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Abstrat
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1 Notation

Let 
 � R

3

be a bounded domain with Lipshitz boundary �
 and let � be a smooth subset

of �
 with non-vanishing 2-dimensional Hausdor� measure. For two Banah spaes X;Y we let

Lin(X;Y ) denote the vetorspae of all bounded linear mappings fromX to Y and P(X) denotes

the set of all subsets of X. For a; b 2 R

3

we let ha; bi

R

3

denote the salar produt on R

3

with

assoiated vetor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3� 3 seond order

tensors, written with apital letters. The standard Eulidean salar produt on M

3�3

is given

by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor norm is kXk

2

= hX;Xi

M

3�3

. In the

following we omit the index R

3

;M

3�3

. The identity tensor on M

3�3

will be denoted by 11, so that

tr [X℄ = hX; 11i. We let Sym and PSym denote the symmetri and positive de�nite symmetri

tensors respetively. We adopt the usual abbreviations of Lie-group theory, i.e., GL(3;R) :=

fX 2 M

3�3

jdet[X℄ 6= 0g the general linear group, SL(3;R) := fX 2 GL(3;R) jdet[X℄ =

1g; O(3) := fX 2 GL(3;R) j X

T

X = 11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X℄ = 1g

with orresponding Lie-algebras so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri tensors

and sl(3) := fX 2 M

3�3

jtr [X℄ = 0g of traeless tensors. With AdjX we denote the tensor

of transposed ofators Cof(X) suh that AdjX = det[X℄X

�1

= Cof(X)

T

if X 2 GL(3;R).

We set sym(X) =

1

2

(X

T

+X) and skew(X) =

1

2

(X �X

T

) suh that X = sym(X) + skew(X).

For X 2 M

3�3

we set for the deviatori part devX = X �

1

3

tr [X℄ 11 2 sl(3) and for vetors

�; � 2 R

n

we have the tensor produt (� 
 �)

ij

= �

i

�

j

. We write the polar deomposition in

the form F = RU = polar(F )U with R = polar(F ) the orthogonal part of F . In general we

work in the ontext of nonlinear, �nite elastiity. For the total deformation ' 2 C

1

(
;R

3

)

we have the deformation gradient F = r' 2 C(
;M

3�3

). Furthermore, S

1

(F ) and S

2

(F )

denote the �rst and seond Piola Kirhho� stress tensors, respetively. Total time derivatives

are written

d

dt

X(t) =

_

X . The �rst and seond di�erential of a salar valued funtion W (F ) are

written D

F

W (F ):H and D

2

F

W (F ):(H;H), respetively. We set C = F

T

F; C

p

= F

T

p

F

p

; C

e

=

F

T

e

F

e

; E =

1

2

(C � 11); E

p

=

1

2

(C

p

� 11); E

e

=

1

2

(C

e

� 11). We employ the standard notation

of Sobolev spaes, i.e. L

2

(
);H

1;2

(
);H

1;2

Æ

(
), whih we use indi�erently for salar-valued

funtions as well as for vetor-valued and tensor-valued funtions. Moreover, we set kXk

1

=

sup

x2


kX(x)k. For X 2 C

1

(
;M

3�3

) we de�ne CurlX(x) as the operation url applied row

wise. We de�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the

sense of traes and by C

1

0

(
) we denote in�nitely di�erentiable funtions with ompat support

in 
. We use apital letters to denote possibly large positive onstants, e.g. C

+

;K and lower

ase letters to denote possibly small positive onstants, e.g. 

+

; d

+

. The smallest eigenvalue of a

positive de�nite symmetri tensor P is abbreviated by �

min

(P ). The Landau symbols o(h); O(h)

are employed. Finally, w.r.t. abbreviates with respet to.

2 Introdution

2.1 Approahes in plastiity theory

Plastiity theory, as it is understood today, overs a large �eld of study whih involves diÆult

phenomena in the inelasti behaviour of solids along with diÆult analytial problems related

to the nonlinearity of the employed mathematial models.

"As is well known, the existing formulations of a general theory of elasti-plasti material

in the presene of �nite deformations are somewhat ontroversial and there remain strong dis-

agreement on a number of important issues between several shools of plastiity." [51, p.316℄.

More than fourteen years after these omments have been made, the issues are still far from
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being settled. Without being exhaustive, these fundamental disagreements onern the following

topis (referenes only to illustrate the diverging approahes):

1. Flow theory versus total deformation theory of plastiity (Henky-model).

2. Stress- or strain based approah [51℄.

3. Additive deomposition E = E

e

+E

p

of total strain [24, 12, 51℄ into symmetri elasti and

plasti parts versus multipliative deomposition F = F

e

F

p

of deformation [32, 38, 41℄

into elasti and plasti parts.

4. Plasti strain E

p

2 Sym(3) as primitive phenomenologial variable versus dedued quantity

E

p

=

1

2

�

F

T

p

F

p

� 11

�

.

5. Invariane and ovariane requirements on the plasti strain E

p

[12℄ versus onept of

elasti isomorphism and natural referene state [5, 3℄.

6. Interpretation of the multipliative deomposition in terms of an intermediate, loally

unloaded, stress-free on�guration [38℄ versus isolini on�guration [5, 41℄.

7. Eulerian approah (hypo-plasti formulation, question of objetive stress-rates) [46, 9℄

versus Lagrangian approah (hyper-elastoplasti, irumventing disussion of stress-rates)

[26, 3, 62℄.

8. Rate-independent formulations (instantaneous omplete energy relaxation) [11℄ versus

rate-dependent formulations (visosity, reep, relaxation, fatigue) [28℄.

9. Assoiative (metals) or non-assoiative ow rules (geomaterials) [74℄. Possibility of varia-

tional time-inremental updates for assoiative formulations [62, 60, 11℄ versus more tra-

ditional oupled evolution problem.

10. Yield surfae approah (von Mises, Tresa) with elasti region versus uni�ed onstitutive

equations [8, 66℄ without yield limit.

11. Formulation of anisotropi behaviour. Signi�ane of plasti spin [19℄.

12. Inlusion of thermal e�ets and kinematial hardening.

These points learly illustrate the non-existene of some enompassing theory of large-strain

plastiity.

Pratially all developments on the subjet related to in�nitesimal deformations of elasti-

plasti material have adopted a ow theory, stress-based approah and have utilized yield surfaes

and assoiated loading riteria. One an onlude that a satisfatory level of agreement an be

reahed as far as in�nitesimal elasto-plastiity is onerned.

The di�erene in the formulations appear prominently only, when �nite deformations are

onsidered.

While it is not possible to mathematially resolve the apparent disagreement on the formu-

lation, our interest is on those models, whih are based on the multipliative deomposition,

along with a stress-based formulation and whih inlude from the outset rate-dependent e�ets.

The rate-independent behaviour is inluded as a ertain purely mathematial limiting response.

Attention is restrited to isothermal, isotropi formulations for simpliity without hardening.
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We briey reapitulate basi points of the multipliative deomposition and introdue the non-

linear initial boundary value problems to be solved. Certain intrinsi problems of these formula-

tions are hinted at. In order to sidestep these problems, we introdue a new, geometrially exat

model with grain boundary relaxation and inlude a brief disussion of invariane requirements.

A loal existene and uniqueness result for this model is stated.

Thereafter, we explain the basi mathematial ideas with whih to show this well-posedness

result. The remaining part is devoted to the tehnial details of the proof.

In the appendix we introdue the generalized Korn's �rst inequality as well as ellipti regu-

larity results needed for the proof whih make the presentation suÆiently self-ontained.

2.2 Reapitulation of �nite multipliative plastiity

In the nonlinear theory of elasto-viso-plastiity at large deformation gradients it is often as-

sumed that the deformation gradient F = r' splits multipliatively

1

into an elasti and

plasti part [38, 41℄

r'(x) = F (x) = F

e

(x) � F

p

(x); F

e

; F

p

2 GL

+

(3;R) ; (2.1)

where the invertible F

e

; F

p

are expliitly understood to be inompatible on�gurations, i.e.

F

e

; F

p

6= r	 for any 	 : 
 � R

3

7! R

3

. Thus F

p

introdues in a natural way a non-

Riemannian manifold struture [33℄. While formally this deomposition is unique only up to

an invertible matrix G 2 GL(3;R), sine

r'(x) = F (x) = F

e

(x) � F

p

(x) = F

e

(x)G(x)G(x)

�1

F

p

(x) =

~

F

e

(x) �

~

F

p

(x); (2.2)

we onsider as "physially equivalent" deompositions only those obtained by a global rigid rota-

tion F

e

(x)Q with Q 2 SO(3). In addition one sometimes assumes isohori plasti deformations

only, i.e., det[F

p

(x)℄ = 1, notably in metal-plastiity. This multipliative split, whih has gained

more or less permanent status in the literature, an be miro-mehanially motivated by the

kinematis of single rystals where disloations move along �xed slip systems through the rystal

lattie. The soure for the inompatibility are those disloations whih did not ompletely trans-

verse the rystal and onsequently give rise to an inhomogeneous plasti deformation. Therefore,

in the ase of single rystal plastiity it is reasonable to introdue the deviation of the plasti

intermediate on�guration F

p

from ompatibility as a kind of plasti disloation density. This

deviation should be related somehow to the quantity CurlF

p

and indeed in the ontribution [56℄

we see the important role whih is played by CurlF

p

for oeriveness inequalities related to the

existene theory of models in this area.

The onstitutive assumption (2.1) is inorporated into balane of linear momentum governing

the elasti response of the material and supplemented by ow rules in the form of ordinary

di�erential equations or di�erential inlusions determining the evolution of the plasti part. In

the general ase the equations of elasto-plastiity take the form

%'

tt

= Div D

F

�

W (r'(t; x) � F

�1

p

(t; x))

�

+ f(x) ; x 2 
 ;

d

dt

�

F

�1

p

�

(t; x) 2 F

�1

p

(t; x) � f

�

r'(t; x); F

�1

p

(t; x)

�

; (P0)

supplemented with initial and boundary onditions. Here W is the elasti free energy density

de�ned on the elasti part F

e

, % > 0 is the mass density, f is the body fore and f : D(f) 7!

1

While we ontinue to use the term multipliative deomposition and intermediate on�guration it is

rather an elasti isomorphism in the sense of [3℄. Some authors use P instead of F

�1

p

, [11℄.
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P(M

3�3

) is the possibly set-valued monotone ow funtion with domain of de�nition D(f). In

this generality (P0) omprises single and polyrystal plastiity theory and the rate-dependent

as well as the rate-independent (set-valued) ase of assoiated or non assoiated plastiity.

We refer the reader to [7, 32, 35, 36, 43, 71, 13℄ for more on the subjet of disloations

and inompatibilities and to [61℄ for an aount of the ourrene of mirostruture. A reent

summary presentation of the theory for single rystals an be found in [25℄. For appliations

of the general theory of polyrystalline materials in the engineering �eld look, e.g., at [47, 70,

68, 69, 17, 18℄. An introdution to the theory of materials in general and inelasti deformations

an be found in [29, 5, 39℄. Abstrat mathematial treatments onerning the modelling of

elasto-plastiity may be found in [67, 40℄.

The multipliative split (2.1) an also be seen as a generalization to �nite deformations of

the well known additive deomposition

1

2

(ru+ru

T

) = "(ru(x)) = "

e

(x) + "

p

(x) ; (2.3)

where we have set F = 11+ru with u the displaement vetor and where subsequently "(ru(x))

denotes the in�nitesimal strain tensor. This additive deomposition is appropriate only for

in�nitesimal small values of kruk. There is a rih mathematial literature suessfully treating

plastiity models based on (2.3) (f.(2.17)) of the type

% u

tt

= Div D

lin

: ("(ru)� "

p

) + f; _"

p

2 f

�

� D

lin

: ("(ru)� "

p

)

�

; (2.4)

with "

p

2 sl(3;R). See e.g., [1, 27, 30, 14, 15℄ and referenes therein. In [1℄ the ow rule in the

form of (2.4) is alled of pre-monotone type if hf(�);�i � 0.

Although there is an abundane of appliations and numerial simulations involving �nite

strains for single or polyrystals,up to the present a rigorous mathematial treatment (and a

onvergene proof for disretizations) of the general ase (P0) is missing. This is mainly due

to two fats: the �nite elastiity part involved in (P0) itself is diÆult to analyze and the

ow rule is highly nonlinear with additional peuliar properties in the rate-independent (set-

valued) limit ase. A promising approah towards a mathematial analysis for the quasistati

rate-independent ase of assoiated single rystal plastiity whih is based on a time disrete

inremental variational formulation, an be found in [10, 48, 60℄.

In metal-plastiity, as for most rystalline materials, one observes that the shape of the elas-

tially deformed rystals remains nearly unhanged [39, 3, 65℄. In the ontext of multipliative

elasto-plastiity this translates into k

F

T

e

F

e

det[F

e

℄

2=3

� 11k pointwise small where we assume that F

e

is

loally invertible. In most appliations, however, elasti volume hanges are also negligible leav-

ing us with kF

T

e

F

e

�11k small. In addition one an assume isotropi behaviour for a polyrystal,

sine the di�erent orientations of the rystal grains average out.

Therefore, let us look at �nite hyperelastiity for small strains. We assume the existene of

a free elasti energy

^

W =

^

W (F ) =

^

W (r'). This onstitutive relation is subjeted to material

frame indi�erene, i.e., it must remain invariant under superimposed rigid body motions. To-

gether with isotropy of

^

W , homogeneity and the requirement that D

^

W (11) = 0, i.e., that the

referene on�guration is stress free, it an be shown [16, p.156℄ that

^

W =

^

W (F ) and

^

W (F ) = �kU � 11k

2

+

�

2

tr [U � 11℄

2

+ o(kU � 11k

2

) = �kEk

2

+

�

2

tr [E℄

2

+ o(kEk

2

) ; (2.5)
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holds near a natural state where E =

1

2

�

F

T

F � 11

�

denotes the Green-Lagrange strain tensor

and U�11 denotes the Biot strain tensor. The Lam�e onstants �; � of the polyrystalline material

under onsideration are assumed to be non-negative throughout with � > 0. This energy an

be used as a starting point for the de�nition of a suitable elasti-plasti energy in as muh as

one makes the ansatz

^

W =

^

W (F

e

) where one has simply substituted the elasti part of the

deformation gradient F

e

instead of F .

In view of the small elasti strain assumption, it is reasonable to ignore the dependene of

the elasti energy

^

W (F

e

) on the higher order term o(kF

T

e

F

e

� 11k

2

) and one is left with the

nonlinear St.-Venant Kirhho� energy W (F

e

) =

�

4

kF

T

e

F

e

� 11k

2

+

�

8

tr

�

F

T

e

F

e

� 11

�

2

.

In the quasistati setting we arrive at the following system of oupled partial di�erential

and evolution equations for the deformation ' : [0; T ℄ � 
 7! R

3

and the plasti deformation

F

p

: [0; T ℄� 
 7! GL(3;R):

0 = Div D

F

�

W (r'(t; x) � F

�1

p

(t; x))

�

+ f(x) x 2 
; '

j

�

= g(t; x) x 2 � ;

W (F

e

) =

�

4

kF

T

e

F

e

� 11k

2

+

�

8

tr

�

F

T

e

F

e

� 11

�

2

; (P1)

d

dt

�

F

�1

p

�

(t; x) 2 F

�1

p

(t; x) � f

�

r'(t; x); F

�1

p

(t; x)

�

; F

�1

p

(0; x) = F

�1

p

0

:

Here and subsequently g(t; x) represents the time dependent inhomogeneous Dirihlet boundary

data and F

�1

p

0

the initial ondition for the plasti evolution.

Due to the still strong nonlinearity of (P1) it is not known whether the problem as suh is

well-posed, although the energy is quadrati in the elasti Green strains E

e

(physially linear).

The reason for that is that the variational problem based on minimizing F 7! kF

T

e

F

e

� 11k

2

at

frozen F

p

may lead to mirostruture sine it is well known that the energy is not quasionvex

[64℄ and not even ellipti [56℄ in the ompression range. The mirostruture already inherent

in the purely elasti formulation, however, should rather be seen as an (unphysial) modelling

artifat oming from the quadrati ansatz in E

e

sine, e.g., when taking a orresponding om-

pressible isotropi polyonvex Neo-Hooke energy W (F

e

) =

�

r

kF

e

k

r

+

�

4

det[F

e

℄

2

�

2�+�

2

ln det[F

e

℄,

elasti mirostruture annot our and the elasti solution is easily found in some Sobolev

spae if F

p

2 L

1

(
;GL(3;R)). This and the underlying modelling ideas pertaining to the single

rystal ase suggest that F

p

2 L

1

(
;GL

+

(3;R)) is the minimal regularity we should impose in

(P0). The Neo-Hookean ansatz, however, falls short of taking into aount small elasti strains.

The above mirostruture should therefore not be onfused with the experimentally observed

mirostruture modelled with multi-well potentials in the theory of elasti rystals in onnetion

with martensiti phase transformation [6℄.

In this ontribution we study a novel model in order to give a partial answer to the question of

well posedness of (P0) in the rate-dependent quasistati ase. The main idea from a mathemat-

ial viewpoint is that the problem oming from �nite elastiity an be ompletely irumvented

in the (physially mostly relevant) ase of small elasti strains without resorting either to the

additive deomposition (2.3) or to (P1). To this end a new model appropriate for small elasti

strains will be introdued whose �rst Piola-Kirhho� stresses derive from a quadrati potential.

2.3 The model with grain boundary relaxation

One way to sidestep the above mentioned (apparently non physial purely mathematial) prob-

lems has been given by Ne� [53, 57℄ where a modi�ed model has been introdued. This model

has as starting point (P1) but onsequently inorporates the extra bit information of small elas-
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ti strains a priori. Let us reapitulate the main ingredients of the model for the presentation

to be suÆiently self-ontained.

In the three-dimensional ase it is easily seen that small elasti strains, i.e., kF

T

e

F

e

� 11k

pointwise small for orientation preserving F

e

2 GL

+

(3;R), imply that F

e

is approximately a

rotation R

e

2 SO(3) (almost elasti rigidity). If we assume that R

e

is known, all quantities an be

'linearized' with respet to the loal rigid on�guration R

e

= polar(F

e

), the best approximation

in terms of rotations to F

e

. This is a nonlinear onstraint. It is further possible to relax this

stati onstraint into an evolution equation whih desribes internal relaxation suh that a new

visoelasti rotation R

e

is determined whih oinides approximately with polar(F

e

) whenever

F

e

is approximately a rotation. The stati onstraint R

e

= polar(F

e

) is a global attrator of the

evolution equation for R

e

. These modi�ations signi�antly hange the mathematial struture

without loosing the main ingredients of �nite multipliative viso-plastiity, notably observer-

invariane and invariane with respet to superposed rotations of the so alled intermediate

on�guration are preserved. The model is geometrially nonlinear and allows for �nite

elasti rotations, �nite plasti deformations and overall �nite deformations but remains a truly

'physially linear' theory as far as the elasti behaviour is onerned in the sense that simple

uniaxial tension is modelled as linear and without visosity.

We need to mention, however, that the new model is intrinsially rate-dependent, i.e.,

it is not possible to 'freeze' the 'visoelasti' rotations R

e

and obtain a frame-indi�erent re-

dued plastiity model. In other words, the used elasti free energy W is not expressible as a

redued funtion of C = F

T

F . Nevertheless, the model is observer-invariant and the ommon

wisdom that observer invariane implies a representation in C or U applies as suh only to

intrinsially non-dissipative problems [42, p.203℄. In general, form invariane under superposed

time-dependent rigid rotations (frame-indi�erene) implies observer invariane but is not identi-

al to it. For this subtle point ompare also to the luid disussion in [29, p.269℄ and [34, p.159℄

together with [72, 4, 49, 50℄.

2

Let us now introdue the onsidered 3D-model whih we have modi�ed ompared to [57, 53℄ to

inlude also in a onsistent manner "ompressible" plastiity, i.e., det[F

p

℄ 6= 1. In the quasistati

setting appropriate for slow loading, where we neglet onsistently inertia terms, we are led

to study the following oupled minimization and evolution problem for the �nite deformation

' : [0; T ℄ � 
 7! R

3

, the plasti deformation F

p

: [0; T ℄ � 
 7! GL

+

(3;R) and the independent

loal visoelasti rotation R

e

: [0; T ℄ � 
 7! SO(3) on 
:

I('; F

�1

p

; R

e

) =

Z




W (F

e

; R

e

) det[F

p

℄� hf; 'i det[F

p

℄ dV

�

Z

�

S

hN;'i kCof F

p

:~nk dS 7! min : w.r.t. ' at onstant (R

e

; F

p

); (P3)

with the Dirihlet boundary ondition of plae for the deformation ' on � � �
: '

j

�

= g(t)

and natural boundary onditions on �
 n �. The orresponding �eld equations are

0 = Div

�

D

F

�

W (F

e

; R

e

) det[F

p

℄

��

+ f det[F

p

℄ : (P3.1)

2

And the undisputed physial priniple is observer invariane and not diretly frame-indi�erene or

form-invariane. The strengthening of form-invariane of the equations under superposed rigid rotations to

form-invariane under the group of all di�eomorphisms is alled ovariane [42℄. It is to be understood that

form-invariane and ovariane are additional onstitutive assumptions. Interestingly, giving up the unneessary

frame-indi�erene allows us to show loal existene.

8



The onstitutive assumptions on the density are

W (F

e

; R

e

) =

�

4

kF

T

e

R

e

+R

T

e

F

e

� 211k

2

+

�

8

tr

h

F

T

e

R

e

+R

T

e

F

e

� 211

i

2

(2.6)

= � k sym(U

e

� 11)k

2

+

�

2

tr

�

sym(U

e

� 11)

�

2

; U

e

:= R

T

e

F

e

; F

e

= r'�F

�1

p

:

The oupled time evolution is given by

d

dt

�

F

�1

p

�

2 �F

�1

p

� �

�

(�

E

); �

E

= F

T

e

D

F

e

W (F

e

; R

e

) det[F

p

℄�W (F

e

; R

e

) det[F

p

℄11 ;

d

!̂

dt

R

e

(t) = �

+

skew(B) � R

e

(t); B = B

meh

or B

t

; �

+

= �

+

(F

e

; R

e

) 2 R

+

;

B

meh

= �F

e

R

T

e

; B

t

=

h

�(2 11� F

e

R

T

e

) + � [3� hF

e

R

T

e

; 11i℄

i

F

e

R

T

e

; (2.7)

with initial onditions

F

�1

p

(0) = F

�1

p

0

; F

p

0

2 GL

+

(3;R); R

e

(0) = R

0

e

; R

0

e

2 SO(3); R

0

e

= 11 if F

p

0

= r� :

Here we spei�ed f = �

�

, with the plasti ow potential

�

: M

3�3

7! R, governing the plasti

evolution and motivated through the priniple of maximal dissipation suÆient for the thermo-

dynamial onsisteny of the model.

3

The dead load body fore and the boundary trations

are denoted by f; N , respetively and de�ned w.r.t. the intermediate plasti on�guration F

p

and ~n is the unit outward normal to �
. Here �

E

denotes the elasti Eshelby stress tensor

(the driving fore behind evolving inhomogeneities in the referene on�guration [45, 44℄) whih

may be redued to �

M

= F

T

e

D

F

e

W (F

e

; R

e

), the elasti Mandel stress tensor in ase of

a deviatori ow rule whih preserves the inompressibility onstraint det[F

p

℄ = 1. This is a

generalization of the gradient type models in the sense of [1℄ to �nite deformations.

By

d

!̂

dt

we mean the observer invariant time derivative on SO(3;R)

d

!̂

dt

[R(t)℄ :=

d

dt

[R(t)℄� !̂(t) �R(t) ; !̂ :=

d

dt

[Q(t)℄ �Q(t)

T

; (2.8)

where Q(t) 2 SO(3;R) is the instantaneous rotation of the urrent frame with respet to the

inertial frame and !̂ is the orresponding angular veloity. Without loss of generality we on�ne

attention to the inertial frame, i.e. !̂ � 0 and

d

!̂

dt

=

d

dt

.

The term �

+

:=

1

�

e

�

+

(F

e

; R

e

) represents a salar valued funtion introduing elasti visosity

within the elasti domain and �

e

plays the role of a relaxation time with units [�

e

℄ = se. F

�1

p

0

and R

0

e

are the initial onditions for the plasti deformation and visoelasti rotation part, re-

spetively. The hoie B = B

t

is fully thermodynamially onsistent, whereas the simpler hoie

B = B

meh

is (only) mehanially onsistent in the sense that various invariane requirements

are met.

4

3

This leads to an assoiative formulation. However, for our mathematial development, this spei�ation is

not stritly neessary. We an deal as well with non-assoiative formulations.

4

Under the simplifying assumptions F = 11+ru; F

p

= 11+ p; R

e

= 11+A

e

; A

e

2 so(3;R) with ru; p; A

e

� 1

the �nite model (P3) redues formally to �rst order to the in�nitesimal elasti-plasti model (2.4) with "

p

:= sym p.

Hene, grain boundary relaxation in our terminology is a seond order e�et only. In ontrast, visoelastiity

is traditionally introdued as a �rst order e�et, already e�etive in in�nitesimal elastiity. Furthermore, our

additional elasti visosity is only operative in torsion, not in tension!
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Due to the underlying isotropy the resulting model (P3) with B = B

meh

approahes in the

equilibrium limit �

+

! 1 (vanishing elasti visosity = zero relaxation limit �

e

! 0 viz. for

arbitrary slow proesses) formally the problem

Z




W

1

(F

e

) det[F

p

℄� hf; 'i det[F

p

℄ dV

�

Z

�

S

hN;'i kCof F

p

:~nkdS 7! stat. w.r.t. ' at onstant F

p

;

W

1

(F

e

) = � kU

e

� 11k

2

+

�

2

tr [U

e

� 11℄

2

; F

e

= r'F

�1

p

; U

e

= R

T

e

F

e

; (2.9)

d

dt

�

F

�1

p

�

(t) 2 �F

�1

p

(t) � �

�

(�

E;1

) ;

�

E;1

= U

e

D

U

e

W

1

(U

e

) det[F

p

℄�W

1

(U

e

) det[F

p

℄ 11 ;

with U

e

= (F

T

e

F

e

)

1

2

the symmetri elasti streth, U

e

� 11 the elasti Biot strain tensor and

W

1

the non-ellipti equilibrium energy. The system (2.9) is an exat equilibrium model

for small elasti strains and �nite plasti deformations in the lassial sense with no internal

dissipation due to visoelasti e�ets. The transition from (P3) to (2.9) is not entirely trivial

sine it is not just the replaement of R

e

by R

e

= polar(F

e

) and note the subtle hange from

global minimization to a stationarity requirement only. Observe as well that � kU � 11k

2

+

�

2

tr [U � 11℄

2

leads to a linear response in uniaxial tension while e.g. � kEk

2

+

�

2

tr [E℄

2

leads

to a nonlinear, unphysial response in uniaxial tension.

In the ompanion paper [57℄ the impliations, preditions and physial relevane of the new

model have been investigated in great detail. It is shown that the additional degrees of freedom

inherent through the independent loal "visoelasti" rotations R

e

an be interpreted in the

framework of a material with a polyrystalline struture where the averaged individual rotations

of the grains may deviate from the ontinuum rotation.

5

Then, in the presene of plastiity, R

e

represents a reversible, 'visoelasti' part of the total rotation of the grains and leads to texture

e�ets (deformation indued anisotropy). The evolution equation for R

e

introdues hysteresis

e�ets into the model already within the elasti region, i.e. immediately for arbitrary small stress

levels. The physial reality of this behaviour for polyrystalline material is well doumented and

it is shown that the new model (P3) allows a qualitative and in parts quantitative desription

of suh e�ets whih are asribed to internal frition at the grain boundaries. In [57℄ it

has also been motivated that the elasti visosity is larger for larger internal surfaes, i.e. the

smaller the grain size, while single rystals behave nearly rate-independent for that matter. Let

us de�ne ĝ to be the average grain diameter and

^

L to be the edge length of a representative

volume element. Then the internal surfae in suh a volume element sales like jS

3d

int

j �

^

L

3

ĝ

3

. This

translates into the additional onstitutive requirement

�

+

e

�

1

jS

3d

int

j

�

ĝ

3

^

L

3

; (2.10)

where jS

3d

int

j is a harateristi measure of the internal surfae for a polyrystalline struture.

Therefore, the elasti visosity �

+

e

is related to an internal harateristi length.

5

Observe that these two rotations do not oinide in general: the averaged rotation is understood to be the

best-approximating single rotation to a rotation �eld de�ned over a representative volume element while the

ontinuum rotation is the orthogonal part of the averaged deformation gradient. In the in�nitesimal ase, both

in�nitesimal rotations would oinide!
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In the mathematial part of this ontribution we will show the following result:

Theorem 2.1 (Loal existene and uniqueness for problem (P3))

Let 
 � R

3

be a bounded smooth domain and suppose for the displaement boundary data

g 2 C

1

(R;H

3;2

(
;R

3

)) and for the body fore f 2 C

1

(R;H

1;2

(
;R

3

)). Assume for the initial

onditions (F

�1;0

p

; R

0

e

) 2 H

2;2

(
;SL(3;R)) � H

2;2

(
;SO(3)). Then there exists a time t

1

> 0

suh that the initial boundary value problem (P3) in its visoelasti-visoplasti form (3.31) and

(3.32) admits a unique solution

('; F

p

; R

e

) 2 C([0; t

1

℄;H

3;2

(
;R

3

))� C

1

([0; t

1

℄;H

2;2

(
;SL(3;R)); H

2;2

(
;SO(3))): �

Remark 2.2 (Smoothness and in�nitesimal models)

The foregoing existene result sheds some light on the physial relevane of global results for

weak solutions of in�nitesimal elasto-plastiity models of the type (2.4). Typially one arrives at

global weak solutions with "; "

p

2 L

1

(R

+

; L

2

(
; sl(3;R))), at best. To obtain these results de-

isive use is made of inequality (2.17) with D

lin

onstant. However, "

p

2 L

1

(R

+

; L

2

(
; sl(3;R))

oneptually orresponds to F

p

2 L

1

(R

+

; L

2

(
;SL(3;R))) under whih ondition alone oer-

ivity of the geometrially exat elasti problem is not true. The in�nitesimal model pratially

rules out elasti failure of the material due to fatigue. Sine, however, fatigue is an important

ingredient of plastiity theory, the possibility of fatigue has to be reintrodued arti�ially in

in�nitesimal ontinuum damage models [31℄. We see that the model (P3) provides a muh more

realisti view on the plastiity of polyrystals.

2.4 General mathematial framework

Let us outline how we show that (P3) admits a unique loal solution. At 'frozen' variables

(F

p

; R

e

) the above system of elasti balane of linear momentum (P3.1) proves to be a linear,

seond order, stritly Legendre-Hadamard ellipti boundary value problem with non-onstant

oeÆients. This system has variational struture in the sense that the equilibrium part (P3.1)

of (P3) is formally equivalent to the elasti minimization problem (without loss of generality we

assume for the mathematis F

p

2 SL(3;R))

8 t 2 [0; T ℄ : I('(t); F

�1

p

(t); R

e

(t)) 7! min :w.r.t. '(t) 2 g(t) +H

1;2

Æ

(
;�) ; (2.11)

where

I('; F

�1

p

; R

e

) :=

Z




W (r'F

�1

p

; R

e

)� hf; 'i dV :

The weak form of the orresponding equilibrium equation is given next.

Lemma 2.3 (Weak form of elasti problem)

If a minimizer ' 2 H

1;2

(
) of (2.11) exists, then it is a weak solution to the equilibrium problem

0 =

Z




hD

F

�

W (r'F

�1

p

; R

e

)

�

;r�i � hf; �i dV 8� 2 H

1;2

0

(
;R

3

) ; (2.12)

11



whih satis�es the orresponding strong form

Div R

e

h

�((r'F

�1

p

)

T

R

e

+R

T

e

r'F

�1

p

) + � tr

�

(r'F

�1

p

)

T

R

e

�

11

i

F

�T

p

=

� f +Div

�

(2�+ 3�)R

e

F

�T

p

�

; (2.13)

if the appearing quantities are smooth enough. �

Observe in passing that for F

p

= 11; R

e

= 11 and with Div(ru

T

) = r(Div u) and Div(Div u)�11) =

r(Div u) we reover naturally the Lam�e equations

(�+ �)r(Div u) + ��u+ f = 0 (2.14)

of linearized elastiity. We note also the appearane of a "virtual" body fore ontribution

due to the inhomogeneities inherent in F

p

; R

e

. �

This equilibrium system (2.13) an be written in the shortut form

Div D (A(x)):r' = f +Div V (A); '

j

�

= g ; (2.15)

where we have set A = (F

�T

p

; R

e

) and introdued the orresponding elastiity tensor D and the

additional right-hand side ontribution V aording to the next de�nition in line with equation

(2.13).

De�nition 2.4 (Corresponding elastiity tensor)

We de�ne the elastiity tensor D : M

3�3

� M

3�3

7! Lin(M

3�3

;M

3�3

) and the right hand side

V : M

3�3

� M

3�3

7! M

3�3

by

8H2M

3�3

: D (F

�T

p

; R

e

):H :=R

e

h

�((HF

�1

p

)

T

R

e

+R

T

e

HF

�1

p

) + � tr

�

(HF

�1

p

)

T

R

e

�

11

i

F

�T

p

;

V (F

�T

p

; R

e

) := (2�+ 3�)R

e

F

�T

p

; (2.16)

respetively. �

We are then onerned with the stati situation where A = (F

�T

p

; R

e

) are assumed to be known.

A startling diÆulty we enounter is that the elastiity tensor D = D (A), although turning

out to be uniformly Legendre-Hadamard ellipti, does not indue a pointwise uniformly posi-

tive bilinear form. Suh a problem does not appear in in�nitesimal elasto-visoplastiity sine

there the relevant elastiity tensor D

lin

2 Lin(Sym(3);Sym(3)) is assumed to be a onstant

uniformly positive de�nite fourth order tensor de�ned on the symmetrized strains " suh

that

8 " 2 Sym(3) : hD

lin

:"; "i � 

+

� k"k

2

; (2.17)

and oerivity follows from the standard Korn's �rst inequality [16℄.

Nevertheless, we prove the existene, uniqueness and regularity of solutions to the boundary

value problem (P3.1). The existene part relies now heavily on Theorem 6.2, reently proved

by the author extending Korn's �rst inequality to non-onstant oeÆients and overoming the

lak of uniform positivity of (2.11). This theorem has been proved preisely with the motivation

of applying it to �nite plastiity.
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Now, again in stark ontrast to the in�nitesimal ase (2.4)

1

with additive deomposition,

where the solution u depends linearly on the plasti strain "

p

, the solution of (2.13) depends

nonlinearly on A due to the underlying multipliative struture.

Despite this nonlinearity, we establish Lipshitz-ontinuous dependene of the solution to

(2.11) with respet to the data and oeÆients A = (F

�T

p

; R

e

) by looking at the system (2.13) in

the form (2.15) and using sharp ellipti estimates. Sine the onstant in the extended Korn's in-

equality Theorem 6.2 enters the Lipshitz estimate but is itself determined in a non-onstrutive

way, we show that this onstant an be bounded below for bounded, smooth oeÆients.

The oneptual idea to treat the oupled plasti evolution problem is then straightforward: in

the fully rate-dependent ase the di�erential inlusion is in fat an ordinary di�erential equation

whih may be written in the form

d

dt

A(t) = h(r'(A); A) � A ; (2.18)

with h : M

3�3

� (M

3�3

� M

3�3

) 7! Lin(M

3�3

;M

3�3

), where A = (F

�T

p

; R

e

) and ' = '(A) is

the solution of the ellipti boundary value problem (P3.1) at given A. It remains to show that

the right hand side of (2.18) as a funtion of A is loally Lipshitz ontinuous allowing to apply

the loal existene and uniqueness theorem for nonlinear evolution equations in Banah spaes

based on Banah's �xed point theorem, f. Theorem 6.1.

The presented formal mathematial framework has a natural ounterpart in the numerial

treatment of viso-plastiity. The oupled problem an be onsidered to be a di�erential

algebrai system of equations (DAE) of index 1, the algebrai equation is the side ondition

oming from a disretization of the elasti equilibrium system [23℄. That visosity is indeed

enough to regularize problems in �nite plastiity is a standing onjeture [52℄ and rigorously

justi�ed by our development.

3 Loal existene and uniqueness proof

3.1 De�nitions and assumptions

To streamline the subsequent mathematial investigation of (2.13) and to plae it in a more

general ontext we introdue the following de�nitions.

De�nition 3.1 (General assumption, GA)

GA.1 
 � R

n

is a bounded domain with smooth boundary and spae dimension n.

GA.2 We all m 2 N the order of ellipti regularity and assume 2 � (m+ 1) > n.

GA.3 (Loal boundedness of the elastiity tensor and part of the right hand side) For given

K

1

> 0:

D : M

3�3

� M

3�3

7! Lin(M

3�3

;M

3�3

); V : M

3�3

� M

3�3

7! M

3�3

,

M := fA : 
 7! M

3�3

� M

3�3

j kAk

m+1;2;


� K

1

g,

9 C

M

: 8 A 2M : kD (A)k

m+1;2;


; kV (A)k

m+1;2;


� C

M

.

GA.4 (Uniform Legendre-Hadamard elliptiity on M) For all �; � 2 R

3

it holds

9 

+

e;M

> 0 : 8 x 2 
 : 8 A 2M : hD (A(x)):(� 
 �); � 
 �i � 

+

e;M

� k�k

2

k�k

2

:
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GA.5 (Loal Lipshitz ontinuity)

9 L

M

: 8 A;B 2M : kD (A) � D (B)k

m+1;2;


� L

M

� kA�Bk

m+1;2;


;

9 L

M

: 8 A;B 2M : kV (A)� V (B)k

m+1;2;


� L

M

� kA�Bk

m+1;2;


:

If (GA.1,GA.2,GA.3,GA.4,GA.5) holds we say that GA holds. Note that ondition GA.5

already implies GA.3 but for onveniene GA.3 is stated separately. �

3.2 Existene of weak solutions to the elasti subproblem

We already indiated that in the stati ase for frozen variables (F

p

; R

e

) the elasti equilibrium

system (P3.1) in (P3) is a linear, stritly Legendre-Hadamard ellipti seond order boundary

value problem with non-onstant oeÆients and variational struture.

6

We exploit this stru-

ture and apply the diret methods of the alulus of variations to show that there exists a unique

weak solution at frozen variables (F

p

; R

e

).

Theorem 3.2 (Existene of minimizers)

Let F

p

; F

�1

p

2 H

2;2

(
;GL(3;R)) and R

e

2 H

2;2

(
;SO(3)) be given. Assume for the Dirihlet

boundary data g 2 H

3;2

(
) and for the body fore f 2 L

2

(
). Then the variational problem

I('; F

�1

p

; R

e

) 7! min :; ' 2 g +H

1;2

Æ

(
) ;

I('; F

�1

p

; R

e

) =

Z




W (r'F

�1

p

; R

e

)� hf; 'i

R

3

dV ; (3.1)

admits a minimizer ' 2 H

1;2

(
) and this minimizer satis�es estimate (3.13).

Proof. By the de�nition of I as a sum of a quadrati form and a linear form it is easy to

see that ' 7! I('; F

�1

p

; R

e

) is onvex over H

1;2

(
). Moreover with g 2 H

1;2

(
) we have that

I(g; F

�1

p

; R

e

) < 1. First we show that I is bounded below. To this end de�ne

^

F

p

= R

e

� F

p

.

Note that

^

F

p

2 H

2;2

(
) sine H

2;2

(
) is an algebra for n = 3 spae dimensions. Then

W (F

e

; R

e

) =

�

4

kF

T

e

R

e

+R

T

e

F

e

� 211k

2

+

�

8

tr

h

F

T

e

R

e

+R

T

e

F

e

� 211

i

2

(3.2)

=

�

4

k

^

F

p

�T

r'

T

+r'

^

F

p

�1

� 2 11k

2

+

�

8

tr

h

^

F

p

�T

r'

T

+r'

^

F

p

�1

� 2 11

i

2

;

where we used that kR

e

XR

T

e

k = kXk and tr

h

R

e

XR

T

e

i

= tr [X℄. Now set ' = v + g with

v 2 H

1;2

Æ

(
). We have algebraially

W (r'F

�1

p

; R

e

)

=

�

4

k

^

F

p

�T

r'

T

+r'

^

F

p

�1

� 2 11k

2

+

�

8

tr

h

^

F

p

�T

r'

T

+r'

^

F

p

�1

� 2 11

i

2

�

�

4

k

^

F

p

�T

rv

T

+rv

^

F

p

�1

k

2

� 2� k

^

F

p

�1

k

2

krvk krgk � 2�

p

3 k

^

F

p

�1

k krvk+

�

4

k

^

F

p

�T

rg

T

+rg

^

F

p

�1

� 211k

2

: (3.3)

6

This is essentially the elasti trial step in urrent algorithmi formulations.
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Integrating over 
 and making use of Theorem 6.2 in the improved version of [63℄ with

^

F

p

;

^

F

p

�1

2

H

2;2

(
) � C

0;

1

2

(
) we get for all ' 2 H

1;2

(
)

Z




W (r'F

�1

p

; R

e

)� hf; 'i dV � � 

+

(

^

F

p

) kvk

2

1;2;


| {z }

extended Korn

�2� k

^

F

p

�1

k

2

1

krgk

1

kvk

1;2;


� 2�

p

3k

^

F

p

�1

k

1

kvk

1;2;


+

Z




�

4

k

^

F

p

�T

rg

T

+rg

^

F

p

�1

� 211k

2

dV (3.4)

� kfk

2;


�

kvk

2;


+ kgk

2;


�

:

Hene I is bounded below and we observe that a minimizing sequene f'

n

g

1

n=1

� H

1;2

(
) exists

with

I('

n

; F

�1

p

; R

e

)! inf

'2g+H

1;2

Æ

(
)

I('; F

�1

p

; R

e

) ; n!1: (3.5)

We proeed to show that I is oerive whih implies that f'

n

g

1

n=1

is bounded.

Our development is more detailed than stritly neessary if only oerivity was onerned.

However, we need to keep trak of all onstants for uniform estimates in subsequent paragraphs.

Without loss of generality assume that '

1

= g. Sine '

n

is a minimizing sequene, we have

by estimating from above and using hX; 11i

2

� 3kXk

2

Z




W (r'

n

F

�1

p

; R

e

)� hf; '

n

i dV �

�

�

4

+

3�

8

�

Z




k

^

F

p

�T

rg

T

+rg

^

F

p

�1

� 211k

2

dV + kfk

2;


kgk

2;


�

�

4

Z




k

^

F

p

�T

rg

T

+rg

^

F

p

�1

� 211k

2

dV+ (3.6)

3�

2

j
j

�

k

^

F

p

�1

k

2

1

krgk

2

1

+ 2

p

3k

^

F

p

�1

k

1

krgk

1

+ 3

�

+ kfk

2;


kgk

2;


:

This implies together with (3.4) the inequality

3�

2

j
j

�

k

^

F

p

�1

k

2

1

krgk

2

1

+ 2

p

3k

^

F

p

�1

k

1

krgk

1

+ 3

�

+ 2 kfk

2;


kgk

2;


� (3.7)

� 

+

(

^

F

p

) kv

n

k

2

1;2;


� 2� k

^

F

p

�1

k

2

1

krgk

1

kv

n

k

1;2;


� 2�

p

3k

^

F

p

�1

k

1

kv

n

k

1;2;


� kfk

2;


kv

n

k

2;


� � 

+

(

^

F

p

) kv

n

k

2

1;2;


� 2�

p

3

�

1 + k

^

F

p

�1

k

2

1

� h

k

^

F

p

�1

k

1

+ krgk

1

+ kfk

2;


i

� kv

n

k

1;2;


:

Hene a rough estimate yields

5 � j
j

�

1 + k

^

F

p

�1

k

1

krgk

1

�

2

+ 2 kfk

2;


kgk

2;


� (3.8)

� 

+

(

^

F

p

) kv

n

k

2

1;2;


� 5�

�

1 + k

^

F

p

�1

k

2

1

� h

k

^

F

p

�1

k

1

+ krgk

1

+ kfk

2;


i

� kv

n

k

1;2;


:
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Thus we get a quadrati inequality in kv

n

k

1;2;


0 � kv

n

k

2

1;2;


�

5



+

(

^

F

p

)

�

1 + k

^

F

p

�1

k

2

1

� h

k

^

F

p

�1

k

1

+ krgk

1

+ kfk

2;


i

� kv

n

k

1;2;


�

5� j
j

� 

+

(

^

F

p

)

�

1 + k

^

F

p

�1

k

1

krgk

1

�

2

� 2 kfk

2;


kgk

2;


: (3.9)

Sine 0 � x

2

� bx� ) x � b+

p

, the former yields

kv

n

k

1;2;


�

2

4

5

(

^

F

p

)

�

1 + k

^

F

p

�1

k

2

1

�

+

s

5� j
j

� (

^

F

p

)

�

1 + k

^

F

p

�1

k

1

krgk

1

�

k

^

F

p

�1

k

1

+ krgk

1

+ kfk

2;


+ (3.10)

kfk

2;


+ kgk

2;


k

^

F

p

�1

k

1

+ krgk

1

+ kfk

2;


3

5

�

h

k

^

F

p

�1

k

1

+ krgk

1

+ kfk

2;


i

:

Taking

^

F

p

�1

= F

�1

p

� R

T

e

into aount and the estimate

p

3 = k11k = kF

�1

p

F

p

k � kF

�1

p

k kF

p

k

(whih implies kF

�1

p

k �

p

3

kF

p

k

) shows

kv

n

k

1;2;


�

"

5

(

^

F

p

)

�

1 + kF

�1

p

k

2

1

�

+

s

5� j
j

� (

^

F

p

)

kF

p

k

1

�

1 + kF

�1

p

k

1

krgk

1

�

p

3

+

kF

p

k

1

p

3

�

kfk

2;


+ kgk

2;


�

�

�

h

kF

�1

p

k

1

+ krgk

1

+ kfk

2;


i

: (3.11)

With the embedding H

m;2

(
) ,! C

m�

n

2

(
) and adding kR

e

k

2;2;


we get the estimate

kv

n

k

1;2;


�C(
)

"

1

(

^

F

p

)

�

1 + kF

�1

p

k

2

2;2;


�

+ kF

p

k

2;2;


s

� j
j

� (

^

F

p

)

�

1 + kF

�1

p

k

2;2;


kgk

3;2;


�

+kF

�1

p

k

2;2;


�

kfk

2;


+ kgk

2;


�i

�

h

kF

�1

p

k

2;2;


+ kR

e

k

2;2;


+ kgk

3;2;


+ kfk

2;


i

: (3.12)

Therefore for '

n

= v

n

+ g we get

k'

n

k

1;2;


�

 

1 + C(
)

"

1

(

^

F

p

)

�

1 + kF

�1

p

k

2

2;2;


�

+ kF

p

k

2;2;


s

� j
j

� (

^

F

p

)

�

1 + kF

�1

p

k

2;2;


kgk

3;2;


�

+kF

�1

p

k

2;2;


�

kfk

2;


+ kgk

2;


�

��

�

h

kF

�1

p

k

2;2;


+ kR

e

k

2;2;


+ kgk

3;2;


+ kfk

2;


i

; (3.13)

implying the boundedness of the minimizing sequene f'

n

g

1

n=1

. We may extrat a subsequene

that onverges weakly to some ' 2 H

1;2

(
). Sine I is onvex, it is also sequentially weakly

lower semi-ontinuous whih in turn implies

I('; F

�1

p

; R

e

) � lim inf

n!1

I('

n

; F

�1

p

; R

e

) = inf

'2g+H

1;2

Æ

(
)

I('; F

�1

p

; R

e

): (3.14)

Hene ' is a minimizer. Observe that estimate (3.13) remains valid for ' by weak lower semi-

ontinuity of the norm. �
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Theorem 3.3 (Uniqueness of minimizers)

Let F

p

; F

�1

p

2 H

2;2

(
;GL(3;R)) and R

e

2 H

2;2

(
;SO(3)) be given. Assume for the Dirihlet

boundary data g 2 H

3;2

(
) and for the body fore f 2 L

2

(
). Then the variational problem

(3.1) has a unique solution ' 2 H

1;2

(
).

Proof. We show that I is stritly onvex over the aÆne spae fg +H

1;2

Æ

(
)g. This is done by

omputing the seond derivative. We have

D

2

'

I('; F

�1

p

; R

e

):(�; �) =

Z




�

2

kF

�T

p

r�

T

R

e

+R

T

e

r�F

�1

p

k

2

+ � tr

h

R

T

e

r�F

�1

p

i

2

dV

�

Z




�

2

kF

�T

p

r�

T

R

e

+R

T

e

r�F

�1

p

k

2

dV � � 

+

(F

p

; R

e

;
) k�k

2

1;2;


; (3.15)

by applying Theorem 6.2. Sine the Lam�e onstant � is assumed to be stritly positive, we see

that D

2

'

I('; F

�1

p

; R

e

):(�; �) is uniformly positive. Hene I('; F

�1

p

; R

e

) is stritly onvex. �

Corollary 3.4 (General linear system)

Let F

p

; F

�1

p

2 H

2;2

(
;GL(3;R)) and R

e

2 H

2;2

(
;SO(3)) be given and set A = (F

�T

p

; R

e

).

Suppose that D has the form postulated in De�nition 2.4 and assume for the Dirihlet boundary

data g 2 H

3;2

(
) and for the right hand side f 2 L

2

(
). Then the linear problem

Div D (A):ru = f; u

j

�


= g ; (3.16)

has a unique weak solution u 2 H

1;2

(
).

Proof. The same ideas as in Theorem 3.2 and Theorem 3.3 arry over. As orresponding energy

expression we have only to take W

D

(F;A) =

�

4

kF

T

e

R

e

+R

T

e

F

e

k

2

+

�

8

tr

h

F

T

e

R

e

+R

T

e

F

e

i

2

. This

result is true for a general right hand side f and not neessarily restrited to the body fore f

appearing in (2.13). �

Theorem 3.5 (Uniform onstant in Korn's �rst inequality)

Let 
 � R

3

be a bounded domain and let � � �
 be a part of the boundary with non vanishing

2-dimensional Hausdor� measure. Set

M = fF

p

2 H

2;2

(
; GL(3;R)) j kF

p

k

2;2;


� K

1

; kF

�1

p

k

2;2;


� K

2

g : (3.17)

Then 9 

+

M

> 0 suh that 8 F

p

2M 8 � 2 H

1;2

Æ

(
;�) :

kr�F

�1

p

(x) + F

�T

p

(x)r�

T

k

2

L

2

(
)

� 

+

M

k�k

2

H

1;2

(
)

: (3.18)

Proof. We proeed by ontradition. Assume without loss of generality that there exists a

sequene �

n

2 H

1;2

Æ

(
;�) : k�

n

k

1;2;


= 1 and a sequene F

n

p

2M suh that

kr�

n

F

n;�1

p

(x) + F

n;�T

p

(x)r�

T

n

k

2

L

2

(
)

�

1

n

k�k

2

H

1;2

(
)

=

1

n

: (3.19)

Sine F

�1;n

p

is bounded in H

2;2

(
) we may extrat a subsequene whih onverges strongly to

some

^

F

�1

p

in the topology of H

2�";2

(
). Note that the limit

^

F

�1

p

2M by weak onvergene. It

is readily seen by ontinuity and the boundedness of �

n

that this implies on M

kr�

n

^

F

�1

p

(x) +

^

F

�T

p

(x)r�

T

n

k

2

L

2

(
)

! 0: (3.20)
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This in turn implies that �

n

is a minimizing sequene. For �xed

^

F

�1

p

the quadrati expression

is stritly onvex in �

n

on use of Theorem 6.2 in the improved version of [63℄. We infer that

kr�

n

^

F

�1

p

(x) +

^

F

�T

p

(x)r�

T

n

k

2

L

2

(
)

� 

+

(

^

F

p

) k�

n

k

2

H

1;2

(
)

: (3.21)

Hene k�

n

k

2

H

1;2

(
)

�

1



+

(

^

F

p

)

�

1

n

! 0; n!1, ontraditing k�

n

k

H

1;2

(
)

= 1. �

Corollary 3.6 (Uniform G�arding-type estimate)

Under the same assumptions and notations as in Theorem 3.5 let g 2 H

3;2

(
) and f 2 L

2

(
).

Then the variational problem (3.1) has a unique solution ' 2 H

1;2

(
). For this solution the

following estimate is valid:

9 C

+

M

(kgk

3;2;


; kfk

2;


) > 0 8 F

p

; R

e

2M

k'k

1;2;


� C

+

M

(kgk

3;2;


; kfk

2;


) �

�

kF

�1

p

k

2;2;


+ kR

e

k

2;2;


+ kgk

3;2;


+ kfk

2;


�

(3.22)

and C

+

M

(kgk

3;2;


; kfk

2;


) is a ontinuous funtion of kgk

3;2;


and kfk

2;


.

Proof. We reall the estimates of Theorem 3.2. With the assumptions on the oeÆients A we

have with Theorem 3.5 that the appearing onstants in Theorem 3.2 are bounded independent of

the oeÆients onM. Analyzing estimate (3.13) shows that all appearing onstants are uniform

on M. Hene the bound is itself uniform. �

Lemma 3.7 (Uniform elliptiity)

Let M as in Theorem 3.5. Then 9 

+

M

> 0 8 F

p

2M 8 �; � 2 R

3

:

k(� 
 �) � F

�1

p

(x) + F

�T

p

(x) � (� 
 �)

T

k

2

� 

+

M

� k�k

2

k�k

2

: (3.23)

Proof. A simple algebrai omputation shows that

k(� 
 �) � F

�1

p

(x) + F

�T

p

(x) � (� 
 �)

T

k

2

� 2 �

2

min

�

F

�1

p

(x)F

�T

p

(x)

�

� k�k

2

k�k

2

: (3.24)

It is easily veri�ed that there exists a d

+

> 0 suh that det[F

�1

p

℄(x) � d

+

for all F

p

2M. Sine

d

2

+

� det[F

�1

p

(x)F

�1

p

(x)℄ = �

min

� �

2

� �

max

�

F

�1

p

(x)F

�T

p

(x)

�

, it follows �

2

min

�

d

4

+

�

4

max

whih in

turn implies �

2

min

�

d

4

+

kF

�1

p

F

�T

p

k

4

. Therefore we have a lower bound for the smallest eigenvalue

�

min

�

F

�1

p

(x)F

�T

p

(x)

�

on M. �

Corollary 3.8 (Uniform elliptiity of equilibrium system)

Set

^

F

p

= R

e

F

p

. Again letM be de�ned as in Theorem 3.5. Assume that F

p

; R

e

2M. Then the

system (2.13) with elastiity tensor D given by De�nition 2.4 is uniformly Legendre-Hadamard

ellipti on M,

9 

+

e;M

> 0 : 8x 2 
 : 8A 2M : hD (A(x)):(� 
 �); � 
 �i � 

+

e;M

k�k

2

k�k

2

(3.25)

and the elliptiity onstant is given by 

+

e;M

= � � �

2

min

�

^

F

p

�1

(x)

^

F

p

�T

(x)

�

whih is bounded

below on M.
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Proof. Take H = � 
 �. We have to ompute D

2

F

W (F; F

p

; R

e

):(H;H) with W as in (3.1). It

holds true that D

2

F

W (F; F

p

; R

e

):(H;H) �

�

2

kF

�T

p

H

T

R

e

+R

T

e

HF

�1

p

k

2

. The relevant identity is

kF

�T

p

H

T

R

e

+R

T

e

HF

�1

p

k

2

= k(R

T

e

R

e

)F

�T

p

H

T

R

e

+R

T

e

HF

�1

p

(R

T

e

R

e
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= k

^

F

p

�T

H

T

+H

^

F

p

�1

k

2

:

An appliation of Lemma 3.7 �nishes the proof. �

Hene with this hoie of D the assumption GA.4 is ful�lled.

3.3 The visoplasti evolution problem

In this �nal part of the proof we onsider the oupled visoplasti evolution problem. We an

write the evolution part of (P3) in the following blok diagonal form with A = (F

�T

p

; R

e

) 2

M

3�3

� M

3�3

:

d

dt

�

F

�T

p

(t)

R

e

(t)

�

=

�

��

�

(�

E

(t))

T

0

0 �

+

� skew(B(t))

�

�

�

F

�T

p

(t)

R

e

(t)

�

: (3.27)

Thus the system (P3) is equivalent to

d

dt

A(t) = h (r

x

T (A(t); g(t); f(t)); A(t)) �A(t) ; (3.28)

with h : M

3�3

� (M

3�3

� M

3�3

) 7! Lin(M

3�3

;M

3�3

) = M

6�6

,

h (F;A(t)) =

�

��

�

(�

M

(t))

T

0

0 �

+

� skew(B(t))

�

; (3.29)

where �

E

and B are expressions depending on A = (F

�T

p

; R

e

) and on F = r' = r

x

T (A; g; f),

where T (A; g; f) is formally de�ned to be the solution operator of the equilibrium part (P3.1)

of (P3). In order to aount for von Mises type J

2

-viso-plastiity with elasti domain

E := f�

E

j kdev(sym�

E

)k � �

y

g and yield stress �

y

, we take as viso-plasti potential

�

: M

3�3

7! R of generalized Norton-Ho� overstress type the following funtion:

�

(�

E

) =

8

<

:

0 �

E

2 E

��

0

(r+1)(k+1) �

p

�

1 +

�

k dev(sym�

E

)k��

y

��

0

�

r+1

�

k+1

�

��

0

(r+1)(k+1) �

p

�

E

62 E ;

(3.30)

where �

p

> 0 is the relaxation time of the system due to essentially plasti proesses inside the

grains and parameters r; k > 0 and ��

0

is a stress like material onstant. An easy alulation

shows that this leads to the single valued subdi�erential

�

�

�

(�

E

) =

1

�

p

:

 

1 +

�

kdev sym�

E

k � �

y

��

0

�

r+1

+

!

k

�

�

kdev sym�

E

k � �

y

��

0

�

r

+

dev sym�

E

kdev sym�

E

k

: (3.31)

The parameter r allows to adjust the smoothness of the ow rule when passing the elasti

boundary. With r > 3 it is lear that �

�

2 C

3

(M

3�3

;M

3�3

). For k ! 1 we reover formally
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ideal rate-independent plastiity. Without loss of generality we hoose the positive funtion �

+

in the elasti ow part formally similar to (3.31)

�

+

=

1

�

e

0

�

1 +

"

k skew(�F

e

R

T

e

)k�0

��

0

#

r+1

+

1

A

k

�

�

k skew (B) k�0

��

0

�

r

+

�

1

k skew (B) k

: (3.32)

Here �

e

> 0 is the relaxation time of the system due to grain boundary relaxation, whih, in

view of the results obtained in the ompanion paper [57℄ an be assumed to be of the order of

0:01[se℄ for polyrystalline metals. This hoie makes the ow rule altogether a C

3

-funtion

and implies that h 2 C

3

(M

3�3

� (M

3�3

� M

3�3

);Lin(M

3�3

;M

3�3

)), onsidered pointwise.

Remark 3.9 (Flow rule on Sobolev spae)

Set M := fv 2 H

m+1;2

(
)j kvk

m+1;2;


� Kg. Then due to Sobolev's embedding theorem it is

easy to see that for h 2 C

m+2

(M

3�3

� (M

3�3

� M

3�3

);M

6�6

) and 8 v

1
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2

2M the estimate

kh(v

1

)� h(v
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~
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(R

27

;M

6�6

)

� C

+

(
;M) � kv

1

� v

2

k

m+1;2;


(3.33)

holds. �

It remains to identify the preise spaes on whih to onsider this evolution problem in the

framework of Theorem 6.1. We let

U := H

2;2

(
;GL(3;R)); X := H

2;2

(
;SL(3;R)) �H

2;2

(
;SO(3)) (3.34)

and set Y := H

3;2

(
;R

3

) and Z := H

1;2

(
;R

3

). Assume that A

0

= (F

�T;0

p

; R

0

e

) 2 X is given

with det[F

0

p

(x)℄ = 1 and let

M := fA 2 Xj kA�A

0

k

2;2;


� K

1

g ; Y := fy 2 Y j kyk

3;2;


� K

2

g ; (3.35)

Z := fz 2 Zj kzk

1;2;


� K

3

g:

Observe that by onstrution of the ow rule (3.27)

d

dt

�

F

�1

p

�

(t) = F

�1

p

(t) � X

1

;

d

dt

R

e

(t) = X

2

� R

e

(t) ; (3.36)

and sine X

1

2 sl(3) and X

2

2 so(3) we know a priori that

det[F

p

(x; t)℄ = 1; F

p

(x; t) 2 SL(3) and R

e

(x; t) 2 SO(3): (3.37)

We assume for the Dirihlet boundary data g 2 C

1

([0; T ℄;Y) and for the body fores f 2

C

1

([0; T ℄;Z). In view of the above statements we show presently that the evolution problem

d

dt

A(t) = h (r

x

T (A(t); g(t); f(t)); A(t)) �A(t) (3.38)

�ts into the formal framework set forth in Theorem 6.1.

First we proeed to show that it is possible to de�ne a solution operator ' = T (F

p

; R

e

; g; f)

to the stati equilibrium part (P3.1) of (P3) and that this operator is indeed Lipshitz ontinuous

on M�Y �Z.
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Due to Theorem 3.2 and Corollary 2.3 we know that solutions ' of (P3.1) exist. With

De�nition 2.4 it is lear that D ; V 2 C

1

. Remark 3.9 shows that (GA.3) and (GA.5) are

veri�ed for D ; V onM. Moreover, by Corollary 3.7 we see that (GA.4) is true. If we hoose the

order of ellipti regularity m = 1 for the spae dimension n = 3, then (GA.2) holds as well. Of

ourse we have to assume (GA.1).

Theorem 3.3 shows that the solutions of the boundary value problem (P3.1) are unique

whih establishes existene of the solution operator and Corollary 3.6 proves a uniform H

1;2

(
)

estimate for g 2 Y; f 2 Z on M. With Corollary 3.4 we make sure that the assumptions of

Theorem 6.5 are veri�ed. Therefore we are entitled to apply Theorem 6.6 and Corollary 6.7.

Altogether, this yields that T (A; g; f) is a ontinuous operator with uniform Lipshitz onstant

L

+

on M� Y � Z. The gradient r

x

T (A; g; f) satis�es the same type of uniform Lipshitz

estimate, namely

kr

x

T (A; g

A

; f

A

)�r

x

T (B; g

B

; f

B

)k

m+1;2;


�

C

+

(
;M) �

�

1 + kBk
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B
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+ kf

B

k

m+2;2;


�

(3.39)
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�

:

Hene on M�Y �Z we obtain

kr

x

T (A; g

A

; f

A

)�r

x

T (B; g

B

; f

B

)k
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�
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+

(
;M) � (1 +K

1
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) (3.40)

�

kA�Bk

m+1;2;


+ kg

A

� g

B

k

m+2;2;


+ kf

A

� f

B

k

m;2;


�

:

This is enough to see that the operator G(A; g; f) := r

x

T (A; g; f) veri�es the ondition of

Theorem 6.1.

Moreover, Remark 3.9 applied to h 2 C

3

(M

3�3

� M

3�3

;M

6�6

) shows that h, viewed as

a funtion h : U � X 7! Lin(X;X) is loally Lipshitz ontinuous on M. Therefore, we

may �nally apply Theorem 6.1 giving us a unique loal in time solution A 2 C

1

([0; t

1

℄;M)

to the ordinary di�erential system of equations (3.28). Sine '(t) = T (A(t); g(t); f(t)), the pair

(';A) 2 C([0; t

1

℄;H

3;2

(
;R

3

))� C

1

([0; t

1

℄;M) is the unique loal in time solution of (P3).

This �nishes the proof of Theorem 2.1. �

4 Disussion and onluding remarks

Having proved a loal existene theorem for the visoelasti-visoplasti ase of (P3) we observe

that the existene time in general will depend ruially on the smoothness of the values (F

p

; R

e

),

i.e., the smoothness of the elastiity tensor D . If bifurations our, they must then be attributed

to a severe loss of smoothness of these elasti moduli.

It is still an open problem whether the visoelasti-visoplasti system (P3) admits global

in time solutions for small data. This may not be true sine the loss of smoothness might

aumulate with time even for small and smooth given data, e.g. under sustained low amplitude

yli loading, therefore allowing for fatigue phenomena. The smoothness assumptions made

in Theorem 2.1 reet aurately the possible marosopi elasti failure of the polyrystalline

material. Sine in a Sobolev-spae ontext we need at least F

p

2 H

1;3+Æ

(
;GL

+

(3;R)), in order
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to guarantee the minimal onstitutive requirement F

p

2 L

1

(
;GL

+

(3;R)), the regularity gap

F

p

2 H

2;2

(
;GL

+

(3;R)) � H

1;3+Æ

(
;GL

+

(3;R)) is small and the result is pratially optimal.

I presume that the situation is ompletely di�erent for the rate-independent ase; here it

seems that the peuliar form of the ow rule is responsible for elasti-plasti instabilities. The

foregoing analysis, however, is stritly on�ned to the rate-dependent ase, but, ontrary to the

variational approah, not restrited to assoiated plastiity.

In the rate-independent problem following [59℄ for the single rystal ase it is believed that

one an asribe observed mirostruture inside one rystal grain (weak disontinuities or shear

bands, i.e., a jump of the deformation gradient and strong disontinuities or slip lines, i.e., a

jump of the deformation itself) to the lak of quasionvexity of an assoiated inremental po-

tential whih derives from a fully impliit time disretization of (P0) in the quasistati ase.

Based on this observation a promising new approah has been taken towards a numerial and

mathematial analysis, see [26, 10, 48, 60, 61℄. The lak of quasionvexity of the inremental

problem is, however, not at variane with the assumed elliptiity of the purely elasti problem.

It is oneivable that the time-inremental problem derived from (P3) is not quasionvex (even

in the visous ase with smooth initial elasti moduli) leading to the tentative onlusion that

the loal solutions found in Theorem 2.1 do not neessarily realize global minima of the in-

remental potential but rather stable loal minima and that visosity prevents the formation of

mirostruture in the small elasti strain regime on the marosopi sale. The above mentioned

disontinuities of the deformation inside the grains are therefore not at variane with the general

smoothness level required in Theorem 2.1, sine e.g., F

p

in (P3) orresponds oneptually to the

averaged plasti 'deformation' of the grains while R

e

is a suitable average of rotations.

In losing, a number of possible extensions of the theory are worth mentioning. The general

mathematial methodology of (P3) is not on�ned to a polyrystal setting. In the ase of single

rystal viso-plastiity one simply has to exhange the ow rule for F

p

and one an expet the

same type of results. Likewise isotropi and kinemati hardening an be inorporated without

diÆulty. The use of uni�ed onstitutive equations [66℄ without elasti domain is also possible as

well as a non-assoiated formulation provided that the ow rule is loally Lipshitz ontinuous.

First numerial omputations [58℄ with the relaxation time �

e

of the order 0:01 andB = B

meh

on�rm the general appliability of the model (P3) for strutural appliations ompared with

standard models and orroborate the exellent properties of (P3) with this hoie in the evolution

of the 'visoelasti' rotations without yet exploring the spei� texture e�ets inherent in (P3).
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6 Appendix

6.1 Ordinary di�erential equations in Banah spaes

A simple onsequene of Banah's �xed-point theorem is the following result.

Theorem 6.1 (Unique loal existene)

Let U;X; Y; Z be arbitrary Banah-spaes with norms k � k

U

; k � k

X

; k � k

Y

; k � k

Z

respetively. Assume that h :

U�X 7! Lin(X;X) is loally Lipshitz ontinuous and let the initial value y

0

2 X be given. LetG : X�Y �Z 7! U

be an operator whih is Lipshitz ontinuous on the set M�Y � Z with M := fy 2 X j ky � y

0

k

X

� Kg and

Y � Y; Z � Z bounded in Y; Z, respetively, i.e., there is a positive onstant L

+

suh that

9L

+

> 0 : 8(x

1

; a

1

; b

1

); (x

2

; a

2

; b

2

) 2 M�Y �Z :

kG(x

1

; a

1

; b

1

)�G(x

2

; ; a

2

; b

2

)k

U

� L

+

� (kx

1

� x

2

k

X

+ ka

1

� a

2

k

Y

+ kb

1

� b

2

k

Z

) :
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Moreover, assume that � 2 C

1

([0; T ℄;Y); � 2 C

1

([0; T ℄;Z) are given funtions. Then there is some 0 < t

1

2 R

suh that the initial value problem

d

dt

y(t) = h

�

G(y(t); �(t); �(t)); y(t)

�

� y(t) ; y(0) = y

0

; (6.1)

has a unique solution y 2 C

1

([0; t

1

℄;M). �

6.2 Extended Korn's �rst inequality

Theorem 6.2 (Extended 3D-Korn�s �rst inequality)

Let 
 � R

3

be a bounded Lipshitz domain and let � � �
 be a smooth part of the boundary with non vanishing 2-

dimensional Lebesgue measure. De�ne H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g and let F

p

; F

�1

p

2 C

1

(
;GL(3;R)).

Moreover suppose that CurlF

p

2 C

1

(
;M

3�3

). Then

9 

+

> 0 8 � 2 H

1;2

Æ

(
;�) : kr�F

�1

p

(x) + F

�T

p

(x)r�

T

k

2

L

2

(
)

� 

+

k�k

2

H

1;2

(
)

:

Proof. The proof has been presented in [56℄. Note that for F

p

= r� we would only have to deal with the lassial

Korn�s inequality evaluated on the transformed domain �(
). However, in general, F

p

is inompatible giving

rise to a non-Riemannian manifold struture. Compare to [13℄ for an interpretation and the physial relevane

of the quantity CurlF

p

. It omes as no surprise that in �nite plastiity the inompatibility of F

p

should play an

important role. �

Motivated by the investigations in [56℄, it has been shown reently by Pompe [63℄ that the extended Korn's

inequality an be viewed as a speial ase of a general lass of oeriveness inequalities for quadrati forms. He

was able to show that indeed F

p

; F

�1

p

2 C(
;GL(3;R)) is suÆient for (6.2) to hold without any ondition on

the ompatibility.

However, taking the speial struture of the extended Korn's inequality again into aount, work in progress

suggests that ontinuity is not really neessary: instead F

p

2 L

1

(
;GL(3;R)) and CurlF

p

2 L

3+Æ

(
) should

suÆe, whereas F

p

2 L

1

(
;GL(3;R)) alone is not suÆient, see the ounterexample presented in [63℄. The

possible improvement has no bearing on our further development.

6.3 Sharp elliptiity type estimates

Let us gather results that are neessary for the exposition of the stati ase. We need sharp a priori estimates

for ellipti systems of seond order with non-onstant oeÆients in divergene form. Ebenfeld [22℄ has reently

proved the following new sharpened a priori estimate whih we give adapted to our situation and our notation.

Theorem 6.3 (General improved sharp Hilbert spae ellipti regularity )

Let 
 � R

n

be a bounded domain with smooth boundary. Consider the divergene-form linear system

Div C (x):ru = f(x) ; u

j

�


= 0 ; (6.1)

with f 2 H

m;2

(
) and homogeneous boundary data. Let C : 
 � R

3

7! Lin(M

3�3

;M

3�3

) be the elastiity tensor.

Suppose C 2 H

m+1;2

(
) with 2 � (m+ 1) > n and assume that for arbitrary �; � 2 R

n

it holds

9 

+

e

> 0 8 x 2 
 : hC (x):(� 
 �); � 
 �i � 

+

e

� k�k

2

k�k

2

; (6.2)

i.e., that the system is uniformly Legendre-Hadamard ellipti with elliptiity onstant 

+

e

. Assume that the system

admits at least one weak solution u 2 H

1;2

(
). Then the following estimate is valid

kuk

m+2;2;


� C

+

(
; 

+

e

)P (kC k

m+1;2;


)

�

kfk

m;2;


+ kuk

2;


�

; (6.3)

where P : R 7! R is a polynomial of �nite order and the appearing onstant is independent of u; f; C and in

addition C

+

(
; 

+

e

) is bounded above for 

+

e

> 0.

Proof. See [20, 21℄ and ompare with [73, p.75℄ for omparable results on ellipti regularity for linear seond order

ellipti systems on other sales. The main advantage of the new theorem is to preisely trak how the regularity

of the oeÆients enter the ellipti estimate. Preise estimates of this form had not been available previously. �

Now we speialize the general estimate to our situation.
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Theorem 6.4 (Improved Hilbert spae ellipti regularity with L

2

-part)

Assume GA and A 2M. Consider the linear divergene form ellipti system

Div D (A):ru = f(x) ; u

j

�


= g(x): (6.4)

Assume that (6.4) admits at least one weak solution u 2 H

1;2

(
) for all g 2 H

m+2;2

(
) and all f 2 H

m;2

(
).

Then the following estimate is valid:

kuk

m+2;2;


� C

+

(
; kD (A)k

m+1;2;


) �

�

kgk

m+2;2;


+ kfk

m;2;


+ kuk

2;


�

; (6.5)

and the appearing onstant C

+

(
; kD (A)k

m+1;2;


) is uniform on M.

Proof. The transformation v = u� g allows to onsider

Div D (A):rv = f(x) + Div D (A):rg ; v

j

�


= 0: (6.6)

If we apply Theorem 6.3 to (6.6) we get the estimate

kvk

m+2;2;


�C

+

(
; 

+

e

)P (kD (A)k

m+1;2;


)

�

kDiv D (A):rgk

m;2;


+ kfk

m;2;


+ kvk

2;


�

kvk

m+2;2;


�C

+

(
; 

+

e

)P (kD (A)k

m+1;2;


)

�

kD (A)k

m+1;2;


kgk

m+2;2;


+ kfk

m;2;


+ kvk

2;


�

(6.7)

kvk

m+2;2;


�C

+

(
; 

+

e

)P (kD (A)k

m+1;2;


)[1 + kD (A)k

m+1;2;


℄

�

kgk

m+2;2;


+ kfk

m;2;


+ kuk

2;


+ kgk

2;


�

:

This yields for u = v + g

kuk

m+2;2;


�2

�

1 +C

+

(
; 

+

e

)P (kD (A)k

m+1;2;


) [1 + kD (A)k

m+1;2;


℄

�

�

kgk

m+2;2;


+ kfk

m;2;


+ kuk

2;


�

: (6.8)

Now take

C

+

(
; kD (A)k

m+1;2;


) = 2

�

1 + C

+

(
; 

+

e

)P (kD (A)k

m+1;2;


) [1 + kD (A)k

m+1;2;


℄

�

:

This ends the proof sine C

+

(
; 

+

e

) is uniformly bounded above on M by (GA.4) and Theorem 6.3. �

Theorem 6.5 (Uniform estimates for bounded oeÆients)

Assume GA and A 2M. Consider the linear divergene form ellipti system

Div D (A):ru = f(x) ; u

j

�


= g(x): (6.9)

Assume that (6.9) has a unique weak solution u 2 H

1;2

(
) for all g 2 H

m+2;2

(
) and all f 2 H

m;2

(
). In

addition assume that a uniform G�arding type L

2

(
)-estimate on M is available, i.e.,

9 C

M

> 0 : 8 A 2 M : kuk

2;


� C

M

�

�

kgk

m

1

+2;2;


+ kfk

m

2

;2;


�

; (6.10)

with max(m

1

;m

2

) � m. Then the following uniform estimate is true:

kuk

m+2;2;


� C

+

(
;M) �

�

kgk

m+2;2;


+ kfk

m;2;


�

; (6.11)

and the appearing onstant C

+

(
;M) is uniform on M.

Proof. An appliation of Theorem 6.4 will give the result. �
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Theorem 6.6 (Lipshitz ontinuous dependene of solutions)

Assume GA and let A;B 2 M. Assume for the boundary data g

A

; g

B

2 H

m+2;2

(
) and for the body fores

f

A

; f

B

2 H

m;2

(
). Consider the two systems

Div D (A(x)):ru = f

A

(x) + DivV (A) Div D (B(x)):ru = f

B

(x) + DivV (B)

u

j

�


= g

A

(x) u

j

�


= g

B

(x): (6.12)

Assume that both systems verify the assumptions made in Theorem 6.5. Denote the (unique) solutions u

A

; u

B

2

H

1;2

(
), respetively. Then the following estimate holds:

ku

A

� u

B

k

m+2;2;


�C

+

(
;M) �

�

1 + kBk

m+1;2;


+ kg

B

k

m+2;2;


+ kf

B

k

m;2;


�

(6.13)

�

kA�Bk

m+1;2;


+ kg

A

� g

B

k

m+2;2;


+ kf

A

� f

B

k

m;2;


�

;

with C

+

(
;M) uniformly bounded on M.

Proof. Consider

Div D (A(x)):ru = f

A

(x) + DivV (A) Div D (B(x)):ru = f

B

(x) + DivV (B)

u

j

�


= g

A

(x) u

j

�


= g

B

(x): (6.14)

Taking the di�erene of the two equations leads us to onsider

Div D (A(x)):r(u

A

� u

B

) = Div ((D (B(x)) � D (A(x))) :ru

B

)+

f

A

� f

B

+Div(V (A)� V (B)) (6.15)

(u

A

� u

B

)

j

�


= g

A

� g

B

:

By the assumption on A and the elastiity tensor D (A) we know that the system (6.15) has a unique solution

in the di�erene (u

A

� u

B

) for this spei� right-hand side, see (6.18). Together with the regularity assumption

made for A and D (A) in GA we an apply Theorem 6.5 to (6.15) and get the estimate

ku

A

� u

B

k

m+2;2;


� C

+

(
;M)�

�

kDiv(D (B) � D (A)):ru

B

k

m;2;


+

kDiv(V (B)� V (A))k

m;2;


+ (6.16)

kg

A

� g

B

k

m+2;2;


+ kf

A

� f

B

k

m;2;


�

ku

A

� u

B

k

m+2;2;


� C

+

(
;M)�

�

kD (A) � D (B)k

m+1;2;


� ku

B

k

m+2;2;


+

kV (B)� V (A)k

m+1;2;


+ (6.17)

kg

A

� g

B

k

m+2;2;


+ kf

A

� f

B

k

m;2;


�

:

Again with Theorem 6.5 applied to the solution u

B

we have

ku

B

k

m+2;2;


� C

+

(
;M) �

�

kg

B

k

m+2;2;


+ kf

B

k

m;2;


+ kV (B)k

m+1;2;


�

: (6.18)

Combining these two estimates and using (GA.5) for D ; V ends the argument. �

Corollary 6.7 (Lipshitz ontinuous solution operator; time dependent oeÆients)

Assume that for a given family M := fA

t

2 Mj t > 0g, the family of related elastiity tensors D (A

t

) veri�es all

onditions of Theorem 6.5. De�ne G := fg 2 H

m+2;2

(
)j kgk

m+2;2;


� K

2

g and F := ff 2 H

m;2

(
)j kfk

m;2;


�

K

3

g. Let the boundary data g

t

2 G and the body fores f

t

2 F be given. Then the family of orresponding linear

ellipti systems

Div D (A

t

):r'

t

= f

t

(x) + DivV (A

t

) ; '

t

j

�


= g

t

(x) ; (6.19)

allows for a Lipshitz-ontinuous solution operator T on M �G� F suh that '

t

= T (A

t

; g

t

; f

t

) and

kT (A; g

A

; f

A

)� T (B; g

B

; f

B

)k

m+2;2;


�

C

+

(
;M) �

�

1 + kBk

m+1;2;


+ kg

B

k

m+2;2;


+ kf

B

k

m;2;


�

(6.20)

�

kA�Bk

m+1;2;


+ kg

A

� g

B

k

m+2;2;


+ kf

A

� f

B

k

m;2;


�

;
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for A;B 2 M; g

A

; g

B

2 G; f

A

; f

B

2 F. The orresponding Lipshitz onstant L

+

on M � G � F is a bounded

funtion of the form

L

+

= L

+

�

C

+

(
;M) ; K

2

; K

3

�

: (6.21)

Hene a family of ellipti systems of the above type has orresponding solution operators with uniform Lipshitz-

onstant whenever kAk

m+1;2;


; kg

A

k

m+2;2;


; kf

A

k

m;2;


are bounded due to Theorem 6.5. �

Remark 6.8 (Nonlinear solution operator)

Let A

t

2 M and f

t

; g

t

as before. Then (f

t

; g

t

) 7! T (A

0

; g

t

; f

t

) is linear and A

t

7! T (A

t

; g

0

; f

0

) is nonlinear. Hene

the solution depends nonlinearly on the elastiity tensor although the problem is linear for frozen (�xed at time

t

0

) elastiity tensor D (A

t

0

). �
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