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1 Introdution

1.1 A �nite visoelasti membrane-plate model

We study a geometrially exat, observer-invariant membrane-plate model that has been derived

in [34℄ whih inorporates visoelasti transverse shear resistane due to an additional �eld of

independently evolving rotations R 2 SO(3;R).

1

The model in a variational formulation reads:

�nd the deformation of the midsurfae of the membrane-plate m : [0; T ℄ � ! 7! R

3

and the

independent loal visoelasti rotation R : [0; T ℄� ! 7! SO(3;R) suh that m minimizes on !

Z

!

hW (F;R)� hf;mi d! 7! min :w.r.t. m at given R ; (1.1)

with presribed Dirihlet boundary onditions for simple support m

j



0

(t; x; y) = g

d

(t; x; y), (x; y) 2



0

� �!. The onstitutive assumptions on the densities are

W (F;R) :=

�

4

kF

T

R+R

T

F � 211k

2

+

�

8

tr

h

F

T

R +R

T

F � 211

i

2

; (1.2)

F = (rmj%

m

R

3

); %

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

2�+ �

:

The loal visoelasti evolution for the "moving three-frame" R(t; x; y) 2 SO(3;R) is given by

d

!̂

dt

R(t) = �

+

� skew (B

res

) � R(t) ; B

res

= B

res;0

meh

or B

res;0

t

; �

+

= �

+

(F;R) 2 R

+

; (1.3)

B

res;0

meh

= �FR

T

; B

res;0

t

=

h

�(2 11� FR

T

) + � [3� hFR

T

; 11i11℄

i

FR

T

; R(0) 2 SO(3;R) :

This evolution equation guarantees that indeed exat rotations are determined whatever form the

resultant (res) generator of the group B

res

2 M

3�3

has. By

d

!̂

dt

we mean the observer-invariant

(orotated) time derivative on SO(3;R)

d

!̂

dt

[R(t)℄ :=

d

dt

[R(t)℄� b!(t) �R(t) ; b! :=

d

dt

[Q(t)℄ �Q(t)

T

; (1.4)

where Q(t) 2 SO(3;R) is the rotation of the urrent frame with respet to the inertial frame and

b! is the orresponding angular veloity. Without loss of generality, we on�ne attention to the

inertial frame, i.e. b! � 0 and

d

!̂

dt

=

d

dt

. The term �

+

2 R

+

represents a salar valued funtion

introduing visoelastiity and spei�ed subsequently. R

0

is the initial ondition for the visoelasti

rotation part. Transverse shear (R

3

6= ~n

m

, where ~n

m

is the unit normal to the surfae given by

m) ours visoelastially. B

res;0

meh

or B

res;0

t

are alternative onstitutive hoies for B

res

in (1.3).

B

res;0

meh

is mehanially motivated (meh) while B

res;0

t

is in addition thermodynamially onsistent

(t). This notation derives from the underlying modelling paper [34℄.

Here, ! � R

2

denotes the at referential domain of the membrane-plate with smooth boundary

�! and 

0

� �! is a part of the boundary supposed to have full one-dimensional Hausdor� measure.

The relative thikness of the plate is h > 0, f denotes the applied resultant body loading while

N

di�

denotes a resultant surfae ouple (see (6.7)). The funtion %

m

aounts for thikness

streth of the membrane whih is linearly oupled to the membrane streth

�

h(rmj0); Ri � 2

�

,

suh that loally strething the membrane dereases the thikness.

The three-dimensional deformation '

s

: ! � [�

h

2

;

h

2

℄ 7! R

3

of the underlying thin struture is

supposed to be reonstruted by

'

s

(x; y; z) = m(x; y) + z%

m

(x; y)R

3

(x; y) ; z 2 [�

h

2

;

h

2

℄; (1.5)

whereR

3

:= R:e

3

and orresponding reonstruted deformation gradientr

(x;y;z)

'

s

(x; y; 0) :=

F = (rmj%

m

R

3

), evaluated at the midsurfae z = 0. Viewing (1.5) as an ansatz for the three-

dimensional deformation with yet indetermined %

m

and inserting this ansatz into the underlying

three-dimensional problem the form of the fator %

m

turns out to be an exat analytial onse-

quene of the thikness-averaged three-dimensional stress onditions at the upper and lower fae

of the plate. The other notation is found in the appendix.

1

The rotations R 2 SO(3;R) an be thought of as a visoelastially adjusted orthonormal triad of diretors.
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Figure 1: The assumed membrane-plate kinematis inorporating visoelasti transverse shear

(R

3

6= ~n

m

), instantaneous (elasti) thikness streth (%

m

6= 1) and visoelasti drill-rotations.

Reonstruted three-dimensional deformation '

s

(x; y; z) = m(x; y) + z %

m

(x; y)R

3

, midsurfae

deformation m, independent visoelasti rotation R.

The introdued problem (1.1,1.2,1.3) is observer-invariant (geometrially exat) in the sense

that if the pair (m;R) is a solution then for arbitrary Q(t) 2 SO(3;R) the rigidly rotated pair

(Q(t):m;Q(t)R) is also a solution to rotated data. This requirement is ruial for a onsistent

desription in ontinuum mehanis but violated by whatever in�nitesimal-displaement models.

This neessary requirement introdues automatially a ertain type of nonlinearity whih we aim

to analyze.

It is also important to note that after all W (F;R) depends at most quadratially on rm, the

membrane deformation gradient, at given R, despite appearane in (1.2). This an be seen by a

lengthy but straightforward alulation given in (6.3). It shows that in terms of what will be alled

the redued reonstruted deformation gradient

b

F = (rmjR

3

) and N

di�

= 0 in fat

W (F;R) = � k sym

�

F

T

R� 11

�

k

2

+

�

2

tr

�

sym

�

F

T

R� 11

��

2

= � k sym

�

b

F

T

R� 11

�

k

2

+

��

(2�+ �)

tr

h

sym

�

b

F

T

R� 11

�i

2

; (1.6)

showing the apparent hange of the Lam�e moduli for the three-dimensional struture (�; �) to the

redued (homogenized) moduli of the two-dimensional struture (�;

��

(2�+�)

). Note that

��

(2�+�)

=

1

2

H(�;

�

2

) with H the harmoni mean. This is a harateristi feature of lower-dimensional the-

ories whih otherwise would not be asymptotially orret.

The goal of this ontribution is to prove the well-posedness of (1.1,1.2,1.3). More preisely, we

show the following result, for whih we hoose the positive funtion �

+

in the visoelasti ow part

1.3 formally similar to a onventional Norton-Ho� formulation of visoplastiity theory

�

+

=

1

�

0

�

1 +

"

k skew(�FR

T

)k�0

��

0

#

r

0

+1

+

1

A

k

0

�

�

k skew (B

res

) k�0

��

0

�

r

0

+

�

1

k skew (B

res

) k

(1.7)

with ��

0

= 1[MPa℄, non-dimensional parameters r

0

; k

0

� 1 and � plays the role of a relaxation time

with units [�℄ = se. Within this setting we show
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Theorem 1.1 (Loal existene and uniqueness for problem (1.1,1.2,1.3))

Let h > 0 and ! � R

2

be a bounded smooth domain and suppose for the displaement boundary

data g

d

2 C

1

(R; H

3;2

(!;R

3

)) and for the resultant body fore f 2 C

1

(R; H

1;2

(!;R

3

)). Assume for

the initial ondition R

0

2 H

2;2

(!; SO(3))). Then there exists a time t

1

> 0 suh that the initial

boundary value problem (1.1,1.2,1.3) with �

+

in the form (1.7), pure displaement boundary data

and N

di�

= 0 admits a unique solution

(m;R) 2 C([0; t

1

℄; H

3;2

(!;R

3

))� C

1

([0; t

1

℄; H

2;2

(!; SO(3))): �

1.2 Relation to existing work

The dimensional redution of a given model is already an old and mature subjet and it has seen

many "solutions". The di�erent approahes toward elasti shell theory proposed in the literature

and relevant referenes thereof are, therefore, too numerous to list here. In any ase our proposal

falls within the so alled derivation approah, i.e., reduing a given three-dimensional model via

(physially) reasonable onstitutive assumptions to a two-dimensional model as opposed to either

the intrinsi approah whih views the shell from the onset as a two-dimensional surfae and

invokes onepts from di�erential geometry or the asymptoti methods whih try to establish

two-dimensional equations by formal expansion of the three-dimensional solution in power series in

terms of a small parameter. The intrinsi approah is losely related to the diret approah whih

takes the shell to be a direted medium in the sense of a restrited Cosserat-theory [12℄.

2

A

detailed presentation of the lassial shell theories an be found in [28℄. A thorough mathematial

analysis of linear, in�nitesimal shell theory, based on asymptoti methods is to be found in [8℄ and

the extensive referenes therein, see also [7, 10, 1, 13, 14℄. Reviews and insightful disussions of

the modelling and �nite element implementation may be found in [41, 39, 40, 23, 24, 2, 4℄ and

in the series of papers [42, 44, 45, 47, 46, 43, 11℄. Properly invariant elasti plate theories for

membrane and bending are derived by formal asymptoti methods in [21℄ and extended to the ase

of urvilinear oordinates in [27, 26℄.

The mathematial analysis establishing the wellposedness of all the in�nitesimal linearized

models is fairly well established and will not be our onern.

In the �nite-strain, geometrially exat elasti ase, mostly based on the Saint Venant-Kirhho�

free energy density � kEk

2

+

�

2

tr [E℄

2

where E =

1

2

(F

T

F � 11), the formal asymptoti methods

are still suessful in that they identify again leading membrane and bending terms. As far as

the ourring membrane ontribution is onerned, it is the form (3.50) whih is given e.g. in

[22, 21, 27℄. However, variational methods based on saling assumptions and �-onvergene [15℄

suggest a fundamentally di�erent membrane term whih leads to a non-resistane of the membrane

plate/shell in ompression.

3

The non-resistane to ompression in this analysis is related to the use

of the quasionvex hull

4

QW

0

of a dimensionally redued St.Venant Kirhho� energy, see (3.52).

This quasionvex hull, surprisingly enough, an be given in losed form [17, 25℄ and shows to be

in general positive but zero in the ompression range.

The lassial linear models proposed in the literature lead to e�etive numerial shemes only

if the thikness h of the struture is still appreiable, i.e. lassial bending terms are present and

regularize the omputation. However, there is an abundane of new appliations where very thin

strutures are used, e.g. very thin metal layers on a substrate (in omputer hardware, for the

harateristi non dimensional relative thikness h � 5 � 10

�4

). See [3℄ for an appliation to thin

�lms.

Sine loally rotating the thin struture is energetially "heap" ompared to strething, we

are fored to onsider models inluding �nite rotations in an objetive manner. But the proposed

�nite-strain membrane terms found in the literature are either non-ellipti and the remaining

(minimization) problem is not well-posed or they lead to the aforementioned non-resistane in

ompression. We view the model (1.1,1.2,1.3) as a partial answer to these problems. A di�erent

approah to the same problem has been taken in [35℄, where balane equations for rotations are

presribed instead of evolution equations as in (1.3).

2

Restrited, sine no material length sale enters the diret approah, only the thikness h appears.

3

They remark [16, p.550℄: "...then the orresponding nonlinear membranes o�er no resistane to rumpling. This

is an empirial fat, witnessed by anyone who ever played with a deated balloon."

4

"... the fat that this funtion is not quasionvex already implied that it had to be relaxed in order to give rise

to a well posed problem." [16, p.575℄.

5



1.3 Preliminaries and general mathematial framework

Let us outline how we show that the nonlinear problem (1.1,1.2,1.3) admits a unique loal solution.

Sine we will heavily use ellipti regularity, we on�ne attention to the ase without external surfae

trations.

5

At "frozen" rotations R 2 SO(3;R) the orresponding system of elasti balane of linear

momentum proves to be a linear, seond order, stritly Legendre-Hadamard ellipti boundary value

problem with non-onstant oeÆients set by R. This system has variational struture in the

sense that the equilibrium part of (1.1,1.2,1.3) is equivalent to the elasti minimization problem

8 t 2 [0; T ℄ : I(m(t); R(t)) 7! min : w.r.t. m, m(t) 2 g

d

(t) +H

1;2

Æ

(!;R

3

; 

0

) ; (1.8)

where

I(m;R) =

Z

!

hW (F;R)� hf;mi d! ; F = (rmjR

3

) ; (1.9)

W (F;R) :=

�

4

kF

T

R+R

T

F � 211k

2

+

2��

8(2�+ �)

tr

h

F

T

R+R

T

F � 211

i

2

:

The weak form of the orresponding equilibrium equation is given by

Lemma 1.2 (Weak form of stati elasti problem)

A minimizer m 2 H

1;2

(!;R

3

) of (1.8) is a weak solution to the equilibrium problem

0 =

Z

!

h hD

F

W (F;R); (r�j0)i � hf; �i d! 8� 2 H

1;2

0

(!;R

3

) : (1.10)

If the appearing quantities are smooth enough, this is equivalent to the strong form

0 = h Div R

�

�(F

T

R+R

T

F � 211) +

2��

2�+ �

tr

�

F

T

R� 11

�

11

�

+ f : (1.11)

For the redued reonstruted deformation gradient F = (rmjR

3

) it holds that

F

T

R = (rmjR

3

)

T

R =

�

(rmj0) + (0j0jR

3

)

�

T

R = (rmj0)

T

R+ (0j0je

3

) ; (1.12)

and we have also the alternative representation

h Div R

�

�((rmj0)

T

R+R

T

(rmj0)) +

2��

2�+ �

tr

�

(rmj0)

T

R

�

11

�

= (1.13)

� f + h Div

�

2

�

�+ 3

��

2�+ �

�

R

�

: �

Note the appearane of a "virtual" body fore ontribution on the right hand side in (1.13) due

to the inhomogeneities inherent in R whih an be seen as a permanent soure of internal stresses.

This weak form (1.13) an be written in the shortut form

h Div D (R(x; y)):(rmj0) = �f + h Div V (R(x; y)); m

j

�!

= g

d

; (1.14)

where we introdued the orresponding elastiity tensor D and the additional right-hand side

ontribution V aording to the next de�nition in line with (1.13):

De�nition 1.3 (Homogenized two-dimensional elastiity tensor)

We de�ne the two dimensional elastiity tensor D : M

3�3

7! Lin(M

3�3

;M

3�3

) and the right hand

side V : M

3�3

7! M

3�3

by

8H2M

3�3

: D (R):H :=R

�

�(H

T

R +R

T

H) +

2��

2�+ �

tr

�

H

T

R

�

11

�

;

V (R) := 2

�

�+ 3

��

2�+ �

�

R ; (1.15)

5

The ase with non-vanishing transverse surfae trations N

di�

an be easily inluded sine it involves only a

modi�ation of the resultant body fore.
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respetively. Note that D is a nonlinear mapping with respet to R, while V remains linear and

D (11):H :=

�

�(H

T

+H) +

2��

2�+ �

tr [H ℄11

�

(1.16)

is the two-dimensional homogenized elastiity tensor of linear elastiity. �

A startling diÆulty whih we enounter in the treatment of (1.13) is that the elastiity tensor

D = D (R), although turning out to be uniformly Legendre-Hadamard ellipti, does not indue a

pointwise uniformly positive bilinear form on the symmetrized strains as in (3.49) for R = 11; (A =

0). To see nevertheless the uniform Legendre-Hadamard elliptiity, we prove

Lemma 1.4 (Uniform Legendre-Hadamard elliptiity)

Assume that R : ! 7! SO(3;R). Then the system (1.13) with elastiity tensor D given by De�nition

1.3 is uniformly Legendre-Hadamard ellipti in the sense that

9 

+

> 08 � 2 R

3

; � 2 R

2

: hD (R(x; y)):(� 
 �j0); (� 
 �j0)i � 

+

k�k

2

R

3

k�k

2

R

2

; (1.17)

and the elliptiity onstant is independent of R(x; y).

Proof. Set �̂ = (�

1

; �

2

; 0)

T

with � 2 R

2

implying � 
 �̂ = (� 
 �j0). For D given by De�nition 1.3

we have

hD (R(x; y)):(� 
 �j0); (� 
 �j0)i = D

2

rm

W ((rmjR

3

); R):((� 
 �j0); (� 
 �j0))

=

�

2

kR

T

(� 
 �j0) + (� 
 �j0)

T

Rk

2

+

��

2(2�+ �)

tr

h

R

T

(� 
 �j0) + (� 
 �j0)

T

R

i

2

�

�

2

kR

T

(� 
 �j0) + (� 
 �j0)

T

Rk

2

= � kR

T

(� 
 �j0)k

2

+ � hR

T

(� 
 �j0); (� 
 �j0)

T

Ri

= � k(� 
 �j0)k

2

+ � hR

T

:� 
 �̂; (�̂ 
 �)Ri (1.18)

= � k(� 
 �̂)k

2

+ � hR

T

:� 
 �̂; �̂ 
R

T

:�i

� � k� 
 �̂k

2

+ � hR

T

:�; �̂i

2

� � k�k

2

R

3

k�̂k

2

R

3

= � k�k

2

R

3

k�k

2

R

2

:

The uniformity of the estimate is only true sine rotations R(x; y) 2 SO(3;R) leave length onstant:

kR:�k = k�k. �

Despite the missing pointwise uniform positivity, we prove the existene, uniqueness and reg-

ularity of solutions to the boundary value problem (1.13). The existene part for (1.13) relies

heavily on the following Theorem reently proved by the author extending Korn's �rst inequality

to non-onstant oeÆients and overoming the lak of uniform positivity of (1.8). This theorem

has been proved in the ontext of multipliative plastiity, from whih the notation F

p

originates.

Theorem 1.5 (Extended 3D-Korn's �rst inequality)

Let 
 � R

3

be a bounded Lipshitz domain and let � � �
 be a smooth part of the boundary with

non vanishing 2-dimensional Hausdor� measure. De�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g

and let F

p

; F

�1

p

2 C

1

(
;GL(3;R)). Moreover suppose that CurlF

p

2 C

1

(
;M

3�3

). Then

9 

+

> 0 8 � 2 H

1;2

Æ

(
;�) :

k(r�)F

�1

p

(x) + F

�T

p

(x)(r�)

T

k

2

L

2

(
)

� 

+

k�k

2

H

1;2

(
)

: (1.19)

Proof. The proof has been presented in [31℄. �

Remark 1.6

Note that for F

p

= r� we would only have to deal with the lassial Korn's inequality evaluated

on the transformed domain �(
). This is the ompatible ase. However, in general, F

p

is

inompatible suh that the problem an be viewed as posed on a non-Riemannian manifold .

Compare to [5℄ for an interpretation and the physial relevane of the quantity CurlF

p

. It omes

as no surprise that in �nite plastiity the inompatibility of F

p

should play an important role.

7



Motivated by the investigations in [31℄, it has been shown reently by Pompe [38℄ that the

extended Korn's inequality an be viewed as a speial ase of a general lass of oerive inequalities

for quadrati forms. He was able to show that indeed F

p

; F

�1

p

2 C(
;GL(3;R)) is suÆient for

Theorem 1.5 to hold without any ondition on the ompatibility.

However, taking the speial struture of the extended Korn's inequality again into aount, work

in progress suggests that ontinuity is not really neessary: instead F

p

; F

�1

p

2 L

1

(
;GL(3;R))

and CurlF

p

2 L

3+Æ

(
) should suÆe, whereas F

p

; F

�1

p

2 L

1

(
;GL(3;R)) alone is not suÆient,

see the ounterexample presented in [38℄. The possible improvement has no bearing on our further

development. �

As a onsequene of the three-dimensional oerivity inequality it is possible to prove

Theorem 1.7 (Extended Korn's inequality for rigid shells)

Let ! � R

2

be a bounded domain with smooth boundary and let 

0

� �! be a part of the

boundary with non vanishing 1-dimensional Hausdor� measure. De�ne H

1;2

Æ

(!;R

3

; 

0

) := f� 2

H

1;2

(!;R

3

); j �

j



0

= 0g and let F

p

; F

�1

p

2W

1;2+Æ

(!;GL(3;R)). Then

9 

+

> 0 8 � 2 H

1;2

Æ

(!;R

3

; 

0

) :

k(r�j0)F

�1

p

(x) + F

�T

p

(x)(r�j0)

T

k

2

L

2

(!)

� 

+

k�k

2

H

1;2

(!)

; (1.20)

and the onstant is bounded away from zero for F

p

; F

�1

p

bounded in W

1;2+Æ

(!;GL(3;R)).

Proof. The idea is to extend the funtion � in a suitable manner to three dimensions and to

use Theorem 1.5 in the strengthened form proposed in [38℄. The Sobolev embedding shows that

F

p

2W

1;2+Æ

(!;GL(3;R)) may be identi�ed with a ontinuous funtion. A ontradition argument

as in [32℄ shows that the onstant is bounded away from zero sine W

1;2+Æ

(!;GL(3;R)) is om-

patly embedded in C(!;GL(3;R)). For details onsult [29, 33℄. �

Continuing with our general development we observe that the solution m of (1.13) depends

nonlinearly on R. Despite this nonlinearity, we establish Lipshitz-ontinuous-dependene of the

solution to (1.8) with respet to the data and oeÆients R, by looking at the weak problem (1.13)

in the form (1.14) and using sharp ellipti estimates.

The oneptual idea to treat the nonlinear oupled visoelasti evolution problem is straight-

forward: the ordinary di�erential equation may be written in the following form

d

dt

R(t) = f(F (R); R) � R ; (1.21)

with f : M

3�3

�M

3�3

7! Lin(M

3�3

;M

3�3

) where F (R) = (rm(R)jR

3

). Here m(R) is the solution

of the ellipti boundary value problem (1.13) at given R. It remains to show that the right hand

side of (1.21) as a funtion of R is loally Lipshitz-ontinuous in appropriate spaes allowing

to apply the loal existene and uniqueness theorem for nonlinear evolution equations in Banah

spaes based on Banah's �xed point theorem, f. (6.2).

2 Loal existene and uniqueness proof

2.1 First step: the stati elasti subproblem

We have already indiated that in the stati ase for frozen variables R the elasti equilibrium

system in (1.13) is a linear, stritly Legendre-Hadamard ellipti seond order boundary value

problem with non-onstant oeÆients and variational struture.

6

We exploit this struture and

apply the diret methods of the alulus of variations to show that there exists a unique weak

solution to (1.13) at frozen variables R whih satis�es an additional uniform estimate.

Theorem 2.1 (Existene of minimizers)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

)

and for the rotations R 2W

1;p

(!; SO(3;R)); p > 2. Moreover, assume for the resultant body fore

6

This orresponds essentially to the elasti trial step in urrent algorithmi formulations of visoplastiity.

8



f 2 L

2

(!;R

3

). Then the variational problem

I(m;R) 7! min : w.r.t. m, m 2 g

d

+H

1;2

Æ

(!;R

3

; 

0

) ;

I(m;R) :=

Z

!

hW (F;R)� hf;mi d! ; F = (rmjR

3

); U = R

T

F ; (2.1)

W (F;R) :=

�

4

kF

T

R +R

T

F � 211k

2

+

�

�

8

tr

h

F

T

R+R

T

F � 211

i

2

= � k sym(U � 11)k

2

+

�

�

2

tr

�

U � 11

�

2

; �

�

=

2��

2�+ �

;

admits at least one minimizing midsurfae deformation m 2 H

1

(!;R

3

).

Proof. With the presription of g

d

it is lear that I(g

d

; R) < 1. Consider any sequene of

funtions m

k

2 H

1;2

(!;R

2

) for whih the energy remains bounded. At fae value, along the

sequene, we only ontrol ertain mixed symmetri expressions in the reonstruted deformation

gradient (rm

k

jR

3

). Let us de�ne v

k

2 H

1;2

(!;R

3

) by m

k

= g

d

+ (m

k

� g

d

) = g

d

+ v

k

. Then we

have

1 > I(m

k

; R) =

Z

!

hW (U

k

)� hf;m

k

i d! �

Z

!

hW

mp

(U

k

) d! � Ckm

k

k

L

2

(!)

�

Z

!

h

�

4

kR

T

(rm

k

jR

3

) + (rm

k

jR

3

)

T

R� 211k

2

d! � C km

k

k

H

1;2

(!)

=

Z

!

h

�

4

kR

T

(rm

k

jR

3

) + (rm

k

jR

3

)

T

Rk

2

� 4h

�

4

tr

h

R

T

(rm

k

jR

3

) + (rm

k

jR

3

)

T

R

i

+ 4h

�

4

k11k

2

d! � C km

k

k

H

1;2

(!)

�

Z

!

h

�

4

kR

T

(rm

k

j0) + (rm

k

j0)

T

Rk

2

d! � C

1

km

k

k

H

1;2

(!)

+ C

2

(2.2)

�

Z

!

h

�

4

kR

T

(rv

k

j0) + (rv

k

j0)

T

Rk

2

| {z }

ombinations of derivatives

d! � C

1

kv

k

k

H

1;2

(!)

+ C

2

�

h�

4



+

K

kv

k

k

2

H

1;2

(!)

� C

1

kv

k

k

H

1;2

(!)

+ C

2

;

where we made use of the zero boundary onditions for v

k

on 

0

and applied the extended Korn's

inequality Theorem 1.7 (note again that R

�T

= R) yielding the positive onstant 

+

K

for the

ontinuous mirorotation R. We onlude that I is bounded below and that the sequene v

k

is

bounded in H

1

(!). Hene, m

k

is bounded as well in H

1

(!).

Sine I is bounded below, we an onsider an in�mizing sequene m

k

2 H

1;2

(!;R

3

) with

lim

k!1

I(m

k

; R) = inf

m2H

1;2

(!;R

3

)

I(m;R) : (2.3)

Due to the boundedness of m

k

we may extrat a subsequene, not relabelled, suh that m

k

* ~m 2

H

1

(!;R

3

).

Now we obtain that U

k

= R

T

(rm

k

jR

3

) *

~

U = R

T

(r ~mjR

3

) by onstrution. Sine the total

energy is onvex in U (indeed quadrati in the non-symmetri U) we get

I( ~m;R) =

Z

!

hW (

~

U)� hf; ~mi d! � lim inf

k!1

Z

!

hW (U

k

)� hf;m

k

i d!

= lim

k!1

I(m

k

; R) ; (2.4)

whih implies that the weak limit ~m is a minimizer. �

Corollary 2.2 (Uniqueness of minimizers)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

) and

R 2 W

1;p

(!; SO(3;R)); p > 2. Moreover, let f 2 L

2

(!;R

3

). Then the variational problem (2.1)

has a unique minimizing midsurfae deformation m 2 H

1

(!;R

3

).

9



Proof. We show that the funtional I(m;R) is stritly onvex w.r.t. m 2 H

1;2

(!;R

3

). This an

be seen by omputing the seond derivative of I . Sine I is quadrati w.r.t. m the bilinear form

indued by the seond derivative is given for � 2 H

1;2

(!;R

3

) by

D

2

m

I(m;R):(�; �) =

Z

!

h

�

2

k(r�j0)

T

R+R

T

(r�j0)k

2

+

�

�

4

tr

h

(r�j0)

T

R+R

T

(r�j0)

i

2

d!

�

Z

!

h

�

2

k(r�j0)

T

R+R

T

(r�j0)k

2

d! : (2.5)

For the displaement problem we have zero boundary onditions for � on 

0

. Hene, applying

Theorem 1.7 yields uniform positivity. �

Lemma 2.3 (Uniform G�arding-type estimate for the minimizer)

Let ! � R

2

be a bounded smooth domain and assume for the boundary data now g

d

2 H

3;2

(!;R

3

)

and R 2 M with M de�ned in GA.3 below and order of ellipti regularity k = 1. Moreover, let

f 2 L

2

(!;R

3

). Then the unique minimizing solution m 2 H

1;2

(!) to (2.1) satis�es the (rough)

estimate

9 C

+

M

(kg

d

k

3;2;!

; kfk

2;!

) > 0 8 R 2M

kmk

1;2;!

� C

+

M

(kg

d

k

3;2;!

; kfk

2;!

) �

�

1 + kg

d

k

3;2;!

+ kfk

2;!

�

(2.6)

and C

+

M

(kg

d

k

3;2;!

; kfk

2;!

) is a ontinuous funtion of kg

d

k

3;2;!

and kfk

2;!

.

Proof. Idea: reall the estimates (2.2) of Theorem 2.1 whih bounds m from above. With the

assumptions on the oeÆients R we have by Theorem 1.7 that the appearing onstants in Theorem

2.1 are bounded independent of the oeÆients for R bounded in H

2;2

(!); notably the onstant



+

K

is bounded away from zero in this ase. The bound from above an be made expliit by taking

as omparison funtion g

d

.

Sine we have to keep trak of the appearing onstants, however, we must proeed in more

detail: Set m = v + g

d

with v 2 H

1;2

(!;R

3

) and let F = (rmjR

3

). To simplify notation we write

rv for (r

(x;y)

vj0). We have algebraially

W (F;R) =

�

4

kR

T

F + F

T

R� 2 11k

2

+

�

�

8

tr

h

R

T

F + F

T

R� 2 11

i

2

�

�

4

kR

T

rv +rv

T

Rk

2

� 2� kR

T

k

2

krvk krg

d

k � 2�

p

3 kR

T

k krvk+

�

4

kR

T

rg

d

+rg

T

d

R� 211k

2

: (2.7)

Integrating over ! and making use of Theorem 1.7 with R;R

T

2 H

2;2

(!; SO(3;R)) � C

0;

1

2

(!) we

get for all m 2 H

1;2

(!;R

3

)

Z

!

h W (F;R)� hf;mi d! � � h 

+

K

(R) kvk

2

H

1;2

(!)

| {z }

extended 2D-Korn

�2�h kR

�1

k

2

1

krg

d

k

1

kvk

H

1;2

(!)

� 2�h

p

3kR

T

k

1

kvk

H

1;2

(!)

+

Z

!

h

�

4

kR

�T

rg

T

d

+rg

d

R

�1

� 211k

2

d! (2.8)

� kfk

L

2

(!)

�

kvk

L

2

(!)

+ kg

d

k

L

2

(!)

�

:

Sine m is a minimizer, we have by estimating from above and using hX; 11i

2

� 3kXk

2

Z

!

h W (F;R)� hf;mi d! �

�

�

4

+

3�

�

8

�

Z

!

h kR

T

rg

d

+rg

T

d

R� 211k

2

d! + kfk

L

2

(!)

kg

d

k

L

2

(!)

�

�

4

Z

!

h kR

T

rg

d

+rg

T

d

R� 211k

2

d!+ (2.9)

3�

�

2

h j!j

�

kR

T

k

2

1

krg

d

k

2

1

+ 2

p

3kR

T

k

1

krg

d

k

1

+ 3

�

+ kfk

L

2

(!)

kg

d

k

L

2

(!)

:

10



This implies together with estimate (2.8) (the term with

�

4

h anels and h < 1 without loss of

generality) the inequality

3�

�

h

2

j!j

�

kR

�1

k

2

1

krg

d

k

2

1

+ 2

p

3kR

T

k

1

krg

d

k

1

+ 3

�

+ 2 kfk

L

2

(!)

kg

d

k

L

2

(!)

� (2.10)

�h 

+

k

(R) kvk

2

H

1;2

(!)

� 2�h kR

T

k

2

1

krg

d

k

1

kvk

H

1;2

(!)

� 2�h

p

3kR

�1

k

1

kvk

H

1;2

(!)

� kfk

L

2

(!)

kvk

2;


� �h 

+

k

(R) kvk

2

H

1;2

(!)

� 2�

p

3

�

1 + kR

�1

k

2

1

� h

kR

�1

k

1

+ krg

d

k

1

+ kfk

L

2

(!)

i

� kvk

H

1;2

(!)

:

Hene a rough estimate yields

5�

�

h j!j

�

1 + kR

T

k

1

krg

d

k

1

�

2

+ 2 kfk

L

2

(!)

kg

d

k

L

2

(!)

� (2.11)

� h 

+

K

(R) kvk

2

H

1;2

(!)

� 5�

�

1 + kR

T

k

2

1

� h

kR

T

k

1

+ krg

d

k

1

+ kfk

L

2

(!)

i

� kvk

H

1;2

(!)

:

After further rearranging we get a quadrati inequality in kvk

H

1;2

(!)

0 � kvk

2

H

1;2

(!)

�

5



+

K

(R)

�

1 + kR

�1

k

2

1

�h

kR

�1

k

1

+ krg

d

k

1

+ kfk

L

2

(!)

i

� kvk

H

1;2

(!)

�

5�

�

j!j

� 

+

K

(R)

�

1 + kR

�1

k

1

krg

d

k

1

�

2

�

2

� h 

+

K

(R)

kfk

L

2

(!)

kg

d

k

L

2

(!)

: (2.12)

Sine 0 � x

2

� bx �  ) x � b +

p

, the former yields (with Young's inequality on f; g and

p



2

1

+ 

2

2

� (

1

+ 

2

) for positive onstants 

1

; 

2

)

kvk

H

1;2

(!)

�

2

4

5



+

K

(R)

�

1 + kR

T

k

2

1

�

+

s

5�

�

j!j

� 

+

K

(R)

�

1 + kR

T

k

1

krg

d

k

1

�

kR

T

k

1

+ krg

d

k

1

+ kfk

L

2

(!)

(2.13)

+

1

� h 

+

K

(R)

kfk

L

2

(!)

+ kg

d

k

L

2

(!)

kR

T

k

1

+ krg

d

k

1

+ kfk

L

2

(!)

#

�

h

kR

T

k

1

+ krg

d

k

1

+ kfk

L

2

(!)

i

:

Sine kRk = kR

T

k =

p

3 we obtain

kvk

H

1;2

(!)

�

"

5 � 4



+

K

(R)

+

s

5�

�

j!j

� 

+

K

(R)

�

1 +

p

3 krg

d

k

1

�

p

3

+

1

p

3� h 

+

K

(R)

�

kfk

L

2

(!)

+ kg

d

k

L

2

(!)

�

#

�

h

p

3 + krg

d

k

1

+ kfk

L

2

(!)

i

: (2.14)

With the embedding H

m;2

(!) ,! C

m�

n

2

(!) we get the estimate for v from whih we obtain easily

the desired estimate in terms of m. �

2.2 Seond step: higher regularity and ontinuous dependene

2.2.1 De�nitions and assumptions

In order to simplify the investigation of the ellipti system (1.13) with respet to regularity and

ontinuous dependene and to plae it in a more general ontext we introdue the

De�nition 2.4 (General assumption, GA)

GA.1 
 � R

n

is a bounded domain with smooth boundary and spae dimension n.

GA.2 We all k 2 N the order of ellipti regularity, and assume throughout that 2 � (k + 1) > n.

GA.3 (Loal boundedness of the elastiity tensor and part of the right hand side) There exists

K

1

> 0

D : M

3�3

7! Lin(M

3�3

;M

3�3

); V : M

3�3

7! M

3�3

,

11



M := fA : 
 7! M

3�3

j kAk

k+1;2;


� K

1

g,

9 C

M

: 8 A 2M : kD (A)k

k+1;2;


; kV (A)k

k+1;2;


� C

M

.

GA.4 (Uniform Legendre-Hadamard elliptiity on M) For all � 2 R

3

; � 2 R

2

it holds

9 

+

e;M

> 0 : 8 x 2 
 : 8 A 2M : hD (A(x)):(� 
 �j0); (� 
 �j0)i � 

+

e;M

� k�k

2

R

3

k�k

2

R

2

:

GA.5 (Loal Lipshitz ontinuity)

9 L

M

: 8 A;B 2 M : kD (A) � D (B)k

k+1;2;


� L

M

� kA�Bk

k+1;2;


;

9 L

M

: 8 A;B 2 M : kV (A)� V (B)k

k+1;2;


� L

M

� kA�Bk

k+1;2;


:

If (GA.1,GA.2,GA.3,GA.4,GA.5) holds we say that GA holds. Note that ondition GA.5 al-

ready implies GA.3 but for onveniene GA.3 is stated separately. �

2.2.2 The di�erene of two solutions

The di�erene of two solutions m

A

;m

B

of (1.13) for di�erent data (fores f

A

; f

B

, boundary dis-

plaement g

A

; g

B

and rotations A;B), is governed by the system

h Div D (A(x)):(r(m

A

�m

B

)j0) = h Div (D (B(x)) � D (A(x)):(rm

B

j0))

+ f

A

� f

B

+ h Div(V (A)� V (B)) ; (2.15)

(m

A

�m

B

)

j

�!

= g

A

� g

B

:

Therefore we investigate now the following general ellipti problem, where the data f; g do in

general not oinide with the atual resultant body fore f and the atual Dirihlet data g

d

. We

have

Lemma 2.5 (General linear system)

Let R 2 H

2;2

(!; SO(3)) be given and set A = R. Suppose that D has the form postulated in

De�nition 1.3 and assume for the generalized Dirihlet boundary data g 2 H

3;2

(!) and for some

generalized body fore f 2 L

2

(!). Then the linear problem

Div D (A):ru = f; u

j

�!

= g ; (2.16)

has a unique weak solution u 2 H

1;2

(!).

Proof. The same ideas as in Theorem 2.1 and Corollary 2.2 arry over. As orresponding energy

expression we have only to take

W

D

(F;R) =

�

4

kF

T

R +R

T

Fk

2

+

�

�

8

tr

h

F

T

R+R

T

F

i

2

: �

Now we provide the speialization of the ellipti regularity result to the situation treated in Lemma

2.5.

Theorem 2.6 (Improved Hilbert spae ellipti regularity with L

2

-part)

Assume GA and A 2 M. Consider the linear divergene form ellipti system

Div D (A):ru = f(x) ; u

j

�


= g(x): (2.17)

Assume that (2.17) admits at least one weak solution u 2 H

1;2

(
) for all g 2 H

k+2;2

(
) and all

f 2 H

k;2

(
). Then the following estimate is valid:

kuk

k+2;2;


� C

+

(
; kD (A)k

k+1;2;


) �

�

kgk

k+2;2;


+ kfk

k;2;


+ kuk

2;


�

; (2.18)

and the appearing onstant C

+

(
; kD (A)k

k+1;2;


) is uniform on M.

12



Proof. The transformation v = u� g allows us to onsider

Div D (A):rv = f(x) + Div D (A):rg ; v

j

�


= 0: (2.19)

If we apply Theorem 6.1 to (2.19) we get the estimate

kvk

k+2;2;


�C

+

(
; 

+

e

)P (kD (A)k

k+1;2;


)

�

kDiv D (A):rgk

k;2;


+ kfk

k;2;


+ kvk

2;


�

�C

+

(
; 

+

e

)P (kD (A)k

k+1;2;


)

�

kD (A)k

k+1;2;


kgk

k+2;2;


+ kfk

k;2;


+ kvk

2;


�

�C

+

(
; 

+

e

)P (kD (A)k

k+1;2;


)[1 + kD (A)k

k+1;2;


℄

�

kgk

k+2;2;


+ kfk

k;2;


+ kuk

2;


+ kgk

2;


�

: (2.20)

This yields for u = v + g

kuk

k+2;2;


� 2

�

1 + C

+

(
; 

+

e

)P (kD (A)k

k+1;2;


) [1 + kD (A)k

k+1;2;


℄

�

�

kgk

k+2;2;


+ kfk

k;2;


+ kuk

2;


�

: (2.21)

Now take

C

+

(
; kD (A)k

k+1;2;


) = 2

�

1 + C

+

(
; 

+

e

)P (kD (A)k

k+1;2;


) [1 + kD (A)k

k+1;2;


℄

�

:

This ends the proof sine C

+

(
; 

+

e

) is uniformly bounded above on M by (GA.4) and Theorem

6.1. �

Theorem 2.7 (Uniform estimates for bounded oeÆients)

Assume GA and A 2 M. Consider the linear divergene form ellipti system

Div D (A):ru = f(x) ; u

j

�


= g(x): (2.22)

Assume that (2.22) has a unique weak solution u 2 H

1;2

(
) for all g 2 H

k+2;2

(
) and all f 2

H

k;2

(
). In addition assume that a uniform G�arding type L

2

(
)-estimate onM is available, i.e.,

9 C

M

> 0 : 8 A 2 M : kuk

2;


� C

M

�

�

kgk

k

1

+2;2;


+ kfk

k

2

;2;


�

; (2.23)

with max(k

1

; k

2

) � k. Then the following uniform estimate is true:

kuk

k+2;2;


� C

+

(
;M) �

�

kgk

k+2;2;


+ kfk

k;2;


�

; (2.24)

and the appearing onstant C

+

(
;M) is uniform on M.

Proof. An appliation of Theorem 2.6 will give the result. �

Theorem 2.8 (Lipshitz-ontinuous dependene of solutions)

Assume GA and let A;B 2 M. Assume for the boundary data g

A

; g

B

2 H

k+2;2

(
) and for the

body fores f

A

; f

B

2 H

k;2

(
). Consider the two systems

Div D (A(x)):ru = f

A

(x) + Div V (A) Div D (B(x)):ru = f

B

(x) + Div V (B)

u

j

�


= g

A

(x) u

j

�


= g

B

(x): (2.25)

Assume that both systems verify the assumptions made in Theorem 2.7. Denote the (unique)

solutions u

A

; u

B

2 H

1;2

(
), respetively. Then the following estimate holds:

ku

A

� u

B

k

k+2;2;


�C

+

(
;M) �

�

1 + kBk

k+1;2;


+ kg

B

k

k+2;2;


+ kf

B

k

k;2;


�

(2.26)

�

kA�Bk

k+1;2;


+ kg

A

� g

B

k

k+2;2;


+ kf

A

� f

B

k

k;2;


�

;

with C

+

(
;M) uniformly bounded on M.
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Proof. Consider

Div D (A(x)):ru

A

= f

A

(x) + Div V (A) Div D (B(x)):ru

B

= f

B

(x) + Div V (B)

u

A

j

�


= g

A

(x) u

B

j

�


= g

B

(x): (2.27)

Taking the di�erene of the two equations leads us to onsider

Div D (A(x)):r(u

A

� u

B

) = Div (D (B(x)) � D (A(x)):ru

B

) + f

A

� f

B

+Div(V (A) � V (B))

(u

A

� u

B

)

j

�


= g

A

� g

B

: (2.28)

By the assumption on A and the elastiity tensor D (A) we know that the system (2.28) has a

unique solution (u

A

� u

B

). Together with the regularity assumption made for A and D (A) in GA

we an apply Theorem 2.7 to (2.28) and get the estimate

ku

A

� u

B

k

k+2;2;


� C

+

(
;M)�

�

kDiv(D (B) � D (A)):ru

B

k

k;2;


+ kDiv(V (B)� V (A))k

k;2;


+

kg

A

� g

B

k

k+2;2;


+ kf

A

� f

B

k

k;2;


�

� C

+

(
;M)�

�

kD (A) � D (B)k

k+1;2;


� ku

B

k

k+2;2;


+ kV (B)� V (A)k

k+1;2;


+

kg

A

� g

B

k

k+2;2;


+ kf

A

� f

B

k

k;2;


�

: (2.29)

Again with Theorem 2.7 applied to the solution u

B

we have

ku

B

k

k+2;2;


� C

+

(
;M) �

�

kg

B

k

k+2;2;


+ kf

B

k

k;2;


+ kV (B)k

k+1;2;


�

: (2.30)

Combining these two estimates and using (GA.5) for D ; V ends the argument. �

Corollary 2.9 (Lipshitz-ontinuous solution operator; time dependent oeÆients)

Assume that for a given family of oeÆientsM := fA

t

2Mj t > 0g, the family of related elastiity

tensors D (A

t

) veri�es all onditions of Theorem 2.7. For given onstants K

1

;K

2

;K

3

> 0 de�ne the

set of admissible boundary data G := fg 2 H

k+2;2

(
)j kgk

k+2;2;


� K

2

g and the set of admissible

body loads F := ff 2 H

k;2

(
)j kfk

k;2;


� K

3

g. Let the boundary data g

t

2 G and the body fores

f

t

2 F be given. Then the family of orresponding linear ellipti systems (parametrized by t 2 R)

Div D (A

t

):r'

t

= f

t

(x) + Div V (A

t

) ; '

t

j

�


= g

t

(x): (2.31)

allows for a Lipshitz-ontinuous solution operator T on M � G � F suh that '

t

= T (A

t

; g

t

; f

t

)

and

kT (A; g

A

; f

A

)� T (B; g

B

; f

B

)k

k+2;2;


�C

+

(
;M) �

�

1 + kBk

k+1;2;


+ kg

B

k

k+2;2;


+ kf

B

k

k;2;


�

�

kA�Bk

k+1;2;


+ kg

A

� g

B

k

k+2;2;


+ kf

A

� f

B

k

k;2;


�

;

(2.32)

for A;B 2M; g

A

; g

B

2 G; f

A

; f

B

2 F. The orresponding Lipshitz onstant L

+

on M �G � F

has the form

L

+

= C

+

(
;M) �

�

1 + kBk

k+1;2;


+ kg

B

k

k+2;2;


+ kf

B

k

k;2;


�

: (2.33)

On M�G� F the Lipshitz-onstant is uniformly bounded by

L

+

= C

+

(
;M) (1 +K

1

+K

2

+K

3

) : (2.34)

Hene a family of ellipti systems of the above type has orresponding solution operators with uni-

form Lipshitz-onstant whenever kAk

k+1;2;


; kg

A

k

k+2;2;


; kf

A

k

k;2;


are bounded due to Theorem

2.7. �

Remark 2.10 (Nonlinear solution operator)

Let A

t

2 M and f

t

; g

t

as before. Then the mapping (f

t

; g

t

) 7! T (A

0

; g

t

; f

t

) is linear while the

mapping A

t

7! T (A

t

; g

0

; f

0

) is nonlinear. Hene the solution depends nonlinearly on the (time

dependent) elastiity tensor although the problem is linear for frozen (�xed at time t

0

) elastiity

tensor D (A

t

0

). �

The previous development has been fairly general. Therefore, in the �nal part of the proof we

speialize 
 to ! � R

2

in De�nition 2.4 and set n = 2.
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2.3 Third step: the oupled nonlinear visoelasti evolution problem

In this �nal part of the proof we onsider the oupled visoelasti evolution problem. The oupled

problem (1.1,1.2,1.3) is formally equivalent to

d

dt

R(t) = f

�

r

x

T (R(t); g

d

(t); f(t)); R(t)

�

�R(t) ; (2.35)

with

f : M

3�3

� M

3�3

7! Lin(M

3�3

;M

3�3

) ; f

�

F;R(t)

�

= �

+

� skew(B

res

(t)) 2 so(3;R) ; (2.36)

where B

res

, de�ned in (1.3), is an expression depending on R and on the (redued) reonstruted

deformation gradient F = (rmjR

3

) = (r

x

T (R; g

d

; f)jR

3

). Here T (R; g

d

; f) is, at this stage,

formally de�ned to be the solution operator of the stati equilibrium part (1.13) in (1.1,1.2,1.3).

The hoie for �

+

in (1.7) implies that f 2 C

3

(M

3�3

� M

3�3

;Lin(M

3�3

;M

3�3

)), onsidered

pointwise.

Remark 2.11 (Flow rule on Sobolev spae)

Set M := fv 2 H

k+1;2

(!)j kvk

k+1;2;!

� Kg. Then due to Sobolev's embedding theorem it is easy

to see that for f 2 C

k+2

(M

3�3

� M

3�3

;M

9�9

) and forall v

1

; v

2

2M the estimate

kf(v

1

)� f(v

2

)k

k+1;2;!

� sup

k�k�

~

K

kf(�)k

C

k+2

(R

27

;M

9�9

)

� C

+

(!;M) � kv

1

� v

2

k

k+1;2;!

; (2.37)

holds. �

It remains to identify the preise spaes on whih to onsider this evolution problem in the frame-

work of a loal existene and uniqueness result for ordinary di�erential equations in Banah-spaes,

f. Theorem 6.2. We let

b

U := H

2;2

(!;GL(3;R)); X := H

2;2

(!; SO(3;R)) (2.38)

and set Y := H

3;2

(!;R

3

) and Z := H

1;2

(!;R

3

). Assume that A

0

= R

0

2 X is given and for

positive onstants K

1

;K

2

;K

3

let

M := fA 2 X j kA�A

0

k

2;2;!

� K

1

g ; Y := fy 2 Y j kyk

3;2;!

� K

2

g ;

Z := fz 2 Zj kzk

1;2;!

� K

3

g: (2.39)

Observe that by onstrution of the ow rule

d

dt

R(t) = X

2

�R(t) with X

2

2 so(3) we know a priori

that R(x; t) 2 SO(3;R). Assume for the Dirihlet boundary data g

d

2 C

1

([0; T ℄;Y) and for the

resultant body fores f 2 C

1

([0; T ℄;Z). In view of the spei�ations of spaes and data we show

presently that the nonlinear, in�nite-dimensional evolution problem

d

dt

R(t) = f

�

r

x

T (R(t); g

d

(t); f(t)); R(t)

�

�R(t) ; (2.40)

�ts into the formal framework set forth in Theorem 6.2.

First we proeed to show that it is possible to de�ne a solution operator m = T (R; g

d

; f) to the

stati equilibrium part (1.13) of (1.1,1.2,1.3) and that this operator is indeed Lipshitz-ontinuous

on the bounded set M�Y �Z . We have

Lemma 2.12 (Existene of solution operator T )

For given loal rotation R 2 H

2;2

(!; SO(3;R)), Dirihlet boundary data g

d

2 H

3;2

(!;R

3

) and

resultant body fore f 2 H

1;2

(!;R

3

) the ellipti problem (1.13) admits an operator T with

T : H

2;2

(!; SO(3;R)) �H

3;2

(!;R

3

)�H

1;2

(!;R

3

) 7! H

3;2

(!;R

3

) (2.41)

suh that m = T (R; g

d

; f) is the unique solution to (1.13).
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Proof. Due to Theorem 2.1 and Corollary 1.2 we know that solutions m = m(R; g

d

; f) of (1.13)

exist. With De�nition 1.3 it is obvious that D ; V 2 C

1

. Remark 2.11 shows that (GA.3) and

(GA.5) are satis�ed for D ; V on M. Moreover, by Corollary 1.4 we see that (GA.4) is true. If

we hoose the order of ellipti regularity k = 1 for the spae dimension n = 2 then (GA.2) holds

as well. The domain ! � R

2

has smooth boundary, therefore (GA.1) holds. Theorem 2.2 may

therefore be applied and shows that the solutions of the boundary value problem (1.13) are unique,

whih establishes existene of the solution operator.

Now the asserted regularity part: Lemma 2.3 proves a uniform H

1;2

(!) estimate for the solu-

tion m if g

d

2 Y ; f 2 Z on M. With Lemma 2.5 we make sure that the assumptions needed for

ellipti regularity in Theorem 2.7 are veri�ed. Hene Theorem 2.7 establishes higher regularity if

the data are smooth; for k = 1 we obtain H

3;2

(!;R

3

). �

Lemma 2.13 (Lipshitz ontinuity of solution operator T )

Under the same assumptions as in Lemma 2.12 the solution operator T is uniformly Lipshitz-

ontinuous on the bounded set

M�Y �Z � H

2;2

(!; SO(3;R)) �H

3;2

(!;R

3

)�H

1;2

(!;R

3

) : (2.42)

Proof. Taking into aount Lemma 2.12 we are entitled to apply Theorem 2.8 and Corollary 2.9.

This shows

kT (A; g

A

; f

A

)� T (B; g

B

; f

B

)k

k+2;2;!

�

C

+

(!;M) �

�

1 + kBk

k+1;2;!

+ kg

B

k

k+2;2;!

+ kf

B

k

k+2;2;!

�

(2.43)

�

kA�Bk

k+1;2;!

+ kg

A

� g

B

k

k+2;2;!

+ kf

A

� f

B

k

k;2;!

�

:

Hene, T (R; g

d

; f) is a Lipshitz ontinuous operator with uniform Lipshitz onstant L

+

on

M�Y �Z . �

By restriting the former estimate on T to the �rst gradient of T we obtain

Corollary 2.14 (Lipshitz ontinuity for the gradient of T )

The gradient r

x

T (R; g

d

; f) satis�es a similar uniform Lipshitz estimate as T does, namely

kr

x

T (A; g

A

; f

A

)�r

x

T (B; g

B

; f

B

)k

k+1;2;!

�

C

+

(!;M) �

�

1 + kBk

k+1;2;!

+ kg

B

k

k+2;2;!

+ kf

B

k

k+2;2;!

�

(2.44)

�

kA�Bk

k+1;2;!

+ kg

A

� g

B

k

k+2;2;!

+ kf

A

� f

B

k

k;2;!

�

: �

Hene on M�Y �Z we get

kr

x

T (A; g

A

; f

A

)�r

x

T (B; g

B

; f

B

)k

k+1;2;!

� (2.45)

C

+

(!;M) � (1 +K

1

+K

3

)

�

kA�Bk

k+1;2;!

+ kg

A

� g

B

k

k+2;2;!

+ kf

A

� f

B

k

k;2;!

�

:

This is enough to see that the operator G(R; g

d

; f) := r

x

T (R; g

d

; f) satis�es the assumptions of

Theorem 6.2.

Moreover, Remark 2.11 applied to f 2 C

3

(M

3�3

� M

3�3

;M

6�6

) shows that f, viewed as a

funtion f : U �X 7! Lin(X;X) is loally Lipshitz-ontinuous on M. Therefore, we may �nally

apply Theorem 6.2 giving us a unique loal in time solution R 2 C

1

([0; t

1

℄;M) to the ordinary

di�erential system of equations (2.35). Sine m(t) = T (R(t); g

d

(t); f(t)), the pair

(m;R) 2 C([0; t

1

℄; H

3;2

(!;R

3

))� C

1

([0; t

1

℄; H

2;2

(!; SO(3))) ; (2.46)

is the unique loal in time solution of (1.1,1.2,1.3). Thus we have �nally proved Theorem 1.1. �

16



3 A glimpse on the modelling

3.1 The non-ellipti relaxation limit

In [34℄ it is shown that due to the underlying isotropy the resulting nonlinear membrane-plate

model (1.1,1.2,1.3) with B = B

res;0

meh

approahes in the equilibrium limit �

+

!1 (vanishing elasti

visosity = zero relaxation limit � ! 0 viz. for arbitrary slow proesses) formally the intrinsi,

purely elasti

7

membrane-plate problem

Z

!

hW

1

(U((rmj~n))� hf;mi d! 7! stat : w.r.t. m 2 g

d

+H

1;2

Æ

(!;R

3

; 

0

) ; (3.47)

where

W

1

(U) := � kU � 11k

2

+

��

(2�+ �)

tr [U � 11℄

2

;

b

F = (rmj~n

m

) ; (3.48)

with U = (

b

F

T

b

F )

1

2

= R

T

F the symmetri elasti streth, U �11 the elasti Biot strain tensor and

~n

m

the unit normal on the parametrized surfae m : ! � R

2

7! R

3

. The system (3.47) is a geomet-

rially exat equilibrium membrane-plate model for small elasti strains and �nite deformations

in the lassial sense with no extra internal dissipation. The transition from (1.1,1.2,1.3) to (3.47)

however, is not entirely trivial sine it is not just the replaement of the independent visoelasti

rotation R in (1.1,1.2,1.3) by the ontinuum rotation R = polar(

b

F ) in (3.47). Moreover we must

note the subtle hange from global minimization in (1.1,1.2,1.3) to a stationarity requirement

only in (3.47).

Note as well that the equilibrium energy W

1

(U) is a non-quasionvex, non-ellipti elasti

energy w.r.t. rm but onvex in the symmetri ontinuum streth U , satisfying in fat the Baker-

Eriksen inequalities. Currently there are no mathematial theorems available establishing

the existene of minimizers based diretly on W

1

. In this sense, the visoelasti formulation

(1.1,1.2,1.3) provides a physial regularization of the ourring loss of elliptiity in (3.47).

Up to a di�erent strain measure (U =

p

b

F

T

b

F instead of C =

b

F

T

b

F ), the model (3.47) oinides

with (3.50).

In order to put the new model into some perspetive, let us onsider a formal linearization.

3.2 Partial linearization for the thin visoelasti membrane plate

To put our modelling development into perspetive, we simplify (1.1,1.2,1.3) further by writing

m(x; y) = (x; y; 0)

T

+ v(x; y)

T

, where v is the displaement of the midsurfae and assume for the

visoelasti rotations R(x; y) = exp(A(x; y)) with A 2 so(3;R) small.

Expanding (1.1,1.2,1.3) yields to leading order in A the following set of equations for the

displaement of the midsurfae of the plate v : [0; T ℄� ! 7! R

3

and the skew part A : [0; T ℄� ! 7!

so(3;R):

Z

!

hW

lin

(rv;A)� hf; vi d! 7! min :w.r.t. v at �xed A ; (3.49)

W

lin

(rv;A) = � k sym((rvjA

3

) +A

T

(rvj0))k

2

+

��

(2�+ �)

tr

h

sym((rvjA

3

) +A

T

(rvj0))

i

2

;

d

dt

A(t) = ��

+

A+ �

+

skew

�

(rvjA

3

) +A

T

(rvj0)

�

;

where the evolution equation is linear in A but the oupled model is nonlinear due to the presene

of the multipliative term A

T

(rvj0). Note that we have not assumed that rv is small sine

an expansion to �rst order in rv leaves v indetermined in general, due to possible in�nitesimal

bending modes, in whih ase the lassial in�nitesimal bending plate (Kirhho� plate) equations

an be used.

We observe that for A = 0 and in the absene of external fores the elastiity part alone

deouples into pure in-plane deformation (to whih � and � ontribute) and pure transverse dis-

plaement. The transverse displaement v

3

(x; y) is then simply determined through �v

3

= 0,

7

intrinsi: only depending on the �rst fundamental form of the surfae m.
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i.e. like the stati elasti membrane of the lassial theory. For A = 0 the elasti problem has

onstant oeÆients and is oerive on aount of the standard Korn's inequality [6℄. In the

ase that A = 0 and only vertial body fores

^

f = (0; 0; f

3

) are present, the problem redues to

(v

1

; v

2

) = (0; 0) and for the vertial deetion ��v

3

= f

3

. We wish to emphasize that getting a

membrane problem for the thin plate is a lassial fat [7, p.356℄: "...a thin nonlinearly elasti body

submitted to its own weight does not behave like a (bending) plate, but indeed like a membrane."

In order to relate our development to existing geometrially exat membrane formulations we

present two alternative propositions from the literature adapted to our notation.

3.3 The �nite-strain membrane model of Fox/Simo

In [21℄ the following geometrially exat, frame-indi�erent membrane model has been derived by

formal asymptoti analysis based on the St. Venant-Kirhho� energy. In a variational form the

model an be written in our notation in the form of a minimization problem for the deformation

of the midsurfae of the membrane m : ! � R

2

7! R

3

on !:

Z

!

hW

mp

(C) d! ��(m;~n

m

) 7! min : w.r.t. m; m

j



0

= g

d

(x; y; 0) ;

C =

b

F

T

b

F ;

b

F = (rmj~n

m

); F

s

= (rmj%

m

~n

m

) ; (3.50)

%

m

=

hN

di�

; ~n

m

i

(2�+ �)

+

s

1�

�

(2�+ �)

tr

�

C � 11

�

+

hN

di�

; ~n

m

i

2

(2�+ �)

2

; �rst order thikness streth ;

W

mp

(C) =

�

4

kC � 11k

2

+

2��

8(2�+ �)

tr

�

C � 11

�

2

=

�

4

krm

T

rm� 11

2

k

2

+

2��

8(2�+ �)

tr

�

rm

T

rm� 11

2

�

2

=

�

4

kI

m

� 11

2

k

2

+

2��

8(2�+ �)

tr [I

m

� 11

2

℄

2

; I

m

= rm

T

rm: �rst fundamental form :

The reonstruted membrane deformation '

s

(x; y; z) = m(x; y) + z%

m

~n

m

yields the plane stress

ondition S

1

(r'

s

(x; y; 0):e

3

= 0, whih is only onsistent with three-dimensional equilibrium if

there are no normal trations at the transverse boundary and indeed, in [21, p.176℄ it is assumed

that N

di�

� 0, for otherwise, formal asymptoti expansion is impossible. In this ase we have the

identity

W

mp

(C) =

�

4

kF

T

s

F

s

� 11k

2

+

�

8

tr

�

F

T

s

F

s

� 11

�

2

; C =

b

F

T

b

F : (3.51)

It is easily seen that the resultant membrane strain energy W

mp

(C) is neither quasionvex nor

Legendre-Hadamard ellipti. Moreover, the resultant membrane strain energy density does not

satisfy the Baker-Eriksen inequalities in ontrast to the equilibrium model (3.47).

3.4 The �nite-strain, quasionvex membrane model of Le Dret/Raoult

By means of �-onvergene arguments based on the St. Venant-Kirhho� energy and a natural

saling assumptions LeDret and Raoult [16℄ derive the following quasionvex geometrially ex-

at, frame-indi�erent minimization problem whih is, however, degenerate in ompression. The

membrane deformation m : ! � R

2

7! R

3

satis�es on !:

Z

!

hQW

0

(rm) d! ��(m;~n

m

) 7! min : w.r.t. m; m

j



0

= g

d

(x; y; 0) ; (3.52)

W

0

(rm) := inf

�2R

3

W ((rmj�)

T

(rmj�)) ; W (C) =

�

4

kC � 11k

2

+

�

8

tr [C � 11℄

2

;

b%

m

:=

(

%

m

1�

�

(2�+�)

�

krmk

2

� 2

�

� 0 ; (rmjb%

m

~n) 2 GL

+

(3;R)

0 1�

�

(2�+�)

�

krmk

2

� 2

�

< 0 ; (rmjb%

m

~n) 62 GL

+

(3;R)

implies

W

0

(rm) =W ((rmjb%

m

~n

m

)

T

(rmjb%

m

~n

m

)) =W

mp

(C) if b%

m

= %

m

;

with the de�nition of C ; %

m

and W

mp

given in (3.50). QW

0

denotes the quasionvex hull of W

0

whih an be determined analytially showing the degenerate feature that QW

0

= 0 in uniform
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ompression. In ompression, this model an only predit the stresses in the membrane appropri-

ately while the geometry of deformation annot be aounted for.

4 Disussion and onluding remarks

Having proved a loal existene theorem for the nonlinear visoelasti membrane model (1.1,1.2,1.3)

we observe that the existene time in general will depend ruially on the smoothness of the values

of the loal rotations R, i.e., the smoothness of the elastiity tensor D . If bifurations our they

must then be attributed to a severe loss of smoothness of these elasti moduli. It is still an open

problem whether the visoelasti system (1.1,1.2,1.3) admits global in time solutions for small data.

This may not be true.

In losing, a number of possible extensions of the theory are worth mentioning. The general

mathematial methodology of (1.1,1.2,1.3) is not on�ned to a visoelasti membrane plate. In-

deed, an extension to visoelasti membrane-shells and visoelasti-visoplasti membrane-shells

is possible.

First numerial omputations [49℄ with the relaxation time � of the order 0:01 and B

res

=

B

res;0

meh

on�rm the general appliability of the visoelasti membrane-plate model (1.1,1.2,1.3) for

strutural appliations of thin omponents ompared with standard models and orroborate the

exellent properties of (1.1,1.2,1.3) with this hoie in the evolution of the "visoelasti" rotations.

5 Aknowledgements

The main idea of this paper was oneived in the aademi year 2001/2002 while the author held a

visiting faulty position under the ASCI program in Mihael Ortiz group at the California Institute

of Tehnology, Graduate Aeronautial Laboratories. The author would like to thank Fehmi Cirak

and Kerstin Weinberg for helpful disussions and Mihael Ortiz for �rst direting his attention to

thin strutures. Thanks are due to Hans Dieter Alber for ontinued support.

Referenes

[1℄ S. Antman. Nonlinear Problems of Elastiity, volume 107 of Applied Mathematial Sienes. Springer, Berlin,

1995.

[2℄ P. Betsh, F. Gruttmann, and E. Stein. A 4-node �nite shell element for the implementation of general

hyperelasti 3d-elastiity at �nite strains. Comp. Meth. Appl. Meh. Engrg., 130:57{79, 1996.

[3℄ K. Bhattaharya and R.D. James. A theory of thin �lms of martensiti materials with appliations to miroa-

tuators. J. Meh. Phys. Solids, 47:531{576, 1999.

[4℄ N. Buehter and E. Ramm. Shell theory versus degeneration-a omparison in large rotation �nite element

analysis. Int. J. Num. Meth. Engrg., 34:39{59, 1992.

[5℄ P. Cermelli and M.E. Gurtin. On the haraterization of geometrially neessary disloations in �nite plastiity.

J. Meh. Phys. Solids, 49:1539{1568, 2001.

[6℄ P.G. Ciarlet. Three-Dimensional Elastiity, volume 1 of Studies in Mathematis and its Appliations. Elsevier,

Amsterdam, �rst edition, 1988.

[7℄ P.G. Ciarlet. Mathematial Elastiity, Vol II: Theory of Plates. North-Holland, Amsterdam, �rst edition,

1997.

[8℄ P.G. Ciarlet. Introdution to Linear Shell Theory. Series in Applied Mathematis. Gauthier-Villars, Paris, �rst

edition, 1998.

[9℄ P.G. Ciarlet. Un lemme de J.-L.Lions et les inegalites de Korn sur les surfae. In Equations aux derivees

partielles et appliations, pages 357{382. Gauthiers-Villars, Paris, �rst edition, 1998.

[10℄ P.G. Ciarlet. Mathematial Elastiity, Vol III: Theory of Shells. North-Holland, Amsterdam, �rst edition,

1999.

[11℄ F. Cirak, M. Ortiz, and P. Shroeder. Subdivision surfaes: a new paradigm for thin-shell �nite element

analysis. Int. J. Num. Meth. Engrg., 47(12):2039{2072, 2000.

[12℄ E. Cosserat and F. Cosserat. Th�eorie des orps d�eformables. Librairie Sienti�que A. Hermann et Fils, Paris,

1909.

[13℄ P. Destuynder and M. Salaun. Mathematial Analysis of Thin Plate Models. Springer, Berlin, 1996.

[14℄ M. Dikmen. Theory of Thin Elasti Shells. Pitman, London, 1982.

[15℄ H. Le Dret and A. Raoult. From three-dimensional elastiity to nonlinear membranes. In P.G. Ciarlet, L. Tra-

buho, and J.M. Viano, editors, Asymptoti Methods for Elasti Strutures, Proeedings of the International

Conferene. Walter de Gruyter, Berlin, 1995.

19



[16℄ H. Le Dret and A. Raoult. The nonlinear membrane model as a variational limit of nonlinear three-dimensional

elastiity. J. Math. Pures Appl., 74:549{578, 1995.

[17℄ H. Le Dret and A. Raoult. The quasionvex envelope of the Saint Venant-Kirhho� stored energy funtion.

Pro. Roy. So. Edinb. A, 125:1179{1192, 1995.

[18℄ S. Ebenfeld. Aspekte der Kontinua mit Mikrostruktur. Berihte aus der Mathematik. Shaker Verlag, Aahen,

1998.

[19℄ S. Ebenfeld. L

2

-regularity theory of linear strongly ellipti Dirihlet systems of order 2m with minimal regularity

in the oeÆients, Preprint Nr. 2015, TU Darmstadt. 1998.

[20℄ S. Ebenfeld. L

2

-regularity theory of linear strongly ellipti Dirihlet systems of order 2m with minimal regularity

in the oeÆients. Quart. Appl. Math., 60(3):547{576, 2002.

[21℄ D.D. Fox, A. Raoult, and J.C. Simo. A justi�ation of nonlinear properly invariant plate theories. Arh. Rat.

Meh. Anal., 124:157{199, 1993.

[22℄ Z. Ge, H.P. Kruse, and J.E. Marsden. The limits of Hamiltonian strutures in three-dimensional elastiity,

shells, and rods. J. Nonl. Siene, 6:19{57, 1996.

[23℄ F. Gruttmann, E. Stein, and P. Wriggers. Theory and numeris of thin elasti shells with �nite rotations. Ing.

Arh., 59:54{67, 1989.

[24℄ F. Gruttmann and R.L. Taylor. Theory and �nite element formulation of rubberlike membrane shells using

priniple strethes. Int. J. Num. Meth. Engrg., 35:1111{1126, 1992.

[25℄ M.G. Hilgers and A.C. Pipkin. Bending energy of highly elasti membranes II. Quart. Appl. Math., 54:307{316,

1996.

[26℄ V. Lods and B. Miara. Nonlinearly elasti shell models: a formal asymptoti approah. II. The exural model.

Arh. Rat. Meh. Anal., 142:355{374, 1998.

[27℄ B. Miara. Nonlinearly elasti shell models: a formal asymptoti approah. I. The membrane model. Arh. Rat.

Meh. Anal., 142:331{353, 1998.

[28℄ P.M. Naghdi. The theory of shells. In Handbuh der Physik, Mehanis of Solids, volume VI a/2. Springer,

1972.

[29℄ P. Ne�. A geometrially exat Cosserat-plate inluding size e�ets, avoiding degeneray in the thin plate

limit. Modelling and mathematial analysis. Preprint 2301, http://wwwbib.mathematik.tu-darmstadt.de/Math-

Net/Preprints/Listen/pp03.html, 10/2003.

[30℄ P. Ne�. Mathematishe Analyse multiplikativer Viskoplastizit�at. Ph.D. Thesis, TU Darmstadt. Shaker Verlag,

ISBN:3-8265-7560-1, Aahen, 2000.

[31℄ P. Ne�. On Korn's �rst inequality with nononstant oeÆients. Pro. Roy. So. Edinb., 132A:221{243, 2002.

[32℄ P. Ne�. Loal existene and uniqueness for quasistati �nite plastiity with grain boundary relaxation. to

appear in Quart. Appl. Math., 2004.

[33℄ P. Ne�. A geometrially exat Cosserat shell-model inluding size e�ets, avoiding degeneray in the thin shell

limit. Existene of minimizers for zero Cosserat ouple modulus. Preprint 2357, http://wwwbib.mathematik.tu-

darmstadt.de/Math-Net/Preprints/Listen/pp03.html, 8/2004, submitted.

[34℄ P. Ne�. A geometrially exat membrane-plate with visoelasti transverse shear resistane avoiding degeneray

in the thin-plate limit. to appear in Zeitshrift Angewandte Mathematik Physik (ZAMP), 8/2004.

[35℄ P. Ne�. A geometrially exat Cosserat-shell model inluding size e�ets, avoiding degeneray in the thin shell

limit. Part I: Formal dimensional redution for elasti plates and existene of minimizers for positive Cosserat

ouple modulus. to appear in Cont. Meh. Thermo., 2004.

[36℄ P. Ne�. Finite multipliative elasti-visoplasti Cosserat miropolar theory for polyrystals with grain rota-

tions. Modelling and mathematial analysis. Preprint 2297, http://wwwbib.mathematik.tu-darmstadt.de/Math-

Net/Preprints/Listen/pp03.html, submitted to Arh. Rat. Meh. Anal., 9/2003.

[37℄ P. Ne� and C. Wieners. Comparison of models for �nite plastiity. A numerial study. Comput. Visual. Si.,

6:23{35, 2003.

[38℄ W. Pompe. Korn's �rst inequality with variable oeÆients and its generalizations. Comment. Math. Univ.

Carolinae, 44,1:57{70, 2003.

[39℄ C. Sansour. A theory and �nite element formulation of shells at �nite deformations inluding thikness hange:

irumventing the use of a rotation tensor. Arh. Appl. Meh., 10:194{216, 1995.

[40℄ C. Sansour. A theory of the elasti-visoplasti Cosserat ontinuum. Arh. Meh., 50:577{597, 1998.

[41℄ C. Sansour and H. Buer. An exat �nite rotation shell theory, its mixed variational formulation and its �nite

element implementation. Int. J. Num. Meth. Engrg., 34:73{115, 1992.

[42℄ J.C. Simo and D.D. Fox. On a stress resultant geometrially exat shell model. Part I: Formulation and optimal

parametrization. Comp. Meth. Appl. Meh. Eng., 72:267{304, 1989.

[43℄ J.C. Simo and D.D. Fox. On a stress resultant geometrially exat shell model. Part VI: Conserving algorithms

for non-linear dynamis. Comp. Meth. Appl. Meh. Eng., 34:117{164, 1992.

[44℄ J.C. Simo, D.D. Fox, and M.S. Rifai. On a stress resultant geometrially exat shell model. Part II: The linear

theory; omputational aspets. Comp. Meth. Appl. Meh. Eng., 73:53{92, 1989.

[45℄ J.C. Simo, D.D. Fox, and M.S. Rifai. On a stress resultant geometrially exat shell model. Part III: Compu-

tational aspets of the nonlinear theory. Comp. Meth. Appl. Meh. Eng., 79:21{70, 1990.

[46℄ J.C. Simo and J.G. Kennedy. On a stress resultant geometrially exat shell model. Part V: Nonlinear plastiity:

formulation and integration algorithms. Comp. Meth. Appl. Meh. Eng., 96:133{171, 1992.

20



[47℄ J.C. Simo, M.S. Rifai, and D.D. Fox. On a stress resultant geometrially exat shell model. Part IV: Variable

thikness shells with through the thikness strething. Comp. Meth. Appl. Meh. Eng., 81:91{126, 1990.

[48℄ T. Valent. Boundary Value Problems of Finite Elastiity. Springer, Berlin, 1988.

[49℄ K. Weinberg and P. Ne�. A geometrially exat membrane-plate with visoelasti transverse shear resistane.

Computational implementation. in preparation, 1/2004.

6 Appendix

6.1 Notation

6.1.1 Notation for bulk material

Let 
 � R

3

be a bounded domain with Lipshitz boundary �
 and let � be a smooth subset of �
 with non-

vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote the salar produt on R

3

with

assoiated vetor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3 � 3 seond order tensors, written

with apital letters. The standard Eulidean salar produt on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and

thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the following we omit the index R

3

;M

3�3

. The identity

tensor on M

3�3

will be denoted by 11, so that tr [X℄ = hX; 11i. We let Sym and PSym denote the symmetri

and positive de�nite symmetri tensors respetively. We adopt the usual abbreviations of Lie-group theory, i.e.,

GL(3;R) := fX 2 M

3�3

jdet[X℄ 6= 0g the general linear group, SL(3;R) := fX 2 GL(3;R) jdet[X℄ = 1g; O(3) :=

fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X℄ = 1g with orresponding Lie-algebras

so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri tensors and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g of traeless

tensors. With AdjX we denote the tensor of transposed ofators Cof(X) suh that AdjX = det[X℄X

�1

= Cof(X)

T

if X 2 GL(3;R). We set sym(X) =

1

2

(X

T

+X) and skew(X) =

1

2

(X �X

T

) suh that X = sym(X) + skew(X).

For X 2 M

3�3

we set for the deviatori part devX = X �

1

3

tr [X℄ 11 2 sl(3) and for vetors �; � 2 R

n

we have the

tensor produt (� 
 �)

ij

= �

i

�

j

.

We write the polar deomposition in the form F = RU = polar(F )U with R = polar(F ) the orthogonal part

of F . In general we work in the ontext of nonlinear, �nite elastiity. For the total deformation ' 2 C

1

(
;R

3

) we

have the deformation gradient F = r' 2 C(
;M

3�3

). Furthermore, S

1

(F ) and S

2

(F ) denote the �rst and seond

Piola Kirhho� stress tensors, respetively. Total time derivatives are written

d

dt

X(t) =

_

X. The �rst and seond

di�erential of a salar valued funtionW (F ) are written D

F

W (F ):H and D

2

F

W (F ):(H;H), respetively. We employ

the standard notation of Sobolev spaes, i.e. L

2

(
); H

1;2

(
); H

1;2

Æ

(
), whih we use indi�erently for salar-valued

funtions as well as for vetor-valued and tensor-valued funtions. Moreover, we set kXk

1

= sup

x2


kX(x)k.

For A 2 C

1

(
;M

3�3

) we de�ne CurlA(x) as the operation url applied row wise. We de�ne H

1;2

Æ

(
;�) := f� 2

H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the sense of traes and by C

1

0

(
) we denote in�nitely

di�erentiable funtions with ompat support in 
. We use apital letters to denote possibly large positive onstants,

e.g. C

+

;K and lower ase letters to denote possibly small positive onstants, e.g. 

+

; d

+

. The smallest eigenvalue

of a positive de�nite symmetri tensor P is abbreviated by �

min

(P ).

6.1.2 Notation for membrane shells

Let ! � R

2

be a bounded domain with Lipshitz boundary �! and let 

0

be a smooth subset of �! with non-

vanishing 1-dimensional Hausdor� measure. The relative thikness of the plate is taken to be h > 0 with dimension

length (ontrary to Ciarlet's de�nition of the thikness to be 2", whih di�erene leads only to various di�erent

onstants in the resulting formulas). We denote by M

n�m

the set of matries mapping R

n

7! R

m

. For H 2 M

2�3

and � 2 R

3

we employ also the notation (Hj�) 2 M

3�3

to denote the matrix omposed of H and the olumn �.

Likewise (vj�j�) is the matrix omposed of the olumns v; �; �. The identity tensor on M

2�2

will be denoted by 11

2

.

The mapping m : ! � R

2

7! R

3

is the deformation of the midsurfae, rm is the orresponding deformation gradient

and m

x

= (m

1;x

;m

2;x

;m

3;x

)

T

; m

y

= (m

1;y

;m

2;y

;m

3;y

)

T

. We write v : R

2

7! R

3

for the displaement of the

midsurfae, suh thatm(x; y) = (x; y; 0)

T

+v(x; y). The standard volume element is written dx dy dz = dV = d! dz.

6.2 The treatment of external loads

In this subsetion we supply the reader with the onsistent de�nition of resultant loads for the two-dimensional

struture, starting from given three-dimensional loads.

6.2.1 Dead load body fores for the thin plate

Let 


h

= ! � [�

h

2

;

h

2

℄ be the underlying thin, at three-dimensional domain. In the three-dimensional theory the

dead load body fores f(x; y; z) 2 R

3

were simply inluded in the variational formulation by appending the potential

with the term

Z




h

f(x; y; z) � '(x; y; z) dV : (6.1)

We de�ne

^

f

0

(x; y) :=

h=2

Z

�h=2

f(x; y; z) dz ;

^

f

1

(x; y) :=

h=2

Z

�h=2

z f(x; y; z) dz ; (6.2)

suh that

^

f

0

;

^

f

1

are the zero and �rst moment of f in thikness diretion.
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6.2.2 Tration boundary onditions for the thin plate

In the three-dimensional theory the tration boundary fores N(x; y; z) 2 R

3

were simply inluded by appending

the potential with the term

Z

�


trans

h

[f

s

�[�

h

2

;

h

2

℄g

N(x; y; z) � '(x; y; z) dS ; (6.3)

where �


trans

h

= ! � f�

h

2

;

h

2

g is the transverse boundary. We de�ne

^

N

lat;0

(x; y) :=

h=2

Z

�h=2

N(x; y; z) dz ;

^

N

lat;1

(x; y) :=

h=2

Z

�h=2

z N(x; y; z) dz ; (6.4)

suh that

^

N

lat;0

;

^

N

lat;1

are the zero and �rst moment of the trations N at the lateral boundary in thikness

diretion. Moreover, we de�ne

N

res

:= [N(x; y;

h

2

) +N(x; y;�

h

2

)℄ ; N

di�

:=

1

2

[N(x; y;

h

2

) �N(x; y;�

h

2

)℄ : (6.5)

6.2.3 The external loading funtional

Let us gather the inuenes of the external loading terms. To leading order we have

f =

^

f

0

+N

res

; resultant body fore

M =

^

f

1

+ hN

di�

; resultant body ouple (6.6)

N =

^

N

lat;0

; resultant lateral surfae tration

M



=

^

N

lat;1

; resultant lateral surfae ouple :

The resultant loading funtional � is given by

�(m;R

3

) =

Z

!

hf;mi + hM;R

3

i d! +

Z



s

hN;mi + hM



; R

3

i ds : (6.7)

If we denote the dependene of � on the loads of the underlying three-dimensional problem as �(f;N ; m;R

3

), then

it is easily seen that frame-indi�erene of the external loading funtional is satis�ed in the sense that

�(Q:f;Q:N ; Q:m;Q:R

3

) = �(f;N ; m;R

3

) for all rigid rotations Q 2 SO(3;R). Sine in the visoelasti membrane-

plate model (1.1,1.2,1.3), R is only a parameter in the stati variational problem, the dependene of the resultant

loading funtional � on the rotations R an be dropped.

6.3 Thikness streth and homogenized moduli

Here we show, how the formulation with thikness streth %

m

an be redued to a formulation without thikness

streth to the e�et that %

m

leaves a trae in the homogenized moduli of the two-dimensional struture. Reall that

W (F;R) :=

�

4

kF

T

R +R

T

F � 211k

2

+

�

8

tr

h

F

T

R +R

T

F � 211

i

2

; (6.8)

F = (rmj%

m

R

3

); %

m

= 1�

�

2� + �

�

h(rmj0); Ri � 2

�

:

We de�ne % :=

�

2�+�

�

h(rmj0); Ri � 2

�

. In a �rst step, we note

R

T

(rmj%

m

R

3

) = R

T

(rmj0) + (0j0j%

m

e

3

) = R

T

(rmj0) + (0j0je

3

) + (0j0j% e

3

)

= R

T

(rmjR

3

) + (0j0j%

m

e

3

) : (6.9)

In a seond step we obtain that

�

4

k(rmj%

m

R

3

)

T

R +R

T

(rmj%

m

R

3

)� 211k

2

=

�

4

k(rmjR

3

)

T

R+ R

T

(rmjR

3

) � 211k

2

+ � %(rm;R)

2

; (6.10)

where we have used the orthogonality hsym(R

T

(rmjR

3

)� 11); (0j0j% e

3

)i = 0. Similarly, we get

�

8

tr

h

(rmj%

m

R

3

)

T

R+ R

T

(rmj%

m

R

3

)� 211

i

2

=

�

8

�

tr

h

(rmjR

3

)

T

R +R

T

(rmjR

3

)� 211

i

� 2 %(rm;R)

�

2

=

�

8

�

2 [h(rmj0); Ri � 2℄� 2

�

2�+ �

[h(rmj0); Ri � 2℄

�

2

=

�

2

[h(rmj0); Ri � 2℄

2

�

1�

�

2� + �

�

2

=

�

2

[h(rmj0); Ri � 2℄

2

(2�)

2

(2� + �)

2

: (6.11)

In addition

� %

2

+

�

2

[h(rmj0); Ri � 2℄

2

(2�)

2

(2� + �)

2

= �

�

2

(2� + �)

2

[h(rmj0); Ri � 2℄

2

+

�

2

[h(rmj0); Ri � 2℄

2

(2�)

2

(2� + �)

2

= [h(rmj0); Ri � 2℄

2

��

2

+ 2�

2

�

(2� + �)

2

=

��

2�+ �

[h(rmj0); Ri � 2℄

2

=

��

2� + �

tr

h

(rmjR

3

)

T

R+ R

T

(rmjR

3

)� 211

i

2

4

=

2��

8(2� + �)

tr

h

(rmjR

3

)

T

R+ R

T

(rmjR

3

)� 211

i

2

: (6.12)

Combining (6.10) and (6.12) shows (1.6).
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6.4 Sharp elliptiity type estimates

For the exposition of the stati ase we need sharp a priori estimates for ellipti systems of seond order with

non-onstant oeÆients in divergene form. Ebenfeld [20℄ has reently proved the following new sharpened a priori

estimate whih we give adapted to our situation and our notation.

Theorem 6.1 (General improved sharp Hilbert spae ellipti regularity )

Let 
 � R

n

be a bounded domain with smooth boundary. Consider the divergene-form linear system

Div C (x):ru = f(x) ; u

j

�


= 0 ; (6.1)

with f 2 H

k;2

(
) and homogeneous boundary data. Let C : 
 � R

3

7! Lin(M

3�3

;M

3�3

) be the fourth order

elastiity tensor. Suppose C 2 H

k+1;2

(
) with 2 � (k + 1) > n and assume that for arbitrary �; � 2 R

n

it holds

9 

+

e

> 0 8 x 2 
 : hC (x):(� 
 �); � 
 �i � 

+

e

� k�k

2

k�k

2

; (6.2)

i.e., that the system is uniformly Legendre-Hadamard ellipti with elliptiity onstant 

+

e

. Assume that the system

admits at least one weak solution u 2 H

1;2

(
). Then the following estimate is valid

kuk

k+2;2;


� C

+

(
; 

+

e

)P (kCk

k+1;2;


)

�

kfk

k;2;


+ kuk

2;


�

; (6.3)

where P : R 7! R is a polynomial of �nite order and the appearing onstant is independent of u; f; C and in addition

C

+

(
; 

+

e

) is bounded above for 

+

e

> 0.

Proof. See [18, 19℄ and ompare with [48, p.75℄ for omparable results on ellipti regularity for linear seond order

ellipti systems on other sales. The main advantage of the new theorem is to preisely trak how the regularity of

the oeÆients enter the ellipti estimate. Preise estimates of this form had not been available previously. �

6.5 Loal existene for ordinary di�erential equations in Banah-spaes

Theorem 6.2 (Unique loal existene)

Let

b

U;X;Y; Z be arbitrary Banah-spaes with norms k�k

b

U

; k�k

X

; k�k

Y

; k�k

Z

respetively. Assume that f :

b

U�X 7!

Lin(X;X) is loally Lipshitz-ontinuous and let the initial value y

0

2 X be given. Let G : X � Y � Z 7!

b

U be

an operator whih is Lipshitz ontinuous on the set M � Y � Z with M := fy 2 X j ky � y

0

k

X

� Kg and

Y � Y; Z � Z bounded in Y;Z, respetively, i.e., there is a positive onstant L

+

suh that

9L

+

> 0 : 8(x

1

; a

1

; b

1

); (x

2

; a

2

; b

2

) 2 M�Y � Z :

kG(x

1

; a

1

; b

1

)�G(x

2

; ; a

2

; b

2

)k

b

U

� L

+

� (kx

1

� x

2

k

X

+ ka

1

� a

2

k

Y

+ kb

1

� b

2

k

Z

) :

Moreover, assume that � 2 C

1

([0; T ℄;Y); � 2 C

1

([0; T ℄;Z) are given funtions. Then there is some 0 < t

1

2 R suh

that the initial value problem

d

dt

y(t) = f

�

G(y(t); �(t); �(t)); y(t)

�

� y(t) ; y(0) = y

0

; (6.4)

has a unique solution y 2 C

1

([0; t

1

℄;M). �
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