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Abstract

We investigate several aspects of very weak solutions u to stationary and
nonstationary Navier-Stokes equations in a bounded domain Q C R3. This
notion was introduced by Amann [3], [4] for the nonstationary case with
nonhomogeneous boundary data U =9 leading to a new and very large
solution class. Here we are mainly interested to investigate the ”largest
possible® class for the more general problem with arbitrary divergence
k = divwu, boundary data g = u| and an external force f, as weak as
possible. In principle, we will follow Amann’s approach.
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1 Introduction

Throughout this paper Q C R? is a bounded domain with boundary 99 of class
C*! and N = N(z) € R® denotes the unit outer normal at x = (@1, 29, 73) € O5.
In Q x [0,7), where 0 < T < oo, we consider the system of Navier-Stokes
equations in the very general form

uy—Au+u-Vu+Vp=f, divu=Ek, Ulyy = 9 U|,_, = Uo (1.1)

with nonhomogeneous data f = div F' and k, g, uq satisfying
F = (Ej)i,j:1,2,3 eLs (O, T; LT(Q)), ke L’ (O, T, LT(Q)),

1 (1.2)
g9 = (91,92, 93) € L*(0, T; W 0%(09)), up € T**(),
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For simplicity, we assume that the coefficient of viscosity equals 1. See (2.19)
concerning the space of initial values J%%(€2) as a space of functionals. Further

we suppose the compatibility condition

Where?)<q<oo,2<s<oo,1<7“<qsuchthaut%+$:1 2+%:1.

/k(t)d:r: N - g()dS for aa. t € [0,T). (1.3)

The largest possible class in the context of very weak solutions seems to be Serrin’s
uniqueness class L?* (O,T; Lq(Q)) for u defined by % + % = 1. Indeed, we cannot
expect, up to now, to obtain the desired uniqueness and regularity properties for
any larger class.

To obtain the relation which defines a very weak solution u of (1.1), we follow
Amann [3], [4] in principle and apply formally to (1.1) the test function w €
C5([0,7);C3 (), where C3,(Q) = {v € C?(Q)* : dive = 0 in Qv =0}
Then an integration by parts yields the relation

/0 (= (u, w)o — (u, Aw)g + (g, N - Vw)aq — (uu, Vw)g — (ku, w)o)dt (1.4)
— (g, w(0))q —/0 (F,Vwyadt, w e CL([0,T);C2, (7).

Here (-,-)q is the usual L?¢ — L7-pairing in Q and (g(t), N - Vw(t))sq de-
notes the value of the boundary distribution g(t) € Wﬁé’q(aﬁ) at the normal
derivative wy(t) = N - Vw(t)|m; furthermore, (ug,w(0))q means the value
of the functional vy € J%(2) at w(0) = w|,_, € Ci,(Q), see (2.19), and
v = u®u = (ugtl;)ije123 for u = (uy,ug,uz). We also use the relation
u-Vu=(u-V)u=div (uu) — ku. Note that div F = (Zle(a/axi)mj)jzl,m.

Using in (1.4) in particular the test function w € Cg([0,T); C3,(€2)) with
C3,(Q) = {v € C§(Q)?% dive = 0}, we obtain, together with some appropriate
distribution p, the validity of the first equation in (1.1) in the sense of distribu-
tions. The second equation divu = £ in (1.1) must be supposed additionally to
(1.4). To explain the boundary condition Ul,, = 9 10 (1.1) we observe that the
normal derivative wy () of w(t) at 0 has the form

wy(t) = N - Vuw(t) = (curlw(t)) x N, (1.5)

and therefore, the relation (1.4) contains only the tangential component N x g of
u at 0§2. Indeed, we will show that the tangential component of u is well defined
by (1.4) as a distribution on 052, and we will derive an explicit formula, see (4.5).
The (well defined) condition N - u(t)|aQ = N - g(t) for the normal component of

u at 0€2 must be supposed additionally. This leads to a precise formulation of



the boundary condition u|, = g, see Remarks 3(2) in Section 4 below. Thus we
suppose, additionally to (1.4), the conditions

divu(t) = k(t), N-u(t)]. = N-g(t) fora.a.tel0,T). (1.6)

e

This leads to the following

Definition 1 Assume that the data F\k, g and u, satisfy (1.2) and (1.3). Then
u e L*(0,T; L9(2)) is called a very weak solution of the Navier-Stokes system
(1.1) if the conditions (1.4) and (1.6) are satisfied.

Note that a very weak solution u need not have any differentiability property
in space and time. In particular, v need not satisfy any energy inequality with
finite energy |[ull?o (o .2y + IVl 220070200y < o0 like weak solutions in the
sense of Hopf. This justifies the notation ”very weak solution®. On the other
hand, a very weak solution is unique — a fact which is not known in general for
weak solutions in the sense of Hopf.

The notion of very weak solutions is not new for homogeneous data k£ = 0
and g = 0, see [3], [4], [14], and the literature therein. However, Amann’s notion
of very weak solutions in [3], [4] for £ = 0 and boundary values g # 0 introduces
a completely new aspect. It leads to new solution classes of very low smoothness
in space such that the boundary condition Uy = 9 is not defined by usual
trace theorems but more generally by the conditions (1.3), (1.4). This will have
interesting applications.

Following Amann’s approach our aim is to extend the solution classes for
(1.1) to divu = k # 0 and to the "weakest“ possible case Ul =9 € Wﬁ’q(aﬁ)
for a.a. t € [0,7], leading to the solution class in Definition 1 without any
smoothness in space and only satisfying Serrin’s condition, see Theorem 1. We
will develop such a theory also for the linear nonstationary Stokes system, see
Theorem 4. Further we improve the results on very weak solutions of stationary
Stokes and Navier-Stokes systems developed in [14] to the more general case that
ke L™(Q), %+$ = 1 see Theorems 2 and 3.

Concerning the initial condition u| _ == uo in (1.1) we note, see Theorem

1, that A-"Pyu is well defined as a continuous function on [0,T') with values in
L1(Q); here, A, means the Stokes operator and P, the Helmholtz projection. We
obtain the well defined condition

A;quu|t:0 = A, ' Pyuy, (1.7)

which can be understood as the precise meaning of u| = uo, see (2.19) for

Aq_quuO and the proof of Theorem 1.
Thus each condition in the system (1.1) has a well defined direct meaning for a
very weak solution u. The first two equations hold in the sense of distributions on
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Qx(0,7), Ul =9 holds in the sense of distributions in 0€2, and ul,_, = Yo holds
in the sense of (1.7). Moreover, if the data are sufficiently smooth, u coincides
with the usual strong solution.

Our main theorem on the system (1.1) reads as follows.

Theorem 1 Suppose the data F,k,g and uy satisfy (1.2) and (1.3) with 3 < ¢ <
00, 2<s<o0, 1l <r <y, %+$:%, %+%:1. Then there exists some T' =
T'(F,k,g,u9) > 0,0 < T <T, and a uniquely determined very weak solution
we L*(0,1"; L)) of the system (1.1) satisfying A, Pyuy € L*/*(0,1"; LL(12))
for all 0 < T" < T', and A;'Pyu € C([0,T"); LL(Q)). The existence interval
[0,T") is determined by the condition (4.23), depending on the data, and includes

the case T' =T = oo if the data are sufficiently small.

Up to now we cannot prove that there exists an open maximal existence
interval as in [3], [4] for the case k = 0. The reasons are the very weak assumptions
on ¢g and k in (1.2).

In the linearized case u - Vu = 0 we have to omit the term (u - Vu,w)q =
—(uu, Vw)q — (ku, w)q in (1.4), and we may omit the restriction 2 +2 =1 in
(1.2), which is caused by the nonlinear term. Then we can show the existence and
uniqueness of a very weak solution u € L* (0, T, Lq(Q)) of the linearized system
(1.1) satisfying the estimate

||A;1Pqut
< C(lluoll gos ) + 1Flls.rser ) + Wkl Lsomizr@) + gl

Loo,rse (@) 1w Ls 0,09 () (1.8)
Ls(o,T;W*%’q(an)))

with C'= C(€, ¢, s) > 0, see Theorem 4 in Section 4 below.
In the stationary case we consider the system

—Au+u-Vu+Vp=f, divu=Ek, Ul =9 (1.9)
with data f = div F' and k, g satisfying
F=(F;) el (), keL'(Q), ge W_é’q(aQ), / kdx = N -gdS, (1.10)
) o9

with3 <g<oo, 1 <r<g, 5+,;=7.

r
An obvious modification of the nonstationary case yields the following

Definition 2 Assume that the data F,k and g¢ satisfy (1.10). Then u € L9(Q2)
is called a very weak solution of the stationary Navier-Stokes system (1.9) if the
relation

—(u, Aw)q + (g, N - Vw)sq — (uu, Vw)q — (ku,w)q = —(F, Vw)q,  (1.11)



holds for all w € C§ ,(), and the conditions

divu=%k, N N-g (1.12)

Uy T

are satisfied.

In this case we obtain the following result.

Theorem 2 Suppose the data F, k and g satisfy (1.10) with 3 < ¢ < oo, 1 <r <
q, % + % = L. There exists a constant K = K (S, q) > 0 such that if

r

1Ellzr@) + 1l + 9l < K (1.13)

then we obtain a uniquely determined very weak solution v € L1(2) to the sta-
tionary Navier-Stokes system (1.9). This solution satisfies the estimate

lullza@) < CUEF @ + [Fllr@ + N9l -1 00) (1.14)
with C = C(, ¢) > 0.
Similarly as in (1.5) we obtain for x € 0 the identity
wy =N - Vw = (curlw) x N, we Cj,(Q). (1.15)

Setting w € Cf,(2) in (1.11) we obtain that —Aw 4+ u - Vu + Vp = f holds in
the sense of distributions with some distribution p. In the stationary case we can
also prove that each very weak solution u has a well defined trace ul,, even in

the space W*%’q(aﬁ), and there is an explicit representation formula for Uy
see (3.6).

Note that Theorem 2 improves the result in [14] where ||k|
by the stronger norm ||k|| 4()-

In the linearized case u - Vu = 0, we omit (uu, Vw)q, (ku,w)q in relation
(1.11), and the existence result together with estimate (1.14) holds without any
smallness condition for every 1 < g < o0, 1 <71 < ¢, % + - > %, see Theorem 3
in Section 3 below.

The improvement concerning ||k||1r) leads to a certain scaling invariance
in the following sense. Let A > 0, consider some ball B,(zy) C R* with radius
a > 0 and center zy € R®, and let F,k, g be data as in (1.10) with Q = B,(xy),
3<g< oo, 1 <r <y, % + % = % Then it is easy to show that u € Lq(Ba(a;O))

is a very weak solution to the system (1.9) on Q2 with data F, k, g iff & € L1(Q),
2 = By/x(x0), is a very weak solution of the system

Lr() is replaced

1
1
q

—ANi+@-Vi+Vp=divF, diva=F, i, =9 (1.16)



on ), where @, p, F, l;:,g are defined by
a(z) = (M — o)+ 20), plz) = Np(Az — z9) + 20),
F(z) = NXF(A@—x0)+x0), k(@) = NE(Mz —x0) + 20),

() = Mg(A(z — z0) + z0).

Nl

Then we conclude that if K,, = K(Ba(xo), q) > 0 is the constant in (1.13)

for B,(zy), then )\173 a,g can be chosen as the corresponding constant for
Ba/a(x0). We also conclude that (1.14) holds for u, F, k, g in Q@ = B,(zy) with
C = C(Bul(xo),q) iff (1.14) holds for @, F,k,§ in Q = By (o) with the same
constant C'. These properties have several applications in the local regularity
theory. Similar results hold in the nonstationary theory.

The proofs of these theorems are organized as follows. First we consider the
linearized stationary and nonstationary system and prove explicit representation
formulas. Applying these formulas to the nonlinear system leads to a fixed point
problem which can be solved by Banach’s fixed point theorem for sufficiently
small data. In Section 2 we prepare several preliminaries.

2 Notations and Preliminaries

Classical Function Spaces. Let 1 < ¢ < oo and ¢’ = # such that %+$ =1.

We need the usual spaces L(Q2) and W*1(Q2), W;"% (), o > 0, with norms
Flzag@) = I-llg.0 and [|-weag) = Illag0, resp. The space W=9(Q) = W57 ()’
is the dual space of W () with the natural duality pairing (-, ) and the norm
- llw-aa) = ||-l-aig,0- Thus, e.g., (f, h)o means the value of the functional f €
W—4(Q) at h € W (). Similarly, for functions on the boundary, L4(952) and
Wea(9), W4 (90), a = 0, with norms [||zs(on) = |-lasn and [-lweson =
| lasq,00> ||llw-aa@a) = [|]|—a;q.00, Tesp., and the duality pairing (-, -)aq are the
corresponding notions for 9. In particular, the pairing between L?(0f2) and its
dual space L¢ (0S2) = L4(99)' is given by

o0

where [, ...dS means the surface integral on 02, see [24] and [26], p. 33, p. 40.
For more details on these spaces cf. [1], [11], [12], [26], [28]. In general, we use
the same symbol for scalar, vector, and tensor valued spaces.

By Cy(Q), C7(Q), C*(2), C¥(09), v = 0,1,... and v = oo, we denote the

usual spaces of smooth functions. We set C¥(Q2) = {v € C(Q); Vg = 0}. The

space of distributions C§°(2)" is the dual space of the test space C§°(€2) with the
usual topology, the duality pairing is again denoted by (-, -)q. Similarly, the space
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C>(0R2)" of boundary distributions is the dual space of the test space C*(0%2)
with the duality pairing (-, -)sq. This test space has the form C°°(0f2) since 0
has no boundary.

Spaces of solenoidal vector valued functions are denoted by appending "o .

Thus we have Cf,(Q) = {v € C§(Q); dive = 0} and C§,(Q) = {v € C§(Q);
dive = 0}. The corresponding functional space for solenoidal test functions
C5%,(82) is the dual space Cg%, (€2)', again with pairing (-, -)q. By a theorem of de
Rham, [27], Chapter I, Proposition 1.1, a distribution d = (dy, ds, d3) € C§°(S2)’
with (d,v)q = 0 for all v € C§,(Q2) has the form d = Vh with some scalar
distribution h.

Let L1(€2) be the closure of C§%.(€) in the norm [|-||gq. Then L () = LL(Q)’
is the dual space of L4(Q2) with pairing (-, -)q.

Traces and Extensions. Let a > %, « an integer. Then the trace map f — f|aQ

is a well defined bounded operator from W®4(2) onto Wa_%’q(aQ). Conversely,

there exists a linear and bounded extension operator E: h — Ej, from W“*%"I(a(z)
into W*4(Q2) satisfying En,, = h- Thus it holds | En|asg.0 < C'||h||a7%;q’3Q with
C=C(Qa,4q) >0.

Let 1 <7 <gq,5+¢ > 1, and let f = (fi, fo, f5) € L(Q) with div f € L7(Q).
Then we use Green’s identity

(div f, Ep)ya = (N - f, h)aa — ([, VEp)a

L

for h € Wlfq”q,(aQ) = W%’q’(aﬂ) and with the extension operator E :
1 ’

Wa?(0Q2) — WhH?(Q). This leads, using the embedding property ||El/ 0 <

C(|Enllg.0+ IVEL|g.0),C =C(2,q,7) > 0, to the estimate

[N - f, sal < Ol fllao + [1div Fll-o)llAll 1y 00 (2.1)

with C' = C(Q,q,r) > 0. Hence the trace N - flog € W_%’q(aﬁ) of the normal
component of f at 02 is well defined and it holds the estimate

IN - fll-tg00 < Cfllg + lIdiv f

q’

|r0)- (2.2)
Using the corresponding identity
(curl f, Ep)o = (N X f, Ep)aq + (f, curl Ej)q

now for h = (hy, hs, h3) € Wlfi’q,(aQ), we obtain the following trace property:
It f = (f1, fo, f3) € L4(Q), curl f € L(R), then the trace N x f|. € W (9Q)
of the tangential component of f at 0€2 is well defined and it holds the estimate

IN % fll-14.00 < C([flloo + [leurl fl-.0) (2:3)
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with C = C(Q,q,r) > 0. The identity f = (N - f)N + (N x f) x N at 992 shows
that it is justified to call N x f|(‘m the tangential component of f at 0€2.

Let f € L9(Q) with [, fdz = 0. Then there exists some b = b/ € Wy*()
with div b/ = f such that f — b/ is a linear mapping satisfying

b g2 < Cllfllge, € =C(Qq) > 0. (2.4)
If moreover f € W,9(Q), then b/ € WZ(Q) and
16712000 < CIVfllogy € =C(Q,0) >0, (2.5)

see [5], [11], Theorem II1.3.2 and [26], p. 68.
Using properties of the weak Neumann problem in L9(€2), see [23], we find

for each h € W™ ¢4(9Q) some E" = (E, B!, EF) € L9(Q) with div E* € L7(Q),

N - Eh|aQ = h, such that h — E" is a linear map satisfying

1E g0 + [|div E"

Iro < ClIPl- 150,00 (2.6)

with C' = C(Q,q,r) > 0.
Let b = (R, ho, hs) € W' 09(9Q). Then we find an extension w" € W24(Q)N
WOI"](Q) such that N - th|an = h depending linearly on h; moreover,

w20 < CllAlli-1/g50.00 (2.7)

with C'= C(,q) > 0, see [22], Theorem 5.8, p. 104, or [28], 5.4.4, p. 385.
If additionally N - h| = 0, then we can show that div w"|69 =0and N -
th|asz =—-N x curlwh|m = h, see [14]. This yields [, divw"dz = 0, divw" €

Wy(Q), and we find b = b(w") € WZ(Q) satisfying divb = divw” and (2.4),
(2.5). Setting w" = w" — b(w") we see that w" € W29(Q) satisfies

wh| =0, N- vwh| =-Nx Curlzf)h| =h, dive"=0. (2.8)
o0 o0 o0

Moreover, the mapping h +— @" is linear and
[6" 20,0 < Cllhlli-1/gg.00, € =C(2,q) >0, (2.9)

see [14], (2.14).

The Stokes Operator. Let f = (f1, f2, f3) € LY($2). Then, the weak Neumann
problem AH =div f, N-(VH — f)| = 0, has a unique solution VH € L1(f2)
satisfying the estimate

0N

IVH]|g.0 < Cl[fllg0 (2.10)



with C' = C(Q,q) > 0, see [23]. Setting P,f = f — VH we define the Helmholtz
projection operator P, as a bounded operator from L?(€2) onto LZ((2), satisfying
P? = P, and

(P,f, 9y = (f, Pyg)a, forall f e LI(Q),ge LY (Q).

Hence P, = Py holds for the dual operator P, of F.
The Stokes operator A,, with domain

D(4,) = L§(Q) N Wy (2) nW(Q) C LE(Q)

and range R(A,) = L1(Q), is defined by Aju = —FP,Au, u € D(A4,). The
fractional power A% : D(AZ) — L1(Q2) = R(A]) with D(A,) € D(AS) C LL(9),
0 < a < 1, is well defined, bijective and its inverse (Ag)_1 = A;* is a bounded
operator from LZ(2) into LZ(2) with range R(A,*) = D(A7); furthermore,
the operator (A7)" = Ay is the dual operator of A7. The norms [julls,g0 and
|Aqull0 are equivalent for w € D(A,); analogously, the norms ||ul|1,,o and

||Aé/2u||q79 are equivalent for u € D(AZ) = L (Q)NW,%(Q). Note that the space
D(AY) endowed with the graph norm ||Afull,0, u € D(AY), is a Banach space.
Furthermore, we mention the important embedding property

|ullg0 < C’||Af;‘u||%g, u e D(A,Oy‘), 1<vy<ygq, 2a+ g = %, (2.11)
with C'= C(£,¢q) > 0. See [2], [9], [13], [17], [18], [21], [25], [26], [28] concerning
proofs and further properties of the Stokes operator. Finally we observe that
Agu=Ayuholds if u e D(A;)) ND(A,), 1 <qg<o0,1<p<o0.

It is well-known that —A, generates a bounded analytic semigroup {e™* :
t > 0}, see [2], [16], [19], [25], [26], and that

JAze ], 0 < Ce'lully, v e LLQ), £>0,  (212)

with constants C' = C(Q,q) >0, § = (2, ¢) > 0.

Let 0 < a < 1,1 < g < o0, and let d = (dy,ds,d3) € C§(Q2)" be a dis-
tribution. Assume that (d,v)q is well defined for all v € D(Ay) and is con-
tinuous in the norm [[A%v||y q, i.e., there exists a constant C' > 0 such that
[(d,v)a|l < C||AJv[lya. In other words, the functional (d,v)q, v € D(Ay),
is a well-defined element of the dual space D(Ag)" of D(Ag). Writing formally
(d,v)q = (d, Pyv)q = (Pyd,v)q, we call P,d = (P,d,)q the restriction of the
functional d to test functions v € D(Aj), giving P, a generalized meaning; in
short, we write Pyd € D(Ag)".

Let d € C°(Q) with P,d € D(A%). Since R(A%) = LZ(S), there ex-
ists a uniquely determined element d* € LZ(Q2) satisfying the relation (d,v)q =



(d*, Agv)a. We set d* = A *P,d, giving the operator A_® a generalized meaning.
Thus A, *Pyd € LL(S2) is well defined by the relation
(d, v)o = (Pyd, v)o = (Pyd, A7* A%v)g = (A7*Pyd, A%v)g, (2.13)
v € D(Ay), similarly as in the theory of distributions. We conclude that the
operation A-*Pyd € L(€2) is well defined by (2.13) if d € Cg°(Q2)" and P,d €
D(Az)".
To obtain examples, we consider a functional f in the (vector valued) Bessel
potential space H,?*(Q) for 0 < a <, see [1], 2], [28]. Then P,f € D(A%),

29
since Cg%,(2) is dense in the Banach space D(Ag) because of o < 3. Therefore,
A 2P f € LE(R) is well defined in this case.
Let 1 < r <g, %+% > %, and let u = (uy, ug, uz) € LI(€2). Assume that

the distribution d = Aw is continuous in the norm [|A?2 - ||,/ . Then the element
AP A e L7 () is well defined by the relation
(Ar PP, Au, A2 vy = (u, Av)g, v € Cgo (), (2.14)

according to (2.13); see also [14], Section 2. Here we use that Cg% (€2) is dense in
the Banach space D(A2).

Let F = (Fj;) € L"(Q) where 1 < r < g, %+% > 1 and set d = div F. Then
using (2.11) and the estimate

1
IVollro < CillAfvllva < Col|Agullya, v e D(Ay),

C; = Ci(Q,q,7) > 0,4 = 1,2, we see that the distribution v — —(F,Vv)q is
contained in D(Ag)". Therefore, the element F' = —A_ P, div F' € LL(Q) is well
defined by the relation

(F, Agvyg = —(A, ' P,div F, Ayv)g = —(div F, v)q (2.15)

and it holds X
1Ellg0 = 147 Py div Fllgo < C[|F|l 0 (2.16)

with C'= C(€, ¢, ) > 0; see [26], III, Lemma 2.6.1 concerning similar operations.

Spaces L9(0,T; X). Let 1 < ¢, s < co. Then we introduce the usual Bochner
space L*(0,T'; X) with norm ||-|| s (0,1,x) = (fOT II-11% dt)l/s where X is any Banach
space with norm ||-|| x.

In the case X = W*4(Q), =1 < a < 1, we set ||||zs0rwea(0)) = |*lasg,s,05
and for X = W9(90) let [|ys(ravastony) = |-laguon. Finally, if X = L1(%)
or X = L1(002), we set |-|oxorizr(@) = |-l and ||
resp. As duality pairing we define

Lo0,1522(09)) = ||*|lg,s,00

T
(f. Por = / (f.)odt with (f,g)o = /Q fgde (2.17)
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for f = (f17f27f3) S LS(O,T, Lq(Q))J g = (91792793) S LSI(OJT; Lq'(Q)) Simi-
larly, we use the notation

T
<f79>aQ,T=/0 (f,goadt with (f,g)sq = mf-gdS.

We also need the spaces C”’([O,T);X), v = 0,1,2,..., of X-valued func-
tions v(t), such that v, (d/dt)v,...,(d/dt)’v are continuous on [0,7). We set
C’O§[0,T);X; = C’([O,T);X). The space C’&([O,T);X) is the subspace of
C'([0,T); X) consisting of functions v with compact support contained in [0, T),
whereas C§((0,7); X) is the subspace of C*([0,T'); X)-functions v with compact
support contained in (0, 7).

Let f € L*(0,7;L%(Q)). Then there exists a unique function v €
L#(0,T; D(A,)) with v, € L*(0,T;L%(Q)) and v € C([0,T); LL(S2)), satisfying
the evolution system

n+Av=f 0<t<T, v(0)=0.
To be more precise,

t
o(t) = / e DA f(P)dr, 0<t<T,
0

and it holds the 'maximal regularity’ estimate

|q,s,Q + ||Aqv||q,s,ﬂ <C|f

|q,s,Q; C = C(Q, q, 8) > 07 (218)

||Ut

see [19], [25].
The Space of Initial Values. Let 1 < ¢,s < oo. The space of initial values

J**(Q) consists of distributions u satisfying A" Pjuy € LI(Q), see (2.13), and
an additional integrability condition in time. To be more precise, let

T05(Q) = {ug € C(Q) : A, Pyug € LE(Y), / | Age A, Pyt dt < 00}

0
(2.19)
and -
ol = 14, Prtllse + ([ 1dge 44, Pyl )
Obviously, || - || 74.s() defines a seminorm in J%*(§2) which becomes a norm if we
identify two elements ug, vy € J*(£2) satisfying ||A_;1Pq(u0 —vg)|| 7as() = 0, i.e.,
up — o is a gradient. Of course, since w(0) € C¢ () in (1.4) is solenoidal, initial
values can be prescribed only modulo gradients.
1,
As an example, let uy € C3°(Q)' and assume that A, ° Pyug € LL(S2) where
0 <& < i Then by (2.12) up € J*(2). Using similar calculations as in [4] we
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can show that ug € B;g/S(Q) is sufficient for uy € J%°(2) in the case s > 2; here

B;g/s(Q) denotes a Besov space, see [2], [3], [4], [28].

Consider u € L*(0,T; L)) such that its time derivative (A7'Pyu), =
A Pyuy € L#(0,T7 L4(€2)) in the sense of distributions. Then, after redefining on
a null set of [0,T), we get A 'Pu e C([0,7); LL(R2)). Thus A, Pyu(t) € LL(Q)
is well defined for each ¢ € [0,T), and therefore A" Pju(0) = A" Pug in (1.7) is
well defined.

Let vy € LL(Q) such that [[*[|Ae ™ vy||s dt < oo, let f € L#(0,T; LL(R))
and consider the general system v, + A,v = f,v(0) = vy. Then we apply (2.18)
to 9(t) = v(t) — e 4wy, obtain the estimate

T 1
lotlgns Wl < € (( [ e onll i)+ 17len) (220
0

with C'= C(, ¢, s) > 0, and the representation formula

t
o(t) = ey, + / e f(rydr, 0<t<T. (2.21)
0

3 Stationary very weak solutions

First we consider the linearized stationary system

—Au+Vp=f, divu==k, Ul =9 (3.1)
with data f = div F' and k, g satisfying
FelL(Q), ke L'(Q), ge W +(0Q), / kdv= [ N-gdS (3.2)
Q o9

where 1 < g <oo,1<r <g, % + 5 > % Here we follow [14] in principle, but in
[14] the stronger condition & € L9(S2) is supposed.

Modifying Definition 2 in an obvious way for the linearized case, u € L%((2)
is called a very weak solution of the system (3.1) with data (3.2) if

—(u, Aw)g + (g, N - Vw)sq = —(F, Vw)g, w e Cj,(Q), (3.3)

and additionally the conditions (1.12) are satisfied, i.e., divu = k and N-u = N-g
on 0. Our main result on (3.1), improving [14], Theorem 3, reads as follows.

Theorem 3 Suppose the data F,k,g satisfy (3.2) with 1 < ¢ < 00, 1 <r < g,
%+% > % Then there ezists a unique very weak solution u € L1()) of the system
(3.1) satisfying the estimate

lullge < C([F[lro + kllre + 9ll-1/g4,00) (3.4)
with C = C(2,¢q,1) > 0.
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Remarks 1 (1) Setting w € Cg5, () in (3.3) and using de Rham’s argument we
find some pressure p € W19(Q) such that —Au + Vp = f holds in the sense
of distributions, and that ||p||_1.,o satisfies the same estimate as ||ul|.o in (3.4).
Moreover we conclude from (3.3) that

AT IPAu=—A; P div F, (3.5)

where A;%P,« div F' is defined by the relation (A;%P,« div F, AE, v)g = —(F, Vv)q,
v € Cg5, (), see (2.14) and (2.15).

(2) Assume for a moment that u is sufficiently smooth. Then, inserting
w = " from (2.8), (2.9) in the expression (u, Aw)g, and using integration by
parts, we obtain an explicit trace formula for ul,, a8 a functional in W*%’q(aﬁ).
To be more precise, the map h = (u|, , h)sq for h € W1 (9Q) = Wa? (99),
N - h’|aQ = ( is defined by

(ul, . hyoo = (u, Aib")o = (A PAu, AZi"yo, heW o7 (09).  (3.6)
Using (2.9) with ¢ replaced by ¢’ we then obtain the estimate

_1
[(u|,, Moal < Cllullga +Ar* P-Aullyo)l[bll/gq00 (3.7)
onN

with C' = C(€,¢,7) > 0. Formula (3.6) is well defined for each very weak solution
u € L(N2) and yields an explicit formula for the tangential component of Uy

The normal component N - Uy, 18 well defined by (1.12), (2.1). This shows that

the trace Uy € W_é’q(aQ) is well defined for a very weak solution u, and (2.1),
(3.7) yield the estimate

-1 ‘
[u],0ll- 1000 < Clllullgn + 1A * B Au]lro + [[divul,.o) (3.8)

with C' = C(Q,q,r) > 0.

(3) We conclude that a very weak solution u € L9(2) of (3.1) satisfies the
conditions (1.12), (3.5) and the condition ul,, = 9 as elements of W_%’q(afl).
Conversely, if u € LI(Q2) satisfies (1.12), (3.5), and the (well defined) trace Uy,
is equal to g, then u is a very weak solution of (3.1).

Proof of Theorem 3. Following in principle [14], we first assume that u € L((2)
is a given very weak solution u of (3.1), and prepare some estimates.

Using the trace map W' (Q) — W'~1/74(9Q) and the embedding estimate
(2.11) we obtain that

(9. N - Vu)oal < Cllgll s gonlvla we @), v=Amw  (39)
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with C' = C(Q,q) > 0. Therefore, the functional v — (g, N - VA;IU>39 is
continuous in ||v||, q, and it holds (g, N - VA(;11)>3Q = (G, v)q with some unique
G € L) satisfying [Gllon < Cllal] 00

Similarly, v — (F, VA;IU>Q, v € Ayw, is continuous in ||v]|y o, and with
F= — AP, div F, see (2.15), we get that (F, VA(;IU>Q = (F,v)q and || F|g0 <
C||F||rq with C' = C(£2,¢,7) > 0 by (2.16).

Using E" for h = N - g, cf. (2.6), the compatibility condition in (3.2) yields
Jo(div E"—k)dz = 0. Hence there exists b € W, (Q) satisfying div b = div B* —k
and, due to (2.6), (2.4),

Ibllg < CLlIVBllne < Co(lldiv E® |0 + [[Ellr0) (3.10)

where C; = C;(2,¢,7) > 0, i = 1,2. Then we use the solution VH € L?(£2) of
the weak Neumann problem

AH =div (E" —=b) =k =divu, N-VH| =N-(E"-b) ,
o0 o0

and applying (2.10), (2.6), (3.10) leads to the estimate

IVH]g0 < CHlIE" = bllga < Calllgll-1,00 + I

|r.0) (3.11)

with C; = C;(2,¢,7) > 0. Further we get from (2.10) that ||[VH||,0 < C||lullq.0
with C'= C(Q,q) > 0. Obviously, VH only depends on the data k, g.

Using (2.2) and (2.3) with curl VH = 0 we conclude that VH| € Wﬁ’q(aﬁ)
is well defined, and that

IVH| 1400 < CUl9]l-154,00 + I£llr0) (3.12)

with C' = C(Q,q,r) > 0.
Set & = Pyju=u— VH € L1(Q) andgzg—VHbQEW_

Q=

9(0€2). Then
{9, N-Vw)aa| < C([lg]]-1,g 00 T [Ell-0)llvlle 0w e C3,(Q), v=Ayw, (3.13)

cf. (3.9). As above, we construct G € L%(Q) satistying (g, N - VA;11)>39 =
(G, v)q, and the estimate

1Gllee < Cllgll 14000 + 1F]ln0) (3.14)

holds with C' = C(Q,¢,r) > 0.

In the next step we use the relation (VH, Aw)q = (VH, N - Vw)sq, w as in
(3.13), which follows from using an approximation of H by smooth functions and
an integration by parts. Then by (3.3) a calculation leads to (g, N - Vw)sq +
(F,Vw)gq = —(ii,v)q, and inserting G, F yields (G, v)q + (F,v)q = —(@,v)q.
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From the regularity properties of the Stokes operator Ay, see [25], we know that
the set of all v = Ayw with w € CF,(Q) is dense in LY (). Thus we may use

the last relation for all v € L7 (Q), and we get the representation formula
wu=VH-G-F (3.15)

for the given very weak solution u.

Since the right hand side of (3.15) depends only on the data F|k, g, we can
use (3.15) to construct u € LI(2). Then the same arguments as above show that
u satisfies (3.3) and (1.12). Thus u defined by (3.15) is a very weak solution
of (3.1). Since each given very weak solution of (3.1) has the form (3.15), we
obtain the uniqueness assertion. The estimate (3.4) follows from (3.12), (3.14),
and (2.16). This proves Theorem 3. n

Remarks 2 (1) Suppose that the data F, k, g in (3.1), (3.2) satisfy the stronger
conditions F' € L1(), k € L1(2), g € W'=1/949(9Q), 1 < q < oo. Then the very
weak solution u in Theorem 3 satisfies v € W(Q2) and estimate

[ullige < CU[Fllg0 + [1Kllge + 9ll1-1/g0.00) (3.16)

with C' = C(, q) > 0. The existence of such a solution u of (3.1) is well known,
see [9], [11], [13]. Since u is obviously also a very weak solution which is unique,
we conclude this regularity property; see also [14], Lemma 4.

(2) In the same way we conclude that if the data in (3.1), (3.2) satisfy the
conditions f = div F € LI(Q), k € WH(Q), g € W2~1/29(9Q), then this solution
satisfies

||u||2;q,ﬂ < C(Hf |q,Q + ||k||1;q,Q + ||g||271/q;q,8f2) (3-17)

with C' = C(Q,q) > 0. Thus (3.16) and (3.17) are regularity properties of the
very weak solution u if the data are sufficiently smooth.

Proof of Theorem 2. Following [14] we first consider a given very weak solution
u € LI(Q) of the system (1.9). Using similar arguments as in the previous proof
we obtain, since u - Vu = div (uu) — ku and 3 + % = 1 that

[{u- Vu,w)a| < C(lullgo + [Ellrallullg)Vwllie, we C5, Q). (3.18)
Hence we find W (u) € L"(2) satisfying
(u-Vu,w)q = (div (uu) — ku, w)q = (div W (u), w)q = —(W(u), Vw)q, (3.19)

and
W (u)llra < Clull?g + 1kl lullqe) (3.20)

with C = C(Q,q,r) > 0, similarly as in (2.15), (2.16). We see that u is a very
weak solution of the linear system

—Au+ Vp=div (F - W(u)), divu=E, g. (3.21)

u|69 -
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Then (3.15) leads to the formula

w=VH-G—F—W(u) (3.22)

~

where VH, G, F, W (u) are determined by

AH =k N-(VH-g) =0,
(G} = (9-VH| , N-VA ),
<F7U>Q = <F7 VA,;IU>97
(W(u),v)g = —(uy, VA(;LU>Q - (ku,A;lwg for all w € C§ ,(Q), v = Agyw.

Setting & = u — VH, F(i) = —F — G — W (i + VH), we obtain from (3.22)
the equation & = F (@), which can be solved by Banach’s fixed point theorem.
This leads to the desired solution u = 4+ VH.

For this purpose we use similar estimates as in the previous proof, and obtain

1F@llge < Cllallgn +1lgl-1400 + [Elra)” (3.23)
+CIE o (llillg + N9l -14,00 + [1Ellre)
+C(IF e + gl 1000 + 1Ell0)
with C'= C(Q,q) > 0. Setting a = C, f = ||g||_%;q789 + |&|lrq, v =C(|F||r0 +

B)+B,6=Cllk

|0, we obtain the estimate

1F(@)lge + 8 < a(llillge + B8)* +o([a

lpo +6) + 7. (3.24)

Then we consider the closed ball B = {a € LL(Q2); |40+ 8 < y1} where y; >0
means the smallest root of the equation y = ay?+dy+~. Supposing the smallness
condition 4ay + 20 < 1 we get y; > ( and ||F(a) — F(0)]|g0 < a||a — 9|40 with
some 0 < a < 1. Now Banach’s fixed point theorem yields a unique solution
u € B with & = F(a), see [26], V.4.2, for details. Then u = u+ VH solves (3.22)
and is a very weak solution of (1.9). The smallness condition 4ay + 20 < 1 can
be written in the form (1.13).

To prove uniqueness we follow [14] and assume that there exists another very
weak solution v € L1(Q) of the system (1.9) with the same data F,k, g as for u.
Setting U = u — v we can show that the equation

(U, Aw+v-Vw+u- (V)" + kw)g =0 (3.25)

is satisfied for all w € nga(ﬁ), where "T'* denotes the transpose. Note that
v need not satisfy any smallness condition, but that ||ul|, is small. Then, by
standard arguments, we solve for each G € C§°(€2) the modified Stokes system

~Aw—v-Vw—u- (V) —kw+Vr =G, divw =0, W, =0
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to get a solution (w, V) € (W23/2(Q) n Wy *(Q)) x L¥2(Q). Since C2,(9) is
dense in (W2¥2(Q)N WOI’?’/Q(Q)) N L3?(Q), we may insert this w in (3.25) which
finally shows that U = 0, u = v. This proves Theorem 2. The estimate (1.14) is
an easy consequence. ]

4 Nonstationary very weak solutions
Consider the linearized nonstationary system

u— Au+Vp=f, divu=4k, g, = up (4.1)

o0 t=0

with data f = div F' and k, g, ug satisfying
Fel*(0,T;I'(Q), keL*(0,T;L7(Q), ge L*(0,T;W +9(0Q)),
up € J*¥(Q), / kdx = N-gdS fora.a.te|0,T), (4.2)
Q o0
Where1<r§q<oo,§+%Z%,1<s<oo.
Modifying Definition 1 in an obvious way for the linearized case, a vector field

ue L*(0,T; L)) is called a very weak solution of the system (4.1) with data
(4.2) if

—(u, wpyar — (u, Aw)ar + (g9, N - Vw)sar = (ug, w(0))q — (F, Vw)qr, (4.3)

w € C§([0,T); C¢,(Q)), and additionally the conditions (1.6) are satisfied, i.e.,
divu=kand N-u| = N-gae in 0,7).
Our main result on this system reads as follows.

Theorem 4 Suppose that the data F,k, g and uy satisfy (4.2) with 1 <r < q <
o0, %+$ > 1 1 < s < co. Then there exists a unique very weak solution

— r

u e L*(0,T; LI(2)) of the system (4.1), satisfying

A, Ppuy € L*(0, T35 L3(Q)), A, ' Ppu € C([0,T); LE(Q)), A, " Pyu|,_ = A, Pyug
and

144" Pyuellgsotllullgse < Clluollzos @)+ 1 FllrsotlEllrsat gl 100) (4-4)
with C = C(,¢q,1,s) > 0.
Remarks 3 (1) Setting in particular w € C§°((0,7); C5%(€2)) in (4.3), we ob-

tain, see [26], p. 248, p. 202, [27], the existence of a distribution p such that
uy — Au+ Vp = f holds in Q x (0,7 in the sense of distributions.

17



(2) Let h = (hq, ha, hs) € CE((0,T); W=Y/4 7 (9Q)) with N - h|,,, = 0- Then
h(t) = " see (2.8), (2.9), is a linear mapping satisfying (w"); = @"*. We may
insert w = @" in (4.3) and obtain the formula

<gJ h’>8Q,T - <U’7 uA)ht>Q,T + <U, Awh>Q,T - <F7 th>Q,T- (45)

Since the normal component N - h of the test function A is zero, this formula
yields a well defined expression for the tangential component N X g of the bound-
ary values. It is easy to see using integration by parts that /N X ¢ coincides with
the usual trace N x U, if u is sufficiently smooth. Therefore, we may call the
right hand side of (4.5) the trace N x ul,, of the tangential component of u at
0f) in the sense of distributions. Since the normal component N - U, of u at 02
is well defined by (1.6), we get an explicit trace formula for ul,,, In the sense of
distributions at 0§2 which coincides with the usual trace of u at 0¢2 if u is smooth.
This yields a precise meaning of the general boundary condition Uy =9 in the
sense of boundary distributions.

(3) Since w(0) in (4.3) is solenoidal we expect that the initial condition ul,_ =

up only makes sense "modulo gradients“. Therefore, the condition Aq_quu|t_0 =

A;quuo, see (1.7), seems to be the adequate precise formulation of the initial
condition uj,_, = Uo- If w is sufficiently smooth, we need additional (necessary)

compatibility conditions in order to reach that w(0) = ug, see (4.14).

Proof of Theorem 4. Let E(t) = E¥M9() ¢ [9(Q) be the very weak solution of
the stationary system

—AE(t)+Vp(t) =0, divE(t) =k(t), E(t) g(t) for a.a. t € [0,T]. (4.6)

oo =

Then from (3.3) we oobtain the relation (9, N - Vw)sar = (E, Aw)qr for every
w e C§([0,T); C3,(€2)). Therefore, given a very weak solution u, (4.3) can be
written in the form

—(A;quu, Ut>Q’T—<U—E, AA(;1U>97T = <A;1qub0, U(O)>Q—<F, VA;11)>Q,T (47)

(), v = Agw. Since A 'Pug € LL(Q), see (2.19),

where w € C’&([O,T); G.(€),
=0, N-(u— E)|(‘m = 0 yielding u — E = P,(u — E) we

and since div (v — E)
obtain that

(u — E, AA;1U>Q7T = (Pq(u — E), AA(;1U>Q7T
= (u—F, Pq,AAl;lwg,T =—(u—E,v)or.

Further we use (2.15) for a.a. ¢ € [0,7) and get a unique F = —A'P,divF €
L#(0,T; L1(9)) satisfying the relation

(F, VA "0)or = (F,v)ar forallv=Ayw, we C3([0,T);C5,(Q)).  (4.8)
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This leads to the relation
—(A;quu, vor = (A;lpquo, v(0))o — (Pyu, v)ar (4.9)
+(PE, v)ar 4+ (A; Pydiv Fv)qr.

Then a standard argument shows, see [27], 111, 1.1 or [26], IV, 1.3, that A;quut €
L#(0,T; L4(9)) is well defined, that

AP e O([0,7); LL(Q)), A, Pau(0) = A Py,
and that the evolution system

(A7 Pgu)y + Ag(A u) = A; Py div F + P E, (A7 Pyu)(0) = A Pyug
(4.10)
is satisfied. From (2.21) we now obtain the representation formula

u(t) = Pyu(t) (4.11)
t
= Aqe—tAqA(;quuo _|_/ Aqe—(t—T)Aq (A;lpq div F + Pqu’g)dT
0

for the very weak solution u. As in (3.22) we get u(t) = Pyu(t) = u(t) — VH(t)
where VH (t) is determined by AH(t) = k(t), N - (VH(t) — g(t)) oo =0 for a.a.
t €[0,7). Since VH(t) only depends on g¢(t), k(t), see (3.11), we obtain by (4.11)
a formula for u = @ + VH which determines u uniquely by the data F, k, g and
Uop.

Now use (4.11) to construct a very weak solution u. Using the same calculation
as above we obtain the existence assertion of u, the uniqueness of which follows
from the representation (4.11). The estimate (4.4) is based on (2.20) and the
estimates of E, F, see (3.4) and (2.16).

Using (2.20) we conclude that the term |[ugl|7es() in (4.4) can be replaced
by the weaker norm

1

T 1
fuallogeo = ([ NAae™ 047 Pl ) (412
0

Now the proof of Theorem 4 is complete. [ ]

Next we consider some regularity properties. Suppose the data f = div F' and
k,g,uq of the system (4.1) satisfy the stronger conditions

FelL (0,T;Wh(Q), ke L*(0,T; WH(2)), k € L*(0,T; L"(2)),
g € L*(0,T; W2 Y4(0Q)), g, € L* (0, T; W™59(09)), uy € W>1(Q) (4.13)

with 1 <r <g¢q < o0, % + % > %, 1 < s < oo, and the compatibility conditions
/kdx: N-gdS for t € [0,T), | =g(0), divug=Fk(0). (414)
Q o0 o0
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Observe that g(0) and k(0) are well defined because of the assumptions on k;, g;.
For simplicity the assumption on ug is not optimally chosen.

Then we will show the existence of a unique solution u € L*(0,T; W4((2))
with u; € L* (0, T; Lq(Q)) of the system (4.1), together with a pressure function
p such that Vp € L* (O, T, Lq(Q)), satisfying the estimate

[uillg,s.0 + llullzg,s.0 + 1VPlgs0 (4.15)
< C(Iluon;q,n F 1 fllgso+ Mklgs.0 + Ikellrso

gl g0 + 190110

with C' = C(Q,q,s) > 0. The equations u; — Au + Vp = f, dive = k and
Uly, = 910 (4.1) are satisfied in the strong sense for a.a. t € [0,7); hence
ue C([0,7); L9(2)) and u(0) = uy is well defined. The initial value ug € W27(€2)
can be treated as a functional from J%°(Q2), see (2.19). Thus we see that (4.13),
(4.14) are stronger than the conditions (4.2).

Therefore, Theorem 4 yields a unique very weak solution u € L* (O, T, Lq(Q))
to (4.1) which coincides with each more regular solution by the uniqueness prop-
erty.

To show the existence of a regular solution u satisfying (4.15) we first suppose
that such a solution is given. Let E = E¥9 be chosen as in (4.6). Then FE(0) =
Ek0)90) gatisfies the system

~AE(0)+Vp(0) =0, divE(0) = k(0), E(0)], = g(0)

and (3.17) shows that £(0) € W24(€2). Using (4.14) we see that up—E(0)|,, =0,
div (up — E(0)) = 0 which leads to up — E(0) € D(A,). Further, using E, =
(E%9), = E*v9t the assumptions on k, k;, g, g;, estimate (3.4) with u, F k, g re-
placed by Ej, 0, k4, g;, and the estimate (3.17) with u, f, k, g replaced by E, 0, k, g,
we obtain the estimate

||Et||q,s,ﬂ + ||E||2;q,s,ﬂ (4-16)
< C(HkHl;q,s,Q + ||kt||r,s,ﬂ + ||9||2—1/q;q,s,Q + ||gt||—é;q,s,8ﬂ)

with C' = C(Q,¢q,s) > 0.
Setting u(t) = u(t) — E(t) we obtain the evolution system

W+ Ay = Pyf = Py, divii =0, 4| =0, d|_ =u— F(0).
Then (2.21) yields the representation formula

u(t) = E(t)+e (UO—E(O))—F/t e DA(P f—P,E,)dr, 0<t<T, (4.17)
1]
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for the given regular solution u.

In the next step we use (4.17) to construct the desired solution u, and we
use (2.20), (4.16). Further we apply (3.17) to E(0), and use that k(0) = div uy,
g(0) = Uol This yields the regularity properties of u, the estimate (4.15) for u,
and its uniqueness. The pressure term Vp, constructed by de Rham’s argument,
can be written in the form Vp = f — u; + Au proving (4.15) for p.

Proof of Theorem 1. First let u be a given solution of (1.1) for some 0 < T" < T
with the properties of this theorem. Further we consider the solution £ = Ek9:u0
of the corresponding linearized system

E,~AE+Vp=divF, divE=k E| =g, E|_ =u

according to Theorem 4. Setting & = u — E, the calculation as in (3.19) shows
that u is a very weak solution of the linear system

— Ai+Vp=—diviW(u), diva=0, =0, =0, (4.18)

@
l1=o
where W (u) is defined as in (3.19); in particular, div W (u) = div (uu) —ku. Using
(3.20) we conclude that W (u) € L*/?(0,T"; L"(2)) for 0 < T" < T". If T' < o0
we set 7" = T". Thus we may use the representation formula (4.11) with £ = 0,
g=0,u=0, F=-W(u) = -W(a+ E) and with s replaced by s/2. Hence

“aq

t
() = (F(a)(t) = — / AN ATE Ay W (a)dr, 0<t<T. (4.19)

0
To solve (4.19) by Banach’s fixed point theorem we have to estimate
~ T || 11s 1 .

||7:( Ma.s.0 Where Floso = lHlesoa = (fy [liodt)*. Let o/ = 5 yield-

ing 5 —a +1 % and 2o/ + % = q/%. Using (2.12) and (2.11) with o = «/,

v =4, we get that

I1F @) ®)]lo0 < c/ 1/2+a,||A;/122 Pyjs div W (u) 2 dr

Looking at the integrand, we apply the estimate
-1/2p
1458 Pyga (k) g2 < CIIPy (k) < CllE|luly

q/2
which is based on (2.11) with o = 5 and % =i+ % =14 % and on Holder’s
inequality. Furthermore, || A, /* P,/ div (uu)||y/2 < Cllunllys < Cllul|? since

(AL Pya div (uu), @)al = | = (u, VAT Pyay @)al < Cllaullgrzl@llzy

for all p € L(4/?(Q) . Summarizing we conclude that

lullg + 1l [lully) dr

1@ Olla < C | ﬁ(
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Then the Hardy-Littlewood inequality, see [26], p. 103, [28],

with o = 5 — o/ and 5 = J yields the estimate

17 (@)

2 ~
lgs.0)” + Wkl so(lallgso + [1£

s < C (il + 12

lne)) (4:20)

with C' = C(Q,¢,s) > 0.
Setting a = C, 8 = ||E||g.s.0, 0 = Cllk||rs0 and v = 3, (4.20) is equivalent to
the estimate

1F @) lgs0+ 8 < allllgsn + B)* + d(ldllgsn + B) +7; (4.21)

cf. (3.24) in the proof of Theorem 2 for the stationary case. Thus, in the same
way as in that proof, we obtain a solution @ € L* (O, T’ Lq(Q)) of the fixed point
equation u = F(a) if the condition 4ay + 26 < 1, i.e.,

40(/:’ ||E||;,th>i +20(/0T, ||k||i,9dt>i <1. (4.22)

is satisfied. Using (4.4) and (4.12) we may use also the (weaker) smallness con-
dition

1 1
S

T’ 1 T’
( /0 I Aqe—tAqu—IPquOHZ’th>s_|_( /0 ||F||ﬁ,th> (4.23)

(W) ([

with C' = C(2, ¢, s) > 0. This condition is always satisfied if 7" > 0 is sufficiently
small; note that the case 7" = oo is possible.
Writing (4.19) in the form

4 1
5 1
9l 1 pondt)” < =

AJla(t) = A Pu(t) — A PyE(t) (4.24)

q

t
= —/ e AP div IV (u)dr, 0<t<T
1]

we conclude using (2.20), (2.16), (3.20), together with Hélder’s inequality, that

(A @)ellg,s2 CillA, Py div W (w)l|g.s2.0 < Cof[W (1) lrs/20

<
< Cs(|lullgsq + 1Elrsn

lu |q,s,Q) <00
with C;, 1 = 1,2, 3, depending on €2, ¢, s.
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Furthermore, we obtain from (4.4) that
A'PE, € L#(0,T"; LL(Q)) € L*2(0, T LE(Q)), 0<T"<T".

This proves that A_'Pu, € L¥/2(0,T"; L4()) for all T" with 0 < 7" < T", and
all0 <T" < oo if T" = oo.

A calculation shows that u defined by u = u + E is a very weak solution
of (1.1). To prove the uniqueness of u we assume that v € L*(0,77; L9(Q)) is
another very weak solution of (1.1). Setting U = u — v we obtain in the same
way as in (4.18) that U is a very weak solution of the system

U, — AU + VP = —div (Uu) — div (vU) + kU,
divU =0, U,,=0 U, =0 (4.25)

The same method as used for (4.18) and (4.19) then leads to the estimate

1Ullg.5.0 < Cllullgsa + lvllgs + [1Ellrs0) [Ullgse (4.26)
with C'= C(Q,¢q,s) > 0. Since || - ||g.s.0 = || - lg.s.0.17, We observe that C' does not
depend on T". Thus we can choose 7" € (0,7") such that

1
lullgsorr +lvllgsor + [Fllrsor < 57

This leads to ||U|sr < 0, hence U = 0 and u = v on the interval [0,7"]. If
T" < T we can continue this procedure and get v = v on [0,7”) in finitely many
steps. The proof of Theorem 1 is complete. [ ]
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