Continuous inverse algebras with involution

Harald Biller*

16th June 2004

Abstract

A large part of the theory of Banach *-algebras is developed and
generalized to continuous inverse *-algebras (i.e. complex locally con-
vex unital *-algebras with open unit group and continuous inversion)
which are (Mackey) complete. If the involution is continuous, the
closed unit ball with respect to the greatest C*-semi-norm is the closed
convex hull of the unitary elements. (This is originally due to Palmer.)
For hermitian continuous inverse *-algebras, we generalize character-
izations due to Raikov, Ptdk, and Palmer, we prove the Shirali-Ford
Theorem, and we show that closed subalgebras are equispectrally em-
bedded.! 2

Introduction

A complex continuous inverse algebra shares many important properties of
Banach algebras if it is (sequentially) complete or satisfies a slightly weaker
condition called Mackey completeness. For instance, every element has non-
empty compact spectrum, and the holomorphic functional calculus works.
The theory of commutative complete continuous inverse algebras was initi-
ated by Waelbroeck [32, 33]. Non-commutative continuous inverse algebras
are used in K-theory and non-commutative geometry [6, 8, 9, 22] and in the
theory of pseudo-differential operators [12]. Recently, continuous inverse
algebras have received renewed interest as the natural framework for the
investigation of linear Lie groups of infinite dimension [11]. For example,
they serve as coordinate domains for the infinite-dimensional analogues of
the classical groups [18]. In order to study unitary groups, i.e. the invariance
groups of (not necessarily positive definite) hermitian forms, one must equip
the coordinate algebra with an involution. Moreover, this involution may be
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connected with the spectral properties of the algebra by certain conditions
of positive definiteness. Typically, one would like elements of the form a*a to
have non-negative real spectrum. For instance, this condition is used for the
Harish—Chandra decomposition of Lie groups of the type U(1, 1; A), where A
is a continuous inverse *-algebra [4]. The Harish-Chandra decomposition,
in turn, yields one of the very few construction principles for irreducible
unitary representations of these infinite-dimensional Lie groups.

The investigation of continuous inverse algebras with an involution is the
subject of this article. It is remarkable how smoothly the theory of Banach
algebras can be generalized to this context if one carefully chooses the line
of attack. The deepest results, which have been announced in the abstract,
are contained in Section 5 on unitary elements and Section 7 on algebras
in which every self-adjoint element has real spectrum. The latter property
implies the above positivity condition; for Banach algebras, this result is the
Shirali-Ford Theorem. Section 7 also shows that U*-algebras in the sense
of Gramsch [12, 5.1] are exactly semi-simple hermitian Fréchet continuous
inverse algebras.

Section 1 contains elementary results such as the relation between the
spectrum of an element and its spectrum with respect to a closed subalgebra.
Section 2 provides the Gelfand homomorphism for commutative continuous
inverse algebras. Section 3 introduces the greatest C*-semi-norm and gives
two results on automatic continuity. In Section 4, we report on the holomor-
phic functional calculus as developed by Glockner [11], and we prove Ford’s
square root lemma. Section 6 contains the fundamental properties of posi-
tive linear functionals and includes another result on automatic continuity.

In my view, the most interesting continuous inverse *-algebras are those
in which a unit element exists, the involution is continuous, and the mul-
tiplication is jointly and not just separately continuous. My attitude is to
assume any of these three conditions whenever this makes the statement of
a result shorter and clearer. However, this is often not the case, and then
I have preferred the more general statement. In fact, since Jordan multi-
plication is continuous in any continuous inverse algebra, it turns out that
joint continuity of the multiplication need not be assumed for any result in
this article. Continuity of the involution is only needed in a very limited
number of places. When a statement concerns unital algebras, it is usually
not difficult to obtain a similar result for non-unital algebras by means of
adjunction of a unit element.

1 Continuous inverse algebras
Let us first recall some algebraic concepts. A complex locally convex algebra

is a complex associative algebra A with a locally convex Hausdorff vector
space topology such that the algebra multiplication is separately continuous.



The latter condition means that z — ax and z — za are continuous maps
from A into itself whenever a € A. Separate continuity is often more easy to
prove than joint continuity, i.e. continuity of multiplication as a map from
AxAinto A, and it is sufficient for everything we will prove in this paper. We
will sometimes consider Fréchet algebras, which are complex locally convex
algebras in which the topology is completely metrizable. This implies that
multiplication is jointly continuous (see Rudin [28, 2.17]). The unitization
Al = A+C-1 of a complex algebra A is defined as A if A has a unit element,
and as the direct sum A @ C of locally convex vector spaces with the algebra
multiplication defined by (a,A) - (b, ) := (ab + \b + pa, Au) if A does not
have a unit element.

The adjunction of a unit element can be avoided by the concept of quasi-
multiplication, which is also useful in some other respects. This is the binary
operation defined on an algebra A by aob := a + b — ab. Note that the
equation aob=1— (1 —a)(1 — b) holds in A' and that (A, o) is a monoid
with neutral element 0 € A. An element a € A is called quasi-invertible if it
is invertible with respect to this monoid structure. Every algebra (in fact,
every ring) has a greatest ideal which consists of quasi-invertible elements.
This ideal is called the Jacobson radical of the algebra A and denoted by
rad(A). The algebra is called semi-simple if rad(A) = {0}.

Let A be a complex algebra. The spectrum of an element a € A is the
subset

Sp(a) :={ e G A-1—a¢(4")"}

of C. The spectral radius of a € A is
p(a) :=sup{|Al; A € Sp(a)} € Rf U {+oo}.

If a,b € A then Sp(ab) U {0} = Sp(ba) U {0}. Indeed, if A € C* \ Sp(ab)
then }(1 + b(A — ab)~'a) is the inverse of A — ba € A'. In particular, the
formula p(ab) = p(ba) holds unless one product has spectrum {0} and the
other has empty spectrum (cf. Palmer [20, 2.2.1]). Let a € A, and let f
be a complex rational function without poles in Sp(a). Then one can form
the element f(a) € A', and the Spectral Mapping Theorem asserts that
Sp(f(a)) = f(Sp(a)) unless Sp(a) is empty and f is a constant. For an
elegant simple proof, see Palmer [20, 2.1.10].

1.1 Definition. A continuous inverse algebra is a complex locally convex
algebra with unit in which the set of invertible elements is a neighbourhood
of 1 and inversion is continuous at 1. A continuous quasi-inverse algebra
is a complex locally convex algebra (with or without unit) such that the
unitization A' is a continuous inverse algebra.

Our definition follows Turpin [31] in not requiring joint continuity of the mul-
tiplication. This is not because we are strongly interested in algebras with



discontinuous multiplication, but because the following proposition yields
continuity of the Jordan multiplication, which is all we need in this paper.

A short argument shows that a complex algebra with a locally convex
vector space topology is a continuous quasi-inverse algebra if and only if the
set of quasi-invertible elements is a neighbourhood of 0 and quasi-inversion
is continuous at 0.

1.2 Proposition (Turpin [31]). Let A be a continuous inverse algebra.
Then A* is an open subset of A, and inversion is a continuous map from A*
into itself. Jordan multiplication (a,b) — ab+ba: Ax A — A is continuous.

In particular, the maps (a,b) — aba: Ax A — Aanda— a": A — A
for n € N are continuous, and multiplication is continuous on every comimu-
tative subalgebra of A.

The following ingenious proof, which is due to Turpin [31], does not even
use separate continuity of the multiplication, and indeed Turpin’s definition
does not include this condition. However, it will be used in Remark 1.3.
Thus it is fundamental to the holomorphic functional calculus which will be
developed in Section 4.

Proof. If a € A is sufficiently small then both 1+ a and 1 —a are invertible,
and the formula a®> =1 -2((1 +a)™ ' + (1 - a)_l)_1 shows that the map
a +— a? is continuous at 0. This implies that the bilinear map

p: Ax A— A, (a,b) — ab+ba = (a + b)? — a® — b*

is continuous at (0,0). If a € A then the linear map = — p(a, z) is continuous
at 0 and hence continuous. We conclude that u is continuous. By induction,
this implies that the n-th power map a — a™ is continuous on A for every
n € N. Since 2aba = u(a, ab+ba)—pu(a?,b), we find that the map (a, b) — aba
is continuous as well.

Let a € A*X. If z € A is sufficiently small then >+ = a(1+a"'za™")a is
invertible, and the map z + (a?+z) ! is defined in a neighbourhood of 0 and
continuous at 0. Hence the map = ~ z~2 is defined in a neighbourhood of a
and continuous at a. Finally, this proves that the map z — 2! = %,u(m, z?)
is defined in a neighbourhood of ¢ and continuous at a. 0

1.3 Remark (Commutants). By many authors, the multiplication in a
continuous inverse algebra is assumed to be jointly continuous. For instance,
this is perfectly natural in the theory of linear Lie groups. We can often use
these parts of the literature by working in commutative subalgebras. This is
because the following observation leads to commutative subalgebras which
are again continuous inverse algebras.

Let S be a subset of a continuous inverse algebra A. Then the commutant
S':={a € A; Vs€ S:as=sa}of S is a subalgebra of A which satisfies

(8" = A" NS,



Indeed, it is easy to see that a~' commutes with S whenever a € A* com-
mutes with S. Since multiplication in A is separately continuous, the sub-
algebra S’ is closed. In particular, it inherits the completeness properties
of A.

We have proved that every commutant is a continuous inverse algebra.
Note that this argument applies to any maximal commutative subalgebra
because such a subalgebra equals its own commutant.

Also note that the double commutant of a commuting subset is commu-
tative.

Continuous inverse Fréchet algebras admit a slightly different definition.
Let A be a Fréchet algebra. We have noticed above that multiplication
in A is jointly continuous. Quasi-inversion is a continuous map from the
set of quasi-invertible elements into itself if and only if that set is a Gg-set
in A (Waelbroeck [34, VII, Prop. 2]). Hence A is a continuous quasi-inverse
algebra if and only if the set of quasi-invertible elements is a neighbourhood
of 0 in A. Indeed, this condition implies that the set of quasi-invertible
elements is open and hence a Gj-set in A because multiplication with an
invertible element is a homeomorphism of A onto itself.

A complex locally convex algebra in which the topology can be described
by a family of sub-multiplicative semi-norms is called locally multiplicatively
convex, or locally m-convex for short. These algebras were introduced by
Michael [16]. They are exactly the dense subalgebras of projective limits of
Banach algebras. In particular, a Fréchet algebra is locally m-convex if and
only if it is isomorphic to the projective limit of a sequence of Banach alge-
bras. Many important examples of continuous inverse algebras are locally
m-~convex, although this is sometimes difficult to see; in other cases, the ques-
tion is open (cf. Gramsch [13]). Turpin [31] proved that every commutative
continuous inverse algebra is locally m-convex. However, this result does
not extend to the non-commutative case. Indeed, Zelazko [35] constructed
a continuous inverse Fréchet algebra which is not locally m-convex.

A spectral semi-norm on a complex algebra is a sub-multiplicative semi-
norm which is greater than or equal to the spectral radius. In his two-volume
monograph [20, 21], Palmer has generalized important parts of the theory
of Banach algebras to algebras with a spectral semi-norm. By the following
lemma, Palmer’s results are immediately available for locally m-convex con-
tinuous inverse algebras (in particular, for commutative continuous inverse
algebras).

1.4 Lemma (Locally m-convex algebras). The following statements
hold in every complex locally m-convex algebra A.

(a) Multiplication is continuous, and quasi-inversion is continuous on its
domain.



(b) The algebra A is a continuous quasi-inverse algebra if and only if it
admits a continuous spectral semi-norm.

Statement (a) was already observed by Michael [16].

Proof. (a) Algebra multiplication is a bilinear map which is continuous
at (0,0) and hence continuous. In particular, multiplication in the monoid
(A, o) is continuous, so that it suffices to prove that quasi-inversion is con-
tinuous at 0 € A. Let o be a sub-multiplicative semi-norm on A, and
let a? denote the quasi-inverse of a quasi-invertible element a € A. Then
a? = —a + a%a, whence o(a?) < o(a) + o(a?) o(a). If o(a) < 1, it follows
that o(a?) < fga()a) We conclude that quasi-inversion is continuous with

1
respect to o.

(b) Let o be a continuous sub-multiplicative semi-norm on A such that
p < 0. Since a € A is quasi-invertible if and only if 1 —a € (A')*, the open
set {z € A; o(z) < 1} consists of quasi-invertible elements, so that A is a
continuous quasi-inverse algebra.

Conversely, assume that the set of quasi-invertible elements of A is open.
Then there is a continuous sub-multiplicative semi-norm ¢ on A and a
number ¢ > 0 such that {z € A; o(x) < €} consists of quasi-invertible ele-
ments. Let z € A. If A € C satisfies o(z) < ¢|\| then A —z € (A!)*.
Hence p(z) < |)|, which entails p(z) < e~to(z). Since p(z)" = p(z") <
e to(z™) < e to(z)" holds for all n € N, we conclude that p(z) < o(z). O

From now on, we will consider the full class of continuous (quasi-) inverse
algebras. The following result is fundamental for many others. This is
one important reason why we include local convexity in our definition of
continuous inverse algebras.

1.5 Lemma (Elementary properties of spectra). In a continuous quasi-
inverse algebra A, the following statements hold.

(a) Every element has non-empty compact spectrum.

(b) If 2 C C is open then Aq := {a € A;Sp(a) C Q} is an open subset
of A.

(c) If A is a skew field then A is topologically isomorphic to C.

Proof. (a) This follows from Liouville’s Theorem. Since the spectrum of
a € A with respect to A equals the spectrum with respect to the double
commutant {a}” and this is a continuous inverse algebra with continuous
multiplication, we may refer to Glockner [11, 4.3] for the details. As Glockner
himself observes [11, 4.15], the standing completeness hypothesis of [11,
Section 4] is not used in the proof of this result.



(b) We may assume that A has a unit element. Let a € A, and let
(2 C C be an open neighbourhood of Sp(a). First assume that 0 € Q. Then
K:={0fu{peC* 1/u ¢} is compact. If p € K then 1 — pua € A*.
The map

KxA— A: (u,b) — (1 —pa) ™t —p(1 —pa) ™t b (1 — pa)t

is continuous, and it maps K x {0} into A*. By compactness, there is a
neighbourhood U C A of 0 such that K x U is mapped into A*. We claim
that a + U C Aq. Let b € U and A € C\ Q. Set p:= } € Q. Then the
calculation

A—(a+b)=(A—-a)(A—a) ' =A—-a)tb(A=0a) 1) (A —a)

= (L= ) (1 = p)™ = (1 = o)™ b (1 = o)) (1 = )

shows that A & Sp(a + b), which proves our claim. If 0 € Q then we choose
A € Q and find that Ag = A-14 {a € 4; Sp(a) € & — A} is open in A.

(c) Assume that A is a skew field. Let a € A. We may choose A\ € Sp(a).
Then A —a ¢ A*, so that A — a = 0, and we conclude that a = X - 1.
(This generalization of the Gelfand—Mazur Theorem was first observed by
Arens [2].) O

1.6 Lemma (The Neumann series). Let A be a continuous quasi-inverse
algebra. The following are equivalent for an element a € A.

(i) The Neumann series Y o0 a" converges (its limit is (1 —a)~! —1).
(ii) limy o0 a™ = 0.
(iii) p(a) < L.

Proof. We may assume that A has a unit element. It is clear that (i)
implies (ii). Lemma 1.5 shows that the balanced set {x € A; p(z) < 1} is
an open zero-neighbourhood. In view of this fact, the implication (iii) = (i)
was proved by Glockner [11, 3.3]. Finally, if lim, " = 0 then some n € N
satisfies 1 > p(a™) = p(a)", and we conclude that p(a) < 1. O

1.7 Proposition (Closed subalgebras). Let A be a continuous inverse
algebra, and let B C A be a closed unital subalgebra. Then the following
assertions hold:

(a) B is a continuous inverse algebra.

(b) The topological boundary OB* of B* with respect to B does not
meet A*, and B* is a union of connected components of A* N B.



(c) If b € B then 0Spg(b) C Spy(b), and Spg(b) is the union of Sp 4(b)
and a (possibly empty) collection of bounded connected components
of C\ Spy(b). In particular, the spectral radii satisfy pp(b) = pa(b),
and if Sp4(b) C R then Spg(b) = Sp(b).

Proof. (a) The set U := {a € A; p(a) < 1} is open in A by Lemma 1.5.
If @ € U then Lemma 1.6 shows that the inverse of 1 — a is given by the
Neumann series, i.e. (1—a)~! = 3°7°  a*. This proves that BN(1+U) C B*.

(b) Assume that b € AXNIB*. Let V C A* be a neighbourhood of b=?.
Then V! is a neighbourhood of b and hence meets B>, which implies that V'
meets B* as well. Thus b~! belongs to the closure of B* and hence to B.
We conclude that b € B>, which contradicts b € B> because B* is open
in B.

This also implies the second part of assertion (b) by means of the fol-
lowing elementary topological observation (see Rudin [28, 10.16]): if W and
W' are subsets of a topological space X with W open in X and contained
in W' such that W/ N oW = ) then W C W U (X \ W), and thus W is a
union of connected components of W',

(c) The remainder of the proof follows Rudin’s treatment of the Banach
algebra case [28, 10.18]. Choose b € B. If A\ € OSpg(b) then A-1—b € 0B*,
whence X € Sp 4(b) by part (b). Since C\ Sp(b) is open in C and contained
in C\ Sp4(b), the topological observation above shows that C\ Spg(b) is
the union of certain connected components of C \ Sp,(b), and the other
connected components are contained in Spg(b). O

1.8 Proposition (Semi-simple quotients). Let A be a continuous quasi-
inverse algebra, and let I C A be an ideal such that A/I is semi-simple.
Then I is closed in A, and rad(A) C I. In particular, the Jacobson radical
is a closed ideal of A.

For Banach algebras, see Bonsall and Duncan [7, 25.10].

Proof. Let a € A be an element of the closure J of I. Since the set of
quasi-invertible element of A is open, there is an element b € I such that
a—b is quasi-invertible. Hence (a—b)+1 = a+1 is a quasi-invertible element
of A/I. Thus the ideal J/I of A/I consists of quasi-invertible elements. As
A/I is semi-simple, we conclude that J = I.

Similarly, the ideal (rad(A) + I)/I of A/I consists of quasi-invertible
elements, so that rad(A) C I.

The Jacobson radical is closed because A/rad(A) is semi-simple. O

2 Applications of the Gelfand homomorphism

2.1 Definition. Let A be a complex algebra with unit.



(a) Define the Gelfand spectrum of A as I'y := Hom(A,C) with the
topology of pointwise convergence on A. Note that 0 ¢ 'y because we
require homomorphisms to respect the unit elements.

(b) Each element a € A gives rise to a continuous function G: 'y — C
by a(x) := x(a). The function a is called the Gelfand transform of a. The
map a — a: A — C(T'4), which is a homomorphism of unital algebras, is
called the Gelfand homomorphism of the algebra A.

2.2 Theorem (The Gelfand homomorphism). In a commutative con-
tinuous inverse algebra A, the following statements hold.

(a) Every element a € A satisfies
Sp(a) = {x(a); x € Ta} = a(la).

(b) The Gelfand spectrum T 4 is a compact Hausdorff space.

(c) The Gelfand homomorphism is continuous with respect to the topology
of uniform convergence on C(I'4). Its kernel is the Jacobson radical
of A.

(d) Every element a € A satisfies p(a) = ||a||0, S0 that the spectral radius
is a continuous sub-multiplicative semi-norm on A with the Jacobson
radical as its zero space.

Proof. It is not hard to adapt the proof for Banach algebras (see, for
instance, Rudin [28, 11.9]). The details can be found in [5]. O

2.3 Lemma. Let A be a continuous quasi-inverse algebra. Then every
algebra homomorphism x: A — C is continuous.

Proof. Let ¢ > 0. Choose a balanced 0-neighbourhood U C A which
consists of quasi-invertible elements. Then x(U) C C is a disc around 0
which consists of quasi-invertible elements and hence does not contain 1.
The image of the 0O-neighbourhood eU C A under x is a disc around 0
of radius at most €. We conclude that y is continuous at 0 and hence
continuous. 0

The proof of the following result on automatic continuity depends on
the Closed Graph Theorem. Therefore, we can only prove it for Fréchet
algebras.

2.4 Proposition. Let p: A — B be an algebra homomorphism between
continuous quasi-inverse Fréchet algebras. If B is commutative and semi-
simple then ¢ is continuous.



Proof. We adapt the well-known proof for Banach algebras (see Bonsall
and Duncan [7, 17.8] or Rudin [28, 11.10]). Since the unitization of a semi-
simple algebra is semi-simple (see Palmer [20, 4.3.3]), we may assume that B
has a unit element, so that we can apply Theorem 2.2.

Let (an)nen be a sequence in A which converges to a € A such that the
image sequence (p(ay,))nen converges to some element b € B. By the Closed
Graph Theorem [28, 2.15], it suffices to show that b = p(a). If x € I'p then
x o ¢ € Hom(A,C), and both x and x o ¢ are continuous. Hence for every

x € I's,
x(b) = x(lim p(an)) = limx (¢o(an)) = x(p(liman) ) = x(p(a)).

By Theorem 2.2, the difference b — ¢(a) belongs to the Jacobson radical
of B, which is the zero ideal by hypothesis. O

The Gelfand homomorphism has a wealth of consequences for non-com-
mutative continuous inverse algebras. Many of these depend on the use of
commutants as described in Remark 1.3.

2.5 Proposition. Let A be a continuous quasi-inverse algebra, and let
a,b € A be commuting elements. Then

Sp(a +b) C Sp(a) +Sp(b) ~ and  Sp(a-b) C Sp(a) - Sp(b).

Proof. Apply Theorem 2.2 to the commutative continuous inverse algebra
{a,b}" C Al. This yields

Sp(a+b) = im((a +b)") = im(a + b) C im(a) + im(b) = Sp(a) + Sp(b).

The analogous calculation holds for the product a - b. 0

3 C*-semi-norms

3.1 Definition. (a) A *-algebra is an algebra A over C which carries a
conjugate linear anti-multiplicative involution a — a*: A — A. If A does
not have a unit element then the involution is extended to the unitization
Al = A ® C by setting (a, \)* := (a*, \).

The set of unitary elements of A' is U(A') := {u € (A1) u™' = u*}.
An element a € A is called normal if a*a = aa™, and self-adjoint if a* = a.
We often denote self-adjoint elements by the letter i, but we do not call
them “hermitian” because this word is used for elements of a Banach algebra
which have real numerical range. We occasionally write Sym(A) for the set
of self-adjoint elements of A, which is a real vector subspace of A.

(b) A continuous (quasi-) inverse *-algebra is just a continuous (quasi-)
inverse algebra which also is a *-algebra. Following the tradition in the
theory of Banach algebras, we explicitly assume continuity of the involution
when we need it.
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For semi-simple commutative algebras, Proposition 2.4 implies the fol-
lowing result on automatic continuity.

3.2 Proposition. The involution in a semi-simple commutative continuous
quasi-inverse Fréchet *-algebra A is continuous.

Proof. The opposite algebra A°PP is the real topological vector space A
with the opposite complex structure (\,a) + Aa and with the opposite
algebra multiplication (a,b) — ba. It is a continuous quasi-inverse Fréchet
algebra, and the involution is an algebra isomorphism from A°PP onto A.
Such an isomorphism is continuous by Proposition 2.4. U

3.3 Remark. In a semi-simple Banach *-algebra, the involution is always
continuous (see Palmer [21, 11.1.1] or Bonsall and Duncan [7, 36.2]). Un-
fortunately, none of the proofs that I know can easily be generalized to
non-commutative continuous inverse Fréchet *-algebras. However, positive
results on automatic continuity are provided by Theorem 3.9 below.

Automatic continuity is a problem for which local m-convexity is prof-
itable. Indeed, let A and B be locally m-convex continuous quasi-inverse
Fréchet algebras, and assume that B is semi-simple. Then every surjec-
tive homomorphism from A onto B is automatically continuous. This is
mentioned by Aupetit [3]. It can also be derived from Ransford’s elegant
treatment of the Banach algebra case [26], which is reproduced and suitably
generalized by Palmer [20, 2.3.9]. As in the proof of Proposition 3.2, this re-
sult implies that the involution in a semi-simple locally m-convex continuous
quasi-inverse Fréchet *-algebra is automatically continuous.

3.4 Definition. (a) A semi-norm o on a complex *-algebra A is called a

C*-semi-norm if o(a*a) = o(a)? holds for all @ € A. Sebestyén’s Theo-
rem [29] (cf. Palmer [21, 9.5.14]) states that a C*-semi-norm o is automati-
cally sub-multiplicative, which means that o satisfies o(ab) < o(a) o(b) for
all a,b € A.

(b) Let A be a continuous quasi-inverse *-algebra. Then the Raikov-Ptdk
functional on A is defined by

i A— R, a—— /pla*a) .

The function 7 will play a prominent role in the theory of hermitian
continuous inverse *-algebras in Section 7. The name “Raikov—Ptik func-
tional” is suggested by Palmer [21] because 7 appears implicitly in Raikov’s
work [25] and is explicitly used by Ptak [23, 24].

3.5 Lemma (Elementary properties of 7). Let A be a continuous
quasi-inverse *-algebra.

(a) Ifc € A is a normal element then 7(c) < p(c).

11



(b) Ifo is a C*-semi-norm on A then o < 7.

Proof. Assertion (a) follows from Proposition 2.5. To prove (b), consider
the *-ideal A, := {a € A; o(a) =0} of A. Since o induces a C*-norm on
the quotient *-algebra B := A/A,, the completion C' of B with respect to
this norm is a C*-algebra. Hence every a € A satisfies o(a)? = o(a*a) =
po(a*a + Ay) < pala*a) = 7(a)? O

3.6 Proposition. Let o be a C*-semi-norm on a continuous quasi-inverse
*-algebra A. Then rad(A) C {a € A; o(a) = 0}.

Note that the Jacobson radical of any *-algebra is a *-ideal.

Proof. Recall that rad(A) is the largest ideal of A which consists of quasi-
invertible elements. Let a € rad(A). Then A\~'a is quasi-invertible for every
A € C*, which means that A — a € (A')*. Therefore, the spectral radius
vanishes on rad(A). Since a*a € rad(A4), we conclude that o(a) < 7(a) =

Vplata) = 0. O

3.7 Definition. Let A be a continuous quasi-inverse *-algebra. Lemma 3.5
implies that the supremum

oc+(a) :=sup{o(a); o is a C*-semi-norm on A}

is finite for every a € A. Since o~ is itself a C*-semi-norm on A, it is the
greatest C*-semi-norm on A. It is sometimes called the Gelfand—Naimark
semi-norm of A (Palmer [21]).

The zero space I := {a € A; oc+(a) =0} of oc- is a *-ideal of A. The
completion C*(A) of A/I with respect to the C*-norm induced by oc- is
called the enveloping C*-algebra of A. It has the universal property that
every *-homomorphism from A into a C*-algebra factors uniquely through
the natural homomorphism 7: A — C*(4).

3.8 Proposition. Let A be a continuous quasi-inverse *-algebra with con-
tinuous involution. Then every C*-semi-norm on A is continuous.

Proof. Let o be a C*-semi-norm on A. As in the proof of Lemma 3.5,
let C' be the completion of A/A, with respect to the C*-norm induced by o.
Lemma 1.5 yields a neighbourhood U C A of 0 such that all a € U satisfy
pa(a) < 1. Proposition 1.2 and continuity of the involution yield a neigh-
bourhood V' C A of 0 such that all a € V satisfy a*aa* € U. If a € A
then o(a)* = o(a*a)? = o(a*aa*a) < o(a*aa*) o(a) by sub-multiplicativity
of o, whence o(a)? < o(a*aa*). The spectral radius of a normal element of
a C*-algebra equals its norm (see Rudin [28, 11.28]). Hence if a € A then

o(a)?® < o(a*aa*) = po(a*aa* + A,) < pala*aa®) < 1.
Therefore, the open unit ball in A with respect to ¢ is a neighbourhood of 0.

We conclude that o is continuous. O
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3.9 Theorem. The following hold for a continuous quasi-inverse Fréchet
*-algebra A:

(a) Every C*-semi-norm on A is continuous.

(b) If{a € A; oc-(a) =0} = {0}, i.e. if o¢~ is a norm, then the involution
of A is continuous.

Proof. Let o be a C*-semi-norm on A. We claim that the *-ideal A, =
{a € A; o(a) =0} of A is closed. Set B := A/A,. The completion C of B
with respect to the norm induced by o is a C*-algebra. Let || - | be the
norm on C' induced by o. Choose z € rad(B). Then A 'z is quasi-invertible
for all A € C*. This means that A\ — x is invertible in B and hence in C,
so that pc(z) = 0. Since z*z € rad(B), this shows that ||z|?> = ||z*z| =
pc(z*z) = 0. We conclude that rad(B) = {0}, whence the claim follows
from Proposition 1.8. In particular, the quotient algebra B is a continuous
quasi-inverse *-algebra, and it is a Fréchet space (see Rudin [28, 1.41]).

Now we will use the Closed Graph Theorem in order to prove that the
involution on B is continuous. Let (z,),en be a sequence in B which con-
verges to some element y € B such that (z}),ecn converges to some element
z € B. Since

e — 21 = pe (@0 — ') (en — 2)) < p (2, - 2) (@0 — 2°))

and limy, (z} — z)(z, — 2*) = 0, Lemma 1.5 shows that lim,, ||z, — z*|| = 0.
Similarly, the inequality ||z, — y[|* < pp((z} — y*)(zn — y)) implies that
lim, ||z, — y|| = 0. Hence y = z*, and the Closed Graph Theorem (see
Rudin [28, 2.15]) yields that the involution on B is continuous. Proposi-
tion 3.8 shows that || - || is a continuous norm on B. This implies that o is
continuous.

Assume that oc+ is a norm. Set o := o+ in the above argument. Then
As = 0, so that A = B, and we have proved that the involution on A is
continuous. U

4 The holomorphic functional calculus

4.1 Definition. (a) A sequence (zj)nen in a locally convex real vector
space E is called a Mackey—Cauchy sequence if there is a net (t,,.n) (m,n)enxn
of positive real numbers which converges to 0 such that the set

Tm — T
u, m7n€N
tm,n

is a bounded subset of E. Every Mackey—Cauchy sequence is a Cauchy
sequence.
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(b) The locally convex real vector space E is called Mackey complete
if every Mackey—Cauchy sequence in E converges. This holds if and only
if every smooth curve a: [a,b] — E (where a,b € R) has a Riemann inte-
gral fab a(t)dt in E (see Kriegl and Michor [15, 2.14]).

In a Mackey complete continuous inverse algebra, a holomorphic func-
tional calculus can be based on integration along smooth contours. For
algebras with continuous multiplication, this has been worked out by Glock-
ner [11], to whom the following theorem is essentially due. A functional
calculus for a wider class of algebras was also sketched by Allan [1].

4.2 Theorem (Holomorphic functional calculus). Let A be a Mackey
complete continuous inverse algebra. For an open subset Q C C, let O(2)
be the algebra of holomorphic functions on ), equipped with the locally
convex topology of uniform convergence on compact subsets of 2. Recall
that Aq := {a € A; Sp(a) C Q} is an open subset of A.

(a) For each element a € Agq, there is a unique continuous homomorphism
of unital algebras

[ fla]: O(2) — A
which sends idg € O(R2) to a € A.

(b) The map
(f,a) — fla]: O(Q) x Ag — A

1S continuous.

Proof. (a) Let a € Ag. Choose a smooth contour I' surrounding Sp(a)
in €, and set

1
T 2mi

fla = g [ FOC -0 .
Glockner [11, 4.7, 4.9, and 4.10] shows that this definition does not depend
on the choice of I' and yields a continuous homomorphism from O(f2) into
the double commutant {a}"”. The uniqueness of a continuous homomorphism
with the required properties follows from Runge’s Theorem (see Rudin [27,
13.9]), which states that the rational functions form a dense subset of O(€2).
(b) Let (f,a) € O(Q) x Ag. Choose an open neighbourhood ' C
of Sp(a) which is relatively compact in €2, and let I' be a smooth contour
which surrounds the closure of Q' in Q. Let [ > 0 be the length of T" (counting
multiplicities). Let o be a continuous semi-norm on A, and let € > 0. By
compactness of im(I") C C, there is a neighbourhood U C Agqy of a such that
all (¢,b) € (im(I),U) satisfy o((( =b)"' = (( —a)™') <e. Ifb e U and
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g € O(Q) then

otalt) - ) = 5 o (L alOC 0" ¢ - /f c- o dc)

I G (Y T
2T (/F
" / (9(0) = F(O) (¢ —a)! dg)

<5 (= sw 1g@l+ sw 1g0)~ 7Ol sw o((C—a) "))

2T\ ceim(T) ¢eim(T) ¢eim(T)

This expression becomes arbitrarily small if ¢ is sufficiently small and g is
sufficiently close to f. We conclude that the map (g, b) — ¢[b] is continuous

at (f,a). O

4.3 Remark (Spectral Mapping Theorem). Many familiar properties
of the holomorphic functional calculus on a Banach algebra as well as their
proofs carry over to a Mackey complete continuous inverse algebra A. For
instance, let © C C be an open subset, and choose f € O(2) and a € Aq.
Then the Spectral Mapping Theorem Sp(f[a]) = f(Sp(a)) can be proved as
in the Banach algebra case (see Rudin [28, 10.28]; cf. Glockner [11, 4.12]).
By continuity of the functional calculus, if f has a power series expansion
F(C) =002 g an(C—Co)™ on Q then the series Y >0 oy (a—Cp-1)" converges
to fla], cf. [11, 4.11].

4.4 Corollary (Composition). Let A be a Mackey complete continuous
inverse algebra. Let Q C C and ' C C be open subsets, choose f € O(2)
and g € O(Q'), and suppose that f(2) C Q. Then (go f)[a] = g[f[a]] holds
for every a € Aq.

Proof. Fix a € Ag and f € O(2) such that f(2) C Q. The two maps

from O(Q') to A which are given by g — (g o f)[a] and by g — g[f[a]] are

continuous unital homomorphisms which map idgs to fla]. By uniqueness
of the continuous holomorphic functional calculus, they are equal.

Glockner [11, 4.13] refers to Rudin [28, 10.29] for an alternative proof.

O

4.5 Remark (Homomorphisms; real analytic functions). Runge’s
Theorem (see Rudin [27, 13.9]), which was used in the proof of Theorem 4.2,
has many applications to the holomorphic functional calculus on a Mackey
complete continuous inverse algebra A, of which we record three. Let Q2 C C
be an open subset, and choose f € O(Q2) and a € Aq.

Let ¢: A — B be a continuous unital homomorphism into a Mackey
complete continuous inverse algebra B. Approximating f by rational func-
tions, we find that ¢(f[a]) = fle(a)].

15



Every element of A which commutes with a also commutes with f[a]. In
other words, f[a] belongs to the double commutant {a}” of a in A.

Assume that A is a Mackey complete continuous inverse *-algebra with
continuous involution. Let 2* C C be the image of {2 under complex con-

jugation. For f € O(f2), define f* € O(Q*) by f*(¢) := f({). For every
element a € Ag, the map

fr— (ffa*])": 0(Q) — A

is a continuous homomorphism of unital algebras which sends idg € O(£2) to
a € A. By uniqueness of the holomorphic functional calculus, the equation
f*[a*]* = f[a] holds for every f € O(Q2) and every a € Aq. In particular,
assume that €2 is connected and equals Q*. Let f € O(€Q) be a function
which takes real values on € N R Then f* coincides with f on 2 N R
By the Identity Theorem [27, Corollary of Theorem 10.18], the functions f
and f* coincide on their domain §2. Therefore, every element a € Ag satisfies

fla*] = Fla]".

4.6 Proposition (Square roots). Let A be a Mackey complete continuous
inverse algebra. Then every element a € A with Sp(a) N]—o00,0] = () has
a unique square root with spectrum contained in the open right half plane.
This square root belongs to the double commutant of a.

Proof. Set 2 := C\ |-00,0]. Let f € O(f2) be the principal branch of
the complex square root function, so that f(1) =1 and f(¢)? = ¢ for every
¢ € Q. Define b := f[a] by the holomorphic functional calculus. Then
b?> = a, the spectrum of b is contained in the open right half-plane, and b
belongs to the double commutant of a.

Let b1 € A be a square root of ¢ with spectrum contained in the open
right half plane. Then b; commutes with b;? = a and hence with b. Propo-
sition 2.5 shows that Sp(b+ b1) is contained in the open right half-plane. In
particular, the element b + by is invertible. Since

0=0"—b12=(b+b)b—b),

this implies that b = b;. In other words, the element b is the unique square
root of @ with spectrum contained in the open right half plane. O

4.7 Corollary (Self-adjoint square roots). Let A be a Mackey complete
continuous inverse *-algebra. Then every self-adjoint element h € A with
Sp(h) N]—00,0] = 0 has a unique square root with spectrum contained in
the open right half plane. This square root is self-adjoint and belongs to the
double commutant of h.

Note that we need not assume continuity of the involution.
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Proof. Proposition 4.6 yields a unique element k¥ € A such that k% = h
and Im(Sp(k)) > 0. Since these two properties also hold for £*, uniqueness
implies that k is self-adjoint. The double commutant property also follows
from Proposition 4.6. U

5 The unitary semi-norm

5.1 Proposition (U(A) spans A). Let A be a Mackey complete continuous
inverse *-algebra, and let h € A be a self-adjoint element with spectral radius
p(h) < 1. Then there is a unitary element u € U(A) such that h = 3 (u-+u*).
In particular, the algebra A is the linear span of its unitary elements.

Proof. The rational function ¢ — %g maps the open unit disc onto the
right half plane. By the Spectral Mapping Theorem, the spectrum of the
element (1 + h)(1 — h)~! is contained in the open right half plane. Let
k € A be a self-adjoint element such that k% = (1 + h)(1 — h) !, and set

= (k +i)(k —i)~'. Then u is a unitary element of A, and we calculate

*

utut = (k+i)(k—9) P+ E+i)Hk—1)

= ((k+i)?+ (k-9 (k+i)" (k-4

= (k*+2ik — 1+k2—2zk—1)((k—i)(k+z’))_1

= 2(k? - )(k2+1)

= 2(1+m)A-h) =) (1+h)(1-n)"+1)"

= 2((1+h —h) T = 1)1~ h)
W=nH+n-n 1)

= 2((1+h) —(1=m)((1+hm) +(1—h)"

= 2h.

This proves the proposition. [

5.2 Remark. We have chosen a proof which only needs the existence of
square roots in a rather weak sense. The calculation becomes shorter if we
exploit the full force of Corollary 4.7, cf. Bonsall and Duncan [7, 12.14].
Indeed, the double commutant of 1 — h? contains a self-adjoint element &
such that k2 = 1 — h?. Since h and k commute, the element v := h+1k € A
is unitary, and it satisfies h = (u + u®).

5.3 Definition. Let A be a Mackey complete continuous inverse *-algebra.
The convex hull conv(U(A)) is *-invariant, balanced, and closed under mul-
tiplication, and Proposition 5.1 shows that it is absorbing. Therefore, the
Minkowski functional of conv(U(A)),

oyt A— R, ar—inf{AeR"; }acconv(U(A))},
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is a *-invariant sub-multiplicative semi-norm on A. The semi-norm oy is

called the unitary semi-norm of A.

If A is a Mackey complete continuous quasi-inverse *-algebra then the
unitary semi-norm oy of A is defined as the restriction of the unitary semi-
norm of the unitization A' = A4+ C- 1.

5.4 Lemma. Let A be a Mackey complete continuous inverse *-algebra.
Then for every self-adjoint element h € A, the unitary semi-norm and the
spectral radius are related by the inequality oy(h) < p(h).

Proof. Choose a positive real number ¢ such that ¢ > p(h) and therefore
p(t~'h) < 1. Proposition 5.1 yields a unitary element u € A! such that
t 'h = 3(u+u*). Hence t 'h belongs to the convex hull of U(A!), so that
ou(t~th) < 1. We conclude that oy(h) < t. O

5.5 Proposition. The unitary semi-norm oy on a Mackey complete con-
tinuous quasi-inverse *-algebra A with continuous involution is continuous.

Proof. Since oy is a semi-norm, it suffices to show that it is continuous
at 0. Given ¢ > 0, let 2 C C be the open disc with centre 0 and radius 5.
Then Agq is a neighbourhood of 0 in A. By Lemma 5.4, every self-adjoint
element h € Agq satisfies oy(h) < p(h) < 5. Let V C A be a *-invariant
balanced neighbourhood of 0 such that %V + %V C Aq. Choose a € V.
Define self-adjoint elements of A by h := 3(a+a*) and k := 3 (a—a*). Then
h,k € Aq, and a = h + ik. We conclude that oy(a) < oy(h) +ou(k) < e.

O

5.6 Remark. Let A be a *-algebra such that the unitization A’ = A+C-1
is the linear span of U(A!). Such an algebra is called a U*-algebra by
Palmer, who develops the theory of these algebras in Section 10.4 of his
monograph [21]. In particular, the *-representation theory of A is very
similar to the *-representation theory of Banach *-algebras. This fact is
based on the following observation. Let 7 be a *-representation of A on a
pre-Hilbert space X, i.e. a homomorphism from A into the algebra of lin-
ear endomorphisms of X such that (w(a).z,y) = (z,n(a*).y) holds for all
a € A and all z,y € X. Then 7 is normed, which means that 7(a) is a
bounded operator on X for every a € A. Hence 7w extends to a representa-
tion of A on the Hilbert space completion of X. Moreover, the inequality
lm(a)]| < ou(a) holds for every a € A, where the unitary semi-norm oy
of A is constructed as in Definition 5.3. To prove this observation, it suffices
to note that idxy —m(w) is a unitary operator whenever 1 — w is a unitary
element of Al see [21, 10.3.8].

A similar argument shows that A has a greatest C*-semi-norm. Indeed,
let ¢ be a non-zero C*-semi-norm on A. Then o extends to a C*-semi-
norm o' on A' such that o'(1) = 1 (see [21, 9.5.3]). If u € A' is unitary
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then o!(u) = \/o!(u*u) = 1. This entails that o!(a) < oy(a) holds for every
element a € A'. Therefore, the Gelfand-Naimark semi-norm oc- of A can

be constructed as in Definition 3.7, and it satisfies the inequality o+ < oy
(cf. [21, 10.3.9]).

5.7 Theorem. Let A be a Mackey complete continuous quasi-inverse *-
algebra with continuous involution, and let Ay, be the zero space of the
unitary semi-norm. Then the norm-completion C' of the quotient algebra
AJAs, is a C*-algebra.

Proof. Assume first that A contains a unit element 1. Let || - || denote
both the quotient norm induced by oy on A/A,, and its extension to the
completion C, and write m: A — C for the quotient projection followed by
the inclusion of A/A,, into C.

Let h € C be a self-adjoint element. Choose a sequence (ay,)nen in A such
that lim,, 7(an) = h. Define self-adjoint elements of A by hy, := $(a, + a},).
Then lim,, 7(hy,) = h because the involution on C is isometric. Continuity
of the functional calculus implies that exp[ih] = lim, exp[n(ihy,)]. Propo-
sition 5.5 shows that the projection 7 is continuous. Hence exp|[m(ihy,)] =
m(explihy]). Since the involution on A is continuous, the element explih,] €
A is unitary. Hence

lexplm(ihn)]|| = [[7(explihn])l| = ou(expihn]) < 1.

This proves the inequality || exp[ih]|| < 1 for every self-adjoint element h €
C. We infer that || exp[ih]|| = 1 holds for every self-adjoint element h € C.
This implies that every self-adjoint element of C has real numerical range
(see Bonsall and Duncan [7, 10.13]). The Vidav-Palmer Theorem (see [7,
38.14] or Palmer [21, 11.2.5]) shows that C is a C*-algebra.

Now assume that A does not have a unit element. Let (a,\) € A! = A®C
be a unitary element. Then |\| = 1. Therefore, the image of the convex hull
of U(A') under the product projection of A' onto C is the closed unit disc.
Hence (A'),, = Ay, The first part of the proof shows that the completion
of A'/A,, with respect to the norm induced by oy is a C*-algebra. Since
A/A,, is isometrically embedded in A'/A,,;, the theorem follows. O

5.8 Corollary. Let A be a Mackey complete continuous quasi-inverse *-
algebra with continuous involution. Then the unitary semi-norm of A equals
the greatest C*-semi-norm, i.e. oy = oc-. If A has a unit element then
{a € A; oc+(a) < 1} is the closed convex hull of U(A).

For Banach *-algebras, this corollary is due to Palmer [19].

Proof. The theorem implies that oy is a C*-semi-norm, whence oy < oc+.
The opposite inequality is contained in Remark 5.6.
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Assume that A is a unital algebra. Since oy is continuous on A by
Proposition 5.5, the closed unit ball {a € A; oy(a) < 1} is a closed convex
subset of A, and this subset contains the unitary group U(A) and hence its
closed convex hull. Conversely, choose a € A with oy(a) < 1. Then every
neighbourhood of a contains an element of the form Aa with 0 < A\ < 1,
and Aa belongs to the convex hull of U(A) because oy(Aa) < A < 1. We
conclude that a belongs to the closed convex hull of U(A). O

6 Positive linear functionals

6.1 Definition. Let A be a complex *-algebra. A linear functional w: A —
C is called positive if w(a*a) € R} holds for every a € A. The set of all
positive linear functionals on A is denoted by Pos(A4, C).

6.2 Proposition. Let A be a Mackey complete continuous quasi-inverse
*-algebra. Then every positive linear functional w: A — C has the following
properties.

(a) w(a*b) = w(b*a) for all a,b € A;
(b) |w(a*b)|? < w(a*a) w(b*b) for all a,b € A;

)
(¢) |w(z*ax)| < w(z*z)\/p(a*a) for all a,x € A;
)

(d) |w(z*ecx)| < w(z*x) p(c) for all ¢,z € A such that ¢ is normal.

Proof. Let a,b € A. If A € C then
0 < w((a+Ab)*(a+Ab)) = w(a*a) + Aw(a*b) + Aw(b*a) + |APw(b*b).

In particular, all A € C satisfy Aw(a*b) + Aw(b*a) € R. Setting A := 1 and
A 1= i, we find that w(a*b) = w(b*a). If w(b*d) = 0 then 0 < w(a*a) +
2Re(Aw(a™d)) holds for all A € C. Hence w(a*b) = 0, and property (b)
follows. If w(b*b) # 0 then (b) is proved by setting A := —w(b*a)/w(b*b).
Let a,z € A. Choose A\ € R with A > p(a*a). Corollary 4.7 yields
a self-adjoint element k& € A' = A+ C -1 such that k2 = X\ — a*a. The
inequality w(z*k?z) > 0 implies w(z*a*az) < w(z*z) - \. We conclude that
w(z*a*ar) < w(z*z) p(a*a). Together with property (b), this shows that

2

lw(z*az)|)? < w(z*z) w(z*a*azr) < w(z*z)’p(a*a).

Thus we have proved (c). If ¢ € A is normal then p(c*c) < p(c*) p(c) = p(c)?
by Proposition 2.5. This implies (d). O

6.3 Corollary. Let A be a Mackey complete continuous inverse *-algebra.
Then every positive linear functional w: A — C has the following properties.
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(a) w(a*) = w(a) for all a € A;
(b) |w(a)]? < w(l) w(a*a) for all a € A;

(c) |w(a)| <w(l)\/pla*a) for all a € A;

(d) |w(c)| < w(l) p(c) for all normal elements c € A.

In particular, every positive linear functional on A is continuous on the real
subspace of normal elements of A.

Proof. Properties (a)—(d) follow from the corresponding statements of
Proposition 6.2 by setting suitable algebra elements equal to 1. The con-
tinuity assertion follows from Lemma 1.5. O

6.4 Proposition (Gelfand—Naimark—Segal Construction). Let A be a
Mackey complete continuous inverse algebra, and let w: A — C be a positive
linear functional. Then there exist a Hilbert space H, a *-representation
m: A — B(H), and a vector v € H such that w(A).v is a dense subspace
of H, and all a € A satisfy w(a) = (w(a).v,v).

Proof. Define a positive semidefinite sesquilinear form on A by (a,b) :=
w(b*a). Let R C A be the radical of this form. In other words,

R:={ae€ A; Vbe A: (a,b) =0} ={a € 4; w(a"a) =0},

where the second equality follows from Proposition 6.2. The form (-,-)
induces a complex scalar product on A/R, which we denote by the same
symbol. The Hilbert space H is defined as the completion of A/R.

Since R is a left ideal of A, a representation 7™ of A on the pre-Hilbert
space A/R is defined by 7(a).(x + R) :=ax + R for a,z € A. If a € A then

Iw(@)[* = sup {||m(a).v]|* v € A/R, |jv]| <1}
=sup{w(z*a*ax); z € A, w(z'z) <1} < p(a*a)

by Proposition 6.2. Hence 7(a) is bounded, and it extends to a bounded
operator on A, which we also denote by 7(a). This yields a *-representation
of A on H because

(r(a®).(z+ R), y+ R) = (a*z+ R, y + R) = w(y*a*z)
=w((ay)*z) = (z+ R, ay+ R) = (z + R, n(a).(y + R))

holds for all a,z,y € A.
Set v:=14+Re€ A/R CH. Then n(A).v = A/R is dense in H, and all
a € A satisfy (m(a).v,v) = w(a). O
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We have given the most direct approach to the Gelfand—Naimark—Segal
construction. For some purposes, it is an advantage to consider H as a
reproducing kernel Hilbert subspace of the linear dual of A (see Neeb [17,
II1.1]). In this picture, the representation m of A on H is the action by right
multiplication in the argument of the function.

6.5 Corollary. Every positive linear functional w on a Mackey complete
continuous inverse *-algebra A is continuous with respect to the greatest
C*-semi-norm oc+ of A.

Proof. In the notation of Proposition 6.4, the map a — ||7(a)||: A — R is
a C*-semi-norm, so that all a € A satisty

jw(a)] = K (a).v,0)| < [lw(a)oll - [lo]l < (@) - ol* < [lo]]* oc-(a). O

6.6 Proposition (Automatic continuity). Let A be a Mackey complete
continuous inverse *-algebra A. Assume that the involution of A is continu-
ous or that A is a Fréchet space. Then every *-representation of A on a
Hilbert space is continuous. In particular, every positive linear functional
on A is continuous.

Proof. If 7: A — B(H) is a *-representation of A on a Hilbert space #
then a — [|7(a)||: A — R is a C*-semi-norm on A. Hence the assertions

follow immediately from Proposition 3.8, Theorem 3.9, and Proposition 6.4.
O

6.7 Definition. In any complex *-algebra A, the positive cone is defined as
Pos(A) :={h € Sym(A); Vw € Pos(A,C): w(h) > 0}.

6.8 Proposition. In a Mackey complete continuous inverse *-algebra A,
the positive cone Pos(A) equals the closed convex cone in Sym(A) generated
by {a*a; a € A}.

Proof. Let P C Sym(A) be the closed convex cone generated by the set
{a*a; a € A}. Since Pos(A) is a convex cone and a closed subset of Sym(A),
we have P C Pos(A). Conversely, assume that h € Sym(A) \ P. The Hahn—
Banach Theorem (see, for instance, Rudin [28, 3.4]) yields a continuous
linear functional ¢: Sym(A) — R such that ¢(h) € ¢(P). We may assume
that p(h) < 0 and ¢(P) C R{. Define

* _ %
w: A— C, a»—)(p(a—;a >+i<p<a2_a )
/

If a € A then w(ia) = go(z%) + w(‘H'T“) = jw(a). Hence w is a C-
linear functional on A. The functionals w and ¢ coincide on Sym(A), so
that w(P) C Rf. We conclude that w € Pos(4,C) and w(h) < 0, whence

h & Pos(A). O
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7 Hermitian continuous inverse *-algebras

In this section, we study a condition which establishes a connection between
the involution and the properties of spectra in a complex *-algebra. As the
following example shows, this connection can be quite loose in general.

7.1 Example. Let A be the Banach algebra Cx C, which is unital and semi-
simple. Define an involution on A by ((1,(2)* := ((2,(1). The spectrum of
(C1,¢2) is {C1,¢2}. The self-adjoint elements of A are exactly those of the
form (¢,¢) for some ¢ € C. Every positive linear functional on A vanishes
(cf. Bonsall and Duncan [7, 37.16]).

The unitary elements of A are the elements (¢,1/¢) with ¢ € C*. It
follows easily that the convex hull of the unitary group U(A) equals A. In
particular, the unitary semi-norm oy of A is trivial. The same holds for the
Gelfand—Naimark semi-norm o+ because oc+ < oy.

7.2 Definition. A continuous quasi-inverse *-algebra A is called hermitian
if every self-adjoint element has real spectrum.

For the following theorem, recall the definition and basic properties of
the Railkov—Ptak functional 7 (Definition 3.4 and Lemma 3.5). The use of 7
as the principal tool in the theory of hermitian Banach *-algebras is due to
Ptak [23].

7.3 Theorem (Pték’s Theorem for continuous inverse *-algebras).
The following are equivalent for a Mackey complete continuous inverse *-
algebra A:

(i) A is hermitian;
(ii) p < 7 (Ptdk’s criterion);
(iii) oc» = 7 (Raikov’s criterion);
(iv) p(c) = 7(c) for all normal elements c € A;

(v) 7(a+a*) <27(a) for all a € A.

Since Lemma, 3.5 yields the inequality oc= < 7 in every continuous inverse
*-algebra, these conditions are also equivalent to the inequality p < oc-,
which plays a central role in Palmer’s approach [21, Section 10.4].

The following proof of Theorem 7.3 is self-contained. It uses some specific
material for continuous inverse algebras, but most arguments can be found,
for the case of Banach *-algebras, in Ptdk’s exposition [24, Section 5|; see
also Bonsall and Duncan [7, § 41].
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Proof. We will first prove the equivalence of conditions (i), (ii), and (iv).
Lemma 3.5 shows that (ii) implies (iv). Assume that (iv) holds. If A is not
hermitian, there is a self-adjoint element A € A such that i € Sp(h). Let
a € R. Then 7 + i« belongs to the spectrum of the normal element h + ia,
so that

(1+a)? < p(h+ic)? = 7(h +ia)?
= p((h +ia)*(h +ia)) = p(h? + &?) < p(h?) + 2.

Hence 1+ 2a < p(h?) holds for all « € R. This contradiction proves that A
is hermitian.

Assume that A is hermitian. We claim that 1 — a is invertible for each
a € A which satisfies 7(a) < 1. Indeed, Corollary 4.7 yields a self-adjoint
element h € A such that h2 = 1 — a*a, and h is invertible because 1 — a*a
is invertible. We calculate

(1+a)(l—-a)=1+a"—a—a"a
=h*+a* —a=h(l+h '(a* —a)h *)h.

Since ih~!(a* —a)h~! is a self-adjoint element, it has real spectrum, so that
the displayed expressions are invertible. Hence 1 —a is left invertible. By the
same argument, the adjoint (1—a)* = 1—a™ is left invertible because 7(a*) =
7(a) < 1. Thus 1 — a is invertible as we claimed. Let a € A be arbitrary,
and choose A € C with |[A| > 7(a), so that 7(A~!a) = |A\|7'7(a) < 1. Then
the elements 1 — A~!a and X\ — a of A are invertible, so that A ¢ Sp(a). We
conclude that p(a) < 7(a). Thus (i) implies (ii), and we have proved the
equivalence of (i), (ii), and (iv).

Now we will assume conditions (i) and (ii) and derive (iii). If a € A then

7(a*a) = \/pla*a a*a) = \/p(a*a)? = 7(a)?.

Let h,k € A be self-adjoint elements. Then

p(hk) < 7(hk) = \/p(khhk) = /p(h?k?) .

It follows by induction that p(hk) < p(h?"k%")>™" holds for all n € N. If
p(h) < 1 and p(k) <1 then Lemma 1.6 yields that lim,, h™ = 0 = lim,, k™.
Proposition 1.2 implies that lim,, h™k*™h™ = 0, whence Lemma 1.5 shows
that lim,, p(A™k*"h™) = 0. Since p(h®*™k*™) = p(h™k*™h™), we infer
that p(hk) < 1. For general self-adjoint h,k € A, choose a, € R with
p(h) < a and p(k) < B. We have proved that p((a™'h)(87'k)) < 1 and
hence p(hk) < af. We conclude that

p(hk) < p(h) p(k) — (h=h", k=Fk7).

This implies that all a,b € A satisfy

r(ab) = \/p(barab) = \/p(a abb) < v/pla*a) p(B6") = 7(a) 7(b).
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Our next aim is to prove that the set

P := {h € Sym(A); Sp(h) C R} }

is a convex cone. (In fact, Corollary 7.7 will show that P = Pos(A).) If
h € P then ah € P holds for all & > 0. We have to prove that h + k € P
if h,k € P. Since A is hermitian, it suffices to show that 1 + h + k € A*.
Since 1 + h, 1 +k € A*, we may define self-adjoint elements u,v € A* by
u:=h(1+h)~"and v := k(1+k)~!. The Spectral Mapping Theorem gives
p(u) < 1 and p(v) < 1. We have seen that this implies p(uv) < 1, and so
1 —uv € A*. Since

L+ b+ k= (1+ )1 —uw)(l + k),

it follows that 1 +h + k € A*. We conclude that h+ &k € P.
If h, k € A are arbitrary self-adjoint elements then p(h)£h, p(k)+k € P,
whence p(h) 4 p(k) £ (h + k) € P. This implies that

p(h+k) < p(h) + p(k) (h=h" k=Ek").
Let a € A, and set h:=a + a* and k :=i(a — a*). Then
p(h* + k*) — h? = (p(h* + k*) — (h* + k*)) + k* € P,
and so

pla +a*) =+/p(h?) <\/,0h2+k2 \/2pa*a+aa*)
< V/2(pla*a) + plaa*)) = v/2(7( 7(a)?) = 27(a).

Let a,b € A. Then

7(a+b)? =p((a+b)*(a + b)) = p(a*a+b*b + a*b + b*a)
< p(a*a) + p(b*b) + p(a”b + b*a)
ST(a)2 T(b) + 27(a”b)
< 7(a)® +7(b)> + 27(a*) 7(b) = (7(a) + 7(0))*.

Thus we have proved that 7 is a C*-semi-norm. Hence 7 < o¢+, and we infer
from Lemma 3.5 that o« = 7. This completes the proof of condition (iii).
If condition (iii) holds then 7 is sub-additive, which implies (v). Assume
that (v) holds, and let ¢ € A be a normal element. Write ¢ = h + ik with
self-adjoint elements h,k € A. Then hk = kh, so that p(c) < p(h) + p(k) by
Proposition 2.5. Moreover,
ph) = 7(h) =7 (5 +5) <27 (§) = 7(0
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and, similarly, p(k) < 7(c). We conclude that p(c) < 27(c). If n € N then

p(e)*" = p(c")?
47(c")? = 4p((c*)"c") = 4p((c*e)™) = 4p(c*c)™ = 47(c)*".

IN

Hence p(c) < ¥/2 7(c) for all n € N and so p(c) < 7(c). Since p(c) > 7(c)
holds without further assumptions, we have proved condition (iv). O

7.4 Remark (Further characterizations of hermitian algebras).
(a) Let A be a Mackey complete continuous inverse *-algebra. Then A
is hermitian if and only if there is a constant C' > 0 such that all a € A
satisfy p(a*a) < Coc-(a*a). This condition was observed by Palmer [21,
10.4.8].

Indeed, Palmer’s condition follows immediately from Raikov’s condition
oo+ = 7. Conversely, assume that Palmer’s condition holds. Let h € A be
self-adjoint. If n € N then p(h)?® = p((h")?) < Coc-((h")?) < Coc-(h)?".
Hence p(h) < oc+(h). This implies 7 < oc+, and we conclude that oc+ = T,
so that A is hermitian.

Ptak’s condition p < 7 can also be proved directly from the inequality
p(h) < oc=(h) for all h € Sym(A) (cf. Palmer [21, 10.2.11]). Namely, choose
a € A with o¢-(a) < 3. Then

pla+a* —a*a) oc-(a+a* —a*a)
oc+(a) + oc-(a*) + oc-(a*) oc-(a)
(1+0c-(a)® —1
1.

N CIN CIN N

Hence (1—a*)(1—a) = 1—(a+a* —a*a) is invertible. Similarly, the element
(1 —a)(1 — a*) is invertible. We conclude that 1 —a € A*. Let a € A be
arbitrary, and choose A € C with |A\| > 30¢-(a), so that oc<(A7ta) =
Al "Yoc-(a) < &. Then the elements 1 — A 'a and A — a of A are invertible,
so that A ¢ Sp(a). This implies that p(a) < 30¢-(a). If n € N then
pla)™ = p(a™) < 3oc+(a™) < 3oc+(a)™. We conclude that p < oc«. Since
oo~ < 71, we have proved that p < 7.

(b) Ptak [24, 5.10] proved that the following are equivalent for a unital
Banach *-algebra A:

(i) A is hermitian;
(ii) Sp(u) C{¢ € C; || =1} for all u € U(A);
(iii) p is bounded on U(A).

Ptak’s proof also applies to Mackey complete continuous inverse *-algebras.
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7.5 Proposition (C*(A) for hermitian A). Let A be a Mackey complete
continuous inverse *-algebra, and let m: A — C*(A) be the natural homo-
morphism from A into its enveloping C*-algebra. Then A is hermitian if
and only if 7 is equispectral, which means that 7=! (C*(A)X) = A*.

Note that 7=!(C*(A4)*) = A* holds if and only if every a € A satisfies
Sp(m(a)) = Sp(a). This explains the word “equispectral”.

Proof. If w is equispectral then A is hermitian because C*-algebras are
hermitian (see, for instance, Rudin [28, 11.28]).

Conversely, assume that A is hermitian, so that it satisfies p < oc=.
Choose a € A such that m(a) is invertible in C*(A). We have to prove that
a € A*. Since 7(A) is dense in C*(A), we may choose b € A such that
|l7(a)~t — x(b)|| < ||7(a)||~t. We calculate

p(1—ab) < oc-(1—ab) = [[1 = m(ab)|| = ||w(a) (w(a) " = =(B))]| < 1.

The analogous calculation yields the inequality p(1—ba) < 1. Hence ab, ba €
A, and we conclude that a € A*. O

7.6 Proposition (Spectrum and states). Let A be a Mackey complete
hermitian continuous inverse *-algebra. Then every normal element ¢ € A

satisfies
conv(Sp(c)) = {w(c); w € Pos(4,C), w(l) =1}.

Proof. Let m: A — C*(A) be the natural homomorphism from A into its
enveloping C*-algebra. By Corollary 6.5, every positive linear functional
on A factors through a positive linear functional on m(A), which extends by
continuity to a positive linear functional on C*(A). In other words,

Pos(A,C) = {wom; w € Pos(C*(A),C)} .

In view of Proposition 7.5, the assertion follows from the corresponding
result for C*-algebras (see, for instance, Bonsall and Duncan [7, § 38]).
A different proof can be found in Palmer’s monograph [21, 10.4.21]. O

The set {w € Pos(A4,C); w(1) = 1} is called the set of states of A. The ex-
treme points of this convex set are called the pure states of A. A refinement
of the preceding proposition (Palmer [21, 10.4.21]) asserts that the spectrum
of a normal element ¢ € A is contained in the image of ¢ under the set of
pure states.

7.7 Corollary (Shirali-Ford Theorem). Every Mackey complete her-
mitian continuous inverse *-algebra satisfies

Pos(4) = {h € Sym(A); Sp(h) C Rj }.

In particular, Sp(a*a) C R{ holds for all a € A. O
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7.8 Remark. Kaplansky [14] conjectured in 1949 that every element a of
a hermitian Banach *-algebra satisfies Sp(a*a) C RS . This conjecture was
finally proved by Shirali and Ford [30] in 1970. The particularly conceptual
proof based on Proposition 7.5 which we have given is due to Fragoulopou-
lou [10]. Several other proofs have been given; see Bonsall and Duncan [7,
41.5], Ptak [24, 5.9], and Palmer [21, 10.4.2].

Section 10.4 of Palmer’s monograph contains a number of additional
properties of *-algebras which satisfy p < oc«. Palmer develops his theory
for *-algebras in which some sub-multiplicative semi-norm dominates the
spectral radius. The reader must be alert to the fact that this hypothesis is
sometimes used without being explicitly stated (e.g. [21, 10.4.4 and 10.4.16]).
Palmer’s work is very comprehensive, which makes it sometimes difficult to
read. For these reasons, we have decided to give proofs for results such
as Propositions 7.5 and 7.6 which are also contained in Palmer’s book [21,
10.4.18 and 10.4.21].

7.9 Proposition. The Jacobson radical of a Mackey complete hermitian
continuous inverse *-algebra A equals the *-ideal {a € A; oc+(a) = 0}.

Proof. Proposition 3.6 shows that oc+ vanishes on rad(A). Conversely,
if A is hermitian then p < oc-, so that {a € A; o¢-(a) = 0} consists of
quasi-invertible elements and hence is contained in rad(A). O

7.10 Proposition. Let A be a Mackey complete hermitian continuous
inverse *-algebra, and let B C A be a closed unital *-subalgebra. Then B is
hermitian, and B* = A* N B.

The condition B* = A* N B holds if and only if every b € B satisfies
Spp(b) = Sp4(b). Hence a subalgebra B C A which satisfies this condition
might be called “equispectral”.

Proof. Choose b € A*NB. Then b* € A* and b*b € A*, so that Sp 4 (b*b) C
R*. Proposition 1.7 shows that Spgz(b*b) = Sp,4(b*b), whence b*b € B*.
We conclude that b=! = (b*b)~!b* € B, so that b € B*. Hence B is an
equispectral subalgebra. In particular, it is hermitian. [
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