
Resolvent Estimates for the Stokes Operator

on an In�nite Layer

Helmut ABELS, Department of Mathemati
s,

Darmstadt University of Te
hnology, 64289 Darmstadt, Germany,

abels�mathematik.tu-darmstadt.de

Mi
hael WIEGNER, Department of Mathemati
s I,

RWTH Aa
hen, 52056 Aa
hen, Germany,

wiegner�math1.rwth-aa
hen.de

O
tober 4, 2004

Abstra
t

In this paper we prove unique solvability of the generalized Stokes resolvent

equations in an in�nite layer 
 = R

n�1

� (�1; 1), n � 2, in L

q

-Sobolev spa
es,

1 < q <1, with non-slip boundary 
ondition uj

�


= 0. The unique solvability

is proved for every � 2 C n(�1;��

2

=4℄, where �

�

2

4

is the least upper bound of

the spe
trum of Diri
hlet realization of the Lapla
ian and the Stokes operator in


. Moreover, we provide uniform estimates of the solutions for large spe
tral

parameter � as well as � 
lose to �

�

2

4

. Be
ause of the spe
ial geometry of

the domain, partial Fourier transformation is used to 
al
ulate the solution

expli
itly. Then Fourier multiplier theorems are used to estimate the solution

operator.
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1 Introdu
tion

In the present 
ontribution, we study the generalized Stokes resolvent equation

(���)u+rq = f in 
; (1.1)

div u = g in 
; (1.2)

uj

�


= 0 on �
; (1.3)
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2 1 INTRODUCTION

where 
 = R

n�1

� (�1; 1), n � 2, is an in�nite layer. The Stokes resolvent equations

are the starting point for the 
onstru
tion of strong solutions of the Navier-Stokes

equations using semi-group theory, 
f. e.g. [10, 11, 18℄.

Our main result is

THEOREM 1.1 Let 1 < p < 1 and � 2 C n (�1;�

�

2

4

℄. Then for every f 2

L

p

(
)

n

and g 2 W

1

p

(
)\

^

W

�1

p

(
) there is a unique solution (u; q) 2 W

2

p

(
)

n

�

_

W

1

p

(
)

of (1.1)-(1.3). Moreover, for every " > 0 and p � r <1 with

n�1

2

(

1

p

�

1

r

) � 1 there

is a 
onstant C

"

su
h that

�

�

�+ �

2

=4

�

�

kuk

p

+

j�+ �

2

=4j

(1 + j�j)

kr

2

uk

p

+ krqk

p

� C

"

�

k(f;rg)k

p

+ (1 + j�j)kgk

^

W

�1

p

�

�

�

�+ �

2

=4

�

�

1�

n�1

2

(

1

p

�

1

r

)

kuk

r

� C

"

�

k(f;rg)k

p

+ (1 + j�j)kgk

^

W

�1

p

�

uniformly in � 2 S

"

:= C n V

"

, where V

"

:= f� 2 C : j Im�j � �"(Re� + �

2

=4)g:

Here W

m

p

(
), m 2 N , denotes the usual Sobolev spa
e of order m based on the

standard Lebesgue spa
e L

p

(
), 1 � p � 1, and

_

W

1

p

(
) :=

�

q 2 L

p;lo


(
) : rq 2 L

p

(
)

	

^

W

�1

p

(
) :=

8

<

:

g 2 L

p;lo


(
) : sup

'2C

1

(0)

(
)

jhg; 'ikr'k

�1

p

0

<1

9

=

;

;

where

1

p

+

1

p

0

= 1 and f 2 L

p;lo


(
) if and only if f 2 L

p

(
 \B) for all balls B � R

n

with B \ 
 6= ;.

The result has been known sin
e 1994 in an unpublished version [17℄ and was

used by several author; e.g. by Abels [6℄ the unique solvability of the Stokes resolvent

equations was used in order to prove the existen
e of bounded imaginary powers of

the Stokes operator in an in�nite layer.

An alternative proof of unique solvability of the Stokes resolvent equations, i.e.,

g = 0, was later given by Abe and Shibata [1, 2℄ for f 2 L

p

(
), 1 < p < 1, and

� 2 C n (�1; 0). An approa
h to the generalized Stokes resolvent equations using a

redu
tion to a pseudodi�erential boundary value problem, whi
h works for � 2 C n

(�1; 0℄, may be found in [7, Se
tion 5℄; see also [3, Remark 1.2℄. Moreover, Nazarov

and Pile
kas [14, 15℄ 
onsidered the solvability of the Stokes resolvent equations in

weighted L

p

-Sobolev spa
es. But the latter results do not 
over the 
ase f 2 L

p

(
).

Sin
e the unique solvability of the generalized Stokes resolvent equations, i.e.,

g 6= 0, is important for perturbation argument, 
f. [4, 5℄, the authors de
ided to

give a rigorous proof of Theorem 1.1 whi
h has also been simpli�ed at some steps in


omparison to its �rst version [17℄. Moreover, we note that we give pre
ise estimates

of the solutions near ��

2

=4, whi
h is the largest value in the spe
trum of the Lapla
e



3

and the Stokes operator on 
. In parti
ular, Theorem 1.1 implies that the Stokes

operator �A

p

generates an analyti
 semi-group e

�tA

p

, t � 0, satisfying

ke

�tA

p

u

0

k

r

� C

p;r

t

�

n�1

2

(

1

p

�

1

r

)

e

�

�

2

4

t

ku

0

k

p

; t � 0; u

0

2 L

p;�

(
); (1.4)

where 1 < p � r < 1 and L

p;�

(
) = fu 2 C

1

0

(
)

n

: div u = 0g

k:k

p

. For r = p,

the latter estimate is a 
onsequen
e of the well-known 
hara
terization of analyti


semi-groups and their generators. For r > p, (1.4) is obtained by estimating e

�tA

p

in

a straight-forward manner and using the semi-group property.

The proof of Theorem 1.1 is based on (partial) Fourier transformation in the

tangential 
oordinates x

0

= (x

1

; : : : ; x

n�1

). By this (1.1)-(1.3) is transformed to an

ordinary two-point boundary value problem in dependen
e of (�; �

0

), �

0

2 R

n�1

, whi
h


an be solved expli
itly. Then we use the Mikhlin and Lizorkin multiplier theorems

to estimate the solution operators. More pre
isely, we �rst estimate rq and then use

the 
orresponding estimates for the Lapla
e resolvent equation to get the estimates

for u.

Besides the study of the Stokes and Lapla
e resolvent equations, we give an

expli
it formula of the Helmholtz de
omposition of L

q

(
), 1 < q < 1, whi
h was

proved by Miyakawa [13℄ and by Farwig [9℄ in more general 
ontext.

The stru
ture of the arti
le is as follows:

In Se
tion 2 we study some Mikhlin multipliers, whi
h will appear in the solu-

tion operator of the Stokes and Lapla
e resolvent equations, and estimate the 
orre-

sponding operators. Then the expli
it formula for the Helmholtz de
omposition in

an in�nite layer is given in Se
tion 3. In Se
tion 4 we estimate the solutions of the

Lapla
e resolvent equation, whi
h 
an easily be 
al
ulated by the same te
hnique of

partial Fourier transformation. Finally, in Se
tion 5 we derive an expli
it formula for

the pressure q in (1.1)-(1.3). Then the main part of the proof 
onsists in a 
areful

analysis of the solution operator for q. On
e the pressure is estimated, the estimates

of u are obtained using the estimates for the Lapla
e resolvent equation.

2 Partial Fourier transformation and multiplier es-

timates

First let us introdu
e some notations. Let 
 � R

n

, n � 2, be a domain. Then

C

1

0

(
) will denote the spa
e of all smooth fun
tions f : 
 ! C with 
ompa
t support

supp f � 
. Moreover,

C

1

(0)

(
) := fu = vj




: v 2 C

1

0

(R

n

)g:

Finally, we note that by [4, Lemma 2.4℄ C

1

(0)

(
) is dense in

_

W

1

p

(
) for every 1 < p <

1.



4 2 PARTIAL FOURIER TRANSFORMATION

The spe
ial type of domain 
 = R

n�1

� (�1; 1), we are dealing with, suggests the

use of a partial Fourier transformation. Denoting points of 
 by x = (x

0

; x

n

) with

x

0

2 R

n�1

, x

n

2 [�1; 1℄, we de�ne for u : 
! C

U(�

0

; x

n

) := F

x

0

7!�

0

[u℄(�

0

; x

n

) =

1

(2�)

n�1

2

Z

R

n�1

e

�ix

0

��

0

u(x

0

; x

n

)dx

0

and the inverse transformation

u(x

0

; x

n

) := F

�1

�

0

7!x

0

[U ℄(x

0

; x

n

) =

1

(2�)

n�1

2

Z

R

n�1

e

i�

0

�x

0

U(�

0

; x

n

)d�

0

:

In the following we will use the abbreviation F � F

x

0

7!�

0

. The Fourier and inverse

Fourier transformation of f : R

n

! C with respe
t to x 2 R

n

will be denoted by

^

f

and

�

f , respe
tively.

Throughout this se
tion L will denote the smallest integer larger than

n

2

, where

n 2 N . Basi
 for deriving L

p

-estimates is the Mikhlin multiplier theorem, 
f. e.g. [8℄:

THEOREM 2.1 Let f 2 L

p

(R

n

) with 1 < p <1 and let m : R

n

nf0g ! C denote

an L-times di�erentiable fun
tion with

[m℄ := sup

� 6=0;j�j�L

fj�j

j�j

jD

�

�

m(�)jg <1:

Then (m �

^

f)

_

2 L

p

(R

n

) with

k(m �

^

f)

_

k

p

� C

p

[m℄kfk

p

:

It is well-known that m(�) :=

�

j

j�j

, j = 1; : : : ; n, satis�es the assumptions of the latter

theorem. This is a 
onsequen
e of the fa
t that m(�) is homogeneous of degree 0.

Moreover, we will use the following variant of Theorem 2.1 due to Lizorkin [12℄.

THEOREM 2.2 Let m : R

n

! C be 
ontinuous with 
ontinuous derivatives �

�

�

m(�)

on f� 2 R

n

: �

i

6= 0; i = 1; : : : ; ng, � 2 f0; 1g

n

, and let 1 < p � q < 1. Moreover,

suppose that

sup

�

i

6=0;i=1;:::;n

�

�

�

�

�

1

+�

1

� � � �

�

n

+�

n

�

�

�

m(�)

�

�

�

�M

for all � 2 f0; 1g

n

and � =

1

p

�

1

q

. Then k(m �

^

f)

_

k

q

� C

p;q

Mkfk

p

:

In the following, we have to 
al
ulate estimates for various multipliers. For 
on-

venien
e, let us de�ne for 0 � �

1

< �

2

� 1

[m℄

�

2

�

1

:= sup

�

1

<j�j��

2

;j�j�L

fj�j

j�j

jD

�

�

m(�)jg

and [m℄ := [m℄

1

0

.

Then we have the following lemma, the proof of whi
h is elementary.
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Lemma 2.3 There holds uniformly in 0 � �

1

< �

2

� 1:

[m

1

m

2

℄

�

2

�

1

� 
[m

1

℄

�

2

�

1

� [m

2

℄

�

2

�

1

(2.1)

If jmj � 


1

> 0, then

[1=m℄

�

2

�

1

� C(1 + [m℄

�

2

�

1

)

L

: (2.2)

If m(�) =M(j�j), then

[m℄

�

2

�

1

� 
 sup

a2[�

1

;�

2

℄

(

L

X

k=0

ja

k

M

(k)

(a)j

)

: (2.3)

As a typi
al multiplier, we 
ome a
ross fun
tions of the following type:

Lemma 2.4 Let f; g : [0;1)! C be L-times di�erentiable with

(i) Ref(a) � �


1

Aa

(ii) sup

1�l�L

a

l�1

jf

(l)

(a)j � 


2

A

(iii) sup

0�l�L

a

l

jg

(l)

(a)j � 


3

a

k

on 0 � �

1

� a � �

2

� 1 with some 


i

> 0; A > 0; k 2 N

0

. Let h(�) = g(j�j)e

f(j�j)

.

Then

[h℄

�

2

�

1

� 
A

�k

: (2.4)

Proof: As h

(j)

(a), j = 1; : : : ; L, is a sum of terms of the form

g

(l

0

)

(a)f

(l

1

)

(a) : : : f

(l

m

)

(a)e

f(a)

;

where l

0

+ : : :+ l

m

= j with l

1

; : : : ; l

m

6= 0, and

sup

�

1

�a��

2

a

j

�

�

g

(l

0

)

(a)f

(l

1

)

(a) : : : f

(l

m

)

(a)e

f(a)

�

�

� C

1

a

k

a

m

A

m

e

�


1

Aa

� C

2

A

�k

the statement is a 
onsequen
e of (2.3).

The next lemma provides L

p

-estimates for a typi
al operator.

Lemma 2.5 Let �(t) = �

[0;1)

(t) or �(t) = 1� �

[0;1)

(t). De�ne the operator G by

(Gf)(x

0

; x

n

) = F

�1

�

Z

1

�1

j�

0

je

�j�

0

jjx

n

�zj

�(x

n

� z)F [f ℄(�

0

; z)dz

�

for f 2 C

1

0

(
). Then G extends to a bounded linear operator G : L

p

(
)! L

p

(
) for

every 1 < p <1.
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Proof: Let f

0

denote the extension of f onto R

n

by zero and let g := Gf . Then

F [g℄(�

0

; x

n

) =

Z

R

j�

0

je

�j�

0

jjx

n

�zj

�(x

n

� z)F [f

0

℄(�

0

; z)dz:

The right hand side makes sense also for jx

n

j > 1. Hen
e the inverse transformation

de�nes a fun
tion ~g on R

n

with ~gj




= g,

~g(x

0

; x

n

) :=

1

(2�)

n�1

2

Z

R

n

e

ix

0

��

0

j�

0

je

�j�

0

jjx

n

�zj

�(x

n

� z)F [f

0

℄(�

0

; z)d(z; �

0

):

The 
laim follows if we 
an prove k~gk

L

p

(R

n

)

� 
kf

0

k

L

p

(R

n

)

: Inserting the de�nition

of F [f

0

℄, we may write ~g as an R

n

-
onvolution ~g = k � f

0

or equivalently ~g =

(2�)

n=2

(

^

k �

^

f

0

)

_

with

k(x

0

; x

n

) =

1

(2�)

n�1

2

Z

R

n�1

e

ix

0

��

0

�(x

n

)j�

0

je

�j�

0

jjx

n

j

d�

0

:

Now k(x) = F

�

0

7!x

0

[h℄(x) with h(�

0

; x

n

) = �(x

n

)j�

0

je

�j�

0

jjx

n

j

hen
e

^

k(�) =

1

(2�)

1

2

Z

R

e

�i�

n

x

n

�(x

n

)j�

0

je

�j�

0

jjx

n

j

dx

n

for � = (�

0

; �

n

). As by simple integration

(2�)

1=2

^

k(�) =

(

j�

0

j(j�

0

j+ i�

n

)

�1

for �(t) = �

[0;1)

(t)

j�

0

j(j�

0

j � i�

n

)

�1

for �(t) = 1� �

[0;1)

(t)

we have [

^

k(�)℄ � 
, and the 
laim follows by Theorem 2.1.

Lemma 2.6 Let

h(t) =

Z

1

�1

s(x)

(2� t� x)

dx; s 2 L

p

(�1; 1);

for t 2 (�1; 1). Then khk

L

p

(�1;1)

� C

p

ksk

L

p

(�1;1)

for every 1 < p <1.

Proof: Extend s by zero to ~s and let

~

h(t) := h(2� t). Then

~

h(t) =

R

1

�1

~s(x)

t�x

dx and

Z

1

�1

jh(t)j

p

dt �

Z

R

j

~

h(t)j

p

dt � C

p

k~sk

p

p

= C

p

ksk

p

p

by the Calderon-Zygmond estimate.

The following lemma is (partly) known; we in
lude a proof, as it 
ontains a

surprising borderline 
ase.
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Lemma 2.7 Suppose q is smooth, rq 2 L

p

(R

n

), n � 1, 1 < p < 1. Then there is

a 
onstant 


q

su
h that for R � 1

kq � 


q

k

L

p

(B

R

)

� 
(R)krqk

p

with


(R) =

�




p

�R if p 6= n;


R(lnR + 1)

1�1=n

if p = n:

Remark: The example q(x) = ln(jxj

2

+ 1)




with 0 < 
 < 1 �

1

n

shows that the


ase p = n is indeed ex
eptional � an estimate with some smaller exponent for the

logarithmi
 term does not hold for all R � 1.

Proof: First we 
onsider the 
ase n � 2. Let q

�

denote the mean-value of q over

B

�

. Then, as

q(rRw)� q(r�w) =

Z

rR

r�

w � rq(sw)ds;

one gets

q

R

� q

�

= 


n

Z

1

0

r

n�1

�

Z

jwj=1

Z

rR

r�

w � rq(sw)dsdw

�

dr:

Hen
e

jq

R

� q

�

j � 


n

Z

1

0

r

n�1

Z

B

Rr

nB

�r

jrq(x)j

jxj

n�1

dxdr

� 


n

Z

1

0

r

n�1

krqk

p

�

 

Z

B

Rr

nB

�r

dx

jxj

(n�1)p

0

!

1=p

0

dr:

As

�

Z

Rr

�r

s

(n�1)(1�p

0

)

ds

�

1=p

0

� C

8

<

:

r

1�n=p

�

�

�

R

p�n

p�1

� �

p�n

p�1

�

�

�

1�1=p

if p 6= n;

ln(

R

�

)

1�

1

p

if p = n

and

R

1

0

r

n�1

� r

1�

n

p

dr =

R

1

0

r

n=p

0

dr � 
, one gets

jq

R

� q

�

j � 
krqk

p

�

8

<

:

�

�

�

R

p�n

p�1

� �

p�n

p�1

�

�

�

1�

1

p

if p 6= n;

ln(

R

�

)

1�

1

p

if p = n:

Thus, for p > n; q

�

! q(0) for � ! 0, while for p < n; q

�

! q

1

for � ! 1, and we

may take 


q

= q(0), 


q

= q

1

, resp., to get jq

R

� 


q

j � 
krqk

p

�R

1�

n

p

. For p = n, take




q

= q

1

. Together with Poin
are's inequality, the 
laim follows.

Finally, if n = 1, we have jq(x)�q(0)j � jxj

1

p

0

k

d

dx

qk

p

, whi
h implies the statement.
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Other multipliers will involve a 
ertain square-root of � + j�

0

j

2

, where � 2 S

"

,

" > 0. Besides the se
tor S

"

, it is useful to 
onsider

�

�

:= fz 2 C n f0g : j arg zj < �g

for � 2 (0; �). If � 2 �

�

, � 2 (0; �), b � 0, and � 2 � �

2

is de�ned by �

2

= � + b, we

have

Re� � 


�

maxfj�j

1

2

; b

1

2

g for all � 2 �

�

: (2.5)

The latter estimate 
an easily be proved by using the homogeneity of f(�; b) :=

(�+ b)

1

2

.

Finally, we re
all that for every �; � 2 N

n

0

�

�

�

�

D

�

�

�

�

�+ j�j

2

�

�

�

�

� C

�;�;�

(j�j

1

2

+ j�j)

�2+j�j�j�j

(2.6)

for � 2 �

�

with � 2 (0; �). The latter statement 
an be proved by using the homo-

geneity of f

�

(�; �) := D

�

�

�

�

e

i�

�

2

+j�j

2

, � 2 (0; �).

For � 2 S

"

, the following lemma provides some important estimates.

Lemma 2.8 Let � 2 S

"

, " > 0. Then for a 2 R de�ne � = �(a) uniquely by

�

2

:= �+ a

2

with Re� � 0 and Im� � 0 if Re� = 0. Then, if maxfj�j

1=2

; ag � �

�

2

, � > 1,

Re� � 2Æmaxfj�j

1=2

; ag � Æj�j (2.7)

where Æ = Æ("; �) > 0. Furthermore, for any k 2 N we have sup

a�0

a

k�1

j�

(k)

(a)j �

C

";�;k

uniformly in � 2 S

"

with j�j

1

2

� �

�

2

, � > 1. Moreover, if a = j�

0

j, �

0

2 R

n�1

,

then sup

�

0

2R

n�1

;j�j�k;�6=0

j�

0

j

j�j�1

jD

�

�

0

�j � C

";�;k

uniformly in � 2 S

"

with j�j

1

2

� �

�

2

,

� > 1.

Proof: First of all, the estimate j�j � 2maxfj�j

1=2

; ag is trivial. Suppose �rst that

maxfj�j

1

2

; ag = j�j

1

2

� �

�

2

with � > 1. Then obviously � 2 �

�

for some � = �("; �).

Hen
e (2.7) is a 
onsequen
e of (2.5) with b = a

2

. Similarly, ifmaxfj�j

1

2

; ag = a � �

�

2

with � > 1, (2.5) implies

jRe�j � 


�

max

(

�

�

�

�

�+

�

2

4

�

�

�

�

1

2

;

�

a

2

�

�

2

4

�

1

2

)

� 


�

�

1�

1

�

2

�

1

2

a:

This proves (2.7).

The estimate for �

(k)

(a) follows from the fa
t that �

(k)

(a) = p

k

�

a

�

�

a

1�k

; k � 1;

where p

k

is a polynomial. Then the last statement is a 
onsequen
e of the 
hain rule

and the fa
t that

�

�

D

�

�

0

j�

0

j

�

�

� C

�

j�

0

j

1�j�j

, whi
h is a 
onsequen
e of the homogeneity

of the mapping �

0

7! j�

0

j.
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Lemma 2.9 For � 2 S

"

, " > 0, �

0

2 R

n�1

, and a := j�j let � be as in Lemma 2.8.

Moreover, let k 2 N

0

, z; w � 0 with z + w > 0, and let M = maxf

j�j

1

2

4

; �g. Then

h

�

a

i

1

M

� C

"

;

�

�

�+ a

�

1

0

� C

"

if j�j

1

2

� �;

�

�

�� a

�

1

2

j�j

1

2

0

� C

"

;

�

a

k

e

�az��w

�

1

0

�

C

"

(z + w)

k

if j�j

1

2

� �;

�

a

k

e

�az��w

�

1

�

�

C

"

(z + w)

k

;

uniformly in � 2 S

"

.

Proof: If a � maxf

j�j

1

2

4

; �g, then j�j � 5a and Lemma 2.8 yields

�

�

a

�

1

M

� C

"

.

Moreover, be
ause of Lemma 2.8 and

a

�

=

d

da

�(a),

h

a

�

i

1

0

� C

"

uniformly in � 2 S

"

with j�j

1

2

� �. Hen
e

�

�+a

= (1+

a

�

)

�1

, Re(1+

a

�

) � 1, and (2.2) imply the statement

for

�

�+a

. Furthermore, if a �

1

2

j�j

1

2

, j�j �

p

3

2

j�j

1

2

and therefore j1 �

a

�

j � 1 �

1

p

3

,

whi
h implies

h

�

��a

i

1

2

j�j

1

2

0

� C

"

.

In order to prove

�

a

k

e

�az��w

�

1

0

�

C

"

(z+w)

k

if j�j � � and

�

a

k

e

�az��w

�

1

�

�

C

"

(z+w)

k

,

we apply Lemma 2.4 with g(a) = a

k

, f(a) = �az � �w, and A = z + w. Here the

assumptions of Lemma 2.4 are 
onsequen
es of Lemma 2.8.

Lemma 2.10 Let Æ

�

:= (e

��a

� e

�(��a)

)=(� � a) and let m

�

:= (Æ

+

� Æ

�

)

�1

e

a+�

,

where � and a are the same as in Lemma 2.8. Then there is a 
onstant a

"

� � su
h

that

�

a

�1

m

�

�

1

M

� C

"

(2.8)

uniformly in � 2 S

"

, " > 0, where M := maxfa

"

;

1

4

j�j

1

2

g, and

�

�

�1

m

+

�

2M

0

� C

"

;

�

�

�1

a

1 + a

m

�

�

2M

0

� C

"

uniformly in � 2 S

"

, " > 0, with

1

4

j�j

1

2

� a

"

.

Proof: First we 
onsider (2.8). We will use (2.2), where we note that

m

�1

�

=

1

�+ a

(1� e

�2a�2�

)� Æ

�

e

�(a+�)

; Æ

�

=

Z

1

�1

e

t(��a)

dt:

By Lemma 2.4 with k = 1 and A = min

jtj�1

f(1 � t)2Æ + (1 + t)g = minf4Æ; 2g, we

have [aÆ

�

e

�a��

℄

1

M

� C

"

. Be
ause of Lemma 2.9, this implies [am

�1

�

℄

1

M

� C

"

.
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As j�j � 5a if a �M , we have

�

�

�

a

a+�

�

�

�

�

a

a+j�j

�

1

6

and

jÆ

�

j =

�

�

�

�

Z

1

�1

e

t(��a)

dt

�

�

�

�

� 2maxfe

Re��a

; e

a�Re�

g:

Hen
e using Lemma 2.8 again

jam

�1

�

j �

1

6

(1� e

�2a�2Re�

)� 2amaxfe

�2a

; e

�2Re�

g �

1

8

for a � a

"

and a

"

large enough (this is one of the 
onditions for a

"

).

Con
erning the other estimates, we use (2.2) and prove for ~m

�

= �(Æ

+

�Æ

�

)e

�(a+�)

that j ~m

+

j � 
 on [0; 2M ℄; j ~m

�

j � 
 on [1; 2M ℄; ja

�1

~m

�

j � 
 on [0; 1℄ and that

[ ~m

+

℄

2M

0

, [ ~m

�

℄

2M

1

, [a

�1

~m

�

℄

1

0

are uniformly bounded in � 2 S

"

, j�j � a

"

. As ~m

�

=

�

�+a

(1� e

�2a�2�

)�

�

��a

(e

�2a

� e

�2�

), the estimates for [ ~m

+

℄

2M

0

and [ ~m

�

℄

2M

1

follow by

Lemma 2.9. Moreover, using

~m

�

=

�

�

�

�(1� e

�2a

)(1 + e

�2�

)� a(1� e

�2�

)(1 + e

�2a

)

�

;

we 
on
lude [a

�1

~m

�

℄

1

0

� C

"

uniformly in j�j � a

"

, � 2 S

"

.

Last we need estimates from below. We remember that Re� � 2Æj�j

1=2

� 8Æa

"

,




1

j�j � j�� aj � 


2

j�j, and Re� � Æj�j. Hen
e

j ~m

+

j =

�

�

�

�

�

�+ a

�

�

�

�

�

�

�

�

1� e

�2a�2�

+

�+ a

�� a

(e

�2a

� e

�2�

)

�

�

�

�

� 


�1

1

�

(1 + e

�2a

)� e

�2Re�

�

2a

j�� aj

(e

�2a

+ e

�2Re�

)� e

�2Re�

�

� 


�1

1

�

(1 + e

�2a

)�




j�j

� 2e

�2Re�

�

�

1

2




�1

1

for a

"

large enough (the se
ond 
ondition on a

"

).

Similarly,

j ~m

�

j �

�

�

�

�

�

�+ a

�

�

�

�

�

�

�

�

�

1� e

�2a

�

2a

�� a

e

�2a

�

�

�

�

� e

�2Re�

�

�

�

�

e

�2a

� 1�

2a

�� a

�

�

�

�

�

and for a � 1, we have

j ~m

�

j � 


�1

1

��

1� e

�2

�




j�j

�

� 
e

�2Re�

�

� 


�1

1

�

1

2

� e

�2

�

for a

"

suitably large (the third 
ondition on a

"

), while for a � 1

ja

�1

~m

�

j � 


�1

1

��

1� e

�2a

a

�

�

2e

�2a

j�� aj

� e

�2Re�

�

1� e

�2a

a

+

2

j�� aj

��

� 


�1

1

�

2e

�2

�




j�j

� 
e

�2Re�

�

� 


�1

1

e

�2

for a

"

large (the last 
ondition on a

"

). This �nishes the proof.
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Lemma 2.11 Let f(a; �) := D=(a�). Then f is a smooth fun
tion in a 2 R; � 2 C

and f(a; �) 6= 0 if a � 0 and Re� � 0 with �

2

2 S

"

, " > 0. In parti
ular, if a = a(�

0

)

and � = �(�

0

; �) are de�ned as in Lemma 2.8, then for every A;B > 0

[a�=D℄

A

0

� 
(A;B; ")

uniformly in � 2 S

"

with j�j � B.

Proof: First of all, sin
e Æ

�

=

R

1

�1

e

t(��a)

dt,

Æ

+

+ Æ

�

= 4

Z

1

0


osh(t�) 
osh(ta) dt = 4P

1

(a; �)

Æ

+

� Æ

�

a�

= 4

Z

1

0

sinh(t�)

�

sinh(ta)

a

dt = 4P

2

(a; �)

Hen
e f(a; �) = D=(a�) = 16P

1

(a; �)P

2

(a; �) is a smooth fun
tion for all a 2 R,

� 2 C . Therefore it remains to prove that f(a; �) 6= 0 if a � 0, Re� � 0, and

�

2

2 S

"

.

Firstly, let � = x 2 R. Then obviously P

1

(a; �); P

2

(a; �) > 0 and therefore

f(a; �) > 0. Moreover, if � = iy, y 2 R, then

P

1

(a; iy) =

Z

1

0


os ty 
osh ta dt > 0; P

2

(a; iy) =

Z

1

0

sin ty

ty

sinh ta

ta

t

2

dt > 0;

where we have used that �

2

= �y

2

2 S

"

implies jyj �

�

2

.

Finally, let � = x+ iy, y 6= 0, x > 0. Using

�

Æ

+

+ Æ

�

4

= � sinh� 
osh a� a 
osh� sinh a

=

�

�

sinh�


osh�

� a

sinh a


osh a

�


osh� 
osh a;

�

Æ

+

� Æ

�

4

= � 
osh� sinh a� a sinh� 
osh a

= a�

�

sinh a

a 
osh a

�

sinh�

� 
osh�

�


osh � 
osh a;

where � = �

2

� a

2

6= 0 if Im� = y 6= 0 and 
osh� 6= 0 if Re� > 0, it is su�
ient to

show that

Im

�

�

sinh�


osh�

�

6= 0 and Im

�

sinh�

� 
osh�

�

6= 0:

By elementary 
al
ulations

Im

�

�

sinh�


osh�

�

=

1

2

x sin 2y + y sinh 2x


osh

2

x 
os

2

y + sinh

2

x sin

2

y

Im

�

sinh�

� 
osh�

�

=

1

2j�j

2

x sin 2y � y sinh 2x


osh

2

x 
os

2

y + sinh

2

x sin

2

y

;
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where jy sinh 2x� x sin 2yj � jyj(sinh 2x� 2x) > 0 if y 6= 0, x > 0.

The last statement is a trivial 
onsequen
e of the �rst part and (2.3).

Lemma 2.12 Let k(�

0

; w; x

n

) be measurable and su�
iently smooth in �

0

2 R

n�1

n

f0g. Moreover, suppose that

[k(�

0

; w; x

n

)℄ +

�

�

�w

k(�

0

; w; x

n

)j�

0

j

�1

�

� 
(2� w � x

n

)

�1

:

and de�ne

h(�

0

; x

n

) = F

�1

�

Z

1

�1

k(�

0

; w; x

n

)j�

0

j

�1

F [g℄(�

0

; w)dw

�

for g 2 C

1

(0)

(
) \

^

W

�1

p

(
). Then for every 1 < p <1

khk

L

p

(
)

� C

p

kgk

^

W

�1

p

(
)

for all g 2 C

1

(0)

(
) \

^

W

�1

p

(
):

Proof: Let ' 2 C

1

0

(
) and de�ne  by

F [ ℄(�

0

; w) :=

Z

1

�1

k(�

0

; w; z)j�

0

j

�1

F ['℄(�

0

; z)dz:

Then

hg;  i =

Z

1

�1

Z

1

�1

Z

R

n�1

k(�

0

; w; z)j�

0

j

�1

F [g℄(�

0

; w)F ['℄(�

0

; z)d�

0

dzdw

=

Z

1

�1

Z

R

n�1

F [h℄(�

0

; z)F ['℄(�

0

; z)d�

0

dz = hh; 'i

and therefore jhh; 'ij � kgk

^

W

�1

p

(
)

� kr k

p

0

.

Now F [

� 

�x

j

℄(�

0

; w) =

R

1

�1

k(�

0

; w; z)i�

j

j�

0

j

�1

F ['℄(�

0

; z)dz, for j = 1; : : : ; n�1; whi
h

implies













� 

�x

j

(�; w)













L

p

(R

n�1

)

� C

p

Z

1

�1

k'(�; z)k

p

0

(2� w � z)

�1

dz

by Theorem 2.1 and the same estimate follows for j = n. By Lemma 2.6, kr k

p

0

�

C

p

k'k

p

0

. Hen
e the 
laim is proved.

3 The Helmholtz Proje
tion

Let L

p;�

(
) = fu 2 C

1

0

(
)

n

: div u = 0g

k:k

p

. We want to give an expli
it 
onstru
tion

for the Helmholtz proje
tion P : L

p

(
)

n

! L

p;�

(
).
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THEOREM 3.1 For every f 2 L

p

(
)

n

there is a unique de
omposition f = f

0

+rq

with f

0

2 L

p;�

(
); q 2

_

W

1

p

= fq 2 L

p;lo


(
)jrq 2 L

p

(
)

n

g. Moreover,

kf

0

k

p

+ krqk

p

� C

p

kfk

p

(3.1)

and kqk

L

p

(
\B

R

)

� C

p

kfk

p

+ C

p

Rk(f

1

; : : : ; f

n�1

)k

p

for p 6= n � 1 if we 
hoose an

appropriate 
onstant for q.

Remark 3.2 The theorem (ex
ept for the L

p

(
 \ B

R

)-estimate) was proved by

Miyakawa [13℄ and Farwig [9℄ in a more general 
ontext. Sin
e we will need the

expli
it formula for f

0

= Pf , we in
lude a proof.

Proof: We may assume f 2 C

1

0

(
)

n

, so that all integrals appearing are well de�ned.

De�ne F

j

(�

0

; x

n

) := F [f

j

℄(�

0

; x

n

); j = 1; : : : ; n and F

n+1

(�

0

; x

n

) :=

i�

0

j�

0

j

� F

0

(�

0

; x

n

),

where F

0

= (F

1

; : : : ; F

n�1

). Note that

kF

�1

[F

n+1

℄(�

0

; x

n

)k

L

p

(R

n�1

)

� C

p

kf

0

(�; x

n

)k

L

p

(R

n�1

)

:

Now de�ne a pressure q by

Q(�

0

; x

n

) := F [q℄(�

0

; x

n

)

= �

1

2

Z

1

�1

e

�ajx

n

�zj

F

n+1

(�

0

; z)dz �

1

2

Z

1

�1

e

�ajx

n

�zj

sign(z � x

n

)F

n

(�

0

; z)dz

+�e

ax

n

+ �e

�ax

n

where a = j�

0

j and �; � are 
hosen su
h that �

n

Q� F

n

j

w=�1

� 0.

Sin
e (�

n

� a

2

)Q = i�

0

� F

0

+ �

n

F

n

, the Helmholtz proje
tion f

0

= Pf is then

given by

F

0

j

= F [f

0

j

℄ := F

j

� i�

j

Q; j = 1; : : : ; n� 1;

F

0

n

= F [f

0

n

℄ := F

n

� �

n

Q

(3.2)

But it remains to determine �; �. By di�erentiation

�

n

Q� F

n

= �

a

2

Z

1

�1

e

�ajx

n

�zj

sign(z � w)F

n+1

(�

0

; z)dz �

a

2

Z

1

�1

e

�ajx

n

�zj

F

n

(�

0

; z)dz

+�ae

ax

n

� �ae

�ax

n

and �

n

(�

n

Q� F

n

) = a

2

Q + aF

n+1

. From the boundary 
onditions we 
on
lude

�ae

ax

n

=

a

2(1� e

�4a

)

�

Z

1

�1

e

�a(2�x

n

�z)

(F

n

(�

0

; z)� F

n+1

(�

0

; z))dz

�

Z

1

�1

e

�a(4+z�x

n

)

(F

n

(�

0

; z) + F

n+1

(�

0

; z))dz

�
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and

�ae

�ax

n

=

a

2(1� e

�4a

)

�

Z

1

�1

e

�a(4�z+x

n

)

(F

n

(�

0

; z)� F

n+1

(�

0

; z))dz

�

Z

1

�1

e

�a(2+x

n

+z)

(F

n

(�

0

; z) + F

n+1

(�

0

; z))dz

�

These terms are of the type

R(�

0

; x

n

) =

Z

1

�1

k(�

0

; z; x

n

)F [g℄(�

0

; z)dz:

Hen
e P is a linear operation, and

kF

�1

[R℄(�; x

n

)k

L

p

(R

n�1

)

� C

p

Z

1

�1

[k(�; z; x

n

)℄kg(�; z)k

L

p

(R

n�1

)

dz:

As jzj; jx

n

j � 1 and the kernels are real analyti
 in a, we have [k(�; z; x

n

)℄

1

0

� 
.

Furthermore, for b(a) = (1 � e

�4a

)

�1

, we have [b℄

1

1

� 
. Together with Lemma 2.9,

we obtain [k(�; z; x

n

)℄ � 
((2 + z + x

n

)

�1

+ (2 � z � x

n

)

�1

), and by Lemma 2.6

kF

�1

[R℄k

p

� C

p

kfk

p

. For the �rst two terms of �

n

Q � F

n

, we use Lemma 2.5 to


on
lude �nally













��

�x

n

� f

n













p

� C

p

kfk

p

:

For later purposes, let us note that

2a

�1

F

0

n

(�

0

; x

n

) =

Z

1

�1

k

n

(a; x

n

; z)F

n

(�

0

; z)dz +

Z

1

�1

k

n+1

(a; x

n

; z)F

n+1

(�

0

; z)dz (3.3)

with

k

n

(a; w; z) =

e

�ajw�zj

+ (1� e

4a

)

�1

�

e

�a(4�z+w)

� e

�a(2+w+z)

� e

�a(2�w�z)

+ e

�a(4+z�w)

�

and

k

n+1

(a; w; z) = e

�ajw�zj

sign(z � w)� (1� e

�4a

)

�1

�

e

�a(4�z+w)

+ e

�a(2+w+z)

�e

�a(2�w�z)

� e

�a(4+z�w)

�

:

Note that these kernels are analyti
 in a (uniformly for jzj; jwj � 1).

Now for j = 1; : : : ; n� 1,

�i�

j

Q(�

0

; x

n

) =

a

2

Z

1

�1

e

�ajx

n

�zj

i�

j

j�

0

j

F

n+1

(�

0

; z)dz

+

a

2

Z

1

�1

e

�ajx

n

�zj

sign(z � x

n

)

i�

j

j�

0

j

F

n

(�

0

; z)dz

��ae

ax

n

i�

j

j�

0

j

� �ae

�ax

n

i�

j

j�

0

j

:
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This is obviously a sum of terms of the same type as in �

n

Q � F

n

with F

n

; F

n+1

substituted by

i�

j

j�

0

j

F

n

, �

�

j

j�

0

j

F

n+1

, respe
tively. Hen
e also










�q

�x

j










p

� C

p

kfk

p

; j =

1; : : : ; n � 1. Thus P : L

p

(
)

n

! L

p

(
)

n

is 
ontinuous. For the uniqueness of the

de
omposition, we refer to [13℄.

Be
ause of the 
onstru
tion, div f

0

= 0, f

0

n

j

�


= 0, and P

2

f = Pf . Therefore P

extends to a 
ontinuous proje
tion P : L

p

(
)

n

! L

p;�

(
) su
h that Pf = f �rq.

It remains to prove a lo
al estimate for q. Take a 
uto� fun
tion ' with '(t) = 1

for t � 1 and ' � 0 for t � 2. Let

Q = '(a)Q +

�

1� '(a)

a

�

Qa = Q

1

+Q

2

:

Now (1� '(a))=a is a multiplier on R

n�1

with [(1� '(a))=a℄ � 
, hen
e

kF

�1

[Q

2

℄k

p

� C

p

kF

�1

[Qa℄k

p

� C

p

kfk

p

;

as shown above. Next Q

1

is of the type

Q

1

(�

0

; x

n

) =

n

X

j=1

Z

1

�1

'(a)k

j

(a; x

n

; z)F

j

(z)dz �

'(a)

2a

Z

1

�1

F

n+1

(z)dz

with ['(�)k

j

(�; x

n

; z)℄ � 
 uniformly. Inverting,

q = q

0

+

Z

1

�1

n�1

X

j=1

F

�1

�

'(a)

a

2

�

j

�

� f

j

(�; z)dz

with kq

0

k

p

� 
kfk

p

; krq

0

k

p

� 
kfk

p

. As F

�1

[

'(a)

a

2

�

j

℄ is smooth and bounded if n � 3,

the 
onvolution is well de�ned for f

j

2 C

1

0

in that 
ase. If n = 2, q(x) is well de�ned

sin
e it is determined up to an 
onstant by �

2

q(x) 2 L

q

(
). Hen
e q = q

0

+ q

1

(x

0

)

with kr

x

0

q

1

k

L

p

(R

n�1

)

� Ckf

0

k

p

. The lo
al estimates follow now by Lemma 2.7.

It is well-known that the existen
e of the Helmholtz de
omposition of L

p

(
),

1 < p <1, is equivalent to the unique solvability of the weak Neumann problem for

the Lapla
e equation, i.e., for every f 2 (

_

W

1

p

0

(
))

0

there is a unique u 2

_

W

1

p

(
) su
h

that

hru;rvi = hf; vi for all v 2

_

W

1

p

0

(
); (3.4)


f. e.g. [16℄. Moreover, kruk

p

� C

p

kfk

(

_

W

1

p

0

(
))

0

. This will be used in the proof of the

following lemma.

Lemma 3.3 Let 1 < p <1. Then C

1

(0)

(
)\

^

W

�1

p

(
) is dense in W

1

p

(
)\

^

W

�1

p

(
).

Proof: Let g 2 W

1

p

(
) \

^

W

�1

p

(
) be arbitrary. Sin
e g 2 (

_

W

1

p

0

(
))

0

and by (3.4),

there is a u 2 L

p

(
) su
h that

hg; vi = hru;rvi; for all v 2

_

W

1

p

0

(
): (3.5)



16 4 LAPLACE RESOLVENT EQUATION

Moreover, sin
e even g 2 W

1

p

(
), approximation of �

j

u, �

i

�

j

u, i; j = 1; : : : ; n � 1,

by di�eren
e quotients yields that �

j

u; �

i

�

j

u 2 L

p

(
). Using (3.5) we obtain also

�

n

u; �

n

ru 2 L

p

(
) and therefore u 2 W

2

p

(
). Furthermore, (3.5) yields �u = g

almost everywhere and �

n

uj

�


= 0.

Now let  2 C

1

0

(R

n�1

) with  (0) = 1 and set g

R

(x) = div( (Rx

0

)ru). Then

g

R

2 W

1

p

(
)\

^

W

�1

p

(
) and lim

R!1

g

R

= g inW

1

p

(
)\

^

W

�1

p

(
). Sin
e g

R

is 
ompa
tly

supported, [4, Lemma 2.8℄ implies that

Z

g

R

dx = 0 if 1 < p �

n� 1

n� 2

:

Hen
e, if 1 < p �

n�1

n�2

, we 
an �nd g

k;R

2 C

1

(0)

(
) with

R

g

k;R

dx = 0 su
h that

lim

k!1

g

k;R

= g

R

in W

1

p

(
). Sin
e

R

g

R

dx =

R

g

k;R

dx = 0, this implies that

lim

k!1

g

k;R

= g

R

in

^

W

�1

p

(
) by Poin
aré's inequality. In the 
ase p >

n�1

n�2

, by [4,

Lemma 2.8℄ every h 2 L

p

(
) with support in B

R

(0) is in

^

W

�1

p

(
) and khk

^

W

�1

p

(
)

�

C

R

khk

p

. Hen
e, if g

k;R

2 C

1

(0)

(
) su
h that lim

k!1

g

k;R

= g

R

in W

1

p

(
), also

lim

k!1

g

k;R

= g

R

in

^

W

�1

p

(
).

In parti
ular, we have proved that C

1

(0)

(
) \ fg :

R

gdx = 0g if 1 < p �

n�1

n�2

and

C

1

(0)

(
) if p >

n�1

n�2

are dense in W

1

p

(
) \

^

W

�1

p

(
).

4 Lapla
e Resolvent Equation

We 
onsider

(���)u = f in 
; (4.1)

uj

�


= 0 on �
: (4.2)

In order to prove the estimates of Theorem 1.1, we will use the 
orresponding state-

ments for the latter system.

THEOREM 4.1 Let 1 < q � r < 1, n � 2, and let " > 0. Then for every

� 2 C n (�1;

�

2

4

℄ and f 2 L

q

(
) there is a unique solution u 2 W

2

q

(
) of (4.1)-(4.2).

Moreover,

�

�

�

�

�+

�

2

4

�

�

�

�

�

kuk

q

+ (1 + j�j)

�

1

2

kruk

q

+ (1 + j�j)

�1

kr

2

uk

q

�

� C

"

kfk

q

;

�

�

�

�

�+

�

2

4

�

�

�

�

1�

n�1

2

(

1

q

�

1

r

)

(1 + j�j)

�

1

2

(

1

q

�

1

r

)

kuk

r

� C

"

kfk

q

uniformly in � 2 S

"

provided that

n�1

2

�

1

q

�

1

r

�

� 1.
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First we 
al
ulate the solution u for f 2 C

1

0

(
) and estimate the solution operator.

Then the general 
ase is obtained by 
ontinuous extension to L

p

(
). Using partial

Fourier transformation, (4.1)-(4.2) redu
es to

(�+ j�

0

j

2

� �

2

n

)U = F in (�1; 1); (4.3)

U j

x

n

=�1

= 0 (4.4)

for �

0

2 R

n�1

and � 2 S

"

, where U(�

0

; x

n

) = F

x

0

7!�

0

[u(:; x

n

)℄ and F (�

0

; x

n

) =

F

x

0

7!�

0

[f(:; x

n

)℄. The solution of this boundary value problem is given by

U(�

0

; x

n

) =

Z

1

�1

k(�; x

n

; z

n

)F (�

0

; z

n

)dz

n

;

where

k(�; x

n

; z

n

)

=

1

2�(1� e

�4�

)

�

e

��(2�x

n

�z

n

)

+ e

��(2+x

n

+z

n

)

� e

��jx

n

�z

n

j

� e

��(4�jx

n

�z

n

j)

�

with � as in Lemma 2.8. Sin
e �

2

= � + j�

0

j

2

= (��)

2

, we obtain k(��; x

n

; z

n

) =

k(�; x

n

; z

n

). Moreover, it is easy to observe that k(�; x

n

; z

n

) is holomorphi
 in C nf

il�

2

:

l 2 Z; l 6= 0g and depends smoothly on x

n

; z

n

2 R. Sin
e k(�; x

n

; z

n

) has a pole of

�rst order for � = �i

�

2

and k(��; x

n

; z

n

) = k(�; x

n

; z

n

), we have

k(�; x

n

; z

n

) =

k

0

(�

2

; x

n

; z

n

)

�

2

+

�

2

4

for all � su
h that �

2

2 B

�

2

(0)

where k

0

(z; x

n

; z

n

) is holomorphi
 in z 2 B

�

2

(0).

Lemma 4.2 Let � = �(�; �

0

) be as in Lemma 2.8 with j�j < �. Moreover, let " > 0,

� 2 [0; 1℄, and let � 2 (0; 1). Then

j�

�

�

0

k(�; x

n

; z

n

)j � C

�;�;"

�

�

�

�

�+

�

2

4

�

�

�

�

�1+�

j�

0

j

�2��j�j

for all � 2 S

"

and �

0

2 R

n�1

su
h that j�j � �� and uniformly in x

n

; z

n

2 [�1; 1℄.

Proof: First of all,

�

�

�

0

"

1

�

2

+

�

2

4

#

=

j�j

X

k=dj�j=2e

p

k

(�

0

)

�

�+ j�

0

j

2

+

�

2

4

�

1+k

where p

k

(�

0

) is a homogeneous polynomial of degree 2k � j�j. Hen
e

�

�

�

�

�

�

�

�

0

"

1

�

2

+

�

2

4

#

�

�

�

�

�

�

j�j

X

k=dj�j=2e

C

k

j�

0

j

2k�j�j

j�+ �

2

=4 + j�

0

j

2

j

1+k

�

j�j

X

k=dj�j=2e

C

k;"

j�j

2k�j�j

(j�+ �

2

=4j+ j�

0

j

2

)

1+k

�

C

�;"

j�+ �

2

=4j

(1��)

j�

0

j

�2��j�j
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where we have used j

~

�+j�

0

j

2

j � 


�

(j

~

�j+j�

0

j

2

) for all

~

� 2 �

�

and some � = �(") 2 (0; �),

whi
h is a 
onsequen
e of (2.6). Moreover, sin
e k

0

(z; x

n

; z

n

) is holomorphi
 in B

�

2

(0)

and smooth in x

n

; z

n

2 R, j�

�

�

0

k

0

(�

2

; x

n

; z

n

)j � C

�

for all � 2 S

"

and �

0

2 R

n�1

su
h

that j�j � ��. Hen
e the statement of the lemma is a 
onsequen
e of the produ
t

and 
hain rule.

Proof of Theorem 4.1: Let ' 2 C

1

0

(R) be su
h that '(s) = 1 for jsj �

1

2

�

2

and

supp' � B

3

4

�

2

(0). Then U = U

1

+ U

2

, where

U

j

(�

0

; x

n

) =

Z

1

�1

k

j

(�; x

n

; z

n

)F (�

0

; z

n

)dz

n

; j = 1; 2;

k

1

(�; x

n

; y

n

) = '(j�

2

j)k(�; x

n

; y

n

) and k

2

(�; x

n

; y

n

) = (1� '(j�

2

j))k(�; x

n

; y

n

). Sin
e

j�

�

�

0

'(j�

2

j)j � C

�

, we have for � 2 [0; 1℄ by Lemma 4.2

j�

�

�

0

k

1

(�; x

n

; y

n

)j �

C

�;"

j�+ �

2

=4j

(1��)

j�

0

j

�2��j�j

uniformly in �

0

2 R

n�1

, � 2 S

"

, and x

n

; z

n

2 [�1; 1℄. Hen
e







F

�1

�

0

7!x

0

[U

1

(�

0

; x

n

)℄







r

� C sup

x

n

2[�1;1℄

kF

�1

�

0

7!x

0

[k

1

(�; :; z

n

)F (�

0

; :)℄k

r;


� C

";q;r

�

�

�

�

�+

�

2

4

�

�

�

�

�1+

n�1

2

(

1

q

�

1

r

)

kfk

q;


:

by Theorem 2.2, where we have 
hosen � =

n�1

2

�

1

q

�

1

r

�

. Moreover, if � 2 N

n�1

0

,

j�j � 2, we get by 
hoosing � = j�j=2










�

�

x

0

F

�1

�

0

7!x

0

[U

1

(�

0

; x

n

)℄










q

� C sup

x

n

2[�1;1℄

kF

�1

�

0

7!x

0

[(�

0

)

�

k

1

(�; x

n

; :)F (�

0

; :)℄k

q

� C

";q

�

�

�

�

�+

�

2

4

�

�

�

�

�1+�

kfk

q

� C

";q

�

�

�

�

�+

�

2

4

�

�

�

�

�1

(1 + j�j)

j�j

2

kfk

q

sin
e k

1

(�; x

n

; z

n

) = 0 for j�j � �

2

. Be
ause of (4.3),







�

2

x

n

F

�1

�

0

7!x

0

[U

1

(�

0

; x

n

)℄







q

� C

"

(1 + j�j)

�

�

�

�

�+

�

2

4

�

�

�

�

�1

kfk

q

:

Using k�

n

vk

q

� Ckvk

1

2

q

(kvk

q

+ k�

2

n

vk

q

)

1

2

for v 2 W

2

q

(
), we obtain the 
orresponding

estimate for �

x

n

F

�1

�

0

7!x

0

[U

1

(�

0

; x

n

)℄.

In order to estimate U

2

(�

0

; x

n

), we use

F

�1

�

0

7!x

0

�

(1� '(j�

2

j))

Z

1

�1

e

��(2�x

n

�z

n

)

2�(1� e

�4�

)

F (�

0

; z

n

)dz

n

�

= �

�1

F

�1

� 7!x

�

(1� '(j�

2

j))

(1� e

�4�

2

)(�+ j�j

2

)

F

x7!�

[�

�1

ef ℄

�

;
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where (�

y

f)(x) = f(x+ y) and ef denotes the extension by 0 of f to R

n

. Be
ause of

(2.6) and 1� '(j�

2

j) = 0 if j�j

2

�

1

2

�

2

,

�

�

�

(1� '(j�

2

j))

(1� e

�4�

)(�+ j�j

2

)

�

� C

"

(1 + j�j)

�1+

j�j

2

for every j�j � 2 uniformly in � 2 S

"

, " > 0. Hen
e we obtain by Theorem 2.1













D

�

x

F

�1

�

0

7!x

0

�

(1� '(j�

2

j))

Z

1

�1

e

��(2�x

n

�z

n

)

2�(1� e

�4�

)

F (�

0

; z

n

)dz

n

�













q

� C

";q

(1 + j�j)

�1+

j�j

2

kfk

q

uniformly in � 2 S

"

for all j�j � 2 and 1 < q < 1. In the same way, we obtain by

Theorem 2.2













F

�1

�

0

7!x

0

�

(1� '(j�

2

j))

Z

1

�1

e

��(2�x

n

�z

n

)

2�(1� e

�4�

)

F (�

0

; z

n

)dz

n

�













r

� C

"

(1 + j�j)

�1+

n

2

(

1

q

�

1

r

)

kfk

q

uniformly in � 2 S

"

for all 1 < q � r <1. Moreover,

e

��jx

n

�z

n

j

+ e

��(4�jx

n

�z

n

j)

2�(1� e

�4�

)

=

e

��jx

n

�z

n

j

2�

+

e

��(4�x

n

+z

n

)

+ e

��(4+x

n

�z

n

)

2�(1� e

�4�

)

;

where

F

�1

�

0

7!x

0

�

(1� '(j�

2

j))

Z

1

�1

e

��jx

n

�z

n

j

2�

F (�

0

; z

n

)dz

n

�

= F

�1

� 7!x

�

1� '(j�

2

j)

�+ j�j

2

F

x7!�

[ef ℄

�

;

and

F

�1

�

0

7!x

0

�

(1� '(j�

2

j))

Z

1

�1

e

��(4�x

n

�z

n

)

2�(1� e

�4�

)

F (�

0

; z

n

)dz

n

�

= �

�2

F

�1

� 7!x

�

(1� '(j�

2

j))

(1� e

�4�

)(�+ j�j

2

)

F

x7!�

[�

�2

ef ℄

�

:

Hen
e the last terms 
an be estimated as before.

It remains to prove the uniqueness of the solution. Let �

q

: D(�

q

) ! L

q

(
),

1 < q < 1, with D(�

q

) = fu 2 W

2

q

(
) : uj

�


= 0g. Then � � �

q

is surje
-

tive for every � 2 C n (�1; �

2

=4℄ by the �rst part of the proof. Moreover, sin
e

(���

q

)

0

� ���

q

0

, the adjoint of ���

q

is surje
tive. Hen
e ���

q

is inje
tive for

every � 2 C n (�1; �

2

=4℄, whi
h �nishes the proof.

5 Proof of Theorem 1.1

We may start with two simpli�
ations. First we may restri
t ourselves to f 2 C

1

0

(
)

and g 2 C

1

(0)

(
)\

^

W

�1

p

(
) by Lemma 3.3. Next we may use the Helmholtz de
ompo-

sition f = f

0

+rq, where f

0

is de�ned expli
itly via its partial Fourier transformation
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F

0

, being well de�ned and smooth. The pressure part may be absorbed on the left

side. Hen
e we may assume for simpli
ity that f = f

0

. Thus applying the partial

Fourier transformation we have to solve (with a = j�

0

j)

(�+ a

2

)U

0

� �

2

n

U

0

+ i�

0

Q = F

0

; (5.1)

(�+ a

2

)U

n

� �

2

n

U

n

+ �

n

Q = F

n

; (5.2)

�

n

U

n

+ i�

0

� U

0

= G; (5.3)

U j

x

n

=�1

= 0; (5.4)

where U

0

= (U

1

; : : : ; U

n�1

) and F

0

= (F

1

; : : : ; F

n�1

). Di�erentiating (5.2) with respe
t

to x

n

, multiplying (5.1) by i�

0

and adding, we obtain

(�+ a

2

)G� �

2

n

G� a

2

Q+ �

2

n

Q = 0:

Hen
e

�

2

n

(Q�G)� a

2

(Q�G) = ��G: (5.5)

Thus we de�ne

Q(�

0

; x

n

) = G(�

0

; x

n

) +

�

2a

Z

1

�1

e

�ajx

n

�wj

G(�

0

; w)dw +

A

a

e

ax

n

�

B

a

e

�ax

n

(5.6)

with parameters A;B to be 
hosen below. Setting

L

j

:= i�

j

Q� F

j

; j = 1; : : : ; n� 1; L

n

:= �

n

Q� F

n

(5.7)

we may solve

�

2

n

U

j

� (�+ a

2

)U

j

= L

j

; U

j

= 0 on z = �1 for j = 1; : : : ; n: (5.8)

It remains to satisfy (5.3). Let R := i�

0

�U

0

+�

n

U

n

�G. We have to show that R � 0.

Now

�

n

R = i�

0

� �

n

U

0

+ (�

2

n

U

n

� �

n

Q) + �

n

(Q�G)

= i�

0

� �

n

U

0

+ (�+ a

2

)U

n

� F

n

+ �

n

(Q�G) and

�

2

n

R = i�

0

� �

2

n

U

0

+ (�+ a

2

)�

n

U

n

� �

n

F

n

+ �

2

n

(Q�G)

= (i�

0

� U

0

+ �

n

U

n

)(�+ a

2

)� a

2

Q� (i�

0

� F

0

+ �

n

F

n

) + �

2

n

(Q�G)

= (�+ a

2

)R

by (5.5) and div f = 0. Therefore, with � as de�ned in Lemma 2.8,

R = R(�

0

; x

n

) = a(�

0

)e

�x

n

+ b(�

0

)e

��x

n

for � 6= 0

resp. = a(�

0

)x

n

+ b(�

0

) for � = 0

Suppose we 
an 
hoose A;B su
h that R(�

0

;�1) = 0. Then R � 0, as e

4�

� 1 6= 0

due to �+ j�

0

j

2

6=

k

2

4

�

2

(the 
ase � = 0 is trivial), hen
e the 
laim follows.
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A and B will of 
ourse depend on �

0

and �, and we have to 
al
ulate them in

order to estimate the solution. Skipping the �

0

-dependen
e, we get from (5.2) and

(5.4)

�

n

U

n

(z)e

��z

j

1

�1

=

Z

1

�1

(�

2

n

U

n

(z)� �

2

U

n

(z))e

��z

dz =

Z

1

�1

(�

n

Q(z)� F

n

(z))e

��z

dz

= Q(z)e

��z

�

�

1

�1

�

Z

1

�1

(��Q(z) + F

n

(z))e

��z

dz

hen
e

R(z)e

��z

j

1

�1

= (Q(z)�G(z))e

��z

j

1

�1

�

Z

1

�1

(��Q(z) + F

n

(z))e

��z

dz

Again due to e

4�

� 1 6= 0, the right-hand sides should vanish for +� as well as for

��. For the "+"-sign, this means

0 =

�

2a

�

Z

1

�1

e

�a(1�x)+�

G(x)dx�

Z

1

�1

e

�a(1+x)��

G(x)dx

�

+

A

a

�

e

a+�

� e

�(a+�)

�

�

B

a

�

e

��a

� e

�(��a)

�

�

Z

1

�1

F

n

(z)e

�z

dz � �

Z

1

�1

Q(z)e

�z

dz

Cal
ulating the last term:

Z

1

�1

Q(z)e

�z

dz =

Z

1

�1

G(z)e

�z

dz +

�

2a

Z

1

�1

Z

1

�1

e

�ajw�zj

G(w)e

�z

dwdz

+

A

a

Z

1

�1

e

(a+�)z

dz �

B

a

Z

1

�1

e

(�a+�)z

dz

and noting that

Z

1

�1

e

�ajw�zj

e

�z

dz = �

2a

�

e

�w

+ e

aw

e

��a

�� a

� e

�aw

e

�(�+a)

�+ a

we get

Z

1

�1

Q(z)e

�z

dz =

�

2a

Z

1

�1

�

e

aw

e

��a

�� a

� e

�aw

e

�(�+a)

�+ a

�

G(w) dw

+

A

a

�

e

a+�

a+ �

�

e

�(a+�)

a+ �

�

�

B

a

�

e

��a

�� a

�

e

�(��a)

�� a

�

:

Inserting, we end with

AÆ

+

+BÆ

�

=

Z

1

�1

F

n

(�

0

; x)e

�x

dx+

1

2

Z

1

�1

�G(�

0

; x)k(�

0

; x)dx;



22 5 PROOF OF THEOREM 1.1

where k(�

0

; x) = e

ax

e

��a

��a

+ e

�ax

e

�(�+a)

�+a

and Æ

�

:= (e

��a

� e

�(��a)

)=(�� a).

Changing from � to��, Æ

+

goes over to Æ

�

and vi
e versa and the se
ond 
ondition

is

AÆ

�

+BÆ

+

=

Z

1

�1

F

n

(�

0

; x)e

��x

dx�

1

2

Z

1

�1

�G(�

0

; x)k(�

0

;�x)dx:

Finally,

A =

Z

1

�1

F

n

(�

0

; x)H(�; x)dx+

1

2

Z

1

�1

�G(�

0

; x)K(�

0

; x)dx (5.9)

B =

Z

1

�1

F

n

(�

0

; x)H(�

0

;�x)dx�

1

2

Z

1

�1

�G(�

0

; x)K(�

0

;�x)dx (5.10)

with

H(�

0

; x) = (Æ

+

e

�x

� Æ

�

e

��x

)=D and

K(�

0

; x) = (Æ

+

k(�

0

; x) + Æ

�

k(�

0

;�x))=D

where D = Æ

2

+

� Æ

2

�

. Thus (5.6) - (5.10) gives the expli
it solution of our problem.

Now we may start to estimate the quantities of (5.7) after inverting the partial

Fourier transformation. Obviously,

kF

�1

[�

n

G℄k

p

+ kF

�1

[i�

0

G℄k

p

� 
krgk

p

:

Next, multiplying by i�

j

and di�erentiating with respe
t to x

n

, resp., we have to

treat the following three types of integrals

h

1

(x

0

; x

n

) = F

�1

�

Z

1

�1

e

�j�

0

jjw�x

n

j

�(w � x

n

)�G(�

0

; w)dw

�

(5.11)

h

2

(x

0

; x

n

) = F

�1

�

Z

1

�1

e

�j�

0

jx

n

F

n

(�

0

; w)H(�

0

; w)dw

�

(5.12)

h

3

(x

0

; x

n

) = F

�1

�

Z

1

�1

e

�j�

0

jx

n

�G(�

0

; w)K(�

0

; w)dw

�

(5.13)

with �(t) = sign t or �(t) = 1. We start with

Lemma 5.1 Let h

1

be de�ned as in (5.11) and let 1 < p <1. Then

kh

1

k

L

p

(
)

� C

p

k�gk

^

W

�1

p

for all g 2 C

1

(0)

(
) \

^

W

�1

p

(
):

Proof: Let ' 2 C

1

0

(
). De�ne  by

F [ ℄(�

0

; x

n

) =

Z

1

�1

e

�j�

0

jjx

n

�zj

�(x

n

� z)F ['℄(�

0

; z)dz:
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Then

Z




�g(x

0

; x

n

) (x

0

; x

n

)d(x

0

; x

n

)

=

Z

R

n�1

Z

1

�1

Z

1

�1

�G(�

0

; x

n

)e

�j�

0

jjx

n

�zj

�(x

n

� z)F ['℄(�

0

; z)dx

n

dzd�

0

=

Z

R

n�1

Z

1

�1

F [h

1

℄(�

0

; z)F ['℄(�

0

; z)dzd�

0

=

Z




h

1

(x

0

; x

n

)'(x

0

; x

n

)dx

As for j = 1; : : : ; n� 1

F

�

� 

�x

j

�

(�

0

; x

n

) =

Z

1

�1

e

�j�

0

jjx

n

�zj

j�

0

j�(x

n

� z)

i�

j

j�

0

j

F ['℄(�

0

; z)dz;

F

�

� 

�x

n

�

(�

0

; x

n

) =

Z

1

�1

e

�j�

0

jjx

n

�zj

j�

0

j sign(z � x

n

)�(w � x

n

)F ['℄(�

0

; z)dz

(+2F ['℄(�

0

; x

n

) in the 
ase of �(t) = sign t) ;

Lemma 2.5 implies that kr k

p

0

� C

p

k'k

p

0

. Therefore

�

�

R




h

1

� 'dx

�

�

� C

p

k�gk

^

W

�1

p

�

k'k

p

0

, whi
h implies the 
laim.

The most important estimates are 
ontained in the following lemma.

Lemma 5.2 Let h

2

be de�ned as in (5.12) and let 1 < p <1. Then

kh

2

k

p

� C

p

kfk

p

for all f 2 C

1

0

(
):

Proof: Here we need a little tri
k in splitting the phase spa
e into two parts, de-

pending on the size of j�j. Therefore let M := maxf

1

4

j�j

1=2

; a

"

g with a

"

� � as in

Lemma 2.10. Moreover, we 
hoose a 
ut-o� fun
tion �

M

(a), whi
h vanishes outside

[0; 2M ℄ and equals 1 on [0;M ℄. We may assume that 0 � �

M

(a) � 1 and [�

M

℄ � C,

independent of M . Now we split h

2

= h

1

2

+ h

2

2

with

h

j

2

(x

0

; x

n

) = F

�1

�

Z

1

�1

e

�ax

n

F

n

(�

0

; w)H

j

(�; w)dw

�

; j = 1; 2;

where H

1

(�

0

; w) = (1 � �

M

(a))H(�

0

; w) and H

2

(�

0

; w) = �

M

(a)H(�

0

; w). If we now

set

H

3

(�

0

; w) = �

M

(a)a(�D)

�1

(Æ

+

e

�w

+ Æ

�

e

��w

);

then

�H

3

�w

(�

0

; w) = H

2

(�

0

; w)a:

Sin
e F

n

(�

0

;�1) = 0 and ��

n

F

n

= i�

0

� F

0

, one gets

h

2

2

(x

0

; x

n

) = F

�1

�

Z

1

�1

e

�ax

n

i�

0

j�

0

j

� F

0

(�

0

; w)H

3

(�

0

; w)dw

�

:
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Thus by Theorem 2.1

kh

2

(�; x

n

)k

L

p

(R

n�1

)

� C

p

Z

1

�1

[e

�ax

n

H

1

(�

0

; w)℄kf

n

(�; w)k

L

p

(R

n�1

)

dw

+C

p

Z

1

�1

[e

�ax

n

H

3

(�

0

; w)℄kf

0

(�; w)k

L

p

(R

n�1

)

dw

By (2.1) and the de�nition of �

[e

az

H

1

(�

0

; w)℄ � C

X

+;�

[D

�1

e

az

Æ

�

e

��w

℄

1

M

and (5.14)

[e

az

H

3

(�

0

; w)℄ � C

X

+;�

[D

�1

(a�

�1

)e

az

Æ

�

e

��w

℄

2M

0

: (5.15)

We will show that the right-hand sides are bounded by C(2�z�w)

�1

+C(2�z+w)

�1

.

Then the statements of the lemma is a 
onsequen
e of Lemma 2.6.

In order to prove (5.14), we write the multipliers as a produ
t m

1

�m

2

with

m

1

= ae

a(z�1)+�(�w�1)

and m

2

= (e

a+�

Æ

�

)(aD)

�1

:

Sin
e a �M = maxf

1

4

j�j

1=2

; a

"

g � �, we have [m

1

℄

1

M

� C

"

(2�z�w)

�1

by Lemma 2.9.

Instead of estimation m

2

, we may as well estimate

m

�

2

= e

a+�

(Æ

+

� Æ

�

)(aD)

�1

= a

�1

(Æ

+

� Æ

�

)

�1

e

a+�

as D = Æ

2

+

� Æ

2

�

, whi
h was done in Lemma 2.10.

For the proof of (5.15), suppose �rst that

1

4

j�j

1=2

� a

"

, whi
h implies a �

1

2

j�j

1=2

.

Similarly as before, the ne
essary estimates follow from the estimates of

h

a

�

e

az+�w

(Æ

+

�Æ

�

)

i

2M

0

(and by symmetry also for �w), as D = Æ

2

+

� Æ

2

�

. For the 
ase of the "+"-sign, we

fa
tor into

ae

a(z�1)+�(w�1)

and �

�1

(Æ

+

+ Æ

�

)

�1

e

a+�

:

For the "-"-sign, we take the fa
tors

(1 + a)e

a(z�1)+�(w�1)

and �

�1

a

1 + a

(Æ

+

� Æ

�

)

�1

e

a+�

on [0; 2M ℄. All these terms were estimated in Lemma 2.9 and Lemma 2.10.

For the se
ond part we have to 
onsider the other possibility j�j

1=2

=4 � a

"

=M ,

where now a

"

is �xed. Then we do not 
hange the original form of h

2

2

, but still


onsider

h

2

2

(x

0

; x

n

) = F

�1

�

Z

1

�1

e

�ax

n

F

n

(�

0

; w)�

M

(a)H(�

0

; w)dw

�

The 
ru
ial observation now is that, be
ause of (3.3) and F

n

= F

0

n

, F

n

(�

0

; w) 
ontains

fa
tor a = j�

0

j! Hen
e we estimate

kh

2

2

(�; x

n

)k

p

� C

p

Z

1

�1

[aH(�

0

; w)e

�ax

n

℄

2M

0







F

�1

�

F

n

(�

0

; w)a

�1

�

M

(a)

�







p

dw
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For the se
ond fa
tor, (3.3) and M = a

"

imply for all jwj � 1 that







F

�1

�

F

n

(�

0

; w)a

�1

�

M

(a)

�







p

� C

p

(M)kfk

p

As M = a

"

is �xed, we only need to show, that [aH(�

0

; w)e

�ax

n

℄

2M

0

� C (uniformly

for jx

n

j; jwj � 1) whi
h follows from [aH(�

0

; w)℄

2M

0

� 
.

Now aH(�

0

; w) = a(Æ

+

e

�w

� Æ

�

e

��w

)=D. As Æ

+

e

�w

� Æ

�

e

��w

is odd in � and

analyti
 in a and �, one gets

Æ

+

e

�w

� Æ

�

e

��w

= �Z

w

(a; �

2

)

with Z

w

(a; b) analyti
 in a; b. Thus

[aH(�

0

; w)℄

2M

0

� 
[Z

w

(a; �+ a

2

)℄

2M

0

� [a�=D℄

2M

0

and the 
on
lusion follows with the help of Lemma 2.11.

Lemma 5.3 Let h

3

be de�ned as in (5.13) and let 1 < p <1. Then

kh

3

k

p

� C

�

krgk

p

+ (1 + j�j)kgk

^

W

�1

p

�

for all g 2 C

1

(0)

(
) \

^

W

�1

p

(
):

Proof: Remember that

h

3

(x

0

; x

n

) = F

�1

�

Z

1

�1

�e

�ax

n

K(�

0

; w)G(�

0

; w)dw

�

with K(�

0

; w) = (Æ

+

k(�

0

; w) + Æ

�

k(�

0

;�w))=D and

k(�

0

; w) = e

aw

e

��a

�� a

+ e

�aw

e

�(�+a)

�+ a

:

Due to � = (�� a)(�+ a), there is no singularity for � = a.

We use the same 
ut-o� fun
tion �

M

(a) as in the proof of the previous lemma to

split h

3

into h

1

3

+h

2

3

, where the support of the multiplier in h

2

3

is 
ontained in [0; 2M ℄,

and M = maxfj�j

1=2

=4; a

"

g.

Let us estimate h

1

3

�rst. Using (2.1)

[�a

�1

e

az

K(�; w)℄

1

M

� 
[e

a+�

Æ

�

a

�1

D

�1

℄

1

M

[ae

a(z�w�2)

℄

1

M

��

�a

�1

e

a��

e

��a

�� a

�

1

M

+

�

�a

�1

e

a��

e

���a

�+ a

�

1

M

�

The �rst fa
tor is bounded by a 
onstant be
ause of Lemma 2.10, the se
ond by

C(2� z � w)

�1

be
ause of Lemma 2.9. The last fa
tor may be simpli�ed to

�

�+ a

a

�

1

M

+

�

�� a

a

e

�2�

�

1

M

;
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whi
h is bounded due to Lemma 2.9. Thus

kh

1

3

(�; x

n

)k

L

p

(R

n�1

)

� C

p

Z

1

�1

(2� x

n

� w)

�1

kF

�1

[aG℄(�; w)k

L

p

(R

n�1

)

dw:

As kF

�1

[aG℄(�; w)k

L

p

(R

n�1

)

� C

p

krg(�; w)k

L

p

(R

n�1

)

, the estimate for h

1

3

in L

p

(
) fol-

lows by Lemma 2.6.

Turning to h

2

3

, we have to estimate multipliers on [0; 2M ℄. Suppose �rst that

1

4

j�j

1=2

� a

"

and therefore j�j �

p

3a.

We 
al
ulate

�K(�

0

; w)e

az

= e

a(w+z)

�

e

2�

� e

�2�

�

D

�1

+e

�a(w�z)

�

�� a

�+ a

(1� e

�2��2a

)�

�+ a

�� a

(1� e

2��2a

)

�

D

�1

In order to apply Lemma 2.12, we estimate the multiplier of �Gj�

0

j

�1

, whi
h is

h(�

0

; w; z) =

�

e

2�+2a

� e

2a�2�

�

ae

a(w+z�2)

D�

+

�

�� a

�+ a

(e

2a

� e

�2�

)�

�+ a

�� a

(e

2a

� e

2�

)

�

ae

a(z�w�2)

D�

With � = (�� a)(�+ a), we estimate on [0; 2M ℄ using Lemma 2.9

[h(�

0

; w; z)℄

2M

0

�

C

2� w � z

�

e

2�+2a

D

�1

(�+ a)

�2

a

1 + a

�

2M

0

�

�+ a

�� a

(1� e

�4�

)

�

2M

0

+

C

2� z + w

�

e

2�+2a

D

�1

(�+ a)

�2

a

1 + a

�

2M

0

�

"

�

e

�2�

� e

�4��2a

�

�

�

�+ a

�� a

�

2

�

e

�2�

� e

�2a

�

#

2M

0

:

Be
ause of Lemma 2.9, Lemma 2.10, and

e

2�+2a

D

�1

(�+ a)

�2

a

1 + a

=

�

�

�+ a

�

2

�

�1

m

+

�

�1

a

1 + a

m

�

;

we 
on
lude

�

e

2�+2a

D

�1

(�+ a)

�2

a

1+a

�

2M

0

� C

"

. The remaining terms 
an also be

estimated by Lemma 2.9. Hen
e we get

[h(�

0

; w; z)℄

2M

0

� 
(2� z � w)

�1

:

Now j�

0

j

�1

�h

�w

(�

0

; w; z) is of pre
isely the same stru
ture, apart from a sign, whi
h

does not matter. Hen
e by Lemma 2.12, we get kh

2

3

k

p

� 
k�gk

^

W

�1

p

:
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It remains to 
onsider the 
ase j�j

1=2

� 4a

"

; a � 2a

"

. We 
al
ulate

�K(�

0

; w)e

az

= a

�1

e

az

a�

D

�

�

e

aw

e

2�

� e

�2�

�

+ e

�aw

Z

2

0

e

�ta

(e

t�

+ e

�t�

)dt+ ae

�aw

Z

2

0

e

�ta

e

t�

� e

�t�

�

dt

�

;

where by Lemma 2.11 [

a�

D

℄

2a

"

0

� 
, and the terms in bra
kets are analyti
 in a and �

2

.

Thus �K(�

0

; w)e

az

= a

�1

R(�

0

; w; z), with

�

�

�w

R(�

0

; w; z)j�

0

j

�1

�

2a

"

0

+[R(�

0

; w; z)℄

2a

"

0

� 
.

By Lemma 2.12, we get in this 
ase kh

2

3

k

p

� 
kgk

^

W

�1

p

. This �nishes the proof.

Combining Lemma 5.1-Lemma 5.3, we have proved that

krqk

p

� C

";p

�

kfk

p

+ krgk

p

+ (1 + j�j)kgk

^

W

�1

p

�

uniformly in � 2 S

"

, " > 0. Sin
e (���)u = f �rq, uj

�


= 0, Theorem 4.1 implies

the estimates for u stated in Theorem 1.1. Hen
e extending the solution operator by


ontinuity we have proved the solvability of (1.1)-(1.3) for every � 2 C n (�1;

�

2

4

℄.

Finally, it remains to prove uniqueness of the solution. Let A

p

= �P

p

�

p

with

D(A

p

) = D(�

p

) \ L

p;�

(
), 1 < p < 1, be the Stokes operator. Then, by the

solvability of (1.1)-(1.3), �+A

p

is surje
tive for every � 2 C n(�1;

�

2

4

℄ and 1 < p <1.

Be
ause of (�+A

p

)

0

� �+A

p

0

, (�+A

p

)

0

is surje
tive. Hen
e �+A

p

is inje
tive and

the solution of (1.1)-(1.3) is unique.
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