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Abstract

This paper establishes the existence of minimizers to a finite-strain, geometrically exact
Cosserat plate model. The membrane energy of the investigated model is a quadratic,
uniformly Legendre-Hadamard elliptic energy in contrast to classical approaches. The
bending contribution is augmented by a curvature term representing an additional stiffness
of the Cosserat theory and the corresponding nonlinear system of balance equations remains
of second order. The lateral boundary conditions corresponding to simple support are
non-standard. The model includes size effects, transverse shear resistance, drilling degrees
of freedom and accounts implicitly for thickness extension and asymmetric shift of the
midsurface. The formal thin shell ”membrane” limit without classical h3-bending term
is non-degenerate due to the additional Cosserat curvature stiffness and control of drill
rotations. In this formulation, the drill-rotations are strictly related to the size-effects of
the Cosserat bulk model and not introduced artificially for numerical convenience. Upon
linearization with zero Cosserat couple modulus pu. = 0 exclusively, we recover the well
known infinitesimal-displacement Reissner-Mindlin model without size-effects and without
drill-rotations.

It is shown that this new finite-strain Cosserat plate formulation is well-posed for p. = 0
by means of the direct methods of variations. The midsurface deformation m is found in
H'(w,R?). Decisive use is made of a dimensionally reduced version of an extended Korn’s
first inequality proved by the author.
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1 Introduction

1.1 Some aspects of shell theory

The dimensional reduction of a given continuum-mechanical model is already an old and mature
subject and it has seen many ”solutions”. The different approaches toward elastic shell theory
proposed in the literature and relevant references thereof are, therefore, too numerous to list
here. The investigated model herein falls within the so called derivation approach, i.e.,
reducing a given three-dimensional model via physically reasonable constitutive assumptions on
the kinematics to a two-dimensional model. This is opposed to either the intrinsic approach
which views the shell from the onset as a two-dimensional surface and invokes concepts from
differential geometry or the asymptotic methods which try to establish two-dimensional
equations by formal expansion of the three-dimensional solution in power series in terms of a
small parameter. The intrinsic approach is closely related to the direct approach which takes
the shell to be a two-dimensional medium with additional extrinsic directors in the sense of a
restricted Cosserat surface [CC09].} There, two-dimensional equilibrium in appropriate new
resultant stress and strain variables is postulated ab-initio more or less independent of three-
dimensional considerations, cf. [Ant95, GNW65, ET58, CD66b, CD66a, CW89, Rub00, PG89].

A detailed presentation of the different approaches in classical shell theories can be found in
the monograph [Nag72]. A thorough mathematical analysis of linear, infinitesimal-displacement
shell theory, based on asymptotic methods is to be found in [Cia98a] and the extensive references
therein, see also [Cia97, Cia99, Ant95, DS96, Dik82, CSP95]. Excellent reviews and insightful
discussions of the modelling and finite element implementation may be found in [SB92, San95,
SB98, GSW89, GT92, WG93, BGS96, BR92] and in the series of papers [SF89, SFR89, SFR90,
SRF90, SK92, SF92]. Properly invariant, geometrically exact, elastic plate theories are derived
by formal asymptotic methods in [FRS93]. This formal derivation is extended to curvilinear
shells in [Mia98, LM98]. Apart from the pure bending case [FJMO02], which is rigourously
justified as the I'-limit [Mas92] of the three-dimensional model and which can be shown to
be intrinsically well-posed, the obtained finite-strain models have not yet been shown to be
well-posed. Indeed, the membrane energy contribution is notoriously not Legendre-Hadamard
elliptic. The membrane model justified in [DR96] by I'-convergence is geometrically exact and
quasiconvex/elliptic but unfortunately does not coincide upon linearization with the otherwise
well-established infinitesimal-displacement membrane model. Moreover, this model does not
describe the detailed geometry of deformation in compression but reduces to a tension-field
theory [Ste90].

There is no place here to comment further on the relative merits of each alternative approach.
The ”rational” of descend from three to two dimensions should in any case be complemented
by an investigation of the intrinsic mathematical properties of the obtained reduced models.
Today, the need to simulate the mechanical response of highly flexible thin structures allowing
easily for finite rotations excludes the use of classical infinitesimal-displacement models, either
of Reissner-Mindlin (5.11) or Kichhoff-Love type (5.14). Also, certain ”intermediary” models
allowing in principle for buckling like the "nonlinear” von Karmén plates [Cia97, p.403] and
penalized "nonlinear” Reissner-Mindlin models [Dhi95]* or ”semilinear” Kirchhoff-Love plate
models [Mon03] are not geometrically exact (not frame-indifferent). Nevertheless, the nonlinear
von Kérman plate has been succesfully applied to the delamination problem of thin films [0G94,
G097, GDOCO02].

Mielke [Mie95] established in the infinitesimal-displacement context that by using more than
five ansatz-functions in a director model it is possible to obtain exponential decay estimates
for the boundary layer and to establish therefore a St.Venant principle for linearized plates.
While it is not clear how his methods can be transferred to the finite-strain case, they provide,
independent of mechanical/physical considerations, a strong motivation to use a director ansatz
also in the finite-strain case in order to better capture the boundary layer phenomena.

Indeed, so called shear-deformable theories with independent directors are usually preferred
in the engineering community [AMZ02, CB03]. In view of an efficient finite element implemen-
tation one considers a hyperelastic, variationally based formulation with second-order Euler-

IRestricted, since no material length scale usually enters the direct approach, only the relative thickness
h appears in the model. In terminology I distinguish between a ”true” Cosserat model operating on SO(3,R)
and theories with any number of directors.

2Conceptually a von Kérmén plate with one independent director d and addition of a penalisation term

e ((J, 8mm>2 + (d, 8ym)2) , e — 00 with m the sought midsurface deformation.



Lagrange equations and uses standard C°-conforming elements. The prototype examples are
models based on the Reissner-Mindlin kinematical assumption. There are numerous proposals
in the engineering literature for a finite-strain, geometrically exact plate formulation, see e.g.
[FS92, SB92, SB95, SB98, WG93, BGS96, BR92]. In many cases the need has been felt to de-
vote specific attention to proper rotations R € SO(3, R), since finite rotations are the dominant
deformation mode of a flexible structure. This has led to the so called drill-rotation for-
mulation which means that proper rotations either appear in the formulation as independent
fields (leading to a restricted Cosserat surface) or they are an intermediary ingredient [HB89]
in the numerical treatment (constraint Cosserat surface). While the computational merit of
this approach is well documented, a mathematical analysis for such a family of finite-strain
plate models is yet missing, both for the Cosserat surface and the constraint model. It may be
speculated that those restricted Cosserat plates (obtained from classical non-polar bulk models
or from direct modelling) though geometrically exact and allowing for transverse shear and the
description of boundary layers, might not be well posed for certain membrane strain measures
either, notably if Green-strains: FZF — 1l or Hencky-strains: In F7 F are used. Another draw-
back from a modelling point of view is that the inclusion of drill-rotations is most often done
in an ad-hoc fashion.

1.2 Limitations of existing shell models

The classical infinitesimal-displacement or finite-strain plate-models proposed in the literature
lead to effective numerical schemes only if the relative thickness h of the structure is still
appreciable, i.e. classical bending terms are present and regularize the computation. However,
there is an abundance of new applications where very thin (absolutely thin) structures are used,
e.g. very thin metal layers on a substrate (in computer hardware, for the characteristic relative
thickness h < 5-107*). In these cases, classical bending energy, which comes with a factor of
h? compared with the membrane energy contribution, cannot play a stabilizing role for non-
vanishing membrane energy. See [BJ99] for such a problem occurring in thin films. But, as
we noted already, the membrane terms e.g. in a finite-strain, invariant Kirchhoff-Love plate
[FRS93] or finite-strain Reissner-Mindlin model [FS92] are non-elliptic (degenerated) and the
remaining minimization problem might not be well-posed even if classical bending is included.

It is also observed experimentally that very thin structures behave comparably stiffer
than absolutely thicker structures while both have the same relative thickness. These non-
classical size effects cannot be neglected for very thin structures [CCCt03]. Such effects are,
however, not accounted for in classical theories.

In addition, classical infinitesimal-displacement or finite-strain shell models predict unre-
alistically high levels of smoothness, typically m € Wh%(w,R?) for the midsurface m in both
finite-strain Kirchhoff-Love and Reissner-Mindlin models and m € H?(w,R?) in the finite-strain
pure bending problem [FJMO02] and the von Kdrméan model. This implies at least C%*(w) for
the midsurface which rule out the description of boundary layer effects and possible failure
along asymptotic lines of the surface.

1.3 Scope of study

I have therefore proposed a new shell model (described in (4.1)) for very thin almost rigid
materials which should remedy some of the aforementioned shortcomings with a view towards
a subsequent stringent mathematical analysis and possible stable finite element implementation.
It is the goal to provide a model which is both theoretically and physically sound, such that its
numerical implementation can concentrate on real convergence issues. Let me summarize what
I require of a general, all purpose, consistent first approximation plate model. I require

1. A finite-strain formulation which is geometrically exact and allows for finite rotations.

2. The description of transverse shear, drill rotations, thickness stretch and asymmetric shift
of the midsurface. This excludes normality assumptions for some director.

3. A qualitative resolution of the boundary layer and edge effect compared with the bulk
model.

4. Well-posedness: existence, but not unqualified uniqueness in order to be able to describe
buckling due to membrane forces, e.g. under lateral compression or lateral shear and
avoiding unqualified smoothness for the midsurface, requiring only m € H*2(w,R?).



5. A hyperelastic, variational formulation with second-order Euler-Lagrange equations in
view of an efficient finite element implementation with standard C°-conforming elements.

6. A reduced energy density which is defined in terms of two-dimensional quantities with
a clear physical meaning of these reduced two-dimensional quantities. Maximally h®-
bending contributions.

7. The incorporation of non-classical size effects without leading to trivial compactness ar-
guments for the the midsurface m.> The model must also be ”operative” without the
classical h3-bending contribution, i.e. in the formal "membrane” thin shell limit.

8. The consistency with classical plate models (infinitesimal displacement Reissner-Mindlin
(5.11), infinitesimal-displacement Kirchhoff-Love (5.14)) upon linearization and consis-
tency with rigourously justified finite-strain Kirchhoff-Love bending model [FIM02, FRS93]
in pure bending for large samples (classical limit of vanishing internal length L.).

1.4 Outline of this contribution

The basic idea to meet these requirements for a plate model is to descend from a three-
dimensional Cosserat model. First, we introduce therefore in section (2) the underlying ” parent”
three-dimensional finite-strain frame-indifferent Cosserat model with size effects and already
appearing independent microrotations R, i.e. a triad of rigid directors (R, |Rz|R3) =
R € SO(3,R) and we recall the obtained existence results for this Cosserat bulk model. We
then provide the restriction of the bulk model to a thin domain (3.1) on which the reduction
is based. Applying our ”rational” of dimensional descend we postulate in section (4.1) the full
two-field minimization problem for the new Cosserat plate model [Nef03a, NefO4a]. It must be
observed that the resulting Cosserat plate model cannot be obtained from a simple energy
projection, such that the already obtained three-dimensional results do not apply.

The corresponding equilibrium problem defined over the two-dimensional referential domain
w C R? has six degrees of freedom (three for the midsurface deformation m : w — R?® and three
for the independent rotations R : w ~ SO(3,R), 6 dof) and constitutes a nonlinear, partial
differential elliptic system of six equations for basically six unknown functions. The derivation
of these Euler-Lagrange equations is standard and therefore not presented. The model includes
naturally one-drilling degree of freedom for in-plane rotations and accounts for thickness stretch
and transverse shear. The drilling degree is strictly related to the size-effect of the bulk model
and not specifically introduced in an ad hoc fashion by the dimensional reduction. The model
features also a non-standard boundary condition, which is called consistent coupling.

In section (4.3), we derive a new Korn’s first inequality for plates and elasto-plastic shells
which is decisive for the mathematical treatment of models obtained in our variational context.
Depending on material constants and boundary conditions, different mathematical existence
theorems are proposed in section (4.4). Generically, we obtain for the midsurface deformation
m € H'?(w, R®). For these results the direct methods of variations are used.

The quasiconvexity of the reduced energy functional I(m, R) in the pair (m, R) is rather
easy to see, however, unqualified coercivity [PGC91]* w.r.t. the midsurface deformation m
depends crucially on the uniform positivity of the Cosserat couple modulus p, > 0. The
simpler existence of minimizers in this case is established elsewhere [Nef03a, Nef04a].

For zero Cosserat couple modulus g, = 0, the lack of unqualified coercivity, however, can
only be overcome by a certain control of the curvature in conjunction with the new Korn’s
inequality for plates.

In order to treat external loads for zero Cosserat couple modulus u. = 0, the resultant load
functional II has to be adapted. This modification, which is already needed in the Cosserat
bulk model, has been termed there ”principle of bounded external work” [Nef04c| and
expresses the observation that by simple translation of a solid in a force field only a finite amount
of energy can be gained which is certainly true for any classical physical field. If we want to treat
the non-standard boundary condition of very weak consistent coupling, we need to augment
the energy functional with an additional curvature control on the lateral Dirichlet boundary
Yo. The mathematical analysis is also extended to a new Cosserat plate model appropriate for
large stretch which has appealing physical features.

3Adding a second derivative L% ||[D?m|[P to the energy density would ”resolve” all mathematical difficulties
but lead to m € W2P(w,R3).
“In finite elasticity: W (F) > ¢ ||F|]P —cf, p > 2.



In order to relate the new finite-strain Cosserat plate model to classical approaches, we show
then, that a linearization of the new plate model with zero Cosserat couple modulus p, =
0 results in the classical infinitesimal-displacement Reissner-Mindlin model (without extra
size effects and therefore without drill-rotations) and shear correction factor k = 1. However,
weaker boundary conditions for the increment of the director in the linearized infinitesimal-
displacement Reissner-Mindlin model (5.11) are motivated. Nevertheless, this new boundary
condition reduces to the classical condition on the increment of the normal in the linearized
Kirchhoff-Love model (5.14). Finally, the treatment of external loads is detailed.

1.5 Notation
1.5.1 Notation for bulk material

Let Q C R? be a bounded domain with Lipschitz boundary 05 and let ' be a smooth subset of
O with non-vanishing 2-dimensional Hausdorff measure. For a,b € R® we let (a,b)ys denote
the scalar product on R® with associated vector norm ||a||%: = (a,a)ps. We denote by M**?
the set of real 3 x 3 second order tensors, written with capital letters. The standard Euclidean
scalar product on MP*? is given by (X,Y)ymxs = tr [XYT], and thus the Frobenius tensor
norm is || X||> = (X, X)ysxs. In the following we omit the index R®, M3*3. The identity tensor
on MP*3 will be denoted by 1L, so that tr [X] = (X, 1) and tr[X]* = (X, 1L)>. We let Sym and
PSym denote the symmetric and positive definite symmetric tensors respectively. We adopt the
usual abbreviations of Lie-group theory, i.e., GL(3,R) := {X € M3*3 |det[X] # 0} the general
linear group, SL(3,R) := {X € GL(3,R) |det[X] = 1}, O(3) := {X € GL(3,R) | XTX =
1}, SO(3,R) := {X € GL(3,R) |XTX = 1, det[X] = 1} with corresponding Lie-algebras
50(3) := {X € M?*3 | XT = — X} of skew symmetric tensors and sl(3) := {X € M**? |tr [X] =
0} of traceless tensors. With Adj X we denote the tensor of transposed cofactors Cof(X) such
that Adj X = det[X] X~ = Cof(X)T if X € GL(3,R). We set sym(X) = +(X” + X) and
skew(X) = $(X — X7T) such that X = sym(X) + skew(X). For X € M?*3 we set for the
deviatoric part dev X = X — £ tr[X]1 € s[(3) and for vectors £, € R™ we have the tensor
product (§ ®n)i; = & nj-

We write the polar decomposition in the form F' = RU = polar(F)U with R = polar(F)
the orthogonal part of F. For a second order tensor X we define the third order tensor h =
D X (z) = (V(X(z).e1),V(X(z).€2), V(X (x).e3)) = (h',h%,5%) € MB*3 x M3X3 x MB*3 =
%(3). For third order tensors h € T(3) we set [|p||> = 327, ||h¥]|*> together with sym(h) :=
(symb',symh?, symb3) and tr[h] := (tr [h'], tr [h?],tr [h3]) € R3. Moreover, for any second
order tensor X we define X -h := (Xh*, X2, Xh?) and h- X, correspondingly. Quantities with a
bar, e.g. the micropolar rotation R, represent the micropolar replacement of the corresponding
classical continuum rotation R. In general we work in the context of nonlinear, finite-strain
elasticity. For the total deformation ¢ € C''(Q2, R?) we have the deformation gradient F' = Vi €
C(Q,M>*3). Furthermore, S;(F) = DpW (F) and So(F) = F~1DpW (F) denote the first and
second Piola Kirchhoff stress tensors, respectively. Total time derivatives are written %X (t) =
X. The first and second differential of a scalar valued function W (F) are written DpW (F).H
and D%W (F).(H, H), respectively. We employ the standard notation of Sobolev spaces, i.e.
L2(Q), HY2(Q), HY*(Q), Wh4(Q), which we use indifferently for scalar-valued functions as well
as for vector-valued and tensor-valued functions. The set W14(Q,SO(3,R)) denotes orthogonal
tensors whose components are in W%(2). Moreover, we set ||X||o = sup,cq || X (z)]|. For
A € CY(Q,M?*3) we define Curl A(z) as the operation curl applied row wise. We define
H3*(Q,T) := {¢ € H"*(Q) | ¢}, = 0}, where ¢, = 0 is to be understood in the sense of traces
and by C3°(€2) we denote infinitely differentiable functions with compact support in 2. We use
capital letters to denote possibly large positive constants, e.g. CT, K and lower case letters
to denote possibly small positive constants, e.g. ¢T,dT. The smallest eigenvalue of a positive
definite symmetric tensor P is abbreviated by Amin (P).

1.5.2 Notation for plates and shells

Let w C R? be a bounded domain with Lipschitz boundary dw and let vy be a smooth subset
of Ow with non-vanishing 1-dimensional Hausdorff measure. The thickness of the plate is taken
to be h > 0 with dimension length (contrary to Ciarlet’s definition of the thickness to be
2¢, which difference leads only to various different constants in the resulting formulas). We
denote by M™*™ the set of matrices mapping R* — R™. For H € M?*? and ¢ € R® we



employ also the notation (H|¢) € M?*3 to denote the matrix composed of H and the column
&. Likewise (v|€|n) is the matrix composed of the columns v,&,n. This allows us to write
for p € C'R*,R?) : Vo = (palpyle:) = (0:010y¢|0:¢). The identity tensor on M**? will

By B O
be denoted by 1l,. For B € M?*? we define B® = | By; By, 0| € MP*?. The mapping
0 0 O

m :w C R? — R? is the deformation of the midsurface, Vm is the corresponding deformation
gradient and i, is the outer unit normal on m. A matrix X € M?*3 can now be written
as X = (X.ez|X.e2|X.e3) = (X1|X2|X3). We write v : R? — R® for the displacement of the
midsurface, such that m(z,y) = (z,y,0)? + v(x,y). The standard volume element is written
dxdydz = dV = dwdz.

2 The underlying finite-strain three-dimensional Cosserat
model in variational form

In [Nef03b] a finite-strain, fully frame-indifferent, three-dimensional Cosserat micropolar model
is introduced. The two-field problem has been posed in a variational setting. The task is to find
a pair (p,R) : Q2 C R® = R® x SO(3,R) of deformation ¢ and independent microrotation
R € SO(3,R) minimizing the energy functional I,

(. F) = / W (BT Vip) + Weurs (B DLR) — L () — Iy (B) AV
Q

—/HN(go) dS — [T (R)dS = min. w.r.t. (¢, R), (2.1)

Fs FC

together with the Dirichlet boundary condition of place for the deformation ¢ on I': . = ga
and three possible alternative boundary conditions for the microrotations R on I,

Ry, the case of rigid prescription,
R, = { polar(Vyp), the case of consistent coupling, (2.2)
no condition for R on I', induced Neumann-type relations for R on I'.

The constitutive assumptions on the densities are

_ _ _ A _ 9
Wap (@) = gl sym(@ — W) + e || skew(D)|? + 5 tr [sym(@ - ))*, T=R"F, F = Vp,

L1+p ) . 1+p
Weurv () = p i2 (1+ aq LY||1R|1Y) (a5 | sym &% + ag || skew £]|? + a7 tr [ﬁ]Q) : , (2.3)

A=R DR := (RTV(R.el),RTV(R.eg),RTV(R.eg)) , the third order curvature tensor.

The total elastically stored energy W = Wyp + Weury is quadratic in the stretch U and possibly
super-quadratic in the curvature K. The strain energy Wp,, depends on the deformation gradient
F = Vi and the microrotations B € SO(3,R), which do not necessarily coincide with the
continuum rotations R = polar(F'). The curvature energy We,rv depends moreover on the
space derivatives Dy R which describe the self-interaction of the microstructure.® In general, the
micropolar stretch tensor U is not symmetric and does not coincide with the symmetric
continuum stretch tensor U = RTF = VFTF. By abuse of notation we set ||sym &|? :=
S22 | |lsym &|| for third order tensors &, cf.(1.5.1).

Here 2 C R? is a domain with boundary 0Q and T' C 09 is that part of the boundary,
where Dirichlet conditions gq, Rq for deformations and microrotations or coupling conditions
for microrotations, are prescribed. I's C 9 is a part of the boundary, where traction boundary
conditions in the form of the potential of applied surface forces Il are given with TNT'g = 0.
In addition, I'c C 912 is the part of the boundary where the potential of external surface couples
I, are applied with I N T = (). On the free boundary 992\ {T' UT's U ¢} corresponding

natural boundary conditions for (p, R) apply. The potential of the external applied volume

50bserve that B V(R.e;) £ R 0z, R € s0(3,R).



force is II; and II5s takes on the role of the potential of applied external volume couples. For
simplicity we assume

for the potentials of applied loads with given functions f € L%(Q,R3?), M € L?(Q,M3*3), N €
Lz(Fs,R3), M. € L2(F0,M3X3).

The parameters g, A > 0 are the Lamé constants of classical isotropic elasticity, the addi-
tional parameter p. > 0 is called the Cosserat couple modulus. For u. > 0 the elastic strain

energy density Wmp (_U ) is uniformly convex in U. Moreover®

— —T T . —
VE € GLY(3,R) : Wip(T) = Wanp(R' F) > pie [R' F — 1|]* = e | F — B

>pu. inf  ||F = R|]? = p.dist?(F R 2.
> p Regl(g,R)” R||* = p. dist™(F, O(3, R)) (2.5)

= 1c dist? (F,SO(3, B)) = pu. ||F — polar(F)||” = | — L|P.

In contrast, for u, = 0 the strain energy density is only convex w.r.t. F' and does not satisfy
(2.5).

The parameter L. > 0 (with dimension length) introduces an internal length which is
characteristic for the material, e.g. related to the grain size in a polycrystal. The internal
length L. > 0 is responsible for size effects in the sense that smaller samples are relatively
stiffer than larger samples. We assume throughout that as > 0,ag > 0, a7 > 0. This implies
the coercivity of curvature

It >0 VRETB): Weun(R) >t |81, (2.6)

which is a basic ingredient of the mathematical analysis.

The non-standard boundary condition of consistent coupling ensures that no unwanted
non-classical, polar effects may occur at the Dirichlet boundary I'. It implies for the micropolar
stretch that U|F € Sym and for the second Piola-Kirchhoff stress tensor Sy := F~1DpWy,, (U) €
Sym on I as in the classical, non-polar case.

We mention, that a linearization of this Cosserat bulk model with p. = 0 for small dis-
placement and small microrotations completely decouples the two fields of deformation and
microrotations and leads to the classical linear elasticity problem for the deformation.” For
more details on the modelling of the three-dimensional Cosserat model we refer the reader to
[NefO3b].

2.1 Mathematical results for the three-dimensional Cosserat bulk prob-
lem

For conciseness we state only the obtained results for the case without external loads. It can
be shown [Nef04a]:

Theorem 2.1 (Existence for 3D-finite-strain elastic Cosserat model with p. > 0)
Let Q C R® be a bounded Lipschitz domain and assume for the boundary data gq € H*(Q2,R?)
and Ry € W1’1+”(Q,SO(3,]R§)_). Then (2.1) with p. > 0, a4 > 0,p > 1,q > 0 and either

free or rigid prescription for R on I' admits at least one minimizing solution pair (p,R) €
HY(Q,R?) x WhP(Q,SO(3,R)). [ |

Using the extended Korn’s inequality Theorem 8.1, the following has been shown in [NefO3b,
Nef04c]:

Theorem 2.2 (Existence for 3D-finite-strain elastic Cosserat model with ;. = 0)

Let Q C R? be a bounded Lipschitz domain and assume for the boundary data gq € H*(Q2,R?)
and Rq € WHtrPte(Q SO(3,R)). Then (2.1) with p. = 0,y > 0,p > 1,q > 1 and
either free or rigid prescription for R on T' admits at least one minimizing solution pair
(p, R) € HY(Q,R?) x Whitrte(Q SO(3,R)). [

6The condition F € GL%(3,R) is necessary, otherwise ||[FF — polar(F)||> = dist?(F,0(3,R)) <
dist?(F,SO(3,R)), as can be easily seen for the reflection F' = diag(1,—1,1).

"Thinking in the context of an infinitesimal-displacement Cosserat theory one might erroneously believe that
e > 0 is strictly necessary also for a ”true” finite-strain Cosserat theory.



3 Formal dimensional reduction of the Cosserat bulk model

3.1 The three-dimensional Cosserat problem on a thin domain

The basic task of any shell theory is a consistent reduction of some presumably ”exact” 3D-
theory to 2D. The general three-dimensional problem (2.1) will now be adapted to a shell-like
theory. Let us assume that we are given a three-dimensional absolutely thin domain

h h
Qi=wx[-=,=], wCR, (3.1)
2°2
with transverse boundary 9Qi" = w x {—%, %} and lateral boundary 9Q}* = dw x

[—%, %], where w is a bounded domain in R? with smooth boundary Ow and h > 0 is the

thickness. Moreover, assume we are given a deformation ¢ and microrotation RM,
3 3 H3d 3
p: QB CR —» R, R :Qp CR — SO(3,R), (3.2)

solving the following two-field minimization problem on the thin domain j,:

(¢, Vip, B, D R) = / Wi (T) + Woary (8) — (f, ) AV — / (N, ) dS — min . w.rt. (0,5,
Qpn

oQyremsU{ys <[~ 3,51}

— T h
U=R F7 ()O\Fh :gd(mayaz)a Fg:’YO X[— ’YOC@W: 78070:w7
0

57 5]7
E\rg = polar(Vip), strong consistent coupling boundary condition, (3.3)

— — . — o A — 2
Wanp(@) = o l[sym(@ = W) + pee || skew(@)|[* + 5 tr [sym(@ — 1)},
Litp . ‘ 2\ 5P
Wear(®) = p == (1+ g LL|AIIY) (s [lsym S + as || skew | + ar tr[8]°) 7

A=R DR = (FTV(Rel),RTV(Rez),RTV(Reg)) .

Without loss of mathematical generality we assume that M, M. = 0in (2.4), i.e. that no external
volume or surface couples are present in the bulk problem. We want to find a reasonable

S —=3d, . . . . ”» .
approximation (ps, Rs) of (¢, R") involving only two-dimensional quantities. For us, this
dimensional reduction is based on a formal dimensional reduction ”rational”, which is
characterized as follows:

1. A quadratic ansatz through the thickness for the three-dimensional deformation:
vs(z,y,2) = m(z,y) + (z0m + éjgb)JWith m the deformation of the midsurface, i.e.
normals to the undeformed midsurface remain straight, but may be elongated and
the midsurface may be asymmetrically shifted. The rotations are assumed to be

. —3d s - .
constant over the thickness: & (z,y,2) = Rs(x,y) = R(x,y). Restriction of the director
d to the third column Rj3 := R.e3 of the already appearing microrotations.

2. Exact analytical determination of the two leading coefficients g,,, op from the three-
dimensional transverse boundary condition on the upper and lower face of the plate in
terms of the quadratic ansatz, independent of the Cosserat couple modulus p.. Sim-
plification of the formulas for g,,, 0, in view of an assumed almost rigid (u, A > 1)
behaviour (4.8). Replaces ”Condensation of the material law: o33 = 0” in the classical
infinitesimal-displacement theory.

3. Analytical integration of the bulk energy through the thickness with an approximated
expression Fy = (Vm|on, R3) + z (VR3|opR3) for the reconstructed deformation gradi-
ent Vipg, consistent with a linear ansatz through the thickness to obtain a dimensionally
reduced energy density I(ps, F's, Ry, DyRs). Amounts to ” Typical inconsistency of deriva-
tion with naive energy projection.”

4. Non-standard Dirichlet boundary conditions for simple support: no direct pre-
scription of a director at the lateral Dirichlet boundary 7, instead requiring only a weak
coupling condition to the extent that no polar effects may occur at the Dirichlet bound-
ary, possibly weakening the boundary layer: ”Avoiding the typical problem of Cosserat



theories as regards formulation of boundary conditions.” Alternative Dirichlet boundary
conditions are also possible: classical rigid director prescription: d = R.e3 prescribed
at yo (clamped).

4 The new formal finite-strain Cosserat thin plate model
with size effects

4.1 Statement of the formal Cosserat plate model

The proposed formal "rational” of dimensional descend leads us to postulate the following
two-dimensional minimization problem for the deformation of the midsurface m : w C R? — R3
and the microrotation of the plate (shell) R:w C R? — SO(3,R) on w:

_ _ h3
I(m, R) = / h me(U)-l-h Wcurv(ﬁs) + E Wbend(ﬁb) dw

—II(m, R3) = min. w.r.t. (m,R), (4.1)
under the constraints
R'F, F=(Ym[Rs) e M>*, (4.2)

U-
8o = (R (V(Ree)|0). B (V(Rea) 0). B (V(Res)|0) € T(3), 5 = 5,

and the boundary conditions of place for the midsurface deformation m on the Dirichlet part
of the lateral boundary ~o,

my, = ga(z,y,0), simply supported (fixed, welded). (4.3)
The three possible alternative boundary conditions for the microrotations R on v are

EHO = polar((Vm|Vga(z,y,0).e3)) strong form of reduced consistent coupling, (4.4)

VAeCy®(v,s0(3,R)) :

o 7

/ (RT (Vm(z,y)|Vga(z,y,0).e3), A(z,y))ds =0, very weak consistent coupling,
Yo
5} v.gd(m7y70)'63

R; = , rigid director prescription.
o ||v9d(may70)63||

The constitutive assumptions on the reduced densities are®

— — . — HA — 2
Winp(U) = [l sym(U = W)|I* + pec || skew (0)]|* + A [sym(U — 1)] (4.5)
= p || sym((Ba|Rs)"Vin — o) | +puc || skew((By[R2)" Vin)|?
shear—stre‘trch energy first ordervdrill energy
K(p + — P R— 2 A — = 2
+ Klp + o) ((Rg,mz> + (R3,my) ) 2y [sym((R1|R2)" Vi — 11,)],
2 o 2u+ A« —_ .
classical transvg;se shear energy elongational stretch energy
Li+r A . A
Wear(Rs) = n=5= (L+ au LEIR,)|%) (s || sym &1 + as || skew &I + az tr[&]7) ©

& = (R'(V(R.e1)[0), B (V(R.e2)[0), R (V(Rees)[0) ) ,

8 = (AL, 82 &%) € T(3), the reduced third order curvature tensor,

Whena(8) = pu || sym(8)|[1* + pre || skew(85)[|* + tr [sym ()],

]
24+ A

R = ET(VR3|O) = &3 the second order non-symmetric bending tensor .

8| skew((R1|R2)TVm)||2 = ((R1,my) — (R2,ma))”.
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The (relative) thickness of the plate (shell) is & > 0. The total elastically stored energy density
due to membrane-strain, total plate-curvature and specific plate-bending

h3
W = h”mp +h Weury + Whend » (46)
—— ——— 12

membrane curvature bending
depends on the midsurface deformation gradient Vi and microrotations R together with their
space derivatives only through the frame-indifferent measures U and £,. The micropolar
stretch tensor U of the plate is in general non-symmetric, neither is the micropolar
reduced third order curvature tensor £;. The three-dimensional plate deformation is
reconstructed as

22 —
e, = mie) + (20nle.0) + 5 o)) Raes. (@)
where

A = (Naigr, R3) A — (Naigr, R3)

=1- Vm|0),R) = 2| + —— = 1——tr (U —-1| + ——=

om 2u+/\[<( m(0), ) - 2] 2+ \) 2u+/\r[ | 2+ N

first order thickness chang:due to elongational stretch
oY 75 (Nresaﬁ3> )\ <Nres;R3>

— VERs|0),R) + e 80 tr [Ry] 4 xesr 18] 48
% 2 x (VEs[0), B + 5 2 TS R Y (48)

~
non-symmetric shift of the midsurface due to bending

and Ngifr, Nyes as defined in (5.2). To first order, the reconstructed deformationgradient is given
by Fs = (Vm|om R3). Here w C R? is a domain with boundary dw and vy C dw is that part
of the boundary, where Dirichlet conditions gq for deformations and microrotations and/or
consistent coupling conditions for microrotations, respectively, are prescribed. The reduced
external loading functional II(m, R3) is a linear form in (m, R3) defined in (5.19) in terms of
the underlying three-dimensional loads. The parameters p, A > 0 are the Lamé constants of
classical elasticity, p. > 0 is called the Cosserat couple modulus and L, > 0 introduces the
internal length. We assume throughout that as > 0,as > 0,7y > 0. We have included the
so called shear correction factor x (0 < x < 1) to keep in line with classical infinitesimal-
displacement plate models (5.11). In our formal derivation, however, we obtain £ = 1. The
reduced model (4.1) is fully frame-indifferent, meaning that

VQ€ESOB,R) 1 Winp(QF,QR) = Wap(F,R), £:(QR) = &:(R). (4.9)

The non-invariant term g, is only needed to reconstruct the 3D-deformation, which depends
on the non-invariant loading.® Strain and curvature parts are additively decoupled, as in
the underlying parent model (2.1). We note the appearance of the harmonic mean #H and
arithmetic mean A4

1 é)_ UA
27 2u+ M\’

M+ fhe

5 (4.10)

kA, pre) = &

4.2 The different cases for the Cosserat plate

As in the three-dimensional case [Nef03b], we may distinguish five different situations: (different
values of p,q compared with the three-dimensional case)

I ue > 0,24 >0,p>1,q>0. Unconditional coercivity and unqualified existence, posi-
tive Cosserat couple modulus. Fracture excluded.

II: e =0,a4 =0,p > 1, q > 0. Conditional coercivity, zero Cosserat couple modulus.
Fracture excluded.

III: pe = 00, a4 > 0, p > 1, q > 0. Constrained gradient Cosserat micropolar plate prob-
lem (indeterminate couple-stress plate model). Compatible Dirichlet boundary conditions:
my,, = 9ga, polar((Vm|omiiy))|,, = polar(Vga), . Similar to, but not identical with, a
Kirchhoff-Love model.

90f course, if the external tractions are rotated as well, we obtain invariance: (Q.Ngig, Q-R3) = (Ngigr, R3)-

lvo lvo
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IV: e =0,04 =0,0<p <1,q=0. Possibly m ¢ Wh!(w,R?) due to lack of elastic coer-
civity, including fracture in multiaxial situations.

V: pe = 0,L. = 0. Relaxation case. Finite elasticity with free rotations and microstruc-
ture. Weak solutions of the nonlinear, non-elliptic problem based on the total elastic
energy density

W (T, i, Vit) = h (i [U((Tmf) = P + 2 U (Tml) - 1)

h? T2+ A a7 1P
+1—<u||U Tl + 55t r|U Ifm]>,

U((Vmlit) = \/(Vmlid)T (Vmlit) = /T + €3 ® 3,

(I, the first fundamental form, 11, = I, + es ® e3, I, = —VmTVii,, € M2X? the
second fundamental form of the midsurface m), are stationary points of the minimization
problem (4.1). Allowing in principle for sharp interfaces.

We refer to 0 < p < 1, ¢ > 0 as the sub-critical case, to p =1, ¢ > 0 as the critical case and
top > 1, g > 0 as the super-critical case. In this contribution we will treat mathematically
exclusively the super-critical case II. The simpler case I and case III for positive Cosserat couple
modulus g, > 0 with rigid director prescription at the boundary are dealt with in [NefO4a].
The ”fracture” case IV and the ”relaxation” case V remain open at present.

It is easy to see that the membrane energy part Wyp in (4.1) is uniformly Legendre-
Hadamard elliptic with ellipticity constant u > 0 independent of the value of the Cosserat couple
modulus p.. As will be seen, a linearization of (4.1) with u. = 0 and p > 1 (super-quadratic
curvature energy Weyyy) for small displacement and small microrotation does not decouple the
fields, as in the three-dimensional situation, but leads formally to the infinitesimal-displacement,
classical linear Reissner-Mindlin model (5.11).

4.3 The coercivity inequality in two-dimensions

In this section we show how to use the three-dimensional extended Korn’s first inequality
Theorem 8.1 in our reduced two-dimensional context of plates and shells in order to improve
Legendre-Hadamard ellipticity to uniform positivity. In order to show that the elastic membrane
energy is uniformly convex for zero Cosserat couple modulus p. = 0 we look at the second

differential of W, (R" F) with respect to m
. — T~ — T .
D%y Wp(R F).(V$, V) > g||(v¢|0)TR+R (Velo)]>. (4.11)

Set for simplicity ¢ = 2 and consider the slightly more general quadratic form (appropriate for
elastic shells: F, = VO with © a regular parametrization of the stress-free initial curvilinear
shell surface and elasto-plastic shells: F),, R, arbitrary)

IF, “(V9l0) R, + R (VOIO)F, ' I* = |[R. (F, " (Vol0)" Re + R, (VOl0)F, ') R, |I
= (R )T (Vl0)" + (VOIO)(RF,) 1P, (4.12)

where ¢ : w CR? = R® and ¢, =0 for 7o C dw. Extend now ¢ to ¢ : R® — R* through
&(mayaz) = ¢($7y) = &(mayaz)\mx[_%'%] =0 and V(nyﬁ:)é(wayaz) = (V(Ly)¢|0) (413)

For ¢ it is possible to use the 3D-extended Korn’s first inequality Theorem 8.1. To this end
consider ), = w x [—%, 2] and the lateral Dirichlet boundary I'y = vo x [-%, 2] C 8Q),. Then
I'# has non-vanishing 2-dimensional Hausdorff measure. Set by abuse of notation F, = (R.F),)
for the moment. With smooth enough, invertible F}, it holds on applying Theorem 8.1 that

/ IVETE + F, TV AV > el / 1312 + IV3? aV =

wx[-3,5]

)

[N

//||V¢TF + F,TVe|? dwdz > ¢ - //||¢||2+||v¢||2dwdz (4.14)

w _h

[N
N
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Since ¢ is independent of z we may carry out the integration with respect to the transverse
variable and get, however,

/||V<i_>TF£1 +F, V0| dw > e - / 1611* + [[V]* dw, (4.15)
w w
or back in terms of ¢

/II(V¢>|0)T1*}71 +F, T (V[0)[|* dw > 3 - / ol + 1(Vl0)][* dw. (4.16)

Observe that the constant cj;, is in fact independent of the thickness h (we could set h =
1) which might be surprising at first glance. This observation allows one to bound m €
HY?(w, R3; ), independent of the relative thickness h only in terms of the membrane energy
L, W(Vm,R) dw if R € SO(3,R) is smooth enough. Thus we have finally proved

Theorem 4.1 (Improved Korn’s inequality for rigid shells)
Let w C R? be a bounded domain with smooth boundary and let vy C Ow be a part of the

boundary with non vanishing 1-dimensional Hausdorff measure. Define HY?(w,R?; 7o) := {¢ €
HY“2(w, %) | ¢, =0} and let Fy, Fy* € W2 (@, GL(3, ). Then

3ct >0 Vo H?(w, R ) [((VOl0)F, (2) + B, T (@) (Vel0) lIZa() > ¢ 181120

and the constant is bounded away from zero for F,,, F;”' bounded in W'?%°(&, GL(3, R)).

Proof. The proof is based on the previous argument and on the strengthening of Theorem 8.1
proposed in [Pom03]. The Sobolev embedding shows that F, € WH?T9(z, GL(3,R)) may be
identified with a continuous function. In order to show that the constant is uniformly bounded
away from zero for bounded F,, F, ' € W'*°(w, GL(3,R)) a contradiction argument as in
[Nef04b] is employed which uses the fact that W12+ (@, GL(3,R)) is compactly embedded in
C°%(w,GL(3,R)). [ ]

4.4 Mathematical analysis for zero Cosserat couple modulus g, =0

The following results provide existence theorems for geometrically exact deduced elastic Cosserat
plate models for the physically more realistic super-critical case.'°

Theorem 4.2 (Existence for 2D-finite-strain elastic Cosserat model: case II)

Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H'(w, R?)
and polar(Vgq) € WH1TPHe(w SO(3,R)). Moreover, let f € L'(w,R®) and suppose N €
L*(vs,R?) together with M € L'(w,R3®) and M, € L'(vs,R?), see (5.19). Then (4.1) with
material constants conforming to case II, boundary conditions for R of rigid director prescription
on vp and modified external potential II* (5.20) admits at least one minimizing solution pair

(m,R) € H'(w,R?) x Whitrta(y SO(3, R)).

Proof. We apply the direct methods of variations. First, the requirement on the data shows
that

Vm e H' (w,R?%), R € WhitrPte(y SO(3,R)) : [¥(m,Rs) < C, (4.17)
i.e. a uniform bound on the external loading functional. Let us define the admissible set

A= {me H' (w,R*), R e Wh'"*4(w,SO(3,R)) | m,, = ga(x,y,0),

5 — ng(a:,y,O).eg
o ||ng(m7y70)e3||

10The proposed finite-strain results determine the macroscopic midsurface plate deformation m € H'(w,R?)
and not more. This means that discontinuous macroscopic deformations by cavities or the formation of holes are
not excluded (possible mode I failure). If p. > 0 fracture is effectively ruled out, which is, however, somewhat
unrealistic. All results remain true for arbitrary shear correction factor k > 0. For k = 0, however, uniform
Legendre-Hadamard ellipticity is lost.

). (4.18)
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With the prescription of the boundary data gq it is clear that I(gq(z,y,0), polar(Vgq(z,y,0))) <
00, hence I is bounded above on A. Consider a sequence of pairs of deformation my and

. ==k . P .
rotations R in the admissible set A with bounded energy I. For such a sequence we have

—k — h3 —k
so > I(my, B) = / B Wiy (T6) + h W (80) + 7= Woena(,6) deo — T (m, )
w

— h3
Z /thp(Uk) + h Wcurv(ﬁs,k) + ﬁ Wbend(ﬁb,k) dw—-C Z 03 ) (419)

w

which implies that I is bounded below on A and the positive curvature energy fw h Weurv(Rs,x) dw
can be bounded independent of £ € N. Observe now that the curvature energy bounds
the sequence of curvature tensors R, in L'*PT4(w, % (3)) by the positivity assumption on
the parameters as,ag > 0. Since ||Rs]| = ||RTDXR|| = ||DyR|| pointwise, this implies that
||Dxﬁk||L1+p+q(w) is bounded as well. Since ||Rk|| = /3 pointwise, this shows the boundedness

of R" C Whitrtd(y SO(3,R)), even without specific Dirichlet boundary conditions on the

remaining ”free” columns R.e;, R.ep.!" This is a distinctive feature for exact rotations. A sub-
sequence can be chosen such that &  — & in L'PT7(w, % (3)), weakly. Since the boundedness

of the rotations B" holds true in the space WHitPta(y, SO(3,R)) with 1+p+¢q > N = 3,
it is possible to extract a subsequence, not relabelled, such that Rk converges strongly to

R € C°(w,SO(3,R)) in the topology of C°(w,SO(3,R)) on account of the Sobolev-embedding
theorem.
Since I is bounded below on 4 we may consider from now on infimizing sequences of mid-

. . -k .
surface deformations mj, and rotations R with

lim I(mg, B')= inf I(m,F). (4.20)
k— o0 (m,R)EA

Along the strongly convergent sequence of rotations, the corresponding sequence of mid-surface
deformations m* is also bounded in H'(w,R®). However, this is not due to a basically simple
pointwise estimate as in case I (. > 0) [NefO4a], but only true after integration over the domain
w: at face value we only control certain mixed symmetric expressions in the reconstructed
deformation gradient. Let us therefore define vy, € H>?(w, R*) by m* = gq+(m*—g4) = ga+vs.
Then we have

_ _ B3 _
0o > I(my, R') = /thp(Uk) B Woeury (Ra4) + T3 Woena(R,0) dw I (my, Ry)
> /thp(m) 0 (g, ) e > /thp(Uk)dw—C' (4.21)

> /h%uﬁ’“T(me’;) + (ViR — 211 dw — C
B E o (B T2
= [ WAIE (T Fa) + (e [F) R

—4h %tr [RT(mG |R3) + (Vmi|Rs)"R| +4h %”]1”2 dw —C

—k,T —k
> /h% BT (Vi l0) + (Vmgl0) TR |2 dw — Co [lmall o) + Co
w
=~ = k= =
= /h % I(R" =R+ R)"(Vug|0) + (Vup]|0)T (R — R+ R)||” dw — C1 ||vk || 12wy + Co
w
== 512 L 2
> [ WL IR (Vorl0) + (Verl0)TRIP deo = C3 IR = B [loo lonlr1a(.
w combination;f derivatives
HWithout independent curvature control, nothing can be shown for u. = 0. This is the reason for the

modification of the external loads.
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ES
—(C1 +2[|R = R ||oo) lvkll 22 (w) + C2
I

=~ _k . = =k
> (hy ¢k = C3|R = R'[loo) llow |72y — (Cr + 2[R = R [oo) [Jog || 12wy + Co s

where we made use of the zero boundary conditions for vy on g and applied the extended Korn’s
. . =T = . . . .
inequality Theorem 4.1 (note that R = = R for exact rotations) yielding the positive constant

¢y for the continuous microrotation R. Since | R — RkHOO — 0 we conclude the boundedness of
vk in H'(w,R?). Hence, my is bounded as well in H'(w, R?).
From the boundedness of my, in H'(w,R?) we may extract a subsequence, not relabelled,

such that my — m € H'(w,R?). Furthermore, we may always obtain a subsequence of (my, Rk)
_ _ N —k — . =~ 2T =
such that Uy, = RTEr = Rk’T(mG|R§) converges weakly in L?(w) to U = R (Vm|R3).
Weak convergence of DR in LY1FP+a(w, F(3)) and strong convergence of R i L?(w)

together show that the sequence of the third order curvature tensors K j, = R DR converges
2T ~ o
indeed weakly to the correct limit R D, R = &, in L'(w,¥(3)). But from above we know already

that weak convergence for K; j, takes place in L*(w,T(3)). Gathering the obtained statements
we have

— —k,T A =~ a2 =~ . 9
Up=R"F*~U=R (Vin|Rs) inL*(w),
-7 =k o~ =T =
fer =R"'DE =R =R DR inL*w,%(3)), (4.22)
fop = Ry in L*(w,MP¥3),
my — m in L?(w,R?),
E' SR inCw,SOB,R).

Since the total energy is convex in the combined terms (U, &5, &) we get

= = ~ h3 ~ =
I(m,R) = /h Winp(U) + h Weury (Rs) + 5 Whend (8p) dw — II* (7, R3)

_ B3 .
< timinf [ AW (Te) + b Weurs (8. + T3 Woena(So,e) dw — T (my, Ry (4.23)
—00

= lim I(mk,Rk) = inf I(m,R),
k—o0 (m,R)EA

which implies that the limit pair (7, R) is a minimizer and the Dirichlet boundary conditions

for either midsurface deformation 7 and ”director” Rs are satisfied strongly by compact em-
bedding in the sense of traces on 7. This finishes the argument. |

Let us turn to a slightly modified energy functional for which it is possible to extend the
previous existence result to very weak consistent coupling boundary conditions. This modifica-
tion is not necessary for a properly linearized model together with a linearized weak consistent
coupling condition (5.11). The augmented energy functional reads

_ _ h3 _
[(m,R) = / B Wi (0) + h Weare () + 15 Whena () deo — T(m, ) (4.24)

+ / hWeurv(Rs) ds = min. w.r.t. (m, R) .

Yo
| ——
augmented

The new curvature control on 7 imparts additional regularity for the change of the rotations
from 7y to the interior of the domain w. With this modification it is possible to show

Corollary 4.3 (Existence for very weak consistent coupling)
Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H' (w,R?),
polar(Vga) € WHHPH(w,SO(3,R)), polar(Vga),, € W FP(,SO(3,R)) and 0.ga), €

lvo
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L*(70,R*). Moreover, let f € L*(w,R®) and suppose N € L'(v,,R®) together with M €
LY(w,R%) and M, € L*(vs,R?), see (5.19). Then (4.1) with material constants conforming to
case II, boundary conditions of very weak consistent coupling on 7o, modified external potential

I (5.20) and augmented energy functional (4.24) admits at least one minimizing solution pair
(m,R) € H' (w,R®) x WhitPte(y SO(3,R)).

Proof. We basically repeat the argument of Theorem 4.2. First, we define the modified admis-
sible set

A= {me H'(w,R*), R e Wh'™"*(w,SO(3,R)) | m|,, = galx,y,0),

/(RT (Vm(z,y)|Vga(z,y,0).e3), A(z,y))ds =0 VA€ C;°(1,50(3,R)) }, (4.25)

which incorporates the consistent coupling condition in its weak, distributional form. In order
to see that the set A is not empty take R = polar(Vgq) and m = gq. As in Theorem 4.2
one shows that I is bounded above and below on A. We then choose minimizing sequences

of midsurface deformations my, and rotations R in A. Thus, along the minimizing sequence

(my, BY)

VkeN: /(Tz’“’T (Vi (@, 9)[Vga(z, y,0).e5), Az, y)) ds = 0, (4.26)

for all testfunctions A € C§°(y0,50(3, R)). We need to investigate in which sense the weak/strong
limits found in Theorem 4.2 satisfy this additional relation on 9. We observe that for smooth
testfunctions A € C§°(70,50(3,R)) and by partial integration

/ ®"" (Vi (2, )|V ga(z, y,0).e5), Az, y)) ds = / (Vmi(,y)|Vga(z,y,0).3), B A(z,y)) ds

Yo Yo

_ / ~ (G, 02 [B* Aer] + 0, [BEAes])) + (9gar,0,0), B A, y).e5) ds (4.27)

Yo
_ / ~ (e, 0T ey + B 0o er + [0, 1 Aer + R0y Aes)) ds

Yo

+ / (9-.9a(2,5,0), T A(z,y).cs) ds.
Yo

The augmented curvature expression (4.24) on the lateral boundary o allows us to specify a

. —k = ‘
subsequence of the rotations, such that DyR™ — DyR € L?(0,%(3)). Observe that the aug-
mented boundary curvature term is also weakly lower semicontinuous under weak convergence
at the boundary 7p. Since

my — m € L?(70,R*), due to compact embedding,

AR ﬁk € L?(7,50(3,R)), due to compact embedding, (4.28)
8wﬁk — 895% € LZ(%, M3X3) , due to additional curvature control at 7y ,
8yﬁk - 83,% € L?(y0,M**?) | due to additional curvature control at 7o,

we conclude that

lim [ (BT (Vm(z,y)|Vaa(z, y,0).e5), A(z,y)) ds

k—o0
Yo

-/ @ (Vii(e,y)[Vgale,y,0).cs), Alz,y)) ds. (4.20)

Yo

Hence the minimizing solution (i, R) € H'(w,R?) x WHItP+e(y,, SO(3, R)) satisfies the very
weak consistent coupling condition and the proof is finished. ]
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Remark 4.4 (The thin shell ”membrane” limit)

Observe that all stated results remain true if we skip the h3-bending contribution since the
decisive curvature control is afforded by W,y in conjunction with the internal length L, > 0.
In this sense, the formal thin shell “membrane” limit is not degenerated.

5 A new finite-strain Cosserat plate for large stretch and
local invertibility

While the preceding models have been motivated from a three-dimensional ”parent” model
which itself is appropriate only for small strain and finite rotations, let us present a modified
model,'? which in principle allows for arbitrary large stretch and which automatically preserves
local invertibility if the reconstructed deformation is smooth. It is clear that such an extension
is by no means unique. We propose the model

3
I(m,R) = /thp(U) + h Weurv (Rs) + % Whend (&) dw — II(m, R3) ~ min. w.r.t. (m, R),

U=R'F, F=(Vm[Rs), F,=(VmlomRs),
1 (Ngif, R3)

,  modified thickness stretch,
L+ 25 (detU] = 1) (2p+2A)

Om =

my, = ga(z,y,0), simply supported , (5.1)
EWO = polar((Vm|Vga(z,y,0).e3)), , strong form of reduced consistent coupling,

E3 — ng(ﬂ?,yao)-%
70 ||ng(x7y70)e3|| ’

alternatively: rigid director prescription,

— — . — Al — 1 .
Wi (T) = U — 1)1 + e || skew (D)2 + =2 —(dtU—12+ _—12>,
@) = ullsym@ = DI+ e skew(@) + 25 (@) = 1F + (= = 1)
L1+ 171’
Weurv(Rs) = po 5 (14 ag LL||Rs]]9) (a5 || sym &, ||* + ag || skew &q|)? + a7 tr [R]? ,
g — — — —_T —
& = (R (V(Ren)|0), B (V(Re2)[0), R (V(Roe5)]0)) |
A
Whsena(82) = | sym () [ + e[| skew ()| [* + 5= e fsym(R)]
Ry = R (VR3|0) = 82, second order non-symmetric bending tensor .

Let us summarize the salient features of this model: First, Wy,,(U) — oo if det[U] — 0. Thus,
if minimizers exist, then det[U] > 0 a.e. and the minimizing surface is locally regular. The
modified membrane energy contribution Wi, is polyconvex w.r.t. Vm at given R and indeed
uniformly Legendre-Hadamard elliptic, independent of . > 0. If R3 = ii,,, then

—2
det[U]" = || Cof (Vm|0)||* = |Imy x my||* = llme|*[lmy|* — (ma,my)* = det[Ln],  (5.2)

with 77,,, the outer unit normal of the surface m and I,,, the first fundamental form. This formula
represents a pure, intrinsic measure of the surface stretch. If Wy,,(U) = 0 then U = 1l even
for . = 0 and without gradient constraint.'® Moreover, it can be shown that for zero Cosserat
couple modulus g, = 0 and zero internal length L. = 0, the pure bending problem coincides
with the rigourously justified classical finite-strain bending problem given in [FJMO02].

The modified thickness stretch g,,, which is used only for the a posteriori reconstruction
of the bulk deformation, has such an analytical form, that at finite energy one has 0 < g, <
00, in line with the underlying physical description without restriction on the kinematics and
transverse fibers will always be monotonically elongated upon action of opposite tractions

Moreover, g,, = 1 for A = 0 (extreme compressibility, » = 0) and g, = d t To0) for A =

0o (exact incompressibility, v = 1) such that det[F,] = det[(Vm|om Rs)] = 1, Le. exact

incompressibility for the reconstructed deformation.

121t is clear that a modification to large stretch does not concern the bending term since bending only plays
a role for small stretch.

131t is easy to see, that sym(U — 1) = 0 implies R3 = fi,,. The remaining consideration leads to
X € M2X2 : sym X = 1lp, det[X]=1= X = 1.
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The modified formulation (5.1), however, still has the same linearized behaviour as the ini-
tial model (4.1) and reduces to the classical infinitesimal-displacement Reissner-Mindlin model
(5.11) for the choice of parameters pu. = 0, p > 1, ay = 0.1* We can prove the following result:

Theorem 5.1 (Existence for Cosserat plate with large stretch)

Let w C R? be a bounded Lipschitz domain and assume for the boundary data gq € H'(w, R?)
and Rq € WH1HPTe(y SO(3,R)). Moreover, let f € L'(w,R®) and suppose N € L'(v,, R?)
together with M € L'(w,R®) and M. € L'(v,,R?), see (5.19). Then (5.1) with material con-
stants conforming to case II and rigid director prescription for R on ~, admits at least one
minimizing solution pair (m,R) € H'(w,R?) x WhHitrP+d(w SO(3,R)) with det[(Vm|R3)] > 0
ae (z,y) €Ew ]

Proof. The proof mimics the arguments of the existence result Theorem 4.2 for case II. We
only need to observe in addition, that the modified membrane energy W is in fact polyconvex

[Bal77b] at given R w.r.t. Vm since ((det[U] —1)2+(

det[U] —-1)? ) is convex in det[U]. The

. . . . =k
modified membrane strain energy term provides us with the information that det[(Vmy|R3)]
is uniformly bounded in L?(w) for minimizing sequences. Hence we may always choose a

L =k
minimizing sequence, such that det[(Vmy|R3)] — ¢ € L?(w), weakly. A further subsequence

may be choosen, not relabelled, such that R 5 Re C°(w,SO(3,R)), due to the compact
embedding W11P(w) C C%w) for p > 1. Moreover, Vmy, — Vi € L%(w,M?*3), weakly, as
in Theorem 4.2. For two space dimensions, this implies the strong convergence of Cof (Vmy|0)
in the sense of distributions [Bal77a, Th. 3.4]:

Vi e C5°(w) : / Cof (Vm|0) ¢ dw — / Cof (Vm|0) ¢y dw, k— 0. (5.3)

Let us analyze in more detail the term det[(Vmy, |R§)] One has upon expanding of the detr-
minant

3 3
—k —k —k = =
det[(Vmg|Ry)] = > Ry, Cof (Vmg|0);, = > (Ry; — Rsi + Rs.i) Cof (Vmy 0),

i=1 i=1

_Z ~Rs.) Cof(mG|03l+ZR31Cof(mG|0)
=1

_Z ~Rs) cof(vmk|03,+2 Rei-R +R) Cof (Vmy|0), ;
i=1

3
—k =~ =~ =€
= Z(Rg,i — Rgi) Cof (Vmy|0);, + > (Rs; — Ry ;) Cof (Vmy|0),;

i=1 =1
+ Ry, Cof (Vo). (5.4)

where R € O is introduced as a mollification of B. Now we integrate det[(mG|R3)] over w

against an arbitrary function ¢ € C§°(w):

3
/det[(mG|R3 ]1/1dw_/2 ~Rs) ) Cof (Vmy|0)5 ; ¥

w
3

+ 3 (R — Ry) Cof (Vimg|0), ;4 (5.5)

i=1

+R37,. Cof (Vimy|0) ;¢ dw .

Since Cof (Vmy|0) is bounded in L'(w) the first sum converges to zero because of strong
convergence of R". The second term can be made arbitrarily small for ¢ — 0 and the third

14Because ((det[ﬁ] ~ 1+ (g — 1)2) =2t [U—1)° +0(|U — 1|]?).
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~€
term converges because R; ;¢ € C§°(w) is an admitted testfunction in (5.3). Altogether, the

strong convergence of E’; in C°(w) and the strong convergence of Cof (Vmy]|0) in the sense of
distributions [Bal77a, Th. 3.4] for two space-dimensions show that

Ve O (w) - /det[(mGu_%I;)] b dw = / det[(Vin|Ra)] ¥ dw, k—o0.  (5.6)

Thus, det[(Vmy |R§)] — det[(Vﬁﬂﬁg)], strongly in the sense of distributions as well. This

implies for the weak limit ¢ found above that ¢ = det[(Vm|R3)]. The remainder proceeds as in
Theorem 4.2. |
Altogether, this shows that (5.1) represents a significant conceptual improvement of the initially
proposed plate model (4.1), although (5.1) itself is not strictly obtained from a parent model
in our framework of formal dimensional descend. The extension of Theorem 5.1 to very weak
consistent coupling is straightforward along the lines of Corollary 4.3.

In order to bridge the gap to more standard approaches we investigate now the relations of
the new model to classical Reissner-Mindlin formulations.

5.1 Linearized plate models
5.1.1 Relations to the classical infinitesimal-displacement Reissner-Mindlin model

Let us linearize a variant of the proposed new finite-strain Cosserat plate (4.1) for situations
of small midsurface deformations and small curvature. We assume here ay = 0, ¢ = 0, p >
1.1 We write m(z,y) = (z,y,0)7 + v(x,y), with the displacement of the midsurface of the
plate v : w — R and R = 1+ A+ ..., with A € s0(3,R) the infinitesimal-displacement
microrotation. For the boundary deformation we write gq(z,y,2) = (z,y,2)T + ud(z,y, 2),
with the consequence, that Vga.es = (uf _,ug ., 1+ u§ ). The curvature tensors are expanded
as

f =R (VRs]0) = (L +A+..)7 (V[A; + Aes +..]10) & (VA]0) + ...,
R ~ ((V(A.e1)]0), (V(A.e2)0), (V(A.e3)[0)) € T(3), (5.7)
and the Cosserat micropolar plate stretch tensor expands like
U=R F=R (Vm|Rs) = (M +A+..)7 ((é g) + V(1L +Z+...).e3))
~ I+ (Vo|ds) —A+.... (5.8)

Since p > 1, the additional Cosserat curvature contribution has an exponent strictly bigger
than two such that a linearization w.r.t. zero curvature K does not yield any contribution of
this term. The consistent coupling condition is also expanded:

R, = polar(Vm|Vgg.e3),
I+ A+...=polar(ll + (Vv|d,u?) +...) = 1L + skew((Vv|d.u?)) +... = (5.9)
leo = skew((Vv|azud))H0 .

We are formally left with the minimization problem for v € R® and A € so(3, R):

[ (ull sym((Vol )2 + e[| skew((Vo[a) - D + 2 tx [sym«wzgnf)

2+ A
h? Y 2 iy 2 pA T 2
+ 15 (#llsym((VAs|O)I" + pe [| skew((VA3]0))[7 + TS [sym((VA43(0))]” ) dw

— (v, A3) = min. w.r.t. (v, A),

v, = ud(z,y,0), simply supported (fixed, welded), (5.10)

d

T
d
— uf , — U3z U§,—U
skew((Vv|8zud))‘m, lin. coupling = A3Ho = ( Lz 5 3’90, 22 5 3’y,0> )

B
[

Zglm = (uf)z,ugyz, 0)T', alternatively: rigid director prescription .

15The linearization for the case as = 0, ¢ = 0, p = 1,1 > 0 is similar to the static micropolar plate model
derived by Eringen [Eri67, eq. 8.6].
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Now consider the case of zero Cosserat couple modulus g, = 0. In this case infinitesimal
in-plane rotations (linearized drilling degrees of freedom: A;5 = —A4;) do not ”survive” the
linearization process. Abbreviating now 6 = (;,6,,0)7 = —Aj3, we are left with the following
set of equations for the displacement of the midsurface of the plate v : [0,T] x @ — R® and the
infinitesimal increment of the director, the infinitesimal ”director”,  : w — R3:

BA

2Mﬁtr [sym V(Ul,’l}g)]2

Ji [l Ve emP s Give -oF
w S——r

transverse shear energy

3 ‘ A
+ 13 (,u || sym VO||* + Jﬁ tr [sym V9]2> dw —II(v, —6) = min. w.r.t. (v,0),
v, = ul(z,y,0), simply supported, (5.11)
T
d d
ud, —v3, u§, — v
—0‘70 = 1,2 5 37w, 2,2 5 3“1/,0 , linearized consistent coupling,
=0, = (uiz, ugz, 0%, alternatively: rigid director prescription,

with the so-called shear correction factor x = 1.
A further reduction arises if we assume only normal displacements: v; = vo = 0. The
resulting minimization problem for the deflection vs and the ”director” 6 is

h3 A :
/h e Vs — 0] + 12 <u || sym V||? + 2Iu'u—tr [sym V0]2> dw

2 +A
—I(vs - e3, —6) = min. w.r.t. (vs,6), (5.12)
V3|, = ug , simply supported,
T
utli,z — U3z ug,z — U3y

,0 linearized consistent coupling,

|
S
<2
o

|

2 ’ 2
=0, = (uiz,ugvz,O)T, rigid director prescription .
In this last form with rigid boundary prescription, the Reissner-Mindlin plate-bending prob-
lem is classical and can be found in many textbooks, e.g. [Bra92, p.281] or [Ste95, AMZ02]
with Reissner’s value K = %. It should be noted, however, that in our formal, variationally
based finite-strain derivation with subsequent linearization there is no imminent reason to in-
troduce k # 1. In fact, the shear correction factor x can be seen as a tuning parameter of
the infinitesimal-displacement model which, for certain types of loading,'® allows to improve
the order of convergence of the infinitesimal-displacement Reissner-Mindlin solution to the
three-dimensional linear elasticity solution [R&s99].17
Note the novel non-standard Dirichlet boundary condition of linearized consistent
coupling for the remaining infinitesimal ”director” 6, motivated from the consistency condition
of the Cosserat bulk model. In contrast to the standard rigid director prescription, the new
coupling condition seems to reduce the strength of the boundary layer. In a direct derivation
of the Reissner-Mindlin plate equations (5.11) there is no reason to introduce this weakened
condition. However, a mathematical analysis based on the consistent coupling condition shows
that the new boundary condition can only be satisfied in the distributional sense on 7. Let us

16Hence the shear correction factor x shows some similarity to the Cosserat couple modulus ., whose influence
on the solution of the three-dimensional problem is also strongly dependent on boundary conditions. For rather
thick plates, it is known that the shear energy in (5.11) is overestimated, therefore, one is led to reduce the shear
energy contribution a posteriori by taking x < 1.

17Tt would be interesting to know the optimal shear correction factor 0 < x < 1 of the infinitesimal-
displacement Reissner-Mindlin model with our reduced consistent coupling boundary condition. Such an opti-
mized parameter should also be beneficial for the finite-strain Cosserat plate. However, it might turn out that
the new boundary condition of weak consistent coupling makes the artificial introduction of kK < 1 superfluous.
Note as well, that £ = 0 decouples the horizontal "membrane” displacement in (5.11) from the vertical com-
ponent and the bending term. In this sense, xk acts similarly as the Cosserat couple modulus pu. in the linear
Cosserat bulk model.
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define therefore the admissible set

A= {vs € H'(w,R), 0 € H' (w,R*) | v3|,, = ug, /||0||2dw < wl,
w

d
u .
Yo e O (10, R : /(—29 - (ué> ,@)r:—vs Divgdw=0},  (5.13)
2,
Yo :

which incorporates the linearized consistent coupling condition in the distributional sense, the
standard Dirichlet boundary condition at g, as well as an additional consistency condition for
the linearization.'® One can easily show that (5.12) admits a minimizer in A" If [|0]] ,2( r2) <
|w], the solution is unique.

5.1.2 The classical infinitesimal-displacement Kirchhoff-Love plate (Koiter model)

For the convenience of the reader we also supply the similar system of equations for the classical
infinitesimal-displacement Kirchhoff-Love plate (also the Koiter model) which can be derived as
linearization of the finite-strain Kirchhoff-Love plate. In terms of the midsurface displacement
v we have to find a solution of the minimization problem for v : w C R? —€ R3:

A
[ (llsvm T el + 5225 o sy Vo)

w

3 A ;
+ 15 (,u | D?vs])* + 2:+ )\tr [D2v3]2> dw —II(v,—Vuz) = min. w.rt. v,
v, = ul(z,y,0), simply supported (fixed, welded), (5.14)

T
,0) ,  lin. coupling = —Vuy |, = (uiz,u.‘iz,O)T,

d d
[ Y1,z — U3 Uz — Uy
—V’l)g‘_m -

2 ’ 2

—Vug = (u‘iz, u.‘iz, 0)7, rigid prescription of the infinitesimal increment of the ”normal” .

This energy can also be obtained formally from (5.12) by constraining the linearized director
to the linearized normal of the plate, i.e. setting § = Vuvs. If this is done, we observe that
the new boundary condition of consistent coupling coincides in fact with the classical boundary
condition of the Kirchhoff-Love plate.

5.2 The treatment of external loads
5.2.1 Dead load body forces for the thin plate

In the three-dimensional theory the dead load body forces f(z,y,z) € R® were simply included
by appending the potential with the term th flz,y,2) - ¢(x,y,z)dV. We define

. h/2 R h/2
fola,y) = / fayy,2)dz,  fule,y) = / 2 fla,y,2) de, (5.15)

—h/2 —h/2

such that fo, fl are the zero and first moment of f in thickness direction.

5.2.2 Traction boundary conditions for the thin plate

In the three-dimensional theory the traction boundary forces N(z,y,z) € R® were simply
included by appending the potential with the term fa%msu{%X[7%7%]}N(m, y,2) - p(z,y,2)dS.
We define

. h/2 . h/2

Nlat70(may) = N(m,y,z) dZ; Nlat71(may) = / ZN(Q)’,y,Z) dZ7 (516)

—h/2 —h/2

such that Nlat’(), Nlat,l are the zero and first moment of the tractions N at the lateral boundary
vs in thickness direction. Moreover, we abbreviate

h h 1 h h
Nies := [N(w,y,§)+N(:v,y,—§)], Naig ::E[N($7y7§)_N($aya_§)]' (517)
18The unit ”director” Rg is expanded as R3 = ez — 0 +.... Any 0 with ||0(z,y)|| > 1 pointwise, is inconsistent
with the minimal requirement 1 = [[R3.e1|| > [|(es 4 0).e1]|. As a consequence, we impose [ [|0]]* dw < |w|.
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5.2.3 The external resultant loading functional II

For a first approximation plate formulation we set to leading order:

f=fo+Nes, resultant body force,

M = fi + h Na, resultant body couple, (5.18)
N = ]\Aflamo , resultant surface traction,

M, = ]\Aflam , resultant surface couple.

The resultant dead load loading functional II is then given by the linear form

H(m,E):/(7,m>+(M,R3>dw+/ (N,m) + (M., Rs)ds. (5.19)

Vs

If we denote the dependence of II on the loads of the underlying three-dimensional problem as
II(f, N; m, R3), then it is easily seen that frame-indifference of the external loading functional
is satisfied in the sense that II(Q.f, Q.N; Q.m,Q.R3) = II(f, N; m, R3) for all rigid rotations
Q € SO(3,R). It is possible to use the same functional form of the loading functional for all
finite-strain and infinitesimal-displacement models. We only need to replace (m, R3) by
(m, ), (v, A3) for the different finite and linearized models, respectively.

5.2.4 The modified external resultant loading functional II*

In view of a possible mathematical analysis of the case with zero Cosserat couple modulus p, =0
we need to modify (5.19) into a live load resultant loading functional II*, which better
reflects the observation that by arbitrary translation of a material in a conservative force field
only a finite amount of work can be gained. This is certainly true for any real physical field.
In the three-dimensional theory we have called this the ”principle of bounded external
work”. Therefore we define the nonlinear form

lim_3 = yC— __3 w N
WonBy) = | =g+ (LR dos [ (.

m

L+ [[[m]| - K],

)+ (M., Rs) ds.
(5.20)

Here K > 0 is a possibly large constant and []+ denotes the positive part of its scalar argument.

We note that (5.20) is automatically bounded, if f, M € L'(w,R?) and M., N € L(v,,R?).
Moreover, the linearization of II* coincides with the linearization of II.

6 Discussion and open problems

We have investigated a finite-strain, frame-indifferent, geometrically exact Cosserat plate model
derived in [Nef03a, Nef04a]. For vanishing Cosserat couple modulus p. = 0, the formulation is
shown to be downwards compatible with traditional infinitesimal-displacement linear Reissner-
Mindlin theories and shear-correction factor k = 1. A detailed mathematical analysis for
vanishing Cosserat couple modulus u. = 0 of the finite-strain model is given. Existence of min-
imizers in appropriate Sobolev-spaces is shown despite the inherent nonlinearity of the problem
and despite the lack of unqualified coercivity. The decisive tool is a novel two-dimensional
version of an extendend Korn’s first inequality.

From a mechanical and computational point of view, compared to more traditional, non-
elliptic finite-strain Reissner-Mindlin and Kirchhoff-Love models, it seems to be the beneficial
influence of the drill-rotations in conjunction with the internal length L. > 0 which stabilizes the
new Cosserat thin plate model. Comparing with other alternative plate models with constraint
or independent rotations, the additional implementational burden for the new Cosserat plate
models is small compared to the possible gain of having a well-posed model.

Certain limit cases related to Sobolev-embedding theorems must remain open for the mo-
ment, notably the case IV including possible fracture of the plate. They leave a wide field of
challenging purely mathematical problems.

While we have large freedom of specifying boundary conditions for the microrotations at
the lateral Dirichlet boundary 79, we prefer a generalization of the three-dimensional consistent
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coupling condition which provides maximal consistency with the classical ”symmetric” situa-
tion. I expect that this new consistent coupling condition reduces the strength of the boundary
layer. Further research should clarify, whether the inherently sound Cosserat plate model (4.1)
can be obtained as a I'-limit of the Cosserat bulk problem for vanishing thickness.

7 Acknowledgements

The first idea of this paper was conceived in the academic year 2001/2002 while the author held
a visiting faculty position under the ASCI program in Michael Ortiz group at the California
Institute of Technology, Graduate Aeronautical Laboratories, Pasadena. The author would like
to thank Fehmi Cirak and Kerstin Weinberg for helpful discussions and Michael Ortiz for first
directing his attention to thin structures. Helpful remarks of Alexander Mielke on a preliminary
version are also gratefully acknowledged.

References
[AMZ02] D.N. Arnold, A. L. Madureira, and S. Zhang, On the range of applicability of the Reissner-Mindlin
and Kirchhoff-Love plate bending models, J. Elasticity 67 (2002), no. 3, 171-185.

[Ant95] S. Antman, Nonlinear Problems of Elasticity, Applied Mathematical Sciences, vol. 107, Springer,
Berlin, 1995.

[Bal77a] J.M. Ball, Constitutive inequalities and existence theorems in nonlinear elastostatics, Herriot Watt
Symposion: Nonlinear Analysis and Mechanics. (R.J. Knops, ed.), vol. 1, Pitman, London, 1977,
pp. 187-238.

[Bal77b] , Convezity conditions and existence theorems in nonlinear elasticity., Arch. Rat. Mech.

Anal. 63 (1977), 337-403.

[BGS96] P. Betsch, F. Gruttmann, and E. Stein, A /-node finite shell element for the implementation of
general hyperelastic 3d-elasticity at finite strains, Comp. Meth. Appl. Mech. Engrg. 130 (1996),

57-79.

[BJ99] K. Bhattacharya and R.D. James, A theory of thin films of martensitic materials with applications
to microactuators, J. Mech. Phys. Solids 47 (1999), 531-576.

[BR92]| N. Buechter and E. Ramm, Shell theory versus degeneration-a comparison in large rotation finite

element analysis., Int. J. Num. Meth. Engrg. 34 (1992), 39-59.
[Bra92] D. Braess, Finite Elemente, Springer, Heidelberg, 1992.

[CB03] D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells - Fundamentals, Computational
Fluid and Solid Mechanics, Springer, Berlin, 2003.

[CC09] E. Cosserat and F. Cosserat, Théorie des corps déformables, Librairie Scientifique A. Hermann et
Fils, Paris, 1909.

[CCCT03] F. Cirak, J.E. Cisternas, A.M. Cuitino, G. Ertl, P. Holmes, I.G. Kevrekidis, M. Ortiz, H.H. Roter-
mund, M. Schunack, and J. Wolff, Oscillatory thermomechanical instability of an ultrathin catalyst,
Science 300 (2003), 1932-1936.

[CD66a] H. Cohen and C.N. DeSilva, Nonlinear theory of elastic directed surfaces, J. Mathematical Phys. 7
(1966), 960-966.

[CD66b] , Nonlinear theory of elastic surfaces, J. Mathematical Phys. 7 (1966), 246—-253.

[CGO1] P. Cermelli and M.E. Gurtin, On the characterization of geometrically necessary dislocations in
finite plasticity., J. Mech. Phys. Solids 49 (2001), 1539-1568.

[Cia97] P.G. Ciarlet, Mathematical Elasticity, Vol II: Theory of Plates, first ed., North-Holland, Amsterdam,

1997.

[Cia98a] , Introduction to Linear Shell Theory, first ed., Series in Applied Mathematics, Gauthier-
Villars, Paris, 1998.

[Cia98Db] , Un lemme de J.-L.Lions et les inegalites de Korn sur les surface, Equations aux derivees
partielles et applications, Gauthiers-Villars, Paris, first ed., 1998, pp. 357-382.

[Cia99] , Mathematical Elasticity, Vol III: Theory of Shells, first ed., North-Holland, Amsterdam,
1999.

[CJ02] W. Chen and J. Jost, A Riemannian version of Korn’s inequality, Calculus Variations. 14 (2002),
517-530.

[CSPY5] P.G. Ciarlet and E. Sanchez-Palencia, Ellipticity of Bending and Membrane Shell Equations, Asymp-
totique Methods for Elastic Structures (P.G. Ciarlet, L. Trabucho, and J.M. Viano, eds.), Proceed-
ings of the International Conference, Walter de Gruyter, Berlin, 1995.

[CW89] H. Cohen and C.C. Wang, A mathematical analysis of the simplest direct models for rods and shells.,
Arch. Rat. Mech. Anal. 108 (1989), 35-81.

[Dhi95] H. Ben Dhia, Analyse mathematique de models de plaques non lineaires de type Mindlin-Naghdi-
Reissner. Ezistence de solutions et convergence sous des hypotheses optimales., C. R. Acad. Sci.
Paris, Ser. I 320 (1995), 1545-1552.

23



[Dik82]
[DRY6]

[DS96]
[Eri67]
[ET58]

[FIMO02]

[FRS93]
[FS92]
[GDOC02
[GNW65]
(G097
[GSW8Y]
[GT92]
[HB8Y]
[LM98]

[Mas92]
[Mia98]

[Mie95]
[Mon03]
[Nag72]
[Nef02]

[Nef03a]

[Nef03b]

[Nef04a]

[Nef04b]

[Nef04c]

[0G94]

[PG8Y)]
[PGCO1]

[Pom03]

[R6s99]

M. Dikmen, Theory of Thin Elastic Shells, Pitman, London, 1982.

H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity: a variational asymp-
totic derivation, J. Nonlinear Science 6 (1996), 59-84.

P. Destuynder and M. Salaun, Mathematical Analysis of Thin Plate Models, Springer, Berlin, 1996.
A.C. Eringen, Theory of micropolar plates, Z. Angew. Math. Phys. 18 (1967), 12-30.

J.L. Ericksen and C. Truesdell, Ezact theory of stress and strain in rods and shells., Arch. Rat.
Mech. Anal. 1 (1958), 295-323.

G. Friesecke, R.D. James, and S. Miiller, A theorem on geometric rigidity and the derivation of
nonlinear plate theory from three-dimensional elasticity., Comm. Pure Appl. Math. LV (2002),
no. 11, 1461-1506.

D.D. Fox, A. Raoult, and J.C. Simo, A justification of nonlinear properly invariant plate theories.,
Arch. Rat. Mech. Anal. 124 (1993), 157-199.

D.D. Fox and J.C. Simo, A drill rotation formulation for geometrically exact shells., Comp. Meth.
Appl. Mech. Eng. 98 (1992), 329-343.

G. Gioia, A. DeSimone, M. Ortiz, and A.M. Cuitino, Folding energetics in thin-film diaphragms,
Proc. Roy. Soc. London, Ser. A, Math. 458 (2002), 1223-1229.

A.E. Green, P.M. Naghdi, and W.L. Wainwright, A general theory of a Cosserat surface., Arch.
Rat. Mech. Anal. 20 (1965), 287-308.

G. Gioia and M. Ortiz, Delamination of compressed thin films, Advances in Applied Mechanics
(J.W. Hutchinson, ed.), vol. 33, Academic Press, 1997, pp. 119-192.

F. Gruttmann, E. Stein, and P. Wriggers, Theory and numerics of thin elastic shells with finite
rotations, Ing. Arch. 59 (1989), 54-67.

F. Gruttmann and R.L. Taylor, Theory and finite element formulation of rubberlike membrane shells
using principle stretches, Int. J. Num. Meth. Engrg. 35 (1992), 1111-1126.

T.J.R. Hughes and F. Brezzi, On drilling degrees of freedom, Comp. Meth. Appl. Mech. Engrg. 72
(1989), 105-121.

V. Lods and B. Miara, Nonlinearly elastic shell models: a formal asymptotic approach. II. The
flezural model, Arch. Rat. Mech. Anal. 142 (1998), 355-374.

G. Dal Maso, Introduction to I'-Convergence, Birkhaeuser, Boston, 1992.

B. Miara, Nonlinearly elastic shell models: a formal asymptotic approach. I. The membrane model,
Arch. Rat. Mech. Anal. 142 (1998), 331-353.

A. Mielke, On the justification of plate theories in linear elasticity theory using exponential decay
estimates., J. Elasticity 38 (1995), 165—208.

R. Monneau, Justification of the nonlinear Kirchhoff-Love theory of plates as the application of a
new singular inverse method, Arch. Rat. Mech. Anal. 169 (2003), 1-34.

P.M. Naghdi, The theory of shells, Handbuch der Physik, Mechanics of Solids, vol. VI a/2, Springer,
1972.

P. Neff, On Korn’s first inequality with nonconstant coefficients, Proc. Roy. Soc. Edinb. 132A
(2002), 221-243.

, A geometrically exact Cosserat-plate including size effects, avoiding degeneracy in the thin
plate limit. Modelling and mathematical analysis., Preprint 2301, http://wwwbib.mathematik.tu-
darmstadt.de/Math-Net/Preprints/Listen/pp03.html (10/2003).

, Finite multiplicative elastic-viscoplastic ~Cosserat micropolar theory for poly-
crystals with grain rotations. Modelling and mathematical analysis., Preprint 2297,
http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp03.html, submitted to
Arch. Rat. Mech. Anal. (9/2003).

, A geometrically exact Cosserat-shell model including size effects, avoiding degeneracy in the
thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers
for positive Cosserat couple modulus., to appear in Cont. Mech. Thermo. (2004).

, Local existence and uniqueness for quasistatic finite plasticity with grain boundary relax-
ation, to appear in Quart. Appl. Math. (2004).

, A geometrically exact micromorphic elastic solid. Modelling and existence
of  minimizers., Preprint 23xx, http://wwwbib.mathematik.tu-darmstadt.de/Math-
Net/Preprints/Listen/pp04.html, submitted to Calculus of Variations (2/2004).

M. Ortiz and G. Gioia, The morphology and folding patterns of buckling-driven thin-film blisters, J.
Mech. Phys. Solids 42 (1994), 531-559.

P. Podio-Guidugli, An ezact derivation of the thin plate equation., J. Elasticity 22 (1989), 121-133.

P. Podio-Guidugli and G. Vergara Caffarelli, Extreme elastic deformations., Arch. Rat. Mech. Anal.
115 (1991), 311-328.

W. Pompe, Korn’s first inequality with variable coefficients and its generalizations, Comment. Math.
Univ. Carolinae 44,1 (2003), 57-70.

A. Rossle, On the derivation of an asymptotically correct shear correction factor for the Reissner-
Mindlin plate model., C. R. Acad. Sci. Paris, Ser. I, Math. 328 (1999), no. 3, 269-274.

24



[Rub00] M.B. Rubin, Cosserat Theories: Shells, Rods and Points., Kluwer Academic Publishers, Dordrecht,

2000.

[San95] C. Sansour, A theory and finite element formulation of shells at finite deformations including thick-
ness change: circumventing the use of a rotation tensor., Arch. Appl. Mech. 10 (1995), 194-216.

[SB92] C. Sansour and H. Bufler, An ezxact finite rotation shell theory, its mired variational formulation
and its finite element implementation., Int. J. Num. Meth. Engrg. 34 (1992), 73-115.

[SB95] C. Sansour and H. Bednarczyk, The Cosserat surface as a shell model, theory and finite element
formulation., Comp. Meth. Appl. Mech. Eng. 120 (1995), 1-32.

[SB9g] C. Sansour and J. Bocko, On hybrid stress, hybrid strain and enhanced strain finite element formu-

lations for a geometrically exact shell theory with drilling degrees of freedom, Int. J. Num. Meth.
Engrg. 43 (1998), 175-192.

[SF89] J.C. Simo and D.D. Fox, On a stress resultant geometrically exact shell model. Part I: Formulation
and optimal parametrization, Comp. Meth. Appl. Mech. Eng. 72 (1989), 267-304.

[SF92] , On a stress resultant geometrically exact shell model. Part VI: Conserving algorithms for

non-linear dynamics, Comp. Meth. Appl. Mech. Eng. 34 (1992), 117-164.

[SFRR9] J.C. Simo, D.D. Fox, and M.S. Rifai, On a stress resultant geometrically exact shell model. Part I1:
The linear theory; computational aspects, Comp. Meth. Appl. Mech. Eng. 73 (1989), 53-92.

[SFR90] , On a stress resultant geometrically exact shell model. Part I11: Computational aspects of
the nonlinear theory, Comp. Meth. Appl. Mech. Eng. 79 (1990), 21-70.

[SK92] J.C. Simo and J.G. Kennedy, On a stress resultant geometrically exact shell model. Part V: Nonlin-
ear plasticity: formulation and integration algorithms, Comp. Meth. Appl. Mech. Eng. 96 (1992),
133-171.

[SRF90] J.C. Simo, M..S. Rifai, and D.D. Fox, On a stress resultant geometrically exact shell model. Part IV:
Variable thickness shells with through the thickness stretching, Comp. Meth. Appl. Mech. Eng. 81
(1990), 91-126.

[Ste90] D.J. Steigmann, Tension-field theory., Proc. R. Soc. London A 429 (1990), 141-173.

[Ste95] R. Stenberg, A new finite element formulation for the plate bending problem, Asymptotic Meth-
ods for Elastic Structures (P.G. Ciarlet, L. Trabucho, and J.M. Viano, eds.), Proceedings of the
International Conference, Walter de Gruyter, Berlin, 1995.

[WG93] P. Wriggers and F. Gruttmann, Thin shells with finite rotations formulated in Biot stresses: Theory
and finite element formulation, Int. J. Num. Meth. Engrg. 36 (1993), 2049-2071.

8 Appendix

8.1 The coercivity inequality in three-dimensions

The decisive analytical tool for the treatment of the case u. = 0, called case II (super-critical)
in [Nef03b] is the following inequality establishing coercivity for the deformations:

Theorem 8.1 (Extended 3D-Korn’s first inequality)

Let Q© C R® be a bounded Lipschitz domain and let T C 0 be a smooth part of the
boundary with non vanishing 2-dimensional Hausdorff measure. Define Hy?(Q,T) := {¢ €
HY2(Q) | ¢, = 0} and let F,,F,* € C*(Q,GL(3,R)). Moreover suppose that CurlF, €
C*(Q,MP*3). Then

3t >0V e Hy*(UT): [VoF, H(x) + E,  (2) Vo' 20y > ¢ 161720y -

Proof. The proof can be found in [Nef02]. |

Remark 8.2

Note that for F;, = VO we would only have to deal with the classical Korn’s inequality evaluated
on the transformed domain ©((). However, in general, F, is incompatible giving rise to a
non-Riemannian manifold structure. Compare this to [CGO01] for an interpretation and the
physical relevance of the volume dislocation density tensor Curl F,,. A Riemannian version of
Korn’s inequality has also been given in [CJ02].

Motivated by the investigations in [Nef02] it has been shown recently by Pompe [Pom03] that
the extended Korn’s inequality can be viewed as a special case of a general class of coercivity
inequalities for quadratic forms. He was able to show that indeed F,, F;'' € C(Q,GL(3,R)) is
sufficient for (8.1) to hold without any condition on the compatibility.

However, taking the special structure of the extended Korn’s inequality again into ac-
count, work in progress suggests that continuity is not really necessary: instead Fp,Fp’1 €
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L>(Q,GL(3,R)) and Curl F, € L3*°(Q) should suffice, whereas F,, F,; ' € L*(, GL(3,R))
alone is not sufficient, see the counterexample presented in [Pom03]. This last possible improve-
ment has no consequences for the subsequent mathematical analysis, however.
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