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Abstract

In the present contribution we study the Stokes operator A, = —F;A on
LI(Q), 1 < ¢ < 0o, where Q is a suitable bounded or unbounded domain in
R*, n > 2, with C"'-boundary. We present some conditions on € and the
related function space and basic equations which guarantee that ¢ + A, for
suitable ¢ € R is of positive type and admits a bounded H-calculus. This
implies the existence of bounded imaginary powers of ¢ + A;,. Most domains
studied in the theory of Navier-Stokes like e.g. bounded, exterior, and aperture
domains as well as asymptotically flat layers satisfy the conditions. The proof
is done by constructing an approximate resolvent based on the results of [3],
which were obtained by applying the calculus of pseudodifferential boundary
value problems. Finally, the result is used to proof the existence of a bounded
H-calculus of the Stokes operator A, on an aperture domain.
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1 Introduction
In this article we consider the Stokes operator A, = —F,A on LZ(2) with domain

D(Ag) ={f € W2(Q)" : floa =0} N LL(Q)
where P;: L1(Q2)" — L4(12) denotes the Helmholtz projection, LL(Q2) := ng(Q)H'”q,
65(€) == {u € C(Q)" : divu = 0}, and Q@ C R*, n > 2, is a domain specified
in Assumption 1.1 below. Properties of the Stokes operator are important for the
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associated instationary Stokes and Navier-Stokes equations. Since the latter equa-
tions arise in mathematical fluid mechanics, many different kinds of bounded and
unbounded domains are of interest and have been studied.

The purpose of the present contribution is to present some conditions on {2 and
the related function spaces which guarantee that ¢ + A, for suitable ¢ € R is of
positive type and admits a bounded Hy-calculus w.r.t. 6 € (0,7). Here ¢+ A, is of
positive type w.r.t. ¢ if and only if ¥5 U {0} C p(—c — A,) and

1 Cq,6
|(A+c+ Ay) lee) < DR A€ Xy, (1.1)
where Y5 := {z € C\ {0} : |argz| < §}. — Note that, if § > 7, (1.1) implies that
—c— A, generates a bounded, strongly continuous, analytic semi-group. — Moreover,
A :=c+ A, is said to admit a bounded Hu,-calculus w.r.t. ¢ if and only if

1
h(A) := — [ h(=N)(A+ A)~"dA (1.2)
2m Jr
is a bounded operator satisfying
1h(Alera@) < Coollhllo  forall h € Hy(0), (1.3)

where H,(0) denotes the Banach algebra of all bounded holomorphic functions
h:¥,_s — C, cf. McIntosh [25], and T" is the negatively orientated boundary of
¥5. We note that in order to prove (1.3) for all h € H(6) it is sufficient to show the
estimate for h € H(J), which consists of all h € H,(d) such that

forall z € ¥, _5

for some s > 0, cf. [8, Lemma 2.1]. For h € H(0) the integral (1.2) is well-defined as
a Bochner integral.

The property of admitting a bounded H,-calculus is a generalization of possessing
bounded imaginary powers since hy,(z) = 2% € Hy(6) for all 6 € (0,7), which has
many important consequences. In particular, (1.3) for 6 > 7 yields the mazimal
regularity of —c — A, by the result of Dore and Venni [13].

The resolvent estimate (1.1) with arbitrary 6 € (0,7), 1 < ¢ < oo and ¢ = 0, has
been proved for various kinds of domains Q@ C R*, n > 2, c¢f. Giga [19] for bounded
domains, Borchers and Sohr [9] and Borchers and Varnhorn [9] for exterior domains,
Farwig and Sohr [16] for aperture domains, Abels and Wiegner [6] for an infinite
layer Q = R"! x (—1,1), and Abels [2] for asymptotically flat layers. Moreover, see
Farwig and Sohr [15] for a general treatment and Desch, Hieber, and Priiss [12] for
the case of a half-space R} and R", where also the borderline cases ¢ = 1,00 have
been studied.

The fact that A, possesses bounded imaginary powers and admits a bounded
H -calculus was proved by Giga [20], Giga and Sohr [21], and Noll and Saal [27] for
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bounded domains and for exterior domains in R", n > 3, by Giga and Sohr [22] for
the half-space R, see also [12], and by Abels [5, 4, 3] for two-dimensional exterior
domains, an infinite layer, and asymptotically flat layers.

In the following we will present an approach, proving (1.1) for large A and (1.3)
for suitable ¢ simultaneously for a class of domains, which includes all previously
mentioned cases provided that some auxiliary results are known. More precisely, we
make the following assumption.

Assumption 1.1 Let 1 < g < oo and § € (0,7) be fized. Moreover, let Q@ C R,
n > 2, be a domain satisfying the following conditions:

(A1) There is a finite covering of Q with relatively open sets Uj, j = 1,...,m,
such that U; coincides (after rotation) with a relatively open set of R%, where
R} = {(«',2,) € R" : z, > 9(2")}, v € CHH(R"). Moreover, suppose
that there are cut-off functions p;,1; € CX(Q), j = 1,...,m, such that p;,
Jj =1,...,m, is a partition of unity, 1»; = 1 on supp ¢;, and suppv; C Uj,
j=1,...,m.

(A2) The Helmholtz decomposition is valid for L"(Q)" with r = q,q, i.e., for every
f e L7 ()" there is a unique decomposition f = fo + Vp with fo € L;(S2) and
p € WHQ). Moreover,

LI(Q) ={f e L1(Q)" : div f = 0,7, f = 0}. (1.4)

(A3) For every p € WH(Q), r = q,¢', there is a decomposition p = p, + py such that
p1 € WHRQ), pe € L, .(Q) with Vps € WH) and ||(p1, Vp2)|l1r < C|| VD],

loc —

We refer to Section 2 below for the definitions of the function spaces and the
normal trace 7,.

Remark 1.2 First of all, we note that (A1) can be generalized to the case of a locally
finite covering U;, j € N, if uniform bounds on v;, ¢;,; in C*'-norm are assumed
and if for every x € Q the number of sets U; containing x is bounded by a constant
independent of x. Moreover, it is easy to see that (Al) is fulfilled for all kinds of
domains with C*'-boundary mentioned above. We refer to [28, 15, 16, 26, 14, 2]
for the validity of the Helmholtz decomposition for these types of domains. The
characterization (1.4) holds as well in these cases except for an aperture domain if
q > "5 for which the characterization is different, cf. [16, Lemma 3.1]. The identity
(1.4) is used in Lemma 3.1 below. Moreover, (A3) is a technical condition needed in
the proof of Lemma 4.2 below. It is satisfied if the following extension property is
valid: For every p € W}(Q) there is an extension p € W}(R") such that p|o = p and
IVBll, < C||Vpllg- This is the case for every (e, co)-domain, cf. [10], in particular, for
exterior domains. This extension property does not hold for layer-like domains, cf.
[2, Section 2.4]. Nevertheless (A3) is also valid in layer-like domains, cf. [2, Lemma
2.4].
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The main result is the following:

THEOREM 1.3 Let Q CR", n> 2,6 € (0,7), and 1 < g < oo satisfy Assump-
tion 1.1. Then there is an R > 0 such that (A + A,)~" exists and

Cos
)\ A -1 < q,
0+ 471l < 152
for all A € X5 with |\| > R. Moreover,
|[ menorania| <ol 1)
Ir £(L8@)

for every h € H(6), where ' = '\ Bg(0). In particular, for every ¢ € R and
0 < 0" < § such that ¢ + Xy C p(—Ay) the shifted Stokes operator ¢ + A, admits a
bounded H ., -calculus with respect to §'.

The proof of Theorem 1.3 is based on the construction of an approximative re-
solvent R, that coincides with (A4 A;)~! modulo an operator which decays of order
O(|\|717¢) as |\| — oo for some € > 0. The construction is based on a localization
procedure and a suitable result for the reduced Stokes operator on a curved half-
space R, v € CHY(R*™!), cf. Theorem 4.1 below. The latter result was basically
obtained in [3] and is achieved using the calculus of pseudodifferential boundary value
problems developed by Grubb [23] in a non-smooth version, cf. [3, Section 4] and [1].

In particular, if it is known that o(—A4,) C (—o0,0], then Theorem 1.3 implies
that ¢ + A, admits a bounded Hy-calculus for every ¢ > 0. In order to prove that
this is also true for ¢ = 0 it remains to analyze the resolvent near 0. This is done for
the case of an aperture domain in R”, n > 2, in Section 5 below, where the following
result is proved:

THEOREM 1.4 Let1 <g<o0, 6 € (0,7), and let Q@ C R™, n > 2, be an aperture
domain with C**-boundary, u > 0, as defined in Section 5 below. Then the Stokes
operator A, admits a bounded H-calculus with respect to 9.

In particular, this yields that the Stokes operator has maximal regularity on LZ((2),
which was also obtained by Frohlich [18] in the context of weighted Li-spaces.
2 Preliminaries

Let @ C R", n > 2, be a domain. Then C§(€2) denotes the set of all smooth
f: € — C with compact support, and

CH(Q) :={u=vlg:ve CFR")}.
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Moreover, C°(Q) denotes the set of all smooth and bounded f:  — C with bounded
derivatives and C>'(R") is the set of all bounded functions f: R* — C with bounded
and globally Lipschitz continuous first order derivatives.

The usual Lebesgue space will be denoted by L?(2) and L?(09), 1 < ¢ < oo,
normed by ||.||q = ||-||2e() and [|.||g,00 = ||-||ze(a0), respectively. Furthermore, L (€2)
consists of all f: Q — C such that f € LY(BNQ) for all balls B with BN # (). The
scalar product on L?(M) is denoted by (.,.)as for M = Q or M = 952. Moreover, the
usual Sobolev-Slobodeckij spaces based on L?, 1 < ¢ < oo, are denoted by W7(2)
and W7(09), s > 0, with norms |[.|[;, and [|.|[s 460, resp., cf. e.g. [7]. As usual
Weo(Q), s > 0 with s — % ¢ N, is defined as the closure of C3°(€2) in W7(€), and
W (Q) == (Wgo (), Wig(Q) = (Wa(Q))', W, H(09) == (Wy(09))'

q q,0 q

for s, > 0 with s — % ¢ N where % + % = 1. Finally, the homogeneous Sobolev
space of order 1 is defined as

WHQ) :={pe LL.(Q) : Vpe LI(Q)}

q

normed by ||V - ||,

In the following let Q@ C R™, n > 2, be a domain satisfying (Al). Using the cut-off
functions ¢;,v;, j = 1,...,m, many properties of the Sobolev-Slobodeckij space on
Q and 09 can be reduced to the case of a curved half-space R?, v € CV(R*™!),
Then the diffeomorphism

F:RY SR 30 (22 +7(2) b

S

())

(2.
can be used to reduce the statement on R} to the case of a half-space R} = {
R" : 2, > 0}. More precisely, if (F*f)(x) := f(F(z)) and (F* ' f)(z) := ( -t
denote the pull-back and push-forward, resp., of a scalar function f, then

Fr Wy (RY) — Wi (RY), FrWEo(RE) = W (RY),
Fy: Wy (R" ') — W (ORY)
are linear isomorphisms for |s| < 2, where F{ denotes the restriction of /' on R’} and

OR" is identiﬁed with R*~!. In particular, we note that, if 2 > s > j + %, j=0,1,
with s — = ¢ N, there is a bounded and surjective linear operator

vy WEQ) = Wy 1(09) (2.2)

such that yju = ulaq for all f € R (Q), cf. e.g. [7], where v denotes the exterior

normal. Moreover, if 0 < s < 5, by [29, Theorem 2.9.3] W7 ,(2) = W7 (€2), where Q
is as in Assumption 1.1. Thus

(W, () =W, *(Q) for all s € (—5, é) . (2.3)
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Furthermore, recall that for f € L7(2) with div f = 0 it is possible to define a weak
1 : '
trace of the normal component v, f € W,/ (09Q) := (70W(11,(Q)) by

(W, 90v)en == (f,Vv)g  forallv € Wi(Q), (24)

where W} (Q) = {a € LT (09) : a = Alpn, A € W5(Q)} is equipped with the
quotient norm. Of course, if f € CF (Q) with div f = 0, the definition of =, f by
(2.4) coincides with the usual trace v - flag, i.e., (7.f, %v)aa = (¥ - f,v)sq for all
v e Wi(Q).

Moreover, we note that, if f = fo+ Vp, fo € L1(Q), p € qu(Q), is the Helmholtz
decomposition of f € L7(Q2)" and (1.4) is valid, then p is uniquely determined as
solution of the weak Neumann problem

Ap = div f in €, (2.5)

Ouplon =v - flon on 99, (2.6)

where (2.5) is understood in the sense of distributions and (2.6) is understood as
Y (f —Vp) =0, cf. [28]. Because of the definition of v, p € W () solves (2.5)-(2.6)

if and only if ‘
(Vp,Vu)o = (f,Vu)o  forall v e W, (). (2.7)

Moreover, the existence of the (uniqup) Helmholtz decomposition is equivalent to the
existence of a unique solution p € W, (Q) of (2.7) for every f € L9(Q)". We note

that every F € Wq_,OI(Q) = (qu,(Q))’ can be represented as (F,v)q = (f, Vv)q for
some f € L7(£2)" with || f[|; < C||F|[yj—1, which is a consequence of the Hahn-Banach

theorem. Finally, let Ky: W,/ (09Q) — W}(Q) be defined by
(VKya,Vo)g = (a,vv)sn  forallve qu,(Q) (2.8)

1
By definition of W, ' (02), a = 7, A for some A € L1(2). Hence (2.8) is equivalent
to AKya =0 and 9, Kyalgq = a.

3 The Reduced Stokes Operator

In the following let @ C R*, n > 2, § € (0,7), and let 1 < ¢ < oo be as in
Assumption 1.1.

In order to apply the results from [3] for the construction of an approximate
resolvent for large A, we need the reduced Stokes operator Ag, defined as

Apqu = (A +VENT)u, Tu:=7,(A — Vdiv)u,
for u € D(Agq) := WZ ()" N W, ()", where Ky is defined by (2.8). Since div(A —
1
Vdiv)u = 0, we conclude that T': D(Ag,) — W,/ (052). Hence VKNT': D(Ag,) —
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Li(2)™ is well-defined. — Note that Ay, is a densely defined unbounded operator on
L1(Q2)™ in contrast to the Stokes operator, which acts on the subspace LZ(2). We
refer to [2, Section 3] for explanations of the relation between the Stokes and the
reduced Stokes operator.
Introducing local coordinates Tu = div, v,u, for every u € C*(Q) with u|sq = 0
where div, denotes the tangential divergence, cf. [24, Lemma A.1]. Hence by (2.2)
1
T: W2(Q)" N Wh(Q)" — W, "(dQ) forall0>s> —1+ é (3.1)

We will use the following additional assumption:

(A4) There is an R > 0 such that for every A\ € X5 with |\| > R there is no non-
trivial solution g € W/ (Q) of

Mg, v)a+ (Vg,Vo)g=0  for all v e Wy(Q). (3.2)

This assumption is needed in the proof of Lemma 3.1 below. In the following we will
show that (A4) is a consequence of Assumption 1.1, cf. proof of Theorem 1.3 below.
The construction of the approximate resolvent is based on the following lemma.

Lemma 3.1 Let Q CR", n>2,1< ¢ < o0, andd € (0,7) be as in Assumption 1.1.
Moreover, assume that (A4) holds and that (A + Ag,)~" exists for some \ € S5 with
Al > R. Then (A + Ay) * exists and

Apglrz) = Ay, A+ Aog) iz = A+ A4y (3.3)

Proof: The first statement can be seen as follows: If u € D(Aq,) N LZ(S2), then
div(—Au + VKyTu) = 0 in the sense of distributions and

Yo(—Au+ VENTu) = —y,Au+ 0, KyTulsgo =0

in the sense of (2.4). Hence —Au = (—A + VKNT)u — VKxTu is the Helmholtz
decomposition of —Au by (A2), i.e., (A + VENT)u = Py(—A)u = Aju.

In order to prove the second relation let u = (A+ Aq,) "' f with f € LL(Q). Then
multiplying (A + Agq)u = f by Vo, v € W (Q), and using (2.8) and (2.4) we obtain
that g = divu solves (3.2), which implies divu = 0 by (A4). Therefore, u € L%(£2)
by (1.4) and (A + Ag)u = (A + Agy)u = f. Since by the first statement A\ + A, =
(A+Ag0)| 12 (q) is injective, we finally conclude that (A+Ay) "' f =u = (A+Ag0) ' f
for every f e L1(Q). |

Lemma 3.2 Let Q C R*, n > 2, and 1 < ¢ < 00 be as in Assumption 1.1. If \+ Ay
is surjective for A\ € (—o0, 0], then there is no non-trivial solution of (3.2).
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Proof: Let f € LY () be arbitrary and let u € D(Ay,) such that (A + Ag g, )u = f.
Then multiplying f with Vg we observe that divu € qu,(Q) solves

—Adivu,g) — (Vdivu, Vg) = (f, Vg), for all g € W, ().

Hence, if g € W, (2) solves (3.2), then (f,Vg) = 0 for all f € L7(Q) and therefore
Vg = 0. Because of (3.2) and A # 0, we conclude g = 0. |

4 Construction of the Approximative Resolvent
The proof of Theorem 1.3 is based on the following result.

THEOREM 4.1 LetRl, n > 2, v € CYY(R), be a curved half-space, 1 < ¢ < oo,
and let § € (0,7). Then there is a bounded operator R, x: LY(R)™ — WZ(R!)™ such
that

A=A+ VE N R f=f+S,f inR, (4.1)
R.\f=0 on OR] (4.2)
for every f € LYRY)" and A € C\ (—00,0], where ||Syallza@n)) < Cgs(l+[A])°

~ s 1
uniformly in A € X; for some € > 0. Here K, n: W, q(aR’;) — W;“(R:), s €
(—i, 1+ %), s a bounded operator satisfying

AK, ya = Ra in RY, (4.3)
8,,[?77Na|39 =a+Sa ondRY, (4.4)

1, _1_, _1
where R : Wy (9R?) — W, ¢ (R?) and S.,: Wy * (9R?) — Wy *(ORZ) are bounded
operators. Moreover, for every R > 0

(1 + ADIR Al ezo@ny + IV Ryall oy < Cos, A€ Xy, (4.5)

/ B(=A) Ry dA
I'r

< Cusllblloo, h e H(9). (4.6)
£(Le(Rz)

Proof: The theorem is proved in [5, Theorem 4.1] but only for s = 0 in the mapping
properties of K, y, which remains to be extended.
The operator K, y = K is defined in [3, Section 5.5] as

K%N = F*’_IEI(DIJx,)ng

where k,(D,,2') is a Poisson operator of order —1 in R-form with C'*!'-coefficients
in the sense of [3, Section 4] and F*~!, F are as in Section 2. By duality

(85 ky (D a')a, fla = (=1)(a, t(2', D2)3 fan (4.7)
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for a € C3°(R*™), f € CF)(RY), and « € Ny, where

t(xla Dw)f = fg_'iml |:/(; El(xlagla yn)f(gla yn)dyn y

f(f’, z,) = Fooef(.,2,)], and El(x’,f’, Yn) denotes the symbol-kernel of k, (D, z'),
cf. [3, Section 4]. Using (4.7) for suitable o and [1, Theorem 4.8] for ¢(z', D,), the
mapping properties of k,(D,,z') are obtained by duality and interpolation. [ ]

Now we define the approximate resolvent R, on a domain (2 satisfying (A1) as
Raf =) WiRya(eif),  f e LYQ)",
j=1

where R, x, j =1,...,m, is the approximate resolvent on Rﬁj due to Theorem 4.1.
Moreover, we define the approximate Poisson operator

Kya=Y 0K, n(pja),  a€W,"(09),
j=1

where [~(7ij is the operator due to Theorem 4.1 for R?/j. Now we have

Lemma 4.2 Let 1 < g < oo and 2 C R" be as in Assumption 1.1 and let r = q or
r =¢'. Moreover, let Ky be the Poisson operator of the Neumann problem as defined
in (2.8). Then there is some € > 0 such that

IV(EKy — Kx)Tully < Crllullo—e,,  for all u € WES(Q)" 0 W, ()™

Proof: For simplicity let r = ¢. Let f € LY (Q)™ be arbitrary and let f = f, + Vp,
fo€ LY(Q),p € qu, (2) be its Helmholtz decomposition. By (A3) we have p = p;+po,

where p; € W5 (Q) and p, € LY (Q) with Vp, € Wy (€) and ||(p1, Vpo)ll1y <
Cy|IVpll1,y- Then by (4.3)-(4.4)

(V(Ky — foN)Tlia fla=(V(Ky - fN{N)Tlia Vp)a B
= (V(Ky — Kn)Tu,Vp2)o + (I — 0, Kn)Tu,p1)ag — (AKNTu, p1)q.

The term ((I — 8,Kx)Tu, p1)og can be estimated by ||ul|o—. 4|/ f]|; for some & > 0 in
a straight-forward manner using Theorem 4.1 and (3.1). Moreover,

(AKNTu,pr)ol < (iR, (0;Tw), p1)al
=1

+ > [(2(Viy) - VK, n(0;Tu) + (M) Koy v (0 Tu), pr)al,

i=1
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where

(i 1, (95 Tw), p)al < ClES 0T ull e s [IP1llg < Cllull—cqll fllg

for some ¢ > 0. Since € Wy(Q) — Wi(Q) with 0 < £ < %, by the mapping
property I?W,N: w, ¢ (OR] ) — W,/ (R?), and by (2.3)

|2(VY;) - VE o, w(0iTw) + (M) Koy v (95T), pr)al < Cllullz—eqllf g

for 0 < ¢ < %. The term (VENTU,, Vpa)q is estimated in the same way using

Vp, € qu(Q) Finally, by the definitions of Ky and T

(VENTu, Vp2)a| = |((A — Vdiv)u, Vp2)q|
|(Vu, V2p2)9| + [(Ovu, Vp2)aa| + [(divu, Aps)a| + |(div u, 0,p2)aa|

<
< COllullz-egllVP2llLy < Cllulla—<qll fllo

for some £ > 0. — The proof for r = ¢’ is done in the same way. [

Proof of Theorem 1.3: The proof is the same as in [5, Theorem 4.4] with minor
modifications. We include it for the convenience of the reader.
First of all, by (4.5) and interpolation

1R (%5 f)
for all s € [0,2] and f € LY(Q)", j =1,...,m. Moreover, by (4.1)

$,q S Cq,d,R(l =+ |)‘|)_1+ A€ 267 (48)

(A= A+ VENT)Ryf
= [+ 0iSyaleif) = Y (Vi) - VRja(pif) + (M) Ria(9; )
7j=1 7=1
+(VENT — VENT)RAf.
Hence (4.8), Theorem 4.1, and Lemma 4.2 imply

(A=A +VENT)Ry =1+ S},

where ||S4]|zzo)) < Cgs(1 + |A]) % uniformly in A € X5 for some € > 0. Therefore
(A + Ap,) 7" exists for all A € B5 with |[A| > R for some R > 0 and

(A + Agy)~! = Ry + Sy,

where [[Sx|lz(ra)) < Cgs(1+ |A[)"1 ¢ uniformly in A € X4, |A| > R. Furthermore,
for By = Ry, S\ we have

/F h(=\) By d\

< Cyallhlloos  h e H(),
£(L9(5)
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because of (4.6) and [|Sy|] < Cys(1+ |N]) 1 e,

The same arguments apply to Ay, instead of Ap,. Hence we can assume that
also (A + Apy)~" exists for all A € X5 with [A\| > R. In particular, this implies
that (A4) is valid because of Lemma 3.2. Now (A + Agg) 7 |20) = (A + Ay)~" by
Lemma 3.1, which proves (1.5). The rest of the theorem follows from (1.5) and the
fact that f(\) = (A + A,) ! is uniformly bounded on compact subsets of p(—A,). ®

5 Bounded H,-Calculus for an Aperture Domain

Roughly speaking an aperture domain is a domain separated by a wall with a hole
(aperture) inside. More precisely, an aperture domain 2 C R", n > 2, is a domain
such that

QUB=R; URUB

for some ball B, where R” := {z € R" : 2, < —d} for some d > 0. Concerning the
Stokes equations the aperture domain is of particular interest since under certain cir-
cumstances depending on the dimension n and the integral exponent ¢ an additional
condition has to be posed to get unique solutions, c¢f. [16]. This may be done by
prescribing the fluz ¢(u) of the velocity field u through the hole, i.e.,

b(u) = / vudo

where M’ is an (n — 1)-dimensional compact manifold dividing € into an upper
and lower part €2y, (2_, resp., such that 2, UB = R} U B. In the following let
o1, € C°(RY) be cut-off functions such that pi(z) =1 for v € R with |z| > R
for some suitable R > 0, ¢+ = 1 on supp ¢z, and supp¢+ C R% \ B.

In order to apply Theorem 1.3, it remains to verify Assumption 1.1.

Proposition 5.1 Let Q C R*, n > 2, be an aperture domain with CY'-boundary.
Then Assumption 1.1 is valid for Q and every 1 < ¢ < -~ and ¢ € (0, ).

n—1

Proof: Obviously, (Al) is true. The first part of (A2) is true for every 1 < ¢ < 0o
but (1.4) only holds if 1 < ¢ < -5, cf. [16, Theorem 2.6]. The condition (A3) can
be easily verified by using the cut-off functions ¢+ and the corresponding statement

for the half-spaces R} . ]

We will analyze the resolvent (A+ A,) ! near the origin by comparing it with the
resolvents of the Stokes operator on R%. Hence let RY = (\ + Agy g)7h, 1< g < o0,
denote the resolvent of the Stokes operator on R} . Then

Allully + V2ully < Coellflle, A € S, f € LURY), (5.1)

cf. e.g. [15, Theorem 1.3]. Moreover,
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Lemma 5.2 Let 1 < g <n, 6 € (0,7), and let BE, = By/(0) NRY. Then for every
M >0

IS, VRS Pl asz) < Cosnall fllg
uniformly in A € 5 and f € LY(R})™.

Proof: By Poincaré’s inequality, ||Rff||Lq(BAiJ) < O‘LMHVR)%JCHLQ(BIT/[)' Hence it

remains to estimate VRiE. Then, if qi* = % — %,

IVES fllpaszy < CulVEN fllie @y < Conll V2 Rafllg < Coanall£llg
uniformly in A € X5 and f € LY(R} )" by (5.1). |

In order to analyze (1.2) for A = A, with I replaced by [, :==I'n Bg(0), R > 0,
we consider

uyi= A+ A) =Y R =y Ry f,  f € LLUQ). (5.2)

Moreover, let py = g\ — ¢ pi — ¢7py, where Vg, = (I — P))A(N + A,)~'f and
Vpy = (I — PF)ARYo* f is chosen such that [+ py = 0 for M > 0 so large that
M
£ =1o0n R% \ By(0). Then (uy,py) solves

A=D)ux+Vp=L—p' =)+ I+ =/
divuy = gf + g5, =: g in Q,
uxlon =0 on 012,

where gf = —Vy+.- ngpif and
I3 = 2(Ve*) - VREQSf + (A5 Ry o™ f — (Vi*)py.
Moreover, ¢(uy) = ¢((A+ A,) 1f) =0.

Lemma 5.3 For every 1 < q < oo there is some 0 < a < 1 such that [A|*||lux||, <
Cll fally uniformly in A € 35, |A] < 1.

Proof: By [16, Theorem 2.1] for every 1 < ¢ <n

Allleally + [V*ually < Cys (IIfAHq +Vaally + (1 + |)‘|)||§>\||ij()1> (5.3)

uniformly in A € 5. Moreover,

J

gide = [ div (1= v*)REG ) dr =0
B:l:

+
M M
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|g5°[|, by Poincaré’s inequality. Furthermore, if n < r < 0o

Hence ||9§E||ij(}(R1) < Cryg
and 1 < g < "5 is defined by % =14 %, then by [16, Corollary 2.4]

T

IVaslle < Cos (IMIualle + 1Alla + 19831y + 19l )
< Crs (IRl + lga )

for A € X5, |[A| < 1, since supp fr,supp gn C Bp(0). Moreover, since ||Vuy/l, <
Cyll(uy, V2uy)||,, interpolation of the latter inequality with (5.3) yields that for every
1 < g < oo there is some 0 < a < 1 such that

ANVl < Co (IAll+ 19alh) . A€ Sa A< 1.
This implies that for n <7 < oo and 1 < ¢ < ~*; defined by % = %+% there is some

0 < a < 1 such that
A Jually < Co A [Vually < Crs <||fA||q + [|gx

10) < Cos (Il + 13211 )

for A € ¥ with |A| < 1 using Sobolev’s inequality, cf. [16, Lemma 3.1]. Interpolating
again finishes the proof. [

Combining Lemma 5.2 and Lemma 5.3 we obtain:

Corollary 5.4 Let uy be defined as in (5.2). Then for every 1 < q < n there is some
0 < a <1 such that ||ux|l; < C|A[7%fllq for all f € LL(Q) uniformly in A € X5 with
Al <1

Proof of Theorem 1.4: First of all, (A\+ A,) * exists for every A € C\ (—o0, 0] and
(A,) = Ay, cf. [16, Theorem 2.5]. Hence by duality and interpolation it is sufficient
to prove the statement for 1 < ¢ < 5. Moreover, R(A,) is dense, cf. Franzke [17,
Theorem 6]. Therefore A, is sectorial and it is sufficient to prove (1.3) for h € H (),
cf. Denk, Hieber, and Priiss [11, Section 2.4]. Moreover, because of Theorem 1.3 it
remains to prove

/ =N\ + A,) " "dA

’
R

< Csqllh|lso for all h € H(0). (5.4)
L(LE ()

Since (A + A,)~" is bounded on compact subsets of C\ (—o0,0], it is sufficient to
consider R = 1. Because of (5.2) and Corollary 5.4, we can replace A, by Agrs.
Moreover, using

1

271 Fll

1
h(—)\) ()\ + ARi,q)ild)\ = h(ARi,q) — Q—M/F h(—)\) ()\ + ARi,q)ild)\
1

with I’y = '\ B;1(0) the estimate (5.4) is a consequence of the bounded H-calculus
for the Stokes operator on R, cf. Desch, Hieber, and Priiss [12], and of Theorem 1.3
for Q =R?}. [
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