [34] it is shown that due to the underlying isotropy the resulting nonlinear membrane-plate
model (1.1,1.2,1.3) with B = Bffg(’:?l approaches in the equilibrium limit v+ — oo (vanishing elastic
viscosity = zero relaxation limit 7 — 0 viz. for arbitrary slow processes) formally the intrinsic,

purely elastic” membrane-plate problem

/hWoo(U((VmW)) — (f,m)dw — stat. wr.t. m € gq + H>?(w, R?;70), (3.47)
where
We(U) ':,u||U—]1||2+ui)‘tr[U—]l]2 F = (Vmlit,,) (3.48)
o (2p+A) ’ " ’

with U = (ﬁTﬁ)% = RTF the symmetric elastic stretch, U — 1l the elastic Biot strain tensor and
iy, the unit normal on the parametrized surface m : w C R% — R®. The system (3.47) is a geomet-
rically exact equilibrium membrane-plate model for small elastic strains and finite deformations
in the classical sense with no extra internal dissipation. The transition from (1.1,1.2,1.3) to (3.47)
however, is not entirely trivial since it is not just the replacement of the independent viscoelastic
rotation R in (1.1,1.2,1.3) by the continuum rotation R = polar(F) in (3.47). Moreover we must
note the subtle change from global minimization in (1.1,1.2,1.3) to a stationarity requirement
only in (3.47).

Note as well that the equilibrium energy W, (U) is a non-quasiconvex, non-elliptic elastic
energy w.r.t. Vm but convex in the symmetric continuum stretch U, satisfying in fact the Baker-
Ericksen inequalities. Currently there are no mathematical theorems available establishing
the existence of minimizers based directly on W,. In this sense, the viscoelastic formulation
(1.1,1.2,1.3) provides a physical regularization of the occurring loss of ellipticity in (3.47).

Up to a different strain measure (U = V FTF instead of C' = ﬁTI?'), the model (3.47) coincides
with (3.50).
In order to put the new model into some perspective, let us consider a formal linearization.

3.2 Partial linearization for the thin viscoelastic membrane plate

To put our modelling development into perspective, we simplify (1.1,1.2,1.3) further by writing
m(z,y) = (z,y,0)" + v(z,y)?, where v is the displacement of the midsurface and assume for the
viscoelastic rotations R(z,y) = exp(A(z,y)) with A € s0(3, R) small.

Expanding (1.1,1.2,1.3) yields to leading order in A the following set of equations for the
displacement of the midsurface of the plate v : [0,7] x @ — R® and the skew part A : [0,T] x @

50(3,R):

/hVVHn(VU,Z) — (f,v)dw + min.w.r.t. v at fixed A, (3.49)

Wi (Vo ) = je | sym((Vold) + A (TolO)|F + 2555 tr [svm((Vol) + AT (7010)]
d

AWM = = A+ v skew ((vumg) + ZT(WO)) :

where the evolution equation is linear in A but the coupled model is nonlinear due to the presence

of the multiplicative term ZT(VU|O). Note that we have not assumed that Vv is small since
an expansion to first order in Vv leaves v indetermined in general, due to possible infinitesimal
bending modes, in which case the classical infinitesimal bending plate (Kirchhoff plate) equations
can be used.

We observe that for A = 0 and in the absence of external forces the elasticity part alone
decouples into pure in-plane deformation (to which g and A contribute) and pure transverse dis-
placement. The transverse displacement vs(xz,y) is then simply determined through Awvz = 0,

7intrinsic: only depending on the first fundamental form of the surface m.
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i.e. like the static elastic membrane of the classical theory. For A = 0 the elastic problem has
constant coefficients and is coercive on account of the standard Korn’s inequality [6]. In the
case that A = 0 and only vertical body forces f = (0,0, f3) are present, the problem reduces to
(v1,v2) = (0,0) and for the vertical deflection uAvs = f3. We wish to emphasize that getting a
membrane problem for the thin plate is a classical fact [7, p.356]: ”...a thin nonlinearly elastic body
submitted to its own weight does not behave like a (bending) plate, but indeed like a membrane.”

In order to relate our development to existing geometrically exact membrane formulations we
present two alternative propositions from the literature adapted to our notation.

3.3 The finite-strain membrane model of Fox/Simo

In [21] the following geometrically exact, frame-indifferent membrane model has been derived by
formal asymptotic analysis based on the St. Venant-Kirchhoff energy. In a variational form the
model can be written in our notation in the form of a minimization problem for the deformation
of the midsurface of the membrane m : w C R?> — R® on w:

/ h Wi (C) dw — I (m, i#,,) — min. w.r.t. m, m, = ga(z,y,0),

C=F"F, F=(Ymlitn), Fs=(Ym|omitm), (3.50)

Om = (Nair, 7im) +4/1— #tr [C—1]+ M , first order thickness stretch,
(2u+ A) (2u+A) (2p + A)?

— — ‘ 21 2
Winp (@) = £ |[C - 1|I* + LA)H [C- 1]

8(2u +

I T 2 2pA T 2
=L —1 e AR —1
1 IVm' Vi — 1,])* + TETES r [Vm" Vim — 11,]
2uA :
= % I — 12| + m tr[L,, — ,]*, I, = V' Vm: first fundamental form .

The reconstructed membrane deformation p4(z,y,z) = m(z,y) + 20m fm yields the plane stress
condition S;(Vips(z,y,0).es = 0, which is only consistent with three-dimensional equilibrium if
there are no normal tractions at the transverse boundary and indeed, in [21, p.176] it is assumed
that Ngig = 0, for otherwise, formal asymptotic expansion is impossible. In this case we have the
identity

A

Winp(C) = % IFTF, — 1|2 + St [FTF, —1]*, C=F"F. (3.51)

It is easily seen that the resultant membrane strain energy me(U) is neither quasiconvex nor
Legendre-Hadamard elliptic. Moreover, the resultant membrane strain energy density does not
satisfy the Baker-Ericksen inequalities in contrast to the equilibrium model (3.47).

3.4 The finite-strain, quasiconvex membrane model of Le Dret/Raoult

By means of ['-convergence arguments based on the St. Venant-Kirchhoff energy and a natural
scaling assumptions LeDret and Raoult [16] derive the following quasiconvex geometrically ex-
act, frame-indifferent minimization problem which is, however, degenerate in compression. The
membrane deformation m : w C R? — R® satisfies on w:

/ hQWo(Vm) dw — II(m, ii,,) — min. w.r.t. m, m, = ga(z,y,0), (3.52)

. A

Wo(Vm) = inf W((Vmfn)" (Vmn)), W(C)=§||C—n||2+gtr[0—11]2,
2 s = +

_ {am 1- %A s [IVm]* =2] >0, (Vm|g,i) € GL*(3,R) mapics

Om = ~ o
01—y [IVmll? =2] <0, (Vm|gmi) ¢ GLT(3,R)
Wo(Vm) = W((Vm|gmnm) (Vm|omiin)) = me(a) if om = o0m,

with the definition of C', g, and Wy, given in (3.50). QW denotes the quasiconvex hull of Wy
which can be determined analytically showing the degenerate feature that QWy = 0 in uniform
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compression. In compression, this model can only predict the stresses in the membrane appropri-
ately while the geometry of deformation cannot be accounted for.

4 Discussion and concluding remarks

Having proved a local existence theorem for the nonlinear viscoelastic membrane model (1.1,1.2,1.3)
we observe that the existence time in general will depend crucially on the smoothness of the values
of the local rotations R, i.e., the smoothness of the elasticity tensor ID. If bifurcations occur they
must then be attributed to a severe loss of smoothness of these elastic moduli. It is still an open
problem whether the viscoelastic system (1.1,1.2,1.3) admits global in time solutions for small data.
This may not be true.

In closing, a number of possible extensions of the theory are worth mentioning. The general
mathematical methodology of (1.1,1.2,1.3) is not confined to a viscoelastic membrane plate. In-
deed, an extension to viscoelastic membrane-shells and viscoelastic-viscoplastic membrane-shells
is possible.

First numerical computations [49] with the relaxation time 7 of the order 0.01 and B'™ =
B™*Y confirm the general applicability of the viscoelastic membrane-plate model (1.1,1.2,1.3) for
structural applications of thin components compared with standard models and corroborate the
excellent properties of (1.1,1.2,1.3) with this choice in the evolution of the ”viscoelastic” rotations.
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6 Appendix

6.1 Notation

6.1.1 Notation for bulk material

Let © C R3 be a bounded domain with Lipschitz boundary dQ and let I' be a smooth subset of 9Q with non-
vanishing 2-dimensional Hausdorff measure. For a,b € R? we let (a,b)gs denote the scalar product on R3 with
associated vector norm ||al|?; = (a,a)gs. We denote by M3*3 the set of real 3 x 3 second order tensors, written
with capital letters. The standard Euclidean scalar product on M3*3 is given by (X,Y)ysxs = tr [XY7T], and
thus the Frobenius tensor norm is || X||?2 = (X, X)ysxs. In the following we omit the index R3, M3%3. The identity
tensor on M3%3 will be denoted by 11, so that tr[X] = (X,1). We let Sym and PSym denote the symmetric
and positive definite symmetric tensors respectively. We adopt the usual abbreviations of Lie-group theory, i.e.,
GL(3,R) := {X € M?*X3 |det[X] # 0} the general linear group, SL(3,R) := {X € GL(3,R) |[det[X] = 1}, O(3) :=
{X € GL(3,R) | XTX = 1}, SO(3,R) := {X € GL(3,R) [XTX = 11, det[X] = 1} with corresponding Lie-algebras
50(3) := {X € M3*3 |XT = —X7} of skew symmetric tensors and sl(3) := {X € M?X3 |tr[X] = 0} of traceless
tensors. With Adj X we denote the tensor of transposed cofactors Cof(X) such that Adj X = det[X] X! = Cof(X)T
if X € GL(3,R). We set sym(X) = (X7 + X) and skew(X) = 2(X — XT) such that X = sym(X) + skew(X).
For X € M3*3 we set for the deviatoric part dev X = X — % tr[X] 1L € s[(3) and for vectors £, € R™ we have the
tensor product (£ ® n)i; = & nj.

We write the polar decomposition in the form F = RU = polar(F)U with R = polar(F') the orthogonal part
of F. In general we work in the context of nonlinear, finite elasticity. For the total deformation ¢ € C1(Q,R3?) we
have the deformation gradient F' = Vi € C(2, M3*3). Furthermore, S1(F) and S»(F) denote the first and second
Piola Kirchhoff stress tensors, respectively. Total time derivatives are written %X(t) = X. The first and second
differential of a scalar valued function W (F) are written DpW (F').H and DZW (F').(H, H), respectively. We employ
the standard notation of Sobolev spaces, i.e. L2(2), H1:2(Q), H:2(2), which we use indifferently for scalar-valued
functions as well as for vector-valued and tensor-valued functions. Moreover, we set || X|loo = sup,eq [[X(2)]|-
For A € C1(Q,MB3%3) we define Curl A(z) as the operation curl applied row wise. We define HE2(,T) := {¢ €
HY2(2) | ¢ = 0}, where ¢, = 0 is to be understood in the sense of traces and by C§°(§2) we denote infinitely
differentiable functions with compact support in 2. We use capital letters to denote possibly large positive constants,
e.g. Ct, K and lower case letters to denote possibly small positive constants, e.g. ¢t,dt. The smallest eigenvalue
of a positive definite symmetric tensor P is abbreviated by Amin(P)-

6.1.2 Notation for membrane shells

Let w C R? be a bounded domain with Lipschitz boundary dw and let yo be a smooth subset of dw with non-
vanishing 1-dimensional Hausdorff measure. The relative thickness of the plate is taken to be h > 0 with dimension
length (contrary to Ciarlet’s definition of the thickness to be 2e, which difference leads only to various different
constants in the resulting formulas). We denote by M™*™ the set of matrices mapping R® — R™. For H € M2?*3
and ¢ € R? we employ also the notation (H|¢) € M3*2 to denote the matrix composed of H and the column &.
Likewise (v|¢|n) is the matrix composed of the columns v, £,n. The identity tensor on M2%2 will be denoted by 1lo.
The mapping m : w C R? — R3 is the deformation of the midsurface, Vm is the corresponding deformation gradient
and mgy = (M1,z,M2,0,m3,2)7, my = (M1,y,Mm2,y,m34)T. We write v : R? — R3 for the displacement of the
midsurface, such that m(z,y) = (z,y,0)” +v(z,y). The standard volume element is written dxdy dz = dV = dwdz.

6.2 The treatment of external loads

In this subsection we supply the reader with the consistent definition of resultant loads for the two-dimensional
structure, starting from given three-dimensional loads.

6.2.1 Dead load body forces for the thin plate

Let Q, = w x [2, 2] be the underlying thin, flat three-dimensional domain. In the three-dimensional theory the
dead load body forces f(z,y,z) € R? were simply included in the variational formulation by appending the potential
with the term

[ H@va) - elayz)av. (6.1)
Qp
We define
h/2 h/2
foley) == / f@,y,2)dz,  fi(z,y) = / 2 f(@,y,2) dz, (6.2)
—h/2 —h/2

such that fo, fl are the zero and first moment of f in thickness direction.
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6.2.2 Traction boundary conditions for the thin plate

In the three-dimensional theory the traction boundary forces N(z,y,2) € R® were simply included by appending
the potential with the term

/ N(xayyz) '(p(xvya Z) ds, (63)
BQf;LransU{,ys x ,%,%]}

where 9Q82S = w x {—% 2} is the transverse boundary. We define

27 2
h/2 h/2
Niat, () = / N(z,9,2)dz,  Niaga(@,y) == / N(z,y,2)dz, (6.4)
—h/2 —hy2

such that ]\Aflatyo, Nlam are the zero and first moment of the tractions N at the lateral boundary in thickness
direction. Moreover, we define

News = NG5, 2) + N(z,y, )], Naiw = L IN(@9, )~ Nz, — 0], (65)
6.2.3 The external loading functional
Let us gather the influences of the external loading terms. To leading order we have
f = fo+ Nees, resultant body force
M = fl + h Naig » resultant body couple (6.6)
N = Nlat,O s resultant lateral surface traction
M. = Nlat,l s resultant lateral surface couple.
The resultant loading functional II is given by
(m, B) = [ (Fom) + (M. o dw+ [ (Nm) + (3o, Ra) s (6.7)

Vs

If we denote the dependence of TI on the loads of the underlying three-dimensional problem as II(f, N; m, R3), then
it is easily seen that frame-indifference of the external loading functional is satisfied in the sense that

I(Q.f,Q.N; Q.m,Q.R3) = II(f, N; m, R3) for all rigid rotations Q € SO(3,R). Since in the viscoelastic membrane-
plate model (1.1,1.2,1.3), R is only a parameter in the static variational problem, the dependence of the resultant
loading functional IT on the rotations R can be dropped.

6.3 Thickness stretch and homogenized moduli

Here we show, how the formulation with thickness stretch g,, can be reduced to a formulation without thickness
stretch to the effect that g, leaves a trace in the homogenized moduli of the two-dimensional structure. Recall that

— _ A — 2
W (F,R) = % IFTR+ R F — 212 + Sr [FTR+ R F— 211] , (6.8)
— A —
F=(V Rs), —1- 2 [(Vm|0),R) — 2] .
(Fmlon o), g = 1= 32 [(Tmi0), )~ 2]
We define g := ﬁ [((Vm|0), Ry — 2]. In a first step, we note

=T = =T =T
R (Vm|om R3) = R™ (Vm|0) + (0|0]om e3) = R” (Vm|0) + (0[0]e3) + (0]0|ge3)
_T pa—
=R (Vm|R3) + (0|0]om €3) . (6.9)
In a second step we obtain that

L I(Vmlem Ra) R+ R (Vmlom Bs) - 2112 = & [(Vm|Ra) R+ B (Vm|Rs) = 21|12 + po(Vm, R)?, (6.10)
where we have used the orthogonality (sym(ﬁT(Vm\Eg,) —1),(0|0]¢es)) = 0. Similarly, we get

A o _ 2 A o _ N2
S [(Vm|gm R3) R+ R' (Vm|om Rs) — 211] =3 (tr [(vm\R3)TR+RT(vm\R3) 7211] —20(Vm, R))

A . . 2
=5 (21Tm0. B ~ 21— 2 2 (Tl ) - 2])
= @m0 Ty -2 (1- 325) = om0, Ty -2 2 (6.11)
In addition
2 2 2
net + JUTmi0), B) ~ 22 S = A (T mi0) B~ 2+ SH(Tm0), ) = 2P
— — — — 2
~ R P W L, maw [(Vm\Rg)TR+RT(Vm|R3)72]1]
= (Vo) F) 22 S EER - S ((oml0), B - 2 = :
_ 2,U/A — [—— — 2
= 5o " [(Vm\Rg)TRJrR (Vm|Rs) —211] . (6.12)

Combining (6.10) and (6.12) shows (1.6).
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6.4 Sharp ellipticity type estimates

For the exposition of the static case we need sharp a priori estimates for elliptic systems of second order with
non-constant coefficients in divergence form. Ebenfeld [20] has recently proved the following new sharpened a priori
estimate which we give adapted to our situation and our notation.

Theorem 6.1 (General improved sharp Hilbert space elliptic regularity )
Let Q@ C R™ be a bounded domain with smooth boundary. Consider the divergence-form linear system

Div C(z).Vu = f(z), wuj,, =0, (6.1)

with f € H*2(Q) and homogeneous boundary data. Let C : Q@ C R?® — Lin(M3%3 M3%3) be the fourth order
elasticity tensor. Suppose C € H*+1'2(Q) with 2 - (k + 1) > n and assume that for arbitrary &, € R™ it holds

Jef >0 YzeQ: (Cl).E@n),é@n >ch - nl*, (6.2)

i.e., that the system is uniformly Legendre-Hadamard elliptic with ellipticity constant cT. Assume that the system
admits at least one weak solution u € H'>2(Q). Then the following estimate is valid

Hu‘|k+2,2,n < C+(Q,C:—)P(HCH1¢+1,2,Q) (Hf“k,Q,Q + ||“||2Q) ) (6.3)

where P : R — R is a polynomial of finite order and the appearing constant is independent of u, f,C and in addition
C*(Q,ct) is bounded above for ¢ > 0.

Proof. See [18, 19] and compare with [48, p.75] for comparable results on elliptic regularity for linear second order
elliptic systems on other scales. The main advantage of the new theorem is to precisely track how the regularity of
the coefficients enter the elliptic estimate. Precise estimates of this form had not been available previously. |

6.5 Local existence for ordinary differential equations in Banach-spaces

Theorem 6.2 (Unique local existence) R
Let U, X,Y, Z be arbitrary Banach-spaces with norms |||z, ||-||x, ||-Ily; ||-|lz respectively. Assume that f UXX —

Lin(X, X) is locally Lipschitz-continuous and let the initial value y° € X be given. Let G : X XY x Z U be
an operator which is Lipschitz continuous on the set M x ¥ x Z with M = {y € X | |ly — y°||x < K} and
Y CY, ZC Z bounded in Y, Z, respectively, i.e., there is a positive constant Lt such that

ALt >0: V(ml,al,bl),(m,ag,bz)e./\/(><y><Z:
G (21, a1,b1) — G(x2,,a2,b2)|l5 < LY - ([ler — z2l|x + [lar — az2]ly + [b1 — b2]lz) -

Moreover, assume that o € C1([0,T],Y), 8 € C1([0,T], Z) are given functions. Then there is some 0 < t; € R such
that the initial value problem

L0 = F (60,00, 50),50) 50, ¥0) =", (64)
has a unique solution y € C*([0,t1], M). |
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