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Abstrat

We investigate several aspets of very weak solutions u to stationary and

nonstationary Navier-Stokes equations in a bounded domain 
 � R

3

. This

notion was introdued by Amann [3℄, [4℄ for the nonstationary ase with

nonhomogeneous boundary data u

j

�


= g leading to a new and very large

solution lass. Here we are mainly interested to investigate the "largest

possible\ lass for the more general problem with arbitrary divergene

k = div u, boundary data g = u

j

�


and an external fore f , as weak as

possible. In priniple, we will follow Amann's approah.
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1 Introdution

Throughout this paper 
 � R

3

is a bounded domain with boundary �
 of lass

C

2;1

and N = N(x) 2 R

3

denotes the unit outer normal at x = (x

1

; x

2

; x

3

) 2 �
.

In 
 � [0; T ), where 0 < T � 1, we onsider the system of Navier-Stokes

equations in the very general form

u

t

��u+ u � ru+rp = f; div u = k; u

j

�


= g; u

j

t=0

= u

0

(1.1)

with nonhomogeneous data f = divF and k; g; u

0

satisfying

F = (F

ij

)

i;j=1;2;3

2 L

s

�

0; T ;L

r

(
)

�

; k 2 L

s

�

0; T; L

r

(
)

�

;

g = (g

1

; g

2

; g

3

) 2 L

s

�

0; T ;W

�

1

q

;q

(�
)

�

; u

0

2 J

q;s

(
);

(1.2)

1



where 3 < q < 1, 2 < s < 1, 1 < r < q suh that

1

3

+

1

q

=

1

r

,

2

s

+

3

q

= 1.

For simpliity, we assume that the oeÆient of visosity equals 1. See (2.19)

onerning the spae of initial values J

q;s

(
) as a spae of funtionals. Further

we suppose the ompatibility ondition

Z




k(t)dx =

Z

�


N � g(t)dS for a.a. t 2 [0; T ): (1.3)

The largest possible lass in the ontext of very weak solutions seems to be Serrin's

uniqueness lass L

s

�

0; T ;L

q

(
)

�

for u de�ned by

2

s

+

3

q

= 1. Indeed, we annot

expet, up to now, to obtain the desired uniqueness and regularity properties for

any larger lass.

To obtain the relation whih de�nes a very weak solution u of (1.1), we follow

Amann [3℄, [4℄ in priniple and apply formally to (1.1) the test funtion w 2

C

1

0

�

[0; T );C

2

0;�

(
)

�

, where C

2

0;�

(
) = fv 2 C

2

(
)

3

: div v = 0 in 
; v

j

�


= 0g.

Then an integration by parts yields the relation

Z

T

0

�

� hu; w

t

i




� hu;�wi




+ hg;N � rwi

�


� huu;rwi




� hku; wi




�

dt (1.4)

= hu

0

; w(0)i




�

Z

T

0

hF;rwi




dt; w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

:

Here h�; �i




is the usual L

q

� L

q

0

-pairing in 
 and hg(t); N � rw(t)i

�


de-

notes the value of the boundary distribution g(t) 2 W

�

1

q

;q

(�
) at the normal

derivative w

N

(t) = N � rw(t)

j

�


; furthermore, hu

0

; w(0)i




means the value

of the funtional u

0

2 J

q;s

(
) at w(0) = w

j

t=0

2 C

2

0;�

(
), see (2.19), and

uu = u 
 u = (u

i

u

j

)

i;j=1;2;3

for u = (u

1

; u

2

; u

3

). We also use the relation

u � ru = (u � r)u = div (uu)� ku. Note that divF =

�

P

3

i=1

(�=�x

i

)F

ij

�

j=1;2;3

.

Using in (1.4) in partiular the test funtion w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

with

C

2

0;�

(
) = fv 2 C

2

0

(
)

3

; div v = 0g, we obtain, together with some appropriate

distribution p, the validity of the �rst equation in (1.1) in the sense of distribu-

tions. The seond equation div u = k in (1.1) must be supposed additionally to

(1.4). To explain the boundary ondition u

j

�


= g in (1.1) we observe that the

normal derivative w

N

(t) of w(t) at �
 has the form

w

N

(t) = N � rw(t) =

�

urlw(t)

�

�N; (1.5)

and therefore, the relation (1.4) ontains only the tangential omponent N �g of

u at �
. Indeed, we will show that the tangential omponent of u is well de�ned

by (1.4) as a distribution on �
, and we will derive an expliit formula, see (4.5).

The (well de�ned) ondition N � u(t)

j

�


= N � g(t) for the normal omponent of

u at �
 must be supposed additionally. This leads to a preise formulation of

2



the boundary ondition u

j

�


= g, see Remarks 3(2) in Setion 4 below. Thus we

suppose, additionally to (1.4), the onditions

div u(t) = k(t); N � u(t)

j

�


= N � g(t) for a.a. t 2 [0; T ): (1.6)

This leads to the following

De�nition 1 Assume that the data F; k; g and u

0

satisfy (1.2) and (1.3). Then

u 2 L

s

�

0; T ;L

q

(
)

�

is alled a very weak solution of the Navier-Stokes system

(1.1) if the onditions (1.4) and (1.6) are satis�ed.

Note that a very weak solution u need not have any di�erentiability property

in spae and time. In partiular, u need not satisfy any energy inequality with

�nite energy kuk

2

L

1

(0;T ;L

2

(
))

+ kruk

2

L

2

(0;T ;L

2

(
))

< 1 like weak solutions in the

sense of Hopf. This justi�es the notation "very weak solution\. On the other

hand, a very weak solution is unique { a fat whih is not known in general for

weak solutions in the sense of Hopf.

The notion of very weak solutions is not new for homogeneous data k = 0

and g = 0, see [3℄, [4℄, [14℄, and the literature therein. However, Amann's notion

of very weak solutions in [3℄, [4℄ for k = 0 and boundary values g 6= 0 introdues

a ompletely new aspet. It leads to new solution lasses of very low smoothness

in spae suh that the boundary ondition u

j

�


= g is not de�ned by usual

trae theorems but more generally by the onditions (1.3), (1.4). This will have

interesting appliations.

Following Amann's approah our aim is to extend the solution lasses for

(1.1) to div u = k 6= 0 and to the "weakest\ possible ase u

j

�


= g 2 W

�

1

q

;q

(�
)

for a.a. t 2 [0; T ℄; leading to the solution lass in De�nition 1 without any

smoothness in spae and only satisfying Serrin's ondition, see Theorem 1. We

will develop suh a theory also for the linear nonstationary Stokes system, see

Theorem 4. Further we improve the results on very weak solutions of stationary

Stokes and Navier-Stokes systems developed in [14℄ to the more general ase that

k 2 L

r

(
);

1

3

+

1

q

=

1

r

; see Theorems 2 and 3.

Conerning the initial ondition u

j

t=0

= u

0

in (1.1) we note, see Theorem

1, that A

�1

q

P

q

u is well de�ned as a ontinuous funtion on [0; T ) with values in

L

q

�

(
); here, A

q

means the Stokes operator and P

q

the Helmholtz projetion. We

obtain the well de�ned ondition

A

�1

q

P

q

u

j

t=0

= A

�1

q

P

q

u

0

; (1.7)

whih an be understood as the preise meaning of u

j

t=0

= u

0

, see (2.19) for

A

�1

q

P

q

u

0

and the proof of Theorem 1.

Thus eah ondition in the system (1.1) has a well de�ned diret meaning for a

very weak solution u. The �rst two equations hold in the sense of distributions on

3




�(0; T ), u

j

�


= g holds in the sense of distributions in �
, and u

j

t=0

= u

0

holds

in the sense of (1.7). Moreover, if the data are suÆiently smooth, u oinides

with the usual strong solution.

Our main theorem on the system (1.1) reads as follows.

Theorem 1 Suppose the data F; k; g and u

0

satisfy (1.2) and (1.3) with 3 < q <

1, 2 < s < 1, 1 < r < q,

1

3

+

1

q

=

1

r

,

2

s

+

3

q

= 1. Then there exists some T

0

=

T

0

(F; k; g; u

0

) > 0, 0 < T

0

� T , and a uniquely determined very weak solution

u 2 L

s

�

0; T

0

;L

q

(
)

�

of the system (1.1) satisfying A

�1

q

P

q

u

t

2 L

s=2

�

0; T

00

;L

q

�

(
)

�

for all 0 < T

00

< T

0

, and A

�1

q

P

q

u 2 C

�

[0; T

0

);L

q

�

(
)

�

. The existene interval

[0; T

0

) is determined by the ondition (4.23), depending on the data, and inludes

the ase T

0

= T =1 if the data are suÆiently small.

Up to now we annot prove that there exists an open maximal existene

interval as in [3℄, [4℄ for the ase k = 0. The reasons are the very weak assumptions

on g and k in (1.2).

In the linearized ase u � ru � 0 we have to omit the term hu � ru; wi




=

�huu;rwi




� hku; wi




in (1.4), and we may omit the restrition

2

s

+

3

r

= 1 in

(1.2), whih is aused by the nonlinear term. Then we an show the existene and

uniqueness of a very weak solution u 2 L

s

�

0; T ;L

q

(
)

�

of the linearized system

(1.1) satisfying the estimate

kA

�1

q

P

q

u

t

k

L

s

(0;T ;L

q

(
))

+ kuk

L

s

(0;T ;L

q

(
))

(1.8)

� C

�

ku

0

k

J

q;s

(
)

+ kFk

L

s

(0;T ;L

r

(
))

+ kkk

L

s

(0;T ;L

r

(
))

+ kgk

L

s

(0;T ;W

�

1

q

;q

(�
))

�

with C = C(
; q; s) > 0, see Theorem 4 in Setion 4 below.

In the stationary ase we onsider the system

��u+ u � ru+rp = f; div u = k; u

j

�


= g (1.9)

with data f = divF and k; g satisfying

F = (F

ij

) 2 L

r

(
); k 2 L

r

(
); g 2 W

�

1

q

;q

(�
);

Z




k dx =

Z

�


N � g dS; (1.10)

with 3 < q <1, 1 < r < q,

1

3

+

1

q

=

1

r

.

An obvious modi�ation of the nonstationary ase yields the following

De�nition 2 Assume that the data F; k and g satisfy (1.10). Then u 2 L

q

(
)

is alled a very weak solution of the stationary Navier-Stokes system (1.9) if the

relation

�hu;�wi




+ hg;N � rwi

�


� huu;rwi




� hku; wi




= �hF;rwi




; (1.11)

4



holds for all w 2 C

2

0;�

(
), and the onditions

div u = k; N � u

j

�


= N � g (1.12)

are satis�ed.

In this ase we obtain the following result.

Theorem 2 Suppose the data F; k and g satisfy (1.10) with 3 < q <1, 1 < r <

q,

1

3

+

1

q

=

1

r

. There exists a onstant K = K(
; q) > 0 suh that if

kFk

L

r

(
)

+ kkk

L

r

(
)

+ kgk

W

�

1

q

;q

(�
)

� K; (1.13)

then we obtain a uniquely determined very weak solution u 2 L

q

(
) to the sta-

tionary Navier-Stokes system (1.9). This solution satis�es the estimate

kuk

L

q

(
)

� C

�

kFk

L

r

(
)

+ kkk

L

r

(
)

+ kgk

W

�

1

q

;q

(�
)

�

(1.14)

with C = C(
; q) > 0.

Similarly as in (1.5) we obtain for x 2 �
 the identity

w

N

= N � rw = (urlw)�N; w 2 C

2

0;�

(
): (1.15)

Setting w 2 C

2

0;�

(
) in (1.11) we obtain that ��u + u � ru + rp = f holds in

the sense of distributions with some distribution p. In the stationary ase we an

also prove that eah very weak solution u has a well de�ned trae u

j

�


even in

the spae W

�

1

q

;q

(�
), and there is an expliit representation formula for u

j

�


,

see (3.6).

Note that Theorem 2 improves the result in [14℄ where kkk

L

r

(
)

is replaed

by the stronger norm kkk

L

q

(
)

.

In the linearized ase u � ru � 0, we omit huu;rwi




, hku; wi




in relation

(1.11), and the existene result together with estimate (1.14) holds without any

smallness ondition for every 1 < q < 1, 1 < r < q,

1

3

+

1

q

�

1

r

, see Theorem 3

in Setion 3 below.

The improvement onerning kkk

L

r

(
)

leads to a ertain saling invariane

in the following sense. Let � > 0, onsider some ball B

a

(x

0

) � R

3

with radius

a > 0 and enter x

0

2 R

3

, and let F; k; g be data as in (1.10) with 
 = B

a

(x

0

),

3 < q <1, 1 < r < q,

1

3

+

1

q

=

1

r

. Then it is easy to show that u 2 L

q

�

B

a

(x

0

)

�

is a very weak solution to the system (1.9) on 
 with data F; k; g i� ~u 2 L

q

(

~


),

~


 = B

a=�

(x

0

), is a very weak solution of the system

��~u+ ~u � r~u+r~p = div

~

F ; div ~u =

~

k; ~u

j

�

~




= ~g (1.16)

5



on

~


, where ~u; ~p;

~

F;

~

k; ~g are de�ned by

~u(x) = �u

�

�(x� x

0

) + x

0

�

; ~p(x) = �

2

p

�

�(x� x

0

) + x

0

�

;

~

F (x) = �

2

F

�

�(x� x

0

) + x

0

�

;

~

k(x) = �

2

k

�

�(x� x

0

) + x

0

);

~g(x) = �g

�

�(x� x

0

) + x

0

):

Then we onlude that if K

a;q

= K

�

B

a

(x

0

); q

�

> 0 is the onstant in (1.13)

for B

a

(x

0

), then �

1�

3

q

K

a;q

an be hosen as the orresponding onstant for

B

a=�

(x

0

). We also onlude that (1.14) holds for u; F; k; g in 
 = B

a

(x

0

) with

C = C

�

B

a

(x

0

); q

�

i� (1.14) holds for ~u;

~

F ;

~

k; ~g in

~


 = B

a=�

(x

0

) with the same

onstant C. These properties have several appliations in the loal regularity

theory. Similar results hold in the nonstationary theory.

The proofs of these theorems are organized as follows. First we onsider the

linearized stationary and nonstationary system and prove expliit representation

formulas. Applying these formulas to the nonlinear system leads to a �xed point

problem whih an be solved by Banah's �xed point theorem for suÆiently

small data. In Setion 2 we prepare several preliminaries.

2 Notations and Preliminaries

Classial Funtion Spaes. Let 1 < q <1 and q

0

=

q

q�1

suh that

1

q

+

1

q

0

= 1.

We need the usual spaes L

q

(
) and W

�;q

(
), W

�;q

0

(
), � � 0, with norms

k�k

L

q

(
)

= k�k

q;


and k�k

W

�;q

(
)

= k�k

�;q;


, resp. The spaeW

��;q

(
) =W

�;q

0

0

(
)

0

is the dual spae ofW

�;q

0

0

(
) with the natural duality pairing h�; �i




and the norm

k�k

W

��;q

(
)

= k�k

��;q;


. Thus, e.g., hf; hi




means the value of the funtional f 2

W

��;q

(
) at h 2 W

�;q

0

0

(
). Similarly, for funtions on the boundary, L

q

(�
) and

W

�;q

(�
);W

��;q

0

(�
), � � 0, with norms k�k

L

q

(�
)

= k�k

q;�


and k�k

W

�;q

(�
)

=

k�k

�;q;�


, k�k

W

��;q

(�
)

= k�k

��;q;�


, resp., and the duality pairing h�; �i

�


are the

orresponding notions for �
. In partiular, the pairing between L

q

(�
) and its

dual spae L

q

0

(�
) = L

q

(�
)

0

is given by

hf; gi

�


=

Z

�


f � g dS

where

R

�


: : : dS means the surfae integral on �
, see [24℄ and [26℄, p. 33, p. 40.

For more details on these spaes f. [1℄, [11℄, [12℄, [26℄, [28℄. In general, we use

the same symbol for salar, vetor, and tensor valued spaes.

By C

�

0

(
), C

�

(
), C

�

(
), C

�

(�
), � = 0; 1; : : : and � = 1, we denote the

usual spaes of smooth funtions. We set C

�

0

(
) = fv 2 C

�

(
); v

j

�


= 0g. The

spae of distributions C

1

0

(
)

0

is the dual spae of the test spae C

1

0

(
) with the

usual topology, the duality pairing is again denoted by h�; �i




. Similarly, the spae

6



C

1

(�
)

0

of boundary distributions is the dual spae of the test spae C

1

(�
)

with the duality pairing h�; �i

�


. This test spae has the form C

1

(�
) sine �


has no boundary.

Spaes of solenoidal vetor valued funtions are denoted by appending "�\.

Thus we have C

�

0;�

(
) = fv 2 C

�

0

(
); div v = 0g and C

�

0;�

(
) = fv 2 C

�

0

(
);

div v = 0g. The orresponding funtional spae for solenoidal test funtions

C

1

0;�

(
) is the dual spae C

1

0;�

(
)

0

, again with pairing h�; �i




. By a theorem of de

Rham, [27℄, Chapter I, Proposition 1.1, a distribution d = (d

1

; d

2

; d

3

) 2 C

1

0

(
)

0

with hd; vi




= 0 for all v 2 C

1

0;�

(
) has the form d = rh with some salar

distribution h.

Let L

q

�

(
) be the losure of C

1

0;�

(
) in the norm k�k

q;


. Then L

q

0

�

(
) = L

q

�

(
)

0

is the dual spae of L

q

�

(
) with pairing h�; �i




.

Traes and Extensions. Let � >

1

q

, � an integer. Then the trae map f 7! f

j

�


is a well de�ned bounded operator from W

�;q

(
) onto W

��

1

q

;q

(�
). Conversely,

there exists a linear and bounded extension operator E: h 7! E

h

fromW

��

1

q

;q

(�
)

into W

�;q

(
) satisfying E

h

j

�


= h. Thus it holds kE

h

k

�;q;


� Ckhk

��

1

q

;q;�


with

C = C(
; �; q) > 0.

Let 1 < r � q;

1

3

+

1

q

�

1

r

, and let f = (f

1

; f

2

; f

3

) 2 L

q

(
) with div f 2 L

r

(
).

Then we use Green's identity

hdiv f; E

h

i




= hN � f; hi

�


� hf;rE

h

i




for h 2 W

1�

1

q

0

;q

0

(�
) = W

1

q

;q

0

(�
) and with the extension operator E :

W

1

q

;q

0

(�
) ! W

1;q

0

(
). This leads, using the embedding property kE

h

k

r

0

;


�

C(kE

h

k

q

0

;


+ krE

h

k

q

0

;


); C = C(
; q; r) > 0, to the estimate

jhN � f; hi

�


j � C(kfk

q;


+ kdiv fk

r;


)khk

1

q

;q

0

;�


(2.1)

with C = C(
; q; r) > 0. Hene the trae N � f

j

�


2 W

�

1

q

;q

(�
) of the normal

omponent of f at �
 is well de�ned and it holds the estimate

kN � fk

�

1

q

;q;�


� C(kfk

q;


+ kdiv fk

r;


): (2.2)

Using the orresponding identity

hurl f; E

h

i




= hN � f; E

h

i

�


+ hf; urlE

h

i




now for h = (h

1

; h

2

; h

3

) 2 W

1�

1

q

0

;q

0

(�
), we obtain the following trae property:

If f = (f

1

; f

2

; f

3

) 2 L

q

(
), url f 2 L

r

(
), then the trae N � f

j

�


2 W

�

1

q

;q

(�
)

of the tangential omponent of f at �
 is well de�ned and it holds the estimate

kN � fk

�

1

q

;q;�


� C(kfk

q;


+ kurl fk

r;


) (2.3)
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with C = C(
; q; r) > 0. The identity f = (N � f)N + (N � f)�N at �
 shows

that it is justi�ed to all N � f

j

�


the tangential omponent of f at �
.

Let f 2 L

q

(
) with

R




f dx = 0. Then there exists some b = b

f

2 W

1;q

0

(
)

with div b

f

= f suh that f 7! b

f

is a linear mapping satisfying

kb

f

k

1;q;


� Ckfk

q;


; C = C(
; q) > 0: (2.4)

If moreover f 2 W

1;q

0

(
), then b

f

2 W

2;q

0

(
) and

kb

f

k

2;q;


� Ckrfk

q;


; C = C(
; q) > 0; (2.5)

see [5℄, [11℄, Theorem III.3.2 and [26℄, p. 68.

Using properties of the weak Neumann problem in L

q

(
), see [23℄, we �nd

for eah h 2 W

�

1

q

;q

(�
) some E

h

= (E

h

1

; E

h

2

; E

h

3

) 2 L

q

(
) with divE

h

2 L

r

(
),

N �E

h

j

�


= h, suh that h 7! E

h

is a linear map satisfying

kE

h

k

q;


+ kdivE

h

k

r;


� Ckhk

�

1

q

;q;�


(2.6)

with C = C(
; q; r) > 0.

Let h = (h

1

; h

2

; h

3

) 2 W

1�

1

q

;q

(�
). Then we �nd an extension w

h

2 W

2;q

(
)\

W

1;q

0

(
) suh that N � rw

h

j

�


= h depending linearly on h; moreover,

kw

h

k

2;q;


� Ckhk

1�1=q;q;�


(2.7)

with C = C(
; q) > 0, see [22℄, Theorem 5.8, p. 104, or [28℄, 5.4.4, p. 385.

If additionally N � h

j

�


= 0, then we an show that divw

h

j

�


= 0 and N �

rw

h

j

�


= �N � urlw

h

j

�


= h, see [14℄. This yields

R




divw

h

dx = 0, divw

h

2

W

1;q

0

(
), and we �nd b = b(w

h

) 2 W

2;q

0

(
) satisfying div b = divw

h

and (2.4),

(2.5). Setting ŵ

h

= w

h

� b(w

h

) we see that ŵ

h

2 W

2;q

(
) satis�es

ŵ

h

j

�


= 0; N � rŵ

h

j

�


= �N � url ŵ

h

j

�


= h; div ŵ

h

= 0: (2.8)

Moreover, the mapping h 7! ŵ

h

is linear and

kŵ

h

k

2;q;


� Ckhk

1�1=q;q;�


; C = C(
; q) > 0; (2.9)

see [14℄, (2.14).

The Stokes Operator. Let f = (f

1

; f

2

; f

3

) 2 L

q

(
). Then, the weak Neumann

problem �H = div f , N � (rH � f)

j

�


= 0, has a unique solution rH 2 L

q

(
)

satisfying the estimate

krHk

q;


� Ckfk

q;


(2.10)
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with C = C(
; q) > 0, see [23℄. Setting P

q

f = f �rH we de�ne the Helmholtz

projetion operator P

q

as a bounded operator from L

q

(
) onto L

q

�

(
), satisfying

P

2

q

= P

q

and

hP

q

f; gi




= hf; P

q

0

gi




; for all f 2 L

q

(
); g 2 L

q

0

(
) :

Hene P

0

q

= P

q

0

holds for the dual operator P

0

q

of P

q

.

The Stokes operator A

q

, with domain

D(A

q

) = L

q

�

(
) \W

1;q

0

(
) \W

2;q

(
) � L

q

�

(
)

and range R(A

q

) = L

q

�

(
), is de�ned by A

q

u = �P

q

�u, u 2 D(A

q

). The

frational power A

�

q

: D(A

�

q

) ! L

q

�

(
) = R(A

�

q

) with D(A

q

) � D(A

�

q

) � L

q

�

(
),

0 � � � 1, is well de�ned, bijetive and its inverse (A

�

q

)

�1

= A

��

q

is a bounded

operator from L

q

�

(
) into L

q

�

(
) with range R(A

��

q

) = D(A

�

q

); furthermore,

the operator (A

�

q

)

0

= A

�

q

0

is the dual operator of A

�

q

. The norms kuk

2;q;


and

kA

q

uk

q;


are equivalent for u 2 D(A

q

); analogously, the norms kuk

1;q;


and

kA

1=2

q

uk

q;


are equivalent for u 2 D(A

1

2

q

) = L

q

�

(
)\W

1;q

0

(
). Note that the spae

D(A

�

q

) endowed with the graph norm kA

�

q

uk

q;


, u 2 D(A

�

q

), is a Banah spae.

Furthermore, we mention the important embedding property

kuk

q;


� CkA

�



uk

;


; u 2 D(A

�



); 1 <  � q; 2�+

3

q

=

3



; (2.11)

with C = C(
; q) > 0. See [2℄, [9℄, [13℄, [17℄, [18℄, [21℄, [25℄, [26℄, [28℄ onerning

proofs and further properties of the Stokes operator. Finally we observe that

A

q

u = A

�

u holds if u 2 D(A

q

) \D(A

�

), 1 < q <1, 1 < � <1.

It is well-known that �A

q

generates a bounded analyti semigroup fe

�tA

q

:

t � 0g, see [2℄, [16℄, [19℄, [25℄, [26℄, and that

kA

�

q

e

�tA

q

vk

q;


� Ce

�Æt

t

��

kvk

q;


; v 2 L

q

�

(
); t > 0; (2.12)

with onstants C = C(
; q) > 0, Æ = Æ(
; q) > 0.

Let 0 < � � 1, 1 < q < 1; and let d = (d

1

; d

2

; d

3

) 2 C

1

0

(
)

0

be a dis-

tribution. Assume that hd; vi




is well de�ned for all v 2 D(A

�

q

0

) and is on-

tinuous in the norm kA

�

q

0

vk

q

0

;


; i.e., there exists a onstant C > 0 suh that

jhd; vi




j � CkA

�

q

0

vk

q

0

;


. In other words, the funtional hd; vi




; v 2 D(A

�

q

0

);

is a well-de�ned element of the dual spae D(A

�

q

0

)

0

of D(A

�

q

0

) : Writing formally

hd; vi




= hd; P

q

0

vi




= hP

q

d; vi




; we all P

q

d = hP

q

d; �i




the restrition of the

funtional d to test funtions v 2 D(A

�

q

0

); giving P

q

a generalized meaning; in

short, we write P

q

d 2 D(A

�

q

0

)

0

:

Let d 2 C

1

0

(
)

0

with P

q

d 2 D(A

�

q

0

)

0

. Sine R(A

�

q

0

) = L

q

0

�

(
); there ex-

ists a uniquely determined element d

�

2 L

q

�

(
) satisfying the relation hd; vi




=

9



hd

�

; A

�

q

0

vi




:We set d

�

= A

��

q

P

q

d; giving the operator A

��

q

a generalized meaning.

Thus A

��

q

P

q

d 2 L

q

�

(
) is well de�ned by the relation

hd; vi




= hP

q

d; vi




= hP

q

d; A

��

q

0

A

�

q

0

vi




= hA

��

q

P

q

d; A

�

q

0

vi




; (2.13)

v 2 D(A

�

q

0

) ; similarly as in the theory of distributions. We onlude that the

operation A

��

q

P

q

d 2 L

q

�

(
) is well de�ned by (2.13) if d 2 C

1

0

(
)

0

and P

q

d 2

D(A

�

q

0

)

0

:

To obtain examples, we onsider a funtional f in the (vetor valued) Bessel

potential spae H

�2�

q

(
) for 0 < � �

1

2

, see [1℄, [2℄, [28℄. Then P

q

f 2 D(A

�

q

0

)

0

,

sine C

1

0;�

(
) is dense in the Banah spae D(A

�

q

0

) beause of � �

1

2

: Therefore,

A

��

q

P

q

f 2 L

q

�

(
) is well de�ned in this ase.

Let 1 < r � q,

1

3

+

1

q

�

1

r

, and let u = (u

1

; u

2

; u

3

) 2 L

q

(
). Assume that

the distribution d = �u is ontinuous in the norm kA

1

2

r

0

� k

r

0

;


. Then the element

A

�1=2

r

P

r

�u 2 L

r

�

(
) is well de�ned by the relation

hA

�

1

2

r

P

r

�u; A

1

2

r

0

vi




= hu;�vi




; v 2 C

1

0;�

(
); (2.14)

aording to (2.13); see also [14℄, Setion 2. Here we use that C

1

0;�

(
) is dense in

the Banah spae D(A

1

2

r

0

):

Let F = (F

ij

) 2 L

r

(
) where 1 < r � q,

1

3

+

1

q

�

1

r

, and set d = divF: Then

using (2.11) and the estimate

krvk

r

0

;


� C

1

kA

1

2

r

0

vk

r

0

;


� C

2

kA

q

0

vk

q

0

;


; v 2 D(A

q

0

) ;

C

i

= C

i

(
; q; r) > 0; i = 1; 2; we see that the distribution v 7! �hF;rvi




is

ontained in D(A

q

0

)

0

: Therefore, the element

^

F = �A

�1

q

P

q

divF 2 L

q

�

(
) is well

de�ned by the relation

h

^

F;A

q

0

vi




= �hA

�1

q

P

q

divF;A

q

0

vi




= �hdivF; vi




(2.15)

and it holds

k

^

Fk

q;


= kA

�1

q

P

q

divFk

q;


� CkFk

r;


(2.16)

with C = C(
; q; r) > 0; see [26℄, III, Lemma 2.6.1 onerning similar operations.

Spaes L

q

(0; T ;X). Let 1 < q; s < 1. Then we introdue the usual Bohner

spae L

s

(0; T ;X) with norm k�k

L

s

(0;T ;X)

=

� R

T

0

k�k

s

X

dt

�

1=s

whereX is any Banah

spae with norm k�k

X

.

In the ase X = W

�;q

(
), �1 � � � 1, we set k�k

L

s

(0;T ;W

�;q

(
))

= k�k

�;q;s;


,

and for X = W

�;q

(�
) let k�k

L

s

(0;T ;W

�;q

(�
))

= k�k

�;q;s;�


. Finally, if X = L

q

(
)

or X = L

q

(�
), we set k�k

L

s

(0;T ;L

q

(
))

= k�k

q;s;


, and k�k

L

s

(0;T ;L

q

(�
))

= k�k

q;s;�


,

resp. As duality pairing we de�ne

hf; gi


;T

=

Z

T

0

hf; gi




dt with hf; gi




=

Z




f � g dx (2.17)
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for f = (f

1

; f

2

; f

3

) 2 L

s

(0; T ;L

q

(
)), g = (g

1

; g

2

; g

3

) 2 L

s

0

(0; T ;L

q

0

(
)). Simi-

larly, we use the notation

hf; gi

�
;T

=

Z

T

0

hf; gi

�


dt with hf; gi

�


=

Z

�


f � g dS:

We also need the spaes C

�

�

[0; T );X

�

, � = 0; 1; 2; : : :, of X-valued fun-

tions v(t), suh that v; (d=dt)v; : : : ; (d=dt)

�

v are ontinuous on [0; T ). We set

C

0

�

[0; T );X

�

= C

�

[0; T );X

�

. The spae C

1

0

�

[0; T );X

�

is the subspae of

C

1

�

[0; T );X

�

onsisting of funtions v with ompat support ontained in [0; T ),

whereas C

1

0

�

(0; T );X

�

is the subspae of C

1

�

[0; T );X

�

-funtions v with ompat

support ontained in (0; T ).

Let f 2 L

s

�

0; T ;L

q

�

(
)

�

. Then there exists a unique funtion v 2

L

s

�

0; T ;D(A

q

)

�

with v

t

2 L

s

�

0; T ;L

q

�

(
)

�

and v 2 C

�

[0; T );L

q

�

(
)

�

, satisfying

the evolution system

v

t

+ A

q

v = f; 0 � t < T; v(0) = 0:

To be more preise,

v(t) =

Z

t

0

e

�(t��)A

q

f(�)d�; 0 � t < T;

and it holds the 'maximal regularity' estimate

kv

t

k

q;s;


+ kA

q

vk

q;s;


� Ckfk

q;s;


; C = C(
; q; s) > 0; (2.18)

see [19℄, [25℄.

The Spae of Initial Values. Let 1 < q; s < 1: The spae of initial values

J

q;s

(
) onsists of distributions u

0

satisfying A

�1

q

P

q

u

0

2 L

q

�

(
); see (2.13), and

an additional integrability ondition in time. To be more preise, let

J

q;s

(
) = fu

0

2 C

1

0

(
)

0

: A

�1

q

P

q

u

0

2 L

q

�

(
);

Z

1

0

kA

q

e

�tA

q

A

�1

q

P

q

u

0

k

s

q

dt <1g

(2.19)

and

ku

0

k

J

q;s

(
)

= kA

�1

q

P

q

u

0

k

q;


+ (

Z

1

0

kA

q

e

�tA

q

A

�1

q

P

q

u

0

k

s

q

dt)

1

s

:

Obviously, k � k

J

q;s

(
)

de�nes a seminorm in J

q;s

(
) whih beomes a norm if we

identify two elements u

0

; v

0

2 J

q;s

(
) satisfying kA

�1

q

P

q

(u

0

�v

0

)k

J

q;s

(
)

= 0; i.e.,

u

0

�v

0

is a gradient. Of ourse, sine w(0) 2 C

2

0;�

(
) in (1.4) is solenoidal, initial

values an be presribed only modulo gradients.

As an example, let u

0

2 C

1

0

(
)

0

and assume that A

�

1

s

+"

q

P

q

u

0

2 L

q

�

(
) where

0 < " <

1

s

. Then by (2.12) u

0

2 J

q;s

(
): Using similar alulations as in [4℄ we
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an show that u

0

2 B

�2=s

q;s

(
) is suÆient for u

0

2 J

q;s

(
) in the ase s � 2; here

B

�2=s

q;s

(
) denotes a Besov spae, see [2℄, [3℄, [4℄, [28℄.

Consider u 2 L

s

�

0; T ;L

q

(
)

�

suh that its time derivative (A

�1

q

P

q

u)

t

=

A

�1

q

P

q

u

t

2 L

s

�

0; T ;L

q

�

(
)

�

in the sense of distributions. Then, after rede�ning on

a null set of [0; T ), we get A

�1

q

P

q

u 2 C

�

[0; T );L

q

�

(
)

�

. Thus A

�1

q

P

q

u(t) 2 L

q

�

(
)

is well de�ned for eah t 2 [0; T ), and therefore A

�1

q

P

q

u(0) = A

�1

q

P

q

u

0

in (1.7) is

well de�ned.

Let v

0

2 L

q

�

(
) suh that

R

1

0

kA

q

e

�tA

q

v

0

k

s

q

dt < 1, let f 2 L

s

�

0; T ;L

q

�

(
)

�

and onsider the general system v

t

+ A

q

v = f; v(0) = v

0

. Then we apply (2.18)

to v̂(t) = v(t)� e

�tA

q

v

0

, obtain the estimate

kv

t

k

q;s;


+ kA

q

vk

q;s;


� C

�

�

Z

T

0

kA

q

e

�tA

q

v

0

k

s

q

dt

�

1

s

+ kfk

q;s;


�

(2.20)

with C = C(
; q; s) > 0, and the representation formula

v(t) = e

�tA

q

v

0

+

Z

t

0

e

�(t��)A

q

f(�) d�; 0 � t < T: (2.21)

3 Stationary very weak solutions

First we onsider the linearized stationary system

��u+rp = f; div u = k; u

j

�


= g (3.1)

with data f = divF and k; g satisfying

F 2 L

r

(
); k 2 L

r

(
); g 2 W

�

1

q

;q

(�
);

Z




k dx =

Z

�


N � g dS (3.2)

where 1 < q <1, 1 < r � q,

1

3

+

1

q

�

1

r

. Here we follow [14℄ in priniple, but in

[14℄ the stronger ondition k 2 L

q

(
) is supposed.

Modifying De�nition 2 in an obvious way for the linearized ase, u 2 L

q

(
)

is alled a very weak solution of the system (3.1) with data (3.2) if

�hu;�wi




+ hg;N � rwi

�


= �hF;rwi




; w 2 C

2

0;�

(
); (3.3)

and additionally the onditions (1.12) are satis�ed, i.e., div u = k and N �u = N �g

on �
. Our main result on (3.1), improving [14℄, Theorem 3, reads as follows.

Theorem 3 Suppose the data F; k; g satisfy (3.2) with 1 < q < 1, 1 < r � q,

1

3

+

1

q

�

1

r

. Then there exists a unique very weak solution u 2 L

q

(
) of the system

(3.1) satisfying the estimate

kuk

q;


� C(kFk

r;


+ kkk

r;


+ kgk

�1=q;q;�


) (3.4)

with C = C(
; q; r) > 0.
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Remarks 1 (1) Setting w 2 C

1

0;�

(
) in (3.3) and using de Rham's argument we

�nd some pressure p 2 W

�1;q

(
) suh that ��u + rp = f holds in the sense

of distributions, and that kpk

�1;q;


satis�es the same estimate as kuk

q;


in (3.4).

Moreover we onlude from (3.3) that

A

�

1

2

r

P

r

�u = �A

�

1

2

r

P

r

divF; (3.5)

where A

�

1

2

r

P

r

divF is de�ned by the relation hA

�

1

2

r

P

r

divF;A

1

2

r

0

vi




= �hF;rvi




,

v 2 C

1

0;�

(
), see (2.14) and (2.15).

(2) Assume for a moment that u is suÆiently smooth. Then, inserting

w = ŵ

h

from (2.8), (2.9) in the expression hu;�wi




, and using integration by

parts, we obtain an expliit trae formula for u

j

�


as a funtional in W

�

1

q

;q

(�
).

To be more preise, the map h 7! hu

j

�


; hi

�


for h 2 W

1�1=q

0

;q

0

(�
) = W

1

q

;q

0

(�
),

N � h

j

�


= 0 is de�ned by

hu

j

�


; hi

�


= hu;�ŵ

h

i




� hA

�

1

2

r

P

r

�u;A

1

2

r

0

ŵ

h

i




; h 2 W

�

1

q

;q

0

(�
): (3.6)

Using (2.9) with q replaed by q

0

we then obtain the estimate

jhu

j

�


; hi

�


j � C(kuk

q;


+ kA

�

1

2

r

P

r

�uk

r;


)khk

1=q;q

0

;�


(3.7)

with C = C(
; q; r) > 0. Formula (3.6) is well de�ned for eah very weak solution

u 2 L

q

(
) and yields an expliit formula for the tangential omponent of u

j

�


.

The normal omponent N � u

j

�


is well de�ned by (1.12), (2.1). This shows that

the trae u

j

�


2 W

�

1

q

;q

(�
) is well de�ned for a very weak solution u, and (2.1),

(3.7) yield the estimate

ku

j

�


k

�

1

q

;q;�


� C(kuk

q;


+ kA

�

1

2

r

P

r

�uk

r;


+ kdiv uk

r;


) (3.8)

with C = C(
; q; r) > 0.

(3) We onlude that a very weak solution u 2 L

q

(
) of (3.1) satis�es the

onditions (1.12), (3.5) and the ondition u

j

�


= g as elements of W

�

1

q

;q

(�
).

Conversely, if u 2 L

q

(
) satis�es (1.12), (3.5), and the (well de�ned) trae u

j

�


is equal to g, then u is a very weak solution of (3.1).

Proof of Theorem 3. Following in priniple [14℄, we �rst assume that u 2 L

q

(
)

is a given very weak solution u of (3.1), and prepare some estimates.

Using the trae map W

1;q

0

(
)!W

1�1=q

0

;q

0

(�
) and the embedding estimate

(2.11) we obtain that

jhg;N � rwi

�


j � Ckgk

�

1

q

;q;�


kvk

q

0

;


; w 2 C

2

0;�

(
); v = A

q

0

w (3.9)
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with C = C(
; q) > 0. Therefore, the funtional v 7! hg;N � rA

�1

q

0

vi

�


is

ontinuous in kvk

q

0

;


, and it holds hg;N � rA

�1

q

0

vi

�


= hG; vi




with some unique

G 2 L

q

�

(
) satisfying kGk

q;


� Ckgk

�

1

q

;q;�


.

Similarly, v 7! hF;rA

�1

q

0

vi




, v 2 A

q

0

w, is ontinuous in kvk

q

0

;


, and with

^

F = �A

�1

q

P

q

divF , see (2.15), we get that hF;rA

�1

q

0

vi




= h

^

F ; vi




and k

^

Fk

q;


�

CkFk

r;


with C = C(
; q; r) > 0 by (2.16).

Using E

h

for h = N � g, f. (2.6), the ompatibility ondition in (3.2) yields

R




(divE

h

�k)dx = 0. Hene there exists b 2 W

1;r

0

(
) satisfying div b = divE

h

�k

and, due to (2.6), (2.4),

kbk

q;


� C

1

krbk

r;


� C

2

(kdivE

h

k

r;


+ kkk

r;


) (3.10)

where C

i

= C

i

(
; q; r) > 0; i = 1; 2. Then we use the solution rH 2 L

q

(
) of

the weak Neumann problem

�H = div (E

h

� b) = k = div u; N � rH

j

�


= N � (E

h

� b)

j

�


;

and applying (2.10), (2.6), (3.10) leads to the estimate

krHk

q;


� C

1

kE

h

� bk

q;


� C

2

(kgk

�

1

q

;q;�


+ kkk

r;


) (3.11)

with C

i

= C

i

(
; q; r) > 0. Further we get from (2.10) that krHk

q;


� Ckuk

q;


with C = C(
; q) > 0. Obviously, rH only depends on the data k; g.

Using (2.2) and (2.3) with urlrH = 0 we onlude thatrH

j

�


2 W

�

1

q

;q

(�
)

is well de�ned, and that

krHk

�

1

q

;q;�


� C(kgk

�

1

q

;q;�


+ kkk

r;


) (3.12)

with C = C(
; q; r) > 0.

Set û = P

q

u = u�rH 2 L

q

�

(
) and ĝ = g �rH

j

�


2 W

�

1

q

;q

(�
). Then

jhĝ; N �rwi

�


j � C(kgk

�

1

q

;q;�


+kkk

r;


)kvk

q

0

;


; w 2 C

2

0;�

(
); v = A

q

0

w; (3.13)

f. (3.9). As above, we onstrut

^

G 2 L

q

�

(
) satisfying hĝ; N � rA

�1

q

0

vi

�


=

h

^

G; vi




, and the estimate

k

^

Gk

q;


� C(kgk

�

1

q

;q;�


+ kkk

r;


) (3.14)

holds with C = C(
; q; r) > 0.

In the next step we use the relation hrH;�wi




= hrH;N � rwi

�


; w as in

(3.13), whih follows from using an approximation of H by smooth funtions and

an integration by parts. Then by (3.3) a alulation leads to hĝ; N � rwi

�


+

hF;rwi




= �hû; vi




, and inserting

^

G;

^

F yields h

^

G; vi




+ h

^

F; vi




= �hû; vi




.
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From the regularity properties of the Stokes operator A

q

0

, see [25℄, we know that

the set of all v = A

q

0

w with w 2 C

2

0;�

(
) is dense in L

q

0

�

(
). Thus we may use

the last relation for all v 2 L

q

0

�

(
), and we get the representation formula

u = rH �

^

G�

^

F (3.15)

for the given very weak solution u.

Sine the right hand side of (3.15) depends only on the data F; k; g, we an

use (3.15) to onstrut u 2 L

q

(
). Then the same arguments as above show that

u satis�es (3.3) and (1.12). Thus u de�ned by (3.15) is a very weak solution

of (3.1). Sine eah given very weak solution of (3.1) has the form (3.15), we

obtain the uniqueness assertion. The estimate (3.4) follows from (3.12), (3.14),

and (2.16). This proves Theorem 3.

Remarks 2 (1) Suppose that the data F; k; g in (3.1), (3.2) satisfy the stronger

onditions F 2 L

q

(
), k 2 L

q

(
), g 2 W

1�1=q;q

(�
), 1 < q <1. Then the very

weak solution u in Theorem 3 satis�es u 2 W

1;q

(
) and estimate

kuk

1;q;


� C(kFk

q;


+ kkk

q;


+ kgk

1�1=q;q;�


) (3.16)

with C = C(
; q) > 0. The existene of suh a solution u of (3.1) is well known,

see [9℄, [11℄, [13℄. Sine u is obviously also a very weak solution whih is unique,

we onlude this regularity property; see also [14℄, Lemma 4.

(2) In the same way we onlude that if the data in (3.1), (3.2) satisfy the

onditions f = divF 2 L

q

(
), k 2 W

1;q

(
), g 2 W

2�1=q;q

(�
), then this solution

satis�es

kuk

2;q;


� C(kfk

q;


+ kkk

1;q;


+ kgk

2�1=q;q;�


) (3.17)

with C = C(
; q) > 0. Thus (3.16) and (3.17) are regularity properties of the

very weak solution u if the data are suÆiently smooth.

Proof of Theorem 2. Following [14℄ we �rst onsider a given very weak solution

u 2 L

q

(
) of the system (1.9). Using similar arguments as in the previous proof

we obtain, sine u � ru = div (uu)� ku and

1

3

+

1

q

=

1

r

, that

jhu � ru; wi




j � C(kuk

2

q;


+ kkk

r;


kuk

q;


)krwk

r

0

;


; w 2 C

2

0;�

(
): (3.18)

Hene we �nd W (u) 2 L

r

(
) satisfying

hu � ru; wi




= hdiv (uu)� ku; wi




= hdivW (u); wi




= �hW (u);rwi




; (3.19)

and

kW (u)k

r;


� C(kuk

2

q;


+ kkk

r;


kuk

q;


) (3.20)

with C = C(
; q; r) > 0, similarly as in (2.15), (2.16). We see that u is a very

weak solution of the linear system

��u +rp = div

�

F �W (u)

�

; div u = k; u

j

�


= g: (3.21)
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Then (3.15) leads to the formula

u = rH �

^

G�

^

F �

^

W (u) (3.22)

where rH;

^

G;

^

F;

^

W (u) are determined by

�H = k; N � (rH � g)

j

�


= 0;

h

^

G; vi




= hg �rH

j

�


; N � rA

�1

q

0

vi

�


;

h

^

F; vi




= hF;rA

�1

q

0

vi




;

h

^

W (u); vi




= �huu;rA

�1

q

0

vi




� hku; A

�1

q

0

vi




for all w 2 C

2

0;�

(
); v = A

q

0

w:

Setting û = u�rH, F(û) = �

^

F �

^

G�

^

W (û+rH), we obtain from (3.22)

the equation û = F(û), whih an be solved by Banah's �xed point theorem.

This leads to the desired solution u = û+rH.

For this purpose we use similar estimates as in the previous proof, and obtain

kF(û)k

q;


� C(kûk

q;


+ kgk

�

1

q

;q;�


+ kkk

r;


)

2

(3.23)

+Ckkk

r;


�

kûk

q;


+ kgk

�

1

q

;q;�


+ kkk

r;


�

+C

�

kFk

r;


+ kgk

�

1

q

;q;�


+ kkk

r;


�

with C = C(
; q) > 0. Setting a = C, � = kgk

�

1

q

;q;�


+ kkk

r;


,  = C(kFk

r;


+

�) + �, Æ = Ckkk

r;


, we obtain the estimate

kF(û)k

q;


+ � � a(kûk

q;


+ �)

2

+ Æ(kûk

q;


+ �) + : (3.24)

Then we onsider the losed ball B = fû 2 L

q

�

(
); kûk

q;


+� � y

1

g where y

1

> 0

means the smallest root of the equation y = ay

2

+Æy+. Supposing the smallness

ondition 4a + 2Æ < 1 we get y

1

> � and kF(û)� F(v̂)k

q;


� âkû� v̂k

q;


with

some 0 < â < 1. Now Banah's �xed point theorem yields a unique solution

û 2 B with û = F(û), see [26℄, V.4.2, for details. Then u = û+rH solves (3.22)

and is a very weak solution of (1.9). The smallness ondition 4a + 2Æ < 1 an

be written in the form (1.13).

To prove uniqueness we follow [14℄ and assume that there exists another very

weak solution v 2 L

q

(
) of the system (1.9) with the same data F; k; g as for u.

Setting U = u� v we an show that the equation

hU;�w + v � rw + u � (rw)

T

+ kwi




= 0 (3.25)

is satis�ed for all w 2 C

2

0;�

(
), where "T\ denotes the transpose. Note that

v need not satisfy any smallness ondition, but that kuk

q

is small. Then, by

standard arguments, we solve for eah G 2 C

1

0

(
) the modi�ed Stokes system

��w � v � rw � u � (rw)

T

� kw +r� = G; divw = 0; w

j

�


= 0
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to get a solution (w;r�) 2

�

W

2;3=2

(
) \W

1;3=2

0

(
)

�

� L

3=2

(
). Sine C

2

0;�

(
) is

dense in

�

W

2;3=2

(
)\W

1;3=2

0

(
)

�

\L

3=2

�

(
), we may insert this w in (3.25) whih

�nally shows that U = 0, u = v. This proves Theorem 2. The estimate (1.14) is

an easy onsequene.

4 Nonstationary very weak solutions

Consider the linearized nonstationary system

u

t

��u+rp = f; div u = k; u

j

�


= g; u

j

t=0

= u

0

(4.1)

with data f = divF and k; g; u

0

satisfying

F 2 L

s

�

0; T ;L

r

(
)

�

; k 2 L

s

�

0; T ;L

r

(
)

�

; g 2 L

s

�

0; T ;W

�

1

q

;q

(�
));

u

0

2 J

q;s

(
);

Z




k dx =

Z

�


N � g dS for a.a. t 2 [0; T ); (4.2)

where 1 < r � q <1,

1

3

+

1

q

�

1

r

, 1 < s <1.

Modifying De�nition 1 in an obvious way for the linearized ase, a vetor �eld

u 2 L

s

�

0; T ;L

q

(
)

�

is alled a very weak solution of the system (4.1) with data

(4.2) if

�hu; w

t

i


;T

� hu;�wi


;T

+ hg;N � rwi

�
;T

= hu

0

; w(0)i




� hF;rwi


;T

; (4.3)

w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

, and additionally the onditions (1.6) are satis�ed, i.e.,

div u = k and N � u

j

�


= N � g a.e. in (0; T ).

Our main result on this system reads as follows.

Theorem 4 Suppose that the data F; k; g and u

0

satisfy (4.2) with 1 < r � q <

1,

1

3

+

1

q

�

1

r

, 1 < s < 1. Then there exists a unique very weak solution

u 2 L

s

�

0; T ;L

q

(
)

�

of the system (4.1), satisfying

A

�1

q

P

q

u

t

2 L

s

�

0; T ;L

q

�

(
)

�

; A

�1

q

P

q

u 2 C

�

[0; T );L

q

�

(
)

�

; A

�1

q

P

q

u

j

t=0

= A

�1

q

P

q

u

0

and

kA

�1

q

P

q

u

t

k

q;s;


+kuk

q;s;


� C

�

ku

0

k

J

q;s

(
)

+kFk

r;s;


+kkk

r;s;


+kgk

�

1

q

;q;s;�


�

(4.4)

with C = C(
; q; r; s) > 0.

Remarks 3 (1) Setting in partiular w 2 C

1

0

�

(0; T );C

1

0;�

(
)

�

in (4.3), we ob-

tain, see [26℄, p. 248, p. 202, [27℄, the existene of a distribution p suh that

u

t

��u+rp = f holds in 
� (0; T ) in the sense of distributions.
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(2) Let h = (h

1

; h

2

; h

3

) 2 C

1

0

�

(0; T );W

1�1=q

0

;q

0

(�
)

�

with N � h

j

�


= 0. Then

h(t) 7! ŵ

h(t)

, see (2.8), (2.9), is a linear mapping satisfying (ŵ

h

)

t

= ŵ

h

t

. We may

insert w = ŵ

h

in (4.3) and obtain the formula

hg; hi

�
;T

= hu; ŵ

h

t

i


;T

+ hu;�ŵ

h

i


;T

� hF;rŵ

h

i


;T

: (4.5)

Sine the normal omponent N � h of the test funtion h is zero, this formula

yields a well de�ned expression for the tangential omponent N�g of the bound-

ary values. It is easy to see using integration by parts that N � g oinides with

the usual trae N � u

j

�


if u is suÆiently smooth. Therefore, we may all the

right hand side of (4.5) the trae N � u

j

�


of the tangential omponent of u at

�
 in the sense of distributions. Sine the normal omponent N �u

j

�


of u at �


is well de�ned by (1.6), we get an expliit trae formula for u

j

�


in the sense of

distributions at �
 whih oinides with the usual trae of u at �
 if u is smooth.

This yields a preise meaning of the general boundary ondition u

j

�


= g in the

sense of boundary distributions.

(3) Sine w(0) in (4.3) is solenoidal we expet that the initial ondition u

j

t=0

=

u

0

only makes sense "modulo gradients\. Therefore, the ondition A

�1

q

P

q

u

j

t=0

=

A

�1

q

P

q

u

0

, see (1.7), seems to be the adequate preise formulation of the initial

ondition u

j

t=0

= u

0

. If u is suÆiently smooth, we need additional (neessary)

ompatibility onditions in order to reah that u(0) = u

0

, see (4.14).

Proof of Theorem 4. Let E(t) = E

k(t);g(t)

2 L

q

(
) be the very weak solution of

the stationary system

��E(t) +rp(t) = 0; divE(t) = k(t); E(t)

j

�


= g(t) for a.a. t 2 [0; T ℄: (4.6)

Then from (3.3) we obtain the relation hg;N � rwi

�
;T

= hE;�wi


;T

for every

w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

. Therefore, given a very weak solution u, (4.3) an be

written in the form

�hA

�1

q

P

q

u; v

t

i


;T

�hu�E;�A

�1

q

0

vi


;T

= hA

�1

q

P

q

u

0

; v(0)i




�hF;rA

�1

q

0

vi


;T

(4.7)

where w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

, v = A

q

0

w. Sine A

�1

q

P

q

u

0

2 L

q

�

(
), see (2.19),

and sine div (u � E) = 0, N � (u � E)

j

�


= 0 yielding u � E = P

q

(u � E) we

obtain that

hu� E;�A

�1

q

0

vi


;T

= hP

q

(u� E);�A

�1

q

0

vi


;T

= hu� E; P

q

0

�A

�1

q

0

vi


;T

= �hu� E; vi


;T

:

Further we use (2.15) for a.a. t 2 [0; T ) and get a unique

^

F = �A

�1

q

P

q

divF 2

L

s

�

0; T ;L

q

�

(
)

�

satisfying the relation

hF;rA

�1

q

0

vi


;T

= h

^

F; vi


;T

for all v = A

q

0

w; w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

: (4.8)
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This leads to the relation

�hA

�1

q

P

q

u; v

t

i


;T

= hA

�1

q

P

q

u

0

; v(0)i




� hP

q

u; vi


;T

(4.9)

+hP

q

E; vi


;T

+ hA

�1

q

P

q

divF; vi


;T

:

Then a standard argument shows, see [27℄, III, 1.1 or [26℄, IV, 1.3, that A

�1

q

P

q

u

t

2

L

s

�

0; T ;L

q

�

(
)

�

is well de�ned, that

A

�1

q

P

q

u 2 C

�

[0; T );L

q

�

(
)

�

; A

�1

q

P

q

u(0) = A

�1

q

P

q

u

0

;

and that the evolution system

(A

�1

q

P

q

u)

t

+ A

q

(A

�1

q

u) = A

�1

q

P

q

divF + P

q

E

k;g

; (A

�1

q

P

q

u)(0) = A

�1

q

P

q

u

0

(4.10)

is satis�ed. From (2.21) we now obtain the representation formula

û(t) � P

q

u(t) (4.11)

= A

q

e

�tA

q

A

�1

q

P

q

u

0

+

Z

t

0

A

q

e

�(t��)A

q

�

A

�1

q

P

q

divF + P

q

E

k;g

�

d�

for the very weak solution u. As in (3.22) we get û(t) = P

q

u(t) = u(t)�rH(t)

where rH(t) is determined by �H(t) = k(t), N �

�

rH(t)� g(t)

�

j

�


= 0 for a.a.

t 2 [0; T ). Sine rH(t) only depends on g(t); k(t), see (3.11), we obtain by (4.11)

a formula for u = û +rH whih determines u uniquely by the data F; k; g and

u

0

.

Now use (4.11) to onstrut a very weak solution u. Using the same alulation

as above we obtain the existene assertion of u, the uniqueness of whih follows

from the representation (4.11). The estimate (4.4) is based on (2.20) and the

estimates of E;

^

F , see (3.4) and (2.16).

Using (2.20) we onlude that the term ku

0

k

J

q;s

(
)

in (4.4) an be replaed

by the weaker norm

ku

0

k

J

q;s

T

(
)

�

�

Z

T

0

kA

q

e

�tA

q

A

�1

q

P

q

u

0

k

s

q;


dt

�

1

s

: (4.12)

Now the proof of Theorem 4 is omplete.

Next we onsider some regularity properties. Suppose the data f = divF and

k; g; u

0

of the system (4.1) satisfy the stronger onditions

F 2 L

s

�

0; T ;W

1;q

(
)

�

; k 2 L

s

�

0; T ;W

1;q

(
)

�

; k

t

2 L

s

�

0; T ;L

r

(
)

�

;

g 2 L

s

�

0; T ;W

2�1=q;q

(�
)

�

; g

t

2 L

s

�

0; T ;W

�

1

q

;q

(�
)

�

; u

0

2 W

2;q

(
) (4.13)

with 1 < r � q <1,

1

3

+

1

q

�

1

r

, 1 < s <1, and the ompatibility onditions

Z




k dx =

Z

�


N � g dS for t 2 [0; T ); u

0

j

�


= g(0); div u

0

= k(0): (4.14)
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Observe that g(0) and k(0) are well de�ned beause of the assumptions on k

t

; g

t

.

For simpliity the assumption on u

0

is not optimally hosen.

Then we will show the existene of a unique solution u 2 L

s

�

0; T ;W

2;q

(
)

�

with u

t

2 L

s

�

0; T ;L

q

(
)

�

of the system (4.1), together with a pressure funtion

p suh that rp 2 L

s

�

0; T ;L

q

(
)

�

, satisfying the estimate

ku

t

k

q;s;


+ kuk

2;q;s;


+ krpk

q;s;


(4.15)

� C

�

ku

0

k

2;q;


+ kfk

q;s;


+ kkk

1;q;s;


+ kk

t

k

r;s;


+ kgk

2�1=q;q;s;�


+ kg

t

k

�1=q;q;s;�


�

with C = C(
; q; s) > 0. The equations u

t

� �u + rp = f , div u = k and

u

j

�


= g in (4.1) are satis�ed in the strong sense for a.a. t 2 [0; T ); hene

u 2 C

�

[0; T );L

q

(
)

�

and u(0) = u

0

is well de�ned. The initial value u

0

2 W

2;q

(
)

an be treated as a funtional from J

q;s

(
), see (2.19). Thus we see that (4.13),

(4.14) are stronger than the onditions (4.2).

Therefore, Theorem 4 yields a unique very weak solution u 2 L

s

�

0; T ;L

q

(
)

�

to (4.1) whih oinides with eah more regular solution by the uniqueness prop-

erty.

To show the existene of a regular solution u satisfying (4.15) we �rst suppose

that suh a solution is given. Let E = E

k;g

be hosen as in (4.6). Then E(0) =

E

k(0);g(0)

satis�es the system

��E(0) +rp(0) = 0; divE(0) = k(0); E(0)

j

�


= g(0)

and (3.17) shows that E(0) 2 W

2;q

(
). Using (4.14) we see that u

0

�E(0)

j

�


= 0,

div

�

u

0

� E(0)

�

= 0 whih leads to u

0

� E(0) 2 D(A

q

). Further, using E

t

=

(E

k;g

)

t

= E

k

t

;g

t

, the assumptions on k; k

t

; g; g

t

, estimate (3.4) with u; F; k; g re-

plaed by E

t

; 0; k

t

; g

t

, and the estimate (3.17) with u; f; k; g replaed by E; 0; k; g,

we obtain the estimate

kE

t

k

q;s;


+ kEk

2;q;s;


(4.16)

� C

�

kkk

1;q;s;


+ kk

t

k

r;s;


+ kgk

2�1=q;q;s;


+ kg

t

k

�

1

q

;q;s;�


�

with C = C(
; q; s) > 0.

Setting ~u(t) = u(t)� E(t) we obtain the evolution system

~u

t

+ A

q

~u = P

q

f � P

q

E

t

; div ~u = 0; ~u

j

�


= 0; ~u

j

t=0

= u

0

� E(0):

Then (2.21) yields the representation formula

u(t) = E(t)+e

�tA

q

�

u

0

�E(0)

�

+

Z

t

0

e

�(t��)A

q

(P

q

f�P

q

E

�

)d�; 0 � t < T; (4.17)
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for the given regular solution u.

In the next step we use (4.17) to onstrut the desired solution u, and we

use (2.20), (4.16). Further we apply (3.17) to E(0), and use that k(0) = div u

0

,

g(0) = u

0

j

�


. This yields the regularity properties of u, the estimate (4.15) for u,

and its uniqueness. The pressure term rp, onstruted by de Rham's argument,

an be written in the form rp = f � u

t

+�u proving (4.15) for p.

Proof of Theorem 1. First let u be a given solution of (1.1) for some 0 < T

0

� T

with the properties of this theorem. Further we onsider the solutionE = E

F;k;g;u

0

of the orresponding linearized system

E

t

��E +rp̂ = divF; divE = k; E

j

�


= g; E

j

t=0

= u

0

aording to Theorem 4. Setting ~u = u � E, the alulation as in (3.19) shows

that ~u is a very weak solution of the linear system

~u

t

��~u+r~p = �divW (u); div ~u = 0; ~u

j

�


= 0; ~u

j

t=0

= 0; (4.18)

whereW (u) is de�ned as in (3.19); in partiular, divW (u) = div (uu)�ku. Using

(3.20) we onlude that W (u) 2 L

s=2

�

0; T

00

;L

r

(
)

�

for 0 < T

00

< T

0

. If T

0

< 1

we set T

00

= T

0

. Thus we may use the representation formula (4.11) with k = 0,

g = 0, u

0

= 0, F = �W (u) = �W (~u+ E) and with s replaed by s=2. Hene

~u(t) = (F(~u)(t) := �

Z

t

0

A

q

e

�(t��)A

q

A

�1

q

P

q

divW (u) d�; 0 � t < T

0

: (4.19)

To solve (4.19) by Banah's �xed point theorem we have to estimate

kF(~u)k

q;s;


where k�k

q;s;


= k�k

q;s;
;T

0

=

� R

T

0

0

k�k

s

q;


dt

�

1

s

. Let �

0

=

3

2q

yield-

ing

1

2

� �

0

+

1

s

=

1

s=2

and 2�

0

+

3

q

=

3

q=2

. Using (2.12) and (2.11) with � = �

0

,

 =

q

2

, we get that

kF(~u)(t)k

q;


� C

Z

t

0

1

(t� �)

1=2+�

0

kA

�1=2

q=2

P

q=2

divW (u)k

q=2

d� :

Looking at the integrand, we apply the estimate

kA

�1=2

q=2

P

q=2

(ku)k

q=2

� CkP



(ku)k



� Ckkk

r

kuk

q

whih is based on (2.11) with � =

1

2

and

1



=

1

3

+

2

q

=

1

r

+

1

q

and on H�older's

inequality. Furthermore, kA

�1=2

q=2

P

q=2

div (uu)k

q=2

� Ckuuk

q=2

� Ckuk

2

q

sine

jhA

�1=2

q=2

P

q=2

div (uu); 'i




j = j � huu;rA

�1=2

(q=2)

0

P

(q=2)

0

'i




j � Ckuuk

q=2

k'k

(q=2)

0

for all ' 2 L

(q=2)

0

(
) : Summarizing we onlude that

kF(~u)(t)k

q;


� C

Z

t

0

1

(t� �)

1=2+�

0

�

kuk

2

q

+ kkk

r

kuk

q

�

d� :
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Then the Hardy-Littlewood inequality, see [26℄, p. 103, [28℄,

�

Z

T

0

j

Z

t

0

(t� �)

��1

h(�) d� j

s

dt

�

1

s

� C

�

Z

T

0

jh(t)j

~s

dt

�

1

~s

with � =

1

2

� �

0

and ~s =

s

2

yields the estimate

kF(~u)k

q;s;


� C

�

�

k~uk

q;s;


+ kEk

q;s;


�

2

+ kkk

r;s;


�

k~uk

q;s;


+ kEk

q;s;


�

�

(4.20)

with C = C(
; q; s) > 0:

Setting a = C, � = kEk

q;s;


, Æ = Ckkk

r;s;


and  = �, (4.20) is equivalent to

the estimate

kF(~u)k

q;s;


+ � � a(k~uk

q;s;


+ �)

2

+ Æ(k~uk

q;s;


+ �) + ; (4.21)

f. (3.24) in the proof of Theorem 2 for the stationary ase. Thus, in the same

way as in that proof, we obtain a solution ~u 2 L

s

�

0; T

0

;L

q

(
)

�

of the �xed point

equation ~u = F(~u) if the ondition 4a + 2Æ < 1, i.e.,

4C

�

Z

T

0

0

kEk

s

q;


dt

�

1

s

+ 2C

�

Z

T

0

0

kkk

s

r;


dt

�

1

s

< 1 : (4.22)

is satis�ed. Using (4.4) and (4.12) we may use also the (weaker) smallness on-

dition

�

Z

T

0

0

kA

q

e

�tA

q

A

�1

q

P

q

u

0

k

s

q;


dt

�

1

s

+

�

Z

T

0

0

kFk

s

r;


dt

�

1

s

(4.23)

+

�

Z

T

0

0

kkk

s

r;


dt

�

1

s

+

�

Z

T

0

0

kgk

s

�

1

q

;q;�


dt

�

1

s

<

1

C

with C = C(
; q; s) > 0. This ondition is always satis�ed if T

0

> 0 is suÆiently

small; note that the ase T

0

=1 is possible.

Writing (4.19) in the form

A

�1

q

~u(t) = A

�1

q

P

q

u(t)� A

�1

q

P

q

E(t) (4.24)

= �

Z

t

0

e

�(t��)A

q

A

�1

q

P

q

divW (u)d�; 0 � t < T

0

;

we onlude using (2.20), (2.16), (3.20), together with H�older's inequality, that

k(A

�1

q

~u)

t

k

q;s=2;


� C

1

kA

�1

q

P

q

divW (u)k

q;s=2;


� C

2

kW (u)k

r;s=2;


� C

3

�

kuk

2

q;s;


+ kkk

r;s;


kuk

q;s;


�

<1

with C

i

; i = 1; 2; 3; depending on 
; q; s.
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Furthermore, we obtain from (4.4) that

A

�1

q

P

q

E

t

2 L

s

�

0; T

00

;L

q

�

(
)

�

� L

s=2

�

0; T

00

;L

q

�

(
)

�

; 0 < T

00

< T

0

:

This proves that A

�1

q

P

q

u

t

2 L

s=2

�

0; T

00

;L

q

�

(
)

�

for all T

00

with 0 < T

00

< T

0

, and

all 0 < T

00

<1 if T

0

=1.

A alulation shows that u de�ned by u = ~u + E is a very weak solution

of (1.1). To prove the uniqueness of u we assume that v 2 L

s

�

0; T

0

;L

q

(
)

�

is

another very weak solution of (1.1). Setting U = u � v we obtain in the same

way as in (4.18) that U is a very weak solution of the system

U

t

��U +rP = �div (Uu)� div (vU) + kU;

divU = 0; U

j

�


= 0; U

j

t=0

= 0: (4.25)

The same method as used for (4.18) and (4.19) then leads to the estimate

kUk

q;s;


� C(kuk

q;s;


+ kvk

q;s;


+ kkk

r;s;


) kUk

q;s;


(4.26)

with C = C(
; q; s) > 0. Sine k � k

q;s;


= k � k

q;s;
;T

0

; we observe that C does not

depend on T

0

. Thus we an hoose T

00

2 (0; T

0

) suh that

kuk

q;s;
;T

00

+ kvk

q;s;
;T

00

+ kkk

r;s;
;T

00

�

1

2C

:

This leads to kUk

q;s;
;T

00

� 0, hene U = 0 and u = v on the interval [0; T

00

℄. If

T

00

< T we an ontinue this proedure and get u = v on [0; T

0

) in �nitely many

steps. The proof of Theorem 1 is omplete.
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