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Abstra
t

In the present 
ontribution we study the Stokes operator A

q

= �P

q

� on

L

q

�

(
), 1 < q < 1, where 
 is a suitable bounded or unbounded domain in

R

n

, n � 2, with C

1;1

-boundary. We present some 
onditions on 
 and the

related fun
tion spa
e and basi
 equations whi
h guarantee that 
 + A

q

for

suitable 
 2 R is of positive type and admits a bounded H

1

-
al
ulus. This

implies the existen
e of bounded imaginary powers of 
 + A

q

. Most domains

studied in the theory of Navier-Stokes like e.g. bounded, exterior, and aperture

domains as well as asymptoti
ally 
at layers satisfy the 
onditions. The proof

is done by 
onstru
ting an approximate resolvent based on the results of [3℄,

whi
h were obtained by applying the 
al
ulus of pseudodi�erential boundary

value problems. Finally, the result is used to proof the existen
e of a bounded

H

1

-
al
ulus of the Stokes operator A

q

on an aperture domain.
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1 Introdu
tion

In this arti
le we 
onsider the Stokes operator A

q

= �P

q

� on L

q

�

(
) with domain

D(A

q

) = ff 2 W

2

q

(
)

n

: f j

�


= 0g \ L

q

�

(
)

where P

q

: L

q

(
)

n

! L

q

�

(
) denotes the Helmholtz proje
tion, L

q

�

(
) := C

1

0;�

(
)

k:k

q

,

C

1

0;�

(
) := fu 2 C

1

0

(
)

n

: div u = 0g, and 
 � R

n

, n � 2, is a domain spe
i�ed

in Assumption 1.1 below. Properties of the Stokes operator are important for the

�
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1 INTRODUCTION 2

asso
iated instationary Stokes and Navier-Stokes equations. Sin
e the latter equa-

tions arise in mathemati
al 
uid me
hani
s, many di�erent kinds of bounded and

unbounded domains are of interest and have been studied.

The purpose of the present 
ontribution is to present some 
onditions on 
 and

the related fun
tion spa
es whi
h guarantee that 
 + A

q

for suitable 
 2 R is of

positive type and admits a bounded H

1

-
al
ulus w.r.t. Æ 2 (0; �). Here 
 + A

q

is of

positive type w.r.t. Æ if and only if �

Æ

[ f0g � �(�
� A

q

) and

k(�+ 
+ A

q

)

�1

k

L(L

q

�

(
))

�

C

q;Æ

j�j

; � 2 �

Æ

; (1.1)

where �

Æ

:= fz 2 C n f0g : j arg zj < Æg. { Note that, if Æ >

�

2

, (1.1) implies that

�
�A

q

generates a bounded, strongly 
ontinuous, analyti
 semi-group. { Moreover,

A := 
+ A

q

is said to admit a bounded H

1

-
al
ulus w.r.t. Æ if and only if

h(A) :=

1

2�i

Z

�

h(��)(�+ A)

�1

d� (1.2)

is a bounded operator satisfying

kh(A)k

L(L

q

�

(
))

� C

q;Æ

khk

1

for all h 2 H

1

(Æ); (1.3)

where H

1

(Æ) denotes the Bana
h algebra of all bounded holomorphi
 fun
tions

h : �

��Æ

! C , 
f. M
Intosh [25℄, and � is the negatively orientated boundary of

�

Æ

. We note that in order to prove (1.3) for all h 2 H

1

(Æ) it is suÆ
ient to show the

estimate for h 2 H(Æ), whi
h 
onsists of all h 2 H

1

(Æ) su
h that

jh(z)j � C

jzj

s

1 + jzj

2s

for all z 2 �

��Æ

for some s > 0, 
f. [8, Lemma 2.1℄. For h 2 H(Æ) the integral (1.2) is well-de�ned as

a Bo
hner integral.

The property of admitting a boundedH

1

-
al
ulus is a generalization of possessing

bounded imaginary powers sin
e h

y

(z) = z

iy

2 H

1

(Æ) for all Æ 2 (0; �), whi
h has

many important 
onsequen
es. In parti
ular, (1.3) for Æ >

�

2

yields the maximal

regularity of �
� A

q

by the result of Dore and Venni [13℄.

The resolvent estimate (1.1) with arbitrary Æ 2 (0; �), 1 < q <1 and 
 = 0, has

been proved for various kinds of domains 
 � R

n

, n � 2, 
f. Giga [19℄ for bounded

domains, Bor
hers and Sohr [9℄ and Bor
hers and Varnhorn [9℄ for exterior domains,

Farwig and Sohr [16℄ for aperture domains, Abels and Wiegner [6℄ for an in�nite

layer 
 = R

n�1

� (�1; 1), and Abels [2℄ for asymptoti
ally 
at layers. Moreover, see

Farwig and Sohr [15℄ for a general treatment and Des
h, Hieber, and Pr�uss [12℄ for

the 
ase of a half-spa
e R

n

+

and R

n

, where also the borderline 
ases q = 1;1 have

been studied.

The fa
t that A

q

possesses bounded imaginary powers and admits a bounded

H

1

-
al
ulus was proved by Giga [20℄, Giga and Sohr [21℄, and Noll and Saal [27℄ for
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bounded domains and for exterior domains in R

n

, n � 3, by Giga and Sohr [22℄ for

the half-spa
e R

n

+

, see also [12℄, and by Abels [5, 4, 3℄ for two-dimensional exterior

domains, an in�nite layer, and asymptoti
ally 
at layers.

In the following we will present an approa
h, proving (1.1) for large � and (1.3)

for suitable 
 simultaneously for a 
lass of domains, whi
h in
ludes all previously

mentioned 
ases provided that some auxiliary results are known. More pre
isely, we

make the following assumption.

Assumption 1.1 Let 1 < q < 1 and Æ 2 (0; �) be �xed. Moreover, let 
 � R

n

,

n � 2, be a domain satisfying the following 
onditions:

(A1) There is a �nite 
overing of 
 with relatively open sets U

j

, j = 1; : : : ; m,

su
h that U

j


oin
ides (after rotation) with a relatively open set of R

n




j

, where

R

n




j

:= f(x

0

; x

n

) 2 R

n

: x

n

> 


j

(x

0

)g, 


j

2 C

1;1

(R

n�1

). Moreover, suppose

that there are 
ut-o� fun
tions '

j

;  

j

2 C

1

b

(
), j = 1; : : : ; m, su
h that '

j

,

j = 1; : : : ; m, is a partition of unity,  

j

� 1 on supp'

j

, and supp 

j

� U

j

,

j = 1; : : : ; m.

(A2) The Helmholtz de
omposition is valid for L

r

(
)

n

with r = q; q

0

, i.e., for every

f 2 L

r

(
)

n

there is a unique de
omposition f = f

0

+rp with f

0

2 L

r

�

(
) and

p 2

_

W

1

r

(
). Moreover,

L

q

�

(
) = ff 2 L

q

(
)

n

: div f = 0; 


�

f = 0g: (1.4)

(A3) For every p 2

_

W

1

r

(
), r = q; q

0

, there is a de
omposition p = p

1

+ p

2

su
h that

p

1

2 W

1

r

(
), p

2

2 L

r

lo


(
) with rp

2

2 W

1

r

(
) and k(p

1

;rp

2

)k

1;r

� Ckrpk

r

.

We refer to Se
tion 2 below for the de�nitions of the fun
tion spa
es and the

normal tra
e 


�

.

Remark 1.2 First of all, we note that (A1) 
an be generalized to the 
ase of a lo
ally

�nite 
overing U

j

, j 2 N , if uniform bounds on 


j

; '

j

;  

j

in C

1;1

-norm are assumed

and if for every x 2 
 the number of sets U

j


ontaining x is bounded by a 
onstant

independent of x. Moreover, it is easy to see that (A1) is ful�lled for all kinds of

domains with C

1;1

-boundary mentioned above. We refer to [28, 15, 16, 26, 14, 2℄

for the validity of the Helmholtz de
omposition for these types of domains. The


hara
terization (1.4) holds as well in these 
ases ex
ept for an aperture domain if

q >

n

n�1

for whi
h the 
hara
terization is di�erent, 
f. [16, Lemma 3.1℄. The identity

(1.4) is used in Lemma 3.1 below. Moreover, (A3) is a te
hni
al 
ondition needed in

the proof of Lemma 4.2 below. It is satis�ed if the following extension property is

valid: For every p 2

_

W

1

q

(
) there is an extension ~p 2

_

W

1

q

(R

n

) su
h that ~pj




= p and

kr~pk

q

� Ckrpk

q

. This is the 
ase for every (";1)-domain, 
f. [10℄, in parti
ular, for

exterior domains. This extension property does not hold for layer-like domains, 
f.

[2, Se
tion 2.4℄. Nevertheless (A3) is also valid in layer-like domains, 
f. [2, Lemma

2.4℄.
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The main result is the following:

THEOREM 1.3 Let 
 � R

n

, n � 2, Æ 2 (0; �), and 1 < q < 1 satisfy Assump-

tion 1.1. Then there is an R > 0 su
h that (�+ A

q

)

�1

exists and

k(�+ A

q

)

�1

k

q

�

C

q;Æ

1 + j�j

for all � 2 �

Æ

with j�j � R. Moreover,













Z

�

R

h(��)(�+ A

q

)

�1

d�













L(L

q

�

(
))

� C

q;Æ

khk

1

(1.5)

for every h 2 H(Æ), where �

R

= � n B

R

(0). In parti
ular, for every 
 2 R and

0 < Æ

0

� Æ su
h that 
 + �

Æ

0

� �(�A

q

) the shifted Stokes operator 
 + A

q

admits a

bounded H

1

-
al
ulus with respe
t to Æ

0

.

The proof of Theorem 1.3 is based on the 
onstru
tion of an approximative re-

solvent R

�

that 
oin
ides with (�+A

q

)

�1

modulo an operator whi
h de
ays of order

O(j�j

�1�"

) as j�j ! 1 for some " > 0. The 
onstru
tion is based on a lo
alization

pro
edure and a suitable result for the redu
ed Stokes operator on a 
urved half-

spa
e R

n




, 
 2 C

1;1

(R

n�1

), 
f. Theorem 4.1 below. The latter result was basi
ally

obtained in [3℄ and is a
hieved using the 
al
ulus of pseudodi�erential boundary value

problems developed by Grubb [23℄ in a non-smooth version, 
f. [3, Se
tion 4℄ and [1℄.

In parti
ular, if it is known that �(�A

q

) � (�1; 0℄, then Theorem 1.3 implies

that 
 + A

q

admits a bounded H

1

-
al
ulus for every 
 > 0. In order to prove that

this is also true for 
 = 0 it remains to analyze the resolvent near 0. This is done for

the 
ase of an aperture domain in R

n

, n � 2, in Se
tion 5 below, where the following

result is proved:

THEOREM 1.4 Let 1 < q <1, Æ 2 (0; �), and let 
 � R

n

, n � 2, be an aperture

domain with C

2;�

-boundary, � > 0, as de�ned in Se
tion 5 below. Then the Stokes

operator A

q

admits a bounded H

1

-
al
ulus with respe
t to Æ.

In parti
ular, this yields that the Stokes operator has maximal regularity on L

q

�

(
),

whi
h was also obtained by Fr�ohli
h [18℄ in the 
ontext of weighted L

q

-spa
es.

2 Preliminaries

Let 
 � R

n

, n � 2, be a domain. Then C

1

0

(
) denotes the set of all smooth

f : 
! C with 
ompa
t support, and

C

1

(0)

(
) := fu = vj




: v 2 C

1

0

(R

n

)g:
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Moreover, C

1

b

(
) denotes the set of all smooth and bounded f : 
! C with bounded

derivatives and C

1;1

(R

n

) is the set of all bounded fun
tions f : R

n

! C with bounded

and globally Lips
hitz 
ontinuous �rst order derivatives.

The usual Lebesgue spa
e will be denoted by L

q

(
) and L

q

(�
), 1 � q � 1,

normed by k:k

q

� k:k

L

q

(
)

and k:k

q;�


� k:k

L

q

(�
)

, respe
tively. Furthermore, L

q

lo


(
)


onsists of all f : 
! C su
h that f 2 L

q

(B\
) for all balls B with B\
 6= ;. The

s
alar produ
t on L

2

(M) is denoted by (:; :)

M

for M = 
 or M = �
. Moreover, the

usual Sobolev-Slobode
kij spa
es based on L

q

, 1 < q < 1, are denoted by W

s

q

(
)

and W

s

q

(�
), s � 0, with norms k:k

s;q

and k:k

s;q;�


, resp., 
f. e.g. [7℄. As usual

W

s

q;0

(
), s � 0 with s�

1

q

62 N , is de�ned as the 
losure of C

1

0

(
) in W

s

q

(
), and

W

�s

q

(
) := (W

s

q

0

;0

(
))

0

; W

�s

q;0

(
) := (W

s

q

0

(
))

0

; W

�t

q

(�
) := (W

t

q

0

(�
))

0

for s; t > 0 with s �

1

q

0

62 N where

1

q

+

1

q

0

= 1. Finally, the homogeneous Sobolev

spa
e of order 1 is de�ned as

_

W

1

q

(
) :=

�

p 2 L

q

lo


(
) : rp 2 L

q

(
)

	

normed by kr � k

q

.

In the following let 
 � R

n

, n � 2, be a domain satisfying (A1). Using the 
ut-o�

fun
tions '

j

;  

j

, j = 1; : : : ; m, many properties of the Sobolev-Slobode
kij spa
e on


 and �
 
an be redu
ed to the 
ase of a 
urved half-spa
e R

n




, 
 2 C

1;1

(R

n�1

).

Then the di�eomorphism

F : R

n

+

! R

n




: x 7! (x

0

; x

n

+ 
(x

0

)) (2.1)


an be used to redu
e the statement on R

n




to the 
ase of a half-spa
e R

n

+

= fx 2

R

n

: x

n

> 0g. More pre
isely, if (F

�

f)(x) := f(F (x)) and (F

�;�1

f)(x) := f(F

�1

(x))

denote the pull-ba
k and push-forward, resp., of a s
alar fun
tion f , then

F

�

: W

s

q

(R

n

+

)! W

s

q

(R

n




); F

�

: W

s

q;0

(R

n

+

)!W

s

q;0

(R

n




);

F

�

0

: W

s

q

(R

n�1

)! W

s

q

(�R

n




)

are linear isomorphisms for jsj � 2, where F

0

denotes the restri
tion of F on �R

n

+

and

�R

n

+

is identi�ed with R

n�1

. In parti
ular, we note that, if 2 � s > j +

1

q

, j = 0; 1,

with s�

1

q

62 N , there is a bounded and surje
tive linear operator




j

: W

s

q

(
)! W

s�

1

q

q

(�
) (2.2)

su
h that 


j

u = �

j

�

uj

�


for all f 2 C

1

(0)

(
), 
f. e.g. [7℄, where � denotes the exterior

normal. Moreover, if 0 < s <

1

q

, by [29, Theorem 2.9.3℄ W

s

q;0

(
) = W

s

q

(
), where 


is as in Assumption 1.1. Thus

(W

s

q

(
))

0

= W

�s

q

0

(
) for all s 2

�

�

1

q

0

;

1

q

�

: (2.3)
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Furthermore, re
all that for f 2 L

q

(
) with div f = 0 it is possible to de�ne a weak

tra
e of the normal 
omponent 


�

f 2 W

�

1

q

q;�

(�
) :=

�




0

_

W

1

q

0

(
)

�

0

by

h


�

f; 


0

vi

�


:= (f;rv)




for all v 2

_

W

1

q

0

(
); (2.4)

where 


0

_

W

1

q

0

(
) := fa 2 L

q

0

lo


(�
) : a = Aj

�


; A 2

_

W

1

q

0

(
)g is equipped with the

quotient norm. Of 
ourse, if f 2 C

1

(0)

(
) with div f = 0, the de�nition of 


�

f by

(2.4) 
oin
ides with the usual tra
e � � f j

�


, i.e., h


�

f; 


0

vi

�


= (� � f; v)

�


for all

v 2

_

W

1

q

0

(
).

Moreover, we note that, if f = f

0

+rp, f

0

2 L

q

�

(
), p 2

_

W

1

q

(
), is the Helmholtz

de
omposition of f 2 L

q

(
)

n

and (1.4) is valid, then p is uniquely determined as

solution of the weak Neumann problem

�p = div f in 
; (2.5)

�

�

pj

�


= � � f j

�


on �
; (2.6)

where (2.5) is understood in the sense of distributions and (2.6) is understood as




�

(f�rp) = 0, 
f. [28℄. Be
ause of the de�nition of 


�

, p 2

_

W

1

q

(
) solves (2.5)-(2.6)

if and only if

(rp;rv)




= (f;rv)




for all v 2

_

W

1

q

0

(
): (2.7)

Moreover, the existen
e of the (unique) Helmholtz de
omposition is equivalent to the

existen
e of a unique solution p 2

_

W

1

q

(
) of (2.7) for every f 2 L

q

(
)

n

. We note

that every F 2

_

W

�1

q;0

(
) := (

_

W

1

q

0

(
))

0


an be represented as hF; vi




= (f;rv)




for

some f 2 L

q

(
)

n

with kfk

q

� CkFk

_

W

�1

q;0

, whi
h is a 
onsequen
e of the Hahn-Bana
h

theorem. Finally, let K

N

: W

�

1

q

q;�

(�
)!

_

W

1

q

(
) be de�ned by

(rK

N

a;rv)




= ha; 


0

vi

�


for all v 2

_

W

1

q

0

(
): (2.8)

By de�nition of W

�

1

q

q;�

(�
), a = 


�

A for some A 2 L

q

�

(
). Hen
e (2.8) is equivalent

to �K

N

a = 0 and �

�

K

N

aj

�


= a.

3 The Redu
ed Stokes Operator

In the following let 
 � R

n

, n � 2, Æ 2 (0; �), and let 1 < q < 1 be as in

Assumption 1.1.

In order to apply the results from [3℄ for the 
onstru
tion of an approximate

resolvent for large �, we need the redu
ed Stokes operator A

0;q

de�ned as

A

0;q

u := (��+rK

N

T )u; Tu := 


�

(��r div)u;

for u 2 D(A

0;q

) := W

2

q

(
)

n

\W

1

q;0

(
)

n

, where K

N

is de�ned by (2.8). Sin
e div(��

r div)u = 0, we 
on
lude that T : D(A

0;q

) ! W

�

1

q

q;�

(�
). Hen
e rK

N

T : D(A

0;q

) !
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L

q

(
)

n

is well-de�ned. { Note that A

0;q

is a densely de�ned unbounded operator on

L

q

(
)

n

in 
ontrast to the Stokes operator, whi
h a
ts on the subspa
e L

q

�

(
). We

refer to [2, Se
tion 3℄ for explanations of the relation between the Stokes and the

redu
ed Stokes operator.

Introdu
ing lo
al 
oordinates Tu = div

�




1

u

�

for every u 2 C

1

(
) with uj

�


= 0

where div

�

denotes the tangential divergen
e, 
f. [24, Lemma A.1℄. Hen
e by (2.2)

T : W

2+s

q

(
)

n

\W

1

q;0

(
)

n

!W

s�

1

q

q

(�
) for all 0 � s > �1 +

1

q

: (3.1)

We will use the following additional assumption:

(A4) There is an R > 0 su
h that for every � 2 �

Æ

with j�j � R there is no non-

trivial solution g 2 W

1

q

(
) of

�(g; v)




+ (rg;rv)




= 0 for all v 2 W

1

q

0

(
): (3.2)

This assumption is needed in the proof of Lemma 3.1 below. In the following we will

show that (A4) is a 
onsequen
e of Assumption 1.1, 
f. proof of Theorem 1.3 below.

The 
onstru
tion of the approximate resolvent is based on the following lemma.

Lemma 3.1 Let 
 � R

n

, n � 2, 1 < q <1, and Æ 2 (0; �) be as in Assumption 1.1.

Moreover, assume that (A4) holds and that (�+A

0;q

)

�1

exists for some � 2 �

Æ

with

j�j � R. Then (�+ A

q

)

�1

exists and

A

0;q

j

L

q

�

(
)

= A

q

; (�+ A

0;q

)

�1

j

L

q

�

(
)

= (�+ A

q

)

�1

: (3.3)

Proof: The �rst statement 
an be seen as follows: If u 2 D(A

0;q

) \ L

q

�

(
), then

div(��u+rK

N

Tu) = 0 in the sense of distributions and




�

(��u+rK

N

Tu) = �


�

�u+ �

�

K

N

Tuj

�


= 0

in the sense of (2.4). Hen
e ��u = (�� + rK

N

T )u � rK

N

Tu is the Helmholtz

de
omposition of ��u by (A2), i.e., (��+rK

N

T )u = P

q

(��)u = A

q

u.

In order to prove the se
ond relation let u = (�+A

0;q

)

�1

f with f 2 L

q

�

(
). Then

multiplying (�+A

0;q

)u = f by rv, v 2 W

1

q

0

(
), and using (2.8) and (2.4) we obtain

that g = div u solves (3.2), whi
h implies div u = 0 by (A4). Therefore, u 2 L

q

�

(
)

by (1.4) and (� + A

q

)u = (� + A

0;q

)u = f . Sin
e by the �rst statement � + A

q

=

(�+A

q;0

)j

L

q

�

(
)

is inje
tive, we �nally 
on
lude that (�+A

q

)

�1

f = u = (�+A

q;0

)

�1

f

for every f 2 L

q

�

(
).

Lemma 3.2 Let 
 � R

n

, n � 2, and 1 < q <1 be as in Assumption 1.1. If �+A

q

0

is surje
tive for � 62 (�1; 0℄, then there is no non-trivial solution of (3.2).
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Proof: Let f 2 L

q

0

(
) be arbitrary and let u 2 D(A

0;q

0

) su
h that (�+A

0;q

0

)u = f .

Then multiplying f with rg we observe that div u 2 W

1

q

0

(
) solves

��(div u; g)� (r div u;rg) = (f;rg); for all g 2 W

1

q

(
):

Hen
e, if g 2 W

1

q

(
) solves (3.2), then (f;rg) = 0 for all f 2 L

q

0

(
) and therefore

rg = 0. Be
ause of (3.2) and � 6= 0, we 
on
lude g = 0.

4 Constru
tion of the Approximative Resolvent

The proof of Theorem 1.3 is based on the following result.

THEOREM 4.1 Let R

n




, n � 2, 
 2 C

1;1

(R

n�1

), be a 
urved half-spa
e, 1 < q <1,

and let Æ 2 (0; �). Then there is a bounded operator R


;�

: L

q

(R

n




)

n

! W

2

q

(R

n




)

n

su
h

that

(���+r

e

K


;N

T )R


;�

f = f + S


;�

f in R

n




; (4.1)

R


;�

f = 0 on �R

n




(4.2)

for every f 2 L

q

(R

n




)

n

and � 2 C n (�1; 0℄, where kS


;�

k

L(L

q

(R

n




))

� C

q;Æ

(1 + j�j)

�"

uniformly in � 2 �

Æ

for some " > 0. Here

e

K


;N

: W

s�

1

q

q

(�R

n




) ! W

s+1

q

(R

n




), s 2

(�

1

q

0

; 1 +

1

q

), is a bounded operator satisfying

�

e

K


;N

a = R

0




a in R

n




; (4.3)

�

�

e

K


;N

aj

�


= a+ S

0




a on �R

n




; (4.4)

where R

0




: W

�

1

q

�"

q

(�R

n




)!W

�1

q;0

(R

n




) and S

0




: W

�

1

q

�"

q

(�R

n




)!W

�

1

q

q

(�R

n




) are bounded

operators. Moreover, for every R > 0

(1 + j�j)kR


;�

k

L(L

q

(R

n




))

+ kr

2

R


;�

k

L(L

q

(R

n




))

� C

q;Æ

; � 2 �

Æ

; (4.5)













Z

�

R

h(��)R


;�

d�













L(L

q

(R

n




))

� C

q;Æ

khk

1

; h 2 H(Æ): (4.6)

Proof: The theorem is proved in [5, Theorem 4.1℄ but only for s = 0 in the mapping

properties of

e

K


;N

, whi
h remains to be extended.

The operator

e

K


;N

�

e

K

1

is de�ned in [3, Se
tion 5.5℄ as

e

K


;N

= F

�;�1

k

1

(D

x

; x

0

)F

�

0

;

where k

1

(D

x

; x

0

) is a Poisson operator of order �1 in R-form with C

0;1

-
oeÆ
ients

in the sense of [3, Se
tion 4℄ and F

�;�1

; F

�

0

are as in Se
tion 2. By duality

(�

�

x

k

1

(D

x

; x

0

)a; f)




= (�1)

j�j

(a; t(x

0

; D

x

)�

�

x

f)

�


(4.7)
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for a 2 C

1

0

(R

n�1

); f 2 C

1

(0)

(R

n

+

), and � 2 N

n

0

, where

t(x

0

; D

x

)f := F

�1

�

0

7!x

0

�

Z

1

0

~

k

1

(x

0

; �

0

; y

n

)

~

f(�

0

; y

n

)dy

n

�

;

~

f(�

0

; x

n

) = F

x

0

7!�

0

[f(:; x

n

)℄, and

~

k

1

(x

0

; �

0

; y

n

) denotes the symbol-kernel of k

1

(D

x

; x

0

),


f. [3, Se
tion 4℄. Using (4.7) for suitable � and [1, Theorem 4.8℄ for t(x

0

; D

x

), the

mapping properties of k

1

(D

x

; x

0

) are obtained by duality and interpolation.

Now we de�ne the approximate resolvent R

�

on a domain 
 satisfying (A1) as

R

�

f =

m

X

j=1

 

j

R




j

;�

('

j

f); f 2 L

q

(
)

n

;

where R




j

;�

, j = 1; : : : ; m, is the approximate resolvent on R

n




j

due to Theorem 4.1.

Moreover, we de�ne the approximate Poisson operator

e

K

N

a =

m

X

j=1

 

j

e

K




j

;N

('

j

a); a 2 W

�

1

q

q

(�
);

where

e

K




j

;N

is the operator due to Theorem 4.1 for R

n




j

. Now we have

Lemma 4.2 Let 1 < q <1 and 
 � R

n

be as in Assumption 1.1 and let r = q or

r = q

0

. Moreover, let K

N

be the Poisson operator of the Neumann problem as de�ned

in (2.8). Then there is some " > 0 su
h that

kr(K

N

�

e

K

N

)Tuk

r

� C

r

kuk

2�";r

for all u 2 W

2�"

r

(
)

n

\W

1

r;0

(
)

n

:

Proof: For simpli
ity let r = q. Let f 2 L

q

0

(
)

n

be arbitrary and let f = f

0

+rp,

f

0

2 L

q

0

�

(
), p 2

_

W

1

q

0

(
) be its Helmholtz de
omposition. By (A3) we have p = p

1

+p

2

,

where p

1

2 W

1

q

0

(
) and p

2

2 L

q

0

lo


(
) with rp

2

2 W

1

q

0

(
) and k(p

1

;rp

2

)k

1;q

0

�

C

q

0

krpk

1;q

0

. Then by (4.3)-(4.4)

(r(K

N

�

e

K

N

)Tu; f)




= (r(K

N

�

e

K

N

)Tu;rp)




= (r(K

N

�

e

K

N

)Tu;rp

2

)




+ h(I � �

�

e

K

N

)Tu; p

1

i

�


� (�

e

K

N

Tu; p

1

)




:

The term h(I � �

�

e

K

N

)Tu; p

1

i

�



an be estimated by kuk

2�";q

kfk

q

0

for some " > 0 in

a straight-forward manner using Theorem 4.1 and (3.1). Moreover,

j(�

e

K

N

Tu; p

1

)




j �

m

X

j=1

j( 

j

R

0




j

('

j

Tu); p

1

)




j

+

m

X

j=1

j(2(r 

j

) � r

e

K




j

;N

('

j

Tu) + (� 

j

)

e

K




j

;N

('

j

Tu); p

1

)




j;
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where

j( 

j

R

0




j

('

j

Tu); p

1

)




j � CkR

0




j

'

j

Tuk

W

�1

q;0

(R

n




j

)

kp

1

k

1;q

0

� Ckuk

2�";q

kfk

q

0

for some " > 0. Sin
e p

1

2 W

1

q

0

(
) ,! W

"

q

0

(
) with 0 < " <

1

q

0

, by the mapping

property

e

K




j

;N

: W

�"�

1

q

q

(�R

n




j

)!W

1�"

q

(R

n




), and by (2.3)

j(2(r 

j

) � r

e

K




j

;N

('

j

Tu) + (� 

j

)

e

K




j

;N

('

j

Tu); p

1

)




j � Ckuk

2�";q

kfk

q

0

for 0 < " <

1

q

0

. The term (r

e

K

N

Tu;rp

2

)




is estimated in the same way using

rp

2

2 W

1

q

(
). Finally, by the de�nitions of K

N

and T

j(rK

N

Tu;rp

2

)




j = j((��r div)u;rp

2

)




j

� j(ru;r

2

p

2

)




j+ j(�

�

u;rp

2

)

�


j+ j(div u;�p

2

)




j+ j(div u; �

�

p

2

)

�


j

� Ckuk

2�";q

krp

2

k

1;q

0

� Ckuk

2�";q

kfk

q

0

for some " > 0. { The proof for r = q

0

is done in the same way.

Proof of Theorem 1.3: The proof is the same as in [5, Theorem 4.4℄ with minor

modi�
ations. We in
lude it for the 
onvenien
e of the reader.

First of all, by (4.5) and interpolation

kR

j;�

('

j

f)k

s;q

� C

q;Æ;R

(1 + j�j)

�1+

s

2

kfk

q

; � 2 �

Æ

; (4.8)

for all s 2 [0; 2℄ and f 2 L

q

(
)

n

, j = 1; : : : ; m. Moreover, by (4.1)

(���+rK

N

T )R

�

f

= f +

m

X

j=1

 

j

S




j

;�

('

j

f)�

m

X

j=1

(2(r 

j

) � rR

j;�

('

j

f) + (� 

j

)R

j;�

('

j

f))

+(rK

N

T �r

e

K

N

T )R

�

f:

Hen
e (4.8), Theorem 4.1, and Lemma 4.2 imply

(���+rK

N

T )R

�

= I + S

0

�

;

where kS

0

�

k

L(L

q

(
))

� C

q;Æ

(1 + j�j)

�"

uniformly in � 2 �

Æ

for some " > 0. Therefore

(�+ A

0;q

)

�1

exists for all � 2 �

Æ

with j�j � R for some R > 0 and

(�+ A

0;q

)

�1

= R

�

+ S

�

;

where kS

�

k

L(L

q

(
))

� C

q;Æ

(1 + j�j)

�1�"

uniformly in � 2 �

Æ

, j�j � R. Furthermore,

for B

�

= R

�

; S

�

we have













Z

�

R

h(��)B

�

d�













L(L

q

(
))

� C

q;Æ

khk

1

; h 2 H(Æ);
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be
ause of (4.6) and kS

�

k � C

q;Æ

(1 + j�j)

�1�"

.

The same arguments apply to A

0;q

0

instead of A

0;q

. Hen
e we 
an assume that

also (� + A

0;q

0

)

�1

exists for all � 2 �

Æ

with j�j � R. In parti
ular, this implies

that (A4) is valid be
ause of Lemma 3.2. Now (� + A

0;q

)

�1

j

L

q

�

(
)

= (� + A

q

)

�1

by

Lemma 3.1, whi
h proves (1.5). The rest of the theorem follows from (1.5) and the

fa
t that f(�) = (�+ A

q

)

�1

is uniformly bounded on 
ompa
t subsets of �(�A

q

).

5 Bounded H

1

-Cal
ulus for an Aperture Domain

Roughly speaking an aperture domain is a domain separated by a wall with a hole

(aperture) inside. More pre
isely, an aperture domain 
 � R

n

, n � 2, is a domain

su
h that


 [B = R

n

+

[ R

n

�

[ B

for some ball B, where R

n

�

:= fx 2 R

n

: x

n

< �dg for some d > 0. Con
erning the

Stokes equations the aperture domain is of parti
ular interest sin
e under 
ertain 
ir-


umstan
es depending on the dimension n and the integral exponent q an additional


ondition has to be posed to get unique solutions, 
f. [16℄. This may be done by

pres
ribing the 
ux �(u) of the velo
ity �eld u through the hole, i.e.,

�(u) :=

Z

M

0

� � ud�;

where M

0

is an (n � 1)-dimensional 
ompa
t manifold dividing 
 into an upper

and lower part 


+

, 


�

, resp., su
h that 


�

[ B = R

n

�

[ B. In the following let

'

�

;  

�

2 C

1

b

(R

n

�

) be 
ut-o� fun
tions su
h that '

�

(x) = 1 for x 2 R

n

�

with jxj � R

for some suitable R > 0,  

�

� 1 on supp'

�

, and supp 

�

� R

n

�

nB.

In order to apply Theorem 1.3, it remains to verify Assumption 1.1.

Proposition 5.1 Let 
 � R

n

, n � 2, be an aperture domain with C

1;1

-boundary.

Then Assumption 1.1 is valid for 
 and every 1 < q �

n

n�1

and Æ 2 (0; �).

Proof: Obviously, (A1) is true. The �rst part of (A2) is true for every 1 < q <1

but (1.4) only holds if 1 < q �

n

n�1

, 
f. [16, Theorem 2.6℄. The 
ondition (A3) 
an

be easily veri�ed by using the 
ut-o� fun
tions '

�

and the 
orresponding statement

for the half-spa
es R

n

�

.

We will analyze the resolvent (�+A

q

)

�1

near the origin by 
omparing it with the

resolvents of the Stokes operator on R

n

�

. Hen
e let R

�

�

= (�+ A

R

n

�

;q

)

�1

, 1 < q <1,

denote the resolvent of the Stokes operator on R

n

�

. Then

j�jkuk

q

+ kr

2

uk

q

� C

q;Æ

kfk

q

; � 2 �

Æ

; f 2 L

q

(R

n

�

); (5.1)


f. e.g. [15, Theorem 1.3℄. Moreover,
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Lemma 5.2 Let 1 < q < n, Æ 2 (0; �), and let B

�

M

= B

M

(0) \ R

n

�

. Then for every

M > 0

k(R

�

�

f;rR

�

�

f)k

L

q

(B

�

M

)

� C

q;Æ;M

kfk

q

uniformly in � 2 �

Æ

and f 2 L

q

(R

n

�

)

n

.

Proof: By Poin
ar�e's inequality, kR

�

�

fk

L

q

(B

�

M

)

� C

q;M

krR

�

�

fk

L

q

(B

�

M

)

. Hen
e it

remains to estimate rR

�

�

. Then, if

1

q

�

=

1

q

�

1

n

,

krR

�

�

fk

L

q

(B

�

M

)

� C

M

krR

�

�

fk

L

q

�

(R

n

�

)

� C

q;M

kr

2

R

�

fk

q

� C

q;Æ;M

kfk

q

uniformly in � 2 �

Æ

and f 2 L

q

(R

n

�

)

n

by (5.1).

In order to analyze (1.2) for A = A

q

with � repla
ed by �

0

R

:= �\B

R

(0), R > 0,

we 
onsider

u

�

:= (�+ A

q

)

�1

f �  

+

R

+

�

'

+

f �  

�

R

�

�

'

�

f; f 2 L

q

�

(
): (5.2)

Moreover, let p

�

= q

�

�  

+

p

+

�

�  

�

p

�

�

, where rq

�

= (I � P

q

)�(� + A

q

)

�1

f and

rp

�

�

= (I � P

�

q

)�R

�

�

'

�

f is 
hosen su
h that

R

B

�

M

p

�

�

= 0 for M > 0 so large that

 

�

� 1 on R

n

�

nB

M

(0). Then (u

�

; p

�

) solves

(���)u

�

+rp

�

= (1� '

+

� '

�

)f + f

+

�

+ f

�

�

=:

~

f

�

in 
;

div u

�

= g

+

�

+ g

�

�

=: ~g

�

in 
;

u

�

j

�


= 0 on �
;

where g

�

�

= �r 

�

�R

�

�

'

�

f and

f

�

�

= 2(r 

�

) � rR

�

�

'

�

f + (� 

�

)R

�

�

'

�

f � (r 

�

)p

�

�

:

Moreover, �(u

�

) = �((�+ A

q

)

�1

f) = 0.

Lemma 5.3 For every 1 < q < 1 there is some 0 < a < 1 su
h that j�j

a

ku

�

k

q

�

Ck

~

f

�

k

q

uniformly in � 2 �

Æ

, j�j � 1.

Proof: By [16, Theorem 2.1℄ for every 1 < q < n

j�jku

�

k

q

+ kr

2

u

�

k

q

� C

q;Æ

�

k

~

f

�

k

q

+ kr~g

�

k

q

+ (1 + j�j)k~g

�

k

_

W

�1

q;0

�

(5.3)

uniformly in � 2 �

Æ

. Moreover,

Z

B

�

M

g

�

�

dx =

Z

B

�

M

div

�

(1�  

�

)R

�

�

'

�

f

�

dx = 0:
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Hen
e kg

�

�

k

_

W

�1

q;0

(R

n

�

)

� C

R;q

kg

�

�

k

q

by Poin
ar�e's inequality. Furthermore, if n < r <1

and 1 < q <

n

n�1

is de�ned by

1

q

=

1

r

+

1

n

, then by [16, Corollary 2.4℄

kru

�

k

r

� C

r;Æ

�

j�jku

�

k

q

+ k

~

f

�

k

q

+ kr~g

�

k

q

+ k~g

�

k

_

W

�1

q;0

�

� C

r;Æ

�

k

~

f

�

k

r

+ k~g

�

k

1;r

�

for � 2 �

Æ

, j�j � 1, sin
e supp

~

f

�

; supp ~g

�

� B

M

(0). Moreover, sin
e kru

�

k

q

�

C

q

k(u

�

;r

2

u

�

)k

q

, interpolation of the latter inequality with (5.3) yields that for every

1 < q <1 there is some 0 < a < 1 su
h that

j�j

a

kru

�

k

q

� C

q

�

k

~

f

�

k

q

+ k~g

�

k

1;q

�

; � 2 �

Æ

; j�j � 1:

This implies that for n < r <1 and 1 < q <

n

n�1

de�ned by

1

q

=

1

r

+

1

n

there is some

0 < a < 1 su
h that

j�j

a

ku

�

k

r

� C

r

j�j

a

kru

�

k

q

� C

r;Æ

�

k

~

f

�

k

q

+ k~g

�

k

1;q

�

� C

r;Æ

�

k

~

f

�

k

r

+ k~g

�

k

1;r

�

for � 2 �

Æ

with j�j � 1 using Sobolev's inequality, 
f. [16, Lemma 3.1℄. Interpolating

again �nishes the proof.

Combining Lemma 5.2 and Lemma 5.3 we obtain:

Corollary 5.4 Let u

�

be de�ned as in (5.2). Then for every 1 < q < n there is some

0 < a < 1 su
h that ku

�

k

q

� Cj�j

�a

kfk

q

for all f 2 L

q

�

(
) uniformly in � 2 �

Æ

with

j�j � 1.

Proof of Theorem 1.4: First of all, (�+A

q

)

�1

exists for every � 2 C n(�1; 0℄ and

(A

q

)

0

= A

q

0

, 
f. [16, Theorem 2.5℄. Hen
e by duality and interpolation it is suÆ
ient

to prove the statement for 1 < q <

n

n�1

. Moreover, R(A

q

) is dense, 
f. Franzke [17,

Theorem 6℄. Therefore A

q

is se
torial and it is suÆ
ient to prove (1.3) for h 2 H(Æ),


f. Denk, Hieber, and Pr�uss [11, Se
tion 2.4℄. Moreover, be
ause of Theorem 1.3 it

remains to prove
















Z

�

0

R

h(��)(�+ A

q

)

�1

d�
















L(L

q

�

(
))

� C

Æ;q

khk

1

for all h 2 H(Æ): (5.4)

Sin
e (� + A

q

)

�1

is bounded on 
ompa
t subsets of C n (�1; 0℄, it is suÆ
ient to


onsider R = 1. Be
ause of (5.2) and Corollary 5.4, we 
an repla
e A

q

by A

q;R

n

�

.

Moreover, using

1

2�i

Z

�

0

1

h(��)(�+ A

R

n

�

;q

)

�1

d� = h(A

R

n

�

;q

)�

1

2�i

Z

�

1

h(��)(� + A

R

n

�

;q

)

�1

d�

with �

1

= � nB

1

(0) the estimate (5.4) is a 
onsequen
e of the bounded H

1

-
al
ulus

for the Stokes operator on R

n

�

, 
f. Des
h, Hieber, and Pr�uss [12℄, and of Theorem 1.3

for 
 = R

n

�

.
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