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Abstra
t

For positive linear fun
tionals on 
omplex 
ommutative

�

-algebras,

we prove abstra
t Bo
hner and Plan
herel Theorems without any hy-

pothesis of non-degenera
y. A 
entral positive fun
tional on a

�

-algebra

is de
omposed as the sum of a non-degenerate and a totally degener-

ate positive linear fun
tional by relating the non-degenerate part to

the natural tra
e of an asso
iated Hilbert algebra.
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Let ! be a positive linear fun
tional on a 
omplex 
ommutative Bana
h

�

-algebra with unit. The Abstra
t Bo
hner Theorem yields a unique regular

Borel measure � on the involutive part

^

A of the Gelfand spe
trum of A su
h

that !(a) =

R

â d� holds for ea
h a 2 A. The Abstra
t Plan
herel Theorem

states that the natural representation of A on L

2

(�) by multipli
ation of

fun
tions is unitarily equivalent to the representation asso
iated with ! by

the Gelfand{Na��mark{Segal 
onstru
tion.

One would like to have su
h theorems under more general hypotheses.

For example, let A be the 
onvolution algebra of 
ontinuous fun
tions on a

non-dis
rete lo
ally 
ompa
t abelian group, and let ! be evaluation at the

unit element. SuÆ
iently general theorems for this situation are proved by

Fell and Doran [6, VI.21.4 and VI.21.6℄. They assume that A is a dense

�

-subalgebra of a 
ommutative hermitian Bana
h

�

-algebra (whi
h need not

be unital), that the positive linear fun
tional ! on A satis�es a 
ertain

boundedness 
ondition, and that the Gelfand{Na��mark{Segal representa-

tion asso
iated with ! is non-degenerate. Their results are spe
ial 
ases of

the 
ontent of the �rst part of this arti
le. It turns out that the topology

of A is irrelevant. In fa
t, it seems more transparent to develop the theory

for a positive linear fun
tional ! on an abstra
t algebra A. If A is unital

then one 
an still fa
tor ! over an asso
iated C

�

-algebra, so that one 
an

�
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apply the above results for 
ommutative A, and Choquet Theory for non-


ommutative A. In the 
ase of a non-unital but 
ommutative algebra, we

use a weaker boundedness 
ondition than Fell and Doran whi
h is not only

suÆ
ient but also ne
essary, and we drop the hypothesis of non-degenera
y.

The treatment of possibly degenerate positive fun
tionals has the impor-

tant 
onsequen
e that su
h a fun
tional 
an be written as the sum of a

non-degenerate and a totally degenerate part. By a di�erent te
hnique, we

also establish this de
omposition for 
entral positive linear fun
tionals on

non-
ommutative algebras. The original motivation for an integral repre-

sentation of a possibly degenerate positive linear fun
tional on a non-unital

algebra is related to the unitary representation theory of in�nite-dimensional

Lie groups of Harish{Chandra type [1℄.

Here is an overview of the 
ontent of this arti
le. Let ! be a positive

linear fun
tional on a 
omplex 
ommutative

�

-algebra A, and let � be a 
om-

pa
tly supported Borel measure on the involutive spe
trum

^

A. We say that �

represents ! if all a; b; 
 2 A satisfy !(ab
) =

R

â

^

b
̂ d�. Examples show that

this is the best kind of representation whi
h one 
an a
hieve for general !. If

a representing measure exists then ! is exponentially bounded, whi
h means

that A a
ts by bounded operators on the Gelfand{Na��mark{Segal Hilbert

spa
e asso
iated with !. This 
ondition is assumed throughout. Among

the general properties of a representing measure � whi
h we prove, the

most important is that the 
losed support of � is a lo
ally 
ompa
t subset

^

A(�

!

) �

^

A whi
h is uniquely determined by ! and 
an easily be des
ribed in

terms of !. Conversely, the existen
e of a representing measure �

!

on

^

A(�

!

)


an be dedu
ed from the Riesz Representation Theorem for positive linear

fun
tionals C




(

^

A(�

!

)), and under the uniqueness 
onditions appearing in

that theorem, the representing measure �

!

is unique. The positive linear

fun
tional ! admits an extension to the unitization of A if and only if �

!

is �nite and satis�es !(a) =

R

â d�

!

for all a 2 A. Similarly, the equation

!(ab) =

R

â

^

b d�

!

holds for all a; b 2 A if and only if the Gelfand{Na��mark{

Segal representation asso
iated with ! is non-degenerate. In this 
ase, we

say that ! is non-degenerate. For general !, the non-degenerate part of

this representation is isomorphi
 to the representation of A on L

2

(�

!

) by

a:f

:

= â �f . This is our general version of the Abstra
t Plan
herel Theorem.

In the se
ond part of this arti
le, we repla
e the hypothesis that the

�

-algebra A is 
ommutative by the weaker assumption that the exponen-

tially bounded positive linear fun
tional ! on A is 
entral, whi
h means

that !(ab) = !(ba) holds for all a; b 2 A. This assumption is suÆ
ient for

the 
onstru
tion of a Hilbert algebra stru
ture on the image of A under the

Gelfand{Na��mark{Segal representation. The natural tra
e on that Hilbert

algebra leads to a non-degenerate positive linear fun
tional !

1

on A su
h

that !

0

:

= ! � !

1

is a totally degenerate positive linear fun
tional. The

de
omposition ! = !

0

+ !

1

into a totally degenerate and a non-degenerate

2



part is essentially unique (i.e. it is unique on the linear span of AA). This de-


omposition of ! 
orresponds to a dire
t sum de
omposition of the Gelfand{

Na��mark{Segal module. The 
onstru
tion of a Hilbert algebra from ! also

leads to a fa
torization of ! through a homomorphism from A into a hermi-

tian Bana
h

�

-algebra.

If a generalization of the integral representation developed in the �rst

part to 
entral positive linear fun
tionals ! is possible, it will probably be

based on the Hilbert algebra asso
iated with !. We 
on
lude this paper

with a �rst step in this dire
tion. Assume that the

�

-algebra A has 
ount-

able dimension or is a separable Bana
h

�

-algebra. Then the natural tra
e

mentioned above is de�ned on the positive 
one of a separable C

�

-algebra.

For su
h tra
es, Dixmier [5℄ has 
onstru
ted a de
omposition as an integral

over the quasi-spe
trum of the C

�

-algebra. We des
ribe his 
onstru
tion

and show that it spe
ializes to the results in the �rst part if A is 
ommu-

tative. However, it must be emphasized that Dixmier's theory is intimately


onne
ted with the assumption of separability.

1 Hilbert spa
es with reprodu
ing kernel

LetX be a set. A positive de�nite (
omplex-valued) kernel on X is a fun
tion

K : X�X ! C su
h that for all �nite sequen
es x

1

; : : : ; x

n

2 X, the matrix

�

K(x

k

; x

j

)

�

j;k

is positive semi-de�nite. Sin
e positive semi-de�nite matri
es

are hermitian, the relation K(y; x) = K(x; y) holds for all x; y 2 X.

Similarly, one 
an de�ne positive de�nite kernels on X with values in

B(V ) for a Hilbert spa
e V . For this generalization, the reader is referred

to Neeb [7℄. The following results on positive de�nite kernels have been

spe
ialized from Se
tion I.1 of that monograph, whi
h ends with histori
al


omments.

We write C

X

for the 
omplex ve
tor spa
e of all 
omplex-valued fun
tions

on X, and C

(X)

for the subspa
e of all elements of C

X

with �nite support.

Re
all that a subset of a topologi
al ve
tor spa
e is 
alled total if its linear

span is dense.

1.1 Lemma (Asso
iated kernels). Let X be a set, and let H � C

X

be a ve
tor subspa
e with a Hilbert spa
e stru
ture su
h that the point

evaluation f 7! f(x) : H ! C is 
ontinuous for every x 2 X. Sin
e this is a

linear fun
tional on H, every x gives rise to a unique ve
tor K

H

x

2 H su
h

that all f 2 H satisfy f(x) = hf;K

H

x

i. The map

K

H

: X �X �! C ; (y; x) 7�! hK

H

x

;K

H

y

i

is a positive de�nite kernel, and it satis�es K

H

(�; x) = K

H

x

for every x 2 X.

It is 
alled the reprodu
ing kernel of the Hilbert spa
e H.
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Proof. The equation K

H

(y; x) = hK

H

x

;K

H

y

i = K

H

x

(y) for x; y 2 X follows

from the de�nitions. If x

1

; : : : ; x

n

2 X and �

1

; : : : ; �

n

2 C then

n

X

j;k=1

�

j

K

H

(x

k

; x

j

) �

k

=

n

X

j;k=1

�

j

hK

H

x

j

;K

H

x

k

i �

k

=

*

n

X

j=1

�

j

K

H

x

j

;

n

X

k=1

�

k

K

H

x

k

+

� 0:

Hen
e the matrix

�

K

H

(x

k

; x

j

)

�

j;k

is positive semi-de�nite. �

1.2 Theorem (Hilbert spa
es with reprodu
ing kernel). Let X be a

set.

(a) LetK : X�X ! C be a positive de�nite kernel. Then there is a unique

ve
tor subspa
e H

K

� C

X

and a unique s
alar produ
t h�; �i

K

on H

K

su
h thatH

K

is a Hilbert spa
e with 
ontinuous point evaluations, and

K

H

K

= K. The spa
e H

K

is 
alled the Hilbert spa
e with reprodu
ing

kernel K.

(b) Let H � C

X

be a ve
tor subspa
e with the stru
ture of a Hilbert spa
e

with 
ontinuous point evaluations. Then H

K

H

= H as Hilbert spa
es.

(
) Let H be a Hilbert spa
e, let ' : X !H be a map, and de�ne a linear

map �: H ! C

X

by �(v)(x)

:

= hv; '(x)i. Then

K : X �X �! C ; (y; x) 7�! h'(x); '(y)i

is a positive de�nite kernel, we have ker(�) = '(X)

?

, and the restri
-

tion of � to ker(�)

?

= span('(X)) is an isometry onto H

K

.

Proof. We will �rst 
onstru
t a Hilbert spa
e H

K

as in (a) for a positive

de�nite kernel K on X. Then we will prove assertion (
). This will easily

imply assertion (b) and the uniqueness statement in (a).

Let K be a positive de�nite kernel on X. De�ne a positive semi-de�nite

sesquilinear form on C

(X)

by

hf; gi

0

:

=

X

x;y2X

f(x) K(y; x) g(y)

�

f; g 2 C

(X)

�

:

Let N

:

=

�

f 2 C

(X)

; hf; fi

0

= 0

	

be the radi
al of this form. Let K with

s
alar produ
t h�; �i

1

be the Hilbert spa
e 
ompletion of the quotient spa
e

C

(X)

=N . For f 2 C

(X)

, set [f ℄

:

= f+N 2 K, and for x 2 X, let Æ

x

2 C

(X)

be

the 
hara
teristi
 fun
tion of fxg. De�ne a linear map �: K ! C

X

into the

ve
tor spa
e of all 
omplex-valued fun
tions on X by �(v)(x)

:

= hv; [Æ

x

℄i

1

.

This map is inje
tive be
ause f[Æ

x

℄; x 2 Xg is a total subset of K. Thus �

4



provides a realization of K as a linear subspa
e of C

X

. Set H

K

:

= �(K),

and de�ne a 
omplex s
alar produ
t h�; �i

K

on H

K

by requiring � to be an

isometry. Fix x 2 X, and de�ne K

x

:

= K(�; x) 2 C

X

. If y 2 X then

�([Æ

x

℄)(y) = h[Æ

x

℄; [Æ

y

℄i

1

= hÆ

x

; Æ

y

i

0

= K(y; x) = K

x

(y);

so that K

x

= �([Æ

x

℄) 2 H

K

. Let f 2 H

K

. Then there is a unique v 2 K

su
h that f = �(v), and

f(x) = �(v)(x) = hv; [Æ

x

℄i

1

= h�(v);�([Æ

x

℄)i

K

= hf;K

x

i

K

:

Hen
e H

K

is a Hilbert spa
e with 
ontinuous point evaluations, and K

H

K

x

=

K

x

. If x; y 2 X then

K

H

K

(y; x) = hK

H

K

x

;K

H

K

y

i

K

= hK

x

;K

y

i

K

= h�([Æ

x

℄);�([Æ

y

℄)i

K

= h[Æ

x

℄; [Æ

y

℄i

1

= hÆ

x

; Æ

y

i

0

= K(y; x):

Thus we have proved the existen
e statement in (a).

Let ' : X ! H be a map into a Hilbert spa
e, and de�ne �: H ! C

X

and K : X � X ! C as in assertion (
). A 
al
ulation analogous to the

proof of Lemma 1.1 shows that K is a positive de�nite kernel. Let H

K

and fK

x

; x 2 Xg � H

K

be de�ned as above. The de�nition of � implies

that ker(�) = '(X)

?

, so that ker(�)

?

= span('(X)). Therefore, we may

assume that '(X) is a total subset of H. If x; y 2 X then

�('(x))(y) = h'(x); '(y)i = K(y; x) = K

x

(y);

so that �('(x)) = K

x

. Hen
e �('(X)) � H

K

. Sin
e

h�('(x));�('(y))i

K

= hK

x

;K

y

i

K

= K(y; x) = h'(x); '(y)i;

the restri
tion of � to the span of '(X) is an isometry into H

K

. This

restri
tion extends to an isometry

~

�: H ! H

K

be
ause fK

x

; x 2 Xg is a

total subset of H

K

. If v 2 H and x 2 X then

~

�(v)(x) = h

~

�(v);K

x

i

K

= h

~

�(v);

~

�('(x))i

K

= hv; '(x)i = �(v)(x):

We 
on
lude that

~

� = �. This 
ompletes the proof of (
).

Let H � C

X

be a Hilbert spa
e with 
ontinuous point evaluations. Set

' : X ! H; x 7! K

H

x

, and de�ne a positive de�nite kernel K on X as in (
).

Sin
e '(X) is a total subset of H, we have just proved that ' gives rise to an

isometri
 isomorphism �: H ! H

K

whi
h satis�es �(K

H

x

) = K

x

for every

x 2 X. If f 2 H and x 2 X then

�(f)(x) = h�(f);K

x

i

K

= h�(f);�(K

H

x

)i

K

= hf;K

H

x

i = f(x):

Thus �(f) = f and H = H

K

, and we have proved (b).

Finally, let K be a positive de�nite kernel on X, and let H � C

X

be a

ve
tor subspa
e with the stru
ture of a Hilbert spa
e with 
ontinuous point

evaluations su
h that K

H

= K. Then assertion (b) shows that H = H

K

H

=

H

K

as Hilbert spa
es. This proves the uniqueness statement in (a). �
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1.3 Lemma (Sums of kernels). LetK

1

andK

2

be positive de�nite kernels

on a set X, and set K

:

= K

1

+K

2

. Then the linear map

�: H

K

1

�H

K

2

�! H

K

; (f

1

; f

2

) 7�! f

1

+ f

2

is a surje
tive 
ontra
tion. Its adjoint is an isometri
 embedding whi
h

maps K

x

to (K

1;x

;K

2;x

) for every x 2 X.

Proof. De�ne ' : X ! H

K

1

� H

K

2

; x 7! (K

1;x

;K

2;x

), and apply Theo-

rem 1.2 (
). The map � de�ned there maps (f

1

; f

2

) 2 H

K

1

� H

K

2

to the

map

x 7�! h(f

1

; f

2

); (K

1;x

;K

2;x

)i = f

1

(x) + f

2

(x) : X ! C ;

so that it 
oin
ides with the map � de�ned in the present lemma. Similarly,

the positive de�nite kernel de�ned in Theorem 1.2 (
) maps (y; x) 2 X �X

to h(K

1;x

;K

2;x

); (K

1;y

;K

2;y

)i = K

1

(y; x)+K

2

(y; x), so that it 
oin
ides with

the kernel K = K

1

+K

2

. Hen
e Theorem 1.2 shows that � is a surje
tive


ontra
tion.

The adjoint �

�

of � is an isometry of H

K

onto the 
losed linear span

of '(X) be
ause � maps this spa
e isometri
ally onto H

K

and its orthogonal


omplement to 0. If x 2 X and (f

1

; f

2

) 2 H

K

1

�H

K

2

then

h(f

1

; f

2

);�

�

(K

x

)i

K

= h�(f

1

; f

2

);K

x

i

K

= hf

1

+ f

2

;K

x

i

K

= f

1

(x) + f

2

(x) = hf

1

;K

1;x

i

K

1

+ hf

2

;K

2;x

i

K

2

= h(f

1

; f

2

); (K

1;x

;K

2;x

)i:

Hen
e �

�

(K

x

) = (K

1;x

;K

2;x

). �

2 The Gelfand{Na��mark{Segal 
onstru
tion

A

�

-algebra is a 
omplex asso
iative algebra A with a 
onjugate-linear anti-

multipli
ative involution a 7! a

�

: A ! A. Its unitization A

1

= A + C � 1 is

de�ned as A if A has a unit element, and as the dire
t sum A� C of ve
tor

spa
es with algebra multipli
ation (a; �) � (b; �)

:

= (ab + �b + �a; ��) and

involution (a; �)

�

:

= (a

�

; �) if A does not have a unit element. Even for

a

�

-algebra A, we will write A

�

for the spa
e of linear fun
tionals from A

into C . Let

Pos(A; C )

:

= f! 2 A

�

; 8 a 2 A : !(a

�

a) � 0g

be the 
onvex 
one of positive linear fun
tionals. An easy 
al
ulation shows

that every element ! 2 Pos(A; C ) gives rise to a positive de�nite kernel on A

by

K

!

: A�A �! C ; (a; b) 7�! !(ab

�

):

Let H

!

:

= H

K

!

� C

A

be the Hilbert spa
e with reprodu
ing kernel K

!

.

De�ne a linear map

p

!

: A �! H

!

; a 7�! K

!;a

�

= K

!

(�; a

�

) = !(� a):

6



We will often use the dense subspa
e H

0

!

:

= p

!

(A) of H

!

. If a; b 2 A then

hp

!

(a); p

!

(b)i = hK

!;a

�

;K

!;b

�

i = K

!

(b

�

; a

�

) = !(b

�

a):

This implies the equation !(b

�

a) = !(a

�

b) and the Cau
hy{S
hwarz inequal-

ity

j!(a

�

b)j

2

� !(a

�

a) !(b

�

b):

Note that H

!

� A

�

. Indeed, if f 2 H

!

, a; b 2 A and � 2 C then

f(a+ �b) =




f; p

!

�

(a+ �b)

�

��

=




f; p

!

(a

�

) + � p

!

(b

�

)

�

=




f; p

!

(a

�

)

�

+ �




f; p

!

(b

�

)

�

= f(a) + �f(b):

2.1 Remark (Alternative 
onstru
tion). The point of view on the

Gelfand{Na��mark{Segal 
onstru
tion presented here is taken from Neeb [7℄.

In many other books, one de�nes A

!

:

= fa 2 A; 8 b 2 A : !(ba) = 0g =

ker(p

!

) dire
tly, proves that ! indu
es a s
alar produ
t on A=A

!

, and de�nes

the Hilbert spa
e H

!

as the 
ompletion of A=A

!

. Then one 
an de�ne a map

' : A!H

!

; A 7! a

�

+A

!

and use Theorem 1.2 (
) in order to identify H

!

with the reprodu
ing kernel Hilbert spa
e de�ned above. Sin
e A

!

is a left

ideal of A, the 
onstru
tion yields a left A-module stru
ture on A=A

!

, to

whi
h we will now turn our attention.

The ve
tor spa
e C

A

is a left A-module

3

under the a
tion of A by right

multipli
ation in the argument, whi
h means that (a:f)(b)

:

= f(ba) when-

ever a; b 2 A and f 2 C

A

. Note that A

�

is a submodule of C

A

, and that we


an write p

!

(a) = a:! for a 2 A. If a; b 2 A then

a:p

!

(b) = a:(b:!) = ab:! = p

!

(ab):

Thus p

!

is a homomorphism of A-modules, the pre-Hilbert spa
e H

0

!

is a

submodule of C

A

, and we obtain a representation

�

0

!

: A �! End(H

0

!

); a 7�! (f 7! a:f):

We show that this is a

�

-representation. Let a 2 A and f; g 2 H

0

!

, and


hoose x; y 2 A su
h that f = p

!

(x) and g = p

!

(y). Then

h�

0

!

(a):f; gi = ha:p

!

(x); p

!

(y)i = hp

!

(ax); p

!

(y)i

= !(y

�

ax) = !

�

(a

�

y)

�

x

�

= hp

!

(x); p

!

(a

�

y)i = hp

!

(x); a

�

:p

!

(y)i = hf; �

0

!

(a

�

):gi:

3

Even if A is a non-unital algebra, the de�nitions in
lude that all A-modules are ve
tor

spa
es and all module homomorphisms are linear maps.
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2.2 Proposition (Neeb [7, III.1.3℄: invarian
e of H

!

). Let ! be a

positive linear fun
tional on a

�

-algebra A, and 
hoose a 2 A. Then a:H

!

�

H

!

if and only if �

0

!

(a) is bounded. In this 
ase, the unique 
ontinuous

extension of �

0

!

(a) to H

!

is given by the a
tion of a.

Proof. Assume that a:H

!

� H

!

. Let f 2 H

!

and g 2 H

0

!

, and 
hoose

b 2 A su
h that g = p

!

(b). Then

ha:f; gi = ha:f; p

!

(b)i = (a:f)(b

�

) = f(b

�

a)

= hf; p

!

(a

�

b)i = hf; a

�

:p

!

(b)i = hf; a

�

:gi:

Choose a sequen
e (f

n

)

n2N

in H

!

whi
h 
onverges to some element f 2 H

!

su
h that the sequen
e (a:f

n

)

n2N


onverges to some h 2 H

!

. If g 2 H

0

!

then

hh; gi = lim

n

ha:f

n

; gi = lim

n

hf

n

; a

�

:gi = hf; a

�

:gi = ha:f; gi:

Hen
e h = a:f , and the Closed Graph Theorem (see Rudin [14, 2.15℄) shows

that f 7! a:f : H

!

! H

!

is 
ontinuous. Therefore, the restri
tion �

0

!

(a) of

this map to H

0

!

is 
ontinuous.

Conversely, assume that �

0

!

(a) is 
ontinuous, so that it extends uniquely

to a bounded operator �

!

(a) 2 B(H

!

). If f; g 2 H

0

!

then

h�

!

(a)

�

:f; gi = hf; �

!

(a):gi = hf; �

0

!

(a):gi = h�

0

!

(a

�

):f; gi:

Hen
e �

!

(a)

�

j

H

0

!

= �

0

!

(a

�

). Choose f 2 H

!

. If b 2 A then

(�

!

(a):f)(b) = h�

!

(a):f; p

!

(b

�

)i = hf; �

!

(a)

�

:p

!

(b

�

)i

= hf; �

0

!

(a

�

):p

!

(b

�

)i = hf; p

!

(a

�

b

�

)i = f(ba) = (a:f)(b):

Hen
e �

!

(a):f = a:f . In parti
ular, this shows that a:H

!

� H

!

. �

For the following de�nition, re
all that a C

�

-semi-norm on a

�

-algebra A

is a semi-norm � on A whi
h satis�es �(a

�

a) = �(a)

2

for all a 2 A.

Sebesty�en's Theorem [16℄ (
f. Palmer [9, 9.5.14℄) states that a C

�

-semi-

norm � is automati
ally sub-multipli
ative, whi
h means that the inequality

�(ab) � �(a) �(b) holds for all a; b 2 A.

2.3 De�nition. (a) A positive linear fun
tional ! on a

�

-algebra A is


alled exponentially bounded or admissible if H

!

is a submodule of C

A

or,

equivalently, if the endomorphism �

0

!

(a) of H

!

(a) is bounded for every a 2

A. (The term \exponentially bounded" is used by Neeb [7, III.1.9℄, the term

\admissible" was introdu
ed by Ri
kart [11, IV.5℄.) In this 
ase, we obtain

a representation

�

!

: A �! B(H

!

); a 7�! (f 7! a:f):
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This is a

�

-representation be
ause for every a 2 A, the operator �

!

(a) is the

unique 
ontinuous extension of �

0

!

(a) to H

!

.

If ! 2 Pos(A; C ) is exponentially bounded, the C

�

-semi-norm of ! is

de�ned as

�

!

: A �! R; a 7�! k�

!

(a)k:

(b) Let A be a

�

-algebra, and let ' : A ! R

+

0

be an arbitrary fun
tion.

Then an positive linear fun
tional ! on A is 
alled bounded by ', or '-

bounded for short, if it is exponentially bounded with �

!

� '. This holds if

and only if all a; b 2 A satisfy !(b

�

a

�

ab) � '(a)

2

!(b

�

b). Indeed, the latter


ondition is equivalent to the inequality k�

0

!

(a)k � '(a).

Note that we 
an often assume ' to be a C

�

-semi-norm be
ause an

exponentially bounded positive linear fun
tional ! on A is �

!

-bounded.

IfA is a Bana
h

�

-algebra, or more generally a (Ma
key) 
omplete 
ontinuous

inverse

�

-algebra, then every positive linear fun
tional on A is automati
ally

bounded by the fun
tion a 7!

p

�(a

�

a) : A! R, where � denotes the spe
tral

radius (see [2℄ and Bonsall and Dun
an [3, 37.6℄).

Let ! 2 Pos(A; C ). If ! is '-bounded then all a; b 2 A satisfy

j!(b

�

ab)j = jh�

!

(a):p

!

(b); p

!

(b)ij � k�

!

(a)k � kp

!

(a)k

2

� '(a) !(b

�

b):

Conversely, if a fun
tion ' : A! R

+

0

satis�es j!(b

�

ab)j � '(a) !(b

�

b) for all

a; b 2 A then ! is bounded by the fun
tion a 7!

p

'(a

�

a) : A! R.

2.4 Lemma (Continuity implies boundedness). Let � be a sub-multi-

pli
ative semi-norm on a

�

-algebra A, and assume that ! 2 Pos(A; C ) is


ontinuous with respe
t to �. Then ! is bounded by the fun
tion a 7!

p

�(a

�

a) : A! R, and also by the

�

-invariant sub-multipli
ative semi-norm

a 7! maxf�(a); �(a

�

)g on A.

See Palmer [9, 9.4.12℄ for a more detailed result.

Proof. Continuity of ! with respe
t to � means that there is a 
onstant

C > 0 su
h that j!(a)j � C�(a) holds for all a 2 A. Let a; b 2 A. Us-

ing the Cau
hy{S
hwarz inequality, we indu
tively �nd that !(b

�

a

�

ab)

2

n

�

!

�

b

�

(a

�

a)

2

n

b

�

!(b

�

b)

2

n

�1

holds for all n 2 N. Sub-multipli
ativity of �

yields

!(b

�

a

�

ab)

2

n

� C �(b) �(b

�

) �(a

�

a)

2

n

!(b

�

b)

2

n

�1

:

Taking the 2

n

-th root and letting n tend to in�nity, we �nd that !(b

�

a

�

ab) �

�(a

�

a) !(b

�

b). Thus k�

0

!

(a)k �

p

�(a

�

a) � maxf�(a); �(a

�

)g. �

2.5 Remark (Unital algebras). Let ! be an exponentially bounded

positive linear fun
tional on a

�

-algebra A, and assume that A has a unit

element. The Cau
hy{S
hwarz inequality implies that every a 2 A satis�es
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j!(a)j

2

� !(1) !(a

�

a) � !(1)

2

�

!

(a)

2

and hen
e j!(a)j � !(1) �

!

(a).

Thus ! is 
ontinuous with respe
t to �

!

. We also infer the in
lusions

ker(�

!

) � ker(p

!

) � ker(!). Let B � B(H

!

) be the 
losure of �

!

(A).

Then ! indu
es a positive linear fun
tional on the unital C

�

-algebra B.

More pre
isely, there is a unique ! 2 Pos(B; C ) su
h that ! = !Æ�

!

. If B is


ommutative then the Abstra
t Bo
hner Theorem as proved by Fell and Do-

ran [6, 21.2℄ yields a Borel measure � on the Gelfand spe
trum

^

B, unique un-

der 
ertain regularity 
onditions, su
h that all b 2 B satisfy !(b) =

R

^

B

^

b d�.

If B is not 
ommutative, we 
an apply the elaborate theory of integral de-


ompositions of positive linear fun
tionals on C

�

-algebras (see Sakai [15,

Chapter 3℄), of whi
h the Abstra
t Bo
hner Theorem 
an be seen as a spe-


ial 
ase.

This arti
le is devoted to the 
orresponding results for non-unital alge-

bras. In the 
ommutative 
ase, an Abstra
t Bo
hner Theorem still holds,

and we obtain strong results on the uniqueness of the integral de
omposition,

whi
h may be of interest for unital algebras as well. If A is not 
ommutative

but has 
ountable dimension and ! is 
entral, the non-degenerate part of !


orresponds to a tra
e on B whi
h admits an integral de
omposition.

3 Commutative

�

-algebras

3.1 Gelfand spe
trum and Gelfand homomorphism

3.1 De�nition. Let A be a 
ommutative

�

-algebra. The involutive Gelfand

spe
trum of A is de�ned as

^

A

:

= Hom

�

(A; C ) n f0g, where Hom

�

(A; C ) de-

notes the spa
e of

�

-algebra-homomorphisms from A into C with the topo-

logy of pointwise 
onvergen
e on A. The elements of

^

A are 
alled the invo-

lutive 
hara
ters of A.

For an arbitrary non-negative fun
tion ' : A ! R

+

0

, let the '-bounded

involutive spe
trum of A be

^

A(')

:

=

n

� 2

^

A; 8 a 2 A : j�(a)j � '(a)

o

:

3.2 Remark. Let � be an involutive 
hara
ter of a

�

-algebra A. Then �

is a positive linear fun
tional on A. Sin
e we have de�ned the notion of

'-boundedness for positive linear fun
tionals as well, we have to 
he
k that

it 
oin
ides with the new de�nition for involutive 
hara
ters. The Gelfand{

Na��mark{Segal 
onstru
tion gives ker(p

�

) = fa 2 A; �(a

�

a) = 0g = ker(�)

and H

�

�

=

C , and the representation �

�

is equivalent to �, viewed as a

representation of A on C . Hen
e �

�

(a) = j�(a)j holds for all a 2 A. In

parti
ular, the two notions of '-boundedness 
oin
ide for �.

3.3 Remark (Topology of

^

A). (a) In the topology of pointwise 
onver-

gen
e onA, the set

^

A(')[f0g is 
losed in

�

f 2 C

A

; 8 a 2 A : jf(a)j � '(a)

	

,
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whi
h is a 
ompa
t spa
e by Ty
honov's Theorem. Hen
e

^

A(') is a lo
ally


ompa
t Hausdor� spa
e. If the algebra A has a unit element 1 then all

� 2

^

A satisfy �(1) = 1, when
e

^

A(') is 
losed in

^

A(') [ f0g and therefore


ompa
t.

(b) Assume that for every a 2 A, the spe
trum

Sp(a)

:

=

�

� 2 C ; � � 1� a 62 (A

1

)

�

	

is bounded. (This implies that every element has 
ompa
t spe
trum, see

Palmer [8, 2.1.11℄.) The spe
tral radius of an element a 2 A is �(a)

:

=

sup fj�j; � 2 Sp(a)g. If a 2 A and � 2

^

A then

Sp

A

(a) � Sp

C

(�(a)) = f�(a)g;

so that j�(a)j � �(a). We 
on
lude that

^

A =

^

A(�).

3.4 De�nition. Let A be a 
ommutative

�

-algebra. Ea
h a 2 A gives rise

to a 
ontinuous fun
tion

â :

^

A [ f0g �! C ; � 7�! �(a);

whi
h is 
alled the Gelfand transform of a. The restri
tion of â to a sub-

set of

^

A [ f0g su
h as

^

A or

^

A(') will also be denoted by â if no 
onfusion

seems likely. Let ' : A ! R

+

0

be a fun
tion. If a 2 A then the restri
-

tion of â to

^

A(') belongs to the C

�

-algebra C

0

(

^

A(')) of those 
ontinuous


omplex-valued fun
tions on

^

A(') whi
h vanish at in�nity. The

�

-algebra

homomorphism a 7! â : A ! C

0

(

^

A(')) is 
alled the '-bounded Gelfand

homomorphism. Its image is a subalgebra of C

0

(

^

A(')) whi
h is 
losed un-

der pointwise 
onjugation, separates the points of

^

A('), and does not van-

ish anywhere on

^

A('). Hen
e this image is a uniformly dense subalgebra

of C

0

(

^

A(')) by the Stone{Weierstrass Theorem (
f. Fell and Doran [6, A8℄).

3.5 Lemma (Compa
t subsets of

^

A [ f0g). Let A be a 
ommutative

�

-algebra, and let K �

^

A be a subset su
h that K [ f0g is 
ompa
t. De�ne

a C

�

-semi-norm on A by

� : A �! R; a 7�!







âj

K







1

= sup fj�(a)j; � 2 Kg :

ThenK �

^

A(�). IfK =

^

A(') for some fun
tion ' : A! R

+

0

thenK =

^

A(�).

Proof. The inequality j�(a)j � �(a) holds for all � 2 K and all a 2 A, so

that K �

^

A(�). In the 
ase that K =

^

A('), the de�nition of � shows that

all a 2 A satisfy �(a) � '(a). This implies the reverse in
lusion

^

A(�) � K.

�
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3.6 Lemma (

^

A(�) for a C

�

-semi-norm �). Let � be a C

�

-semi-norm on

a 
ommutative

�

-algebra A, and let �

�

: A ! A

�

be the natural map into

the 
orresponding C

�

-algebra. Then

� 7�! � Æ �

�

:

�

A

�

�

b �!

^

A(�)

is a homeomorphism. In parti
ular, all a 2 A satisfy �(a) =







âj

^

A(�)







1

.

Proof. The map �

�

is 
onstru
ted as follows. Let A

�

:

= �

�1

(f0g) be the

zero ideal of �. Then � indu
es a C

�

-norm on the quotient

�

-algebra A=A

�

.

The 
ompletion of A=A

�

with respe
t to this norm is denoted by A

�

, and

we set �

�

(a)

:

= a+A

�

2 A

�

for a 2 A.

If � 2

�

A

�

�

b and a 2 A then j�(�

�

(a))j � k�

�

(a)k = �(a), so that

� Æ �

�

2

^

A(�). Hen
e we have a map from

�

A

�

�

b [ f0g into

^

A(�) [ f0g

whi
h maps � to � Æ �

�

. This map is 
ontinuous and inje
tive, and it is


losed be
ause it is a map between 
ompa
t Hausdor� spa
es. Finally, it is

surje
tive be
ause every � 2

^

A(�) indu
es a 
ontinuous involutive 
hara
ter

of A=A

�

, whi
h extends to a 
hara
ter � of A

�

su
h that � Æ �

�

= �. This

proves the main assertion, whi
h implies that every a 2 A satis�es

�(a) = k�

�

(a)k = sup

�

j�(�

�

(a))j; � 2

�

A

�

�

b

	

= sup

n

j�(a)j; � 2

^

A(�)

o

=







âj

^

A(�)







1

;

so that the se
ond assertion follows immediately. �

3.7 Lemma. Let A be a 
ommutative

�

-algebra, and letK �

^

A be 
ompa
t.

Then there exists a 2 A su
h that the Gelfand transform â does not have

any zero on K.

Proof. For ea
h � 2 K, 
hoose an element a

�

2 A su
h that â

�

(�) 6= 0.

Sin
e K is 
ompa
t, we 
an 
hoose �

1

; : : : ; �

n

2 K su
h that

a

:

= a

�

�

1

a

�

1

+ � � �+ a

�

�

n

a

�

n

has the required property. �

3.8 Proposition (Extension of the Gelfand{Na��mark{Segal repre-

sentation). Let � be a C

�

-semi-norm on a 
ommutative

�

-algebra A, and

let ! 2 Pos(A; C ) be �-bounded. Then the Gelfand{Na��mark{Segal rep-

resentation �

!

: A ! B(H

!

) asso
iated with ! fa
tors through a unique

�

-representation �

!

: C

0

(

^

A(�)) ! B(H

!

) in the sense that all a 2 A satisfy

�

!

(â) = �

!

(a).

Note that every

�

-homomorphism between C

�

-algebras is a 
ontra
tion (see

Dixmier [5, 1.3.7℄), so that k�

!

(')k � k'k

1

holds for every ' 2 C

0

(

^

A(�)).
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Proof. Let B � B(H

!

) be the 
losure of the image �

!

(A). Then B is a


ommutative C

�

-algebra. If � 2

^

B and a 2 A then

j�(�

!

(a))j � k�

!

(a)k = �

!

(a) � �(a);

so that � Æ �

!

2

^

A(�). We obtain a map � 7! � Æ �

!

:

^

B !

^

A(�) whi
h is


ontinuous. This gives rise to a

�

-homomorphism

' 7�!

�

� 7! '(� Æ �

!

)

�

: C

0

(

^

A(�)) �! C

0

(

^

B):

The 
omposition of this homomorphism with the inverse of the Gelfand iso-

morphism B ! C

0

(

^

B) and the in
lusion B ,! B(H

!

) is the

�

-representation

�

!

: C

0

(

^

A(�))! B(H

!

). Thus for ' 2 C

0

(

^

A(�)), the operator �

!

(') 2 B is


hara
terized by the fa
t that its Gelfand transform maps � 2

^

B to '(�Æ�

!

),

i.e. by the formula

8' 2 C

0

(

^

A(�)); � 2

^

B : �(�

!

(')) = '(� Æ �

!

):

In parti
ular, if a 2 A then �(�

!

(â)) = â(�Æ�

!

) = �(�

!

(a)) holds for all � 2

^

B, when
e �

!

(â) = �

!

(a). Sin
e the image of the Gelfand homomorphism

from A into C

0

(

^

A(�)) is uniformly dense, this property uniquely determines

the

�

-representation �

!

. �

3.9 Remark. The relation �(�

!

(')) = '(� Æ �

!

) for � 2

^

B and ' 2

C

0

(

^

A(�)) will be used again in the proof of Proposition 3.13.

3.2 Representing measures

Re
all that the Borel �-algebra B(X) on a topologi
al spa
e X is the �-

algebra generated by the open sets. A Borel measure on X is a measure

de�ned on B(X).

3.10 De�nition. Let ! be a positive linear fun
tional on a 
ommutative

�

-algebra A, and let � be a C

�

-semi-norm on A. A Borel measure � on

^

A(�)

represents ! if

n

âj

^

A(�)

; a 2 A

o

� L

3

(�) and all a; b; 
 2 A satisfy

Z

^

A(�)

â

^

b
̂ d� = !(ab
):

Lemma 3.5 shows that we would not obtain a more general 
on
ept if we


onsidered representing Borel measures on other 
ompa
t subsets of

^

A[f0g.

3.11 Lemma (Representability implies exponential boundedness).

Let ! be a positive linear fun
tional on a 
ommutative

�

-algebra A, let �

be a C

�

-semi-norm on A, and let � be a Borel measure on

^

A(�) whi
h

represents !. Then � takes �nite values on all 
ompa
t subsets of

^

A(�),

and ! is �-bounded. In parti
ular,

^

A(�) 
ontains

^

A(�

!

).
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Proof. Let K �

^

A(�) be 
ompa
t. Lemma 3.7 yields an element a 2 A

su
h that "

:

= inf fjâ(�)j; � 2 Kg is stri
tly positive, so that

�(K) � "

�4

Z

^

A(�)

jâj

4

d� = "

�4

!

�

(a

�

a)

2

�

:

Let a; b 2 A. The Cau
hy{S
hwarz inequality and Lemma 3.6 show that

!(b

�

a

�

ab)

2

� !(b

�

b) !

�

b

�

(a

�

a)

2

b

�

= !(b

�

b)

Z

^

A(�)

jâj

4

j

^

bj

2

d�

� !(b

�

b)







âj

^

A(�)







2

1

Z

^

A(�)

jâj

2

j

^

bj

2

d� = !(b

�

b) �(a)

2

!(b

�

a

�

ab):

Hen
e !(b

�

a

�

ab) � �(a)

2

!(b

�

b), and we 
on
lude that �

!

(a) = k�

!

(a)k �

�(a). This immediately implies that

^

A(�

!

) �

^

A(�). �

The spa
e of 
ompa
tly supported 
omplex-valued fun
tions on a lo
ally


ompa
t spa
e X is denoted by C




(X).

3.12 Proposition (Chara
terization of representing measures). Let

! be a positive linear fun
tional on a 
ommutative

�

-algebra A, and let �

be a C

�

-semi-norm on A. Then the following 
onditions are equivalent for

a Borel measure � on

^

A(�):

(i) the measure � represents !;

(ii) 8' 2 C




(

^

A(�)); a 2 A :

Z

^

A(�)

' jâj

2

d� = h�

!

('):p

!

(a); p

!

(a)i;

(iii) 8' 2 C

0

(

^

A(�)); a; b 2 A :

Z

^

A(�)

' â

^

b d� = h�

!

('):p

!

(a); p

!

(b

�

)i

(in parti
ular, the integral exists).

If these 
onditions are satis�ed then

Z

^

A(�)

jâj

2

d� � !(a

�

a) holds for every

a 2 A.

Proof. If a; b; 
 2 A then

h�

!

(
̂):p

!

(a); p

!

(b

�

)i = h�

!

(
):p

!

(a); p

!

(b

�

)i = hp

!

(
a); p

!

(b

�

)i = !(b
a):

In parti
ular, 
ondition (iii) implies (i).

Assume that 
ondition (i) holds. Choose ' 2 C




(

^

A(�)) and a 2 A.

The 
al
ulation above shows that (ii) holds if ' is repla
ed with an element


 2 A. Lemma 3.5 yields b 2 A su
h that

^

b does not vanish anywhere

on the support of '. Extending the quotient '=j

^

bj

2

, whi
h is de�ned on a

14



neighbourhood of supp('), by zero, we view it as an element of C




(

^

A(�)).

For an arbitrary element 
 2 A, we 
al
ulate

�

�

�

�

�

Z

^

A(�)

' jâj

2

d�� h�

!

('):p

!

(a); p

!

(a)i

�

�

�

�

�

=

�

�

�

�

�

Z

^

A(�)

'

j

^

bj

2

jâj

2

j

^

bj

2

d��

Z

^

A(�)


̂ jâj

2

j

^

bj

2

d�

+ h�

!

(
̂):p

!

(ab); p

!

(ab)i �

*

�

!

 

'

j

^

bj

2

^

b

!

:p

!

(a); �

!

(

^

b):p

!

(a)

+

�

�

�

�

�

�

�

�

�

�

�

Z

^

A(�)

 

'

j

^

bj

2

� 
̂

!

jâj

2

j

^

bj

2

d�

�

�

�

�

�

+

�

�

�

�

�

*

�

!

 


̂�

'

j

^

bj

2

!

:p

!

(ab); p

!

(ab)

+

�

�

�

�

�

�
















'

j

^

bj

2

� 
̂
















1

Z

^

A(�)

jâj

2

j

^

bj

2

d�+
















�

!

 


̂�

'

j

^

bj

2

!
















hp

!

(ab); p

!

(ab)i

�
















'

j

^

bj

2

� 
̂
















1

� 2 !(b

�

a

�

ab):

As the image of the Gelfand homomorphism is uniformly dense in C

0

(

^

A(�)),

we 
an 
hoose 
 2 A su
h that the right-hand side is arbitrarily small. This

proves 
ondition (ii).

Assume that (ii) holds. Let a 2 A. We will prove that

R

jâj

2

d� �

!(a

�

a). For n 2 N, set K

n

:

= f� 2

^

A(�); jâ(�)j �

1

n

g. Sin
e â 2 C

0

(

^

A(�)),

ea
h K

n

is a 
ompa
t subset of the interior of K

n+1

. By Urysohn's Lemma,

we �nd 
ontinuous fun
tions '

n

:

^

A(�)! [0; 1℄ whi
h are identi
ally 1 onK

n

and vanish outside K

n+1

. The sequen
e ('

n

)

n2N

is in
reasing and 
onverges

pointwise to the 
hara
teristi
 fun
tion of the open set f� 2

^

A(�); â(�) 6= 0g.

By Lebesgue's Monotone Convergen
e Theorem (
f. Rudin [13, 1.26℄),

Z

^

A(�)

jâj

2

d� = lim

n

Z

^

A(�)

'

n

jâj

2

d� = lim

n

h�

!

('

n

):p

!

(a); p

!

(a)i

� hp

!

(a); p

!

(a)i = !(a

�

a):

Sin
e C




(

^

A(�)) is uniformly dense in C

0

(

^

A(�)), we 
on
lude from (ii) that

8' 2 C

0

(

^

A(�)); a 2 A :

Z

^

A(�)

' jâj

2

d� = h�

!

('):p

!

(a); p

!

(a)i:

Condition (iii) follows be
ause all ' 2 C

0

(

^

A(�)) and a; b 2 A satisfy the
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polarization identities

' â

^

b =

1

4

'

3

X

k=0

i

k

�

�

(a+ i

k

b

�

)b

�

�

2

;




�

!

('):p

!

(a); p

!

(b

�

)

�

=

1

4

3

X

k=0

i

k




�

!

('):p

!

(a+ i

k

b

�

); p

!

(a+ i

k

b

�

)

�

:

�

Let � be a Borel measure on a topologi
al spa
e X. The 
losed support

supp(�) of � is the set of all x 2 X su
h that �(U) > 0 holds for every open

neighbourhood U � X of x. It is a 
losed subset of X. If every open sub-

set U � X satis�es the 
ondition �(U) = sup f�(K); K � U , K 
ompa
tg

(
f. Theorem 3.14) then any union of open subsets of measure 0 has mea-

sure 0, so that supp(�) is the 
omplement in X of the largest open subset

of measure 0.

Let � be a Borel measure on a lo
ally 
ompa
t spa
e X, and assume

that ' 2 C

0

(X) vanishes on supp(�). The set fx 2 X; '(x) 6= 0g is the


ountable union of the sets

�

x 2 X; j'(x)j �

1

n

	

for n 2 N, and these sets

are 
ompa
t and disjoint from supp(�), so that they have measure 0. This

implies that

R

X

' d� = 0.

3.13 Proposition (The support of a representing measure). Let !

be a positive linear fun
tional on a 
ommutative

�

-algebra A, let � be a C

�

-

semi-norm on A, and let � be a Borel measure on

^

A(�) whi
h represents !.

Then supp(�) =

^

A(�

!

).

Proof. Lemma 3.11 shows that

^

A(�

!

) �

^

A(�).

Choose a non-negative fun
tion ' 2 C

0

(

^

A(�)), and let B � B(H

!

) be

the 
losure of �

!

(A). Lemma 3.6 entails that

^

A(�

!

) =

n

� Æ �

!

; � 2

^

B

o

;

and Remark 3.9 shows that all � 2

^

B satisfy �(�

!

(')) = '(�Æ�

!

). Hen
e '

vanishes on

^

A(�

!

) if and only if �

!

(') = 0. Proposition 3.12 shows that

�

!

(') = 0 if and only if all a; b 2 A satisfy

R

' â

^

b d� = 0. This holds

if ' vanishes on supp(�) by the remarks following the introdu
tion of the


losed support. Conversely, if '(�) 6= 0 holds for some � 2 supp(�) then

every a 2 A with �(a) 6= 0 yields

R

' jâj

2

d� > 0. We 
on
lude that a non-

negative fun
tion ' 2 C

0

(

^

A(�)) vanishes on

^

A(�

!

) if and only if it vanishes

on supp(�).

These two sets are 
losed in

^

A(�), and this is a lo
ally 
ompa
t Hausdor�

spa
e and hen
e 
ompletely regular. This implies that supp(�) =

^

A(�

!

). �
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3.3 Existen
e and uniqueness of a representing measure

3.14 Theorem (Abstra
t Bo
hner Theorem). Let A be a 
ommutative

�

-algebra, and let ! be an exponentially bounded positive linear fun
tional

on A. Then there exists a unique Borel measure �

!

on

^

A(�

!

) whi
h repre-

sents ! and satis�es the following 
onditions:

(i) all Borel subsets E �

^

A(�

!

) satisfy

�

!

(E) = inf

n

�

!

(U); E � U , U �

^

A(�

!

) open

o

;

(ii) if a Borel subset E �

^

A(�

!

) is open or has �nite measure then

�

!

(E) = sup f�

!

(K); K � E, K 
ompa
tg :

The measure �

!

is 
alled the Gelfand transform of the positive linear fun
-

tional !.

Proof. Existen
e of �

!

will follow from the Riesz Representation Theorem

for positive linear fun
tionals on C




(

^

A(�

!

)) (see Rudin [13, 2.14℄). Let

' 2 C




(

^

A(�

!

)). Lemma 3.5 yields an element a 2 A su
h that â has no zero

on the support of '. We extend the quotient '=jâj

2

by zero to an element

of C




(

^

A(�

!

)) and set

!

0

(')

:

=

�

�

!

�

'

jâj

2

�

:p

!

(a); p

!

(a)

�

:

To see that this de�nition does not depend on the 
hoi
e of a, let b 2 A be

another element whose Gelfand transform has no zero on the support of '.

Then

�

�

!

�

'

jâj

2

�

:p

!

(a); p

!

(a)

�

=

*

�

!

 

'

jâj

2

j

^

bj

2

^

b

!

:p

!

(a); �

!

(

^

b):p

!

(a)

+

=

*

�

!

 

'

jâj

2

j

^

bj

2

!

:p

!

(ba); p

!

(ba)

+

=

*

�

!

 

'

jâj

2

j

^

bj

2

!

:p

!

(ab); p

!

(ab)

+

=

*

�

!

 

'

jâj

2

j

^

bj

2

â

!

:p

!

(b); �

!

(â):p

!

(b)

+

=

*

�

!

 

'

j

^

bj

2

!

:p

!

(b); p

!

(b)

+

:

Thus !

0

is a well-de�ned linear fun
tional on C




(

^

A(�

!

)), and using the

square root of a 
ompa
tly supported non-negative fun
tion, we �nd that !
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is positive. By the Riesz Representation Theorem [13, 2.14℄, there is a unique

Borel measure �

!

on

^

A(�

!

) whi
h satis�es 
onditions (i) and (ii) and

8' 2 C




(

^

A(�

!

)) : !

0

(') =

Z

^

A(�

!

)

' d�

!

:

Let a 2 A and ' 2 C




(

^

A(�

!

)) be arbitrary, and 
hoose an element 
 2 A

whose Gelfand transform 
̂ does not vanish anywhere on the support of '.

Then

Z

^

A(�

!

)

' jâj

2

d�

!

= !

0

(' jâj

2

) =

�

�

!

�

' jâj

2

j
̂j

2

�

:p

!

(
); p

!

(
)

�

=

�

�

!

�

'

j
̂j

2

â

�

:p

!

(
); �

!

(â):p

!

(
)

�

=

�

�

!

�

'

j
̂j

2


̂

�

:p

!

(a); �

!

(
̂):p

!

(a)

�

= h�

!

('):p

!

(a); p

!

(a)i:

Proposition 3.12 shows that the measure �

!

represents !.

Let � be a Borel measure on

^

A(�

!

) whi
h represents ! and satis�es


onditions (i) and (ii). Choose ' 2 C




(

^

A(�

!

)) and a 2 A su
h that â does

not vanish anywhere on the support of '. By Proposition 3.12,

Z

^

A(�

!

)

' d� =

Z

^

A(�

!

)

'

jâj

2

jâj

2

d�

=

�

�

!

�

'

jâj

2

�

:p

!

(a); p

!

(a)

�

=

Z

^

A(�

!

)

' d�

!

:

The uniqueness part of the Riesz Representation Theorem [13, 2.14℄ shows

that � = �

!

. �

3.15 Example. We show that the values of a general positive linear fun
-

tional ! on single elements and on produ
ts of two elements are not repre-

sented by the Gelfand transform. In this sense, our notion of a representing

measure is the best one 
an expe
t. The relevant additional 
onditions on !

will be studied in Proposition 3.16 and Corollary 3.23.

In the following two examples, 
onsider A

:

= C

2

with the involution

(z; w)

�

:

= (z; w) and algebra multipli
ation to be de�ned. Set ! : A !

C ; (z; w) 7! �z + �w with �; � 2 C .

(a) De�ne a multipli
ation on A by (z; w) � (z

0

; w

0

)

:

= (zz

0

; 0). Consid-

ering the elements (1; 0) and (0; 1), we �nd that ! is multipli
ative if and

only if � 2 f0; 1g and � = 0. Hen
e the full spe
trum

^

A 
onsists of a single

point, and the Gelfand homomorphism 
orresponds to the proje
tion of A

onto its �rst 
oordinate. The linear fun
tional ! is positive if and only if
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� � 0. In this 
ase, its Gelfand transform �

!

satis�es

R

(z; w)̂ d�

!

= �z.

Hen
e there is no general relation between

R

â d�

!

and !(a).

(b) De�ne a multipli
ation on A by (z; w) � (z

0

; w

0

)

:

= (0; zz

0

). Then ! is

multipli
ative if and only if � = � = 0, when
e the spe
trum of A is empty.

Moreover, ! is positive if and only if � � 0. If �

!

is the Gelfand transform

of ! then

R

jâj

2

d�

!

vanishes for all a 2 A, whereas !(a

�

a) may be stri
tly

positive.

3.16 Proposition (Extension of ! to A

1

). Let ! be an exponen-

tially bounded positive linear fun
tional on a 
ommutative

�

-algebra A with

Gelfand transform �

!

. Then ! extends to a positive linear fun
tional on the

unitization A

1

= A + C � 1 of A if and only if the measure �

!

is �nite and

ea
h a 2 A satis�es

R

â d�

!

= !(a).

Proof. If A has a unit element 1 then �

!

(

^

A(�

!

)) = !(1

3

) = !(1) is �nite,

and !(a) = !(1

2

a) =

R

â d�

!

holds for ea
h a 2 A. Hen
e we will assume

that A is non-unital.

Assume that �

!

is �nite and that ea
h a 2 A satis�es !(a) =

R

â d�

!

.

Then !(a

�

) = !(a) holds for ea
h a 2 A, and the Cau
hy{S
hwarz Inequality

(
f. Rudin [13, 3.5℄) shows that

j!(a)j

2

=

�

�

�

�

�

Z

^

A(�

!

)

â d�

!

�

�

�

�

�

2

� �

!

(

^

A(�

!

))

Z

^

A(�

!

)

jâj

2

d�

!

= �

!

(

^

A(�

!

)) !(a

�

a):

Hen
e ! extends to a positive linear fun
tional on A

1

(see Fell and Doran [6,

VI.18.7℄ or Palmer [9, 9.4.7℄).

Assume that there is a positive linear fun
tional ~! on A

1

= A� C su
h

that ~!j

A

= !. We 
laim that ~! is exponentially bounded. If a 2 A then

j!(a)j = j~!(a)j �

p

~!(1) ~!(a

�

a) =

p

~!(1) !(a

�

a) =

p

~!(1) kp

!

(a)k:

Hen
e ! indu
es a linear fun
tional on H

0

!

, whi
h is 
ontinuous of norm at

most

p

~!(1). Applying the Riesz Representation Theorem (see Rudin [14,

12.5℄) to the 
ontinuous extension of that fun
tional to H

!

, we obtain a

unique ve
tor z

!

2 H

!

su
h that all a 2 A satisfy !(a) = hp

!

(a); z

!

i,

and kz

!

k �

p

~!(1). (Palmer [9, 9.4.5℄ 
alls z

!

the 
anoni
al ve
tor of the

extensible positive fun
tional !.) If a; b 2 A then

hp

!

(b); �

!

(a):z

!

i = hp

!

(a

�

b); z

!

i = !(a

�

b) = hp

!

(b); p

!

(a)i:

Therefore, all a 2 A satisfy �

!

(a):z

!

= p

!

(a), so that ! is represented by �

!

through the formula !(a) = h�

!

(a)z

!

; z

!

i. Set r

:

= ~!(1)�kz

!

k

2

� 0. Then

every (a; �) 2 A

1

satis�es

~!(a; �) = !(a) + � ~!(1) =




(�

!

(a) + � � 1)z

!

; z

!

�

+ �r
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and therefore j~!(a; �)j � kz

!

k

2

k�

!

(a)+� �1k+ rj�j. Hen
e ~! is 
ontinuous

with respe
t to the

�

-invariant sub-multipli
ative semi-norm

(a; �) 7�! maxfk�

!

(a) + � � 1k; j�jg : A

1

�! R:

Lemma 2.4 shows that ~! is exponentially bounded with

�

~!

(a; �) � maxfk�

!

(a) + � � 1k; j�jg � �

!

(a) + j�j:

Together with the formula �

~!

(a)

2

= sup

�

~!(b

�

a

�

ab); b 2 A

1

; ~!(b

�

b) � 1

	

,

this inequality implies that �

!

(a) = �

~!

(a; 0) holds for all a 2 A, and j�j =

�

~!

(0; �) holds for all � 2 C .

Every element of

^

A[f0g has a unique extension to an element of (A

1

)b,

and it is easy to see that this gives a homeomorphism f :

^

A! (A

1

)bnfpr

2

g,

where pr

2

: A

1

! C ; (a; �) 7! �. Let �

~!

be the Gelfand transform of ~!.

Sin
e f

�

(�

~!

) is a measure on f

�1

(

^

A(�

~!

)) whi
h represents !, Proposi-

tion 3.13 implies that f(

^

A(�

!

)) =

^

A(�

~!

) n fpr

2

g, and the uniqueness as-

sertion of the Bo
hner Theorem 3.14 shows that the restri
tion of f

�

(�

~!

)

to

^

A(�

!

) is equal to �

!

. Hen
e

�

!

(

^

A(�

!

)) = �

~!

�

f(

^

A(�

!

))

�

= ~!(1)� �

~!

(fpr

2

g)

is �nite. If a 2 A then (a; 0)b vanishes in pr

2

2 (A

1

)b, so that

Z

^

A(�

!

)

â d�

!

=

Z

^

A(�

~!

)

(a; 0)b d�

~!

= ~!(a; 0) = !(a):

This 
ompletes the proof. �

3.17 Example. In these two examples, let X be a lo
ally 
ompa
t Haus-

dor� spa
e, and let � be a Borel measure on X whi
h takes �nite values

on 
ompa
t sets and satis�es 
onditions (i) and (ii) of the Bo
hner Theo-

rem 3.14.

(a) Set A

:

= C

0

(X) \ L

1

(�) with pointwise multipli
ation and involu-

tion. De�ne ! 2 Pos(A; C ) by !(')

:

=

R

' d�. Then ! is exponentially

bounded; in fa
t, �

!

is the supremum norm k�k

1

on A. As the measure � is

�nite on 
ompa
t sets, the algebra A 
ontains C




(X) and hen
e is uniformly

dense in C

0

(X). Therefore, any k � k

1

-bounded involutive 
hara
ter of A

has a unique extension to the C

�

-algebra C

0

(X). Hen
e there is a natural

homeomorphism from X onto the k � k

1

-bounded involutive spe
trum of A.

Under this homeomorphism, the Gelfand transform '̂ of ' 2 A 
orresponds

to the fun
tion ' itself, and the Gelfand transform �

!

of ! 
orresponds to

the original measure �. In parti
ular, the equation !(') =

R

'̂ d�

!

holds

for every element ' 2 A. Nevertheless, if the measure � is not �nite then !

does not extend to a positive linear fun
tional on the unitization A

1

of A.

(b) Set A

:

= C

0

(X)\L

2

(�) with pointwise multipli
ation and involution.

De�ne !(')

:

=

R

' d� for ' 2 L

1

(�), and extend ! arbitrarily to a linear

20



fun
tional on A. Then ! is an exponentially bounded positive linear fun
-

tional with �

!

= k � k

1

. As above, the k � k

1

-bounded involutive spe
trum

of A is homeomorphi
 to X, the Gelfand transform '̂ of ' 2 A 
orresponds

to the fun
tion ' itself, and the Gelfand transform �

!

of ! 
orresponds to

the original measure �. This example shows that the Gelfand transforms of

elements of A need not be �

!

-integrable.

3.4 The Plan
herel Theorem

3.18 Lemma. Let H

1

and H

2

be Hilbert spa
es, and let �: H

1

! H

2

be

a linear 
ontra
tion. Assume that V � H

1

is a 
losed linear subspa
e whi
h

is mapped isometri
ally onto H

2

. Then the kernel of � is the orthogonal


omplement of V .

Proof. Choose v 2 V , and write �

�

�(v) = v

0

+w with v

0

2 V and w 2 V

?

.

For an arbitrary element v

00

2 V , we �nd that

hv; v

00

i = h�(v);�(v

00

)i = h�

�

�(v); v

00

i = hv

0

+ w; v

00

i = hv

0

; v

00

i:

Hen
e v = v

0

. As �

�

� is a 
ontra
tion, this implies that �

�

�(v) = v. Sin
e

�(V ) = H

2

, we 
on
lude that the image of �

�

is V . The kernel of � is the

orthogonal 
omplement of the image of its adjoint. �

3.19 De�nition. Let A be a

�

-algebra. Let H be a left Hilbert A-module,

i.e. a Hilbert spa
e equipped with a

�

-representation of A by bounded oper-

ators. Let H

1

� H be the 
losure of the linear span of A:H. The module H

(or the 
orresponding

�

-representation of A) is 
alled non-degenerate or es-

sential if H

1

= H. The orthogonal 
omplement of H

1

in H,

H

0

:

= H

?

1

= (A:H)

?

= fv 2 H; hv;A:Hi = f0gg

= fv 2 H; hA:v;Hi = f0gg = fv 2 H;A:v = f0gg;

is 
alled the totally degenerate or trivial part of H. The A-invariant ortho-

gonal de
omposition H = H

0

� H

1

shows that the Hilbert A-module H

1

is non-degenerate, when
e it is 
alled the non-degenerate or essential part

of H. Thus the Hilbert A-module H is the orthogonal dire
t sum of its

totally degenerate part and its non-degenerate part. Note that H is non-

degenerate if and only if H

0

= f0g, i.e. if and only if A:v = f0g implies

v = 0 for v 2 H.

Assume that H is non-degenerate. Then every v 2 H satis�es v 2 A:v.

Indeed, the non-degenerate part of the Hilbert A-module C v + A:v is A:v.

Hen
e if v = v

0

+ v

1

with v

0

2 (A:v)

?

and v

1

2 A:v then v

0

belongs to the

totally degenerate part of C v +A:v, whi
h means that A:v

0

= f0g, and this

implies that v

0

= 0 and v = v

1

2 A:v.

For this and additional basi
 material on Hilbert modules see, for in-

stan
e, Neeb [7, II.2.4℄.
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The following result des
ribes an isometri
 isomorphism from the non-

degenerate part of the Gelfand{Na��mark{Segal representation asso
iated

with a positive linear fun
tional ! onto the L

2

spa
e of the Gelfand trans-

form of !.

3.20 Theorem (Abstra
t Plan
herel Theorem). Let ! be an exponen-

tially bounded positive linear fun
tional on a 
ommutative

�

-algebra A, and

let �

!

be the Gelfand transform of !. Then there is a unique 
ontinuous

linear map �

!

: H

!

! L

2

(�

!

) su
h that �

!

(p

!

(a)) = âj

^

A(�

!

)

holds for every

a 2 A.

This map is a homomorphism of A-modules and of C

0

(

^

A(�

!

))-modules

in the sense that

8' 2 C

0

(

^

A(�

!

)); f 2 H

!

: �

!

(�

!

('):f) = ' � �

!

(f):

The kernel of �

!

is the totally degenerate part ff 2 H

!

;�

!

(A):f = f0gg

of H

!

, and �

!

maps the non-degenerate part span(�

!

(A):H

!

) of H

!

iso-

metri
ally onto L

2

(�

!

).

Proof. If a 2 A belongs to ker(p

!

) = fx 2 A; !(x

�

x) = 0g then â van-

ishes �

!

-almost everywhere by Proposition 3.12. The linear map p

!

(a) 7!

â : H

0

!

! L

2

(�

!

) is therefore a well-de�ned 
ontra
tion, and so is its unique


ontinuous extension �

!

: H

!

! L

2

(�

!

) to H

!

.

For a; b 2 A and ' = â, f = p

!

(b), we have

�

!

(�

!

('):f) = �

!

(�

!

(a):p

!

(b))

= �

!

(p

!

(ab)) = â

^

b = â � �

!

(p

!

(b)) = ' � �

!

(f):

By 
ontinuity of �

!

and �

!

, this equation extends to arbitrary pairs ('; f) 2

C

0

(

^

A(�

!

))�H

!

.

For a

1

; a

2

2 A, the Bo
hner Theorem 3.14 shows that k�

!

(p

!

(a

1

a

2

))k

2

=

kp

!

(a

1

a

2

)k. Therefore, the restri
tion of �

!

to V

:

= span(�

!

(A):p

!

(A)) is

an isometry, and so is the restri
tion of �

!

to V , whi
h is the non-degenerate

part of H

!

. To see that �

!

maps V onto L

2

(�

!

), it suÆ
es to show that

the 
losure of �

!

(V ) in L

2

(�

!

) 
ontains C




(

^

A(�

!

)) (
f. Rudin [13, 3.14℄).

Choose an element ' 2 C




(

^

A(�

!

)). By Lemma 3.7, we may pi
k an element

a 2 A whose Gelfand transform â does not vanish anywhere on the support

of '. The quotient '=â may be extended by zero to an element of C




(

^

A).

For an arbitrary element b 2 A, we 
al
ulate

k'� â

^

bk

2

2

=

Z

^

A(�

!

)

j'� â

^

bj

2

d�

!

=

Z

^

A(�

!

)

�

�

�

'

â

�

^

b

�

�

�

2

jâj

2

d�

!

�










'

â

�

^

b










2

1

Z

^

A(�

!

)

jâj

2

d�

!

�










'

â

�

^

b










2

1

!(a

�

a):
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Sin
e the image of the Gelfand homomorphism is uniformly dense in the alge-

bra C

0

(

^

A(�

!

)), we 
on
lude that the restri
tion of �

!

to the non-degenerate

part V of H

!

is an isometri
 isomorphism onto L

2

(�

!

). Lemma 3.18 shows

that the kernel of �

!

is the orthogonal 
omplement V

?

. The remarks pre-


eding Theorem 3.20 
ontained the proof that V

?

is the degenerate part

of H

!

. �

3.21 Corollary. Let ! be an exponentially bounded positive linear fun
-

tional on a 
ommutative

�

-algebra A with Gelfand transform �

!

, and let pr

1

be the orthogonal proje
tion of H

!

onto its non-degenerate part. Then all

a; b 2 A satisfy

Z

^

A(�

!

)

â

^

b d�

!

=




pr

1

(p

!

(a));pr

1

(p

!

(b

�

))

�

: �

3.22 Corollary. Let ! be an exponentially bounded positive linear fun
-

tional on a 
ommutative

�

-algebra A with Gelfand transform �

!

. Then for

ea
h element a 2 A, the following are equivalent:

(i) The equation

R

^

b

1

â d�

!

= !(b

1

a) holds for all b

1

2 A.

(ii) The equation

R

jâj

2

d�

!

= !(a

�

a) holds.

(iii) The ve
tor p

!

(a) 2 H

!

belongs to the non-degenerate part of H

!

.

(iv) For all " > 0, there is a b

2

2 A with !

�

(a� b

2

a)

�

(a� b

2

a)

�

< ".

(v) For all " > 0, there are b

3

; b

4

2 A with !

�

(a� b

3

b

4

)

�

(a� b

3

b

4

)

�

< ".

Proof. Let pr

1

be the proje
tion of H

!

onto its non-degenerate part, and

set f

:

= p

!

(a). Condition (i) trivially implies 
ondition (ii). Condition (ii)

means that kfk = kpr

1

(f)k, whi
h implies (iii). If (iii) holds then all b

1

2 A

satisfy !(b

1

a) = hf;pr

1

(b

�

1

)i =

R

^

b

1

â d�

!

.

We have seen in De�nition 3.19 that (iii) implies that f belongs to the


losure of �

!

(A):f , whi
h is 
ondition (iv). This trivially implies (v), whi
h

is a reformulation of (iii). �

3.23 Corollary. Let ! be an exponentially bounded positive linear fun
-

tional on a 
ommutative

�

-algebra A with Gelfand transform �

!

. Then �

!

is non-degenerate if and only if all a; b 2 A satisfy !(ab) =

R

â

^

b d�

!

. �

3.24 Example. Set A

:

= f' 2 C

2

([0; 1℄);'(0) = 0g with pointwise mul-

tipli
ation and involution. Let !

0

: A ! C ; ' 7! '

00

(0). Then !

0

('

�

') =

2 j'

0

(0)j

2

� 0, so that !

0

is a positive linear fun
tional. Sin
e !

0

('

1

'

2

'

3

) =

0 for all '

1

; '

2

; '

3

2 A, the positive fun
tional !

0

is bounded by every

non-negative fun
tion on A, and its Gelfand transform is the zero measure.
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De�ne

!

1

: A �! C ; ' 7�!

Z

1

0

' dx:

Then !

1

is an exponentially bounded positive linear fun
tional with �

!

1

=

k � k

1

. Sin
e any k � k

1

-bounded involutive 
hara
ter of A has a unique ex-

tension to the C

�

-algebra C

0

(℄0; 1℄), the k � k

1

-bounded involutive spe
trum

of A is naturally homeomorphi
 to the interval ℄0; 1℄. Under this homeo-

morphism, the Gelfand transform '̂ of ' 2 A 
orresponds to the fun
tion '

itself, and the Gelfand transform �

!

1

of !

1


orresponds to the Lebesgue

measure on the Borel �-algebra of ℄0; 1℄.

Set !

:

= !

0

+ !

1

. Then the Gelfand transform �

!

of ! equals �

!

1

.

An element ' 2 A satis�es !('

�

') =

R

j'̂j

2

d�

!

if and only if '

0

(0) =

0. In parti
ular, the Plan
herel homomorphism �

!

: H

!

! L

2

(�

!

) is a

proper 
ontra
tion, when
e the Gelfand{Na��mark{Segal representation �

!

of A onH

!

has a non-trivial degenerate part. However, the 
omposition �

!

Æ

p

!

: A ! L

2

(�

!

) is inje
tive be
ause it is just the Gelfand homomorphism.

In other words, the dense subspa
e H

0

!

of H

!

has trivial interse
tion with

the degenerate part of H

!

.

4 The non-degenerate part of a 
entral positive

linear fun
tional

4.1 Proposition (Exponential boundedness of sums). Let !

1

and !

2

be positive linear fun
tionals on a

�

-algebra A. Then !

:

= !

1

+ !

2

is expo-

nentially bounded if and only if both !

1

and !

2

are exponentially bounded.

In this 
ase, the asso
iated C

�

-semi-norms satisfy �

!

= maxf�

!

1

; �

!

2

g.

The following proof is a simpli�
ation of a similar result given by Neeb [7,

II.4.21℄.

Proof. Assume that both !

1

and !

2

are exponentially bounded. If a; b 2 A

then

!(b

�

a

�

ab) = !

1

(b

�

a

�

ab) + !

2

(b

�

a

�

ab)

� �

!

1

(a)

2

!

1

(b

�

b) + �

!

2

(a)

2

!

2

(b

�

b)

�

�

maxf�

!

1

(a); �

!

2

(a)g

�

2

!(b

�

b):

Hen
e ! is exponentially bounded with �

!

� maxf�

!

1

; �

!

2

g.

Conversely, assume that ! is exponentially bounded. Lemma 1.3 implies

that H

!

1

� H

!

and that the in
lusion map �: H

!

1

! H

!

is 
ontinuous.

Denote the s
alar produ
t on H

!

1

by h�; �i

1

in order to distinguish it from

the s
alar produ
t h�; �i on H

!

. If f 2 H

!

1

and a 2 A then

hf; p

!

1

(a)i

1

= f(a

�

) = h�(f); p

!

(a)i = hf;�

�

(p

!

(a))i

1

;
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whi
h shows that �

�

(p

!

(a)) = p

!

1

(a). Sin
e � is a module homomorphism

with respe
t to the A-module stru
ture indu
ed from C

A

, an easy 
al
ulation

shows that �

�

is a module homomorphism as well. Let 	 2 B(H

!

) be the

positive square root of ��

�

. If a 2 A then �

!

(a) 
ommutes with ��

�

and

hen
e with 	. For a; b 2 A, we 
on
lude that

k�

!

1

(a):p

!

1

(b)k

1

= kp

!

1

(ab)k

1

= k�

�

(p

!

(ab))k

1

=

p

h�

�

(p

!

(ab));�

�

(p

!

(ab))i

1

= k	(p

!

(ab))k

= k	(�

!

(a):p

!

(b))k = k�

!

(a):	(p

!

(b))k

� k�

!

(a)k � k	(p

!

(b))k = �

!

(a) � k�

�

(p

!

(b))k

1

= �

!

(a) � kp

!

1

(b)k

1

:

This shows that !

1

is exponentially bounded with �

!

1

� �

!

. Analogously,

the fun
tional !

2

is exponentially bounded with �

!

2

� �

!

. This implies that

maxf�

!

1

; �

!

2

g � �

!

. �

4.2 De�nition. A positive linear fun
tional ! on a

�

-algebra A is 
alled

non-degenerate if it is exponentially bounded and the

�

-representation �

!

of A on H

!

is non-degenerate. Similarly, ! is 
alled totally degenerate if it

is exponentially bounded and the

�

-representation �

!

of A on H

!

is totally

degenerate.

Note that a positive linear fun
tional on A is totally degenerate if and

only if it vanishes on A

3

. An exponentially bounded positive linear fun
-

tional ! on A is non-degenerate if and only if for every a 2 A and every " > 0,

there are x; y 2 A su
h that !

�

(a�xy)

�

(a�xy)

�

< ". Equivalently, for every

a 2 A and every " > 0, there is a z 2 A su
h that !

�

(a� za)

�

(a� za)

�

< ".

4.3 Proposition (Uniqueness of the non-degenerate part of !).

Let A be a

�

-algebra, let !

0

2 Pos(A; C ) be totally degenerate, and let !

1

2

Pos(A; C ) be non-degenerate. Set !

:

= !

0

+ !

1

. Then the map (f

0

; f

1

) 7!

f

0

+ f

1

: H

!

0

�H

!

1

! H

!

is an isometri
 isomorphism.

Let pr

1

: H

!

! H

!

1

denote the orthogonal proje
tion. Then all a; b 2 A

satisfy !

1

(b

�

a) = hpr

1

(p

!

(a));pr

1

(p

!

(b))i. In parti
ular, the values !

0

(b

�

a)

and !

1

(b

�

a) are uniquely determined by !.

Proof. Sin
e the A-moduleH

!

0

is totally degenerate and the A-moduleH

!

1

is non-degenerate, their interse
tion is f0g. Therefore, Lemma 1.3 shows

that the map des
ribed in the statement is an isometri
 isomorphism. The

same lemma shows that the inverse isomorphism maps p

!

(a) to the pair

(p

!

0

(a); p

!

1

(a)) whenever a 2 A, so that p

!

1

(a) = pr

1

(p

!

(a)). We infer that

all a; b 2 A satisfy

!

1

(b

�

a) = hp

!

1

(a); p

!

1

(b)i = hpr

1

(p

!

1

(a));pr

1

(p

!

1

(b))i:
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Sin
e pr

1

is the orthogonal proje
tion of H

!

onto its non-degenerate part,

this map is uniquely determined by !, when
e so are the values !

1

(b

�

a)

and !

0

(b

�

a) = !(b

�

a)� !

1

(b

�

a). �

4.4 De�nition. A positive linear fun
tional ! on a

�

-algebra A is 
alled


entral if all a; b 2 A satisfy !(ab) = !(ba). This 
ondition is equivalent to

!(a

�

a) = !(aa

�

) for all a 2 A by the polarization identity

ab =

1

4

3

X

k=0

i

k

(i

k

a

�

+ b)

�

(i

k

a

�

+ b) (a; b 2 A):

4.5 Remark (Central positive linear fun
tionals). (a) Let ! be a 
en-

tral positive linear fun
tional on a

�

-algebra A. Then ker(p

!

) � ker(�

!

) =

�

a 2 A; !

�

(a

�

a)

2

�

= 0

	

. The kernel of p

!

is a

�

-invariant ideal of A, so that

a 
onjugate linear involution J

!

on H

0

!

may be de�ned by J

!

(p

!

(a))

:

=

p

!

(a

�

). This involution is isometri
 and hen
e extends to an involution

onH

!

, whi
h will also be denoted by J

!

and whi
h is also isometri
. Sin
e J

!

is 
onjugate linear, the latter 
ondition means that hJ

!

(f); J

!

(g)i = hg; fi

holds for all f; g 2 H

!

. The de
omposition of H

!

as a dire
t sum of its

totally degenerate and its non-degenerate part is invariant under J

!

be-


ause the non-degenerate part is the 
losed linear span of the J

!

-invariant

set p

!

(AA).

(b) Assume, in addition, that ! is non-degenerate. Then

ker(p

!

) =

n

a 2 A; p

!

(a) 2 (�

!

(A):H

!

)

?

o

= fa 2 A; 8 b; 
 2 A : !(b
a) = 0g

= fa 2 A; 8 b; 
 2 A : !(
ab) = 0g = ker(�

!

):

4.6 De�nition. A Hilbert algebra is a

�

-algebra A with a (positive de�nite)

s
alar produ
t su
h that the following axioms are satis�ed:

(i) 8 a; b 2 A : ha; bi = hb

�

; a

�

i;

(ii) 8 a; b; 
 2 A : hab; 
i = hb; a

�


i;

(iii) for every a 2 A, the map x 7! ax : A! A is 
ontinuous;

(iv) span(AA) is dense in A.

4.7 Remark (Theory of Hilbert algebras). We 
olle
t some funda-

mental results from the theory of Hilbert algebras without giving proofs. A


onvenient referen
e for most of the material is Dixmier [5, Appendix A, 54{

60℄; see also Dixmier [4, I.5 and I.6℄, Palmer [9, 11.7℄, and Rie�el [12, x 1℄.

Let A be a Hilbert algebra. Then all a; b; 
 2 A satisfy hab; 
i = ha; 
b

�

i,

and for every a 2 A, the map x 7! xa : A! A is 
ontinuous. Thus there is
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a perfe
t left-right symmetry, whi
h our further exposition will suppress for

the sake of brevity.

Let H

A

be the Hilbert spa
e 
ompletion of A, and let J

A

: H

A

!H

A

be

the 
ontinuous extension of the involution of A. For a 2 A, let U

a

2 B(H

A

)

be the 
ontinuous extension of the left translation map x 7! ax : A ! A

to H

A

. Then a 7! U

a

: A ! B(H

A

) is a non-degenerate

�

-representation.

The weak 
losure of its image is denoted by U(A) � B(H

A

) and 
alled the

left von Neumann algebra of A.

An element x 2 H

A

is 
alled bounded if the map a 7! U

a

:x : A! H

A

is


ontinuous. The 
ontinuous extension of this map to H

A

is denoted by V

x

2

B(H

A

). If x 2 A then x is bounded, and kV

x

k = kU

x

k. The ve
tor subspa
e

A

0

� H

A

of bounded elements of H

A

is invariant under the involution J

A

,

and it be
omes a Hilbert algebra if multipli
ation is de�ned by xy

:

= V

y

:x for

x; y 2 A

0

. If x; y 2 A then V

y

:x = U

x

:y = xy, so that the multipli
ation on A

0

extends the multipli
ation on A. If a 2 A

0

then the map x 7! ax : A

0

! A

0

has a 
ontinuous extension to H

A

, whi
h belongs to U(A) and is denoted

by U

a

.

Let s 2 Pos(U(A)). If the positive square root of s in U(A) has the

form U

a

for an element a 2 A

0

, set �(s)

:

= ha; ai. If there is no su
h

a 2 A

0

, set �(s)

:

= 1. Then � : Pos(U(A)) ! [0;1℄ is a semi-�nite faith-

ful normal tra
e. It is 
alled the natural tra
e de�ned by A. We have

ft 2 U(A); �(t

�

t) <1g = fU

a

; a 2 A

0

g =

:

n

�

. There is a unique linear

fun
tional

_

� on the ideal m

�

:

= span(n

�

n

�

) of U(A) su
h that

_

�(s) = �(s)

holds for all s 2 m

�

\ Pos(U(A)). All a; b 2 A

0

satisfy

_

�(U

�

b

U

a

) = ha; bi.

De�ne the Rie�el norm on A

0

by kak

0

:

= kak

H

A

+kU

a

k

B(H

A

)

for a 2 A

0

.

This norm is sub-multipli
ative and

�

-invariant. It is also 
omplete (Rief-

fel [12, 1.15℄), and the Bana
h

�

-algebra (A

0

; k � k

0

) is hermitian (Palmer [9,

11.7.11℄). This means that every element a 2 A

0

with a

�

= a satis�es

Sp(a) � R. By the Shirali{Ford Theorem [17℄, a Bana
h

�

-algebra is hermi-

tian if and only if it satis�es the apparently stronger 
ondition that every

element of the form a

�

1

a

1

+ � � � + a

�

n

a

n

has non-negative real spe
trum (see

also Bonsall and Dun
an [3, 41.4, 41.5℄ and the exposition by Pt�ak [10℄).

4.8 Proposition (The natural positive linear fun
tional on a Hil-

bert algebra). Let A be a Hilbert algebra. Then there is a non-degenerate


entral positive linear fun
tional !

A

on A su
h that all a; b 2 A satisfy

!

A

(b

�

a) = ha; bi. The map p

!

A

: A ! H

0

!

A

is an isometri
 isomorphism

of A-modules, so that it extends to an isometri
 isomorphism of A-modules

p

!

A

: H

A

!H

!

A

. In parti
ular, every a 2 A satis�es kU

a

k = k�

!

A

(a)k.

These properties de�ne !

A

uniquely on the linear span of AA only, and the

extension to A is indeed arbitrary. Nevertheless, it seems justi�ed to 
all !

A

\the natural" positive linear fun
tional on A.
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Proof. Let � : Pos(U(A)) ! [0;1℄ be the natural tra
e de�ned by A, and

let

_

� be the asso
iated linear fun
tional on m

�

. If a 2 span(AA) then U

a

2

m

�

, and we set !

A

(a)

:

=

_

�(U

a

). This yields a linear fun
tional on span(AA),

whi
h may be extended to a linear fun
tional !

A

on A.

Let a; b 2 A. We 
al
ulate !

A

(b

�

a) =

_

�(U

b

�

a

) =

_

�(U

�

b

U

a

) = ha; bi. In

parti
ular, the linear fun
tional !

A

is positive. It is also 
entral be
ause

!(ab) = hb; a

�

i = ha; b

�

i = !(ba). The assertions about p

!

A

follow from the


al
ulations

ker(p

!

A

) = fa 2 A; !(a

�

a) = 0g = fa 2 A; ha; ai = 0g = f0g

and hp

!

A

(a); p

!

A

(b)i = !

A

(b

�

a) = ha; bi. The fa
t that AA is a total subset

of A proves that ! is non-degenerate. �

4.9 Example (Commutative Hilbert algebras). Let A be a 
ommuta-

tive Hilbert algebra, and let !

:

= !

A

be the natural positive linear fun
tional

on A. Let �

!

be the Gelfand transform of !. The Plan
herel Theorem 3.20

and Proposition 4.8 imply that the map �: A ! L

2

(�

!

); a 7! âj

^

A(�

!

)

is

an isometri
 homomorphism of A-modules whi
h extends to an isometri


isomorphism H

!

�

=

L

2

(�

!

).

Let X be a lo
ally 
ompa
t Hausdor� spa
e, and let � be a Borel mea-

sure on X whi
h takes �nite values on 
ompa
t sets and satis�es 
ondi-

tions (i) and (ii) of the Bo
hner Theorem 3.14. Consider the

�

-algebra

L

2

(�)\L

1

(�) of essentially bounded square-integrable fun
tions on X with

pointwise multipli
ation and involution. Let A � L

2

(�) \ L

1

(�) be a sub-

algebra su
h that AA is a total subset of L

2

(�). (For example, this is the


ase if C




(X) � A, see Rudin [13, 3.14℄.) Under the s
alar produ
t of L

2

(�),

the algebra A is a 
ommutative Hilbert algebra with H

A

= L

2

(�). The �rst

paragraph of this remark shows that every 
ommutative Hilbert algebra 
an

be realized in this way, and if we wish, we 
an 
hoose (X;�) su
h that A

is a dense subalgebra of C

0

(X). If a 2 A then U

a

is multipli
ation by a.

The Hilbert algebra of bounded elements of L

2

(�) is L

2

(�) \ L

1

(�), and

if f is one of its elements then U

f

is again multipli
ation by f . The Rief-

fel norm is given by kfk

0

= kfk

2

+ kfk

1

. If f : X ! R

+

0

is bounded and

integrable then the natural tra
e satis�es �(U

f

) =

R

f d�. In parti
ular, if

a 2 span(AA) then the natural positive linear fun
tional !

A

on A is given

by !

A

(a) =

R

a d�.

Assume, in addition, that the measure � is �-�nite, and that the uniform


losure of A 
ontains C

0

(X). We 
laim that the left von Neumann algebra

of A satis�es U(A) = fv 7! f � v; f 2 L

1

(�)g. Dixmier [4, I.7.3℄ shows that

the right-hand side is a von Neumann algebra in L

2

(�), so that it suÆ
es to

show that its subalgebra fU

a

; a 2 Ag is strongly dense. Choose f 2 L

1

(�),

v 2 L

2

(�), and " > 0. We have to �nd an element a 2 A su
h that

k(f�a)vk

2

< ". We may assume that f 6= 0. There is a measurable fun
tion

s : X ! C with �nite image su
h that E

:

= s

�1

(C

�

) has �nite measure and
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kv � sk

2

< "=(9kfk

1

), see Rudin [13, 3.13℄. Lusin's Theorem [13, 2.24℄

yields a fun
tion g 2 C




(X) su
h that

�(fx 2 E; f(x) 6= g(x)g) <

"

2

36kfk

1

2

ksk

1

2

and kgk

1

� kfk

1

, so that

k(f � g)sk

2

=

�

Z

E

jf � gj

2

jsj

2

d�

�

1

2

<

"

3

:

By hypothesis, we �nd an element a 2 A su
h that

kg � ak

1

< max

�

kfk

1

;

"

3ksk

2

�

:

These 
onditions imply that k(g � a)sk

2

� kg � ak

1

ksk

2

< "=3 and that

k(f � a)(v � s)k

2

� kf � ak

1

kv � sk

2

< "=3. We 
on
lude that

k(f � a)vk

2

= k(f � a)(v � s) + (f � g)s+ (g � a)sk

2

< ":

This proves our 
laim.

Spe
ialize the above situation by 
hoosing X = R, and let � be Lebesgue

measure. For n 2 N, let a

n

: X !

�

0;

1

n

�

be 
ontinuous with supp(a

n

) �

[0; n

2

℄ and f([1; n

2

� 1℄) =

�

1

n

	

. Then ka

n

k

0

� 1 +

1

n

and !

A

(a

n

) � n�

2

n

.

This proves that !

A

need not be 
ontinuous.

4.10 Theorem (The non-degenerate part of !). Let ! be an exponen-

tially bounded 
entral positive linear fun
tional on a

�

-algebra A. Then there

exist 
entral positive linear fun
tionals !

0

and !

1

on A su
h that !

0

is totally

degenerate, !

1

is non-degenerate, and ! = !

0

+!

1

. On the

�

-algebra �

!

(A),

a s
alar produ
t may be de�ned by h�

!

(x); �

!

(y)i

:

= !

1

(y

�

x) for x; y 2 A.

This s
alar produ
t turns �

!

(A) into a Hilbert algebra.

If � : A ! B is a

�

-homomorphism from A onto a Hilbert algebra su
h

that all x; y 2 A satisfy !

1

(y

�

x) = h�(x); �(y)i then there is an isometri


isomorphism  : �

!

(A)! B su
h that � =  Æ �

!

.

Proposition 4.3 shows that !

0

and !

1

are essentially uniquely determined

by !.

Proof. The last assertion follows immediately from the observation that

ker(�

!

) = fa 2 A; h�

!

(a); �

!

(a)i = 0g

= fa 2 A; h�(a); �(a)i = 0g = ker(�):

We will �rst de�ne the Hilbert algebra stru
ture on B

:

= �

!

(A). The

de
omposition of ! will be 
onstru
ted from the natural positive linear

29



fun
tional on B. Let pr

1

: H

!

! H

1

be the orthogonal proje
tion of H

!

onto its non-degenerate part, and set p

1

:

= pr

1

Æp

!

. Note that the involu-

tion J

!

of H

!

de�ned in Remark 4.5 satis�es J

!

Æ pr

1

= pr

1

ÆJ

!

, so that

J

!

(p

1

(a)) = p

1

(a

�

) holds for all a 2 A. Set H

:

= p

1

(A) � H

1

. Sin
e

ker(p

1

) =

n

a 2 A; p

!

(a) 2 H

?

1

o

= fa 2 A; 8 b; 
 2 A : !(b
a) = 0g

= fa 2 A; 8 b; 
 2 A : !(
ab) = 0g = ker(�

!

);

there is an isomorphism �

!

(a) 7! p

1

(a) : B ! H of A-modules. In parti
u-

lar, we 
an de�ne a s
alar produ
t on B by

h�

!

(a); �

!

(b)i

:

= hp

1

(a); p

1

(b)i:

Let us 
he
k that B is a Hilbert algebra. Let b

1

; b

2

; b

3

2 B, and 
hoose

a

1

; a

2

; a

3

2 A su
h that b

j

= �

!

(a

j

) holds for j 2 f1; 2; 3g. For the �rst two

axioms, we 
al
ulate

hb

�

2

; b

�

1

i = hp

1

(a

�

2

); p

1

(a

�

1

)i

= hJ

!

(p

1

(a

2

)); J

!

(p

1

(a

1

))i = hp

1

(a

1

); p

1

(a

2

)i = hb

1

; b

2

i

and

hb

2

; b

�

1

b

3

i =




p

1

(b

2

); p

1

(b

�

1

b

3

)

�

=




p

1

(b

2

);pr

1

�

�

!

(b

�

1

):p

!

(b

3

)

��

=




p

1

(b

2

); �

!

(b

�

1

):p

1

(b

3

)

�

=




�

!

(b

1

):p

1

(b

2

); p

1

(b

3

)

�

=




p

1

(b

1

b

2

); p

1

(b

3

)

�

= hb

1

b

2

; b

3

i:

Under the isomorphism of B onto H, the left multipli
ation map x 7!

b

1

x : B ! B 
orresponds to the restri
tion of �

!

(a

1

) to H, whi
h shows

that it is 
ontinuous. Similarly, the linear span of BB 
orresponds to the

linear span of p

1

(AA) = p

!

(AA), whi
h proves the fourth axiom. Thus

B = �

!

(A) is a Hilbert algebra.

Let !

B

be the natural positive linear fun
tional on B de�ned in Propo-

sition 4.8, so that all x; y 2 B satisfy !

B

(y

�

x) = hx; yi. This is pulled

ba
k to a 
entral positive linear fun
tional on A by !

1

:

= !

B

Æ �

!

, so that

h�

!

(x); �

!

(y)i = !

1

(y

�

x) holds for all x; y 2 A. If f 2 H

1

and a 2 A then

f(a) = hf; p

!

(a

�

)i = hf; p

1

(a

�

)i. Therefore, the positive de�nite kernel K

H

1

on A asso
iated with H

1

by Lemma 1.1 satis�es

K

H

1

(y; x) = hp

1

(x

�

); p

1

(y

�

)i = h�

!

(x

�

); �

!

(y

�

)i = !

1

(yx

�

) = K

!

1

(y; x)

for all x; y 2 A. Theorem 1.2 shows that H

1

= H

K

H

1

= H

!

1

. In parti
ular,

the positive linear fun
tional !

1

is non-degenerate. De�ne a linear fun
tional

on A by !

0

:

= ! � !

1

. Then !

0

is positive be
ause

!

0

(a

�

a) = !(a

�

a)� !

1

(a

�

a) = kp

!

(a)k

2

� kp

1

(a)k

2

� 0
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holds for all a 2 A. Sin
e all a; b 2 A satisfy p

!

(ab) = �

!

(a):p

!

(b) 2 H

1

and

therefore

!

0

(b

�

a

�

ab) = !(b

�

a

�

ab)� !

1

(b

�

a

�

ab) = kp

!

(ab)k

2

� kp

1

(ab)k

2

= 0;

the positive linear fun
tional !

0

is totally degenerate. �

4.11 Remark (The 
ommutative 
ase). Let ! be an exponentially

bounded 
entral positive linear fun
tional on a

�

-algebra A, and denote the

orthogonal proje
tion of H

!

onto its non-degenerate part by pr

1

: H

!

!H

1

.

In the proof of Theorem 4.10, the theory of Hilbert algebras was needed in

order to 
onstru
t a positive linear fun
tional !

1

on A su
h that all a; b 2 A

satisfy hpr

1

(p

!

(a));pr

1

(p

!

(b))i = !

1

(b

�

a).

Assume that A is 
ommutative. Then the Plan
herel Theorem 3.20

allows us to 
onstru
t !

1

without using Hilbert algebras. Indeed, let �

!

be the Gelfand transform of !, and de�ne the Plan
herel homomorphism

�

!

: H

!

! L

2

(�

!

) as in Theorem 3.20. If a 2 A is su
h that â 2 L

1

(�

!

),

set !

1

(a)

:

=

R

â d�

!

, and extend !

1

arbitrarily to a linear fun
tional on A.

Then !

1

is a positive linear fun
tional with the property des
ribed in the �rst

paragraph, and we obtain the de
omposition ! = !

0

+!

1

as in Theorem 4.10.

If � is a a semi-norm on A su
h that

�

�

R

â d�

!

�

�

� �(a) holds for all a 2 A

with â 2 L

1

(�

!

) then !

1


an be 
hosen su
h that !

1

� �, as follows from

the Hahn{Bana
h Theorem on dominated extension (see Rudin [14, 3.3℄).

4.12 Proposition (The hermitian Bana
h

�

-algebra of !). Let ! be

a non-degenerate 
entral positive linear fun
tional on a

�

-algebra A. By

Remark 4.5 (b), we may de�ne a norm on the algebra �

!

(A) by the formula

k�

!

(a)k

0

:

= kp

!

(a)k+k�

!

(a)k for a 2 A. Let B be the 
ompletion of �

!

(A)

with respe
t to this norm. Then B is a hermitian Bana
h

�

-algebra with

isometri
 involution, and there is a non-degenerate 
entral positive linear

fun
tional ! on B su
h that !(xy) = !(�

!

(xy)) holds for all x; y 2 A.

Sin
e the in
lusion of �

!

(A) into B(H

!

) is 
ontinuous with respe
t to the

norm k � k

0

, we may view B as a subalgebra of B(H

!

). In parti
ular, the

norm of B(H

!

) is a C

�

-norm on B.

Proof. Sin
e ! is non-degenerate, Theorem 4.10 shows that the s
alar

produ
t de�ned on the algebra B

0

:

= �

!

(A) � B(H

!

) by h�

!

(x); �

!

(y)i

:

=

!(y

�

x) = hp

!

(x); p

!

(y)i gives this algebra the stru
ture of a Hilbert algebra.

Let H be the Hilbert spa
e 
ompletion of B

0

, and 
hoose b 2 B

0

. Sin
e H

�

=

H

!

as B

0

-modules, the 
ontinuous extension U

b

of left multipli
ation by b

to H satis�es kU

b

k

B(H)

= kbk

B(H

!

)

.

As in Remark 4.7, we denote the Hilbert algebra of bounded elements

of H by B

0

0

� H. The algebra B

0

0

is a hermitian Bana
h

�

-algebra with

respe
t to the

�

-invariant norm de�ned by kbk

0

:

= kbk

H

+ kU

b

k

B(H)

. If
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a 2 A then k�

!

(a)k

0

= kp

!

(a)k + k�

!

(a)k. Hen
e we 
an identify B with

the 
losure of B

0

in B

0

0

. A 
losed

�

-subalgebra of a hermitian Bana
h

�

-

algebra is hermitian (see Palmer [9, 11.4.2℄).

Let !

B

0

0

be the natural positive linear fun
tional on B

0

0

, and set !

:

=

!

B

0

0

j

B

. Then ! is a 
entral positive linear fun
tional on B, and it is non-

degenerate be
ause BB 
ontains B

0

B

0

and hen
e is total in H. Finally, all

x; y 2 A satisfy

!(�

!

(xy)) = !

B

0

0

(�

!

(x

�

)

�

�

!

(y)) = h�

!

(y); �

!

(x

�

)i = !(xy): �

4.13 Remark. (a) The proof shows that ! is most naturally de�ned on the

Hilbert algebra of bounded elements de�ned by the Hilbert algebra �

!

(A),

whi
h is larger than the 
ompletion B. We restri
t ! to B just in order to

obtain a more elementary statement.

(b) The �nal remarks of Example 4.9 show that ! may not be 
ontinuous.

(
) We 
ould now derive the Bo
hner Theorem 3.14 from a version for

non-degenerate positive linear fun
tionals on hermitian 
ommutative Ba-

na
h

�

-algebras su
h as it is given by Fell and Doran [6, 21.4℄. However, this

would be a logi
al detour. In fa
t, the dire
t proof of Theorem 3.14 whi
h

we have given above is quite similar to the proof of the more spe
ial result

by Fell and Doran.

4.14 Remark (Integral de
ompositions for separable C

�

-algebras).

The relation between 
entral positive linear fun
tionals and Hilbert alge-

bras allows us to apply the theory of integral de
ompositions of tra
es on

separable C

�

-algebras (Dixmier [5, 8.8.2℄).

Let ! be a non-degenerate 
entral positive linear fun
tional on a

�

-

algebra A. Assume that the dimension of A is at most 
ountable. Then

the 
losure B � B(H

!

) of �

!

(A) is a separable C

�

-algebra. The quasi-

equivalen
e 
lasses [5, 5.3.2℄ of fa
torial representations [5, 5.2.6℄ of B form a

measurable spa
e [5, 7.2.2℄, whi
h is 
alled the quasi-spe
trum QSp(B) of B.

The restri
tion of the natural tra
e � de�ned by the Hilbert algebra �

!

(A)

to Pos(B) is a semi-�nite lower semi-
ontinuous tra
e [5, 6.1.5℄. The de
om-

position theorem [5, 8.8.2℄ yields a standard measure � on QSp(B) and a

family (�

�

)

�2QSp(B)

of pure tra
es on B with the following properties:

(a) the representation of B asso
iated to �

�

belongs to the quasi-equival-

en
e 
lass � 2 QSp(B) almost everywhere;

(b) for every b 2 Pos(B), the fun
tion � 7! �

�

(b) : QSp(B) ! [0;1℄ is

measurable;

(
) 8 b 2 Pos(B) : �(b) =

Z

QSp(B)

�

�

(b) d�(�).
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In parti
ular, if a 2 A then

!(a

�

a) = �

�

�

!

(a

�

a)

�

=

Z

QSp(B)

�

�

�

�

!

(a

�

a)

�

d�(�):

Assume that the separable C

�

-algebra B is 
ommutative. Then a rep-

resentation of B is fa
torial if and only if it is one-dimensional, and quasi-

equivalen
e of fa
torial representations is equality of the 
orresponding 
har-

a
ters. Hen
e QSp(B) =

^

B as sets; in fa
t, the �-algebra de�ned on QSp(B)

equals the Borel �-algebra of

^

B. (All this follows more or less immediately

from the de�nitions [5℄.) The pure tra
es of B are exa
tly the positive s
alar

multiples of elements of

^

B by [5, 6.7.8℄, and the representation asso
iated

with a pure tra
e is given by the 
orresponding 
hara
ter [5, 6.8.3℄.

Apply the above de
omposition in the 
ommutative situation. The mea-

sure � is a Borel measure on

^

B. For every � 2

^

B up to a set of measure 0,

statement (a) implies that there is a positive number t(�) 2 R

+

su
h that

�

�

= t(�) � �. By (b), the fun
tion

^

b � t :

^

B ! C is measurable for all

b 2 B. We 
laim that t :

^

B ! R

+

is measurable. Let E � R

+

be measur-

able, and let (b

n

)

n2N

be a total sequen
e in B. Set U

n

:

=

^

b

�1

n

(C

�

) �

^

B

for n 2 N, so that

^

B =

S

n

U

n

. The restri
tion of t to U

n

is a measur-

able fun
tion be
ause it is the quotient of

^

b

n

� t by

^

b

n

. We 
on
lude that

t

�1

(E) =

S

n

f� 2 U

n

; t(�) 2 Eg is indeed a measurable subset of

^

B.

Sin
e t is a measurable fun
tion, a Borel measure on

^

B is de�ned by

�(E)

:

=

R

E

t d� for E 2 B(

^

B) (see Rudin [13, 1.29℄). Statement (
) shows

that �(b) =

R

^

B

^

b � t d� =

R

^

B

^

b d� holds for all b 2 Pos(B). By polarization,

this implies that all a

1

; a

2

2 A satisfy !(a

1

a

2

) =

R

^

B

�

!

(a

1

a

2

)b d�. As in

the proof of Lemma 3.11, one shows that � takes �nite values on 
ompa
t

subsets of

^

B. Sin
e B is separable and

^

B[f0g is weak

�

-
ompa
t, this set is a


ompa
t metrizable spa
e (Rudin [14, 3.16℄), whi
h implies that every open

subset is �-
ompa
t. We 
on
lude that � is a regular Borel measure [13,

2.18℄. Transporting � to

^

A(�

!

) by means of the homeomorphism � 7!

� Æ �

!

:

^

B !

^

A(�

!

), we obtain a regular Borel measure �

0

on

^

A(�

!

) su
h

that !(a

1

a

2

) =

R

â

1

â

2

d�

0

holds for all a

1

; a

2

2 A. If !

0

2 Pos(A; C ) is

totally degenerate then �

0

is a representing measure for the positive linear

fun
tional !

00

:

= ! + !

0

be
ause all a

1

; a

2

; a

3

2 A satisfy

!

00

(a

1

a

2

a

3

) = !(a

1

a

2

a

3

) =

Z

^

A(�

!

)

â

1

â

2

â

3

d�

0

:

For 
ommutative algebras of 
ountable dimension, the existen
e part of

the Bo
hner Theorem 3.14 is thus a spe
ial 
ase of a more general integral

de
omposition.

The same arguments apply if A is a separable topologi
al

�

-algebra and !

is a non-degenerate 
entral positive linear fun
tional on A su
h that �

!

is


ontinuous with respe
t to the norm of B(H

!

). Continuity of �

!

is automati
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if A is a Bana
h

�

-algebra (see Bonsall and Dun
an [3, 37.3℄) or a (Ma
key)


omplete 
ontinuous inverse

�

-algebra with 
ontinuous involution [2℄.
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