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Abstract

For positive linear functionals on complex commutative *-algebras,
we prove abstract Bochner and Plancherel Theorems without any hy-
pothesis of non-degeneracy. A central positive functional on a *-algebra
is decomposed as the sum of a non-degenerate and a totally degener-
ate positive linear functional by relating the non-degenerate part to
the natural trace of an associated Hilbert algebra.! 2

Let w be a positive linear functional on a complex commutative Banach
*-algebra with unit. The Abstract Bochner Theorem yields a unique regular
Borel measure x on the involutive part A of the Gelfand spectrum of A such
that w(a) = [ @ du holds for each a € A. The Abstract Plancherel Theorem
states that the natural representation of A on L?(x) by multiplication of
functions is unitarily equivalent to the representation associated with w by
the Gelfand-Naimark—-Segal construction.

One would like to have such theorems under more general hypotheses.
For example, let A be the convolution algebra of continuous functions on a
non-discrete locally compact abelian group, and let w be evaluation at the
unit element. Sufficiently general theorems for this situation are proved by
Fell and Doran [6, VI.21.4 and VI.21.6]. They assume that A is a dense
*-subalgebra of a commutative hermitian Banach *-algebra (which need not
be unital), that the positive linear functional w on A satisfies a certain
boundedness condition, and that the Gelfand—Naimark—Segal representa-
tion associated with w is non-degenerate. Their results are special cases of
the content of the first part of this article. It turns out that the topology
of A is irrelevant. In fact, it seems more transparent to develop the theory
for a positive linear functional w on an abstract algebra A. If A is unital
then one can still factor w over an associated C*-algebra, so that one can
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apply the above results for commutative A, and Choquet Theory for non-
commutative A. In the case of a non-unital but commutative algebra, we
use a weaker boundedness condition than Fell and Doran which is not only
sufficient but also necessary, and we drop the hypothesis of non-degeneracy.
The treatment of possibly degenerate positive functionals has the impor-
tant consequence that such a functional can be written as the sum of a
non-degenerate and a totally degenerate part. By a different technique, we
also establish this decomposition for central positive linear functionals on
non-commutative algebras. The original motivation for an integral repre-
sentation of a possibly degenerate positive linear functional on a non-unital
algebra is related to the unitary representation theory of infinite-dimensional
Lie groups of Harish-Chandra type [1].

Here is an overview of the content of this article. Let w be a positive
linear functional on a complex commutative *-algebra A, and let 4 be a com-
pactly supported Borel measure on the involutive spectrum A. We say that u
represents w if all a,b, ¢ € A satisfy w(abc) = [ abeé dp. Examples show that
this is the best kind of representation which one can achieve for general w. If
a representing measure exists then w is exponentially bounded, which means
that A acts by bounded operators on the Gelfand—Naimark—Segal Hilbert
space associated with w. This condition is assumed throughout. Among
the general properties of a representing measure p which we prove, the
most important is that the closed support of i is a locally compact subset
A(ow) C A which is uniquely determined by w and can easily be described in
terms of w. Conversely, the existence of a representing measure p,, on A(ow)
can be deduced from the Riesz Representation Theorem for positive linear
functionals C.(A(0,,)), and under the uniqueness conditions appearing in
that theorem, the representing measure p, is unique. The positive linear
functional w admits an extension to the unitization of A if and only if u,
is finite and satisfies w(a) = [ @ dp,, for all a € A. Similarly, the equation
w(ab) = [ @b dp,, holds for all a,b € A if and only if the Gelfand-Naimark-
Segal representation associated with w is non-degenerate. In this case, we
say that w is non-degenerate. For general w, the non-degenerate part of
this representation is isomorphic to the representation of A on L2(u,) by
a.f := a- f. This is our general version of the Abstract Plancherel Theorem.

In the second part of this article, we replace the hypothesis that the
*-algebra A is commutative by the weaker assumption that the exponen-
tially bounded positive linear functional w on A is central, which means
that w(ab) = w(ba) holds for all a,b € A. This assumption is sufficient for
the construction of a Hilbert algebra structure on the image of A under the
Gelfand—-Naimark—Segal representation. The natural trace on that Hilbert
algebra leads to a non-degenerate positive linear functional w; on A such
that wy := w — w; is a totally degenerate positive linear functional. The
decomposition w = wp + w; into a totally degenerate and a non-degenerate



part is essentially unique (i.e. it is unique on the linear span of AA). This de-
composition of w corresponds to a direct sum decomposition of the Gelfand-
Naimark—Segal module. The construction of a Hilbert algebra from w also
leads to a factorization of w through a homomorphism from A into a hermi-
tian Banach *-algebra.

If a generalization of the integral representation developed in the first
part to central positive linear functionals w is possible, it will probably be
based on the Hilbert algebra associated with w. We conclude this paper
with a first step in this direction. Assume that the *-algebra A has count-
able dimension or is a separable Banach *-algebra. Then the natural trace
mentioned above is defined on the positive cone of a separable C*-algebra.
For such traces, Dixmier [5] has constructed a decomposition as an integral
over the quasi-spectrum of the C*-algebra. We describe his construction
and show that it specializes to the results in the first part if A is commu-
tative. However, it must be emphasized that Dixmier’s theory is intimately
connected with the assumption of separability.

1 Hilbert spaces with reproducing kernel

Let X be aset. A positive definite (complex-valued) kernel on X is a function
K: X x X — C such that for all finite sequences z1,...,z, € X, the matrix
(K (zk, .’Ej))j . 18 positive semi-definite. Since positive semi-definite matrices

are hermitian, the relation K(y,z) = K(z,y) holds for all z,y € X.

Similarly, one can define positive definite kernels on X with values in
B(V) for a Hilbert space V. For this generalization, the reader is referred
to Neeb [7]. The following results on positive definite kernels have been
specialized from Section I.1 of that monograph, which ends with historical
comments.

We write C* for the complex vector space of all complex-valued functions
on X, and C¥) for the subspace of all elements of CX with finite support.
Recall that a subset of a topological vector space is called total if its linear
span is dense.

1.1 Lemma (Associated kernels). Let X be a set, and let H C CX
be a vector subspace with a Hilbert space structure such that the point
evaluation f — f(z): H — C is continuous for every x € X. Since this is a

linear functional on H, every x gives rise to a unique vector K}* € H such
that all f € H satisfy f(z) = (f, K}*). The map

K": XxX —C, (y,2) — (K}, K]

is a positive definite kernel, and it satisfies K™(-,z) = K] for every z € X.
It is called the reproducing kernel of the Hilbert space H.



Proof. The equation K™ (y,z) = (K;*,K;‘) = K} (y) for z,3y € X follows
from the definitions. If z1,...,z, € X and Ay,..., A\, € C then

D A K ey mi) M= D0 N (K KT M
4,k=1 Jk=1

n n
PUVED SR NED
j=1 k=1

Hence the matrix (K™ (zy, :vj))j ., 18 positive semi-definite. O

1.2 Theorem (Hilbert spaces with reproducing kernel). Let X be a
set.

(a) Let K: X xX — C be a positive definite kernel. Then there is a unique
vector subspace Hy C CX and a unique scalar product (-,-) g on Hx
such that H g is a Hilbert space with continuous point evaluations, and
KMK = K. The space H is called the Hilbert space with reproducing
kernel K.

(b) Let H C CX be a vector subspace with the structure of a Hilbert space
with continuous point evaluations. Then H g = H as Hilbert spaces.

(c) Let H be a Hilbert space, let ¢: X — H be a map, and define a linear
map ®: H — C¥ by ®(v)(z) := (v,¢(z)). Then

K:XxX —C, (y,z)— (px),oy)

is a positive definite kernel, we have ker(®) = ¢(X)*, and the restric-
tion of ® to ker(®)* = span(p(X)) is an isometry onto Hr.

Proof. We will first construct a Hilbert space Hx as in (a) for a positive
definite kernel K on X. Then we will prove assertion (c¢). This will easily
imply assertion (b) and the uniqueness statement in (a).

Let K be a positive definite kernel on X. Define a positive semi-definite
sesquilinear form on CX) by

(f.g)o:= Y flz) K(yz) g(y) (f’ge(c(x))‘

z,yeX

Let N := {f € CX); (f, f)o = 0} be the radical of this form. Let K with
scalar product (-,-); be the Hilbert space completion of the quotient space
CX)JN. For f € CX) set [f] := f+N € K, and for z € X, let 5, € CX) be
the characteristic function of {z}. Define a linear map ®:  — C* into the
vector space of all complex-valued functions on X by ®(v)(z) := (v, [0z])1-
This map is injective because {[0;]; z € X} is a total subset of K. Thus ¢



provides a realization of K as a linear subspace of CX. Set Hy := ®(K),
and define a complex scalar product (-, )x on Hg by requiring ¢ to be an
isometry. Fix z € X, and define K, := K(-,2) € CX. If y € X then

P([02])(y) = ([02], [0,])1 = (02, 0y )o = K(y, z) = Ku(y),

so that K; = ®([0;]) € Hk. Let f € Hg. Then there is a unique v € K
such that f = ®(v), and

f(z) = @(v)(x) = (v, [0])1 = (2(v), 2([0c])) = (f, Ko ke

Hence H g is a Hilbert space with continuous point evaluations, and K ;'[K =
K. If 2,y € X then

KHK(yal‘) = (K?KaK;LﬂK = (Ka:va>K
= (@([d]), 2([0y])) k= ([62], [6y])1 = (8, Oy)o = K (y, ).

Thus we have proved the existence statement in (a).

Let ¢: X — H be a map into a Hilbert space, and define ®: H — C*
and K: X x X — C as in assertion (c). A calculation analogous to the
proof of Lemma 1.1 shows that K is a positive definite kernel. Let Hg
and {K,; v € X} C Hg be defined as above. The definition of ® implies
that ker(®) = (X)), so that ker(®)* = span(¢(X)). Therefore, we may
assume that ¢(X) is a total subset of H. If z,y € X then

(p(x))(y) = (o(z), () = K(y,z) = Ku(y),
so that ®(p(z)) = K,. Hence ®(p(X)) C Hx. Since

(@(p(2)), 2(p(y)) x = (Ke, Ky) e = K(y,2) = (p(2), ¢(y)),

the restriction of ® to the span of p(X) is an isometry into Hy. This
restriction extends to an isometry ®: H — Hx because {K,; z € X} is a
total subset of Hg. If v € H and z € X then

& (v)(2) = (2(0), Kz) i = (2(v), @(0(2)) k= (v, p(2)) = D(v) ().

We conclude that ® = ®. This completes the proof of (c).

Let H C CX be a Hilbert space with continuous point evaluations. Set
0: X = H, z— K}t and define a positive definite kernel K on X as in (c).
Since p(X) is a total subset of H, we have just proved that ¢ gives rise to an
isometric isomorphism ®: H — Hy which satisfies ®(K}) = K, for every
xe€ X. If feH and x € X then

O(f)(x) = (2(f), Ka)x = (@(f), 2(K)) i = (f, KJ) = f(2).
Thus ®(f) = f and H = Hg, and we have proved (b).

Finally, let K be a positive definite kernel on X, and let H C CX be a
vector subspace with the structure of a Hilbert space with continuous point
evaluations such that K* = K. Then assertion (b) shows that H = Hn =
Hx as Hilbert spaces. This proves the uniqueness statement in (a). O



1.3 Lemma (Sums of kernels). Let K| and K3 be positive definite kernels
on a set X, and set K := K; + Ky. Then the linear map

Q:Hi, ®Hi, — Hi,  (f1,fo) —— fi+ fo

is a surjective contraction. Its adjoint is an isometric embedding which
maps K, to (K4, Ko ) for every z € X.

Proof. Define p: X — Hg, ® Hk,, © — (K14, K2,), and apply Theo-
rem 1.2 (¢). The map ® defined there maps (f1, f2) € Hk, ® Hxk, to the
map

z = ((f1, f2), (K12, Ka0)) = f1(2) + fo(z): X = C,

so that it coincides with the map ® defined in the present lemma. Similarly,
the positive definite kernel defined in Theorem 1.2 (¢) maps (y,z) € X x X
to (Ki,0,Kog), (Kiy, Koy)) = Ki(y,2)+Ka(y, z), so that it coincides with
the kernel K = K; + K5. Hence Theorem 1.2 shows that ® is a surjective
contraction.

The adjoint ®* of ® is an isometry of Hx onto the closed linear span
of p(X) because ® maps this space isometrically onto H i and its orthogonal
complement to 0. If z € X and (f1, f2) € Hx, ® Hk, then

((f1, f2), @*(Ky)) i = (@(f1, f2), Ku)k = (f1 + f2, Kz)
= fi(z) + fa(z) = (f1, K12) Ky + (f2, K22) K6y = ((f1, f2), (K10, K2.2))-

Hence ®*(K,) = (K14, K24). O

2 The Gelfand—Naimark—Segal construction

A *-algebra is a complex associative algebra A with a conjugate-linear anti-
multiplicative involution a — a*: A — A. Its unitization A = A+ C-1is
defined as A if A has a unit element, and as the direct sum A @ C of vector
spaces with algebra multiplication (a, @) - (b,3) := (ab + ab + Ba,af3) and
involution (a,a)* := (a*,@) if A does not have a unit element. Even for
a *-algebra A, we will write A* for the space of linear functionals from A
into C. Let

Pos(A4,C) :={w € A*; Ya € A: w(a*a) >0}

be the convex cone of positive linear functionals. An easy calculation shows
that every element w € Pos(A, C) gives rise to a positive definite kernel on A
by

K,:AxA—C, (a,b)+r— w(ab").
Let H, := Hk, C CA be the Hilbert space with reproducing kernel K.
Define a linear map

Pw: A—>Hw, a'—>Kw,a* :Kw('7a*) :LU(' a)'



We will often use the dense subspace HC := p,(A) of H. If a,b € A then

(pw(a)apw(b» = (Kw,a*a w,b*> = Kw(b*aa*) = w(b*a)'

This implies the equation w(b*a) = w(a*b) and the Cauchy-Schwarz inequal-
ity
lw(a*b) > < w(a*a) w(b*b).

Note that H,, C A*. Indeed, if f € H,,, a,b € A and A € C then

fla+2b) = (f,pu((a+Ab)"))
= (f,pula”) + Xpu (b))
= (f,pu(a®)) + M f,pu(0%)) = fla) + Xf(b).

2.1 Remark (Alternative construction). The point of view on the
Gelfand-Naimark—Segal construction presented here is taken from Neeb [7].
In many other books, one defines A, := {a € 4; Vb€ A: w(ba) =0} =
ker(p,,) directly, proves that w induces a scalar product on A/A,,, and defines
the Hilbert space H,, as the completion of A/A,,. Then one can define a map
p: A— Hy, A— a*+ A, and use Theorem 1.2 (c) in order to identify #,,
with the reproducing kernel Hilbert space defined above. Since A, is a left
ideal of A, the construction yields a left A-module structure on A/A,, to
which we will now turn our attention.

The vector space C* is a left A-module® under the action of A by right
multiplication in the argument, which means that (a.f)(b) := f(ba) when-
ever a,b € A and f € CA. Note that A* is a submodule of C*, and that we
can write py(a) = a.w for a € A. If a,b € A then

a.py(b) = a.(b.w) = ab.w = p,(ab).

Thus p,, is a homomorphism of A-modules, the pre-Hilbert space H., is a
submodule of C*, and we obtain a representation

my: A — End(HY), a+— (f = a.f).

We show that this is a *-representation. Let a € A and f,g € HC, and
choose z,y € A such that f = p,(z) and g = p,(y). Then

(n9(a).,9) = (@0(@).po(1)) = (Pula), pu(y))
= w(y*az) = w((a"y)*z)
= (pul).pula"y)) = (pul). 0 pu()) = (f.7%(a").g)-

3Even if A is a non-unital algebra, the definitions include that all A-modules are vector
spaces and all module homomorphisms are linear maps.



2.2 Proposition (Neeb [7, III.1.3]: invariance of #,). Let w be a
positive linear functional on a *-algebra A, and choose a € A. Then a.H,, C
H,, if and only if 70 (a) is bounded. In this case, the unique continuous
extension of 7°(a) to H,, is given by the action of a.

Proof. Assume that a.H, C H,. Let f € H, and g € H?, and choose
b € A such that g = p,(b). Then

(a.f,9) = (a.f,pu (b)) = (a.f)(b") = f(b"a)
= (f,pw(a™)) = (f,a"pu(b)) = (f,a".g).

Choose a sequence (fy)nen in H,, which converges to some element f € H,,
such that the sequence (a.f,)nen converges to some h € Hy,. If g € HO then

(h,g) = lim (a.fn, g) = lim (fn,a”.g) = (f,a".g) = {a.f, g)-

Hence h = a.f, and the Closed Graph Theorem (see Rudin [14, 2.15]) shows
that f — a.f: H, — Hy is continuous. Therefore, the restriction 70 (a) of
this map to HC is continuous.

Conversely, assume that 70 (a) is continuous, so that it extends uniquely
to a bounded operator 7, (a) € B(Hy). If f,g € H then

(mo(@)™.f,9) = (f, mu(a).9) = (f,m5(a)-g) = (m(a*).f, 9).

Hence m,(a)*|y0 = 70 (a*). Choose f € Hy,. If b € A then

(mw(a).f)(b) = (mw(a).f,pu (b)) = (f, mu(a)”.pu(b"))
= (f,m(@)pu(0%)) = (f,pu(a’b*)) = f(ba) = (a.f)(b).

Hence 7, (a).f = a.f. In particular, this shows that a.H, C H,,. O

For the following definition, recall that a C*-semi-norm on a *-algebra A
is a semi-norm ¢ on A which satisfies o(a*a) = o(a)? for all a € A.
Sebestyén’s Theorem [16] (cf. Palmer [9, 9.5.14]) states that a C*-semi-
norm o is automatically sub-multiplicative, which means that the inequality
o(ab) < o(a) o(b) holds for all a,b € A.

2.3 Definition. (a) A positive linear functional w on a *-algebra A is
called ezponentially bounded or admissible if H,, is a submodule of C* or,
equivalently, if the endomorphism 70 (a) of H,,(a) is bounded for every a €
A. (The term “exponentially bounded” is used by Neeb [7, II1.1.9], the term
“admissible” was introduced by Rickart [11, IV.5].) In this case, we obtain
a representation

Ty: A— B(H,), ar—(f—a.f).



This is a *-representation because for every a € A, the operator m,(a) is the
unique continuous extension of 7°(a) to H,,.
If w € Pos(A,C) is exponentially bounded, the C*-semi-norm of w is
defined as
ow: A— R, ar— |m,(a)l

(b) Let A be a *-algebra, and let ¢: A — Ry be an arbitrary function.
Then an positive linear functional w on A is called bounded by ¢, or -
bounded for short, if it is exponentially bounded with o, < ¢. This holds if
and only if all a,b € A satisfy w(b*a*ab) < ¢(a)? w(b*b). Indeed, the latter
condition is equivalent to the inequality || (a)| < ¢(a).

Note that we can often assume ¢ to be a C*-semi-norm because an
exponentially bounded positive linear functional w on A is g,-bounded.

If A is a Banach *-algebra, or more generally a (Mackey) complete continuous
inverse *-algebra, then every positive linear functional on A is automatically
bounded by the function a — /p(a*a): A — R, where p denotes the spectral
radius (see [2] and Bonsall and Duncan [3, 37.6]).

Let w € Pos(4,C). If w is ¢-bounded then all a,b € A satisfy

w(b*ab)| = [(u(@)pu (6), pu ()] < Ima(@)]] - Ipw(@)]> < pla) w(5D).

Conversely, if a function p: A — Ry satisfies |w(b*ab)| < p(a) w(b*b) for all
a,b € A then w is bounded by the function a — \/¢(a*a): A — R.

2.4 Lemma (Continuity implies boundedness). Let o be a sub-multi-
plicative semi-norm on a *-algebra A, and assume that w € Pos(A,C) is
continuous with respect to 0. Then w is bounded by the function a +—
vo(a*a): A — R, and also by the *-invariant sub-multiplicative semi-norm
a — max{o(a),o(a*)} on A.

See Palmer [9, 9.4.12] for a more detailed result.

Proof. Continuity of w with respect to ¢ means that there is a constant
C > 0 such that |w(a)| < Co(a) holds for all @ € A. Let a,b € A. Us-
ing the Cauchy-Schwarz inequality, we inductively find that w(b*a*ab)?” <
w(b*(a*a)?"b) w(b*b)*"~! holds for all n € N. Sub-multiplicativity of o
yields

w(b*a*ab)? < C o (b) o(b*) o(a*a)*" w(b*p)?" L.

Taking the 2™-th root and letting n tend to infinity, we find that w(b*a*ab) <

o(a*a) w(b*b). Thus ||7%(a)|| £ /o(a*a) < max{co(a),o(a*)}. O

2.5 Remark (Unital algebras). Let w be an exponentially bounded
positive linear functional on a *-algebra A, and assume that A has a unit
element. The Cauchy—Schwarz inequality implies that every a € A satisfies



lw(a)]? < w(l) w(a*a) < w(1)? o,(a)? and hence |w(a)] < w(l) oy(a).
Thus w is continuous with respect to o,. We also infer the inclusions
ker(m,) C ker(p,) C ker(w). Let B C B(H,) be the closure of m,(A).
Then w induces a positive linear functional on the unital C*-algebra B.
More precisely, there is a unique @ € Pos(B, C) such that w = wWom,. If B is
commutative then the Abstract Bochner Theorem as proved by Fell and Do-
ran [6, 21.2] yields a Borel measure i on the Gelfand spectrum B, unique un-
der certain regularity conditions, such that all b € B satisfy w(b) = [; b dy.
If B is not commutative, we can apply the elaborate theory of integral de-
compositions of positive linear functionals on C*-algebras (see Sakai [15,
Chapter 3]), of which the Abstract Bochner Theorem can be seen as a spe-
cial case.

This article is devoted to the corresponding results for non-unital alge-
bras. In the commutative case, an Abstract Bochner Theorem still holds,
and we obtain strong results on the uniqueness of the integral decomposition,
which may be of interest for unital algebras as well. If A is not commutative
but has countable dimension and w is central, the non-degenerate part of w
corresponds to a trace on B which admits an integral decomposition.

3 Commutative *-algebras

3.1 Gelfand spectrum and Gelfand homomorphism

3.1 Definition. Let A be a commutative *-algebra. The involutive Gelfand
spectrum of A is defined as A := Hom*(A4,C) \ {0}, where Hom* (4, C) de-
notes the space of *-algebra-homomorphisms from A into C with the topo-
logy of pointwise convergence on A. The elements of A are called the invo-
lutive characters of A.

For an arbitrary non-negative function ¢: A — R, let the p-bounded
involutive spectrum of A be

Alp) := {X € A; Vae A:|x(a)| < go(a)}.

3.2 Remark. Let x be an involutive character of a *-algebra A. Then x
is a positive linear functional on A. Since we have defined the notion of
p-boundedness for positive linear functionals as well, we have to check that
it coincides with the new definition for involutive characters. The Gelfand-
Naimark-Segal construction gives ker(p,) = {a € A4; x(a*a) = 0} = ker(x)
and H, = C, and the representation m, is equivalent to y, viewed as a
representation of A on C. Hence o,(a) = |x(a)| holds for all a € A. In
particular, the two notions of ¢-boundedness coincide for x.

3.3 Remark (Topology of A). (a) In the topology of pointwise conver-
gence on A, the set A()U{0} isclosedin {f € C*; Va € A: |f(a)| < ¢(a)},
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which is a compact space by Tychonov’s Theorem. Hence A(yp) is a locally
compact Hausdorff space. If the algebra A has a unit element 1 then all
x € A satisfy x(1) = 1, whence A(y) is closed in A(p) U {0} and therefore
compact.

(b) Assume that for every a € A, the spectrum

Sp(a) :={ e G A-1—a¢(4")"}

is bounded. (This implies that every element has compact spectrum, see
Palmer [8, 2.1.11].) The spectral radius of an element a € A is p(a) :=
sup{|Al; A € Sp(a)}. If a € A and x € A then

Spa(a) 2 Spe(x(a)) = {x(a)},

so that |x(a)| < p(a). We conclude that A = A(p).

3.4 Definition. Let A be a commutative *-algebra. Each a € A gives rise
to a continuous function

a: AU{O} — C, x+— x(a),

which is called the Gelfand transform of a. The restriction of a to a sub-
set of AU {0} such as A or A(p) will also be denoted by @ if no confusion
seems likely. Let ¢: A — RJ be a function. If @ € A then the restric-
tion of @ to A(p) belongs to the C*-algebra Cy(A(p)) of those continuous
complex-valued functions on A(¢p) which vanish at infinity. The *-algebra
homomorphism a — a: A — Co(A(p)) is called the @-bounded Gelfand
homomorphism. Its image is a subalgebra of Cy(A(p)) which is closed un-
der pointwise conjugation, separates the points of /1(90), and does not van-
ish anywhere on A(yp). Hence this image is a uniformly dense subalgebra

of Cy(A(p)) by the Stone-Weierstrass Theorem (cf. Fell and Doran [6, A8]).

3.5 Lemma (Compact subsets of A U {0}). Let A be a commutative
*-algebra, and let K C A be a subset such that K U {0} is compact. Define
a C*-semi-norm on A by

c:A—R ar— Hd|KHOO =sup{|x(a)|; x € K}.
Then K C A(0). If K = A(yp) for some function p: A — R then K = A(0).
Proof. The inequality |x(a)| < o(a) holds for all x € K and all a € 4, so
that K C A(o). In the case that K = A(p), the definition of o shows that

all a € A satisfy o(a) < ¢(a). This implies the reverse inclusion A(o) C K.
U
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3.6 Lemma (A(0) for a C*-semi-norm o). Let o be a C*-semi-norm on
a commutative *-algebra A, and let m,: A — A’ be the natural map into
the corresponding C*-algebra. Then

X > X O Ty (ZG)A — A(0)
is a homeomorphism. In particular, all a € A satisfy o(a) = H&| Ao) HOO

Proof. The map 7, is constructed as follows. Let A, := oc~1({0}) be the
zero ideal of 0. Then o induces a C*-norm on the quotient *-algebra A/A,.
The completion of A/A, with respect to this norm is denoted by A’ and
we set m,(a) 1= a + A, € A7 for a € A.

If x € (ZU)A and a € A then |x(7m,(a))| < ||71-(a)|] = o(a), so that
x o Ty € A(0). Hence we have a map from (ZU)A U {0} into A(s) U {0}
which maps x to x o m,. This map is continuous and injective, and it is
closed because it is a map between compact Hausdorff spaces. Finally, it is
surjective because every y € A(U) induces a continuous involutive character
of A/A,, which extends to a character x of A7 such that ¥ o 7, = x. This
proves the main assertion, which implies that every a € A satisfies

o(a) = ||me(a)|| = sup {|x(7(a))}; x € (A7)}
= sup {Ix(@)l; x € Ao} } = [[al 10l
so that the second assertion follows immediately. U

3.7 Lemma. Let A be a commutative *-algebra, and let K C A be compact.
Then there exists a € A such that the Gelfand transform a does not have
any zero on K.

Proof. For each x € K, choose an element a, € A such that a,(x) # 0.

Since K is compact, we can choose x1, ..., xn € K such that
P * E
Q3= Gy Oy T oo Oy Oy,
has the required property. O

3.8 Proposition (Extension of the Gelfand—Naimark—Segal repre-
sentation). Let o be a C*-semi-norm on a commutative *-algebra A, and
let w € Pos(A,C) be o-bounded. Then the Gelfand-Naimark-Segal rep-
resentation m,: A — B(H,) associated with w factors through a unique

~

*-representation 7, : Cy(A(0)) — B(H,) in the sense that all a € A satisfy

Tw(a) = my(a).

Note that every *-homomorphism between C*-algebras is a contraction (see

~

Dixmier [5, 1.3.7]), so that |7, (¢)|| < ||¢|lco holds for every ¢ € Cy(A(0)).

12



Proof. Let B C B(H,) be the closure of the image m,(A). Then B is a
commutative C*-algebra. If y € B and a € A then

Ix(mw(a))] < [lmw(a)]| = ow(a) < ofa),

so that y o m, € A(c). We obtain a map x — x o m,: B — A(c) which is
continuous. This gives rise to a *-homomorphism

p— (x = p(xom)): Co(A(o)) — Co(B).

The composition of this homomorphism with the inverse of the Gelfand iso-
morphism B — Cy(B) and the inclusion B < B(H,,) is the *-representation
T Co(A(0)) — B(H.,). Thus for ¢ € Cy(A(0)), the operator 7, (¢) € B is
characterized by the fact that its Gelfand transform maps y € B to o(xomy),

i.e. by the formula

Vo € Co(A(0)),x € B: x(Tulp)) = o(x o m).

In particular, if a € A then x (7., (a)) = a(xom,) = x(my,(a)) holds for all x €
B, whence 7, (@) = m,(a). Since the image of the Gelfand homomorphism

from A into Cy(A(0o)) is uniformly dense, this property uniquely determines
the *-representation 7. O

3.9 Remark. The relation x(Tw(p)) = ¢(x o m) for x € B and ¢ €

~

Cy(A(0)) will be used again in the proof of Proposition 3.13.

3.2 Representing measures

Recall that the Borel o-algebra B(X) on a topological space X is the o-
algebra generated by the open sets. A Borel measure on X is a measure
defined on B(X).

3.10 Definition. Let w be a positive linear functional on a commutative
*-algebra A, and let o be a C*-semi-norm on A. A Borel measure p on A(o)

represents w if {d|A(a); a € A} C L3(p) and all a,b,c € A satisfy

/ abé dp = w(abe).
A(o)

Lemma 3.5 shows that we would not obtain a more general concept if we
considered representing Borel measures on other compact subsets of AU{0}.

3.11 Lemma (Representability implies exponential boundedness).
Let w be a positive linear functional on a commutative *-algebra A, let o
be a C*-semi-norm on A, and let i be a Borel measure on A(c) which
represents w. Then y takes finite values on all compact subsets of fl(a),
and w is o-bounded. In particular, A(c) contains A(o,,).
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Proof. Let K C A(o) be compact. Lemma 3.7 yields an element a € A
such that € :=inf {|a(x)|; x € K} is strictly positive, so that

p(K) <et /A( | la|* dp = et w((a*a)?).

Let a,b € A. The Cauchy—Schwarz inequality and Lemma 3.6 show that

w(b*a*ab)® < w(b*b) w(b*(a*a)?d) = w(b*b)/ la|* |b|? dp
A(o)

g

* ~ 2 ~ 7 * ® ok
<) ol [ R d = w0 oo ).
Hence w(b*a*ab) < o(a)? w(b*b), and we conclude that oy, (a) = |7, (a)]| <
o(a). This immediately implies that A(o,) C A(0). O

The space of compactly supported complex-valued functions on a locally
compact space X is denoted by C.(X).

3.12 Proposition (Characterization of representing measures). Let
w be a positive linear functional on a commutative *-algebra A, and let o
be a C*-semi-norm on A. Then the following conditions are equivalent for
a Borel measure j on A(o):

(i) the measure u represents w;

(i) Vo€ ColA(0)), a€ A / ol dyi = (T () po(a), Pu(@);

A(o)

() Vo Colde)), abe s [ pahdn = (mufe)pa(a). )
(in particular, the integral exists).

If these conditions are satisfied then / la|? du < w(a*a) holds for every
o)

a€ A
Proof. If a,b,c € A then

(T (€)-pu (@), pu(b7)) = (Mo (€)-pu(a), pu(b7)) = (pu(ca), pu (b)) = w(bca).

In particular, condition (iii) implies (i).

Assume that condition (i) holds. Choose ¢ € C.(A(0)) and a € A.
The calculation above shows that (ii) holds if ¢ is replaced with an element
c € A. Lemma 3.5 yields b € A such that b does not vanish anywhere
on the support of . Extending the quotient ¢/ |3|2, which is defined on a
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neighbourhood of supp(y), by zero, we view it as an element of C.(A(0)).
For an arbitrary element ¢ € A, we calculate

‘/ 2 |d|2 dp — (70_;((,0)-1)0_,(&),[)0_,(&))‘
A(o)

= [ Ll P [ elal b au
Ago) [b] Ao)

+ (Tw(€)-pw (ab), pw (ab)) — <7w <# i’) -pw(a)afw((;)-pw(a)>‘

o) a2 2 = [~ _ ¥
< / —— —¢| |a|* |b|* du| + <7rw (C— = ) .pw(ab),pw(ab)>‘
A(o) <Ibl2 ) |bf?
' A / ~12 172 = |4 d
< s ¢ . |al” |b]" dp + || 7w <C_ = ) (pw(ab), p,(ab))
b1 || JAw) |b]2
< Lo 2 w(b*a*ab).
LI

~

As the image of the Gelfand homomorphism is uniformly dense in Cy(A(0)),
we can choose ¢ € A such that the right-hand side is arbitrarily small. This
proves condition (ii).

Assume that (ii) holds. Let a € A. We will prove that [|a|* du <
w(a*a). For n € N, set K, := {x € A(0);]a(x)| > L}. Since a € Cy(A(0)),
each K, is a compact subset of the interior of K,,;;. By Urysohn’s Lemma,
we find continuous functions ¢, : A(c) — [0, 1] which are identically 1 on K,
and vanish outside K, 1. The sequence (¢, )nen is increasing and converges
pointwise to the characteristic function of the open set {x € A(0);a(x) # 0}.
By Lebesgue’s Monotone Convergence Theorem (cf. Rudin [13, 1.26]),

/ |&|2 dp = hgn/A Pn |&|2 dp = lign(ﬁw(@n)-pw(a)apw(a»
A(o) A(o)
< <pw(a)7pw(a)> = w(a*a)'

Since C,(A(0)) is uniformly dense in Co(A(0)), we conclude from (ii) that

Vo€ Co(A(0)), a € A: /A o 6] di = (7o) 0 (0), p(a)).

)
Condition (iii) follows because all ¢ € Cy(A(0)) and a,b € A satisfy the

15



polarization identities

3
pab = i Z |(a + %) ‘
1 3
< (‘P)Pw(a)upw(b*» = Zzlk )-pwla+i b*) pw(a—l—zkb*»
k=0

O

Let © be a Borel measure on a topological space X. The closed support
supp(p) of v is the set of all z € X such that u(U) > 0 holds for every open
neighbourhood U C X of z. It is a closed subset of X. If every open sub-
set U C X satisfies the condition p(U) = sup {u(K); K C U, K compact}
(cf. Theorem 3.14) then any union of open subsets of measure 0 has mea-
sure 0, so that supp(u) is the complement in X of the largest open subset
of measure 0.

Let 1 be a Borel measure on a locally compact space X, and assume
that ¢ € Cy(X) vanishes on supp(p). The set {z € X; ¢(z) # 0} is the
countable union of the sets {z € X; |p(z)| > L1} for n € N, and these sets
are compact and disjoint from supp(u), so that they have measure 0. This
implies that [ ¢ du = 0.

3.13 Proposition (The support of a representing measure). Let w
be a positive linear functional on a commutative *-algebra A, let o be a C*-
semi-norm on A, and let yu be a Borel measure on A(c) which represents w.
Then supp(p) = A(0y,).

Proof. Lemma 3.11 shows that A(o,) C A(0).
Choose a non-negative function ¢ € Cy(A(0)), and let B C B(H,) be
the closure of 7,(A). Lemma 3.6 entails that

A@JZ{XO%&XEB}

and Remark 3.9 shows that all y € B satisfy x(T.(¢)) = ¢(xom,). Hence ¢
vanishes on A(o,) if and only if T, () = 0. Proposition 3.12 shows that
Tw(p) = 0 if and only if all a,b € A satisfy [ ¢ ab dp = 0. This holds
if ¢ vanishes on supp(i) by the remarks following the introduction of the
closed support. Conversely, if ¢(x) # 0 holds for some x € supp(p) then
every a € A with x(a) # 0 yields [ ¢ |a|*> du > 0. We conclude that a non-
negative function ¢ € Cy(A(c)) vanishes on A(o,,) if and only if it vanishes
on supp(js). )

These two sets are closed in A(0), and this is a locally compact Hausdorff
space and hence completely regular. This implies that supp(u) = A(oy,). O
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3.3 Existence and uniqueness of a representing measure

3.14 Theorem (Abstract Bochner Theorem). Let A be a commutative
*-algebra, and let w be an exponentially bounded positive linear functional
on A. Then there exists a unique Borel measure 11, on A(o,) which repre-
sents w and satisfies the following conditions:

(i) all Borel subsets E C A(o) satisfy

po(E) = int {,(U); ECU, U C A(ou,) open};

(i) if a Borel subset E C A(o,,) is open or has finite measure then

piw(E) = sup {uy,(K); K C E, K compact} .

The measure pu,, is called the Gelfand transform of the positive linear func-
tional w.

Proof. Existence of u, will follow from the Riesz Representation Theorem

~

for positive linear functionals on C.(A(o,)) (see Rudin [13, 2.14]). Let
¢ € C¢(A(oy)). Lemma 3.5 yields an element a € A such that ¢ has no zero
on the support of 9. We extend the quotient ¢/|a|? by zero to an element

~

of Cc(A(oy)) and set

@)= (7 (%) nlarpa(@)).

To see that this definition does not depend on the choice of a, let b € A be
another element whose Gelfand transform has no zero on the support of ¢.
Then

(7 (i55) #utepat@)) = <m (ﬁ 13) .pw(a>,m(i>>.pw<a>>

Thus «' is a well-defined linear functional on C.(A(oy)), and using the
square root of a compactly supported non-negative function, we find that w
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is positive. By the Riesz Representation Theorem [13, 2.14], there is a unique
Borel measure p,, on A(o,) which satisfies conditions (i) and (ii) and

Vo € Cu(A(0,)): o (p) = /A( s

Let a € A and ¢ € C.(A(0y)) be arbitrary, and choose an element ¢ € A
whose Gelfand transform ¢ does not vanish anywhere on the support of ¢.
Then

[, = el - (. (255 putn0))

Proposition 3.12 shows that the measure p,, represents w.
Let p be a Borel measure on A(o,) which represents w and satisfies

A

conditions (i) and (ii). Choose ¢ € C.(A(0y)) and a € A such that a does
not vanish anywhere on the support of ¢. By Proposition 3.12,

/ qu:/ 2 Jaf? d
Alow) Alow) 1]

_ <fw (#) .pw(a),pw(a)> - /A(mso e

The uniqueness part of the Riesz Representation Theorem [13, 2.14] shows
that p = pg,. 0

3.15 Example. We show that the values of a general positive linear func-
tional w on single elements and on products of two elements are not repre-
sented by the Gelfand transform. In this sense, our notion of a representing
measure is the best one can expect. The relevant additional conditions on w
will be studied in Proposition 3.16 and Corollary 3.23.

In the following two examples, consider A := C? with the involution
(z,w)* := (Z,w) and algebra multiplication to be defined. Set w: A —
C, (z,w) = az + pw with a, 5 € C.

(a) Define a multiplication on A by (z,w) - (z/,w') := (22',0). Consid-
ering the elements (1,0) and (0,1), we find that w is multiplicative if and
only if @ € {0,1} and 8 = 0. Hence the full spectrum A consists of a single
point, and the Gelfand homomorphism corresponds to the projection of A
onto its first coordinate. The linear functional w is positive if and only if
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a > 0. In this case, its Gelfand transform p,, satisfies [(z,w)" dp, = az.
Hence there is no general relation between [ @ dpu,, and w(a).

(b) Define a multiplication on A by (z,w) - (z',w’) := (0, 22"). Then w is
multiplicative if and only if & = 8 = 0, whence the spectrum of A is empty.
Moreover, w is positive if and only if 8 > 0. If p, is the Gelfand transform
of w then [ |a|? du,, vanishes for all a € A, whereas w(a*a) may be strictly
positive.

3.16 Proposition (Extension of w to A'). Let w be an exponen-
tially bounded positive linear functional on a commutative *-algebra A with
Gelfand transform p,,. Then w extends to a positive linear functional on the
unitization A' = A+ C -1 of A if and only if the measure i, is finite and
each a € A satisfies [ a du, = w(a).

Proof. If A has a unit element 1 then p(A(0,)) = w(1?) = w(1) is finite,
and w(a) = w(1? a) = [ a dpy, holds for each a € A. Hence we will assume
that A is non-unital.

Assume that f, is finite and that each a € A satisfies w(a) = [ @ dp.,.
Then w(a*) = w(a) holds for each a € A, and the Cauchy— Schwarz Inequality
(cf. Rudin [13, 3.5]) shows that

/ i de
A(‘Tw)

< no(A(0)) /A( Bl dis = (Ao (a")

2

jw(a)|® =

Hence w extends to a positive linear functional on A! (see Fell and Doran [6,
VI.18.7] or Palmer [9, 9.4.7]).

Assume that there is a positive linear functional @ on A' = A @ C such
that @|4 = w. We claim that @ is exponentially bounded. If a € A then

w(a)| = |&(a)] < V& (1) Gla*a) = Vo (1) = V(1) lIp.(a

Hence w induces a linear functional on HY, which is continuous of norm at
most y/@(1). Applying the Riesz Representation Theorem (see Rudin [14,
12.5]) to the continuous extension of that functional to H,, we obtain a
unique vector z, € H, such that all a € A satisfy w(a) = (pw(a),z,),
and ||z,]] < y/@(1). (Palmer [9, 9.4.5] calls z, the canonical vector of the
extensible positive functional w.) If a,b € A then

(Pw(b), Tw(a).zm) = (pu(a®d), z,) = w(a*b) = (pu(b), pw(a))-

Therefore, all a € A satisfy 7, (a).z, = pw(a), so that w is represented by 7,
through the formula w(a) = (m,(a)z,, 2,). Set r := &(1) — ||z, ||* > 0. Then
every (a,a) € Al satisfies

@(a, @) =wla) + a@(l) = ((ru(a) + a- 1)z, 2,) + ar
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and therefore |@(a, @)| < ||2u]]? ||7w(a) + - 1]| +7|a|. Hence @ is continuous
with respect to the *-invariant sub-multiplicative semi-norm

(a, @) — max{||m,(a) + a-1|,|a}: A" — R
Lemma 2.4 shows that @ is exponentially bounded with
05 (a, @) < max{|[my(a) + o1, [} < 0u(a) +|al.

Together with the formula o (a)? = sup {@(b*a*ab); b € AL, &(b*b) < 1},
this inequality implies that o, (a) = 0(a,0) holds for all @ € A, and |a| =
05(0, @) holds for all « € C.

Every element of AU{0} has a unique extension to an element of (A")
and it is easy to see that this gives a homeomorphism f: A — (A1)™\ {pry},
where pry: A' = C, (a,a) — a. Let ug be the Gelfand transform of @.
Since f*(ug) is a measure on f~'(A(0z)) which represents w, Proposi-
tion 3.13 implies that f(A(cy)) = A(oz) \ {pry}, and the uniqueness as-
sertion of the Bochner Theorem 3.14 shows that the restriction of f*(ug)
to A(oy) is equal to p,. Hence

po(A(0w)) = ps (f(Alow)) = @(1) = pa({pra})
is finite. If @ € A then (a,0)” vanishes in pry, € (4')7, so that

[ i du,, = / (a,0)" djugy = (a, 0) = w(a).
A(ow) Alogy)

This completes the proof. O

~
?

3.17 Example. In these two examples, let X be a locally compact Haus-
dorff space, and let 4 be a Borel measure on X which takes finite values
on compact sets and satisfies conditions (i) and (ii) of the Bochner Theo-
rem 3.14.

(a) Set A := Cy(X) N L'(n) with pointwise multiplication and involu-
tion. Define w € Pos(A,C) by w(p) := [¢ du. Then w is exponentially
bounded; in fact, o, is the supremum norm || - ||, on A. As the measure y is
finite on compact sets, the algebra A contains C(X) and hence is uniformly

dense in Cp(X). Therefore, any || - ||-bounded involutive character of A
has a unique extension to the C*-algebra Cy(X). Hence there is a natural
homeomorphism from X onto the || - ||o-bounded involutive spectrum of A.

Under this homeomorphism, the Gelfand transform ¢ of ¢ € A corresponds
to the function ¢ itself, and the Gelfand transform p,, of w corresponds to
the original measure p. In particular, the equation w(¢) = [ ¢ du,, holds
for every element ¢ € A. Nevertheless, if the measure p is not finite then w
does not extend to a positive linear functional on the unitization A' of A.
(b) Set A := Co(X)NL?(p) with pointwise multiplication and involution.
Define w(yp) := [ ¢ du for ¢ € L'(u), and extend w arbitrarily to a linear
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functional on A. Then w is an exponentially bounded positive linear func-
tional with o, = || - |c0. As above, the || - |[«o-bounded involutive spectrum
of A is homeomorphic to X, the Gelfand transform ¢ of ¢ € A corresponds
to the function ¢ itself, and the Gelfand transform p,, of w corresponds to
the original measure p. This example shows that the Gelfand transforms of
elements of A need not be pu,,-integrable.

3.4 The Plancherel Theorem

3.18 Lemma. Let H, and Ho be Hilbert spaces, and let ®: Hi — Ho be
a linear contraction. Assume that V < H; is a closed linear subspace which
is mapped isometrically onto Hs. Then the kernel of ® is the orthogonal
complement of V.

Proof. Choose v € V, and write ®*®(v) = v' +w with v’ € V and w € V*.
For an arbitrary element v” € V', we find that

(v,0") = (®(v), P(v")) = (®*B(v),v") = (V' +w,v") = (v, v").

Hence v = v'. As ®*® is a contraction, this implies that ®*®(v) = v. Since
®(V) = Ha, we conclude that the image of ®* is V. The kernel of @ is the
orthogonal complement of the image of its adjoint. O

3.19 Definition. Let A be a *-algebra. Let H be a left Hilbert A-module,
i.e. a Hilbert space equipped with a *-representation of A by bounded oper-
ators. Let Hq < H be the closure of the linear span of A.H. The module H
(or the corresponding *-representation of A) is called non-degenerate or es-
sential if H1 = H. The orthogonal complement of H; in H,

Ho:=Hi = (AH) = {v e H; (v, AH) = {0}}
={veH;(Av,H) ={0}} ={v e H;Av={0}},

is called the totally degenerate or trivial part of H. The A-invariant ortho-
gonal decomposition H = Hg & H1 shows that the Hilbert A-module H;
is non-degenerate, whence it is called the non-degenerate or essential part
of #. Thus the Hilbert A-module H is the orthogonal direct sum of its
totally degenerate part and its non-degenerate part. Note that H is non-
degenerate if and only if Ho = {0}, i.e. if and only if A.v = {0} implies
v=0forveH.

Assume that # is non-degenerate. Then every v € H satisfies v € A.v.
Indeed, the non-degenerate part of the Hilbert A-module Cv + A.v is A.v.
Hence if v = vy + v; with vy € (A.v)* and v; € A.w then vy belongs to the
totally degenerate part of Cv + A.v, which means that A.vg = {0}, and this
implies that vy =0 and v = v; € A.v.

For this and additional basic material on Hilbert modules see, for in-
stance, Neeb [7, 11.2.4].
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The following result describes an isometric isomorphism from the non-
degenerate part of the Gelfand-Nalmark-Segal representation associated
with a positive linear functional w onto the L? space of the Gelfand trans-
form of w.

3.20 Theorem (Abstract Plancherel Theorem). Let w be an exponen-
tially bounded positive linear functional on a commutative *-algebra A, and
let p,, be the Gelfand transform of w. Then there is a unique continuous
linear map ®,,: H,, — L*(p,) such that ®,(p,(a)) = d|A(aw) holds for every
a€ A

This map is a homomorphism of A-modules and of Cy(A(0,,))-modules
in the sense that

Vo € Co(A(0)), f € Hu: Pu(Tul(p).f) = ¢ - Bu(f).

The kernel of ®,, is the totally degenerate part {f € H,;m,(A).f = {0}}
of H,,, and ®, maps the non-degenerate part span(m,(A).Hy) of H,, iso-
metrically onto L?(ju,,).

Proof. If a € A belongs to ker(p,) = {z € A; w(z*z) =0} then & van-
ishes p,-almost everywhere by Proposition 3.12. The linear map p,(a) —
a: HY — L%(py) is therefore a well-defined contraction, and so is its unique
continuous extension ®,: H, — L?(j,) to He.

For a,b € A and ¢ = a, f = p,(b), we have

Dy (Tw(p)-f) w(7Tw(a).pu (D)

= a
= &y (pu(ab)) =

S —

=0 Py(pu (b)) = ¢ - u(f)-

By continuity of 7, and ®,,, this equation extends to arbitrary pairs (p,f) €
Co(A(0y)) X Hy-

For ay,ay € A, the Bochner Theorem 3.14 shows that || D, (py(a1asz))||e =
lpw(aiaz)||. Therefore, the restriction of @, to V' := span(m,(A).p,(A)) is
an isometry, and so is the restriction of ®,, to V', which is the non-degenerate
part of H,. To see that ®, maps V onto L?(u,), it suffices to show that
the closure of @, (V) in L?(u,) contains C.(A(0,,)) (cf. Rudin [13, 3.14]).
Choose an element ¢ € C,(A(0y)). By Lemma 3.7, we may pick an element
a € A whose Gelfand transform @ does not vanish anywhere on the support

of ¢. The quotient /G may be extended by zero to an element of C.(A).
For an arbitrary element b € A, we calculate

o2 o
lp — ablla” = / o — abf? duyy = /
A(‘Tw) A(‘Tw)
112
L W N
a oo A(gw)

22

2
jal? dpse,

L
a

<

| R
£ .
p OOw(a a)



Since the image of the Gelfand homomorphism is uniformly dense in the alge-
bra Cy(A(0,)), we conclude that the restriction of @, to the non-degenerate
part V of H,, is an isometric isomorphism onto L?(j,,). Lemma 3.18 shows
that the kernel of ®,, is the orthogonal complement V+. The remarks pre-
ceding Theorem 3.20 contained the proof that V- is the degenerate part
of H,,. O

3.21 Corollary. Let w be an exponentially bounded positive linear func-
tional on a commutative *-algebra A with Gelfand transform p,,, and let pr;
be the orthogonal projection of H, onto its non-degenerate part. Then all
a,b € A satisfy

/ ib dpsy = (pry(po(a)), pry (pu(b*)))- 0
Alow)

3.22 Corollary. Let w be an exponentially bounded positive linear func-
tional on a commutative *-algebra A with Gelfand transform p,,. Then for
each element o € A, the following are equivalent:

(i) The equation [ bya du, = w(bia) holds for all by € A.

(ii) The equation [ |a|* du, = w(a*a) holds.

)
)
(iii) The vector py,(a) € H,, belongs to the non-degenerate part of H,,.
(iv) For all e > 0, there is a by € A with w((a — bya)*(a — boa)) < €.

)

(v) For all € > 0, there are bs,by € A with w((a — bsbg)*(a — b3b4)) <e.

Proof. Let pr; be the projection of H, onto its non-degenerate part, and
set f := py(a). Condition (i) trivially implies condition (ii). Condition (ii)
means that || f|| = || pr;(f)], which implies (iii). If (iii) holds then all b; € A
satisfy w(bia) = (f,pr,(b7)) = [ bra dp,.

We have seen in Definition 3.19 that (iii) implies that f belongs to the
closure of 7, (A).f, which is condition (iv). This trivially implies (v), which
is a reformulation of (iii). O

3.23 Corollary. Let w be an exponentially bounded positive linear func-
tional on a commutative *-algebra A with Gelfand transform p,,. Then
is non-degenerate if and only if all a,b € A satisfy w(ab) = [ ab du,,. O

3.24 Example. Set A := {p € C?([0,1]);(0) = 0} with pointwise mul-
tiplication and involution. Let wg: A — C, ¢ — ¢"(0). Then wyo(p*p) =
2 |¢'(0)|* > 0, so that wy is a positive linear functional. Since wy(¢1p203) =
0 for all ¢1,p9,p3 € A, the positive functional wg is bounded by every
non-negative function on A, and its Gelfand transform is the zero measure.
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Define 1
wi: A—C, gor—>/<pd$.
0

Then w; is an exponentially bounded positive linear functional with o, =
| - lloo- Since any || - ||so-bounded involutive character of A has a unique ex-
tension to the C*-algebra Cy(]0,1]), the || - ||oo-bounded involutive spectrum
of A is naturally homeomorphic to the interval ]0,1]. Under this homeo-
morphism, the Gelfand transform ¢ of ¢ € A corresponds to the function ¢
itself, and the Gelfand transform pu,, of w; corresponds to the Lebesgue
measure on the Borel o-algebra of 0, 1].

Set w := wp + wj. Then the Gelfand transform p, of w equals py, .
An element ¢ € A satisfies w(p*p) = [|p|* duy, if and only if ¢'(0) =
0. In particular, the Plancherel homomorphism ®,: H, — L%(u,) is a
proper contraction, whence the Gelfand—Naimark—Segal representation 7,
of A on H,, has a non-trivial degenerate part. However, the composition ®,0
po: A — L%(py) is injective because it is just the Gelfand homomorphism.
In other words, the dense subspace HY of H,, has trivial intersection with
the degenerate part of H,,.

4 The non-degenerate part of a central positive
linear functional

4.1 Proposition (Exponential boundedness of sums). Let w; and wy
be positive linear functionals on a *-algebra A. Then w := wy + wy is expo-
nentially bounded if and only if both wy and wy are exponentially bounded.
In this case, the associated C*-semi-norms satisfy o, = max{o,, 0y, }.

The following proof is a simplification of a similar result given by Neeb [7,
I1.4.21].

Proof. Assume that both w; and wy are exponentially bounded. If a,b € A
then

w(b*a*ab) = wi(b*a*ab) + wa(b*a*ab)
< 0w, (@) wi(b*D) + 0, (a)? wa(b*D)
(max{oy, (a), 0w, (a)})* w(b*D).

IN

Hence w is exponentially bounded with o, < max{o,,0u,}.

Conversely, assume that w is exponentially bounded. Lemma, 1.3 implies
that H,, C H, and that the inclusion map ®: H,, — H, is continuous.
Denote the scalar product on H,, by (-,-)1 in order to distinguish it from
the scalar product (-,-) on H,,. If f € H,, and a € A then

{f,pwi (@)1 = f(a”) = (@(f), pu(a)) = (f, ®*(pu(a)))1,
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which shows that ®*(p,(a)) = pw, (a). Since ® is a module homomorphism
with respect to the A-module structure induced from C#, an easy calculation
shows that ®* is a module homomorphism as well. Let ¥ € B(H,,) be the
positive square root of ®®*. If a € A then m,(a) commutes with ®®* and
hence with V. For a,b € A, we conclude that

17, (@) -pwy (0) 11 = [P, (ab) |1 = 1|27 (pes (ab))
= V(@ (pu(ab)), ®* (s (ab)))1 = || ¥(pu(ab))l|
= [[¥(my(a)-pu (D)) = [I7w (@) ¥ (pu (b))
< lmw (@)l - 1% (pu (D)) | = ow(a) - |97 (pu (0) ]2
= 0u(a) - [Puy (0)]1-

(it

This shows that w; is exponentially bounded with o, < o,. Analogously,
the functional wy is exponentially bounded with o, < o,,. This implies that
max{oy,, 0y, } < 0y O

4.2 Definition. A positive linear functional w on a *-algebra A is called
non-degenerate if it is exponentially bounded and the *-representation
of A on H,, is non-degenerate. Similarly, w is called totally degenerate if it
is exponentially bounded and the *-representation m, of A on H,, is totally
degenerate.

Note that a positive linear functional on A is totally degenerate if and
only if it vanishes on A%. An exponentially bounded positive linear func-
tional w on A is non-degenerate if and only if for every a € A and every € > 0,
there are z,y € A such that w((a—:vy)*(a—:vy)) < e. Equivalently, for every
a € A and every € > 0, there is a z € A such that w((a — za)*(a — za)) <e.

4.3 Proposition (Uniqueness of the non-degenerate part of w).
Let A be a *-algebra, let wy € Pos(A,C) be totally degenerate, and let wy €
Pos(A, C) be non-degenerate. Set w := wy + wy. Then the map (fo, f1) —
fo+ fi1: Hwy @ Huw, = H,, is an isometric isomorphism.

Let pry: H, — H,, denote the orthogonal projection. Then all a,b € A
satisfy wy(b*a) = (pr;(pw(a)),pr;(pw(b))). In particular, the values wy(b*a)
and wy(b*a) are uniquely determined by w.

Proof. Since the A-module H,,, is totally degenerate and the A-module H,,,
is non-degenerate, their intersection is {0}. Therefore, Lemma 1.3 shows
that the map described in the statement is an isometric isomorphism. The
same lemma shows that the inverse isomorphism maps py(a) to the pair
(Pwo (@), Pw, (a)) whenever a € A, so that p,, (a) = pr;(p,(a)). We infer that
all a,b € A satisty

w1 (b*a) = (pu (), Py (b)) = (Pr1(pwr (@), Pri(pu: (b)))-
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Since pr; is the orthogonal projection of H,, onto its non-degenerate part,
this map is uniquely determined by w, whence so are the values w;(b*a)
and wo(b*a) = w(b*a) — wi(b*a). O

4.4 Definition. A positive linear functional w on a *-algebra A is called
central if all a,b € A satisfy w(ab) = w(ba). This condition is equivalent to
w(a*a) = w(aa®) for all a € A by the polarization identity

3
> i (@Far )" (Far+b)  (a,b € A).
k=0

1
ab = 1
4.5 Remark (Central positive linear functionals). (a) Let w be a cen-
tral positive linear functional on a *-algebra A. Then ker(p,) C ker(m,) =
{a € A; w((a*a)Q) = 0}. The kernel of p,, is a *-invariant ideal of A, so that
a conjugate linear involution J, on H’ may be defined by J,(py(a)) :=
pw(a*). This involution is isometric and hence extends to an involution
on H,,, which will also be denoted by J,, and which is also isometric. Since J,,
is conjugate linear, the latter condition means that (J,(f), J,(g9)) = (g, f)
holds for all f,g € H,. The decomposition of H, as a direct sum of its
totally degenerate and its non-degenerate part is invariant under J, be-
cause the non-degenerate part is the closed linear span of the J, -invariant
set p,(AA).

(b) Assume, in addition, that w is non-degenerate. Then

Ker(p,) = {a € 4 pu(a) € (mu(4) Ho)"}
={a € A; Vbce A: w(bca) =0}
={a€ A; Vb,ce A: w(cab) =0} = ker(m,).

4.6 Definition. A Hilbert algebra is a *-algebra A with a (positive definite)
scalar product such that the following axioms are satisfied:

(i
(i

Va,be A: (a,b) = (b*,a*);
Va,b,c € A: (ab,c) = (b,a*c);

)

)

(iii) for every a € A, the map z — az: A — A is continuous;

(iv) span(AA) is dense in A.

4.7 Remark (Theory of Hilbert algebras). We collect some funda-

mental results from the theory of Hilbert algebras without giving proofs. A

convenient reference for most of the material is Dixmier [5, Appendix A, 54—

60]; see also Dixmier [4, 1.5 and 1.6], Palmer [9, 11.7], and Rieffel [12, § 1].
Let A be a Hilbert algebra. Then all a,b,c € A satisfy (ab, c) = (a, cb*),

and for every a € A, the map = — za: A — A is continuous. Thus there is
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a perfect left-right symmetry, which our further exposition will suppress for
the sake of brevity.

Let H 4 be the Hilbert space completion of A, and let J4: H4 — Ha be
the continuous extension of the involution of A. For a € A, let U, € B(H 4)
be the continuous extension of the left translation map z — az: A — A
to Ha. Then a — U,: A — B(H4) is a non-degenerate *-representation.
The weak closure of its image is denoted by U(A) C B(H 4) and called the
left von Neumann algebra of A.

An element z € H 4 is called bounded if the map a — Ug.x: A — Hy is
continuous. The continuous extension of this map to H 4 is denoted by V,, €
B(Ha). If € A then z is bounded, and || V|| = ||U||. The vector subspace
A’ C H 4 of bounded elements of H 4 is invariant under the involution J4,
and it becomes a Hilbert algebra if multiplication is defined by zy : = V,,.x for
z,y € A'. If z,y € A thenVy.x = U,.y = zy, so that the multiplication on A’
extends the multiplication on A. If ¢ € A’ then the map = — az: A’ — A’
has a continuous extension to H 4, which belongs to U(A) and is denoted
by U,.

Let s € Pos(U(A)). If the positive square root of s in U(A) has the
form U, for an element a € A’, set 0(s) := (a,a). If there is no such
a € A, set 6(s) := oco. Then 6: Pos(U(A)) — [0,00] is a semi-finite faith-
ful normal trace. It is called the natural trace defined by A. We have
{t eU(A); O(t*t) < 00} = {Uy; a € A’} =: ny. There is a unique linear
functional @ on the ideal my := span(ngng) of U(A) such that 6(s) = 6(s)
holds for all s € my N Pos(U(A)). All a,b € A’ satisfy §(U;U,) = (a,b).

Define the Rieffel norm on A’ by [lal|' := |lally, + |Uall B3, for a € A'.
This norm is sub-multiplicative and *-invariant. It is also complete (Rief-
fel [12, 1.15]), and the Banach *-algebra (A',|| - ||') is hermitian (Palmer [9,
11.7.11]). This means that every element ¢ € A’ with a* = a satisfies
Sp(a) € R By the Shirali-Ford Theorem [17], a Banach *-algebra is hermi-
tian if and only if it satisfies the apparently stronger condition that every
element of the form aja, + --- + a;,a, has non-negative real spectrum (see
also Bonsall and Duncan [3, 41.4, 41.5] and the exposition by Ptdk [10]).

4.8 Proposition (The natural positive linear functional on a Hil-
bert algebra). Let A be a Hilbert algebra. Then there is a non-degenerate
central positive linear functional wq on A such that all a,b € A satisfy
wa(b*a) = (a,b). The map p,,: A — HJ, is an isometric isomorphism
of A-modules, so that it extends to an isometric isomorphism of A-modules
Pu,: Ha — Hu,. In particular, every a € A satisfies ||U,|| = |7y, (a)]].

These properties define wy uniquely on the linear span of AA only, and the
extension to A is indeed arbitrary. Nevertheless, it seems justified to call w4
“the natural” positive linear functional on A.
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Proof. Let 0: Pos(U(A)) — [0,00] be the natural trace defined by A, and
let 0 be the associated linear functional on my. If a € span(AA) then U, €
my, and we set w4(a) := O(U,). This yields a linear functional on span(AA),
which may be extended to a linear functional w4 on A.

Let a,b € A. We calculate wa(b*a) = 0(Upq) = é(U;‘Ua) = (a,b). In
particular, the linear functional w4 is positive. It is also central because
w(ab) = (b,a*) = (a,b*) = w(ba). The assertions about p,, follow from the
calculations

ker(py,) = {a € 4; w(a’a) =0} = {a € 4; (a,0) = 0} = {0}

and (py, (a),pw, (b)) = wa(b*a) = (a,b). The fact that AA is a total subset
of A proves that w is non-degenerate. O

4.9 Example (Commutative Hilbert algebras). Let A be a commuta-
tive Hilbert algebra, and let w : = w4 be the natural positive linear functional
on A. Let p, be the Gelfand transform of w. The Plancherel Theorem 3.20
and Proposition 4.8 imply that the map ®: A — L%(uy,), a — d|A(%) is
an isometric homomorphism of A-modules which extends to an isometric
isomorphism H,, = L?(py,).

Let X be a locally compact Hausdorff space, and let i be a Borel mea-
sure on X which takes finite values on compact sets and satisfies condi-
tions (i) and (ii) of the Bochner Theorem 3.14. Consider the *-algebra
L?(p) N L (1) of essentially bounded square-integrable functions on X with
pointwise multiplication and involution. Let A C L?(u) N L*(p) be a sub-
algebra such that AA is a total subset of L?(i). (For example, this is the
case if C.(X) C A, see Rudin [13, 3.14].) Under the scalar product of L?(u),
the algebra A is a commutative Hilbert algebra with 4 = L?(11). The first
paragraph of this remark shows that every commutative Hilbert algebra can
be realized in this way, and if we wish, we can choose (X, u) such that A
is a dense subalgebra of Cy(X). If a € A then U, is multiplication by a.
The Hilbert algebra of bounded elements of L?(u) is L?(u) N L>® (), and
if f is one of its elements then Uy is again multiplication by f. The Rief-
fel norm is given by ||f|I' = [|fll2 + [Iflleo- If f: X — Ry is bounded and
integrable then the natural trace satisfies @(Us) = [ f dp. In particular, if
a € span(AA) then the natural positive linear functional wy on A is given
by wa(a) = [a dp.

Assume, in addition, that the measure y is o-finite, and that the uniform
closure of A contains Cy(X). We claim that the left von Neumann algebra
of A satisfies U(A) = {v+— f-v; f € L°®(u)}. Dixmier [4, 1.7.3] shows that
the right-hand side is a von Neumann algebra in L?(p), so that it suffices to
show that its subalgebra {U,; a € A} is strongly dense. Choose f € L*>(u),
v € L?(n), and ¢ > 0. We have to find an element a € A such that
I(f—a)v||2 < e. We may assume that f # 0. There is a measurable function
s: X — C with finite image such that E := s~1(C*) has finite measure and

28



lv = sll2 < €/(9|flloo), see Rudin [13, 3.13]. Lusin’s Theorem [13, 2.24]
yields a function g € C.(X) such that

62

z € b f(z z
wle € B f(@) # 9@)}) < g

and ||gfloo < [|f]loo, s0 that

1 = g)sllz = (/E|f g 5P du>§ <t

By hypothesis, we find an element a € A such that

€
—a < max , T ¢ -
lo = el < max {1l 55 |
These conditions imply that |[(g — a)s|l2 < [|g — alls ||s]|l2 < €/3 and that
I(f —a)(v—23s)|2 <I|If —alleo [|lv = sll2 < €/3. We conclude that

I(f = a)vllz = I(f —a)(v —s) + (f —g)s + (9 —a)sll2 <e.

This proves our claim.

Specialize the above situation by choosing X = R, and let u be Lebesgue
measure. For n € N, let a,: X — [0, %] be continuous with supp(a,) C
[0,n%] and f([1,n? — 1]) = {1}. Then [a,|' <1+ L and wa(an) > n— 2.
This proves that w4 need not be continuous.

4.10 Theorem (The non-degenerate part of w). Let w be an exponen-
tially bounded central positive linear functional on a *-algebra A. Then there
exist central positive linear functionals wg and wy on A such that wq is totally
degenerate, w; is non-degenerate, and w = wy+w;. On the *-algebra m,(A),
a scalar product may be defined by (m,(z), 7, (y)) := wi(y*x) for z,y € A.
This scalar product turns m,(A) into a Hilbert algebra.

If 7: A — B is a *-homomorphism from A onto a Hilbert algebra such
that all x,y € A satisty wi(y*z) = (w(z),n(y)) then there is an isometric
isomorphism 1 : m,(A) — B such that m = 1 o .

Proposition 4.3 shows that wp and w; are essentially uniquely determined
by w.

Proof. The last assertion follows immediately from the observation that

ker(my) = {a € A; (m,(a), 7,(a)) =0}
= {a € A; (r(a),n(a)) = 0} = ker(n).

We will first define the Hilbert algebra structure on B := m,(A). The
decomposition of w will be constructed from the natural positive linear
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functional on B. Let pr;: H, — H; be the orthogonal projection of H,
onto its non-degenerate part, and set p; := pr; op,. Note that the involu-
tion J, of H, defined in Remark 4.5 satisfies J, o pr; = pr; oJ,, so that
Ju(pi(a)) = pi(a*) holds for all a € A. Set H :=p;(A) C H;. Since

ker(p;) = {a € 4; pu(a) € Hf}
={a € A; Vbce A: w(bca) =0}
={a € A; Vb,ce A: w(cab) = 0} = ker(m,),

there is an isomorphism 7, (a) — pi(a): B — H of A-modules. In particu-
lar, we can define a scalar product on B by

(mw(a), mu (b)) := (p1(a), p1 (b))

Let us check that B is a Hilbert algebra. Let by,b2,b3 € B, and choose
ai,az,a3 € A such that b; = m,(a;) holds for j € {1,2,3}. For the first two
axioms, we calculate

(b5,07) = (p1(a3),p1(al))
= (Ju(p1(a2)), Ju(pi(a1))) = (p1(a1),p1(az)) = (b1, b2)

and

(b2, b1b3) = (p1(b2), p1(b1b3)) = (p1(b2), pry (7w (b7) . (b3)))
= (p1(b2), 7 (b7).p1(b3))
= (7 (b1).p1(b2), p1(b3)) = (p1(b1b2),p1(bs)) = (biba, bs).

Under the isomorphism of B onto H, the left multiplication map =z +—
biz: B — B corresponds to the restriction of m,(a1) to H, which shows
that it is continuous. Similarly, the linear span of BB corresponds to the
linear span of p;(AA) = py(AA), which proves the fourth axiom. Thus
B = 7,(A) is a Hilbert algebra.

Let wp be the natural positive linear functional on B defined in Propo-
sition 4.8, so that all z,y € B satisfy wp(y*z) = (z,y). This is pulled
back to a central positive linear functional on A by w; := wp o 71, so that
(7 (), Tw(y)) = wi(y*z) holds for all z,y € A. If f € H; and a € A then
f(a) = {f,po(a*)) = (f,p1(a*)). Therefore, the positive definite kernel **1
on A associated with 7{; by Lemma 1.1 satisfies

K™ (y,2) = (p1(2"), p1(y")) = (m(2"), mu(y")) = wi(yz") = K, (y, @)

for all z,y € A. Theorem 1.2 shows that Hi; = Hyn, = H,,. In particular,
the positive linear functional w; is non-degenerate. Define a linear functional
on A by wg :=w — wi. Then wy is positive because

wp(a’a) = w(a’a) —wi(a*a) = [pu(a)]* — lp(a)||* 2 0
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holds for all a € A. Since all a,b € A satisfy p,(ab) = 7, (a).p,(b) € Hi and
therefore

wo(b*a*ab) = w(b*a*ab) — wi(b*a*ab) = ||p,(ab)||* — ||lp1(ab)||* = 0,
the positive linear functional wy is totally degenerate. U

4.11 Remark (The commutative case). Let w be an exponentially
bounded central positive linear functional on a *-algebra A, and denote the
orthogonal projection of H,, onto its non-degenerate part by pry: H, — H;.
In the proof of Theorem 4.10, the theory of Hilbert algebras was needed in
order to construct a positive linear functional wy; on A such that all a,b € A
satisfy (pry (pw(a)), pri(pw (b)) = wi(b*a).

Assume that A is commutative. Then the Plancherel Theorem 3.20
allows us to construct w; without using Hilbert algebras. Indeed, let pu,,
be the Gelfand transform of w, and define the Plancherel homomorphism
®,: H, — L*(p,) as in Theorem 3.20. If a € A is such that & € L'(py),
set wy(a) := [ a du,, and extend wy arbitrarily to a linear functional on A.
Then wy is a positive linear functional with the property described in the first
paragraph, and we obtain the decomposition w = wp+w; as in Theorem 4.10.

If o is a a semi-norm on A such that U a duw‘ < o(a) holds for alla € A
with a € Ll(uw) then wy can be chosen such that w; < o, as follows from
the Hahn-Banach Theorem on dominated extension (see Rudin [14, 3.3]).

4.12 Proposition (The hermitian Banach *-algebra of w). Let w be
a non-degenerate central positive linear functional on a *-algebra A. By
Remark 4.5 (b), we may define a norm on the algebra m,,(A) by the formula
|mw(a)]|" := |lpw(a)|| + ||7w (a)]| for a € A. Let B be the completion of m,(A)
with respect to this norm. Then B is a hermitian Banach *-algebra with
isometric involution, and there is a non-degenerate central positive linear
functional @ on B such that w(zy) = W(m,(xy)) holds for all x,y € A.

Since the inclusion of 7, (A) into B(H,) is continuous with respect to the
norm || - ||, we may view B as a subalgebra of B(H,). In particular, the
norm of B(H,) is a C*-norm on B.

Proof. Since w is non-degenerate, Theorem 4.10 shows that the scalar
product defined on the algebra By := m,(A) C B(Hy) by (mw(x), 1 (y)) :=
w(y*r) = (pw(x), pu(y)) gives this algebra the structure of a Hilbert algebra.
Let H be the Hilbert space completion of By, and choose b € By. Since H =
‘H., as Bp-modules, the continuous extension U, of left multiplication by b
to H satisfies ||Up|l g2y = 16l B(as.,)-

As in Remark 4.7, we denote the Hilbert algebra of bounded elements
of H by By C H. The algebra B is a hermitian Banach *-algebra with
respect to the *-invariant norm defined by [|b]" := [[bll% + [|Ubllpay. If
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a € A then ||m,(a)||" = |lpw(a)]| + |7 (a)||. Hence we can identify B with
the closure of By in B{. A closed *-subalgebra of a hermitian Banach *-
algebra is hermitian (see Palmer [9, 11.4.2]).

Let wpy be the natural positive linear functional on By, and set @ :=
w36| B- Then w is a central positive linear functional on B, and it is non-
degenerate because BB contains ByBy and hence is total in . Finally, all
z,y € A satisfy

w(my(zy)) = wpy (M (27) 1 () = (T (y), 7w (27)) = w(zy). O

4.13 Remark. (a) The proof shows that @ is most naturally defined on the
Hilbert algebra of bounded elements defined by the Hilbert algebra m,(A),
which is larger than the completion B. We restrict w to B just in order to
obtain a more elementary statement.

(b) The final remarks of Example 4.9 show that @ may not be continuous.

(c) We could now derive the Bochner Theorem 3.14 from a version for
non-degenerate positive linear functionals on hermitian commutative Ba-
nach *-algebras such as it is given by Fell and Doran [6, 21.4]. However, this
would be a logical detour. In fact, the direct proof of Theorem 3.14 which
we have given above is quite similar to the proof of the more special result
by Fell and Doran.

4.14 Remark (Integral decompositions for separable C*-algebras).
The relation between central positive linear functionals and Hilbert alge-
bras allows us to apply the theory of integral decompositions of traces on
separable C*-algebras (Dixmier [5, 8.8.2]).

Let w be a non-degenerate central positive linear functional on a *-
algebra A. Assume that the dimension of A is at most countable. Then
the closure B C B(H,) of m,(A) is a separable C*-algebra. The quasi-
equivalence classes [5, 5.3.2] of factorial representations [5, 5.2.6] of B form a
measurable space [5, 7.2.2], which is called the quasi-spectrum QSp(B) of B.
The restriction of the natural trace € defined by the Hilbert algebra m,,(A)
to Pos(B) is a semi-finite lower semi-continuous trace [5, 6.1.5]. The decom-
position theorem [5, 8.8.2] yields a standard measure p on QSp(B) and a
family (0¢)cecqsp(p) of pure traces on B with the following properties:

(a) the representation of B associated to ; belongs to the quasi-equival-
ence class ( € QSp(B) almost everywhere;

(b) for every b € Pos(B), the function ¢ — 6¢(b): QSp(B) — [0,00] is
measurable;

() Vb e Pos(B): 6(b) :/QS ) 00 ).
p
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In particular, if ¢ € A then
w(a*a) = 0(m,(a*a)) :/ Oc (mw(a*a)) du(C).
QSp(B)

Assume that the separable C*-algebra B is commutative. Then a rep-
resentation of B is factorial if and only if it is one-dimensional, and quasi-
equivalence of factorial representations is equality of the corresponding char-
acters. Hence QSp(B) = B as sets; in fact, the o-algebra defined on QSp(B)
equals the Borel o-algebra of B. (All this follows more or less immediately
from the definitions [5].) The pure traces of B are exactly the positive scalar
multiples of elements of B by [5, 6.7.8], and the representation associated
with a pure trace is given by the corresponding character [5, 6.8.3].

Apply the above decomposmon in the commutative situation. The mea-
sure 4 is a Borel measure on B. For every x € B up to a set of measure 0,
statement (a) implies that there is a positive number #(x) € R* such that
0, = t(x) - x- By (b), the function b-t: B — C is measurable for all
b € B. We claim that ¢: B — Rt is measurable. Let E C Rt be measur-
able, and let (b,)nen be a total sequence in B. Set U, := b, }(C*) C
for n € N, so that B = U, Un. The restriction of ¢ to U, is a measur-
able function because it is the quotient of by - t by bn,. We conclude that
t Y (E) =, {x € Uy; t(x) € E} is indeed a measurable subset of B.

Since ¢ is a measurable function, a Borel measure on B is defined by
v(E) := [ptdufor E € B(B) (see Rudin [13, 1.29]). Statement (c) shows
that (b) = [5b-t du = [3b dv holds for all b € Pos(B). By polarization,
this implies that all a1,ay € A satisfy w(aiaz) = [57u(a1a2)” dv. As in
the proof of Lemma 3.11, one shows that v takes finite values on compact
subsets of B. Since B is separable and B U{0} is weak*-compact, this set is a
compact metrizable space (Rudin [14, 3.16]), which implies that every open
subset is o-compact. We conclude that v is a regular Borel measure [13,
2.18]. Transporting v to A(aw) by means of the homeomorphism X
x o my: B — A(o,), we obtain a regular Borel measure v/ on A(o,,) such
that w(ajaz) = [a1ae dv' holds for all aj,ap € A. If o' € Pos(4,C) is
totally degenerate then ¢/ is a representing measure for the positive linear
functional w” := w + W' because all ay, as,a3 € A satisfy

w"(alagag) = w(alagag) = / &1&2&3 dI/,.
Alow)

For commutative algebras of countable dimension, the existence part of
the Bochner Theorem 3.14 is thus a special case of a more general integral
decomposition.

The same arguments apply if A is a separable topological *-algebra and w
is a non-degenerate central positive linear functional on A such that m, is
continuous with respect to the norm of B(H,,). Continuity of 7, is automatic
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if A is a Banach *-algebra (see Bonsall and Duncan [3, 37.3]) or a (Mackey)
complete continuous inverse *-algebra with continuous involution [2].
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