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1 Introdu
tion

1.1 A �nite vis
oelasti
 membrane-plate model

We study a geometri
ally exa
t, observer-invariant membrane-plate model that has been derived

in [34℄ whi
h in
orporates vis
oelasti
 transverse shear resistan
e due to an additional �eld of

independently evolving rotations R 2 SO(3;R).

1

The model in a variational formulation reads:

�nd the deformation of the midsurfa
e of the membrane-plate m : [0; T ℄ � ! 7! R

3

and the

independent lo
al vis
oelasti
 rotation R : [0; T ℄� ! 7! SO(3;R) su
h that m minimizes on !

Z

!

hW (F;R)� hf;mi d! 7! min :w.r.t. m at given R ; (1.1)

with pres
ribed Diri
hlet boundary 
onditions for simple support m

j




0

(t; x; y) = g

d

(t; x; y), (x; y) 2




0

� �!. The 
onstitutive assumptions on the densities are

W (F;R) :=

�

4

kF

T

R+R

T

F � 211k

2

+

�

8

tr

h

F

T

R +R

T

F � 211

i

2

; (1.2)

F = (rmj%

m

R

3

); %

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

2�+ �

:

The lo
al vis
oelasti
 evolution for the "moving three-frame" R(t; x; y) 2 SO(3;R) is given by

d

!̂

dt

R(t) = �

+

� skew (B

res

) � R(t) ; B

res

= B

res;0

me
h

or B

res;0

t


; �

+

= �

+

(F;R) 2 R

+

; (1.3)

B

res;0

me
h

= �FR

T

; B

res;0

t


=

h

�(2 11� FR

T

) + � [3� hFR

T

; 11i11℄

i

FR

T

; R(0) 2 SO(3;R) :

This evolution equation guarantees that indeed exa
t rotations are determined whatever form the

resultant (res) generator of the group B

res

2 M

3�3

has. By

d

!̂

dt

we mean the observer-invariant

(
orotated) time derivative on SO(3;R)

d

!̂

dt

[R(t)℄ :=

d

dt

[R(t)℄� b!(t) �R(t) ; b! :=

d

dt

[Q(t)℄ �Q(t)

T

; (1.4)

where Q(t) 2 SO(3;R) is the rotation of the 
urrent frame with respe
t to the inertial frame and

b! is the 
orresponding angular velo
ity. Without loss of generality, we 
on�ne attention to the

inertial frame, i.e. b! � 0 and

d

!̂

dt

=

d

dt

. The term �

+

2 R

+

represents a s
alar valued fun
tion

introdu
ing vis
oelasti
ity and spe
i�ed subsequently. R

0

is the initial 
ondition for the vis
oelasti


rotation part. Transverse shear (R

3

6= ~n

m

, where ~n

m

is the unit normal to the surfa
e given by

m) o

urs vis
oelasti
ally. B

res;0

me
h

or B

res;0

t


are alternative 
onstitutive 
hoi
es for B

res

in (1.3).

B

res;0

me
h

is me
hani
ally motivated (me
h) while B

res;0

t


is in addition thermodynami
ally 
onsistent

(t
). This notation derives from the underlying modelling paper [34℄.

Here, ! � R

2

denotes the 
at referential domain of the membrane-plate with smooth boundary

�! and 


0

� �! is a part of the boundary supposed to have full one-dimensional Hausdor� measure.

The relative thi
kness of the plate is h > 0, f denotes the applied resultant body loading while

N

di�

denotes a resultant surfa
e 
ouple (see (6.7)). The fun
tion %

m

a

ounts for thi
kness

stret
h of the membrane whi
h is linearly 
oupled to the membrane stret
h

�

h(rmj0); Ri � 2

�

,

su
h that lo
ally stret
hing the membrane de
reases the thi
kness.

The three-dimensional deformation '

s

: ! � [�

h

2

;

h

2

℄ 7! R

3

of the underlying thin stru
ture is

supposed to be re
onstru
ted by

'

s

(x; y; z) = m(x; y) + z%

m

(x; y)R

3

(x; y) ; z 2 [�

h

2

;

h

2

℄; (1.5)

whereR

3

:= R:e

3

and 
orresponding re
onstru
ted deformation gradientr

(x;y;z)

'

s

(x; y; 0) :=

F = (rmj%

m

R

3

), evaluated at the midsurfa
e z = 0. Viewing (1.5) as an ansatz for the three-

dimensional deformation with yet indetermined %

m

and inserting this ansatz into the underlying

three-dimensional problem the form of the fa
tor %

m

turns out to be an exa
t analyti
al 
onse-

quen
e of the thi
kness-averaged three-dimensional stress 
onditions at the upper and lower fa
e

of the plate. The other notation is found in the appendix.

1

The rotations R 2 SO(3;R) 
an be thought of as a vis
oelasti
ally adjusted orthonormal triad of dire
tors.
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Figure 1: The assumed membrane-plate kinemati
s in
orporating vis
oelasti
 transverse shear

(R

3

6= ~n

m

), instantaneous (elasti
) thi
kness stret
h (%

m

6= 1) and vis
oelasti
 drill-rotations.

Re
onstru
ted three-dimensional deformation '

s

(x; y; z) = m(x; y) + z %

m

(x; y)R

3

, midsurfa
e

deformation m, independent vis
oelasti
 rotation R.

The introdu
ed problem (1.1,1.2,1.3) is observer-invariant (geometri
ally exa
t) in the sense

that if the pair (m;R) is a solution then for arbitrary Q(t) 2 SO(3;R) the rigidly rotated pair

(Q(t):m;Q(t)R) is also a solution to rotated data. This requirement is 
ru
ial for a 
onsistent

des
ription in 
ontinuum me
hani
s but violated by whatever in�nitesimal-displa
ement models.

This ne
essary requirement introdu
es automati
ally a 
ertain type of nonlinearity whi
h we aim

to analyze.

It is also important to note that after all W (F;R) depends at most quadrati
ally on rm, the

membrane deformation gradient, at given R, despite appearan
e in (1.2). This 
an be seen by a

lengthy but straightforward 
al
ulation given in (6.3). It shows that in terms of what will be 
alled

the redu
ed re
onstru
ted deformation gradient

b

F = (rmjR

3

) and N

di�

= 0 in fa
t

W (F;R) = � k sym

�

F

T

R� 11

�

k

2

+

�

2

tr

�

sym

�

F

T

R� 11

��

2

= � k sym

�

b

F

T

R� 11

�

k

2

+

��

(2�+ �)

tr

h

sym

�

b

F

T

R� 11

�i

2

; (1.6)

showing the apparent 
hange of the Lam�e moduli for the three-dimensional stru
ture (�; �) to the

redu
ed (homogenized) moduli of the two-dimensional stru
ture (�;

��

(2�+�)

). Note that

��

(2�+�)

=

1

2

H(�;

�

2

) with H the harmoni
 mean. This is a 
hara
teristi
 feature of lower-dimensional the-

ories whi
h otherwise would not be asymptoti
ally 
orre
t.

The goal of this 
ontribution is to prove the well-posedness of (1.1,1.2,1.3). More pre
isely, we

show the following result, for whi
h we 
hoose the positive fun
tion �

+

in the vis
oelasti
 
ow part

1.3 formally similar to a 
onventional Norton-Ho� formulation of vis
oplasti
ity theory

�

+

=

1

�

0

�

1 +

"

k skew(�FR

T

)k�0

��

0

#

r

0

+1

+

1

A

k

0

�

�

k skew (B

res

) k�0

��

0

�

r

0

+

�

1

k skew (B

res

) k

(1.7)

with ��

0

= 1[MPa℄, non-dimensional parameters r

0

; k

0

� 1 and � plays the role of a relaxation time

with units [�℄ = se
. Within this setting we show
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Theorem 1.1 (Lo
al existen
e and uniqueness for problem (1.1,1.2,1.3))

Let h > 0 and ! � R

2

be a bounded smooth domain and suppose for the displa
ement boundary

data g

d

2 C

1

(R; H

3;2

(!;R

3

)) and for the resultant body for
e f 2 C

1

(R; H

1;2

(!;R

3

)). Assume for

the initial 
ondition R

0

2 H

2;2

(!; SO(3))). Then there exists a time t

1

> 0 su
h that the initial

boundary value problem (1.1,1.2,1.3) with �

+

in the form (1.7), pure displa
ement boundary data

and N

di�

= 0 admits a unique solution

(m;R) 2 C([0; t

1

℄; H

3;2

(!;R

3

))� C

1

([0; t

1

℄; H

2;2

(!; SO(3))): �

1.2 Relation to existing work

The dimensional redu
tion of a given model is already an old and mature subje
t and it has seen

many "solutions". The di�erent approa
hes toward elasti
 shell theory proposed in the literature

and relevant referen
es thereof are, therefore, too numerous to list here. In any 
ase our proposal

falls within the so 
alled derivation approa
h, i.e., redu
ing a given three-dimensional model via

(physi
ally) reasonable 
onstitutive assumptions to a two-dimensional model as opposed to either

the intrinsi
 approa
h whi
h views the shell from the onset as a two-dimensional surfa
e and

invokes 
on
epts from di�erential geometry or the asymptoti
 methods whi
h try to establish

two-dimensional equations by formal expansion of the three-dimensional solution in power series in

terms of a small parameter. The intrinsi
 approa
h is 
losely related to the dire
t approa
h whi
h

takes the shell to be a dire
ted medium in the sense of a restri
ted Cosserat-theory [12℄.

2

A

detailed presentation of the 
lassi
al shell theories 
an be found in [28℄. A thorough mathemati
al

analysis of linear, in�nitesimal shell theory, based on asymptoti
 methods is to be found in [8℄ and

the extensive referen
es therein, see also [7, 10, 1, 13, 14℄. Reviews and insightful dis
ussions of

the modelling and �nite element implementation may be found in [41, 39, 40, 23, 24, 2, 4℄ and

in the series of papers [42, 44, 45, 47, 46, 43, 11℄. Properly invariant elasti
 plate theories for

membrane and bending are derived by formal asymptoti
 methods in [21℄ and extended to the 
ase

of 
urvilinear 
oordinates in [27, 26℄.

The mathemati
al analysis establishing the wellposedness of all the in�nitesimal linearized

models is fairly well established and will not be our 
on
ern.

In the �nite-strain, geometri
ally exa
t elasti
 
ase, mostly based on the Saint Venant-Kir
hho�

free energy density � kEk

2

+

�

2

tr [E℄

2

where E =

1

2

(F

T

F � 11), the formal asymptoti
 methods

are still su

essful in that they identify again leading membrane and bending terms. As far as

the o

urring membrane 
ontribution is 
on
erned, it is the form (3.50) whi
h is given e.g. in

[22, 21, 27℄. However, variational methods based on s
aling assumptions and �-
onvergen
e [15℄

suggest a fundamentally di�erent membrane term whi
h leads to a non-resistan
e of the membrane

plate/shell in 
ompression.

3

The non-resistan
e to 
ompression in this analysis is related to the use

of the quasi
onvex hull

4

QW

0

of a dimensionally redu
ed St.Venant Kir
hho� energy, see (3.52).

This quasi
onvex hull, surprisingly enough, 
an be given in 
losed form [17, 25℄ and shows to be

in general positive but zero in the 
ompression range.

The 
lassi
al linear models proposed in the literature lead to e�e
tive numeri
al s
hemes only

if the thi
kness h of the stru
ture is still appre
iable, i.e. 
lassi
al bending terms are present and

regularize the 
omputation. However, there is an abundan
e of new appli
ations where very thin

stru
tures are used, e.g. very thin metal layers on a substrate (in 
omputer hardware, for the


hara
teristi
 non dimensional relative thi
kness h � 5 � 10

�4

). See [3℄ for an appli
ation to thin

�lms.

Sin
e lo
ally rotating the thin stru
ture is energeti
ally "
heap" 
ompared to stret
hing, we

are for
ed to 
onsider models in
luding �nite rotations in an obje
tive manner. But the proposed

�nite-strain membrane terms found in the literature are either non-ellipti
 and the remaining

(minimization) problem is not well-posed or they lead to the aforementioned non-resistan
e in


ompression. We view the model (1.1,1.2,1.3) as a partial answer to these problems. A di�erent

approa
h to the same problem has been taken in [35℄, where balan
e equations for rotations are

pres
ribed instead of evolution equations as in (1.3).

2

Restri
ted, sin
e no material length s
ale enters the dire
t approa
h, only the thi
kness h appears.

3

They remark [16, p.550℄: "...then the 
orresponding nonlinear membranes o�er no resistan
e to 
rumpling. This

is an empiri
al fa
t, witnessed by anyone who ever played with a de
ated balloon."

4

"... the fa
t that this fun
tion is not quasi
onvex already implied that it had to be relaxed in order to give rise

to a well posed problem." [16, p.575℄.
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1.3 Preliminaries and general mathemati
al framework

Let us outline how we show that the nonlinear problem (1.1,1.2,1.3) admits a unique lo
al solution.

Sin
e we will heavily use ellipti
 regularity, we 
on�ne attention to the 
ase without external surfa
e

tra
tions.

5

At "frozen" rotations R 2 SO(3;R) the 
orresponding system of elasti
 balan
e of linear

momentum proves to be a linear, se
ond order, stri
tly Legendre-Hadamard ellipti
 boundary value

problem with non-
onstant 
oeÆ
ients set by R. This system has variational stru
ture in the

sense that the equilibrium part of (1.1,1.2,1.3) is equivalent to the elasti
 minimization problem

8 t 2 [0; T ℄ : I(m(t); R(t)) 7! min : w.r.t. m, m(t) 2 g

d

(t) +H

1;2

Æ

(!;R

3

; 


0

) ; (1.8)

where

I(m;R) =

Z

!

hW (F;R)� hf;mi d! ; F = (rmjR

3

) ; (1.9)

W (F;R) :=

�

4

kF

T

R+R

T

F � 211k

2

+

2��

8(2�+ �)

tr

h

F

T

R+R

T

F � 211

i

2

:

The weak form of the 
orresponding equilibrium equation is given by

Lemma 1.2 (Weak form of stati
 elasti
 problem)

A minimizer m 2 H

1;2

(!;R

3

) of (1.8) is a weak solution to the equilibrium problem

0 =

Z

!

h hD

F

W (F;R); (r�j0)i � hf; �i d! 8� 2 H

1;2

0

(!;R

3

) : (1.10)

If the appearing quantities are smooth enough, this is equivalent to the strong form

0 = h Div R

�

�(F

T

R+R

T

F � 211) +

2��

2�+ �

tr

�

F

T

R� 11

�

11

�

+ f : (1.11)

For the redu
ed re
onstru
ted deformation gradient F = (rmjR

3

) it holds that

F

T

R = (rmjR

3

)

T

R =

�

(rmj0) + (0j0jR

3

)

�

T

R = (rmj0)

T

R+ (0j0je

3

) ; (1.12)

and we have also the alternative representation

h Div R

�

�((rmj0)

T

R+R

T

(rmj0)) +

2��

2�+ �

tr

�

(rmj0)

T

R

�

11

�

= (1.13)

� f + h Div

�

2

�

�+ 3

��

2�+ �

�

R

�

: �

Note the appearan
e of a "virtual" body for
e 
ontribution on the right hand side in (1.13) due

to the inhomogeneities inherent in R whi
h 
an be seen as a permanent sour
e of internal stresses.

This weak form (1.13) 
an be written in the short
ut form

h Div D (R(x; y)):(rmj0) = �f + h Div V (R(x; y)); m

j

�!

= g

d

; (1.14)

where we introdu
ed the 
orresponding elasti
ity tensor D and the additional right-hand side


ontribution V a

ording to the next de�nition in line with (1.13):

De�nition 1.3 (Homogenized two-dimensional elasti
ity tensor)

We de�ne the two dimensional elasti
ity tensor D : M

3�3

7! Lin(M

3�3

;M

3�3

) and the right hand

side V : M

3�3

7! M

3�3

by

8H2M

3�3

: D (R):H :=R

�

�(H

T

R +R

T

H) +

2��

2�+ �

tr

�

H

T

R

�

11

�

;

V (R) := 2

�

�+ 3

��

2�+ �

�

R ; (1.15)

5

The 
ase with non-vanishing transverse surfa
e tra
tions N

di�


an be easily in
luded sin
e it involves only a

modi�
ation of the resultant body for
e.

6



respe
tively. Note that D is a nonlinear mapping with respe
t to R, while V remains linear and

D (11):H :=

�

�(H

T

+H) +

2��

2�+ �

tr [H ℄11

�

(1.16)

is the two-dimensional homogenized elasti
ity tensor of linear elasti
ity. �

A startling diÆ
ulty whi
h we en
ounter in the treatment of (1.13) is that the elasti
ity tensor

D = D (R), although turning out to be uniformly Legendre-Hadamard ellipti
, does not indu
e a

pointwise uniformly positive bilinear form on the symmetrized strains as in (3.49) for R = 11; (A =

0). To see nevertheless the uniform Legendre-Hadamard ellipti
ity, we prove

Lemma 1.4 (Uniform Legendre-Hadamard ellipti
ity)

Assume that R : ! 7! SO(3;R). Then the system (1.13) with elasti
ity tensor D given by De�nition

1.3 is uniformly Legendre-Hadamard ellipti
 in the sense that

9 


+

> 08 � 2 R

3

; � 2 R

2

: hD (R(x; y)):(� 
 �j0); (� 
 �j0)i � 


+

k�k

2

R

3

k�k

2

R

2

; (1.17)

and the ellipti
ity 
onstant is independent of R(x; y).

Proof. Set �̂ = (�

1

; �

2

; 0)

T

with � 2 R

2

implying � 
 �̂ = (� 
 �j0). For D given by De�nition 1.3

we have

hD (R(x; y)):(� 
 �j0); (� 
 �j0)i = D

2

rm

W ((rmjR

3

); R):((� 
 �j0); (� 
 �j0))

=

�

2

kR

T

(� 
 �j0) + (� 
 �j0)

T

Rk

2

+

��

2(2�+ �)

tr

h

R

T

(� 
 �j0) + (� 
 �j0)

T

R

i

2

�

�

2

kR

T

(� 
 �j0) + (� 
 �j0)

T

Rk

2

= � kR

T

(� 
 �j0)k

2

+ � hR

T

(� 
 �j0); (� 
 �j0)

T

Ri

= � k(� 
 �j0)k

2

+ � hR

T

:� 
 �̂; (�̂ 
 �)Ri (1.18)

= � k(� 
 �̂)k

2

+ � hR

T

:� 
 �̂; �̂ 
R

T

:�i

� � k� 
 �̂k

2

+ � hR

T

:�; �̂i

2

� � k�k

2

R

3

k�̂k

2

R

3

= � k�k

2

R

3

k�k

2

R

2

:

The uniformity of the estimate is only true sin
e rotations R(x; y) 2 SO(3;R) leave length 
onstant:

kR:�k = k�k. �

Despite the missing pointwise uniform positivity, we prove the existen
e, uniqueness and reg-

ularity of solutions to the boundary value problem (1.13). The existen
e part for (1.13) relies

heavily on the following Theorem re
ently proved by the author extending Korn's �rst inequality

to non-
onstant 
oeÆ
ients and over
oming the la
k of uniform positivity of (1.8). This theorem

has been proved in the 
ontext of multipli
ative plasti
ity, from whi
h the notation F

p

originates.

Theorem 1.5 (Extended 3D-Korn's �rst inequality)

Let 
 � R

3

be a bounded Lips
hitz domain and let � � �
 be a smooth part of the boundary with

non vanishing 2-dimensional Hausdor� measure. De�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g

and let F

p

; F

�1

p

2 C

1

(
;GL(3;R)). Moreover suppose that CurlF

p

2 C

1

(
;M

3�3

). Then

9 


+

> 0 8 � 2 H

1;2

Æ

(
;�) :

k(r�)F

�1

p

(x) + F

�T

p

(x)(r�)

T

k

2

L

2

(
)

� 


+

k�k

2

H

1;2

(
)

: (1.19)

Proof. The proof has been presented in [31℄. �

Remark 1.6

Note that for F

p

= r� we would only have to deal with the 
lassi
al Korn's inequality evaluated

on the transformed domain �(
). This is the 
ompatible 
ase. However, in general, F

p

is

in
ompatible su
h that the problem 
an be viewed as posed on a non-Riemannian manifold .

Compare to [5℄ for an interpretation and the physi
al relevan
e of the quantity CurlF

p

. It 
omes

as no surprise that in �nite plasti
ity the in
ompatibility of F

p

should play an important role.

7



Motivated by the investigations in [31℄, it has been shown re
ently by Pompe [38℄ that the

extended Korn's inequality 
an be viewed as a spe
ial 
ase of a general 
lass of 
oer
ive inequalities

for quadrati
 forms. He was able to show that indeed F

p

; F

�1

p

2 C(
;GL(3;R)) is suÆ
ient for

Theorem 1.5 to hold without any 
ondition on the 
ompatibility.

However, taking the spe
ial stru
ture of the extended Korn's inequality again into a

ount, work

in progress suggests that 
ontinuity is not really ne
essary: instead F

p

; F

�1

p

2 L

1

(
;GL(3;R))

and CurlF

p

2 L

3+Æ

(
) should suÆ
e, whereas F

p

; F

�1

p

2 L

1

(
;GL(3;R)) alone is not suÆ
ient,

see the 
ounterexample presented in [38℄. The possible improvement has no bearing on our further

development. �

As a 
onsequen
e of the three-dimensional 
oer
ivity inequality it is possible to prove

Theorem 1.7 (Extended Korn's inequality for rigid shells)

Let ! � R

2

be a bounded domain with smooth boundary and let 


0

� �! be a part of the

boundary with non vanishing 1-dimensional Hausdor� measure. De�ne H

1;2

Æ

(!;R

3

; 


0

) := f� 2

H

1;2

(!;R

3

); j �

j




0

= 0g and let F

p

; F

�1

p

2W

1;2+Æ

(!;GL(3;R)). Then

9 


+

> 0 8 � 2 H

1;2

Æ

(!;R

3

; 


0

) :

k(r�j0)F

�1

p

(x) + F

�T

p

(x)(r�j0)

T

k

2

L

2

(!)

� 


+

k�k

2

H

1;2

(!)

; (1.20)

and the 
onstant is bounded away from zero for F

p

; F

�1

p

bounded in W

1;2+Æ

(!;GL(3;R)).

Proof. The idea is to extend the fun
tion � in a suitable manner to three dimensions and to

use Theorem 1.5 in the strengthened form proposed in [38℄. The Sobolev embedding shows that

F

p

2W

1;2+Æ

(!;GL(3;R)) may be identi�ed with a 
ontinuous fun
tion. A 
ontradi
tion argument

as in [32℄ shows that the 
onstant is bounded away from zero sin
e W

1;2+Æ

(!;GL(3;R)) is 
om-

pa
tly embedded in C(!;GL(3;R)). For details 
onsult [29, 33℄. �

Continuing with our general development we observe that the solution m of (1.13) depends

nonlinearly on R. Despite this nonlinearity, we establish Lips
hitz-
ontinuous-dependen
e of the

solution to (1.8) with respe
t to the data and 
oeÆ
ients R, by looking at the weak problem (1.13)

in the form (1.14) and using sharp ellipti
 estimates.

The 
on
eptual idea to treat the nonlinear 
oupled vis
oelasti
 evolution problem is straight-

forward: the ordinary di�erential equation may be written in the following form

d

dt

R(t) = f(F (R); R) � R ; (1.21)

with f : M

3�3

�M

3�3

7! Lin(M

3�3

;M

3�3

) where F (R) = (rm(R)jR

3

). Here m(R) is the solution

of the ellipti
 boundary value problem (1.13) at given R. It remains to show that the right hand

side of (1.21) as a fun
tion of R is lo
ally Lips
hitz-
ontinuous in appropriate spa
es allowing

to apply the lo
al existen
e and uniqueness theorem for nonlinear evolution equations in Bana
h

spa
es based on Bana
h's �xed point theorem, 
f. (6.2).

2 Lo
al existen
e and uniqueness proof

2.1 First step: the stati
 elasti
 subproblem

We have already indi
ated that in the stati
 
ase for frozen variables R the elasti
 equilibrium

system in (1.13) is a linear, stri
tly Legendre-Hadamard ellipti
 se
ond order boundary value

problem with non-
onstant 
oeÆ
ients and variational stru
ture.

6

We exploit this stru
ture and

apply the dire
t methods of the 
al
ulus of variations to show that there exists a unique weak

solution to (1.13) at frozen variables R whi
h satis�es an additional uniform estimate.

Theorem 2.1 (Existen
e of minimizers)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

)

and for the rotations R 2W

1;p

(!; SO(3;R)); p > 2. Moreover, assume for the resultant body for
e

6

This 
orresponds essentially to the elasti
 trial step in 
urrent algorithmi
 formulations of vis
oplasti
ity.

8



f 2 L

2

(!;R

3

). Then the variational problem

I(m;R) 7! min : w.r.t. m, m 2 g

d

+H

1;2

Æ

(!;R

3

; 


0

) ;

I(m;R) :=

Z

!

hW (F;R)� hf;mi d! ; F = (rmjR

3

); U = R

T

F ; (2.1)

W (F;R) :=

�

4

kF

T

R +R

T

F � 211k

2

+

�

�

8

tr

h

F

T

R+R

T

F � 211

i

2

= � k sym(U � 11)k

2

+

�

�

2

tr

�

U � 11

�

2

; �

�

=

2��

2�+ �

;

admits at least one minimizing midsurfa
e deformation m 2 H

1

(!;R

3

).

Proof. With the pres
ription of g

d

it is 
lear that I(g

d

; R) < 1. Consider any sequen
e of

fun
tions m

k

2 H

1;2

(!;R

2

) for whi
h the energy remains bounded. At fa
e value, along the

sequen
e, we only 
ontrol 
ertain mixed symmetri
 expressions in the re
onstru
ted deformation

gradient (rm

k

jR

3

). Let us de�ne v

k

2 H

1;2

(!;R

3

) by m

k

= g

d

+ (m

k

� g

d

) = g

d

+ v

k

. Then we

have

1 > I(m

k

; R) =

Z

!

hW (U

k

)� hf;m

k

i d! �

Z

!

hW

mp

(U

k

) d! � Ckm

k

k

L

2

(!)

�

Z

!

h

�

4

kR

T

(rm

k

jR

3

) + (rm

k

jR

3

)

T

R� 211k

2

d! � C km

k

k

H

1;2

(!)

=

Z

!

h

�

4

kR

T

(rm

k

jR

3

) + (rm

k

jR

3

)

T

Rk

2

� 4h

�

4

tr

h

R

T

(rm

k

jR

3

) + (rm

k

jR

3

)

T

R

i

+ 4h

�

4

k11k

2

d! � C km

k

k

H

1;2

(!)

�

Z

!

h

�

4

kR

T

(rm

k

j0) + (rm

k

j0)

T

Rk

2

d! � C

1

km

k

k

H

1;2

(!)

+ C

2

(2.2)

�

Z

!

h

�

4

kR

T

(rv

k

j0) + (rv

k

j0)

T

Rk

2

| {z }


ombinations of derivatives

d! � C

1

kv

k

k

H

1;2

(!)

+ C

2

�

h�

4




+

K

kv

k

k

2

H

1;2

(!)

� C

1

kv

k

k

H

1;2

(!)

+ C

2

;

where we made use of the zero boundary 
onditions for v

k

on 


0

and applied the extended Korn's

inequality Theorem 1.7 (note again that R

�T

= R) yielding the positive 
onstant 


+

K

for the


ontinuous mi
rorotation R. We 
on
lude that I is bounded below and that the sequen
e v

k

is

bounded in H

1

(!). Hen
e, m

k

is bounded as well in H

1

(!).

Sin
e I is bounded below, we 
an 
onsider an in�mizing sequen
e m

k

2 H

1;2

(!;R

3

) with

lim

k!1

I(m

k

; R) = inf

m2H

1;2

(!;R

3

)

I(m;R) : (2.3)

Due to the boundedness of m

k

we may extra
t a subsequen
e, not relabelled, su
h that m

k

* ~m 2

H

1

(!;R

3

).

Now we obtain that U

k

= R

T

(rm

k

jR

3

) *

~

U = R

T

(r ~mjR

3

) by 
onstru
tion. Sin
e the total

energy is 
onvex in U (indeed quadrati
 in the non-symmetri
 U) we get

I( ~m;R) =

Z

!

hW (

~

U)� hf; ~mi d! � lim inf

k!1

Z

!

hW (U

k

)� hf;m

k

i d!

= lim

k!1

I(m

k

; R) ; (2.4)

whi
h implies that the weak limit ~m is a minimizer. �

Corollary 2.2 (Uniqueness of minimizers)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

) and

R 2 W

1;p

(!; SO(3;R)); p > 2. Moreover, let f 2 L

2

(!;R

3

). Then the variational problem (2.1)

has a unique minimizing midsurfa
e deformation m 2 H

1

(!;R

3

).

9



Proof. We show that the fun
tional I(m;R) is stri
tly 
onvex w.r.t. m 2 H

1;2

(!;R

3

). This 
an

be seen by 
omputing the se
ond derivative of I . Sin
e I is quadrati
 w.r.t. m the bilinear form

indu
ed by the se
ond derivative is given for � 2 H

1;2

(!;R

3

) by

D

2

m

I(m;R):(�; �) =

Z

!

h

�

2

k(r�j0)

T

R+R

T

(r�j0)k

2

+

�

�

4

tr

h

(r�j0)

T

R+R

T

(r�j0)

i

2

d!

�

Z

!

h

�

2

k(r�j0)

T

R+R

T

(r�j0)k

2

d! : (2.5)

For the displa
ement problem we have zero boundary 
onditions for � on 


0

. Hen
e, applying

Theorem 1.7 yields uniform positivity. �

Lemma 2.3 (Uniform G�arding-type estimate for the minimizer)

Let ! � R

2

be a bounded smooth domain and assume for the boundary data now g

d

2 H

3;2

(!;R

3

)

and R 2 M with M de�ned in GA.3 below and order of ellipti
 regularity k = 1. Moreover, let

f 2 L

2

(!;R

3

). Then the unique minimizing solution m 2 H

1;2

(!) to (2.1) satis�es the (rough)

estimate

9 C

+

M

(kg

d

k

3;2;!

; kfk

2;!

) > 0 8 R 2M

kmk

1;2;!

� C

+

M

(kg

d

k

3;2;!

; kfk

2;!

) �

�

1 + kg

d

k

3;2;!

+ kfk

2;!

�

(2.6)

and C

+

M

(kg

d

k

3;2;!

; kfk

2;!

) is a 
ontinuous fun
tion of kg

d

k

3;2;!

and kfk

2;!

.

Proof. Idea: re
all the estimates (2.2) of Theorem 2.1 whi
h bounds m from above. With the

assumptions on the 
oeÆ
ients R we have by Theorem 1.7 that the appearing 
onstants in Theorem

2.1 are bounded independent of the 
oeÆ
ients for R bounded in H

2;2

(!); notably the 
onstant




+

K

is bounded away from zero in this 
ase. The bound from above 
an be made expli
it by taking

as 
omparison fun
tion g

d

.

Sin
e we have to keep tra
k of the appearing 
onstants, however, we must pro
eed in more

detail: Set m = v + g

d

with v 2 H

1;2

(!;R

3

) and let F = (rmjR

3

). To simplify notation we write

rv for (r

(x;y)

vj0). We have algebrai
ally

W (F;R) =

�

4

kR

T

F + F

T

R� 2 11k

2

+

�

�

8

tr

h

R

T

F + F

T

R� 2 11

i

2

�

�

4

kR

T

rv +rv

T

Rk

2

� 2� kR

T

k

2

krvk krg

d

k � 2�

p

3 kR

T

k krvk+

�

4

kR

T

rg

d

+rg

T

d

R� 211k

2

: (2.7)

Integrating over ! and making use of Theorem 1.7 with R;R

T

2 H

2;2

(!; SO(3;R)) � C

0;

1

2

(!) we

get for all m 2 H

1;2

(!;R

3

)

Z

!

h W (F;R)� hf;mi d! � � h 


+

K

(R) kvk

2

H

1;2

(!)

| {z }

extended 2D-Korn

�2�h kR

�1

k

2

1

krg

d

k

1

kvk

H

1;2

(!)

� 2�h

p

3kR

T

k

1

kvk

H

1;2

(!)

+

Z

!

h

�

4

kR

�T

rg

T

d

+rg

d

R

�1

� 211k

2

d! (2.8)

� kfk

L

2

(!)

�

kvk

L

2

(!)

+ kg

d

k

L

2

(!)

�

:

Sin
e m is a minimizer, we have by estimating from above and using hX; 11i

2

� 3kXk

2

Z

!

h W (F;R)� hf;mi d! �

�

�

4

+

3�

�

8

�

Z

!

h kR

T

rg

d

+rg

T

d

R� 211k

2

d! + kfk

L

2

(!)

kg

d

k

L

2

(!)

�

�

4

Z

!

h kR

T

rg

d

+rg

T

d

R� 211k

2

d!+ (2.9)

3�

�

2

h j!j

�

kR

T

k

2

1

krg

d

k

2

1

+ 2

p

3kR

T

k

1

krg

d

k

1

+ 3

�

+ kfk

L

2

(!)

kg

d

k

L

2

(!)

:

10



This implies together with estimate (2.8) (the term with

�

4

h 
an
els and h < 1 without loss of

generality) the inequality

3�

�

h

2

j!j

�

kR

�1

k

2

1

krg

d

k

2

1

+ 2

p

3kR

T

k

1

krg

d

k

1

+ 3

�

+ 2 kfk

L

2

(!)

kg

d

k

L

2

(!)

� (2.10)

�h 


+

k

(R) kvk

2

H

1;2

(!)

� 2�h kR

T

k

2

1

krg

d

k

1

kvk

H

1;2

(!)

� 2�h

p

3kR

�1

k

1

kvk

H

1;2

(!)

� kfk

L

2

(!)

kvk

2;


� �h 


+

k

(R) kvk

2

H

1;2

(!)

� 2�

p

3

�

1 + kR

�1

k

2

1

� h

kR

�1

k

1

+ krg

d

k

1

+ kfk

L

2

(!)

i

� kvk

H

1;2

(!)

:

Hen
e a rough estimate yields

5�

�

h j!j

�

1 + kR

T

k

1

krg

d

k

1

�

2

+ 2 kfk

L

2

(!)

kg

d

k

L

2

(!)

� (2.11)

� h 


+

K

(R) kvk

2

H

1;2

(!)

� 5�

�

1 + kR

T

k

2

1

� h

kR

T

k

1

+ krg

d

k

1

+ kfk

L

2

(!)

i

� kvk

H

1;2

(!)

:

After further rearranging we get a quadrati
 inequality in kvk

H

1;2

(!)

0 � kvk

2

H

1;2

(!)

�

5




+

K

(R)

�

1 + kR

�1

k

2

1

�h

kR

�1

k

1

+ krg

d

k

1

+ kfk

L

2

(!)

i

� kvk

H

1;2

(!)

�

5�

�

j!j

� 


+

K

(R)

�

1 + kR

�1

k

1

krg

d

k

1

�

2

�

2

� h 


+

K

(R)

kfk

L

2

(!)

kg

d

k

L

2

(!)

: (2.12)

Sin
e 0 � x

2

� bx � 
 ) x � b +

p


, the former yields (with Young's inequality on f; g and

p




2

1

+ 


2

2

� (


1

+ 


2

) for positive 
onstants 


1

; 


2

)

kvk

H

1;2

(!)

�

2

4

5




+

K

(R)

�

1 + kR

T

k

2

1

�

+

s

5�

�

j!j

� 


+

K

(R)

�

1 + kR

T

k

1

krg

d

k

1

�

kR

T

k

1

+ krg

d

k

1

+ kfk

L

2

(!)

(2.13)

+

1

� h 


+

K

(R)

kfk

L

2

(!)

+ kg

d

k

L

2

(!)

kR

T

k

1

+ krg

d

k

1

+ kfk

L

2

(!)

#

�

h

kR

T

k

1

+ krg

d

k

1

+ kfk

L

2

(!)

i

:

Sin
e kRk = kR

T

k =

p

3 we obtain

kvk

H

1;2

(!)

�

"

5 � 4




+

K

(R)

+

s

5�

�

j!j

� 


+

K

(R)

�

1 +

p

3 krg

d

k

1

�

p

3

+

1

p

3� h 


+

K

(R)

�

kfk

L

2

(!)

+ kg

d

k

L

2

(!)

�

#

�

h

p

3 + krg

d

k

1

+ kfk

L

2

(!)

i

: (2.14)

With the embedding H

m;2

(!) ,! C

m�

n

2

(!) we get the estimate for v from whi
h we obtain easily

the desired estimate in terms of m. �

2.2 Se
ond step: higher regularity and 
ontinuous dependen
e

2.2.1 De�nitions and assumptions

In order to simplify the investigation of the ellipti
 system (1.13) with respe
t to regularity and


ontinuous dependen
e and to pla
e it in a more general 
ontext we introdu
e the

De�nition 2.4 (General assumption, GA)

GA.1 
 � R

n

is a bounded domain with smooth boundary and spa
e dimension n.

GA.2 We 
all k 2 N the order of ellipti
 regularity, and assume throughout that 2 � (k + 1) > n.

GA.3 (Lo
al boundedness of the elasti
ity tensor and part of the right hand side) There exists

K

1

> 0

D : M

3�3

7! Lin(M

3�3

;M

3�3

); V : M

3�3

7! M

3�3

,

11



M := fA : 
 7! M

3�3

j kAk

k+1;2;


� K

1

g,

9 C

M

: 8 A 2M : kD (A)k

k+1;2;


; kV (A)k

k+1;2;


� C

M

.

GA.4 (Uniform Legendre-Hadamard ellipti
ity on M) For all � 2 R

3

; � 2 R

2

it holds

9 


+

e;M

> 0 : 8 x 2 
 : 8 A 2M : hD (A(x)):(� 
 �j0); (� 
 �j0)i � 


+

e;M

� k�k

2

R

3

k�k

2

R

2

:

GA.5 (Lo
al Lips
hitz 
ontinuity)

9 L

M

: 8 A;B 2 M : kD (A) � D (B)k

k+1;2;


� L

M

� kA�Bk

k+1;2;


;

9 L

M

: 8 A;B 2 M : kV (A)� V (B)k

k+1;2;


� L

M

� kA�Bk

k+1;2;


:

If (GA.1,GA.2,GA.3,GA.4,GA.5) holds we say that GA holds. Note that 
ondition GA.5 al-

ready implies GA.3 but for 
onvenien
e GA.3 is stated separately. �

2.2.2 The di�eren
e of two solutions

The di�eren
e of two solutions m

A

;m

B

of (1.13) for di�erent data (for
es f

A

; f

B

, boundary dis-

pla
ement g

A

; g

B

and rotations A;B), is governed by the system

h Div D (A(x)):(r(m

A

�m

B

)j0) = h Div (D (B(x)) � D (A(x)):(rm

B

j0))

+ f

A

� f

B

+ h Div(V (A)� V (B)) ; (2.15)

(m

A

�m

B

)

j

�!

= g

A

� g

B

:

Therefore we investigate now the following general ellipti
 problem, where the data f; g do in

general not 
oin
ide with the a
tual resultant body for
e f and the a
tual Diri
hlet data g

d

. We

have

Lemma 2.5 (General linear system)

Let R 2 H

2;2

(!; SO(3)) be given and set A = R. Suppose that D has the form postulated in

De�nition 1.3 and assume for the generalized Diri
hlet boundary data g 2 H

3;2

(!) and for some

generalized body for
e f 2 L

2

(!). Then the linear problem

Div D (A):ru = f; u

j

�!

= g ; (2.16)

has a unique weak solution u 2 H

1;2

(!).

Proof. The same ideas as in Theorem 2.1 and Corollary 2.2 
arry over. As 
orresponding energy

expression we have only to take

W

D

(F;R) =

�

4

kF

T

R +R

T

Fk

2

+

�

�

8

tr

h

F

T

R+R

T

F

i

2

: �

Now we provide the spe
ialization of the ellipti
 regularity result to the situation treated in Lemma

2.5.

Theorem 2.6 (Improved Hilbert spa
e ellipti
 regularity with L

2

-part)

Assume GA and A 2 M. Consider the linear divergen
e form ellipti
 system

Div D (A):ru = f(x) ; u

j

�


= g(x): (2.17)

Assume that (2.17) admits at least one weak solution u 2 H

1;2

(
) for all g 2 H

k+2;2

(
) and all

f 2 H

k;2

(
). Then the following estimate is valid:

kuk

k+2;2;


� C

+

(
; kD (A)k

k+1;2;


) �

�

kgk

k+2;2;


+ kfk

k;2;


+ kuk

2;


�

; (2.18)

and the appearing 
onstant C

+

(
; kD (A)k

k+1;2;


) is uniform on M.

12



Proof. The transformation v = u� g allows us to 
onsider

Div D (A):rv = f(x) + Div D (A):rg ; v

j

�


= 0: (2.19)

If we apply Theorem 6.1 to (2.19) we get the estimate

kvk

k+2;2;


�C

+

(
; 


+

e

)P (kD (A)k

k+1;2;


)

�

kDiv D (A):rgk

k;2;


+ kfk

k;2;


+ kvk

2;


�

�C

+

(
; 


+

e

)P (kD (A)k

k+1;2;


)

�

kD (A)k

k+1;2;


kgk

k+2;2;


+ kfk

k;2;


+ kvk

2;


�

�C

+

(
; 


+

e

)P (kD (A)k

k+1;2;


)[1 + kD (A)k

k+1;2;


℄

�

kgk

k+2;2;


+ kfk

k;2;


+ kuk

2;


+ kgk

2;


�

: (2.20)

This yields for u = v + g

kuk

k+2;2;


� 2

�

1 + C

+

(
; 


+

e

)P (kD (A)k

k+1;2;


) [1 + kD (A)k

k+1;2;


℄

�

�

kgk

k+2;2;


+ kfk

k;2;


+ kuk

2;


�

: (2.21)

Now take

C

+

(
; kD (A)k

k+1;2;


) = 2

�

1 + C

+

(
; 


+

e

)P (kD (A)k

k+1;2;


) [1 + kD (A)k

k+1;2;


℄

�

:

This ends the proof sin
e C

+

(
; 


+

e

) is uniformly bounded above on M by (GA.4) and Theorem

6.1. �

Theorem 2.7 (Uniform estimates for bounded 
oeÆ
ients)

Assume GA and A 2 M. Consider the linear divergen
e form ellipti
 system

Div D (A):ru = f(x) ; u

j

�


= g(x): (2.22)

Assume that (2.22) has a unique weak solution u 2 H

1;2

(
) for all g 2 H

k+2;2

(
) and all f 2

H

k;2

(
). In addition assume that a uniform G�arding type L

2

(
)-estimate onM is available, i.e.,

9 C

M

> 0 : 8 A 2 M : kuk

2;


� C

M

�

�

kgk

k

1

+2;2;


+ kfk

k

2

;2;


�

; (2.23)

with max(k

1

; k

2

) � k. Then the following uniform estimate is true:

kuk

k+2;2;


� C

+

(
;M) �

�

kgk

k+2;2;


+ kfk

k;2;


�

; (2.24)

and the appearing 
onstant C

+

(
;M) is uniform on M.

Proof. An appli
ation of Theorem 2.6 will give the result. �

Theorem 2.8 (Lips
hitz-
ontinuous dependen
e of solutions)

Assume GA and let A;B 2 M. Assume for the boundary data g

A

; g

B

2 H

k+2;2

(
) and for the

body for
es f

A

; f

B

2 H

k;2

(
). Consider the two systems

Div D (A(x)):ru = f

A

(x) + Div V (A) Div D (B(x)):ru = f

B

(x) + Div V (B)

u

j

�


= g

A

(x) u

j

�


= g

B

(x): (2.25)

Assume that both systems verify the assumptions made in Theorem 2.7. Denote the (unique)

solutions u

A

; u

B

2 H

1;2

(
), respe
tively. Then the following estimate holds:

ku

A

� u

B

k

k+2;2;


�C

+

(
;M) �

�

1 + kBk

k+1;2;


+ kg

B

k

k+2;2;


+ kf

B

k

k;2;


�

(2.26)

�

kA�Bk

k+1;2;


+ kg

A

� g

B

k

k+2;2;


+ kf

A

� f

B

k

k;2;


�

;

with C

+

(
;M) uniformly bounded on M.
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Proof. Consider

Div D (A(x)):ru

A

= f

A

(x) + Div V (A) Div D (B(x)):ru

B

= f

B

(x) + Div V (B)

u

A

j

�


= g

A

(x) u

B

j

�


= g

B

(x): (2.27)

Taking the di�eren
e of the two equations leads us to 
onsider

Div D (A(x)):r(u

A

� u

B

) = Div (D (B(x)) � D (A(x)):ru

B

) + f

A

� f

B

+Div(V (A) � V (B))

(u

A

� u

B

)

j

�


= g

A

� g

B

: (2.28)

By the assumption on A and the elasti
ity tensor D (A) we know that the system (2.28) has a

unique solution (u

A

� u

B

). Together with the regularity assumption made for A and D (A) in GA

we 
an apply Theorem 2.7 to (2.28) and get the estimate

ku

A

� u

B

k

k+2;2;


� C

+

(
;M)�

�

kDiv(D (B) � D (A)):ru

B

k

k;2;


+ kDiv(V (B)� V (A))k

k;2;


+

kg

A

� g

B

k

k+2;2;


+ kf

A

� f

B

k

k;2;


�

� C

+

(
;M)�

�

kD (A) � D (B)k

k+1;2;


� ku

B

k

k+2;2;


+ kV (B)� V (A)k

k+1;2;


+

kg

A

� g

B

k

k+2;2;


+ kf

A

� f

B

k

k;2;


�

: (2.29)

Again with Theorem 2.7 applied to the solution u

B

we have

ku

B

k

k+2;2;


� C

+

(
;M) �

�

kg

B

k

k+2;2;


+ kf

B

k

k;2;


+ kV (B)k

k+1;2;


�

: (2.30)

Combining these two estimates and using (GA.5) for D ; V ends the argument. �

Corollary 2.9 (Lips
hitz-
ontinuous solution operator; time dependent 
oeÆ
ients)

Assume that for a given family of 
oeÆ
ientsM := fA

t

2Mj t > 0g, the family of related elasti
ity

tensors D (A

t

) veri�es all 
onditions of Theorem 2.7. For given 
onstants K

1

;K

2

;K

3

> 0 de�ne the

set of admissible boundary data G := fg 2 H

k+2;2

(
)j kgk

k+2;2;


� K

2

g and the set of admissible

body loads F := ff 2 H

k;2

(
)j kfk

k;2;


� K

3

g. Let the boundary data g

t

2 G and the body for
es

f

t

2 F be given. Then the family of 
orresponding linear ellipti
 systems (parametrized by t 2 R)

Div D (A

t

):r'

t

= f

t

(x) + Div V (A

t

) ; '

t

j

�


= g

t

(x): (2.31)

allows for a Lips
hitz-
ontinuous solution operator T on M � G � F su
h that '

t

= T (A

t

; g

t

; f

t

)

and

kT (A; g

A

; f

A

)� T (B; g

B

; f

B

)k

k+2;2;


�C

+

(
;M) �

�

1 + kBk

k+1;2;


+ kg

B

k

k+2;2;


+ kf

B

k

k;2;


�

�

kA�Bk

k+1;2;


+ kg

A

� g

B

k

k+2;2;


+ kf

A

� f

B

k

k;2;


�

;

(2.32)

for A;B 2M; g

A

; g

B

2 G; f

A

; f

B

2 F. The 
orresponding Lips
hitz 
onstant L

+

on M �G � F

has the form

L

+

= C

+

(
;M) �

�

1 + kBk

k+1;2;


+ kg

B

k

k+2;2;


+ kf

B

k

k;2;


�

: (2.33)

On M�G� F the Lips
hitz-
onstant is uniformly bounded by

L

+

= C

+

(
;M) (1 +K

1

+K

2

+K

3

) : (2.34)

Hen
e a family of ellipti
 systems of the above type has 
orresponding solution operators with uni-

form Lips
hitz-
onstant whenever kAk

k+1;2;


; kg

A

k

k+2;2;


; kf

A

k

k;2;


are bounded due to Theorem

2.7. �

Remark 2.10 (Nonlinear solution operator)

Let A

t

2 M and f

t

; g

t

as before. Then the mapping (f

t

; g

t

) 7! T (A

0

; g

t

; f

t

) is linear while the

mapping A

t

7! T (A

t

; g

0

; f

0

) is nonlinear. Hen
e the solution depends nonlinearly on the (time

dependent) elasti
ity tensor although the problem is linear for frozen (�xed at time t

0

) elasti
ity

tensor D (A

t

0

). �

The previous development has been fairly general. Therefore, in the �nal part of the proof we

spe
ialize 
 to ! � R

2

in De�nition 2.4 and set n = 2.
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2.3 Third step: the 
oupled nonlinear vis
oelasti
 evolution problem

In this �nal part of the proof we 
onsider the 
oupled vis
oelasti
 evolution problem. The 
oupled

problem (1.1,1.2,1.3) is formally equivalent to

d

dt

R(t) = f

�

r

x

T (R(t); g

d

(t); f(t)); R(t)

�

�R(t) ; (2.35)

with

f : M

3�3

� M

3�3

7! Lin(M

3�3

;M

3�3

) ; f

�

F;R(t)

�

= �

+

� skew(B

res

(t)) 2 so(3;R) ; (2.36)

where B

res

, de�ned in (1.3), is an expression depending on R and on the (redu
ed) re
onstru
ted

deformation gradient F = (rmjR

3

) = (r

x

T (R; g

d

; f)jR

3

). Here T (R; g

d

; f) is, at this stage,

formally de�ned to be the solution operator of the stati
 equilibrium part (1.13) in (1.1,1.2,1.3).

The 
hoi
e for �

+

in (1.7) implies that f 2 C

3

(M

3�3

� M

3�3

;Lin(M

3�3

;M

3�3

)), 
onsidered

pointwise.

Remark 2.11 (Flow rule on Sobolev spa
e)

Set M := fv 2 H

k+1;2

(!)j kvk

k+1;2;!

� Kg. Then due to Sobolev's embedding theorem it is easy

to see that for f 2 C

k+2

(M

3�3

� M

3�3

;M

9�9

) and forall v

1

; v

2

2M the estimate

kf(v

1

)� f(v

2

)k

k+1;2;!

� sup

k�k�

~

K

kf(�)k

C

k+2

(R

27

;M

9�9

)

� C

+

(!;M) � kv

1

� v

2

k

k+1;2;!

; (2.37)

holds. �

It remains to identify the pre
ise spa
es on whi
h to 
onsider this evolution problem in the frame-

work of a lo
al existen
e and uniqueness result for ordinary di�erential equations in Bana
h-spa
es,


f. Theorem 6.2. We let

b

U := H

2;2

(!;GL(3;R)); X := H

2;2

(!; SO(3;R)) (2.38)

and set Y := H

3;2

(!;R

3

) and Z := H

1;2

(!;R

3

). Assume that A

0

= R

0

2 X is given and for

positive 
onstants K

1

;K

2

;K

3

let

M := fA 2 X j kA�A

0

k

2;2;!

� K

1

g ; Y := fy 2 Y j kyk

3;2;!

� K

2

g ;

Z := fz 2 Zj kzk

1;2;!

� K

3

g: (2.39)

Observe that by 
onstru
tion of the 
ow rule

d

dt

R(t) = X

2

�R(t) with X

2

2 so(3) we know a priori

that R(x; t) 2 SO(3;R). Assume for the Diri
hlet boundary data g

d

2 C

1

([0; T ℄;Y) and for the

resultant body for
es f 2 C

1

([0; T ℄;Z). In view of the spe
i�
ations of spa
es and data we show

presently that the nonlinear, in�nite-dimensional evolution problem

d

dt

R(t) = f

�

r

x

T (R(t); g

d

(t); f(t)); R(t)

�

�R(t) ; (2.40)

�ts into the formal framework set forth in Theorem 6.2.

First we pro
eed to show that it is possible to de�ne a solution operator m = T (R; g

d

; f) to the

stati
 equilibrium part (1.13) of (1.1,1.2,1.3) and that this operator is indeed Lips
hitz-
ontinuous

on the bounded set M�Y �Z . We have

Lemma 2.12 (Existen
e of solution operator T )

For given lo
al rotation R 2 H

2;2

(!; SO(3;R)), Diri
hlet boundary data g

d

2 H

3;2

(!;R

3

) and

resultant body for
e f 2 H

1;2

(!;R

3

) the ellipti
 problem (1.13) admits an operator T with

T : H

2;2

(!; SO(3;R)) �H

3;2

(!;R

3

)�H

1;2

(!;R

3

) 7! H

3;2

(!;R

3

) (2.41)

su
h that m = T (R; g

d

; f) is the unique solution to (1.13).
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Proof. Due to Theorem 2.1 and Corollary 1.2 we know that solutions m = m(R; g

d

; f) of (1.13)

exist. With De�nition 1.3 it is obvious that D ; V 2 C

1

. Remark 2.11 shows that (GA.3) and

(GA.5) are satis�ed for D ; V on M. Moreover, by Corollary 1.4 we see that (GA.4) is true. If

we 
hoose the order of ellipti
 regularity k = 1 for the spa
e dimension n = 2 then (GA.2) holds

as well. The domain ! � R

2

has smooth boundary, therefore (GA.1) holds. Theorem 2.2 may

therefore be applied and shows that the solutions of the boundary value problem (1.13) are unique,

whi
h establishes existen
e of the solution operator.

Now the asserted regularity part: Lemma 2.3 proves a uniform H

1;2

(!) estimate for the solu-

tion m if g

d

2 Y ; f 2 Z on M. With Lemma 2.5 we make sure that the assumptions needed for

ellipti
 regularity in Theorem 2.7 are veri�ed. Hen
e Theorem 2.7 establishes higher regularity if

the data are smooth; for k = 1 we obtain H

3;2

(!;R

3

). �

Lemma 2.13 (Lips
hitz 
ontinuity of solution operator T )

Under the same assumptions as in Lemma 2.12 the solution operator T is uniformly Lips
hitz-


ontinuous on the bounded set

M�Y �Z � H

2;2

(!; SO(3;R)) �H

3;2

(!;R

3

)�H

1;2

(!;R

3

) : (2.42)

Proof. Taking into a

ount Lemma 2.12 we are entitled to apply Theorem 2.8 and Corollary 2.9.

This shows

kT (A; g

A

; f

A

)� T (B; g

B

; f

B

)k

k+2;2;!

�

C

+

(!;M) �

�

1 + kBk

k+1;2;!

+ kg

B

k

k+2;2;!

+ kf

B

k

k+2;2;!

�

(2.43)

�

kA�Bk

k+1;2;!

+ kg

A

� g

B

k

k+2;2;!

+ kf

A

� f

B

k

k;2;!

�

:

Hen
e, T (R; g

d

; f) is a Lips
hitz 
ontinuous operator with uniform Lips
hitz 
onstant L

+

on

M�Y �Z . �

By restri
ting the former estimate on T to the �rst gradient of T we obtain

Corollary 2.14 (Lips
hitz 
ontinuity for the gradient of T )

The gradient r

x

T (R; g

d

; f) satis�es a similar uniform Lips
hitz estimate as T does, namely

kr

x

T (A; g

A

; f

A

)�r

x

T (B; g

B

; f

B

)k

k+1;2;!

�

C

+

(!;M) �

�

1 + kBk

k+1;2;!

+ kg

B

k

k+2;2;!

+ kf

B

k

k+2;2;!

�

(2.44)

�

kA�Bk

k+1;2;!

+ kg

A

� g

B

k

k+2;2;!

+ kf

A

� f

B

k

k;2;!

�

: �

Hen
e on M�Y �Z we get

kr

x

T (A; g

A

; f

A

)�r

x

T (B; g

B

; f

B

)k

k+1;2;!

� (2.45)

C

+

(!;M) � (1 +K

1

+K

3

)

�

kA�Bk

k+1;2;!

+ kg

A

� g

B

k

k+2;2;!

+ kf

A

� f

B

k

k;2;!

�

:

This is enough to see that the operator G(R; g

d

; f) := r

x

T (R; g

d

; f) satis�es the assumptions of

Theorem 6.2.

Moreover, Remark 2.11 applied to f 2 C

3

(M

3�3

� M

3�3

;M

6�6

) shows that f, viewed as a

fun
tion f : U �X 7! Lin(X;X) is lo
ally Lips
hitz-
ontinuous on M. Therefore, we may �nally

apply Theorem 6.2 giving us a unique lo
al in time solution R 2 C

1

([0; t

1

℄;M) to the ordinary

di�erential system of equations (2.35). Sin
e m(t) = T (R(t); g

d

(t); f(t)), the pair

(m;R) 2 C([0; t

1

℄; H

3;2

(!;R

3

))� C

1

([0; t

1

℄; H

2;2

(!; SO(3))) ; (2.46)

is the unique lo
al in time solution of (1.1,1.2,1.3). Thus we have �nally proved Theorem 1.1. �
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3 A glimpse on the modelling

3.1 The non-ellipti
 relaxation limit

In [34℄ it is shown that due to the underlying isotropy the resulting nonlinear membrane-plate

model (1.1,1.2,1.3) with B = B

res;0

me
h

approa
hes in the equilibrium limit �

+

!1 (vanishing elasti


vis
osity = zero relaxation limit � ! 0 viz. for arbitrary slow pro
esses) formally the intrinsi
,

purely elasti


7

membrane-plate problem

Z

!

hW

1

(U((rmj~n))� hf;mi d! 7! stat : w.r.t. m 2 g

d

+H

1;2

Æ

(!;R

3

; 


0

) ; (3.47)

where

W

1

(U) := � kU � 11k

2

+

��

(2�+ �)

tr [U � 11℄

2

;

b

F = (rmj~n

m

) ; (3.48)

with U = (

b

F

T

b

F )

1

2

= R

T

F the symmetri
 elasti
 stret
h, U �11 the elasti
 Biot strain tensor and

~n

m

the unit normal on the parametrized surfa
e m : ! � R

2

7! R

3

. The system (3.47) is a geomet-

ri
ally exa
t equilibrium membrane-plate model for small elasti
 strains and �nite deformations

in the 
lassi
al sense with no extra internal dissipation. The transition from (1.1,1.2,1.3) to (3.47)

however, is not entirely trivial sin
e it is not just the repla
ement of the independent vis
oelasti


rotation R in (1.1,1.2,1.3) by the 
ontinuum rotation R = polar(

b

F ) in (3.47). Moreover we must

note the subtle 
hange from global minimization in (1.1,1.2,1.3) to a stationarity requirement

only in (3.47).

Note as well that the equilibrium energy W

1

(U) is a non-quasi
onvex, non-ellipti
 elasti


energy w.r.t. rm but 
onvex in the symmetri
 
ontinuum stret
h U , satisfying in fa
t the Baker-

Eri
ksen inequalities. Currently there are no mathemati
al theorems available establishing

the existen
e of minimizers based dire
tly on W

1

. In this sense, the vis
oelasti
 formulation

(1.1,1.2,1.3) provides a physi
al regularization of the o

urring loss of ellipti
ity in (3.47).

Up to a di�erent strain measure (U =

p

b

F

T

b

F instead of C =

b

F

T

b

F ), the model (3.47) 
oin
ides

with (3.50).

In order to put the new model into some perspe
tive, let us 
onsider a formal linearization.

3.2 Partial linearization for the thin vis
oelasti
 membrane plate

To put our modelling development into perspe
tive, we simplify (1.1,1.2,1.3) further by writing

m(x; y) = (x; y; 0)

T

+ v(x; y)

T

, where v is the displa
ement of the midsurfa
e and assume for the

vis
oelasti
 rotations R(x; y) = exp(A(x; y)) with A 2 so(3;R) small.

Expanding (1.1,1.2,1.3) yields to leading order in A the following set of equations for the

displa
ement of the midsurfa
e of the plate v : [0; T ℄� ! 7! R

3

and the skew part A : [0; T ℄� ! 7!

so(3;R):

Z

!

hW

lin

(rv;A)� hf; vi d! 7! min :w.r.t. v at �xed A ; (3.49)

W

lin

(rv;A) = � k sym((rvjA

3

) +A

T

(rvj0))k

2

+

��

(2�+ �)

tr

h

sym((rvjA

3

) +A

T

(rvj0))

i

2

;

d

dt

A(t) = ��

+

A+ �

+

skew

�

(rvjA

3

) +A

T

(rvj0)

�

;

where the evolution equation is linear in A but the 
oupled model is nonlinear due to the presen
e

of the multipli
ative term A

T

(rvj0). Note that we have not assumed that rv is small sin
e

an expansion to �rst order in rv leaves v indetermined in general, due to possible in�nitesimal

bending modes, in whi
h 
ase the 
lassi
al in�nitesimal bending plate (Kir
hho� plate) equations


an be used.

We observe that for A = 0 and in the absen
e of external for
es the elasti
ity part alone

de
ouples into pure in-plane deformation (to whi
h � and � 
ontribute) and pure transverse dis-

pla
ement. The transverse displa
ement v

3

(x; y) is then simply determined through �v

3

= 0,

7

intrinsi
: only depending on the �rst fundamental form of the surfa
e m.
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i.e. like the stati
 elasti
 membrane of the 
lassi
al theory. For A = 0 the elasti
 problem has


onstant 
oeÆ
ients and is 
oer
ive on a

ount of the standard Korn's inequality [6℄. In the


ase that A = 0 and only verti
al body for
es

^

f = (0; 0; f

3

) are present, the problem redu
es to

(v

1

; v

2

) = (0; 0) and for the verti
al de
e
tion ��v

3

= f

3

. We wish to emphasize that getting a

membrane problem for the thin plate is a 
lassi
al fa
t [7, p.356℄: "...a thin nonlinearly elasti
 body

submitted to its own weight does not behave like a (bending) plate, but indeed like a membrane."

In order to relate our development to existing geometri
ally exa
t membrane formulations we

present two alternative propositions from the literature adapted to our notation.

3.3 The �nite-strain membrane model of Fox/Simo

In [21℄ the following geometri
ally exa
t, frame-indi�erent membrane model has been derived by

formal asymptoti
 analysis based on the St. Venant-Kir
hho� energy. In a variational form the

model 
an be written in our notation in the form of a minimization problem for the deformation

of the midsurfa
e of the membrane m : ! � R

2

7! R

3

on !:

Z

!

hW

mp

(C) d! ��(m;~n

m

) 7! min : w.r.t. m; m

j




0

= g

d

(x; y; 0) ;

C =

b

F

T

b

F ;

b

F = (rmj~n

m

); F

s

= (rmj%

m

~n

m

) ; (3.50)

%

m

=

hN

di�

; ~n

m

i

(2�+ �)

+

s

1�

�

(2�+ �)

tr

�

C � 11

�

+

hN

di�

; ~n

m

i

2

(2�+ �)

2

; �rst order thi
kness stret
h ;

W

mp

(C) =

�

4

kC � 11k

2

+

2��

8(2�+ �)

tr

�

C � 11

�

2

=

�

4

krm

T

rm� 11

2

k

2

+

2��

8(2�+ �)

tr

�

rm

T

rm� 11

2

�

2

=

�

4

kI

m

� 11

2

k

2

+

2��

8(2�+ �)

tr [I

m

� 11

2

℄

2

; I

m

= rm

T

rm: �rst fundamental form :

The re
onstru
ted membrane deformation '

s

(x; y; z) = m(x; y) + z%

m

~n

m

yields the plane stress


ondition S

1

(r'

s

(x; y; 0):e

3

= 0, whi
h is only 
onsistent with three-dimensional equilibrium if

there are no normal tra
tions at the transverse boundary and indeed, in [21, p.176℄ it is assumed

that N

di�

� 0, for otherwise, formal asymptoti
 expansion is impossible. In this 
ase we have the

identity

W

mp

(C) =

�

4

kF

T

s

F

s

� 11k

2

+

�

8

tr

�

F

T

s

F

s

� 11

�

2

; C =

b

F

T

b

F : (3.51)

It is easily seen that the resultant membrane strain energy W

mp

(C) is neither quasi
onvex nor

Legendre-Hadamard ellipti
. Moreover, the resultant membrane strain energy density does not

satisfy the Baker-Eri
ksen inequalities in 
ontrast to the equilibrium model (3.47).

3.4 The �nite-strain, quasi
onvex membrane model of Le Dret/Raoult

By means of �-
onvergen
e arguments based on the St. Venant-Kir
hho� energy and a natural

s
aling assumptions LeDret and Raoult [16℄ derive the following quasi
onvex geometri
ally ex-

a
t, frame-indi�erent minimization problem whi
h is, however, degenerate in 
ompression. The

membrane deformation m : ! � R

2

7! R

3

satis�es on !:

Z

!

hQW

0

(rm) d! ��(m;~n

m

) 7! min : w.r.t. m; m

j




0

= g

d

(x; y; 0) ; (3.52)

W

0

(rm) := inf

�2R

3

W ((rmj�)

T

(rmj�)) ; W (C) =

�

4

kC � 11k

2

+

�

8

tr [C � 11℄

2

;

b%

m

:=

(

%

m

1�

�

(2�+�)

�

krmk

2

� 2

�

� 0 ; (rmjb%

m

~n) 2 GL

+

(3;R)

0 1�

�

(2�+�)

�

krmk

2

� 2

�

< 0 ; (rmjb%

m

~n) 62 GL

+

(3;R)

implies

W

0

(rm) =W ((rmjb%

m

~n

m

)

T

(rmjb%

m

~n

m

)) =W

mp

(C) if b%

m

= %

m

;

with the de�nition of C ; %

m

and W

mp

given in (3.50). QW

0

denotes the quasi
onvex hull of W

0

whi
h 
an be determined analyti
ally showing the degenerate feature that QW

0

= 0 in uniform
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ompression. In 
ompression, this model 
an only predi
t the stresses in the membrane appropri-

ately while the geometry of deformation 
annot be a

ounted for.

4 Dis
ussion and 
on
luding remarks

Having proved a lo
al existen
e theorem for the nonlinear vis
oelasti
 membrane model (1.1,1.2,1.3)

we observe that the existen
e time in general will depend 
ru
ially on the smoothness of the values

of the lo
al rotations R, i.e., the smoothness of the elasti
ity tensor D . If bifur
ations o

ur they

must then be attributed to a severe loss of smoothness of these elasti
 moduli. It is still an open

problem whether the vis
oelasti
 system (1.1,1.2,1.3) admits global in time solutions for small data.

This may not be true.

In 
losing, a number of possible extensions of the theory are worth mentioning. The general

mathemati
al methodology of (1.1,1.2,1.3) is not 
on�ned to a vis
oelasti
 membrane plate. In-

deed, an extension to vis
oelasti
 membrane-shells and vis
oelasti
-vis
oplasti
 membrane-shells

is possible.

First numeri
al 
omputations [49℄ with the relaxation time � of the order 0:01 and B

res

=

B

res;0

me
h


on�rm the general appli
ability of the vis
oelasti
 membrane-plate model (1.1,1.2,1.3) for

stru
tural appli
ations of thin 
omponents 
ompared with standard models and 
orroborate the

ex
ellent properties of (1.1,1.2,1.3) with this 
hoi
e in the evolution of the "vis
oelasti
" rotations.
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6 Appendix

6.1 Notation

6.1.1 Notation for bulk material

Let 
 � R

3

be a bounded domain with Lips
hitz boundary �
 and let � be a smooth subset of �
 with non-

vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the s
alar produ
t on R

3

with

asso
iated ve
tor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3 � 3 se
ond order tensors, written

with 
apital letters. The standard Eu
lidean s
alar produ
t on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and

thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the following we omit the index R

3

;M

3�3

. The identity

tensor on M

3�3

will be denoted by 11, so that tr [X℄ = hX; 11i. We let Sym and PSym denote the symmetri


and positive de�nite symmetri
 tensors respe
tively. We adopt the usual abbreviations of Lie-group theory, i.e.,

GL(3;R) := fX 2 M

3�3

jdet[X℄ 6= 0g the general linear group, SL(3;R) := fX 2 GL(3;R) jdet[X℄ = 1g; O(3) :=

fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X℄ = 1g with 
orresponding Lie-algebras

so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri
 tensors and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g of tra
eless

tensors. With AdjX we denote the tensor of transposed 
ofa
tors Cof(X) su
h that AdjX = det[X℄X

�1

= Cof(X)

T

if X 2 GL(3;R). We set sym(X) =

1

2

(X

T

+X) and skew(X) =

1

2

(X �X

T

) su
h that X = sym(X) + skew(X).

For X 2 M

3�3

we set for the deviatori
 part devX = X �

1

3

tr [X℄ 11 2 sl(3) and for ve
tors �; � 2 R

n

we have the

tensor produ
t (� 
 �)

ij

= �

i

�

j

.

We write the polar de
omposition in the form F = RU = polar(F )U with R = polar(F ) the orthogonal part

of F . In general we work in the 
ontext of nonlinear, �nite elasti
ity. For the total deformation ' 2 C

1

(
;R

3

) we

have the deformation gradient F = r' 2 C(
;M

3�3

). Furthermore, S

1

(F ) and S

2

(F ) denote the �rst and se
ond

Piola Kir
hho� stress tensors, respe
tively. Total time derivatives are written

d

dt

X(t) =

_

X. The �rst and se
ond

di�erential of a s
alar valued fun
tionW (F ) are written D

F

W (F ):H and D

2

F

W (F ):(H;H), respe
tively. We employ

the standard notation of Sobolev spa
es, i.e. L

2

(
); H

1;2

(
); H

1;2

Æ

(
), whi
h we use indi�erently for s
alar-valued

fun
tions as well as for ve
tor-valued and tensor-valued fun
tions. Moreover, we set kXk

1

= sup

x2


kX(x)k.

For A 2 C

1

(
;M

3�3

) we de�ne CurlA(x) as the operation 
url applied row wise. We de�ne H

1;2

Æ

(
;�) := f� 2

H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the sense of tra
es and by C

1

0

(
) we denote in�nitely

di�erentiable fun
tions with 
ompa
t support in 
. We use 
apital letters to denote possibly large positive 
onstants,

e.g. C

+

;K and lower 
ase letters to denote possibly small positive 
onstants, e.g. 


+

; d

+

. The smallest eigenvalue

of a positive de�nite symmetri
 tensor P is abbreviated by �

min

(P ).

6.1.2 Notation for membrane shells

Let ! � R

2

be a bounded domain with Lips
hitz boundary �! and let 


0

be a smooth subset of �! with non-

vanishing 1-dimensional Hausdor� measure. The relative thi
kness of the plate is taken to be h > 0 with dimension

length (
ontrary to Ciarlet's de�nition of the thi
kness to be 2", whi
h di�eren
e leads only to various di�erent


onstants in the resulting formulas). We denote by M

n�m

the set of matri
es mapping R

n

7! R

m

. For H 2 M

2�3

and � 2 R

3

we employ also the notation (Hj�) 2 M

3�3

to denote the matrix 
omposed of H and the 
olumn �.

Likewise (vj�j�) is the matrix 
omposed of the 
olumns v; �; �. The identity tensor on M

2�2

will be denoted by 11

2

.

The mapping m : ! � R

2

7! R

3

is the deformation of the midsurfa
e, rm is the 
orresponding deformation gradient

and m

x

= (m

1;x

;m

2;x

;m

3;x

)

T

; m

y

= (m

1;y

;m

2;y

;m

3;y

)

T

. We write v : R

2

7! R

3

for the displa
ement of the

midsurfa
e, su
h thatm(x; y) = (x; y; 0)

T

+v(x; y). The standard volume element is written dx dy dz = dV = d! dz.

6.2 The treatment of external loads

In this subse
tion we supply the reader with the 
onsistent de�nition of resultant loads for the two-dimensional

stru
ture, starting from given three-dimensional loads.

6.2.1 Dead load body for
es for the thin plate

Let 


h

= ! � [�

h

2

;

h

2

℄ be the underlying thin, 
at three-dimensional domain. In the three-dimensional theory the

dead load body for
es f(x; y; z) 2 R

3

were simply in
luded in the variational formulation by appending the potential

with the term

Z




h

f(x; y; z) � '(x; y; z) dV : (6.1)

We de�ne

^

f

0

(x; y) :=

h=2

Z

�h=2

f(x; y; z) dz ;

^

f

1

(x; y) :=

h=2

Z

�h=2

z f(x; y; z) dz ; (6.2)

su
h that

^

f

0

;

^

f

1

are the zero and �rst moment of f in thi
kness dire
tion.
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6.2.2 Tra
tion boundary 
onditions for the thin plate

In the three-dimensional theory the tra
tion boundary for
es N(x; y; z) 2 R

3

were simply in
luded by appending

the potential with the term

Z

�


trans

h

[f


s

�[�

h

2

;

h

2

℄g

N(x; y; z) � '(x; y; z) dS ; (6.3)

where �


trans

h

= ! � f�

h

2

;

h

2

g is the transverse boundary. We de�ne

^

N

lat;0

(x; y) :=

h=2

Z

�h=2

N(x; y; z) dz ;

^

N

lat;1

(x; y) :=

h=2

Z

�h=2

z N(x; y; z) dz ; (6.4)

su
h that

^

N

lat;0

;

^

N

lat;1

are the zero and �rst moment of the tra
tions N at the lateral boundary in thi
kness

dire
tion. Moreover, we de�ne

N

res

:= [N(x; y;

h

2

) +N(x; y;�

h

2

)℄ ; N

di�

:=

1

2

[N(x; y;

h

2

) �N(x; y;�

h

2

)℄ : (6.5)

6.2.3 The external loading fun
tional

Let us gather the in
uen
es of the external loading terms. To leading order we have

f =

^

f

0

+N

res

; resultant body for
e

M =

^

f

1

+ hN

di�

; resultant body 
ouple (6.6)

N =

^

N

lat;0

; resultant lateral surfa
e tra
tion

M




=

^

N

lat;1

; resultant lateral surfa
e 
ouple :

The resultant loading fun
tional � is given by

�(m;R

3

) =

Z

!

hf;mi + hM;R

3

i d! +

Z




s

hN;mi + hM




; R

3

i ds : (6.7)

If we denote the dependen
e of � on the loads of the underlying three-dimensional problem as �(f;N ; m;R

3

), then

it is easily seen that frame-indi�eren
e of the external loading fun
tional is satis�ed in the sense that

�(Q:f;Q:N ; Q:m;Q:R

3

) = �(f;N ; m;R

3

) for all rigid rotations Q 2 SO(3;R). Sin
e in the vis
oelasti
 membrane-

plate model (1.1,1.2,1.3), R is only a parameter in the stati
 variational problem, the dependen
e of the resultant

loading fun
tional � on the rotations R 
an be dropped.

6.3 Thi
kness stret
h and homogenized moduli

Here we show, how the formulation with thi
kness stret
h %

m


an be redu
ed to a formulation without thi
kness

stret
h to the e�e
t that %

m

leaves a tra
e in the homogenized moduli of the two-dimensional stru
ture. Re
all that

W (F;R) :=

�

4

kF

T

R +R

T

F � 211k

2

+

�

8

tr

h

F

T

R +R

T

F � 211

i

2

; (6.8)

F = (rmj%

m

R

3

); %

m

= 1�

�

2� + �

�

h(rmj0); Ri � 2

�

:

We de�ne % :=

�

2�+�

�

h(rmj0); Ri � 2

�

. In a �rst step, we note

R

T

(rmj%

m

R

3

) = R

T

(rmj0) + (0j0j%

m

e

3

) = R

T

(rmj0) + (0j0je

3

) + (0j0j% e

3

)

= R

T

(rmjR

3

) + (0j0j%

m

e

3

) : (6.9)

In a se
ond step we obtain that

�

4

k(rmj%

m

R

3

)

T

R +R

T

(rmj%

m

R

3

)� 211k

2

=

�

4

k(rmjR

3

)

T

R+ R

T

(rmjR

3

) � 211k

2

+ � %(rm;R)

2

; (6.10)

where we have used the orthogonality hsym(R

T

(rmjR

3

)� 11); (0j0j% e

3

)i = 0. Similarly, we get

�

8

tr

h

(rmj%

m

R

3

)

T

R+ R

T

(rmj%

m

R

3

)� 211

i

2

=

�

8

�

tr

h

(rmjR

3

)

T

R +R

T

(rmjR

3

)� 211

i

� 2 %(rm;R)

�

2

=

�

8

�

2 [h(rmj0); Ri � 2℄� 2

�

2�+ �

[h(rmj0); Ri � 2℄

�

2

=

�

2

[h(rmj0); Ri � 2℄

2

�

1�

�

2� + �

�

2

=

�

2

[h(rmj0); Ri � 2℄

2

(2�)

2

(2� + �)

2

: (6.11)

In addition

� %

2

+

�

2

[h(rmj0); Ri � 2℄

2

(2�)

2

(2� + �)

2

= �

�

2

(2� + �)

2

[h(rmj0); Ri � 2℄

2

+

�

2

[h(rmj0); Ri � 2℄

2

(2�)

2

(2� + �)

2

= [h(rmj0); Ri � 2℄

2

��

2

+ 2�

2

�

(2� + �)

2

=

��

2�+ �

[h(rmj0); Ri � 2℄

2

=

��

2� + �

tr

h

(rmjR

3

)

T

R+ R

T

(rmjR

3

)� 211

i

2

4

=

2��

8(2� + �)

tr

h

(rmjR

3

)

T

R+ R

T

(rmjR

3

)� 211

i

2

: (6.12)

Combining (6.10) and (6.12) shows (1.6).
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6.4 Sharp ellipti
ity type estimates

For the exposition of the stati
 
ase we need sharp a priori estimates for ellipti
 systems of se
ond order with

non-
onstant 
oeÆ
ients in divergen
e form. Ebenfeld [20℄ has re
ently proved the following new sharpened a priori

estimate whi
h we give adapted to our situation and our notation.

Theorem 6.1 (General improved sharp Hilbert spa
e ellipti
 regularity )

Let 
 � R

n

be a bounded domain with smooth boundary. Consider the divergen
e-form linear system

Div C (x):ru = f(x) ; u

j

�


= 0 ; (6.1)

with f 2 H

k;2

(
) and homogeneous boundary data. Let C : 
 � R

3

7! Lin(M

3�3

;M

3�3

) be the fourth order

elasti
ity tensor. Suppose C 2 H

k+1;2

(
) with 2 � (k + 1) > n and assume that for arbitrary �; � 2 R

n

it holds

9 


+

e

> 0 8 x 2 
 : hC (x):(� 
 �); � 
 �i � 


+

e

� k�k

2

k�k

2

; (6.2)

i.e., that the system is uniformly Legendre-Hadamard ellipti
 with ellipti
ity 
onstant 


+

e

. Assume that the system

admits at least one weak solution u 2 H

1;2

(
). Then the following estimate is valid

kuk

k+2;2;


� C

+

(
; 


+

e

)P (kCk

k+1;2;


)

�

kfk

k;2;


+ kuk

2;


�

; (6.3)

where P : R 7! R is a polynomial of �nite order and the appearing 
onstant is independent of u; f; C and in addition

C

+

(
; 


+

e

) is bounded above for 


+

e

> 0.

Proof. See [18, 19℄ and 
ompare with [48, p.75℄ for 
omparable results on ellipti
 regularity for linear se
ond order

ellipti
 systems on other s
ales. The main advantage of the new theorem is to pre
isely tra
k how the regularity of

the 
oeÆ
ients enter the ellipti
 estimate. Pre
ise estimates of this form had not been available previously. �

6.5 Lo
al existen
e for ordinary di�erential equations in Bana
h-spa
es

Theorem 6.2 (Unique lo
al existen
e)

Let

b

U;X;Y; Z be arbitrary Bana
h-spa
es with norms k�k

b

U

; k�k

X

; k�k

Y

; k�k

Z

respe
tively. Assume that f :

b

U�X 7!

Lin(X;X) is lo
ally Lips
hitz-
ontinuous and let the initial value y

0

2 X be given. Let G : X � Y � Z 7!

b

U be

an operator whi
h is Lips
hitz 
ontinuous on the set M � Y � Z with M := fy 2 X j ky � y

0

k

X

� Kg and

Y � Y; Z � Z bounded in Y;Z, respe
tively, i.e., there is a positive 
onstant L

+

su
h that

9L

+

> 0 : 8(x

1

; a

1

; b

1

); (x

2

; a

2

; b

2

) 2 M�Y � Z :

kG(x

1

; a

1

; b

1

)�G(x

2

; ; a

2

; b

2

)k

b

U

� L

+

� (kx

1

� x

2

k

X

+ ka

1

� a

2

k

Y

+ kb

1

� b

2

k

Z

) :

Moreover, assume that � 2 C

1

([0; T ℄;Y); � 2 C

1

([0; T ℄;Z) are given fun
tions. Then there is some 0 < t

1

2 R su
h

that the initial value problem

d

dt

y(t) = f

�

G(y(t); �(t); �(t)); y(t)

�

� y(t) ; y(0) = y

0

; (6.4)

has a unique solution y 2 C

1

([0; t

1

℄;M). �
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