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Abstrat

In the present ontribution we study the Stokes operator A

q

= �P

q

� on

L

q

�

(
), 1 < q < 1, where 
 is a suitable bounded or unbounded domain in

R

n

, n � 2, with C

1;1

-boundary. We present some onditions on 
 and the

related funtion spae and basi equations whih guarantee that  + A

q

for

suitable  2 R is of positive type and admits a bounded H

1

-alulus. This

implies the existene of bounded imaginary powers of  + A

q

. Most domains

studied in the theory of Navier-Stokes like e.g. bounded, exterior, and aperture

domains as well as asymptotially at layers satisfy the onditions. The proof

is done by onstruting an approximate resolvent based on the results of [3℄,

whih were obtained by applying the alulus of pseudodi�erential boundary

value problems. Finally, the result is used to proof the existene of a bounded

H

1

-alulus of the Stokes operator A

q

on an aperture domain.
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H

1

-alulus, aperture domain
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1 Introdution

In this artile we onsider the Stokes operator A

q

= �P

q

� on L

q

�

(
) with domain

D(A

q

) = ff 2 W

2

q

(
)

n

: f j

�


= 0g \ L

q

�

(
)

where P

q

: L

q

(
)

n

! L

q

�

(
) denotes the Helmholtz projetion, L

q

�

(
) := C

1

0;�

(
)

k:k

q

,

C

1

0;�

(
) := fu 2 C

1

0

(
)

n

: div u = 0g, and 
 � R

n

, n � 2, is a domain spei�ed

in Assumption 1.1 below. Properties of the Stokes operator are important for the

�
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1 INTRODUCTION 2

assoiated instationary Stokes and Navier-Stokes equations. Sine the latter equa-

tions arise in mathematial uid mehanis, many di�erent kinds of bounded and

unbounded domains are of interest and have been studied.

The purpose of the present ontribution is to present some onditions on 
 and

the related funtion spaes whih guarantee that  + A

q

for suitable  2 R is of

positive type and admits a bounded H

1

-alulus w.r.t. Æ 2 (0; �). Here  + A

q

is of

positive type w.r.t. Æ if and only if �

Æ

[ f0g � �(�� A

q

) and

k(�+ + A

q

)

�1

k

L(L

q

�

(
))

�

C

q;Æ

j�j

; � 2 �

Æ

; (1.1)

where �

Æ

:= fz 2 C n f0g : j arg zj < Æg. { Note that, if Æ >

�

2

, (1.1) implies that

��A

q

generates a bounded, strongly ontinuous, analyti semi-group. { Moreover,

A := + A

q

is said to admit a bounded H

1

-alulus w.r.t. Æ if and only if

h(A) :=

1

2�i

Z

�

h(��)(�+ A)

�1

d� (1.2)

is a bounded operator satisfying

kh(A)k

L(L

q

�

(
))

� C

q;Æ

khk

1

for all h 2 H

1

(Æ); (1.3)

where H

1

(Æ) denotes the Banah algebra of all bounded holomorphi funtions

h : �

��Æ

! C , f. MIntosh [25℄, and � is the negatively orientated boundary of

�

Æ

. We note that in order to prove (1.3) for all h 2 H

1

(Æ) it is suÆient to show the

estimate for h 2 H(Æ), whih onsists of all h 2 H

1

(Æ) suh that

jh(z)j � C

jzj

s

1 + jzj

2s

for all z 2 �

��Æ

for some s > 0, f. [8, Lemma 2.1℄. For h 2 H(Æ) the integral (1.2) is well-de�ned as

a Bohner integral.

The property of admitting a boundedH

1

-alulus is a generalization of possessing

bounded imaginary powers sine h

y

(z) = z

iy

2 H

1

(Æ) for all Æ 2 (0; �), whih has

many important onsequenes. In partiular, (1.3) for Æ >

�

2

yields the maximal

regularity of �� A

q

by the result of Dore and Venni [13℄.

The resolvent estimate (1.1) with arbitrary Æ 2 (0; �), 1 < q <1 and  = 0, has

been proved for various kinds of domains 
 � R

n

, n � 2, f. Giga [19℄ for bounded

domains, Borhers and Sohr [9℄ and Borhers and Varnhorn [9℄ for exterior domains,

Farwig and Sohr [16℄ for aperture domains, Abels and Wiegner [6℄ for an in�nite

layer 
 = R

n�1

� (�1; 1), and Abels [2℄ for asymptotially at layers. Moreover, see

Farwig and Sohr [15℄ for a general treatment and Desh, Hieber, and Pr�uss [12℄ for

the ase of a half-spae R

n

+

and R

n

, where also the borderline ases q = 1;1 have

been studied.

The fat that A

q

possesses bounded imaginary powers and admits a bounded

H

1

-alulus was proved by Giga [20℄, Giga and Sohr [21℄, and Noll and Saal [27℄ for
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bounded domains and for exterior domains in R

n

, n � 3, by Giga and Sohr [22℄ for

the half-spae R

n

+

, see also [12℄, and by Abels [5, 4, 3℄ for two-dimensional exterior

domains, an in�nite layer, and asymptotially at layers.

In the following we will present an approah, proving (1.1) for large � and (1.3)

for suitable  simultaneously for a lass of domains, whih inludes all previously

mentioned ases provided that some auxiliary results are known. More preisely, we

make the following assumption.

Assumption 1.1 Let 1 < q < 1 and Æ 2 (0; �) be �xed. Moreover, let 
 � R

n

,

n � 2, be a domain satisfying the following onditions:

(A1) There is a �nite overing of 
 with relatively open sets U

j

, j = 1; : : : ; m,

suh that U

j

oinides (after rotation) with a relatively open set of R

n



j

, where

R

n



j

:= f(x

0

; x

n

) 2 R

n

: x

n

> 

j

(x

0

)g, 

j

2 C

1;1

(R

n�1

). Moreover, suppose

that there are ut-o� funtions '

j

;  

j

2 C

1

b

(
), j = 1; : : : ; m, suh that '

j

,

j = 1; : : : ; m, is a partition of unity,  

j

� 1 on supp'

j

, and supp 

j

� U

j

,

j = 1; : : : ; m.

(A2) The Helmholtz deomposition is valid for L

r

(
)

n

with r = q; q

0

, i.e., for every

f 2 L

r

(
)

n

there is a unique deomposition f = f

0

+rp with f

0

2 L

r

�

(
) and

p 2

_

W

1

r

(
). Moreover,

L

q

�

(
) = ff 2 L

q

(
)

n

: div f = 0; 

�

f = 0g: (1.4)

(A3) For every p 2

_

W

1

r

(
), r = q; q

0

, there is a deomposition p = p

1

+ p

2

suh that

p

1

2 W

1

r

(
), p

2

2 L

r

lo

(
) with rp

2

2 W

1

r

(
) and k(p

1

;rp

2

)k

1;r

� Ckrpk

r

.

We refer to Setion 2 below for the de�nitions of the funtion spaes and the

normal trae 

�

.

Remark 1.2 First of all, we note that (A1) an be generalized to the ase of a loally

�nite overing U

j

, j 2 N , if uniform bounds on 

j

; '

j

;  

j

in C

1;1

-norm are assumed

and if for every x 2 
 the number of sets U

j

ontaining x is bounded by a onstant

independent of x. Moreover, it is easy to see that (A1) is ful�lled for all kinds of

domains with C

1;1

-boundary mentioned above. We refer to [28, 15, 16, 26, 14, 2℄

for the validity of the Helmholtz deomposition for these types of domains. The

haraterization (1.4) holds as well in these ases exept for an aperture domain if

q >

n

n�1

for whih the haraterization is di�erent, f. [16, Lemma 3.1℄. The identity

(1.4) is used in Lemma 3.1 below. Moreover, (A3) is a tehnial ondition needed in

the proof of Lemma 4.2 below. It is satis�ed if the following extension property is

valid: For every p 2

_

W

1

q

(
) there is an extension ~p 2

_

W

1

q

(R

n

) suh that ~pj




= p and

kr~pk

q

� Ckrpk

q

. This is the ase for every (";1)-domain, f. [10℄, in partiular, for

exterior domains. This extension property does not hold for layer-like domains, f.

[2, Setion 2.4℄. Nevertheless (A3) is also valid in layer-like domains, f. [2, Lemma

2.4℄.
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The main result is the following:

THEOREM 1.3 Let 
 � R

n

, n � 2, Æ 2 (0; �), and 1 < q < 1 satisfy Assump-

tion 1.1. Then there is an R > 0 suh that (�+ A

q

)

�1

exists and

k(�+ A

q

)

�1

k

q

�

C

q;Æ

1 + j�j

for all � 2 �

Æ

with j�j � R. Moreover,









Z

�

R

h(��)(�+ A

q

)

�1

d�









L(L

q

�

(
))

� C

q;Æ

khk

1

(1.5)

for every h 2 H(Æ), where �

R

= � n B

R

(0). In partiular, for every  2 R and

0 < Æ

0

� Æ suh that  + �

Æ

0

� �(�A

q

) the shifted Stokes operator  + A

q

admits a

bounded H

1

-alulus with respet to Æ

0

.

The proof of Theorem 1.3 is based on the onstrution of an approximative re-

solvent R

�

that oinides with (�+A

q

)

�1

modulo an operator whih deays of order

O(j�j

�1�"

) as j�j ! 1 for some " > 0. The onstrution is based on a loalization

proedure and a suitable result for the redued Stokes operator on a urved half-

spae R

n



,  2 C

1;1

(R

n�1

), f. Theorem 4.1 below. The latter result was basially

obtained in [3℄ and is ahieved using the alulus of pseudodi�erential boundary value

problems developed by Grubb [23℄ in a non-smooth version, f. [3, Setion 4℄ and [1℄.

In partiular, if it is known that �(�A

q

) � (�1; 0℄, then Theorem 1.3 implies

that  + A

q

admits a bounded H

1

-alulus for every  > 0. In order to prove that

this is also true for  = 0 it remains to analyze the resolvent near 0. This is done for

the ase of an aperture domain in R

n

, n � 2, in Setion 5 below, where the following

result is proved:

THEOREM 1.4 Let 1 < q <1, Æ 2 (0; �), and let 
 � R

n

, n � 2, be an aperture

domain with C

2;�

-boundary, � > 0, as de�ned in Setion 5 below. Then the Stokes

operator A

q

admits a bounded H

1

-alulus with respet to Æ.

In partiular, this yields that the Stokes operator has maximal regularity on L

q

�

(
),

whih was also obtained by Fr�ohlih [18℄ in the ontext of weighted L

q

-spaes.

2 Preliminaries

Let 
 � R

n

, n � 2, be a domain. Then C

1

0

(
) denotes the set of all smooth

f : 
! C with ompat support, and

C

1

(0)

(
) := fu = vj




: v 2 C

1

0

(R

n

)g:
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Moreover, C

1

b

(
) denotes the set of all smooth and bounded f : 
! C with bounded

derivatives and C

1;1

(R

n

) is the set of all bounded funtions f : R

n

! C with bounded

and globally Lipshitz ontinuous �rst order derivatives.

The usual Lebesgue spae will be denoted by L

q

(
) and L

q

(�
), 1 � q � 1,

normed by k:k

q

� k:k

L

q

(
)

and k:k

q;�


� k:k

L

q

(�
)

, respetively. Furthermore, L

q

lo

(
)

onsists of all f : 
! C suh that f 2 L

q

(B\
) for all balls B with B\
 6= ;. The

salar produt on L

2

(M) is denoted by (:; :)

M

for M = 
 or M = �
. Moreover, the

usual Sobolev-Slobodekij spaes based on L

q

, 1 < q < 1, are denoted by W

s

q

(
)

and W

s

q

(�
), s � 0, with norms k:k

s;q

and k:k

s;q;�


, resp., f. e.g. [7℄. As usual

W

s

q;0

(
), s � 0 with s�

1

q

62 N , is de�ned as the losure of C

1

0

(
) in W

s

q

(
), and

W

�s

q

(
) := (W

s

q

0

;0

(
))

0

; W

�s

q;0

(
) := (W

s

q

0

(
))

0

; W

�t

q

(�
) := (W

t

q

0

(�
))

0

for s; t > 0 with s �

1

q

0

62 N where

1

q

+

1

q

0

= 1. Finally, the homogeneous Sobolev

spae of order 1 is de�ned as

_

W

1

q

(
) :=

�

p 2 L

q

lo

(
) : rp 2 L

q

(
)

	

normed by kr � k

q

.

In the following let 
 � R

n

, n � 2, be a domain satisfying (A1). Using the ut-o�

funtions '

j

;  

j

, j = 1; : : : ; m, many properties of the Sobolev-Slobodekij spae on


 and �
 an be redued to the ase of a urved half-spae R

n



,  2 C

1;1

(R

n�1

).

Then the di�eomorphism

F : R

n

+

! R

n



: x 7! (x

0

; x

n

+ (x

0

)) (2.1)

an be used to redue the statement on R

n



to the ase of a half-spae R

n

+

= fx 2

R

n

: x

n

> 0g. More preisely, if (F

�

f)(x) := f(F (x)) and (F

�;�1

f)(x) := f(F

�1

(x))

denote the pull-bak and push-forward, resp., of a salar funtion f , then

F

�

: W

s

q

(R

n

+

)! W

s

q

(R

n



); F

�

: W

s

q;0

(R

n

+

)!W

s

q;0

(R

n



);

F

�

0

: W

s

q

(R

n�1

)! W

s

q

(�R

n



)

are linear isomorphisms for jsj � 2, where F

0

denotes the restrition of F on �R

n

+

and

�R

n

+

is identi�ed with R

n�1

. In partiular, we note that, if 2 � s > j +

1

q

, j = 0; 1,

with s�

1

q

62 N , there is a bounded and surjetive linear operator



j

: W

s

q

(
)! W

s�

1

q

q

(�
) (2.2)

suh that 

j

u = �

j

�

uj

�


for all f 2 C

1

(0)

(
), f. e.g. [7℄, where � denotes the exterior

normal. Moreover, if 0 < s <

1

q

, by [29, Theorem 2.9.3℄ W

s

q;0

(
) = W

s

q

(
), where 


is as in Assumption 1.1. Thus

(W

s

q

(
))

0

= W

�s

q

0

(
) for all s 2

�

�

1

q

0

;

1

q

�

: (2.3)
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Furthermore, reall that for f 2 L

q

(
) with div f = 0 it is possible to de�ne a weak

trae of the normal omponent 

�

f 2 W

�

1

q

q;�

(�
) :=

�



0

_

W

1

q

0

(
)

�

0

by

h

�

f; 

0

vi

�


:= (f;rv)




for all v 2

_

W

1

q

0

(
); (2.4)

where 

0

_

W

1

q

0

(
) := fa 2 L

q

0

lo

(�
) : a = Aj

�


; A 2

_

W

1

q

0

(
)g is equipped with the

quotient norm. Of ourse, if f 2 C

1

(0)

(
) with div f = 0, the de�nition of 

�

f by

(2.4) oinides with the usual trae � � f j

�


, i.e., h

�

f; 

0

vi

�


= (� � f; v)

�


for all

v 2

_

W

1

q

0

(
).

Moreover, we note that, if f = f

0

+rp, f

0

2 L

q

�

(
), p 2

_

W

1

q

(
), is the Helmholtz

deomposition of f 2 L

q

(
)

n

and (1.4) is valid, then p is uniquely determined as

solution of the weak Neumann problem

�p = div f in 
; (2.5)

�

�

pj

�


= � � f j

�


on �
; (2.6)

where (2.5) is understood in the sense of distributions and (2.6) is understood as



�

(f�rp) = 0, f. [28℄. Beause of the de�nition of 

�

, p 2

_

W

1

q

(
) solves (2.5)-(2.6)

if and only if

(rp;rv)




= (f;rv)




for all v 2

_

W

1

q

0

(
): (2.7)

Moreover, the existene of the (unique) Helmholtz deomposition is equivalent to the

existene of a unique solution p 2

_

W

1

q

(
) of (2.7) for every f 2 L

q

(
)

n

. We note

that every F 2

_

W

�1

q;0

(
) := (

_

W

1

q

0

(
))

0

an be represented as hF; vi




= (f;rv)




for

some f 2 L

q

(
)

n

with kfk

q

� CkFk

_

W

�1

q;0

, whih is a onsequene of the Hahn-Banah

theorem. Finally, let K

N

: W

�

1

q

q;�

(�
)!

_

W

1

q

(
) be de�ned by

(rK

N

a;rv)




= ha; 

0

vi

�


for all v 2

_

W

1

q

0

(
): (2.8)

By de�nition of W

�

1

q

q;�

(�
), a = 

�

A for some A 2 L

q

�

(
). Hene (2.8) is equivalent

to �K

N

a = 0 and �

�

K

N

aj

�


= a.

3 The Redued Stokes Operator

In the following let 
 � R

n

, n � 2, Æ 2 (0; �), and let 1 < q < 1 be as in

Assumption 1.1.

In order to apply the results from [3℄ for the onstrution of an approximate

resolvent for large �, we need the redued Stokes operator A

0;q

de�ned as

A

0;q

u := (��+rK

N

T )u; Tu := 

�

(��r div)u;

for u 2 D(A

0;q

) := W

2

q

(
)

n

\W

1

q;0

(
)

n

, where K

N

is de�ned by (2.8). Sine div(��

r div)u = 0, we onlude that T : D(A

0;q

) ! W

�

1

q

q;�

(�
). Hene rK

N

T : D(A

0;q

) !
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L

q

(
)

n

is well-de�ned. { Note that A

0;q

is a densely de�ned unbounded operator on

L

q

(
)

n

in ontrast to the Stokes operator, whih ats on the subspae L

q

�

(
). We

refer to [2, Setion 3℄ for explanations of the relation between the Stokes and the

redued Stokes operator.

Introduing loal oordinates Tu = div

�



1

u

�

for every u 2 C

1

(
) with uj

�


= 0

where div

�

denotes the tangential divergene, f. [24, Lemma A.1℄. Hene by (2.2)

T : W

2+s

q

(
)

n

\W

1

q;0

(
)

n

!W

s�

1

q

q

(�
) for all 0 � s > �1 +

1

q

: (3.1)

We will use the following additional assumption:

(A4) There is an R > 0 suh that for every � 2 �

Æ

with j�j � R there is no non-

trivial solution g 2 W

1

q

(
) of

�(g; v)




+ (rg;rv)




= 0 for all v 2 W

1

q

0

(
): (3.2)

This assumption is needed in the proof of Lemma 3.1 below. In the following we will

show that (A4) is a onsequene of Assumption 1.1, f. proof of Theorem 1.3 below.

The onstrution of the approximate resolvent is based on the following lemma.

Lemma 3.1 Let 
 � R

n

, n � 2, 1 < q <1, and Æ 2 (0; �) be as in Assumption 1.1.

Moreover, assume that (A4) holds and that (�+A

0;q

)

�1

exists for some � 2 �

Æ

with

j�j � R. Then (�+ A

q

)

�1

exists and

A

0;q

j

L

q

�

(
)

= A

q

; (�+ A

0;q

)

�1

j

L

q

�

(
)

= (�+ A

q

)

�1

: (3.3)

Proof: The �rst statement an be seen as follows: If u 2 D(A

0;q

) \ L

q

�

(
), then

div(��u+rK

N

Tu) = 0 in the sense of distributions and



�

(��u+rK

N

Tu) = �

�

�u+ �

�

K

N

Tuj

�


= 0

in the sense of (2.4). Hene ��u = (�� + rK

N

T )u � rK

N

Tu is the Helmholtz

deomposition of ��u by (A2), i.e., (��+rK

N

T )u = P

q

(��)u = A

q

u.

In order to prove the seond relation let u = (�+A

0;q

)

�1

f with f 2 L

q

�

(
). Then

multiplying (�+A

0;q

)u = f by rv, v 2 W

1

q

0

(
), and using (2.8) and (2.4) we obtain

that g = div u solves (3.2), whih implies div u = 0 by (A4). Therefore, u 2 L

q

�

(
)

by (1.4) and (� + A

q

)u = (� + A

0;q

)u = f . Sine by the �rst statement � + A

q

=

(�+A

q;0

)j

L

q

�

(
)

is injetive, we �nally onlude that (�+A

q

)

�1

f = u = (�+A

q;0

)

�1

f

for every f 2 L

q

�

(
).

Lemma 3.2 Let 
 � R

n

, n � 2, and 1 < q <1 be as in Assumption 1.1. If �+A

q

0

is surjetive for � 62 (�1; 0℄, then there is no non-trivial solution of (3.2).
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Proof: Let f 2 L

q

0

(
) be arbitrary and let u 2 D(A

0;q

0

) suh that (�+A

0;q

0

)u = f .

Then multiplying f with rg we observe that div u 2 W

1

q

0

(
) solves

��(div u; g)� (r div u;rg) = (f;rg); for all g 2 W

1

q

(
):

Hene, if g 2 W

1

q

(
) solves (3.2), then (f;rg) = 0 for all f 2 L

q

0

(
) and therefore

rg = 0. Beause of (3.2) and � 6= 0, we onlude g = 0.

4 Constrution of the Approximative Resolvent

The proof of Theorem 1.3 is based on the following result.

THEOREM 4.1 Let R

n



, n � 2,  2 C

1;1

(R

n�1

), be a urved half-spae, 1 < q <1,

and let Æ 2 (0; �). Then there is a bounded operator R

;�

: L

q

(R

n



)

n

! W

2

q

(R

n



)

n

suh

that

(���+r

e

K

;N

T )R

;�

f = f + S

;�

f in R

n



; (4.1)

R

;�

f = 0 on �R

n



(4.2)

for every f 2 L

q

(R

n



)

n

and � 2 C n (�1; 0℄, where kS

;�

k

L(L

q

(R

n



))

� C

q;Æ

(1 + j�j)

�"

uniformly in � 2 �

Æ

for some " > 0. Here

e

K

;N

: W

s�

1

q

q

(�R

n



) ! W

s+1

q

(R

n



), s 2

(�

1

q

0

; 1 +

1

q

), is a bounded operator satisfying

�

e

K

;N

a = R

0



a in R

n



; (4.3)

�

�

e

K

;N

aj

�


= a+ S

0



a on �R

n



; (4.4)

where R

0



: W

�

1

q

�"

q

(�R

n



)!W

�1

q;0

(R

n



) and S

0



: W

�

1

q

�"

q

(�R

n



)!W

�

1

q

q

(�R

n



) are bounded

operators. Moreover, for every R > 0

(1 + j�j)kR

;�

k

L(L

q

(R

n



))

+ kr

2

R

;�

k

L(L

q

(R

n



))

� C

q;Æ

; � 2 �

Æ

; (4.5)









Z

�

R

h(��)R

;�

d�









L(L

q

(R

n



))

� C

q;Æ

khk

1

; h 2 H(Æ): (4.6)

Proof: The theorem is proved in [5, Theorem 4.1℄ but only for s = 0 in the mapping

properties of

e

K

;N

, whih remains to be extended.

The operator

e

K

;N

�

e

K

1

is de�ned in [3, Setion 5.5℄ as

e

K

;N

= F

�;�1

k

1

(D

x

; x

0

)F

�

0

;

where k

1

(D

x

; x

0

) is a Poisson operator of order �1 in R-form with C

0;1

-oeÆients

in the sense of [3, Setion 4℄ and F

�;�1

; F

�

0

are as in Setion 2. By duality

(�

�

x

k

1

(D

x

; x

0

)a; f)




= (�1)

j�j

(a; t(x

0

; D

x

)�

�

x

f)

�


(4.7)
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for a 2 C

1

0

(R

n�1

); f 2 C

1

(0)

(R

n

+

), and � 2 N

n

0

, where

t(x

0

; D

x

)f := F

�1

�

0

7!x

0

�

Z

1

0

~

k

1

(x

0

; �

0

; y

n

)

~

f(�

0

; y

n

)dy

n

�

;

~

f(�

0

; x

n

) = F

x

0

7!�

0

[f(:; x

n

)℄, and

~

k

1

(x

0

; �

0

; y

n

) denotes the symbol-kernel of k

1

(D

x

; x

0

),

f. [3, Setion 4℄. Using (4.7) for suitable � and [1, Theorem 4.8℄ for t(x

0

; D

x

), the

mapping properties of k

1

(D

x

; x

0

) are obtained by duality and interpolation.

Now we de�ne the approximate resolvent R

�

on a domain 
 satisfying (A1) as

R

�

f =

m

X

j=1

 

j

R



j

;�

('

j

f); f 2 L

q

(
)

n

;

where R



j

;�

, j = 1; : : : ; m, is the approximate resolvent on R

n



j

due to Theorem 4.1.

Moreover, we de�ne the approximate Poisson operator

e

K

N

a =

m

X

j=1

 

j

e

K



j

;N

('

j

a); a 2 W

�

1

q

q

(�
);

where

e

K



j

;N

is the operator due to Theorem 4.1 for R

n



j

. Now we have

Lemma 4.2 Let 1 < q <1 and 
 � R

n

be as in Assumption 1.1 and let r = q or

r = q

0

. Moreover, let K

N

be the Poisson operator of the Neumann problem as de�ned

in (2.8). Then there is some " > 0 suh that

kr(K

N

�

e

K

N

)Tuk

r

� C

r

kuk

2�";r

for all u 2 W

2�"

r

(
)

n

\W

1

r;0

(
)

n

:

Proof: For simpliity let r = q. Let f 2 L

q

0

(
)

n

be arbitrary and let f = f

0

+rp,

f

0

2 L

q

0

�

(
), p 2

_

W

1

q

0

(
) be its Helmholtz deomposition. By (A3) we have p = p

1

+p

2

,

where p

1

2 W

1

q

0

(
) and p

2

2 L

q

0

lo

(
) with rp

2

2 W

1

q

0

(
) and k(p

1

;rp

2

)k

1;q

0

�

C

q

0

krpk

1;q

0

. Then by (4.3)-(4.4)

(r(K

N

�

e

K

N

)Tu; f)




= (r(K

N

�

e

K

N

)Tu;rp)




= (r(K

N

�

e

K

N

)Tu;rp

2

)




+ h(I � �

�

e

K

N

)Tu; p

1

i

�


� (�

e

K

N

Tu; p

1

)




:

The term h(I � �

�

e

K

N

)Tu; p

1

i

�


an be estimated by kuk

2�";q

kfk

q

0

for some " > 0 in

a straight-forward manner using Theorem 4.1 and (3.1). Moreover,

j(�

e

K

N

Tu; p

1

)




j �

m

X

j=1

j( 

j

R

0



j

('

j

Tu); p

1

)




j

+

m

X

j=1

j(2(r 

j

) � r

e

K



j

;N

('

j

Tu) + (� 

j

)

e

K



j

;N

('

j

Tu); p

1

)




j;
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where

j( 

j

R

0



j

('

j

Tu); p

1

)




j � CkR

0



j

'

j

Tuk

W

�1

q;0

(R

n



j

)

kp

1

k

1;q

0

� Ckuk

2�";q

kfk

q

0

for some " > 0. Sine p

1

2 W

1

q

0

(
) ,! W

"

q

0

(
) with 0 < " <

1

q

0

, by the mapping

property

e

K



j

;N

: W

�"�

1

q

q

(�R

n



j

)!W

1�"

q

(R

n



), and by (2.3)

j(2(r 

j

) � r

e

K



j

;N

('

j

Tu) + (� 

j

)

e

K



j

;N

('

j

Tu); p

1

)




j � Ckuk

2�";q

kfk

q

0

for 0 < " <

1

q

0

. The term (r

e

K

N

Tu;rp

2

)




is estimated in the same way using

rp

2

2 W

1

q

(
). Finally, by the de�nitions of K

N

and T

j(rK

N

Tu;rp

2

)




j = j((��r div)u;rp

2

)




j

� j(ru;r

2

p

2

)




j+ j(�

�

u;rp

2

)

�


j+ j(div u;�p

2

)




j+ j(div u; �

�

p

2

)

�


j

� Ckuk

2�";q

krp

2

k

1;q

0

� Ckuk

2�";q

kfk

q

0

for some " > 0. { The proof for r = q

0

is done in the same way.

Proof of Theorem 1.3: The proof is the same as in [5, Theorem 4.4℄ with minor

modi�ations. We inlude it for the onveniene of the reader.

First of all, by (4.5) and interpolation

kR

j;�

('

j

f)k

s;q

� C

q;Æ;R

(1 + j�j)

�1+

s

2

kfk

q

; � 2 �

Æ

; (4.8)

for all s 2 [0; 2℄ and f 2 L

q

(
)

n

, j = 1; : : : ; m. Moreover, by (4.1)

(���+rK

N

T )R

�

f

= f +

m

X

j=1

 

j

S



j

;�

('

j

f)�

m

X

j=1

(2(r 

j

) � rR

j;�

('

j

f) + (� 

j

)R

j;�

('

j

f))

+(rK

N

T �r

e

K

N

T )R

�

f:

Hene (4.8), Theorem 4.1, and Lemma 4.2 imply

(���+rK

N

T )R

�

= I + S

0

�

;

where kS

0

�

k

L(L

q

(
))

� C

q;Æ

(1 + j�j)

�"

uniformly in � 2 �

Æ

for some " > 0. Therefore

(�+ A

0;q

)

�1

exists for all � 2 �

Æ

with j�j � R for some R > 0 and

(�+ A

0;q

)

�1

= R

�

+ S

�

;

where kS

�

k

L(L

q

(
))

� C

q;Æ

(1 + j�j)

�1�"

uniformly in � 2 �

Æ

, j�j � R. Furthermore,

for B

�

= R

�

; S

�

we have









Z

�

R

h(��)B

�

d�









L(L

q

(
))

� C

q;Æ

khk

1

; h 2 H(Æ);
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beause of (4.6) and kS

�

k � C

q;Æ

(1 + j�j)

�1�"

.

The same arguments apply to A

0;q

0

instead of A

0;q

. Hene we an assume that

also (� + A

0;q

0

)

�1

exists for all � 2 �

Æ

with j�j � R. In partiular, this implies

that (A4) is valid beause of Lemma 3.2. Now (� + A

0;q

)

�1

j

L

q

�

(
)

= (� + A

q

)

�1

by

Lemma 3.1, whih proves (1.5). The rest of the theorem follows from (1.5) and the

fat that f(�) = (�+ A

q

)

�1

is uniformly bounded on ompat subsets of �(�A

q

).

5 Bounded H

1

-Calulus for an Aperture Domain

Roughly speaking an aperture domain is a domain separated by a wall with a hole

(aperture) inside. More preisely, an aperture domain 
 � R

n

, n � 2, is a domain

suh that


 [B = R

n

+

[ R

n

�

[ B

for some ball B, where R

n

�

:= fx 2 R

n

: x

n

< �dg for some d > 0. Conerning the

Stokes equations the aperture domain is of partiular interest sine under ertain ir-

umstanes depending on the dimension n and the integral exponent q an additional

ondition has to be posed to get unique solutions, f. [16℄. This may be done by

presribing the ux �(u) of the veloity �eld u through the hole, i.e.,

�(u) :=

Z

M

0

� � ud�;

where M

0

is an (n � 1)-dimensional ompat manifold dividing 
 into an upper

and lower part 


+

, 


�

, resp., suh that 


�

[ B = R

n

�

[ B. In the following let

'

�

;  

�

2 C

1

b

(R

n

�

) be ut-o� funtions suh that '

�

(x) = 1 for x 2 R

n

�

with jxj � R

for some suitable R > 0,  

�

� 1 on supp'

�

, and supp 

�

� R

n

�

nB.

In order to apply Theorem 1.3, it remains to verify Assumption 1.1.

Proposition 5.1 Let 
 � R

n

, n � 2, be an aperture domain with C

1;1

-boundary.

Then Assumption 1.1 is valid for 
 and every 1 < q �

n

n�1

and Æ 2 (0; �).

Proof: Obviously, (A1) is true. The �rst part of (A2) is true for every 1 < q <1

but (1.4) only holds if 1 < q �

n

n�1

, f. [16, Theorem 2.6℄. The ondition (A3) an

be easily veri�ed by using the ut-o� funtions '

�

and the orresponding statement

for the half-spaes R

n

�

.

We will analyze the resolvent (�+A

q

)

�1

near the origin by omparing it with the

resolvents of the Stokes operator on R

n

�

. Hene let R

�

�

= (�+ A

R

n

�

;q

)

�1

, 1 < q <1,

denote the resolvent of the Stokes operator on R

n

�

. Then

j�jkuk

q

+ kr

2

uk

q

� C

q;Æ

kfk

q

; � 2 �

Æ

; f 2 L

q

(R

n

�

); (5.1)

f. e.g. [15, Theorem 1.3℄. Moreover,
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Lemma 5.2 Let 1 < q < n, Æ 2 (0; �), and let B

�

M

= B

M

(0) \ R

n

�

. Then for every

M > 0

k(R

�

�

f;rR

�

�

f)k

L

q

(B

�

M

)

� C

q;Æ;M

kfk

q

uniformly in � 2 �

Æ

and f 2 L

q

(R

n

�

)

n

.

Proof: By Poinar�e's inequality, kR

�

�

fk

L

q

(B

�

M

)

� C

q;M

krR

�

�

fk

L

q

(B

�

M

)

. Hene it

remains to estimate rR

�

�

. Then, if

1

q

�

=

1

q

�

1

n

,

krR

�

�

fk

L

q

(B

�

M

)

� C

M

krR

�

�

fk

L

q

�

(R

n

�

)

� C

q;M

kr

2

R

�

fk

q

� C

q;Æ;M

kfk

q

uniformly in � 2 �

Æ

and f 2 L

q

(R

n

�

)

n

by (5.1).

In order to analyze (1.2) for A = A

q

with � replaed by �

0

R

:= �\B

R

(0), R > 0,

we onsider

u

�

:= (�+ A

q

)

�1

f �  

+

R

+

�

'

+

f �  

�

R

�

�

'

�

f; f 2 L

q

�

(
): (5.2)

Moreover, let p

�

= q

�

�  

+

p

+

�

�  

�

p

�

�

, where rq

�

= (I � P

q

)�(� + A

q

)

�1

f and

rp

�

�

= (I � P

�

q

)�R

�

�

'

�

f is hosen suh that

R

B

�

M

p

�

�

= 0 for M > 0 so large that

 

�

� 1 on R

n

�

nB

M

(0). Then (u

�

; p

�

) solves

(���)u

�

+rp

�

= (1� '

+

� '

�

)f + f

+

�

+ f

�

�

=:

~

f

�

in 
;

div u

�

= g

+

�

+ g

�

�

=: ~g

�

in 
;

u

�

j

�


= 0 on �
;

where g

�

�

= �r 

�

�R

�

�

'

�

f and

f

�

�

= 2(r 

�

) � rR

�

�

'

�

f + (� 

�

)R

�

�

'

�

f � (r 

�

)p

�

�

:

Moreover, �(u

�

) = �((�+ A

q

)

�1

f) = 0.

Lemma 5.3 For every 1 < q < 1 there is some 0 < a < 1 suh that j�j

a

ku

�

k

q

�

Ck

~

f

�

k

q

uniformly in � 2 �

Æ

, j�j � 1.

Proof: By [16, Theorem 2.1℄ for every 1 < q < n

j�jku

�

k

q

+ kr

2

u

�

k

q

� C

q;Æ

�

k

~

f

�

k

q

+ kr~g

�

k

q

+ (1 + j�j)k~g

�

k

_

W

�1

q;0

�

(5.3)

uniformly in � 2 �

Æ

. Moreover,

Z

B

�

M

g

�

�

dx =

Z

B

�

M

div

�

(1�  

�

)R

�

�

'

�

f

�

dx = 0:
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Hene kg

�

�

k

_

W

�1

q;0

(R

n

�

)

� C

R;q

kg

�

�

k

q

by Poinar�e's inequality. Furthermore, if n < r <1

and 1 < q <

n

n�1

is de�ned by

1

q

=

1

r

+

1

n

, then by [16, Corollary 2.4℄

kru

�

k

r

� C

r;Æ

�

j�jku

�

k

q

+ k

~

f

�

k

q

+ kr~g

�

k

q

+ k~g

�

k

_

W

�1

q;0

�

� C

r;Æ

�

k

~

f

�

k

r

+ k~g

�

k

1;r

�

for � 2 �

Æ

, j�j � 1, sine supp

~

f

�

; supp ~g

�

� B

M

(0). Moreover, sine kru

�

k

q

�

C

q

k(u

�

;r

2

u

�

)k

q

, interpolation of the latter inequality with (5.3) yields that for every

1 < q <1 there is some 0 < a < 1 suh that

j�j

a

kru

�

k

q

� C

q

�

k

~

f

�

k

q

+ k~g

�

k

1;q

�

; � 2 �

Æ

; j�j � 1:

This implies that for n < r <1 and 1 < q <

n

n�1

de�ned by

1

q

=

1

r

+

1

n

there is some

0 < a < 1 suh that

j�j

a

ku

�

k

r

� C

r

j�j

a

kru

�

k

q

� C

r;Æ

�

k

~

f

�

k

q

+ k~g

�

k

1;q

�

� C

r;Æ

�

k

~

f

�

k

r

+ k~g

�

k

1;r

�

for � 2 �

Æ

with j�j � 1 using Sobolev's inequality, f. [16, Lemma 3.1℄. Interpolating

again �nishes the proof.

Combining Lemma 5.2 and Lemma 5.3 we obtain:

Corollary 5.4 Let u

�

be de�ned as in (5.2). Then for every 1 < q < n there is some

0 < a < 1 suh that ku

�

k

q

� Cj�j

�a

kfk

q

for all f 2 L

q

�

(
) uniformly in � 2 �

Æ

with

j�j � 1.

Proof of Theorem 1.4: First of all, (�+A

q

)

�1

exists for every � 2 C n(�1; 0℄ and

(A

q

)

0

= A

q

0

, f. [16, Theorem 2.5℄. Hene by duality and interpolation it is suÆient

to prove the statement for 1 < q <

n

n�1

. Moreover, R(A

q

) is dense, f. Franzke [17,

Theorem 6℄. Therefore A

q

is setorial and it is suÆient to prove (1.3) for h 2 H(Æ),

f. Denk, Hieber, and Pr�uss [11, Setion 2.4℄. Moreover, beause of Theorem 1.3 it

remains to prove











Z

�

0

R

h(��)(�+ A

q

)

�1

d�











L(L

q

�

(
))

� C

Æ;q

khk

1

for all h 2 H(Æ): (5.4)

Sine (� + A

q

)

�1

is bounded on ompat subsets of C n (�1; 0℄, it is suÆient to

onsider R = 1. Beause of (5.2) and Corollary 5.4, we an replae A

q

by A

q;R

n

�

.

Moreover, using

1

2�i

Z

�

0

1

h(��)(�+ A

R

n

�

;q

)

�1

d� = h(A

R

n

�

;q

)�

1

2�i

Z

�

1

h(��)(� + A

R

n

�

;q

)

�1

d�

with �

1

= � nB

1

(0) the estimate (5.4) is a onsequene of the bounded H

1

-alulus

for the Stokes operator on R

n

�

, f. Desh, Hieber, and Pr�uss [12℄, and of Theorem 1.3

for 
 = R

n

�

.
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