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Abstra
t

We investigate several aspe
ts of very weak solutions u to stationary and

nonstationary Navier-Stokes equations in a bounded domain 
 � R

3

. This

notion was introdu
ed by Amann [3℄, [4℄ for the nonstationary 
ase with

nonhomogeneous boundary data u

j

�


= g leading to a new and very large

solution 
lass. Here we are mainly interested to investigate the "largest

possible\ 
lass for the more general problem with arbitrary divergen
e

k = div u, boundary data g = u

j

�


and an external for
e f , as weak as

possible. In prin
iple, we will follow Amann's approa
h.
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1 Introdu
tion

Throughout this paper 
 � R

3

is a bounded domain with boundary �
 of 
lass

C

2;1

and N = N(x) 2 R

3

denotes the unit outer normal at x = (x

1

; x

2

; x

3

) 2 �
.

In 
 � [0; T ), where 0 < T � 1, we 
onsider the system of Navier-Stokes

equations in the very general form

u

t

��u+ u � ru+rp = f; div u = k; u

j

�


= g; u

j

t=0

= u

0

(1.1)

with nonhomogeneous data f = divF and k; g; u

0

satisfying

F = (F

ij

)

i;j=1;2;3

2 L

s

�

0; T ;L

r

(
)

�

; k 2 L

s

�

0; T; L

r

(
)

�

;

g = (g

1

; g

2

; g

3

) 2 L

s

�

0; T ;W

�

1

q

;q

(�
)

�

; u

0

2 J

q;s

(
);

(1.2)

1



where 3 < q < 1, 2 < s < 1, 1 < r < q su
h that

1

3

+

1

q

=

1

r

,

2

s

+

3

q

= 1.

For simpli
ity, we assume that the 
oeÆ
ient of vis
osity equals 1. See (2.19)


on
erning the spa
e of initial values J

q;s

(
) as a spa
e of fun
tionals. Further

we suppose the 
ompatibility 
ondition

Z




k(t)dx =

Z

�


N � g(t)dS for a.a. t 2 [0; T ): (1.3)

The largest possible 
lass in the 
ontext of very weak solutions seems to be Serrin's

uniqueness 
lass L

s

�

0; T ;L

q

(
)

�

for u de�ned by

2

s

+

3

q

= 1. Indeed, we 
annot

expe
t, up to now, to obtain the desired uniqueness and regularity properties for

any larger 
lass.

To obtain the relation whi
h de�nes a very weak solution u of (1.1), we follow

Amann [3℄, [4℄ in prin
iple and apply formally to (1.1) the test fun
tion w 2

C

1

0

�

[0; T );C

2

0;�

(
)

�

, where C

2

0;�

(
) = fv 2 C

2

(
)

3

: div v = 0 in 
; v

j

�


= 0g.

Then an integration by parts yields the relation

Z

T

0

�

� hu; w

t

i




� hu;�wi




+ hg;N � rwi

�


� huu;rwi




� hku; wi




�

dt (1.4)

= hu

0

; w(0)i




�

Z

T

0

hF;rwi




dt; w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

:

Here h�; �i




is the usual L

q

� L

q

0

-pairing in 
 and hg(t); N � rw(t)i

�


de-

notes the value of the boundary distribution g(t) 2 W

�

1

q

;q

(�
) at the normal

derivative w

N

(t) = N � rw(t)

j

�


; furthermore, hu

0

; w(0)i




means the value

of the fun
tional u

0

2 J

q;s

(
) at w(0) = w

j

t=0

2 C

2

0;�

(
), see (2.19), and

uu = u 
 u = (u

i

u

j

)

i;j=1;2;3

for u = (u

1

; u

2

; u

3

). We also use the relation

u � ru = (u � r)u = div (uu)� ku. Note that divF =

�

P

3

i=1

(�=�x

i

)F

ij

�

j=1;2;3

.

Using in (1.4) in parti
ular the test fun
tion w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

with

C

2

0;�

(
) = fv 2 C

2

0

(
)

3

; div v = 0g, we obtain, together with some appropriate

distribution p, the validity of the �rst equation in (1.1) in the sense of distribu-

tions. The se
ond equation div u = k in (1.1) must be supposed additionally to

(1.4). To explain the boundary 
ondition u

j

�


= g in (1.1) we observe that the

normal derivative w

N

(t) of w(t) at �
 has the form

w

N

(t) = N � rw(t) =

�


urlw(t)

�

�N; (1.5)

and therefore, the relation (1.4) 
ontains only the tangential 
omponent N �g of

u at �
. Indeed, we will show that the tangential 
omponent of u is well de�ned

by (1.4) as a distribution on �
, and we will derive an expli
it formula, see (4.5).

The (well de�ned) 
ondition N � u(t)

j

�


= N � g(t) for the normal 
omponent of

u at �
 must be supposed additionally. This leads to a pre
ise formulation of

2



the boundary 
ondition u

j

�


= g, see Remarks 3(2) in Se
tion 4 below. Thus we

suppose, additionally to (1.4), the 
onditions

div u(t) = k(t); N � u(t)

j

�


= N � g(t) for a.a. t 2 [0; T ): (1.6)

This leads to the following

De�nition 1 Assume that the data F; k; g and u

0

satisfy (1.2) and (1.3). Then

u 2 L

s

�

0; T ;L

q

(
)

�

is 
alled a very weak solution of the Navier-Stokes system

(1.1) if the 
onditions (1.4) and (1.6) are satis�ed.

Note that a very weak solution u need not have any di�erentiability property

in spa
e and time. In parti
ular, u need not satisfy any energy inequality with

�nite energy kuk

2

L

1

(0;T ;L

2

(
))

+ kruk

2

L

2

(0;T ;L

2

(
))

< 1 like weak solutions in the

sense of Hopf. This justi�es the notation "very weak solution\. On the other

hand, a very weak solution is unique { a fa
t whi
h is not known in general for

weak solutions in the sense of Hopf.

The notion of very weak solutions is not new for homogeneous data k = 0

and g = 0, see [3℄, [4℄, [14℄, and the literature therein. However, Amann's notion

of very weak solutions in [3℄, [4℄ for k = 0 and boundary values g 6= 0 introdu
es

a 
ompletely new aspe
t. It leads to new solution 
lasses of very low smoothness

in spa
e su
h that the boundary 
ondition u

j

�


= g is not de�ned by usual

tra
e theorems but more generally by the 
onditions (1.3), (1.4). This will have

interesting appli
ations.

Following Amann's approa
h our aim is to extend the solution 
lasses for

(1.1) to div u = k 6= 0 and to the "weakest\ possible 
ase u

j

�


= g 2 W

�

1

q

;q

(�
)

for a.a. t 2 [0; T ℄; leading to the solution 
lass in De�nition 1 without any

smoothness in spa
e and only satisfying Serrin's 
ondition, see Theorem 1. We

will develop su
h a theory also for the linear nonstationary Stokes system, see

Theorem 4. Further we improve the results on very weak solutions of stationary

Stokes and Navier-Stokes systems developed in [14℄ to the more general 
ase that

k 2 L

r

(
);

1

3

+

1

q

=

1

r

; see Theorems 2 and 3.

Con
erning the initial 
ondition u

j

t=0

= u

0

in (1.1) we note, see Theorem

1, that A

�1

q

P

q

u is well de�ned as a 
ontinuous fun
tion on [0; T ) with values in

L

q

�

(
); here, A

q

means the Stokes operator and P

q

the Helmholtz proje
tion. We

obtain the well de�ned 
ondition

A

�1

q

P

q

u

j

t=0

= A

�1

q

P

q

u

0

; (1.7)

whi
h 
an be understood as the pre
ise meaning of u

j

t=0

= u

0

, see (2.19) for

A

�1

q

P

q

u

0

and the proof of Theorem 1.

Thus ea
h 
ondition in the system (1.1) has a well de�ned dire
t meaning for a

very weak solution u. The �rst two equations hold in the sense of distributions on

3




�(0; T ), u

j

�


= g holds in the sense of distributions in �
, and u

j

t=0

= u

0

holds

in the sense of (1.7). Moreover, if the data are suÆ
iently smooth, u 
oin
ides

with the usual strong solution.

Our main theorem on the system (1.1) reads as follows.

Theorem 1 Suppose the data F; k; g and u

0

satisfy (1.2) and (1.3) with 3 < q <

1, 2 < s < 1, 1 < r < q,

1

3

+

1

q

=

1

r

,

2

s

+

3

q

= 1. Then there exists some T

0

=

T

0

(F; k; g; u

0

) > 0, 0 < T

0

� T , and a uniquely determined very weak solution

u 2 L

s

�

0; T

0

;L

q

(
)

�

of the system (1.1) satisfying A

�1

q

P

q

u

t

2 L

s=2

�

0; T

00

;L

q

�

(
)

�

for all 0 < T

00

< T

0

, and A

�1

q

P

q

u 2 C

�

[0; T

0

);L

q

�

(
)

�

. The existen
e interval

[0; T

0

) is determined by the 
ondition (4.23), depending on the data, and in
ludes

the 
ase T

0

= T =1 if the data are suÆ
iently small.

Up to now we 
annot prove that there exists an open maximal existen
e

interval as in [3℄, [4℄ for the 
ase k = 0. The reasons are the very weak assumptions

on g and k in (1.2).

In the linearized 
ase u � ru � 0 we have to omit the term hu � ru; wi




=

�huu;rwi




� hku; wi




in (1.4), and we may omit the restri
tion

2

s

+

3

r

= 1 in

(1.2), whi
h is 
aused by the nonlinear term. Then we 
an show the existen
e and

uniqueness of a very weak solution u 2 L

s

�

0; T ;L

q

(
)

�

of the linearized system

(1.1) satisfying the estimate

kA

�1

q

P

q

u

t

k

L

s

(0;T ;L

q

(
))

+ kuk

L

s

(0;T ;L

q

(
))

(1.8)

� C

�

ku

0

k

J

q;s

(
)

+ kFk

L

s

(0;T ;L

r

(
))

+ kkk

L

s

(0;T ;L

r

(
))

+ kgk

L

s

(0;T ;W

�

1

q

;q

(�
))

�

with C = C(
; q; s) > 0, see Theorem 4 in Se
tion 4 below.

In the stationary 
ase we 
onsider the system

��u+ u � ru+rp = f; div u = k; u

j

�


= g (1.9)

with data f = divF and k; g satisfying

F = (F

ij

) 2 L

r

(
); k 2 L

r

(
); g 2 W

�

1

q

;q

(�
);

Z




k dx =

Z

�


N � g dS; (1.10)

with 3 < q <1, 1 < r < q,

1

3

+

1

q

=

1

r

.

An obvious modi�
ation of the nonstationary 
ase yields the following

De�nition 2 Assume that the data F; k and g satisfy (1.10). Then u 2 L

q

(
)

is 
alled a very weak solution of the stationary Navier-Stokes system (1.9) if the

relation

�hu;�wi




+ hg;N � rwi

�


� huu;rwi




� hku; wi




= �hF;rwi




; (1.11)

4



holds for all w 2 C

2

0;�

(
), and the 
onditions

div u = k; N � u

j

�


= N � g (1.12)

are satis�ed.

In this 
ase we obtain the following result.

Theorem 2 Suppose the data F; k and g satisfy (1.10) with 3 < q <1, 1 < r <

q,

1

3

+

1

q

=

1

r

. There exists a 
onstant K = K(
; q) > 0 su
h that if

kFk

L

r

(
)

+ kkk

L

r

(
)

+ kgk

W

�

1

q

;q

(�
)

� K; (1.13)

then we obtain a uniquely determined very weak solution u 2 L

q

(
) to the sta-

tionary Navier-Stokes system (1.9). This solution satis�es the estimate

kuk

L

q

(
)

� C

�

kFk

L

r

(
)

+ kkk

L

r

(
)

+ kgk

W

�

1

q

;q

(�
)

�

(1.14)

with C = C(
; q) > 0.

Similarly as in (1.5) we obtain for x 2 �
 the identity

w

N

= N � rw = (
urlw)�N; w 2 C

2

0;�

(
): (1.15)

Setting w 2 C

2

0;�

(
) in (1.11) we obtain that ��u + u � ru + rp = f holds in

the sense of distributions with some distribution p. In the stationary 
ase we 
an

also prove that ea
h very weak solution u has a well de�ned tra
e u

j

�


even in

the spa
e W

�

1

q

;q

(�
), and there is an expli
it representation formula for u

j

�


,

see (3.6).

Note that Theorem 2 improves the result in [14℄ where kkk

L

r

(
)

is repla
ed

by the stronger norm kkk

L

q

(
)

.

In the linearized 
ase u � ru � 0, we omit huu;rwi




, hku; wi




in relation

(1.11), and the existen
e result together with estimate (1.14) holds without any

smallness 
ondition for every 1 < q < 1, 1 < r < q,

1

3

+

1

q

�

1

r

, see Theorem 3

in Se
tion 3 below.

The improvement 
on
erning kkk

L

r

(
)

leads to a 
ertain s
aling invarian
e

in the following sense. Let � > 0, 
onsider some ball B

a

(x

0

) � R

3

with radius

a > 0 and 
enter x

0

2 R

3

, and let F; k; g be data as in (1.10) with 
 = B

a

(x

0

),

3 < q <1, 1 < r < q,

1

3

+

1

q

=

1

r

. Then it is easy to show that u 2 L

q

�

B

a

(x

0

)

�

is a very weak solution to the system (1.9) on 
 with data F; k; g i� ~u 2 L

q

(

~


),

~


 = B

a=�

(x

0

), is a very weak solution of the system

��~u+ ~u � r~u+r~p = div

~

F ; div ~u =

~

k; ~u

j

�

~




= ~g (1.16)

5



on

~


, where ~u; ~p;

~

F;

~

k; ~g are de�ned by

~u(x) = �u

�

�(x� x

0

) + x

0

�

; ~p(x) = �

2

p

�

�(x� x

0

) + x

0

�

;

~

F (x) = �

2

F

�

�(x� x

0

) + x

0

�

;

~

k(x) = �

2

k

�

�(x� x

0

) + x

0

);

~g(x) = �g

�

�(x� x

0

) + x

0

):

Then we 
on
lude that if K

a;q

= K

�

B

a

(x

0

); q

�

> 0 is the 
onstant in (1.13)

for B

a

(x

0

), then �

1�

3

q

K

a;q


an be 
hosen as the 
orresponding 
onstant for

B

a=�

(x

0

). We also 
on
lude that (1.14) holds for u; F; k; g in 
 = B

a

(x

0

) with

C = C

�

B

a

(x

0

); q

�

i� (1.14) holds for ~u;

~

F ;

~

k; ~g in

~


 = B

a=�

(x

0

) with the same


onstant C. These properties have several appli
ations in the lo
al regularity

theory. Similar results hold in the nonstationary theory.

The proofs of these theorems are organized as follows. First we 
onsider the

linearized stationary and nonstationary system and prove expli
it representation

formulas. Applying these formulas to the nonlinear system leads to a �xed point

problem whi
h 
an be solved by Bana
h's �xed point theorem for suÆ
iently

small data. In Se
tion 2 we prepare several preliminaries.

2 Notations and Preliminaries

Classi
al Fun
tion Spa
es. Let 1 < q <1 and q

0

=

q

q�1

su
h that

1

q

+

1

q

0

= 1.

We need the usual spa
es L

q

(
) and W

�;q

(
), W

�;q

0

(
), � � 0, with norms

k�k

L

q

(
)

= k�k

q;


and k�k

W

�;q

(
)

= k�k

�;q;


, resp. The spa
eW

��;q

(
) =W

�;q

0

0

(
)

0

is the dual spa
e ofW

�;q

0

0

(
) with the natural duality pairing h�; �i




and the norm

k�k

W

��;q

(
)

= k�k

��;q;


. Thus, e.g., hf; hi




means the value of the fun
tional f 2

W

��;q

(
) at h 2 W

�;q

0

0

(
). Similarly, for fun
tions on the boundary, L

q

(�
) and

W

�;q

(�
);W

��;q

0

(�
), � � 0, with norms k�k

L

q

(�
)

= k�k

q;�


and k�k

W

�;q

(�
)

=

k�k

�;q;�


, k�k

W

��;q

(�
)

= k�k

��;q;�


, resp., and the duality pairing h�; �i

�


are the


orresponding notions for �
. In parti
ular, the pairing between L

q

(�
) and its

dual spa
e L

q

0

(�
) = L

q

(�
)

0

is given by

hf; gi

�


=

Z

�


f � g dS

where

R

�


: : : dS means the surfa
e integral on �
, see [24℄ and [26℄, p. 33, p. 40.

For more details on these spa
es 
f. [1℄, [11℄, [12℄, [26℄, [28℄. In general, we use

the same symbol for s
alar, ve
tor, and tensor valued spa
es.

By C

�

0

(
), C

�

(
), C

�

(
), C

�

(�
), � = 0; 1; : : : and � = 1, we denote the

usual spa
es of smooth fun
tions. We set C

�

0

(
) = fv 2 C

�

(
); v

j

�


= 0g. The

spa
e of distributions C

1

0

(
)

0

is the dual spa
e of the test spa
e C

1

0

(
) with the

usual topology, the duality pairing is again denoted by h�; �i




. Similarly, the spa
e

6



C

1

(�
)

0

of boundary distributions is the dual spa
e of the test spa
e C

1

(�
)

with the duality pairing h�; �i

�


. This test spa
e has the form C

1

(�
) sin
e �


has no boundary.

Spa
es of solenoidal ve
tor valued fun
tions are denoted by appending "�\.

Thus we have C

�

0;�

(
) = fv 2 C

�

0

(
); div v = 0g and C

�

0;�

(
) = fv 2 C

�

0

(
);

div v = 0g. The 
orresponding fun
tional spa
e for solenoidal test fun
tions

C

1

0;�

(
) is the dual spa
e C

1

0;�

(
)

0

, again with pairing h�; �i




. By a theorem of de

Rham, [27℄, Chapter I, Proposition 1.1, a distribution d = (d

1

; d

2

; d

3

) 2 C

1

0

(
)

0

with hd; vi




= 0 for all v 2 C

1

0;�

(
) has the form d = rh with some s
alar

distribution h.

Let L

q

�

(
) be the 
losure of C

1

0;�

(
) in the norm k�k

q;


. Then L

q

0

�

(
) = L

q

�

(
)

0

is the dual spa
e of L

q

�

(
) with pairing h�; �i




.

Tra
es and Extensions. Let � >

1

q

, � an integer. Then the tra
e map f 7! f

j

�


is a well de�ned bounded operator from W

�;q

(
) onto W

��

1

q

;q

(�
). Conversely,

there exists a linear and bounded extension operator E: h 7! E

h

fromW

��

1

q

;q

(�
)

into W

�;q

(
) satisfying E

h

j

�


= h. Thus it holds kE

h

k

�;q;


� Ckhk

��

1

q

;q;�


with

C = C(
; �; q) > 0.

Let 1 < r � q;

1

3

+

1

q

�

1

r

, and let f = (f

1

; f

2

; f

3

) 2 L

q

(
) with div f 2 L

r

(
).

Then we use Green's identity

hdiv f; E

h

i




= hN � f; hi

�


� hf;rE

h

i




for h 2 W

1�

1

q

0

;q

0

(�
) = W

1

q

;q

0

(�
) and with the extension operator E :

W

1

q

;q

0

(�
) ! W

1;q

0

(
). This leads, using the embedding property kE

h

k

r

0

;


�

C(kE

h

k

q

0

;


+ krE

h

k

q

0

;


); C = C(
; q; r) > 0, to the estimate

jhN � f; hi

�


j � C(kfk

q;


+ kdiv fk

r;


)khk

1

q

;q

0

;�


(2.1)

with C = C(
; q; r) > 0. Hen
e the tra
e N � f

j

�


2 W

�

1

q

;q

(�
) of the normal


omponent of f at �
 is well de�ned and it holds the estimate

kN � fk

�

1

q

;q;�


� C(kfk

q;


+ kdiv fk

r;


): (2.2)

Using the 
orresponding identity

h
url f; E

h

i




= hN � f; E

h

i

�


+ hf; 
urlE

h

i




now for h = (h

1

; h

2

; h

3

) 2 W

1�

1

q

0

;q

0

(�
), we obtain the following tra
e property:

If f = (f

1

; f

2

; f

3

) 2 L

q

(
), 
url f 2 L

r

(
), then the tra
e N � f

j

�


2 W

�

1

q

;q

(�
)

of the tangential 
omponent of f at �
 is well de�ned and it holds the estimate

kN � fk

�

1

q

;q;�


� C(kfk

q;


+ k
url fk

r;


) (2.3)
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with C = C(
; q; r) > 0. The identity f = (N � f)N + (N � f)�N at �
 shows

that it is justi�ed to 
all N � f

j

�


the tangential 
omponent of f at �
.

Let f 2 L

q

(
) with

R




f dx = 0. Then there exists some b = b

f

2 W

1;q

0

(
)

with div b

f

= f su
h that f 7! b

f

is a linear mapping satisfying

kb

f

k

1;q;


� Ckfk

q;


; C = C(
; q) > 0: (2.4)

If moreover f 2 W

1;q

0

(
), then b

f

2 W

2;q

0

(
) and

kb

f

k

2;q;


� Ckrfk

q;


; C = C(
; q) > 0; (2.5)

see [5℄, [11℄, Theorem III.3.2 and [26℄, p. 68.

Using properties of the weak Neumann problem in L

q

(
), see [23℄, we �nd

for ea
h h 2 W

�

1

q

;q

(�
) some E

h

= (E

h

1

; E

h

2

; E

h

3

) 2 L

q

(
) with divE

h

2 L

r

(
),

N �E

h

j

�


= h, su
h that h 7! E

h

is a linear map satisfying

kE

h

k

q;


+ kdivE

h

k

r;


� Ckhk

�

1

q

;q;�


(2.6)

with C = C(
; q; r) > 0.

Let h = (h

1

; h

2

; h

3

) 2 W

1�

1

q

;q

(�
). Then we �nd an extension w

h

2 W

2;q

(
)\

W

1;q

0

(
) su
h that N � rw

h

j

�


= h depending linearly on h; moreover,

kw

h

k

2;q;


� Ckhk

1�1=q;q;�


(2.7)

with C = C(
; q) > 0, see [22℄, Theorem 5.8, p. 104, or [28℄, 5.4.4, p. 385.

If additionally N � h

j

�


= 0, then we 
an show that divw

h

j

�


= 0 and N �

rw

h

j

�


= �N � 
urlw

h

j

�


= h, see [14℄. This yields

R




divw

h

dx = 0, divw

h

2

W

1;q

0

(
), and we �nd b = b(w

h

) 2 W

2;q

0

(
) satisfying div b = divw

h

and (2.4),

(2.5). Setting ŵ

h

= w

h

� b(w

h

) we see that ŵ

h

2 W

2;q

(
) satis�es

ŵ

h

j

�


= 0; N � rŵ

h

j

�


= �N � 
url ŵ

h

j

�


= h; div ŵ

h

= 0: (2.8)

Moreover, the mapping h 7! ŵ

h

is linear and

kŵ

h

k

2;q;


� Ckhk

1�1=q;q;�


; C = C(
; q) > 0; (2.9)

see [14℄, (2.14).

The Stokes Operator. Let f = (f

1

; f

2

; f

3

) 2 L

q

(
). Then, the weak Neumann

problem �H = div f , N � (rH � f)

j

�


= 0, has a unique solution rH 2 L

q

(
)

satisfying the estimate

krHk

q;


� Ckfk

q;


(2.10)
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with C = C(
; q) > 0, see [23℄. Setting P

q

f = f �rH we de�ne the Helmholtz

proje
tion operator P

q

as a bounded operator from L

q

(
) onto L

q

�

(
), satisfying

P

2

q

= P

q

and

hP

q

f; gi




= hf; P

q

0

gi




; for all f 2 L

q

(
); g 2 L

q

0

(
) :

Hen
e P

0

q

= P

q

0

holds for the dual operator P

0

q

of P

q

.

The Stokes operator A

q

, with domain

D(A

q

) = L

q

�

(
) \W

1;q

0

(
) \W

2;q

(
) � L

q

�

(
)

and range R(A

q

) = L

q

�

(
), is de�ned by A

q

u = �P

q

�u, u 2 D(A

q

). The

fra
tional power A

�

q

: D(A

�

q

) ! L

q

�

(
) = R(A

�

q

) with D(A

q

) � D(A

�

q

) � L

q

�

(
),

0 � � � 1, is well de�ned, bije
tive and its inverse (A

�

q

)

�1

= A

��

q

is a bounded

operator from L

q

�

(
) into L

q

�

(
) with range R(A

��

q

) = D(A

�

q

); furthermore,

the operator (A

�

q

)

0

= A

�

q

0

is the dual operator of A

�

q

. The norms kuk

2;q;


and

kA

q

uk

q;


are equivalent for u 2 D(A

q

); analogously, the norms kuk

1;q;


and

kA

1=2

q

uk

q;


are equivalent for u 2 D(A

1

2

q

) = L

q

�

(
)\W

1;q

0

(
). Note that the spa
e

D(A

�

q

) endowed with the graph norm kA

�

q

uk

q;


, u 2 D(A

�

q

), is a Bana
h spa
e.

Furthermore, we mention the important embedding property

kuk

q;


� CkA

�




uk


;


; u 2 D(A

�




); 1 < 
 � q; 2�+

3

q

=

3




; (2.11)

with C = C(
; q) > 0. See [2℄, [9℄, [13℄, [17℄, [18℄, [21℄, [25℄, [26℄, [28℄ 
on
erning

proofs and further properties of the Stokes operator. Finally we observe that

A

q

u = A

�

u holds if u 2 D(A

q

) \D(A

�

), 1 < q <1, 1 < � <1.

It is well-known that �A

q

generates a bounded analyti
 semigroup fe

�tA

q

:

t � 0g, see [2℄, [16℄, [19℄, [25℄, [26℄, and that

kA

�

q

e

�tA

q

vk

q;


� Ce

�Æt

t

��

kvk

q;


; v 2 L

q

�

(
); t > 0; (2.12)

with 
onstants C = C(
; q) > 0, Æ = Æ(
; q) > 0.

Let 0 < � � 1, 1 < q < 1; and let d = (d

1

; d

2

; d

3

) 2 C

1

0

(
)

0

be a dis-

tribution. Assume that hd; vi




is well de�ned for all v 2 D(A

�

q

0

) and is 
on-

tinuous in the norm kA

�

q

0

vk

q

0

;


; i.e., there exists a 
onstant C > 0 su
h that

jhd; vi




j � CkA

�

q

0

vk

q

0

;


. In other words, the fun
tional hd; vi




; v 2 D(A

�

q

0

);

is a well-de�ned element of the dual spa
e D(A

�

q

0

)

0

of D(A

�

q

0

) : Writing formally

hd; vi




= hd; P

q

0

vi




= hP

q

d; vi




; we 
all P

q

d = hP

q

d; �i




the restri
tion of the

fun
tional d to test fun
tions v 2 D(A

�

q

0

); giving P

q

a generalized meaning; in

short, we write P

q

d 2 D(A

�

q

0

)

0

:

Let d 2 C

1

0

(
)

0

with P

q

d 2 D(A

�

q

0

)

0

. Sin
e R(A

�

q

0

) = L

q

0

�

(
); there ex-

ists a uniquely determined element d

�

2 L

q

�

(
) satisfying the relation hd; vi




=

9



hd

�

; A

�

q

0

vi




:We set d

�

= A

��

q

P

q

d; giving the operator A

��

q

a generalized meaning.

Thus A

��

q

P

q

d 2 L

q

�

(
) is well de�ned by the relation

hd; vi




= hP

q

d; vi




= hP

q

d; A

��

q

0

A

�

q

0

vi




= hA

��

q

P

q

d; A

�

q

0

vi




; (2.13)

v 2 D(A

�

q

0

) ; similarly as in the theory of distributions. We 
on
lude that the

operation A

��

q

P

q

d 2 L

q

�

(
) is well de�ned by (2.13) if d 2 C

1

0

(
)

0

and P

q

d 2

D(A

�

q

0

)

0

:

To obtain examples, we 
onsider a fun
tional f in the (ve
tor valued) Bessel

potential spa
e H

�2�

q

(
) for 0 < � �

1

2

, see [1℄, [2℄, [28℄. Then P

q

f 2 D(A

�

q

0

)

0

,

sin
e C

1

0;�

(
) is dense in the Bana
h spa
e D(A

�

q

0

) be
ause of � �

1

2

: Therefore,

A

��

q

P

q

f 2 L

q

�

(
) is well de�ned in this 
ase.

Let 1 < r � q,

1

3

+

1

q

�

1

r

, and let u = (u

1

; u

2

; u

3

) 2 L

q

(
). Assume that

the distribution d = �u is 
ontinuous in the norm kA

1

2

r

0

� k

r

0

;


. Then the element

A

�1=2

r

P

r

�u 2 L

r

�

(
) is well de�ned by the relation

hA

�

1

2

r

P

r

�u; A

1

2

r

0

vi




= hu;�vi




; v 2 C

1

0;�

(
); (2.14)

a

ording to (2.13); see also [14℄, Se
tion 2. Here we use that C

1

0;�

(
) is dense in

the Bana
h spa
e D(A

1

2

r

0

):

Let F = (F

ij

) 2 L

r

(
) where 1 < r � q,

1

3

+

1

q

�

1

r

, and set d = divF: Then

using (2.11) and the estimate

krvk

r

0

;


� C

1

kA

1

2

r

0

vk

r

0

;


� C

2

kA

q

0

vk

q

0

;


; v 2 D(A

q

0

) ;

C

i

= C

i

(
; q; r) > 0; i = 1; 2; we see that the distribution v 7! �hF;rvi




is


ontained in D(A

q

0

)

0

: Therefore, the element

^

F = �A

�1

q

P

q

divF 2 L

q

�

(
) is well

de�ned by the relation

h

^

F;A

q

0

vi




= �hA

�1

q

P

q

divF;A

q

0

vi




= �hdivF; vi




(2.15)

and it holds

k

^

Fk

q;


= kA

�1

q

P

q

divFk

q;


� CkFk

r;


(2.16)

with C = C(
; q; r) > 0; see [26℄, III, Lemma 2.6.1 
on
erning similar operations.

Spa
es L

q

(0; T ;X). Let 1 < q; s < 1. Then we introdu
e the usual Bo
hner

spa
e L

s

(0; T ;X) with norm k�k

L

s

(0;T ;X)

=

� R

T

0

k�k

s

X

dt

�

1=s

whereX is any Bana
h

spa
e with norm k�k

X

.

In the 
ase X = W

�;q

(
), �1 � � � 1, we set k�k

L

s

(0;T ;W

�;q

(
))

= k�k

�;q;s;


,

and for X = W

�;q

(�
) let k�k

L

s

(0;T ;W

�;q

(�
))

= k�k

�;q;s;�


. Finally, if X = L

q

(
)

or X = L

q

(�
), we set k�k

L

s

(0;T ;L

q

(
))

= k�k

q;s;


, and k�k

L

s

(0;T ;L

q

(�
))

= k�k

q;s;�


,

resp. As duality pairing we de�ne

hf; gi


;T

=

Z

T

0

hf; gi




dt with hf; gi




=

Z




f � g dx (2.17)
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for f = (f

1

; f

2

; f

3

) 2 L

s

(0; T ;L

q

(
)), g = (g

1

; g

2

; g

3

) 2 L

s

0

(0; T ;L

q

0

(
)). Simi-

larly, we use the notation

hf; gi

�
;T

=

Z

T

0

hf; gi

�


dt with hf; gi

�


=

Z

�


f � g dS:

We also need the spa
es C

�

�

[0; T );X

�

, � = 0; 1; 2; : : :, of X-valued fun
-

tions v(t), su
h that v; (d=dt)v; : : : ; (d=dt)

�

v are 
ontinuous on [0; T ). We set

C

0

�

[0; T );X

�

= C

�

[0; T );X

�

. The spa
e C

1

0

�

[0; T );X

�

is the subspa
e of

C

1

�

[0; T );X

�


onsisting of fun
tions v with 
ompa
t support 
ontained in [0; T ),

whereas C

1

0

�

(0; T );X

�

is the subspa
e of C

1

�

[0; T );X

�

-fun
tions v with 
ompa
t

support 
ontained in (0; T ).

Let f 2 L

s

�

0; T ;L

q

�

(
)

�

. Then there exists a unique fun
tion v 2

L

s

�

0; T ;D(A

q

)

�

with v

t

2 L

s

�

0; T ;L

q

�

(
)

�

and v 2 C

�

[0; T );L

q

�

(
)

�

, satisfying

the evolution system

v

t

+ A

q

v = f; 0 � t < T; v(0) = 0:

To be more pre
ise,

v(t) =

Z

t

0

e

�(t��)A

q

f(�)d�; 0 � t < T;

and it holds the 'maximal regularity' estimate

kv

t

k

q;s;


+ kA

q

vk

q;s;


� Ckfk

q;s;


; C = C(
; q; s) > 0; (2.18)

see [19℄, [25℄.

The Spa
e of Initial Values. Let 1 < q; s < 1: The spa
e of initial values

J

q;s

(
) 
onsists of distributions u

0

satisfying A

�1

q

P

q

u

0

2 L

q

�

(
); see (2.13), and

an additional integrability 
ondition in time. To be more pre
ise, let

J

q;s

(
) = fu

0

2 C

1

0

(
)

0

: A

�1

q

P

q

u

0

2 L

q

�

(
);

Z

1

0

kA

q

e

�tA

q

A

�1

q

P

q

u

0

k

s

q

dt <1g

(2.19)

and

ku

0

k

J

q;s

(
)

= kA

�1

q

P

q

u

0

k

q;


+ (

Z

1

0

kA

q

e

�tA

q

A

�1

q

P

q

u

0

k

s

q

dt)

1

s

:

Obviously, k � k

J

q;s

(
)

de�nes a seminorm in J

q;s

(
) whi
h be
omes a norm if we

identify two elements u

0

; v

0

2 J

q;s

(
) satisfying kA

�1

q

P

q

(u

0

�v

0

)k

J

q;s

(
)

= 0; i.e.,

u

0

�v

0

is a gradient. Of 
ourse, sin
e w(0) 2 C

2

0;�

(
) in (1.4) is solenoidal, initial

values 
an be pres
ribed only modulo gradients.

As an example, let u

0

2 C

1

0

(
)

0

and assume that A

�

1

s

+"

q

P

q

u

0

2 L

q

�

(
) where

0 < " <

1

s

. Then by (2.12) u

0

2 J

q;s

(
): Using similar 
al
ulations as in [4℄ we

11




an show that u

0

2 B

�2=s

q;s

(
) is suÆ
ient for u

0

2 J

q;s

(
) in the 
ase s � 2; here

B

�2=s

q;s

(
) denotes a Besov spa
e, see [2℄, [3℄, [4℄, [28℄.

Consider u 2 L

s

�

0; T ;L

q

(
)

�

su
h that its time derivative (A

�1

q

P

q

u)

t

=

A

�1

q

P

q

u

t

2 L

s

�

0; T ;L

q

�

(
)

�

in the sense of distributions. Then, after rede�ning on

a null set of [0; T ), we get A

�1

q

P

q

u 2 C

�

[0; T );L

q

�

(
)

�

. Thus A

�1

q

P

q

u(t) 2 L

q

�

(
)

is well de�ned for ea
h t 2 [0; T ), and therefore A

�1

q

P

q

u(0) = A

�1

q

P

q

u

0

in (1.7) is

well de�ned.

Let v

0

2 L

q

�

(
) su
h that

R

1

0

kA

q

e

�tA

q

v

0

k

s

q

dt < 1, let f 2 L

s

�

0; T ;L

q

�

(
)

�

and 
onsider the general system v

t

+ A

q

v = f; v(0) = v

0

. Then we apply (2.18)

to v̂(t) = v(t)� e

�tA

q

v

0

, obtain the estimate

kv

t

k

q;s;


+ kA

q

vk

q;s;


� C

�

�

Z

T

0

kA

q

e

�tA

q

v

0

k

s

q

dt

�

1

s

+ kfk

q;s;


�

(2.20)

with C = C(
; q; s) > 0, and the representation formula

v(t) = e

�tA

q

v

0

+

Z

t

0

e

�(t��)A

q

f(�) d�; 0 � t < T: (2.21)

3 Stationary very weak solutions

First we 
onsider the linearized stationary system

��u+rp = f; div u = k; u

j

�


= g (3.1)

with data f = divF and k; g satisfying

F 2 L

r

(
); k 2 L

r

(
); g 2 W

�

1

q

;q

(�
);

Z




k dx =

Z

�


N � g dS (3.2)

where 1 < q <1, 1 < r � q,

1

3

+

1

q

�

1

r

. Here we follow [14℄ in prin
iple, but in

[14℄ the stronger 
ondition k 2 L

q

(
) is supposed.

Modifying De�nition 2 in an obvious way for the linearized 
ase, u 2 L

q

(
)

is 
alled a very weak solution of the system (3.1) with data (3.2) if

�hu;�wi




+ hg;N � rwi

�


= �hF;rwi




; w 2 C

2

0;�

(
); (3.3)

and additionally the 
onditions (1.12) are satis�ed, i.e., div u = k and N �u = N �g

on �
. Our main result on (3.1), improving [14℄, Theorem 3, reads as follows.

Theorem 3 Suppose the data F; k; g satisfy (3.2) with 1 < q < 1, 1 < r � q,

1

3

+

1

q

�

1

r

. Then there exists a unique very weak solution u 2 L

q

(
) of the system

(3.1) satisfying the estimate

kuk

q;


� C(kFk

r;


+ kkk

r;


+ kgk

�1=q;q;�


) (3.4)

with C = C(
; q; r) > 0.
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Remarks 1 (1) Setting w 2 C

1

0;�

(
) in (3.3) and using de Rham's argument we

�nd some pressure p 2 W

�1;q

(
) su
h that ��u + rp = f holds in the sense

of distributions, and that kpk

�1;q;


satis�es the same estimate as kuk

q;


in (3.4).

Moreover we 
on
lude from (3.3) that

A

�

1

2

r

P

r

�u = �A

�

1

2

r

P

r

divF; (3.5)

where A

�

1

2

r

P

r

divF is de�ned by the relation hA

�

1

2

r

P

r

divF;A

1

2

r

0

vi




= �hF;rvi




,

v 2 C

1

0;�

(
), see (2.14) and (2.15).

(2) Assume for a moment that u is suÆ
iently smooth. Then, inserting

w = ŵ

h

from (2.8), (2.9) in the expression hu;�wi




, and using integration by

parts, we obtain an expli
it tra
e formula for u

j

�


as a fun
tional in W

�

1

q

;q

(�
).

To be more pre
ise, the map h 7! hu

j

�


; hi

�


for h 2 W

1�1=q

0

;q

0

(�
) = W

1

q

;q

0

(�
),

N � h

j

�


= 0 is de�ned by

hu

j

�


; hi

�


= hu;�ŵ

h

i




� hA

�

1

2

r

P

r

�u;A

1

2

r

0

ŵ

h

i




; h 2 W

�

1

q

;q

0

(�
): (3.6)

Using (2.9) with q repla
ed by q

0

we then obtain the estimate

jhu

j

�


; hi

�


j � C(kuk

q;


+ kA

�

1

2

r

P

r

�uk

r;


)khk

1=q;q

0

;�


(3.7)

with C = C(
; q; r) > 0. Formula (3.6) is well de�ned for ea
h very weak solution

u 2 L

q

(
) and yields an expli
it formula for the tangential 
omponent of u

j

�


.

The normal 
omponent N � u

j

�


is well de�ned by (1.12), (2.1). This shows that

the tra
e u

j

�


2 W

�

1

q

;q

(�
) is well de�ned for a very weak solution u, and (2.1),

(3.7) yield the estimate

ku

j

�


k

�

1

q

;q;�


� C(kuk

q;


+ kA

�

1

2

r

P

r

�uk

r;


+ kdiv uk

r;


) (3.8)

with C = C(
; q; r) > 0.

(3) We 
on
lude that a very weak solution u 2 L

q

(
) of (3.1) satis�es the


onditions (1.12), (3.5) and the 
ondition u

j

�


= g as elements of W

�

1

q

;q

(�
).

Conversely, if u 2 L

q

(
) satis�es (1.12), (3.5), and the (well de�ned) tra
e u

j

�


is equal to g, then u is a very weak solution of (3.1).

Proof of Theorem 3. Following in prin
iple [14℄, we �rst assume that u 2 L

q

(
)

is a given very weak solution u of (3.1), and prepare some estimates.

Using the tra
e map W

1;q

0

(
)!W

1�1=q

0

;q

0

(�
) and the embedding estimate

(2.11) we obtain that

jhg;N � rwi

�


j � Ckgk

�

1

q

;q;�


kvk

q

0

;


; w 2 C

2

0;�

(
); v = A

q

0

w (3.9)
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with C = C(
; q) > 0. Therefore, the fun
tional v 7! hg;N � rA

�1

q

0

vi

�


is


ontinuous in kvk

q

0

;


, and it holds hg;N � rA

�1

q

0

vi

�


= hG; vi




with some unique

G 2 L

q

�

(
) satisfying kGk

q;


� Ckgk

�

1

q

;q;�


.

Similarly, v 7! hF;rA

�1

q

0

vi




, v 2 A

q

0

w, is 
ontinuous in kvk

q

0

;


, and with

^

F = �A

�1

q

P

q

divF , see (2.15), we get that hF;rA

�1

q

0

vi




= h

^

F ; vi




and k

^

Fk

q;


�

CkFk

r;


with C = C(
; q; r) > 0 by (2.16).

Using E

h

for h = N � g, 
f. (2.6), the 
ompatibility 
ondition in (3.2) yields

R




(divE

h

�k)dx = 0. Hen
e there exists b 2 W

1;r

0

(
) satisfying div b = divE

h

�k

and, due to (2.6), (2.4),

kbk

q;


� C

1

krbk

r;


� C

2

(kdivE

h

k

r;


+ kkk

r;


) (3.10)

where C

i

= C

i

(
; q; r) > 0; i = 1; 2. Then we use the solution rH 2 L

q

(
) of

the weak Neumann problem

�H = div (E

h

� b) = k = div u; N � rH

j

�


= N � (E

h

� b)

j

�


;

and applying (2.10), (2.6), (3.10) leads to the estimate

krHk

q;


� C

1

kE

h

� bk

q;


� C

2

(kgk

�

1

q

;q;�


+ kkk

r;


) (3.11)

with C

i

= C

i

(
; q; r) > 0. Further we get from (2.10) that krHk

q;


� Ckuk

q;


with C = C(
; q) > 0. Obviously, rH only depends on the data k; g.

Using (2.2) and (2.3) with 
urlrH = 0 we 
on
lude thatrH

j

�


2 W

�

1

q

;q

(�
)

is well de�ned, and that

krHk

�

1

q

;q;�


� C(kgk

�

1

q

;q;�


+ kkk

r;


) (3.12)

with C = C(
; q; r) > 0.

Set û = P

q

u = u�rH 2 L

q

�

(
) and ĝ = g �rH

j

�


2 W

�

1

q

;q

(�
). Then

jhĝ; N �rwi

�


j � C(kgk

�

1

q

;q;�


+kkk

r;


)kvk

q

0

;


; w 2 C

2

0;�

(
); v = A

q

0

w; (3.13)


f. (3.9). As above, we 
onstru
t

^

G 2 L

q

�

(
) satisfying hĝ; N � rA

�1

q

0

vi

�


=

h

^

G; vi




, and the estimate

k

^

Gk

q;


� C(kgk

�

1

q

;q;�


+ kkk

r;


) (3.14)

holds with C = C(
; q; r) > 0.

In the next step we use the relation hrH;�wi




= hrH;N � rwi

�


; w as in

(3.13), whi
h follows from using an approximation of H by smooth fun
tions and

an integration by parts. Then by (3.3) a 
al
ulation leads to hĝ; N � rwi

�


+

hF;rwi




= �hû; vi




, and inserting

^

G;

^

F yields h

^

G; vi




+ h

^

F; vi




= �hû; vi




.
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From the regularity properties of the Stokes operator A

q

0

, see [25℄, we know that

the set of all v = A

q

0

w with w 2 C

2

0;�

(
) is dense in L

q

0

�

(
). Thus we may use

the last relation for all v 2 L

q

0

�

(
), and we get the representation formula

u = rH �

^

G�

^

F (3.15)

for the given very weak solution u.

Sin
e the right hand side of (3.15) depends only on the data F; k; g, we 
an

use (3.15) to 
onstru
t u 2 L

q

(
). Then the same arguments as above show that

u satis�es (3.3) and (1.12). Thus u de�ned by (3.15) is a very weak solution

of (3.1). Sin
e ea
h given very weak solution of (3.1) has the form (3.15), we

obtain the uniqueness assertion. The estimate (3.4) follows from (3.12), (3.14),

and (2.16). This proves Theorem 3.

Remarks 2 (1) Suppose that the data F; k; g in (3.1), (3.2) satisfy the stronger


onditions F 2 L

q

(
), k 2 L

q

(
), g 2 W

1�1=q;q

(�
), 1 < q <1. Then the very

weak solution u in Theorem 3 satis�es u 2 W

1;q

(
) and estimate

kuk

1;q;


� C(kFk

q;


+ kkk

q;


+ kgk

1�1=q;q;�


) (3.16)

with C = C(
; q) > 0. The existen
e of su
h a solution u of (3.1) is well known,

see [9℄, [11℄, [13℄. Sin
e u is obviously also a very weak solution whi
h is unique,

we 
on
lude this regularity property; see also [14℄, Lemma 4.

(2) In the same way we 
on
lude that if the data in (3.1), (3.2) satisfy the


onditions f = divF 2 L

q

(
), k 2 W

1;q

(
), g 2 W

2�1=q;q

(�
), then this solution

satis�es

kuk

2;q;


� C(kfk

q;


+ kkk

1;q;


+ kgk

2�1=q;q;�


) (3.17)

with C = C(
; q) > 0. Thus (3.16) and (3.17) are regularity properties of the

very weak solution u if the data are suÆ
iently smooth.

Proof of Theorem 2. Following [14℄ we �rst 
onsider a given very weak solution

u 2 L

q

(
) of the system (1.9). Using similar arguments as in the previous proof

we obtain, sin
e u � ru = div (uu)� ku and

1

3

+

1

q

=

1

r

, that

jhu � ru; wi




j � C(kuk

2

q;


+ kkk

r;


kuk

q;


)krwk

r

0

;


; w 2 C

2

0;�

(
): (3.18)

Hen
e we �nd W (u) 2 L

r

(
) satisfying

hu � ru; wi




= hdiv (uu)� ku; wi




= hdivW (u); wi




= �hW (u);rwi




; (3.19)

and

kW (u)k

r;


� C(kuk

2

q;


+ kkk

r;


kuk

q;


) (3.20)

with C = C(
; q; r) > 0, similarly as in (2.15), (2.16). We see that u is a very

weak solution of the linear system

��u +rp = div

�

F �W (u)

�

; div u = k; u

j

�


= g: (3.21)
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Then (3.15) leads to the formula

u = rH �

^

G�

^

F �

^

W (u) (3.22)

where rH;

^

G;

^

F;

^

W (u) are determined by

�H = k; N � (rH � g)

j

�


= 0;

h

^

G; vi




= hg �rH

j

�


; N � rA

�1

q

0

vi

�


;

h

^

F; vi




= hF;rA

�1

q

0

vi




;

h

^

W (u); vi




= �huu;rA

�1

q

0

vi




� hku; A

�1

q

0

vi




for all w 2 C

2

0;�

(
); v = A

q

0

w:

Setting û = u�rH, F(û) = �

^

F �

^

G�

^

W (û+rH), we obtain from (3.22)

the equation û = F(û), whi
h 
an be solved by Bana
h's �xed point theorem.

This leads to the desired solution u = û+rH.

For this purpose we use similar estimates as in the previous proof, and obtain

kF(û)k

q;


� C(kûk

q;


+ kgk

�

1

q

;q;�


+ kkk

r;


)

2

(3.23)

+Ckkk

r;


�

kûk

q;


+ kgk

�

1

q

;q;�


+ kkk

r;


�

+C

�

kFk

r;


+ kgk

�

1

q

;q;�


+ kkk

r;


�

with C = C(
; q) > 0. Setting a = C, � = kgk

�

1

q

;q;�


+ kkk

r;


, 
 = C(kFk

r;


+

�) + �, Æ = Ckkk

r;


, we obtain the estimate

kF(û)k

q;


+ � � a(kûk

q;


+ �)

2

+ Æ(kûk

q;


+ �) + 
: (3.24)

Then we 
onsider the 
losed ball B = fû 2 L

q

�

(
); kûk

q;


+� � y

1

g where y

1

> 0

means the smallest root of the equation y = ay

2

+Æy+
. Supposing the smallness


ondition 4a
 + 2Æ < 1 we get y

1

> � and kF(û)� F(v̂)k

q;


� âkû� v̂k

q;


with

some 0 < â < 1. Now Bana
h's �xed point theorem yields a unique solution

û 2 B with û = F(û), see [26℄, V.4.2, for details. Then u = û+rH solves (3.22)

and is a very weak solution of (1.9). The smallness 
ondition 4a
 + 2Æ < 1 
an

be written in the form (1.13).

To prove uniqueness we follow [14℄ and assume that there exists another very

weak solution v 2 L

q

(
) of the system (1.9) with the same data F; k; g as for u.

Setting U = u� v we 
an show that the equation

hU;�w + v � rw + u � (rw)

T

+ kwi




= 0 (3.25)

is satis�ed for all w 2 C

2

0;�

(
), where "T\ denotes the transpose. Note that

v need not satisfy any smallness 
ondition, but that kuk

q

is small. Then, by

standard arguments, we solve for ea
h G 2 C

1

0

(
) the modi�ed Stokes system

��w � v � rw � u � (rw)

T

� kw +r� = G; divw = 0; w

j

�


= 0
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to get a solution (w;r�) 2

�

W

2;3=2

(
) \W

1;3=2

0

(
)

�

� L

3=2

(
). Sin
e C

2

0;�

(
) is

dense in

�

W

2;3=2

(
)\W

1;3=2

0

(
)

�

\L

3=2

�

(
), we may insert this w in (3.25) whi
h

�nally shows that U = 0, u = v. This proves Theorem 2. The estimate (1.14) is

an easy 
onsequen
e.

4 Nonstationary very weak solutions

Consider the linearized nonstationary system

u

t

��u+rp = f; div u = k; u

j

�


= g; u

j

t=0

= u

0

(4.1)

with data f = divF and k; g; u

0

satisfying

F 2 L

s

�

0; T ;L

r

(
)

�

; k 2 L

s

�

0; T ;L

r

(
)

�

; g 2 L

s

�

0; T ;W

�

1

q

;q

(�
));

u

0

2 J

q;s

(
);

Z




k dx =

Z

�


N � g dS for a.a. t 2 [0; T ); (4.2)

where 1 < r � q <1,

1

3

+

1

q

�

1

r

, 1 < s <1.

Modifying De�nition 1 in an obvious way for the linearized 
ase, a ve
tor �eld

u 2 L

s

�

0; T ;L

q

(
)

�

is 
alled a very weak solution of the system (4.1) with data

(4.2) if

�hu; w

t

i


;T

� hu;�wi


;T

+ hg;N � rwi

�
;T

= hu

0

; w(0)i




� hF;rwi


;T

; (4.3)

w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

, and additionally the 
onditions (1.6) are satis�ed, i.e.,

div u = k and N � u

j

�


= N � g a.e. in (0; T ).

Our main result on this system reads as follows.

Theorem 4 Suppose that the data F; k; g and u

0

satisfy (4.2) with 1 < r � q <

1,

1

3

+

1

q

�

1

r

, 1 < s < 1. Then there exists a unique very weak solution

u 2 L

s

�

0; T ;L

q

(
)

�

of the system (4.1), satisfying

A

�1

q

P

q

u

t

2 L

s

�

0; T ;L

q

�

(
)

�

; A

�1

q

P

q

u 2 C

�

[0; T );L

q

�

(
)

�

; A

�1

q

P

q

u

j

t=0

= A

�1

q

P

q

u

0

and

kA

�1

q

P

q

u

t

k

q;s;


+kuk

q;s;


� C

�

ku

0

k

J

q;s

(
)

+kFk

r;s;


+kkk

r;s;


+kgk

�

1

q

;q;s;�


�

(4.4)

with C = C(
; q; r; s) > 0.

Remarks 3 (1) Setting in parti
ular w 2 C

1

0

�

(0; T );C

1

0;�

(
)

�

in (4.3), we ob-

tain, see [26℄, p. 248, p. 202, [27℄, the existen
e of a distribution p su
h that

u

t

��u+rp = f holds in 
� (0; T ) in the sense of distributions.
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(2) Let h = (h

1

; h

2

; h

3

) 2 C

1

0

�

(0; T );W

1�1=q

0

;q

0

(�
)

�

with N � h

j

�


= 0. Then

h(t) 7! ŵ

h(t)

, see (2.8), (2.9), is a linear mapping satisfying (ŵ

h

)

t

= ŵ

h

t

. We may

insert w = ŵ

h

in (4.3) and obtain the formula

hg; hi

�
;T

= hu; ŵ

h

t

i


;T

+ hu;�ŵ

h

i


;T

� hF;rŵ

h

i


;T

: (4.5)

Sin
e the normal 
omponent N � h of the test fun
tion h is zero, this formula

yields a well de�ned expression for the tangential 
omponent N�g of the bound-

ary values. It is easy to see using integration by parts that N � g 
oin
ides with

the usual tra
e N � u

j

�


if u is suÆ
iently smooth. Therefore, we may 
all the

right hand side of (4.5) the tra
e N � u

j

�


of the tangential 
omponent of u at

�
 in the sense of distributions. Sin
e the normal 
omponent N �u

j

�


of u at �


is well de�ned by (1.6), we get an expli
it tra
e formula for u

j

�


in the sense of

distributions at �
 whi
h 
oin
ides with the usual tra
e of u at �
 if u is smooth.

This yields a pre
ise meaning of the general boundary 
ondition u

j

�


= g in the

sense of boundary distributions.

(3) Sin
e w(0) in (4.3) is solenoidal we expe
t that the initial 
ondition u

j

t=0

=

u

0

only makes sense "modulo gradients\. Therefore, the 
ondition A

�1

q

P

q

u

j

t=0

=

A

�1

q

P

q

u

0

, see (1.7), seems to be the adequate pre
ise formulation of the initial


ondition u

j

t=0

= u

0

. If u is suÆ
iently smooth, we need additional (ne
essary)


ompatibility 
onditions in order to rea
h that u(0) = u

0

, see (4.14).

Proof of Theorem 4. Let E(t) = E

k(t);g(t)

2 L

q

(
) be the very weak solution of

the stationary system

��E(t) +rp(t) = 0; divE(t) = k(t); E(t)

j

�


= g(t) for a.a. t 2 [0; T ℄: (4.6)

Then from (3.3) we obtain the relation hg;N � rwi

�
;T

= hE;�wi


;T

for every

w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

. Therefore, given a very weak solution u, (4.3) 
an be

written in the form

�hA

�1

q

P

q

u; v

t

i


;T

�hu�E;�A

�1

q

0

vi


;T

= hA

�1

q

P

q

u

0

; v(0)i




�hF;rA

�1

q

0

vi


;T

(4.7)

where w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

, v = A

q

0

w. Sin
e A

�1

q

P

q

u

0

2 L

q

�

(
), see (2.19),

and sin
e div (u � E) = 0, N � (u � E)

j

�


= 0 yielding u � E = P

q

(u � E) we

obtain that

hu� E;�A

�1

q

0

vi


;T

= hP

q

(u� E);�A

�1

q

0

vi


;T

= hu� E; P

q

0

�A

�1

q

0

vi


;T

= �hu� E; vi


;T

:

Further we use (2.15) for a.a. t 2 [0; T ) and get a unique

^

F = �A

�1

q

P

q

divF 2

L

s

�

0; T ;L

q

�

(
)

�

satisfying the relation

hF;rA

�1

q

0

vi


;T

= h

^

F; vi


;T

for all v = A

q

0

w; w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

: (4.8)
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This leads to the relation

�hA

�1

q

P

q

u; v

t

i


;T

= hA

�1

q

P

q

u

0

; v(0)i




� hP

q

u; vi


;T

(4.9)

+hP

q

E; vi


;T

+ hA

�1

q

P

q

divF; vi


;T

:

Then a standard argument shows, see [27℄, III, 1.1 or [26℄, IV, 1.3, that A

�1

q

P

q

u

t

2

L

s

�

0; T ;L

q

�

(
)

�

is well de�ned, that

A

�1

q

P

q

u 2 C

�

[0; T );L

q

�

(
)

�

; A

�1

q

P

q

u(0) = A

�1

q

P

q

u

0

;

and that the evolution system

(A

�1

q

P

q

u)

t

+ A

q

(A

�1

q

u) = A

�1

q

P

q

divF + P

q

E

k;g

; (A

�1

q

P

q

u)(0) = A

�1

q

P

q

u

0

(4.10)

is satis�ed. From (2.21) we now obtain the representation formula

û(t) � P

q

u(t) (4.11)

= A

q

e

�tA

q

A

�1

q

P

q

u

0

+

Z

t

0

A

q

e

�(t��)A

q

�

A

�1

q

P

q

divF + P

q

E

k;g

�

d�

for the very weak solution u. As in (3.22) we get û(t) = P

q

u(t) = u(t)�rH(t)

where rH(t) is determined by �H(t) = k(t), N �

�

rH(t)� g(t)

�

j

�


= 0 for a.a.

t 2 [0; T ). Sin
e rH(t) only depends on g(t); k(t), see (3.11), we obtain by (4.11)

a formula for u = û +rH whi
h determines u uniquely by the data F; k; g and

u

0

.

Now use (4.11) to 
onstru
t a very weak solution u. Using the same 
al
ulation

as above we obtain the existen
e assertion of u, the uniqueness of whi
h follows

from the representation (4.11). The estimate (4.4) is based on (2.20) and the

estimates of E;

^

F , see (3.4) and (2.16).

Using (2.20) we 
on
lude that the term ku

0

k

J

q;s

(
)

in (4.4) 
an be repla
ed

by the weaker norm

ku

0

k

J

q;s

T

(
)

�

�

Z

T

0

kA

q

e

�tA

q

A

�1

q

P

q

u

0

k

s

q;


dt

�

1

s

: (4.12)

Now the proof of Theorem 4 is 
omplete.

Next we 
onsider some regularity properties. Suppose the data f = divF and

k; g; u

0

of the system (4.1) satisfy the stronger 
onditions

F 2 L

s

�

0; T ;W

1;q

(
)

�

; k 2 L

s

�

0; T ;W

1;q

(
)

�

; k

t

2 L

s

�

0; T ;L

r

(
)

�

;

g 2 L

s

�

0; T ;W

2�1=q;q

(�
)

�

; g

t

2 L

s

�

0; T ;W

�

1

q

;q

(�
)

�

; u

0

2 W

2;q

(
) (4.13)

with 1 < r � q <1,

1

3

+

1

q

�

1

r

, 1 < s <1, and the 
ompatibility 
onditions

Z




k dx =

Z

�


N � g dS for t 2 [0; T ); u

0

j

�


= g(0); div u

0

= k(0): (4.14)
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Observe that g(0) and k(0) are well de�ned be
ause of the assumptions on k

t

; g

t

.

For simpli
ity the assumption on u

0

is not optimally 
hosen.

Then we will show the existen
e of a unique solution u 2 L

s

�

0; T ;W

2;q

(
)

�

with u

t

2 L

s

�

0; T ;L

q

(
)

�

of the system (4.1), together with a pressure fun
tion

p su
h that rp 2 L

s

�

0; T ;L

q

(
)

�

, satisfying the estimate

ku

t

k

q;s;


+ kuk

2;q;s;


+ krpk

q;s;


(4.15)

� C

�

ku

0

k

2;q;


+ kfk

q;s;


+ kkk

1;q;s;


+ kk

t

k

r;s;


+ kgk

2�1=q;q;s;�


+ kg

t

k

�1=q;q;s;�


�

with C = C(
; q; s) > 0. The equations u

t

� �u + rp = f , div u = k and

u

j

�


= g in (4.1) are satis�ed in the strong sense for a.a. t 2 [0; T ); hen
e

u 2 C

�

[0; T );L

q

(
)

�

and u(0) = u

0

is well de�ned. The initial value u

0

2 W

2;q

(
)


an be treated as a fun
tional from J

q;s

(
), see (2.19). Thus we see that (4.13),

(4.14) are stronger than the 
onditions (4.2).

Therefore, Theorem 4 yields a unique very weak solution u 2 L

s

�

0; T ;L

q

(
)

�

to (4.1) whi
h 
oin
ides with ea
h more regular solution by the uniqueness prop-

erty.

To show the existen
e of a regular solution u satisfying (4.15) we �rst suppose

that su
h a solution is given. Let E = E

k;g

be 
hosen as in (4.6). Then E(0) =

E

k(0);g(0)

satis�es the system

��E(0) +rp(0) = 0; divE(0) = k(0); E(0)

j

�


= g(0)

and (3.17) shows that E(0) 2 W

2;q

(
). Using (4.14) we see that u

0

�E(0)

j

�


= 0,

div

�

u

0

� E(0)

�

= 0 whi
h leads to u

0

� E(0) 2 D(A

q

). Further, using E

t

=

(E

k;g

)

t

= E

k

t

;g

t

, the assumptions on k; k

t

; g; g

t

, estimate (3.4) with u; F; k; g re-

pla
ed by E

t

; 0; k

t

; g

t

, and the estimate (3.17) with u; f; k; g repla
ed by E; 0; k; g,

we obtain the estimate

kE

t

k

q;s;


+ kEk

2;q;s;


(4.16)

� C

�

kkk

1;q;s;


+ kk

t

k

r;s;


+ kgk

2�1=q;q;s;


+ kg

t

k

�

1

q

;q;s;�


�

with C = C(
; q; s) > 0.

Setting ~u(t) = u(t)� E(t) we obtain the evolution system

~u

t

+ A

q

~u = P

q

f � P

q

E

t

; div ~u = 0; ~u

j

�


= 0; ~u

j

t=0

= u

0

� E(0):

Then (2.21) yields the representation formula

u(t) = E(t)+e

�tA

q

�

u

0

�E(0)

�

+

Z

t

0

e

�(t��)A

q

(P

q

f�P

q

E

�

)d�; 0 � t < T; (4.17)
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for the given regular solution u.

In the next step we use (4.17) to 
onstru
t the desired solution u, and we

use (2.20), (4.16). Further we apply (3.17) to E(0), and use that k(0) = div u

0

,

g(0) = u

0

j

�


. This yields the regularity properties of u, the estimate (4.15) for u,

and its uniqueness. The pressure term rp, 
onstru
ted by de Rham's argument,


an be written in the form rp = f � u

t

+�u proving (4.15) for p.

Proof of Theorem 1. First let u be a given solution of (1.1) for some 0 < T

0

� T

with the properties of this theorem. Further we 
onsider the solutionE = E

F;k;g;u

0

of the 
orresponding linearized system

E

t

��E +rp̂ = divF; divE = k; E

j

�


= g; E

j

t=0

= u

0

a

ording to Theorem 4. Setting ~u = u � E, the 
al
ulation as in (3.19) shows

that ~u is a very weak solution of the linear system

~u

t

��~u+r~p = �divW (u); div ~u = 0; ~u

j

�


= 0; ~u

j

t=0

= 0; (4.18)

whereW (u) is de�ned as in (3.19); in parti
ular, divW (u) = div (uu)�ku. Using

(3.20) we 
on
lude that W (u) 2 L

s=2

�

0; T

00

;L

r

(
)

�

for 0 < T

00

< T

0

. If T

0

< 1

we set T

00

= T

0

. Thus we may use the representation formula (4.11) with k = 0,

g = 0, u

0

= 0, F = �W (u) = �W (~u+ E) and with s repla
ed by s=2. Hen
e

~u(t) = (F(~u)(t) := �

Z

t

0

A

q

e

�(t��)A

q

A

�1

q

P

q

divW (u) d�; 0 � t < T

0

: (4.19)

To solve (4.19) by Bana
h's �xed point theorem we have to estimate

kF(~u)k

q;s;


where k�k

q;s;


= k�k

q;s;
;T

0

=

� R

T

0

0

k�k

s

q;


dt

�

1

s

. Let �

0

=

3

2q

yield-

ing

1

2

� �

0

+

1

s

=

1

s=2

and 2�

0

+

3

q

=

3

q=2

. Using (2.12) and (2.11) with � = �

0

,


 =

q

2

, we get that

kF(~u)(t)k

q;


� C

Z

t

0

1

(t� �)

1=2+�

0

kA

�1=2

q=2

P

q=2

divW (u)k

q=2

d� :

Looking at the integrand, we apply the estimate

kA

�1=2

q=2

P

q=2

(ku)k

q=2

� CkP




(ku)k




� Ckkk

r

kuk

q

whi
h is based on (2.11) with � =

1

2

and

1




=

1

3

+

2

q

=

1

r

+

1

q

and on H�older's

inequality. Furthermore, kA

�1=2

q=2

P

q=2

div (uu)k

q=2

� Ckuuk

q=2

� Ckuk

2

q

sin
e

jhA

�1=2

q=2

P

q=2

div (uu); 'i




j = j � huu;rA

�1=2

(q=2)

0

P

(q=2)

0

'i




j � Ckuuk

q=2

k'k

(q=2)

0

for all ' 2 L

(q=2)

0

(
) : Summarizing we 
on
lude that

kF(~u)(t)k

q;


� C

Z

t

0

1

(t� �)

1=2+�

0

�

kuk

2

q

+ kkk

r

kuk

q

�

d� :
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Then the Hardy-Littlewood inequality, see [26℄, p. 103, [28℄,

�

Z

T

0

j

Z

t

0

(t� �)

��1

h(�) d� j

s

dt

�

1

s

� C

�

Z

T

0

jh(t)j

~s

dt

�

1

~s

with � =

1

2

� �

0

and ~s =

s

2

yields the estimate

kF(~u)k

q;s;


� C

�

�

k~uk

q;s;


+ kEk

q;s;


�

2

+ kkk

r;s;


�

k~uk

q;s;


+ kEk

q;s;


�

�

(4.20)

with C = C(
; q; s) > 0:

Setting a = C, � = kEk

q;s;


, Æ = Ckkk

r;s;


and 
 = �, (4.20) is equivalent to

the estimate

kF(~u)k

q;s;


+ � � a(k~uk

q;s;


+ �)

2

+ Æ(k~uk

q;s;


+ �) + 
; (4.21)


f. (3.24) in the proof of Theorem 2 for the stationary 
ase. Thus, in the same

way as in that proof, we obtain a solution ~u 2 L

s

�

0; T

0

;L

q

(
)

�

of the �xed point

equation ~u = F(~u) if the 
ondition 4a
 + 2Æ < 1, i.e.,

4C

�

Z

T

0

0

kEk

s

q;


dt

�

1

s

+ 2C

�

Z

T

0

0

kkk

s

r;


dt

�

1

s

< 1 : (4.22)

is satis�ed. Using (4.4) and (4.12) we may use also the (weaker) smallness 
on-

dition

�

Z

T

0

0

kA

q

e

�tA

q

A

�1

q

P

q

u

0

k

s

q;


dt

�

1

s

+

�

Z

T

0

0

kFk

s

r;


dt

�

1

s

(4.23)

+

�

Z

T

0

0

kkk

s

r;


dt

�

1

s

+

�

Z

T

0

0

kgk

s

�

1

q

;q;�


dt

�

1

s

<

1

C

with C = C(
; q; s) > 0. This 
ondition is always satis�ed if T

0

> 0 is suÆ
iently

small; note that the 
ase T

0

=1 is possible.

Writing (4.19) in the form

A

�1

q

~u(t) = A

�1

q

P

q

u(t)� A

�1

q

P

q

E(t) (4.24)

= �

Z

t

0

e

�(t��)A

q

A

�1

q

P

q

divW (u)d�; 0 � t < T

0

;

we 
on
lude using (2.20), (2.16), (3.20), together with H�older's inequality, that

k(A

�1

q

~u)

t

k

q;s=2;


� C

1

kA

�1

q

P

q

divW (u)k

q;s=2;


� C

2

kW (u)k

r;s=2;


� C

3

�

kuk

2

q;s;


+ kkk

r;s;


kuk

q;s;


�

<1

with C

i

; i = 1; 2; 3; depending on 
; q; s.
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Furthermore, we obtain from (4.4) that

A

�1

q

P

q

E

t

2 L

s

�

0; T

00

;L

q

�

(
)

�

� L

s=2

�

0; T

00

;L

q

�

(
)

�

; 0 < T

00

< T

0

:

This proves that A

�1

q

P

q

u

t

2 L

s=2

�

0; T

00

;L

q

�

(
)

�

for all T

00

with 0 < T

00

< T

0

, and

all 0 < T

00

<1 if T

0

=1.

A 
al
ulation shows that u de�ned by u = ~u + E is a very weak solution

of (1.1). To prove the uniqueness of u we assume that v 2 L

s

�

0; T

0

;L

q

(
)

�

is

another very weak solution of (1.1). Setting U = u � v we obtain in the same

way as in (4.18) that U is a very weak solution of the system

U

t

��U +rP = �div (Uu)� div (vU) + kU;

divU = 0; U

j

�


= 0; U

j

t=0

= 0: (4.25)

The same method as used for (4.18) and (4.19) then leads to the estimate

kUk

q;s;


� C(kuk

q;s;


+ kvk

q;s;


+ kkk

r;s;


) kUk

q;s;


(4.26)

with C = C(
; q; s) > 0. Sin
e k � k

q;s;


= k � k

q;s;
;T

0

; we observe that C does not

depend on T

0

. Thus we 
an 
hoose T

00

2 (0; T

0

) su
h that

kuk

q;s;
;T

00

+ kvk

q;s;
;T

00

+ kkk

r;s;
;T

00

�

1

2C

:

This leads to kUk

q;s;
;T

00

� 0, hen
e U = 0 and u = v on the interval [0; T

00

℄. If

T

00

< T we 
an 
ontinue this pro
edure and get u = v on [0; T

0

) in �nitely many

steps. The proof of Theorem 1 is 
omplete.
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