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Abstrat

This paper establishes the existene of minimizers to a �nite-strain, geometrially exat

Cosserat plate model. The membrane energy of the investigated model is a quadrati,

uniformly Legendre-Hadamard ellipti energy in ontrast to lassial approahes. The

bending ontribution is augmented by a urvature term representing an additional sti�ness

of the Cosserat theory and the orresponding nonlinear system of balane equations remains

of seond order. The lateral boundary onditions orresponding to simple support are

non-standard. The model inludes size e�ets, transverse shear resistane, drilling degrees

of freedom and aounts impliitly for thikness extension and asymmetri shift of the

midsurfae. The formal thin shell "membrane" limit without lassial h

3

-bending term

is non-degenerate due to the additional Cosserat urvature sti�ness and ontrol of drill

rotations. In this formulation, the drill-rotations are stritly related to the size-e�ets of

the Cosserat bulk model and not introdued arti�ially for numerial onveniene. Upon

linearization with zero Cosserat ouple modulus �



= 0 exlusively, we reover the well

known in�nitesimal-displaement Reissner-Mindlin model without size-e�ets and without

drill-rotations.

It is shown that this new �nite-strain Cosserat plate formulation is well-posed for �



= 0

by means of the diret methods of variations. The midsurfae deformation m is found in

H

1

(!;R

3

). Deisive use is made of a dimensionally redued version of an extended Korn's

�rst inequality proved by the author.
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1 Introdution

1.1 Some aspets of shell theory

The dimensional redution of a given ontinuum-mehanial model is already an old and mature

subjet and it has seen many "solutions". The di�erent approahes toward elasti shell theory

proposed in the literature and relevant referenes thereof are, therefore, too numerous to list

here. The investigated model herein falls within the so alled derivation approah, i.e.,

reduing a given three-dimensional model via physially reasonable onstitutive assumptions on

the kinematis to a two-dimensional model. This is opposed to either the intrinsi approah

whih views the shell from the onset as a two-dimensional surfae and invokes onepts from

di�erential geometry or the asymptoti methods whih try to establish two-dimensional

equations by formal expansion of the three-dimensional solution in power series in terms of a

small parameter. The intrinsi approah is losely related to the diret approah whih takes

the shell to be a two-dimensional medium with additional extrinsi diretors in the sense of a

restrited Cosserat surfae [CC09℄.

1

There, two-dimensional equilibrium in appropriate new

resultant stress and strain variables is postulated ab-initio more or less independent of three-

dimensional onsiderations, f. [Ant95, GNW65, ET58, CD66b, CD66a, CW89, Rub00, PG89℄.

A detailed presentation of the di�erent approahes in lassial shell theories an be found in

the monograph [Nag72℄. A thorough mathematial analysis of linear, in�nitesimal-displaement

shell theory, based on asymptoti methods is to be found in [Cia98a℄ and the extensive referenes

therein, see also [Cia97, Cia99, Ant95, DS96, Dik82, CSP95℄. Exellent reviews and insightful

disussions of the modelling and �nite element implementation may be found in [SB92, San95,

SB98, GSW89, GT92, WG93, BGS96, BR92℄ and in the series of papers [SF89, SFR89, SFR90,

SRF90, SK92, SF92℄. Properly invariant, geometrially exat, elasti plate theories are derived

by formal asymptoti methods in [FRS93℄. This formal derivation is extended to urvilinear

shells in [Mia98, LM98℄. Apart from the pure bending ase [FJM02℄, whih is rigourously

justi�ed as the �-limit [Mas92℄ of the three-dimensional model and whih an be shown to

be intrinsially well-posed, the obtained �nite-strain models have not yet been shown to be

well-posed. Indeed, the membrane energy ontribution is notoriously not Legendre-Hadamard

ellipti. The membrane model justi�ed in [DR96℄ by �-onvergene is geometrially exat and

quasionvex/ellipti but unfortunately does not oinide upon linearization with the otherwise

well-established in�nitesimal-displaement membrane model. Moreover, this model does not

desribe the detailed geometry of deformation in ompression but redues to a tension-�eld

theory [Ste90℄.

There is no plae here to omment further on the relative merits of eah alternative approah.

The "rational" of desend from three to two dimensions should in any ase be omplemented

by an investigation of the intrinsi mathematial properties of the obtained redued models.

Today, the need to simulate the mehanial response of highly exible thin strutures allowing

easily for �nite rotations exludes the use of lassial in�nitesimal-displaement models, either

of Reissner-Mindlin (5.11) or Kihho�-Love type (5.14). Also, ertain "intermediary" models

allowing in priniple for bukling like the "nonlinear" von K�arm�an plates [Cia97, p.403℄ and

penalized "nonlinear" Reissner-Mindlin models [Dhi95℄

2

or "semilinear" Kirhho�-Love plate

models [Mon03℄ are not geometrially exat (not frame-indi�erent). Nevertheless, the nonlinear

von K�arm�an plate has been suesfully applied to the delamination problem of thin �lms [OG94,

GO97, GDOC02℄.

Mielke [Mie95℄ established in the in�nitesimal-displaement ontext that by using more than

�ve ansatz-funtions in a diretor model it is possible to obtain exponential deay estimates

for the boundary layer and to establish therefore a St.Venant priniple for linearized plates.

While it is not lear how his methods an be transferred to the �nite-strain ase, they provide,

independent of mehanial/physial onsiderations, a strong motivation to use a diretor ansatz

also in the �nite-strain ase in order to better apture the boundary layer phenomena.

Indeed, so alled shear-deformable theories with independent diretors are usually preferred

in the engineering ommunity [AMZ02, CB03℄. In view of an eÆient �nite element implemen-

tation one onsiders a hyperelasti, variationally based formulation with seond-order Euler-

1

Restrited, sine no material length sale usually enters the diret approah, only the relative thikness

h appears in the model. In terminology I distinguish between a "true" Cosserat model operating on SO(3;R)

and theories with any number of diretors.

2

Coneptually a von K�arm�an plate with one independent diretor

~

d and addition of a penalisation term

�



�

h

~

d; �

x

mi

2

+ h

~

d; �

y

mi

2

�

; �



!1 with m the sought midsurfae deformation.
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Lagrange equations and uses standard C

0

-onforming elements. The prototype examples are

models based on the Reissner-Mindlin kinematial assumption. There are numerous proposals

in the engineering literature for a �nite-strain, geometrially exat plate formulation, see e.g.

[FS92, SB92, SB95, SB98, WG93, BGS96, BR92℄. In many ases the need has been felt to de-

vote spei� attention to proper rotations R 2 SO(3;R), sine �nite rotations are the dominant

deformation mode of a exible struture. This has led to the so alled drill-rotation for-

mulation whih means that proper rotations either appear in the formulation as independent

�elds (leading to a restrited Cosserat surfae) or they are an intermediary ingredient [HB89℄

in the numerial treatment (onstraint Cosserat surfae). While the omputational merit of

this approah is well doumented, a mathematial analysis for suh a family of �nite-strain

plate models is yet missing, both for the Cosserat surfae and the onstraint model. It may be

speulated that those restrited Cosserat plates (obtained from lassial non-polar bulk models

or from diret modelling) though geometrially exat and allowing for transverse shear and the

desription of boundary layers, might not be well posed for ertain membrane strain measures

either, notably if Green-strains: F

T

F � 11 or Henky-strains: lnF

T

F are used. Another draw-

bak from a modelling point of view is that the inlusion of drill-rotations is most often done

in an ad-ho fashion.

1.2 Limitations of existing shell models

The lassial in�nitesimal-displaement or �nite-strain plate-models proposed in the literature

lead to e�etive numerial shemes only if the relative thikness h of the struture is still

appreiable, i.e. lassial bending terms are present and regularize the omputation. However,

there is an abundane of new appliations where very thin (absolutely thin) strutures are used,

e.g. very thin metal layers on a substrate (in omputer hardware, for the harateristi relative

thikness h � 5 � 10

�4

). In these ases, lassial bending energy, whih omes with a fator of

h

2

ompared with the membrane energy ontribution, annot play a stabilizing role for non-

vanishing membrane energy. See [BJ99℄ for suh a problem ourring in thin �lms. But, as

we noted already, the membrane terms e.g. in a �nite-strain, invariant Kirhho�-Love plate

[FRS93℄ or �nite-strain Reissner-Mindlin model [FS92℄ are non-ellipti (degenerated) and the

remaining minimization problem might not be well-posed even if lassial bending is inluded.

It is also observed experimentally that very thin strutures behave omparably sti�er

than absolutely thiker strutures while both have the same relative thikness. These non-

lassial size e�ets annot be negleted for very thin strutures [CCC

+

03℄. Suh e�ets are,

however, not aounted for in lassial theories.

In addition, lassial in�nitesimal-displaement or �nite-strain shell models predit unre-

alistially high levels of smoothness, typially m 2 W

1;4

(!;R

3

) for the midsurfae m in both

�nite-strain Kirhho�-Love and Reissner-Mindlin models andm 2 H

2

(!;R

3

) in the �nite-strain

pure bending problem [FJM02℄ and the von K�arm�an model. This implies at least C

0;�

(!) for

the midsurfae whih rule out the desription of boundary layer e�ets and possible failure

along asymptoti lines of the surfae.

1.3 Sope of study

I have therefore proposed a new shell model (desribed in (4.1)) for very thin almost rigid

materials whih should remedy some of the aforementioned shortomings with a view towards

a subsequent stringent mathematial analysis and possible stable �nite element implementation.

It is the goal to provide a model whih is both theoretially and physially sound, suh that its

numerial implementation an onentrate on real onvergene issues. Let me summarize what

I require of a general, all purpose, onsistent �rst approximation plate model. I require

1. A �nite-strain formulation whih is geometrially exat and allows for �nite rotations.

2. The desription of transverse shear, drill rotations, thikness streth and asymmetri shift

of the midsurfae. This exludes normality assumptions for some diretor.

3. A qualitative resolution of the boundary layer and edge e�et ompared with the bulk

model.

4. Well-posedness: existene, but not unquali�ed uniqueness in order to be able to desribe

bukling due to membrane fores, e.g. under lateral ompression or lateral shear and

avoiding unquali�ed smoothness for the midsurfae, requiring only m 2 H

1;2

(!;R

3

).
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5. A hyperelasti, variational formulation with seond-order Euler-Lagrange equations in

view of an eÆient �nite element implementation with standard C

0

-onforming elements.

6. A redued energy density whih is de�ned in terms of two-dimensional quantities with

a lear physial meaning of these redued two-dimensional quantities. Maximally h

3

-

bending ontributions.

7. The inorporation of non-lassial size e�ets without leading to trivial ompatness ar-

guments for the the midsurfae m.

3

The model must also be "operative" without the

lassial h

3

-bending ontribution, i.e. in the formal "membrane" thin shell limit.

8. The onsisteny with lassial plate models (in�nitesimal displaement Reissner-Mindlin

(5.11), in�nitesimal-displaement Kirhho�-Love (5.14)) upon linearization and onsis-

teny with rigourously justi�ed �nite-strain Kirhho�-Love bending model [FJM02, FRS93℄

in pure bending for large samples (lassial limit of vanishing internal length L



).

1.4 Outline of this ontribution

The basi idea to meet these requirements for a plate model is to desend from a three-

dimensional Cosserat model. First, we introdue therefore in setion (2) the underlying "parent"

three-dimensional �nite-strain frame-indi�erent Cosserat model with size e�ets and already

appearing independent mirorotations R, i.e. a triad of rigid diretors (R

1

jR

2

jR

3

) =

R 2 SO(3;R) and we reall the obtained existene results for this Cosserat bulk model. We

then provide the restrition of the bulk model to a thin domain (3.1) on whih the redution

is based. Applying our "rational" of dimensional desend we postulate in setion (4.1) the full

two-�eld minimization problem for the new Cosserat plate model [Nef03a, Nef04a℄. It must be

observed that the resulting Cosserat plate model annot be obtained from a simple energy

projetion, suh that the already obtained three-dimensional results do not apply.

The orresponding equilibrium problem de�ned over the two-dimensional referential domain

! � R

2

has six degrees of freedom (three for the midsurfae deformation m : ! 7! R

3

and three

for the independent rotations R : ! 7! SO(3;R), 6 dof) and onstitutes a nonlinear, partial

di�erential ellipti system of six equations for basially six unknown funtions. The derivation

of these Euler-Lagrange equations is standard and therefore not presented. The model inludes

naturally one-drilling degree of freedom for in-plane rotations and aounts for thikness streth

and transverse shear. The drilling degree is stritly related to the size-e�et of the bulk model

and not spei�ally introdued in an ad ho fashion by the dimensional redution. The model

features also a non-standard boundary ondition, whih is alled onsistent oupling.

In setion (4.3), we derive a new Korn's �rst inequality for plates and elasto-plasti shells

whih is deisive for the mathematial treatment of models obtained in our variational ontext.

Depending on material onstants and boundary onditions, di�erent mathematial existene

theorems are proposed in setion (4.4). Generially, we obtain for the midsurfae deformation

m 2 H

1;2

(!;R

3

). For these results the diret methods of variations are used.

The quasionvexity of the redued energy funtional I(m;R) in the pair (m;R) is rather

easy to see, however, unquali�ed oerivity [PGC91℄

4

w.r.t. the midsurfae deformation m

depends ruially on the uniform positivity of the Cosserat ouple modulus �



> 0. The

simpler existene of minimizers in this ase is established elsewhere [Nef03a, Nef04a℄.

For zero Cosserat ouple modulus �



= 0, the lak of unquali�ed oerivity, however, an

only be overome by a ertain ontrol of the urvature in onjuntion with the new Korn's

inequality for plates.

In order to treat external loads for zero Cosserat ouple modulus �



= 0, the resultant load

funtional � has to be adapted. This modi�ation, whih is already needed in the Cosserat

bulk model, has been termed there "priniple of bounded external work" [Nef04℄ and

expresses the observation that by simple translation of a solid in a fore �eld only a �nite amount

of energy an be gained whih is ertainly true for any lassial physial �eld. If we want to treat

the non-standard boundary ondition of very weak onsistent oupling, we need to augment

the energy funtional with an additional urvature ontrol on the lateral Dirihlet boundary



0

. The mathematial analysis is also extended to a new Cosserat plate model appropriate for

large streth whih has appealing physial features.

3

Adding a seond derivative L

p



kD

2

mk

p

to the energy density would "resolve" all mathematial diÆulties

but lead to m 2W

2;p

(!;R

3

).

4

In �nite elastiity: W (F ) � 

+

1

kFk

p

� 

+

2

; p � 2.
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In order to relate the new �nite-strain Cosserat plate model to lassial approahes, we show

then, that a linearization of the new plate modelwith zero Cosserat ouple modulus �



=

0 results in the lassial in�nitesimal-displaement Reissner-Mindlin model (without extra

size e�ets and therefore without drill-rotations) and shear orretion fator � = 1. However,

weaker boundary onditions for the inrement of the diretor in the linearized in�nitesimal-

displaement Reissner-Mindlin model (5.11) are motivated. Nevertheless, this new boundary

ondition redues to the lassial ondition on the inrement of the normal in the linearized

Kirhho�-Love model (5.14). Finally, the treatment of external loads is detailed.

1.5 Notation

1.5.1 Notation for bulk material

Let 
 � R

3

be a bounded domain with Lipshitz boundary �
 and let � be a smooth subset of

�
 with non-vanishing 2-dimensional Hausdor� measure. For a; b 2 R

3

we let ha; bi

R

3

denote

the salar produt on R

3

with assoiated vetor norm kak

2

R

3

= ha; ai

R

3

. We denote by M

3�3

the set of real 3� 3 seond order tensors, written with apital letters. The standard Eulidean

salar produt on M

3�3

is given by hX;Y i

M

3�3

= tr

�

XY

T

�

, and thus the Frobenius tensor

norm is kXk

2

= hX;Xi

M

3�3

. In the following we omit the index R

3

;M

3�3

. The identity tensor

on M

3�3

will be denoted by 11, so that tr [X ℄ = hX; 11i and tr [X ℄

2

= hX; 11i

2

. We let Sym and

PSym denote the symmetri and positive de�nite symmetri tensors respetively. We adopt the

usual abbreviations of Lie-group theory, i.e., GL(3;R) := fX 2 M

3�3

jdet[X ℄ 6= 0g the general

linear group, SL(3;R) := fX 2 GL(3;R) jdet[X ℄ = 1g; O(3) := fX 2 GL(3;R) j X

T

X =

11g; SO(3;R) := fX 2 GL(3;R) jX

T

X = 11; det[X ℄ = 1g with orresponding Lie-algebras

so(3) := fX 2 M

3�3

jX

T

= �Xg of skew symmetri tensors and sl(3) := fX 2 M

3�3

jtr [X ℄ =

0g of traeless tensors. With AdjX we denote the tensor of transposed ofators Cof(X) suh

that AdjX = det[X ℄X

�1

= Cof(X)

T

if X 2 GL(3;R). We set sym(X) =

1

2

(X

T

+ X) and

skew(X) =

1

2

(X � X

T

) suh that X = sym(X) + skew(X). For X 2 M

3�3

we set for the

deviatori part devX = X �

1

3

tr [X ℄ 11 2 sl(3) and for vetors �; � 2 R

n

we have the tensor

produt (� 
 �)

ij

= �

i

�

j

.

We write the polar deomposition in the form F = RU = polar(F )U with R = polar(F )

the orthogonal part of F . For a seond order tensor X we de�ne the third order tensor h =

D

x

X(x) = (r(X(x):e

1

);r(X(x):e

2

);r(X(x):e

3

)) = (h

1

; h

2

; h

3

) 2 M

3�3

� M

3�3

� M

3�3

�

=

T(3). For third order tensors h 2 T(3) we set khk

2

=

P

3

i=1

kh

i

k

2

together with sym(h) :=

(sym h

1

; sym h

2

; sym h

3

) and tr [h℄ := (tr

�

h

1

�

; tr

�

h

2

�

; tr

�

h

3

�

) 2 R

3

. Moreover, for any seond

order tensor X we de�ne X �h := (Xh

1

; Xh

2

; Xh

3

) and h �X , orrespondingly. Quantities with a

bar, e.g. the miropolar rotation R, represent the miropolar replaement of the orresponding

lassial ontinuum rotation R. In general we work in the ontext of nonlinear, �nite-strain

elastiity. For the total deformation ' 2 C

1

(
;R

3

) we have the deformation gradient F = r' 2

C(
;M

3�3

). Furthermore, S

1

(F ) = D

F

W (F ) and S

2

(F ) = F

�1

D

F

W (F ) denote the �rst and

seond Piola Kirhho� stress tensors, respetively. Total time derivatives are written

d

dt

X(t) =

_

X. The �rst and seond di�erential of a salar valued funtion W (F ) are written D

F

W (F ):H

and D

2

F

W (F ):(H;H), respetively. We employ the standard notation of Sobolev spaes, i.e.

L

2

(
); H

1;2

(
); H

1;2

Æ

(
);W

1;q

(
), whih we use indi�erently for salar-valued funtions as well

as for vetor-valued and tensor-valued funtions. The setW

1;q

(
; SO(3;R)) denotes orthogonal

tensors whose omponents are in W

1;q

(
). Moreover, we set kXk

1

= sup

x2


kX(x)k. For

A 2 C

1

(
;M

3�3

) we de�ne CurlA(x) as the operation url applied row wise. We de�ne

H

1;2

Æ

(
;�) := f� 2 H

1;2

(
) j �

j

�

= 0g, where �

j

�

= 0 is to be understood in the sense of traes

and by C

1

0

(
) we denote in�nitely di�erentiable funtions with ompat support in 
. We use

apital letters to denote possibly large positive onstants, e.g. C

+

;K and lower ase letters

to denote possibly small positive onstants, e.g. 

+

; d

+

. The smallest eigenvalue of a positive

de�nite symmetri tensor P is abbreviated by �

min

(P ).

1.5.2 Notation for plates and shells

Let ! � R

2

be a bounded domain with Lipshitz boundary �! and let 

0

be a smooth subset

of �! with non-vanishing 1-dimensional Hausdor� measure. The thikness of the plate is taken

to be h > 0 with dimension length (ontrary to Ciarlet's de�nition of the thikness to be

2", whih di�erene leads only to various di�erent onstants in the resulting formulas). We

denote by M

n�m

the set of matries mapping R

n

7! R

m

. For H 2 M

2�3

and � 2 R

3

we

6



employ also the notation (H j�) 2 M

3�3

to denote the matrix omposed of H and the olumn

�. Likewise (vj�j�) is the matrix omposed of the olumns v; �; �. This allows us to write

for ' 2 C

1

R

3

;R

3

) : r' = ('

x

j'

y

j'

z

) = (�

x

'j�

y

'j�

z

'). The identity tensor on M

2�2

will

be denoted by 11

2

. For B 2 M

2�2

we de�ne B

[

=

0

�

B

11

B

12

0

B

21

B

22

0

0 0 0

1

A

2 M

3�3

. The mapping

m : ! � R

2

7! R

3

is the deformation of the midsurfae, rm is the orresponding deformation

gradient and ~n

m

is the outer unit normal on m. A matrix X 2 M

3�3

an now be written

as X = (X:e

2

jX:e

2

jX:e

3

) = (X

1

jX

2

jX

3

). We write v : R

2

7! R

3

for the displaement of the

midsurfae, suh that m(x; y) = (x; y; 0)

T

+ v(x; y). The standard volume element is written

dx dy dz = dV = d! dz.

2 The underlying �nite-strain three-dimensional Cosserat

model in variational form

In [Nef03b℄ a �nite-strain, fully frame-indi�erent, three-dimensional Cosserat miropolar model

is introdued. The two-�eld problem has been posed in a variational setting. The task is to �nd

a pair (';R) : 
 � R

3

7! R

3

� SO(3;R) of deformation ' and independent mirorotation

R 2 SO(3;R) minimizing the energy funtional I ,

I(';R) =

Z




W

mp

(R

T

r') +W

urv

(R

T

D

x

R)��

f

(')��

M

(R) dV

�

Z

�

S

�

N

(') dS�

Z

�

C

�

M



(R) dS 7! min : w.r.t. (';R) ; (2.1)

together with the Dirihlet boundary ondition of plae for the deformation ' on �: '

j

�

= g

d

and three possible alternative boundary onditions for the mirorotations R on �,

R

j

�

=

8

>

<

>

:

R

d

; the ase of rigid presription ;

polar(r') ; the ase of onsistent oupling ;

no ondition for R on �, indued Neumann-type relations for R on � :

(2.2)

The onstitutive assumptions on the densities are

W

mp

(U) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

; U = R

T

F ; F = r' ;

W

urv

(K) = �

L

1+p



12

(1 + �

4

L

q



kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

; (2.3)

K = R

T

D

x

R :=

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

; the third order urvature tensor :

The total elastially stored energyW =W

mp

+W

urv

is quadrati in the streth U and possibly

super-quadrati in the urvature K. The strain energyW

mp

depends on the deformation gradient

F = r' and the mirorotations R 2 SO(3;R), whih do not neessarily oinide with the

ontinuum rotations R = polar(F ). The urvature energy W

urv

depends moreover on the

spae derivatives D

x

R whih desribe the self-interation of the mirostruture.

5

In general, the

miropolar streth tensor U is not symmetri and does not oinide with the symmetri

ontinuum streth tensor U = R

T

F =

p

F

T

F . By abuse of notation we set k symKk

2

:=

P

3

i=1

k symK

i

k

2

for third order tensors K, f.(1.5.1).

Here 
 � R

3

is a domain with boundary �
 and � � �
 is that part of the boundary,

where Dirihlet onditions g

d

; R

d

for deformations and mirorotations or oupling onditions

for mirorotations, are presribed. �

S

� �
 is a part of the boundary, where tration boundary

onditions in the form of the potential of applied surfae fores �

N

are given with � \ �

S

= ;.

In addition, �

C

� �
 is the part of the boundary where the potential of external surfae ouples

�

M



are applied with � \ �

C

= ;. On the free boundary �
 n f� [ �

S

[ �

C

g orresponding

natural boundary onditions for (';R) apply. The potential of the external applied volume

5

Observe that R

T

r(R:e

i

) 6= R

T

�

x

i

R 2 so(3;R).

7



fore is �

f

and �

M

takes on the role of the potential of applied external volume ouples. For

simpliity we assume

�

f

(') = hf; 'i ; �

M

(R) = hM;Ri ; �

N

(') = hN;'i ; �

M



(R) = hM



; Ri ; (2.4)

for the potentials of applied loads with given funtions f 2 L

2

(
;R

3

); M 2 L

2

(
;M

3�3

); N 2

L

2

(�

S

;R

3

); M



2 L

2

(�

C

;M

3�3

).

The parameters �; � > 0 are the Lam�e onstants of lassial isotropi elastiity, the addi-

tional parameter �



� 0 is alled the Cosserat ouple modulus. For �



> 0 the elasti strain

energy density W

mp

(U) is uniformly onvex in U . Moreover

6

8F 2 GL

+

(3;R) : W

mp

(U ) =W

mp

(R

T

F ) � �



kR

T

F � 11k

2

= �



kF �Rk

2

� �



inf

R2O(3;R)

kF �Rk

2

= �



dist

2

(F;O(3;R)) (2.5)

= �



dist

2

(F; SO(3;R)) = �



kF � polar(F )k

2

= �



kU � 11k

2

:

In ontrast, for �



= 0 the strain energy density is only onvex w.r.t. F and does not satisfy

(2.5).

The parameter L



> 0 (with dimension length) introdues an internal length whih is

harateristi for the material, e.g. related to the grain size in a polyrystal. The internal

length L



> 0 is responsible for size e�ets in the sense that smaller samples are relatively

sti�er than larger samples. We assume throughout that �

5

> 0; �

6

> 0; �

7

� 0. This implies

the oerivity of urvature

9 

+

> 0 8 K 2 T(3) : W

urv

(K) � 

+

kKk

1+p

; (2.6)

whih is a basi ingredient of the mathematial analysis.

The non-standard boundary ondition of onsistent oupling ensures that no unwanted

non-lassial, polar e�ets may our at the Dirihlet boundary �. It implies for the miropolar

streth that U

j

�

2 Sym and for the seond Piola-Kirhho� stress tensor S

2

:= F

�1

D

F

W

mp

(U) 2

Sym on � as in the lassial, non-polar ase.

We mention, that a linearization of this Cosserat bulk model with �



= 0 for small dis-

plaement and small mirorotations ompletely deouples the two �elds of deformation and

mirorotations and leads to the lassial linear elastiity problem for the deformation.

7

For

more details on the modelling of the three-dimensional Cosserat model we refer the reader to

[Nef03b℄.

2.1 Mathematial results for the three-dimensional Cosserat bulk prob-

lem

For oniseness we state only the obtained results for the ase without external loads. It an

be shown [Nef04a℄:

Theorem 2.1 (Existene for 3D-�nite-strain elasti Cosserat model with �



> 0)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

)

and R

d

2 W

1;1+p

(
; SO(3;R)). Then (2.1) with �



> 0; �

4

� 0; p � 1; q � 0 and either

free or rigid presription for R on � admits at least one minimizing solution pair (';R) 2

H

1

(
;R

3

)�W

1;1+p

(
; SO(3;R)). �

Using the extended Korn's inequality Theorem 8.1, the following has been shown in [Nef03b,

Nef04℄:

Theorem 2.2 (Existene for 3D-�nite-strain elasti Cosserat model with �



= 0)

Let 
 � R

3

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(
;R

3

)

and R

d

2 W

1;1+p+q

(
; SO(3;R)). Then (2.1) with �



= 0; �

4

> 0; p � 1; q > 1 and

either free or rigid presription for R on � admits at least one minimizing solution pair

(';R) 2 H

1

(
;R

3

)�W

1;1+p+q

(
; SO(3;R)). �

6

The ondition F 2 GL

+

(3;R) is neessary, otherwise kF � polar(F )k

2

= dist

2

(F;O(3;R)) <

dist

2

(F; SO(3;R)), as an be easily seen for the reetion F = diag(1;�1; 1).

7

Thinking in the ontext of an in�nitesimal-displaement Cosserat theory one might erroneously believe that

�



> 0 is stritly neessary also for a "true" �nite-strain Cosserat theory.

8



3 Formal dimensional redution of the Cosserat bulk model

3.1 The three-dimensional Cosserat problem on a thin domain

The basi task of any shell theory is a onsistent redution of some presumably "exat" 3D-

theory to 2D. The general three-dimensional problem (2.1) will now be adapted to a shell-like

theory. Let us assume that we are given a three-dimensional absolutely thin domain




h

:= ! � [�

h

2

;

h

2

℄; ! � R

2

; (3.1)

with transverse boundary �


trans

h

= ! � f�

h

2

;

h

2

g and lateral boundary �


lat

h

= �! �

[�

h

2

;

h

2

℄, where ! is a bounded domain in R

2

with smooth boundary �! and h > 0 is the

thikness. Moreover, assume we are given a deformation ' and mirorotation R

3d

,

' : 


h

� R

3

7! R

3

; R

3d

: 


h

� R

3

7! SO(3;R) ; (3.2)

solving the following two-�eld minimization problem on the thin domain 


h

:

I(';r';R;D

x

R) =

Z




h

W

mp

(U) +W

urv

(K)� hf; 'i dV �

Z

�


trans

h

[f

s

�[�

h

2

;

h

2

℄g

hN;'i dS 7! min : w.r.t. (';R) ;

U = R

T

F; '

j

�

h

0

= g

d

(x; y; z); �

h

0

= 

0

� [�

h

2

;

h

2

℄; 

0

� �!; 

s

\ 

0

= ; ;

R

j

�

h

0

= polar(r') ; strong onsistent oupling boundary ondition ; (3.3)

W

mp

(U) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+

�

2

tr

�

sym(U � 11)

�

2

;

W

urv

(K) = �

L

1+p



12

(1 + �

4

L

q



kKk

q

)

�

�

5

k symKk

2

+ �

6

k skewKk

2

+ �

7

tr [K℄

2

�

1+p

2

;

K = R

T

D

x

R =

�

R

T

r(R:e

1

); R

T

r(R:e

2

); R

T

r(R:e

3

)

�

:

Without loss of mathematial generality we assume thatM;M



� 0 in (2.4), i.e. that no external

volume or surfae ouples are present in the bulk problem. We want to �nd a reasonable

approximation ('

s

; R

s

) of (';R

3d

) involving only two-dimensional quantities. For us, this

dimensional redution is based on a formal dimensional redution "rational", whih is

haraterized as follows:

1. A quadrati ansatz through the thikness for the three-dimensional deformation:

'

s

(x; y; z) = m(x; y) + (z%

m

+

z

2

2

%

b

)

~

d with m the deformation of the midsurfae, i.e.

normals to the undeformed midsurfae remain straight, but may be elongated and

the midsurfae may be asymmetrially shifted. The rotations are assumed to be

onstant over the thikness: R

3d

(x; y; z) = R

s

(x; y) = R(x; y). Restrition of the diretor

~

d to the third olumn R

3

:= R:e

3

of the already appearing mirorotations.

2. Exat analytial determination of the two leading oeÆients %

m

; %

b

from the three-

dimensional transverse boundary ondition on the upper and lower fae of the plate in

terms of the quadrati ansatz, independent of the Cosserat ouple modulus �



. Sim-

pli�ation of the formulas for %

m

; %

b

in view of an assumed almost rigid (�; � � 1)

behaviour (4.8). Replaes "Condensation of the material law: �

33

= 0" in the lassial

in�nitesimal-displaement theory.

3. Analytial integration of the bulk energy through the thikness with an approximated

expression F

s

= (rmj%

m

R

3

) + z (rR

3

j%

b

R

3

) for the reonstruted deformation gradi-

ent r'

s

, onsistent with a linear ansatz through the thikness to obtain a dimensionally

redued energy density I('

s

; F

s

; R

s

;D

x

R

s

). Amounts to "Typial inonsisteny of deriva-

tion with naive energy projetion."

4. Non-standard Dirihlet boundary onditions for simple support: no diret pre-

sription of a diretor at the lateral Dirihlet boundary 

0

, instead requiring only a weak

oupling ondition to the extent that no polar e�ets may our at the Dirihlet bound-

ary, possibly weakening the boundary layer: "Avoiding the typial problem of Cosserat

9



theories as regards formulation of boundary onditions." Alternative Dirihlet boundary

onditions are also possible: lassial rigid diretor presription:

~

d = R:e

3

presribed

at 

0

(lamped).

4 The new formal �nite-strain Cosserat thin plate model

with size e�ets

4.1 Statement of the formal Cosserat plate model

The proposed formal "rational" of dimensional desend leads us to postulate the following

two-dimensional minimization problem for the deformation of the midsurfae m : ! � R

2

7! R

3

and the mirorotation of the plate (shell) R : ! � R

2

7! SO(3;R) on !:

I(m;R) =

Z

!

hW

mp

(U)+hW

urv

(K

s

) +

h

3

12

W

bend

(K

b

) d!

��(m;R

3

) 7! min : w.r.t. (m;R) ; (4.1)

under the onstraints

U = R

T

b

F ;

b

F = (rmjR

3

) 2 M

3�3

; (4.2)

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

2 T(3) ; K

b

= K

3

s

;

and the boundary onditions of plae for the midsurfae deformation m on the Dirihlet part

of the lateral boundary 

0

,

m

j



0

= g

d

(x; y; 0) ; simply supported (�xed, welded) : (4.3)

The three possible alternative boundary onditions for the mirorotations R on 

0

are

R

j



0

= polar((rmjrg

d

(x; y; 0):e

3

))

j



0

; strong form of redued onsistent oupling ; (4.4)

8A 2 C

1

0

(

0

; so(3;R)) :

Z



0

hR

T

(rm(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds = 0 ; very weak onsistent oupling ;

R

3

j



0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; rigid diretor presription :

The onstitutive assumptions on the redued densities are

8

W

mp

(U) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+

��

2�+ �

tr

�

sym(U � 11)

�

2

(4.5)

= � k sym((R

1

jR

2

)

T

rm� 11

2

)k

2

| {z }

shear-streth energy

+�



k skew((R

1

jR

2

)

T

rm)k

2

| {z }

�rst order drill energy

+

�(�+ �



)

2

�

hR

3

;m

x

i

2

+ hR

3

;m

y

i

2

�

| {z }

lassial transverse shear energy

+

��

2�+ �

tr

�

sym((R

1

jR

2

)

T

rm� 11

2

)

�

2

| {z }

elongational streth energy

;

W

urv

(K

s

) = �

L

1+p



12

(1 + �

4

L

q



kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

;

K

s

= (K

1

s

;K

2

s

;K

3

s

) 2 T(3) ; the redued third order urvature tensor ;

W

bend

(K

b

) = � k sym(K

b

)k

2

+ �



k skew(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

;

K

b

= R

T

(rR

3

j0) = K

3

s

; the seond order non-symmetri bending tensor :

8

k skew((R

1

jR

2

)

T

rm)k

2

=

�

hR

1

;m

y

i � hR

2

;m

x

i

�

2

.

10



The (relative) thikness of the plate (shell) is h > 0. The total elastially stored energy density

due to membrane-strain, total plate-urvature and spei� plate-bending

W = hW

mp

| {z }

membrane

+ hW

urv

| {z }

urvature

+

h

3

12

W

bend

| {z }

bending

; (4.6)

depends on the midsurfae deformation gradient rm and mirorotations R together with their

spae derivatives only through the frame-indi�erent measures U and K

s

. The miropolar

streth tensor U of the plate is in general non-symmetri, neither is the miropolar

redued third order urvature tensor K

s

. The three-dimensional plate deformation is

reonstruted as

'

s

(x; y; z) = m(x; y) +

�

z %

m

(x; y) +

z

2

2

%

b

(x; y)

�

R(x; y):e

3

; (4.7)

where

%

m

= 1�

�

2�+ �

�

h(rmj0); Ri � 2

�

+

hN

di�

; R

3

i

(2�+ �)

= 1�

�

2�+ �

tr

�

U � 11

�

+

hN

di�

; R

3

i

(2�+ �)

| {z }

�rst order thikness hange due to elongational streth

;

%

b

= �

�

2�+ �

h(rR

3

j0); Ri+

hN

res

; R

3

i

(2�+ �)h

| {z }

non-symmetri shift of the midsurfae due to bending

= �

�

2�+ �

tr [K

b

℄ +

hN

res

; R

3

i

(2�+ �)h

(4.8)

and N

di�

; N

res

as de�ned in (5.2). To �rst order, the reonstruted deformationgradient is given

by F

s

= (rmj%

m

R

3

). Here ! � R

2

is a domain with boundary �! and 

0

� �! is that part

of the boundary, where Dirihlet onditions g

d

for deformations and mirorotations and/or

onsistent oupling onditions for mirorotations, respetively, are presribed. The redued

external loading funtional �(m;R

3

) is a linear form in (m;R

3

) de�ned in (5.19) in terms of

the underlying three-dimensional loads. The parameters �; � > 0 are the Lam�e onstants of

lassial elastiity, �



� 0 is alled the Cosserat ouple modulus and L



> 0 introdues the

internal length. We assume throughout that �

5

> 0; �

6

> 0; �

7

� 0. We have inluded the

so alled shear orretion fator � (0 < � � 1) to keep in line with lassial in�nitesimal-

displaement plate models (5.11). In our formal derivation, however, we obtain � = 1. The

redued model (4.1) is fully frame-indi�erent, meaning that

8 Q 2 SO(3;R) : W

mp

(Q

b

F ;QR) =W

mp

(

b

F ;R) ; K

s

(QR) = K

s

(R) : (4.9)

The non-invariant term %

m

is only needed to reonstrut the 3D-deformation, whih depends

on the non-invariant loading.

9

Strain and urvature parts are additively deoupled, as in

the underlying parent model (2.1). We note the appearane of the harmoni mean H and

arithmeti mean A

1

2

H(�;

�

2

) =

��

2�+ �

; �A(�; �



) = �

�+ �



2

: (4.10)

4.2 The di�erent ases for the Cosserat plate

As in the three-dimensional ase [Nef03b℄, we may distinguish �ve di�erent situations: (di�erent

values of p; q ompared with the three-dimensional ase)

I: �



> 0; �

4

� 0; p � 1; q � 0. Unonditional oerivity and unquali�ed existene, posi-

tive Cosserat ouple modulus. Frature exluded.

II: �



= 0; �

4

= 0; p > 1; q � 0. Conditional oerivity, zero Cosserat ouple modulus.

Frature exluded.

III: �



=1; �

4

� 0; p � 1; q � 0. Constrained gradient Cosserat miropolar plate prob-

lem (indeterminate ouple-stress plate model). Compatible Dirihlet boundary onditions:

m

j



0

= g

d

; polar((rmj%

m

~n

m

))

j



0

= polar(rg

d

)

j



0

. Similar to, but not idential with, a

Kirhho�-Love model.

9

Of ourse, if the external trations are rotated as well, we obtain invariane: hQ:N

di�

;Q:R

3

i = hN

di�

; R

3

i.

11



IV: �



= 0; �

4

= 0; 0 < p � 1; q = 0. Possibly m 62 W

1;1

(!;R

3

) due to lak of elasti oer-

ivity, inluding frature in multiaxial situations.

V: �



= 0;L



= 0. Relaxation ase. Finite elastiity with free rotations and mirostru-

ture. Weak solutions of the nonlinear, non-ellipti problem based on the total elasti

energy density

W (rm;~n

m

;r~n

m

) = h

�

� kU((rmj~n))� 11k

2

+

��

2�+ �

tr [U((rmj~n))� 11℄

2

�

+

h

3

12

�

� kU

�1



II

m

k

2

+

��

2�+ �

tr

h

U

�1



II

m

i

2

�

;

U((rmj~n)) =

q

(rmj~n)

T

(rmj~n) =

p

I

m

+ e

3


 e

3

;

(I

m

the �rst fundamental form,



II

m

= II

m

+ e

3


 e

3

, II

m

= �rm

T

r~n

m

2 M

2�2

the

seond fundamental form of the midsurfae m), are stationary points of the minimization

problem (4.1). Allowing in priniple for sharp interfaes.

We refer to 0 < p < 1; q � 0 as the sub-ritial ase, to p = 1; q � 0 as the ritial ase and

to p > 1; q � 0 as the super-ritial ase. In this ontribution we will treat mathematially

exlusively the super-ritial ase II. The simpler ase I and ase III for positive Cosserat ouple

modulus �



> 0 with rigid diretor presription at the boundary are dealt with in [Nef04a℄.

The "frature" ase IV and the "relaxation" ase V remain open at present.

It is easy to see that the membrane energy part W

mp

in (4.1) is uniformly Legendre-

Hadamard ellipti with elliptiity onstant � > 0 independent of the value of the Cosserat ouple

modulus �



. As will be seen, a linearization of (4.1) with �



= 0 and p > 1 (super-quadrati

urvature energy W

urv

) for small displaement and small mirorotation does not deouple the

�elds, as in the three-dimensional situation, but leads formally to the in�nitesimal-displaement,

lassial linear Reissner-Mindlin model (5.11).

4.3 The oerivity inequality in two-dimensions

In this setion we show how to use the three-dimensional extended Korn's �rst inequality

Theorem 8.1 in our redued two-dimensional ontext of plates and shells in order to improve

Legendre-Hadamard elliptiity to uniform positivity. In order to show that the elasti membrane

energy is uniformly onvex for zero Cosserat ouple modulus �



= 0 we look at the seond

di�erential of W

mp

(R

T

b

F ) with respet to m

D

2

rm

W

mp

(R

T

b

F ):(r�;r�) �

�

2

k(r�j0)

T

R +R

T

(r�j0)k

2

: (4.11)

Set for simpliity � = 2 and onsider the slightly more general quadrati form (appropriate for

elasti shells: F

p

= r� with � a regular parametrization of the stress-free initial urvilinear

shell surfae and elasto-plasti shells: F

p

; R

e

arbitrary)

kF

�T

p

(r�j0)

T

R

e

+R

T

e

(r�j0)F

�1

p

k

2

= kR

e

�

F

�T

p

(r�j0)

T

R

e

+R

T

e

(r�j0)F

�1

p

�

R

T

e

k

2

= k(R

e

F

p

)

�T

(r�j0)

T

+ (r�j0)(R

e

F

p

)

�1

k

2

; (4.12)

where � : ! � R

2

7! R

3

and �

j



0

= 0 for 

0

� �!. Extend now � to

�

� : R

3

7! R

3

through

�

�(x; y; z) := �(x; y))

�

�(x; y; z)

j



0

�[�

h

2

;

h

2

℄

= 0 and r

(x;y;z)

�

�(x; y; z) = (r

(x;y)

�j0): (4.13)

For

�

� it is possible to use the 3D-extended Korn's �rst inequality Theorem 8.1. To this end

onsider 


h

= ! � [�

h

2

;

h

2

℄ and the lateral Dirihlet boundary �

h

0

= 

0

� [�

h

2

;

h

2

℄ � �


h

. Then

�

h

0

has non-vanishing 2-dimensional Hausdor� measure. Set by abuse of notation F

p

= (R

e

F

p

)

for the moment. With smooth enough, invertible F

p

it holds on applying Theorem 8.1 that

Z




h

kr

�

�

T

F

�1

p

+ F

�T

p

r

�

�k

2

dV � 

+

3D

�

Z

!�[�

h

2

;

h

2

℄

k

�

�k

2

+ kr

�

�k

2

dV )

Z

!

h

2

Z

�

h

2

kr

�

�

T

F

�1

p

+ F

�T

p

r

�

�k

2

d! dz � 

+

3D

�

Z

!

h

2

Z

�

h

2

k

�

�k

2

+ kr

�

�k

2

d! dz : (4.14)

12



Sine

�

� is independent of z we may arry out the integration with respet to the transverse

variable and get, however,

Z

!

kr

�

�

T

F

�1

p

+ F

�T

p

r

�

�k

2

d! � 

+

3D

�

Z

!

k

�

�k

2

+ kr

�

�k

2

d! ; (4.15)

or bak in terms of �

Z

!

k(r�j0)

T

F

�1

p

+ F

�T

p

(r�j0)k

2

d! � 

+

3D

�

Z

!

k�k

2

+ k(r�j0)k

2

d!: (4.16)

Observe that the onstant 

+

3D

is in fat independent of the thikness h (we ould set h =

1) whih might be surprising at �rst glane. This observation allows one to bound m 2

H

1;2

Æ

(!;R

3

; 

0

), independent of the relative thikness h only in terms of the membrane energy

R

!

W (rm;R) d! if R 2 SO(3;R) is smooth enough. Thus we have �nally proved

Theorem 4.1 (Improved Korn's inequality for rigid shells)

Let ! � R

2

be a bounded domain with smooth boundary and let 

0

� �! be a part of the

boundary with non vanishing 1-dimensional Hausdor� measure. De�ne H

1;2

Æ

(!;R

3

; 

0

) := f� 2

H

1;2

(!;R

3

) j �

j



0

= 0g and let F

p

; F

�1

p

2W

1;2+Æ

(!;GL(3;R)). Then

9 

+

> 0 8 � 2 H

1;2

Æ

(!;R

3

; 

0

) : k(r�j0)F

�1

p

(x) + F

�T

p

(x)(r�j0)

T

k

2

L

2

(!)

� 

+

k�k

2

H

1;2

(!)

;

and the onstant is bounded away from zero for F

p

; F

�1

p

bounded in W

1;2+Æ

(!;GL(3;R)).

Proof. The proof is based on the previous argument and on the strengthening of Theorem 8.1

proposed in [Pom03℄. The Sobolev embedding shows that F

p

2 W

1;2+Æ

(!;GL(3;R)) may be

identi�ed with a ontinuous funtion. In order to show that the onstant is uniformly bounded

away from zero for bounded F

p

; F

�1

p

2 W

1;2+Æ

(!;GL(3;R)) a ontradition argument as in

[Nef04b℄ is employed whih uses the fat that W

1;2+Æ

(!;GL(3;R)) is ompatly embedded in

C

0

(!;GL(3;R)). �

4.4 Mathematial analysis for zero Cosserat ouple modulus �



= 0

The following results provide existene theorems for geometrially exat dedued elasti Cosserat

plate models for the physially more realisti super-ritial ase.

10

Theorem 4.2 (Existene for 2D-�nite-strain elasti Cosserat model: ase II)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

)

and polar(rg

d

) 2 W

1;1+p+q

(!; SO(3;R)). Moreover, let f 2 L

1

(!;R

3

) and suppose N 2

L

1

(

s

;R

3

) together with M 2 L

1

(!;R

3

) and M



2 L

1

(

s

;R

3

), see (5.19). Then (4.1) with

material onstants onforming to ase II, boundary onditions forR of rigid diretor presription

on 

0

and modi�ed external potential �

℄

(5.20) admits at least one minimizing solution pair

(m;R) 2 H

1

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)).

Proof. We apply the diret methods of variations. First, the requirement on the data shows

that

8m 2 H

1

(!;R

3

); R 2W

1;1+p+q

(!; SO(3;R)) : �

℄

(m;R

3

) � C ; (4.17)

i.e. a uniform bound on the external loading funtional. Let us de�ne the admissible set

A := fm 2 H

1

(!;R

3

); R 2W

1;1+p+q

(!; SO(3;R)) jm

j



0

= g

d

(x; y; 0) ;

R

3

j



0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

g : (4.18)

10

The proposed �nite-strain results determine the marosopi midsurfae plate deformation m 2 H

1

(!;R

3

)

and not more. This means that disontinuous marosopi deformations by avities or the formation of holes are

not exluded (possible mode I failure). If �



> 0 frature is e�etively ruled out, whih is, however, somewhat

unrealisti. All results remain true for arbitrary shear orretion fator � > 0. For � = 0, however, uniform

Legendre-Hadamard elliptiity is lost.

13



With the presription of the boundary data g

d

it is lear that I(g

d

(x; y; 0); polar(rg

d

(x; y; 0))) <

1, hene I is bounded above on A. Consider a sequene of pairs of deformation m

k

and

rotations R

k

in the admissible set A with bounded energy I . For suh a sequene we have

1 > I(m

k

; R

k

) =

Z

!

hW

mp

(U

k

) + hW

urv

(K

s;k

) +

h

3

12

W

bend

(K

b;k

) d! ��

℄

(m

k

; R

k

3

)

�

Z

!

hW

mp

(U

k

) + hW

urv

(K

s;k

) +

h

3

12

W

bend

(K

b;k

) d! � C � C

3

; (4.19)

whih implies that I is bounded below onA and the positive urvature energy

R

!

hW

urv

(K

s;k

) d!

an be bounded independent of k 2 N. Observe now that the urvature energy bounds

the sequene of urvature tensors K

s;k

in L

1+p+q

(!;T(3)) by the positivity assumption on

the parameters �

5

; �

6

> 0. Sine kK

s

k = kR

T

D

x

Rk = kD

x

Rk pointwise, this implies that

kD

x

R

k

k

L

1+p+q

(!)

is bounded as well. Sine kR

k

k =

p

3 pointwise, this shows the boundedness

of R

k

� W

1;1+p+q

(!; SO(3;R)), even without spei� Dirihlet boundary onditions on the

remaining "free" olumns R:e

1

; R:e

2

.

11

This is a distintive feature for exat rotations. A sub-

sequene an be hosen suh that K

s;k

*

b

K

s

in L

1+p+q

(!;T(3)), weakly. Sine the boundedness

of the rotations R

k

holds true in the spae W

1;1+p+q

(!; SO(3;R)) with 1 + p + q > N = 3,

it is possible to extrat a subsequene, not relabelled, suh that R

k

onverges strongly to

b

R 2 C

0

(!; SO(3;R)) in the topology of C

0

(!; SO(3;R)) on aount of the Sobolev-embedding

theorem.

Sine I is bounded below on A we may onsider from now on in�mizing sequenes of mid-

surfae deformations m

k

and rotations R

k

with

lim

k!1

I(m

k

; R

k

) = inf

(m;R)2A

I(m;R) : (4.20)

Along the strongly onvergent sequene of rotations, the orresponding sequene of mid-surfae

deformations m

k

is also bounded in H

1

(!;R

3

). However, this is not due to a basially simple

pointwise estimate as in ase I (�



> 0) [Nef04a℄, but only true after integration over the domain

!: at fae value we only ontrol ertain mixed symmetri expressions in the reonstruted

deformation gradient. Let us therefore de�ne v

k

2 H

1;2

(!;R

3

) bym

k

= g

d

+(m

k

�g

d

) = g

d

+v

k

.

Then we have

1 > I(m

k

; R

k

) =

Z

!

hW

mp

(U

k

) + hW

urv

(K

s;k

) +

h

3

12

W

bend

(K

b;k

) d! ��

℄

(m

k

; R

k

3

)

�

Z

!

hW

mp

(U

k

)��

℄

(m

k

; R

k

3

) d! �

Z

!

hW

mp

(U

k

) d! � C (4.21)

�

Z

!

h

�

4

kR

k;T

(rm

k

jR

k

3

) + (rm

k

jR

k

3

)

T

R

k

� 211k

2

d! � C

=

Z

!

h

�

4

kR

T

(rm

k

jR

3

) + (rm

k

jR

3

)

T

Rk

2

� 4h

�

4

tr

h

R

T

(rm

k

jR

3

) + (rm

k

jR

3

)

T

R

i

+ 4h

�

4

k11k

2

d! � C

�

Z

!

h

�

4

kR

k;T

(rm

k

j0) + (rm

k

j0)

T

R

k

k

2

d! � C

1

km

k

k

H

1;2

(!)

+ C

2

=

Z

!

h

�

4

k(R

k

�

b

R+

b

R)

T

(rv

k

j0) + (rv

k

j0)

T

(R

k

�

b

R+

b

R)k

2

d! � C

1

kv

k

k

H

1;2

(!)

+ C

2

�

Z

!

h

�

4

k

b

R

T

(rv

k

j0) + (rv

k

j0)

T

b

Rk

2

| {z }

ombinations of derivatives

d! � C

3

k

b

R�R

k

k

1

kv

k

k

2

H

1;2

(!)

11

Without independent urvature ontrol, nothing an be shown for �



= 0. This is the reason for the

modi�ation of the external loads.
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� (C

1

+ 2 k

b

R�R

k

k

1

) kv

k

k

H

1;2

(!)

+ C

2

� (h

�

4



+

K

� C

3

k

b

R�R

k

k

1

) kv

k

k

2

H

1;2

(!)

� (C

1

+ 2 k

b

R�R

k

k

1

) kv

k

k

H

1;2

(!)

+ C

2

;

where we made use of the zero boundary onditions for v

k

on 

0

and applied the extended Korn's

inequality Theorem 4.1 (note that R

�T

= R for exat rotations) yielding the positive onstant



+

K

for the ontinuous mirorotation

b

R. Sine k

b

R�R

k

k

1

! 0 we onlude the boundedness of

v

k

in H

1

(!;R

3

). Hene, m

k

is bounded as well in H

1

(!;R

3

).

From the boundedness of m

k

in H

1

(!;R

3

) we may extrat a subsequene, not relabelled,

suh thatm

k

* bm 2 H

1

(!;R

3

). Furthermore, we may always obtain a subsequene of (m

k

; R

k

)

suh that U

k

= R

k;T

^

F

k

= R

k;T

(rm

k

jR

k

3

) onverges weakly in L

2

(!) to

b

U =

b

R

T

(rbmj

b

R

3

).

Weak onvergene of D

x

R

k

in L

1;1+p+q

(!;T(3)) and strong onvergene of R

k

in L

2

(!)

together show that the sequene of the third order urvature tensors K

s;k

= R

k;T

D

x

R

k

onverges

indeed weakly to the orret limit

b

R

T

D

x

b

R =

b

K

s

in L

1

(!;T(3)). But from above we know already

that weak onvergene for K

s;k

takes plae in L

2

(!;T(3)). Gathering the obtained statements

we have

U

k

= R

k;T

^

F

k

*

b

U =

b

R

T

(rbmj

b

R

3

) in L

2

(!) ;

K

s;k

= R

k;T

D

x

R

k

*

b

K

s

=

b

R

T

D

x

b

R in L

2

(!;T(3)) ; (4.22)

K

b;k

*

b

K

b

in L

2

(!;M

3�3

) ;

m

k

! bm in L

2

(!;R

3

) ;

R

k

!

b

R in C(!; SO(3;R)) :

Sine the total energy is onvex in the ombined terms (U;K

s

;K

b

) we get

I(bm;

b

R) =

Z

!

hW

mp

(

b

U) + hW

urv

(

b

K

s

) +

h

3

12

W

bend

(

b

K

b

) d! ��

℄

(bm;

b

R

3

)

� lim inf

k!1

Z

!

hW

mp

(U

k

) + hW

urv

(K

s;k

) +

h

3

12

W

bend

(K

b;k

) d! ��

℄

(m

k

; R

k

3

) (4.23)

= lim

k!1

I(m

k

; R

k

) = inf

(m;R)2A

I(m;R) ;

whih implies that the limit pair (bm;

b

R) is a minimizer and the Dirihlet boundary onditions

for either midsurfae deformation bm and "diretor"

b

R

3

are satis�ed strongly by ompat em-

bedding in the sense of traes on 

0

. This �nishes the argument. �

Let us turn to a slightly modi�ed energy funtional for whih it is possible to extend the

previous existene result to very weak onsistent oupling boundary onditions. This modi�a-

tion is not neessary for a properly linearized model together with a linearized weak onsistent

oupling ondition (5.11). The augmented energy funtional reads

I(m;R) =

Z

!

hW

mp

(U) + hW

urv

(K

s

) +

h

3

12

W

bend

(K

b

) d! ��(m;R

3

) (4.24)

+

Z



0

hW

urv

(K

s

) ds

| {z }

augmented

7! min : w.r.t. (m;R) :

The new urvature ontrol on 

0

imparts additional regularity for the hange of the rotations

from 

0

to the interior of the domain !. With this modi�ation it is possible to show

Corollary 4.3 (Existene for very weak onsistent oupling)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

),

polar(rg

d

) 2 W

1;1+p+q

(!; SO(3;R)); polar(rg

d

)

j



0

2 W

1;1+p+q

(

0

; SO(3;R)) and �

z

g

d

j



0

2

15



L

2

(

0

;R

3

). Moreover, let f 2 L

1

(!;R

3

) and suppose N 2 L

1

(

s

;R

3

) together with M 2

L

1

(!;R

3

) and M



2 L

1

(

s

;R

3

), see (5.19). Then (4.1) with material onstants onforming to

ase II, boundary onditions of very weak onsistent oupling on 

0

, modi�ed external potential

�

℄

(5.20) and augmented energy funtional (4.24) admits at least one minimizing solution pair

(m;R) 2 H

1

(!;R

3

)�W

1;1+p+q

(!; SO(3;R)).

Proof. We basially repeat the argument of Theorem 4.2. First, we de�ne the modi�ed admis-

sible set

A := fm 2 H

1

(!;R

3

); R 2W

1;1+p+q

(!; SO(3;R)) j m

j



0

= g

d

(x; y; 0) ;

Z



0

hR

T

(rm(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds = 0 8A 2 C

1

0

(

0

; so(3;R)) g ; (4.25)

whih inorporates the onsistent oupling ondition in its weak, distributional form. In order

to see that the set A is not empty take R = polar(rg

d

) and m = g

d

. As in Theorem 4.2

one shows that I is bounded above and below on A. We then hoose minimizing sequenes

of midsurfae deformations m

k

and rotations R

k

in A. Thus, along the minimizing sequene

(m

k

; R

k

)

8 k 2 N :

Z



0

hR

k;T

(rm

k

(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds = 0 ; (4.26)

for all testfuntions A 2 C

1

0

(

0

; so(3;R)). We need to investigate in whih sense the weak/strong

limits found in Theorem 4.2 satisfy this additional relation on 

0

. We observe that for smooth

testfuntions A 2 C

1

0

(

0

; so(3;R)) and by partial integration

Z



0

hR

k;T

(rm

k

(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds =

Z



0

h(rm

k

(x; y)jrg

d

(x; y; 0):e

3

); R

k

A(x; y)i ds

=

Z



0

�

�

hm

k

; �

x

h

R

k

A:e

1

i

+ �

y

h

R

k

A:e

2

i

i

�

+ h�

z

g

d

(x; y; 0); R

k

A(x; y):e

3

i ds (4.27)

=

Z



0

�

�

hm

k

; [�

x

R

k

℄A:e

1

+ R

k

�

x

A:e

1

+ [�

y

R

k

℄A:e

2

+R

k

�

y

A:e

2

i

�

ds

+

Z



0

h�

z

g

d

(x; y; 0); R

k

A(x; y):e

3

i ds :

The augmented urvature expression (4.24) on the lateral boundary 

0

allows us to speify a

subsequene of the rotations, suh that D

x

R

k

* D

x

b

R 2 L

2

(

0

;T(3)). Observe that the aug-

mented boundary urvature term is also weakly lower semiontinuous under weak onvergene

at the boundary 

0

. Sine

m

k

! bm 2 L

2

(

0

;R

3

) ; due to ompat embedding ;

R

k

!

b

R

k

2 L

2

(

0

; SO(3;R)) ; due to ompat embedding ; (4.28)

�

x

R

k

* �

x

b

R 2 L

2

(

0

;M

3�3

) ; due to additional urvature ontrol at 

0

;

�

y

R

k

* �

y

b

R 2 L

2

(

0

;M

3�3

) ; due to additional urvature ontrol at 

0

;

we onlude that

lim

k!1

Z



0

hR

k;T

(rm

k

(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds

=

Z



0

h

b

R

T

(rbm(x; y)jrg

d

(x; y; 0):e

3

); A(x; y)i ds : (4.29)

Hene the minimizing solution (bm;

b

R) 2 H

1

(!;R

3

) �W

1;1+p+q

(!; SO(3;R)) satis�es the very

weak onsistent oupling ondition and the proof is �nished. �
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Remark 4.4 (The thin shell "membrane" limit)

Observe that all stated results remain true if we skip the h

3

-bending ontribution sine the

deisive urvature ontrol is a�orded by W

urv

in onjuntion with the internal length L



> 0.

In this sense, the formal thin shell "membrane" limit is not degenerated.

5 A new �nite-strain Cosserat plate for large streth and

loal invertibility

While the preeding models have been motivated from a three-dimensional "parent" model

whih itself is appropriate only for small strain and �nite rotations, let us present a modi�ed

model,

12

whih in priniple allows for arbitrary large streth and whih automatially preserves

loal invertibility if the reonstruted deformation is smooth. It is lear that suh an extension

is by no means unique. We propose the model

I(m;R) =

Z

!

hW

mp

(U) + hW

urv

(K

s

) +

h

3

12

W

bend

(K

b

) d! ��(m;R

3

) 7! min : w.r.t. (m;R);

U = R

T

b

F ;

b

F = (rmjR

3

); F

s

= (rmj%

m

R

3

) ;

%

m

=

1

1 +

�

2�+�

(det[U ℄� 1)

+

hN

di�

; R

3

i

(2�+ �)

; modi�ed thikness streth ;

m

j



0

= g

d

(x; y; 0) ; simply supported ; (5.1)

R

j



0

= polar((rmjrg

d

(x; y; 0):e

3

))

j



0

; strong form of redued onsistent oupling ;

R

3

j



0

=

rg

d

(x; y; 0):e

3

krg

d

(x; y; 0):e

3

k

; alternatively: rigid diretor presription ;

W

mp

(U) = � k sym(U � 11)k

2

+ �



k skew(U)k

2

+

��

2�+ �

1

2

�

(det[U ℄� 1)

2

+ (

1

det[U ℄

� 1)

2

�

;

W

urv

(K

s

) = �

L

1+p



12

(1 + �

4

L

q



kK

s

k

q

)

�

�

5

k symK

s

k

2

+ �

6

k skewK

s

k

2

+ �

7

tr [K

s

℄

2

�

1+p

2

;

K

s

=

�

R

T

(r(R:e

1

)j0); R

T

(r(R:e

2

)j0); R

T

(r(R:e

3

)j0)

�

;

W

bend

(K

b

) = � k sym(K

b

)k

2

+ �



k skew(K

b

)k

2

+

��

2�+ �

tr [sym(K

b

)℄

2

;

K

b

= R

T

(rR

3

j0) = K

3

s

; seond order non-symmetri bending tensor :

Let us summarize the salient features of this model: First, W

mp

(U)!1 if det[U ℄! 0. Thus,

if minimizers exist, then det[U ℄ > 0 a.e. and the minimizing surfae is loally regular. The

modi�ed membrane energy ontribution W

mp

is polyonvex w.r.t. rm at given R and indeed

uniformly Legendre-Hadamard ellipti, independent of �



� 0. If R

3

= ~n

m

, then

det[U ℄

2

= kCof (rmj0)k

2

= km

x

�m

y

k

2

= km

x

k

2

km

y

k

2

� hm

x

;m

y

i

2

= det[I

m

℄ ; (5.2)

with ~n

m

the outer unit normal of the surfaem and I

m

the �rst fundamental form. This formula

represents a pure, intrinsi measure of the surfae streth. If W

mp

(U) = 0 then U = 11 even

for �



= 0 and without gradient onstraint.

13

Moreover, it an be shown that for zero Cosserat

ouple modulus �



= 0 and zero internal length L



= 0, the pure bending problem oinides

with the rigourously justi�ed lassial �nite-strain bending problem given in [FJM02℄.

The modi�ed thikness streth %

m

, whih is used only for the a posteriori reonstrution

of the bulk deformation, has suh an analytial form, that at �nite energy one has 0 < %

m

<

1, in line with the underlying physial desription without restrition on the kinematis and

transverse �bers will always be monotonially elongated upon ation of opposite trations.

Moreover, %

m

� 1 for � = 0 (extreme ompressibility, � = 0) and %

m

=

1

det[U ℄

for � =

1 (exat inompressibility, � =

1

2

) suh that det[F

s

℄ = det[(rmj%

m

R

3

)℄ � 1, i.e. exat

inompressibility for the reonstruted deformation.

12

It is lear that a modi�ation to large streth does not onern the bending term sine bending only plays

a role for small streth.

13

It is easy to see, that sym(U � 11) = 0 implies R

3

= ~n

m

. The remaining onsideration leads to

X 2 M

2�2

: symX = 11

2

; det[X℄ = 1) X = 11

2

.
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The modi�ed formulation (5.1), however, still has the same linearized behaviour as the ini-

tial model (4.1) and redues to the lassial in�nitesimal-displaement Reissner-Mindlin model

(5.11) for the hoie of parameters �



= 0; p > 1; �

4

= 0.

14

We an prove the following result:

Theorem 5.1 (Existene for Cosserat plate with large streth)

Let ! � R

2

be a bounded Lipshitz domain and assume for the boundary data g

d

2 H

1

(!;R

3

)

and R

d

2 W

1;1+p+q

(!; SO(3;R)). Moreover, let f 2 L

1

(!;R

3

) and suppose N 2 L

1

(

s

;R

3

)

together with M 2 L

1

(!;R

3

) and M



2 L

1

(

s

;R

3

), see (5.19). Then (5.1) with material on-

stants onforming to ase II and rigid diretor presription for R on 

0

admits at least one

minimizing solution pair (m;R) 2 H

1

(!;R

3

) �W

1;1+p+q

(!; SO(3;R)) with det[(rmjR

3

)℄ > 0

a.e. (x; y) 2 !. �

Proof. The proof mimis the arguments of the existene result Theorem 4.2 for ase II. We

only need to observe in addition, that the modi�ed membrane energyW

mp

is in fat polyonvex

[Bal77b℄ at given R w.r.t. rm sine

�

(det[U ℄� 1)

2

+ (

1

det[U ℄

� 1)

2

�

is onvex in det[U ℄. The

modi�ed membrane strain energy term provides us with the information that det[(rm

k

jR

k

3

)℄

is uniformly bounded in L

2

(!) for minimizing sequenes. Hene we may always hoose a

minimizing sequene, suh that det[(rm

k

jR

k

3

)℄ * � 2 L

2

(!), weakly. A further subsequene

may be hoosen, not relabelled, suh that R

k

! R 2 C

0

(!; SO(3;R)), due to the ompat

embedding W

1;1+p

(!) � C

0

(!) for p > 1. Moreover, rm

k

* rbm 2 L

2

(!;M

2�3

), weakly, as

in Theorem 4.2. For two spae dimensions, this implies the strong onvergene of Cof (rm

k

j0)

in the sense of distributions [Bal77a, Th. 3.4℄:

8  2 C

1

0

(!) :

Z

!

Cof (rm

k

j0)  d! !

Z

!

Cof (rbmj0)  d! ; k !1 : (5.3)

Let us analyze in more detail the term det[(rm

k

jR

k

3

)℄. One has upon expanding of the detr-

minant

det[(rm

k

jR

k

3

)℄ =

3

X

i=1

R

k

3;i

Cof (rm

k

j0)

3;i

=

3

X

i=1

(R

k

3;i

�

b

R

3;i

+

b

R

3;i

) Cof (rm

k

j0)

3;i

=

3

X

i=1

(R

k

3;i

�

b

R

3;i

) Cof (rm

k

j0)

3;i

+

3

X

i=1

b

R

3;i

Cof (rm

k

j0)

3;i

=

3

X

i=1

(R

k

3;i

�

b

R

3;i

) Cof (rm

k

j0)

3;i

+

3

X

i=1

(

b

R

3;i

�

b

R

"

+

b

R

"

) Cof (rm

k

j0)

3;i

=

3

X

i=1

(R

k

3;i

�

b

R

3;i

) Cof (rm

k

j0)

3;i

+

3

X

i=1

(

b

R

3;i

�

b

R

"

3;i

) Cof (rm

k

j0)

3;i

+

b

R

"

3;i

Cof (rm

k

j0)

3;i

; (5.4)

where

b

R

"

2 C

1

is introdued as a molli�ation of

b

R. Now we integrate det[(rm

k

jR

k

3

)℄ over !

against an arbitrary funtion  2 C

1

0

(!):

Z

!

det[(rm

k

jR

k

3

)℄  d! =

Z

!

3

X

i=1

(R

k

3;i

�

b

R

3;i

) Cof (rm

k

j0)

3;i

 

+

3

X

i=1

(

b

R

3;i

�

b

R

"

3;i

) Cof (rm

k

j0)

3;i

 (5.5)

+

b

R

"

3;i

Cof (rm

k

j0)

3;i

 d! :

Sine Cof (rm

k

j0) is bounded in L

1

(!) the �rst sum onverges to zero beause of strong

onvergene of R

k

. The seond term an be made arbitrarily small for " ! 0 and the third

14

Beause

�

(det[U ℄� 1)

2

+ (

1

det[U℄

� 1)

2

�

= 2 tr

�

U � 11

�

2

+O(kU � 11k

3

).
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term onverges beause

b

R

"

3;i

 2 C

1

0

(!) is an admitted testfuntion in (5.3). Altogether, the

strong onvergene of R

k

3

in C

0

(!) and the strong onvergene of Cof (rm

k

j0) in the sense of

distributions [Bal77a, Th. 3.4℄ for two spae-dimensions show that

8  2 C

1

0

(!) :

Z

!

det[(rm

k

jR

k

3

)℄  d! !

Z

!

det[(rbmjR

3

)℄  d! ; k !1 : (5.6)

Thus, det[(rm

k

jR

k

3

)℄ ! det[(rbmj

b

R

3

)℄, strongly in the sense of distributions as well. This

implies for the weak limit � found above that � = det[(rbmj

b

R

3

)℄. The remainder proeeds as in

Theorem 4.2. �

Altogether, this shows that (5.1) represents a signi�ant oneptual improvement of the initially

proposed plate model (4.1), although (5.1) itself is not stritly obtained from a parent model

in our framework of formal dimensional desend. The extension of Theorem 5.1 to very weak

onsistent oupling is straightforward along the lines of Corollary 4.3.

In order to bridge the gap to more standard approahes we investigate now the relations of

the new model to lassial Reissner-Mindlin formulations.

5.1 Linearized plate models

5.1.1 Relations to the lassial in�nitesimal-displaement Reissner-Mindlin model

Let us linearize a variant of the proposed new �nite-strain Cosserat plate (4.1) for situations

of small midsurfae deformations and small urvature. We assume here �

4

= 0; q = 0; p >

1.

15

We write m(x; y) = (x; y; 0)

T

+ v(x; y), with the displaement of the midsurfae of the

plate v : ! 7! R

3

and R = 11 + A + : : :, with A 2 so(3;R) the in�nitesimal-displaement

mirorotation. For the boundary deformation we write g

d

(x; y; z) = (x; y; z)

T

+ u

d

(x; y; z),

with the onsequene, that rg

d

:e

3

= (u

d

1;z

; u

d

2;z

; 1 + u

d

3;z

). The urvature tensors are expanded

as

K

b

= R

T

(rR

3

j0) = (11 +A+ : : :)

T

(r[A

3

+A

2

:e

3

+ : : :℄j0) � (rA

3

j0) + : : : ;

K

s

�

�

(r(A:e

1

)j0); (r(A:e

2

)j0); (r(A:e

3

)j0)

�

2 T(3) ; (5.7)

and the Cosserat miropolar plate streth tensor expands like

U = R

T

^

F = R

T

(rmjR

3

) = (11 +A+ : : :)

T

��

1 0

0 1

0 0

�

+rvj(11 +A+ : : :):e

3

)

�

� 11 + (rvjA

3

)�A+ : : : : (5.8)

Sine p > 1, the additional Cosserat urvature ontribution has an exponent stritly bigger

than two suh that a linearization w.r.t. zero urvature K

s

does not yield any ontribution of

this term. The onsistent oupling ondition is also expanded:

R

j



0

= polar(rmjrg

d

:e

3

) ;

11 +A+ : : : = polar(11 + (rvj�

z

u

d

) + : : :) = 11 + skew((rvj�

z

u

d

)) + : : :) (5.9)

A

j



0

= skew((rvj�

z

u

d

))

j



0

:

We are formally left with the minimization problem for v 2 R

3

and A 2 so(3;R):

Z

!

h

�

� k sym((rvjA

3

))k

2

+ �



k skew((rvjA

3

)�A)k

2

+

��

2�+ �

tr

�

sym((rvjA

3

))

�

2

�

+

h

3

12

�

� k sym((rA

3

j0))k

2

+ �



k skew((rA

3

j0))k

2

+

��

2�+ �

tr

�

sym((rA

3

j0))

�

2

�

d!

��(v;A

3

) 7! min : w.r.t. (v;A);

v

j



0

= u

d

(x; y; 0) ; simply supported (�xed, welded) ; (5.10)

A

j



0

= skew((rvj�

z

u

d

))

j



0

; lin. oupling ) A

3

j



0

=

 

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0

!

T

;

A

3

j



0

= (u

d

1;z

; u

d

2;z

; 0)

T

; alternatively: rigid diretor presription :

15

The linearization for the ase �

4

= 0; q = 0; p = 1; �



> 0 is similar to the stati miropolar plate model

derived by Eringen [Eri67, eq. 8.6℄.

19



Now onsider the ase of zero Cosserat ouple modulus �



= 0. In this ase in�nitesimal

in-plane rotations (linearized drilling degrees of freedom: A

12

= �A

21

) do not "survive" the

linearization proess. Abbreviating now � = (�

1

; �

2

; 0)

T

= �A

3

, we are left with the following

set of equations for the displaement of the midsurfae of the plate v : [0; T ℄� ! 7! R

3

and the

in�nitesimal inrement of the diretor, the in�nitesimal "diretor", � : ! 7! R

3

:

Z

!

h

0

B

B

�

� k symr(v

1

; v

2

)k

2

+ �

�

2

krv

3

� �k

2

| {z }

transverse shear energy

+

��

2�+ �

tr [symr(v

1

; v

2

)℄

2

1

C

C

A

+

h

3

12

�

� k symr�k

2

+

��

2�+ �

tr [symr�℄

2

�

d! ��(v;��) 7! min : w.r.t. (v; �) ;

v

j



0

= u

d

(x; y; 0) ; simply supported ; (5.11)

��

j



0

=

 

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0

!

T

; linearized onsistent oupling ;

��

j



0

= (u

d

1;z

; u

d

2;z

; 0)

T

; alternatively: rigid diretor presription ;

with the so-alled shear orretion fator � = 1.

A further redution arises if we assume only normal displaements: v

1

= v

2

= 0. The

resulting minimization problem for the deetion v

3

and the "diretor" � is

Z

!

h

��

2

krv

3

� �k

2

+

h

3

12

�

� k symr�k

2

+

��

2�+ �

tr [symr�℄

2

�

d!

��(v

3

� e

3

;��) 7! min : w.r.t. (v

3

; �); (5.12)

v

3

j



0

= u

d

3

; simply supported ;

��

j



0

=

 

u

d

1;z

� v

3;x

2

;

u

d

2;z

� v

3;y

2

; 0

!

T

linearized onsistent oupling ;

��

j



0

= (u

d

1;z

; u

d

2;z

; 0)

T

; rigid diretor presription :

In this last form with rigid boundary presription, the Reissner-Mindlin plate-bending prob-

lem is lassial and an be found in many textbooks, e.g. [Bra92, p.281℄ or [Ste95, AMZ02℄

with Reissner's value � =

5

6

. It should be noted, however, that in our formal, variationally

based �nite-strain derivation with subsequent linearization there is no imminent reason to in-

trodue � 6= 1. In fat, the shear orretion fator � an be seen as a tuning parameter of

the in�nitesimal-displaement model whih, for ertain types of loading,

16

allows to improve

the order of onvergene of the in�nitesimal-displaement Reissner-Mindlin solution to the

three-dimensional linear elastiity solution [R�os99℄.

17

Note the novel non-standard Dirihlet boundary ondition of linearized onsistent

oupling for the remaining in�nitesimal "diretor" �, motivated from the onsisteny ondition

of the Cosserat bulk model. In ontrast to the standard rigid diretor presription, the new

oupling ondition seems to redue the strength of the boundary layer. In a diret derivation

of the Reissner-Mindlin plate equations (5.11) there is no reason to introdue this weakened

ondition. However, a mathematial analysis based on the onsistent oupling ondition shows

that the new boundary ondition an only be satis�ed in the distributional sense on 

0

. Let us

16

Hene the shear orretion fator � shows some similarity to the Cosserat ouple modulus �



, whose inuene

on the solution of the three-dimensional problem is also strongly dependent on boundary onditions. For rather

thik plates, it is known that the shear energy in (5.11) is overestimated, therefore, one is led to redue the shear

energy ontribution a posteriori by taking � < 1.

17

It would be interesting to know the optimal shear orretion fator 0 < � � 1 of the in�nitesimal-

displaement Reissner-Mindlin model with our redued onsistent oupling boundary ondition. Suh an opti-

mized parameter should also be bene�ial for the �nite-strain Cosserat plate. However, it might turn out that

the new boundary ondition of weak onsistent oupling makes the arti�ial introdution of � < 1 superuous.

Note as well, that � = 0 deouples the horizontal "membrane" displaement in (5.11) from the vertial om-

ponent and the bending term. In this sense, � ats similarly as the Cosserat ouple modulus �



in the linear

Cosserat bulk model.
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de�ne therefore the admissible set

A

lin

:= fv

3

2 H

1

(!;R); � 2 H

1

(!;R

2

) j v

3

j



0

= u

d

3

;

Z

!

k�k

2

d! � j!j ;

8� 2 C

1

0

(

0

;R

2

) :

Z



0

h�2� �

�

u

d

1;z

u

d

2;z

�

; �i

R

2

� v

3

�Div � d! = 0 g ; (5.13)

whih inorporates the linearized onsistent oupling ondition in the distributional sense, the

standard Dirihlet boundary ondition at 

0

, as well as an additional onsisteny ondition for

the linearization.

18

One an easily show that (5.12) admits a minimizer in A

lin

. If k�k

L

2

(!;R

2

)

<

j!j, the solution is unique.

5.1.2 The lassial in�nitesimal-displaementKirhho�-Love plate (Koiter model)

For the onveniene of the reader we also supply the similar system of equations for the lassial

in�nitesimal-displaement Kirhho�-Love plate (also the Koiter model) whih an be derived as

linearization of the �nite-strain Kirhho�-Love plate. In terms of the midsurfae displaement

v we have to �nd a solution of the minimization problem for v : ! � R

2

7!2 R

3

:

Z

!

h

�

� k symr(v

1

; v

2

)k

2

+

��

2�+ �

tr [symr(v

1

; v

2

)℄

2

�

+

h

3

12

�

� kD

2

v

3

k

2

+

��

2�+ �

tr

�

D

2

v

3

�

2

�

d! ��(v;�rv

3

) 7! min : w.r.t. v ;

v

j



0

= u

d

(x; y; 0) ; simply supported (�xed, welded) ; (5.14)
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u
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3;x

2

;

u

d

2;z

� v

3;y

2

; 0

!

T

; lin. oupling) �rv

3

j



0

= (u

d

1;z

; u

d

2;z

; 0)

T

;

�rv

3

j



0

= (u

d

1;z

; u

d

2;z

; 0)

T

; rigid presription of the in�nitesimal inrement of the "normal" :

This energy an also be obtained formally from (5.12) by onstraining the linearized diretor

to the linearized normal of the plate, i.e. setting � = rv

3

. If this is done, we observe that

the new boundary ondition of onsistent oupling oinides in fat with the lassial boundary

ondition of the Kirhho�-Love plate.

5.2 The treatment of external loads

5.2.1 Dead load body fores for the thin plate

In the three-dimensional theory the dead load body fores f(x; y; z) 2 R

3

were simply inluded

by appending the potential with the term

R




h

f(x; y; z) � '(x; y; z) dV. We de�ne

^

f

0

(x; y) :=

Z

h=2

�h=2

f(x; y; z) dz ;

^

f

1

(x; y) :=

Z

h=2

�h=2

z f(x; y; z) dz ; (5.15)

suh that

^

f

0

;

^

f

1

are the zero and �rst moment of f in thikness diretion.

5.2.2 Tration boundary onditions for the thin plate

In the three-dimensional theory the tration boundary fores N(x; y; z) 2 R

3

were simply

inluded by appending the potential with the term

R

�


trans

h

[f

s

�[�

h

2

;

h

2

℄g

N(x; y; z) � '(x; y; z) dS.

We de�ne

^

N

lat;0

(x; y) :=

Z

h=2

�h=2

N(x; y; z) dz ;

^

N

lat;1

(x; y) :=

Z

h=2

�h=2

z N(x; y; z) dz ; (5.16)

suh that

^

N

lat;0

;

^

N

lat;1

are the zero and �rst moment of the trations N at the lateral boundary



s

in thikness diretion. Moreover, we abbreviate

N

res

:= [N(x; y;

h

2

) +N(x; y;�

h

2

)℄ ; N

di�

:=

1

2

[N(x; y;

h

2

)�N(x; y;�

h

2

)℄ : (5.17)

18

The unit "diretor" R

3

is expanded as R

3

= e

3

� �+ : : :. Any � with k�(x; y)k > 1 pointwise, is inonsistent

with the minimal requirement 1 = kR

3

:e

1

k � k(e

3

+ �):e

1

k. As a onsequene, we impose

R

!

k�k

2

d! � j!j.
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5.2.3 The external resultant loading funtional �

For a �rst approximation plate formulation we set to leading order:

f =

^

f

0

+N

res

; resultant body fore ;

M =

^

f

1

+ hN

di�

; resultant body ouple ; (5.18)

N =

^

N

lat;0

; resultant surfae tration ;

M



=

^

N

lat;1

; resultant surfae ouple :

The resultant dead load loading funtional � is then given by the linear form

�(m;R

3

) =

Z

!

hf;mi+ hM;R

3

i d! +

Z



s

hN;mi+ hM



; R

3

i ds : (5.19)

If we denote the dependene of � on the loads of the underlying three-dimensional problem as

�(f;N ; m;R

3

), then it is easily seen that frame-indi�erene of the external loading funtional

is satis�ed in the sense that �(Q:f;Q:N ; Q:m;Q:R

3

) = �(f;N ; m;R

3

) for all rigid rotations

Q 2 SO(3;R). It is possible to use the same funtional form of the loading funtional for all

�nite-strain and in�nitesimal-displaement models. We only need to replae (m;R

3

) by

(m;~n

m

); (v;A

3

) for the di�erent �nite and linearized models, respetively.

5.2.4 The modi�ed external resultant loading funtional �

℄

In view of a possible mathematial analysis of the ase with zero Cosserat ouple modulus �



= 0

we need to modify (5.19) into a live load resultant loading funtional �

℄

, whih better

reets the observation that by arbitrary translation of a material in a onservative fore �eld

only a �nite amount of work an be gained. This is ertainly true for any real physial �eld.

In the three-dimensional theory we have alled this the "priniple of bounded external

work". Therefore we de�ne the nonlinear form

�

℄

(m;R

3

) =

Z

!

hf;

m

1 + [kmk �K℄

+

i+ hM;R

3

i d! +

Z



s

hN;

m

1 + [kmk �K℄

+

i+ hM



; R

3

i ds :

(5.20)

HereK > 0 is a possibly large onstant and [�℄

+

denotes the positive part of its salar argument.

We note that (5.20) is automatially bounded, if f;M 2 L

1

(!;R

3

) and M



; N 2 L

1

(

s

;R

3

).

Moreover, the linearization of �

℄

oinides with the linearization of �.

6 Disussion and open problems

We have investigated a �nite-strain, frame-indi�erent, geometrially exat Cosserat plate model

derived in [Nef03a, Nef04a℄. For vanishing Cosserat ouple modulus �



= 0, the formulation is

shown to be downwards ompatible with traditional in�nitesimal-displaement linear Reissner-

Mindlin theories and shear-orretion fator � = 1. A detailed mathematial analysis for

vanishing Cosserat ouple modulus �



= 0 of the �nite-strain model is given. Existene of min-

imizers in appropriate Sobolev-spaes is shown despite the inherent nonlinearity of the problem

and despite the lak of unquali�ed oerivity. The deisive tool is a novel two-dimensional

version of an extendend Korn's �rst inequality.

From a mehanial and omputational point of view, ompared to more traditional, non-

ellipti �nite-strain Reissner-Mindlin and Kirhho�-Love models, it seems to be the bene�ial

inuene of the drill-rotations in onjuntion with the internal length L



> 0 whih stabilizes the

new Cosserat thin plate model. Comparing with other alternative plate models with onstraint

or independent rotations, the additional implementational burden for the new Cosserat plate

models is small ompared to the possible gain of having a well-posed model.

Certain limit ases related to Sobolev-embedding theorems must remain open for the mo-

ment, notably the ase IV inluding possible frature of the plate. They leave a wide �eld of

hallenging purely mathematial problems.

While we have large freedom of speifying boundary onditions for the mirorotations at

the lateral Dirihlet boundary 

0

, we prefer a generalization of the three-dimensional onsistent

22



oupling ondition whih provides maximal onsisteny with the lassial "symmetri" situa-

tion. I expet that this new onsistent oupling ondition redues the strength of the boundary

layer. Further researh should larify, whether the inherently sound Cosserat plate model (4.1)

an be obtained as a �-limit of the Cosserat bulk problem for vanishing thikness.
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8 Appendix

8.1 The oerivity inequality in three-dimensions

The deisive analytial tool for the treatment of the ase �



= 0, alled ase II (super-ritial)

in [Nef03b℄ is the following inequality establishing oerivity for the deformations:

Theorem 8.1 (Extended 3D-Korn's �rst inequality)

Let 
 � R

3

be a bounded Lipshitz domain and let � � �
 be a smooth part of the

boundary with non vanishing 2-dimensional Hausdor� measure. De�ne H
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k�k

2
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1;2

(
)

:

Proof. The proof an be found in [Nef02℄. �

Remark 8.2

Note that for F

p

= r� we would only have to deal with the lassial Korn's inequality evaluated

on the transformed domain �(
). However, in general, F

p

is inompatible giving rise to a

non-Riemannian manifold struture. Compare this to [CG01℄ for an interpretation and the

physial relevane of the volume disloation density tensor CurlF

p

. A Riemannian version of

Korn's inequality has also been given in [CJ02℄.

Motivated by the investigations in [Nef02℄ it has been shown reently by Pompe [Pom03℄ that

the extended Korn's inequality an be viewed as a speial ase of a general lass of oerivity

inequalities for quadrati forms. He was able to show that indeed F

p

; F

�1

p

2 C(
;GL(3;R)) is

suÆient for (8.1) to hold without any ondition on the ompatibility.

However, taking the speial struture of the extended Korn's inequality again into a-

ount, work in progress suggests that ontinuity is not really neessary: instead F

p

; F

�1

p

2

25



L

1

(
;GL(3;R)) and CurlF

p

2 L

3+Æ

(
) should suÆe, whereas F

p

; F

�1

p

2 L

1

(
;GL(3;R))

alone is not suÆient, see the ounterexample presented in [Pom03℄. This last possible improve-

ment has no onsequenes for the subsequent mathematial analysis, however.
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