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Rihard Holzer

Abstrat

Attribute exploration is an interative omputer algorithm whih helps the

expert to get informations about the attribute impliations of a formal ontext.

In the part I of this paper (see [H04℄) an algorithm for attribute exploration with

inomplete knowledge was presented. In this part we prove the main results of

the algorithm: At the end of the attribute exploration the expert gets maximal

information with respet to his knowledge about the unknown universe: He gets

a list of impliations whih are ertainly valid, a list of impliations whih are

possibly valid, a list of ounterexamples against the impliations whih are er-

tainly not valid and a list of �titious ounterexamples against the impliations

whih he answered by \unknown". He only has to hek the impliations whih

he answered by \unknown" and if he an deide for eah of these impliations

whether it is valid or not, he gets omplete knowledge about the impliations

of the ontext. For the de�nitions see part I.

1 Attribute exploration

Lemma 1 Let j > 0, C � M; d 2 M and G

U

\ G

j

� S � G

j

with C ! d 2

Sat(K

j

j

S

) n Sat(K

j

). Let � =

V

C ! d _

W

f

V

A j C � A � M; g

A;d

2 G

j

n Sg.

Then � 2 Th(Resp

R

(Sat(K

j

))).

Proof. Let E 2 Resp

R

(Sat(K

j

)). Now we show that E is a model of �. Assume

C � E. We have E ! d 2 Sat(K

j

j

S

) beause of rule (AU). If d 2 E then E is a model

of �, now let d 62 E. We have E ! d 62 Sat(K

j

) beause of E 2 Resp

R

(Sat(K

j

)).

There exists i > 0 with E ! d 2 Sat(K

i

) n Sat(K

i+1

). In step i a �titious oun-

terexample g

A;b

2 G

i+1

n G

i

against the impliation E ! d is added to the ontext,

so E � A and b = d. In K

i

we have E

23

6= E 2 Resp

R

(Sat(K

j

)) � Resp

R

(P

i

). With

Theorem 28 of part I the set A is minimal with A

23

6= A 2 Resp

R

(P

i

), so we get

E = A and g

A;b

= g

E;d

2 G

j

n S. Therefore E is a model of �.
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Corollary 2 Let j > 0, G

U

\ G

j

� S � G

j

and Q = fA ! d j A � M; d 2

M with g

A;d

2 G

j

n Sg. Then Sat(K

j

j

S

) � Cons

R

(Sat(K

j

) [Q).

Proof. Let C ! D 2 Sat(K

j

j

S

) and d 2 D. If C ! d 2 Sat(K

j

), then we get

C ! d 2 Cons

R

(Sat(K

j

) [ Q). Now assume C ! d 62 Sat(K

j

). We prove C !

d 2 Imp(Resp

R

(Sat(K

j

) [ Q)): Let E 2 Resp

R

(Sat(K

j

) [ Q) � Resp

R

(Sat(K

j

))

with C � E. With Lemma 1 we get d 2 E or A � E for a set A � M with C � A

and g

A;d

2 G

j

n S. Beause of E 2 Resp(Q) we get d 2 E in both ases. So we

have C ! d 2 Imp(Resp

R

(Sat(K

j

) [ Q)) = Cons

R

(Sat(K

j

) [ Q) and C ! D 2

Cons

R

(Sat(K

j

)[Q) with rule (AD), so we get Sat(K

j

j

S

) � Cons

R

(Sat(K

j

)[Q).

Lemma 3 Let j > 0, G

U

\ G

j

� S � G

j

, A ! B 2 P

j

and b 2 M n B with

A! b 2 Sat(K

j

j

S

). Then g

A;b

2 G

j

n S.

Proof. Let i < j with A ! B 2 P

i+1

n P

i

. We have A! b 2 Sat(K

j

j

S

), so we get

A! b 2 Sat(K

i

), beause with Corollary 29 of part I there does not exist a �titious

ounterexample g

C;d

in K

i

(with A � C and b = d) against the impliation A! b. By

Corollary 27 of part I we have b 62 B = A

23

in K

i+1

, so we get A ! b 62 Sat(K

i+1

).

Therefore g

A;b

2 G

i+1

� G

j

, and we have g

A;b

62 S beause of A! b 2 Sat(K

j

j

S

).

During the exploration it may happen that an impliation A ! b whih was

aepted as unknown is derivable from the impliations whih were aepted as valid.

In this ase the impliationA! bmust also be valid and the �titious ounterexample

g

A;b

an be removed from the ontext.

1

Lemma 4 Let j � i > 0, g

A;b

2 G

i

be a �titious objet suh that A is a Sat(K

i

)-

intent. Then A! b 62 Cons

R

(P

j

).

Proof. We have A 2 Resp

R

(Sat(K

i

)) � Resp

R

(Sat(K

j

)) � Resp

R

(P

j

), so

A! b 62 Imp(Resp

R

(P

j

)) = Cons

R

(P

j

) beause of b 62 A.

1

In Example 2 in the next setion it will be shown that it may be better to keep suh a �titious

objet in the ontext until the end of the exploration (see also Theorem 9).
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Lemma 5 Let j > 0 and g

A;b

2 G

j

be a �titious objet. The following onditions

are equivalent:

1. Red

R

P

j

(g

A;b

) exists

2. A! b 62 Cons

R

(P

j

)

3. Cons

R

(P

j

) is satisfyable for g

A;b

Proof.

1) 3:

See Corollary 21 of part I.

3) 2:

A! b is not satisfyable for g

A;b

.

2) 1:

We have A ! b 62 Cons

R

(P

j

) = Imp(Resp

R

(P

j

)), so there exists T 2 Resp

R

(P

j

)

with A � T and b 62 T , so g

2

A;b

� T � g

3

A;b

, and Red

R

P

j

(g

A;b

) exists beause of Theorem

20 of part I.

Lemma 6 Let n be the step in whih the exploration ends. The following onditions

are equivalent:

1. Red

R

P

n

(K

n

) exists

2. A! b 62 Cons

R

(P

n

) for all �titious objets g

A;b

2 G

n

3. Cons

R

(Sat(K

n

)) = Sat(K

n

)

Proof.

1) 3:

If Red

R

P

n

(K

n

) exists, then Cons

R

(Sat(K

n

)) = Cons

R

(P

n

) � Sat(K

n

) beause of

Corollary 31 of part I and Corollary 21 of part I.

3) 2:

For g

A;b

2 G

n

we have A ! b 62 Sat(K

n

) = Cons

R

(Sat(K

n

)) = Cons

R

(P

n

) beause

of Corollary 31 of part I.

2) 1:

Beause of A ! b 62 Cons

R

(P

n

) for g

A;b

2 G

n

we get the existene of Red

R

P

n

(g

A;b

)

with Lemma 5. The ontext rows of the normal objets g 2 G

n

\G

U

are P

n

-redued.
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If there exists a �titious objet g

A;b

2 G

j

and a normal objet g 2 G

j

\ G

U

in

a step j of the exploration with I

j

(g; a) = � for all a 2 A and I

j

(g; b) = o, then the

impliation A ! b whih was aepted as unknown an not be valid in the universe

K

U

beause of g 2 G

U

. Every impliation C ! D whih is not valid for g

A;b

is

not valid for g either, beause the ontext row of g

A;b

is smaller or equal (in the

information order) to the ontext row of g. The �titious objet g

A;b

an be removed

from the ontext without hanging the satisfyable impliations:

Lemma 7 Let j > 0 and G

j

\ G

U

� T � G

j

and S = T n fg

A;b

2 T j I

j

(g

A;b

; �) �

I

j

(g; �) for some g 2 G

j

\G

U

g. Then Sat(K

j

j

S

) = Sat(K

j

j

T

).

Proof. We have Sat(K

j

j

T

) � Sat(K

j

j

S

) beause of S � T . Eah implia-

tion C ! D 2 Imp

M

for whih a ounterexample of fg

A;b

2 T j I

j

(g

A;b

; �) �

I

j

(g; �) for some g 2 G

j

\ G

U

g exists, is not satisfyable for the orresponding ob-

jet g 2 G

j

\G

U

� S with I

j

(g

A;b

; �) � I

j

(g; �). So we get Sat(K

j

j

S

) � Sat(K

j

j

T

) and

therefore Sat(K

j

j

S

) = Sat(K

j

j

T

).

De�nition 8 Let n be the step in whih the exploration ends and k � n.

G

�

k

:= G

k

n fg

A;b

2 G

k

j A! b 2 Cons

R

(P

k

)g

G

�

:= G

�

n

G

�

:= G

�

n fg

A;b

2 G

n

j I

n

(g

A;b

; �) � I

n

(g; �) for some g 2 G

n

\G

U

g

K

�

k

:= K

k

j

G

�

k

=: (G

�

k

;M; f�; ?; og; I

�

k

)

K

�

:= K

n

j

G

�

=: (G

�

;M; f�; ?; og; I

�

)

P

�

:= fA! B [ fd 2M j g

A;d

2 G

n

nG

�

g j A! B 2 P

n

g

Theorem 9 Let k > 0 and A 2 R.

1. Cons

R

(P

k

) � Sat(K

�

k

).

2. A is a Sat(K

k

)-intent i� A is a Sat(K

�

k

)-intent.

3. A

23

6= A 2 Resp

R

(P

k

) holds in K

k

i� A

23

6= A 2 Resp

R

(P

k

) holds in K

�

k

.

4. If R is a losure system and A is not a premise of P

k

then A is Sat(K

k

)-

pseudolosed i� A is Sat(K

�

k

)-pseudolosed.

Proof.

Proof of 1:

For eah normal objet g 2 G

U

\G

k

the set Cons

R

(P

k

) is satisfyable for g in Sat(K

�

k

)

beause of Cons

R

(P

k

) � Imp(K

U

). For eah �titious objet g

C;d

2 G

�

k

the set

Cons

R

(P

k

) is satisfyable for g

C;d

beause of Lemma 5.

Proof of 2:
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First assume that A is a Sat(K

k

)-intent. If A is not a Sat(K

�

k

)-intent then with

Corollary 16 of part I there exists an attribute m 2 M with A ! m 2 Sat(K

�

k

) and

A! m 62 Sat(K

k

), so there exists j < k with A! m 2 Sat(K

j

) n Sat(K

j+1

). There

exists a �titious objet g

C;d

2 G

j+1

n G

j

with A � C and d = m. The set A is a

Sat(K

k

)-intent and we have C ! d 2 Cons

R

(P

k

) beause of A ! m 2 Sat(K

�

k

), so

with Lemma 4 we get A 6= C. With Theorem 28 of part I C is a minimal set with

C

23

6= C 2 Resp

R

(P

j

) in K

j

, so we get A 62 Resp

R

(P

j

) whih is a ontradition

to A 2 Resp

R

(Sat(K

k

)) � Resp

R

(P

j

). Therefore A is a Sat(K

�

k

)-intent. The other

diretion follows from Sat(K

k

) � Sat(K

�

k

), so the set A is a Sat(K

k

)-intent i� A is a

Sat(K

�

k

)-intent.

Proof of 3:

Condition 3 follows from ondition 2 with Corollary 16 of part I.

Proof of 4:

Let R be a losure system. Assume that ondition 4 is not true and let k > 0 be

minimal suh that the assertion does not hold. Let A 2 R be minimal suh that A is

not a premise of P

k

and ondition 4 does not hold for this set A. In the following let

B

23k

:= fm 2 M j B ! m 2 Sat(K

k

)g;

B

23�

:= fm 2 M j B ! m 2 Sat(K

�

k

)g

for B �M .

Case 1: A is Sat(K

�

k

)-pseudolosed (with respet to R).

Then A is not Sat(K

k

)-pseudolosed and A is no Sat(K

�

k

)-intent, and therefore with

A 2 R and ondition 2 the set A is no Sat(K

k

)-intent. There exists a proper subset

B � A (1)

suh that

B ist Sat(K

k

)-pseudolosed, (2)

B

23k

6� A: (3)

If B is Sat(K

�

k

)-pseudolosed then we get B

23k

� B

23�

� A beause of the assump-

tion that A is Sat(K

�

k

)-pseudolosed, but this is a ontradition to (3), so

B is not Sat(K

�

k

)-pseudolosed. (4)

By the minimality of A, the set B is a premise of P

k

, and with Corollary 27 of part I

we get

B ! B

23k

2 P

k

: (5)

With (2) the set B is not a Sat(K

k

)-intent, so with ondition 2 it is not a Sat(K

�

k

)-

intent and with (4) there exists a proper subset

D � B (6)

5



suh that

D is Sat(K

�

k

)-pseudolosed; (7)

D

23�

6� B: (8)

If D is not a premise of P

k

then D is also Sat(K

k

)-pseudolosed by the minimality

of A beause in this ase ondition 4 is satis�ed for D. But with (5) and (6) this is a

ontradition to Corollary 29 of part I. Therefore

D ! D

23k

2 P

k

; (9)

D is Sat(K

k

)-pseudolosed, (10)

and with (6) and (2) we get

D

23k

� B: (11)

With (8) there exists an attribute

z 2M nB (12)

with

D! z 2 Sat(K

�

k

); (13)

and with (9), (11), (12) and Lemma 3 we get g

D;z

2 G

k

nG

�

k

, so

D! z 2 Cons

R

(P

k

): (14)

The system R \ Resp(P

k

) is a losure system, so with Lemma 2 of part I, Lemma 3

of part I and (5) we get

< D >

Cons

R

(P

k

)

2 Resp(Cons

R

(P

k

)) (15)

= Resp(Imp(R \Resp(P

k

))) (16)

= R \Resp(P

k

) (17)

� Resp

R

(P

k

n fB ! B

23k

g): (18)

We have

B 2 Resp

R

(P

k

n fB ! B

23k

g); (19)

beause for every C ! E 2 P

k

n fB ! B

23k

g with C � B the set C is a Sat(K

k

)-

pseudolosed proper subset of B, so E = C

23k

� B beause of (2). We get

< D >

Cons

R

(P

k

)

\B 2 Resp

R

(P

k

n fB ! B

23k

g); (20)
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beause R\Resp(P

k

n fB ! B

23k

g) is a losure system. If < D >

Cons

R

(P

k

)

\B is a

proper subset of B then we get

< D >

Cons

R

(P

k

)

\B 2 Resp

R

(P

k

) (21)

= Resp

R

(Imp(Resp

R

(P

k

))) (22)

= Resp

R

(Cons

R

(P

k

)); (23)

whih is a ontradition to D �< D >

Cons

R

(P

k

)

\B and (12) and (14). Therefore

< D >

Cons

R

(P

k

)

\B = B (24)

and we get

B �< D >

Cons

R

(P

k

)

; (25)

D! B 2 Cons

R

(P

k

) (26)

beause of Theorem 10 of part I. With (3) there exists an attribute

y 2 B

23k

(27)

with

y 62 A; (28)

so beause of (5), (26), (27) and ondition 1 we get

D ! y 2 Cons

R

(P

k

) � Sat(K

�

k

); (29)

so y 2 D

23�

, but this is a ontradition to (7) and (28) beause D is a proper subset

of the Sat(K

�

k

)-pseudolosed set A.

Case 2: A is Sat(K

k

)-pseudolosed.

Then A is not Sat(K

�

k

)-pseudolosed. A is not a Sat(K

k

)-intent, so with ondition 2

A is not a Sat(K

�

k

)-intent. We get the existene of a proper subset

B � A (30)

suh that

B is Sat(K

�

k

)-pseudolosed, (31)

B

23�

6� A: (32)

If B is a premise of P

k

then B is Sat(K

k

)-pseudolosed beause of Corollary 27 of

part I, and if B is not a premise of P

k

then B is also Sat(K

k

)-pseudolosed beause

of the minimality of A with respet to the violation of ondition 4. So in both ases

B is Sat(K

k

)-pseudolosed; (33)

B

23k

� A: (34)

7



With (32) and (34) there exists an attribute

m 2 M n A (35)

with

B ! m 2 Sat(K

�

k

); (36)

B ! m 62 Sat(K

k

): (37)

There exists a �titious objet

g

C;d

2 G

k

nG

�

k

(38)

with

B � C; (39)

m = d: (40)

If B = C then we have g

C;d

= g

B;m

2 G

k

nG

�

k

, and if B is a proper subset of C then

B is a premise of P

k

beause of (33), so we also get

g

B;m

2 G

k

nG

�

k

(41)

with Lemma 3. So we have

B ! m 2 Cons

R

(P

k

) (42)

beause of the de�nition of G

�

k

. We have A 2 Resp

R

(P

k

) beause eah premise of P

k

is a Sat(K

k

)-pseudolosed proper subset of A. Therefore

A 2 Resp

R

(P

k

) = Resp

R

(Imp(Resp

R

(P

k

))) = Resp

R

(Cons

R

(P

k

)); (43)

whih is a ontradition to (35), (30) and (42).

Theorem 10 If R is a losure system then during the exploration in a step k all �-

titious ounterexamples g

A;b

2 G

k

whih are reognized as superuous

2

an be removed

from the urrent ontext during the exploration, and the questions of the exploration

program remain the same.

Proof. If I

k

(g

A;b

; �) � I

k

(g; �) for some g 2 G

k

\G

U

then the satisfyable impliations

of the urrent ontext do not hange by removing g

A;b

beause of Lemma 7, so in this

ase the questions of the exploration program remain the same. From Theorem 9 it

follows that after removing the �titious objets g

A;b

with A ! b 2 Cons

R

(P

j

) the

questions also remain the same.

2

that means g

A;b

2 Cons

R

(P

k

) or I

k

(g

A;b

; �) � I

k

(g; �) for some g 2 G

k

\G

U

8



If R is no losure system, it is also possible to remove the superuous objets

during the exploration, but it might happen that the expert has to answer more

questions then (see Example 2 in the next setion), beause the pseudolosed sets

would hange: With suh a modi�ation of the algorithm there may exist a minimal

Sat(K

j

)-pseudolosed set A, whih is not a premise of P

j

, suh that A is not minimal

with respet to the property A

23

6= A 2 Resp

R

(P

j

), so in this ase the result of the

algorithm depends on how it hooses the impliations to be asked: If the premise is

always hosen as a minimal set with A

23

6= A 2 Resp

R

(P

j

), then in the modi�ed

algorithm the same questions like in the normal algorithm are asked. But if the

premise is hosen as a minimal Sat(K

j

)-pseudolosed set A, whih is not a premise of

P

j

, then it might happen that in the modi�ed algorithm the validitiy of an impliation

is asked whih is already derivable from the aepted impliations P

j

,

3

so in this ase

it is better to keep the wrong �titious ounterexamples g

A;b

for whih A ! b is

derivable from P

j

until the end of the exploration. If the frame ontext R is a losure

system, then we get the same results in both algorithms.

The satisfyable impliations of K

�

are exatly the impliations whih are derivable

from P

n

:

Theorem 11 Let n be the step in whih the exploration ends.

Cons

R

(P

�

) = Cons

R

(P

n

) = Cons

R

(Sat(K

n

)) = Sat(K

�

n

) = Sat(K

�

)

Proof.

Proof of Cons

R

(P

�

) = Cons

R

(P

n

):

ForA! B 2 P

n

we have A! B 2 Cons

R

(P

�

) beause of rule (PR), soCons

R

(P

n

) �

Cons

R

(P

�

).

For A ! D 2 P

�

there exists a set B � M with A ! B 2 P

n

and D = B [ fd 2

M j g

A;d

2 G

n

nG

�

g = B [ fd 2M j g

A;d

2 G

n

; A! d 2 Cons

R

(P

n

)g, so with rule

(AD) we get A! D 2 Cons

R

(P

n

) and therefore Cons

R

(P

n

) = Cons

R

(P

�

).

Proof of Cons

R

(P

n

) = Cons

R

(Sat(K

n

)):

See Corollary 31 of part I.

Proof of Cons

R

(P

n

) � Sat(K

�

):

Cons

R

(P

n

) � Sat(K

�

n

) � Sat(K

�

) follows from Theorem 9.(1) and G

�

� G

�

.

Proof of Sat(K

�

) = Sat(K

�

n

):

See Lemma 7.

Proof of Sat(K

�

n

) � Cons

R

(Sat(K

n

)):

For Q = fA ! b 2 Imp

M

j g

A;b

2 G

n

n G

�

g � Cons

R

(P

n

) = Cons

R

(Sat(K

n

)) we

3

see Example 2

9



have Sat(K

�

n

) � Cons

R

(Sat(K

n

) [Q) = Cons

R

(Sat(K

n

)) beause of Corollary 2.

Remark 12 After the end of the exploration the questionmark redution an also be

done for the �titious objets. The satisfyable impliations of K

�

do not hange by this

questionmark redution at the end of the exploration.

4

But one loses the information

about the involved impliations. Before the questionmark redution the orresponding

implitions an be reonstruted by the ontext rows of the �titious ounterexamples:

The attributes with the value \�" are the premise and the attribute with the value

\o" is the onlusion. After the questionmark redution the values of the ontext row

usually do not ontain this information anymore.

Corollary 13 Let n be the step in whih the exploration ends. Then Red

R

P

n

(K

�

)

exists and Sat(K

�

) = Sat(Red

R

P

n

(K

�

)).

Proof. For g

A;b

2 G

�

we have A ! b 62 Cons

R

(P

n

), so Red

R

P

n

(K

�

) exists beause

of Lemma 6. We have Sat(K

�

) = Cons

R

(P

n

) � Sat(Red

R

P

n

(K

�

)) beause of Corol-

lary 21 of part I, so we get Sat(K

�

) = Sat(Red

R

P

n

(K

�

)) beause of Red

R

P

n

(K

�

) � K

�

.

Theorem 14 For eah C ! D 2 P

�

we get D = C

23

in K

�

. For eah C � M we

get < C >

Cons

R

(P

�

)

=< C >

Sat(K

�

)

= C

23

in K

�

.

Proof.

Proof of D = C

23

:

For C ! D 2 P

�

there exists C ! B 2 P

n

with D = B [ fb 2M j g

C;b

2 G

n

nG

�

g.

With Theorem 11 we get C ! D 2 Sat(K

�

), so with rule (PR) and Corollary 7 of

part I we get D � fm 2 M j C ! m 2 Sat(K

�

)g = C

23

. Now let d 2 C

23

. Then

we get C ! d 2 Sat(K

�

) = Sat(K

n

j

G

�

) by Theorem 11. If C ! d 2 Sat(K

n

) then

d 2 fm 2 M j C ! m 2 Sat(K

n

)g = B � D by Corollary 27 of part I, and if

C ! d 62 Sat(K

n

) then g

C;d

2 G

n

n G

�

beause of Lemma 3, so d 2 D. Therefore

C

23

= D.

Proof of < C >

Cons

R

(P

�

)

=< C >

Sat(K

�

)

= C

23

:

With Theorem 11 we have C

23

= fm 2 M j C ! m 2 Sat(K

�

)g = fm 2 M j C !

m 2 Cons

R

(P

�

)g =< C >

Cons

R

(P

�

)

beause of Theorem 10 of part I. We have

< C >

Cons

R

(P

�

)

=< C >

Sat(K

�

)

beause of Theorem 11.

4

see the following orollary

10



In the ontext K

�

(and also in the ontext Red

R

P

n

(K

�

) after the questionmark

redution) the operator

23

: P(M) ! P(M) is a losure operator: A set C � M is

losed with respet to this operator i� it respets all impliations derivable from P

�

,

so C

23

is the generated P

�

-intent (whih is also the generated P

n

-intent

5

). During

the exploration the operator

23

: P(M) ! P(M) is only extensive and monotone,

but in general not idempotent.

Lemma 15 Let G

U

\G

�

� S � G

�

and Q = fA ! d j A � M; d 2 M with g

A;d

2

G

�

n Sg. Then Sat(K

�

j

S

) � Cons

R

(Sat(K

�

) [Q) = Cons

R

(P

�

[Q).

6

Proof. Let n be the step in whih the exploration ends. Let T := S [ fg

A;b

2

G

n

j I

n

(g

A;b

; �) � I

n

(g; �) for some g 2 G

n

\ G

U

g. Now we prove the following inlu-

sions:

Sat(K

�

j

S

) � Cons

R

(Sat(K

n

) [ fA! b j g

A;b

2 G

n

n Tg) (1)

� Cons

R

(Sat(K

�

) [Q) (2)

With Lemma 7 we have Sat(K

�

j

S

) = Sat(K

n

j

T

), so (1) follows from Corollary 2. Now

let g

A;b

2 G

n

n T . Then g

A;b

62 S.

Case 1: g

A;b

2 G

�

Then we get g

A;b

2 G

�

beause of the de�nition of T , therefore A! b 2 Q.

Case 2: g

A;b

62 G

�

Then A! b 2 Cons

R

(P

n

) beause of the de�nition of G

�

.

In both ases we have A! b 2 Cons

R

(P

n

) [Q, so

Cons

R

(Sat(K

n

) [ fA! b j g

A;b

2 G

n

n Tg) � Cons

R

(Sat(K

n

) [Cons

R

(P

n

) [Q)

= Cons

R

(Sat(K

�

) [Q)

beause of Theorem 11, and we get (2). Finally Cons

R

(Sat(K

�

)[Q) = Cons

R

(P

�

[

Q) follows from Theorem 11.

De�nition 16

Let P

u

:= fA ! b 2 Imp

M

j g

A;b

2 G

�

g be the set of all impliations aepted as

unknown (after removing the superuous unknown impliations

7

).

Let P

u

U

:= P

u

\ Imp(K

U

) be the set of all impliations aepted as unknown whih are

valid in the universe K

U

. Let G

�

U

:= G

�

n fg

A;b

2 G

�

j A! b 2 Imp(K

U

)g be the set

of all objets of G

�

whih are either in the universe K

U

or �titious objets g

A;b

for

whih A! b is not valid in the universe K

U

.

8

5

see Theorem 11

6

See also Corollary 2.

7

see De�nition 8

8

At this stage it is still unknown to the expert whether A! b is valid in the universe.
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Lemma 17 P

u

U

= fA ! b 2 Imp

M

j g

A;b

2 G

�

n G

�

U

g and G

�

U

= G

�

n fg

A;b

2

G

�

j A! b 2 P

u

U

g

Proof.

A! b 2 P

u

U

i� A! b 2 P

u

and A! b 2 Imp(K

U

) i� g

A;b

2 G

�

and g

A;b

62 G

�

U

.

g 2 G

�

U

i� g 2 G

�

and g 6= g

A;b

for A ! b 2 Imp(K

U

) i� g 2 G

�

and g 6= g

A;b

for

A! b 2 P

u

U

i� g 2 G

�

n fg

A;b

2 G

�

j A! b 2 P

u

U

g.

Lemma 18

G

�

U

= fg 2 G

�

j there exists a ontext row in K

U

, whih is a ompletion

of the ontext row of g in K

�

g

Proof.

�:

Eah ontext row of an objet g 2 G

�

U

\ G

U

has a ompletion in K

U

. For eah �-

titious objet g

A;b

2 G

�

U

there exists a ounterexample g 2 G

U

in K

U

against the

impliation A ! b beause of A ! b 62 Imp(K

U

). The ontext row of g in K

U

is a

ompletion of the ontext row of g

A;b

in K

�

. So for eah ontext row of K

�

j

G

�

U

there

exists a ompletion in K

U

.

�:

Let g 2 G

�

be an objet suh that there exists a ompletion in K

U

of the ontext row

of g in K

�

. For g

A;b

2 G

�

with A! b 2 Imp(K

U

) we have g 6= g

A;b

beause A! b is

not valid in a ompletion of the ontext row of g

A;b

. So we get g 2 G

�

U

.

The exploration helps to get knowledge about the impliations valid in the universe

K

U

. If the expert gives the answer \unknown" to some questions of the program, then

he may not get omplete knowledge of the universe, but the following theorem shows

that all inomplete knowledge about the impliations of K

U

is oded in the �titious

ounterexamples of K

�

.

Theorem 19 Let n be the step in whih the exploration ends. Then Cons

R

(P

n

[

P

u

U

) = Cons

R

(P

�

[ P

u

U

) = Cons

R

(Sat(K

�

) [ P

u

U

) = Sat(K

�

j

G

�

U

) = Imp(K

U

) =

Sat(K

U

).

Proof. Cons

R

(P

n

[ P

u

U

) = Cons

R

(P

�

[ P

u

U

) follows from Theorem 11.

The ontext K

U

does not ontain questionmarks, so we get Imp(K

U

) = Sat(K

U

).

Proof of Cons

R

(P

n

[ P

u

U

) � Imp(K

U

):

P

u

U

� Imp(K

U

) follows from the de�nition of P

u

U

. P

n

� Imp(K

U

) holds beause the

impliations of P

n

are aepted as valid. Therefore Cons

R

(P

n

[ P

u

U

) � Imp(K

U

).

12



Proof of Imp(K

U

) � Sat(K

�

j

G

�

U

):

For A! B 2 Imp(K

U

) we get A! B 2 Sat(K

�

j

G

�

U

) by Lemma 18.

Proof of Sat(K

�

j

G

�

U

) � Cons

R

(Sat(K

�

) [ P

u

U

) = Cons

R

(P

�

[ P

u

U

):

See Lemma 15 and Lemma 17.

Remark 20 An impliation A! B is valid in the universe K

U

i� it is derivable from

P

n

[ P

u

U

i� it is satisfyable in the subontext Sat(K

�

j

G

�

U

) of K

�

. The sets G

�

U

and P

u

U

are unknown to the expert but the expert knows that there exists a subset P

u

U

� P

u

of

the unknown impliations suh that this subset together with the aepted impliations

P

n

is a generating set of all valid impliations. So after the exploration the expert

only has to hek the impliations A! b for g

A;b

2 G

�

, and as soon as he an deide

for eah suh impliation whether it is valid in K

U

or not, then he has omplete

knowledge about the valid impliations of K

U

: An impliation is valid in K

U

i� it

is derivable from the impliations aepted as valid and the impliations aepted as

unknown whih are valid in K

U

. Moreover, then the subontext Sat(K

�

j

G

�

U

) ontains

a omplete list of ounterexamples against the impliations whih are not valid in K

U

.

Remark 21 Note that the set P

n

[P

u

U

is only a generating system with respet to the

frame ontext, that means if we want to ompute all onsequenes, we also need the

exhaustion rule (R-EX). Sometimes the user wants to have a generating system (or a

base) of the valid impliations, suh that he only has to use the rules (AX) and (PS)

to ompute all onsequenes. In this ase the set P

n

must ontain the informations of

the frame ontext R. It is possible to modify the exploration algorithm, suh that the

expert gets this result at the end of the algorithm: At the beginning of the exploration

algorithm the expert still an enter a frame ontext R, but in eah step j the program

does not searh for a minimal set A satisfying A

23

6= A 2 R \ Resp(P

j

) but it

searhes for a minimal set A satisfying A

23

6= A 2 Resp(P

j

).

9

Before the program

asks for the validity of A! A

23

it heks whether this impliation is derivable from

the aepted impliations P

j

with the rules (AX), (PS) and (R-EX), in this ase it an

be aepted automatially as valid, otherwise the expert is asked. With this modi�ed

algorithm the expert gets a base P

n

suh that the frame ontext is not needed after

the exploration anymore: Sat(K

�

) is derivable from P

n

using only the rules (AX) and

(PS), and Imp(K

U

) is derivable from P

n

[ P

u

U

using only the rules (AX) and (PS).

After reduing the questionmarks of K

�

eah ontext row whih still ontains some

questionmarks is redundant: Every objet g 2 G

�

whih has a questionmark in the

ontext row of the redued ontext an be removed and the satisfyable impliations

do not hange. So we get a omplete ontext:

9

Or equivalently: for a minimal set A whih is Sat(K

j

)-pseudolosed with respet to P(M) but

not a premise of P

j

.

13



Theorem 22 Let n be the step in whih the exploration ends. For g 2 G

�

let

I

�

(g;M) = fI

�

(g;m) j m 2Mg. Let

Red

R

P

n

(K

�

) = (G

�

;M; f�; ?; og; J),

S = G

�

n fg 2 G

�

\G

U

j ? 2 I

�

(g;M)g,

T = G

�

n fg 2 G

�

j ? 2 J(g;M)g = fg 2 G

�

j ? 62 J(g;M)g.

Then the following onditions hold:

1. Sat(K

�

) = Sat(K

�

j

S

) = Sat(Red

R

P

n

(K

�

)j

T

)

2. S \G

U

= T \G

U

3. Imp(Red

R

P

n

(K

�

)j

T

) � Imp(K

U

) � Imp(K

�

j

T\G

U )

4. Int(K

�

j

T\G

U ) � Int(K

U

) � Int(Red

R

P

n

(K

�

)j

T

)

Proof.

Proof of Sat(K

�

) = Sat(K

�

j

S

):

K

�

j

S

is a subontext of K

�

, so we have Sat(K

�

) � Sat(K

�

j

S

). Assume that there

exists an impliation A! B 2 Sat(K

�

j

S

) with A! B 62 Sat(K

�

). Let A be maximal

with these properties. Then in K

�

there exists a ounterexample g 2 G

�

\G

U

against

A ! B suh that the ontext row of g ontains a questionmark. Let m 2 M with

I

�

(g;m) =?. We have I

�

(g; a) = � for all a 2 A and I

�

(g; b) = o for some b 2 B.

With rule (AU) we get A [ fmg ! B 2 Sat(K

�

j

S

). The set A [ fmg is a proper

superset of A, so with the maximality of A we get A [ fmg ! B 2 Sat(K

�

) =

Cons

R

(P

n

) = Imp(Resp

R

(P

n

)). For eah E 2 Resp

R

(P

n

) with g

2

� E � g

3

(in

K

�

) we have A � E and B 6� E, so m 62 E, beause E respets the impliation

A [ fmg ! B. By rule (Red2) we get I

�

(g;m) = o whih is a ontradition to the

assumption I

�

(g;m) =?. Therefore Sat(K

�

) = Sat(K

�

j

S

).

Proof of Sat(K

�

) = Sat(Red

R

P

n

(K

�

)j

T

):

We have Sat(K

�

) = Sat(Red

R

P

n

(K

�

)) by Corollary 13, and the proof of

Sat(Red

R

P

n

(K

�

)) = Sat(Red

R

P

n

(K

�

)j

T

) works analogously to the proof of

Sat(K

�

) = Sat(K

�

j

S

).

Proof of 2:

The ontext rows of the objets of G

�

\ G

U

are P

n

-redued, so for g 2 G

�

we have

g 2 S \G

U

i� g 2 G

U

and ? 62 I

�

(g;M) i� g 2 T \G

U

.

Proof of 3:

Red

R

P

n

(K

�

)j

T

and K

�

j

T\G

U are omplete, so Imp(Red

R

P

n

(K

�

)j

T

) = Sat(Red

R

P

n

(K

�

)j

T

) =

Sat(K

�

) � Imp(K

U

) � Sat(K

�

j

T\G

U ) = Imp(K

�

j

T\G

U ).

Proof of 4:

With [GW99℄ and ondition 3 we have Int(K

�

j

T\G

U ) = Resp(Imp(K

�

j

T\G

U )) �

Resp(Imp(K

U

)) = Int(K

U

) � Resp(Imp(Red

R

P

n

(K

�

)j

T

)) = Int(Red

R

P

n

(K

�

)j

T

).

14



This Theorem shows that we always an get a omplete ontext at the end of

the exploration: After reduing the questionmarks with the rules (Red1) and (Red2)

all ontext rows whih still ontain questionmarks an be removed from the ontext

without hanging the satisfyable impliations. But one should remember that these

ontext rows may be needed for the equality Sat(K

�

j

G

�

U

) = Imp(K

U

) in Theorem 19;

this equality may not hold anymore after removing the objets with questionmarks

in the ontext rows.

10

2 Some examples

Example 1:

This example ontains an attribute exploration for properties of natural numbers. Let

K

U

= (G

U

;M; I

U

) where G

U

= N

+

are the positive integers and

M = feven; odd; prime; s2e; s2pg, where (n; s2e) 2 I

U

i� the positive integer n is the

sum of two even positive integers, and (n; s2p) 2 I

U

i� the positive integer n is the

sum of two primes. For the exploration we use the frameontext R = P(M) and we

start with the ontext

K

1

even odd prime s2e s2p

1 o � o o o

2 � o � o o

3 o � � o o

Question 1:

11

s2p! feven; odd; prime; s2eg

Answer: no

Counterexample: 4

The ontext row of 4 is added to the ontext:

K

2

even odd prime s2e s2p

1 o � o o o

2 � o � o o

3 o � � o o

4 � o o � �

Question 2: s2p! feven; s2eg

Answer: no

Counterexample: 5

The ontext row of 5 is added to the ontext.

Question 3: s2e! feven; s2pg

Answer: unknown

10

See Example 4 in the next setion.

11

In the examples we use the impliations A ! A

23

n A instead of A ! A

23

beause it is lear

that A implies A.

15



This question is equivalent to the Goldbah onjeture: It is not known whether every

even number n � 4 is the sum of two primes.

The �rst part of the impliation is aepted as valid: P

4

= fs2e! eveng

A �titious ounterexample is added to the ontext:

K

4

even odd prime s2e s2p

1 o � o o o

2 � o � o o

3 o � � o o

4 � o o � �

5 o � � o �

g

fs2eg;s2p

? ? ? � o

Question 4: fprime; s2pg ! odd

Answer: yes

Question 5: fodd; s2pg ! prime

Answer: no

Counterexample: 9

Question 6: feven; s2pg ! s2e

Answer: yes

Question 7: feven; s2eg ! s2p

Answer: unknown

Fititious ounterexample: g

feven;s2eg;s2p

Question 8: feven; prime; s2eg ! fodd; s2pg

Answer: yes

Question 9: feven; oddg ! fprime; s2e; s2pg

Answer: yes

The algorithm ends.

At the end of the algorithm we get the following ontext K

10

= K

�

:

K

�

even odd prime s2e s2p

1 o � o o o

2 � o � o o

3 o � � o o

4 � o o � �

5 o � � o �

9 o � o o �

g

fs2eg;s2p

? ? ? � o

g

feven;s2eg;s2p

� ? ? � o

We have a list of impliations aepted as valid:

P

10

= f

16



s2e! even;

fprime; s2pg ! odd;

feven; s2pg ! s2e;

feven; prime; s2eg ! fodd; s2pg;

feven; oddg ! fprime; s2e; s2pg

g

We redue the questionmarks in K

�

by using the valid impliations in P

10

and the

bakground knowledge R (whih does not ontain any information in this ase be-

ause of R = P(M)). This leads to a ontext Red

R

P

10

(K

�

):

Red

R

P

10

(K

�

) even odd prime s2e s2p

1 o � o o o

2 � o � o o

3 o � � o o

4 � o o � �

5 o � � o �

9 o � o o �

g

fs2eg;s2p

� o o � o

g

feven;s2eg;s2p

� o o � o

Now we have the following two ases:

1. If the Goldbah onjeture is true then the ontext rows of the �titious oun-

terexamples do not our in the universe K

U

, so the following subontext

K

�

j

G

�

\G

U already ontains a omplete list of ounterexamples, that means an

impliation is valid in the universe i� it is satisfyable (or valid) in the subontext

K

�

j

G

�

\G

U
i� it is derivable from P

10

[P

u

U

, where P

u

U

= fs2e! s2p; feven; s2eg !

s2pg.

K

�

j

G

�

\G

U even odd prime s2e s2p

1 o � o o o

2 � o � o o

3 o � � o o

4 � o o � �

5 o � � o �

9 o � o o �

2. If the Goldbah onjeture is false then the ontext rows of the �titious oun-

terexamples our in the universe K

U

, so the ontext Red

R

P

10

(K

�

) ontains a

omplete list of ounterexamples, that means an impliation is valid in the

universe i� it is satisfyable (or valid) in Red

R

P

10

(K

�

) i� it is derivable from P

10

.

The onept lattie of K

U

is either isomorphi to the onept lattie of K

�

j

G

�

\G

U or to

17



the onept lattie of Red

R

P

10

(K

�

). The following two �gures show the onept latties

for both ases.
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Figure 1: Conept lattie of K

�

j

G

�

\G

U if the Goldbah onjeture is true.
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Figure 2: Conept lattie of Red

R

P

10

(K

�

) if the Goldbah onjeture is false.

Example 2:

This example shows that a �titious objet should not be removed before the end of

the exploration even if the orresponding unknown impliation is reognized to be valid

in the universe. Let M = fa; b; ; d; eg and R be the set of all models of the lause

a! b _ . Let K

0

= K

1

be the following ontext:

K

1

a b  d e

1 � o � � o

2 � � o � �

The empty set is Sat(K

0

)-pseudolosed with respet toR, so in step 1 the exploration

program asks for the validity of � ! fa; dg. We give the answer unknown, and the

program asks, for whih attribute of the onlusion the impliation is unknown. We

give the answer that � ! d is unknown and � ! a is valid. A �titious objet is

added to the ontext:

19



K

2

a b  d e

1 � o � � o

2 � � o � �

g

�;d

? ? ? o ?

The set fag is not an element of the frame ontext R, so fa; bg is a minimal Sat(K

2

)-

pseudolosed set whih is not a premise of P

2

= f� ! ag. In step 2 the pro-

gram asks for the validity of fa; bg ! fd; eg and we give the answer \yes". In

step 3 the program asks for the validity of fa; g ! d and we again give the an-

swer \yes". We have P

4

= f� ! a; fa; bg ! fd; eg; fa; g ! dg, therefore � ! d

is derivable from P

4

, beause a ! b _  is valid in the frame ontext R. So the

unknown impliation � ! d must be valid in the universe K

U

. The set fa; b; dg

is not Sat(K

4

)-pseudolosed beause fa; bg is a Sat(K

4

)-pseudolosed proper subset

with fa; bg

23

6� fa; b; dg. But if we remove the \wrong" �titious objet g

�;d

from

the urrent ontext K

4

then we get �

23

= fa; dg, so the set fa; bg is no longer

Sat(K

4

)-pseudolosed, and fa; b; dg beomes a minimal Sat(K

4

)-pseudolosed set

whih is not a premise of P

4

, so the program would ask in step 4 for the validity

of fa; b; dg ! e whih is already derivable from P

4

. So in this ase it is better to

leave the wrong �titious objet in the ontext until the end of the exploration. If

the program does not use pseudolosed sets, but searhes for minimal sets A with

A

23

6= A 2 Resp(P

j

)\R then it does not matter whether the wrong �titious objets

are removed during or after the exploration, beause the questions remain the same.

12

In the example above after removing the wrong �titious example g

�;d

in step 4 the

set fa; b; dg is a minimal Sat(K

4

)-pseudolosed set whih is no premise of P

4

, but it

does not belong to Resp(P

4

) beause of fa; bg ! fd; eg 2 P

4

. If the universe K

U

onists only of the objets 1 and 2, then a base (with respet to R) of Imp(K

U

) is

f�! a; fa; bg ! fd; eg; fa; g ! d; fa; ; d; eg ! bg.

Example 3:

This example shows that questionmark redution should not be done for �titious ob-

jets before the exploration ends, beause otherwise the expert may loose some infor-

mation about the universe. LetM = fa; b; g, R = P(M) and K

0

= K

1

be the ontext

K

1

a b 

1 o o o

2 o � o

3 o � �

4 o ? �

In step 1 the exploration program asks for the validity of a ! fb; g. We give the

answer unknown, and the program asks, for whih attribute of the onlusion the

impliation is unknown. We give the answer that a ! b is unknown and a !  is

12

See Theorem 9.
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valid. A �titious objet is added to the ontext:

K

2

a b 

1 o o o

2 o � o

3 o � �

4 o ? �

g

fag;b

� o ?

In step 2 the program asks for the validity of ! b. We give the answer \unknown"

and another �titious ounterexample is added to the ontext:

K

3

a b 

1 o o o

2 o � o

3 o � �

4 o ? �

g

fag;b

� o ?

g

fg;b

? o �

In step 3 the program asks for the validity of fa; g ! b. We give the answer \un-

known" and another �titious ounter example is added to the ontext:

K

4

a b 

1 o o o

2 o � o

3 o � �

4 o ? �

g

fag;b

� o ?

g

fg;b

? o �

g

fa;g;b

� o �

The algorithm ends in step 4. We have only one impliation aepted as valid:

P

4

= fa ! g. If we would have done a questionmark redution before step 2

for the �titious ounterexample g

fag;b

, then the exploration would have ended in

step 2 beause the impliations ! b and fa; g ! b are no longer satisfyable in K

2

:

K

2

a b 

1 o o o

2 o � o

3 o � �

4 o ? �

g

fag;b

� o �

If K

U

is the ontext

21



K

U

a b 

1 o o o

2 o � o

3 o � �

4 o � �

then we have K

�

= K

2

, P

u

U

= fa ! bg, G

�

U

= G

U

= f1; 2; 3; 4g, K

�

j

G

�

U

= K

1

and

P

2

= fa ! g, so  ! b is not derivable from P

2

[ P

u

U

, but  ! b is valid in the

universe, so in this ase Theorem 19 would not hold. If K

U

is the ontext

K

U

a b 

1 o o o

2 o � o

3 o � �

4 o o �

then we have again K

�

= K

2

, P

u

U

= fa ! bg, G

�

U

= G

U

= f1; 2; 3; 4g, K

�

j

G

�

U

= K

1

and P

2

= fa ! g, so  ! b is satisfyable in K

�

j

G

�

U

but not valid in K

U

, so in this

ase Theorem 19 would not hold either.

Example 4:

This example shows that Theorem 19 may not hold after applying Theorem 22 to get

a omplete ontext at the end of the exploration. Let K

�

be the following ontext after

the exploration:

K

�

a b

1 o ?

2 � o

g

fbg;a

o �

After removing the objet 1 the satisfyable impliations do not hange, but if K

U

is

the ontext

K

U

a b

1 o o

2 � o

then the objet 1 is needed for the equality Sat(K

�

j

G

�

U

) = Imp(K

U

) beause the im-

pliation �! a is not valid in K

U

. So if the expert removes the objet 1 from K

�

(for

example to draw the line diagram of a onept lattie), then he should remember,

that this objet is only redundant for the ontext K

�

but it may be irredundant in K

U

.

Example 5:

This example shows that Cons

R

(P ) � Sat(K ) does not imply the existene of Red

R

P

(K ).
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Let K be the ontext

K a b

g � ?

Let P = fa ! bg and R = ffag; fbgg. Then we have Sat(K ) = Imp

M

, but there is

no T

g

2 Resp

R

(P ) with g

2

� T

g

� g

3

in K . So Red

R

P

(K ) does not exist beause of

Theorem 20.3 of part I.

3 Conlusion

At the end of the attribute exploration the expert gets maximal information (with

respet to his knowledge) about the unknown universe K

U

: He gets a list of implia-

tions whih are ertainly valid, a list of impliations whih are possibly valid, a list of

ounterexamples against the impliations whih are ertainly not valid and a list of

�titious ounterexamples against the impliations whih he answered by \unknown".

He only has to hek the impliations whih he answered by \unknown" and if he

an deide for eah of these impliations whether it is valid or not, he gets omplete

knowledge about the impliations of the ontext: An impliation is valid in K

U

i� it

is derivable from the impliations aepted as valid and the impliations aepted as

unknown whih are valid in K

U

.
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