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Abstrat

In this paper we prove unique solvability of the generalized Stokes resolvent

equations in an in�nite layer 
 = R

n�1

� (�1; 1), n � 2, in L

q

-Sobolev spaes,

1 < q <1, with non-slip boundary ondition uj

�


= 0. The unique solvability

is proved for every � 2 C n(�1;��

2

=4℄, where �

�

2

4

is the least upper bound of

the spetrum of Dirihlet realization of the Laplaian and the Stokes operator in


. Moreover, we provide uniform estimates of the solutions for large spetral

parameter � as well as � lose to �

�

2

4

. Beause of the speial geometry of

the domain, partial Fourier transformation is used to alulate the solution

expliitly. Then Fourier multiplier theorems are used to estimate the solution

operator.
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1 Introdution

In the present ontribution, we study the generalized Stokes resolvent equation

(���)u+rq = f in 
; (1.1)

div u = g in 
; (1.2)

uj

�


= 0 on �
; (1.3)
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2 1 INTRODUCTION

where 
 = R

n�1

� (�1; 1), n � 2, is an in�nite layer. The Stokes resolvent equations

are the starting point for the onstrution of strong solutions of the Navier-Stokes

equations using semi-group theory, f. e.g. [10, 11, 18℄.

Our main result is

THEOREM 1.1 Let 1 < p < 1 and � 2 C n (�1;�

�

2

4

℄. Then for every f 2

L

p

(
)

n

and g 2 W

1

p

(
)\

^

W

�1

p

(
) there is a unique solution (u; q) 2 W

2

p

(
)

n

�

_

W

1

p

(
)

of (1.1)-(1.3). Moreover, for every " > 0 and p � r <1 with

n�1

2

(

1

p

�

1

r

) � 1 there

is a onstant C

"

suh that

�

�

�+ �

2

=4

�

�

kuk

p

+

j�+ �

2

=4j

(1 + j�j)

kr

2

uk

p

+ krqk

p

� C

"

�

k(f;rg)k

p

+ (1 + j�j)kgk

^

W

�1

p

�

�

�

�+ �

2

=4

�

�

1�

n�1

2

(

1

p

�

1

r

)

kuk

r

� C

"

�

k(f;rg)k

p

+ (1 + j�j)kgk

^

W

�1

p

�

uniformly in � 2 S

"

:= C n V

"

, where V

"

:= f� 2 C : j Im�j � �"(Re� + �

2

=4)g:

Here W

m

p

(
), m 2 N , denotes the usual Sobolev spae of order m based on the

standard Lebesgue spae L

p

(
), 1 � p � 1, and

_

W

1

p

(
) :=

�

q 2 L

p;lo

(
) : rq 2 L

p

(
)

	

^

W

�1

p

(
) :=

8

<

:

g 2 L

p;lo

(
) : sup

'2C

1

(0)

(
)

jhg; 'ikr'k

�1

p

0

<1

9

=

;

;

where

1

p

+

1

p

0

= 1 and f 2 L

p;lo

(
) if and only if f 2 L

p

(
 \B) for all balls B � R

n

with B \ 
 6= ;.

The result has been known sine 1994 in an unpublished version [17℄ and was

used by several author; e.g. by Abels [6℄ the unique solvability of the Stokes resolvent

equations was used in order to prove the existene of bounded imaginary powers of

the Stokes operator in an in�nite layer.

An alternative proof of unique solvability of the Stokes resolvent equations, i.e.,

g = 0, was later given by Abe and Shibata [1, 2℄ for f 2 L

p

(
), 1 < p < 1, and

� 2 C n (�1; 0). An approah to the generalized Stokes resolvent equations using a

redution to a pseudodi�erential boundary value problem, whih works for � 2 C n

(�1; 0℄, may be found in [7, Setion 5℄; see also [3, Remark 1.2℄. Moreover, Nazarov

and Pilekas [14, 15℄ onsidered the solvability of the Stokes resolvent equations in

weighted L

p

-Sobolev spaes. But the latter results do not over the ase f 2 L

p

(
).

Sine the unique solvability of the generalized Stokes resolvent equations, i.e.,

g 6= 0, is important for perturbation argument, f. [4, 5℄, the authors deided to

give a rigorous proof of Theorem 1.1 whih has also been simpli�ed at some steps in

omparison to its �rst version [17℄. Moreover, we note that we give preise estimates

of the solutions near ��

2

=4, whih is the largest value in the spetrum of the Laplae
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and the Stokes operator on 
. In partiular, Theorem 1.1 implies that the Stokes

operator �A

p

generates an analyti semi-group e

�tA

p

, t � 0, satisfying

ke

�tA

p

u

0

k

r

� C

p;r

t

�

n�1

2

(

1

p

�

1

r

)

e

�

�

2

4

t

ku

0

k

p

; t � 0; u

0

2 L

p;�

(
); (1.4)

where 1 < p � r < 1 and L

p;�

(
) = fu 2 C

1

0

(
)

n

: div u = 0g

k:k

p

. For r = p,

the latter estimate is a onsequene of the well-known haraterization of analyti

semi-groups and their generators. For r > p, (1.4) is obtained by estimating e

�tA

p

in

a straight-forward manner and using the semi-group property.

The proof of Theorem 1.1 is based on (partial) Fourier transformation in the

tangential oordinates x

0

= (x

1

; : : : ; x

n�1

). By this (1.1)-(1.3) is transformed to an

ordinary two-point boundary value problem in dependene of (�; �

0

), �

0

2 R

n�1

, whih

an be solved expliitly. Then we use the Mikhlin and Lizorkin multiplier theorems

to estimate the solution operators. More preisely, we �rst estimate rq and then use

the orresponding estimates for the Laplae resolvent equation to get the estimates

for u.

Besides the study of the Stokes and Laplae resolvent equations, we give an

expliit formula of the Helmholtz deomposition of L

q

(
), 1 < q < 1, whih was

proved by Miyakawa [13℄ and by Farwig [9℄ in more general ontext.

The struture of the artile is as follows:

In Setion 2 we study some Mikhlin multipliers, whih will appear in the solu-

tion operator of the Stokes and Laplae resolvent equations, and estimate the orre-

sponding operators. Then the expliit formula for the Helmholtz deomposition in

an in�nite layer is given in Setion 3. In Setion 4 we estimate the solutions of the

Laplae resolvent equation, whih an easily be alulated by the same tehnique of

partial Fourier transformation. Finally, in Setion 5 we derive an expliit formula for

the pressure q in (1.1)-(1.3). Then the main part of the proof onsists in a areful

analysis of the solution operator for q. One the pressure is estimated, the estimates

of u are obtained using the estimates for the Laplae resolvent equation.

2 Partial Fourier transformation and multiplier es-

timates

First let us introdue some notations. Let 
 � R

n

, n � 2, be a domain. Then

C

1

0

(
) will denote the spae of all smooth funtions f : 
 ! C with ompat support

supp f � 
. Moreover,

C

1

(0)

(
) := fu = vj




: v 2 C

1

0

(R

n

)g:

Finally, we note that by [4, Lemma 2.4℄ C

1

(0)

(
) is dense in

_

W

1

p

(
) for every 1 < p <

1.



4 2 PARTIAL FOURIER TRANSFORMATION

The speial type of domain 
 = R

n�1

� (�1; 1), we are dealing with, suggests the

use of a partial Fourier transformation. Denoting points of 
 by x = (x

0

; x

n

) with

x

0

2 R

n�1

, x

n

2 [�1; 1℄, we de�ne for u : 
! C

U(�

0

; x

n

) := F

x

0

7!�

0

[u℄(�

0

; x

n

) =

1

(2�)

n�1

2

Z

R

n�1

e

�ix

0

��

0

u(x

0

; x

n

)dx

0

and the inverse transformation

u(x

0

; x

n

) := F

�1

�

0

7!x

0

[U ℄(x

0

; x

n

) =

1

(2�)

n�1

2

Z

R

n�1

e

i�

0

�x

0

U(�

0

; x

n

)d�

0

:

In the following we will use the abbreviation F � F

x

0

7!�

0

. The Fourier and inverse

Fourier transformation of f : R

n

! C with respet to x 2 R

n

will be denoted by

^

f

and

�

f , respetively.

Throughout this setion L will denote the smallest integer larger than

n

2

, where

n 2 N . Basi for deriving L

p

-estimates is the Mikhlin multiplier theorem, f. e.g. [8℄:

THEOREM 2.1 Let f 2 L

p

(R

n

) with 1 < p <1 and let m : R

n

nf0g ! C denote

an L-times di�erentiable funtion with

[m℄ := sup

� 6=0;j�j�L

fj�j

j�j

jD

�

�

m(�)jg <1:

Then (m �

^

f)

_

2 L

p

(R

n

) with

k(m �

^

f)

_

k

p

� C

p

[m℄kfk

p

:

It is well-known that m(�) :=

�

j

j�j

, j = 1; : : : ; n, satis�es the assumptions of the latter

theorem. This is a onsequene of the fat that m(�) is homogeneous of degree 0.

Moreover, we will use the following variant of Theorem 2.1 due to Lizorkin [12℄.

THEOREM 2.2 Let m : R

n

! C be ontinuous with ontinuous derivatives �

�

�

m(�)

on f� 2 R

n

: �

i

6= 0; i = 1; : : : ; ng, � 2 f0; 1g

n

, and let 1 < p � q < 1. Moreover,

suppose that

sup

�

i

6=0;i=1;:::;n

�

�

�

�

�

1

+�

1

� � � �

�

n

+�

n

�

�

�

m(�)

�

�

�

�M

for all � 2 f0; 1g

n

and � =

1

p

�

1

q

. Then k(m �

^

f)

_

k

q

� C

p;q

Mkfk

p

:

In the following, we have to alulate estimates for various multipliers. For on-

veniene, let us de�ne for 0 � �

1

< �

2

� 1

[m℄

�

2

�

1

:= sup

�

1

<j�j��

2

;j�j�L

fj�j

j�j

jD

�

�

m(�)jg

and [m℄ := [m℄

1

0

.

Then we have the following lemma, the proof of whih is elementary.
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Lemma 2.3 There holds uniformly in 0 � �

1

< �

2

� 1:

[m

1

m

2

℄

�

2

�

1

� [m

1

℄

�

2

�

1

� [m

2

℄

�

2

�

1

(2.1)

If jmj � 

1

> 0, then

[1=m℄

�

2

�

1

� C(1 + [m℄

�

2

�

1

)

L

: (2.2)

If m(�) =M(j�j), then

[m℄

�

2

�

1

�  sup

a2[�

1

;�

2

℄

(

L

X

k=0

ja

k

M

(k)

(a)j

)

: (2.3)

As a typial multiplier, we ome aross funtions of the following type:

Lemma 2.4 Let f; g : [0;1)! C be L-times di�erentiable with

(i) Ref(a) � �

1

Aa

(ii) sup

1�l�L

a

l�1

jf

(l)

(a)j � 

2

A

(iii) sup

0�l�L

a

l

jg

(l)

(a)j � 

3

a

k

on 0 � �

1

� a � �

2

� 1 with some 

i

> 0; A > 0; k 2 N

0

. Let h(�) = g(j�j)e

f(j�j)

.

Then

[h℄

�

2

�

1

� A

�k

: (2.4)

Proof: As h

(j)

(a), j = 1; : : : ; L, is a sum of terms of the form

g

(l

0

)

(a)f

(l

1

)

(a) : : : f

(l

m

)

(a)e

f(a)

;

where l

0

+ : : :+ l

m

= j with l

1

; : : : ; l

m

6= 0, and

sup

�

1

�a��

2

a

j

�

�

g

(l

0

)

(a)f

(l

1

)

(a) : : : f

(l

m

)

(a)e

f(a)

�

�

� C

1

a

k

a

m

A

m

e

�

1

Aa

� C

2

A

�k

the statement is a onsequene of (2.3).

The next lemma provides L

p

-estimates for a typial operator.

Lemma 2.5 Let �(t) = �

[0;1)

(t) or �(t) = 1� �

[0;1)

(t). De�ne the operator G by

(Gf)(x

0

; x

n

) = F

�1

�

Z

1

�1

j�

0

je

�j�

0

jjx

n

�zj

�(x

n

� z)F [f ℄(�

0

; z)dz

�

for f 2 C

1

0

(
). Then G extends to a bounded linear operator G : L

p

(
)! L

p

(
) for

every 1 < p <1.



6 2 PARTIAL FOURIER TRANSFORMATION

Proof: Let f

0

denote the extension of f onto R

n

by zero and let g := Gf . Then

F [g℄(�

0

; x

n

) =

Z

R

j�

0

je

�j�

0

jjx

n

�zj

�(x

n

� z)F [f

0

℄(�

0

; z)dz:

The right hand side makes sense also for jx

n

j > 1. Hene the inverse transformation

de�nes a funtion ~g on R

n

with ~gj




= g,

~g(x

0

; x

n

) :=

1

(2�)

n�1

2

Z

R

n

e

ix

0

��

0

j�

0

je

�j�

0

jjx

n

�zj

�(x

n

� z)F [f

0

℄(�

0

; z)d(z; �

0

):

The laim follows if we an prove k~gk

L

p

(R

n

)

� kf

0

k

L

p

(R

n

)

: Inserting the de�nition

of F [f

0

℄, we may write ~g as an R

n

-onvolution ~g = k � f

0

or equivalently ~g =

(2�)

n=2

(

^

k �

^

f

0

)

_

with

k(x

0

; x

n

) =

1

(2�)

n�1

2

Z

R

n�1

e

ix

0

��

0

�(x

n

)j�

0

je

�j�

0

jjx

n

j

d�

0

:

Now k(x) = F

�

0

7!x

0

[h℄(x) with h(�

0

; x

n

) = �(x

n

)j�

0

je

�j�

0

jjx

n

j

hene

^

k(�) =

1

(2�)

1

2

Z

R

e

�i�

n

x

n

�(x

n

)j�

0

je

�j�

0

jjx

n

j

dx

n

for � = (�

0

; �

n

). As by simple integration

(2�)

1=2

^

k(�) =

(

j�

0

j(j�

0

j+ i�

n

)

�1

for �(t) = �

[0;1)

(t)

j�

0

j(j�

0

j � i�

n

)

�1

for �(t) = 1� �

[0;1)

(t)

we have [

^

k(�)℄ � , and the laim follows by Theorem 2.1.

Lemma 2.6 Let

h(t) =

Z

1

�1

s(x)

(2� t� x)

dx; s 2 L

p

(�1; 1);

for t 2 (�1; 1). Then khk

L

p

(�1;1)

� C

p

ksk

L

p

(�1;1)

for every 1 < p <1.

Proof: Extend s by zero to ~s and let

~

h(t) := h(2� t). Then

~

h(t) =

R

1

�1

~s(x)

t�x

dx and

Z

1

�1

jh(t)j

p

dt �

Z

R

j

~

h(t)j

p

dt � C

p

k~sk

p

p

= C

p

ksk

p

p

by the Calderon-Zygmond estimate.

The following lemma is (partly) known; we inlude a proof, as it ontains a

surprising borderline ase.



7

Lemma 2.7 Suppose q is smooth, rq 2 L

p

(R

n

), n � 1, 1 < p < 1. Then there is

a onstant 

q

suh that for R � 1

kq � 

q

k

L

p

(B

R

)

� (R)krqk

p

with

(R) =

�



p

�R if p 6= n;

R(lnR + 1)

1�1=n

if p = n:

Remark: The example q(x) = ln(jxj

2

+ 1)



with 0 <  < 1 �

1

n

shows that the

ase p = n is indeed exeptional � an estimate with some smaller exponent for the

logarithmi term does not hold for all R � 1.

Proof: First we onsider the ase n � 2. Let q

�

denote the mean-value of q over

B

�

. Then, as

q(rRw)� q(r�w) =

Z

rR

r�

w � rq(sw)ds;

one gets

q

R

� q

�

= 

n

Z

1

0

r

n�1

�

Z

jwj=1

Z

rR

r�

w � rq(sw)dsdw

�

dr:

Hene

jq

R

� q

�

j � 

n

Z

1

0

r

n�1

Z

B

Rr

nB

�r

jrq(x)j

jxj

n�1

dxdr

� 

n

Z

1

0

r

n�1

krqk

p

�

 

Z

B

Rr

nB

�r

dx

jxj

(n�1)p

0

!

1=p

0

dr:

As

�

Z

Rr

�r

s

(n�1)(1�p

0

)

ds

�

1=p

0

� C

8

<

:

r

1�n=p

�

�

�

R

p�n

p�1

� �

p�n

p�1

�

�

�

1�1=p

if p 6= n;

ln(

R

�

)

1�

1

p

if p = n

and

R

1

0

r

n�1

� r

1�

n

p

dr =

R

1

0

r

n=p

0

dr � , one gets

jq

R

� q

�

j � krqk

p

�

8

<

:

�

�

�

R

p�n

p�1

� �

p�n

p�1

�

�

�

1�

1

p

if p 6= n;

ln(

R

�

)

1�

1

p

if p = n:

Thus, for p > n; q

�

! q(0) for � ! 0, while for p < n; q

�

! q

1

for � ! 1, and we

may take 

q

= q(0), 

q

= q

1

, resp., to get jq

R

� 

q

j � krqk

p

�R

1�

n

p

. For p = n, take



q

= q

1

. Together with Poinare's inequality, the laim follows.

Finally, if n = 1, we have jq(x)�q(0)j � jxj

1

p

0

k

d

dx

qk

p

, whih implies the statement.
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Other multipliers will involve a ertain square-root of � + j�

0

j

2

, where � 2 S

"

,

" > 0. Besides the setor S

"

, it is useful to onsider

�

�

:= fz 2 C n f0g : j arg zj < �g

for � 2 (0; �). If � 2 �

�

, � 2 (0; �), b � 0, and � 2 � �

2

is de�ned by �

2

= � + b, we

have

Re� � 

�

maxfj�j

1

2

; b

1

2

g for all � 2 �

�

: (2.5)

The latter estimate an easily be proved by using the homogeneity of f(�; b) :=

(�+ b)

1

2

.

Finally, we reall that for every �; � 2 N

n

0

�

�

�

�

D

�

�

�

�

�+ j�j

2

�

�

�

�

� C

�;�;�

(j�j

1

2

+ j�j)

�2+j�j�j�j

(2.6)

for � 2 �

�

with � 2 (0; �). The latter statement an be proved by using the homo-

geneity of f

�

(�; �) := D

�

�

�

�

e

i�

�

2

+j�j

2

, � 2 (0; �).

For � 2 S

"

, the following lemma provides some important estimates.

Lemma 2.8 Let � 2 S

"

, " > 0. Then for a 2 R de�ne � = �(a) uniquely by

�

2

:= �+ a

2

with Re� � 0 and Im� � 0 if Re� = 0. Then, if maxfj�j

1=2

; ag � �

�

2

, � > 1,

Re� � 2Æmaxfj�j

1=2

; ag � Æj�j (2.7)

where Æ = Æ("; �) > 0. Furthermore, for any k 2 N we have sup

a�0

a

k�1

j�

(k)

(a)j �

C

";�;k

uniformly in � 2 S

"

with j�j

1

2

� �

�

2

, � > 1. Moreover, if a = j�

0

j, �

0

2 R

n�1

,

then sup

�

0

2R

n�1

;j�j�k;�6=0

j�

0

j

j�j�1

jD

�

�

0

�j � C

";�;k

uniformly in � 2 S

"

with j�j

1

2

� �

�

2

,

� > 1.

Proof: First of all, the estimate j�j � 2maxfj�j

1=2

; ag is trivial. Suppose �rst that

maxfj�j

1

2

; ag = j�j

1

2

� �

�

2

with � > 1. Then obviously � 2 �

�

for some � = �("; �).

Hene (2.7) is a onsequene of (2.5) with b = a

2

. Similarly, ifmaxfj�j

1

2

; ag = a � �

�

2

with � > 1, (2.5) implies

jRe�j � 

�

max

(

�

�

�

�

�+

�

2

4

�

�

�

�

1

2

;

�

a

2

�

�

2

4

�

1

2

)

� 

�

�

1�

1

�

2

�

1

2

a:

This proves (2.7).

The estimate for �

(k)

(a) follows from the fat that �

(k)

(a) = p

k

�

a

�

�

a

1�k

; k � 1;

where p

k

is a polynomial. Then the last statement is a onsequene of the hain rule

and the fat that

�

�

D

�

�

0

j�

0

j

�

�

� C

�

j�

0

j

1�j�j

, whih is a onsequene of the homogeneity

of the mapping �

0

7! j�

0

j.
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Lemma 2.9 For � 2 S

"

, " > 0, �

0

2 R

n�1

, and a := j�j let � be as in Lemma 2.8.

Moreover, let k 2 N

0

, z; w � 0 with z + w > 0, and let M = maxf

j�j

1

2

4

; �g. Then

h

�

a

i

1

M

� C

"

;

�

�

�+ a

�

1

0

� C

"

if j�j

1

2

� �;

�

�

�� a

�

1

2

j�j

1

2

0

� C

"

;

�

a

k

e

�az��w

�

1

0

�

C

"

(z + w)

k

if j�j

1

2

� �;

�

a

k

e

�az��w

�

1

�

�

C

"

(z + w)

k

;

uniformly in � 2 S

"

.

Proof: If a � maxf

j�j

1

2

4

; �g, then j�j � 5a and Lemma 2.8 yields

�

�

a

�

1

M

� C

"

.

Moreover, beause of Lemma 2.8 and

a

�

=

d

da

�(a),

h

a

�

i

1

0

� C

"

uniformly in � 2 S

"

with j�j

1

2

� �. Hene

�

�+a

= (1+

a

�

)

�1

, Re(1+

a

�

) � 1, and (2.2) imply the statement

for

�

�+a

. Furthermore, if a �

1

2

j�j

1

2

, j�j �

p

3

2

j�j

1

2

and therefore j1 �

a

�

j � 1 �

1

p

3

,

whih implies

h

�

��a

i

1

2

j�j

1

2

0

� C

"

.

In order to prove

�

a

k

e

�az��w

�

1

0

�

C

"

(z+w)

k

if j�j � � and

�

a

k

e

�az��w

�

1

�

�

C

"

(z+w)

k

,

we apply Lemma 2.4 with g(a) = a

k

, f(a) = �az � �w, and A = z + w. Here the

assumptions of Lemma 2.4 are onsequenes of Lemma 2.8.

Lemma 2.10 Let Æ

�

:= (e

��a

� e

�(��a)

)=(� � a) and let m

�

:= (Æ

+

� Æ

�

)

�1

e

a+�

,

where � and a are the same as in Lemma 2.8. Then there is a onstant a

"

� � suh

that

�

a

�1

m

�

�

1

M

� C

"

(2.8)

uniformly in � 2 S

"

, " > 0, where M := maxfa

"

;

1

4

j�j

1

2

g, and

�

�

�1

m

+

�

2M

0

� C

"

;

�

�

�1

a

1 + a

m

�

�

2M

0

� C

"

uniformly in � 2 S

"

, " > 0, with

1

4

j�j

1

2

� a

"

.

Proof: First we onsider (2.8). We will use (2.2), where we note that

m

�1

�

=

1

�+ a

(1� e

�2a�2�

)� Æ

�

e

�(a+�)

; Æ

�

=

Z

1

�1

e

t(��a)

dt:

By Lemma 2.4 with k = 1 and A = min

jtj�1

f(1 � t)2Æ + (1 + t)g = minf4Æ; 2g, we

have [aÆ

�

e

�a��

℄

1

M

� C

"

. Beause of Lemma 2.9, this implies [am

�1

�

℄

1

M

� C

"

.
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As j�j � 5a if a �M , we have

�

�

�

a

a+�

�

�

�

�

a

a+j�j

�

1

6

and

jÆ

�

j =

�

�

�

�

Z

1

�1

e

t(��a)

dt

�

�

�

�

� 2maxfe

Re��a

; e

a�Re�

g:

Hene using Lemma 2.8 again

jam

�1

�

j �

1

6

(1� e

�2a�2Re�

)� 2amaxfe

�2a

; e

�2Re�

g �

1

8

for a � a

"

and a

"

large enough (this is one of the onditions for a

"

).

Conerning the other estimates, we use (2.2) and prove for ~m

�

= �(Æ

+

�Æ

�

)e

�(a+�)

that j ~m

+

j �  on [0; 2M ℄; j ~m

�

j �  on [1; 2M ℄; ja

�1

~m

�

j �  on [0; 1℄ and that

[ ~m

+

℄

2M

0

, [ ~m

�

℄

2M

1

, [a

�1

~m

�

℄

1

0

are uniformly bounded in � 2 S

"

, j�j � a

"

. As ~m

�

=

�

�+a

(1� e

�2a�2�

)�

�

��a

(e

�2a

� e

�2�

), the estimates for [ ~m

+

℄

2M

0

and [ ~m

�

℄

2M

1

follow by

Lemma 2.9. Moreover, using

~m

�

=

�

�

�

�(1� e

�2a

)(1 + e

�2�

)� a(1� e

�2�

)(1 + e

�2a

)

�

;

we onlude [a

�1

~m

�

℄

1

0

� C

"

uniformly in j�j � a

"

, � 2 S

"

.

Last we need estimates from below. We remember that Re� � 2Æj�j

1=2

� 8Æa

"

,



1

j�j � j�� aj � 

2

j�j, and Re� � Æj�j. Hene

j ~m

+

j =

�

�

�

�

�

�+ a

�

�

�

�

�

�

�

�

1� e

�2a�2�

+

�+ a

�� a

(e

�2a

� e

�2�

)

�

�

�

�

� 

�1

1

�

(1 + e

�2a

)� e

�2Re�

�

2a

j�� aj

(e

�2a

+ e

�2Re�

)� e

�2Re�

�

� 

�1

1

�

(1 + e

�2a

)�



j�j

� 2e

�2Re�

�

�

1

2



�1

1

for a

"

large enough (the seond ondition on a

"

).

Similarly,

j ~m

�

j �

�

�

�

�

�

�+ a

�

�

�

�

�

�

�

�

�

1� e

�2a

�

2a

�� a

e

�2a

�

�

�

�

� e

�2Re�

�

�

�

�

e

�2a

� 1�

2a

�� a

�

�

�

�

�

and for a � 1, we have

j ~m

�

j � 

�1

1

��

1� e

�2

�



j�j

�

� e

�2Re�

�

� 

�1

1

�

1

2

� e

�2

�

for a

"

suitably large (the third ondition on a

"

), while for a � 1

ja

�1

~m

�

j � 

�1

1

��

1� e

�2a

a

�

�

2e

�2a

j�� aj

� e

�2Re�

�

1� e

�2a

a

+

2

j�� aj

��

� 

�1

1

�

2e

�2

�



j�j

� e

�2Re�

�

� 

�1

1

e

�2

for a

"

large (the last ondition on a

"

). This �nishes the proof.
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Lemma 2.11 Let f(a; �) := D=(a�). Then f is a smooth funtion in a 2 R; � 2 C

and f(a; �) 6= 0 if a � 0 and Re� � 0 with �

2

2 S

"

, " > 0. In partiular, if a = a(�

0

)

and � = �(�

0

; �) are de�ned as in Lemma 2.8, then for every A;B > 0

[a�=D℄

A

0

� (A;B; ")

uniformly in � 2 S

"

with j�j � B.

Proof: First of all, sine Æ

�

=

R

1

�1

e

t(��a)

dt,

Æ

+

+ Æ

�

= 4

Z

1

0

osh(t�) osh(ta) dt = 4P

1

(a; �)

Æ

+

� Æ

�

a�

= 4

Z

1

0

sinh(t�)

�

sinh(ta)

a

dt = 4P

2

(a; �)

Hene f(a; �) = D=(a�) = 16P

1

(a; �)P

2

(a; �) is a smooth funtion for all a 2 R,

� 2 C . Therefore it remains to prove that f(a; �) 6= 0 if a � 0, Re� � 0, and

�

2

2 S

"

.

Firstly, let � = x 2 R. Then obviously P

1

(a; �); P

2

(a; �) > 0 and therefore

f(a; �) > 0. Moreover, if � = iy, y 2 R, then

P

1

(a; iy) =

Z

1

0

os ty osh ta dt > 0; P

2

(a; iy) =

Z

1

0

sin ty

ty

sinh ta

ta

t

2

dt > 0;

where we have used that �

2

= �y

2

2 S

"

implies jyj �

�

2

.

Finally, let � = x+ iy, y 6= 0, x > 0. Using

�

Æ

+

+ Æ

�

4

= � sinh� osh a� a osh� sinh a

=

�

�

sinh�

osh�

� a

sinh a

osh a

�

osh� osh a;

�

Æ

+

� Æ

�

4

= � osh� sinh a� a sinh� osh a

= a�

�

sinh a

a osh a

�

sinh�

� osh�

�

osh � osh a;

where � = �

2

� a

2

6= 0 if Im� = y 6= 0 and osh� 6= 0 if Re� > 0, it is su�ient to

show that

Im

�

�

sinh�

osh�

�

6= 0 and Im

�

sinh�

� osh�

�

6= 0:

By elementary alulations

Im

�

�

sinh�

osh�

�

=

1

2

x sin 2y + y sinh 2x

osh

2

x os

2

y + sinh

2

x sin

2

y

Im

�

sinh�

� osh�

�

=

1

2j�j

2

x sin 2y � y sinh 2x

osh

2

x os

2

y + sinh

2

x sin

2

y

;
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where jy sinh 2x� x sin 2yj � jyj(sinh 2x� 2x) > 0 if y 6= 0, x > 0.

The last statement is a trivial onsequene of the �rst part and (2.3).

Lemma 2.12 Let k(�

0

; w; x

n

) be measurable and su�iently smooth in �

0

2 R

n�1

n

f0g. Moreover, suppose that

[k(�

0

; w; x

n

)℄ +

�

�

�w

k(�

0

; w; x

n

)j�

0

j

�1

�

� (2� w � x

n

)

�1

:

and de�ne

h(�

0

; x

n

) = F

�1

�

Z

1

�1

k(�

0

; w; x

n

)j�

0

j

�1

F [g℄(�

0

; w)dw

�

for g 2 C

1

(0)

(
) \

^

W

�1

p

(
). Then for every 1 < p <1

khk

L

p

(
)

� C

p

kgk

^

W

�1

p

(
)

for all g 2 C

1

(0)

(
) \

^

W

�1

p

(
):

Proof: Let ' 2 C

1

0

(
) and de�ne  by

F [ ℄(�

0

; w) :=

Z

1

�1

k(�

0

; w; z)j�

0

j

�1

F ['℄(�

0

; z)dz:

Then

hg;  i =

Z

1

�1

Z

1

�1

Z

R

n�1

k(�

0

; w; z)j�

0

j

�1

F [g℄(�

0

; w)F ['℄(�

0

; z)d�

0

dzdw

=

Z

1

�1

Z

R

n�1

F [h℄(�

0

; z)F ['℄(�

0

; z)d�

0

dz = hh; 'i

and therefore jhh; 'ij � kgk

^

W

�1

p

(
)

� kr k

p

0

.

Now F [

� 

�x

j

℄(�

0

; w) =

R

1

�1

k(�

0

; w; z)i�

j

j�

0

j

�1

F ['℄(�

0

; z)dz, for j = 1; : : : ; n�1; whih

implies









� 

�x

j

(�; w)









L

p

(R

n�1

)

� C

p

Z

1

�1

k'(�; z)k

p

0

(2� w � z)

�1

dz

by Theorem 2.1 and the same estimate follows for j = n. By Lemma 2.6, kr k

p

0

�

C

p

k'k

p

0

. Hene the laim is proved.

3 The Helmholtz Projetion

Let L

p;�

(
) = fu 2 C

1

0

(
)

n

: div u = 0g

k:k

p

. We want to give an expliit onstrution

for the Helmholtz projetion P : L

p

(
)

n

! L

p;�

(
).
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THEOREM 3.1 For every f 2 L

p

(
)

n

there is a unique deomposition f = f

0

+rq

with f

0

2 L

p;�

(
); q 2

_

W

1

p

= fq 2 L

p;lo

(
)jrq 2 L

p

(
)

n

g. Moreover,

kf

0

k

p

+ krqk

p

� C

p

kfk

p

(3.1)

and kqk

L

p

(
\B

R

)

� C

p

kfk

p

+ C

p

Rk(f

1

; : : : ; f

n�1

)k

p

for p 6= n � 1 if we hoose an

appropriate onstant for q.

Remark 3.2 The theorem (exept for the L

p

(
 \ B

R

)-estimate) was proved by

Miyakawa [13℄ and Farwig [9℄ in a more general ontext. Sine we will need the

expliit formula for f

0

= Pf , we inlude a proof.

Proof: We may assume f 2 C

1

0

(
)

n

, so that all integrals appearing are well de�ned.

De�ne F

j

(�

0

; x

n

) := F [f

j

℄(�

0

; x

n

); j = 1; : : : ; n and F

n+1

(�

0

; x

n

) :=

i�

0

j�

0

j

� F

0

(�

0

; x

n

),

where F

0

= (F

1

; : : : ; F

n�1

). Note that

kF

�1

[F

n+1

℄(�

0

; x

n

)k

L

p

(R

n�1

)

� C

p

kf

0

(�; x

n

)k

L

p

(R

n�1

)

:

Now de�ne a pressure q by

Q(�

0

; x

n

) := F [q℄(�

0

; x

n

)

= �

1

2

Z

1

�1

e

�ajx

n

�zj

F

n+1

(�

0

; z)dz �

1

2

Z

1

�1

e

�ajx

n

�zj

sign(z � x

n

)F

n

(�

0

; z)dz

+�e

ax

n

+ �e

�ax

n

where a = j�

0

j and �; � are hosen suh that �

n

Q� F

n

j

w=�1

� 0.

Sine (�

n

� a

2

)Q = i�

0

� F

0

+ �

n

F

n

, the Helmholtz projetion f

0

= Pf is then

given by

F

0

j

= F [f

0

j

℄ := F

j

� i�

j

Q; j = 1; : : : ; n� 1;

F

0

n

= F [f

0

n

℄ := F

n

� �

n

Q

(3.2)

But it remains to determine �; �. By di�erentiation

�

n

Q� F

n

= �

a

2

Z

1

�1

e

�ajx

n

�zj

sign(z � w)F

n+1

(�

0

; z)dz �

a

2

Z

1

�1

e

�ajx

n

�zj

F

n

(�

0

; z)dz

+�ae

ax

n

� �ae

�ax

n

and �

n

(�

n

Q� F

n

) = a

2

Q + aF

n+1

. From the boundary onditions we onlude

�ae

ax

n

=

a

2(1� e

�4a

)

�

Z

1

�1

e

�a(2�x

n

�z)

(F

n

(�

0

; z)� F

n+1

(�

0

; z))dz

�

Z

1

�1

e

�a(4+z�x

n

)

(F

n

(�

0

; z) + F

n+1

(�

0

; z))dz

�
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and

�ae

�ax

n

=

a

2(1� e

�4a

)

�

Z

1

�1

e

�a(4�z+x

n

)

(F

n

(�

0

; z)� F

n+1

(�

0

; z))dz

�

Z

1

�1

e

�a(2+x

n

+z)

(F

n

(�

0

; z) + F

n+1

(�

0

; z))dz

�

These terms are of the type

R(�

0

; x

n

) =

Z

1

�1

k(�

0

; z; x

n

)F [g℄(�

0

; z)dz:

Hene P is a linear operation, and

kF

�1

[R℄(�; x

n

)k

L

p

(R

n�1

)

� C

p

Z

1

�1

[k(�; z; x

n

)℄kg(�; z)k

L

p

(R

n�1

)

dz:

As jzj; jx

n

j � 1 and the kernels are real analyti in a, we have [k(�; z; x

n

)℄

1

0

� .

Furthermore, for b(a) = (1 � e

�4a

)

�1

, we have [b℄

1

1

� . Together with Lemma 2.9,

we obtain [k(�; z; x

n

)℄ � ((2 + z + x

n

)

�1

+ (2 � z � x

n

)

�1

), and by Lemma 2.6

kF

�1

[R℄k

p

� C

p

kfk

p

. For the �rst two terms of �

n

Q � F

n

, we use Lemma 2.5 to

onlude �nally









��

�x

n

� f

n









p

� C

p

kfk

p

:

For later purposes, let us note that

2a

�1

F

0

n

(�

0

; x

n

) =

Z

1

�1

k

n

(a; x

n

; z)F

n

(�

0

; z)dz +

Z

1

�1

k

n+1

(a; x

n

; z)F

n+1

(�

0

; z)dz (3.3)

with

k

n

(a; w; z) =

e

�ajw�zj

+ (1� e

4a

)

�1

�

e

�a(4�z+w)

� e

�a(2+w+z)

� e

�a(2�w�z)

+ e

�a(4+z�w)

�

and

k

n+1

(a; w; z) = e

�ajw�zj

sign(z � w)� (1� e

�4a

)

�1

�

e

�a(4�z+w)

+ e

�a(2+w+z)

�e

�a(2�w�z)

� e

�a(4+z�w)

�

:

Note that these kernels are analyti in a (uniformly for jzj; jwj � 1).

Now for j = 1; : : : ; n� 1,

�i�

j

Q(�

0

; x

n

) =

a

2

Z

1

�1

e

�ajx

n

�zj

i�

j

j�

0

j

F

n+1

(�

0

; z)dz

+

a

2

Z

1

�1

e

�ajx

n

�zj

sign(z � x

n

)

i�

j

j�

0

j

F

n

(�

0

; z)dz

��ae

ax

n

i�

j

j�

0

j

� �ae

�ax

n

i�

j

j�

0

j

:
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This is obviously a sum of terms of the same type as in �

n

Q � F

n

with F

n

; F

n+1

substituted by

i�

j

j�

0

j

F

n

, �

�

j

j�

0

j

F

n+1

, respetively. Hene also







�q

�x

j







p

� C

p

kfk

p

; j =

1; : : : ; n � 1. Thus P : L

p

(
)

n

! L

p

(
)

n

is ontinuous. For the uniqueness of the

deomposition, we refer to [13℄.

Beause of the onstrution, div f

0

= 0, f

0

n

j

�


= 0, and P

2

f = Pf . Therefore P

extends to a ontinuous projetion P : L

p

(
)

n

! L

p;�

(
) suh that Pf = f �rq.

It remains to prove a loal estimate for q. Take a uto� funtion ' with '(t) = 1

for t � 1 and ' � 0 for t � 2. Let

Q = '(a)Q +

�

1� '(a)

a

�

Qa = Q

1

+Q

2

:

Now (1� '(a))=a is a multiplier on R

n�1

with [(1� '(a))=a℄ � , hene

kF

�1

[Q

2

℄k

p

� C

p

kF

�1

[Qa℄k

p

� C

p

kfk

p

;

as shown above. Next Q

1

is of the type

Q

1

(�

0

; x

n

) =

n

X

j=1

Z

1

�1

'(a)k

j

(a; x

n

; z)F

j

(z)dz �

'(a)

2a

Z

1

�1

F

n+1

(z)dz

with ['(�)k

j

(�; x

n

; z)℄ �  uniformly. Inverting,

q = q

0

+

Z

1

�1

n�1

X

j=1

F

�1

�

'(a)

a

2

�

j

�

� f

j

(�; z)dz

with kq

0

k

p

� kfk

p

; krq

0

k

p

� kfk

p

. As F

�1

[

'(a)

a

2

�

j

℄ is smooth and bounded if n � 3,

the onvolution is well de�ned for f

j

2 C

1

0

in that ase. If n = 2, q(x) is well de�ned

sine it is determined up to an onstant by �

2

q(x) 2 L

q

(
). Hene q = q

0

+ q

1

(x

0

)

with kr

x

0

q

1

k

L

p

(R

n�1

)

� Ckf

0

k

p

. The loal estimates follow now by Lemma 2.7.

It is well-known that the existene of the Helmholtz deomposition of L

p

(
),

1 < p <1, is equivalent to the unique solvability of the weak Neumann problem for

the Laplae equation, i.e., for every f 2 (

_

W

1

p

0

(
))

0

there is a unique u 2

_

W

1

p

(
) suh

that

hru;rvi = hf; vi for all v 2

_

W

1

p

0

(
); (3.4)

f. e.g. [16℄. Moreover, kruk

p

� C

p

kfk

(

_

W

1

p

0

(
))

0

. This will be used in the proof of the

following lemma.

Lemma 3.3 Let 1 < p <1. Then C

1

(0)

(
)\

^

W

�1

p

(
) is dense in W

1

p

(
)\

^

W

�1

p

(
).

Proof: Let g 2 W

1

p

(
) \

^

W

�1

p

(
) be arbitrary. Sine g 2 (

_

W

1

p

0

(
))

0

and by (3.4),

there is a u 2 L

p

(
) suh that

hg; vi = hru;rvi; for all v 2

_

W

1

p

0

(
): (3.5)
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Moreover, sine even g 2 W

1

p

(
), approximation of �

j

u, �

i

�

j

u, i; j = 1; : : : ; n � 1,

by di�erene quotients yields that �

j

u; �

i

�

j

u 2 L

p

(
). Using (3.5) we obtain also

�

n

u; �

n

ru 2 L

p

(
) and therefore u 2 W

2

p

(
). Furthermore, (3.5) yields �u = g

almost everywhere and �

n

uj

�


= 0.

Now let  2 C

1

0

(R

n�1

) with  (0) = 1 and set g

R

(x) = div( (Rx

0

)ru). Then

g

R

2 W

1

p

(
)\

^

W

�1

p

(
) and lim

R!1

g

R

= g inW

1

p

(
)\

^

W

�1

p

(
). Sine g

R

is ompatly

supported, [4, Lemma 2.8℄ implies that

Z

g

R

dx = 0 if 1 < p �

n� 1

n� 2

:

Hene, if 1 < p �

n�1

n�2

, we an �nd g

k;R

2 C

1

(0)

(
) with

R

g

k;R

dx = 0 suh that

lim

k!1

g

k;R

= g

R

in W

1

p

(
). Sine

R

g

R

dx =

R

g

k;R

dx = 0, this implies that

lim

k!1

g

k;R

= g

R

in

^

W

�1

p

(
) by Poinaré's inequality. In the ase p >

n�1

n�2

, by [4,

Lemma 2.8℄ every h 2 L

p

(
) with support in B

R

(0) is in

^

W

�1

p

(
) and khk

^

W

�1

p

(
)

�

C

R

khk

p

. Hene, if g

k;R

2 C

1

(0)

(
) suh that lim

k!1

g

k;R

= g

R

in W

1

p

(
), also

lim

k!1

g

k;R

= g

R

in

^

W

�1

p

(
).

In partiular, we have proved that C

1

(0)

(
) \ fg :

R

gdx = 0g if 1 < p �

n�1

n�2

and

C

1

(0)

(
) if p >

n�1

n�2

are dense in W

1

p

(
) \

^

W

�1

p

(
).

4 Laplae Resolvent Equation

We onsider

(���)u = f in 
; (4.1)

uj

�


= 0 on �
: (4.2)

In order to prove the estimates of Theorem 1.1, we will use the orresponding state-

ments for the latter system.

THEOREM 4.1 Let 1 < q � r < 1, n � 2, and let " > 0. Then for every

� 2 C n (�1;

�

2

4

℄ and f 2 L

q

(
) there is a unique solution u 2 W

2

q

(
) of (4.1)-(4.2).

Moreover,

�

�

�

�

�+

�

2

4

�

�

�

�

�

kuk

q

+ (1 + j�j)

�

1

2

kruk

q

+ (1 + j�j)

�1

kr

2

uk

q

�

� C

"

kfk

q

;

�

�

�

�

�+

�

2

4

�

�

�

�

1�

n�1

2

(

1

q

�

1

r

)

(1 + j�j)

�

1

2

(

1

q

�

1

r

)

kuk

r

� C

"

kfk

q

uniformly in � 2 S

"

provided that

n�1

2

�

1

q

�

1

r

�

� 1.
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First we alulate the solution u for f 2 C

1

0

(
) and estimate the solution operator.

Then the general ase is obtained by ontinuous extension to L

p

(
). Using partial

Fourier transformation, (4.1)-(4.2) redues to

(�+ j�

0

j

2

� �

2

n

)U = F in (�1; 1); (4.3)

U j

x

n

=�1

= 0 (4.4)

for �

0

2 R

n�1

and � 2 S

"

, where U(�

0

; x

n

) = F

x

0

7!�

0

[u(:; x

n

)℄ and F (�

0

; x

n

) =

F

x

0

7!�

0

[f(:; x

n

)℄. The solution of this boundary value problem is given by

U(�

0

; x

n

) =

Z

1

�1

k(�; x

n

; z

n

)F (�

0

; z

n

)dz

n

;

where

k(�; x

n

; z

n

)

=

1

2�(1� e

�4�

)

�

e

��(2�x

n

�z

n

)

+ e

��(2+x

n

+z

n

)

� e

��jx

n

�z

n

j

� e

��(4�jx

n

�z

n

j)

�

with � as in Lemma 2.8. Sine �

2

= � + j�

0

j

2

= (��)

2

, we obtain k(��; x

n

; z

n

) =

k(�; x

n

; z

n

). Moreover, it is easy to observe that k(�; x

n

; z

n

) is holomorphi in C nf

il�

2

:

l 2 Z; l 6= 0g and depends smoothly on x

n

; z

n

2 R. Sine k(�; x

n

; z

n

) has a pole of

�rst order for � = �i

�

2

and k(��; x

n

; z

n

) = k(�; x

n

; z

n

), we have

k(�; x

n

; z

n

) =

k

0

(�

2

; x

n

; z

n

)

�

2

+

�

2

4

for all � suh that �

2

2 B

�

2

(0)

where k

0

(z; x

n

; z

n

) is holomorphi in z 2 B

�

2

(0).

Lemma 4.2 Let � = �(�; �

0

) be as in Lemma 2.8 with j�j < �. Moreover, let " > 0,

� 2 [0; 1℄, and let � 2 (0; 1). Then

j�

�

�

0

k(�; x

n

; z

n

)j � C

�;�;"

�

�

�

�

�+

�

2

4

�

�

�

�

�1+�

j�

0

j

�2��j�j

for all � 2 S

"

and �

0

2 R

n�1

suh that j�j � �� and uniformly in x

n

; z

n

2 [�1; 1℄.

Proof: First of all,

�

�

�

0

"

1

�

2

+

�

2

4

#

=

j�j

X

k=dj�j=2e

p

k

(�

0

)

�

�+ j�

0

j

2

+

�

2

4

�

1+k

where p

k

(�

0

) is a homogeneous polynomial of degree 2k � j�j. Hene

�

�

�

�

�

�

�

�

0

"

1

�

2

+

�

2

4

#

�

�

�

�

�

�

j�j

X

k=dj�j=2e

C

k

j�

0

j

2k�j�j

j�+ �

2

=4 + j�

0

j

2

j

1+k

�

j�j

X

k=dj�j=2e

C

k;"

j�j

2k�j�j

(j�+ �

2

=4j+ j�

0

j

2

)

1+k

�

C

�;"

j�+ �

2

=4j

(1��)

j�

0

j

�2��j�j
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where we have used j

~

�+j�

0

j

2

j � 

�

(j

~

�j+j�

0

j

2

) for all

~

� 2 �

�

and some � = �(") 2 (0; �),

whih is a onsequene of (2.6). Moreover, sine k

0

(z; x

n

; z

n

) is holomorphi in B

�

2

(0)

and smooth in x

n

; z

n

2 R, j�

�

�

0

k

0

(�

2

; x

n

; z

n

)j � C

�

for all � 2 S

"

and �

0

2 R

n�1

suh

that j�j � ��. Hene the statement of the lemma is a onsequene of the produt

and hain rule.

Proof of Theorem 4.1: Let ' 2 C

1

0

(R) be suh that '(s) = 1 for jsj �

1

2

�

2

and

supp' � B

3

4

�

2

(0). Then U = U

1

+ U

2

, where

U

j

(�

0

; x

n

) =

Z

1

�1

k

j

(�; x

n

; z

n

)F (�

0

; z

n

)dz

n

; j = 1; 2;

k

1

(�; x

n

; y

n

) = '(j�

2

j)k(�; x

n

; y

n

) and k

2

(�; x

n

; y

n

) = (1� '(j�

2

j))k(�; x

n

; y

n

). Sine

j�

�

�

0

'(j�

2

j)j � C

�

, we have for � 2 [0; 1℄ by Lemma 4.2

j�

�

�

0

k

1

(�; x

n

; y

n

)j �

C

�;"

j�+ �

2

=4j

(1��)

j�

0

j

�2��j�j

uniformly in �

0

2 R

n�1

, � 2 S

"

, and x

n

; z

n

2 [�1; 1℄. Hene





F

�1

�

0

7!x

0

[U

1

(�

0

; x

n

)℄





r

� C sup

x

n

2[�1;1℄

kF

�1

�

0

7!x

0

[k

1

(�; :; z

n

)F (�

0

; :)℄k

r;


� C

";q;r

�

�

�

�

�+

�

2

4

�

�

�

�

�1+

n�1

2

(

1

q

�

1

r

)

kfk

q;


:

by Theorem 2.2, where we have hosen � =

n�1

2

�

1

q

�

1

r

�

. Moreover, if � 2 N

n�1

0

,

j�j � 2, we get by hoosing � = j�j=2







�

�

x

0

F

�1

�

0

7!x

0

[U

1

(�

0

; x

n

)℄







q

� C sup

x

n

2[�1;1℄

kF

�1

�

0

7!x

0

[(�

0

)

�

k

1

(�; x

n

; :)F (�

0

; :)℄k

q

� C

";q

�

�

�

�

�+

�

2

4

�

�

�

�

�1+�

kfk

q

� C

";q

�

�

�

�

�+

�

2

4

�

�

�

�

�1

(1 + j�j)

j�j

2

kfk

q

sine k

1

(�; x

n

; z

n

) = 0 for j�j � �

2

. Beause of (4.3),





�

2

x

n

F

�1

�

0

7!x

0

[U

1

(�

0

; x

n

)℄





q

� C

"

(1 + j�j)

�

�

�

�

�+

�

2

4

�

�

�

�

�1

kfk

q

:

Using k�

n

vk

q

� Ckvk

1

2

q

(kvk

q

+ k�

2

n

vk

q

)

1

2

for v 2 W

2

q

(
), we obtain the orresponding

estimate for �

x

n

F

�1

�

0

7!x

0

[U

1

(�

0

; x

n

)℄.

In order to estimate U

2

(�

0

; x

n

), we use

F

�1

�

0

7!x

0

�

(1� '(j�

2

j))

Z

1

�1

e

��(2�x

n

�z

n

)

2�(1� e

�4�

)

F (�

0

; z

n

)dz

n

�

= �

�1

F

�1

� 7!x

�

(1� '(j�

2

j))

(1� e

�4�

2

)(�+ j�j

2

)

F

x7!�

[�

�1

ef ℄

�

;
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where (�

y

f)(x) = f(x+ y) and ef denotes the extension by 0 of f to R

n

. Beause of

(2.6) and 1� '(j�

2

j) = 0 if j�j

2

�

1

2

�

2

,

�

�

�

(1� '(j�

2

j))

(1� e

�4�

)(�+ j�j

2

)

�

� C

"

(1 + j�j)

�1+

j�j

2

for every j�j � 2 uniformly in � 2 S

"

, " > 0. Hene we obtain by Theorem 2.1









D

�

x

F

�1

�

0

7!x

0

�

(1� '(j�

2

j))

Z

1

�1

e

��(2�x

n

�z

n

)

2�(1� e

�4�

)

F (�

0

; z

n

)dz

n

�









q

� C

";q

(1 + j�j)

�1+

j�j

2

kfk

q

uniformly in � 2 S

"

for all j�j � 2 and 1 < q < 1. In the same way, we obtain by

Theorem 2.2









F

�1

�

0

7!x

0

�

(1� '(j�

2

j))

Z

1

�1

e

��(2�x

n

�z

n

)

2�(1� e

�4�

)

F (�

0

; z

n

)dz

n

�









r

� C

"

(1 + j�j)

�1+

n

2

(

1

q

�

1

r

)

kfk

q

uniformly in � 2 S

"

for all 1 < q � r <1. Moreover,

e

��jx

n

�z

n

j

+ e

��(4�jx

n

�z

n

j)

2�(1� e

�4�

)

=

e

��jx

n

�z

n

j

2�

+

e

��(4�x

n

+z

n

)

+ e

��(4+x

n

�z

n

)

2�(1� e

�4�

)

;

where

F

�1

�

0

7!x

0

�

(1� '(j�

2

j))

Z

1

�1

e

��jx

n

�z

n

j

2�

F (�

0

; z

n

)dz

n

�

= F

�1

� 7!x

�

1� '(j�

2

j)

�+ j�j

2

F

x7!�

[ef ℄

�

;

and

F

�1

�

0

7!x

0

�

(1� '(j�

2

j))

Z

1

�1

e

��(4�x

n

�z

n

)

2�(1� e

�4�

)

F (�

0

; z

n

)dz

n

�

= �

�2

F

�1

� 7!x

�

(1� '(j�

2

j))

(1� e

�4�

)(�+ j�j

2

)

F

x7!�

[�

�2

ef ℄

�

:

Hene the last terms an be estimated as before.

It remains to prove the uniqueness of the solution. Let �

q

: D(�

q

) ! L

q

(
),

1 < q < 1, with D(�

q

) = fu 2 W

2

q

(
) : uj

�


= 0g. Then � � �

q

is surje-

tive for every � 2 C n (�1; �

2

=4℄ by the �rst part of the proof. Moreover, sine

(���

q

)

0

� ���

q

0

, the adjoint of ���

q

is surjetive. Hene ���

q

is injetive for

every � 2 C n (�1; �

2

=4℄, whih �nishes the proof.

5 Proof of Theorem 1.1

We may start with two simpli�ations. First we may restrit ourselves to f 2 C

1

0

(
)

and g 2 C

1

(0)

(
)\

^

W

�1

p

(
) by Lemma 3.3. Next we may use the Helmholtz deompo-

sition f = f

0

+rq, where f

0

is de�ned expliitly via its partial Fourier transformation
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F

0

, being well de�ned and smooth. The pressure part may be absorbed on the left

side. Hene we may assume for simpliity that f = f

0

. Thus applying the partial

Fourier transformation we have to solve (with a = j�

0

j)

(�+ a

2

)U

0

� �

2

n

U

0

+ i�

0

Q = F

0

; (5.1)

(�+ a

2

)U

n

� �

2

n

U

n

+ �

n

Q = F

n

; (5.2)

�

n

U

n

+ i�

0

� U

0

= G; (5.3)

U j

x

n

=�1

= 0; (5.4)

where U

0

= (U

1

; : : : ; U

n�1

) and F

0

= (F

1

; : : : ; F

n�1

). Di�erentiating (5.2) with respet

to x

n

, multiplying (5.1) by i�

0

and adding, we obtain

(�+ a

2

)G� �

2

n

G� a

2

Q+ �

2

n

Q = 0:

Hene

�

2

n

(Q�G)� a

2

(Q�G) = ��G: (5.5)

Thus we de�ne

Q(�

0

; x

n

) = G(�

0

; x

n

) +

�

2a

Z

1

�1

e

�ajx

n

�wj

G(�

0

; w)dw +

A

a

e

ax

n

�

B

a

e

�ax

n

(5.6)

with parameters A;B to be hosen below. Setting

L

j

:= i�

j

Q� F

j

; j = 1; : : : ; n� 1; L

n

:= �

n

Q� F

n

(5.7)

we may solve

�

2

n

U

j

� (�+ a

2

)U

j

= L

j

; U

j

= 0 on z = �1 for j = 1; : : : ; n: (5.8)

It remains to satisfy (5.3). Let R := i�

0

�U

0

+�

n

U

n

�G. We have to show that R � 0.

Now

�

n

R = i�

0

� �

n

U

0

+ (�

2

n

U

n

� �

n

Q) + �

n

(Q�G)

= i�

0

� �

n

U

0

+ (�+ a

2

)U

n

� F

n

+ �

n

(Q�G) and

�

2

n

R = i�

0

� �

2

n

U

0

+ (�+ a

2

)�

n

U

n

� �

n

F

n

+ �

2

n

(Q�G)

= (i�

0

� U

0

+ �

n

U

n

)(�+ a

2

)� a

2

Q� (i�

0

� F

0

+ �

n

F

n

) + �

2

n

(Q�G)

= (�+ a

2

)R

by (5.5) and div f = 0. Therefore, with � as de�ned in Lemma 2.8,

R = R(�

0

; x

n

) = a(�

0

)e

�x

n

+ b(�

0

)e

��x

n

for � 6= 0

resp. = a(�

0

)x

n

+ b(�

0

) for � = 0

Suppose we an hoose A;B suh that R(�

0

;�1) = 0. Then R � 0, as e

4�

� 1 6= 0

due to �+ j�

0

j

2

6=

k

2

4

�

2

(the ase � = 0 is trivial), hene the laim follows.
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A and B will of ourse depend on �

0

and �, and we have to alulate them in

order to estimate the solution. Skipping the �

0

-dependene, we get from (5.2) and

(5.4)

�

n

U

n

(z)e

��z

j

1

�1

=

Z

1

�1

(�

2

n

U

n

(z)� �

2

U

n

(z))e

��z

dz =

Z

1

�1

(�

n

Q(z)� F

n

(z))e

��z

dz

= Q(z)e

��z

�

�

1

�1

�

Z

1

�1

(��Q(z) + F

n

(z))e

��z

dz

hene

R(z)e

��z

j

1

�1

= (Q(z)�G(z))e

��z

j

1

�1

�

Z

1

�1

(��Q(z) + F

n

(z))e

��z

dz

Again due to e

4�

� 1 6= 0, the right-hand sides should vanish for +� as well as for

��. For the "+"-sign, this means

0 =

�

2a

�

Z

1

�1

e

�a(1�x)+�

G(x)dx�

Z

1

�1

e

�a(1+x)��

G(x)dx

�

+

A

a

�

e

a+�

� e

�(a+�)

�

�

B

a

�

e

��a

� e

�(��a)

�

�

Z

1

�1

F

n

(z)e

�z

dz � �

Z

1

�1

Q(z)e

�z

dz

Calulating the last term:

Z

1

�1

Q(z)e

�z

dz =

Z

1

�1

G(z)e

�z

dz +

�

2a

Z

1

�1

Z

1

�1

e

�ajw�zj

G(w)e

�z

dwdz

+

A

a

Z

1

�1

e

(a+�)z

dz �

B

a

Z

1

�1

e

(�a+�)z

dz

and noting that

Z

1

�1

e

�ajw�zj

e

�z

dz = �

2a

�

e

�w

+ e

aw

e

��a

�� a

� e

�aw

e

�(�+a)

�+ a

we get

Z

1

�1

Q(z)e

�z

dz =

�

2a

Z

1

�1

�

e

aw

e

��a

�� a

� e

�aw

e

�(�+a)

�+ a

�

G(w) dw

+

A

a

�

e

a+�

a+ �

�

e

�(a+�)

a+ �

�

�

B

a

�

e

��a

�� a

�

e

�(��a)

�� a

�

:

Inserting, we end with

AÆ

+

+BÆ

�

=

Z

1

�1

F

n

(�

0

; x)e

�x

dx+

1

2

Z

1

�1

�G(�

0

; x)k(�

0

; x)dx;
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where k(�

0

; x) = e

ax

e

��a

��a

+ e

�ax

e

�(�+a)

�+a

and Æ

�

:= (e

��a

� e

�(��a)

)=(�� a).

Changing from � to��, Æ

+

goes over to Æ

�

and vie versa and the seond ondition

is

AÆ

�

+BÆ

+

=

Z

1

�1

F

n

(�

0

; x)e

��x

dx�

1

2

Z

1

�1

�G(�

0

; x)k(�

0

;�x)dx:

Finally,

A =

Z

1

�1

F

n

(�

0

; x)H(�; x)dx+

1

2

Z

1

�1

�G(�

0

; x)K(�

0

; x)dx (5.9)

B =

Z

1

�1

F

n

(�

0

; x)H(�

0

;�x)dx�

1

2

Z

1

�1

�G(�

0

; x)K(�

0

;�x)dx (5.10)

with

H(�

0

; x) = (Æ

+

e

�x

� Æ

�

e

��x

)=D and

K(�

0

; x) = (Æ

+

k(�

0

; x) + Æ

�

k(�

0

;�x))=D

where D = Æ

2

+

� Æ

2

�

. Thus (5.6) - (5.10) gives the expliit solution of our problem.

Now we may start to estimate the quantities of (5.7) after inverting the partial

Fourier transformation. Obviously,

kF

�1

[�

n

G℄k

p

+ kF

�1

[i�

0

G℄k

p

� krgk

p

:

Next, multiplying by i�

j

and di�erentiating with respet to x

n

, resp., we have to

treat the following three types of integrals

h

1

(x

0

; x

n

) = F

�1

�

Z

1

�1

e

�j�

0

jjw�x

n

j

�(w � x

n

)�G(�

0

; w)dw

�

(5.11)

h

2

(x

0

; x

n

) = F

�1

�

Z

1

�1

e

�j�

0

jx

n

F

n

(�

0

; w)H(�

0

; w)dw

�

(5.12)

h

3

(x

0

; x

n

) = F

�1

�

Z

1

�1

e

�j�

0

jx

n

�G(�

0

; w)K(�

0

; w)dw

�

(5.13)

with �(t) = sign t or �(t) = 1. We start with

Lemma 5.1 Let h

1

be de�ned as in (5.11) and let 1 < p <1. Then

kh

1

k

L

p

(
)

� C

p

k�gk

^

W

�1

p

for all g 2 C

1

(0)

(
) \

^

W

�1

p

(
):

Proof: Let ' 2 C

1

0

(
). De�ne  by

F [ ℄(�

0

; x

n

) =

Z

1

�1

e

�j�

0

jjx

n

�zj

�(x

n

� z)F ['℄(�

0

; z)dz:
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Then

Z




�g(x

0

; x

n

) (x

0

; x

n

)d(x

0

; x

n

)

=

Z

R

n�1

Z

1

�1

Z

1

�1

�G(�

0

; x

n

)e

�j�

0

jjx

n

�zj

�(x

n

� z)F ['℄(�

0

; z)dx

n

dzd�

0

=

Z

R

n�1

Z

1

�1

F [h

1

℄(�

0

; z)F ['℄(�

0

; z)dzd�

0

=

Z




h

1

(x

0

; x

n

)'(x

0

; x

n

)dx

As for j = 1; : : : ; n� 1

F

�

� 

�x

j

�

(�

0

; x

n

) =

Z

1

�1

e

�j�

0

jjx

n

�zj

j�

0

j�(x

n

� z)

i�

j

j�

0

j

F ['℄(�

0

; z)dz;

F

�

� 

�x

n

�

(�

0

; x

n

) =

Z

1

�1

e

�j�

0

jjx

n

�zj

j�

0

j sign(z � x

n

)�(w � x

n

)F ['℄(�

0

; z)dz

(+2F ['℄(�

0

; x

n

) in the ase of �(t) = sign t) ;

Lemma 2.5 implies that kr k

p

0

� C

p

k'k

p

0

. Therefore

�

�

R




h

1

� 'dx

�

�

� C

p

k�gk

^

W

�1

p

�

k'k

p

0

, whih implies the laim.

The most important estimates are ontained in the following lemma.

Lemma 5.2 Let h

2

be de�ned as in (5.12) and let 1 < p <1. Then

kh

2

k

p

� C

p

kfk

p

for all f 2 C

1

0

(
):

Proof: Here we need a little trik in splitting the phase spae into two parts, de-

pending on the size of j�j. Therefore let M := maxf

1

4

j�j

1=2

; a

"

g with a

"

� � as in

Lemma 2.10. Moreover, we hoose a ut-o� funtion �

M

(a), whih vanishes outside

[0; 2M ℄ and equals 1 on [0;M ℄. We may assume that 0 � �

M

(a) � 1 and [�

M

℄ � C,

independent of M . Now we split h

2

= h

1

2

+ h

2

2

with

h

j

2

(x

0

; x

n

) = F

�1

�

Z

1

�1

e

�ax

n

F

n

(�

0

; w)H

j

(�; w)dw

�

; j = 1; 2;

where H

1

(�

0

; w) = (1 � �

M

(a))H(�

0

; w) and H

2

(�

0

; w) = �

M

(a)H(�

0

; w). If we now

set

H

3

(�

0

; w) = �

M

(a)a(�D)

�1

(Æ

+

e

�w

+ Æ

�

e

��w

);

then

�H

3

�w

(�

0

; w) = H

2

(�

0

; w)a:

Sine F

n

(�

0

;�1) = 0 and ��

n

F

n

= i�

0

� F

0

, one gets

h

2

2

(x

0

; x

n

) = F

�1

�

Z

1

�1

e

�ax

n

i�

0

j�

0

j

� F

0

(�

0

; w)H

3

(�

0

; w)dw

�

:
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Thus by Theorem 2.1

kh

2

(�; x

n

)k

L

p

(R

n�1

)

� C

p

Z

1

�1

[e

�ax

n

H

1

(�

0

; w)℄kf

n

(�; w)k

L

p

(R

n�1

)

dw

+C

p

Z

1

�1

[e

�ax

n

H

3

(�

0

; w)℄kf

0

(�; w)k

L

p

(R

n�1

)

dw

By (2.1) and the de�nition of �

[e

az

H

1

(�

0

; w)℄ � C

X

+;�

[D

�1

e

az

Æ

�

e

��w

℄

1

M

and (5.14)

[e

az

H

3

(�

0

; w)℄ � C

X

+;�

[D

�1

(a�

�1

)e

az

Æ

�

e

��w

℄

2M

0

: (5.15)

We will show that the right-hand sides are bounded by C(2�z�w)

�1

+C(2�z+w)

�1

.

Then the statements of the lemma is a onsequene of Lemma 2.6.

In order to prove (5.14), we write the multipliers as a produt m

1

�m

2

with

m

1

= ae

a(z�1)+�(�w�1)

and m

2

= (e

a+�

Æ

�

)(aD)

�1

:

Sine a �M = maxf

1

4

j�j

1=2

; a

"

g � �, we have [m

1

℄

1

M

� C

"

(2�z�w)

�1

by Lemma 2.9.

Instead of estimation m

2

, we may as well estimate

m

�

2

= e

a+�

(Æ

+

� Æ

�

)(aD)

�1

= a

�1

(Æ

+

� Æ

�

)

�1

e

a+�

as D = Æ

2

+

� Æ

2

�

, whih was done in Lemma 2.10.

For the proof of (5.15), suppose �rst that

1

4

j�j

1=2

� a

"

, whih implies a �

1

2

j�j

1=2

.

Similarly as before, the neessary estimates follow from the estimates of

h

a

�

e

az+�w

(Æ

+

�Æ

�

)

i

2M

0

(and by symmetry also for �w), as D = Æ

2

+

� Æ

2

�

. For the ase of the "+"-sign, we

fator into

ae

a(z�1)+�(w�1)

and �

�1

(Æ

+

+ Æ

�

)

�1

e

a+�

:

For the "-"-sign, we take the fators

(1 + a)e

a(z�1)+�(w�1)

and �

�1

a

1 + a

(Æ

+

� Æ

�

)

�1

e

a+�

on [0; 2M ℄. All these terms were estimated in Lemma 2.9 and Lemma 2.10.

For the seond part we have to onsider the other possibility j�j

1=2

=4 � a

"

=M ,

where now a

"

is �xed. Then we do not hange the original form of h

2

2

, but still

onsider

h

2

2

(x

0

; x

n

) = F

�1

�

Z

1

�1

e

�ax

n

F

n

(�

0

; w)�

M

(a)H(�

0

; w)dw

�

The ruial observation now is that, beause of (3.3) and F

n

= F

0

n

, F

n

(�

0

; w) ontains

fator a = j�

0

j! Hene we estimate

kh

2

2

(�; x

n

)k

p

� C

p

Z

1

�1

[aH(�

0

; w)e

�ax

n

℄

2M

0





F

�1

�

F

n

(�

0

; w)a

�1

�

M

(a)

�





p

dw
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For the seond fator, (3.3) and M = a

"

imply for all jwj � 1 that





F

�1

�

F

n

(�

0

; w)a

�1

�

M

(a)

�





p

� C

p

(M)kfk

p

As M = a

"

is �xed, we only need to show, that [aH(�

0

; w)e

�ax

n

℄

2M

0

� C (uniformly

for jx

n

j; jwj � 1) whih follows from [aH(�

0

; w)℄

2M

0

� .

Now aH(�

0

; w) = a(Æ

+

e

�w

� Æ

�

e

��w

)=D. As Æ

+

e

�w

� Æ

�

e

��w

is odd in � and

analyti in a and �, one gets

Æ

+

e

�w

� Æ

�

e

��w

= �Z

w

(a; �

2

)

with Z

w

(a; b) analyti in a; b. Thus

[aH(�

0

; w)℄

2M

0

� [Z

w

(a; �+ a

2

)℄

2M

0

� [a�=D℄

2M

0

and the onlusion follows with the help of Lemma 2.11.

Lemma 5.3 Let h

3

be de�ned as in (5.13) and let 1 < p <1. Then

kh

3

k

p

� C

�

krgk

p

+ (1 + j�j)kgk

^

W

�1

p

�

for all g 2 C

1

(0)

(
) \

^

W

�1

p

(
):

Proof: Remember that

h

3

(x

0

; x

n

) = F

�1

�

Z

1

�1

�e

�ax

n

K(�

0

; w)G(�

0

; w)dw

�

with K(�

0

; w) = (Æ

+

k(�

0

; w) + Æ

�

k(�

0

;�w))=D and

k(�

0

; w) = e

aw

e

��a

�� a

+ e

�aw

e

�(�+a)

�+ a

:

Due to � = (�� a)(�+ a), there is no singularity for � = a.

We use the same ut-o� funtion �

M

(a) as in the proof of the previous lemma to

split h

3

into h

1

3

+h

2

3

, where the support of the multiplier in h

2

3

is ontained in [0; 2M ℄,

and M = maxfj�j

1=2

=4; a

"

g.

Let us estimate h

1

3

�rst. Using (2.1)

[�a

�1

e

az

K(�; w)℄

1

M

� [e

a+�

Æ

�

a

�1

D

�1

℄

1

M

[ae

a(z�w�2)

℄

1

M

��

�a

�1

e

a��

e

��a

�� a

�

1

M

+

�

�a

�1

e

a��

e

���a

�+ a

�

1

M

�

The �rst fator is bounded by a onstant beause of Lemma 2.10, the seond by

C(2� z � w)

�1

beause of Lemma 2.9. The last fator may be simpli�ed to

�

�+ a

a

�

1

M

+

�

�� a

a

e

�2�

�

1

M

;
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whih is bounded due to Lemma 2.9. Thus

kh

1

3

(�; x

n

)k

L

p

(R

n�1

)

� C

p

Z

1

�1

(2� x

n

� w)

�1

kF

�1

[aG℄(�; w)k

L

p

(R

n�1

)

dw:

As kF

�1

[aG℄(�; w)k

L

p

(R

n�1

)

� C

p

krg(�; w)k

L

p

(R

n�1

)

, the estimate for h

1

3

in L

p

(
) fol-

lows by Lemma 2.6.

Turning to h

2

3

, we have to estimate multipliers on [0; 2M ℄. Suppose �rst that

1

4

j�j

1=2

� a

"

and therefore j�j �

p

3a.

We alulate

�K(�

0

; w)e

az

= e

a(w+z)

�

e

2�

� e

�2�

�

D

�1

+e

�a(w�z)

�

�� a

�+ a

(1� e

�2��2a

)�

�+ a

�� a

(1� e

2��2a

)

�

D

�1

In order to apply Lemma 2.12, we estimate the multiplier of �Gj�

0

j

�1

, whih is

h(�

0

; w; z) =

�

e

2�+2a

� e

2a�2�

�

ae

a(w+z�2)

D�

+

�

�� a

�+ a

(e

2a

� e

�2�

)�

�+ a

�� a

(e

2a

� e

2�

)

�

ae

a(z�w�2)

D�

With � = (�� a)(�+ a), we estimate on [0; 2M ℄ using Lemma 2.9

[h(�

0

; w; z)℄

2M

0

�

C

2� w � z

�

e

2�+2a

D

�1

(�+ a)

�2

a

1 + a

�

2M

0

�

�+ a

�� a

(1� e

�4�

)

�

2M

0

+

C

2� z + w

�

e

2�+2a

D

�1

(�+ a)

�2

a

1 + a

�

2M

0

�

"

�

e

�2�

� e

�4��2a

�

�

�

�+ a

�� a

�

2

�

e

�2�

� e

�2a

�

#

2M

0

:

Beause of Lemma 2.9, Lemma 2.10, and

e

2�+2a

D

�1

(�+ a)

�2

a

1 + a

=

�

�

�+ a

�

2

�

�1

m

+

�

�1

a

1 + a

m

�

;

we onlude

�

e

2�+2a

D

�1

(�+ a)

�2

a

1+a

�

2M

0

� C

"

. The remaining terms an also be

estimated by Lemma 2.9. Hene we get

[h(�

0

; w; z)℄

2M

0

� (2� z � w)

�1

:

Now j�

0

j

�1

�h

�w

(�

0

; w; z) is of preisely the same struture, apart from a sign, whih

does not matter. Hene by Lemma 2.12, we get kh

2

3

k

p

� k�gk

^

W

�1

p

:
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It remains to onsider the ase j�j

1=2

� 4a

"

; a � 2a

"

. We alulate

�K(�

0

; w)e

az

= a

�1

e

az

a�

D

�

�

e

aw

e

2�

� e

�2�

�

+ e

�aw

Z

2

0

e

�ta

(e

t�

+ e

�t�

)dt+ ae

�aw

Z

2

0

e

�ta

e

t�

� e

�t�

�

dt

�

;

where by Lemma 2.11 [

a�

D

℄

2a

"

0

� , and the terms in brakets are analyti in a and �

2

.

Thus �K(�

0

; w)e

az

= a

�1

R(�

0

; w; z), with

�

�

�w

R(�

0

; w; z)j�

0

j

�1

�

2a

"

0

+[R(�

0

; w; z)℄

2a

"

0

� .

By Lemma 2.12, we get in this ase kh

2

3

k

p

� kgk

^

W

�1

p

. This �nishes the proof.

Combining Lemma 5.1-Lemma 5.3, we have proved that

krqk

p

� C

";p

�

kfk

p

+ krgk

p

+ (1 + j�j)kgk

^

W

�1

p

�

uniformly in � 2 S

"

, " > 0. Sine (���)u = f �rq, uj

�


= 0, Theorem 4.1 implies

the estimates for u stated in Theorem 1.1. Hene extending the solution operator by

ontinuity we have proved the solvability of (1.1)-(1.3) for every � 2 C n (�1;

�

2

4

℄.

Finally, it remains to prove uniqueness of the solution. Let A

p

= �P

p

�

p

with

D(A

p

) = D(�

p

) \ L

p;�

(
), 1 < p < 1, be the Stokes operator. Then, by the

solvability of (1.1)-(1.3), �+A

p

is surjetive for every � 2 C n(�1;

�

2

4

℄ and 1 < p <1.

Beause of (�+A

p

)

0

� �+A

p

0

, (�+A

p

)

0

is surjetive. Hene �+A

p

is injetive and

the solution of (1.1)-(1.3) is unique.
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