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Abstract

This paper is concerned with a phenomenological model of initially isotropic finite-
strain multiplicative elasto-plasticity for polycrystals with grain boundary relaxation (Neff,
Cont.Mech.Thermo.,2003). We prove a local in time existence and uniqueness result of the
corresponding initial boundary value problem in the quasistatic rate-dependent case. Use
is made of a generalized Korn’s first inequality (Neff, Proc.Roy.Soc.Edinb.A,2002) taking
into account the incompatibility of the plastic deformation F},. This is the first rigorous
result concerning classical solutions in geometrically exact nonlinear finite visco-plasticity
for polycrystals. Global existence is not proved and cannot be expected due to the natural
possibility of material degradation in time.
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1 Notation

Let Q C R? be a bounded domain with Lipschitz boundary 02 and let I' be a smooth subset
of 002 with non-vanishing 2-dimensional Hausdorff measure. For two Banach spaces X,Y we let
Lin(X,Y") denote the vectorspace of all bounded linear mappings from X to ¥ and P(X) denotes
the set of all subsets of X. For a,b € R® we let (a,b)ps denote the scalar product on R® with
associated vector norm ||a|3; = (a,a)gs. We denote by MP*? the set of real 3 x 3 second order
tensors, written with capital letters. The standard Euclidean scalar product on M3*3 is given
by (X,Y)ppxs = tr [XYT], and thus the Frobenius tensor norm is || X||* = (X, X)ypsxs. In the
following we omit the index R?, M3*3. The identity tensor on M?*3 will be denoted by 11, so that
tr[X] = (X, 11). We let Sym and PSym denote the symmetric and positive definite symmetric
tensors respectively. We adopt the usual abbreviations of Lie-group theory, i.e., GL(3,R) :=
{X € MP*3 |det[X] # 0} the general linear group, SL(3,R) := {X € GL(3,R) |det[X] =
1}, O(3) := {X € GL(3,R) | XTX =1}, SO(3,R) := {X € GL(3,R) | XTX =1, det[X] = 1}
with corresponding Lie-algebras so(3) := {X € M?*3 |[XT = —X} of skew symmetric tensors
and s[(3) := {X € M?*3 |tr[X] = 0} of traceless tensors. With Adj X we denote the tensor
of transposed cofactors Cof(X) such that Adj X = det[X] X! = Cof(X)T if X € GL(3,R).
We set sym(X) = (X7 + X) and skew(X) = (X — X7) such that X = sym(X) + skew(X).
For X € MP*3 we set for the deviatoric part devX = X — % tr[X]1l € s[(3) and for vectors
&,n € R* we have the tensor product (§ ® n);; = & nj. We write the polar decomposition in
the form /' = RU = polar(F)U with R = polar(F') the orthogonal part of F'. In general we
work in the context of nonlinear, finite elasticity. For the total deformation ¢ € C'(Q,R?)
we have the deformation gradient F = Vi € C(Q,M?*?). Furthermore, Si(F) and S(F)
denote the first and second Piola Kirchhoff stress tensors, respectively. Total time derivatives
are written %X (t) = X. The first and second differential of a scalar valued function W (F) are
written DpW (F).H and D2W (F).(H, H), respectively. We set C = FTF, C), = FpTFp, C. =
FI'F, E = %(C - 1), B, = %(Cp - 1), E, = %(C8 — 11). We employ the standard notation
of Sobolev spaces, ie. L2(Q), HY2(Q2), H*(€), which we use indifferently for scalar-valued
functions as well as for vector-valued and tensor-valued functions. Moreover, we set || X|lcc =
supgcq | X (z)||. For X € C1(Q,M3*3) we define Curl X (z) as the operation curl applied row
wise. We define H2?(Q,T) := {¢p € HY2(Q) | ¢|. = 0}, where ¢, = 0 is to be understood in the
sense of traces and by C§°(§2) we denote infinitely differentiable functions with compact support
in Q. We use capital letters to denote possibly large positive constants, e.g. C*, K and lower
case letters to denote possibly small positive constants, e.g. ¢*,d". The smallest eigenvalue of a
positive definite symmetric tensor P is abbreviated by Apin(P). The Landau symbols o(h), O(h)
are employed. Finally, w.r.t. abbreviates with respect to.

2 Introduction

2.1 Approaches in plasticity theory

Plasticity theory, as it is understood today, covers a large field of study which involves difficult
phenomena in the inelastic behaviour of solids along with difficult analytical problems related
to the nonlinearity of the employed mathematical models.

7 As is well known, the existing formulations of a general theory of elastic-plastic material
in the presence of finite deformations are somewhat controversial and there remain strong dis-
agreement on a number of important issues between several schools of plasticity.” [51, p.316].
More than fourteen years after these comments have been made, the issues are still far from



being settled. Without being exhaustive, these fundamental disagreements concern the following
topics (references only to illustrate the diverging approaches):

1.

2.

10.

11.

12.

Flow theory versus total deformation theory of plasticity (Hencky-model).

Stress- or strain based approach [51].

. Additive decomposition E = E, + E, of total strain [24, 12, 51] into symmetric elastic and

plastic parts versus multiplicative decomposition F' = F, F}, of deformation [32, 38, 41]
into elastic and plastic parts.

. Plastic strain £, € Sym(3) as primitive phenomenological variable versus deduced quantity

E, =3 (FI'F, - 1).

. Invariance and covariance requirements on the plastic strain E, [12] versus concept of

elastic isomorphism and natural reference state [5, 3].

. Interpretation of the multiplicative decomposition in terms of an intermediate, locally

unloaded, stress-free configuration [38] versus isoclinic configuration [5, 41].

Eulerian approach (hypo-plastic formulation, question of objective stress-rates) [46, 9]
versus Lagrangian approach (hyper-elastoplastic, circumventing discussion of stress-rates)
[26, 3, 62].

. Rate-independent formulations (instantaneous complete energy relaxation) [11] versus

rate-dependent formulations (viscosity, creep, relaxation, fatigue) [28].

. Associative (metals) or non-associative flow rules (geomaterials) [74]. Possibility of varia-

tional time-incremental updates for associative formulations [62, 60, 11] versus more tra-
ditional coupled evolution problem.

Yield surface approach (von Mises, Tresca) with elastic region versus unified constitutive
equations [8, 66] without yield limit.

Formulation of anisotropic behaviour. Significance of plastic spin [19].

Inclusion of thermal effects and kinematical hardening.

These points clearly illustrate the non-existence of some encompassing theory of large-strain
plasticity.

Practically all developments on the subject related to infinitesimal deformations of elastic-
plastic material have adopted a flow theory, stress-based approach and have utilized yield surfaces
and associated loading criteria. One can conclude that a satisfactory level of agreement can be
reached as far as infinitesimal elasto-plasticity is concerned.

The difference in the formulations appear prominently only, when finite deformations are
considered.

While it is not possible to mathematically resolve the apparent disagreement on the formu-
lation, our interest is on those models, which are based on the multiplicative decomposition,
along with a stress-based formulation and which include from the outset rate-dependent effects.
The rate-independent behaviour is included as a certain purely mathematical limiting response.
Attention is restricted to isothermal, isotropic formulations for simplicity without hardening.



We briefly recapitulate basic points of the multiplicative decomposition and introduce the non-
linear initial boundary value problems to be solved. Certain intrinsic problems of these formula-
tions are hinted at. In order to sidestep these problems, we introduce a new, geometrically exact
model with grain boundary relaxation and include a brief discussion of invariance requirements.
A local existence and uniqueness result for this model is stated.

Thereafter, we explain the basic mathematical ideas with which to show this well-posedness
result. The remaining part is devoted to the technical details of the proof.

In the appendix we introduce the generalized Korn’s first inequality as well as elliptic regu-
larity results needed for the proof which make the presentation sufficiently self-contained.

2.2 Recapitulation of finite multiplicative plasticity

In the nonlinear theory of elasto-visco-plasticity at large deformation gradients it is often as-
sumed that the deformation gradient ' = Vi splits multiplicatively! into an elastic and
plastic part [38, 41]

Vo(z) = F(z) = F.(z) - Fy(z), F.,F, € GLT(3,R), (2.1)

where the invertible F., F}, are explicitly understood to be incompatible configurations, i.e.
F.,F, # VV for any ¥ : O C R* — R3. Thus F, introduces in a natural way a non-
Riemannian manifold structure [33]. While formally this decomposition is unique only up to
an invertible matrix G € GL(3, R), since

Vip(z) = F(z) = Fe(x) - Fy(x) = Fo(2) G(2)G(2) ' Fy(a) = Fe(x) - Fy(z), (2.2)

we consider as ”physically equivalent” decompositions only those obtained by a global rigid rota-
tion Fi(z)@Q with @) € SO(3). In addition one sometimes assumes isochoric plastic deformations
only, i.e., det[F,(z)] = 1, notably in metal-plasticity. This multiplicative split, which has gained
more or less permanent status in the literature, can be micro-mechanically motivated by the
kinematics of single crystals where dislocations move along fixed slip systems through the crystal
lattice. The source for the incompatibility are those dislocations which did not completely trans-
verse the crystal and consequently give rise to an inhomogeneous plastic deformation. Therefore,
in the case of single crystal plasticity it is reasonable to introduce the deviation of the plastic
intermediate configuration F), from compatibility as a kind of plastic dislocation density. This
deviation should be related somehow to the quantity Curl /), and indeed in the contribution [56]
we see the important role which is played by Curl F}, for coerciveness inequalities related to the
existence theory of models in this area.

The constitutive assumption (2.1) is incorporated into balance of linear momentum governing
the elastic response of the material and supplemented by flow rules in the form of ordinary
differential equations or differential inclusions determining the evolution of the plastic part. In
the general case the equations of elasto-plasticity take the form

ou = Div Dp [W(Vp(t,z) - Fy ' (t,2))] + f(=), z €9,

SR (1) € By () - (Wil ), By 1,0) (P0)

supplemented with initial and boundary conditions. Here W is the elastic free energy density
defined on the elastic part F., o0 > 0 is the mass density, f is the body force and f : D(f) >

"While we continue to use the term multiplicative decomposition and intermediate configuration it is
rather an elastic isomorphism in the sense of [3]. Some authors use P instead of F,, !, [11].



P(MP*3) is the possibly set-valued monotone flow function with domain of definition D(f). In
this generality (P0) comprises single and polycrystal plasticity theory and the rate-dependent
as well as the rate-independent (set-valued) case of associated or non associated plasticity.

We refer the reader to [7, 32, 35, 36, 43, 71, 13] for more on the subject of dislocations
and incompatibilities and to [61] for an account of the occurrence of microstructure. A recent
summary presentation of the theory for single crystals can be found in [25]. For applications
of the general theory of polycrystalline materials in the engineering field look, e.g., at [47, 70,
68, 69, 17, 18]. An introduction to the theory of materials in general and inelastic deformations
can be found in [29, 5, 39]. Abstract mathematical treatments concerning the modelling of
elasto-plasticity may be found in [67, 40].

The multiplicative split (2.1) can also be seen as a generalization to finite deformations of
the well known additive decomposition

%(Vu + V) = e(Val(a) = eo(z) + 2,() | (2.3)

where we have set F' = 1l 4+ Vu with u the displacement vector and where subsequently (Vu(z))
denotes the infinitesimal strain tensor. This additive decomposition is appropriate only for
infinitesimal small values of || Vu||. There is a rich mathematical literature successfully treating
plasticity models based on (2.3) (cf.(2.17)) of the type

ouy = Div Djin. ((Vu) —&p) + £, ép € F(— Diin. (e(Vu) —¢p) ), (2.4)

with €, € sl(3,R). See e.g., [1, 27, 30, 14, 15] and references therein. In [1] the flow rule in the
form of (2.4) is called of pre-monotone type if (f(3), %) > 0.

Although there is an abundance of applications and numerical simulations involving finite
strains for single or polycrystals,up to the present a rigorous mathematical treatment (and a
convergence proof for discretizations) of the general case (P0) is missing. This is mainly due
to two facts: the finite elasticity part involved in (PO0) itself is difficult to analyze and the
flow rule is highly nonlinear with additional peculiar properties in the rate-independent (set-
valued) limit case. A promising approach towards a mathematical analysis for the quasistatic
rate-independent case of associated single crystal plasticity which is based on a time discrete
incremental variational formulation, can be found in [10, 48, 60].

In metal-plasticity, as for most crystalline materials, one observes that the shape of the elas-
tically deformed crystals remains nearly unchanged [39, 3, 65]. In the context of multiplicative

T
elasto-plasticity this translates into ||%

locally invertible. In most applications, however, elastic volume changes are also negligible leav-
ing us with || FXF, — 11| small. In addition one can assume isotropic behaviour for a polycrystal,
since the different orientations of the crystal grains average out.

Therefore, let us look at finite hyperelasticity for small strains. We assume the existence of
a free elastic energy W = W (F) = W (Vip). This constitutive relation is subjected to material
frame indifference, i.e., it must remain invariant under superimposed rigid body motions. To-
gether with isotropy of W, homogeneity and the requirement that DW(]l) = 0, i.e., that the
reference configuration is stress free, it can be shown [16, p.156] that W = W (F) and

— 1| pointwise small where we assume that F is

. A A
W(F) = ulU -1 + StrlU - L) +o(|U = 1|f*) = ull E|* + St [E] +o(|EIP),  (2:5)



holds near a natural state where F = % (FTF — ]1) denotes the Green-Lagrange strain tensor
and U —11 denotes the Biot strain tensor. The Lamé constants u, A of the polycrystalline material
under consideration are assumed to be non-negative throughout with p > 0. This energy can
be used as a starting point for the definition of a suitable elastic-plastic energy in as much as
one makes the ansatz W = W(Fe) where one has simply substituted the elastic part of the
deformation gradient F, instead of F'.

In view of the small elastic strain assumption, it is reasonable to ignore the dependence of
the elastic energy W (F.) on the higher order term o(||FTF, — 11||?) and one is left with the
nonlinear St.-Venant Kirchhoff energy W (F.) = & |[FTF, — 1|? + § tr [FTF, — ]1]2.

In the quasistatic setting we arrive at the following system of coupled partial differential
and evolution equations for the deformation ¢ : [0,7] x Q +— R® and the plastic deformation
F,:[0,T] x Q — GL(3,R):

0 = Div Dp [W(Vip(t, z) -Fp_l(t,x))] +flx) z€Q, ¢,.=g9tz) zel,

A
W (F,) = % |FSFe = n)* + 5 e [FFe — n]?, (P1)
d - _ - _
I [E1 (t2) € Fy Mt @) - f(Ve(t, z), F, (¢ 2)),  FyH0,2) = Byl

Here and subsequently g(¢, z) represents the time dependent inhomogeneous Dirichlet boundary
data and Fpgl the initial condition for the plastic evolution.

Due to the still strong nonlinearity of (P1) it is not known whether the problem as such is
well-posed, although the energy is quadratic in the elastic Green strains F, (physically linear).
The reason for that is that the variational problem based on minimizing F + ||[F! F, — 1|? at
frozen F, may lead to microstructure since it is well known that the energy is not quasiconvex
[64] and not even elliptic [56] in the compression range. The microstructure already inherent
in the purely elastic formulation, however, should rather be seen as an (unphysical) modelling
artifact coming from the quadratic ansatz in F, since, e.g., when taking a corresponding com-
pressible isotropic polyconvex Neo-Hooke energy W (F,) = £||F,||" + 4 det [F.)? - @ In det[F,],
elastic microstructure cannot occur and the elastic solution is easily found in some Sobolev
space if £, € L*°(£2, GL(3,R)). This and the underlying modelling ideas pertaining to the single
crystal case suggest that F, € L>(2, GL"(3,R)) is the minimal regularity we should impose in
(P0). The Neo-Hookean ansatz, however, falls short of taking into account small elastic strains.
The above microstructure should therefore not be confused with the experimentally observed
microstructure modelled with multi-well potentials in the theory of elastic crystals in connection
with martensitic phase transformation [6].

In this contribution we study a novel model in order to give a partial answer to the question of
well posedness of (P0) in the rate-dependent quasistatic case. The main idea from a mathemat-
ical viewpoint is that the problem coming from finite elasticity can be completely circumvented
in the (physically mostly relevant) case of small elastic strains without resorting either to the
additive decomposition (2.3) or to (P1). To this end a new model appropriate for small elastic
strains will be introduced whose first Piola-Kirchhoff stresses derive from a quadratic potential.

2.3 The model with grain boundary relaxation

One way to sidestep the above mentioned (apparently non physical purely mathematical) prob-
lems has been given by Neff [53, 57] where a modified model has been introduced. This model
has as starting point (P1) but consequently incorporates the extra bit information of small elas-



tic strains a priori. Let us recapitulate the main ingredients of the model for the presentation
to be sufficiently self-contained.

In the three-dimensional case it is easily seen that small elastic strains, i.e., |F1F, — 1||
pointwise small for orientation preserving F, € GL™(3,R), imply that F, is approximately a
rotation R, € SO(3) (almost elastic rigidity). If we assume that R, is known, all quantities can be
'linearized’ with respect to the local rigid configuration R, = polar(F,), the best approximation
in terms of rotations to F,.. This is a nonlinear constraint. It is further possible to relax this
static constraint into an evolution equation which describes internal relaxation such that a new
viscoelastic rotation R, is determined which coincides approximately with polar(F,) whenever
F, is approximately a rotation. The static constraint R, = polar(F,) is a global attractor of the
evolution equation for R.. These modifications significantly change the mathematical structure
without loosing the main ingredients of finite multiplicative visco-plasticity, notably observer-
invariance and invariance with respect to superposed rotations of the so called intermediate
configuration are preserved. The model is geometrically nonlinear and allows for finite
elastic rotations, finite plastic deformations and overall finite deformations but remains a truly
‘physically linear’ theory as far as the elastic behaviour is concerned in the sense that simple
uniaxial tension is modelled as linear and without viscosity.

We need to mention, however, that the new model is intrinsically rate-dependent, i.e.,
it is not possible to freeze’ the ’viscoelastic’ rotations R, and obtain a frame-indifferent re-
duced plasticity model. In other words, the used elastic free energy W is not expressible as a
reduced function of C = FTF. Nevertheless, the model is observer-invariant and the common
wisdom that observer invariance implies a representation in C' or U applies as such only to
intrinsically non-dissipative problems [42, p.203]. In general, form invariance under superposed
time-dependent rigid rotations (frame-indifference) implies observer invariance but is not identi-
cal to it. For this subtle point compare also to the lucid discussion in [29, p.269] and [34, p.159]
together with [72, 4, 49, 50].2

Let us now introduce the considered 3D-model which we have modified compared to [57, 53] to
include also in a consistent manner ”compressible” plasticity, i.e., det[F},] # 1. In the quasistatic
setting appropriate for slow loading, where we neglect consistently inertia terms, we are led
to study the following coupled minimization and evolution problem for the finite deformation
¢ :[0,T] x Q — R3, the plastic deformation F}, : [0,7] x Q — GL*(3,R) and the independent
local viscoelastic rotation R, : [0,7] x Q — SO(3) on :

I, By Ro) = [W(ETR) detlFy) = (f. ) det| By aV
Q

- / (N, ) || Cof F,.7i|| dS + min. w.r.t. ¢ at constant (R, F}), (P3)

s

with the Dirichlet boundary condition of place for the deformation ¢ on I' C 9 ). = g(t)
and natural boundary conditions on 92\ I'. The corresponding field equations are

0 = Div [Dp [W (F., R.) det[F,]|] + f det[F})]. (P3.1)

2And the undisputed physical principle is observer invariance and not directly frame-indifference or
form-invariance. The strengthening of form-invariance of the equations under superposed rigid rotations to
form-invariance under the group of all diffeomorphisms is called covariance [42]. It is to be understood that
form-invariance and covariance are additional constitutive assumptions. Interestingly, giving up the unnecessary
frame-indifference allows us to show local existence.



The constitutive assumptions on the density are
_ . A L 2
W (F,,R,) = % IFIR, + R-F, — 21 + Str [FeTRe +RF, - 211] (2.6)
= A — pJ— —=T _
= ullsym(T, — )% + §tr [sym(U, —1)]", U.:=R,F,, F,= V- F, L
The coupled time evolution is given by

d _ _
I [E7' € —F; ' 0X(Sg), S = F/ Dp,W(F., R.) det[F,] — W (Fe, Re) det[F]1L ,

%Re(t) =v"t skew(B) - Re(t), B = Bme o0r By, v =v"(F, R, €R",
—T —T —T —T
Bhech = FeR,, By = |p(21 — F.R,)+ A [3— (F.R,,1)]| FeR, , (2.7)

with initial conditions

FyY(0) = Fy', Fp € GL¥(3,R), R(0)=Ro, R, € SO(3), R, = 1if Fp, = VO.
Here we specified f = 0X, with the plastic flow potential X : M?*3 R, governing the plastic
evolution and motivated through the principle of maximal dissipation sufficient for the thermo-
dynamical consistency of the model.> The dead load body force and the boundary tractions
are denoted by f, N, respectively and defined w.r.t. the intermediate plastic configuration F,
and 7 is the unit outward normal to 0€2. Here X denotes the elastic Eshelby stress tensor
(the driving force behind evolving inhomogeneities in the reference configuration [45, 44]) which
may be reduced to Xy = FI Dp W(F.,R.), the elastic Mandel stress tensor in case of
a deviatoric flow rule which preserves the incompressibility constraint det[F,] = 1. This is a
generalization of the gradient type models in the sense of [1] to finite deformations.
By ‘é—f we mean the observer invariant time derivative on SO(3, R)

s o d . . d
LIRM)] = LIRO) - 0 - RE), &= L1Q0]- Q) (23)

where Q(t) € SO(3,R) is the instantaneous rotation of the current frame with respect to the
inertial frame and @ is the corresponding angular velocity. Without loss of generality we confine
attention to the inertial frame, i.e. @ =0 and ‘é—“f; = %.

The term v := "ieyJ“(Fe, R,) represents a scalar valued function introducing elastic viscosity
within the elastic domain and 7, plays the role of a relaxation time with units [n.] = sec. Fpgl

and RS are the initial conditions for the plastic deformation and viscoelastic rotation part, re-
spectively. The choice B = By, is fully thermodynamically consistent, whereas the simpler choice
B = Bhech is (only) mechanically consistent in the sense that various invariance requirements
are met.*

3This leads to an associative formulation. However, for our mathematical development, this specification is
not strictly necessary. We can deal as well with non-associative formulations.

*Under the simplifying assumptions F = 1l + Vu, Fp, = 1 4+p, R, = 1 + A, A, € 50(3,R) with Vu,p, 4. < 1
the finite model (P3) reduces formally to first order to the infinitesimal elastic-plastic model (2.4) with €, := sym p.
Hence, grain boundary relaxation in our terminology is a second order effect only. In contrast, viscoelasticity
is traditionally introduced as a first order effect, already effective in infinitesimal elasticity. Furthermore, our
additional elastic viscosity is only operative in torsion, not in tension!



Due to the underlying isotropy the resulting model (P3) with B = By, approaches in the
equilibrium limit »* — oo (vanishing elastic viscosity = zero relaxation limit 1, — 0 viz. for
arbitrary slow processes) formally the problem

[ Weal) detlBy] — (1.0} den[ Bl av
Q

- / (N, @) || Cof F).1i|| S — stat. w.r.t. ¢ at constant F),,

I's

A _
Weo(Fo) = p ||U. — 1|)% + 5 tr[Ue — 1>, F.=VpF, ', U.=R!F., (2.9)

@ 10 € —F7 (1) - 0X(Bpe)

S50 = Ue Dy, Wao(Ue) det[F)] — Wo (Ue) det[F,) 1,

with U, = (FET Fe)% the symmetric elastic stretch, U, — 1l the elastic Biot strain tensor and
Wy the non-elliptic equilibrium energy. The system (2.9) is an exact equilibrium model
for small elastic strains and finite plastic deformations in the classical sense with no internal
dissipation due to viscoelastic effects. The transition from (P3) to (2.9) is not entirely trivial
since it is not just the replacement of R, by R. = polar(F,) and note the subtle change from
global minimization to a stationarity requirement only. Observe as well that p ||U — 1]|% +
(U — 11]* leads to a linear response in uniaxial tension while e.g. u ||E|? + 3 tr [E]? leads
to a nonlinear, unphysical response in uniaxial tension.

In the companion paper [57] the implications, predictions and physical relevance of the new
model have been investigated in great detail. It is shown that the additional degrees of freedom
inherent through the independent local ”viscoelastic” rotations R, can be interpreted in the
framework of a material with a polycrystalline structure where the averaged individual rotations
of the grains may deviate from the continuum rotation.® Then, in the presence of plasticity, R,
represents a reversible, 'viscoelastic’ part of the total rotation of the grains and leads to texture
effects (deformation induced anisotropy). The evolution equation for R, introduces hysteresis
effects into the model already within the elastic region, i.e. immediately for arbitrary small stress
levels. The physical reality of this behaviour for polycrystalline material is well documented and
it is shown that the new model (P3) allows a qualitative and in parts quantitative description
of such effects which are ascribed to internal friction at the grain boundaries. In [57] it
has also been motivated that the elastic viscosity is larger for larger internal surfaces, i.e. the
smaller the grain size, while single crystals behave nearly rate-independent for that matter. Let
us define § to be the average grain diameter and L to be the edge length of a representative
volume element. Then the internal surface in such a volume element scales like |Si3n‘€| ~ g—;. This

translates into the additional constitutive requirement
1 I
N~ 2.10)
d ’ (
‘ |Slgnt| L3

where |Si3n‘€| is a characteristic measure of the internal surface for a polycrystalline structure.

Therefore, the elastic viscosity v, is related to an internal characteristic length.

®Observe that these two rotations do not coincide in general: the averaged rotation is understood to be the
best-approximating single rotation to a rotation field defined over a representative volume element while the
continuum rotation is the orthogonal part of the averaged deformation gradient. In the infinitesimal case, both
infinitesimal rotations would coincide!

10



In the mathematical part of this contribution we will show the following result:

Theorem 2.1 (Local existence and uniqueness for problem (P3))

Let Q C R? be a bounded smooth domain and suppose for the displacement boundary data
g € CYR, H??(Q,R?)) and for the body force f € CY(R, H?(Q,R3)). Assume for the initial
conditions (Fp_l’o,ﬁg) € H?2(Q,SL(3,R)) x H>2(Q,S0(3)). Then there exists a time t; > 0
such that the initial boundary value problem (P3) in its viscoelastic-viscoplastic form (3.31) and
(3.32) admits a unique solution

(¢, Fp, Re) € C([0,t1], H**(Q,R*)) x C*([0, 1], H*?(Q, SL(3,R)), H**(2,50(3))). [ ]

Remark 2.2 (Smoothness and infinitesimal models)

The foregoing existence result sheds some light on the physical relevance of global results for
weak solutions of infinitesimal elasto-plasticity models of the type (2.4). Typically one arrives at
global weak solutions with €,¢, € L®(R", L?(12,s((3,R))), at best. To obtain these results de-
cisive use is made of inequality (2.17) with Dy, constant. However, e, € L°°(R", L*(Q,s((3,R))
conceptually corresponds to F, € L°°(R*,L?*(Q,SL(3,R))) under which condition alone coer-
civity of the geometrically exact elastic problem is not true. The infinitesimal model practically
rules out elastic failure of the material due to fatigue. Since, however, fatigue is an important
ingredient of plasticity theory, the possibility of fatigue has to be reintroduced artificially in
infinitesimal continuum damage models [31]. We see that the model (P3) provides a much more
realistic view on the plasticity of polycrystals.

2.4 General mathematical framework

Let us outline how we show that (P3) admits a unique local solution. At ’frozen’ variables
(F,, Re) the above system of elastic balance of linear momentum (P3.1) proves to be a linear,
second order, strictly Legendre-Hadamard elliptic boundary value problem with non-constant
coefficients. This system has variational structure in the sense that the equilibrium part (P3.1)
of (P3) is formally equivalent to the elastic minimization problem (without loss of generality we
assume for the mathematics F), € SL(3,R))

Vtel0,T]: I(p(t), ;" (t), Re(t)) — min.w.rt. o(t) € g(t) + HO*(Q,T), (2.11)

where

(o, Fy '\ Ry) = / W (Ve E, L Re) — () dV.
Q

The weak form of the corresponding equilibrium equation is given next.

Lemma 2.3 (Weak form of elastic problem)
If a minimizer ¢ € HY2(Q) of (2.11) exists, then it is a weak solution to the equilibrium problem

0 :/ (Dr [W(Vo BV R)] V6) — (F4)AV Ve HEAQRY), (2.12)
Q
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which satisfies the corresponding strong form

Div R, [,u((Vgon_l)TRe +R. Vo, ) + A tr [(VoF, ') Ry 11] Pl =
— f+Div [2u+3NR.E, 7], (2.13)

if the appearing quantities are smooth enough. ]

Observe in passing that for F,, = 1, R, = 1 and with Div(Vu!) = V(Div u) and Div(Divu)-1) =
V(Divu) we recover naturally the Lamé equations

(1 + A)V(Divu) + pAu+ f =0 (2.14)

of linearized elasticity. We note also the appearance of a ”virtual” body force contribution
due to the inhomogeneities inherent in Fj, R,. |
This equilibrium system (2.13) can be written in the shortcut form

Div D(A(z)).Vy = f + DivV(4), ¢, =9, (2.15)

where we have set A = (Fp*T,Re) and introduced the corresponding elasticity tensor D and the
additional right-hand side contribution V' according to the next definition in line with equation
(2.13).

Definition 2.4 (Corresponding elasticity tensor)
We define the elasticity tensor D : M?*3 x MP*3 s Lin(M?*3 MP*3) and the right hand side
V- M3><3 X M3><3 — M3><3 by
T =5 - W5, B NTB -~
VHeMP3: D(F, ", R,).H:=R, [u((HFp YWIR.+ R, HF, ) + Atr [(HF, )R, ]l]Fp T

V(E; ", Re) == (2u + 3\ RF; " (2.16)

respectively. |

We are then concerned with the static situation where A = (Fp*T, R,) are assumed to be known.

A startling difficulty we encounter is that the elasticity tensor D = ID(A), although turning
out to be uniformly Legendre-Hadamard elliptic, does not induce a pointwise uniformly posi-
tive bilinear form. Such a problem does not appear in infinitesimal elasto-viscoplasticity since
there the relevant elasticity tensor Dy, € Lin(Sym(3),Sym(3)) is assumed to be a constant
uniformly positive definite fourth order tensor defined on the symmetrized strains ¢ such

that
VeeSym(3): (Dun.c,e) >ct - [e]?, (2.17)

and coercivity follows from the standard Korn’s first inequality [16].

Nevertheless, we prove the existence, uniqueness and regularity of solutions to the boundary
value problem (P3.1). The existence part relies now heavily on Theorem 6.2, recently proved
by the author extending Korn’s first inequality to non-constant coefficients and overcoming the
lack of uniform positivity of (2.11). This theorem has been proved precisely with the motivation
of applying it to finite plasticity.

12



Now, again in stark contrast to the infinitesimal case (2.4), with additive decomposition,
where the solution v depends linearly on the plastic strain ¢, the solution of (2.13) depends
nonlinearly on A due to the underlying multiplicative structure.

Despite this nonlinearity, we establish Lipschitz-continuous dependence of the solution to
(2.11) with respect to the data and coefficients A = (Fp*T, R,) by looking at the system (2.13) in
the form (2.15) and using sharp elliptic estimates. Since the constant in the extended Korn’s in-
equality Theorem 6.2 enters the Lipschitz estimate but is itself determined in a non-constructive
way, we show that this constant can be bounded below for bounded, smooth coefficients.

The conceptual idea to treat the coupled plastic evolution problem is then straightforward: in
the fully rate-dependent case the differential inclusion is in fact an ordinary differential equation
which may be written in the form

%A(t) =h(Vp(A),A) - A, (2.18)
with b : MP*3 x (MP*? x MP*3) — Lin(MP*?,MP*3), where A = (F,; 7, R,) and ¢ = ¢(A) is
the solution of the elliptic boundary value problem (P3.1) at given A. It remains to show that
the right hand side of (2.18) as a function of A is locally Lipschitz continuous allowing to apply
the local existence and uniqueness theorem for nonlinear evolution equations in Banach spaces
based on Banach’s fixed point theorem, cf. Theorem 6.1.

The presented formal mathematical framework has a natural counterpart in the numerical
treatment of visco-plasticity. The coupled problem can be considered to be a differential
algebraic system of equations (DAE) of index 1, the algebraic equation is the side condition
coming from a discretization of the elastic equilibrium system [23]. That viscosity is indeed
enough to regularize problems in finite plasticity is a standing conjecture [52] and rigorously
justified by our development.

3 Local existence and uniqueness proof

3.1 Definitions and assumptions

To streamline the subsequent mathematical investigation of (2.13) and to place it in a more
general context we introduce the following definitions.

Definition 3.1 (General assumption, GA)
GA.1 Q C R” is a bounded domain with smooth boundary and space dimension n.

GA.2 We call m € N the order of elliptic regularity and assume 2 - (m + 1) > n.

GA.3 (Local boundedness of the elasticity tensor and part of the right hand side) For given
Ky > 0:

D: M3><3 X M3><3 N Lin(M?)X?) M3><3) V- M3><3 X M3><3 — M3><3
M= {A:Q— M>3 x M3*3 | ||A||m+1,2,Q < Ki},
F3Cm: VYAeM: [DA),1100 IVAni120 < COM

GA.4 (Uniform Legendre-Hadamard ellipticity on M) For all £,m € R3 it holds

e >0: Ve VAe M:  (D(A®@)).(€ @n),E@n) 2 - IIEI Il
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GA.5 (Local Lipschitz continuity)

JLpm: VABeM: [[DA) =DB)| 4120 < La- 1A= Blliiza;
FLpm: VABeM: V(A =V(B)lpii20 < LIm- A= Bll,20-

If (GA.1,GA.2,GA.3,GA.4,GA.5) holds we say that GA holds. Note that condition GA.5
already implies GA.3 but for convenience GA.3 is stated separately. |

3.2 Existence of weak solutions to the elastic subproblem

We already indicated that in the static case for frozen variables (Fp,ﬁe) the elastic equilibrium
system (P3.1) in (P3) is a linear, strictly Legendre-Hadamard elliptic second order boundary
value problem with non-constant coefficients and variational structure.® We exploit this struc-
ture and apply the direct methods of the calculus of variations to show that there exists a unique
weak solution at frozen variables (F), R.).

Theorem 3.2 (Existence of minimizers)
Let F,,F; ' € H*?(Q,GL(3,R)) and R, € H*?(2,S0(3)) be given. Assume for the Dirichlet

Ly
boundary data g € H*?(2) and for the body force f € L*(Q2). Then the variational problem

I(¢, F; ' Re) = min., ¢ € g+ HMY(Q),

I(p.F;' R,) = / W(Vp F L Be) — (fr @)go AV, (3.1)
Q

admits a minimizer ¢ € HY?(2) and this minimizer satisfies estimate (3.13).

Proof. By the definition of I as a sum of a quadratic form and a linear form it is easy to
see that ¢ = I(p, F, !, R,) is convex over HY?(Q). Moreover with g € H"?(Q) we have that

I(g, Fp_l,ﬁe) < o0o. First we show that I is bounded below. To this end define ﬁ’p =R, - E,.
Note that F, € H>2(2) since H>?(Q2) is an algebra for n = 3 space dimensions. Then

_ L A . 2
W (F,,R.) = % IFTR, + R F, — 21|* + Str [FeTRe +R'F, - 211] (3.2)
L L by L L 2
=L, "Nl + VB, —2 1|2 + St 57 Ve + VB, 21,

where we used that HI_%QXRBTH = || X|| and tr {RBXRQT} = tr[X]. Now set ¢ = v+ ¢ with
v € Hi?(Q). We have algebraically

W (Vo ;' Re)

. T A1 A o =T A -1 2
= L5 Ve + Ve, - 21+ Str £, VT + Yok, —211]
o =T A1 A1 A1
2 Iy Vol + Vol | =2 ||, 1P IVl [IVgll = 2pvV3 1E, || Vo]l +
W s =T A1
7 15 Vgl +VgFE,  —21|* (3.3)

5This is essentially the elastic trial step in current algorithmic formulations.
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Integrating over €2 and making use of Theorem 6.2 in the improved version of [63] with Fp, qu €

H?*%(Q) C CO’%(Q) we get for all ¢ € HY2(9)

1 = A A~ —1
/W(WF,, LR = (fop) AV 2 () ol o0 =20 15 3 IVgllsollvlly 20
—— —
Q

extended Korn

~ =1 W =T ~ —1
= 2p VBIIE, oo 1]l 2.0 +/ 715 Ve +VgE, 207 4V (3-4)
Q

~ £l (lellsq + llla)

Hence I is bounded below and we observe that a minimizing sequence {¢, }2°; C H%?() exists
with

I(¢n, F, ' Re) — inf I(p,F, ' R.), n— oo. (3.5)
pEg+Hy? ()

We proceed to show that I is coercive which implies that {¢,}>2; is bounded.
Our development is more detailed than strictly necessary if only coercivity was concerned.
However, we need to keep track of all constants for uniform estimates in subsequent paragraphs.
Without loss of generality assume that ¢; = g. Since ¢, is a minimizing sequence, we have
by estimating from above and using (X, 11)% < 3||X||?

/ W (Viw B Fe) — (fripn) AV <
Q

w3 ~ T A1
(5+22) [ 15, 9" +9a8, " 20 Qv+ lglalg
Q

< % / IE, Vgl +VgE, " — 21| dV+ (3.6)
Q

3A ~ —1 A —1
120 (15,12 19912 +2V315, e 19910 +3) + 1/l 9l

This implies together with (3.4) the inequality

3 ~ —1 ~ =1
120 (15,712 197912 +2VB15, ™ oo [Vglloe +3) + 211f o0 9]l > (3.7)
~ 9 ~ —1
MC+(Fp) [[vn 1,20 2u || Fp ||C2>o 1Vglloollvr
A =1
=20 VBB, lloo omly 5.0 = 1 g om0
A 9 A =1 ~—1
> et (By) ol a0 — 20V (14157 1) (15 oo + 19 9loe + I lloi0] - on ]l 2.0

1,2,0

Hence a rough estimate yields

~ =1 2
SAIQ (1415, oo V9l ) +211f

2,0 ||9||29 > (3.8)

A 9 A1 A1
i E) llonll o =50 (L4 18, 12) (18 lloo + 199000 + 1 ll20] - ol 20
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Thus we get a quadratic inequality in [lvn |} 5

) A1 A1

2

02 Iallisa = gy (L 18 1) (15 e + 1901 + 170 ol 20
p

~ =1 2
-2 (14115 e IVgl)” — 218

2,0 ||9||2§z (3.9)
Since 0 > 22 — bz — ¢ = 1 < b+ +/c, the former yields

5
C(Fp)

A —1
s (115 e 1Vl )

<
4 ~ —1
) |15, oo + 1V glloo + IIf

ol 2,0 <

(1+18, "1%) + (3.10)

2,0

1fll5.0 + llgllz
pa—
1Fp oo +IVglloo + I

A -1
1 Moo + 199 oo + 11110 -

2,0

Taking F'p_l =F,! -}_2? into account and the estimate V3 = ||1L|| = | F, ' EFpl| < ||E, ] |F |l
(which implies ||F, || > ﬁ) shows

15|l
5 ) A0 (L+ 115, oo Vglloo)
lonllipg < | == (L+I1F; M) + 4|~ Bl
c(Fp) p c(Fp) V3
15 _
S0 (Il + o) | (1 oo + 190l + 1 l0] - (311)
With the embedding H™2(Q2) — C™ 2 (Q) and adding ||Re||2,279 we get the estimate
1 ) A Q] 1
v <C(Q — (1+||F, ! + ||F, —— (1 +||F,
lonlly o0 <C(Q) C(F,,)< 1B, 15 50) + 1Bl 00 M(Fp)( 1By g I9l52.0)

—1
HIF, g0 (1S

Therefore for ¢, = v, + g we get

oo+ 19120)] - (1B g+ 1Bellz o+ lglls n + 1f1ls0] - (3.12)

lenlli o0 <

1 12 A _
(1 + 0O | (LH I ) + 1Pl | s (115 0 9l 20)

c(Fp) p c(Fp)

HIE gy (70 + o) | ) - [155 i + 1Bl + ol + 1] o (319

implying the boundedness of the minimizing sequence {p,}5° ;. We may extract a subsequence
that converges weakly to some ¢ € H?(Q). Since I is convex, it is also sequentially weakly
lower semi-continuous which in turn implies

I(p,F, ' Re) < liminf I (gy, F,LR.) = jﬁg o I(p,F, ' Re). (3.14)
pEg o

Hence ¢ is a minimizer. Observe that estimate (3.13) remains valid for ¢ by weak lower semi-
continuity of the norm. [ ]
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Theorem 3.3 (Uniqueness of minimizers)

Let Fp, F, ' € H*?(Q,GL(3,R)) and R, € H*?*(Q,S0(3)) be given. Assume for the Dirichlet

boundary data g € H>?() and for the body force f € L?(S2). Then the variational problem
(3.1) has a unique solution ¢ € H*?(Q).

Proof. We show that I is strictly convex over the affine space {g + Ho*(Q)}. This is done by
computing the second derivative. We have

15 [/ = , 5T _ —T 11?2
DlI(¢,Fy ' Re).(4,4) = / o5 1 Vo Re + R VOF,|* + X b [Re V¢F, 1] dv
Q
T — e _
> [ BTV R BRI AV 2 (B B ) (91 0 (3.15)
Q

by applying Theorem 6.2. Since the Lamé constant y is assumed to be strictly positive, we see
that Dgyl(@, Fp_l, R.).(¢, $) is uniformly positive. Hence I(¢p, Fp_l, R.) is strictly convex. |

Corollary 3.4 (General linear system)
Let F,, F' € H**(,GL(3,R)) and R. € H*?(Q,S0(3)) be given and set A = (F; 1, R,).

P p
Suppose that lD) has the form postulated in Definition 2.4 and assume for the Dirichlet boundary

data g € H32(Q) and for the right hand side f € L*(2). Then the linear problem

Div D(A).Vu = f, wu,, =g, (3.16)
has a unique weak solution u € H?().
Proof. The same ideas as in Theorem 3.2 and Theorem 3.3 carry over. As corresponding energy
expression we have only to take Wp(F, A) = % |FI'R. + RQTFBH2 + % tr [FeTI_%e + I_%BTFQ] 2. This

result is true for a general right hand side f and not necessarily restricted to the body force f
appearing in (2.13). [ |

Theorem 3.5 (Uniform constant in Korn’s first inequality)
Let Q C R? be a bounded domain and let I' C 0§ be a part of the boundary with non vanishing
2-dimensional Hausdorff measure. Set

M ={F, € H**(Q,GL(3,R)) | |Fpllp 50 < K1, 15, ', , o < Ko} (3.17)

2,2,Q2
Then 3 ¢, > 0 such that V F, € MV ¢ € Ho*(Q,T) :
IV F, (z) + F, (@) Vo 720y > ety 191152 - (3.18)

Proof. We proceed by contradiction. Assume without loss of generality that there exists a
sequence ¢, € H?(Q,T) : [¢nlly 20 =1 and a sequence F;' € M such that

n,— n,— 1 1
IVgn By Ha) + F3 (@) Ve 2y < — 19l172() = o (3.19)

3

Since prl’" is bounded in H??() we may extract a subsequence which converges strongly to
some F;l in the topology of H2 %2(£2). Note that the limit F;l € M by weak convergence. It
is readily seen by continuity and the boundedness of ¢,, that this implies on M

IV o B, () + By (@) Vi, 1720y — 0. (3.20)
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This in turn implies that ¢, is a minimizing sequence. For fixed F’;l the quadratic expression
is strictly convex in ¢, on use of Theorem 6.2 in the improved version of [63]. We infer that

1960 B () + By 7 (@) VL 22y = ¢ (By) 2y (3.21)
Hence ||¢n||%11,2(9) < % . % — 0, n — oo, contradicting ||¢n || g1.2(q) = 1. [ ]

Corollary 3.6 (Uniform Garding-type estimate)

Under the same assumptions and notations as in Theorem 3.5 let g € H32(Q) and f € L*(Q).
Then the variational problem (3.1) has a unique solution ¢ € H“2(S). For this solution the
following estimate is valid:

3N lglls g0 1/ ll20) >0 ¥ Fy, Re € M

lelhz0 < Chillalls g0 17 1ls) - (15 g0 + I Rellogo + Mollszo + 1 l20) — (3:22)

and C(lglls 0. 1/ l2,) is a continuous function of |lg|l; 5 gand ||f ;-

Proof. We recall the estimates of Theorem 3.2. With the assumptions on the coefficients A we
have with Theorem 3.5 that the appearing constants in Theorem 3.2 are bounded independent of
the coefficients on M. Analyzing estimate (3.13) shows that all appearing constants are uniform
on M. Hence the bound is itself uniform. |

Lemma 3.7 (Uniform ellipticity)
Let M as in Theorem 3.5. Then 3 cj\'/l >0 VFE,e MV¢EneR:

€ @n) -, (z) + F, T (@) - (@) | > iy € lInl*- (3.23)
Proof. A simple algebraic computation shows that
€ @n) - F ) + F () - (@) (1P > 2 Xy (B, (@) By (@) - JIEI? Inl®. (3.24)

It is easily verified that there exists a d; > 0 such that det[F, '](x) > d for all F, € M. Since
4
d% < det[F, (@) F, H(2)] = Amin - A2 - Amax (F,, H(2)F, T (2)), it follows A2, > % which in

p min = A;lnax
. . d? .
turn implies A\2. > m Therefore we have a lower bound for the smallest eigenvalue
p p
Amin (£, ' (z)Fy T (z)) on M. u

Corollary 3.8 (Uniform ellipticity of equilibrium system)

Set Fp =R, F,. Again let M be defined as in Theorem 3.5. Assume that Fp,ﬁe € M. Then the
system (2.13) with elasticity tensor DD given by Definition 2.4 is uniformly Legendre-Hadamard
elliptic on M,

Elc:,M >0:VeeQ:YVAeM: (D(A(x)).(E®n),EQn) Zc:’M ||§H2||7]H2 (3.25)
S . n 9 f—=1, =T o
and the ellipticity constant is given by ¢, \q = pi- A (Fp (z)F, (m)) which is bounded

min
below on M.
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Proof. Take H = £ @ n. We have to compute D%W (F, F,, R.).(H, H) with W as in (3.1). It
holds true that D7 W (F, F,,R.).(H,H) > §|F; " H R, + RZHFP—IHZ. The relevant identity is
IE;"H R, + RL HES Y2 = ((BLR)F; " H' R, + B HF (B R.) |2
P € e p - e e P € e P e e
=T (5 1 15T\ 5 = e 15T

= |R! (Rer THT + HF, lRe) Re|? = |R.F, THT + HF, 'R_||? (3.26)
=I5 H” + HE,|?.
An application of Lemma 3.7 finishes the proof. |
Hence with this choice of D the assumption GA.4 is fulfilled.
3.3 The viscoplastic evolution problem

In this final part of the proof we consider the coupled viscoplastic evolution problem. We can
write the evolution part of (P3) in the following block diagonal form with A = (Fp*T,Re) €

M3><3 X M3><3Z
d (EST()\  [(-oX(Ze@®)” 0 F-T ()
i (i) = C7TY o) (Rat): (320
Thus the system (P3) is equivalent to
%A(t) = b (V.T(A(t),9(t), f (1), A(2)) - A() , (3.28)
with b : MP*3 x (MP*3 x MP*3) — Lin(MP*3, MP*3) = MO,
. T
b (F, A(t)) ( 8X(EOM(t)) 1/+-ske(\)zv(B(t))> 7 (3.29)

where Y and B are expressions depending on A = (Fp*T,Re) and on FF =Vp =V,T(A,q,f),
where T'(A, g, f) is formally defined to be the solution operator of the equilibrium part (P3.1)
of (P3). In order to account for von Mises type Jy -visco-plasticity with elastic domain

& :={¥g| ||dev(symXg)| < oy} and yield stress oy, we take as visco-plastic potential

X : MB*3 5 R of generalized Norton-Hoff overstress type the following function:

0 Y€€

X(Zr) = A T IR [ S S 17

(3.30)

(r+1)(k+1) np ) (r+1)(k+1) np

where 7, > 0 is the relaxation time of the system due to essentially plastic processes inside the
grains and parameters 7,k > 0 and & is a stress like material constant. An easy calculation
shows that this leads to the single valued subdifferential

1 | devsym Xp| — oy ]! :
s X(Xg)=—.1+ — .

Tlp 00 +

(3.31)

[H devsym Y| — Uy]r devsymXp

o0 L ldevsym Y|l

The parameter r allows to adjust the smoothness of the flow rule when passing the elastic
boundary. With r > 3 it is clear that X € C3(MP*3 M?*3). For k — oo we recover formally
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ideal rate-independent plasticity. Without loss of generality we choose the positive function v+
in the elastic flow part formally similar to (3.31)

7 r+1\ ¥
o1 [iskew EEDI 0] [liskew (B) 0] 1 )
Ne 50 skew (B) || '

n g0 + “

Here 7. > 0 is the relaxation time of the system due to grain boundary relaxation, which, in
view of the results obtained in the companion paper [57] can be assumed to be of the order of
0.01[sec] for polycrystalline metals. This choice makes the flow rule altogether a C3-function
and implies that h € C3(MP*3 x (M?*3 x MP*3), Lin(M2*3, M3*3)), considered pointwise.

Remark 3.9 (Flow rule on Sobolev space)
Set M := {v € H™12(Q)]| [vll11260 < K}. Then due to Sobolev’s embedding theorem it is
easy to see that for h € C™T2(MP*3 x (MPB*3 x MP*3), MP*) and V v1,v2 € M the estimate

16(v1) = b2) i1 20 < sup_ [6(E)lomreer poxey - CT (2, M) - Jor —v2llp1 00 (3:33)
llgll<K

holds. [ |

It remains to identify the precise spaces on which to consider this evolution problem in the
framework of Theorem 6.1. We let

U:= H>*(Q,GL(3,R)), X := H>*(Q,SL(3,R)) x H**(Q,S0(3)) (3.34)

and set Y := H>?(Q,R?) and Z := HY?(Q,R?). Assume that A" = (F,,*T’O,ng) € X is given
with det[F)(z)] = 1 and let

M= {AeX| A~ Ayq <K}, Y:i={yeY|lly
Z:={z € 2| ol p0 < Ka).

3,2, < KZ}a (335)

Observe that by construction of the flow rule (3.27)

L =50,

dt [ p p —R.(t) =X, - Re(t) ) (3.36)

and since X, € s[(3) and X, € so0(3) we know a priori that
det[Fy(z,t)] = 1, Fy(z,t) € SL(3) and R.(z,t) € SO(3). (3.37)

We assume for the Dirichlet boundary data g € C'([0,7],)) and for the body forces f €
C*([0,T), Z). In view of the above statements we show presently that the evolution problem

d
1A = b (VT (A(2),9(2), £(2)), A2)) - A(D) (3.38)
fits into the formal framework set forth in Theorem 6.1.

First we proceed to show that it is possible to define a solution operator ¢ = T'(F), Re,q,f)
to the static equilibrium part (P3.1) of (P3) and that this operator is indeed Lipschitz continuous
on M x)Y x Z.

20



Due to Theorem 3.2 and Corollary 2.3 we know that solutions ¢ of (P3.1) exist. With
Definition 2.4 it is clear that D,V € C°°. Remark 3.9 shows that (GA.3) and (GA.5) are
verified for D,V on M. Moreover, by Corollary 3.7 we see that (GA.4) is true. If we choose the
order of elliptic regularity m = 1 for the space dimension n = 3, then (GA.2) holds as well. Of
course we have to assume (GA.1).

Theorem 3.3 shows that the solutions of the boundary value problem (P3.1) are unique
which establishes existence of the solution operator and Corollary 3.6 proves a uniform H'2(Q)
estimate for g € Y, f € Z on M. With Corollary 3.4 we make sure that the assumptions of
Theorem 6.5 are verified. Therefore we are entitled to apply Theorem 6.6 and Corollary 6.7.
Altogether, this yields that T'(A, g, f) is a continuous operator with uniform Lipschitz constant
Lt on M x Y x Z. The gradient V,T(A,g, f) satisfies the same type of uniform Lipschitz
estimate, namely

||VQZT(A79A’ fA) - VIT(BagBa fB)||m+1,2,Q <
CHOM) - (L4 1Bl i1 0.0+ 198 lsoo + 178 ln00) (3.39)
(14 = Blls1,2.0 + 194 = 981200 + 14 = F5llnsg) -

Hence on M x Y x Z we obtain

V2T (A, ga, fa) = VT (B, 9B, [B)ll 120 <
C+(Q,M) . (1 + Ky + K3) (340)

(14 = Bllys1 0 + 194 = 98lnsag + 152 = Foluog)

This is enough to see that the operator G(A4,g, f) = V,T(A,g,f) verifies the condition of
Theorem 6.1.

Moreover, Remark 3.9 applied to h € C3(M*3 x MB*3 MB*®) shows that b, viewed as
a function h : U x X +— Lin(X,X) is locally Lipschitz continuous on M. Therefore, we
may finally apply Theorem 6.1 giving us a unique local in time solution A € C([0,#;], M)
to the ordinary differential system of equations (3.28). Since ¢(t) = T'(A(t), g(t), f(t)), the pair
(¢, A) € C([0,t1], H>? (2, R3)) x C(]0,¢1], M) is the unique local in time solution of (P3).

This finishes the proof of Theorem 2.1. |

4 Discussion and concluding remarks

Having proved a local existence theorem for the viscoelastic-viscoplastic case of (P3) we observe
that the existence time in general will depend crucially on the smoothness of the values (F), R.),
i.e., the smoothness of the elasticity tensor D. If bifurcations occur, they must then be attributed
to a severe loss of smoothness of these elastic moduli.

It is still an open problem whether the viscoelastic-viscoplastic system (P3) admits global
in time solutions for small data. This may not be true since the loss of smoothness might
accumulate with time even for small and smooth given data, e.g. under sustained low amplitude
cyclic loading, therefore allowing for fatigue phenomena. The smoothness assumptions made
in Theorem 2.1 reflect accurately the possible macroscopic elastic failure of the polycrystalline
material. Since in a Sobolev-space context we need at least F, € H%3+9(Q, GL™(3,R)), in order
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to guarantee the minimal constitutive requirement F, € L>®(£2, GL™(3,R)), the regularity gap
F, € H?>%(Q,GL"(3,R)) Cc HY?H9(Q, GL"(3,R)) is small and the result is practically optimal.

I presume that the situation is completely different for the rate-independent case; here it
seems that the peculiar form of the flow rule is responsible for elastic-plastic instabilities. The
foregoing analysis, however, is strictly confined to the rate-dependent case, but, contrary to the
variational approach, not restricted to associated plasticity.

In the rate-independent problem following [59] for the single crystal case it is believed that
one can ascribe observed microstructure inside one crystal grain (weak discontinuities or shear
bands, i.e., a jump of the deformation gradient and strong discontinuities or slip lines, i.e., a
jump of the deformation itself) to the lack of quasiconvexity of an associated incremental po-
tential which derives from a fully implicit time discretization of (P0) in the quasistatic case.
Based on this observation a promising new approach has been taken towards a numerical and
mathematical analysis, see [26, 10, 48, 60, 61]. The lack of quasiconvexity of the incremental
problem is, however, not at variance with the assumed ellipticity of the purely elastic problem.
It is conceivable that the time-incremental problem derived from (P3) is not quasiconvex (even
in the viscous case with smooth initial elastic moduli) leading to the tentative conclusion that
the local solutions found in Theorem 2.1 do not necessarily realize global minima of the in-
cremental potential but rather stable local minima and that viscosity prevents the formation of
microstructure in the small elastic strain regime on the macroscopic scale. The above mentioned
discontinuities of the deformation inside the grains are therefore not at variance with the general
smoothness level required in Theorem 2.1, since e.g., F}, in (P3) corresponds conceptually to the
averaged plastic *deformation’ of the grains while R, is a suitable average of rotations.

In closing, a number of possible extensions of the theory are worth mentioning. The general
mathematical methodology of (P3) is not confined to a polycrystal setting. In the case of single
crystal visco-plasticity one simply has to exchange the flow rule for F, and one can expect the
same type of results. Likewise isotropic and kinematic hardening can be incorporated without
difficulty. The use of unified constitutive equations [66] without elastic domain is also possible as
well as a non-associated formulation provided that the flow rule is locally Lipschitz continuous.

First numerical computations [58] with the relaxation time 7, of the order 0.01 and B = Byech
confirm the general applicability of the model (P3) for structural applications compared with
standard models and corroborate the excellent properties of (P3) with this choice in the evolution
of the ’viscoelastic’ rotations without yet exploring the specific texture effects inherent in (P3).
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6 Appendix

6.1 Ordinary differential equations in Banach spaces

A simple consequence of Banach’s fixed-point theorem is the following result.

Theorem 6.1 (Unique local existence)

Let U, X,Y,Z be arbitrary Banach-spaces with norms || - ||v, || - ||x,|| - |lv, || - ||z respectively. Assume that h :
UxX + Lin(X, X) is locally Lipschitz continuous and let the initial value y° € X be given. Let G : X xY xZ +— U

be an operator which is Lipschitz continuous on the set M x Y x Z with M := {y € X | ||ly — v°||x < K} and
Y CY, ZC Z bounded in Y, Z, respectively, i.e., there is a positive constant L™ such that

ILT >0: V(ri,a1,b1),(x2,a2,b2) E M XY X Z:
IG(21,a1,b1) — G(22,,a2,bs)||v < LT - (lz1 — al|x + llar — az|ly + [|br — bsl|z).
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Moreover, assume that o € C*([0,T],Y), 8 € C'([0,T], Z) are given functions. Then there is some 0 < t; € R
such that the initial value problem

%y(t) = h(G(y(t),a(t), B(1), y(t) - y(t), y(0) =y, (6.1)

has a unique solution y € C* ([0, t1], M). |

6.2 Extended Korn’s first inequality

Theorem 6.2 (Extended 3D-Korn s first inequality)

Let Q C R® be a bounded Lipschitz domain and let T' C 9K be a smooth part of the boundary with non vanishing 2-
dimensional Lebesgue measure. Define H3>(Q,T) := {¢ € H"*(Q) | ¢ =0} and let F,,, F, ' € C*(Q, GL(3,R)).
Moreover suppose that Curl F,, € C*(Q,M?*?). Then

3T >0V e H(Q D) (IVOE; (2) + B T (@) Ve lI12(0) 2 ¢ 191720 -

Proof. The proof has been presented in [56]. Note that for Fj, = VO we would only have to deal with the classical
Korn s inequality evaluated on the transformed domain ©(f2). However, in general, F), is incompatible giving
rise to a non-Riemannian manifold structure. Compare to [13] for an interpretation and the physical relevance
of the quantity Curl F,. It comes as no surprise that in finite plasticity the incompatibility of F} should play an
important role. |

Motivated by the investigations in [56], it has been shown recently by Pompe [63] that the extended Korn’s
inequality can be viewed as a special case of a general class of coerciveness inequalities for quadratic forms. He
was able to show that indeed F,, F, ' € C(Q,GL(3,R)) is sufficient for (6.2) to hold without any condition on
the compatibility.

However, taking the special structure of the extended Korn’s inequality again into account, work in progress
suggests that continuity is not really necessary: instead F, € L> (2, GL(3,R)) and Curl F, € L3*°(Q) should
suffice, whereas F, € L*(Q,GL(3,R)) alone is not sufficient, see the counterexample presented in [63]. The
possible improvement has no bearing on our further development.

6.3 Sharp ellipticity type estimates

Let us gather results that are necessary for the exposition of the static case. We need sharp a priori estimates
for elliptic systems of second order with non-constant coefficients in divergence form. Ebenfeld [22] has recently
proved the following new sharpened a priori estimate which we give adapted to our situation and our notation.

Theorem 6.3 (General improved sharp Hilbert space elliptic regularity )
Let Q C R" be a bounded domain with smooth boundary. Consider the divergence-form linear system

Div C(z).Vu = f(z), =0, (6.1)

Ulpq

with f € H™?(Q) and homogeneous boundary data. Let C : Q C R® = Lin(M?*3 M?*®) be the elasticity tensor.
Suppose C € H™T12(Q) with 2 - (m + 1) > n and assume that for arbitrary £, € R" it holds

Jcf >0 VeeQ: (Cl).(E@n),éon > €I lnl”, (6.2)

i.e., that the system is uniformly Legendre-Hadamard elliptic with ellipticity constant c¢J. Assume that the system
admits at least one weak solution u € H"?(Q). Then the following estimate is valid

ullyz2.0 < CHOEDPUCH 41 2.0) (11l 20+ lullag) (6.3)

where P : R — R is a polynomial of finite order and the appearing constant is independent of u, f,C and in
addition CT(Q,ct) is bounded above for ¢t > 0.

Proof. See [20, 21] and compare with [73, p.75] for comparable results on elliptic regularity for linear second order
elliptic systems on other scales. The main advantage of the new theorem is to precisely track how the regularity
of the coefficients enter the elliptic estimate. Precise estimates of this form had not been available previously. l
Now we specialize the general estimate to our situation.
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Theorem 6.4 (Improved Hilbert space elliptic regularity with L*-part)
Assume GA and A € M. Consider the linear divergence form elliptic system

DivID(A).Vu = f(x), wu,, = g(x). (6.4)

Assume that (6.4) admits at least one weak solution u € H"*(Q) for all g € H™t*2(Q) and all f € H™?*(Q).
Then the following estimate is valid:

ull 20,0 < CT QDA 1 0.0) - (||9||m+2,2,9 1l 20 + IIUIlm) : (6.5)
and the appearing constant C*(Q, ||D(A)|,, .1 5.q) I uniform on M.
Proof. The transformation v = u — g allows to consider

DivI(A).Vv = f(z) + DivD(A).Vyg , =0. (6.6)

Yloa

If we apply Theorem 6.3 to (6.6) we get the estimate
1ol 220 <CF(Q, ) PADA) 41 5.0)
(I1Div D(A). Vgl .60 + 1 2 + [l )
1ol 2,20 <CF(Q, ) PADA 41 5.0)
(DA 11,2,0 191 12.2.0 + 11l 2.0 + 01l ) (6.7)
o220 <CF () PADA 110, 0) [+ I 41,2,0)
(U9l g2+ 1100 + el g + gl ) -

This yields for u =v +g¢g

lell,pn0 <2 (14 CH O,V PUDA 41 00) 1+ 1D 4101

(Rl om + 1l + ) (65)
Now take
CHUIDA | 1m0) =2 (14 CF Q) PUDA 1 50) [+ DA 0]) -
This ends the proof since C1(Q,cZ) is uniformly bounded above on M by (GA.4) and Theorem 6.3. |

Theorem 6.5 (Uniform estimates for bounded coefficients)
Assume GA and A € M. Consider the linear divergence form elliptic system

DivID(A).Vu = f(x), wu,, = g(x). (6.9)

Assume that (6.9) has a unique weak solution u € H"“?(Q) for all g € H™"**(Q) and all f € H™?(2). In
addition assume that a uniform Gérding type L?(Q)-estimate on M is available, i.e.,

A0 >0: YAeM: llulyg < Coi (Iglln, 20+ 1flly20) (6.10)

with max(mi,me) < m. Then the following uniform estimate is true:

lll om0 < O M) (llgllsmni + 1 Fll i) - (6.11)
and the appearing constant C*(Q, M) is uniform on M.

Proof. An application of Theorem 6.4 will give the result. |
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Theorem 6.6 (Lipschitz continuous dependence of solutions)
Assume GA and let A,B € M. Assume for the boundary data ga,gs € H™">%(Q) and for the body forces
fa, fs € H™*(Q). Consider the two systems

Div D(A(x)).Vu = fa(z) + Div V(A) Div I(B(z)).Vu = fz(z) + DivV(B)
Ulpg = 94(T) U, = 98(T). (6.12)

Assume that both systems verify the assumptions made in Theorem 6.5. Denote the (unique) solutions ua,up €
H"'2(Q), respectively. Then the following estimate holds:

wa = sl p000 SCHQM) - (1 1Blly1 50+ 1981200 + 172],20) (6.13)
(14 = Bl 120+ 194 = 98l 220 + 14 = falluz0)
with C1(Q, M) uniformly bounded on M.
Proof. Consider
Div D(A(z)).Vu = fa(x) + DivV(A) Div D(B(z)).Vu = fs(z) + Div V(B)
Uy = ga(T) Uy = 9B(T). (6.14)
Taking the difference of the two equations leads us to consider

Div D(A(z)).V (ua — us) = Div (D(B(z)) — D(A(z))) .Vus) +
fa — fB +Div(V(A) — V(B)) (6.15)
(ua —uB)jyg =94 — gB.

By the assumption on A and the elasticity tensor D(A) we know that the system (6.15) has a unique solution
in the difference (ua — up) for this specific right-hand side, see (6.18). Together with the regularity assumption
made for A and D(A) in GA we can apply Theorem 6.5 to (6.15) and get the estimate

s = usllps00 < CT (M) (IDVD(B) - D(A)). Vusll,, , 0+
IDi(V(B) = V(A 0.0+ (6.16)
94 = 98Il 1220+ 1f2 = Foll,z0)

lwa = wsllya00 < O M) (ID(A) = DB,y n0 08l 0+
IV(B) = VA, 1120t (6.17)
94 = 98220+ 1fa = Follo0) -

Again with Theorem 6.5 applied to the solution up we have

Bl 25,0 < €@ M) (19811500 + 18 s+ VB ir00) - (6.18)

Combining these two estimates and using (GA.5) for D, V' ends the argument. ]

Corollary 6.7 (Lipschitz continuous solution operator; time dependent coefficients)

Assume that for a given family I := {A; € M|t > 0}, the family of related elasticity tensors D(A;) verifies all
conditions of Theorem 6.5. Define & := {g € H™***(Q)| ||gll, 1200 < Ko} and § :={f € H™*( )| Ifll,p2.0 <
K3}. Let the boundary data g, € & and the body forces f; € § be éiven. Then the family of corresponding linear
elliptic systems

DivID(A¢).Vipr = fi(z) + DivV(A:) , @1, = g9i(z), (6.19)
allows for a Lipschitz-continuous solution operator T on 9 x & x § such that ¢ = T'(Ay, g¢, ft) and
IT(A,ga, fa) =T(B, g8, fB)|l q2,20 <
CH@M) - (14 1Bllys1 5.0+ 19801220 + 152.0) (6.20)

(14 = Bl i 120 + 94 = 980l 220 + 14 = f2llu20)
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for A\ B €M, ga,gs € B, fa,fs € F. The corresponding Lipschitz constant Lt on 9 x & x § is a bounded
function of the form

LT =L*"(CTQ,M),K», K3 ). (6.21)

Hence a family of elliptic systems of the above type has corresponding solution operators with uniform Lipschitz-
constant whenever || All,, . 5 o, 1194ll,42.2.0> Ifall,, 2. are bounded due to Theorem 6.5. |

Remark 6.8 (Nonlinear solution operator)

Let Ay € M and f:, g+ as before. Then (fi, g:) — T (Ao, g, f¢) is linear and A; — T(As, go, fo) is nonlinear. Hence
the solution depends nonlinearly on the elasticity tensor although the problem is linear for frozen (fixed at time
to) elasticity tensor D( Ay, ). |
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