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Abstrat

For positive linear funtionals on omplex ommutative

�

-algebras,

we prove abstrat Bohner and Planherel Theorems without any hy-

pothesis of non-degeneray. A entral positive funtional on a

�

-algebra

is deomposed as the sum of a non-degenerate and a totally degener-

ate positive linear funtional by relating the non-degenerate part to

the natural trae of an assoiated Hilbert algebra.

1 2

Let ! be a positive linear funtional on a omplex ommutative Banah

�

-algebra with unit. The Abstrat Bohner Theorem yields a unique regular

Borel measure � on the involutive part

^

A of the Gelfand spetrum of A suh

that !(a) =

R

â d� holds for eah a 2 A. The Abstrat Planherel Theorem

states that the natural representation of A on L

2

(�) by multipliation of

funtions is unitarily equivalent to the representation assoiated with ! by

the Gelfand{Na��mark{Segal onstrution.

One would like to have suh theorems under more general hypotheses.

For example, let A be the onvolution algebra of ontinuous funtions on a

non-disrete loally ompat abelian group, and let ! be evaluation at the

unit element. SuÆiently general theorems for this situation are proved by

Fell and Doran [6, VI.21.4 and VI.21.6℄. They assume that A is a dense

�

-subalgebra of a ommutative hermitian Banah

�

-algebra (whih need not

be unital), that the positive linear funtional ! on A satis�es a ertain

boundedness ondition, and that the Gelfand{Na��mark{Segal representa-

tion assoiated with ! is non-degenerate. Their results are speial ases of

the ontent of the �rst part of this artile. It turns out that the topology

of A is irrelevant. In fat, it seems more transparent to develop the theory

for a positive linear funtional ! on an abstrat algebra A. If A is unital

then one an still fator ! over an assoiated C

�

-algebra, so that one an

�
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apply the above results for ommutative A, and Choquet Theory for non-

ommutative A. In the ase of a non-unital but ommutative algebra, we

use a weaker boundedness ondition than Fell and Doran whih is not only

suÆient but also neessary, and we drop the hypothesis of non-degeneray.

The treatment of possibly degenerate positive funtionals has the impor-

tant onsequene that suh a funtional an be written as the sum of a

non-degenerate and a totally degenerate part. By a di�erent tehnique, we

also establish this deomposition for entral positive linear funtionals on

non-ommutative algebras. The original motivation for an integral repre-

sentation of a possibly degenerate positive linear funtional on a non-unital

algebra is related to the unitary representation theory of in�nite-dimensional

Lie groups of Harish{Chandra type [1℄.

Here is an overview of the ontent of this artile. Let ! be a positive

linear funtional on a omplex ommutative

�

-algebra A, and let � be a om-

patly supported Borel measure on the involutive spetrum

^

A. We say that �

represents ! if all a; b;  2 A satisfy !(ab) =

R

â

^

b̂ d�. Examples show that

this is the best kind of representation whih one an ahieve for general !. If

a representing measure exists then ! is exponentially bounded, whih means

that A ats by bounded operators on the Gelfand{Na��mark{Segal Hilbert

spae assoiated with !. This ondition is assumed throughout. Among

the general properties of a representing measure � whih we prove, the

most important is that the losed support of � is a loally ompat subset

^

A(�

!

) �

^

A whih is uniquely determined by ! and an easily be desribed in

terms of !. Conversely, the existene of a representing measure �

!

on

^

A(�

!

)

an be dedued from the Riesz Representation Theorem for positive linear

funtionals C



(

^

A(�

!

)), and under the uniqueness onditions appearing in

that theorem, the representing measure �

!

is unique. The positive linear

funtional ! admits an extension to the unitization of A if and only if �

!

is �nite and satis�es !(a) =

R

â d�

!

for all a 2 A. Similarly, the equation

!(ab) =

R

â

^

b d�

!

holds for all a; b 2 A if and only if the Gelfand{Na��mark{

Segal representation assoiated with ! is non-degenerate. In this ase, we

say that ! is non-degenerate. For general !, the non-degenerate part of

this representation is isomorphi to the representation of A on L

2

(�

!

) by

a:f

:

= â �f . This is our general version of the Abstrat Planherel Theorem.

In the seond part of this artile, we replae the hypothesis that the

�

-algebra A is ommutative by the weaker assumption that the exponen-

tially bounded positive linear funtional ! on A is entral, whih means

that !(ab) = !(ba) holds for all a; b 2 A. This assumption is suÆient for

the onstrution of a Hilbert algebra struture on the image of A under the

Gelfand{Na��mark{Segal representation. The natural trae on that Hilbert

algebra leads to a non-degenerate positive linear funtional !

1

on A suh

that !

0

:

= ! � !

1

is a totally degenerate positive linear funtional. The

deomposition ! = !

0

+ !

1

into a totally degenerate and a non-degenerate

2



part is essentially unique (i.e. it is unique on the linear span of AA). This de-

omposition of ! orresponds to a diret sum deomposition of the Gelfand{

Na��mark{Segal module. The onstrution of a Hilbert algebra from ! also

leads to a fatorization of ! through a homomorphism from A into a hermi-

tian Banah

�

-algebra.

If a generalization of the integral representation developed in the �rst

part to entral positive linear funtionals ! is possible, it will probably be

based on the Hilbert algebra assoiated with !. We onlude this paper

with a �rst step in this diretion. Assume that the

�

-algebra A has ount-

able dimension or is a separable Banah

�

-algebra. Then the natural trae

mentioned above is de�ned on the positive one of a separable C

�

-algebra.

For suh traes, Dixmier [5℄ has onstruted a deomposition as an integral

over the quasi-spetrum of the C

�

-algebra. We desribe his onstrution

and show that it speializes to the results in the �rst part if A is ommu-

tative. However, it must be emphasized that Dixmier's theory is intimately

onneted with the assumption of separability.

1 Hilbert spaes with reproduing kernel

LetX be a set. A positive de�nite (omplex-valued) kernel on X is a funtion

K : X�X ! C suh that for all �nite sequenes x

1

; : : : ; x

n

2 X, the matrix

�

K(x

k

; x

j

)

�

j;k

is positive semi-de�nite. Sine positive semi-de�nite matries

are hermitian, the relation K(y; x) = K(x; y) holds for all x; y 2 X.

Similarly, one an de�ne positive de�nite kernels on X with values in

B(V ) for a Hilbert spae V . For this generalization, the reader is referred

to Neeb [7℄. The following results on positive de�nite kernels have been

speialized from Setion I.1 of that monograph, whih ends with historial

omments.

We write C

X

for the omplex vetor spae of all omplex-valued funtions

on X, and C

(X)

for the subspae of all elements of C

X

with �nite support.

Reall that a subset of a topologial vetor spae is alled total if its linear

span is dense.

1.1 Lemma (Assoiated kernels). Let X be a set, and let H � C

X

be a vetor subspae with a Hilbert spae struture suh that the point

evaluation f 7! f(x) : H ! C is ontinuous for every x 2 X. Sine this is a

linear funtional on H, every x gives rise to a unique vetor K

H

x

2 H suh

that all f 2 H satisfy f(x) = hf;K

H

x

i. The map

K

H

: X �X �! C ; (y; x) 7�! hK

H

x

;K

H

y

i

is a positive de�nite kernel, and it satis�es K

H

(�; x) = K

H

x

for every x 2 X.

It is alled the reproduing kernel of the Hilbert spae H.
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Proof. The equation K

H

(y; x) = hK

H

x

;K

H

y

i = K

H

x

(y) for x; y 2 X follows

from the de�nitions. If x

1

; : : : ; x

n

2 X and �

1

; : : : ; �

n

2 C then

n

X

j;k=1

�

j

K

H

(x

k

; x

j

) �

k

=

n

X

j;k=1

�

j

hK

H

x

j

;K

H

x

k

i �

k

=

*

n

X

j=1

�

j

K

H

x

j

;

n

X

k=1

�

k

K

H

x

k

+

� 0:

Hene the matrix

�

K

H

(x

k

; x

j

)

�

j;k

is positive semi-de�nite. �

1.2 Theorem (Hilbert spaes with reproduing kernel). Let X be a

set.

(a) LetK : X�X ! C be a positive de�nite kernel. Then there is a unique

vetor subspae H

K

� C

X

and a unique salar produt h�; �i

K

on H

K

suh thatH

K

is a Hilbert spae with ontinuous point evaluations, and

K

H

K

= K. The spae H

K

is alled the Hilbert spae with reproduing

kernel K.

(b) Let H � C

X

be a vetor subspae with the struture of a Hilbert spae

with ontinuous point evaluations. Then H

K

H

= H as Hilbert spaes.

() Let H be a Hilbert spae, let ' : X !H be a map, and de�ne a linear

map �: H ! C

X

by �(v)(x)

:

= hv; '(x)i. Then

K : X �X �! C ; (y; x) 7�! h'(x); '(y)i

is a positive de�nite kernel, we have ker(�) = '(X)

?

, and the restri-

tion of � to ker(�)

?

= span('(X)) is an isometry onto H

K

.

Proof. We will �rst onstrut a Hilbert spae H

K

as in (a) for a positive

de�nite kernel K on X. Then we will prove assertion (). This will easily

imply assertion (b) and the uniqueness statement in (a).

Let K be a positive de�nite kernel on X. De�ne a positive semi-de�nite

sesquilinear form on C

(X)

by

hf; gi

0

:

=

X

x;y2X

f(x) K(y; x) g(y)

�

f; g 2 C

(X)

�

:

Let N

:

=

�

f 2 C

(X)

; hf; fi

0

= 0

	

be the radial of this form. Let K with

salar produt h�; �i

1

be the Hilbert spae ompletion of the quotient spae

C

(X)

=N . For f 2 C

(X)

, set [f ℄

:

= f+N 2 K, and for x 2 X, let Æ

x

2 C

(X)

be

the harateristi funtion of fxg. De�ne a linear map �: K ! C

X

into the

vetor spae of all omplex-valued funtions on X by �(v)(x)

:

= hv; [Æ

x

℄i

1

.

This map is injetive beause f[Æ

x

℄; x 2 Xg is a total subset of K. Thus �
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provides a realization of K as a linear subspae of C

X

. Set H

K

:

= �(K),

and de�ne a omplex salar produt h�; �i

K

on H

K

by requiring � to be an

isometry. Fix x 2 X, and de�ne K

x

:

= K(�; x) 2 C

X

. If y 2 X then

�([Æ

x

℄)(y) = h[Æ

x

℄; [Æ

y

℄i

1

= hÆ

x

; Æ

y

i

0

= K(y; x) = K

x

(y);

so that K

x

= �([Æ

x

℄) 2 H

K

. Let f 2 H

K

. Then there is a unique v 2 K

suh that f = �(v), and

f(x) = �(v)(x) = hv; [Æ

x

℄i

1

= h�(v);�([Æ

x

℄)i

K

= hf;K

x

i

K

:

Hene H

K

is a Hilbert spae with ontinuous point evaluations, and K

H

K

x

=

K

x

. If x; y 2 X then

K

H

K

(y; x) = hK

H

K

x

;K

H

K

y

i

K

= hK

x

;K

y

i

K

= h�([Æ

x

℄);�([Æ

y

℄)i

K

= h[Æ

x

℄; [Æ

y

℄i

1

= hÆ

x

; Æ

y

i

0

= K(y; x):

Thus we have proved the existene statement in (a).

Let ' : X ! H be a map into a Hilbert spae, and de�ne �: H ! C

X

and K : X � X ! C as in assertion (). A alulation analogous to the

proof of Lemma 1.1 shows that K is a positive de�nite kernel. Let H

K

and fK

x

; x 2 Xg � H

K

be de�ned as above. The de�nition of � implies

that ker(�) = '(X)

?

, so that ker(�)

?

= span('(X)). Therefore, we may

assume that '(X) is a total subset of H. If x; y 2 X then

�('(x))(y) = h'(x); '(y)i = K(y; x) = K

x

(y);

so that �('(x)) = K

x

. Hene �('(X)) � H

K

. Sine

h�('(x));�('(y))i

K

= hK

x

;K

y

i

K

= K(y; x) = h'(x); '(y)i;

the restrition of � to the span of '(X) is an isometry into H

K

. This

restrition extends to an isometry

~

�: H ! H

K

beause fK

x

; x 2 Xg is a

total subset of H

K

. If v 2 H and x 2 X then

~

�(v)(x) = h

~

�(v);K

x

i

K

= h

~

�(v);

~

�('(x))i

K

= hv; '(x)i = �(v)(x):

We onlude that

~

� = �. This ompletes the proof of ().

Let H � C

X

be a Hilbert spae with ontinuous point evaluations. Set

' : X ! H; x 7! K

H

x

, and de�ne a positive de�nite kernel K on X as in ().

Sine '(X) is a total subset of H, we have just proved that ' gives rise to an

isometri isomorphism �: H ! H

K

whih satis�es �(K

H

x

) = K

x

for every

x 2 X. If f 2 H and x 2 X then

�(f)(x) = h�(f);K

x

i

K

= h�(f);�(K

H

x

)i

K

= hf;K

H

x

i = f(x):

Thus �(f) = f and H = H

K

, and we have proved (b).

Finally, let K be a positive de�nite kernel on X, and let H � C

X

be a

vetor subspae with the struture of a Hilbert spae with ontinuous point

evaluations suh that K

H

= K. Then assertion (b) shows that H = H

K

H

=

H

K

as Hilbert spaes. This proves the uniqueness statement in (a). �
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1.3 Lemma (Sums of kernels). LetK

1

andK

2

be positive de�nite kernels

on a set X, and set K

:

= K

1

+K

2

. Then the linear map

�: H

K

1

�H

K

2

�! H

K

; (f

1

; f

2

) 7�! f

1

+ f

2

is a surjetive ontration. Its adjoint is an isometri embedding whih

maps K

x

to (K

1;x

;K

2;x

) for every x 2 X.

Proof. De�ne ' : X ! H

K

1

� H

K

2

; x 7! (K

1;x

;K

2;x

), and apply Theo-

rem 1.2 (). The map � de�ned there maps (f

1

; f

2

) 2 H

K

1

� H

K

2

to the

map

x 7�! h(f

1

; f

2

); (K

1;x

;K

2;x

)i = f

1

(x) + f

2

(x) : X ! C ;

so that it oinides with the map � de�ned in the present lemma. Similarly,

the positive de�nite kernel de�ned in Theorem 1.2 () maps (y; x) 2 X �X

to h(K

1;x

;K

2;x

); (K

1;y

;K

2;y

)i = K

1

(y; x)+K

2

(y; x), so that it oinides with

the kernel K = K

1

+K

2

. Hene Theorem 1.2 shows that � is a surjetive

ontration.

The adjoint �

�

of � is an isometry of H

K

onto the losed linear span

of '(X) beause � maps this spae isometrially onto H

K

and its orthogonal

omplement to 0. If x 2 X and (f

1

; f

2

) 2 H

K

1

�H

K

2

then

h(f

1

; f

2

);�

�

(K

x

)i

K

= h�(f

1

; f

2

);K

x

i

K

= hf

1

+ f

2

;K

x

i

K

= f

1

(x) + f

2

(x) = hf

1

;K

1;x

i

K

1

+ hf

2

;K

2;x

i

K

2

= h(f

1

; f

2

); (K

1;x

;K

2;x

)i:

Hene �

�

(K

x

) = (K

1;x

;K

2;x

). �

2 The Gelfand{Na��mark{Segal onstrution

A

�

-algebra is a omplex assoiative algebra A with a onjugate-linear anti-

multipliative involution a 7! a

�

: A ! A. Its unitization A

1

= A + C � 1 is

de�ned as A if A has a unit element, and as the diret sum A� C of vetor

spaes with algebra multipliation (a; �) � (b; �)

:

= (ab + �b + �a; ��) and

involution (a; �)

�

:

= (a

�

; �) if A does not have a unit element. Even for

a

�

-algebra A, we will write A

�

for the spae of linear funtionals from A

into C . Let

Pos(A; C )

:

= f! 2 A

�

; 8 a 2 A : !(a

�

a) � 0g

be the onvex one of positive linear funtionals. An easy alulation shows

that every element ! 2 Pos(A; C ) gives rise to a positive de�nite kernel on A

by

K

!

: A�A �! C ; (a; b) 7�! !(ab

�

):

Let H

!

:

= H

K

!

� C

A

be the Hilbert spae with reproduing kernel K

!

.

De�ne a linear map

p

!

: A �! H

!

; a 7�! K

!;a

�

= K

!

(�; a

�

) = !(� a):

6



We will often use the dense subspae H

0

!

:

= p

!

(A) of H

!

. If a; b 2 A then

hp

!

(a); p

!

(b)i = hK

!;a

�

;K

!;b

�

i = K

!

(b

�

; a

�

) = !(b

�

a):

This implies the equation !(b

�

a) = !(a

�

b) and the Cauhy{Shwarz inequal-

ity

j!(a

�

b)j

2

� !(a

�

a) !(b

�

b):

Note that H

!

� A

�

. Indeed, if f 2 H

!

, a; b 2 A and � 2 C then

f(a+ �b) =




f; p

!

�

(a+ �b)

�

��

=




f; p

!

(a

�

) + � p

!

(b

�

)

�

=




f; p

!

(a

�

)

�

+ �




f; p

!

(b

�

)

�

= f(a) + �f(b):

2.1 Remark (Alternative onstrution). The point of view on the

Gelfand{Na��mark{Segal onstrution presented here is taken from Neeb [7℄.

In many other books, one de�nes A

!

:

= fa 2 A; 8 b 2 A : !(ba) = 0g =

ker(p

!

) diretly, proves that ! indues a salar produt on A=A

!

, and de�nes

the Hilbert spae H

!

as the ompletion of A=A

!

. Then one an de�ne a map

' : A!H

!

; A 7! a

�

+A

!

and use Theorem 1.2 () in order to identify H

!

with the reproduing kernel Hilbert spae de�ned above. Sine A

!

is a left

ideal of A, the onstrution yields a left A-module struture on A=A

!

, to

whih we will now turn our attention.

The vetor spae C

A

is a left A-module

3

under the ation of A by right

multipliation in the argument, whih means that (a:f)(b)

:

= f(ba) when-

ever a; b 2 A and f 2 C

A

. Note that A

�

is a submodule of C

A

, and that we

an write p

!

(a) = a:! for a 2 A. If a; b 2 A then

a:p

!

(b) = a:(b:!) = ab:! = p

!

(ab):

Thus p

!

is a homomorphism of A-modules, the pre-Hilbert spae H

0

!

is a

submodule of C

A

, and we obtain a representation

�

0

!

: A �! End(H

0

!

); a 7�! (f 7! a:f):

We show that this is a

�

-representation. Let a 2 A and f; g 2 H

0

!

, and

hoose x; y 2 A suh that f = p

!

(x) and g = p

!

(y). Then

h�

0

!

(a):f; gi = ha:p

!

(x); p

!

(y)i = hp

!

(ax); p

!

(y)i

= !(y

�

ax) = !

�

(a

�

y)

�

x

�

= hp

!

(x); p

!

(a

�

y)i = hp

!

(x); a

�

:p

!

(y)i = hf; �

0

!

(a

�

):gi:

3

Even if A is a non-unital algebra, the de�nitions inlude that all A-modules are vetor

spaes and all module homomorphisms are linear maps.
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2.2 Proposition (Neeb [7, III.1.3℄: invariane of H

!

). Let ! be a

positive linear funtional on a

�

-algebra A, and hoose a 2 A. Then a:H

!

�

H

!

if and only if �

0

!

(a) is bounded. In this ase, the unique ontinuous

extension of �

0

!

(a) to H

!

is given by the ation of a.

Proof. Assume that a:H

!

� H

!

. Let f 2 H

!

and g 2 H

0

!

, and hoose

b 2 A suh that g = p

!

(b). Then

ha:f; gi = ha:f; p

!

(b)i = (a:f)(b

�

) = f(b

�

a)

= hf; p

!

(a

�

b)i = hf; a

�

:p

!

(b)i = hf; a

�

:gi:

Choose a sequene (f

n

)

n2N

in H

!

whih onverges to some element f 2 H

!

suh that the sequene (a:f

n

)

n2N

onverges to some h 2 H

!

. If g 2 H

0

!

then

hh; gi = lim

n

ha:f

n

; gi = lim

n

hf

n

; a

�

:gi = hf; a

�

:gi = ha:f; gi:

Hene h = a:f , and the Closed Graph Theorem (see Rudin [14, 2.15℄) shows

that f 7! a:f : H

!

! H

!

is ontinuous. Therefore, the restrition �

0

!

(a) of

this map to H

0

!

is ontinuous.

Conversely, assume that �

0

!

(a) is ontinuous, so that it extends uniquely

to a bounded operator �

!

(a) 2 B(H

!

). If f; g 2 H

0

!

then

h�

!

(a)

�

:f; gi = hf; �

!

(a):gi = hf; �

0

!

(a):gi = h�

0

!

(a

�

):f; gi:

Hene �

!

(a)

�

j

H

0

!

= �

0

!

(a

�

). Choose f 2 H

!

. If b 2 A then

(�

!

(a):f)(b) = h�

!

(a):f; p

!

(b

�

)i = hf; �

!

(a)

�

:p

!

(b

�

)i

= hf; �

0

!

(a

�

):p

!

(b

�

)i = hf; p

!

(a

�

b

�

)i = f(ba) = (a:f)(b):

Hene �

!

(a):f = a:f . In partiular, this shows that a:H

!

� H

!

. �

For the following de�nition, reall that a C

�

-semi-norm on a

�

-algebra A

is a semi-norm � on A whih satis�es �(a

�

a) = �(a)

2

for all a 2 A.

Sebesty�en's Theorem [16℄ (f. Palmer [9, 9.5.14℄) states that a C

�

-semi-

norm � is automatially sub-multipliative, whih means that the inequality

�(ab) � �(a) �(b) holds for all a; b 2 A.

2.3 De�nition. (a) A positive linear funtional ! on a

�

-algebra A is

alled exponentially bounded or admissible if H

!

is a submodule of C

A

or,

equivalently, if the endomorphism �

0

!

(a) of H

!

(a) is bounded for every a 2

A. (The term \exponentially bounded" is used by Neeb [7, III.1.9℄, the term

\admissible" was introdued by Rikart [11, IV.5℄.) In this ase, we obtain

a representation

�

!

: A �! B(H

!

); a 7�! (f 7! a:f):

8



This is a

�

-representation beause for every a 2 A, the operator �

!

(a) is the

unique ontinuous extension of �

0

!

(a) to H

!

.

If ! 2 Pos(A; C ) is exponentially bounded, the C

�

-semi-norm of ! is

de�ned as

�

!

: A �! R; a 7�! k�

!

(a)k:

(b) Let A be a

�

-algebra, and let ' : A ! R

+

0

be an arbitrary funtion.

Then an positive linear funtional ! on A is alled bounded by ', or '-

bounded for short, if it is exponentially bounded with �

!

� '. This holds if

and only if all a; b 2 A satisfy !(b

�

a

�

ab) � '(a)

2

!(b

�

b). Indeed, the latter

ondition is equivalent to the inequality k�

0

!

(a)k � '(a).

Note that we an often assume ' to be a C

�

-semi-norm beause an

exponentially bounded positive linear funtional ! on A is �

!

-bounded.

IfA is a Banah

�

-algebra, or more generally a (Makey) omplete ontinuous

inverse

�

-algebra, then every positive linear funtional on A is automatially

bounded by the funtion a 7!

p

�(a

�

a) : A! R, where � denotes the spetral

radius (see [2℄ and Bonsall and Dunan [3, 37.6℄).

Let ! 2 Pos(A; C ). If ! is '-bounded then all a; b 2 A satisfy

j!(b

�

ab)j = jh�

!

(a):p

!

(b); p

!

(b)ij � k�

!

(a)k � kp

!

(a)k

2

� '(a) !(b

�

b):

Conversely, if a funtion ' : A! R

+

0

satis�es j!(b

�

ab)j � '(a) !(b

�

b) for all

a; b 2 A then ! is bounded by the funtion a 7!

p

'(a

�

a) : A! R.

2.4 Lemma (Continuity implies boundedness). Let � be a sub-multi-

pliative semi-norm on a

�

-algebra A, and assume that ! 2 Pos(A; C ) is

ontinuous with respet to �. Then ! is bounded by the funtion a 7!

p

�(a

�

a) : A! R, and also by the

�

-invariant sub-multipliative semi-norm

a 7! maxf�(a); �(a

�

)g on A.

See Palmer [9, 9.4.12℄ for a more detailed result.

Proof. Continuity of ! with respet to � means that there is a onstant

C > 0 suh that j!(a)j � C�(a) holds for all a 2 A. Let a; b 2 A. Us-

ing the Cauhy{Shwarz inequality, we indutively �nd that !(b

�

a

�

ab)

2

n

�

!

�

b

�

(a

�

a)

2

n

b

�

!(b

�

b)

2

n

�1

holds for all n 2 N. Sub-multipliativity of �

yields

!(b

�

a

�

ab)

2

n

� C �(b) �(b

�

) �(a

�

a)

2

n

!(b

�

b)

2

n

�1

:

Taking the 2

n

-th root and letting n tend to in�nity, we �nd that !(b

�

a

�

ab) �

�(a

�

a) !(b

�

b). Thus k�

0

!

(a)k �

p

�(a

�

a) � maxf�(a); �(a

�

)g. �

2.5 Remark (Unital algebras). Let ! be an exponentially bounded

positive linear funtional on a

�

-algebra A, and assume that A has a unit

element. The Cauhy{Shwarz inequality implies that every a 2 A satis�es

9



j!(a)j

2

� !(1) !(a

�

a) � !(1)

2

�

!

(a)

2

and hene j!(a)j � !(1) �

!

(a).

Thus ! is ontinuous with respet to �

!

. We also infer the inlusions

ker(�

!

) � ker(p

!

) � ker(!). Let B � B(H

!

) be the losure of �

!

(A).

Then ! indues a positive linear funtional on the unital C

�

-algebra B.

More preisely, there is a unique ! 2 Pos(B; C ) suh that ! = !Æ�

!

. If B is

ommutative then the Abstrat Bohner Theorem as proved by Fell and Do-

ran [6, 21.2℄ yields a Borel measure � on the Gelfand spetrum

^

B, unique un-

der ertain regularity onditions, suh that all b 2 B satisfy !(b) =

R

^

B

^

b d�.

If B is not ommutative, we an apply the elaborate theory of integral de-

ompositions of positive linear funtionals on C

�

-algebras (see Sakai [15,

Chapter 3℄), of whih the Abstrat Bohner Theorem an be seen as a spe-

ial ase.

This artile is devoted to the orresponding results for non-unital alge-

bras. In the ommutative ase, an Abstrat Bohner Theorem still holds,

and we obtain strong results on the uniqueness of the integral deomposition,

whih may be of interest for unital algebras as well. If A is not ommutative

but has ountable dimension and ! is entral, the non-degenerate part of !

orresponds to a trae on B whih admits an integral deomposition.

3 Commutative

�

-algebras

3.1 Gelfand spetrum and Gelfand homomorphism

3.1 De�nition. Let A be a ommutative

�

-algebra. The involutive Gelfand

spetrum of A is de�ned as

^

A

:

= Hom

�

(A; C ) n f0g, where Hom

�

(A; C ) de-

notes the spae of

�

-algebra-homomorphisms from A into C with the topo-

logy of pointwise onvergene on A. The elements of

^

A are alled the invo-

lutive haraters of A.

For an arbitrary non-negative funtion ' : A ! R

+

0

, let the '-bounded

involutive spetrum of A be

^

A(')

:

=

n

� 2

^

A; 8 a 2 A : j�(a)j � '(a)

o

:

3.2 Remark. Let � be an involutive harater of a

�

-algebra A. Then �

is a positive linear funtional on A. Sine we have de�ned the notion of

'-boundedness for positive linear funtionals as well, we have to hek that

it oinides with the new de�nition for involutive haraters. The Gelfand{

Na��mark{Segal onstrution gives ker(p

�

) = fa 2 A; �(a

�

a) = 0g = ker(�)

and H

�

�

=

C , and the representation �

�

is equivalent to �, viewed as a

representation of A on C . Hene �

�

(a) = j�(a)j holds for all a 2 A. In

partiular, the two notions of '-boundedness oinide for �.

3.3 Remark (Topology of

^

A). (a) In the topology of pointwise onver-

gene onA, the set

^

A(')[f0g is losed in

�

f 2 C

A

; 8 a 2 A : jf(a)j � '(a)

	

,
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whih is a ompat spae by Tyhonov's Theorem. Hene

^

A(') is a loally

ompat Hausdor� spae. If the algebra A has a unit element 1 then all

� 2

^

A satisfy �(1) = 1, whene

^

A(') is losed in

^

A(') [ f0g and therefore

ompat.

(b) Assume that for every a 2 A, the spetrum

Sp(a)

:

=

�

� 2 C ; � � 1� a 62 (A

1

)

�

	

is bounded. (This implies that every element has ompat spetrum, see

Palmer [8, 2.1.11℄.) The spetral radius of an element a 2 A is �(a)

:

=

sup fj�j; � 2 Sp(a)g. If a 2 A and � 2

^

A then

Sp

A

(a) � Sp

C

(�(a)) = f�(a)g;

so that j�(a)j � �(a). We onlude that

^

A =

^

A(�).

3.4 De�nition. Let A be a ommutative

�

-algebra. Eah a 2 A gives rise

to a ontinuous funtion

â :

^

A [ f0g �! C ; � 7�! �(a);

whih is alled the Gelfand transform of a. The restrition of â to a sub-

set of

^

A [ f0g suh as

^

A or

^

A(') will also be denoted by â if no onfusion

seems likely. Let ' : A ! R

+

0

be a funtion. If a 2 A then the restri-

tion of â to

^

A(') belongs to the C

�

-algebra C

0

(

^

A(')) of those ontinuous

omplex-valued funtions on

^

A(') whih vanish at in�nity. The

�

-algebra

homomorphism a 7! â : A ! C

0

(

^

A(')) is alled the '-bounded Gelfand

homomorphism. Its image is a subalgebra of C

0

(

^

A(')) whih is losed un-

der pointwise onjugation, separates the points of

^

A('), and does not van-

ish anywhere on

^

A('). Hene this image is a uniformly dense subalgebra

of C

0

(

^

A(')) by the Stone{Weierstrass Theorem (f. Fell and Doran [6, A8℄).

3.5 Lemma (Compat subsets of

^

A [ f0g). Let A be a ommutative

�

-algebra, and let K �

^

A be a subset suh that K [ f0g is ompat. De�ne

a C

�

-semi-norm on A by

� : A �! R; a 7�!





âj

K





1

= sup fj�(a)j; � 2 Kg :

ThenK �

^

A(�). IfK =

^

A(') for some funtion ' : A! R

+

0

thenK =

^

A(�).

Proof. The inequality j�(a)j � �(a) holds for all � 2 K and all a 2 A, so

that K �

^

A(�). In the ase that K =

^

A('), the de�nition of � shows that

all a 2 A satisfy �(a) � '(a). This implies the reverse inlusion

^

A(�) � K.

�
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3.6 Lemma (

^

A(�) for a C

�

-semi-norm �). Let � be a C

�

-semi-norm on

a ommutative

�

-algebra A, and let �

�

: A ! A

�

be the natural map into

the orresponding C

�

-algebra. Then

� 7�! � Æ �

�

:

�

A

�

�

b �!

^

A(�)

is a homeomorphism. In partiular, all a 2 A satisfy �(a) =





âj

^

A(�)





1

.

Proof. The map �

�

is onstruted as follows. Let A

�

:

= �

�1

(f0g) be the

zero ideal of �. Then � indues a C

�

-norm on the quotient

�

-algebra A=A

�

.

The ompletion of A=A

�

with respet to this norm is denoted by A

�

, and

we set �

�

(a)

:

= a+A

�

2 A

�

for a 2 A.

If � 2

�

A

�

�

b and a 2 A then j�(�

�

(a))j � k�

�

(a)k = �(a), so that

� Æ �

�

2

^

A(�). Hene we have a map from

�

A

�

�

b [ f0g into

^

A(�) [ f0g

whih maps � to � Æ �

�

. This map is ontinuous and injetive, and it is

losed beause it is a map between ompat Hausdor� spaes. Finally, it is

surjetive beause every � 2

^

A(�) indues a ontinuous involutive harater

of A=A

�

, whih extends to a harater � of A

�

suh that � Æ �

�

= �. This

proves the main assertion, whih implies that every a 2 A satis�es

�(a) = k�

�

(a)k = sup

�

j�(�

�

(a))j; � 2

�

A

�

�

b

	

= sup

n

j�(a)j; � 2

^

A(�)

o

=





âj

^

A(�)





1

;

so that the seond assertion follows immediately. �

3.7 Lemma. Let A be a ommutative

�

-algebra, and letK �

^

A be ompat.

Then there exists a 2 A suh that the Gelfand transform â does not have

any zero on K.

Proof. For eah � 2 K, hoose an element a

�

2 A suh that â

�

(�) 6= 0.

Sine K is ompat, we an hoose �

1

; : : : ; �

n

2 K suh that

a

:

= a

�

�

1

a

�

1

+ � � �+ a

�

�

n

a

�

n

has the required property. �

3.8 Proposition (Extension of the Gelfand{Na��mark{Segal repre-

sentation). Let � be a C

�

-semi-norm on a ommutative

�

-algebra A, and

let ! 2 Pos(A; C ) be �-bounded. Then the Gelfand{Na��mark{Segal rep-

resentation �

!

: A ! B(H

!

) assoiated with ! fators through a unique

�

-representation �

!

: C

0

(

^

A(�)) ! B(H

!

) in the sense that all a 2 A satisfy

�

!

(â) = �

!

(a).

Note that every

�

-homomorphism between C

�

-algebras is a ontration (see

Dixmier [5, 1.3.7℄), so that k�

!

(')k � k'k

1

holds for every ' 2 C

0

(

^

A(�)).
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Proof. Let B � B(H

!

) be the losure of the image �

!

(A). Then B is a

ommutative C

�

-algebra. If � 2

^

B and a 2 A then

j�(�

!

(a))j � k�

!

(a)k = �

!

(a) � �(a);

so that � Æ �

!

2

^

A(�). We obtain a map � 7! � Æ �

!

:

^

B !

^

A(�) whih is

ontinuous. This gives rise to a

�

-homomorphism

' 7�!

�

� 7! '(� Æ �

!

)

�

: C

0

(

^

A(�)) �! C

0

(

^

B):

The omposition of this homomorphism with the inverse of the Gelfand iso-

morphism B ! C

0

(

^

B) and the inlusion B ,! B(H

!

) is the

�

-representation

�

!

: C

0

(

^

A(�))! B(H

!

). Thus for ' 2 C

0

(

^

A(�)), the operator �

!

(') 2 B is

haraterized by the fat that its Gelfand transform maps � 2

^

B to '(�Æ�

!

),

i.e. by the formula

8' 2 C

0

(

^

A(�)); � 2

^

B : �(�

!

(')) = '(� Æ �

!

):

In partiular, if a 2 A then �(�

!

(â)) = â(�Æ�

!

) = �(�

!

(a)) holds for all � 2

^

B, whene �

!

(â) = �

!

(a). Sine the image of the Gelfand homomorphism

from A into C

0

(

^

A(�)) is uniformly dense, this property uniquely determines

the

�

-representation �

!

. �

3.9 Remark. The relation �(�

!

(')) = '(� Æ �

!

) for � 2

^

B and ' 2

C

0

(

^

A(�)) will be used again in the proof of Proposition 3.13.

3.2 Representing measures

Reall that the Borel �-algebra B(X) on a topologial spae X is the �-

algebra generated by the open sets. A Borel measure on X is a measure

de�ned on B(X).

3.10 De�nition. Let ! be a positive linear funtional on a ommutative

�

-algebra A, and let � be a C

�

-semi-norm on A. A Borel measure � on

^

A(�)

represents ! if

n

âj

^

A(�)

; a 2 A

o

� L

3

(�) and all a; b;  2 A satisfy

Z

^

A(�)

â

^

b̂ d� = !(ab):

Lemma 3.5 shows that we would not obtain a more general onept if we

onsidered representing Borel measures on other ompat subsets of

^

A[f0g.

3.11 Lemma (Representability implies exponential boundedness).

Let ! be a positive linear funtional on a ommutative

�

-algebra A, let �

be a C

�

-semi-norm on A, and let � be a Borel measure on

^

A(�) whih

represents !. Then � takes �nite values on all ompat subsets of

^

A(�),

and ! is �-bounded. In partiular,

^

A(�) ontains

^

A(�

!

).
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Proof. Let K �

^

A(�) be ompat. Lemma 3.7 yields an element a 2 A

suh that "

:

= inf fjâ(�)j; � 2 Kg is stritly positive, so that

�(K) � "

�4

Z

^

A(�)

jâj

4

d� = "

�4

!

�

(a

�

a)

2

�

:

Let a; b 2 A. The Cauhy{Shwarz inequality and Lemma 3.6 show that

!(b

�

a

�

ab)

2

� !(b

�

b) !

�

b

�

(a

�

a)

2

b

�

= !(b

�

b)

Z

^

A(�)

jâj

4

j

^

bj

2

d�

� !(b

�

b)





âj

^

A(�)





2

1

Z

^

A(�)

jâj

2

j

^

bj

2

d� = !(b

�

b) �(a)

2

!(b

�

a

�

ab):

Hene !(b

�

a

�

ab) � �(a)

2

!(b

�

b), and we onlude that �

!

(a) = k�

!

(a)k �

�(a). This immediately implies that

^

A(�

!

) �

^

A(�). �

The spae of ompatly supported omplex-valued funtions on a loally

ompat spae X is denoted by C



(X).

3.12 Proposition (Charaterization of representing measures). Let

! be a positive linear funtional on a ommutative

�

-algebra A, and let �

be a C

�

-semi-norm on A. Then the following onditions are equivalent for

a Borel measure � on

^

A(�):

(i) the measure � represents !;

(ii) 8' 2 C



(

^

A(�)); a 2 A :

Z

^

A(�)

' jâj

2

d� = h�

!

('):p

!

(a); p

!

(a)i;

(iii) 8' 2 C

0

(

^

A(�)); a; b 2 A :

Z

^

A(�)

' â

^

b d� = h�

!

('):p

!

(a); p

!

(b

�

)i

(in partiular, the integral exists).

If these onditions are satis�ed then

Z

^

A(�)

jâj

2

d� � !(a

�

a) holds for every

a 2 A.

Proof. If a; b;  2 A then

h�

!

(̂):p

!

(a); p

!

(b

�

)i = h�

!

():p

!

(a); p

!

(b

�

)i = hp

!

(a); p

!

(b

�

)i = !(ba):

In partiular, ondition (iii) implies (i).

Assume that ondition (i) holds. Choose ' 2 C



(

^

A(�)) and a 2 A.

The alulation above shows that (ii) holds if ' is replaed with an element

 2 A. Lemma 3.5 yields b 2 A suh that

^

b does not vanish anywhere

on the support of '. Extending the quotient '=j

^

bj

2

, whih is de�ned on a

14



neighbourhood of supp('), by zero, we view it as an element of C



(

^

A(�)).

For an arbitrary element  2 A, we alulate

�

�

�

�

�

Z

^

A(�)

' jâj

2

d�� h�

!

('):p

!

(a); p

!

(a)i

�

�

�

�

�

=

�

�

�

�

�

Z

^

A(�)

'

j

^

bj

2

jâj

2

j

^

bj

2

d��

Z

^

A(�)

̂ jâj

2

j

^

bj

2

d�

+ h�

!

(̂):p

!

(ab); p

!

(ab)i �

*

�

!

 

'

j

^

bj

2

^

b

!

:p

!

(a); �

!

(

^

b):p

!

(a)

+

�

�

�

�

�

�

�

�

�

�

�

Z

^

A(�)

 

'

j

^

bj

2

� ̂

!

jâj

2

j

^

bj

2

d�

�

�

�

�

�

+

�

�

�

�

�

*

�

!

 

̂�

'

j

^

bj

2

!

:p

!

(ab); p

!

(ab)

+

�

�

�

�

�

�











'

j

^

bj

2

� ̂











1

Z

^

A(�)

jâj

2

j

^

bj

2

d�+











�

!

 

̂�

'

j

^

bj

2

!











hp

!

(ab); p

!

(ab)i

�











'

j

^

bj

2

� ̂











1

� 2 !(b

�

a

�

ab):

As the image of the Gelfand homomorphism is uniformly dense in C

0

(

^

A(�)),

we an hoose  2 A suh that the right-hand side is arbitrarily small. This

proves ondition (ii).

Assume that (ii) holds. Let a 2 A. We will prove that

R

jâj

2

d� �

!(a

�

a). For n 2 N, set K

n

:

= f� 2

^

A(�); jâ(�)j �

1

n

g. Sine â 2 C

0

(

^

A(�)),

eah K

n

is a ompat subset of the interior of K

n+1

. By Urysohn's Lemma,

we �nd ontinuous funtions '

n

:

^

A(�)! [0; 1℄ whih are identially 1 onK

n

and vanish outside K

n+1

. The sequene ('

n

)

n2N

is inreasing and onverges

pointwise to the harateristi funtion of the open set f� 2

^

A(�); â(�) 6= 0g.

By Lebesgue's Monotone Convergene Theorem (f. Rudin [13, 1.26℄),

Z

^

A(�)

jâj

2

d� = lim

n

Z

^

A(�)

'

n

jâj

2

d� = lim

n

h�

!

('

n

):p

!

(a); p

!

(a)i

� hp

!

(a); p

!

(a)i = !(a

�

a):

Sine C



(

^

A(�)) is uniformly dense in C

0

(

^

A(�)), we onlude from (ii) that

8' 2 C

0

(

^

A(�)); a 2 A :

Z

^

A(�)

' jâj

2

d� = h�

!

('):p

!

(a); p

!

(a)i:

Condition (iii) follows beause all ' 2 C

0

(

^

A(�)) and a; b 2 A satisfy the

15



polarization identities

' â

^

b =

1

4

'

3

X

k=0

i

k

�

�

(a+ i

k

b

�

)b

�

�

2

;




�

!

('):p

!

(a); p

!

(b

�

)

�

=

1

4

3

X

k=0

i

k




�

!

('):p

!

(a+ i

k

b

�

); p

!

(a+ i

k

b

�

)

�

:

�

Let � be a Borel measure on a topologial spae X. The losed support

supp(�) of � is the set of all x 2 X suh that �(U) > 0 holds for every open

neighbourhood U � X of x. It is a losed subset of X. If every open sub-

set U � X satis�es the ondition �(U) = sup f�(K); K � U , K ompatg

(f. Theorem 3.14) then any union of open subsets of measure 0 has mea-

sure 0, so that supp(�) is the omplement in X of the largest open subset

of measure 0.

Let � be a Borel measure on a loally ompat spae X, and assume

that ' 2 C

0

(X) vanishes on supp(�). The set fx 2 X; '(x) 6= 0g is the

ountable union of the sets

�

x 2 X; j'(x)j �

1

n

	

for n 2 N, and these sets

are ompat and disjoint from supp(�), so that they have measure 0. This

implies that

R

X

' d� = 0.

3.13 Proposition (The support of a representing measure). Let !

be a positive linear funtional on a ommutative

�

-algebra A, let � be a C

�

-

semi-norm on A, and let � be a Borel measure on

^

A(�) whih represents !.

Then supp(�) =

^

A(�

!

).

Proof. Lemma 3.11 shows that

^

A(�

!

) �

^

A(�).

Choose a non-negative funtion ' 2 C

0

(

^

A(�)), and let B � B(H

!

) be

the losure of �

!

(A). Lemma 3.6 entails that

^

A(�

!

) =

n

� Æ �

!

; � 2

^

B

o

;

and Remark 3.9 shows that all � 2

^

B satisfy �(�

!

(')) = '(�Æ�

!

). Hene '

vanishes on

^

A(�

!

) if and only if �

!

(') = 0. Proposition 3.12 shows that

�

!

(') = 0 if and only if all a; b 2 A satisfy

R

' â

^

b d� = 0. This holds

if ' vanishes on supp(�) by the remarks following the introdution of the

losed support. Conversely, if '(�) 6= 0 holds for some � 2 supp(�) then

every a 2 A with �(a) 6= 0 yields

R

' jâj

2

d� > 0. We onlude that a non-

negative funtion ' 2 C

0

(

^

A(�)) vanishes on

^

A(�

!

) if and only if it vanishes

on supp(�).

These two sets are losed in

^

A(�), and this is a loally ompat Hausdor�

spae and hene ompletely regular. This implies that supp(�) =

^

A(�

!

). �

16



3.3 Existene and uniqueness of a representing measure

3.14 Theorem (Abstrat Bohner Theorem). Let A be a ommutative

�

-algebra, and let ! be an exponentially bounded positive linear funtional

on A. Then there exists a unique Borel measure �

!

on

^

A(�

!

) whih repre-

sents ! and satis�es the following onditions:

(i) all Borel subsets E �

^

A(�

!

) satisfy

�

!

(E) = inf

n

�

!

(U); E � U , U �

^

A(�

!

) open

o

;

(ii) if a Borel subset E �

^

A(�

!

) is open or has �nite measure then

�

!

(E) = sup f�

!

(K); K � E, K ompatg :

The measure �

!

is alled the Gelfand transform of the positive linear fun-

tional !.

Proof. Existene of �

!

will follow from the Riesz Representation Theorem

for positive linear funtionals on C



(

^

A(�

!

)) (see Rudin [13, 2.14℄). Let

' 2 C



(

^

A(�

!

)). Lemma 3.5 yields an element a 2 A suh that â has no zero

on the support of '. We extend the quotient '=jâj

2

by zero to an element

of C



(

^

A(�

!

)) and set

!

0

(')

:

=

�

�

!

�

'

jâj

2

�

:p

!

(a); p

!

(a)

�

:

To see that this de�nition does not depend on the hoie of a, let b 2 A be

another element whose Gelfand transform has no zero on the support of '.

Then

�

�

!

�

'

jâj

2

�

:p

!

(a); p

!

(a)

�

=

*

�

!

 

'

jâj

2

j

^

bj

2

^

b

!

:p

!

(a); �

!

(

^

b):p

!

(a)

+

=

*

�

!

 

'

jâj

2

j

^

bj

2

!

:p

!

(ba); p

!

(ba)

+

=

*

�

!

 

'

jâj

2

j

^

bj

2

!

:p

!

(ab); p

!

(ab)

+

=

*

�

!

 

'

jâj

2

j

^

bj

2

â

!

:p

!

(b); �

!

(â):p

!

(b)

+

=

*

�

!

 

'

j

^

bj

2

!

:p

!

(b); p

!

(b)

+

:

Thus !

0

is a well-de�ned linear funtional on C



(

^

A(�

!

)), and using the

square root of a ompatly supported non-negative funtion, we �nd that !

17



is positive. By the Riesz Representation Theorem [13, 2.14℄, there is a unique

Borel measure �

!

on

^

A(�

!

) whih satis�es onditions (i) and (ii) and

8' 2 C



(

^

A(�

!

)) : !

0

(') =

Z

^

A(�

!

)

' d�

!

:

Let a 2 A and ' 2 C



(

^

A(�

!

)) be arbitrary, and hoose an element  2 A

whose Gelfand transform ̂ does not vanish anywhere on the support of '.

Then

Z

^

A(�

!

)

' jâj

2

d�

!

= !

0

(' jâj

2

) =

�

�

!

�

' jâj

2

ĵj

2

�

:p

!

(); p

!

()

�

=

�

�

!

�

'

ĵj

2

â

�

:p

!

(); �

!

(â):p

!

()

�

=

�

�

!

�

'

ĵj

2

̂

�

:p

!

(a); �

!

(̂):p

!

(a)

�

= h�

!

('):p

!

(a); p

!

(a)i:

Proposition 3.12 shows that the measure �

!

represents !.

Let � be a Borel measure on

^

A(�

!

) whih represents ! and satis�es

onditions (i) and (ii). Choose ' 2 C



(

^

A(�

!

)) and a 2 A suh that â does

not vanish anywhere on the support of '. By Proposition 3.12,

Z

^

A(�

!

)

' d� =

Z

^

A(�

!

)

'

jâj

2

jâj

2

d�

=

�

�

!

�

'

jâj

2

�

:p

!

(a); p

!

(a)

�

=

Z

^

A(�

!

)

' d�

!

:

The uniqueness part of the Riesz Representation Theorem [13, 2.14℄ shows

that � = �

!

. �

3.15 Example. We show that the values of a general positive linear fun-

tional ! on single elements and on produts of two elements are not repre-

sented by the Gelfand transform. In this sense, our notion of a representing

measure is the best one an expet. The relevant additional onditions on !

will be studied in Proposition 3.16 and Corollary 3.23.

In the following two examples, onsider A

:

= C

2

with the involution

(z; w)

�

:

= (z; w) and algebra multipliation to be de�ned. Set ! : A !

C ; (z; w) 7! �z + �w with �; � 2 C .

(a) De�ne a multipliation on A by (z; w) � (z

0

; w

0

)

:

= (zz

0

; 0). Consid-

ering the elements (1; 0) and (0; 1), we �nd that ! is multipliative if and

only if � 2 f0; 1g and � = 0. Hene the full spetrum

^

A onsists of a single

point, and the Gelfand homomorphism orresponds to the projetion of A

onto its �rst oordinate. The linear funtional ! is positive if and only if

18



� � 0. In this ase, its Gelfand transform �

!

satis�es

R

(z; w)̂ d�

!

= �z.

Hene there is no general relation between

R

â d�

!

and !(a).

(b) De�ne a multipliation on A by (z; w) � (z

0

; w

0

)

:

= (0; zz

0

). Then ! is

multipliative if and only if � = � = 0, whene the spetrum of A is empty.

Moreover, ! is positive if and only if � � 0. If �

!

is the Gelfand transform

of ! then

R

jâj

2

d�

!

vanishes for all a 2 A, whereas !(a

�

a) may be stritly

positive.

3.16 Proposition (Extension of ! to A

1

). Let ! be an exponen-

tially bounded positive linear funtional on a ommutative

�

-algebra A with

Gelfand transform �

!

. Then ! extends to a positive linear funtional on the

unitization A

1

= A + C � 1 of A if and only if the measure �

!

is �nite and

eah a 2 A satis�es

R

â d�

!

= !(a).

Proof. If A has a unit element 1 then �

!

(

^

A(�

!

)) = !(1

3

) = !(1) is �nite,

and !(a) = !(1

2

a) =

R

â d�

!

holds for eah a 2 A. Hene we will assume

that A is non-unital.

Assume that �

!

is �nite and that eah a 2 A satis�es !(a) =

R

â d�

!

.

Then !(a

�

) = !(a) holds for eah a 2 A, and the Cauhy{Shwarz Inequality

(f. Rudin [13, 3.5℄) shows that

j!(a)j

2

=

�

�

�

�

�

Z

^

A(�

!

)

â d�

!

�

�

�

�

�

2

� �

!

(

^

A(�

!

))

Z

^

A(�

!

)

jâj

2

d�

!

= �

!

(

^

A(�

!

)) !(a

�

a):

Hene ! extends to a positive linear funtional on A

1

(see Fell and Doran [6,

VI.18.7℄ or Palmer [9, 9.4.7℄).

Assume that there is a positive linear funtional ~! on A

1

= A� C suh

that ~!j

A

= !. We laim that ~! is exponentially bounded. If a 2 A then

j!(a)j = j~!(a)j �

p

~!(1) ~!(a

�

a) =

p

~!(1) !(a

�

a) =

p

~!(1) kp

!

(a)k:

Hene ! indues a linear funtional on H

0

!

, whih is ontinuous of norm at

most

p

~!(1). Applying the Riesz Representation Theorem (see Rudin [14,

12.5℄) to the ontinuous extension of that funtional to H

!

, we obtain a

unique vetor z

!

2 H

!

suh that all a 2 A satisfy !(a) = hp

!

(a); z

!

i,

and kz

!

k �

p

~!(1). (Palmer [9, 9.4.5℄ alls z

!

the anonial vetor of the

extensible positive funtional !.) If a; b 2 A then

hp

!

(b); �

!

(a):z

!

i = hp

!

(a

�

b); z

!

i = !(a

�

b) = hp

!

(b); p

!

(a)i:

Therefore, all a 2 A satisfy �

!

(a):z

!

= p

!

(a), so that ! is represented by �

!

through the formula !(a) = h�

!

(a)z

!

; z

!

i. Set r

:

= ~!(1)�kz

!

k

2

� 0. Then

every (a; �) 2 A

1

satis�es

~!(a; �) = !(a) + � ~!(1) =




(�

!

(a) + � � 1)z

!

; z

!

�

+ �r
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and therefore j~!(a; �)j � kz

!

k

2

k�

!

(a)+� �1k+ rj�j. Hene ~! is ontinuous

with respet to the

�

-invariant sub-multipliative semi-norm

(a; �) 7�! maxfk�

!

(a) + � � 1k; j�jg : A

1

�! R:

Lemma 2.4 shows that ~! is exponentially bounded with

�

~!

(a; �) � maxfk�

!

(a) + � � 1k; j�jg � �

!

(a) + j�j:

Together with the formula �

~!

(a)

2

= sup

�

~!(b

�

a

�

ab); b 2 A

1

; ~!(b

�

b) � 1

	

,

this inequality implies that �

!

(a) = �

~!

(a; 0) holds for all a 2 A, and j�j =

�

~!

(0; �) holds for all � 2 C .

Every element of

^

A[f0g has a unique extension to an element of (A

1

)b,

and it is easy to see that this gives a homeomorphism f :

^

A! (A

1

)bnfpr

2

g,

where pr

2

: A

1

! C ; (a; �) 7! �. Let �

~!

be the Gelfand transform of ~!.

Sine f

�

(�

~!

) is a measure on f

�1

(

^

A(�

~!

)) whih represents !, Proposi-

tion 3.13 implies that f(

^

A(�

!

)) =

^

A(�

~!

) n fpr

2

g, and the uniqueness as-

sertion of the Bohner Theorem 3.14 shows that the restrition of f

�

(�

~!

)

to

^

A(�

!

) is equal to �

!

. Hene

�

!

(

^

A(�

!

)) = �

~!

�

f(

^

A(�

!

))

�

= ~!(1)� �

~!

(fpr

2

g)

is �nite. If a 2 A then (a; 0)b vanishes in pr

2

2 (A

1

)b, so that

Z

^

A(�

!

)

â d�

!

=

Z

^

A(�

~!

)

(a; 0)b d�

~!

= ~!(a; 0) = !(a):

This ompletes the proof. �

3.17 Example. In these two examples, let X be a loally ompat Haus-

dor� spae, and let � be a Borel measure on X whih takes �nite values

on ompat sets and satis�es onditions (i) and (ii) of the Bohner Theo-

rem 3.14.

(a) Set A

:

= C

0

(X) \ L

1

(�) with pointwise multipliation and involu-

tion. De�ne ! 2 Pos(A; C ) by !(')

:

=

R

' d�. Then ! is exponentially

bounded; in fat, �

!

is the supremum norm k�k

1

on A. As the measure � is

�nite on ompat sets, the algebra A ontains C



(X) and hene is uniformly

dense in C

0

(X). Therefore, any k � k

1

-bounded involutive harater of A

has a unique extension to the C

�

-algebra C

0

(X). Hene there is a natural

homeomorphism from X onto the k � k

1

-bounded involutive spetrum of A.

Under this homeomorphism, the Gelfand transform '̂ of ' 2 A orresponds

to the funtion ' itself, and the Gelfand transform �

!

of ! orresponds to

the original measure �. In partiular, the equation !(') =

R

'̂ d�

!

holds

for every element ' 2 A. Nevertheless, if the measure � is not �nite then !

does not extend to a positive linear funtional on the unitization A

1

of A.

(b) Set A

:

= C

0

(X)\L

2

(�) with pointwise multipliation and involution.

De�ne !(')

:

=

R

' d� for ' 2 L

1

(�), and extend ! arbitrarily to a linear
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funtional on A. Then ! is an exponentially bounded positive linear fun-

tional with �

!

= k � k

1

. As above, the k � k

1

-bounded involutive spetrum

of A is homeomorphi to X, the Gelfand transform '̂ of ' 2 A orresponds

to the funtion ' itself, and the Gelfand transform �

!

of ! orresponds to

the original measure �. This example shows that the Gelfand transforms of

elements of A need not be �

!

-integrable.

3.4 The Planherel Theorem

3.18 Lemma. Let H

1

and H

2

be Hilbert spaes, and let �: H

1

! H

2

be

a linear ontration. Assume that V � H

1

is a losed linear subspae whih

is mapped isometrially onto H

2

. Then the kernel of � is the orthogonal

omplement of V .

Proof. Choose v 2 V , and write �

�

�(v) = v

0

+w with v

0

2 V and w 2 V

?

.

For an arbitrary element v

00

2 V , we �nd that

hv; v

00

i = h�(v);�(v

00

)i = h�

�

�(v); v

00

i = hv

0

+ w; v

00

i = hv

0

; v

00

i:

Hene v = v

0

. As �

�

� is a ontration, this implies that �

�

�(v) = v. Sine

�(V ) = H

2

, we onlude that the image of �

�

is V . The kernel of � is the

orthogonal omplement of the image of its adjoint. �

3.19 De�nition. Let A be a

�

-algebra. Let H be a left Hilbert A-module,

i.e. a Hilbert spae equipped with a

�

-representation of A by bounded oper-

ators. Let H

1

� H be the losure of the linear span of A:H. The module H

(or the orresponding

�

-representation of A) is alled non-degenerate or es-

sential if H

1

= H. The orthogonal omplement of H

1

in H,

H

0

:

= H

?

1

= (A:H)

?

= fv 2 H; hv;A:Hi = f0gg

= fv 2 H; hA:v;Hi = f0gg = fv 2 H;A:v = f0gg;

is alled the totally degenerate or trivial part of H. The A-invariant ortho-

gonal deomposition H = H

0

� H

1

shows that the Hilbert A-module H

1

is non-degenerate, whene it is alled the non-degenerate or essential part

of H. Thus the Hilbert A-module H is the orthogonal diret sum of its

totally degenerate part and its non-degenerate part. Note that H is non-

degenerate if and only if H

0

= f0g, i.e. if and only if A:v = f0g implies

v = 0 for v 2 H.

Assume that H is non-degenerate. Then every v 2 H satis�es v 2 A:v.

Indeed, the non-degenerate part of the Hilbert A-module C v + A:v is A:v.

Hene if v = v

0

+ v

1

with v

0

2 (A:v)

?

and v

1

2 A:v then v

0

belongs to the

totally degenerate part of C v +A:v, whih means that A:v

0

= f0g, and this

implies that v

0

= 0 and v = v

1

2 A:v.

For this and additional basi material on Hilbert modules see, for in-

stane, Neeb [7, II.2.4℄.

21



The following result desribes an isometri isomorphism from the non-

degenerate part of the Gelfand{Na��mark{Segal representation assoiated

with a positive linear funtional ! onto the L

2

spae of the Gelfand trans-

form of !.

3.20 Theorem (Abstrat Planherel Theorem). Let ! be an exponen-

tially bounded positive linear funtional on a ommutative

�

-algebra A, and

let �

!

be the Gelfand transform of !. Then there is a unique ontinuous

linear map �

!

: H

!

! L

2

(�

!

) suh that �

!

(p

!

(a)) = âj

^

A(�

!

)

holds for every

a 2 A.

This map is a homomorphism of A-modules and of C

0

(

^

A(�

!

))-modules

in the sense that

8' 2 C

0

(

^

A(�

!

)); f 2 H

!

: �

!

(�

!

('):f) = ' � �

!

(f):

The kernel of �

!

is the totally degenerate part ff 2 H

!

;�

!

(A):f = f0gg

of H

!

, and �

!

maps the non-degenerate part span(�

!

(A):H

!

) of H

!

iso-

metrially onto L

2

(�

!

).

Proof. If a 2 A belongs to ker(p

!

) = fx 2 A; !(x

�

x) = 0g then â van-

ishes �

!

-almost everywhere by Proposition 3.12. The linear map p

!

(a) 7!

â : H

0

!

! L

2

(�

!

) is therefore a well-de�ned ontration, and so is its unique

ontinuous extension �

!

: H

!

! L

2

(�

!

) to H

!

.

For a; b 2 A and ' = â, f = p

!

(b), we have

�

!

(�

!

('):f) = �

!

(�

!

(a):p

!

(b))

= �

!

(p

!

(ab)) = â

^

b = â � �

!

(p

!

(b)) = ' � �

!

(f):

By ontinuity of �

!

and �

!

, this equation extends to arbitrary pairs ('; f) 2

C

0

(

^

A(�

!

))�H

!

.

For a

1

; a

2

2 A, the Bohner Theorem 3.14 shows that k�

!

(p

!

(a

1

a

2

))k

2

=

kp

!

(a

1

a

2

)k. Therefore, the restrition of �

!

to V

:

= span(�

!

(A):p

!

(A)) is

an isometry, and so is the restrition of �

!

to V , whih is the non-degenerate

part of H

!

. To see that �

!

maps V onto L

2

(�

!

), it suÆes to show that

the losure of �

!

(V ) in L

2

(�

!

) ontains C



(

^

A(�

!

)) (f. Rudin [13, 3.14℄).

Choose an element ' 2 C



(

^

A(�

!

)). By Lemma 3.7, we may pik an element

a 2 A whose Gelfand transform â does not vanish anywhere on the support

of '. The quotient '=â may be extended by zero to an element of C



(

^

A).

For an arbitrary element b 2 A, we alulate

k'� â

^

bk

2

2

=

Z

^

A(�

!

)

j'� â

^

bj

2

d�

!

=

Z

^

A(�

!

)

�

�

�

'

â

�

^

b

�

�

�

2

jâj

2

d�

!

�







'

â

�

^

b







2

1

Z

^

A(�

!

)

jâj

2

d�

!

�







'

â

�

^

b







2

1

!(a

�

a):
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Sine the image of the Gelfand homomorphism is uniformly dense in the alge-

bra C

0

(

^

A(�

!

)), we onlude that the restrition of �

!

to the non-degenerate

part V of H

!

is an isometri isomorphism onto L

2

(�

!

). Lemma 3.18 shows

that the kernel of �

!

is the orthogonal omplement V

?

. The remarks pre-

eding Theorem 3.20 ontained the proof that V

?

is the degenerate part

of H

!

. �

3.21 Corollary. Let ! be an exponentially bounded positive linear fun-

tional on a ommutative

�

-algebra A with Gelfand transform �

!

, and let pr

1

be the orthogonal projetion of H

!

onto its non-degenerate part. Then all

a; b 2 A satisfy

Z

^

A(�

!

)

â

^

b d�

!

=




pr

1

(p

!

(a));pr

1

(p

!

(b

�

))

�

: �

3.22 Corollary. Let ! be an exponentially bounded positive linear fun-

tional on a ommutative

�

-algebra A with Gelfand transform �

!

. Then for

eah element a 2 A, the following are equivalent:

(i) The equation

R

^

b

1

â d�

!

= !(b

1

a) holds for all b

1

2 A.

(ii) The equation

R

jâj

2

d�

!

= !(a

�

a) holds.

(iii) The vetor p

!

(a) 2 H

!

belongs to the non-degenerate part of H

!

.

(iv) For all " > 0, there is a b

2

2 A with !

�

(a� b

2

a)

�

(a� b

2

a)

�

< ".

(v) For all " > 0, there are b

3

; b

4

2 A with !

�

(a� b

3

b

4

)

�

(a� b

3

b

4

)

�

< ".

Proof. Let pr

1

be the projetion of H

!

onto its non-degenerate part, and

set f

:

= p

!

(a). Condition (i) trivially implies ondition (ii). Condition (ii)

means that kfk = kpr

1

(f)k, whih implies (iii). If (iii) holds then all b

1

2 A

satisfy !(b

1

a) = hf;pr

1

(b

�

1

)i =

R

^

b

1

â d�

!

.

We have seen in De�nition 3.19 that (iii) implies that f belongs to the

losure of �

!

(A):f , whih is ondition (iv). This trivially implies (v), whih

is a reformulation of (iii). �

3.23 Corollary. Let ! be an exponentially bounded positive linear fun-

tional on a ommutative

�

-algebra A with Gelfand transform �

!

. Then �

!

is non-degenerate if and only if all a; b 2 A satisfy !(ab) =

R

â

^

b d�

!

. �

3.24 Example. Set A

:

= f' 2 C

2

([0; 1℄);'(0) = 0g with pointwise mul-

tipliation and involution. Let !

0

: A ! C ; ' 7! '

00

(0). Then !

0

('

�

') =

2 j'

0

(0)j

2

� 0, so that !

0

is a positive linear funtional. Sine !

0

('

1

'

2

'

3

) =

0 for all '

1

; '

2

; '

3

2 A, the positive funtional !

0

is bounded by every

non-negative funtion on A, and its Gelfand transform is the zero measure.
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De�ne

!

1

: A �! C ; ' 7�!

Z

1

0

' dx:

Then !

1

is an exponentially bounded positive linear funtional with �

!

1

=

k � k

1

. Sine any k � k

1

-bounded involutive harater of A has a unique ex-

tension to the C

�

-algebra C

0

(℄0; 1℄), the k � k

1

-bounded involutive spetrum

of A is naturally homeomorphi to the interval ℄0; 1℄. Under this homeo-

morphism, the Gelfand transform '̂ of ' 2 A orresponds to the funtion '

itself, and the Gelfand transform �

!

1

of !

1

orresponds to the Lebesgue

measure on the Borel �-algebra of ℄0; 1℄.

Set !

:

= !

0

+ !

1

. Then the Gelfand transform �

!

of ! equals �

!

1

.

An element ' 2 A satis�es !('

�

') =

R

j'̂j

2

d�

!

if and only if '

0

(0) =

0. In partiular, the Planherel homomorphism �

!

: H

!

! L

2

(�

!

) is a

proper ontration, whene the Gelfand{Na��mark{Segal representation �

!

of A onH

!

has a non-trivial degenerate part. However, the omposition �

!

Æ

p

!

: A ! L

2

(�

!

) is injetive beause it is just the Gelfand homomorphism.

In other words, the dense subspae H

0

!

of H

!

has trivial intersetion with

the degenerate part of H

!

.

4 The non-degenerate part of a entral positive

linear funtional

4.1 Proposition (Exponential boundedness of sums). Let !

1

and !

2

be positive linear funtionals on a

�

-algebra A. Then !

:

= !

1

+ !

2

is expo-

nentially bounded if and only if both !

1

and !

2

are exponentially bounded.

In this ase, the assoiated C

�

-semi-norms satisfy �

!

= maxf�

!

1

; �

!

2

g.

The following proof is a simpli�ation of a similar result given by Neeb [7,

II.4.21℄.

Proof. Assume that both !

1

and !

2

are exponentially bounded. If a; b 2 A

then

!(b

�

a

�

ab) = !

1

(b

�

a

�

ab) + !

2

(b

�

a

�

ab)

� �

!

1

(a)

2

!

1

(b

�

b) + �

!

2

(a)

2

!

2

(b

�

b)

�

�

maxf�

!

1

(a); �

!

2

(a)g

�

2

!(b

�

b):

Hene ! is exponentially bounded with �

!

� maxf�

!

1

; �

!

2

g.

Conversely, assume that ! is exponentially bounded. Lemma 1.3 implies

that H

!

1

� H

!

and that the inlusion map �: H

!

1

! H

!

is ontinuous.

Denote the salar produt on H

!

1

by h�; �i

1

in order to distinguish it from

the salar produt h�; �i on H

!

. If f 2 H

!

1

and a 2 A then

hf; p

!

1

(a)i

1

= f(a

�

) = h�(f); p

!

(a)i = hf;�

�

(p

!

(a))i

1

;
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whih shows that �

�

(p

!

(a)) = p

!

1

(a). Sine � is a module homomorphism

with respet to the A-module struture indued from C

A

, an easy alulation

shows that �

�

is a module homomorphism as well. Let 	 2 B(H

!

) be the

positive square root of ��

�

. If a 2 A then �

!

(a) ommutes with ��

�

and

hene with 	. For a; b 2 A, we onlude that

k�

!

1

(a):p

!

1

(b)k

1

= kp

!

1

(ab)k

1

= k�

�

(p

!

(ab))k

1

=

p

h�

�

(p

!

(ab));�

�

(p

!

(ab))i

1

= k	(p

!

(ab))k

= k	(�

!

(a):p

!

(b))k = k�

!

(a):	(p

!

(b))k

� k�

!

(a)k � k	(p

!

(b))k = �

!

(a) � k�

�

(p

!

(b))k

1

= �

!

(a) � kp

!

1

(b)k

1

:

This shows that !

1

is exponentially bounded with �

!

1

� �

!

. Analogously,

the funtional !

2

is exponentially bounded with �

!

2

� �

!

. This implies that

maxf�

!

1

; �

!

2

g � �

!

. �

4.2 De�nition. A positive linear funtional ! on a

�

-algebra A is alled

non-degenerate if it is exponentially bounded and the

�

-representation �

!

of A on H

!

is non-degenerate. Similarly, ! is alled totally degenerate if it

is exponentially bounded and the

�

-representation �

!

of A on H

!

is totally

degenerate.

Note that a positive linear funtional on A is totally degenerate if and

only if it vanishes on A

3

. An exponentially bounded positive linear fun-

tional ! on A is non-degenerate if and only if for every a 2 A and every " > 0,

there are x; y 2 A suh that !

�

(a�xy)

�

(a�xy)

�

< ". Equivalently, for every

a 2 A and every " > 0, there is a z 2 A suh that !

�

(a� za)

�

(a� za)

�

< ".

4.3 Proposition (Uniqueness of the non-degenerate part of !).

Let A be a

�

-algebra, let !

0

2 Pos(A; C ) be totally degenerate, and let !

1

2

Pos(A; C ) be non-degenerate. Set !

:

= !

0

+ !

1

. Then the map (f

0

; f

1

) 7!

f

0

+ f

1

: H

!

0

�H

!

1

! H

!

is an isometri isomorphism.

Let pr

1

: H

!

! H

!

1

denote the orthogonal projetion. Then all a; b 2 A

satisfy !

1

(b

�

a) = hpr

1

(p

!

(a));pr

1

(p

!

(b))i. In partiular, the values !

0

(b

�

a)

and !

1

(b

�

a) are uniquely determined by !.

Proof. Sine the A-moduleH

!

0

is totally degenerate and the A-moduleH

!

1

is non-degenerate, their intersetion is f0g. Therefore, Lemma 1.3 shows

that the map desribed in the statement is an isometri isomorphism. The

same lemma shows that the inverse isomorphism maps p

!

(a) to the pair

(p

!

0

(a); p

!

1

(a)) whenever a 2 A, so that p

!

1

(a) = pr

1

(p

!

(a)). We infer that

all a; b 2 A satisfy

!

1

(b

�

a) = hp

!

1

(a); p

!

1

(b)i = hpr

1

(p

!

1

(a));pr

1

(p

!

1

(b))i:
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Sine pr

1

is the orthogonal projetion of H

!

onto its non-degenerate part,

this map is uniquely determined by !, whene so are the values !

1

(b

�

a)

and !

0

(b

�

a) = !(b

�

a)� !

1

(b

�

a). �

4.4 De�nition. A positive linear funtional ! on a

�

-algebra A is alled

entral if all a; b 2 A satisfy !(ab) = !(ba). This ondition is equivalent to

!(a

�

a) = !(aa

�

) for all a 2 A by the polarization identity

ab =

1

4

3

X

k=0

i

k

(i

k

a

�

+ b)

�

(i

k

a

�

+ b) (a; b 2 A):

4.5 Remark (Central positive linear funtionals). (a) Let ! be a en-

tral positive linear funtional on a

�

-algebra A. Then ker(p

!

) � ker(�

!

) =

�

a 2 A; !

�

(a

�

a)

2

�

= 0

	

. The kernel of p

!

is a

�

-invariant ideal of A, so that

a onjugate linear involution J

!

on H

0

!

may be de�ned by J

!

(p

!

(a))

:

=

p

!

(a

�

). This involution is isometri and hene extends to an involution

onH

!

, whih will also be denoted by J

!

and whih is also isometri. Sine J

!

is onjugate linear, the latter ondition means that hJ

!

(f); J

!

(g)i = hg; fi

holds for all f; g 2 H

!

. The deomposition of H

!

as a diret sum of its

totally degenerate and its non-degenerate part is invariant under J

!

be-

ause the non-degenerate part is the losed linear span of the J

!

-invariant

set p

!

(AA).

(b) Assume, in addition, that ! is non-degenerate. Then

ker(p

!

) =

n

a 2 A; p

!

(a) 2 (�

!

(A):H

!

)

?

o

= fa 2 A; 8 b;  2 A : !(ba) = 0g

= fa 2 A; 8 b;  2 A : !(ab) = 0g = ker(�

!

):

4.6 De�nition. A Hilbert algebra is a

�

-algebra A with a (positive de�nite)

salar produt suh that the following axioms are satis�ed:

(i) 8 a; b 2 A : ha; bi = hb

�

; a

�

i;

(ii) 8 a; b;  2 A : hab; i = hb; a

�

i;

(iii) for every a 2 A, the map x 7! ax : A! A is ontinuous;

(iv) span(AA) is dense in A.

4.7 Remark (Theory of Hilbert algebras). We ollet some funda-

mental results from the theory of Hilbert algebras without giving proofs. A

onvenient referene for most of the material is Dixmier [5, Appendix A, 54{

60℄; see also Dixmier [4, I.5 and I.6℄, Palmer [9, 11.7℄, and Rie�el [12, x 1℄.

Let A be a Hilbert algebra. Then all a; b;  2 A satisfy hab; i = ha; b

�

i,

and for every a 2 A, the map x 7! xa : A! A is ontinuous. Thus there is
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a perfet left-right symmetry, whih our further exposition will suppress for

the sake of brevity.

Let H

A

be the Hilbert spae ompletion of A, and let J

A

: H

A

!H

A

be

the ontinuous extension of the involution of A. For a 2 A, let U

a

2 B(H

A

)

be the ontinuous extension of the left translation map x 7! ax : A ! A

to H

A

. Then a 7! U

a

: A ! B(H

A

) is a non-degenerate

�

-representation.

The weak losure of its image is denoted by U(A) � B(H

A

) and alled the

left von Neumann algebra of A.

An element x 2 H

A

is alled bounded if the map a 7! U

a

:x : A! H

A

is

ontinuous. The ontinuous extension of this map to H

A

is denoted by V

x

2

B(H

A

). If x 2 A then x is bounded, and kV

x

k = kU

x

k. The vetor subspae

A

0

� H

A

of bounded elements of H

A

is invariant under the involution J

A

,

and it beomes a Hilbert algebra if multipliation is de�ned by xy

:

= V

y

:x for

x; y 2 A

0

. If x; y 2 A then V

y

:x = U

x

:y = xy, so that the multipliation on A

0

extends the multipliation on A. If a 2 A

0

then the map x 7! ax : A

0

! A

0

has a ontinuous extension to H

A

, whih belongs to U(A) and is denoted

by U

a

.

Let s 2 Pos(U(A)). If the positive square root of s in U(A) has the

form U

a

for an element a 2 A

0

, set �(s)

:

= ha; ai. If there is no suh

a 2 A

0

, set �(s)

:

= 1. Then � : Pos(U(A)) ! [0;1℄ is a semi-�nite faith-

ful normal trae. It is alled the natural trae de�ned by A. We have

ft 2 U(A); �(t

�

t) <1g = fU

a

; a 2 A

0

g =

:

n

�

. There is a unique linear

funtional

_

� on the ideal m

�

:

= span(n

�

n

�

) of U(A) suh that

_

�(s) = �(s)

holds for all s 2 m

�

\ Pos(U(A)). All a; b 2 A

0

satisfy

_

�(U

�

b

U

a

) = ha; bi.

De�ne the Rie�el norm on A

0

by kak

0

:

= kak

H

A

+kU

a

k

B(H

A

)

for a 2 A

0

.

This norm is sub-multipliative and

�

-invariant. It is also omplete (Rief-

fel [12, 1.15℄), and the Banah

�

-algebra (A

0

; k � k

0

) is hermitian (Palmer [9,

11.7.11℄). This means that every element a 2 A

0

with a

�

= a satis�es

Sp(a) � R. By the Shirali{Ford Theorem [17℄, a Banah

�

-algebra is hermi-

tian if and only if it satis�es the apparently stronger ondition that every

element of the form a

�

1

a

1

+ � � � + a

�

n

a

n

has non-negative real spetrum (see

also Bonsall and Dunan [3, 41.4, 41.5℄ and the exposition by Pt�ak [10℄).

4.8 Proposition (The natural positive linear funtional on a Hil-

bert algebra). Let A be a Hilbert algebra. Then there is a non-degenerate

entral positive linear funtional !

A

on A suh that all a; b 2 A satisfy

!

A

(b

�

a) = ha; bi. The map p

!

A

: A ! H

0

!

A

is an isometri isomorphism

of A-modules, so that it extends to an isometri isomorphism of A-modules

p

!

A

: H

A

!H

!

A

. In partiular, every a 2 A satis�es kU

a

k = k�

!

A

(a)k.

These properties de�ne !

A

uniquely on the linear span of AA only, and the

extension to A is indeed arbitrary. Nevertheless, it seems justi�ed to all !

A

\the natural" positive linear funtional on A.
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Proof. Let � : Pos(U(A)) ! [0;1℄ be the natural trae de�ned by A, and

let

_

� be the assoiated linear funtional on m

�

. If a 2 span(AA) then U

a

2

m

�

, and we set !

A

(a)

:

=

_

�(U

a

). This yields a linear funtional on span(AA),

whih may be extended to a linear funtional !

A

on A.

Let a; b 2 A. We alulate !

A

(b

�

a) =

_

�(U

b

�

a

) =

_

�(U

�

b

U

a

) = ha; bi. In

partiular, the linear funtional !

A

is positive. It is also entral beause

!(ab) = hb; a

�

i = ha; b

�

i = !(ba). The assertions about p

!

A

follow from the

alulations

ker(p

!

A

) = fa 2 A; !(a

�

a) = 0g = fa 2 A; ha; ai = 0g = f0g

and hp

!

A

(a); p

!

A

(b)i = !

A

(b

�

a) = ha; bi. The fat that AA is a total subset

of A proves that ! is non-degenerate. �

4.9 Example (Commutative Hilbert algebras). Let A be a ommuta-

tive Hilbert algebra, and let !

:

= !

A

be the natural positive linear funtional

on A. Let �

!

be the Gelfand transform of !. The Planherel Theorem 3.20

and Proposition 4.8 imply that the map �: A ! L

2

(�

!

); a 7! âj

^

A(�

!

)

is

an isometri homomorphism of A-modules whih extends to an isometri

isomorphism H

!

�

=

L

2

(�

!

).

Let X be a loally ompat Hausdor� spae, and let � be a Borel mea-

sure on X whih takes �nite values on ompat sets and satis�es ondi-

tions (i) and (ii) of the Bohner Theorem 3.14. Consider the

�

-algebra

L

2

(�)\L

1

(�) of essentially bounded square-integrable funtions on X with

pointwise multipliation and involution. Let A � L

2

(�) \ L

1

(�) be a sub-

algebra suh that AA is a total subset of L

2

(�). (For example, this is the

ase if C



(X) � A, see Rudin [13, 3.14℄.) Under the salar produt of L

2

(�),

the algebra A is a ommutative Hilbert algebra with H

A

= L

2

(�). The �rst

paragraph of this remark shows that every ommutative Hilbert algebra an

be realized in this way, and if we wish, we an hoose (X;�) suh that A

is a dense subalgebra of C

0

(X). If a 2 A then U

a

is multipliation by a.

The Hilbert algebra of bounded elements of L

2

(�) is L

2

(�) \ L

1

(�), and

if f is one of its elements then U

f

is again multipliation by f . The Rief-

fel norm is given by kfk

0

= kfk

2

+ kfk

1

. If f : X ! R

+

0

is bounded and

integrable then the natural trae satis�es �(U

f

) =

R

f d�. In partiular, if

a 2 span(AA) then the natural positive linear funtional !

A

on A is given

by !

A

(a) =

R

a d�.

Assume, in addition, that the measure � is �-�nite, and that the uniform

losure of A ontains C

0

(X). We laim that the left von Neumann algebra

of A satis�es U(A) = fv 7! f � v; f 2 L

1

(�)g. Dixmier [4, I.7.3℄ shows that

the right-hand side is a von Neumann algebra in L

2

(�), so that it suÆes to

show that its subalgebra fU

a

; a 2 Ag is strongly dense. Choose f 2 L

1

(�),

v 2 L

2

(�), and " > 0. We have to �nd an element a 2 A suh that

k(f�a)vk

2

< ". We may assume that f 6= 0. There is a measurable funtion

s : X ! C with �nite image suh that E

:

= s

�1

(C

�

) has �nite measure and
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kv � sk

2

< "=(9kfk

1

), see Rudin [13, 3.13℄. Lusin's Theorem [13, 2.24℄

yields a funtion g 2 C



(X) suh that

�(fx 2 E; f(x) 6= g(x)g) <

"

2

36kfk

1

2

ksk

1

2

and kgk

1

� kfk

1

, so that

k(f � g)sk

2

=

�

Z

E

jf � gj

2

jsj

2

d�

�

1

2

<

"

3

:

By hypothesis, we �nd an element a 2 A suh that

kg � ak

1

< max

�

kfk

1

;

"

3ksk

2

�

:

These onditions imply that k(g � a)sk

2

� kg � ak

1

ksk

2

< "=3 and that

k(f � a)(v � s)k

2

� kf � ak

1

kv � sk

2

< "=3. We onlude that

k(f � a)vk

2

= k(f � a)(v � s) + (f � g)s+ (g � a)sk

2

< ":

This proves our laim.

Speialize the above situation by hoosing X = R, and let � be Lebesgue

measure. For n 2 N, let a

n

: X !

�

0;

1

n

�

be ontinuous with supp(a

n

) �

[0; n

2

℄ and f([1; n

2

� 1℄) =

�

1

n

	

. Then ka

n

k

0

� 1 +

1

n

and !

A

(a

n

) � n�

2

n

.

This proves that !

A

need not be ontinuous.

4.10 Theorem (The non-degenerate part of !). Let ! be an exponen-

tially bounded entral positive linear funtional on a

�

-algebra A. Then there

exist entral positive linear funtionals !

0

and !

1

on A suh that !

0

is totally

degenerate, !

1

is non-degenerate, and ! = !

0

+!

1

. On the

�

-algebra �

!

(A),

a salar produt may be de�ned by h�

!

(x); �

!

(y)i

:

= !

1

(y

�

x) for x; y 2 A.

This salar produt turns �

!

(A) into a Hilbert algebra.

If � : A ! B is a

�

-homomorphism from A onto a Hilbert algebra suh

that all x; y 2 A satisfy !

1

(y

�

x) = h�(x); �(y)i then there is an isometri

isomorphism  : �

!

(A)! B suh that � =  Æ �

!

.

Proposition 4.3 shows that !

0

and !

1

are essentially uniquely determined

by !.

Proof. The last assertion follows immediately from the observation that

ker(�

!

) = fa 2 A; h�

!

(a); �

!

(a)i = 0g

= fa 2 A; h�(a); �(a)i = 0g = ker(�):

We will �rst de�ne the Hilbert algebra struture on B

:

= �

!

(A). The

deomposition of ! will be onstruted from the natural positive linear
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funtional on B. Let pr

1

: H

!

! H

1

be the orthogonal projetion of H

!

onto its non-degenerate part, and set p

1

:

= pr

1

Æp

!

. Note that the involu-

tion J

!

of H

!

de�ned in Remark 4.5 satis�es J

!

Æ pr

1

= pr

1

ÆJ

!

, so that

J

!

(p

1

(a)) = p

1

(a

�

) holds for all a 2 A. Set H

:

= p

1

(A) � H

1

. Sine

ker(p

1

) =

n

a 2 A; p

!

(a) 2 H

?

1

o

= fa 2 A; 8 b;  2 A : !(ba) = 0g

= fa 2 A; 8 b;  2 A : !(ab) = 0g = ker(�

!

);

there is an isomorphism �

!

(a) 7! p

1

(a) : B ! H of A-modules. In partiu-

lar, we an de�ne a salar produt on B by

h�

!

(a); �

!

(b)i

:

= hp

1

(a); p

1

(b)i:

Let us hek that B is a Hilbert algebra. Let b

1

; b

2

; b

3

2 B, and hoose

a

1

; a

2

; a

3

2 A suh that b

j

= �

!

(a

j

) holds for j 2 f1; 2; 3g. For the �rst two

axioms, we alulate

hb

�

2

; b

�

1

i = hp

1

(a

�

2

); p

1

(a

�

1

)i

= hJ

!

(p

1

(a

2

)); J

!

(p

1

(a

1

))i = hp

1

(a

1

); p

1

(a

2

)i = hb

1

; b

2

i

and

hb

2

; b

�

1

b

3

i =




p

1

(b

2

); p

1

(b

�

1

b

3

)

�

=




p

1

(b

2

);pr

1

�

�

!

(b

�

1

):p

!

(b

3

)

��

=




p

1

(b

2

); �

!

(b

�

1

):p

1

(b

3

)

�

=




�

!

(b

1

):p

1

(b

2

); p

1

(b

3

)

�

=




p

1

(b

1

b

2

); p

1

(b

3

)

�

= hb

1

b

2

; b

3

i:

Under the isomorphism of B onto H, the left multipliation map x 7!

b

1

x : B ! B orresponds to the restrition of �

!

(a

1

) to H, whih shows

that it is ontinuous. Similarly, the linear span of BB orresponds to the

linear span of p

1

(AA) = p

!

(AA), whih proves the fourth axiom. Thus

B = �

!

(A) is a Hilbert algebra.

Let !

B

be the natural positive linear funtional on B de�ned in Propo-

sition 4.8, so that all x; y 2 B satisfy !

B

(y

�

x) = hx; yi. This is pulled

bak to a entral positive linear funtional on A by !

1

:

= !

B

Æ �

!

, so that

h�

!

(x); �

!

(y)i = !

1

(y

�

x) holds for all x; y 2 A. If f 2 H

1

and a 2 A then

f(a) = hf; p

!

(a

�

)i = hf; p

1

(a

�

)i. Therefore, the positive de�nite kernel K

H

1

on A assoiated with H

1

by Lemma 1.1 satis�es

K

H

1

(y; x) = hp

1

(x

�

); p

1

(y

�

)i = h�

!

(x

�

); �

!

(y

�

)i = !

1

(yx

�

) = K

!

1

(y; x)

for all x; y 2 A. Theorem 1.2 shows that H

1

= H

K

H

1

= H

!

1

. In partiular,

the positive linear funtional !

1

is non-degenerate. De�ne a linear funtional

on A by !

0

:

= ! � !

1

. Then !

0

is positive beause

!

0

(a

�

a) = !(a

�

a)� !

1

(a

�

a) = kp

!

(a)k

2

� kp

1

(a)k

2

� 0
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holds for all a 2 A. Sine all a; b 2 A satisfy p

!

(ab) = �

!

(a):p

!

(b) 2 H

1

and

therefore

!

0

(b

�

a

�

ab) = !(b

�

a

�

ab)� !

1

(b

�

a

�

ab) = kp

!

(ab)k

2

� kp

1

(ab)k

2

= 0;

the positive linear funtional !

0

is totally degenerate. �

4.11 Remark (The ommutative ase). Let ! be an exponentially

bounded entral positive linear funtional on a

�

-algebra A, and denote the

orthogonal projetion of H

!

onto its non-degenerate part by pr

1

: H

!

!H

1

.

In the proof of Theorem 4.10, the theory of Hilbert algebras was needed in

order to onstrut a positive linear funtional !

1

on A suh that all a; b 2 A

satisfy hpr

1

(p

!

(a));pr

1

(p

!

(b))i = !

1

(b

�

a).

Assume that A is ommutative. Then the Planherel Theorem 3.20

allows us to onstrut !

1

without using Hilbert algebras. Indeed, let �

!

be the Gelfand transform of !, and de�ne the Planherel homomorphism

�

!

: H

!

! L

2

(�

!

) as in Theorem 3.20. If a 2 A is suh that â 2 L

1

(�

!

),

set !

1

(a)

:

=

R

â d�

!

, and extend !

1

arbitrarily to a linear funtional on A.

Then !

1

is a positive linear funtional with the property desribed in the �rst

paragraph, and we obtain the deomposition ! = !

0

+!

1

as in Theorem 4.10.

If � is a a semi-norm on A suh that

�

�

R

â d�

!

�

�

� �(a) holds for all a 2 A

with â 2 L

1

(�

!

) then !

1

an be hosen suh that !

1

� �, as follows from

the Hahn{Banah Theorem on dominated extension (see Rudin [14, 3.3℄).

4.12 Proposition (The hermitian Banah

�

-algebra of !). Let ! be

a non-degenerate entral positive linear funtional on a

�

-algebra A. By

Remark 4.5 (b), we may de�ne a norm on the algebra �

!

(A) by the formula

k�

!

(a)k

0

:

= kp

!

(a)k+k�

!

(a)k for a 2 A. Let B be the ompletion of �

!

(A)

with respet to this norm. Then B is a hermitian Banah

�

-algebra with

isometri involution, and there is a non-degenerate entral positive linear

funtional ! on B suh that !(xy) = !(�

!

(xy)) holds for all x; y 2 A.

Sine the inlusion of �

!

(A) into B(H

!

) is ontinuous with respet to the

norm k � k

0

, we may view B as a subalgebra of B(H

!

). In partiular, the

norm of B(H

!

) is a C

�

-norm on B.

Proof. Sine ! is non-degenerate, Theorem 4.10 shows that the salar

produt de�ned on the algebra B

0

:

= �

!

(A) � B(H

!

) by h�

!

(x); �

!

(y)i

:

=

!(y

�

x) = hp

!

(x); p

!

(y)i gives this algebra the struture of a Hilbert algebra.

Let H be the Hilbert spae ompletion of B

0

, and hoose b 2 B

0

. Sine H

�

=

H

!

as B

0

-modules, the ontinuous extension U

b

of left multipliation by b

to H satis�es kU

b

k

B(H)

= kbk

B(H

!

)

.

As in Remark 4.7, we denote the Hilbert algebra of bounded elements

of H by B

0

0

� H. The algebra B

0

0

is a hermitian Banah

�

-algebra with

respet to the

�

-invariant norm de�ned by kbk

0

:

= kbk

H

+ kU

b

k

B(H)

. If
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a 2 A then k�

!

(a)k

0

= kp

!

(a)k + k�

!

(a)k. Hene we an identify B with

the losure of B

0

in B

0

0

. A losed

�

-subalgebra of a hermitian Banah

�

-

algebra is hermitian (see Palmer [9, 11.4.2℄).

Let !

B

0

0

be the natural positive linear funtional on B

0

0

, and set !

:

=

!

B

0

0

j

B

. Then ! is a entral positive linear funtional on B, and it is non-

degenerate beause BB ontains B

0

B

0

and hene is total in H. Finally, all

x; y 2 A satisfy

!(�

!

(xy)) = !

B

0

0

(�

!

(x

�

)

�

�

!

(y)) = h�

!

(y); �

!

(x

�

)i = !(xy): �

4.13 Remark. (a) The proof shows that ! is most naturally de�ned on the

Hilbert algebra of bounded elements de�ned by the Hilbert algebra �

!

(A),

whih is larger than the ompletion B. We restrit ! to B just in order to

obtain a more elementary statement.

(b) The �nal remarks of Example 4.9 show that ! may not be ontinuous.

() We ould now derive the Bohner Theorem 3.14 from a version for

non-degenerate positive linear funtionals on hermitian ommutative Ba-

nah

�

-algebras suh as it is given by Fell and Doran [6, 21.4℄. However, this

would be a logial detour. In fat, the diret proof of Theorem 3.14 whih

we have given above is quite similar to the proof of the more speial result

by Fell and Doran.

4.14 Remark (Integral deompositions for separable C

�

-algebras).

The relation between entral positive linear funtionals and Hilbert alge-

bras allows us to apply the theory of integral deompositions of traes on

separable C

�

-algebras (Dixmier [5, 8.8.2℄).

Let ! be a non-degenerate entral positive linear funtional on a

�

-

algebra A. Assume that the dimension of A is at most ountable. Then

the losure B � B(H

!

) of �

!

(A) is a separable C

�

-algebra. The quasi-

equivalene lasses [5, 5.3.2℄ of fatorial representations [5, 5.2.6℄ of B form a

measurable spae [5, 7.2.2℄, whih is alled the quasi-spetrum QSp(B) of B.

The restrition of the natural trae � de�ned by the Hilbert algebra �

!

(A)

to Pos(B) is a semi-�nite lower semi-ontinuous trae [5, 6.1.5℄. The deom-

position theorem [5, 8.8.2℄ yields a standard measure � on QSp(B) and a

family (�

�

)

�2QSp(B)

of pure traes on B with the following properties:

(a) the representation of B assoiated to �

�

belongs to the quasi-equival-

ene lass � 2 QSp(B) almost everywhere;

(b) for every b 2 Pos(B), the funtion � 7! �

�

(b) : QSp(B) ! [0;1℄ is

measurable;

() 8 b 2 Pos(B) : �(b) =

Z

QSp(B)

�

�

(b) d�(�).
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In partiular, if a 2 A then

!(a

�

a) = �

�

�

!

(a

�

a)

�

=

Z

QSp(B)

�

�

�

�

!

(a

�

a)

�

d�(�):

Assume that the separable C

�

-algebra B is ommutative. Then a rep-

resentation of B is fatorial if and only if it is one-dimensional, and quasi-

equivalene of fatorial representations is equality of the orresponding har-

aters. Hene QSp(B) =

^

B as sets; in fat, the �-algebra de�ned on QSp(B)

equals the Borel �-algebra of

^

B. (All this follows more or less immediately

from the de�nitions [5℄.) The pure traes of B are exatly the positive salar

multiples of elements of

^

B by [5, 6.7.8℄, and the representation assoiated

with a pure trae is given by the orresponding harater [5, 6.8.3℄.

Apply the above deomposition in the ommutative situation. The mea-

sure � is a Borel measure on

^

B. For every � 2

^

B up to a set of measure 0,

statement (a) implies that there is a positive number t(�) 2 R

+

suh that

�

�

= t(�) � �. By (b), the funtion

^

b � t :

^

B ! C is measurable for all

b 2 B. We laim that t :

^

B ! R

+

is measurable. Let E � R

+

be measur-

able, and let (b

n

)

n2N

be a total sequene in B. Set U

n

:

=

^

b

�1

n

(C

�

) �

^

B

for n 2 N, so that

^

B =

S

n

U

n

. The restrition of t to U

n

is a measur-

able funtion beause it is the quotient of

^

b

n

� t by

^

b

n

. We onlude that

t

�1

(E) =

S

n

f� 2 U

n

; t(�) 2 Eg is indeed a measurable subset of

^

B.

Sine t is a measurable funtion, a Borel measure on

^

B is de�ned by

�(E)

:

=

R

E

t d� for E 2 B(

^

B) (see Rudin [13, 1.29℄). Statement () shows

that �(b) =

R

^

B

^

b � t d� =

R

^

B

^

b d� holds for all b 2 Pos(B). By polarization,

this implies that all a

1

; a

2

2 A satisfy !(a

1

a

2

) =

R

^

B

�

!

(a

1

a

2

)b d�. As in

the proof of Lemma 3.11, one shows that � takes �nite values on ompat

subsets of

^

B. Sine B is separable and

^

B[f0g is weak

�

-ompat, this set is a

ompat metrizable spae (Rudin [14, 3.16℄), whih implies that every open

subset is �-ompat. We onlude that � is a regular Borel measure [13,

2.18℄. Transporting � to

^

A(�

!

) by means of the homeomorphism � 7!

� Æ �

!

:

^

B !

^

A(�

!

), we obtain a regular Borel measure �

0

on

^

A(�

!

) suh

that !(a

1

a

2

) =

R

â

1

â

2

d�

0

holds for all a

1

; a

2

2 A. If !

0

2 Pos(A; C ) is

totally degenerate then �

0

is a representing measure for the positive linear

funtional !

00

:

= ! + !

0

beause all a

1

; a

2

; a

3

2 A satisfy

!

00

(a

1

a

2

a

3

) = !(a

1

a

2

a

3

) =

Z

^

A(�

!

)

â

1

â

2

â

3

d�

0

:

For ommutative algebras of ountable dimension, the existene part of

the Bohner Theorem 3.14 is thus a speial ase of a more general integral

deomposition.

The same arguments apply if A is a separable topologial

�

-algebra and !

is a non-degenerate entral positive linear funtional on A suh that �

!

is

ontinuous with respet to the norm of B(H

!

). Continuity of �

!

is automati
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if A is a Banah

�

-algebra (see Bonsall and Dunan [3, 37.3℄) or a (Makey)

omplete ontinuous inverse

�

-algebra with ontinuous involution [2℄.
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