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Abstra
t

This paper is 
on
erned with a phenomenologi
al model of initially isotropi
 �nite-

strain multipli
ative elasto-plasti
ity for poly
rystals with grain boundary relaxation (Ne�,

Cont.Me
h.Thermo.,2003). We prove a lo
al in time existen
e and uniqueness result of the


orresponding initial boundary value problem in the quasistati
 rate-dependent 
ase. Use

is made of a generalized Korn's �rst inequality (Ne�, Pro
.Roy.So
.Edinb.A,2002) taking

into a

ount the in
ompatibility of the plasti
 deformation F

p

. This is the �rst rigorous

result 
on
erning 
lassi
al solutions in geometri
ally exa
t nonlinear �nite vis
o-plasti
ity

for poly
rystals. Global existen
e is not proved and 
annot be expe
ted due to the natural

possibility of material degradation in time.
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1 Notation

Let 
 � R

3

be a bounded domain with Lips
hitz boundary �
 and let � be a smooth subset

of �
 with non-vanishing 2-dimensional Hausdor� measure. For two Bana
h spa
es X;Y we let

Lin(X;Y ) denote the ve
torspa
e of all bounded linear mappings fromX to Y and P(X) denotes

the set of all subsets of X. For a; b 2 R

3

we let ha; bi

R

3

denote the s
alar produ
t on R

3

with

asso
iated ve
tor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3� 3 se
ond order

tensors, written with 
apital letters. The standard Eu
lidean s
alar produ
t on M

3�3

is given

by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the

following we omit the index R

3

;M

3�3

. The identity tensor on M

3�3

will be denoted by 11, so that

tr [X℄ = hX; 11i. We let Sym and PSym denote the symmetri
 and positive de�nite symmetri


tensors respe
tively. We adopt the usual abbreviations of Lie-group theory, i.e., GL(3;R) :=

fX 2 M

3�3

jdet[X℄ 6= 0g the general linear group, SL(3;R) := fX 2 GL(3;R) jdet[X℄ =

1g; O(3) := fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X℄ = 1g

with 
orresponding Lie-algebras so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri
 tensors

and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g of tra
eless tensors. With AdjX we denote the tensor

of transposed 
ofa
tors Cof(X) su
h that AdjX = det[X℄X

�1

= Cof(X)

T

if X 2 GL(3;R).

We set sym(X) =

1

2

(X

T

+X) and skew(X) =

1

2

(X �X

T

) su
h that X = sym(X) + skew(X).

For X 2 M

3�3

we set for the deviatori
 part devX = X �

1

3

tr [X℄ 11 2 sl(3) and for ve
tors

�; � 2 R

n

we have the tensor produ
t (� 
 �)

ij

= �

i

�

j

. We write the polar de
omposition in

the form F = RU = polar(F )U with R = polar(F ) the orthogonal part of F . In general we

work in the 
ontext of nonlinear, �nite elasti
ity. For the total deformation ' 2 C

1

(
;R

3

)

we have the deformation gradient F = r' 2 C(
;M

3�3

). Furthermore, S

1

(F ) and S

2

(F )

denote the �rst and se
ond Piola Kir
hho� stress tensors, respe
tively. Total time derivatives

are written

d

dt

X(t) =

_

X . The �rst and se
ond di�erential of a s
alar valued fun
tion W (F ) are

written D

F

W (F ):H and D

2

F

W (F ):(H;H), respe
tively. We set C = F

T

F; C

p

= F

T

p

F

p

; C

e

=

F

T

e

F

e

; E =

1

2

(C � 11); E

p

=

1

2

(C

p

� 11); E

e

=

1

2

(C

e

� 11). We employ the standard notation

of Sobolev spa
es, i.e. L

2

(
);H

1;2

(
);H

1;2

Æ

(
), whi
h we use indi�erently for s
alar-valued

fun
tions as well as for ve
tor-valued and tensor-valued fun
tions. Moreover, we set kXk

1

=

sup

x2


kX(x)k. For X 2 C

1

(
;M

3�3

) we de�ne CurlX(x) as the operation 
url applied row

wise. We de�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the

sense of tra
es and by C

1

0

(
) we denote in�nitely di�erentiable fun
tions with 
ompa
t support

in 
. We use 
apital letters to denote possibly large positive 
onstants, e.g. C

+

;K and lower


ase letters to denote possibly small positive 
onstants, e.g. 


+

; d

+

. The smallest eigenvalue of a

positive de�nite symmetri
 tensor P is abbreviated by �

min

(P ). The Landau symbols o(h); O(h)

are employed. Finally, w.r.t. abbreviates with respe
t to.

2 Introdu
tion

2.1 Approa
hes in plasti
ity theory

Plasti
ity theory, as it is understood today, 
overs a large �eld of study whi
h involves diÆ
ult

phenomena in the inelasti
 behaviour of solids along with diÆ
ult analyti
al problems related

to the nonlinearity of the employed mathemati
al models.

"As is well known, the existing formulations of a general theory of elasti
-plasti
 material

in the presen
e of �nite deformations are somewhat 
ontroversial and there remain strong dis-

agreement on a number of important issues between several s
hools of plasti
ity." [51, p.316℄.

More than fourteen years after these 
omments have been made, the issues are still far from
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being settled. Without being exhaustive, these fundamental disagreements 
on
ern the following

topi
s (referen
es only to illustrate the diverging approa
hes):

1. Flow theory versus total deformation theory of plasti
ity (Hen
ky-model).

2. Stress- or strain based approa
h [51℄.

3. Additive de
omposition E = E

e

+E

p

of total strain [24, 12, 51℄ into symmetri
 elasti
 and

plasti
 parts versus multipli
ative de
omposition F = F

e

F

p

of deformation [32, 38, 41℄

into elasti
 and plasti
 parts.

4. Plasti
 strain E

p

2 Sym(3) as primitive phenomenologi
al variable versus dedu
ed quantity

E

p

=

1

2

�

F

T

p

F

p

� 11

�

.

5. Invarian
e and 
ovarian
e requirements on the plasti
 strain E

p

[12℄ versus 
on
ept of

elasti
 isomorphism and natural referen
e state [5, 3℄.

6. Interpretation of the multipli
ative de
omposition in terms of an intermediate, lo
ally

unloaded, stress-free 
on�guration [38℄ versus iso
lini
 
on�guration [5, 41℄.

7. Eulerian approa
h (hypo-plasti
 formulation, question of obje
tive stress-rates) [46, 9℄

versus Lagrangian approa
h (hyper-elastoplasti
, 
ir
umventing dis
ussion of stress-rates)

[26, 3, 62℄.

8. Rate-independent formulations (instantaneous 
omplete energy relaxation) [11℄ versus

rate-dependent formulations (vis
osity, 
reep, relaxation, fatigue) [28℄.

9. Asso
iative (metals) or non-asso
iative 
ow rules (geomaterials) [74℄. Possibility of varia-

tional time-in
remental updates for asso
iative formulations [62, 60, 11℄ versus more tra-

ditional 
oupled evolution problem.

10. Yield surfa
e approa
h (von Mises, Tres
a) with elasti
 region versus uni�ed 
onstitutive

equations [8, 66℄ without yield limit.

11. Formulation of anisotropi
 behaviour. Signi�
an
e of plasti
 spin [19℄.

12. In
lusion of thermal e�e
ts and kinemati
al hardening.

These points 
learly illustrate the non-existen
e of some en
ompassing theory of large-strain

plasti
ity.

Pra
ti
ally all developments on the subje
t related to in�nitesimal deformations of elasti
-

plasti
 material have adopted a 
ow theory, stress-based approa
h and have utilized yield surfa
es

and asso
iated loading 
riteria. One 
an 
on
lude that a satisfa
tory level of agreement 
an be

rea
hed as far as in�nitesimal elasto-plasti
ity is 
on
erned.

The di�eren
e in the formulations appear prominently only, when �nite deformations are


onsidered.

While it is not possible to mathemati
ally resolve the apparent disagreement on the formu-

lation, our interest is on those models, whi
h are based on the multipli
ative de
omposition,

along with a stress-based formulation and whi
h in
lude from the outset rate-dependent e�e
ts.

The rate-independent behaviour is in
luded as a 
ertain purely mathemati
al limiting response.

Attention is restri
ted to isothermal, isotropi
 formulations for simpli
ity without hardening.
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We brie
y re
apitulate basi
 points of the multipli
ative de
omposition and introdu
e the non-

linear initial boundary value problems to be solved. Certain intrinsi
 problems of these formula-

tions are hinted at. In order to sidestep these problems, we introdu
e a new, geometri
ally exa
t

model with grain boundary relaxation and in
lude a brief dis
ussion of invarian
e requirements.

A lo
al existen
e and uniqueness result for this model is stated.

Thereafter, we explain the basi
 mathemati
al ideas with whi
h to show this well-posedness

result. The remaining part is devoted to the te
hni
al details of the proof.

In the appendix we introdu
e the generalized Korn's �rst inequality as well as ellipti
 regu-

larity results needed for the proof whi
h make the presentation suÆ
iently self-
ontained.

2.2 Re
apitulation of �nite multipli
ative plasti
ity

In the nonlinear theory of elasto-vis
o-plasti
ity at large deformation gradients it is often as-

sumed that the deformation gradient F = r' splits multipli
atively

1

into an elasti
 and

plasti
 part [38, 41℄

r'(x) = F (x) = F

e

(x) � F

p

(x); F

e

; F

p

2 GL

+

(3;R) ; (2.1)

where the invertible F

e

; F

p

are expli
itly understood to be in
ompatible 
on�gurations, i.e.

F

e

; F

p

6= r	 for any 	 : 
 � R

3

7! R

3

. Thus F

p

introdu
es in a natural way a non-

Riemannian manifold stru
ture [33℄. While formally this de
omposition is unique only up to

an invertible matrix G 2 GL(3;R), sin
e

r'(x) = F (x) = F

e

(x) � F

p

(x) = F

e

(x)G(x)G(x)

�1

F

p

(x) =

~

F

e

(x) �

~

F

p

(x); (2.2)

we 
onsider as "physi
ally equivalent" de
ompositions only those obtained by a global rigid rota-

tion F

e

(x)Q with Q 2 SO(3). In addition one sometimes assumes iso
hori
 plasti
 deformations

only, i.e., det[F

p

(x)℄ = 1, notably in metal-plasti
ity. This multipli
ative split, whi
h has gained

more or less permanent status in the literature, 
an be mi
ro-me
hani
ally motivated by the

kinemati
s of single 
rystals where dislo
ations move along �xed slip systems through the 
rystal

latti
e. The sour
e for the in
ompatibility are those dislo
ations whi
h did not 
ompletely trans-

verse the 
rystal and 
onsequently give rise to an inhomogeneous plasti
 deformation. Therefore,

in the 
ase of single 
rystal plasti
ity it is reasonable to introdu
e the deviation of the plasti


intermediate 
on�guration F

p

from 
ompatibility as a kind of plasti
 dislo
ation density. This

deviation should be related somehow to the quantity CurlF

p

and indeed in the 
ontribution [56℄

we see the important role whi
h is played by CurlF

p

for 
oer
iveness inequalities related to the

existen
e theory of models in this area.

The 
onstitutive assumption (2.1) is in
orporated into balan
e of linear momentum governing

the elasti
 response of the material and supplemented by 
ow rules in the form of ordinary

di�erential equations or di�erential in
lusions determining the evolution of the plasti
 part. In

the general 
ase the equations of elasto-plasti
ity take the form

%'

tt

= Div D

F

�

W (r'(t; x) � F

�1

p

(t; x))

�

+ f(x) ; x 2 
 ;

d

dt

�

F

�1

p

�

(t; x) 2 F

�1

p

(t; x) � f

�

r'(t; x); F

�1

p

(t; x)

�

; (P0)

supplemented with initial and boundary 
onditions. Here W is the elasti
 free energy density

de�ned on the elasti
 part F

e

, % > 0 is the mass density, f is the body for
e and f : D(f) 7!

1

While we 
ontinue to use the term multipli
ative de
omposition and intermediate 
on�guration it is

rather an elasti
 isomorphism in the sense of [3℄. Some authors use P instead of F

�1

p

, [11℄.
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P(M

3�3

) is the possibly set-valued monotone 
ow fun
tion with domain of de�nition D(f). In

this generality (P0) 
omprises single and poly
rystal plasti
ity theory and the rate-dependent

as well as the rate-independent (set-valued) 
ase of asso
iated or non asso
iated plasti
ity.

We refer the reader to [7, 32, 35, 36, 43, 71, 13℄ for more on the subje
t of dislo
ations

and in
ompatibilities and to [61℄ for an a

ount of the o

urren
e of mi
rostru
ture. A re
ent

summary presentation of the theory for single 
rystals 
an be found in [25℄. For appli
ations

of the general theory of poly
rystalline materials in the engineering �eld look, e.g., at [47, 70,

68, 69, 17, 18℄. An introdu
tion to the theory of materials in general and inelasti
 deformations


an be found in [29, 5, 39℄. Abstra
t mathemati
al treatments 
on
erning the modelling of

elasto-plasti
ity may be found in [67, 40℄.

The multipli
ative split (2.1) 
an also be seen as a generalization to �nite deformations of

the well known additive de
omposition

1

2

(ru+ru

T

) = "(ru(x)) = "

e

(x) + "

p

(x) ; (2.3)

where we have set F = 11+ru with u the displa
ement ve
tor and where subsequently "(ru(x))

denotes the in�nitesimal strain tensor. This additive de
omposition is appropriate only for

in�nitesimal small values of kruk. There is a ri
h mathemati
al literature su

essfully treating

plasti
ity models based on (2.3) (
f.(2.17)) of the type

% u

tt

= Div D

lin

: ("(ru)� "

p

) + f; _"

p

2 f

�

� D

lin

: ("(ru)� "

p

)

�

; (2.4)

with "

p

2 sl(3;R). See e.g., [1, 27, 30, 14, 15℄ and referen
es therein. In [1℄ the 
ow rule in the

form of (2.4) is 
alled of pre-monotone type if hf(�);�i � 0.

Although there is an abundan
e of appli
ations and numeri
al simulations involving �nite

strains for single or poly
rystals,up to the present a rigorous mathemati
al treatment (and a


onvergen
e proof for dis
retizations) of the general 
ase (P0) is missing. This is mainly due

to two fa
ts: the �nite elasti
ity part involved in (P0) itself is diÆ
ult to analyze and the


ow rule is highly nonlinear with additional pe
uliar properties in the rate-independent (set-

valued) limit 
ase. A promising approa
h towards a mathemati
al analysis for the quasistati


rate-independent 
ase of asso
iated single 
rystal plasti
ity whi
h is based on a time dis
rete

in
remental variational formulation, 
an be found in [10, 48, 60℄.

In metal-plasti
ity, as for most 
rystalline materials, one observes that the shape of the elas-

ti
ally deformed 
rystals remains nearly un
hanged [39, 3, 65℄. In the 
ontext of multipli
ative

elasto-plasti
ity this translates into k

F

T

e

F

e

det[F

e

℄

2=3

� 11k pointwise small where we assume that F

e

is

lo
ally invertible. In most appli
ations, however, elasti
 volume 
hanges are also negligible leav-

ing us with kF

T

e

F

e

�11k small. In addition one 
an assume isotropi
 behaviour for a poly
rystal,

sin
e the di�erent orientations of the 
rystal grains average out.

Therefore, let us look at �nite hyperelasti
ity for small strains. We assume the existen
e of

a free elasti
 energy

^

W =

^

W (F ) =

^

W (r'). This 
onstitutive relation is subje
ted to material

frame indi�eren
e, i.e., it must remain invariant under superimposed rigid body motions. To-

gether with isotropy of

^

W , homogeneity and the requirement that D

^

W (11) = 0, i.e., that the

referen
e 
on�guration is stress free, it 
an be shown [16, p.156℄ that

^

W =

^

W (F ) and

^

W (F ) = �kU � 11k

2

+

�

2

tr [U � 11℄

2

+ o(kU � 11k

2

) = �kEk

2

+

�

2

tr [E℄

2

+ o(kEk

2

) ; (2.5)
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holds near a natural state where E =

1

2

�

F

T

F � 11

�

denotes the Green-Lagrange strain tensor

and U�11 denotes the Biot strain tensor. The Lam�e 
onstants �; � of the poly
rystalline material

under 
onsideration are assumed to be non-negative throughout with � > 0. This energy 
an

be used as a starting point for the de�nition of a suitable elasti
-plasti
 energy in as mu
h as

one makes the ansatz

^

W =

^

W (F

e

) where one has simply substituted the elasti
 part of the

deformation gradient F

e

instead of F .

In view of the small elasti
 strain assumption, it is reasonable to ignore the dependen
e of

the elasti
 energy

^

W (F

e

) on the higher order term o(kF

T

e

F

e

� 11k

2

) and one is left with the

nonlinear St.-Venant Kir
hho� energy W (F

e

) =

�

4

kF

T

e

F

e

� 11k

2

+

�

8

tr

�

F

T

e

F

e

� 11

�

2

.

In the quasistati
 setting we arrive at the following system of 
oupled partial di�erential

and evolution equations for the deformation ' : [0; T ℄ � 
 7! R

3

and the plasti
 deformation

F

p

: [0; T ℄� 
 7! GL(3;R):

0 = Div D

F

�

W (r'(t; x) � F

�1

p

(t; x))

�

+ f(x) x 2 
; '

j

�

= g(t; x) x 2 � ;

W (F

e

) =

�

4

kF

T

e

F

e

� 11k

2

+

�

8

tr

�

F

T

e

F

e

� 11

�

2

; (P1)

d

dt

�

F

�1

p

�

(t; x) 2 F

�1

p

(t; x) � f

�

r'(t; x); F

�1

p

(t; x)

�

; F

�1

p

(0; x) = F

�1

p

0

:

Here and subsequently g(t; x) represents the time dependent inhomogeneous Diri
hlet boundary

data and F

�1

p

0

the initial 
ondition for the plasti
 evolution.

Due to the still strong nonlinearity of (P1) it is not known whether the problem as su
h is

well-posed, although the energy is quadrati
 in the elasti
 Green strains E

e

(physi
ally linear).

The reason for that is that the variational problem based on minimizing F 7! kF

T

e

F

e

� 11k

2

at

frozen F

p

may lead to mi
rostru
ture sin
e it is well known that the energy is not quasi
onvex

[64℄ and not even ellipti
 [56℄ in the 
ompression range. The mi
rostru
ture already inherent

in the purely elasti
 formulation, however, should rather be seen as an (unphysi
al) modelling

artifa
t 
oming from the quadrati
 ansatz in E

e

sin
e, e.g., when taking a 
orresponding 
om-

pressible isotropi
 poly
onvex Neo-Hooke energy W (F

e

) =

�

r

kF

e

k

r

+

�

4

det[F

e

℄

2

�

2�+�

2

ln det[F

e

℄,

elasti
 mi
rostru
ture 
annot o

ur and the elasti
 solution is easily found in some Sobolev

spa
e if F

p

2 L

1

(
;GL(3;R)). This and the underlying modelling ideas pertaining to the single


rystal 
ase suggest that F

p

2 L

1

(
;GL

+

(3;R)) is the minimal regularity we should impose in

(P0). The Neo-Hookean ansatz, however, falls short of taking into a

ount small elasti
 strains.

The above mi
rostru
ture should therefore not be 
onfused with the experimentally observed

mi
rostru
ture modelled with multi-well potentials in the theory of elasti
 
rystals in 
onne
tion

with martensiti
 phase transformation [6℄.

In this 
ontribution we study a novel model in order to give a partial answer to the question of

well posedness of (P0) in the rate-dependent quasistati
 
ase. The main idea from a mathemat-

i
al viewpoint is that the problem 
oming from �nite elasti
ity 
an be 
ompletely 
ir
umvented

in the (physi
ally mostly relevant) 
ase of small elasti
 strains without resorting either to the

additive de
omposition (2.3) or to (P1). To this end a new model appropriate for small elasti


strains will be introdu
ed whose �rst Piola-Kir
hho� stresses derive from a quadrati
 potential.

2.3 The model with grain boundary relaxation

One way to sidestep the above mentioned (apparently non physi
al purely mathemati
al) prob-

lems has been given by Ne� [53, 57℄ where a modi�ed model has been introdu
ed. This model

has as starting point (P1) but 
onsequently in
orporates the extra bit information of small elas-

7



ti
 strains a priori. Let us re
apitulate the main ingredients of the model for the presentation

to be suÆ
iently self-
ontained.

In the three-dimensional 
ase it is easily seen that small elasti
 strains, i.e., kF

T

e

F

e

� 11k

pointwise small for orientation preserving F

e

2 GL

+

(3;R), imply that F

e

is approximately a

rotation R

e

2 SO(3) (almost elasti
 rigidity). If we assume that R

e

is known, all quantities 
an be

'linearized' with respe
t to the lo
al rigid 
on�guration R

e

= polar(F

e

), the best approximation

in terms of rotations to F

e

. This is a nonlinear 
onstraint. It is further possible to relax this

stati
 
onstraint into an evolution equation whi
h des
ribes internal relaxation su
h that a new

vis
oelasti
 rotation R

e

is determined whi
h 
oin
ides approximately with polar(F

e

) whenever

F

e

is approximately a rotation. The stati
 
onstraint R

e

= polar(F

e

) is a global attra
tor of the

evolution equation for R

e

. These modi�
ations signi�
antly 
hange the mathemati
al stru
ture

without loosing the main ingredients of �nite multipli
ative vis
o-plasti
ity, notably observer-

invarian
e and invarian
e with respe
t to superposed rotations of the so 
alled intermediate


on�guration are preserved. The model is geometri
ally nonlinear and allows for �nite

elasti
 rotations, �nite plasti
 deformations and overall �nite deformations but remains a truly

'physi
ally linear' theory as far as the elasti
 behaviour is 
on
erned in the sense that simple

uniaxial tension is modelled as linear and without vis
osity.

We need to mention, however, that the new model is intrinsi
ally rate-dependent, i.e.,

it is not possible to 'freeze' the 'vis
oelasti
' rotations R

e

and obtain a frame-indi�erent re-

du
ed plasti
ity model. In other words, the used elasti
 free energy W is not expressible as a

redu
ed fun
tion of C = F

T

F . Nevertheless, the model is observer-invariant and the 
ommon

wisdom that observer invarian
e implies a representation in C or U applies as su
h only to

intrinsi
ally non-dissipative problems [42, p.203℄. In general, form invarian
e under superposed

time-dependent rigid rotations (frame-indi�eren
e) implies observer invarian
e but is not identi-


al to it. For this subtle point 
ompare also to the lu
id dis
ussion in [29, p.269℄ and [34, p.159℄

together with [72, 4, 49, 50℄.

2

Let us now introdu
e the 
onsidered 3D-model whi
h we have modi�ed 
ompared to [57, 53℄ to

in
lude also in a 
onsistent manner "
ompressible" plasti
ity, i.e., det[F

p

℄ 6= 1. In the quasistati


setting appropriate for slow loading, where we negle
t 
onsistently inertia terms, we are led

to study the following 
oupled minimization and evolution problem for the �nite deformation

' : [0; T ℄ � 
 7! R

3

, the plasti
 deformation F

p

: [0; T ℄ � 
 7! GL

+

(3;R) and the independent

lo
al vis
oelasti
 rotation R

e

: [0; T ℄ � 
 7! SO(3) on 
:

I('; F

�1

p

; R

e

) =

Z




W (F

e

; R

e

) det[F

p

℄� hf; 'i det[F

p

℄ dV

�

Z

�

S

hN;'i kCof F

p

:~nk dS 7! min : w.r.t. ' at 
onstant (R

e

; F

p

); (P3)

with the Diri
hlet boundary 
ondition of pla
e for the deformation ' on � � �
: '

j

�

= g(t)

and natural boundary 
onditions on �
 n �. The 
orresponding �eld equations are

0 = Div

�

D

F

�

W (F

e

; R

e

) det[F

p

℄

��

+ f det[F

p

℄ : (P3.1)

2

And the undisputed physi
al prin
iple is observer invarian
e and not dire
tly frame-indi�eren
e or

form-invarian
e. The strengthening of form-invarian
e of the equations under superposed rigid rotations to

form-invarian
e under the group of all di�eomorphisms is 
alled 
ovarian
e [42℄. It is to be understood that

form-invarian
e and 
ovarian
e are additional 
onstitutive assumptions. Interestingly, giving up the unne
essary

frame-indi�eren
e allows us to show lo
al existen
e.
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The 
onstitutive assumptions on the density are

W (F

e

; R

e

) =

�

4

kF

T

e

R

e

+R

T

e

F

e

� 211k

2

+

�

8

tr

h

F

T

e

R

e

+R

T

e

F

e

� 211

i

2

(2.6)

= � k sym(U

e

� 11)k

2

+

�

2

tr

�

sym(U

e

� 11)

�

2

; U

e

:= R

T

e

F

e

; F

e

= r'�F

�1

p

:

The 
oupled time evolution is given by

d

dt

�

F

�1

p

�

2 �F

�1

p

� �

�

(�

E

); �

E

= F

T

e

D

F

e

W (F

e

; R

e

) det[F

p

℄�W (F

e

; R

e

) det[F

p

℄11 ;

d

!̂

dt

R

e

(t) = �

+

skew(B) � R

e

(t); B = B

me
h

or B

t


; �

+

= �

+

(F

e

; R

e

) 2 R

+

;

B

me
h

= �F

e

R

T

e

; B

t


=

h

�(2 11� F

e

R

T

e

) + � [3� hF

e

R

T

e

; 11i℄

i

F

e

R

T

e

; (2.7)

with initial 
onditions

F

�1

p

(0) = F

�1

p

0

; F

p

0

2 GL

+

(3;R); R

e

(0) = R

0

e

; R

0

e

2 SO(3); R

0

e

= 11 if F

p

0

= r� :

Here we spe
i�ed f = �

�

, with the plasti
 
ow potential

�

: M

3�3

7! R, governing the plasti


evolution and motivated through the prin
iple of maximal dissipation suÆ
ient for the thermo-

dynami
al 
onsisten
y of the model.

3

The dead load body for
e and the boundary tra
tions

are denoted by f; N , respe
tively and de�ned w.r.t. the intermediate plasti
 
on�guration F

p

and ~n is the unit outward normal to �
. Here �

E

denotes the elasti
 Eshelby stress tensor

(the driving for
e behind evolving inhomogeneities in the referen
e 
on�guration [45, 44℄) whi
h

may be redu
ed to �

M

= F

T

e

D

F

e

W (F

e

; R

e

), the elasti
 Mandel stress tensor in 
ase of

a deviatori
 
ow rule whi
h preserves the in
ompressibility 
onstraint det[F

p

℄ = 1. This is a

generalization of the gradient type models in the sense of [1℄ to �nite deformations.

By

d

!̂

dt

we mean the observer invariant time derivative on SO(3;R)

d

!̂

dt

[R(t)℄ :=

d

dt

[R(t)℄� !̂(t) �R(t) ; !̂ :=

d

dt

[Q(t)℄ �Q(t)

T

; (2.8)

where Q(t) 2 SO(3;R) is the instantaneous rotation of the 
urrent frame with respe
t to the

inertial frame and !̂ is the 
orresponding angular velo
ity. Without loss of generality we 
on�ne

attention to the inertial frame, i.e. !̂ � 0 and

d

!̂

dt

=

d

dt

.

The term �

+

:=

1

�

e

�

+

(F

e

; R

e

) represents a s
alar valued fun
tion introdu
ing elasti
 vis
osity

within the elasti
 domain and �

e

plays the role of a relaxation time with units [�

e

℄ = se
. F

�1

p

0

and R

0

e

are the initial 
onditions for the plasti
 deformation and vis
oelasti
 rotation part, re-

spe
tively. The 
hoi
e B = B

t


is fully thermodynami
ally 
onsistent, whereas the simpler 
hoi
e

B = B

me
h

is (only) me
hani
ally 
onsistent in the sense that various invarian
e requirements

are met.

4

3

This leads to an asso
iative formulation. However, for our mathemati
al development, this spe
i�
ation is

not stri
tly ne
essary. We 
an deal as well with non-asso
iative formulations.

4

Under the simplifying assumptions F = 11+ru; F

p

= 11+ p; R

e

= 11+A

e

; A

e

2 so(3;R) with ru; p; A

e

� 1

the �nite model (P3) redu
es formally to �rst order to the in�nitesimal elasti
-plasti
 model (2.4) with "

p

:= sym p.

Hen
e, grain boundary relaxation in our terminology is a se
ond order e�e
t only. In 
ontrast, vis
oelasti
ity

is traditionally introdu
ed as a �rst order e�e
t, already e�e
tive in in�nitesimal elasti
ity. Furthermore, our

additional elasti
 vis
osity is only operative in torsion, not in tension!
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Due to the underlying isotropy the resulting model (P3) with B = B

me
h

approa
hes in the

equilibrium limit �

+

! 1 (vanishing elasti
 vis
osity = zero relaxation limit �

e

! 0 viz. for

arbitrary slow pro
esses) formally the problem

Z




W

1

(F

e

) det[F

p

℄� hf; 'i det[F

p

℄ dV

�

Z

�

S

hN;'i kCof F

p

:~nkdS 7! stat. w.r.t. ' at 
onstant F

p

;

W

1

(F

e

) = � kU

e

� 11k

2

+

�

2

tr [U

e

� 11℄

2

; F

e

= r'F

�1

p

; U

e

= R

T

e

F

e

; (2.9)

d

dt

�

F

�1

p

�

(t) 2 �F

�1

p

(t) � �

�

(�

E;1

) ;

�

E;1

= U

e

D

U

e

W

1

(U

e

) det[F

p

℄�W

1

(U

e

) det[F

p

℄ 11 ;

with U

e

= (F

T

e

F

e

)

1

2

the symmetri
 elasti
 stret
h, U

e

� 11 the elasti
 Biot strain tensor and

W

1

the non-ellipti
 equilibrium energy. The system (2.9) is an exa
t equilibrium model

for small elasti
 strains and �nite plasti
 deformations in the 
lassi
al sense with no internal

dissipation due to vis
oelasti
 e�e
ts. The transition from (P3) to (2.9) is not entirely trivial

sin
e it is not just the repla
ement of R

e

by R

e

= polar(F

e

) and note the subtle 
hange from

global minimization to a stationarity requirement only. Observe as well that � kU � 11k

2

+

�

2

tr [U � 11℄

2

leads to a linear response in uniaxial tension while e.g. � kEk

2

+

�

2

tr [E℄

2

leads

to a nonlinear, unphysi
al response in uniaxial tension.

In the 
ompanion paper [57℄ the impli
ations, predi
tions and physi
al relevan
e of the new

model have been investigated in great detail. It is shown that the additional degrees of freedom

inherent through the independent lo
al "vis
oelasti
" rotations R

e


an be interpreted in the

framework of a material with a poly
rystalline stru
ture where the averaged individual rotations

of the grains may deviate from the 
ontinuum rotation.

5

Then, in the presen
e of plasti
ity, R

e

represents a reversible, 'vis
oelasti
' part of the total rotation of the grains and leads to texture

e�e
ts (deformation indu
ed anisotropy). The evolution equation for R

e

introdu
es hysteresis

e�e
ts into the model already within the elasti
 region, i.e. immediately for arbitrary small stress

levels. The physi
al reality of this behaviour for poly
rystalline material is well do
umented and

it is shown that the new model (P3) allows a qualitative and in parts quantitative des
ription

of su
h e�e
ts whi
h are as
ribed to internal fri
tion at the grain boundaries. In [57℄ it

has also been motivated that the elasti
 vis
osity is larger for larger internal surfa
es, i.e. the

smaller the grain size, while single 
rystals behave nearly rate-independent for that matter. Let

us de�ne ĝ to be the average grain diameter and

^

L to be the edge length of a representative

volume element. Then the internal surfa
e in su
h a volume element s
ales like jS

3d

int

j �

^

L

3

ĝ

3

. This

translates into the additional 
onstitutive requirement

�

+

e

�

1

jS

3d

int

j

�

ĝ

3

^

L

3

; (2.10)

where jS

3d

int

j is a 
hara
teristi
 measure of the internal surfa
e for a poly
rystalline stru
ture.

Therefore, the elasti
 vis
osity �

+

e

is related to an internal 
hara
teristi
 length.

5

Observe that these two rotations do not 
oin
ide in general: the averaged rotation is understood to be the

best-approximating single rotation to a rotation �eld de�ned over a representative volume element while the


ontinuum rotation is the orthogonal part of the averaged deformation gradient. In the in�nitesimal 
ase, both

in�nitesimal rotations would 
oin
ide!
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In the mathemati
al part of this 
ontribution we will show the following result:

Theorem 2.1 (Lo
al existen
e and uniqueness for problem (P3))

Let 
 � R

3

be a bounded smooth domain and suppose for the displa
ement boundary data

g 2 C

1

(R;H

3;2

(
;R

3

)) and for the body for
e f 2 C

1

(R;H

1;2

(
;R

3

)). Assume for the initial


onditions (F

�1;0

p

; R

0

e

) 2 H

2;2

(
;SL(3;R)) � H

2;2

(
;SO(3)). Then there exists a time t

1

> 0

su
h that the initial boundary value problem (P3) in its vis
oelasti
-vis
oplasti
 form (3.31) and

(3.32) admits a unique solution

('; F

p

; R

e

) 2 C([0; t

1

℄;H

3;2

(
;R

3

))� C

1

([0; t

1

℄;H

2;2

(
;SL(3;R)); H

2;2

(
;SO(3))): �

Remark 2.2 (Smoothness and in�nitesimal models)

The foregoing existen
e result sheds some light on the physi
al relevan
e of global results for

weak solutions of in�nitesimal elasto-plasti
ity models of the type (2.4). Typi
ally one arrives at

global weak solutions with "; "

p

2 L

1

(R

+

; L

2

(
; sl(3;R))), at best. To obtain these results de-


isive use is made of inequality (2.17) with D

lin


onstant. However, "

p

2 L

1

(R

+

; L

2

(
; sl(3;R))


on
eptually 
orresponds to F

p

2 L

1

(R

+

; L

2

(
;SL(3;R))) under whi
h 
ondition alone 
oer-


ivity of the geometri
ally exa
t elasti
 problem is not true. The in�nitesimal model pra
ti
ally

rules out elasti
 failure of the material due to fatigue. Sin
e, however, fatigue is an important

ingredient of plasti
ity theory, the possibility of fatigue has to be reintrodu
ed arti�
ially in

in�nitesimal 
ontinuum damage models [31℄. We see that the model (P3) provides a mu
h more

realisti
 view on the plasti
ity of poly
rystals.

2.4 General mathemati
al framework

Let us outline how we show that (P3) admits a unique lo
al solution. At 'frozen' variables

(F

p

; R

e

) the above system of elasti
 balan
e of linear momentum (P3.1) proves to be a linear,

se
ond order, stri
tly Legendre-Hadamard ellipti
 boundary value problem with non-
onstant


oeÆ
ients. This system has variational stru
ture in the sense that the equilibrium part (P3.1)

of (P3) is formally equivalent to the elasti
 minimization problem (without loss of generality we

assume for the mathemati
s F

p

2 SL(3;R))

8 t 2 [0; T ℄ : I('(t); F

�1

p

(t); R

e

(t)) 7! min :w.r.t. '(t) 2 g(t) +H

1;2

Æ

(
;�) ; (2.11)

where

I('; F

�1

p

; R

e

) :=

Z




W (r'F

�1

p

; R

e

)� hf; 'i dV :

The weak form of the 
orresponding equilibrium equation is given next.

Lemma 2.3 (Weak form of elasti
 problem)

If a minimizer ' 2 H

1;2

(
) of (2.11) exists, then it is a weak solution to the equilibrium problem

0 =

Z




hD

F

�

W (r'F

�1

p

; R

e

)

�

;r�i � hf; �i dV 8� 2 H

1;2

0

(
;R

3

) ; (2.12)
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whi
h satis�es the 
orresponding strong form

Div R

e

h

�((r'F

�1

p

)

T

R

e

+R

T

e

r'F

�1

p

) + � tr

�

(r'F

�1

p

)

T

R

e

�

11

i

F

�T

p

=

� f +Div

�

(2�+ 3�)R

e

F

�T

p

�

; (2.13)

if the appearing quantities are smooth enough. �

Observe in passing that for F

p

= 11; R

e

= 11 and with Div(ru

T

) = r(Div u) and Div(Div u)�11) =

r(Div u) we re
over naturally the Lam�e equations

(�+ �)r(Div u) + ��u+ f = 0 (2.14)

of linearized elasti
ity. We note also the appearan
e of a "virtual" body for
e 
ontribution

due to the inhomogeneities inherent in F

p

; R

e

. �

This equilibrium system (2.13) 
an be written in the short
ut form

Div D (A(x)):r' = f +Div V (A); '

j

�

= g ; (2.15)

where we have set A = (F

�T

p

; R

e

) and introdu
ed the 
orresponding elasti
ity tensor D and the

additional right-hand side 
ontribution V a

ording to the next de�nition in line with equation

(2.13).

De�nition 2.4 (Corresponding elasti
ity tensor)

We de�ne the elasti
ity tensor D : M

3�3

� M

3�3

7! Lin(M

3�3

;M

3�3

) and the right hand side

V : M

3�3

� M

3�3

7! M

3�3

by

8H2M

3�3

: D (F

�T

p

; R

e

):H :=R

e

h

�((HF

�1

p

)

T

R

e

+R

T

e

HF

�1

p

) + � tr

�

(HF

�1

p

)

T

R

e

�

11

i

F

�T

p

;

V (F

�T

p

; R

e

) := (2�+ 3�)R

e

F

�T

p

; (2.16)

respe
tively. �

We are then 
on
erned with the stati
 situation where A = (F

�T

p

; R

e

) are assumed to be known.

A startling diÆ
ulty we en
ounter is that the elasti
ity tensor D = D (A), although turning

out to be uniformly Legendre-Hadamard ellipti
, does not indu
e a pointwise uniformly posi-

tive bilinear form. Su
h a problem does not appear in in�nitesimal elasto-vis
oplasti
ity sin
e

there the relevant elasti
ity tensor D

lin

2 Lin(Sym(3);Sym(3)) is assumed to be a 
onstant

uniformly positive de�nite fourth order tensor de�ned on the symmetrized strains " su
h

that

8 " 2 Sym(3) : hD

lin

:"; "i � 


+

� k"k

2

; (2.17)

and 
oer
ivity follows from the standard Korn's �rst inequality [16℄.

Nevertheless, we prove the existen
e, uniqueness and regularity of solutions to the boundary

value problem (P3.1). The existen
e part relies now heavily on Theorem 6.2, re
ently proved

by the author extending Korn's �rst inequality to non-
onstant 
oeÆ
ients and over
oming the

la
k of uniform positivity of (2.11). This theorem has been proved pre
isely with the motivation

of applying it to �nite plasti
ity.
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Now, again in stark 
ontrast to the in�nitesimal 
ase (2.4)

1

with additive de
omposition,

where the solution u depends linearly on the plasti
 strain "

p

, the solution of (2.13) depends

nonlinearly on A due to the underlying multipli
ative stru
ture.

Despite this nonlinearity, we establish Lips
hitz-
ontinuous dependen
e of the solution to

(2.11) with respe
t to the data and 
oeÆ
ients A = (F

�T

p

; R

e

) by looking at the system (2.13) in

the form (2.15) and using sharp ellipti
 estimates. Sin
e the 
onstant in the extended Korn's in-

equality Theorem 6.2 enters the Lips
hitz estimate but is itself determined in a non-
onstru
tive

way, we show that this 
onstant 
an be bounded below for bounded, smooth 
oeÆ
ients.

The 
on
eptual idea to treat the 
oupled plasti
 evolution problem is then straightforward: in

the fully rate-dependent 
ase the di�erential in
lusion is in fa
t an ordinary di�erential equation

whi
h may be written in the form

d

dt

A(t) = h(r'(A); A) � A ; (2.18)

with h : M

3�3

� (M

3�3

� M

3�3

) 7! Lin(M

3�3

;M

3�3

), where A = (F

�T

p

; R

e

) and ' = '(A) is

the solution of the ellipti
 boundary value problem (P3.1) at given A. It remains to show that

the right hand side of (2.18) as a fun
tion of A is lo
ally Lips
hitz 
ontinuous allowing to apply

the lo
al existen
e and uniqueness theorem for nonlinear evolution equations in Bana
h spa
es

based on Bana
h's �xed point theorem, 
f. Theorem 6.1.

The presented formal mathemati
al framework has a natural 
ounterpart in the numeri
al

treatment of vis
o-plasti
ity. The 
oupled problem 
an be 
onsidered to be a di�erential

algebrai
 system of equations (DAE) of index 1, the algebrai
 equation is the side 
ondition


oming from a dis
retization of the elasti
 equilibrium system [23℄. That vis
osity is indeed

enough to regularize problems in �nite plasti
ity is a standing 
onje
ture [52℄ and rigorously

justi�ed by our development.

3 Lo
al existen
e and uniqueness proof

3.1 De�nitions and assumptions

To streamline the subsequent mathemati
al investigation of (2.13) and to pla
e it in a more

general 
ontext we introdu
e the following de�nitions.

De�nition 3.1 (General assumption, GA)

GA.1 
 � R

n

is a bounded domain with smooth boundary and spa
e dimension n.

GA.2 We 
all m 2 N the order of ellipti
 regularity and assume 2 � (m+ 1) > n.

GA.3 (Lo
al boundedness of the elasti
ity tensor and part of the right hand side) For given

K

1

> 0:

D : M

3�3

� M

3�3

7! Lin(M

3�3

;M

3�3

); V : M

3�3

� M

3�3

7! M

3�3

,

M := fA : 
 7! M

3�3

� M

3�3

j kAk

m+1;2;


� K

1

g,

9 C

M

: 8 A 2M : kD (A)k

m+1;2;


; kV (A)k

m+1;2;


� C

M

.

GA.4 (Uniform Legendre-Hadamard ellipti
ity on M) For all �; � 2 R

3

it holds

9 


+

e;M

> 0 : 8 x 2 
 : 8 A 2M : hD (A(x)):(� 
 �); � 
 �i � 


+

e;M

� k�k

2

k�k

2

:

13



GA.5 (Lo
al Lips
hitz 
ontinuity)

9 L

M

: 8 A;B 2M : kD (A) � D (B)k

m+1;2;


� L

M

� kA�Bk

m+1;2;


;

9 L

M

: 8 A;B 2M : kV (A)� V (B)k

m+1;2;


� L

M

� kA�Bk

m+1;2;


:

If (GA.1,GA.2,GA.3,GA.4,GA.5) holds we say that GA holds. Note that 
ondition GA.5

already implies GA.3 but for 
onvenien
e GA.3 is stated separately. �

3.2 Existen
e of weak solutions to the elasti
 subproblem

We already indi
ated that in the stati
 
ase for frozen variables (F

p

; R

e

) the elasti
 equilibrium

system (P3.1) in (P3) is a linear, stri
tly Legendre-Hadamard ellipti
 se
ond order boundary

value problem with non-
onstant 
oeÆ
ients and variational stru
ture.

6

We exploit this stru
-

ture and apply the dire
t methods of the 
al
ulus of variations to show that there exists a unique

weak solution at frozen variables (F

p

; R

e

).

Theorem 3.2 (Existen
e of minimizers)

Let F

p

; F

�1

p

2 H

2;2

(
;GL(3;R)) and R

e

2 H

2;2

(
;SO(3)) be given. Assume for the Diri
hlet

boundary data g 2 H

3;2

(
) and for the body for
e f 2 L

2

(
). Then the variational problem

I('; F

�1

p

; R

e

) 7! min :; ' 2 g +H

1;2

Æ

(
) ;

I('; F

�1

p

; R

e

) =

Z




W (r'F

�1

p

; R

e

)� hf; 'i

R

3

dV ; (3.1)

admits a minimizer ' 2 H

1;2

(
) and this minimizer satis�es estimate (3.13).

Proof. By the de�nition of I as a sum of a quadrati
 form and a linear form it is easy to

see that ' 7! I('; F

�1

p

; R

e

) is 
onvex over H

1;2

(
). Moreover with g 2 H

1;2

(
) we have that

I(g; F

�1

p

; R

e

) < 1. First we show that I is bounded below. To this end de�ne

^

F

p

= R

e

� F

p

.

Note that

^

F

p

2 H

2;2

(
) sin
e H

2;2

(
) is an algebra for n = 3 spa
e dimensions. Then

W (F

e

; R

e

) =

�

4

kF

T

e

R

e

+R

T

e

F

e

� 211k

2

+

�

8

tr

h

F

T

e

R

e

+R

T

e

F

e

� 211

i

2

(3.2)

=

�

4

k

^

F

p

�T

r'

T

+r'

^

F

p

�1

� 2 11k

2

+

�

8

tr

h

^

F

p

�T

r'

T

+r'

^

F

p

�1

� 2 11

i

2

;

where we used that kR

e

XR

T

e

k = kXk and tr

h

R

e

XR

T

e

i

= tr [X℄. Now set ' = v + g with

v 2 H

1;2

Æ

(
). We have algebrai
ally

W (r'F

�1

p

; R

e

)

=

�

4

k

^

F

p

�T

r'

T

+r'

^

F

p

�1

� 2 11k

2

+

�

8

tr

h

^

F

p

�T

r'

T

+r'

^

F

p

�1

� 2 11

i

2

�

�

4

k

^

F

p

�T

rv

T

+rv

^

F

p

�1

k

2

� 2� k

^

F

p

�1

k

2

krvk krgk � 2�

p

3 k

^

F

p

�1

k krvk+

�

4

k

^

F

p

�T

rg

T

+rg

^

F

p

�1

� 211k

2

: (3.3)

6

This is essentially the elasti
 trial step in 
urrent algorithmi
 formulations.
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Integrating over 
 and making use of Theorem 6.2 in the improved version of [63℄ with

^

F

p

;

^

F

p

�1

2

H

2;2

(
) � C

0;

1

2

(
) we get for all ' 2 H

1;2

(
)

Z




W (r'F

�1

p

; R

e

)� hf; 'i dV � � 


+

(

^

F

p

) kvk

2

1;2;


| {z }

extended Korn

�2� k

^

F

p

�1

k

2

1

krgk

1

kvk

1;2;


� 2�

p

3k

^

F

p

�1

k

1

kvk

1;2;


+

Z




�

4

k

^

F

p

�T

rg

T

+rg

^

F

p

�1

� 211k

2

dV (3.4)

� kfk

2;


�

kvk

2;


+ kgk

2;


�

:

Hen
e I is bounded below and we observe that a minimizing sequen
e f'

n

g

1

n=1

� H

1;2

(
) exists

with

I('

n

; F

�1

p

; R

e

)! inf

'2g+H

1;2

Æ

(
)

I('; F

�1

p

; R

e

) ; n!1: (3.5)

We pro
eed to show that I is 
oer
ive whi
h implies that f'

n

g

1

n=1

is bounded.

Our development is more detailed than stri
tly ne
essary if only 
oer
ivity was 
on
erned.

However, we need to keep tra
k of all 
onstants for uniform estimates in subsequent paragraphs.

Without loss of generality assume that '

1

= g. Sin
e '

n

is a minimizing sequen
e, we have

by estimating from above and using hX; 11i

2

� 3kXk

2

Z




W (r'

n

F

�1

p

; R

e

)� hf; '

n

i dV �

�

�

4

+

3�

8

�

Z




k

^

F

p

�T

rg

T

+rg

^

F

p

�1

� 211k

2

dV + kfk

2;


kgk

2;


�

�

4

Z




k

^

F

p

�T

rg

T

+rg

^

F

p

�1

� 211k

2

dV+ (3.6)

3�

2

j
j

�

k

^

F

p

�1

k

2

1

krgk

2

1

+ 2

p

3k

^

F

p

�1

k

1

krgk

1

+ 3

�

+ kfk

2;


kgk

2;


:

This implies together with (3.4) the inequality

3�

2

j
j

�

k

^

F

p

�1

k

2

1

krgk

2

1

+ 2

p

3k

^

F

p

�1

k

1

krgk

1

+ 3

�

+ 2 kfk

2;


kgk

2;


� (3.7)

� 


+

(

^

F

p

) kv

n

k

2

1;2;


� 2� k

^

F

p

�1

k

2

1

krgk

1

kv

n

k

1;2;


� 2�

p

3k

^

F

p

�1

k

1

kv

n

k

1;2;


� kfk

2;


kv

n

k

2;


� � 


+

(

^

F

p

) kv

n

k

2

1;2;


� 2�

p

3

�

1 + k

^

F

p

�1

k

2

1

� h

k

^

F

p

�1

k

1

+ krgk

1

+ kfk

2;


i

� kv

n

k

1;2;


:

Hen
e a rough estimate yields

5 � j
j

�

1 + k

^

F

p

�1

k

1

krgk

1

�

2

+ 2 kfk

2;


kgk

2;


� (3.8)

� 


+

(

^

F

p

) kv

n

k

2

1;2;


� 5�

�

1 + k

^

F

p

�1

k

2

1

� h

k

^

F

p

�1

k

1

+ krgk

1

+ kfk

2;


i

� kv

n

k

1;2;


:
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Thus we get a quadrati
 inequality in kv

n

k

1;2;


0 � kv

n

k

2

1;2;


�

5




+

(

^

F

p

)

�

1 + k

^

F

p

�1

k

2

1

� h

k

^

F

p

�1

k

1

+ krgk

1

+ kfk

2;


i

� kv

n

k

1;2;


�

5� j
j

� 


+

(

^

F

p

)

�

1 + k

^

F

p

�1

k

1

krgk

1

�

2

� 2 kfk

2;


kgk

2;


: (3.9)

Sin
e 0 � x

2

� bx� 
) x � b+

p


, the former yields

kv

n

k

1;2;


�

2

4

5


(

^

F

p

)

�

1 + k

^

F

p

�1

k

2

1

�

+

s

5� j
j

� 
(

^

F

p

)

�

1 + k

^

F

p

�1

k

1

krgk

1

�

k

^

F

p

�1

k

1

+ krgk

1

+ kfk

2;


+ (3.10)

kfk

2;


+ kgk

2;


k

^

F

p

�1

k

1

+ krgk

1

+ kfk

2;


3

5

�

h

k

^

F

p

�1

k

1

+ krgk

1

+ kfk

2;


i

:

Taking

^

F

p

�1

= F

�1

p

� R

T

e

into a

ount and the estimate

p

3 = k11k = kF

�1

p

F

p

k � kF

�1

p

k kF

p

k

(whi
h implies kF

�1

p

k �

p

3

kF

p

k

) shows

kv

n

k

1;2;


�

"

5


(

^

F

p

)

�

1 + kF

�1

p

k

2

1

�

+

s

5� j
j

� 
(

^

F

p

)

kF

p

k

1

�

1 + kF

�1

p

k

1

krgk

1

�

p

3

+

kF

p

k

1

p

3

�

kfk

2;


+ kgk

2;


�

�

�

h

kF

�1

p

k

1

+ krgk

1

+ kfk

2;


i

: (3.11)

With the embedding H

m;2

(
) ,! C

m�

n

2

(
) and adding kR

e

k

2;2;


we get the estimate

kv

n

k

1;2;


�C(
)

"

1


(

^

F

p

)

�

1 + kF

�1

p

k

2

2;2;


�

+ kF

p

k

2;2;


s

� j
j

� 
(

^

F

p

)

�

1 + kF

�1

p

k

2;2;


kgk

3;2;


�

+kF

�1

p

k

2;2;


�

kfk

2;


+ kgk

2;


�i

�

h

kF

�1

p

k

2;2;


+ kR

e

k

2;2;


+ kgk

3;2;


+ kfk

2;


i

: (3.12)

Therefore for '

n

= v

n

+ g we get

k'

n

k

1;2;


�

 

1 + C(
)

"

1


(

^

F

p

)

�

1 + kF

�1

p

k

2

2;2;


�

+ kF

p

k

2;2;


s

� j
j

� 
(

^

F

p

)

�

1 + kF

�1

p

k

2;2;


kgk

3;2;


�

+kF

�1

p

k

2;2;


�

kfk

2;


+ kgk

2;


�

��

�

h

kF

�1

p

k

2;2;


+ kR

e

k

2;2;


+ kgk

3;2;


+ kfk

2;


i

; (3.13)

implying the boundedness of the minimizing sequen
e f'

n

g

1

n=1

. We may extra
t a subsequen
e

that 
onverges weakly to some ' 2 H

1;2

(
). Sin
e I is 
onvex, it is also sequentially weakly

lower semi-
ontinuous whi
h in turn implies

I('; F

�1

p

; R

e

) � lim inf

n!1

I('

n

; F

�1

p

; R

e

) = inf

'2g+H

1;2

Æ

(
)

I('; F

�1

p

; R

e

): (3.14)

Hen
e ' is a minimizer. Observe that estimate (3.13) remains valid for ' by weak lower semi-


ontinuity of the norm. �

16



Theorem 3.3 (Uniqueness of minimizers)

Let F

p

; F

�1

p

2 H

2;2

(
;GL(3;R)) and R

e

2 H

2;2

(
;SO(3)) be given. Assume for the Diri
hlet

boundary data g 2 H

3;2

(
) and for the body for
e f 2 L

2

(
). Then the variational problem

(3.1) has a unique solution ' 2 H

1;2

(
).

Proof. We show that I is stri
tly 
onvex over the aÆne spa
e fg +H

1;2

Æ

(
)g. This is done by


omputing the se
ond derivative. We have

D

2

'

I('; F

�1

p

; R

e

):(�; �) =

Z




�

2

kF

�T

p

r�

T

R

e

+R

T

e

r�F

�1

p

k

2

+ � tr

h

R

T

e

r�F

�1

p

i

2

dV

�

Z




�

2

kF

�T

p

r�

T

R

e

+R

T

e

r�F

�1

p

k

2

dV � � 


+

(F

p

; R

e

;
) k�k

2

1;2;


; (3.15)

by applying Theorem 6.2. Sin
e the Lam�e 
onstant � is assumed to be stri
tly positive, we see

that D

2

'

I('; F

�1

p

; R

e

):(�; �) is uniformly positive. Hen
e I('; F

�1

p

; R

e

) is stri
tly 
onvex. �

Corollary 3.4 (General linear system)

Let F

p

; F

�1

p

2 H

2;2

(
;GL(3;R)) and R

e

2 H

2;2

(
;SO(3)) be given and set A = (F

�T

p

; R

e

).

Suppose that D has the form postulated in De�nition 2.4 and assume for the Diri
hlet boundary

data g 2 H

3;2

(
) and for the right hand side f 2 L

2

(
). Then the linear problem

Div D (A):ru = f; u

j

�


= g ; (3.16)

has a unique weak solution u 2 H

1;2

(
).

Proof. The same ideas as in Theorem 3.2 and Theorem 3.3 
arry over. As 
orresponding energy

expression we have only to take W

D

(F;A) =

�

4

kF

T

e

R

e

+R

T

e

F

e

k

2

+

�

8

tr

h

F

T

e

R

e

+R

T

e

F

e

i

2

. This

result is true for a general right hand side f and not ne
essarily restri
ted to the body for
e f

appearing in (2.13). �

Theorem 3.5 (Uniform 
onstant in Korn's �rst inequality)

Let 
 � R

3

be a bounded domain and let � � �
 be a part of the boundary with non vanishing

2-dimensional Hausdor� measure. Set

M = fF

p

2 H

2;2

(
; GL(3;R)) j kF

p

k

2;2;


� K

1

; kF

�1

p

k

2;2;


� K

2

g : (3.17)

Then 9 


+

M

> 0 su
h that 8 F

p

2M 8 � 2 H

1;2

Æ

(
;�) :

kr�F

�1

p

(x) + F

�T

p

(x)r�

T

k

2

L

2

(
)

� 


+

M

k�k

2

H

1;2

(
)

: (3.18)

Proof. We pro
eed by 
ontradi
tion. Assume without loss of generality that there exists a

sequen
e �

n

2 H

1;2

Æ

(
;�) : k�

n

k

1;2;


= 1 and a sequen
e F

n

p

2M su
h that

kr�

n

F

n;�1

p

(x) + F

n;�T

p

(x)r�

T

n

k

2

L

2

(
)

�

1

n

k�k

2

H

1;2

(
)

=

1

n

: (3.19)

Sin
e F

�1;n

p

is bounded in H

2;2

(
) we may extra
t a subsequen
e whi
h 
onverges strongly to

some

^

F

�1

p

in the topology of H

2�";2

(
). Note that the limit

^

F

�1

p

2M by weak 
onvergen
e. It

is readily seen by 
ontinuity and the boundedness of �

n

that this implies on M

kr�

n

^

F

�1

p

(x) +

^

F

�T

p

(x)r�

T

n

k

2

L

2

(
)

! 0: (3.20)
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This in turn implies that �

n

is a minimizing sequen
e. For �xed

^

F

�1

p

the quadrati
 expression

is stri
tly 
onvex in �

n

on use of Theorem 6.2 in the improved version of [63℄. We infer that

kr�

n

^

F

�1

p

(x) +

^

F

�T

p

(x)r�

T

n

k

2

L

2

(
)

� 


+

(

^

F

p

) k�

n

k

2

H

1;2

(
)

: (3.21)

Hen
e k�

n

k

2

H

1;2

(
)

�

1




+

(

^

F

p

)

�

1

n

! 0; n!1, 
ontradi
ting k�

n

k

H

1;2

(
)

= 1. �

Corollary 3.6 (Uniform G�arding-type estimate)

Under the same assumptions and notations as in Theorem 3.5 let g 2 H

3;2

(
) and f 2 L

2

(
).

Then the variational problem (3.1) has a unique solution ' 2 H

1;2

(
). For this solution the

following estimate is valid:

9 C

+

M

(kgk

3;2;


; kfk

2;


) > 0 8 F

p

; R

e

2M

k'k

1;2;


� C

+

M

(kgk

3;2;


; kfk

2;


) �

�

kF

�1

p

k

2;2;


+ kR

e

k

2;2;


+ kgk

3;2;


+ kfk

2;


�

(3.22)

and C

+

M

(kgk

3;2;


; kfk

2;


) is a 
ontinuous fun
tion of kgk

3;2;


and kfk

2;


.

Proof. We re
all the estimates of Theorem 3.2. With the assumptions on the 
oeÆ
ients A we

have with Theorem 3.5 that the appearing 
onstants in Theorem 3.2 are bounded independent of

the 
oeÆ
ients onM. Analyzing estimate (3.13) shows that all appearing 
onstants are uniform

on M. Hen
e the bound is itself uniform. �

Lemma 3.7 (Uniform ellipti
ity)

Let M as in Theorem 3.5. Then 9 


+

M

> 0 8 F

p

2M 8 �; � 2 R

3

:

k(� 
 �) � F

�1

p

(x) + F

�T

p

(x) � (� 
 �)

T

k

2

� 


+

M

� k�k

2

k�k

2

: (3.23)

Proof. A simple algebrai
 
omputation shows that

k(� 
 �) � F

�1

p

(x) + F

�T

p

(x) � (� 
 �)

T

k

2

� 2 �

2

min

�

F

�1

p

(x)F

�T

p

(x)

�

� k�k

2

k�k

2

: (3.24)

It is easily veri�ed that there exists a d

+

> 0 su
h that det[F

�1

p

℄(x) � d

+

for all F

p

2M. Sin
e

d

2

+

� det[F

�1

p

(x)F

�1

p

(x)℄ = �

min

� �

2

� �

max

�

F

�1

p

(x)F

�T

p

(x)

�

, it follows �

2

min

�

d

4

+

�

4

max

whi
h in

turn implies �

2

min

�

d

4

+

kF

�1

p

F

�T

p

k

4

. Therefore we have a lower bound for the smallest eigenvalue

�

min

�

F

�1

p

(x)F

�T

p

(x)

�

on M. �

Corollary 3.8 (Uniform ellipti
ity of equilibrium system)

Set

^

F

p

= R

e

F

p

. Again letM be de�ned as in Theorem 3.5. Assume that F

p

; R

e

2M. Then the

system (2.13) with elasti
ity tensor D given by De�nition 2.4 is uniformly Legendre-Hadamard

ellipti
 on M,

9 


+

e;M

> 0 : 8x 2 
 : 8A 2M : hD (A(x)):(� 
 �); � 
 �i � 


+

e;M

k�k

2

k�k

2

(3.25)

and the ellipti
ity 
onstant is given by 


+

e;M

= � � �

2

min

�

^

F

p

�1

(x)

^

F

p

�T

(x)

�

whi
h is bounded

below on M.
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Proof. Take H = � 
 �. We have to 
ompute D

2

F

W (F; F

p

; R

e

):(H;H) with W as in (3.1). It

holds true that D

2

F

W (F; F

p

; R

e

):(H;H) �

�

2

kF

�T

p

H

T

R

e

+R

T

e

HF

�1

p

k

2

. The relevant identity is

kF

�T

p

H

T

R

e

+R

T

e

HF

�1

p

k

2

= k(R

T

e

R

e

)F

�T

p

H

T

R

e

+R

T

e

HF

�1

p

(R

T

e

R

e

)k

2

= kR

T

e

�

R

e

F

�T

p

H

T

+HF

�1

p

R

T

e

�

R

e

k

2

= kR

e

F

�T

p

H

T

+HF

�1

p

R

T

e

k

2

(3.26)

= k

^

F

p

�T

H

T

+H

^

F

p

�1

k

2

:

An appli
ation of Lemma 3.7 �nishes the proof. �

Hen
e with this 
hoi
e of D the assumption GA.4 is ful�lled.

3.3 The vis
oplasti
 evolution problem

In this �nal part of the proof we 
onsider the 
oupled vis
oplasti
 evolution problem. We 
an

write the evolution part of (P3) in the following blo
k diagonal form with A = (F

�T

p

; R

e

) 2

M

3�3

� M

3�3

:

d

dt

�

F

�T

p

(t)

R

e

(t)

�

=

�

��

�

(�

E

(t))

T

0

0 �

+

� skew(B(t))

�

�

�

F

�T

p

(t)

R

e

(t)

�

: (3.27)

Thus the system (P3) is equivalent to

d

dt

A(t) = h (r

x

T (A(t); g(t); f(t)); A(t)) �A(t) ; (3.28)

with h : M

3�3

� (M

3�3

� M

3�3

) 7! Lin(M

3�3

;M

3�3

) = M

6�6

,

h (F;A(t)) =

�

��

�

(�

M

(t))

T

0

0 �

+

� skew(B(t))

�

; (3.29)

where �

E

and B are expressions depending on A = (F

�T

p

; R

e

) and on F = r' = r

x

T (A; g; f),

where T (A; g; f) is formally de�ned to be the solution operator of the equilibrium part (P3.1)

of (P3). In order to a

ount for von Mises type J

2

-vis
o-plasti
ity with elasti
 domain

E := f�

E

j kdev(sym�

E

)k � �

y

g and yield stress �

y

, we take as vis
o-plasti
 potential

�

: M

3�3

7! R of generalized Norton-Ho� overstress type the following fun
tion:

�

(�

E

) =

8

<

:

0 �

E

2 E

��

0

(r+1)(k+1) �

p

�

1 +

�

k dev(sym�

E

)k��

y

��

0

�

r+1

�

k+1

�

��

0

(r+1)(k+1) �

p

�

E

62 E ;

(3.30)

where �

p

> 0 is the relaxation time of the system due to essentially plasti
 pro
esses inside the

grains and parameters r; k > 0 and ��

0

is a stress like material 
onstant. An easy 
al
ulation

shows that this leads to the single valued subdi�erential

�

�

�

(�

E

) =

1

�

p

:

 

1 +

�

kdev sym�

E

k � �

y

��

0

�

r+1

+

!

k

�

�

kdev sym�

E

k � �

y

��

0

�

r

+

dev sym�

E

kdev sym�

E

k

: (3.31)

The parameter r allows to adjust the smoothness of the 
ow rule when passing the elasti


boundary. With r > 3 it is 
lear that �

�

2 C

3

(M

3�3

;M

3�3

). For k ! 1 we re
over formally
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ideal rate-independent plasti
ity. Without loss of generality we 
hoose the positive fun
tion �

+

in the elasti
 
ow part formally similar to (3.31)

�

+

=

1

�

e

0

�

1 +

"

k skew(�F

e

R

T

e

)k�0

��

0

#

r+1

+

1

A

k

�

�

k skew (B) k�0

��

0

�

r

+

�

1

k skew (B) k

: (3.32)

Here �

e

> 0 is the relaxation time of the system due to grain boundary relaxation, whi
h, in

view of the results obtained in the 
ompanion paper [57℄ 
an be assumed to be of the order of

0:01[se
℄ for poly
rystalline metals. This 
hoi
e makes the 
ow rule altogether a C

3

-fun
tion

and implies that h 2 C

3

(M

3�3

� (M

3�3

� M

3�3

);Lin(M

3�3

;M

3�3

)), 
onsidered pointwise.

Remark 3.9 (Flow rule on Sobolev spa
e)

Set M := fv 2 H

m+1;2

(
)j kvk

m+1;2;


� Kg. Then due to Sobolev's embedding theorem it is

easy to see that for h 2 C

m+2

(M

3�3

� (M

3�3

� M

3�3

);M

6�6

) and 8 v

1

; v

2

2M the estimate

kh(v

1

)� h(v

2

)k

m+1;2;


� sup

k�k�

~

K

kh(�)k

C

m+2

(R

27

;M

6�6

)

� C

+

(
;M) � kv

1

� v

2

k

m+1;2;


(3.33)

holds. �

It remains to identify the pre
ise spa
es on whi
h to 
onsider this evolution problem in the

framework of Theorem 6.1. We let

U := H

2;2

(
;GL(3;R)); X := H

2;2

(
;SL(3;R)) �H

2;2

(
;SO(3)) (3.34)

and set Y := H

3;2

(
;R

3

) and Z := H

1;2

(
;R

3

). Assume that A

0

= (F

�T;0

p

; R

0

e

) 2 X is given

with det[F

0

p

(x)℄ = 1 and let

M := fA 2 Xj kA�A

0

k

2;2;


� K

1

g ; Y := fy 2 Y j kyk

3;2;


� K

2

g ; (3.35)

Z := fz 2 Zj kzk

1;2;


� K

3

g:

Observe that by 
onstru
tion of the 
ow rule (3.27)

d

dt

�

F

�1

p

�

(t) = F

�1

p

(t) � X

1

;

d

dt

R

e

(t) = X

2

� R

e

(t) ; (3.36)

and sin
e X

1

2 sl(3) and X

2

2 so(3) we know a priori that

det[F

p

(x; t)℄ = 1; F

p

(x; t) 2 SL(3) and R

e

(x; t) 2 SO(3): (3.37)

We assume for the Diri
hlet boundary data g 2 C

1

([0; T ℄;Y) and for the body for
es f 2

C

1

([0; T ℄;Z). In view of the above statements we show presently that the evolution problem

d

dt

A(t) = h (r

x

T (A(t); g(t); f(t)); A(t)) �A(t) (3.38)

�ts into the formal framework set forth in Theorem 6.1.

First we pro
eed to show that it is possible to de�ne a solution operator ' = T (F

p

; R

e

; g; f)

to the stati
 equilibrium part (P3.1) of (P3) and that this operator is indeed Lips
hitz 
ontinuous

on M�Y �Z.
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Due to Theorem 3.2 and Corollary 2.3 we know that solutions ' of (P3.1) exist. With

De�nition 2.4 it is 
lear that D ; V 2 C

1

. Remark 3.9 shows that (GA.3) and (GA.5) are

veri�ed for D ; V onM. Moreover, by Corollary 3.7 we see that (GA.4) is true. If we 
hoose the

order of ellipti
 regularity m = 1 for the spa
e dimension n = 3, then (GA.2) holds as well. Of


ourse we have to assume (GA.1).

Theorem 3.3 shows that the solutions of the boundary value problem (P3.1) are unique

whi
h establishes existen
e of the solution operator and Corollary 3.6 proves a uniform H

1;2

(
)

estimate for g 2 Y; f 2 Z on M. With Corollary 3.4 we make sure that the assumptions of

Theorem 6.5 are veri�ed. Therefore we are entitled to apply Theorem 6.6 and Corollary 6.7.

Altogether, this yields that T (A; g; f) is a 
ontinuous operator with uniform Lips
hitz 
onstant

L

+

on M� Y � Z. The gradient r

x

T (A; g; f) satis�es the same type of uniform Lips
hitz

estimate, namely

kr

x

T (A; g

A

; f

A

)�r

x

T (B; g

B

; f

B

)k

m+1;2;


�

C

+

(
;M) �

�

1 + kBk

m+1;2;


+ kg

B

k

m+2;2;


+ kf

B

k

m+2;2;


�

(3.39)

�

kA�Bk

m+1;2;


+ kg

A

� g

B

k

m+2;2;


+ kf

A

� f

B

k

m;2;


�

:

Hen
e on M�Y �Z we obtain

kr

x

T (A; g

A

; f

A

)�r

x

T (B; g

B

; f

B

)k

m+1;2;


�

C

+

(
;M) � (1 +K

1

+K

3

) (3.40)

�

kA�Bk

m+1;2;


+ kg

A

� g

B

k

m+2;2;


+ kf

A

� f

B

k

m;2;


�

:

This is enough to see that the operator G(A; g; f) := r

x

T (A; g; f) veri�es the 
ondition of

Theorem 6.1.

Moreover, Remark 3.9 applied to h 2 C

3

(M

3�3

� M

3�3

;M

6�6

) shows that h, viewed as

a fun
tion h : U � X 7! Lin(X;X) is lo
ally Lips
hitz 
ontinuous on M. Therefore, we

may �nally apply Theorem 6.1 giving us a unique lo
al in time solution A 2 C

1

([0; t

1

℄;M)

to the ordinary di�erential system of equations (3.28). Sin
e '(t) = T (A(t); g(t); f(t)), the pair

(';A) 2 C([0; t

1

℄;H

3;2

(
;R

3

))� C

1

([0; t

1

℄;M) is the unique lo
al in time solution of (P3).

This �nishes the proof of Theorem 2.1. �

4 Dis
ussion and 
on
luding remarks

Having proved a lo
al existen
e theorem for the vis
oelasti
-vis
oplasti
 
ase of (P3) we observe

that the existen
e time in general will depend 
ru
ially on the smoothness of the values (F

p

; R

e

),

i.e., the smoothness of the elasti
ity tensor D . If bifur
ations o

ur, they must then be attributed

to a severe loss of smoothness of these elasti
 moduli.

It is still an open problem whether the vis
oelasti
-vis
oplasti
 system (P3) admits global

in time solutions for small data. This may not be true sin
e the loss of smoothness might

a

umulate with time even for small and smooth given data, e.g. under sustained low amplitude


y
li
 loading, therefore allowing for fatigue phenomena. The smoothness assumptions made

in Theorem 2.1 re
e
t a

urately the possible ma
ros
opi
 elasti
 failure of the poly
rystalline

material. Sin
e in a Sobolev-spa
e 
ontext we need at least F

p

2 H

1;3+Æ

(
;GL

+

(3;R)), in order
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to guarantee the minimal 
onstitutive requirement F

p

2 L

1

(
;GL

+

(3;R)), the regularity gap

F

p

2 H

2;2

(
;GL

+

(3;R)) � H

1;3+Æ

(
;GL

+

(3;R)) is small and the result is pra
ti
ally optimal.

I presume that the situation is 
ompletely di�erent for the rate-independent 
ase; here it

seems that the pe
uliar form of the 
ow rule is responsible for elasti
-plasti
 instabilities. The

foregoing analysis, however, is stri
tly 
on�ned to the rate-dependent 
ase, but, 
ontrary to the

variational approa
h, not restri
ted to asso
iated plasti
ity.

In the rate-independent problem following [59℄ for the single 
rystal 
ase it is believed that

one 
an as
ribe observed mi
rostru
ture inside one 
rystal grain (weak dis
ontinuities or shear

bands, i.e., a jump of the deformation gradient and strong dis
ontinuities or slip lines, i.e., a

jump of the deformation itself) to the la
k of quasi
onvexity of an asso
iated in
remental po-

tential whi
h derives from a fully impli
it time dis
retization of (P0) in the quasistati
 
ase.

Based on this observation a promising new approa
h has been taken towards a numeri
al and

mathemati
al analysis, see [26, 10, 48, 60, 61℄. The la
k of quasi
onvexity of the in
remental

problem is, however, not at varian
e with the assumed ellipti
ity of the purely elasti
 problem.

It is 
on
eivable that the time-in
remental problem derived from (P3) is not quasi
onvex (even

in the vis
ous 
ase with smooth initial elasti
 moduli) leading to the tentative 
on
lusion that

the lo
al solutions found in Theorem 2.1 do not ne
essarily realize global minima of the in-


remental potential but rather stable lo
al minima and that vis
osity prevents the formation of

mi
rostru
ture in the small elasti
 strain regime on the ma
ros
opi
 s
ale. The above mentioned

dis
ontinuities of the deformation inside the grains are therefore not at varian
e with the general

smoothness level required in Theorem 2.1, sin
e e.g., F

p

in (P3) 
orresponds 
on
eptually to the

averaged plasti
 'deformation' of the grains while R

e

is a suitable average of rotations.

In 
losing, a number of possible extensions of the theory are worth mentioning. The general

mathemati
al methodology of (P3) is not 
on�ned to a poly
rystal setting. In the 
ase of single


rystal vis
o-plasti
ity one simply has to ex
hange the 
ow rule for F

p

and one 
an expe
t the

same type of results. Likewise isotropi
 and kinemati
 hardening 
an be in
orporated without

diÆ
ulty. The use of uni�ed 
onstitutive equations [66℄ without elasti
 domain is also possible as

well as a non-asso
iated formulation provided that the 
ow rule is lo
ally Lips
hitz 
ontinuous.

First numeri
al 
omputations [58℄ with the relaxation time �

e

of the order 0:01 andB = B

me
h


on�rm the general appli
ability of the model (P3) for stru
tural appli
ations 
ompared with

standard models and 
orroborate the ex
ellent properties of (P3) with this 
hoi
e in the evolution

of the 'vis
oelasti
' rotations without yet exploring the spe
i�
 texture e�e
ts inherent in (P3).
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6 Appendix

6.1 Ordinary di�erential equations in Bana
h spa
es

A simple 
onsequen
e of Bana
h's �xed-point theorem is the following result.

Theorem 6.1 (Unique lo
al existen
e)

Let U;X; Y; Z be arbitrary Bana
h-spa
es with norms k � k

U

; k � k

X

; k � k

Y

; k � k

Z

respe
tively. Assume that h :

U�X 7! Lin(X;X) is lo
ally Lips
hitz 
ontinuous and let the initial value y

0

2 X be given. LetG : X�Y �Z 7! U

be an operator whi
h is Lips
hitz 
ontinuous on the set M�Y � Z with M := fy 2 X j ky � y

0

k

X

� Kg and

Y � Y; Z � Z bounded in Y; Z, respe
tively, i.e., there is a positive 
onstant L

+

su
h that

9L

+

> 0 : 8(x

1

; a

1

; b

1

); (x

2

; a

2

; b

2

) 2 M�Y �Z :

kG(x

1

; a

1

; b

1

)�G(x

2

; ; a

2

; b

2

)k

U

� L

+

� (kx

1

� x

2

k

X

+ ka

1

� a

2

k

Y

+ kb

1

� b

2

k

Z

) :
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Moreover, assume that � 2 C

1

([0; T ℄;Y); � 2 C

1

([0; T ℄;Z) are given fun
tions. Then there is some 0 < t

1

2 R

su
h that the initial value problem

d

dt

y(t) = h

�

G(y(t); �(t); �(t)); y(t)

�

� y(t) ; y(0) = y

0

; (6.1)

has a unique solution y 2 C

1

([0; t

1

℄;M). �

6.2 Extended Korn's �rst inequality

Theorem 6.2 (Extended 3D-Korn�s �rst inequality)

Let 
 � R

3

be a bounded Lips
hitz domain and let � � �
 be a smooth part of the boundary with non vanishing 2-

dimensional Lebesgue measure. De�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g and let F

p

; F

�1

p

2 C

1

(
;GL(3;R)).

Moreover suppose that CurlF

p

2 C

1

(
;M

3�3

). Then

9 


+

> 0 8 � 2 H

1;2

Æ

(
;�) : kr�F

�1

p

(x) + F

�T

p

(x)r�

T

k

2

L

2

(
)

� 


+

k�k

2

H

1;2

(
)

:

Proof. The proof has been presented in [56℄. Note that for F

p

= r� we would only have to deal with the 
lassi
al

Korn�s inequality evaluated on the transformed domain �(
). However, in general, F

p

is in
ompatible giving

rise to a non-Riemannian manifold stru
ture. Compare to [13℄ for an interpretation and the physi
al relevan
e

of the quantity CurlF

p

. It 
omes as no surprise that in �nite plasti
ity the in
ompatibility of F

p

should play an

important role. �

Motivated by the investigations in [56℄, it has been shown re
ently by Pompe [63℄ that the extended Korn's

inequality 
an be viewed as a spe
ial 
ase of a general 
lass of 
oer
iveness inequalities for quadrati
 forms. He

was able to show that indeed F

p

; F

�1

p

2 C(
;GL(3;R)) is suÆ
ient for (6.2) to hold without any 
ondition on

the 
ompatibility.

However, taking the spe
ial stru
ture of the extended Korn's inequality again into a

ount, work in progress

suggests that 
ontinuity is not really ne
essary: instead F

p

2 L

1

(
;GL(3;R)) and CurlF

p

2 L

3+Æ

(
) should

suÆ
e, whereas F

p

2 L

1

(
;GL(3;R)) alone is not suÆ
ient, see the 
ounterexample presented in [63℄. The

possible improvement has no bearing on our further development.

6.3 Sharp ellipti
ity type estimates

Let us gather results that are ne
essary for the exposition of the stati
 
ase. We need sharp a priori estimates

for ellipti
 systems of se
ond order with non-
onstant 
oeÆ
ients in divergen
e form. Ebenfeld [22℄ has re
ently

proved the following new sharpened a priori estimate whi
h we give adapted to our situation and our notation.

Theorem 6.3 (General improved sharp Hilbert spa
e ellipti
 regularity )

Let 
 � R

n

be a bounded domain with smooth boundary. Consider the divergen
e-form linear system

Div C (x):ru = f(x) ; u

j

�


= 0 ; (6.1)

with f 2 H

m;2

(
) and homogeneous boundary data. Let C : 
 � R

3

7! Lin(M

3�3

;M

3�3

) be the elasti
ity tensor.

Suppose C 2 H

m+1;2

(
) with 2 � (m+ 1) > n and assume that for arbitrary �; � 2 R

n

it holds

9 


+

e

> 0 8 x 2 
 : hC (x):(� 
 �); � 
 �i � 


+

e

� k�k

2

k�k

2

; (6.2)

i.e., that the system is uniformly Legendre-Hadamard ellipti
 with ellipti
ity 
onstant 


+

e

. Assume that the system

admits at least one weak solution u 2 H

1;2

(
). Then the following estimate is valid

kuk

m+2;2;


� C

+

(
; 


+

e

)P (kC k

m+1;2;


)

�

kfk

m;2;


+ kuk

2;


�

; (6.3)

where P : R 7! R is a polynomial of �nite order and the appearing 
onstant is independent of u; f; C and in

addition C

+

(
; 


+

e

) is bounded above for 


+

e

> 0.

Proof. See [20, 21℄ and 
ompare with [73, p.75℄ for 
omparable results on ellipti
 regularity for linear se
ond order

ellipti
 systems on other s
ales. The main advantage of the new theorem is to pre
isely tra
k how the regularity

of the 
oeÆ
ients enter the ellipti
 estimate. Pre
ise estimates of this form had not been available previously. �

Now we spe
ialize the general estimate to our situation.
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Theorem 6.4 (Improved Hilbert spa
e ellipti
 regularity with L

2

-part)

Assume GA and A 2M. Consider the linear divergen
e form ellipti
 system

Div D (A):ru = f(x) ; u

j

�


= g(x): (6.4)

Assume that (6.4) admits at least one weak solution u 2 H

1;2

(
) for all g 2 H

m+2;2

(
) and all f 2 H

m;2

(
).

Then the following estimate is valid:

kuk

m+2;2;


� C

+

(
; kD (A)k

m+1;2;


) �

�

kgk

m+2;2;


+ kfk

m;2;


+ kuk

2;


�

; (6.5)

and the appearing 
onstant C

+

(
; kD (A)k

m+1;2;


) is uniform on M.

Proof. The transformation v = u� g allows to 
onsider

Div D (A):rv = f(x) + Div D (A):rg ; v

j

�


= 0: (6.6)

If we apply Theorem 6.3 to (6.6) we get the estimate

kvk

m+2;2;


�C

+

(
; 


+

e

)P (kD (A)k

m+1;2;


)

�

kDiv D (A):rgk

m;2;


+ kfk

m;2;


+ kvk

2;


�

kvk

m+2;2;


�C

+

(
; 


+

e

)P (kD (A)k

m+1;2;


)

�

kD (A)k

m+1;2;


kgk

m+2;2;


+ kfk

m;2;


+ kvk

2;


�

(6.7)

kvk

m+2;2;


�C

+

(
; 


+

e

)P (kD (A)k

m+1;2;


)[1 + kD (A)k

m+1;2;


℄

�

kgk

m+2;2;


+ kfk

m;2;


+ kuk

2;


+ kgk

2;


�

:

This yields for u = v + g

kuk

m+2;2;


�2

�

1 +C

+

(
; 


+

e

)P (kD (A)k

m+1;2;


) [1 + kD (A)k

m+1;2;


℄

�

�

kgk

m+2;2;


+ kfk

m;2;


+ kuk

2;


�

: (6.8)

Now take

C

+

(
; kD (A)k

m+1;2;


) = 2

�

1 + C

+

(
; 


+

e

)P (kD (A)k

m+1;2;


) [1 + kD (A)k

m+1;2;


℄

�

:

This ends the proof sin
e C

+

(
; 


+

e

) is uniformly bounded above on M by (GA.4) and Theorem 6.3. �

Theorem 6.5 (Uniform estimates for bounded 
oeÆ
ients)

Assume GA and A 2M. Consider the linear divergen
e form ellipti
 system

Div D (A):ru = f(x) ; u

j

�


= g(x): (6.9)

Assume that (6.9) has a unique weak solution u 2 H

1;2

(
) for all g 2 H

m+2;2

(
) and all f 2 H

m;2

(
). In

addition assume that a uniform G�arding type L

2

(
)-estimate on M is available, i.e.,

9 C

M

> 0 : 8 A 2 M : kuk

2;


� C

M

�

�

kgk

m

1

+2;2;


+ kfk

m

2

;2;


�

; (6.10)

with max(m

1

;m

2

) � m. Then the following uniform estimate is true:

kuk

m+2;2;


� C

+

(
;M) �

�

kgk

m+2;2;


+ kfk

m;2;


�

; (6.11)

and the appearing 
onstant C

+

(
;M) is uniform on M.

Proof. An appli
ation of Theorem 6.4 will give the result. �
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Theorem 6.6 (Lips
hitz 
ontinuous dependen
e of solutions)

Assume GA and let A;B 2 M. Assume for the boundary data g

A

; g

B

2 H

m+2;2

(
) and for the body for
es

f

A

; f

B

2 H

m;2

(
). Consider the two systems

Div D (A(x)):ru = f

A

(x) + DivV (A) Div D (B(x)):ru = f

B

(x) + DivV (B)

u

j

�


= g

A

(x) u

j

�


= g

B

(x): (6.12)

Assume that both systems verify the assumptions made in Theorem 6.5. Denote the (unique) solutions u

A

; u

B

2

H

1;2

(
), respe
tively. Then the following estimate holds:

ku

A

� u

B

k

m+2;2;


�C

+

(
;M) �

�

1 + kBk

m+1;2;


+ kg

B

k

m+2;2;


+ kf

B

k

m;2;


�

(6.13)

�

kA�Bk

m+1;2;


+ kg

A

� g

B

k

m+2;2;


+ kf

A

� f

B

k

m;2;


�

;

with C

+

(
;M) uniformly bounded on M.

Proof. Consider

Div D (A(x)):ru = f

A

(x) + DivV (A) Div D (B(x)):ru = f

B

(x) + DivV (B)

u

j

�


= g

A

(x) u

j

�


= g

B

(x): (6.14)

Taking the di�eren
e of the two equations leads us to 
onsider

Div D (A(x)):r(u

A

� u

B

) = Div ((D (B(x)) � D (A(x))) :ru

B

)+

f

A

� f

B

+Div(V (A)� V (B)) (6.15)

(u

A

� u

B

)

j

�


= g

A

� g

B

:

By the assumption on A and the elasti
ity tensor D (A) we know that the system (6.15) has a unique solution

in the di�eren
e (u

A

� u

B

) for this spe
i�
 right-hand side, see (6.18). Together with the regularity assumption

made for A and D (A) in GA we 
an apply Theorem 6.5 to (6.15) and get the estimate

ku

A

� u

B

k

m+2;2;


� C

+

(
;M)�

�

kDiv(D (B) � D (A)):ru

B

k

m;2;


+

kDiv(V (B)� V (A))k

m;2;


+ (6.16)

kg

A

� g

B

k

m+2;2;


+ kf

A

� f

B

k

m;2;


�

ku

A

� u

B

k

m+2;2;


� C

+

(
;M)�

�

kD (A) � D (B)k

m+1;2;


� ku

B

k

m+2;2;


+

kV (B)� V (A)k

m+1;2;


+ (6.17)

kg

A

� g

B

k

m+2;2;


+ kf

A

� f

B

k

m;2;


�

:

Again with Theorem 6.5 applied to the solution u

B

we have

ku

B

k

m+2;2;


� C

+

(
;M) �

�

kg

B

k

m+2;2;


+ kf

B

k

m;2;


+ kV (B)k

m+1;2;


�

: (6.18)

Combining these two estimates and using (GA.5) for D ; V ends the argument. �

Corollary 6.7 (Lips
hitz 
ontinuous solution operator; time dependent 
oeÆ
ients)

Assume that for a given family M := fA

t

2 Mj t > 0g, the family of related elasti
ity tensors D (A

t

) veri�es all


onditions of Theorem 6.5. De�ne G := fg 2 H

m+2;2

(
)j kgk

m+2;2;


� K

2

g and F := ff 2 H

m;2

(
)j kfk

m;2;


�

K

3

g. Let the boundary data g

t

2 G and the body for
es f

t

2 F be given. Then the family of 
orresponding linear

ellipti
 systems

Div D (A

t

):r'

t

= f

t

(x) + DivV (A

t

) ; '

t

j

�


= g

t

(x) ; (6.19)

allows for a Lips
hitz-
ontinuous solution operator T on M �G� F su
h that '

t

= T (A

t

; g

t

; f

t

) and

kT (A; g

A

; f

A

)� T (B; g

B

; f

B

)k

m+2;2;


�

C

+

(
;M) �

�

1 + kBk

m+1;2;


+ kg

B

k

m+2;2;


+ kf

B

k

m;2;


�

(6.20)

�

kA�Bk

m+1;2;


+ kg

A

� g

B

k

m+2;2;


+ kf

A

� f

B

k

m;2;


�

;
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for A;B 2 M; g

A

; g

B

2 G; f

A

; f

B

2 F. The 
orresponding Lips
hitz 
onstant L

+

on M � G � F is a bounded

fun
tion of the form

L

+

= L

+

�

C

+

(
;M) ; K

2

; K

3

�

: (6.21)

Hen
e a family of ellipti
 systems of the above type has 
orresponding solution operators with uniform Lips
hitz-


onstant whenever kAk

m+1;2;


; kg

A

k

m+2;2;


; kf

A

k

m;2;


are bounded due to Theorem 6.5. �

Remark 6.8 (Nonlinear solution operator)

Let A

t

2 M and f

t

; g

t

as before. Then (f

t

; g

t

) 7! T (A

0

; g

t

; f

t

) is linear and A

t

7! T (A

t

; g

0

; f

0

) is nonlinear. Hen
e

the solution depends nonlinearly on the elasti
ity tensor although the problem is linear for frozen (�xed at time

t

0

) elasti
ity tensor D (A

t

0

). �
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