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Abstract

Attribute exploration is an interactive computer algorithm which helps the
expert to get informations about the attribute implications of a formal context.
In the part I of this paper (see [H04]) an algorithm for attribute exploration with
incomplete knowledge was presented. In this part we prove the main results of
the algorithm: At the end of the attribute exploration the expert gets maximal
information with respect to his knowledge about the unknown universe: He gets
a list of implications which are certainly valid, a list of implications which are
possibly valid, a list of counterexamples against the implications which are cer-
tainly not valid and a list of fictitious counterexamples against the implications
which he answered by “unknown”. He only has to check the implications which
he answered by “unknown” and if he can decide for each of these implications
whether it is valid or not, he gets complete knowledge about the implications
of the context. For the definitions see part I.

1 Attribute exploration

Lemma 1l Let j > 0, C C M,d € M and GYy NnG; C S C G
Sat(Kj|s) \ Sat(K;). Let a = NC = dVV{NA|C CACM, gagc G;\ S}
Then a € Th(Resp™(Sat(K;))).

Proof. Let E € Resp®(Sat(K;)). Now we show that E is a model of . Assume
C C E. Wehave E — d € Sat(K;|s) because of rule (AU). If d € E then E is a model
of o, now let d ¢ E. We have E — d ¢ Sat(K;) because of E € Resp®(Sat(K;)).
There exists ¢ > 0 with £ — d € Sat(K;) \ Sat(K;41). In step i a fictitious coun-
terexample g4, € Gip1 \ G; against the implication £ — d is added to the context,
so E C Aand b =d. In K; we have E”® # E € Resp™(Sat(K;)) C Resp™(P;). With
Theorem 28 of part I the set A is minimal with A" # A € Resp®(F;), so we get
E=Aand gap =gra € Gj\ S. Therefore E is a model of a. n



Corollary 2 Let j > 0, GYy NG; C S CGjand Q ={A > d|ACM, de
M with gaq € G\ S}. Then Sat(K;|s) € Cons”™(Sat(K;) U Q).

Proof. Let C — D € Sat(K;|g) and d € D. If C — d € Sat(K;), then we get
C — d € Cons*(Sat(K;) U Q). Now assume C' — d ¢ Sat(K;). We prove C' —
d € Imp(Resp®(Sat(K;) U Q)): Let E € Resp®(Sat(K;) U Q) C Resp™(Sat(K;))
with C C E. With Lemma 1 we get d € E or A C E for aset A C M with C C A
and gaq € G; \ S. Because of E € Resp(Q)) we get d € E in both cases. So we
have C' — d € Imp(Resp™(Sat(K;) U Q)) = Cons*(Sat(K;) UQ) and C — D €
Cons”(Sat(K;)UQ) with rule (AD), so we get Sat(K;|s) € Cons*(Sat(K;)UQ). =

Lemma 3 Let j > 0, GYyNG; C S C Gj, A— B € Pjand b € M\ B with
A—be Sat(K;lg). Then gap € G5\ S.

Proof. Leti < j with A — B € Py \ Pi. We have A — b € Sat(K;|g), so we get
A — b e Sat(K;), because with Corollary 29 of part I there does not exist a fictitious
counterexample gc 4 in K; (with A C C and b = d) against the implication A — b. By
Corollary 27 of part I we have b ¢ B = A" in K;;1, so we get A — b & Sat(Ki;1).
Therefore ga) € G;+1 C Gj, and we have g4, & S because of A — b € Sat(K;|s). =

During the exploration it may happen that an implication A — b which was
accepted as unknown is derivable from the implications which were accepted as valid.
In this case the implication A — b must also be valid and the fictitious counterexample
ga, can be removed from the context.!

Lemma 4 Let j > i > 0, gayp € G; be a fictitious object such that A is a Sat(K;)-
intent. Then A — b & Cons”*(P;).

Proof. We have A € Resp®(Sat(K;)) C Resp™(Sat(K;)) C Resp™(F;), so
A — b ¢ Imp(Resp®(P;)) = Cons™(P;) because of b ¢ A. n

!In Example 2 in the next section it will be shown that it may be better to keep such a fictitious
object in the context until the end of the exploration (see also Theorem 9).



Lemma 5 Let j > 0 and gay € Gj be a fictitious object. The following conditions
are equivalent:

1. Redgj (gap) exists
2. A —b¢ Cons"(P;)

3. Cons”(P;) is satisfyable for gay

Proof.

1=3:

See Corollary 21 of part I.

3= 2

A — b is not satisfyable for ga.

2=1:

We have A — b ¢ Cons”™(P;) = Imp(Resp™(P;)), so there exists T € Resp™(FP;))
with A C T and b & T',s0 g3, €T C g, and Red[, (ga,) exists because of Theorem
20 of part I. n

Lemma 6 Let n be the step in which the exploration ends. The following conditions
are equivalent:

1. Redg (K,) exists
2. A — b ¢ Cons”®(P,) for all fictitious objects gap € G,

3. Cons™(Sat(K,)) = Sat(K,)

Proof.

1=3:

If Redf (K,) exists, then Cons®(Sat(K,)) = Cons"*(P,) C Sat(K,) because of
Corollary 31 of part I and Corollary 21 of part I.

3= 2

For g4 € G, we have A — b ¢ Sat(K,) = Cons*(Sat(K,)) = Cons™(P,) because
of Corollary 31 of part 1.

2=1:

Because of A — b ¢ Cons™(P,) for ga) € G, we get the existence of Redg (g4,)
with Lemma 5. The context rows of the normal objects ¢ € G,,NGY are P,-reduced. m



If there exists a fictitious object ga, € G; and a normal object ¢ € G; NGV in
a step j of the exploration with I;(g,a) = x for all a € A and I,;(g,b) = o, then the
implication A — b which was accepted as unknown can not be valid in the universe
KY because of ¢ € GY. Every implication C' — D which is not valid for g4, is
not valid for ¢ either, because the context row of ga, is smaller or equal (in the
information order) to the context row of g. The fictitious object g, can be removed
from the context without changing the satisfyable implications:

Lemma 7 Let j >0 and G;NGY CT C G and S =T\ {gap € T | Ij(gap, ) <
I;(g,-) for some g € G;NGY}. Then Sat(K;|s) = Sat(K;|r).

Proof. We have Sat(K;|r) € Sat(K;|s) because of S C T. Each implica-
tion C — D € Impy for which a counterexample of {gap € T | Lj(gap,-) <
I;(g,-) for some g € G; N GV} exists, is not satisfyable for the corresponding ob-
ject g € G;NGY C S with Ij(gap, ) < I;(g,-). So we get Sat(K;|s) C Sat(K;|r) and
therefore Sat(K;|s) = Sat(K;|r). ]

Definition 8 Let n be the step in which the exploration ends and k < n.
Gy =G\ {gap € Gy | A— b e Cons™(P,)}

G~ =Gy

G* 1= G\ {gap € G | L(gap-) < Tn(g,) for some g € G, N G}

Ky = Kilay = (Gy, M, {x, 7,0}, I})

K =K, |g- = (G*, M,{x,?, 0}, I")

P ={A—-BU{deM|gaacG,\G"} | A= BeP,}

Theorem 9 Let k >0 and A € R.
1. Cons®(P,) C Sat(Ky).
2. Ais a Sat(Kg)-intent iff A is a Sat(Ky)-intent.
3. A" # A € Resp®(Py) holds in Ky, iff A® # A € Resp™(Py) holds in K} .

4. If R is a closure system and A is not a premise of Py then A is Sat(Ky)-
pseudoclosed iff A is Sat(K})-pseudoclosed.

Proof.

Proof of 1:

For each normal object g € GY NG, the set Cons™(P,) is satisfyable for g in Sat(Ky)
because of Cons™(P;) C Imp(KY). For each fictitious object gcq € G} the set
Cons™(P,) is satisfyable for gc,q because of Lemma 5.

Proof of 2:



First assume that A is a Sat(Kg)-intent. If A is not a Sat(K} )-intent then with
Corollary 16 of part I there exists an attribute m € M with A — m € Sat(K}') and
A —m & Sat(Ky), so there exists j < k with A — m € Sat(K;) \ Sat(K;41). There
exists a fictitious object gog € Gj41 \ G; with A C C and d = m. The set A is a
Sat(K},)-intent and we have C — d € Cons™(P,) because of A — m € Sat(K}), so
with Lemma 4 we get A # C'. With Theorem 28 of part I C' is a minimal set with
C"¢ # C € Resp®(P;) in K;, so we get A ¢ Resp™(P;) which is a contradiction
to A € Resp™(Sat(Kg)) C Resp™(P;). Therefore A is a Sat(Ky)-intent. The other
direction follows from Sat(Ky) C Sat(K}), so the set A is a Sat(Ky)-intent iff A is a
Sat(Ky )-intent.

Proof of 3:

Condition 3 follows from condition 2 with Corollary 16 of part I.

Proof of 4:

Let R be a closure system. Assume that condition 4 is not true and let £ > 0 be
minimal such that the assertion does not hold. Let A € R be minimal such that A is
not a premise of P, and condition 4 does not hold for this set A. In the following let

B "% .= {me M | B —mc Sat(Ky)},
B~ :={me& M| B —m¢c Sat(Ky)}

for B C M.

Case 1: A is Sat(Ky )-pseudoclosed (with respect to R).

Then A is not Sat(Ky)-pseudoclosed and A is no Sat(Ky )-intent, and therefore with
A € R and condition 2 the set A is no Sat(Ky)-intent. There exists a proper subset

BcCA (1)

such that
B ist Sat(Ky)-pseudoclosed, (2)
Bk ¢ A. (3)

If B is Sat(K} )-pseudoclosed then we get BY“% C B"~ C A because of the assump-
tion that A is Sat(K} )-pseudoclosed, but this is a contradiction to (3), so

B is not Sat(K; )-pseudoclosed. (4)

By the minimality of A, the set B is a premise of Py, and with Corollary 27 of part I
we get

B — B ¢ p,. (5)

With (2) the set B is not a Sat(Ky)-intent, so with condition 2 it is not a Sat(K})-
intent and with (4) there exists a proper subset

DCB (6)



such that

D is Sat(K} )-pseudoclosed, (7)
D~ ¢ B. (8)

If D is not a premise of P then D is also Sat(Ky)-pseudoclosed by the minimality
of A because in this case condition 4 is satisfied for D. But with (5) and (6) this is a
contradiction to Corollary 29 of part I. Therefore

D — D% ¢ p, (9)
D is Sat(Ky)-pseudoclosed, (10)

and with (6) and (2) we get
D"k C B. (11)

With (8) there exists an attribute
z€ M\ B (12)
with
D — z € Sat(Ky), (13)
and with (9), (11), (12) and Lemma 3 we get gp, € Gi \ G}, so
D — z € Cons™(P). (14)

The system R N Resp(Py) is a closure system, so with Lemma 2 of part I, Lemma 3
of part I and (5) we get

<D >consi(p) € Resp(Cons™(P;)) (15)
= Resp(Imp(R N Resp(Py))) (16)
= RN Resp(FPy) (17)
C Resp™ (P \{B — B™"}). (18)
We have
B € Resp® (P, \ {B — B"°%}), (19)

because for every C' — E € P, \ {B — B"*} with C' C B the set C is a Sat(Ky)-
pseudoclosed proper subset of B, so E = C"°* C B because of (2). We get

< D >Gonsk(p,) NB € Resp™ (P, \ {B — B™*}), (20)



because R N Resp(Py, \ {B — B™°*}) is a closure system. If < D >gour(p,y NB is a
proper subset of B then we get

< D >gonsr(p,) B € Resp™(Py) (21)
= Resp™(Imp(Resp™(Fy))) (22)
= Resp™(Cons™(P)), (23)

which is a contradiction to D C< D >g,,47(p,) NB and (12) and (14). Therefore

< .D >ConsR(Pk) ﬂB — B (24)

and we get
Bc<D >ConsR(Pk)7 (25)
D — B € Cons™(P,) (26)

because of Theorem 10 of part I. With (3) there exists an attribute
y € B7°F (27)
with
y & A, (28)
so because of (5), (26), (27) and condition 1 we get
D — y € Cons®(P;,) C Sat(Ky), (29)

so y € DU°~, but this is a contradiction to (7) and (28) because D is a proper subset
of the Sat(K} )-pseudoclosed set A.

Case 2: A is Sat(Ky)-pseudoclosed.

Then A is not Sat(Ky )-pseudoclosed. A is not a Sat(Ky)-intent, so with condition 2
A is not a Sat(Ky )-intent. We get the existence of a proper subset

BcCA (30)

such that
B is Sat(K} )-pseudoclosed, (31)
B~ ¢ A. (32)

If B is a premise of P, then B is Sat(Ky)-pseudoclosed because of Corollary 27 of
part I, and if B is not a premise of Py then B is also Sat(Kj)-pseudoclosed because
of the minimality of A with respect to the violation of condition 4. So in both cases

B is Sat(Ky)-pseudoclosed, (33)
Bk C A, (34)



With (32) and (34) there exists an attribute

me M\ A (35)

with
B — m € Sat(Ky), (36)
B — m ¢ Sat(Ky). (37)

There exists a fictitious object

gca € G\ GY (38)

with
B CC, (39)
m =d. (40)

If B = C then we have goq = gpm € Gi \ G, and if B is a proper subset of C' then
B is a premise of P, because of (33), so we also get

gB,m € Gk; \ GkN (41)
with Lemma 3. So we have
B — m € Cons”(P) (42)

because of the definition of G}'. We have A € Resp™(P;) because each premise of P
is a Sat(Ky)-pseudoclosed proper subset of A. Therefore

A € Resp®(Py,) = Resp™ (Imp(Resp™(Py))) = Resp™(Cons™(F,)), (43)

which is a contradiction to (35), (30) and (42). ]

Theorem 10 If R is a closure system then during the exploration in a step k all fic-
titious counterezamples gay, € Gy which are recognized as superfluous® can be removed
from the current context during the exploration, and the questions of the exploration
program remain the same.

Proof. If I;.(gap, ) < Ii(g,-) for some g € GyNGY then the satisfyable implications
of the current context do not change by removing g4, because of Lemma 7, so in this
case the questions of the exploration program remain the same. From Theorem 9 it
follows that after removing the fictitious objects g, with A — b € Cons”™(P;) the
questions also remain the same. m

2that means g, € ConsR(Pk) or I,(gap,-) < Ii(g,-) for some g € G, NGY

8



If R is no closure system, it is also possible to remove the superfluous objects
during the exploration, but it might happen that the expert has to answer more
questions then (see Example 2 in the next section), because the pseudoclosed sets
would change: With such a modification of the algorithm there may exist a minimal
Sat(K;)-pseudoclosed set A, which is not a premise of P;, such that A is not minimal
with respect to the property A”® # A € Resp™(P;), so in this case the result of the
algorithm depends on how it chooses the implications to be asked: If the premise is
always chosen as a minimal set with A”® # A € Resp™(P;), then in the modified
algorithm the same questions like in the normal algorithm are asked. But if the
premise is chosen as a minimal Sat(K;)-pseudoclosed set A, which is not a premise of
P;, then it might happen that in the modified algorithm the validitiy of an implication
is asked which is already derivable from the accepted implications P;,® so in this case
it is better to keep the wrong fictitious counterexamples ga; for which A — b is
derivable from P; until the end of the exploration. If the frame context R is a closure
system, then we get the same results in both algorithms.

The satisfyable implications of K* are exactly the implications which are derivable
from P,:

Theorem 11 Let n be the step in which the exploration ends.
Cons®(P*) = Cons™(P,) = Cons*(Sat(K,)) = Sat(K>) = Sat(K*)

Proof.

Proof of Cons”™(P*) = Cons*(P,):

For A — B € P, we have A — B € Cons”(P*) because of rule (PR), so Cons™(P,) C
Cons™(P*).

For A — D € P* there exists a set B C M with A - B € P, and D = BU{d €
M| gag € G, \G~}=BU{d € M | gayg € G,, A— d € Cons™(P,)}, so with rule
(AD) we get A — D € Cons™(P,) and therefore Cons”®(P,) = Cons™(P*).

Proof of Cons™(P,) = Cons™(Sat(K,)):
See Corollary 31 of part I.

Proof of Cons®(P,) C Sat(K*):
Cons®(P,) C Sat(K}) C Sat(K*) follows from Theorem 9.(1) and G* C G™.

Proof of Sat(K*) = Sat(K>):
See Lemma 7.

Proof of Sat(K) C Cons™(Sat(K,)):
For @ = {A — b€ Impy | gap € G, \ G~} C Cons™(P,) = Cons”*(Sat(K,)) we

3see Example 2



have Sat(K;) € Cons”(Sat(K,) U Q) = Cons™(Sat(K,)) because of Corollary 2.

Remark 12 After the end of the exploration the questionmark reduction can also be
done for the fictitious objects. The satisfyable implications of K* do not change by this
questionmark reduction at the end of the exploration.* But one loses the information
about the involved implications. Before the questionmark reduction the corresponding
implictions can be reconstructed by the context rows of the fictitious counterexamples:
The attributes with the value “x7” are the premise and the attribute with the value
“0” 18 the conclusion. After the questionmark reduction the values of the context row
usually do not contain this information anymore.

Corollary 13 Let n be the step in which the exploration ends. Then Redy (K*)
exists and Sat(K*) = Sat(Red} (K*)).

Proof. For ga;, € G* we have A — b ¢ Cons™(P,), so Red¥ (K*) exists because
of Lemma 6. We have Sat(K*) = Cons"(P,) C Sat(Reds (K*)) because of Corol-
lary 21 of part I, so we get Sat(K*) = Sat(Red (K*)) because of Reds (K*) > K*. m

Theorem 14 For each C — D € P* we get D = C"° in K*. For each C C M we
get <C >ConsR(P*):< C >Sat(K*): CDO m K*.

Proof.

Proof of D = C"°:

For C — D € P* there exists C' — B € P, with D=BU{be M | gop € G, \ G~ }.
With Theorem 11 we get C' — D € Sat(K*), so with rule (PR) and Corollary 7 of
part I we get D C {m € M | C — m € Sat(K*)} = C"°. Now let d € C"°. Then
we get C' — d € Sat(K*) = Sat(K,|g~) by Theorem 11. If C — d € Sat(K,) then
de {meM|C — me Sat(K,)} = B C D by Corollary 27 of part I, and if
C — d ¢ Sat(K,) then gcq € G, \ G~ because of Lemma 3, so d € D. Therefore
C"¢ = D.

Proof of < C > Cons® (P)=< C > gayr-)= Coe:

With Theorem 11 we have C"° ={me M | C - m € Sat(K")} ={me M | C —
m € Cons*(P*)} =< C > cons®(p+) because of Theorem 10 of part I. We have
< C >consk(p)=< C >say(x-) because of Theorem 11. m

“see the following corollary

10



In the context K* (and also in the context Red (K*) after the questionmark
reduction) the operator "¢ : P(M) — P(M) is a closure operator: A set C C M is
closed with respect to this operator iff it respects all implications derivable from P*,
so C7¢ is the generated P*-intent (which is also the generated P,-intent®). During
the exploration the operator “¢ : P(M) — P(M) is only extensive and monotone,
but in general not idempotent.

Lemma 15 Let GYNG* CSC G  and Q ={A —>d | AC M, d € M with gaq €
G*\ S}. Then Sat(K*|s) C Cons™(Sat(K*) U Q) = Cons™(P*uU Q).

Proof. Let n be the step in which the exploration ends. Let T := S U {ga, €
Gy | In(gap, ) < I(g,-) for some g € G, N GY}. Now we prove the following inclu-
sions:

Sat(K*|s) € Cons®(Sat(K,)U{A —b | gay € Gp\T}) (1)

-
C Cons®(Sat(K*) U Q) (2)

With Lemma 7 we have Sat(K*|s) = Sat(K,|r), so (1) follows from Corollary 2. Now
let gap € G, \T. Then ga, € S.

Case 1: gap € G~

Then we get g4, € G* because of the definition of T', therefore A — b € Q.

Case 2: gap € G~

Then A — b € Cons”*(P,) because of the definition of G™.

In both cases we have A — b € Cons™(P,) U Q, so

Cons™(Sat(K,) U{A = b| gay € G, \ T}) C Cons®(Sat(K,) U Cons™(P,) U Q)
= Cons™(Sat(K*) U Q)

because of Theorem 11, and we get (2). Finally Cons™(Sat(K*)UQ) = Cons™(P*U
Q) follows from Theorem 11. n

Definition 16

Let P* := {A — b € Impy | gap € G*} be the set of all implications accepted as
unknown (after removing the superfluous unknown implications’).

Let PY = P*NImp(KY) be the set of all implications accepted as unknown which are
valid in the universe KV. Let G := G* \ {gap € G* | A— b e Imp(KY)} be the set
of all objects of G* which are either in the universe KU or fictitious objects gay for
which A — b is not valid in the universe KV .3

®see Theorem 11

6See also Corollary 2.

"see Definition 8

8 At this stage it is still unknown to the expert whether A — b is valid in the universe.

11



Lemma 17 P} = {A — b € Impy | gap € G*\ G},} and G}, = G*\ {gayp €
G*| A—be Py}

Proof.

A—=bePtif A—sbe P and A —be Imp(KY) iff g4 € G* and ga, € G-

g€ Gy iff g e G and g # gay for A = b e Imp(KY) iff g € G* and g # ga, for
A—bePyiff ge G*\{gap € G* | A— b e Py} n

Lemma 18
Gy = {g € G* | there exists a context row in KV, which is a completion
of the context row of g in K*}

Proof.

C:

Each context row of an object ¢ € G3; N GY has a completion in KY. For each fic-
titious object g4, € G there exists a counterexample ¢ € GV in KV against the
implication A — b because of A — b & Imp(KY). The context row of g in KV is a
completion of the context row of g4, in K*. So for each context row of K* Gy, there
exists a completion in KY .

o

Let g € G* be an object such that there exists a completion in KY of the context row
of g in K*. For g4, € G* with A — b € Imp(KY) we have g # ga, because A — b is
not valid in a completion of the context row of g4 ;. So we get g € GT7;. [

The exploration helps to get knowledge about the implications valid in the universe
KY. If the expert gives the answer “unknown” to some questions of the program, then
he may not get complete knowledge of the universe, but the following theorem shows
that all incomplete knowledge about the implications of KV is coded in the fictitious
counterexamples of K*.

Theorem 19 Let n be the step in which the exploration ends. Then ConsR(Pn U
PY) = Cons®(P* U P}) = Cons™(Sat(K*) U P¥) = Sat(K*|g;) = Imp(KY) =
Sat(KY).

Proof. Cons”*(P, U PY) = Cons”*(P* U PY) follows from Theorem 11.

The context KV does not contain questionmarks, so we get Imp(KY) = Sat(KY).
Proof of Cons™(P, U P¥) C Imp(KY):

PE C Imp(KY) follows from the definition of P%. P, C Imp(KY) holds because the
implications of P, are accepted as valid. Therefore Cons™(P, U P%) C Imp(KY).

12



Proof of Imp(K") C Sat(K*|gs ):

For A — B € Imp(K") we get A — B € Sat(K*|g;) by Lemma 18.

Proof of Sat(K*|g: ) C Cons”(Sat(K*) U P) = Cons™®(P* U PY):

See Lemma 15 and Lemma 17. [

Remark 20 An implication A — B is valid in the universe KV iff it is derivable from
P, U Py iff it is satisfyable in the subcontext Sat(K*|q: ) of K*. The sets Gy, and Py
are unknown to the expert but the expert knows that there exists a subset P C P of
the unknown implications such that this subset together with the accepted implications
P, is a generating set of all valid implications. So after the exploration the expert
only has to check the implications A — b for gap € G*, and as soon as he can decide
for each such implication whether it is valid in KV or not, then he has complete
knowledge about the wvalid implications of KV : An implication is valid in KY iff it
15 derivable from the implications accepted as valid and the implications accepted as
unknown which are valid in KY. Moreover, then the subcontext Sat(K* i) contains
a complete list of counterezamples against the implications which are not valid in KY .

Remark 21 Note that the set P, U P} is only a generating system with respect to the
frame context, that means if we want to compute all consequences, we also need the
ezhaustion rule (R-EX). Sometimes the user wants to have a generating system (or a
base) of the valid implications, such that he only has to use the rules (AX) and (PS)
to compute all consequences. In this case the set P, must contain the informations of
the frame context R. It is possible to modify the exploration algorithm, such that the
expert gets this result at the end of the algorithm: At the beginning of the exploration
algorithm the expert still can enter a frame context R, but in each step j the program
does not search for a minimal set A satisfying A% # A € R N Resp(P;) but it
searches for a minimal set A satisfying A%® # A € Resp(P;).° Before the program
asks for the validity of A — A° it checks whether this implication is derivable from
the accepted implications P; with the rules (AX), (PS) and (R-EX), in this case it can
be accepted automatically as valid, otherwise the expert is asked. With this modified
algorithm the expert gets a base P, such that the frame context is not needed after
the exploration anymore: Sat(K*) is derivable from P, using only the rules (AX) and
(PS), and Imp(KY) is derivable from P, U P% using only the rules (AX) and (PS).

After reducing the questionmarks of K* each context row which still contains some
questionmarks is redundant: Every object ¢ € G* which has a questionmark in the
context row of the reduced context can be removed and the satisfyable implications
do not change. So we get a complete context:

90r equivalently: for a minimal set A which is Sat(KK;)-pseudoclosed with respect to P(M) but
not a premise of P;.
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Theorem 22 Let n be the step in which the exploration ends. For g € G* let
I*(g,M)={I*(g,m) | m € M}. Let

Red?ﬂ(K") = (G*, M,{x,?,0},J),

S=G\{geG*NGY | ?eI*(g,M)},

T=G\{geG |7et(gM)}={ge G |7 J(g,M)}.

Then the following conditions hold:

1. Sat(K*) = Sat(K*|g) = Sat(Redy (K*)|r)

2. SNGY =TnNnGY

3. Imp(Red (K*)|r) € Imp(K”) C Imp(K*|ngu)
4. Int(K*|prgu) C Int(KY) C Int(Red} (K*)|r)

Proof.

Proof of Sat(K*) = Sat(K*|s):

K*|s is a subcontext of K*, so we have Sat(K*) C Sat(K*|s). Assume that there
exists an implication A — B € Sat(K*|s) with A — B ¢ Sat(K*). Let A be maximal
with these properties. Then in K* there exists a counterexample g € G* N GY against
A — B such that the context row of ¢ contains a questionmark. Let m € M with
I*(g,m) =?7. We have I*(g,a) = x for all @ € A and I*(g,b) = o for some b € B.
With rule (AU) we get AU {m} — B € Sat(K*|s). The set AU {m} is a proper
superset of A, so with the maximality of A we get AU {m} — B € Sat(K*) =
Cons”®(P,) = Imp(Resp®(P,)). For each E € Resp®(P,) with ¢° C E C ¢° (in
K*) we have A C F and B Z E, so m ¢ E, because E respects the implication
AU {m} — B. By rule (Red2) we get I*(g, m) = o which is a contradiction to the
assumption I*(g, m) =?. Therefore Sat(K") = Sat(K*|s).

Proof of Sat(K*) = Sat(Red (K*)|r):

We have Sat(K*) = Sat(Red (K*)) by Corollary 13, and the proof of

Sat(Red} (K*)) = Sat(Red} (K*)|r) works analogously to the proof of

Sat(K*) = Sat(K*|s).

Proof of 2:

The context rows of the objects of G* N GY are P,-reduced, so for ¢ € G* we have
geESNGYifge GY and ? € I*(g, M) iff g€ TN GY.

Proof of 3:

RedF (K*)|r and K*|7nqu are complete, so Imp(Reds (K*)|7) = Sat(Red} (K*)|r) =
Sat(K*) C Imp(KY) C Sat(K*|pngr) = Imp(K* | prgu ).

Proof of 4:
With [GW99] and condition 3 we have Int(K*|rnqv) = Resp(Imp(K*|pnqr)) C
Resp(Imp(KY)) = Int(KY) C Resp(Imp(Redy (K*)|7)) = Int(Red (K*)|r). ]
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This Theorem shows that we always can get a complete context at the end of
the exploration: After reducing the questionmarks with the rules (Redl) and (Red2)
all context rows which still contain questionmarks can be removed from the context
without changing the satisfyable implications. But one should remember that these
context rows may be needed for the equality Sat(K*|g; ) = Imp(KY) in Theorem 19;
this equality may not hold anymore after removing the objects with questionmarks
in the context rows.°

2 Some examples

Example 1:

This example contains an attribute exploration for properties of natural numbers. Let
KY = (GY, M, IV) where GY = N* are the positive integers and

M = {even, odd, prime, s2e, s2p}, where (n, s2¢) € IV iff the positive integer n is the
sum of two even positive integers, and (n, s2p) € IV iff the positive integer n is the
sum of two primes. For the exploration we use the framecontext R = P(M) and we
start with the context

‘ K, H even ‘ odd ‘ prime ‘ s2e ‘ s2p ‘

1 0 X 0 0 0]
2 X 0 X 0 0
3 0 X X 0 0

Question 1:'Y  s2p — {even, odd, prime, s2e}
Answer: no

Counterexample: 4

The context row of 4 is added to the context:

‘ Ky H even ‘ odd ‘ prime ‘ s2e ‘ s2p ‘

1 0 X 0 0 0
2 X 0 X 0 0
3 0 X X 0 0
4 X 0 0 X X

Question 2:  s2p — {even, s2e}

Answer: no

Counterexample: 5

The context row of 5 is added to the context.
Question 3:  s2e — {even, s2p}

Answer: unknown

10Gee Example 4 in the next section.
Tn the examples we use the implications A — A"® \ A instead of A — A"® because it is clear
that A implies A.
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This question is equivalent to the Goldbach conjecture: It is not known whether every
even number n > 4 is the sum of two primes.

The first part of the implication is accepted as valid: P, = {s2e — even}

A fictitious counterexample is added to the context:

‘ Ky H even ‘ odd ‘ prime ‘ s2e ‘ s2p ‘

1 0 X 0 0] 0
2 X 0 X 0 0
3 0 X X 0 0
4 X 0 0 X X
) 0 X X 0 X
9{s2e},52p 7 ? 7 X %

Question 4:  {prime, s2p} — odd

Answer: yes

Question 5:  {odd, s2p} — prime

Answer: no

Counterexample: 9

Question 6: {even, s2p} — s2e

Answer: yes

Question 7:  {even, s2e} — s2p

Answer: unknown

Fictitious counterexample: gfeven,s2e},s2p
Question 8:  {even, prime, s2e} — {odd, s2p}
Answer: yes

Question 9:  {even, odd} — {prime, s2e, s2p}
Answer: yes

The algorithm ends.

At the end of the algorithm we get the following context Ko = K*:

‘ K* H even ‘ odd ‘ prime ‘ s2e ‘ s2p ‘

1 0 X 0 0 0

2 X 0 X 0 0

3 0 X X 0 0

4 X 0 0 X X

) 0 X X 0 X

9 0 X 0 0 X
G{s2e},52p ? ? ? X o
J{even,s2e},s2p X 4 4 X Y%

We have a list of implications accepted as valid:
Py ={

16



s2e — even,

{prime, s2p} — odd,

{even, s2p} — s2e,

{even, prime, s2e} — {odd, s2p},

{even, odd} — {prime, s2e, s2p}

¥
We reduce the questionmarks in K* by using the valid implications in Py and the
background knowledge R (which does not contain any information in this case be-
cause of R = P(M)). This leads to a context RedF, (K*):

| Red¥ (K*) [ even [ odd | prime | s2e | s2p |

1 0] X 0 0 0]

2 X 0 X 0 0

3 0 X X 0 0

4 X 0 0 X X

) 0 X X 0 X

9 0 X 0 0 X
9{s2e},52p X o 0 X 0
J{even,s2e},s2p X Y o X Y

Now we have the following two cases:

1. If the Goldbach conjecture is true then the context rows of the fictitious coun-
terexamples do not occur in the universe KV, so the following subcontext
K*|g«nqu already contains a complete list of counterexamples, that means an
implication is valid in the universe iff it is satisfyable (or valid) in the subcontext

K* |g«ngv iff it is derivable from PgUPY, where P¥ = {s2e — s2p, {even, s2e} —
s2p}.
| K*|g-ngv || even | odd | prime | s2e | s2p |

1 0 X 0 0 0

2 X 0 X 0 0

3 0 X X 0 0

4 X ) 0 X X

5 0 X X ) X

9 0 X 0 0 X

2. If the Goldbach conjecture is false then the context rows of the fictitious coun-
terexamples occur in the universe KV, so the context Redf, (K*) contains a
complete list of counterexamples, that means an implication is valid in the
universe iff it is satisfyable (or valid) in Red} (K*) iff it is derivable from Pj.

The concept lattice of KU is either isomorphic to the concept lattice of K*|g«nqu or to
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the concept lattice of Red}, (K*). The following two figures show the concept lattices
for both cases.

odd

Figure 1: Concept lattice of K*|5-qqv if the Goldbach conjecture is true.
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g{ even,s2e},s2p
I 2¢) s2p

Figure 2: Concept lattice of RedF, (K*) if the Goldbach conjecture is false.

Example 2:

This example shows that a fictitious object should not be removed before the end of
the exploration even if the corresponding unknown implication is recognized to be valid
in the universe. Let M = {a,b,c,d,e} and R be the set of all models of the clause
a — bVe. Let Ky = Ky be the following context:

[ Kif[a[bfc[d]e]
1 X|o|X|X|o
2 X | X | o] X|X

The empty set is Sat(Kp)-pseudoclosed with respect to R, so in step 1 the exploration
program asks for the validity of @ — {a,d}. We give the answer unknown, and the
program asks, for which attribute of the conclusion the implication is unknown. We
give the answer that @ — d is unknown and @ — a is valid. A fictitious object is
added to the context:
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| Ko Ja[bJc[d]e]
1 X|o|X|X]o
2 X | X | o] X|X

90) 4 71?71?7107

The set {a} is not an element of the frame context R, so {a, b} is a minimal Sat(K,)-
pseudoclosed set which is not a premise of P, = {) — a}. In step 2 the pro-
gram asks for the validity of {a,b} — {d,e} and we give the answer “yes”. In
step 3 the program asks for the validity of {a,c} — d and we again give the an-
swer “yes”. We have Py = {0 — a,{a,b} — {d,e},{a,c} — d}, therefore O — d
is derivable from P,, because a — bV ¢ is valid in the frame context R. So the
unknown implication @ — d must be valid in the universe KV. The set {a,b,d}
is not Sat(Ky)-pseudoclosed because {a, b} is a Sat(K,)-pseudoclosed proper subset
with {a,b}"® & {a,b,d}. But if we remove the “wrong” fictitious object 90 4 from
the current context K, then we get @7 = {a,d}, so the set {a,b} is noylonger
Sat(Ky)-pseudoclosed, and {a,b,d} becomes a minimal Sat(Ky)-pseudoclosed set
which is not a premise of P,, so the program would ask in step 4 for the validity
of {a,b,d} — e which is already derivable from P;. So in this case it is better to
leave the wrong fictitious object in the context until the end of the exploration. If
the program does not use pseudoclosed sets, but searches for minimal sets A with
APC £ A € Resp(P;)N'R then it does not matter whether the wrong fictitious objects
are removed during or after the exploration, because the questions remain the same.!?
In the example above after removing the wrong fictitious example 904 in step 4 the
set {a,b,d} is a minimal Sat(K,)-pseudoclosed set which is no premise of Py, but it
does not belong to Resp(P;) because of {a,b} — {d,e} € P,. If the universe KY
conists only of the objects 1 and 2, then a base (with respect to R) of Imp(KY) is
{0 = a,{a,b} — {d,e},{a,c} = d,{a,c,d, e} — b}.

Example 3:

This example shows that questionmark reduction should not be done for fictitious ob-
jects before the exploration ends, because otherwise the expert may loose some infor-
mation about the universe. Let M = {a,b,c}, R = P(M) and K, = K, be the context

[ Ki Ja[b]c]
1 ol o| o
2 lo| x| o
3 o] x| X
4 o] 7| x

In step 1 the exploration program asks for the validity of a — {b,c}. We give the
answer unknown, and the program asks, for which attribute of the conclusion the
implication is unknown. We give the answer that a — b is unknown and a — ¢ is

12Gee Theorem 9.
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valid. A fictitious object is added to the context:

| K JJa[b]c]|
1 o|lo| o
2 o|X|o
3 0| X | X
4 o| 7| X
g{a},bXO?

In step 2 the program asks for the validity of ¢ — b. We give the answer “unknown”
and another fictitious counterexample is added to the context:

| K [a[b]
1 o| o
2
3
4

9{a},b

9{c},b

X9 X[X|S|S]|[O

V| X|[Q|Q |

X
X
?
0
0

In step 3 the program asks for the validity of {a,c} — b. We give the answer “un-
known” and another fictitious counter example is added to the context:

| K [la|b]c]
1 o|l o] o

2 o| X | o

3 o | X | X

4 o] 7| x
Ylapp || X |0 |7
G{c},b 7 o | X
Glactb || X | O | X

The algorithm ends in step 4. We have only one implication accepted as valid:
P, = {a — ¢}. If we would have done a questionmark reduction before step 2
for the fictitious counterexample g, 5, then the exploration would have ended in
step 2 because the implications ¢ — b and {a,c} — b are no longer satisfyable in Ky:

| K; JJa[b]c]|
1 o|lo| o
2 o|X|o
3 o | X | X
4 o| 7| X
Gla}p || X | O | X

If KV is the context
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(K7 Jafb]c]

1 ol o| o
2 o| X | o
3 o| X | X
4 o] X | X

then we have K* = Ky, Py = {a — b}, Gi, = GV = {1,2,3,4}, K*|g;, = K; and
P, = {a — ¢}, so ¢ — b is not derivable from P, U P}, but ¢ — b is valid in the
universe, so in this case Theorem 19 would not hold. If KV is the context

(K" Jla|b]c]
1 ol o| o
2 o| X | o
3 o] X | X
4 o] o | X

then we have again K* = Ko, P = {a — b}, G}, = GY = {1,2,3,4}, K*
and P, = {a — ¢}, so ¢ — b is satisfyable in K*
case Theorem 19 would not hold either.

a, =Ky
@z but not valid in KV, so in this

Example 4:

This example shows that Theorem 19 may not hold after applying Theorem 22 to get
a complete context at the end of the exploration. Let K* be the following context after
the exploration:

| K Ja|b]
1 o | ?
2 X | o

9{b},a 0| X

After removing the object 1 the satisfyable implications do not change, but if KV is
the context

then the object 1 is needed for the equality Sat(K*|g: ) = Imp(KY) because the im-
plication @ — a is not valid in KY. So if the expert removes the object 1 from K* (for
example to draw the line diagram of a concept lattice), then he should remember,
that this object is only redundant for the context K* but it may be irredundant in K.

Example 5:
This example shows that Cons™(P) C Sat(K) does not imply the existence of Red(K).
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Let K be the context

[K]a|b]
Lo [x]?]

Let P ={a — b} and R = {{a},{b}}. Then we have Sat(K) = Impy, but there is
no T, € Resp®(P) with ¢° C T, C ¢° in K. So RedF(K) does not exist because of
Theorem 20.3 of part I.

3 Conclusion

At the end of the attribute exploration the expert gets maximal information (with
respect to his knowledge) about the unknown universe KV: He gets a list of implica-
tions which are certainly valid, a list of implications which are possibly valid, a list of
counterexamples against the implications which are certainly not valid and a list of
fictitious counterexamples against the implications which he answered by “unknown”.
He only has to check the implications which he answered by “unknown” and if he
can decide for each of these implications whether it is valid or not, he gets complete
knowledge about the implications of the context: An implication is valid in KY iff it
is derivable from the implications accepted as valid and the implications accepted as
unknown which are valid in KY.
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