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Abstract

In this paper we prove unique solvability of the generalized Stokes resolvent
equations in an infinite layer 2 = R"~! x (—1,1), n > 2, in L9-Sobolev spaces,
1 < g < oo, with non-slip boundary condition u|gg = 0. The unique solvability
is proved for every A € C\ (—oo, —72 /4], where —%2 is the least upper bound of
the spectrum of Dirichlet realization of the Laplacian and the Stokes operator in
Q. Moreover, we provide uniform estimates of the solutions for large spectral
parameter A as well as A close to —%2. Because of the special geometry of
the domain, partial Fourier transformation is used to calculate the solution
explicitly. Then Fourier multiplier theorems are used to estimate the solution

operator.
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1 Introduction
In the present contribution, we study the generalized Stokes resolvent equation

A—Au+Vg=f in €, (1.1)
divu =g in Q,
U,|ag =0 on GQ,



2 1 INTRODUCTION

where Q = R*! x (—1,1), n > 2, is an infinite layer. The Stokes resolvent equations
are the starting point for the construction of strong solutions of the Navier-Stokes
equations using semi-group theory, cf. e.g. |10, 11, 18].
Our main result is

THEOREM 1.1 Let 1 < p < 0o and A € C\ (—oo,—%z]. Then for every f €
L,()" and g € Wpl(Q)ﬁWpfl(Q) there is a unique solution (u,q) € W2(€2)" x Wpl(Q)
of (1.1)-(1.3). Moreover, for every e >0 and p < r < 0o with "T’l(% — 1) <1 there
18 a constant C. such that

A+ 2/4

T+
1-251 (33

At w24 TG ), < ¢ (I V9 + (L WD gl

A+ 7 /4] Jull, + IV2ull, + 1Vall, < C- (||(f, Vo)llp + (1 + |A|)||9||wp—1)

uniformly in A € S. := C\ V., where V. :={\ € C: [Im\| < —e(Re A + 72/4)}.

Here me(Q), m € N, denotes the usual Sobolev space of order m based on the
standard Lebesgue space L,(€2), 1 < p < oo, and

W;(Q) = {q € Ly1c(Q) : Vg € L,,(Q)}
W, Q) == g€ Lpc(@): sup [{g,0)[IVel,' <o0p,

‘PECE)SJ) ()

where 1—1) +I% =1land f € L,1.(Q) if and only if f € L,(2N B) for all balls B C R”
with BN Q # 0.

The result has been known since 1994 in an unpublished version [17] and was
used by several author; e.g. by Abels [6] the unique solvability of the Stokes resolvent
equations was used in order to prove the existence of bounded imaginary powers of
the Stokes operator in an infinite layer.

An alternative proof of unique solvability of the Stokes resolvent equations, i.e.,
g = 0, was later given by Abe and Shibata [1, 2| for f € L,(€2), 1 < p < oo, and
A€ C\ (—00,0). An approach to the generalized Stokes resolvent equations using a
reduction to a pseudodifferential boundary value problem, which works for A € C \
(—00, 0], may be found in |7, Section 5|; see also |3, Remark 1.2]. Moreover, Nazarov
and Pileckas [14, 15| considered the solvability of the Stokes resolvent equations in
weighted L,-Sobolev spaces. But the latter results do not cover the case f € L,(€2).

Since the unique solvability of the generalized Stokes resolvent equations, i.e.,
g # 0, is important for perturbation argument, cf. [4, 5|, the authors decided to
give a rigorous proof of Theorem 1.1 which has also been simplified at some steps in
comparison to its first version [17]. Moreover, we note that we give precise estimates
of the solutions near —7?/4, which is the largest value in the spectrum of the Laplace



and the Stokes operator on €. In particular, Theorem 1.1 implies that the Stokes
operator —A, generates an analytic semi-group e~tr t >0, satisfying

— 7r2
le= ugll, < Gyt e F fuoll,, > 0,u0 € Lo (), (14)

where 1 < p < r < oo and L,,(Q) = {u e C5°(Q)" : divu = O}H'”p. For r = p,
the latter estimate is a consequence of the well-known characterization of analytic
semi-groups and their generators. For 7 > p, (1.4) is obtained by estimating e~*» in
a straight-forward manner and using the semi-group property.

The proof of Theorem 1.1 is based on (partial) Fourier transformation in the
tangential coordinates ' = (zy,...,z,_1). By this (1.1)-(1.3) is transformed to an
ordinary two-point boundary value problem in dependence of (), £'), ¢’ € R*!, which
can be solved explicitly. Then we use the Mikhlin and Lizorkin multiplier theorems
to estimate the solution operators. More precisely, we first estimate Vg and then use
the corresponding estimates for the Laplace resolvent equation to get the estimates
for u.

Besides the study of the Stokes and Laplace resolvent equations, we give an
explicit formula of the Helmholtz decomposition of L,(£2), 1 < ¢ < oo, which was
proved by Miyakawa [13] and by Farwig [9] in more general context.

The structure of the article is as follows:

In Section 2 we study some Mikhlin multipliers, which will appear in the solu-
tion operator of the Stokes and Laplace resolvent equations, and estimate the corre-
sponding operators. Then the explicit formula for the Helmholtz decomposition in
an infinite layer is given in Section 3. In Section 4 we estimate the solutions of the
Laplace resolvent equation, which can easily be calculated by the same technique of
partial Fourier transformation. Finally, in Section 5 we derive an explicit formula for
the pressure ¢ in (1.1)-(1.3). Then the main part of the proof consists in a careful
analysis of the solution operator for ¢. Once the pressure is estimated, the estimates
of u are obtained using the estimates for the Laplace resolvent equation.

2 Partial Fourier transformation and multiplier es-
timates

First let us introduce some notations. Let 2 C R", n > 2, be a domain. Then
C§° () will denote the space of all smooth functions f: 2 — C with compact support
supp f C €. Moreover,

CH(Q) == {u=vlg:ve PR}

Finally, we note that by [4, Lemma 2.4] Cf (Q) is dense in WPI(Q) for every 1 < p <
0.



4 2 PARTIAL FOURIER TRANSFORMATION

The special type of domain Q = R"! x (—1,1), we are dealing with, suggests the
use of a partial Fourier transformation. Denoting points of Q by x = (2', x,,) with
7 e Rz, € [-1,1], we define for u: Q@ — C

]_ A !
U, zn) = Forelu)(E, xn) = ﬁ/ e~ E w(z', ) dx'
(271')T Rn—1
and the inverse transformation
1

u(a', xy,) = Fo b U, 2,) =

ngwl

i ! /
(2#)"7_1 /Rn_l e TU(E xy)dE
In the following we will use the abbreviation F = F,,¢. The Fourier and inverse
Fourier transformation of f: R* — C with respect to x € R® will be denoted by f
and f, respectively.
Throughout this section L will denote the smallest integer larger than %, where
n € N. Basic for deriving L,-estimates is the Mikhlin multiplier theorem, cf. e.g. [8]:

THEOREM 2.1 Let f € L,(R") with 1 < p < oo and let m: R*\{0} — C denote
an L-times differentiable function with

[m] := sup {|¢[*|Dgm(&)]} < oo.
££0,|al<L

Then (m - f)¥ € L,(R") with

(- 1) Nl < Cylmlll £l

It is well-known that m(&) := %, j=1,...,n, satisfies the assumptions of the latter

theorem. This is a consequence of the fact that m(&) is homogeneous of degree 0.
Moreover, we will use the following variant of Theorem 2.1 due to Lizorkin [12].

THEOREM 2.2 Let m: R* — C be continuous with continuous derivatives dgm(§)
on{eR :&§#£0,i=1,...,n}, «a € {0,1}", and let 1 < p < ¢ < co. Moreover,
suppose that
sup |7 - 60t Pogm(€)| < M
&i#0,i=1,...,n

for all a € {0,1}" and B = % - %. Then ||(m - )Y[lq < CpaM|| f]l,-

In the following, we have to calculate estimates for various multipliers. For con-
venience, let us define for 0 < p; < py < 00

mlpz = sup  {J¢[ | Dgm ()]}

p1<[€]<p2,|al<L

and [m] := [m]g°.
Then we have the following lemma, the proof of which is elementary.



Lemma 2.3 There holds uniformly in 0 < p; < py < 00:
[mamg]b? < c[mq]0? - [mo]f? (2.1)

If Im| > ¢1 > 0, then
[1/m]52 < C(1+ [m]52)". (2.2)

Ifm(&) = M([¢]), then

[m]? < c sup {Z|akM(k)(a)|}. (2.3)

a€p1,p2]

As a typical multiplier, we come across functions of the following type:
Lemma 2.4 Let f,g: [0,00) — C be L-times differentiable with

(1) Ref(a) < —c1Aa

(ii) sup,<i<p, a1 fO(a)| < e A

(41) supg<i<f, a'|g®(a)| < csa

on 0 < p; <a<py < oo with somec; >0,A>0keNy. Let h(€) = g(|€])el €D,
Then
[n)p: < cATF. (2.4)

Proof: As h(a), j=1,...,L,is a sum of terms of the form
g a)f@(a) ... flm)(a)ef @,
where I+ ...+ 1,, = 7 with [1,...,[,, # 0, and

sup a’ ‘g(lo)(a)f(ll)(a) . f(lm)(a,)ef(“)‘ < CrafamAMem A < Oy ATF
p1<a<p:

the statement is a consequence of (2.3). |
The next lemma provides Ly-estimates for a typical operator.

Lemma 2.5 Let p(t) = X[o,00)(t) 07 p(t) =1 — X[o,00)(t). Define the operator G by

(6N a) =5 | [ €1 to, — ) 7I7E 2

for f € C°(Q). Then G extends to a bounded linear operator G': L,(€2) — L,(2) for
every 1 < p < oo.
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Proof: Let fy denote the extension of f onto R” by zero and let g := G'f. Then
Flol(€ xn) = / [€'le” €l (2, — 2) Ffo) (€, 2)d.
R

The right hand side makes sense also for |z,| > 1. Hence the inverse transformation
defines a function g on R* with glg = g,

1
(2m) "

(@, z,) = / e e pla, — ) FR)(E 2)d(2, ).

The claim follows if we can prove ||g||.,®") < ¢l fol|z,®")- Inserting the definition
of Flfo], we may write g as an R"-convolution § = k * fo or equivalently g =
(2m)"/%(k - fo)¥ with

]. A ! !
k(z',x,) = - / e € p(aljn)|§'|e"5 llenl g,
Rnfl

on)
Now k(x) = Ferosw [h)(x) with h(E, z,) = p(x,)|€ e €72l hence

N 1
]{; = I
(€) (27)>2

[ e ptwlele €=,
R
for £ = (¢',&,). As by simple integration

€€+ i€) ™ for p(t) = Xjo,00) ()

T 1/27. —
(2m)7k(E) {|€/|(|5’| — &) for p(t) =1— X[0,00) (1)

we have [k(n)] < ¢, and the claim follows by Theorem 2.1. |

Lemma 2.6 Let

h(t) = /_1 %d:p, se L,(-1,1),

1 2-t—2)

fort € (=1,1). Then ||h||z,(-1,1) < Cpl|s||z,(—1,1) for every 1 < p < 0.

Proof: Extend s by zero to § and let h(t) := h(2 — t). Then h(t) = [ ";(f;) dx and
1 ~
| worar< [ liora < Gl = 6l
by the Calderon-Zygmond estimate. [

The following lemma is (partly) known; we include a proof, as it contains a
surprising borderline case.



Lemma 2.7 Suppose q is smooth, Vq € L,(R"), n > 1, 1 < p < co. Then there is
a constant ¢, such that for R > 1

g = ¢qllpmr) < c(R)Vally

with . o
Cp - if p#n,
o) = { cR(InR + 1))=Y jifp=n.

Remark: The example ¢(z) = In(|z[* +1)7 with 0 < v < 1 — % shows that the
case p = n is indeed exceptional — an estimate with some smaller exponent for the
logarithmic term does not hold for all R > 1.

Proof: First we consider the case n > 2. Let g, denote the mean-value of ¢ over
B,. Then, as

rR
o)~ glrpw) = [ w- Va(su)ds,
rp
one gets
1 rR
QR—qucn/ et </| / w-Vq(sw)dsdw) dr.
0 w|=1Jrp
Hence
Vq(z
lar — qp] < / " 1/ | 1|dxdr
Brr\Bpr ||
1/p'
dz
<ol e ([ )
! 0 ' BRT‘\BPT x|(n*1)p
As "y
Rr 1/p' pl- P
or 1n(§)1‘5 ifp=n
and [ "1 e dr = [P dr < ¢, one gets
RS i LTI
p=1 — pr= i n,
lar — 45| < e[ Vall, o g
ln(%) P if p=n.

Thus, for p > n,q, = ¢(0) for p — 0, while for p < n,q, = ¢ for p — oo, and we

may take ¢, = ¢(0), ¢; = ¢oo, TeSP., to get |qr — 4| < ¢||V4ll, - R ». For p = n, take
¢, = 1. Together with Poincare’s inequality, the claim follows.

Finally, if n = 1, we have |¢(z) —¢(0)| < |x|z% | g||», which implies the statement.

|
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Other multipliers will involve a certain square-root of A + |£'|?, where A € S,
e > 0. Besides the sector S;, it is useful to consider

Yp:={z€ C\{0}:]|argz| <6}

for @ € (0,7). f A€ Xy, 0 € (0,7),b>0,and p € g is defined by w2 = X+b, we
have

Rep > comax{|A|2,b2}  for all A € . (2.5)
The latter estimate can easily be proved by using the homogeneity of f(A,b) =
(A +b)2.
Finally, we recall that for every «, 8 € Nj
IR IR RNTINE: —~2+[al-|8] 926
DE 5| < Comall + 1) 26

for A € ¥y with 6 € (0,7). The latter statement can be proved by using the homo-

geneity of fo(u,§) = Dfﬁiw, 6 € (0,m).
For A € S, the following lemma provides some important estimates.

Lemma 2.8 Let A € S., ¢ > 0. Then for a € R define u = p(a) uniquely by
pi=A+a?

with Repp > 0 and Im po > 0 if Repp = 0. Then, if max{|A|"%,a} > kZ, £ > 1,

Re ;1 > 26 max{|\|Y?, a} > 6|yl (2.7)

where § = 6(e, k) > 0. Furthermore, for any k € N we have sup,sa*!|u® (a)] <
Ce e uniformly in A € S, with |)\|% > k%, & > 1. Moreover, if a = |¢'], & € R*™1,
then SUpg cgn-—1 o)< az0 1€ D < Cepp uniformly in X € S, with Az > kY,
k> 1.

Proof: First of all, the estimate x| < 2max{|A|'/2,a} is trivial. Suppose first that
max{|\|z,a} = |\|]z > k% with £ > 1. Then obviously A € ¥y for some 0 = 0(c, k).
Hence (2.7) is a consequence of (2.5) with b = ¢2. Similarly, if max{|\|2,a} = a > K

with x > 1, (2.5) implies
2 2 2
g T 1
{#-%) }2‘*(1‘?> "
This proves (2.7).

The estimate for p*)(a) follows from the fact that u*)(a) = py (“) al=F k> 1,

2

| Re pf ZCQmax{‘)\+%

N

w
where py, is a polynomial. Then the last statement is a consequence of the chain rule
and the fact that ‘Dg‘,|§’|‘ < Cu|€'|'=1el, which is a consequence of the homogeneity
of the mapping & — |£']. |



Lemma 2.9 For A\ € S., e >0, { e R*, and a := |£] let u be as in Lemma 2.8.
Moreover, let k € Ny, z,w > 0 with z +w > 0, and let M = max{l)“ ,m}. Then

1
ARk

L <, {“] <C. if[AE >, [“} <c,
0 =

alm M+ a alj,

C 1 C
k_—az—pw < € if Iz > k_—az—pw OO< €
ey S ey PRz [ s

uniformly in X € S;.

3 . o0
Proof: If a > max{%,ﬁ}, then |p| < 5a and Lemma 2.8 yields [%]M < C..

Moreover, because of Lemma 2.8 and & = 4 )i(a), [%] < (. uniformly in A € S,
0
with [A]z > 7. Hence 2= = (1+4)7", Re(1+4) > 1, and (2.2) imply the statement

for —L—. Furthermore 1fa < 2|)\|2 || > ‘/_|)\|2 and therefore [1 — 2| > 1 —

uta \/_ ’

L
which implies [#] <
0

In order to prove [afe 27| < (z+w Giow i [A] > 7 and [akemozmmw]™ < (zf—;)k,
we apply Lemma 2.4 with g(a) = a*, f(a) = —az — pw, and A = 2z + w. Here the

assumptions of Lemma 2.4 are consequences of Lemma 2.8. [ |

Lemma 2.10 Let 65 = (e#*® — e=E0)) /(14 a) and let my = (5, £ )" le?tH,
where p and a are the same as in Lemma 2.8. Then there is a constant a. > 7 such
that

[a_lmi}; < C. (2.8)

uniformly in A € S., € > 0, where M := max{a,, i|)\|%}, and

2M

<c., [ul . m] <C.
a

0

[ tme ]

uniformly in A € S., € > 0, with i|)\|% > ae.
Proof: First we consider (2.8). We will use (2.2), where we note that

1 1
w+a

my

1
(1-— 6_2“_2“) +o_e” “+“) 0y = / etita) gy

1

By Lemma 2.4 with £ = 1 and A = miny<;{(1 — )26 + (1 +¢)} = min{40, 2}, we
have [ad_e™*#]5 < C.. Because of Lemma 2.9, this implies [am '] < C..
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a

p and

a
= i 2

As |pu] < baif a > M, we have

=

1
0| = ‘/ et(““)dt‘ < 2max{ef e et Rerl
-1

Hence using Lemma 2.8 again

1 1
lami'] > 6(1 — e 2072Ren) _ 9g max{e 2, e 2ReH) > 3
for a > a. and a. large enough (this is one of the conditions for a.).
Concerning the other estimates, we use (2.2) and prove for 1y = (8, £5_)e (@4
that |my| > ¢ on [0,2M],|m_| > ¢ on [1,2M],|a 'm_| > ¢ on [0,1] and that
[y J2M [ 2M ) [a ']y are uniformly bounded in A € S, [A| > a.. As my =

(L —em20720) £ 2B (6720 — e7%), the estimates for [ [§* and [m_]t" follow by

n—a
Lemma 2.9. Moreover, using
= (1 = ) (L) — afl = (14 e )

we conclude [ 'm_]} < C. uniformly in || > a., A € S..
Last we need estimates from below. We remember that Reuy > 2(5|)\|1/2 > 8da,,
cilpl = [p+al = cofpl, and Rep > 6|p|. Hence

|m+| _ H 1 — 672(172’“ + /1’——’_0’(672(1 o 672;1)
u+a u—a
> ¢t {(1 + ey - o~ 2Ren _ | 2a |(672a n efZReu) _ 62Re,u}
nw—a
> ' [(1+e2) - € gp—2Ren) 5 16—1
- 1l 27
for a. large enough (the second condition on a).
Similarly,
|’I:I(’L,| > ‘ H <‘1 o 672(1 o 2a 672(1 o 672Re,u 6720, . 2a >
w+a w—a w—a

and for a > 1, we have

1
izt { (-t ) et (o)
1

for a. suitably large (the third condition on a.), while for a <1

1 —e 20 2e7%0 1—e 20 2
—1 o _ ,—2Rep
() e (R )

c
> ¢! (262 — ﬂ — 062R6“> > te?
]

-1

Y

o~ |

for a. large (the last condition on a.). This finishes the proof. |
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Lemma 2.11 Let f(a,p) := D/(ap). Then f is a smooth function in a € R,y € C
and f(a,pn) # 0 if a >0 and Rep > 0 with p? € S., € > 0. In particular, if a = a(£')
and p = (&', N) are defined as in Lemma 2.8, then for every A, B >0

laps/ D]y < (A, B, ¢)
uniformly in X\ € S, with |\| < B.

Proof: First of all, since 6, = fjl ellnta) gt

1
op +0. = 4/ cosh(tp) cosh(ta) dt = 4P (a, )
0
. 1 .. .
oy —d_ _ 4/ sinh(¢x) sinh(ta) dt = 4Py (a, 1)
af o M a

Hence f(a,pu) = D/(ap) = 16Pi(a, p)Pe(a, 1) is a smooth function for all a € R,
p € C. Therefore it remains to prove that f(a,u) # 0 if a > 0, Rep > 0, and
p? € S..

Firstly, let 4 = x € R Then obviously Pi(a,p), Po(a,pr) > 0 and therefore
f(a, ) > 0. Moreover, if p =iy, y € R, then

!'sinty sinhta

1
Pi(a,iy) = / costy coshta dt > 0, Py(a,iy) = / t2dt > 0,
0 0

ty ta

where we have used that pu* = —y* € S. implies |y| < Z.
Finally, let p =2 + 1y, y # 0, x > 0. Using

o0y +0_
A +F = psinh g cosh a — a cosh psinh a
ik ik
:< amp s a)coshucosha,
cosh p cosh a
0y —0_
pipns 1 = pcosh psinh a — asinh p cosh a

sinh a sinh g
=a — cosh y cosh a,
acosha  pcoshp

where A = p? —a? # 0 if Imp = y # 0 and cosh i # 0 if Re > 0, it is sufficient to

show that - -
Im Msm a #0 and Im I A #0
cosh i cosh p

By elementary calculations
I sinh g 1 x sin 2y + y sinh 2x
m — —
H cosh 7 2 cosh? z cos? iy + sinh? z sin? y
I ( sinh p ) 1 xsin 2y — y sinh 2z
m )
pcosh g 2|p1|? cosh? x cos? y + sinh? x sin? y
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where |ysinh 22 + 2 sin 2y| > |y|(sinh 2z — 2z) > 0 if y # 0, x > 0.
The last statement is a trivial consequence of the first part and (2.3). |

Lemma 2.12 Let k(&' w,,) be measurable and sufficiently smooth in & € R*™! \
{0}. Moreover, suppose that

€' w. 0] + | (€ )] < el =)

and define X
W) = F [ / k(e,w,xnnm1ﬂg](f',w>dw]

1

for g € C’E’(?) Q)N WP_I(Q). Then for every 1 < p < 00
1hllL,@) < Collgll, 1@ for all g € CFE) N W, ().

Proof: Let ¢ € C§°(f2) and define ¢ by

1

FlEw) = [ e, e e 2

Then

oy = [ [ [ K w0l Flale o FTAE. e ded

N /_1 | TIEDFRIE 2)dedz = {h, )

and therefore [(h, )| < |lgllyi1(q) - IVl
Now F[FL](¢',w) = [, k(€ w, 2)i&; || Fle](€', 2)dz, for j = 1,...,n—1, which
implies

oY ' ~1
5. W) <SG | o2l (2+w—2)"dz
Ly Lp(R™—1) -1
by Theorem 2.1 and the same estimate follows for j = n. By Lemma 2.6, ||V, <
Cy|¢ll,r- Hence the claim is proved. |

3 The Helmholtz Projection

Let L, »(Q2) = {u € C§(Q)" : divu = O}‘H'p. We want to give an explicit construction
for the Helmholtz projection P: L,()" — L, ,(€2).
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THEOREM 3.1 For every f € Ly(Q)" there is a unique decomposition f = f'4Vq
with f° € Lys(Q),q € W) = {q € Ly10.(Q)|Vq € L,()"}. Moreover,

1£°lp + 1 Vally < Cyll£1l, (3.1)

and ||ql|z,@npr) < Cpllfllp + CoRI(f1, - -, fa-i)llp for p # n — 1 if we choose an
appropriate constant for q.

Remark 3.2 The theorem (except for the L,(£2 N Bg)-estimate) was proved by
Miyakawa [13] and Farwig [9] in a more general context. Since we will need the
explicit formula for fy = Pf, we include a proof.

Proof: We may assume f € Cg°(€2)", so that all integrals appearing are well defined.
Define Fy(&',2,) i= FIfi1(€,20),5 = 1,...,n and Fopy (§,2,) = &7 - F'(€,20),
where F' = (F, ..., F,_1). Note that

1FH En )€ @)l @n-1) < CollF (@) |z, znmny.-

Now define a pressure ¢ by

Q€ z0) = Flal(€', z0)
1 1
= _1/ e AR, (€ 2)dz — %/ el lsign(z — 2,) F, (€, 2)dz

1 1
+ae®™r + [fe

where a = [¢'| and «, 3 are chosen such that 0,Q — F,|,_., = 0.
Since (9, — a*)Q = i’ - F' + 0, F,, the Helmholtz projection f® = Pf is then

given by

Foz}"[f][-)] =F;—iQ, j=1,...,n—1,

j
FO = F[f' .= F, - 0,Q (3:2)
But it remains to determine «, 5. By differentiation
a [* a [*
ohQ—F, = —5/ e~ ~sion (2 — w)F,41(€', 2)dz — 5/ e~almn=2p (¢ 2)dz
—1 -1

+aae®™™ — Bae ¥

and 0,(0,Q — F,) = a*Q + aF, ;. From the boundary conditions we conclude

1
a ! !

1
_/ e_a(4+z—xn)(Fn(§’,z)+Fn+1(f,az))dz>

1
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and

a

1
Pac ™™ = A=y </1 e (L (€, 2) — Fup (€, 2))d2

B /1 e_a(2+xn+Z)(Fn(€,7 Z) + Fn—l—l(g; Z))dZ)
~1

These terms are of the type

R(E ,) = / K€ 2 2) Flal(€', 2)d-.

1

Hence P is a linear operation, and

17 R 2|y 1) < G / o) lg 2) sy

As |z],]zn] < 1 and the kernels are real analytic in a, we have [k(-, z,2,)]) < ¢
Furthermore, for b(a) = (1 — e™*%)~!, we have [b]3* < c¢. Together with Lemma 2.9,
we obtain [k(-,z,2,)] < (2 + 24+ 2,) '+ (2 -2 — x,) 1), and by Lemma 2.6
|F R, < Cpllfll,- For the first two terms of 9,Q — F,, we use Lemma 2.5 to

conclude finally
on

L

For later purposes, let us note that

2@71}7'7?({',33") = /

-1

< Gyl 1l
p

1 1

kn(a,xn,z)Fn(f',z)dz+/ kni1(a, @n, 2)Fuii (€, 2)dz (3.3)

1

with
kn(a,w, z) =
e—alw=zl (1— ')t (e—a(4—z+w) _ ematwts) _ pma(2-w-2) 4 e‘“(‘“fz‘w))
and
knt1(a, w, 2) = e_a‘w_z‘Sigﬂ(Z —w)— (1—e)7! (6_“(4_Z+w) + e~ twt2)
_eal2rw—z) _ efa(4+z7w)) .

Note that these kernels are analytic in a (uniformly for |z, |w| < 1).
Now for j =1,...,n—1,

1
—igQe ) = g [ et R

g . —a|rn—2z| 3 . 6]
+2/_1€ sign(z xn)|§,|Fn(§ z)dz

azTn ij ﬁae—axnﬁ

—Qae T .
€]

€]
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This is obviously a sum of terms of the same type as in 0,Q) — F,, with F},, F,,,

substituted by fﬂF %Fnﬂ, respectively. Hence also H%H < GCullfllp,d =
Jip

1,...,n—1. Thus P: L,()" — L,(2)" is continuous. For the uniqueness of the
decomposition, we refer to [13].
Because of the construction, div f = 0, f%]sq = 0, and P%2f = Pf. Therefore P
extends to a continuous projection P: L,()" — L, ,(€2) such that Pf = f — Vq.
It remains to prove a local estimate for ¢. Take a cutoff function ¢ with ¢(t) =1
fort <1and ¢ =0 fort > 2. Let

Q=vta+ (1) =i+ .

Now (1 — ¢(a))/a is a multiplier on R*~! with [(1 — ¢(a))/a] < ¢, hence

1F@:]lly < GollFHQallly < Coll £y,
as shown above. Next (); is of the type

Q:1(&, xy) Z/ (a, xp, 2)Fj(2z)dz — 802(2) /1 Foi(2)dz

1

with [¢(-)k;(-, Zn, 2)] < c uniformly. Inverting,
1 n—1
q=q +/ Zf‘ {

with ||qoll, < ¢llfllps IVollp < ¢l fllp- As f‘l[‘pé?) ] is smooth and bounded if n > 3,
the convolution is well defined for f; € C§° in that case. If n = 2, ¢(x) is well defined
since it is determined up to an constant by dsq(x) € L9(€2). Hence ¢ = qo + ¢1(2")
with ||Verqi||e@n-1y < C||f]|p- The local estimates follow now by Lemma 2.7.  m

|+ 12

It is well-known that the existence of the Helmholtz decomposition of L,(2),

1 < p < o0, is equivalent to the unique solvability of the weak Neumann problem for

the Laplace equation, i.e., for every f € (W}(£))’ there is a unique u € W}(Q) such
that

(Vu, Vo) = (f,v) for all v € W} (Q), (3.4)

cf. e.g. [16]. Moreover, ||[Vu|l, < C,|f]| (W@ . This will be used in the proof of the

following lemma.
Lemma 3.3 Let 1 < p < oco. Then Cf5(Q)N W, Q) ds dense in WEHQ)NW, ().

Proof: Let g € W}(Q) N W, (Q) be arbitrary. Since g € (W}(Q2))" and by (3.4),
there is a u € L,(£2) such that

(9,v) = (Vu,Vv), forallve WPI,(Q) (3.5)



16 4 LAPLACE RESOLVENT EQUATION

Moreover, since even g € Wpl(Q), approximation of d;u, 0;0;u, ¢,7 =1,...,n —1,
by difference quotients yields that d;u,0;0;u € L,(2). Using (3.5) we obtain also
O, 0, Vu € Ly(2) and therefore u € W}(Q). Furthermore, (3.5) yields Au = g
almost everywhere and 0,ulsq = 0.

Now let ¢ € C°(R* 1) with ¢(0) = 1 and set ggr(z) = div(¢(R2')Vu). Then
gr € WHQNW, 1(Q) and limp_,o0 gr = g in WHQ)NW, 1(Q). Since g is compactly
supported, [4, Lemma 2.8] implies that

-1
/ng:r:() if1<p§n—.
n—2

Hence, if 1 < p < Z—:;, we can find gy r € C’(".’@@)(ﬁ) with [ gg.rdz = 0 such that
limg o0 grr = gr in Wy(Q). Since [grde = [ gprdr = 0, this implies that
limy 00 gk, = gr in Wpfl(Q) by Poincaré’s inequality. In the case p > Z—:;, by |4,
Lemma 2.8| every h € L,(Q2) With_support in Bg(0) is in W, () and 1Al ) <
Crllhll,. Hence, if gyr € CF () such that limy e gkr = gr in W, (9Q), also

limy_, 00 gk, = gr In Wpfl(Q)- B
In particular, we have proved that Cf(€2) N {g : [gde =0} if 1 <p < 2= and

o) (Q) if p > »=L are dense in Wr() N WP—I(Q)‘ .

n—2

4 Laplace Resolvent Equation
We consider

A=Au = f in Q, (4.1)
ulgg = 0 on 0f). (4.2)

In order to prove the estimates of Theorem 1.1, we will use the corresponding state-
ments for the latter system.

THEOREM 4.1 Let 1 < g < r < oo, n > 2, and let € > 0. Then for every
A€ C\ (—oo0, %2] and f € Ly(Q) there is a unique solution u € WZ() of (4.1)-(4.2).
Moreover,

™ _1 —
A+ | (Il + (L D HIVull, + @+ DIVl < Cellfll,

‘ 2

1 1

(14 )36

Jull» < Cell g
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First we calculate the solution u for f € C§°(€2) and estimate the solution operator.
Then the general case is obtained by continuous extension to L,(€2). Using partial
Fourier transformation, (4.1)-(4.2) reduces to

A+ |EP-05U = F  in(—1,1), (4.3)
Ulgp=21 = 0 (4.4)
for & € R**' and A € S., where U(&,x,) = Fooelu(,z,)] and F(E,z,) =

Forse'lf (., 2,)]. The solution of this boundary value problem is given by

1
U(E,2,) = / k(i 2, 20) F (€ 2) o,

1

where

k(/"’) :I“TLJ ZTL)
1
— —p(2—Tn—2n) —p(2+Tntzn) _ —plTn—zn| _ —p(d=|Tn—2n])
=T (e +e e e )
with o as in Lemma 2.8. Since p> = A + [¢']* = (—p)?, we obtain k(—p, zp, 2,) =
k(pt, 2y, 2,). Moreover, it is easy to observe that k(u, zn, 2,) is holomorphic in C\ {4 :
[ € Z,1 # 0} and depends smoothly on x,,z, € R Since k(u,x,, z,) has a pole of

first order for y = £i% and k(—p, T, 20) = k(, 4, 2,), we have

K (102, Ty 20)

P for all p such that p* € B,2(0)
1

k(p, p, 2,) =

where £'(z, z,, 2,) is holomorphic in z € B,2(0).
Lemma 4.2 Let = p(A, &) be as in Lemma 2.8 with |u| < w. Moreover, let € > 0,

6 €10,1], and let k € (0,1). Then

—1+6
|€/|—20—\04|

2

T
A4 —
+4

|0ak (11, Tn,y 20 )| < Copnye

for all X € S. and & € R such that |p| < k7 and uniformly in x,, z, € [—1,1].
Proof: First of all,

|al

_ Z pr(€')

ko (A €12+ )

where pg(£') is a homogeneous polynomial of degree 2k — |«|. Hence

1

e+

Q

&I

|al

1

W2+

B i »
‘ < ¥ Cilg'PF 1 3 o€ |2+l
~ A 2 4 12|1+k — A 2 4 112\ 1+k
o AR AP T e (A /A )
< Ca,s

= A+ 2/4)0-0

g

) |§I|—26‘—|a\
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where we have used |A\4+|€'[2] > ¢(|A\|+|€')?) for all X € £y and some § = (¢) € (0, 7),
which is a consequence of (2.6). Moreover, since k'(z, x,, 2,) is holomorphic in B,2(0)
and smooth in z,, 2, € R, |8§‘,k’(u2,ajn,zn)| < C, forall A € S. and & € R*! such
that |u] < km. Hence the statement of the lemma is a consequence of the product
and chain rule. ]

Proof of Theorem 4.1: Let ¢ € C§°(R) be such that ¢(s) = 1 for |s| < 7% and
supp ¢ C B%WQ(O). Then U = U, + Uy, where

1
Uj(flaxn) = / k](ﬂ; l‘n,Zn)F(fl,Zn)dZn, ]: 1727

1

k(1 T, yn) = o))k (1t Ty yn) and ko (pt, v, yn) = (1 — o (|4*])) (1, @n, yn). Since
0 o(|1*])| < Cq, we have for 6 € [0,1] by Lemma 4.2

COC,E |§I|7297|a\
|\ + w2 /4|(1-0)
uniformly in & € R* 1, A € S., and x,, 2, € [-1,1]. Hence

[FelolUr(€ @)l < € sup [Folulbalp, . z)F(E, Nl

Tn€[—1,1]

|8a'k1(p/7 L, yn)| S

2 |-t+25 (1)
A+ —

S O&qr 4

£ 1l

by Theorem 2.2, where we have chosen § = %1 (% — %) Moreover, if g € Ny~ -,

2
18] < 2, we get by choosing 0 = |5|/2

<0 s Rl kG ),

o Fermsar UL(E, 7))

e’ on€[—1,1]
2|10 2|1
< G A+ Il = Gy )\+ L+ D2 £
since k1 (p, Tn, 2,) = 0 for |\ > 72. Because of (4.3),
21—1
o2, gt €, < Cult+ 1D ]a+ T Il

1 1
Using [|0,v]l, < Clvl|e (||v]l, + ||8,2lv||q)é for v € W7(€2), we obtain the corresponding
estimate for 0, Fo.l, . [U1 (€, ).
In order to estimate Uy (&', x,,), we use

f— ] 9 1 e_l‘(Q:Fxn:an) P , d
el [( —o(|p |))/1m (&, 2n) Zn:|

B S e P
= Pk [ G ]
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where (7, f)(z) = f(z +y) and ef denotes the extension by 0 of f to R". Because of
(2.6) and 1 — o(|p?]) = 0 if |p|* < 372,

e — p(|u2)) il
[(1—e—4ﬂ><A+|s|>} G+ D7

for every |a| < 2 uniformly in A € S,, € > 0. Hence we obtain by Theorem 2.1
N 9 1 e —1(2Fxn F2n)
HD Fotowr [(1 —o(lp |))/1 D= B, Zn)dzn:|

uniformly in A € S, for all |a] < 2 and 1 < ¢ < co. In the same way, we obtain by
Theorem 2.2

. 1 ef,u(2¥:1;n¥zn) .
H M[ ey —F(g,znmzn]

_12u(1 —emH)

14l
< Cog(L+ D=L

q

< C.(1+ )G 7,

r

uniformly in A € S, for all 1 < ¢ < r < oo. Moreover,

e ilon—znl 4 g n(A-lon—znl)  gomln—zal  op(d-Tntam) 4 oo p(dtEn—am)

L=y ap  gu(l—ew)
where
H el )
1 2 ¢ ! 1 PUH
Fobuo [ = o) [ SR i) = £, [ A A ],
and

1 e—#(4:F$niZn)
Febao |0= ol [ SR (E )]
e [ )
- w7 [ G e

Hence the last terms can be estimated as before.

It remains to prove the uniqueness of the solution. Let A,: D(A,) — L,(Q),
1 < g < oo, with D(A,) = {u € W2(Q): ulspn = 0}. Then A — A, is surjec-
tive for every A € C\ (—oo,7%/4] by the first part of the proof. Moreover, since
(A=A, D X—A,, the adjoint of A — A, is surjective. Hence A — A, is injective for
every A € C\ (—oo, m2/4], which finishes the proof. |

fm,_)g [T¢2€f]:| .

5 Proof of Theorem 1.1

We may start with two simplifications. First we may restrict ourselves to f € Cg°(€2)
and g € CF)(€2) N, () by Lemma 3.3. Next we may use the Helmholtz decompo-

sition f = f°+Vgq, where f? is defined explicitly via its partial Fourier transformation
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F° being well defined and smooth. The pressure part may be absorbed on the left
side. Hence we may assume for simplicity that f = f°. Thus applying the partial
Fourier transformation we have to solve (with a = |£'|)

A+ a)U' - 02U +i€'Q = F, (5.1)
A+ a®)U, — 92U, +0,Q = F,, (5.2)
O U, +i" - U = G, (5.3)

Ulg—t1 = 0, (5.4)

where U' = (Uy,...,U, 1) and F' = (Fy,..., F, ). Differentiating (5.2) with respect
to x,, multiplying (5.1) by i’ and adding, we obtain

(A +a*)G - 02G — a’Q + 02Q = 0.

Hence

02(Q — G) — a®(Q — G) = —AG. (5.5)
Thus we define

! A B
Q' x,) = G(E,xn) + i/ e~ =vIG (¢ w)dw + —e®n — Ze%n (5.6)
2a J 4 a a

with parameters A, B to be chosen below. Setting
L;:=iQ—F;, j=1,...,n—1, L,:=0,Q—F, (5.7)
we may solve
R2U; —(AN+a®)U;=L;, Uj=0onz==1 forj=1,...,n. (5.8)

It remains to satisfy (5.3). Let R :=i&'-U'+0,U, —G. We have to show that R = 0.
Now

O.R i - 0,U" + (92U, — 0,Q) + 0,(Q — G)
= i 0,U + (N +a* U, — F, + 0,(Q — Q) and
R = i - 0U + (A +a®)0,Up — 0,F, + 92(Q — G)
= (€U +0,U) (N +d?) — a?Q — (i€ - F' + 0,F,) + 0*(Q — G)

(A +ad®)R
by (5.5) and div f = 0. Therefore, with u as defined in Lemma 2.8,

R= R(€, ) = al€)eh™ + b{e")e™ = for p 0
resp. = a(&)z, + b(£) for p =10

Suppose we can choose A, B such that R({',£1) = 0. Then R = 0, as e — 140
due to A\ + |¢'|? # %271'2 (the case p = 0 is trivial), hence the claim follows.
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A and B will of course depend on £ and A, and we have to calculate them in
order to estimate the solution. Skipping the &’-dependence, we get from (5.2) and
(5.4)

@m@wwh::/}%m@—m@@kW@:/}mm@—a@kWM

1

= Qe — / Q)+ F(2)e s

hence

R(z)e |l = (Q(Z)—G(Z))ei"zlll—/ (£1Q(2) + Fu(2))e**dz

-1

Again due to e — 1 # 0, the right-hand sides should vanish for 4+ as well as for
—p. For the "+"-sign, this means

1 1
0 = A </ e~ W=OTG (1) da —/ e_“(1+x)_“G(:r)d:r>
20 \J 4 —1
A B 1 1
+= (et — e_(“+“)) ——(e* - e_(“_“)) - / F,(z)e"*dz — u/ Q(z)et*dz

a a 1 1

Calculating the last term:

1 1 A Lot
/ Q(z)e"*dz = / G(z)e"dz + — / / e A G (w) e dwdz
—1 ~1 2a /1)
1 1
_|_é / e(a'i'ﬂ)zdz _ E / e(—a-l—u)zdz
a ) o
and noting that

1 _ _
/ p—alw—z| iz g, _ —@e’“" " eh—a B e_“we (pta)
1 A w—a n+a

Inserting, we end with

A@+B§z/

-1
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where k(¢',z) = e‘“”e:%: + e‘”% and 01 := (et — e~ (te)) /(1 4+ a).

Changing from p to —p, 04 goes over to 6 and vice versa and the second condition
is . L
A5 + B, — / Fu(€ x)e e — / AG(E )k, —)da.
—1 -1

Finally,

with
H( x) = (0,e" —06 e *)/D and
K(¢',x) = (64k(¢, ) + 0-k(¢', —))/D

where D = 6% — 6%. Thus (5.6) - (5.10) gives the explicit solution of our problem.
Now we may start to estimate the quantities of (5.7) after inverting the partial
Fourier transformation. Obviously,

170Gl + 17 i€ Gl < el Vall,-

Next, multiplying by :§; and differentiating with respect to z,, resp., we have to
treat the following three types of integrals

r rl

h(a' 2,) = FF / e"gw"””'p(w—ajn))\G(f',w)dw] (5.11)
L/ —1
r rl

ho(a',w,) = F* / e'ﬁ’%Fn(g',w)H(g',w)dw] (5.12)
L/ —1
r rl

hs(x',w,) = F* / e'glmn)\G(f’,w)K(f’,w)dw] (5.13)
L/ —1

with p(t) = signt or p(t) = 1. We start with
Lemma 5.1 Let hy be defined as in (5.11) and let 1 < p < co. Then
hillz,) < CollAgllyye for all g € CF () W, H(Q).

Proof: Let ¢ € C§°(Q2). Define 9 by

FlE ) = [ e Into, - )Pl 2)dz

-1
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Then
[ 0t 2
1 1
_ /R /_ 1 /_ XG(E ) €1~ FTPIE e

= [ [ A TR e = [ e et e

Asforj=1,...,n—1

9 L e 5
,7-'{8—;/;] (€ 2,) = /16—5xn—z|§f|p(xn—z)%f[w](f’,z)dz,
9 e
]—"{aﬂi] (€ 0n) = / (e e sign(z — wa)p(w —an) FlP)(E', 2)d

(+2F[p](¢', z,) in the case of p(t) = signt),

Lemma 2.5 implies that ||V||, < Cpll¢||,. Therefore UQ hy -@dq;‘ < Cp“)‘g”vi/p—l .
||¢llp» which implies the claim. .

The most important estimates are contained in the following lemma.
Lemma 5.2 Let hy be defined as in (5.12) and let 1 < p < co. Then
[hallp < Cpll flp for all f € C3° ().

Proof: Here we need a little trick in splitting the phase space into two parts, de-
pending on the size of |A|. Therefore let M := max{1|A|*/? a.} with a. > 7 as in
Lemma 2.10. Moreover, we choose a cut-off function x,s(a), which vanishes outside
[0,2M] and equals 1 on [0, M]. We may assume that 0 < xs(a) <1 and [xy]| < C,
independent of M. Now we split hy = hi + h3 with

B (2 ) = F [/1 e B (& w)H (€, w)dw|, j=1,2,
-1
where H' (&', w) = (1 — xp(a))H (', w) and H*(&',w) = xm(a)H(E,w). If we now
set
H*(¢',w) = xar(a)a(uD) ' (84 + 0 e ™),

then -
5 (€', w) = H*(¢,w)a.

Since F,,(¢',£1) =0 and —0,F,, = i£' - F', one gets

1 S
hy(a' x,) = F! [/_le—axn% CF'(E w)HP (E w)dw)| .
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Thus by Theorem 2.1

ho (-, )| L, @1y < O/ e HY(E ,w)]|| ful- w) | 1, (n-1y duw

+C, / —aon 3 )| £, )| ey

By (2.1) and the definition of x
e HY(¢' w)] < (JZ “Let¥ 5 M) and (5.14)

e H? (¢, w)] < cz )5 e 2M. (5.15)

We will show that the right-hand sides are bounded by C(2—z—w) ' +C(2—z+w) "
Then the statements of the lemma is a consequence of Lemma 2.6.
In order to prove (5.14), we write the multipliers as a product m; - my with

and  my = (6. )(aD)™"

Since a > M = max{$|\|"/?,a.} > 7, we have [m;]3 < C.(2—zFw) ! by Lemma 2.9.
Instead of estimation my, we may as well estimate

my = e* (6, £0_)(aD) = a7 (6, F o) et

my = aea(z—l)-l—u(:l:w—l)

as D = 42 — 42, which was done in Lemma 2.10.
For the proof of (5.15), suppose first that 1|A|'/? > a., which implies a < L[A|/2.
a 6az+,u,w

2M
Similarly as before, the necessary estimates follow from the estimates of [ﬁ m]
1o

(and by symmetry also for —w), as D = 6% — 02. For the case of the "+"-sign, we
factor into
aetFDruw=1) o q oo ((5+—|—5 ) Loatu
For the "-"-sign, we take the factors
a
1+a

(1 4 a)es==Huw=1 and 41 (64 —d_) teotr
on [0,2M]. All these terms were estimated in Lemma 2.9 and Lemma 2.10.

For the second part we have to consider the other possibility |A|'/2/4 < a. = M,
where now a. is fixed. Then we do not change the original form of h2, but still
consider

hy (@', an) = F~! [/1 ™ Fy (& w)xa (a) H (€, w)dw

1
The crucial observation now is that, because of (3.3) and F,, = F?°, F,,(£', w) contains
factor a = |£’'|! Hence we estimate

1
15 (s za)llp < Gy /_l[aH(S',W)e_”"]%M |77 [Fa(€s w)a™ xu (@)] ], dw
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For the second factor, (3.3) and M = a. imply for all |w| < 1 that
|77 [Fulg s wa @] [, < G ODIF

As M = a. is fixed, we only need to show, that [aH (¢, w)e ]2 < C' (uniformly
for |x,|, |w| < 1) which follows from [aH (¢, w)]2M < c.

Now aH (&' w) = a(6 e — 5 e ™)/D. As 6" — 6 e " is odd in pu and
analytic in @ and p, one gets

S et —6_e M = yuZ,(a, u?)
with Z,(a,b) analytic in a,b. Thus
[0 H (&, w)]g" < [Zu(a, A+ a®)§" - [ap/ D™

and the conclusion follows with the help of Lemma 2.11. [

Lemma 5.3 Let hs be defined as in (5.13) and let 1 < p < co. Then
Ially < C (901l + (1 NDllglhys)  for all g € OF5@) N 1F, ().

Proof: Remember that

1
hy(2' x,) = F 1 [/ Ae K (' w)G (&', w)dw

1
with K (&', w) = (61k(¢',w) +6_k(&', —w))/D and
eh—a e~ (uta)

_|_ e—awi.
n—a u+a

k(g w) = e

Due to A = (u — a)(p + a), there is no singularity for p = a.

We use the same cut-off function x,s(a) as in the proof of the previous lemma to
split A3 into h3+ h3, where the support of the multiplier in A2 is contained in [0, 2M],
and M = max{|\|'/?/4,a.}.

Let us estimate A} first. Using (2.1)

Ao~ e K (&, w)]5;

p—a T —p—a] X
< c[e‘”“éia’lD’l]ﬁ[ae“(ziw’Q)]j\“} ([Aale““ ¢ ] + [Aale““e ] >
= a] wtaf,

The first factor is bounded by a constant because of Lemma 2.10, the second by
C(2 — z F w)~ ! because of Lemma 2.9. The last factor may be simplified to

e,
a 1y a M
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which is bounded due to Lemma 2.9. Thus

1
I ) sy < Gy [ (2= 0 ) 1 aG)yw) oy
As [|F~aG](-, w)|| 1, @n-1) < CplIVg (-, w)]| L, @n-1, the estimate for A} in L,(Q) fol-
lows by Lemma 2.6.
Turning to h2, we have to estimate multipliers on [0,2M]. Suppose first that
LAIY? > a. and therefore |u| > v/3a.
We calculate

)\K(§I7w)eaz _ ea(w+z) (62,u . 672;1) Dfl

+€—a(w—z) (/u — a(l . e—2;¢—2a) - K+ a(l _ eQﬂ—Qa)) D!

u+a u—a
In order to apply Lemma 2.12, we estimate the multiplier of A\G|¢'| ™!, which is
/ 2142 2a—2 ae"W e
h _ p+2a _ 2a-2p
(€ rw,) = (e — o)
_ a(z—w—2)
1% a 2a _ _—2u _:U’+a’ 2a _ 2up ae
+<u+a(€ e~ ) u—a(e et) D
With A = (4 — a)(p + a), we estimate on [0,2M] using Lemma 2.9
C ¢ 1M [u+a 2M
h(eg' 2M 2,u+2aD71 —2 1 — —4u
[(é-)w?’z)o — 2_w_z € (/’L+a) 1+a0 M_a( € )0
+ 2u+2aD—1 + -2
2—z+w[e (i +a) 1+al,
) 2M
. (e—2u _ e—4u—2a) _ (N + a) (6_2“ _ e—Za)
= a ,

Because of Lemma 2.9, Lemma 2.10, and

2
a
62u+2aD—1(M+a)—21+a _ ( H ) ! .

w+a 1+a

we conclude [e2T2* D~ (p + a) ™ 1ia]§M < (.. The remaining terms can also be

estimated by Lemma 2.9. Hence we get
(& w, 2) P <e(2—2z+w)™h

Now |¢ _lg—l’f}(f’,w, z) is of precisely the same structure, apart from a sign, which

does not matter. Hence by Lemma 2.12, we get ||h3]|, < cllAglly 1
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It remains to consider the case |A\|'/? < 4a,,a < 2a.. We calculate

AK / az _ ,—1 az%
(& w)e a e o

e2,u _ 672;1 2 2 et,u _ eft,u
. <e‘“"7 + e““’/ e (e + e ) dt + ae““’/ emidt> ,
2 0 0 K

where by Lemma 2.11 [%]3* < ¢, and the terms in brackets are analytic in a and p?.

Thus AK (&', w)e* = a 'R(£',w, z), with [ £ R(¢, w, z)|§'|’1]§as+[R(€', w, 2)]5% < c.

By Lemma 2.12, we get in this case ||h3]|, < cllgllyyz1- This finishes the proof. |

Combining Lemma 5.1-Lemma 5.3, we have proved that

194ll, < Cep (11l + 1951y + (1 + XD gl

uniformly in A € S,, ¢ > 0. Since (A —A)u = f — Vg, ulspq = 0, Theorem 4.1 implies
the estimates for u stated in Theorem 1.1. Hence extending the solution operator by
continuity we have proved the solvability of (1.1)-(1.3) for every A € C\ (—o0, %2]

Finally, it remains to prove uniqueness of the solution. Let A, = —P,A, with
D(A,) = D(A,) N Ly,(R2), 1 < p < oo, be the Stokes operator. Then, by the
solvability of (1.1)-(1.3), A4A,, is surjective for every A € C\(—o0, %2] and 1 < p < oo.
Because of (A\+ A,) D A+ A, (A\+ A,) is surjective. Hence A + A, is injective and
the solution of (1.1)-(1.3) is unique.
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