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Abstra
t

This paper establishes the existen
e of minimizers to a �nite-strain, geometri
ally exa
t

Cosserat plate model. The membrane energy of the investigated model is a quadrati
,

uniformly Legendre-Hadamard ellipti
 energy in 
ontrast to 
lassi
al approa
hes. The

bending 
ontribution is augmented by a 
urvature term representing an additional sti�ness

of the Cosserat theory and the 
orresponding nonlinear system of balan
e equations remains

of se
ond order. The lateral boundary 
onditions 
orresponding to simple support are

non-standard. The model in
ludes size e�e
ts, transverse shear resistan
e, drilling degrees

of freedom and a

ounts impli
itly for thi
kness extension and asymmetri
 shift of the

midsurfa
e. The formal thin shell "membrane" limit without 
lassi
al h

3

-bending term

is non-degenerate due to the additional Cosserat 
urvature sti�ness and 
ontrol of drill

rotations. In this formulation, the drill-rotations are stri
tly related to the size-e�e
ts of

the Cosserat bulk model and not introdu
ed arti�
ially for numeri
al 
onvenien
e. Upon

linearization with zero Cosserat 
ouple modulus �




= 0 ex
lusively, we re
over the well

known in�nitesimal-displa
ement Reissner-Mindlin model without size-e�e
ts and without

drill-rotations.

It is shown that this new �nite-strain Cosserat plate formulation is well-posed for �




= 0

by means of the dire
t methods of variations. The midsurfa
e deformation m is found in

H

1

(!;R

3

). De
isive use is made of a dimensionally redu
ed version of an extended Korn's

�rst inequality proved by the author.
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1 Introdu
tion

1.1 Some aspe
ts of shell theory

The dimensional redu
tion of a given 
ontinuum-me
hani
al model is already an old and mature

subje
t and it has seen many "solutions". The di�erent approa
hes toward elasti
 shell theory

proposed in the literature and relevant referen
es thereof are, therefore, too numerous to list

here. The investigated model herein falls within the so 
alled derivation approa
h, i.e.,

redu
ing a given three-dimensional model via physi
ally reasonable 
onstitutive assumptions on

the kinemati
s to a two-dimensional model. This is opposed to either the intrinsi
 approa
h

whi
h views the shell from the onset as a two-dimensional surfa
e and invokes 
on
epts from

di�erential geometry or the asymptoti
 methods whi
h try to establish two-dimensional

equations by formal expansion of the three-dimensional solution in power series in terms of a

small parameter. The intrinsi
 approa
h is 
losely related to the dire
t approa
h whi
h takes

the shell to be a two-dimensional medium with additional extrinsi
 dire
tors in the sense of a

restri
ted Cosserat surfa
e [CC09℄.

1

There, two-dimensional equilibrium in appropriate new

resultant stress and strain variables is postulated ab-initio more or less independent of three-

dimensional 
onsiderations, 
f. [Ant95, GNW65, ET58, CD66b, CD66a, CW89, Rub00, PG89℄.

A detailed presentation of the di�erent approa
hes in 
lassi
al shell theories 
an be found in

the monograph [Nag72℄. A thorough mathemati
al analysis of linear, in�nitesimal-displa
ement

shell theory, based on asymptoti
 methods is to be found in [Cia98a℄ and the extensive referen
es

therein, see also [Cia97, Cia99, Ant95, DS96, Dik82, CSP95℄. Ex
ellent reviews and insightful

dis
ussions of the modelling and �nite element implementation may be found in [SB92, San95,

SB98, GSW89, GT92, WG93, BGS96, BR92℄ and in the series of papers [SF89, SFR89, SFR90,

SRF90, SK92, SF92℄. Properly invariant, geometri
ally exa
t, elasti
 plate theories are derived

by formal asymptoti
 methods in [FRS93℄. This formal derivation is extended to 
urvilinear

shells in [Mia98, LM98℄. Apart from the pure bending 
ase [FJM02℄, whi
h is rigourously

justi�ed as the �-limit [Mas92℄ of the three-dimensional model and whi
h 
an be shown to

be intrinsi
ally well-posed, the obtained �nite-strain models have not yet been shown to be

well-posed. Indeed, the membrane energy 
ontribution is notoriously not Legendre-Hadamard

ellipti
. The membrane model justi�ed in [DR96℄ by �-
onvergen
e is geometri
ally exa
t and

quasi
onvex/ellipti
 but unfortunately does not 
oin
ide upon linearization with the otherwise

well-established in�nitesimal-displa
ement membrane model. Moreover, this model does not

des
ribe the detailed geometry of deformation in 
ompression but redu
es to a tension-�eld

theory [Ste90℄.

There is no pla
e here to 
omment further on the relative merits of ea
h alternative approa
h.

The "rational" of des
end from three to two dimensions should in any 
ase be 
omplemented

by an investigation of the intrinsi
 mathemati
al properties of the obtained redu
ed models.

Today, the need to simulate the me
hani
al response of highly 
exible thin stru
tures allowing

easily for �nite rotations ex
ludes the use of 
lassi
al in�nitesimal-displa
ement models, either

of Reissner-Mindlin (5.11) or Ki
hho�-Love type (5.14). Also, 
ertain "intermediary" models

allowing in prin
iple for bu
kling like the "nonlinear" von K�arm�an plates [Cia97, p.403℄ and

penalized "nonlinear" Reissner-Mindlin models [Dhi95℄

2

or "semilinear" Kir
hho�-Love plate

models [Mon03℄ are not geometri
ally exa
t (not frame-indi�erent). Nevertheless, the nonlinear

von K�arm�an plate has been su

esfully applied to the delamination problem of thin �lms [OG94,

GO97, GDOC02℄.

Mielke [Mie95℄ established in the in�nitesimal-displa
ement 
ontext that by using more than

�ve ansatz-fun
tions in a dire
tor model it is possible to obtain exponential de
ay estimates

for the boundary layer and to establish therefore a St.Venant prin
iple for linearized plates.

While it is not 
lear how his methods 
an be transferred to the �nite-strain 
ase, they provide,

independent of me
hani
al/physi
al 
onsiderations, a strong motivation to use a dire
tor ansatz

also in the �nite-strain 
ase in order to better 
apture the boundary layer phenomena.

Indeed, so 
alled shear-deformable theories with independent dire
tors are usually preferred

in the engineering 
ommunity [AMZ02, CB03℄. In view of an eÆ
ient �nite element implemen-

tation one 
onsiders a hyperelasti
, variationally based formulation with se
ond-order Euler-

1

Restri
ted, sin
e no material length s
ale usually enters the dire
t approa
h, only the relative thi
kness

h appears in the model. In terminology I distinguish between a "true" Cosserat model operating on SO(3;R)

and theories with any number of dire
tors.

2

Con
eptually a von K�arm�an plate with one independent dire
tor

~

d and addition of a penalisation term

�
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!1 with m the sought midsurfa
e deformation.
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Lagrange equations and uses standard C

0

-
onforming elements. The prototype examples are

models based on the Reissner-Mindlin kinemati
al assumption. There are numerous proposals

in the engineering literature for a �nite-strain, geometri
ally exa
t plate formulation, see e.g.

[FS92, SB92, SB95, SB98, WG93, BGS96, BR92℄. In many 
ases the need has been felt to de-

vote spe
i�
 attention to proper rotations R 2 SO(3;R), sin
e �nite rotations are the dominant

deformation mode of a 
exible stru
ture. This has led to the so 
alled drill-rotation for-

mulation whi
h means that proper rotations either appear in the formulation as independent

�elds (leading to a restri
ted Cosserat surfa
e) or they are an intermediary ingredient [HB89℄

in the numeri
al treatment (
onstraint Cosserat surfa
e). While the 
omputational merit of

this approa
h is well do
umented, a mathemati
al analysis for su
h a family of �nite-strain

plate models is yet missing, both for the Cosserat surfa
e and the 
onstraint model. It may be

spe
ulated that those restri
ted Cosserat plates (obtained from 
lassi
al non-polar bulk models

or from dire
t modelling) though geometri
ally exa
t and allowing for transverse shear and the

des
ription of boundary layers, might not be well posed for 
ertain membrane strain measures

either, notably if Green-strains: F

T

F � 11 or Hen
ky-strains: lnF

T

F are used. Another draw-

ba
k from a modelling point of view is that the in
lusion of drill-rotations is most often done

in an ad-ho
 fashion.

1.2 Limitations of existing shell models

The 
lassi
al in�nitesimal-displa
ement or �nite-strain plate-models proposed in the literature

lead to e�e
tive numeri
al s
hemes only if the relative thi
kness h of the stru
ture is still

appre
iable, i.e. 
lassi
al bending terms are present and regularize the 
omputation. However,

there is an abundan
e of new appli
ations where very thin (absolutely thin) stru
tures are used,

e.g. very thin metal layers on a substrate (in 
omputer hardware, for the 
hara
teristi
 relative

thi
kness h � 5 � 10

�4

). In these 
ases, 
lassi
al bending energy, whi
h 
omes with a fa
tor of

h

2


ompared with the membrane energy 
ontribution, 
annot play a stabilizing role for non-

vanishing membrane energy. See [BJ99℄ for su
h a problem o

urring in thin �lms. But, as

we noted already, the membrane terms e.g. in a �nite-strain, invariant Kir
hho�-Love plate

[FRS93℄ or �nite-strain Reissner-Mindlin model [FS92℄ are non-ellipti
 (degenerated) and the

remaining minimization problem might not be well-posed even if 
lassi
al bending is in
luded.

It is also observed experimentally that very thin stru
tures behave 
omparably sti�er

than absolutely thi
ker stru
tures while both have the same relative thi
kness. These non-


lassi
al size e�e
ts 
annot be negle
ted for very thin stru
tures [CCC

+

03℄. Su
h e�e
ts are,

however, not a

ounted for in 
lassi
al theories.

In addition, 
lassi
al in�nitesimal-displa
ement or �nite-strain shell models predi
t unre-

alisti
ally high levels of smoothness, typi
ally m 2 W

1;4

(!;R

3

) for the midsurfa
e m in both

�nite-strain Kir
hho�-Love and Reissner-Mindlin models andm 2 H

2

(!;R

3

) in the �nite-strain

pure bending problem [FJM02℄ and the von K�arm�an model. This implies at least C

0;�

(!) for

the midsurfa
e whi
h rule out the des
ription of boundary layer e�e
ts and possible failure

along asymptoti
 lines of the surfa
e.

1.3 S
ope of study

I have therefore proposed a new shell model (des
ribed in (4.1)) for very thin almost rigid

materials whi
h should remedy some of the aforementioned short
omings with a view towards

a subsequent stringent mathemati
al analysis and possible stable �nite element implementation.

It is the goal to provide a model whi
h is both theoreti
ally and physi
ally sound, su
h that its

numeri
al implementation 
an 
on
entrate on real 
onvergen
e issues. Let me summarize what

I require of a general, all purpose, 
onsistent �rst approximation plate model. I require

1. A �nite-strain formulation whi
h is geometri
ally exa
t and allows for �nite rotations.

2. The des
ription of transverse shear, drill rotations, thi
kness stret
h and asymmetri
 shift

of the midsurfa
e. This ex
ludes normality assumptions for some dire
tor.

3. A qualitative resolution of the boundary layer and edge e�e
t 
ompared with the bulk

model.

4. Well-posedness: existen
e, but not unquali�ed uniqueness in order to be able to des
ribe

bu
kling due to membrane for
es, e.g. under lateral 
ompression or lateral shear and

avoiding unquali�ed smoothness for the midsurfa
e, requiring only m 2 H

1;2

(!;R

3

).
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5. A hyperelasti
, variational formulation with se
ond-order Euler-Lagrange equations in

view of an eÆ
ient �nite element implementation with standard C

0

-
onforming elements.

6. A redu
ed energy density whi
h is de�ned in terms of two-dimensional quantities with

a 
lear physi
al meaning of these redu
ed two-dimensional quantities. Maximally h

3

-

bending 
ontributions.

7. The in
orporation of non-
lassi
al size e�e
ts without leading to trivial 
ompa
tness ar-

guments for the the midsurfa
e m.

3

The model must also be "operative" without the


lassi
al h

3

-bending 
ontribution, i.e. in the formal "membrane" thin shell limit.

8. The 
onsisten
y with 
lassi
al plate models (in�nitesimal displa
ement Reissner-Mindlin

(5.11), in�nitesimal-displa
ement Kir
hho�-Love (5.14)) upon linearization and 
onsis-

ten
y with rigourously justi�ed �nite-strain Kir
hho�-Love bending model [FJM02, FRS93℄

in pure bending for large samples (
lassi
al limit of vanishing internal length L




).

1.4 Outline of this 
ontribution

The basi
 idea to meet these requirements for a plate model is to des
end from a three-

dimensional Cosserat model. First, we introdu
e therefore in se
tion (2) the underlying "parent"

three-dimensional �nite-strain frame-indi�erent Cosserat model with size e�e
ts and already

appearing independent mi
rorotations R, i.e. a triad of rigid dire
tors (R

1

jR

2

jR

3

) =

R 2 SO(3;R) and we re
all the obtained existen
e results for this Cosserat bulk model. We

then provide the restri
tion of the bulk model to a thin domain (3.1) on whi
h the redu
tion

is based. Applying our "rational" of dimensional des
end we postulate in se
tion (4.1) the full

two-�eld minimization problem for the new Cosserat plate model [Nef03a, Nef04a℄. It must be

observed that the resulting Cosserat plate model 
annot be obtained from a simple energy

proje
tion, su
h that the already obtained three-dimensional results do not apply.

The 
orresponding equilibrium problem de�ned over the two-dimensional referential domain

! � R

2

has six degrees of freedom (three for the midsurfa
e deformation m : ! 7! R

3

and three

for the independent rotations R : ! 7! SO(3;R), 6 dof) and 
onstitutes a nonlinear, partial

di�erential ellipti
 system of six equations for basi
ally six unknown fun
tions. The derivation

of these Euler-Lagrange equations is standard and therefore not presented. The model in
ludes

naturally one-drilling degree of freedom for in-plane rotations and a

ounts for thi
kness stret
h

and transverse shear. The drilling degree is stri
tly related to the size-e�e
t of the bulk model

and not spe
i�
ally introdu
ed in an ad ho
 fashion by the dimensional redu
tion. The model

features also a non-standard boundary 
ondition, whi
h is 
alled 
onsistent 
oupling.

In se
tion (4.3), we derive a new Korn's �rst inequality for plates and elasto-plasti
 shells

whi
h is de
isive for the mathemati
al treatment of models obtained in our variational 
ontext.

Depending on material 
onstants and boundary 
onditions, di�erent mathemati
al existen
e

theorems are proposed in se
tion (4.4). Generi
ally, we obtain for the midsurfa
e deformation

m 2 H

1;2

(!;R

3

). For these results the dire
t methods of variations are used.

The quasi
onvexity of the redu
ed energy fun
tional I(m;R) in the pair (m;R) is rather

easy to see, however, unquali�ed 
oer
ivity [PGC91℄

4

w.r.t. the midsurfa
e deformation m

depends 
ru
ially on the uniform positivity of the Cosserat 
ouple modulus �




> 0. The

simpler existen
e of minimizers in this 
ase is established elsewhere [Nef03a, Nef04a℄.

For zero Cosserat 
ouple modulus �




= 0, the la
k of unquali�ed 
oer
ivity, however, 
an

only be over
ome by a 
ertain 
ontrol of the 
urvature in 
onjun
tion with the new Korn's

inequality for plates.

In order to treat external loads for zero Cosserat 
ouple modulus �




= 0, the resultant load

fun
tional � has to be adapted. This modi�
ation, whi
h is already needed in the Cosserat

bulk model, has been termed there "prin
iple of bounded external work" [Nef04
℄ and

expresses the observation that by simple translation of a solid in a for
e �eld only a �nite amount

of energy 
an be gained whi
h is 
ertainly true for any 
lassi
al physi
al �eld. If we want to treat

the non-standard boundary 
ondition of very weak 
onsistent 
oupling, we need to augment

the energy fun
tional with an additional 
urvature 
ontrol on the lateral Diri
hlet boundary




0

. The mathemati
al analysis is also extended to a new Cosserat plate model appropriate for

large stret
h whi
h has appealing physi
al features.

3

Adding a se
ond derivative L

p




kD

2

mk

p

to the energy density would "resolve" all mathemati
al diÆ
ulties

but lead to m 2W

2;p

(!;R

3

).

4

In �nite elasti
ity: W (F ) � 


+

1

kFk

p

� 


+

2

; p � 2.
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In order to relate the new �nite-strain Cosserat plate model to 
lassi
al approa
hes, we show

then, that a linearization of the new plate modelwith zero Cosserat 
ouple modulus �




=

0 results in the 
lassi
al in�nitesimal-displa
ement Reissner-Mindlin model (without extra

size e�e
ts and therefore without drill-rotations) and shear 
orre
tion fa
tor � = 1. However,

weaker boundary 
onditions for the in
rement of the dire
tor in the linearized in�nitesimal-

displa
ement Reissner-Mindlin model (5.11) are motivated. Nevertheless, this new boundary


ondition redu
es to the 
lassi
al 
ondition on the in
rement of the normal in the linearized

Kir
hho�-Love model (5.14). Finally, the treatment of external loads is detailed.

1.5 Notation

1.5.1 Notation for bulk material

Let 
 � R

3

be a bounded domain with Lips
hitz boundary �
 and let � be a smooth subset of

�
 with non-vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote

the s
alar produ
t on R

3

with asso
iated ve
tor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3� 3 se
ond order tensors, written with 
apital letters. The standard Eu
lidean

s
alar produ
t on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor

norm is kXk

2

= hX;Xi

M

3�3

. In the following we omit the index R

3

;M

3�3

. The identity tensor

on M

3�3

will be denoted by 11, so that tr [X ℄ = hX; 11i and tr [X ℄

2

= hX; 11i

2

. We let Sym and

PSym denote the symmetri
 and positive de�nite symmetri
 tensors respe
tively. We adopt the

usual abbreviations of Lie-group theory, i.e., GL(3;R) := fX 2 M

3�3

jdet[X ℄ 6= 0g the general

linear group, SL(3;R) := fX 2 GL(3;R) jdet[X ℄ = 1g; O(3) := fX 2 GL(3;R) j X

T

X =

11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X ℄ = 1g with 
orresponding Lie-algebras

so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri
 tensors and sl(3) := fX 2 M

3�3

jtr [X ℄ =

0g of tra
eless tensors. With AdjX we denote the tensor of transposed 
ofa
tors Cof(X) su
h

that AdjX = det[X ℄X

�1

= Cof(X)

T

if X 2 GL(3;R). We set sym(X) =

1

2

(X

T

+ X) and

skew(X) =

1

2

(X � X

T

) su
h that X = sym(X) + skew(X). For X 2 M

3�3

we set for the

deviatori
 part devX = X �

1

3

tr [X ℄ 11 2 sl(3) and for ve
tors �; � 2 R

n

we have the tensor

produ
t (� 
 �)

ij

= �

i

�

j

.

We write the polar de
omposition in the form F = RU = polar(F )U with R = polar(F )

the orthogonal part of F . For a se
ond order tensor X we de�ne the third order tensor h =

D

x

X(x) = (r(X(x):e

1

);r(X(x):e

2

);r(X(x):e

3

)) = (h

1

; h

2

; h

3

) 2 M

3�3

� M

3�3

� M

3�3

�

=

T(3). For third order tensors h 2 T(3) we set khk

2

=

P

3

i=1

kh

i

k

2

together with sym(h) :=

(sym h

1

; sym h

2

; sym h

3

) and tr [h℄ := (tr

�

h

1

�

; tr

�

h

2

�

; tr

�

h

3

�

) 2 R

3

. Moreover, for any se
ond

order tensor X we de�ne X �h := (Xh

1

; Xh

2

; Xh

3

) and h �X , 
orrespondingly. Quantities with a

bar, e.g. the mi
ropolar rotation R, represent the mi
ropolar repla
ement of the 
orresponding


lassi
al 
ontinuum rotation R. In general we work in the 
ontext of nonlinear, �nite-strain

elasti
ity. For the total deformation ' 2 C

1

(
;R

3

) we have the deformation gradient F = r' 2

C(
;M

3�3

). Furthermore, S

1

(F ) = D

F

W (F ) and S

2

(F ) = F

�1

D

F

W (F ) denote the �rst and

se
ond Piola Kir
hho� stress tensors, respe
tively. Total time derivatives are written

d

dt

X(t) =

_

X. The �rst and se
ond di�erential of a s
alar valued fun
tion W (F ) are written D

F

W (F ):H

and D

2

F

W (F ):(H;H), respe
tively. We employ the standard notation of Sobolev spa
es, i.e.

L

2

(
); H

1;2

(
); H

1;2

Æ

(
);W

1;q

(
), whi
h we use indi�erently for s
alar-valued fun
tions as well

as for ve
tor-valued and tensor-valued fun
tions. The setW

1;q

(
; SO(3;R)) denotes orthogonal

tensors whose 
omponents are in W

1;q

(
). Moreover, we set kXk

1

= sup

x2


kX(x)k. For

A 2 C

1

(
;M

3�3

) we de�ne CurlA(x) as the operation 
url applied row wise. We de�ne

H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the sense of tra
es

and by C

1

0

(
) we denote in�nitely di�erentiable fun
tions with 
ompa
t support in 
. We use


apital letters to denote possibly large positive 
onstants, e.g. C

+

;K and lower 
ase letters

to denote possibly small positive 
onstants, e.g. 


+

; d

+

. The smallest eigenvalue of a positive

de�nite symmetri
 tensor P is abbreviated by �

min

(P ).

1.5.2 Notation for plates and shells

Let ! � R

2

be a bounded domain with Lips
hitz boundary �! and let 


0

be a smooth subset

of �! with non-vanishing 1-dimensional Hausdor� measure. The thi
kness of the plate is taken

to be h > 0 with dimension length (
ontrary to Ciarlet's de�nition of the thi
kness to be

2", whi
h di�eren
e leads only to various di�erent 
onstants in the resulting formulas). We

denote by M

n�m

the set of matri
es mapping R

n

7! R

m

. For H 2 M

2�3

and � 2 R

3

we

6



employ also the notation (H j�) 2 M

3�3

to denote the matrix 
omposed of H and the 
olumn

�. Likewise (vj�j�) is the matrix 
omposed of the 
olumns v; �; �. This allows us to write

for ' 2 C

1

R

3

;R

3

) : r' = ('

x

j'

y

j'

z

) = (�

x

'j�

y

'j�

z

'). The identity tensor on M

2�2

will

be denoted by 11

2

. For B 2 M

2�2

we de�ne B

[

=

0

�

B

11

B

12

0

B

21

B

22

0

0 0 0

1

A

2 M

3�3

. The mapping

m : ! � R

2

7! R

3

is the deformation of the midsurfa
e, rm is the 
orresponding deformation

gradient and ~n

m

is the outer unit normal on m. A matrix X 2 M

3�3


an now be written

as X = (X:e

2

jX:e

2

jX:e

3

) = (X

1

jX

2

jX

3

). We write v : R

2

7! R

3

for the displa
ement of the

midsurfa
e, su
h that m(x; y) = (x; y; 0)

T

+ v(x; y). The standard volume element is written

dx dy dz = dV = d! dz.

2 The underlying �nite-strain three-dimensional Cosserat

model in variational form

In [Nef03b℄ a �nite-strain, fully frame-indi�erent, three-dimensional Cosserat mi
ropolar model

is introdu
ed. The two-�eld problem has been posed in a variational setting. The task is to �nd

a pair (';R) : 
 � R

3

7! R

3

� SO(3;R) of deformation ' and independent mi
rorotation

R 2 SO(3;R) minimizing the energy fun
tional I ,

I(';R) =

Z




W

mp

(R

T

r') +W


urv

(R

T

D

x

R)��

f

(')��

M

(R) dV

�

Z

�

S

�

N

(') dS�

Z

�

C

�

M




(R) dS 7! min : w.r.t. (';R) ; (2.1)

together with the Diri
hlet boundary 
ondition of pla
e for the deformation ' on �: '

j

�

= g

d

and three possible alternative boundary 
onditions for the mi
rorotations R on �,

R

j

�

=

8

>

<

>

:

R

d

; the 
ase of rigid pres
ription ;

polar(r') ; the 
ase of 
onsistent 
oupling ;

no 
ondition for R on �, indu
ed Neumann-type relations for R on � :

(2.2)

The 
onstitutive assumptions on the densities are

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

; U = R

T

F ; F = r' ;

W


urv

(K) = �

L

1+p




12

(1 + �

4

L

q




kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

; (2.3)

K = R

T

D

x

R :=

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

; the third order 
urvature tensor :

The total elasti
ally stored energyW =W

mp

+W


urv

is quadrati
 in the stret
h U and possibly

super-quadrati
 in the 
urvature K. The strain energyW

mp

depends on the deformation gradient

F = r' and the mi
rorotations R 2 SO(3;R), whi
h do not ne
essarily 
oin
ide with the


ontinuum rotations R = polar(F ). The 
urvature energy W


urv

depends moreover on the

spa
e derivatives D

x

R whi
h des
ribe the self-intera
tion of the mi
rostru
ture.

5

In general, the

mi
ropolar stret
h tensor U is not symmetri
 and does not 
oin
ide with the symmetri



ontinuum stret
h tensor U = R

T

F =

p

F

T

F . By abuse of notation we set k symKk

2

:=

P

3

i=1

k symK

i

k

2

for third order tensors K, 
f.(1.5.1).

Here 
 � R

3

is a domain with boundary �
 and � � �
 is that part of the boundary,

where Diri
hlet 
onditions g

d

; R

d

for deformations and mi
rorotations or 
oupling 
onditions

for mi
rorotations, are pres
ribed. �

S

� �
 is a part of the boundary, where tra
tion boundary


onditions in the form of the potential of applied surfa
e for
es �

N

are given with � \ �

S

= ;.

In addition, �

C

� �
 is the part of the boundary where the potential of external surfa
e 
ouples

�

M




are applied with � \ �

C

= ;. On the free boundary �
 n f� [ �

S

[ �

C

g 
orresponding

natural boundary 
onditions for (';R) apply. The potential of the external applied volume

5

Observe that R

T

r(R:e

i

) 6= R

T

�

x

i

R 2 so(3;R).

7



for
e is �

f

and �

M

takes on the role of the potential of applied external volume 
ouples. For

simpli
ity we assume

�

f

(') = hf; 'i ; �

M

(R) = hM;Ri ; �

N

(') = hN;'i ; �

M




(R) = hM




; Ri ; (2.4)

for the potentials of applied loads with given fun
tions f 2 L

2

(
;R

3

); M 2 L

2

(
;M

3�3

); N 2

L

2

(�

S

;R

3

); M




2 L

2

(�

C

;M

3�3

).

The parameters �; � > 0 are the Lam�e 
onstants of 
lassi
al isotropi
 elasti
ity, the addi-

tional parameter �




� 0 is 
alled the Cosserat 
ouple modulus. For �




> 0 the elasti
 strain

energy density W

mp

(U) is uniformly 
onvex in U . Moreover

6

8F 2 GL

+

(3;R) : W

mp

(U ) =W

mp

(R

T

F ) � �




kR

T

F � 11k

2

= �




kF �Rk

2

� �




inf

R2O(3;R)

kF �Rk

2

= �




dist

2

(F;O(3;R)) (2.5)

= �




dist

2

(F; SO(3;R)) = �




kF � polar(F )k

2

= �




kU � 11k

2

:

In 
ontrast, for �




= 0 the strain energy density is only 
onvex w.r.t. F and does not satisfy

(2.5).

The parameter L




> 0 (with dimension length) introdu
es an internal length whi
h is


hara
teristi
 for the material, e.g. related to the grain size in a poly
rystal. The internal

length L




> 0 is responsible for size e�e
ts in the sense that smaller samples are relatively

sti�er than larger samples. We assume throughout that �

5

> 0; �

6

> 0; �

7

� 0. This implies

the 
oer
ivity of 
urvature

9 


+

> 0 8 K 2 T(3) : W


urv

(K) � 


+

kKk

1+p

; (2.6)

whi
h is a basi
 ingredient of the mathemati
al analysis.

The non-standard boundary 
ondition of 
onsistent 
oupling ensures that no unwanted

non-
lassi
al, polar e�e
ts may o

ur at the Diri
hlet boundary �. It implies for the mi
ropolar

stret
h that U

j

�

2 Sym and for the se
ond Piola-Kir
hho� stress tensor S

2

:= F

�1

D

F

W

mp

(U) 2

Sym on � as in the 
lassi
al, non-polar 
ase.

We mention, that a linearization of this Cosserat bulk model with �




= 0 for small dis-

pla
ement and small mi
rorotations 
ompletely de
ouples the two �elds of deformation and

mi
rorotations and leads to the 
lassi
al linear elasti
ity problem for the deformation.

7

For

more details on the modelling of the three-dimensional Cosserat model we refer the reader to

[Nef03b℄.

2.1 Mathemati
al results for the three-dimensional Cosserat bulk prob-

lem

For 
on
iseness we state only the obtained results for the 
ase without external loads. It 
an

be shown [Nef04a℄:

Theorem 2.1 (Existen
e for 3D-�nite-strain elasti
 Cosserat model with �




> 0)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

)

and R

d

2 W

1;1+p

(
; SO(3;R)). Then (2.1) with �




> 0; �

4

� 0; p � 1; q � 0 and either

free or rigid pres
ription for R on � admits at least one minimizing solution pair (';R) 2

H

1

(
;R

3

)�W

1;1+p

(
; SO(3;R)). �

Using the extended Korn's inequality Theorem 8.1, the following has been shown in [Nef03b,

Nef04
℄:

Theorem 2.2 (Existen
e for 3D-�nite-strain elasti
 Cosserat model with �




= 0)

Let 
 � R

3

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

)

and R

d

2 W

1;1+p+q

(
; SO(3;R)). Then (2.1) with �




= 0; �

4

> 0; p � 1; q > 1 and

either free or rigid pres
ription for R on � admits at least one minimizing solution pair

(';R) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)). �

6

The 
ondition F 2 GL

+

(3;R) is ne
essary, otherwise kF � polar(F )k

2

= dist

2

(F;O(3;R)) <

dist

2

(F; SO(3;R)), as 
an be easily seen for the re
e
tion F = diag(1;�1; 1).

7

Thinking in the 
ontext of an in�nitesimal-displa
ement Cosserat theory one might erroneously believe that

�




> 0 is stri
tly ne
essary also for a "true" �nite-strain Cosserat theory.

8



3 Formal dimensional redu
tion of the Cosserat bulk model

3.1 The three-dimensional Cosserat problem on a thin domain

The basi
 task of any shell theory is a 
onsistent redu
tion of some presumably "exa
t" 3D-

theory to 2D. The general three-dimensional problem (2.1) will now be adapted to a shell-like

theory. Let us assume that we are given a three-dimensional absolutely thin domain




h

:= ! � [�

h

2

;

h

2

℄; ! � R

2

; (3.1)

with transverse boundary �


trans

h

= ! � f�

h

2

;

h

2

g and lateral boundary �


lat

h

= �! �

[�

h

2

;

h

2

℄, where ! is a bounded domain in R

2

with smooth boundary �! and h > 0 is the

thi
kness. Moreover, assume we are given a deformation ' and mi
rorotation R

3d

,

' : 


h

� R

3

7! R

3

; R

3d

: 


h

� R

3

7! SO(3;R) ; (3.2)

solving the following two-�eld minimization problem on the thin domain 


h

:

I(';r';R;D

x

R) =

Z




h

W

mp

(U) +W


urv

(K)� hf; 'i dV �

Z

�


trans

h

[f


s

�[�

h

2

;

h

2

℄g

hN;'i dS 7! min : w.r.t. (';R) ;

U = R

T

F; '

j

�

h

0

= g

d

(x; y; z); �

h

0

= 


0

� [�

h

2

;

h

2

℄; 


0

� �!; 


s

\ 


0

= ; ;

R

j

�

h

0

= polar(r') ; strong 
onsistent 
oupling boundary 
ondition ; (3.3)

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

;

W


urv

(K) = �

L

1+p




12

(1 + �

4

L

q




kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

;

K = R

T

D

x

R =

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

:

Without loss of mathemati
al generality we assume thatM;M




� 0 in (2.4), i.e. that no external

volume or surfa
e 
ouples are present in the bulk problem. We want to �nd a reasonable

approximation ('

s

; R

s

) of (';R

3d

) involving only two-dimensional quantities. For us, this

dimensional redu
tion is based on a formal dimensional redu
tion "rational", whi
h is


hara
terized as follows:

1. A quadrati
 ansatz through the thi
kness for the three-dimensional deformation:

'

s

(x; y; z) = m(x; y) + (z%

m

+

z

2

2

%

b

)

~

d with m the deformation of the midsurfa
e, i.e.

normals to the undeformed midsurfa
e remain straight, but may be elongated and

the midsurfa
e may be asymmetri
ally shifted. The rotations are assumed to be


onstant over the thi
kness: R

3d

(x; y; z) = R

s

(x; y) = R(x; y). Restri
tion of the dire
tor

~

d to the third 
olumn R

3

:= R:e

3

of the already appearing mi
rorotations.

2. Exa
t analyti
al determination of the two leading 
oeÆ
ients %

m

; %

b

from the three-

dimensional transverse boundary 
ondition on the upper and lower fa
e of the plate in

terms of the quadrati
 ansatz, independent of the Cosserat 
ouple modulus �




. Sim-

pli�
ation of the formulas for %

m

; %

b

in view of an assumed almost rigid (�; � � 1)

behaviour (4.8). Repla
es "Condensation of the material law: �

33

= 0" in the 
lassi
al

in�nitesimal-displa
ement theory.

3. Analyti
al integration of the bulk energy through the thi
kness with an approximated

expression F

s

= (rmj%

m

R

3

) + z (rR

3

j%

b

R

3

) for the re
onstru
ted deformation gradi-

ent r'

s

, 
onsistent with a linear ansatz through the thi
kness to obtain a dimensionally

redu
ed energy density I('

s

; F

s

; R

s

;D

x

R

s

). Amounts to "Typi
al in
onsisten
y of deriva-

tion with naive energy proje
tion."

4. Non-standard Diri
hlet boundary 
onditions for simple support: no dire
t pre-

s
ription of a dire
tor at the lateral Diri
hlet boundary 


0

, instead requiring only a weak


oupling 
ondition to the extent that no polar e�e
ts may o

ur at the Diri
hlet bound-

ary, possibly weakening the boundary layer: "Avoiding the typi
al problem of Cosserat

9



theories as regards formulation of boundary 
onditions." Alternative Diri
hlet boundary


onditions are also possible: 
lassi
al rigid dire
tor pres
ription:

~

d = R:e

3

pres
ribed

at 


0

(
lamped).

4 The new formal �nite-strain Cosserat thin plate model

with size e�e
ts

4.1 Statement of the formal Cosserat plate model

The proposed formal "rational" of dimensional des
end leads us to postulate the following

two-dimensional minimization problem for the deformation of the midsurfa
e m : ! � R

2

7! R

3

and the mi
rorotation of the plate (shell) R : ! � R

2

7! SO(3;R) on !:

I(m;R) =

Z

!

hW

mp

(U)+hW


urv

(K

s

) +

h

3

12

W

bend

(K

b

) d!

��(m;R

3

) 7! min : w.r.t. (m;R) ; (4.1)

under the 
onstraints

U = R

T

b

F ;

b

F = (rmjR

3

) 2 M

3�3

; (4.2)

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

2 T(3) ; K

b

= K

3

s

;

and the boundary 
onditions of pla
e for the midsurfa
e deformation m on the Diri
hlet part

of the lateral boundary 


0

,

m

j




0

= g

d

(x; y; 0) ; simply supported (�xed, welded) : (4.3)

The three possible alternative boundary 
onditions for the mi
rorotations R on 


0

are

R

j




0

= polar((rmjrg

d

(x; y; 0):e

3

))

j




0

; strong form of redu
ed 
onsistent 
oupling ; (4.4)

8A 2 C

1

0

(


0

; so(3;R)) :

Z




0

hR

T

(rm(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds = 0 ; very weak 
onsistent 
oupling ;

R

3

j




0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; rigid dire
tor pres
ription :

The 
onstitutive assumptions on the redu
ed densities are

8

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

��

2�+ �

tr

�

sym(U � 11)

�

2

(4.5)

= � k sym((R

1

jR

2

)

T

rm� 11

2

)k

2

| {z }

shear-stret
h energy

+�




k skew((R

1

jR

2

)

T

rm)k

2

| {z }

�rst order drill energy

+

�(�+ �




)

2

�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

| {z }


lassi
al transverse shear energy

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

| {z }

elongational stret
h energy

;

W


urv

(K

s

) = �

L

1+p




12

(1 + �

4

L

q




kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

;

K

s

= (K

1

s

;K

2

s

;K

3

s

) 2 T(3) ; the redu
ed third order 
urvature tensor ;

W

bend

(K

b

) = � k sym(K

b

)k

2

+ �




k skew(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

;

K

b

= R

T

(rR

3

j0) = K

3

s

; the se
ond order non-symmetri
 bending tensor :

8

k skew((R

1

jR

2

)

T

rm)k

2

=

�

hR

1

;m

y

i � hR

2

;m

x

i

�

2

.

10



The (relative) thi
kness of the plate (shell) is h > 0. The total elasti
ally stored energy density

due to membrane-strain, total plate-
urvature and spe
i�
 plate-bending

W = hW

mp

| {z }

membrane

+ hW


urv

| {z }


urvature

+

h

3

12

W

bend

| {z }

bending

; (4.6)

depends on the midsurfa
e deformation gradient rm and mi
rorotations R together with their

spa
e derivatives only through the frame-indi�erent measures U and K

s

. The mi
ropolar

stret
h tensor U of the plate is in general non-symmetri
, neither is the mi
ropolar

redu
ed third order 
urvature tensor K

s

. The three-dimensional plate deformation is

re
onstru
ted as

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

R(x; y):e

3

; (4.7)

where

%

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

(2�+ �)

= 1�

�

2�+ �

tr

�

U � 11

�

+

hN

di�

; R

3

i

(2�+ �)

| {z }

�rst order thi
kness 
hange due to elongational stret
h

;

%

b

= �

�

2�+ �

h(rR

3

j0); Ri+

hN

res

; R

3

i

(2�+ �)h

| {z }

non-symmetri
 shift of the midsurfa
e due to bending

= �

�

2�+ �

tr [K

b

℄ +

hN

res

; R

3

i

(2�+ �)h

(4.8)

and N

di�

; N

res

as de�ned in (5.2). To �rst order, the re
onstru
ted deformationgradient is given

by F

s

= (rmj%

m

R

3

). Here ! � R

2

is a domain with boundary �! and 


0

� �! is that part

of the boundary, where Diri
hlet 
onditions g

d

for deformations and mi
rorotations and/or


onsistent 
oupling 
onditions for mi
rorotations, respe
tively, are pres
ribed. The redu
ed

external loading fun
tional �(m;R

3

) is a linear form in (m;R

3

) de�ned in (5.19) in terms of

the underlying three-dimensional loads. The parameters �; � > 0 are the Lam�e 
onstants of


lassi
al elasti
ity, �




� 0 is 
alled the Cosserat 
ouple modulus and L




> 0 introdu
es the

internal length. We assume throughout that �

5

> 0; �

6

> 0; �

7

� 0. We have in
luded the

so 
alled shear 
orre
tion fa
tor � (0 < � � 1) to keep in line with 
lassi
al in�nitesimal-

displa
ement plate models (5.11). In our formal derivation, however, we obtain � = 1. The

redu
ed model (4.1) is fully frame-indi�erent, meaning that

8 Q 2 SO(3;R) : W

mp

(Q

b

F ;QR) =W

mp

(

b

F ;R) ; K

s

(QR) = K

s

(R) : (4.9)

The non-invariant term %

m

is only needed to re
onstru
t the 3D-deformation, whi
h depends

on the non-invariant loading.

9

Strain and 
urvature parts are additively de
oupled, as in

the underlying parent model (2.1). We note the appearan
e of the harmoni
 mean H and

arithmeti
 mean A

1

2

H(�;

�

2

) =

��

2�+ �

; �A(�; �




) = �

�+ �




2

: (4.10)

4.2 The di�erent 
ases for the Cosserat plate

As in the three-dimensional 
ase [Nef03b℄, we may distinguish �ve di�erent situations: (di�erent

values of p; q 
ompared with the three-dimensional 
ase)

I: �




> 0; �

4

� 0; p � 1; q � 0. Un
onditional 
oer
ivity and unquali�ed existen
e, posi-

tive Cosserat 
ouple modulus. Fra
ture ex
luded.

II: �




= 0; �

4

= 0; p > 1; q � 0. Conditional 
oer
ivity, zero Cosserat 
ouple modulus.

Fra
ture ex
luded.

III: �




=1; �

4

� 0; p � 1; q � 0. Constrained gradient Cosserat mi
ropolar plate prob-

lem (indeterminate 
ouple-stress plate model). Compatible Diri
hlet boundary 
onditions:

m

j




0

= g

d

; polar((rmj%

m

~n

m

))

j




0

= polar(rg

d

)

j




0

. Similar to, but not identi
al with, a

Kir
hho�-Love model.

9

Of 
ourse, if the external tra
tions are rotated as well, we obtain invarian
e: hQ:N

di�

;Q:R

3

i = hN

di�

; R

3

i.

11



IV: �




= 0; �

4

= 0; 0 < p � 1; q = 0. Possibly m 62 W

1;1

(!;R

3

) due to la
k of elasti
 
oer-


ivity, in
luding fra
ture in multiaxial situations.

V: �




= 0;L




= 0. Relaxation 
ase. Finite elasti
ity with free rotations and mi
rostru
-

ture. Weak solutions of the nonlinear, non-ellipti
 problem based on the total elasti


energy density

W (rm;~n

m

;r~n

m

) = h

�

� kU((rmj~n))� 11k

2

+

��

2�+ �

tr [U((rmj~n))� 11℄

2

�

+

h

3

12

�

� kU

�1




II

m

k

2

+

��

2�+ �

tr

h

U

�1




II

m

i

2

�

;

U((rmj~n)) =

q

(rmj~n)

T

(rmj~n) =

p

I

m

+ e

3


 e

3

;

(I

m

the �rst fundamental form,




II

m

= II

m

+ e

3


 e

3

, II

m

= �rm

T

r~n

m

2 M

2�2

the

se
ond fundamental form of the midsurfa
e m), are stationary points of the minimization

problem (4.1). Allowing in prin
iple for sharp interfa
es.

We refer to 0 < p < 1; q � 0 as the sub-
riti
al 
ase, to p = 1; q � 0 as the 
riti
al 
ase and

to p > 1; q � 0 as the super-
riti
al 
ase. In this 
ontribution we will treat mathemati
ally

ex
lusively the super-
riti
al 
ase II. The simpler 
ase I and 
ase III for positive Cosserat 
ouple

modulus �




> 0 with rigid dire
tor pres
ription at the boundary are dealt with in [Nef04a℄.

The "fra
ture" 
ase IV and the "relaxation" 
ase V remain open at present.

It is easy to see that the membrane energy part W

mp

in (4.1) is uniformly Legendre-

Hadamard ellipti
 with ellipti
ity 
onstant � > 0 independent of the value of the Cosserat 
ouple

modulus �




. As will be seen, a linearization of (4.1) with �




= 0 and p > 1 (super-quadrati



urvature energy W


urv

) for small displa
ement and small mi
rorotation does not de
ouple the

�elds, as in the three-dimensional situation, but leads formally to the in�nitesimal-displa
ement,


lassi
al linear Reissner-Mindlin model (5.11).

4.3 The 
oer
ivity inequality in two-dimensions

In this se
tion we show how to use the three-dimensional extended Korn's �rst inequality

Theorem 8.1 in our redu
ed two-dimensional 
ontext of plates and shells in order to improve

Legendre-Hadamard ellipti
ity to uniform positivity. In order to show that the elasti
 membrane

energy is uniformly 
onvex for zero Cosserat 
ouple modulus �




= 0 we look at the se
ond

di�erential of W

mp

(R

T

b

F ) with respe
t to m

D

2

rm

W

mp

(R

T

b

F ):(r�;r�) �

�

2

k(r�j0)

T

R +R

T

(r�j0)k

2

: (4.11)

Set for simpli
ity � = 2 and 
onsider the slightly more general quadrati
 form (appropriate for

elasti
 shells: F

p

= r� with � a regular parametrization of the stress-free initial 
urvilinear

shell surfa
e and elasto-plasti
 shells: F

p

; R

e

arbitrary)

kF

�T

p

(r�j0)

T

R

e

+R

T

e

(r�j0)F

�1

p

k

2

= kR

e

�

F

�T

p

(r�j0)

T

R

e

+R

T

e

(r�j0)F

�1

p

�

R

T

e

k

2

= k(R

e

F

p

)

�T

(r�j0)

T

+ (r�j0)(R

e

F

p

)

�1

k

2

; (4.12)

where � : ! � R

2

7! R

3

and �

j




0

= 0 for 


0

� �!. Extend now � to

�

� : R

3

7! R

3

through

�

�(x; y; z) := �(x; y))

�

�(x; y; z)

j




0

�[�

h

2

;

h

2

℄

= 0 and r

(x;y;z)

�

�(x; y; z) = (r

(x;y)

�j0): (4.13)

For

�

� it is possible to use the 3D-extended Korn's �rst inequality Theorem 8.1. To this end


onsider 


h

= ! � [�

h

2

;

h

2

℄ and the lateral Diri
hlet boundary �

h

0

= 


0

� [�

h

2

;

h

2

℄ � �


h

. Then

�

h

0

has non-vanishing 2-dimensional Hausdor� measure. Set by abuse of notation F

p

= (R

e

F

p

)

for the moment. With smooth enough, invertible F

p

it holds on applying Theorem 8.1 that

Z




h

kr

�

�

T

F

�1

p

+ F

�T

p

r

�

�k

2

dV � 


+

3D

�

Z

!�[�

h

2

;

h

2

℄

k

�

�k

2

+ kr

�

�k

2

dV )

Z

!

h

2

Z

�

h

2

kr

�

�

T

F

�1

p

+ F

�T

p

r

�

�k

2

d! dz � 


+

3D

�

Z

!

h

2

Z

�

h

2

k

�

�k

2

+ kr

�

�k

2

d! dz : (4.14)
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Sin
e

�

� is independent of z we may 
arry out the integration with respe
t to the transverse

variable and get, however,

Z

!

kr

�

�

T

F

�1

p

+ F

�T

p

r

�

�k

2

d! � 


+

3D

�

Z

!

k

�

�k

2

+ kr

�

�k

2

d! ; (4.15)

or ba
k in terms of �

Z

!

k(r�j0)

T

F

�1

p

+ F

�T

p

(r�j0)k

2

d! � 


+

3D

�

Z

!

k�k

2

+ k(r�j0)k

2

d!: (4.16)

Observe that the 
onstant 


+

3D

is in fa
t independent of the thi
kness h (we 
ould set h =

1) whi
h might be surprising at �rst glan
e. This observation allows one to bound m 2

H

1;2

Æ

(!;R

3

; 


0

), independent of the relative thi
kness h only in terms of the membrane energy

R

!

W (rm;R) d! if R 2 SO(3;R) is smooth enough. Thus we have �nally proved

Theorem 4.1 (Improved Korn's inequality for rigid shells)

Let ! � R

2

be a bounded domain with smooth boundary and let 


0

� �! be a part of the

boundary with non vanishing 1-dimensional Hausdor� measure. De�ne H

1;2

Æ

(!;R

3

; 


0

) := f� 2

H

1;2

(!;R

3

) j �

j




0

= 0g and let F

p

; F

�1

p

2W

1;2+Æ

(!;GL(3;R)). Then

9 


+

> 0 8 � 2 H

1;2

Æ

(!;R

3

; 


0

) : k(r�j0)F

�1

p

(x) + F

�T

p

(x)(r�j0)

T

k

2

L

2

(!)

� 


+

k�k

2

H

1;2

(!)

;

and the 
onstant is bounded away from zero for F

p

; F

�1

p

bounded in W

1;2+Æ

(!;GL(3;R)).

Proof. The proof is based on the previous argument and on the strengthening of Theorem 8.1

proposed in [Pom03℄. The Sobolev embedding shows that F

p

2 W

1;2+Æ

(!;GL(3;R)) may be

identi�ed with a 
ontinuous fun
tion. In order to show that the 
onstant is uniformly bounded

away from zero for bounded F

p

; F

�1

p

2 W

1;2+Æ

(!;GL(3;R)) a 
ontradi
tion argument as in

[Nef04b℄ is employed whi
h uses the fa
t that W

1;2+Æ

(!;GL(3;R)) is 
ompa
tly embedded in

C

0

(!;GL(3;R)). �

4.4 Mathemati
al analysis for zero Cosserat 
ouple modulus �




= 0

The following results provide existen
e theorems for geometri
ally exa
t dedu
ed elasti
 Cosserat

plate models for the physi
ally more realisti
 super-
riti
al 
ase.

10

Theorem 4.2 (Existen
e for 2D-�nite-strain elasti
 Cosserat model: 
ase II)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

)

and polar(rg

d

) 2 W

1;1+p+q

(!; SO(3;R)). Moreover, let f 2 L

1

(!;R

3

) and suppose N 2

L

1

(


s

;R

3

) together with M 2 L

1

(!;R

3

) and M




2 L

1

(


s

;R

3

), see (5.19). Then (4.1) with

material 
onstants 
onforming to 
ase II, boundary 
onditions forR of rigid dire
tor pres
ription

on 


0

and modi�ed external potential �

℄

(5.20) admits at least one minimizing solution pair

(m;R) 2 H

1

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)).

Proof. We apply the dire
t methods of variations. First, the requirement on the data shows

that

8m 2 H

1

(!;R

3

); R 2W

1;1+p+q

(!; SO(3;R)) : �

℄

(m;R

3

) � C ; (4.17)

i.e. a uniform bound on the external loading fun
tional. Let us de�ne the admissible set

A := fm 2 H

1

(!;R

3

); R 2W

1;1+p+q

(!; SO(3;R)) jm

j




0

= g

d

(x; y; 0) ;

R

3

j




0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

g : (4.18)

10

The proposed �nite-strain results determine the ma
ros
opi
 midsurfa
e plate deformation m 2 H

1

(!;R

3

)

and not more. This means that dis
ontinuous ma
ros
opi
 deformations by 
avities or the formation of holes are

not ex
luded (possible mode I failure). If �




> 0 fra
ture is e�e
tively ruled out, whi
h is, however, somewhat

unrealisti
. All results remain true for arbitrary shear 
orre
tion fa
tor � > 0. For � = 0, however, uniform

Legendre-Hadamard ellipti
ity is lost.
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With the pres
ription of the boundary data g

d

it is 
lear that I(g

d

(x; y; 0); polar(rg

d

(x; y; 0))) <

1, hen
e I is bounded above on A. Consider a sequen
e of pairs of deformation m

k

and

rotations R

k

in the admissible set A with bounded energy I . For su
h a sequen
e we have

1 > I(m

k

; R

k

) =

Z

!

hW

mp

(U

k

) + hW


urv

(K

s;k

) +

h

3

12

W

bend

(K

b;k

) d! ��

℄

(m

k

; R

k

3

)

�

Z

!

hW

mp

(U

k

) + hW


urv

(K

s;k

) +

h

3

12

W

bend

(K

b;k

) d! � C � C

3

; (4.19)

whi
h implies that I is bounded below onA and the positive 
urvature energy

R

!

hW


urv

(K

s;k

) d!


an be bounded independent of k 2 N. Observe now that the 
urvature energy bounds

the sequen
e of 
urvature tensors K

s;k

in L

1+p+q

(!;T(3)) by the positivity assumption on

the parameters �

5

; �

6

> 0. Sin
e kK

s

k = kR

T

D

x

Rk = kD

x

Rk pointwise, this implies that

kD

x

R

k

k

L

1+p+q

(!)

is bounded as well. Sin
e kR

k

k =

p

3 pointwise, this shows the boundedness

of R

k

� W

1;1+p+q

(!; SO(3;R)), even without spe
i�
 Diri
hlet boundary 
onditions on the

remaining "free" 
olumns R:e

1

; R:e

2

.

11

This is a distin
tive feature for exa
t rotations. A sub-

sequen
e 
an be 
hosen su
h that K

s;k

*

b

K

s

in L

1+p+q

(!;T(3)), weakly. Sin
e the boundedness

of the rotations R

k

holds true in the spa
e W

1;1+p+q

(!; SO(3;R)) with 1 + p + q > N = 3,

it is possible to extra
t a subsequen
e, not relabelled, su
h that R

k


onverges strongly to

b

R 2 C

0

(!; SO(3;R)) in the topology of C

0

(!; SO(3;R)) on a

ount of the Sobolev-embedding

theorem.

Sin
e I is bounded below on A we may 
onsider from now on in�mizing sequen
es of mid-

surfa
e deformations m

k

and rotations R

k

with

lim

k!1

I(m

k

; R

k

) = inf

(m;R)2A

I(m;R) : (4.20)

Along the strongly 
onvergent sequen
e of rotations, the 
orresponding sequen
e of mid-surfa
e

deformations m

k

is also bounded in H

1

(!;R

3

). However, this is not due to a basi
ally simple

pointwise estimate as in 
ase I (�




> 0) [Nef04a℄, but only true after integration over the domain

!: at fa
e value we only 
ontrol 
ertain mixed symmetri
 expressions in the re
onstru
ted

deformation gradient. Let us therefore de�ne v

k

2 H

1;2

(!;R

3

) bym

k

= g

d

+(m

k

�g

d

) = g

d

+v

k

.

Then we have

1 > I(m

k

; R

k

) =

Z

!

hW

mp

(U

k

) + hW


urv

(K

s;k

) +

h

3

12

W

bend

(K

b;k

) d! ��

℄

(m

k

; R

k

3

)

�

Z

!

hW

mp

(U

k

)��

℄

(m

k

; R

k

3

) d! �

Z

!

hW

mp

(U

k

) d! � C (4.21)

�

Z

!

h

�

4

kR

k;T

(rm

k

jR

k

3

) + (rm

k

jR

k

3

)

T

R

k

� 211k

2

d! � C

=

Z

!

h

�

4

kR

T

(rm

k

jR

3

) + (rm

k

jR

3

)

T

Rk

2

� 4h

�

4

tr

h

R

T

(rm

k

jR

3

) + (rm

k

jR

3

)

T

R

i

+ 4h

�

4

k11k

2

d! � C

�

Z

!

h

�

4

kR

k;T

(rm

k

j0) + (rm

k

j0)

T

R

k

k

2

d! � C

1

km

k

k

H

1;2

(!)

+ C

2

=

Z

!

h

�

4

k(R

k

�

b

R+

b

R)

T

(rv

k

j0) + (rv

k

j0)

T

(R

k

�

b

R+

b

R)k

2

d! � C

1

kv

k

k

H

1;2

(!)

+ C

2

�

Z

!

h

�

4

k

b

R

T

(rv

k

j0) + (rv

k

j0)

T

b

Rk

2

| {z }


ombinations of derivatives

d! � C

3

k

b

R�R

k

k

1

kv

k

k

2

H

1;2

(!)

11

Without independent 
urvature 
ontrol, nothing 
an be shown for �




= 0. This is the reason for the

modi�
ation of the external loads.
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� (C

1

+ 2 k

b

R�R

k

k

1

) kv

k

k

H

1;2

(!)

+ C

2

� (h

�

4




+

K

� C

3

k

b

R�R

k

k

1

) kv

k

k

2

H

1;2

(!)

� (C

1

+ 2 k

b

R�R

k

k

1

) kv

k

k

H

1;2

(!)

+ C

2

;

where we made use of the zero boundary 
onditions for v

k

on 


0

and applied the extended Korn's

inequality Theorem 4.1 (note that R

�T

= R for exa
t rotations) yielding the positive 
onstant




+

K

for the 
ontinuous mi
rorotation

b

R. Sin
e k

b

R�R

k

k

1

! 0 we 
on
lude the boundedness of

v

k

in H

1

(!;R

3

). Hen
e, m

k

is bounded as well in H

1

(!;R

3

).

From the boundedness of m

k

in H

1

(!;R

3

) we may extra
t a subsequen
e, not relabelled,

su
h thatm

k

* bm 2 H

1

(!;R

3

). Furthermore, we may always obtain a subsequen
e of (m

k

; R

k

)

su
h that U

k

= R

k;T

^

F

k

= R

k;T

(rm

k

jR

k

3

) 
onverges weakly in L

2

(!) to

b

U =

b

R

T

(rbmj

b

R

3

).

Weak 
onvergen
e of D

x

R

k

in L

1;1+p+q

(!;T(3)) and strong 
onvergen
e of R

k

in L

2

(!)

together show that the sequen
e of the third order 
urvature tensors K

s;k

= R

k;T

D

x

R

k


onverges

indeed weakly to the 
orre
t limit

b

R

T

D

x

b

R =

b

K

s

in L

1

(!;T(3)). But from above we know already

that weak 
onvergen
e for K

s;k

takes pla
e in L

2

(!;T(3)). Gathering the obtained statements

we have

U

k

= R

k;T

^

F

k

*

b

U =

b

R

T

(rbmj

b

R

3

) in L

2

(!) ;

K

s;k

= R

k;T

D

x

R

k

*

b

K

s

=

b

R

T

D

x

b

R in L

2

(!;T(3)) ; (4.22)

K

b;k

*

b

K

b

in L

2

(!;M

3�3

) ;

m

k

! bm in L

2

(!;R

3

) ;

R

k

!

b

R in C(!; SO(3;R)) :

Sin
e the total energy is 
onvex in the 
ombined terms (U;K

s

;K

b

) we get

I(bm;

b

R) =

Z

!

hW

mp

(

b

U) + hW


urv

(

b

K

s

) +

h

3

12

W

bend

(

b

K

b

) d! ��

℄

(bm;

b

R

3

)

� lim inf

k!1

Z

!

hW

mp

(U

k

) + hW


urv

(K

s;k

) +

h

3

12

W

bend

(K

b;k

) d! ��

℄

(m

k

; R

k

3

) (4.23)

= lim

k!1

I(m

k

; R

k

) = inf

(m;R)2A

I(m;R) ;

whi
h implies that the limit pair (bm;

b

R) is a minimizer and the Diri
hlet boundary 
onditions

for either midsurfa
e deformation bm and "dire
tor"

b

R

3

are satis�ed strongly by 
ompa
t em-

bedding in the sense of tra
es on 


0

. This �nishes the argument. �

Let us turn to a slightly modi�ed energy fun
tional for whi
h it is possible to extend the

previous existen
e result to very weak 
onsistent 
oupling boundary 
onditions. This modi�
a-

tion is not ne
essary for a properly linearized model together with a linearized weak 
onsistent


oupling 
ondition (5.11). The augmented energy fun
tional reads

I(m;R) =

Z

!

hW

mp

(U) + hW


urv

(K

s

) +

h

3

12

W

bend

(K

b

) d! ��(m;R

3

) (4.24)

+

Z




0

hW


urv

(K

s

) ds

| {z }

augmented

7! min : w.r.t. (m;R) :

The new 
urvature 
ontrol on 


0

imparts additional regularity for the 
hange of the rotations

from 


0

to the interior of the domain !. With this modi�
ation it is possible to show

Corollary 4.3 (Existen
e for very weak 
onsistent 
oupling)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

),

polar(rg

d

) 2 W

1;1+p+q

(!; SO(3;R)); polar(rg

d

)

j




0

2 W

1;1+p+q

(


0

; SO(3;R)) and �

z

g

d

j




0

2

15



L

2

(


0

;R

3

). Moreover, let f 2 L

1

(!;R

3

) and suppose N 2 L

1

(


s

;R

3

) together with M 2

L

1

(!;R

3

) and M




2 L

1

(


s

;R

3

), see (5.19). Then (4.1) with material 
onstants 
onforming to


ase II, boundary 
onditions of very weak 
onsistent 
oupling on 


0

, modi�ed external potential

�

℄

(5.20) and augmented energy fun
tional (4.24) admits at least one minimizing solution pair

(m;R) 2 H

1

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)).

Proof. We basi
ally repeat the argument of Theorem 4.2. First, we de�ne the modi�ed admis-

sible set

A := fm 2 H

1

(!;R

3

); R 2W

1;1+p+q

(!; SO(3;R)) j m

j




0

= g

d

(x; y; 0) ;

Z




0

hR

T

(rm(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds = 0 8A 2 C

1

0

(


0

; so(3;R)) g ; (4.25)

whi
h in
orporates the 
onsistent 
oupling 
ondition in its weak, distributional form. In order

to see that the set A is not empty take R = polar(rg

d

) and m = g

d

. As in Theorem 4.2

one shows that I is bounded above and below on A. We then 
hoose minimizing sequen
es

of midsurfa
e deformations m

k

and rotations R

k

in A. Thus, along the minimizing sequen
e

(m

k

; R

k

)

8 k 2 N :

Z




0

hR

k;T

(rm

k

(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds = 0 ; (4.26)

for all testfun
tions A 2 C

1

0

(


0

; so(3;R)). We need to investigate in whi
h sense the weak/strong

limits found in Theorem 4.2 satisfy this additional relation on 


0

. We observe that for smooth

testfun
tions A 2 C

1

0

(


0

; so(3;R)) and by partial integration

Z




0

hR

k;T

(rm

k

(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds =

Z




0

h(rm

k

(x; y)jrg

d

(x; y; 0):e

3

); R

k

A(x; y)i ds

=

Z




0

�

�

hm

k

; �

x

h

R

k

A:e

1

i

+ �

y

h

R

k

A:e

2

i

i

�

+ h�

z

g

d

(x; y; 0); R

k

A(x; y):e

3

i ds (4.27)

=

Z




0

�

�

hm

k

; [�

x

R

k

℄A:e

1

+ R

k

�

x

A:e

1

+ [�

y

R

k

℄A:e

2

+R

k

�

y

A:e

2

i

�

ds

+

Z




0

h�

z

g

d

(x; y; 0); R

k

A(x; y):e

3

i ds :

The augmented 
urvature expression (4.24) on the lateral boundary 


0

allows us to spe
ify a

subsequen
e of the rotations, su
h that D

x

R

k

* D

x

b

R 2 L

2

(


0

;T(3)). Observe that the aug-

mented boundary 
urvature term is also weakly lower semi
ontinuous under weak 
onvergen
e

at the boundary 


0

. Sin
e

m

k

! bm 2 L

2

(


0

;R

3

) ; due to 
ompa
t embedding ;

R

k

!

b

R

k

2 L

2

(


0

; SO(3;R)) ; due to 
ompa
t embedding ; (4.28)

�

x

R

k

* �

x

b

R 2 L

2

(


0

;M

3�3

) ; due to additional 
urvature 
ontrol at 


0

;

�

y

R

k

* �

y

b

R 2 L

2

(


0

;M

3�3

) ; due to additional 
urvature 
ontrol at 


0

;

we 
on
lude that

lim

k!1

Z




0

hR

k;T

(rm

k

(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds

=

Z




0

h

b

R

T

(rbm(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds : (4.29)

Hen
e the minimizing solution (bm;

b

R) 2 H

1

(!;R

3

) �W

1;1+p+q

(!; SO(3;R)) satis�es the very

weak 
onsistent 
oupling 
ondition and the proof is �nished. �
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Remark 4.4 (The thin shell "membrane" limit)

Observe that all stated results remain true if we skip the h

3

-bending 
ontribution sin
e the

de
isive 
urvature 
ontrol is a�orded by W


urv

in 
onjun
tion with the internal length L




> 0.

In this sense, the formal thin shell "membrane" limit is not degenerated.

5 A new �nite-strain Cosserat plate for large stret
h and

lo
al invertibility

While the pre
eding models have been motivated from a three-dimensional "parent" model

whi
h itself is appropriate only for small strain and �nite rotations, let us present a modi�ed

model,

12

whi
h in prin
iple allows for arbitrary large stret
h and whi
h automati
ally preserves

lo
al invertibility if the re
onstru
ted deformation is smooth. It is 
lear that su
h an extension

is by no means unique. We propose the model

I(m;R) =

Z

!

hW

mp

(U) + hW


urv

(K

s

) +

h

3

12

W

bend

(K

b

) d! ��(m;R

3

) 7! min : w.r.t. (m;R);

U = R

T

b

F ;

b

F = (rmjR

3

); F

s

= (rmj%

m

R

3

) ;

%

m

=

1

1 +

�

2�+�

(det[U ℄� 1)

+

hN

di�

; R

3

i

(2�+ �)

; modi�ed thi
kness stret
h ;

m

j




0

= g

d

(x; y; 0) ; simply supported ; (5.1)

R

j




0

= polar((rmjrg

d

(x; y; 0):e

3

))

j




0

; strong form of redu
ed 
onsistent 
oupling ;

R

3

j




0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; alternatively: rigid dire
tor pres
ription ;

W

mp

(U) = � k sym(U � 11)k

2

+ �




k skew(U)k

2

+

��

2�+ �

1

2

�

(det[U ℄� 1)

2

+ (

1

det[U ℄

� 1)

2

�

;

W


urv

(K

s

) = �

L

1+p




12

(1 + �

4

L

q




kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

;

W

bend

(K

b

) = � k sym(K

b

)k

2

+ �




k skew(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

;

K

b

= R

T

(rR

3

j0) = K

3

s

; se
ond order non-symmetri
 bending tensor :

Let us summarize the salient features of this model: First, W

mp

(U)!1 if det[U ℄! 0. Thus,

if minimizers exist, then det[U ℄ > 0 a.e. and the minimizing surfa
e is lo
ally regular. The

modi�ed membrane energy 
ontribution W

mp

is poly
onvex w.r.t. rm at given R and indeed

uniformly Legendre-Hadamard ellipti
, independent of �




� 0. If R

3

= ~n

m

, then

det[U ℄

2

= kCof (rmj0)k

2

= km

x

�m

y

k

2

= km

x

k

2

km

y

k

2

� hm

x

;m

y

i

2

= det[I

m

℄ ; (5.2)

with ~n

m

the outer unit normal of the surfa
em and I

m

the �rst fundamental form. This formula

represents a pure, intrinsi
 measure of the surfa
e stret
h. If W

mp

(U) = 0 then U = 11 even

for �




= 0 and without gradient 
onstraint.

13

Moreover, it 
an be shown that for zero Cosserat


ouple modulus �




= 0 and zero internal length L




= 0, the pure bending problem 
oin
ides

with the rigourously justi�ed 
lassi
al �nite-strain bending problem given in [FJM02℄.

The modi�ed thi
kness stret
h %

m

, whi
h is used only for the a posteriori re
onstru
tion

of the bulk deformation, has su
h an analyti
al form, that at �nite energy one has 0 < %

m

<

1, in line with the underlying physi
al des
ription without restri
tion on the kinemati
s and

transverse �bers will always be monotoni
ally elongated upon a
tion of opposite tra
tions.

Moreover, %

m

� 1 for � = 0 (extreme 
ompressibility, � = 0) and %

m

=

1

det[U ℄

for � =

1 (exa
t in
ompressibility, � =

1

2

) su
h that det[F

s

℄ = det[(rmj%

m

R

3

)℄ � 1, i.e. exa
t

in
ompressibility for the re
onstru
ted deformation.

12

It is 
lear that a modi�
ation to large stret
h does not 
on
ern the bending term sin
e bending only plays

a role for small stret
h.

13

It is easy to see, that sym(U � 11) = 0 implies R

3

= ~n

m

. The remaining 
onsideration leads to

X 2 M

2�2

: symX = 11

2

; det[X℄ = 1) X = 11

2

.
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The modi�ed formulation (5.1), however, still has the same linearized behaviour as the ini-

tial model (4.1) and redu
es to the 
lassi
al in�nitesimal-displa
ement Reissner-Mindlin model

(5.11) for the 
hoi
e of parameters �




= 0; p > 1; �

4

= 0.

14

We 
an prove the following result:

Theorem 5.1 (Existen
e for Cosserat plate with large stret
h)

Let ! � R

2

be a bounded Lips
hitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

)

and R

d

2 W

1;1+p+q

(!; SO(3;R)). Moreover, let f 2 L

1

(!;R

3

) and suppose N 2 L

1

(


s

;R

3

)

together with M 2 L

1

(!;R

3

) and M




2 L

1

(


s

;R

3

), see (5.19). Then (5.1) with material 
on-

stants 
onforming to 
ase II and rigid dire
tor pres
ription for R on 


0

admits at least one

minimizing solution pair (m;R) 2 H

1

(!;R

3

) �W

1;1+p+q

(!; SO(3;R)) with det[(rmjR

3

)℄ > 0

a.e. (x; y) 2 !. �

Proof. The proof mimi
s the arguments of the existen
e result Theorem 4.2 for 
ase II. We

only need to observe in addition, that the modi�ed membrane energyW

mp

is in fa
t poly
onvex

[Bal77b℄ at given R w.r.t. rm sin
e

�

(det[U ℄� 1)

2

+ (

1

det[U ℄

� 1)

2

�

is 
onvex in det[U ℄. The

modi�ed membrane strain energy term provides us with the information that det[(rm

k

jR

k

3

)℄

is uniformly bounded in L

2

(!) for minimizing sequen
es. Hen
e we may always 
hoose a

minimizing sequen
e, su
h that det[(rm

k

jR

k

3

)℄ * � 2 L

2

(!), weakly. A further subsequen
e

may be 
hoosen, not relabelled, su
h that R

k

! R 2 C

0

(!; SO(3;R)), due to the 
ompa
t

embedding W

1;1+p

(!) � C

0

(!) for p > 1. Moreover, rm

k

* rbm 2 L

2

(!;M

2�3

), weakly, as

in Theorem 4.2. For two spa
e dimensions, this implies the strong 
onvergen
e of Cof (rm

k

j0)

in the sense of distributions [Bal77a, Th. 3.4℄:

8  2 C

1

0

(!) :

Z

!

Cof (rm

k

j0)  d! !

Z

!

Cof (rbmj0)  d! ; k !1 : (5.3)

Let us analyze in more detail the term det[(rm

k

jR

k

3

)℄. One has upon expanding of the detr-

minant

det[(rm

k

jR

k

3

)℄ =

3

X

i=1

R

k

3;i

Cof (rm

k

j0)

3;i

=

3

X

i=1

(R

k

3;i

�

b

R

3;i

+

b

R

3;i

) Cof (rm

k

j0)

3;i

=

3

X

i=1

(R

k

3;i

�

b

R

3;i

) Cof (rm

k

j0)

3;i

+

3

X

i=1

b

R

3;i

Cof (rm

k

j0)

3;i

=

3

X

i=1

(R

k

3;i

�

b

R

3;i

) Cof (rm

k

j0)

3;i

+

3

X

i=1

(

b

R

3;i

�

b

R

"

+

b

R

"

) Cof (rm

k

j0)

3;i

=

3

X

i=1

(R

k

3;i

�

b

R

3;i

) Cof (rm

k

j0)

3;i

+

3

X

i=1

(

b

R

3;i

�

b

R

"

3;i

) Cof (rm

k

j0)

3;i

+

b

R

"

3;i

Cof (rm

k

j0)

3;i

; (5.4)

where

b

R

"

2 C

1

is introdu
ed as a molli�
ation of

b

R. Now we integrate det[(rm

k

jR

k

3

)℄ over !

against an arbitrary fun
tion  2 C

1

0

(!):

Z

!

det[(rm

k

jR

k

3

)℄  d! =

Z

!

3

X

i=1

(R

k

3;i

�

b

R

3;i

) Cof (rm

k

j0)

3;i

 

+

3

X

i=1

(

b

R

3;i

�

b

R

"

3;i

) Cof (rm

k

j0)

3;i

 (5.5)

+

b

R

"

3;i

Cof (rm

k

j0)

3;i

 d! :

Sin
e Cof (rm

k

j0) is bounded in L

1

(!) the �rst sum 
onverges to zero be
ause of strong


onvergen
e of R

k

. The se
ond term 
an be made arbitrarily small for " ! 0 and the third

14

Be
ause

�

(det[U ℄� 1)

2

+ (

1

det[U℄

� 1)

2

�

= 2 tr

�

U � 11

�

2

+O(kU � 11k

3

).

18



term 
onverges be
ause

b

R

"

3;i

 2 C

1

0

(!) is an admitted testfun
tion in (5.3). Altogether, the

strong 
onvergen
e of R

k

3

in C

0

(!) and the strong 
onvergen
e of Cof (rm

k

j0) in the sense of

distributions [Bal77a, Th. 3.4℄ for two spa
e-dimensions show that

8  2 C

1

0

(!) :

Z

!

det[(rm

k

jR

k

3

)℄  d! !

Z

!

det[(rbmjR

3

)℄  d! ; k !1 : (5.6)

Thus, det[(rm

k

jR

k

3

)℄ ! det[(rbmj

b

R

3

)℄, strongly in the sense of distributions as well. This

implies for the weak limit � found above that � = det[(rbmj

b

R

3

)℄. The remainder pro
eeds as in

Theorem 4.2. �

Altogether, this shows that (5.1) represents a signi�
ant 
on
eptual improvement of the initially

proposed plate model (4.1), although (5.1) itself is not stri
tly obtained from a parent model

in our framework of formal dimensional des
end. The extension of Theorem 5.1 to very weak


onsistent 
oupling is straightforward along the lines of Corollary 4.3.

In order to bridge the gap to more standard approa
hes we investigate now the relations of

the new model to 
lassi
al Reissner-Mindlin formulations.

5.1 Linearized plate models

5.1.1 Relations to the 
lassi
al in�nitesimal-displa
ement Reissner-Mindlin model

Let us linearize a variant of the proposed new �nite-strain Cosserat plate (4.1) for situations

of small midsurfa
e deformations and small 
urvature. We assume here �

4

= 0; q = 0; p >

1.

15

We write m(x; y) = (x; y; 0)

T

+ v(x; y), with the displa
ement of the midsurfa
e of the

plate v : ! 7! R

3

and R = 11 + A + : : :, with A 2 so(3;R) the in�nitesimal-displa
ement

mi
rorotation. For the boundary deformation we write g

d

(x; y; z) = (x; y; z)

T

+ u

d

(x; y; z),

with the 
onsequen
e, that rg

d

:e

3

= (u

d

1;z

; u

d

2;z

; 1 + u

d

3;z

). The 
urvature tensors are expanded

as

K

b

= R

T

(rR

3

j0) = (11 +A+ : : :)

T

(r[A

3

+A

2

:e

3

+ : : :℄j0) � (rA

3

j0) + : : : ;

K

s

�

�

(r(A:e

1

)j0); (r(A:e

2

)j0); (r(A:e

3

)j0)

�

2 T(3) ; (5.7)

and the Cosserat mi
ropolar plate stret
h tensor expands like

U = R

T

^

F = R

T

(rmjR

3

) = (11 +A+ : : :)

T

��

1 0

0 1

0 0

�

+rvj(11 +A+ : : :):e

3

)

�

� 11 + (rvjA

3

)�A+ : : : : (5.8)

Sin
e p > 1, the additional Cosserat 
urvature 
ontribution has an exponent stri
tly bigger

than two su
h that a linearization w.r.t. zero 
urvature K

s

does not yield any 
ontribution of

this term. The 
onsistent 
oupling 
ondition is also expanded:

R

j




0

= polar(rmjrg

d

:e

3

) ;

11 +A+ : : : = polar(11 + (rvj�

z

u

d

) + : : :) = 11 + skew((rvj�

z

u

d

)) + : : :) (5.9)

A

j




0

= skew((rvj�

z

u

d

))

j




0

:

We are formally left with the minimization problem for v 2 R

3

and A 2 so(3;R):

Z

!

h

�

� k sym((rvjA

3

))k

2

+ �




k skew((rvjA

3

)�A)k

2

+

��

2�+ �

tr

�

sym((rvjA

3

))

�

2

�

+

h

3

12

�

� k sym((rA

3

j0))k

2

+ �




k skew((rA

3

j0))k

2

+

��

2�+ �

tr

�

sym((rA

3

j0))

�

2

�

d!

��(v;A

3

) 7! min : w.r.t. (v;A);

v

j




0

= u

d

(x; y; 0) ; simply supported (�xed, welded) ; (5.10)

A

j




0

= skew((rvj�

z

u

d

))

j




0

; lin. 
oupling ) A

3

j




0

=

 

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0

!

T

;

A

3

j




0

= (u

d

1;z

; u

d

2;z

; 0)

T

; alternatively: rigid dire
tor pres
ription :

15

The linearization for the 
ase �

4

= 0; q = 0; p = 1; �




> 0 is similar to the stati
 mi
ropolar plate model

derived by Eringen [Eri67, eq. 8.6℄.

19



Now 
onsider the 
ase of zero Cosserat 
ouple modulus �




= 0. In this 
ase in�nitesimal

in-plane rotations (linearized drilling degrees of freedom: A

12

= �A

21

) do not "survive" the

linearization pro
ess. Abbreviating now � = (�

1

; �

2

; 0)

T

= �A

3

, we are left with the following

set of equations for the displa
ement of the midsurfa
e of the plate v : [0; T ℄� ! 7! R

3

and the

in�nitesimal in
rement of the dire
tor, the in�nitesimal "dire
tor", � : ! 7! R

3

:

Z

!

h

0

B

B

�

� k symr(v

1

; v

2

)k

2

+ �

�

2

krv

3

� �k

2

| {z }

transverse shear energy

+

��

2�+ �

tr [symr(v

1

; v

2

)℄

2

1

C

C

A

+

h

3

12

�

� k symr�k

2

+

��

2�+ �

tr [symr�℄

2

�

d! ��(v;��) 7! min : w.r.t. (v; �) ;

v

j




0

= u

d

(x; y; 0) ; simply supported ; (5.11)

��

j




0

=

 

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0

!

T

; linearized 
onsistent 
oupling ;

��

j




0

= (u

d

1;z

; u

d

2;z

; 0)

T

; alternatively: rigid dire
tor pres
ription ;

with the so-
alled shear 
orre
tion fa
tor � = 1.

A further redu
tion arises if we assume only normal displa
ements: v

1

= v

2

= 0. The

resulting minimization problem for the de
e
tion v

3

and the "dire
tor" � is

Z

!

h

��

2

krv

3

� �k

2

+

h

3

12

�

� k symr�k

2

+

��

2�+ �

tr [symr�℄

2

�

d!

��(v

3

� e

3

;��) 7! min : w.r.t. (v

3

; �); (5.12)

v

3

j




0

= u

d

3

; simply supported ;

��

j




0

=

 

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0

!

T

linearized 
onsistent 
oupling ;

��

j




0

= (u

d

1;z

; u

d

2;z

; 0)

T

; rigid dire
tor pres
ription :

In this last form with rigid boundary pres
ription, the Reissner-Mindlin plate-bending prob-

lem is 
lassi
al and 
an be found in many textbooks, e.g. [Bra92, p.281℄ or [Ste95, AMZ02℄

with Reissner's value � =

5

6

. It should be noted, however, that in our formal, variationally

based �nite-strain derivation with subsequent linearization there is no imminent reason to in-

trodu
e � 6= 1. In fa
t, the shear 
orre
tion fa
tor � 
an be seen as a tuning parameter of

the in�nitesimal-displa
ement model whi
h, for 
ertain types of loading,

16

allows to improve

the order of 
onvergen
e of the in�nitesimal-displa
ement Reissner-Mindlin solution to the

three-dimensional linear elasti
ity solution [R�os99℄.

17

Note the novel non-standard Diri
hlet boundary 
ondition of linearized 
onsistent


oupling for the remaining in�nitesimal "dire
tor" �, motivated from the 
onsisten
y 
ondition

of the Cosserat bulk model. In 
ontrast to the standard rigid dire
tor pres
ription, the new


oupling 
ondition seems to redu
e the strength of the boundary layer. In a dire
t derivation

of the Reissner-Mindlin plate equations (5.11) there is no reason to introdu
e this weakened


ondition. However, a mathemati
al analysis based on the 
onsistent 
oupling 
ondition shows

that the new boundary 
ondition 
an only be satis�ed in the distributional sense on 


0

. Let us

16

Hen
e the shear 
orre
tion fa
tor � shows some similarity to the Cosserat 
ouple modulus �




, whose in
uen
e

on the solution of the three-dimensional problem is also strongly dependent on boundary 
onditions. For rather

thi
k plates, it is known that the shear energy in (5.11) is overestimated, therefore, one is led to redu
e the shear

energy 
ontribution a posteriori by taking � < 1.

17

It would be interesting to know the optimal shear 
orre
tion fa
tor 0 < � � 1 of the in�nitesimal-

displa
ement Reissner-Mindlin model with our redu
ed 
onsistent 
oupling boundary 
ondition. Su
h an opti-

mized parameter should also be bene�
ial for the �nite-strain Cosserat plate. However, it might turn out that

the new boundary 
ondition of weak 
onsistent 
oupling makes the arti�
ial introdu
tion of � < 1 super
uous.

Note as well, that � = 0 de
ouples the horizontal "membrane" displa
ement in (5.11) from the verti
al 
om-

ponent and the bending term. In this sense, � a
ts similarly as the Cosserat 
ouple modulus �




in the linear

Cosserat bulk model.
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de�ne therefore the admissible set

A

lin

:= fv

3

2 H

1

(!;R); � 2 H

1

(!;R

2

) j v

3

j




0

= u

d

3

;

Z

!

k�k

2

d! � j!j ;

8� 2 C

1

0

(


0

;R

2

) :

Z




0

h�2� �

�

u

d

1;z

u

d

2;z

�

; �i

R

2

� v

3

�Div � d! = 0 g ; (5.13)

whi
h in
orporates the linearized 
onsistent 
oupling 
ondition in the distributional sense, the

standard Diri
hlet boundary 
ondition at 


0

, as well as an additional 
onsisten
y 
ondition for

the linearization.

18

One 
an easily show that (5.12) admits a minimizer in A

lin

. If k�k

L

2

(!;R

2

)

<

j!j, the solution is unique.

5.1.2 The 
lassi
al in�nitesimal-displa
ementKir
hho�-Love plate (Koiter model)

For the 
onvenien
e of the reader we also supply the similar system of equations for the 
lassi
al

in�nitesimal-displa
ement Kir
hho�-Love plate (also the Koiter model) whi
h 
an be derived as

linearization of the �nite-strain Kir
hho�-Love plate. In terms of the midsurfa
e displa
ement

v we have to �nd a solution of the minimization problem for v : ! � R

2

7!2 R

3

:

Z

!

h

�

� k symr(v

1

; v

2

)k

2

+

��

2�+ �

tr [symr(v

1

; v

2

)℄

2

�

+

h

3

12

�

� kD

2

v

3

k

2

+

��

2�+ �

tr

�

D

2

v

3

�

2

�

d! ��(v;�rv

3

) 7! min : w.r.t. v ;

v

j




0

= u

d

(x; y; 0) ; simply supported (�xed, welded) ; (5.14)

�rv

3

j




0

=

 

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0

!

T

; lin. 
oupling) �rv

3

j




0

= (u

d

1;z

; u

d

2;z

; 0)

T

;

�rv

3

j




0

= (u

d

1;z

; u

d

2;z

; 0)

T

; rigid pres
ription of the in�nitesimal in
rement of the "normal" :

This energy 
an also be obtained formally from (5.12) by 
onstraining the linearized dire
tor

to the linearized normal of the plate, i.e. setting � = rv

3

. If this is done, we observe that

the new boundary 
ondition of 
onsistent 
oupling 
oin
ides in fa
t with the 
lassi
al boundary


ondition of the Kir
hho�-Love plate.

5.2 The treatment of external loads

5.2.1 Dead load body for
es for the thin plate

In the three-dimensional theory the dead load body for
es f(x; y; z) 2 R

3

were simply in
luded

by appending the potential with the term

R




h

f(x; y; z) � '(x; y; z) dV. We de�ne

^

f

0

(x; y) :=

Z

h=2

�h=2

f(x; y; z) dz ;

^

f

1

(x; y) :=

Z

h=2

�h=2

z f(x; y; z) dz ; (5.15)

su
h that

^

f

0

;

^

f

1

are the zero and �rst moment of f in thi
kness dire
tion.

5.2.2 Tra
tion boundary 
onditions for the thin plate

In the three-dimensional theory the tra
tion boundary for
es N(x; y; z) 2 R

3

were simply

in
luded by appending the potential with the term

R

�


trans

h

[f


s

�[�

h

2

;

h

2

℄g

N(x; y; z) � '(x; y; z) dS.

We de�ne

^

N

lat;0

(x; y) :=

Z

h=2

�h=2

N(x; y; z) dz ;

^

N

lat;1

(x; y) :=

Z

h=2

�h=2

z N(x; y; z) dz ; (5.16)

su
h that

^

N

lat;0

;

^

N

lat;1

are the zero and �rst moment of the tra
tions N at the lateral boundary




s

in thi
kness dire
tion. Moreover, we abbreviate

N

res

:= [N(x; y;

h

2

) +N(x; y;�

h

2

)℄ ; N

di�

:=

1

2

[N(x; y;

h

2

)�N(x; y;�

h

2

)℄ : (5.17)

18

The unit "dire
tor" R

3

is expanded as R

3

= e

3

� �+ : : :. Any � with k�(x; y)k > 1 pointwise, is in
onsistent

with the minimal requirement 1 = kR

3

:e

1

k � k(e

3

+ �):e

1

k. As a 
onsequen
e, we impose

R

!

k�k

2

d! � j!j.
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5.2.3 The external resultant loading fun
tional �

For a �rst approximation plate formulation we set to leading order:

f =

^

f

0

+N

res

; resultant body for
e ;

M =

^

f

1

+ hN

di�

; resultant body 
ouple ; (5.18)

N =

^

N

lat;0

; resultant surfa
e tra
tion ;

M




=

^

N

lat;1

; resultant surfa
e 
ouple :

The resultant dead load loading fun
tional � is then given by the linear form

�(m;R

3

) =

Z

!

hf;mi+ hM;R

3

i d! +

Z




s

hN;mi+ hM




; R

3

i ds : (5.19)

If we denote the dependen
e of � on the loads of the underlying three-dimensional problem as

�(f;N ; m;R

3

), then it is easily seen that frame-indi�eren
e of the external loading fun
tional

is satis�ed in the sense that �(Q:f;Q:N ; Q:m;Q:R

3

) = �(f;N ; m;R

3

) for all rigid rotations

Q 2 SO(3;R). It is possible to use the same fun
tional form of the loading fun
tional for all

�nite-strain and in�nitesimal-displa
ement models. We only need to repla
e (m;R

3

) by

(m;~n

m

); (v;A

3

) for the di�erent �nite and linearized models, respe
tively.

5.2.4 The modi�ed external resultant loading fun
tional �

℄

In view of a possible mathemati
al analysis of the 
ase with zero Cosserat 
ouple modulus �




= 0

we need to modify (5.19) into a live load resultant loading fun
tional �

℄

, whi
h better

re
e
ts the observation that by arbitrary translation of a material in a 
onservative for
e �eld

only a �nite amount of work 
an be gained. This is 
ertainly true for any real physi
al �eld.

In the three-dimensional theory we have 
alled this the "prin
iple of bounded external

work". Therefore we de�ne the nonlinear form

�

℄

(m;R

3

) =

Z

!

hf;

m

1 + [kmk �K℄

+

i+ hM;R

3

i d! +

Z




s

hN;

m

1 + [kmk �K℄

+

i+ hM




; R

3

i ds :

(5.20)

HereK > 0 is a possibly large 
onstant and [�℄

+

denotes the positive part of its s
alar argument.

We note that (5.20) is automati
ally bounded, if f;M 2 L

1

(!;R

3

) and M




; N 2 L

1

(


s

;R

3

).

Moreover, the linearization of �

℄


oin
ides with the linearization of �.

6 Dis
ussion and open problems

We have investigated a �nite-strain, frame-indi�erent, geometri
ally exa
t Cosserat plate model

derived in [Nef03a, Nef04a℄. For vanishing Cosserat 
ouple modulus �




= 0, the formulation is

shown to be downwards 
ompatible with traditional in�nitesimal-displa
ement linear Reissner-

Mindlin theories and shear-
orre
tion fa
tor � = 1. A detailed mathemati
al analysis for

vanishing Cosserat 
ouple modulus �




= 0 of the �nite-strain model is given. Existen
e of min-

imizers in appropriate Sobolev-spa
es is shown despite the inherent nonlinearity of the problem

and despite the la
k of unquali�ed 
oer
ivity. The de
isive tool is a novel two-dimensional

version of an extendend Korn's �rst inequality.

From a me
hani
al and 
omputational point of view, 
ompared to more traditional, non-

ellipti
 �nite-strain Reissner-Mindlin and Kir
hho�-Love models, it seems to be the bene�
ial

in
uen
e of the drill-rotations in 
onjun
tion with the internal length L




> 0 whi
h stabilizes the

new Cosserat thin plate model. Comparing with other alternative plate models with 
onstraint

or independent rotations, the additional implementational burden for the new Cosserat plate

models is small 
ompared to the possible gain of having a well-posed model.

Certain limit 
ases related to Sobolev-embedding theorems must remain open for the mo-

ment, notably the 
ase IV in
luding possible fra
ture of the plate. They leave a wide �eld of


hallenging purely mathemati
al problems.

While we have large freedom of spe
ifying boundary 
onditions for the mi
rorotations at

the lateral Diri
hlet boundary 


0

, we prefer a generalization of the three-dimensional 
onsistent

22




oupling 
ondition whi
h provides maximal 
onsisten
y with the 
lassi
al "symmetri
" situa-

tion. I expe
t that this new 
onsistent 
oupling 
ondition redu
es the strength of the boundary

layer. Further resear
h should 
larify, whether the inherently sound Cosserat plate model (4.1)


an be obtained as a �-limit of the Cosserat bulk problem for vanishing thi
kness.
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8 Appendix

8.1 The 
oer
ivity inequality in three-dimensions

The de
isive analyti
al tool for the treatment of the 
ase �




= 0, 
alled 
ase II (super-
riti
al)

in [Nef03b℄ is the following inequality establishing 
oer
ivity for the deformations:

Theorem 8.1 (Extended 3D-Korn's �rst inequality)

Let 
 � R

3

be a bounded Lips
hitz domain and let � � �
 be a smooth part of the

boundary with non vanishing 2-dimensional Hausdor� measure. De�ne H

1;2

Æ

(
;�) := f� 2

H

1;2

(
) j �

j

�

= 0g and let F

p

; F

�1

p

2 C

1

(
;GL(3;R)). Moreover suppose that CurlF

p

2

C

1

(
;M

3�3

). Then

9 


+

> 0 8 � 2 H

1;2

Æ

(
;�) : kr�F

�1

p

(x) + F

�T

p

(x)r�

T

k

2

L

2

(
)

� 


+

k�k

2

H

1;2

(
)

:

Proof. The proof 
an be found in [Nef02℄. �

Remark 8.2

Note that for F

p

= r� we would only have to deal with the 
lassi
al Korn's inequality evaluated

on the transformed domain �(
). However, in general, F

p

is in
ompatible giving rise to a

non-Riemannian manifold stru
ture. Compare this to [CG01℄ for an interpretation and the

physi
al relevan
e of the volume dislo
ation density tensor CurlF

p

. A Riemannian version of

Korn's inequality has also been given in [CJ02℄.

Motivated by the investigations in [Nef02℄ it has been shown re
ently by Pompe [Pom03℄ that

the extended Korn's inequality 
an be viewed as a spe
ial 
ase of a general 
lass of 
oer
ivity

inequalities for quadrati
 forms. He was able to show that indeed F

p

; F

�1

p

2 C(
;GL(3;R)) is

suÆ
ient for (8.1) to hold without any 
ondition on the 
ompatibility.

However, taking the spe
ial stru
ture of the extended Korn's inequality again into a
-


ount, work in progress suggests that 
ontinuity is not really ne
essary: instead F

p

; F

�1

p

2
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L

1

(
;GL(3;R)) and CurlF

p

2 L

3+Æ

(
) should suÆ
e, whereas F

p

; F

�1

p

2 L

1

(
;GL(3;R))

alone is not suÆ
ient, see the 
ounterexample presented in [Pom03℄. This last possible improve-

ment has no 
onsequen
es for the subsequent mathemati
al analysis, however.
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