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Rihard Holzer

Abstrat

Formal ontexts with unknown entries an be represented by three-valued

ontexts K = (G;M; f�; o; ?g; I), where a questionmark indiates that it is not

known whether the objet g 2 G has the attribute m 2M . To desribe logial

formulas between olumns of suh inomplete ontexts the Kripke-semantis

are used for propositional formulas over the set M of attributes. Attribute

impliations are onsidered as speial propositional formulas. If a ontext is

too large to be fully represented, an interative omputer algorithm may help

the user to get maximal information (with respet to his knowledge) about the

valid attribute impliations of the unknown ontext. This omputer algorithm

is alled \attribute exploration".

Introdution

If we have some knowledge and would like to derive more information from this

knowledge, then it is useful to have an interative omputer algorithm, whih helps

the user to derive the information. Attribute exploration

1

is suh a tool in formal on-

ept analysis: An interative omputer algorithm helps the expert, to get knowledge

about the validity of attribute impliations of an unknown formal ontext, where an

attribute impliation A ! B desribes the dependenies between the attributes: If

an objet has all attributes of A then it must also have all attributes of B for some

sets A;B �M of attributes. The program asks some questions about the validity of

impliations, and the expert must �nd answers to these questions. If he an answer

all questions, he gets a base of all valid impliations and a omplete list of ounter-

examples against the impliations whih are not valid. If the expert does not know the

answers to all questions, then he only gets approximations for the valid impliations:

He gets a list of impliations whih are ertainly valid, a list of impliations whih are

possibly valid, a list of ounterexamples against the impliations whih are ertainly

not valid and a list of �titious ounterexamples against the impliations whih he

1

see setion 2 in [H04℄ (part II of this paper) for some examples of attribute explorations
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answered by \unknown". After the exploration he only has to hek the impliations

whih he answered by \unknown" and if he an deide for eah of these impliations

whether it is valid or not, he gets omplete knowledge about the impliations of the

ontext. Suh an algorithm and the proof of its orretness is provided in these notes.

In literature already many di�erent examples of attribute explorations an be

found, for example the exploration of the dependenies between some properties of

triangles (see [B91℄), properties of natural numbers (see [B91℄, [BH00℄ or [H01℄), prop-

erties of binary relations (see [GW99℄), properties of rings (see [H01℄), lassi�ation

of two-dimensional rystallographi point groups (see [G99℄), and there are also many

nonmathematial examples of explorations: properties of musi (see [W89℄), proper-

ties of planets (see [H01℄) . . . Other examples an also be found in setion 2 of part

II (see [H04℄).

An attribute exploration algorithm was implemented by Peter Burmeister in the

program \ConImp" (see [B96b℄ and [B91b℄), version 4.18. The algorithm desribed

in this paper is very similar to the algorithm of ConImp. Only the use of frame

ontexts, whih desribe bakground knowledge in form of \possible objet intents"

for the attribute exploration, have not been implemented in ConImp yet. ConImp

uses bakground knowledge in form of impliations instead of frame ontexts.

In older versions of ConImp inomplete knowledge about the validity of implia-

tions was treated di�erently: An impliation whih was aepted as unknown, was

treated in the further proess of the exploration like a valid impliation, whih led to

the fat, that not all neessary impliations were asked by the program. This problem

was eliminated by using �titious ounterexamples in newer versions of ConImp (see

also setion 2 of this paper).

In [G99℄ another algorithm for attribute exploration is given: Bakground knowl-

edge an be entered in form of universal sequents (= lauses) and existential sequents,

where an existential sequent desribes an (inomplete) ontext row. During the ex-

ploration algorithm the program asks by and by whether some attribute impliations

are valid and the expert an either answer by a universal sequent or by an existential

sequent. The algorithm of [G99℄ was implemented in the program \Impex".

Another form of exploration in formal onept analysis is \onept exploration".

It an be found in [S97℄. Conept exploration helps the user to get informations about

the relations \subonept" and \superonept" in a formal ontext.

These notes are a translation of the main results of the thesis [H01℄. The thesis

[H01℄ was written in German.

Sine attribute exploration is highly onneted with ontext impliations, we have

to start with the onsideration of suh impliations, and sine it may happen that

not all questions an be deided, we need inomplete ontexts. This will be handled

in setion 1. In setion 2 the algorithm for attribute exploration with inomplete

knowledge will be explained. The main results and some examples are given in part

II.

2
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see [H04℄
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1 Inomplete ontexts

A formal ontext K := (G;M; I) onsists of a set G of objets, a set M of attributes,

and a relation I � G�M whih indiates whih objet has whih attribute. A formal

ontext an be represented as a data table where eah row of the table belongs to

an objet g 2 G and eah olumn of the table belongs to an attribute m 2 M . The

entries in the table indiate whether an objet has an attribute.

Example:

K even odd prime square

1 o � o �

2 � o � o

3 o � � o

In this example the set of objets onsists of some natural numbers G = f1; 2; 3g

and the set of attributes onsists of some properties of natural numbers: M =

feven; odd; prime; squareg. The entry � in the table means that the objet has

the attribute and the entry o means that the objet does not have the attribute.

3

If we also would like to apture unknown knowledge then we need a third value: A

questionmark indiates that it is not known (at this moment) if the objet has the

attribute or not.

For example if we want to reate a table whih ontains some information about

the weather on di�erent days in summer, then we do not have omplete information

about the days in the future:

sunshine rain snow

yesterday o o o

today � o o

tomorrow ? ? o

This is a representation of an inomplete ontext where an inomplete ontext

K = (G;M; f�; ?; og; I) is a threevalued ontext whih onsists of a set G of objets,

a setM of attributes, the set f�; ?; og of values, and a funtion

4

I : G�M ! f�; ?; og.

The value � means that it is known that the objet has the attribute, the value o

means that it is known that the objet does not have the attribute, and the ques-

tionmark means that it is not known whether the objet has the attribute. If suh

a threevalued ontext is omplete (what means that it has no questionmark as en-

try) then it an be identi�ed with the orresponding formal ontext (G;M; J) with

3

Sometimes a blank in the table is used instead of o, see [GW99℄.

4

In [GW99℄ many-valued ontexts have a relation I whih is the graph of a partial funtion, so

also missing values are allowed in [GW99℄.
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(g;m) 2 J i� I(g;m) = �. For two inomplete ontexts K

1

:= (G;M; f�; ?; og; I

1

)

and K

2

:= (G;M; f�; ?; og; I

2

) with the same set G of objets and the same set M

of attributes we an ompare the informations whih are desribed by the ontext:

If K

2

an be derived from K

1

by replaing some questionmarks by � or o then the

ontext K

2

ontains more information than the ontext K

1

, and this will be denoted

by K

1

� K

2

. So � is the information order. A ompletion of a ontext K is a omplete

ontext (=formal ontext) whih an be derived from K by replaing all questionmarks

by other values. So the ompletions of K are the maximal ontexts (in the information

order) above K . The set of all ompletions of K is denoted by Compl(K ). The restri-

tion of the ontext K to a subset S � G is denoted by K j

S

:= (S;M; f�; ?; og; Ij

S�M

).

Let K = (G;M; f�; ?; og; I) be an inomplete ontext. For B � M the er-

tain extent B

2

of B is the set of all objets whih ertainly have all attributes

of B, that means B

2

:= fg 2 G j I(g;m) = � for all m 2 Bg. The possible

extent B

3

of B is the set of all objets whih possibly have all attributes of B:

B

3

:= fg 2 G j I(g;m) 6= o for all m 2 Bg. The ertain intent S

2

and the possible

intent S

3

for S � G are de�ned analogously:

S

2

:= fm 2M j I(g;m) = � for all g 2 Sg,

S

3

:= fm 2M j I(g;m) 6= o for all g 2 Sg.

For g 2 G we use the abbreviation g

2

:= fgg

2

and g

3

:= fgg

3

.

If K = (G;M; f�; ?; og; I) is omplete (or a formal ontext K = (G;M; I)) then we

have B

2

= B

3

=: B

0

=: B

I

and S

2

= S

3

=: B

0

=: B

I

, and they are just the extent

and intent de�ned in [GW99℄. The operators

0

: P(G)! P(M) and

0

: P(M)! P(G)

(where P(G) is the powerset of G) are alled derivations. A (formal) onept of a

formal ontext K = (G;M; I) is a pair (S;B) with S � G and B � M suh that

S

0

= B and B

0

= S. The set S is alled extent of the onept, and the set B is alled

intent of the onept. Let Ext(K ) be the set of all extents of K and Int(K ) be the

set of all intents of K .

In the following let the set M of attributes be �nite. To desibe dependenies

between the olumns of a (formal or inomplete) ontext we use propositional formulas

over the attribute set M . Let F (M) be the set of all propositional formulas where

M is the set of propositional variables. Let � 2 F (M) and B � M . The set B

is a model of � (or B respets �) if the interpretation of � is true for the valuation

v

B

: M ! ftrue; falseg with v

B

(m) = true i� m 2 B. For P � F (M) and

R � P(M) de�ne

Th(R) = f� 2 F (M) j every B 2 R is a model of �g,

Resp(P ) = fB �M j B is a model of eah � 2 Pg,

Resp

R

(P ) = Resp(P ) \R.

For A �M de�ne < A >

P

=

T

fB 2 Resp(P ) j A � Bg.

For A = fa

1

; a

2

; : : : a

m

g � M and B = fb

1

; b

2

; : : : b

n

g � M we use the abbreviation

A! B :=

V

A!

V

B := (a

1

^ a

2

^ : : : ^ a

m

)! (b

1

^ b

2

^ : : : ^ b

n

). This formula is

alled attribute impliation.
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The formula A!

W

B := (a

1

^ a

2

^ : : : ^ a

m

)! (b

1

_ b

2

_ : : : _ b

n

) is alled lause.

Let Imp

M

:= fA! B j A;B �Mg.

For R � P(M) de�ne Imp(R) := Th(R) \ Imp

M

.

Note that a set C � M respets the attribute impliation A ! B i� A � C implies

B � C. Let K = (G;M; I) be a formal ontext. A formula � 2 F (M) is valid for an

objet g 2 G if g

0

is a model of �. The formula � is valid in K if it is valid for eah

objet g 2 G. In partiular an attribute impliation A ! B is valid in K i� every

objet g 2 G whih has all attributes of A also has all attributes of B. Analogously,

a lause A!

W

B = (a

1

^ a

2

^ : : : ^ a

m

)! (b

1

_ b

2

_ : : : _ b

n

) is valid in K i� every

objet whih has all attributes of A has at least one attribute of B.

For inomplete ontexts there exist many di�erent logis to evaluate formulas,

for example the Kleene-Logi or other many-valued logis. Here we use the Kripke-

semantis: A formula is Kripke-valid (or ertainly valid) in an inomplete ontext if

it is valid in every ompletion. A formula � is satisfyable (or possibly valid) in an

inomplete ontext if it is valid in at least one ompletion. Note that for omplete

ontexts these two forms of validity are equal. The Kripke-valid attribute impliations

of an inomplete ontext K are denoted by Imp(K ) := fA! B 2 Imp

M

j A! B is

Kripke-valid in K g and, and the satisfyable attribute impliations of K are denoted

by Sat(K ) := fA! B 2 Imp

M

j A! B is satisfyable in K g.

Sets of formulas an also be desribed by frame ontexts: A system R � P(M) of

sets is alled frame ontext of a formal ontext K = (G;M; I) if g

0

2 R for all g 2 G.

So a frame ontext of a formal ontext K desribes a set of subsets of M ontaining

all objet intents of K .

5

If P is a set of formulas and R is the set of all models of P ,

then P is valid in K i�R is a frame ontext of K . If K is an unknown formal ontext,

6

then frame ontexts an be used as bakground knowledge: For a given system R of

sets we are only interested in those ontexts K , suh that R is a frame ontext of

K , that means only the sets in R are allowed for objet intents. For example in the

ontext of all natural numbers K = (N;M; I) with some attributes (even, odd, prime,

square, . . . ) we do not see diretly whih objet intents our, but some restritions

an be seen diretly from the attributes: even numbers are not odd, prime numbers

are not square numbers, et. So to analyse the ontext K we an use a frame ontext

like R = fT � M j even 2 T i� odd 62 Tg. This frame ontext restrits the possible

objet intents, so omputer algorithms (see next setion) an be more eÆient by

using this bakground knowledge R.

Lemma 1 For a formal ontext K = (G;M; I) the mappings

0

: P(M) ! P(G) and

0

: P(G)! P(M) form a Galois onnetion.

For an inomplete ontext K = (G;M; f�; ?; og; I) the mappings 2 : P(M) ! P(G)

and 2 : P(G)! P(M) form a Galois onnetion.

For an inomplete ontext K = (G;M; f�; ?; og; I) the mappings 3 : P(M) ! P(G)

5

One may all it \a set of possible objet intents for K".

6

for example if the set of objets is very large, so that the expert does not know whih objet

intents our in the ontext

5



and 3 : P(G)! P(M) form a Galois onnetion.

The mappings Th : P(P(M))! P(F (M)) and Resp : P(F (M)) ! P(P(M)) form a

Galois onnetion.

The mappings Imp : P(P(M))! P(Imp

M

) and Respj

P(Imp

M

)

: P(Imp

M

)! P(P(M))

form a Galois onnetion.

For R � P(M) the mappings Impj

P(R)

: P(R) ! P(Imp

M

) and Resp

R

j

P(Imp

M

)

:

P(Imp

M

)! P(R) form a Galois onnetion.

Proof. For the �rst statement see [GW99℄. The mappings 2 : P(M) ! P(G)

and 2 : P(G) ! P(M) are the derivations in the formal ontext (G;M; I

2

) with

(g;m) 2 I

2

i� I(g;m) = �.

The mappings 3 : P(M) ! P(G) and 3 : P(G) ! P(M) are the derivations in the

formal ontext (G;M; I

3

) with (g;m) 2 I

3

i� I(g;m) 6= o.

The mappings Th andResp are the derivations in the formal ontext (P(M); F (M);�)

with A � � i� A is a model of �.

The mappings Imp and Respj

P(Imp

M

)

are the derivations in the formal ontext

(P(M); Imp

M

;�). The mappings Impj

P(R)

and Resp

R

j

P(Imp

M

)

are the derivations in

the formal ontext (R; Imp

M

;�).

Lemma 2

7

For P � Imp

M

the set Resp(P ) is a losure system on M and the

mapping < � >

P

: P(M)! P(M) is the orresponding losure operator.

Lemma 3

8

If R is a losure system on M then R = Resp(Imp(R)).

Proof. We have R � Resp(Imp(R)) beause of Lemma 1. Let h : P(M) ! P(M)

be the losure operator orresponding to R and let A 2 Resp(Imp(R)). Then

A ! h(A) 2 Imp(R), beause for every B 2 R with A � B we get h(A) � B.

Therefore we get h(A) = A beause of A 2 Resp(Imp(R)). So we get A 2 R and

R = Resp(Imp(R)).

The following lemma gives a haraterisation of the valid impliations of a formal

ontext:

Lemma 4

9

Let K = (G;M; I) be a formal ontext and A;B � M . The following

onditions are equivalent:

1. A! B 2 Imp(K )

7

see [G98℄ and [GW99℄

8

see [G98℄

9

see [GW99℄
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2. A! B 2 Imp(fg

0

j g 2 Gg)

3. A! B 2 Imp(Int(K ))

4. B � A

00

5. A

0

� B

0

6. For all g 2 G the following property holds: If (g; a) 2 I for all a 2 A then

(g; b) 2 I for all b 2 B.

Now this Lemma will be generalized to the Kripke-validity and satisfyability of

impliations in inomplete ontexts:

Lemma 5 Let K = (G;M; f�; ?; og; I) be an inomplete ontext and A;B �M . The

following onditions are equivalent:

1. A! B 2 Imp(K )

2. B n A � A

32

3. A

3

� (B n A)

2

4. For all g 2 G with A � g

3

we have B n A � g

2

5. For all g 2 G the following property holds: If I(g; a) 6= o for all a 2 A then

I(g; b) = � for all b 2 B n A.

Proof.

3, 5, 4: Trivial.

1) 5:

10

Let A ! B 2 Imp(K ) and g 2 G with I(g; a) 6= o for all a 2 A. Let K

0

= (G;M; J)

be the ompletion of K where the questionmarks in eah olumn of m 2 A are re-

plaed by �, and the questionmarks in eah olumn of m 2M nA are replaed by o.

Then we get (g; a) 2 J for all a 2 A. We have A ! B 2 Imp(K

0

), so (g; b) 2 J for

all b 2 B, and we get I(g;m) = � for all m 2 B nA beause of the de�nition of K

0

.

5) 1:

11

Let K

0

= (G;M; J) be a ompletion of K . We show ondition 6 of Lemma 4: Let

g 2 G with (g; a) 2 J for all a 2 A. Then I(g; a) 6= o for all a 2 A, so by ondi-

tion 5 we get I(g; b) = � for all b 2 B n A, so (g; b) 2 J for all b 2 B. Therefore

A! B 2 Imp(K

0

), and we get A! B 2 Imp(K ).

2) 4:

Let g 2 G with A � g

3

, then we get g 2 A

3

and with ondition 2 and Lemma 1 we

get B n A � A

32

� g

2

.

3) 2:

With Lemma 1 and A

3

� (B n A)

2

we get B n A � (B n A)

22

� A

32

.

10

See [B91a℄

11

See [B91a℄
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Lemma 6 Let K = (G;M; f�; ?; og; I) be an inomplete ontext and A;B �M . The

following onditions are equivalent:

1. A! B 2 Sat(K )

2. B � A

23

3. A

2

� B

3

4. For all g 2 G with A � g

2

we have B � g

3

5. For all g 2 G the following property holds: If I(g; a) = � for all a 2 A then

I(g; b) 6= o for all b 2 B.

Proof. The Proof works analogously to the proof of Lemma 5.

The attributes whih are possibly implied by a set A of attributes an be omputed

with the derivation operators:

Corollary 7 Let K be an inomplete ontext and A �M .

Then A

23

= fm 2M j A! m 2 Sat(K )g.

If we have a set P of attribute impliations whih are valid in a formal ontext,

then we an use a rule system to derive more impliations from P , whih are also

valid in the ontext. Now some rules are de�ned to ompute all onsequenes of a set

of impliations for omplete and inomplete ontexts:

De�nition 8 Let R � P(M). The rules (AX), (PS), (AU), (PR), (AD), (R-EX)

are de�ned by

12

A! B B [ C ! D

A [ B ! A

(AX)

A [ C ! D

(PS)

A! C A! B [ C A! B A! C

A [B ! C

(AU)

A! B

(PR)

A! B [ C

(AD)

(A [ fmg ! B)

m2E

A! B

(R�EX)

for A!

W

E 2 Th(R)

for A;B;C;D;E � M . For P � Imp

M

let Cons(P ) denote the smallest subset of

Imp

M

with P � Cons(P ) whih is losed with respet to the rules (AX) and (PS).

12

see also [B91a℄, [M83℄, [G98℄
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Let Cons

Sat

(P ) denote the smallest subset of Imp

M

with P � Cons

Sat

(P ) whih is

losed with respet to the rules (AX), (AU), (PR) and (AD). Let Cons

R

(P ) be the

smallest subset of Imp

M

with P � Cons

R

(P ) whih is losed with respet to the rules

(AX), (PS) and (R-EX).

The exhaustion rule (R-EX) an only be applied for lauses A!

W

E whih are

respeted by te frame ontext R.

Lemma 9 For R � P(M) and P � Imp

M

the sets Cons(P ) and Cons

R

(P ) are

losed with respet to (AU), (PR) and (AD).

Proof. The rules (AU), (PR) and (AD) are derivable from (AX) and (PS):

Proof of (AU): A [B ! A

(AX)

A! C

A [ B ! C

(PS)

Proof of (PR): A! B [ C B [ C ! B

(AX)

A! B

(PS)

Proof of (AD): A! C C [ B ! B [ C

(AX)

A! B B [ A! B [ C

(PS)

A [ A! B [ C

(PS)

The rules (AX) and (PS) are sound and omplete for formal ontexts, that means

an impliation A ! B is derivable from a set of impliations P i� for every formal

ontext (with attribute set M) in whih P is valid, the impliation A ! B is also

valid:

Theorem 10 Let A;B � M and P � Imp

M

. The following onditions are equiva-

lent:

1. A! B 2 Cons(P )

2. A! B 2 Imp(Resp(P ))

3. For eah formal ontext K with P � Imp(K ) we get A! B 2 Imp(K ).

4. For eah inomplete ontext K with P � Imp(K ) we get A! B 2 Imp(K ).

5. B �< A >

P

Proof. 1, 2, 3, 5: See [G98℄ and [GW99℄.

4) 3: Trivial.

3) 4: Let K be an inomplete ontext with P � Imp(K ) and K

0

2 Compl(K ), then

with ondition 3 we get A! B 2 Imp(K

0

), so A! B 2 Imp(K ).

9



So for the Kripke-validity in inomplete ontexts the rules (AX) and (PS) are also

sound and omplete: An impliation A ! B is derivable from a set of impliations

P i� for every inomplete ontext in whih P is Kripke-valid the impliation A! B

is also Kripke-valid. In literature there are many other adequate rule systems, for

example the Armstrong rules.

13

For the satisfyability however the impliations need not to be transitive:

K a b 

1 � ? o

In this ontext a ! b is satisfyable, and b !  is also satisfyable, but a !  is not

satisfyable. So the rule (PS) is not sound for satisfyability. This example also shows

that the operator 23 : P(M)! P(M) is not idempotent:

a

23

= fa; bg

fa; bg

23

= fa; b; g

There are also adequate rule systems for satisfyability. The rules (AX), (PR), (AU)

and (AD) are sound and omplete for the satisfyability of impliations in inomplete

ontexts:

Theorem 11

14

Let A;B �M and P � Imp

M

. The following onditions are equiv-

alent:

1. A! B 2 Cons

Sat

(P )

2. For eah inomplete ontext K with P � Sat(K ) we get A! B 2 Sat(K ).

If we have bakground knowledge in form of a frame ontext R � P(M), and ask

\Whih impliations follow from P , if we only onsider ontexts with frame ontext

R ?" then we need the exhaustion rule (R-EX):

Theorem 12

15

Let R � P(M), A;B � M and P � Imp

M

. The following ondi-

tions are equivalent:

1. A! B 2 Cons

R

(P )

2. A! B 2 Imp(Resp

R

(P ))

3. For eah formal ontext K = (G;M; I) with P � Imp(K ) and g

0

2 R for all

g 2 G we get A! B 2 Imp(K ).

13

see [G98℄, [G99℄, [M83℄

14

see [L82℄ and [AM84℄

15

see [G98℄ and [G99℄
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Therefore we have a sound and omplete system of rules: An impliation A! B

is derivable from a set P of impliations with the rules (AX), (PS), (R-EX) i� for

every formal ontext K with frame ontext R in whih P is valid the impliation

A! B is also valid.

Corollary 13

Cons(Imp(K )) = Imp(K ) and Cons

Sat

(Sat(K )) = Sat(K ) for every inomplete

ontext K .

Cons

R

(Imp(K )) = Imp(K ) for every omplete ontext K = (G;M; I) with g

0

2 R

for all g 2 G.

De�nition 14 Let R � P(M) and P � Imp

M

. A set A � M is alled P -intent

(with respet to R) if A 2 Resp(Cons

R

(P )). A set A � M is alled P -pseudolosed

(with respet to R) if the following three onditions are satis�ed:

16

1. A 2 R

2. A is not a P -intent with respet to R

3. fm 2M j B ! m 2 Cons

Sat

(P )g � A for every proper subset B � A whih is

pseudolosed with respet to R

Let P;Q � Imp

M

. The set P is alled base of Q with respet to R if Cons

R

(P ) =

Cons

R

(Q) holds and Cons

R

(T ) 6= Cons

R

(Q) for every proper subset T � P . De�ne

DGB

R

(P ) := fA ! fm 2 M j A ! m 2 Cons

Sat

(P )g j A is P -pseudolosed with

respet to Rg.

In Theorem 18 it will be shown that DGB

R

(P ) is a base of P : It generates P

and it is irredundant. First we need a haraterisation of P -intents whih are in the

frame ontext R:

Lemma 15 Let R � P(M), A � M and P � Imp

M

. If A 2 R then the following

onditions are equivalent:

1. A is a P -intent with respet to R

2. A 2 Resp(P )

3. A = fm 2M j A! m 2 Cons

Sat

(P )g

Proof.

1, 2:

16

Here we an use an indutive de�nition, beause M ist �nite.
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With Lemma 1 and Theorem 12 we get

R \Resp(P ) = Resp

R

(P ) = Resp

R

(Imp(Resp

R

(P ))) = Resp

R

(Cons

R

(P )).

1) 3:

With rule (AX) we have A � fm 2 M j A ! m 2 Cons

Sat

(P )g. With A 2

Resp(Cons

R

(P )) and Lemma 9 we get A 2 Resp(Cons

Sat

(P )), so A = fm 2

M j A! m 2 Cons

Sat

(P )g.

3) 2:

Let C ! D 2 P with C � A. Then we get A ! D 2 Cons

Sat

(P ) with rule (AU),

and A ! m 2 Cons

Sat

(P ) for m 2 D with rule (PR). We get D � fm 2 M j A !

m 2 Cons

Sat

(P )g, and with ondition 3 we get D � A, so A 2 Resp(P ).

For inomplete ontexts the Sat(K )-intents whih are in the frame ontext R and

the Sat(K )-pseudolosed sets an be expressed with the derivations 2 and 3:

Corollary 16 Let R � P(M), A 2 R and K = (G;M; f�; ?; og; I). The set A is a

Sat(K )-intent with respet to R i� A = A

23

.

Proof. With Lemma 7 and Corollary 13 we have

A

23

= fm 2M j A! m 2 Sat(K )g = fm 2M j A! m 2 Cons

Sat

(Sat((K )))g.

Corollary 17 Let R � P(M) and K be an inomplete ontext. A set A � M is

Sat(K )-pseudolosed with respet to R i� the following two onditions are satisifed:

1. A

23

6= A 2 R

2. B

23

� A for all proper Sat(K )-pseudolosed proper subsets B � A.

We have DGB

R

(Sat(K )) = fA ! A

23

j A is Sat(K )-pseudolosed with respet to

Rg.

Proof. For A 2 R we have A 6= A

23

i� A is no Sat(K )-intent. For B � A we have

B

23

� A i� fm 2M j B ! m 2 Cons

Sat

(Sat(K ))g � A.

Theorem 18 Let R � P(M) and P � Imp

M

. Then DGB

R

(P ) is a base of P with

respet to R. This base is alled Duquenne-Gigue-Base.

17

17

In [GW99℄ the Duquenne-Gigue-Base was de�ned only for omplete ontexts without frame

ontexts. In [G98℄ also frame ontexts are onsidered, but the set of impliations ontruted in

[G98℄ is di�erent to the Duquenne-Gigue-Base of this paper: it is not a base but only a generating

set of impliations. In some ases the generating set of [G98℄ ontains less impliations than the

Duquenne-Gigue-Base. If the frame ontext R is a losure system, both sets are the same.

12



Proof. First we prove Cons

R

(DGB

R

(P )) = Cons

R

(P ):

Eah impliation A! fm 2M j A! m 2 Cons

Sat

(P )g 2 DGB

R

(P ) is an element

of Cons

R

(P ) beause of Lemma 9 (with rule (AD)), so we get Cons

R

(DGB

R

(P )) �

Cons

R

(P ). Now we show Resp

R

(DGB

R

(P )) � Resp

R

(P ).

Let A 2 Resp

R

(DGB

R

(P )), then we have A 2 R. For eah P -pseudolosed proper

subset B of A we get fm 2 M j B ! m 2 Cons

Sat

(P )g � A beause A is a model

of the impliation B ! fm 2 M j B ! m 2 Cons

Sat

(P )g 2 DGB

R

(P ). If A is not

a P -intent, then A is P -pseudolosed and A 6= fm 2 M j A ! m 2 Cons

Sat

(P )g

whih is a ontradition beause then A must be a model of A! fm 2M j A! m 2

Cons

Sat

(P )g 2 DGB

R

(P ). So A must be a P -intent: A 2 Resp

R

(P ). Therefore

Resp

R

(DGB

R

(P )) � Resp

R

(P ) and with Theorem 12 we get

Cons

R

(P ) = Imp(Resp

R

(P )) � Imp(Resp

R

(DGB

R

(P ))) = Cons

R

(DGB

R

(P )).

Now let A � M be a P -pseudolosed set and Q := DGB

R

(P ) n fA ! fm 2

M j A ! m 2 Cons

Sat

(P )gg. For eah P -pseudolosed proper subset B � A

we have fm 2 M j B ! m 2 Cons

Sat

(P )g � A, so we get A 2 Resp

R

(Q). With

Lemma 15 we have A 6= fm 2 M j A ! m 2 Cons

Sat

(P )g, therefore we get

A! fm 2 M j A! m 2 Cons

Sat

(P )g 62 Imp(Resp

R

(Q)) beause A is no model of

this impliation. We get Cons

R

(DGB(P )) 6= Imp(Resp

R

(Q)) = Cons

R

(Q). There-

fore DGB

R

(P ) is a base.

If we have some bakground knowledge about an inomplete ontext K = (G;M;

f�; ?; og; I), then we an replae a questionmark I(g;m) =? by � if it follows from

the bakground knowledge that the objet g 2 G must have the attribute m 2 M

and we an replae a questionmark I(g;m) =? by o if it follows from the bakground

knowledge that the objet g 2 G does not have the attribute m 2 M . With this

method we an redue the questionmarks in K . This questionmark redution is

desribed in the following de�nition:

De�nition 19 For any R � P(M), P � Imp

M

and an inomplete ontext K =

(G;M; f�; ?; og; I) de�ne the rules (Red1) and (Red2) for g 2 G and m 2 M as

follows:

(Red1) If m 2 T for all T 2 Resp

R

(P ) with g

2

� T � g

3

then the value I(g;m) is

replaed by �.

(Red2) If m 62 T for all T 2 Resp

R

(P ) with g

2

� T � g

3

then the value I(g;m) is

replaed by o.

The ontext K is alled P -redued (with respet to R) if for all g 2 G and m 2 M

the appliations of (Red1) and (Red2) do not hange K .

Theorem 20 Let R � P(M), let K = (G;M; f�; ?; og; I) be an inomplete ontext

with M 6= � and let P � Imp

M

. The following onditions are equivalent:

13



1. There exists a smallest ontext (in the information order) K

0

� K whih is

P -redued with respet to R.

2. There exists a ontext K

0

� K whih is P -redued with respet to R.

3. For every g 2 G there exists a set T

g

2 Resp

R

(P ) with g

2

� T

g

� g

3

, where

the operators 2 and 3 refer to K .

4. There exists a ompletion K

0

= (G;M; J) 2 Compl(K ) with P � Imp(K

0

) and

g

J

2 R for all g 2 G.

5. By applying the rules (Red1) and (Red2) on K �nitely many times, the values

� and o are not replaed by other values.

Proof.

1) 2: Trivial.

2) 3:

Assume ondition 2. Let g 2 G and m 2M . The ontext K

0

= (G;M; f�; ?; og; J) of

ondition 2 is P-redued, so there exists a set T

g

2 Resp

R

(P ) suh that g

2

� T

g

� g

3

holds in K

0

beause otherwise we would get � = J(g;m) = o with the rules (Red1)

and (Red2). Beause of K � K

0

the inlusions g

2

� T

g

� g

3

also hold in K .

3) 4:

For g 2 G let T

g

2 Resp

R

(P ) with g

2

� T

g

� g

3

in K . Then we an de�ne a om-

pletion K

0

= (G;M; J) 2 Compl(K ) by g

J

:= T

g

for g 2 G. We have P � Imp(K

0

)

and g

J

2 R for g 2 G beause of T

g

2 Resp(P ) \R.

4) 5:

For g 2 G we have g

J

2 Resp

R

(P ) and g

2

� g

J

� g

3

in K . After eah appliation

of the rules (Red1) and (Red2) the ondition g

2

� g

J

� g

3

is still satis�ed beause

I(g;m) an not be replaed by o for m 2 g

J

, and I(g;m) an not be replaed by �

for m 2M n g

J

. Therefore the values � and o are not replaed by other values.

5) 1:

For eah objet g 2 G the rules (Red1) and (Red2) are applied until no more question-

markes an be replaed by other values. Beause of ondition 5 there are no irles

of replaements. Beause of the �niteness of M this proess terminates for eah �xed

objet g 2 G after �nitely many steps. So we get a P -redued ontext K

0

� K . Let

K

00

be another P -redued ontext with K

00

� K . Then eah ontext after applying

the rules (Red1) and (Red2) on K �nitely many times is bounded by K

00

, so we get

K

0

� K

00

.

The smallest P -redued ontext K

0

� K is denoted by Red

R

P

(K ) if it exists. For

eah objet g 2 G the smallest P -redued ontext row, whih is greater than or equal

to I(g; �) is denoted by Red

R

P

(g).

14



Corollary 21 If Red

R

P

(K ) exists then Cons

R

(P ) � Sat(K ).

Proof. Let K

0

be the ontext of ondition 4 of Theorem 20. Then we have

Cons

R

(P ) � Imp(K

0

) � Sat(K ).

In setion 2 of part II it will be shown that Cons

R

(P ) � Sat(K ) does not imply

the existene of Red

R

P

(K ).

18

But for losure systems we have the following result:

Lemma 22 If R is a losure system then Red

R

P

(K ) exists i� Cons

R

(P ) � Sat(K ).

Proof. If Red

R

P

(K ) exists then Cons

R

(P ) � Sat(K ) by Corollary 21. Now assume

Cons

R

(P ) � Sat(K ) and let g 2 G. For H := Imp(R) we have R = Resp(H)

by Lemma 3. For T

g

:=< g

2

>

P[H

we get T

g

2 Resp(P [ H) = Resp(P ) \

Resp(H) = Resp

R

(P ) by Lemma 2, and with Theorem 10 and Theorem 12 we

get g

2

!< g

2

>

P[H

2 Cons(P [ H) = Imp(Resp(P [ H)) = Imp(Resp

R

(P )) =

Cons

R

(P ) � Sat(K ). Therefore g

2

� T

g

� g

3

follows from Lemma 6. So Red

R

P

(K )

exists beause of Theorem 20.

2 Attribute exploration

Let K

U

= (G

U

;M; I

U

) be a formal ontext (with a �nite set M of attributes), alled

universe, whih is too large to be fully represented; in what follows we also all suh

ontexts \unknown ontexts". The attribute exploration is an interative (omputer)

algorithm whih helps the expert to get maximal information about the attribute

impliations valid in the universe K

U

. Moreover a list of ounterexamples against

non-valid attribute impliations is produed.

19

The exploration program asks for the

validity of some impliations A ! B and the expert must searh for an answer to

these questions. The following algorithm desribes the exploration:

20

Attribute exploration algorithm:

(E1) At the beginning of the exploration algorithm the user an enter some bak-

ground knowledge about the universe: He enters the (�nite) attribute set M , a

frame ontext R � P(M) of K

U

(with g

0

2 R for all g 2 G

U

) and an inomplete

ontext K

0

= (G

0

;M; f�; ?; og; I

0

) ontaining some objets G

0

� G

U

of the

universe K

U

, suh that a ompletion of K

0

is a subontext of K

U

. So K

0

may

ontain questionmarks if the user does not know, whih attributes the objets

have.

18

See Example 5.

19

See Remark 20 in part II.

20

see setion 2 of part II for some examples
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(E2) The set of aepted impliations is initialised with the empty set: P

1

= �.

Then K

1

:= (G

1

;M; f�; ?; og; I

1

) := Red

R

P

1

(K

0

) exists beause of Theorem 20

(equivalene 1. , 4.). Let j := 1.

(E3) In the j � th step of the algorithm the program hooses a minimal set A � M

whih is Sat(K

j

)-pseudolosed with respet to R suh that A is no premise of

P

j

.

21

Let B = A

23

= fm 2 M j A ! m 2 Sat(K

j

)g. The program asks the

expert whether A ! B is valid in the universe K

U

. The set P

j

ontains the

impliations aepted as valid so far.

(a) If the expert gives the answer \no" then he must enter a ounterexample

g 2 G

U

against the impliation A! B. The expert enters the ontext row

of g whih may ontain questionmarks. Let K

0

= (G

j

[fgg;M; f�; ?; og; J)

be the ontext whih onsists of K

j

and the ontext row of g whih is

entered by the expert. Then J(g; a) = � for all a 2 A and J(g; b) = o for

at least one b 2 B must hold. The ontext row of g in K

U

has to be a

ompletion of the ontext row of g in K

0

, so Red

R

P

j

(g) exists in K

0

beause

of Theorem 20. Let P

j+1

:= P

j

and K

j+1

= (G

j+1

;M; f�; ?; og; I

j+1

) be

the ontext K

0

after replaing the ontext row of g by Red

R

P

j

(g).

(b) If the expert gives the answer \unknown" then the program asks the expert

for whih attributes b 2 B the impliation A ! b is unknown. Let Z =

fb 2 B j A ! b is unknowng. For b 2 B n Z the impliation A ! b is

valid in the universe K

U

, beause every ounterexample against A ! b

would also be a ounterexample against A ! B. For b 2 Z the omputer

program heks, whether A ! b 2 Cons

R

(P

j

[ fA ! B n Zg) holds, in

this ase the attribute b an be removed from Z beause A ! b follows

from the impliations whih are known to be valid in the universe K

U

,

so A ! b must also be valid. In the following we assume A ! b 62

Cons

R

(P

j

[ fA! B n Zg) for b 2 Z. Now �titious objets are added to

K

j

: Let K

0

:= (G

j

[fg

A;b

j b 2 Zg;M; f�; ?; og; J) with J(g;m) = I

j

(g;m)

for g 2 G

j

; m 2M and for b 2 Z let J(g

A;b

; a) = � for a 2 A, J(g

A;b

; b) = o

and J(g

A;b

; m) =? for m 2 M n (A [ fbg). Here we assume that g

A;b

is

a new objet: g

A;b

62 G

j

and g

A;b

62 G

U

. Let P

j+1

:= P

j

[ fA ! B n Zg

if B n Z 6= A and P

j+1

:= P

j

if B n Z = A. Then Red

R

P

j+1

(g) exists for

all objets g 2 G

U

\ G

j

whih are not �titious, beause of P

j

[ fA !

B n Zg � Imp(K

U

). Let K

j+1

= (G

j+1

;M; f�; ?; og; I

j+1

) be the ontext

K

0

after replaing the ontext row of eah g 2 G

U

\G

j

by Red

R

P

j+1

(g). The

21

If the bakground knowledge is given by a set of impliations (R = Resp(H) with H �

Imp(K

U

)), then the \next onept"-algorithm of Ganter an be used to �nd suh a set A (see

[GW99℄). If the user wants to get a generating system (or a base) of the valid impliations in K

U

,

suh that he only has to use the rules (AX) and (PS) to ompute all onsequenes (so the rule

(R-EX) is not needed), then the exploration algorithm an be modi�ed (see Remark 21 in part II).
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ontext rows of the �titious objets remain unhanged.

22

() If the expert gives the answer \yes" then the impliation is added to the

set of all aepted impliations: P

j+1

:= P

j

[ fA! Bg. Then Red

R

P

j+1

(g)

exists for all objets g 2 G

U

\ G

j

whih are not �titious, beause of

P

j+1

� Imp(K

U

). Let K

j+1

= (G

j+1

;M; f�; ?; og; I

j+1

) be the ontext K

j

after replaing the ontext row of eah g 2 G

U

\ G

j

by Red

R

P

j+1

(g). The

ontext rows of the �titious objets remain unhanged.

(E4) Let j := j + 1. Step (E3) is repeated until every Sat(K

j

)-pseudolosed set

A �M is a premise of P

j

. Then the algorithm ends.

Note that the ontext row of a �titious objet g

A;b

is the smallest ontext row

(with respet to the information order) whih is a ounterexample against A! b.

Lemma 23 Let j > 0 and g

A;b

2 G

j

be a �titious objet. Let C ! D 2 Imp

M

. The

impliation C ! D is not satisfyable for g

A;b

i� C � A and b 2 D.

Proof. C ! D is not satisfyable for g

A;b

i�

I

j

(g

A;b

; ) = � for all  2 C and I

j

(g

A;b

; d) = o for some d 2 D i�

C � A and b 2 D.

Corollary 24 Let j > 0 and G

j

\G

U

� S � T � G

j

. Then

Sat(K

j

j

T

) = Sat(K

j

j

S

) n fE

1

! E

2

j there exists g

A;b

2 T n S with E

1

� A; b 2 E

2

g.

Proof.

�:

For C ! D 2 Sat(K

j

j

T

) we have C ! D 2 Sat(K

j

j

S

) beause of S � T , and with

Lemma 23 we get C ! D 62 fE

1

! E

2

j there exists g

A;b

2 T n S with E

1

� A; b 2

E

2

g.

�:

Let C ! D 2 Sat(K

j

j

S

) nfE

1

! E

2

j there exists g

A;b

2 T nS with E

1

� A; b 2 E

2

g.

With Lemma 23 C ! D is satisfyable for all g

A;b

2 T n S, so C ! D 2 Sat(K

j

j

T

).

The impliations aepted as valid are satisfyable in the urrent ontext during

the exploration:

22

In setion 2 of part II it will be shown that the expert gets a worse result of the exploration

if the algorithm redues also the questionmarks in ontext rows of the �titious objets before the

algorithm has ended (see Example 3).
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Theorem 25 P

j

� Sat(K

j

) for all j > 0.

Proof. For S = G

j

\G

U

the set P

j

is satisfyable in K

j

j

S

beause of P

j

� Imp(K

U

).

Let C ! D 2 P

j

� Sat(K

j

j

S

). Assume C ! D 62 Sat(K

j

). With Corollary

24 there exists an objet g

A;b

2 G

j

n S with C � A and b 2 D. Let i < j

with C ! D 2 P

i+1

n P

i

and k < j with g

A;b

2 G

k+1

n G

k

. In K

i

we have

b 2 C

23

= fm 2 M j C ! m 2 Sat(K

i

)g, so g

A;b

62 G

i

beause C ! b is not

satisfyable for g

A;b

. So we get i � k. The validity of A ! b was unknown in step k,

so A ! b 62 Cons

R

(P

k+1

) and we get C ! D 62 P

k+1

beause of the rules (AU) and

(PR). Therefore k < i whih is a ontradition. Therefore C ! D 2 Sat(K

j

) and we

get P

j

� Sat(K

j

).

Theorem 26 Let k > j > 0 and A ! B be the impliation, suh that the program

asks in step j for the validity of A! B and the expert gives either the answer \yes"

or \unknown". Let Z = fb 2 B j A ! b is unknowng or Z = � if the impliation is

aepted as valid.

1. B n Z = A

23

holds in K

k

2. Eah Sat(K

k

)-pseudolosed proper subset C � A is Sat(K

j

)-pseudolosed.

3. If B n Z 6= A then A is Sat(K

k

)-pseudolosed.

4. Eah Sat(K

j

)-pseudolosed proper subset C � A is Sat(K

k

)-pseudolosed.

Proof.

Proof of 1:

For B n Z 6= A we have A ! B n Z 2 P

k

� Sat(K

k

) and for B n Z = A we also

have A ! B n Z 2 Sat(K

k

). Beause of k � j + 1 we have Sat(K

k

) � Sat(K

j+1

),

so B n Z � fm 2 M j A ! m 2 Sat(K

k

)g � fm 2 M j A ! m 2 Sat(K

j+1

)g. We

have fm 2 M j A! m 2 Sat(K

j

)g = B beause in step j the algorithm asks for the

validity of the impliation A ! fm 2 M j A ! m 2 Sat(K

j

)g. For the attributes

of Z the ontext K

j+1

ontains �titious ounterexamples fg

A;b

j b 2 Zg, so we get

fm 2M j A! m 2 Sat(K

j+1

)g � B nZ and fm 2 M j A! m 2 Sat(K

k

)g = B nZ.

Proof of 2 and 3 by indution over j:

Let the onditions 2 and 3 be true for all i < j.

Proof of 2:

Let C be a Sat(K

k

)-pseudolosed proper subset of A. Then we have C 2 R (see

de�nition of pseudolosed sets), but C is not a Sat(K

k

)-intent, so C is not a Sat(K

j

)-

intent beause of Sat(K

k

) � Sat(K

j

). Let D be a Sat(K

j

)-pseudolosed proper

subset of C. Then D ! E 2 P

j

for a set E � M beause otherwise the exploration

18



program must ask in step j for the validity of D ! E beause D is a proper subset

of A. So there exists an i < j with D ! E in P

i+1

n P

i

. By induion hypothe-

sis ondition 3 holds fo the step i, so D is Sat(K

k

)-pseudolosed and it is a proper

subset of the Sat(K

k

)-pseudolosed set C, so with ondition 1 (for step i) we get

fm 2M j D! m 2 Sat(K

j

)g = E = fm 2M j D ! m 2 Sat(K

k

)g � C. Therefore

C is Sat(K

j

)-pseudolosed.

Proof of 3:

Assume B n Z 6= A. We have A 2 R beause A is Sat(K

j

)-pseudolosed. Beause of

ondition 1 and B n Z 6= A and Corollary 16 the set A is no Sat(K

k

)-intent. Let C

be a Sat(K

k

)-pseudolosed proper subset of A. Beause of ondition 2 the set C is

Sat(K

j

)-pseudolosed, so we get fm 2 M j C ! m 2 Sat(K

k

)g � fm 2 M j C !

m 2 Sat(K

j

)g � A and A is Sat(K

k

)-pseudolosed.

Proof of 4:

Let C � A be a Sat(K

j

)-pseudolosed proper subset of A. Then C is a premise of

P

j

beause otherwise the exploration program must ask in step j for the validity of

C ! C

23

. Let i < j and D � M with C ! D 2 P

i+1

n P

i

. With ondition 3 (for

step i) the set C is Sat(K

k

)-pseudolosed.

Corollary 27 Let j > 0.

1. For eah impliation A ! B 2 P

j

we get B = A

23

in K

j

and A is Sat(K

j

)-

pseudolosed.

2. Let g

A;b

2 G

j

be a �titious objet. A = A

23

holds in K

j

i� A is no premise of

P

j

.

Proof.

Proof of 1:

For A ! B 2 P

j

there exists an i < j with A ! B 2 P

i+1

n P

i

, so there exists a

set E � M suh that exploration program asked in step i for the validity of A! E.

With ondition 1 of Theorem 26 (for step i) we get B = A

23

in K

j

and A is Sat(K

j

)-

pseudolosed beause of ondition 3 of Theorem 26.

Proof of 2:

There exists i < j with g

A;b

2 G

i+1

nG

i

, so there exists a set B �M suh that explo-

ration program asked in step i for the validity of A! B. For b 2 Z := fm 2 B j A!

m is unknowng a �titious objet g

A;b

is added, so with Corollary 16 and ondition

1 of Theorem 26 the set A is a Sat(K

j

)-intent i� BnZ = A i� A is no premise of P

j

.

Theorem 28 Let A � M and j > 0. The ondition, that A is a minimal Sat(K

j

)-

pseudolosed set (with respet to R) whih is no premise of P

j

is equivalent to the

property that A is a minimal set with A

23

6= A 2 Resp

R

(P

j

).

19



Proof.

):

Let A be a minimal Sat(K

j

)-pseudolosed set, whih is no premise of P

j

. Then we

get A

23

6= A beause of Corollary 17. Let B ! C 2 P

j

with B � A. Then B

is a proper subset of A beause A is no premise of P

j

. With Corollary 27 the set

B is Sat(K

j

)-pseudolosed and C = B

23

� A beause A is Sat(K

j

)-pseudolosed.

We have A 2 R, so we get A 2 Resp(P

j

) \ R = Resp

R

(P

j

). Before we prove the

minimality we prove the other diretion.

(:

Let A be minimal with A

23

6= A 2 Resp

R

(P

j

), then we have A 2 R, and A is

no Sat(K

j

)-intent beause of Corollary 16. The set A is no premise of P

j

beause

A does not respet the impliation A ! A

23

. Let B be a Sat(K

j

)-pseudolosed

proper subset of A. Now we show B

23

� A. Assume that B is no premise of P

j

.

For C ! D 2 P

j

with C � B we have B 6= C beause B is no premise of P

j

, so

with Corollary 27 we get D = C

23

� B beause C is a Sat(K

j

)-pseudolosed proper

subset of B. So we get B 2 Resp(P

j

) and B

23

6= B 2 Resp

R

(P

j

), whih is a on-

tradition to the minimality of A. Therefore B is a premise of P

j

. With Corollary

27 we get B ! B

23

2 P

j

and B

23

� A beause of A 2 Resp(P

j

). Therefore A is

Sat(K

j

)-pseudolosed. If A is not a minimal Sat(K

j

)-pseudolosed set whih is not

a premise of P

j

then (beause of the �niteness of M) there exists a minimal proper

subset C of A whih is a Sat(K

j

)-pseudolosed set and whih is no premise of P

j

, so

with the �rst part of the proof of this theorem we get C

23

6= C 2 Resp

R

(P

j

) whih

is a ontradition to the minimality of A.

Analogously we get the minimality of A in the �rst part of the proof: If A is not

minimal with A

23

6= A 2 Resp

R

(P

j

) then there exists a minimal proper subset

C of A with C

23

6= C 2 Resp

R

(P

j

), so with the seond part of the proof C is a

Sat(K

j

)-pseudolosed set whih is no premise of P

j

, but this is a ontradition to the

minimality of A.

Corollary 29 Let k > j > 0. If the program asks in step j for the validity of A! B

and in step k for the validity of C ! D then C is not a proper subset of A.

Proof. C

23

6= C 2 Resp

R

(P

k

) holds in K

k

, so C

23

6= C 2 Resp

R

(P

j

) holds in

K

j

beause of j < k, so C is not a proper subset of A beause of the minimality of A.

Lemma 30 Let j > 0 and let A ! B 2 Imp

M

be the impliation suh that the

program asks in step j for the validity of A ! B or A = M if the exploration ends

in step j. Let D � M and C be a proper subset of A. Then C ! D 2 P

j

i�

C ! D 2 DGB

R

(Sat(K

j

)).

20



Proof.

):

Let C ! D 2 P

j

, then C is Sat(K

j

)-pseudolosed beause of Corollary 27. We have

D = fm 2M j C ! m 2 Sat(K

j

)g and C ! D 2 DGB

R

(Sat(K

j

)).

(:

Let C ! D 2 DGB

R

(Sat(K

j

)). Then C is Sat(K

j

)-pseudolosed, so C is a premise

of P

j

beause the program asks in step j for the validity of an impliation with min-

imal Sat(K

j

)-pseudolosed premise whih is no premise of P

j

. We have D = fm 2

M j C ! m 2 Sat(K

j

)g = C

23

and C ! D 2 P

j

with ondition 1 of Corollary 27.

So at the end of the exploration the set of all aepted impliations is the Duquenne-

Gigue-Base:

Corollary 31 Let n be the step in whih the exploration ends.

Then P

n

= DGB

R

(Sat(K

n

)) and Cons

R

(P

n

) = Cons

R

(Sat(K

n

)). If there was no

unknown impliation during the exploration then Imp(K

U

) = Sat(K

n

) and P

n

=

DGB

R

(Imp(K

U

)) and Cons

R

(P

n

) = Imp(K

U

).

Proof. P

n

= DGB

R

(Sat(K

n

)) follows from Lemma 30.

Cons

R

(P

n

) = Cons

R

(Sat(K

n

)) follows from Theorem 18.

If there are no �titious objets, then we have

Sat(K

n

) � Cons

R

(P

n

) � Imp(K

U

) � Sat(K

n

) and

P

n

= DGB

R

(Sat(K

n

)) = DGB

R

(Imp(K

U

)) and Cons

R

(P

n

) = Imp(K

U

).

Now let n be the step in whih the exploration ends. The set P

n

of aepted

impliations is the Duquenne-Gigue-Base of the satisfyable impliations Sat(K

n

) of

the last ontext. This set is a generating set (with respet to the frame ontext)

of Sat(K

n

): Sat(K

n

) is derivable from P

n

with the rules (AX), (PS), (R-EX). The

set P

n

is nonredundant in the sense that no impliation of P

n

follows from other

impliations of P

n

. If there have been no unknown impliation during the exploration

then the last ontext ontains a omplete system of ounterexamples and the set P

n

is also the Duquenne-Gigue-Base of the valid impliations Imp(K

U

) of the universe

K

U

, so in this ase the expert has omplete knowledge about the impliations of the

universe. Then for eah attribute impliation A ! B the following three onditions

are equivalent:

� A! B is valid in K

U

,

� A! B is derivable from P

n

,

� A! B is satisfyable in the last ontext K

n

.
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If there have been some unknown impliations during the exploration then the set

of all satisfyable impliations of the last ontext K

n

is only a subset of the valid

impliations of the universe beause K

n

may ontain some �titious ounterexample

whih do not orrespond to objets in the universe K

U

. In this ase P

n

does not

generate all valid impliations of the universe but only the impliations whih are

ertainly valid with respet to the knowledge of the expert: For every impliation

whih is not derivable from P

n

there exists a (�titious or normal) ounterexample in

K

n

.
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