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Abstra
t

A large part of the theory of Bana
h

�

-algebras is developed and

generalized to 
ontinuous inverse

�

-algebras (i.e. 
omplex lo
ally 
on-

vex unital

�

-algebras with open unit group and 
ontinuous inversion)

whi
h are (Ma
key) 
omplete. If the involution is 
ontinuous, the


losed unit ball with respe
t to the greatest C

�

-semi-norm is the 
losed


onvex hull of the unitary elements. (This is originally due to Palmer.)

For hermitian 
ontinuous inverse

�

-algebras, we generalize 
hara
ter-

izations due to Ra��kov, Pt�ak, and Palmer, we prove the Shirali{Ford

Theorem, and we show that 
losed subalgebras are equispe
trally em-

bedded.

1 2

Introdu
tion

A 
omplex 
ontinuous inverse algebra shares many important properties of

Bana
h algebras if it is (sequentially) 
omplete or satis�es a slightly weaker


ondition 
alled Ma
key 
ompleteness. For instan
e, every element has non-

empty 
ompa
t spe
trum, and the holomorphi
 fun
tional 
al
ulus works.

The theory of 
ommutative 
omplete 
ontinuous inverse algebras was initi-

ated by Waelbroe
k [32, 33℄. Non-
ommutative 
ontinuous inverse algebras

are used in K-theory and non-
ommutative geometry [6, 8, 9, 22℄ and in the

theory of pseudo-di�erential operators [12℄. Re
ently, 
ontinuous inverse

algebras have re
eived renewed interest as the natural framework for the

investigation of linear Lie groups of in�nite dimension [11℄. For example,

they serve as 
oordinate domains for the in�nite-dimensional analogues of

the 
lassi
al groups [18℄. In order to study unitary groups, i.e. the invarian
e

groups of (not ne
essarily positive de�nite) hermitian forms, one must equip

the 
oordinate algebra with an involution. Moreover, this involution may be

�
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onne
ted with the spe
tral properties of the algebra by 
ertain 
onditions

of positive de�niteness. Typi
ally, one would like elements of the form a

�

a to

have non-negative real spe
trum. For instan
e, this 
ondition is used for the

Harish{Chandra de
omposition of Lie groups of the type U(1; 1;A), where A

is a 
ontinuous inverse

�

-algebra [4℄. The Harish{Chandra de
omposition,

in turn, yields one of the very few 
onstru
tion prin
iples for irredu
ible

unitary representations of these in�nite-dimensional Lie groups.

The investigation of 
ontinuous inverse algebras with an involution is the

subje
t of this arti
le. It is remarkable how smoothly the theory of Bana
h

algebras 
an be generalized to this 
ontext if one 
arefully 
hooses the line

of atta
k. The deepest results, whi
h have been announ
ed in the abstra
t,

are 
ontained in Se
tion 5 on unitary elements and Se
tion 7 on algebras

in whi
h every self-adjoint element has real spe
trum. The latter property

implies the above positivity 
ondition; for Bana
h algebras, this result is the

Shirali{Ford Theorem. Se
tion 7 also shows that 	

�

-algebras in the sense

of Grams
h [12, 5.1℄ are exa
tly semi-simple hermitian Fr�e
het 
ontinuous

inverse algebras.

Se
tion 1 
ontains elementary results su
h as the relation between the

spe
trum of an element and its spe
trum with respe
t to a 
losed subalgebra.

Se
tion 2 provides the Gelfand homomorphism for 
ommutative 
ontinuous

inverse algebras. Se
tion 3 introdu
es the greatest C

�

-semi-norm and gives

two results on automati
 
ontinuity. In Se
tion 4, we report on the holomor-

phi
 fun
tional 
al
ulus as developed by Gl�o
kner [11℄, and we prove Ford's

square root lemma. Se
tion 6 
ontains the fundamental properties of posi-

tive linear fun
tionals and in
ludes another result on automati
 
ontinuity.

In my view, the most interesting 
ontinuous inverse

�

-algebras are those

in whi
h a unit element exists, the involution is 
ontinuous, and the mul-

tipli
ation is jointly and not just separately 
ontinuous. My attitude is to

assume any of these three 
onditions whenever this makes the statement of

a result shorter and 
learer. However, this is often not the 
ase, and then

I have preferred the more general statement. In fa
t, sin
e Jordan multi-

pli
ation is 
ontinuous in any 
ontinuous inverse algebra, it turns out that

joint 
ontinuity of the multipli
ation need not be assumed for any result in

this arti
le. Continuity of the involution is only needed in a very limited

number of pla
es. When a statement 
on
erns unital algebras, it is usually

not diÆ
ult to obtain a similar result for non-unital algebras by means of

adjun
tion of a unit element.

1 Continuous inverse algebras

Let us �rst re
all some algebrai
 
on
epts. A 
omplex lo
ally 
onvex algebra

is a 
omplex asso
iative algebra A with a lo
ally 
onvex Hausdor� ve
tor

spa
e topology su
h that the algebra multipli
ation is separately 
ontinuous.
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The latter 
ondition means that x 7! ax and x 7! xa are 
ontinuous maps

from A into itself whenever a 2 A. Separate 
ontinuity is often more easy to

prove than joint 
ontinuity, i.e. 
ontinuity of multipli
ation as a map from

A�A into A, and it is suÆ
ient for everything we will prove in this paper. We

will sometimes 
onsider Fr�e
het algebras, whi
h are 
omplex lo
ally 
onvex

algebras in whi
h the topology is 
ompletely metrizable. This implies that

multipli
ation is jointly 
ontinuous (see Rudin [28, 2.17℄). The unitization

A

1

= A+C �1 of a 
omplex algebra A is de�ned as A if A has a unit element,

and as the dire
t sum A�C of lo
ally 
onvex ve
tor spa
es with the algebra

multipli
ation de�ned by (a; �) � (b; �)

:

= (ab + �b + �a; ��) if A does not

have a unit element.

The adjun
tion of a unit element 
an be avoided by the 
on
ept of quasi-

multipli
ation, whi
h is also useful in some other respe
ts. This is the binary

operation de�ned on an algebra A by a Æ b

:

= a + b � ab. Note that the

equation a Æ b = 1 � (1 � a)(1 � b) holds in A

1

and that (A; Æ) is a monoid

with neutral element 0 2 A. An element a 2 A is 
alled quasi-invertible if it

is invertible with respe
t to this monoid stru
ture. Every algebra (in fa
t,

every ring) has a greatest ideal whi
h 
onsists of quasi-invertible elements.

This ideal is 
alled the Ja
obson radi
al of the algebra A and denoted by

rad(A). The algebra is 
alled semi-simple if rad(A) = f0g.

Let A be a 
omplex algebra. The spe
trum of an element a 2 A is the

subset

Sp(a)

:

=

�

� 2 C ; � � 1� a 62 (A

1

)

�

	

of C . The spe
tral radius of a 2 A is

�(a)

:

= sup fj�j; � 2 Sp(a)g 2 R

+

0

[ f�1g:

If a; b 2 A then Sp(ab) [ f0g = Sp(ba) [ f0g. Indeed, if � 2 C

�

n Sp(ab)

then

1

�

(1 + b(� � ab)

�1

a) is the inverse of � � ba 2 A

1

. In parti
ular, the

formula �(ab) = �(ba) holds unless one produ
t has spe
trum f0g and the

other has empty spe
trum (
f. Palmer [20, 2.2.1℄). Let a 2 A, and let f

be a 
omplex rational fun
tion without poles in Sp(a). Then one 
an form

the element f(a) 2 A

1

, and the Spe
tral Mapping Theorem asserts that

Sp(f(a)) = f(Sp(a)) unless Sp(a) is empty and f is a 
onstant. For an

elegant simple proof, see Palmer [20, 2.1.10℄.

1.1 De�nition. A 
ontinuous inverse algebra is a 
omplex lo
ally 
onvex

algebra with unit in whi
h the set of invertible elements is a neighbourhood

of 1 and inversion is 
ontinuous at 1. A 
ontinuous quasi-inverse algebra

is a 
omplex lo
ally 
onvex algebra (with or without unit) su
h that the

unitization A

1

is a 
ontinuous inverse algebra.

Our de�nition follows Turpin [31℄ in not requiring joint 
ontinuity of the mul-

tipli
ation. This is not be
ause we are strongly interested in algebras with
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dis
ontinuous multipli
ation, but be
ause the following proposition yields


ontinuity of the Jordan multipli
ation, whi
h is all we need in this paper.

A short argument shows that a 
omplex algebra with a lo
ally 
onvex

ve
tor spa
e topology is a 
ontinuous quasi-inverse algebra if and only if the

set of quasi-invertible elements is a neighbourhood of 0 and quasi-inversion

is 
ontinuous at 0.

1.2 Proposition (Turpin [31℄). Let A be a 
ontinuous inverse algebra.

Then A

�

is an open subset of A, and inversion is a 
ontinuous map from A

�

into itself. Jordan multipli
ation (a; b) 7! ab+ba : A�A! A is 
ontinuous.

In parti
ular, the maps (a; b) 7! aba : A � A ! A and a 7! a

n

: A ! A

for n 2 N are 
ontinuous, and multipli
ation is 
ontinuous on every 
ommu-

tative subalgebra of A.

The following ingenious proof, whi
h is due to Turpin [31℄, does not even

use separate 
ontinuity of the multipli
ation, and indeed Turpin's de�nition

does not in
lude this 
ondition. However, it will be used in Remark 1.3.

Thus it is fundamental to the holomorphi
 fun
tional 
al
ulus whi
h will be

developed in Se
tion 4.

Proof. If a 2 A is suÆ
iently small then both 1+a and 1�a are invertible,

and the formula a

2

= 1 � 2

�

(1 + a)

�1

+ (1 � a)

�1

�

�1

shows that the map

a 7! a

2

is 
ontinuous at 0. This implies that the bilinear map

� : A�A �! A; (a; b) 7�! ab+ ba = (a+ b)

2

� a

2

� b

2

is 
ontinuous at (0; 0). If a 2 A then the linear map x 7! �(a; x) is 
ontinuous

at 0 and hen
e 
ontinuous. We 
on
lude that � is 
ontinuous. By indu
tion,

this implies that the n-th power map a 7! a

n

is 
ontinuous on A for every

n 2 N. Sin
e 2aba = �(a; ab+ba)��(a

2

; b), we �nd that the map (a; b) 7! aba

is 
ontinuous as well.

Let a 2 A

�

. If x 2 A is suÆ
iently small then a

2

+x = a(1+a

�1

xa

�1

)a is

invertible, and the map x 7! (a

2

+x)

�1

is de�ned in a neighbourhood of 0 and


ontinuous at 0. Hen
e the map x 7! x

�2

is de�ned in a neighbourhood of a

and 
ontinuous at a. Finally, this proves that the map x 7! x

�1

=

1

2

�(x; x

�2

)

is de�ned in a neighbourhood of a and 
ontinuous at a. �

1.3 Remark (Commutants). By many authors, the multipli
ation in a


ontinuous inverse algebra is assumed to be jointly 
ontinuous. For instan
e,

this is perfe
tly natural in the theory of linear Lie groups. We 
an often use

these parts of the literature by working in 
ommutative subalgebras. This is

be
ause the following observation leads to 
ommutative subalgebras whi
h

are again 
ontinuous inverse algebras.

Let S be a subset of a 
ontinuous inverse algebra A. Then the 
ommutant

S

0

:

= fa 2 A; 8 s 2 S : as = sag of S is a subalgebra of A whi
h satis�es

(S

0

)

�

= A

�

\ S

0

:
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Indeed, it is easy to see that a

�1


ommutes with S whenever a 2 A

�


om-

mutes with S. Sin
e multipli
ation in A is separately 
ontinuous, the sub-

algebra S

0

is 
losed. In parti
ular, it inherits the 
ompleteness properties

of A.

We have proved that every 
ommutant is a 
ontinuous inverse algebra.

Note that this argument applies to any maximal 
ommutative subalgebra

be
ause su
h a subalgebra equals its own 
ommutant.

Also note that the double 
ommutant of a 
ommuting subset is 
ommu-

tative.

Continuous inverse Fr�e
het algebras admit a slightly di�erent de�nition.

Let A be a Fr�e
het algebra. We have noti
ed above that multipli
ation

in A is jointly 
ontinuous. Quasi-inversion is a 
ontinuous map from the

set of quasi-invertible elements into itself if and only if that set is a G

Æ

-set

in A (Waelbroe
k [34, VII, Prop. 2℄). Hen
e A is a 
ontinuous quasi-inverse

algebra if and only if the set of quasi-invertible elements is a neighbourhood

of 0 in A. Indeed, this 
ondition implies that the set of quasi-invertible

elements is open and hen
e a G

Æ

-set in A be
ause multipli
ation with an

invertible element is a homeomorphism of A onto itself.

A 
omplex lo
ally 
onvex algebra in whi
h the topology 
an be des
ribed

by a family of sub-multipli
ative semi-norms is 
alled lo
ally multipli
atively


onvex, or lo
ally m-
onvex for short. These algebras were introdu
ed by

Mi
hael [16℄. They are exa
tly the dense subalgebras of proje
tive limits of

Bana
h algebras. In parti
ular, a Fr�e
het algebra is lo
ally m-
onvex if and

only if it is isomorphi
 to the proje
tive limit of a sequen
e of Bana
h alge-

bras. Many important examples of 
ontinuous inverse algebras are lo
ally

m-
onvex, although this is sometimes diÆ
ult to see; in other 
ases, the ques-

tion is open (
f. Grams
h [13℄). Turpin [31℄ proved that every 
ommutative


ontinuous inverse algebra is lo
ally m-
onvex. However, this result does

not extend to the non-
ommutative 
ase. Indeed,

_

Zelazko [35℄ 
onstru
ted

a 
ontinuous inverse Fr�e
het algebra whi
h is not lo
ally m-
onvex.

A spe
tral semi-norm on a 
omplex algebra is a sub-multipli
ative semi-

norm whi
h is greater than or equal to the spe
tral radius. In his two-volume

monograph [20, 21℄, Palmer has generalized important parts of the theory

of Bana
h algebras to algebras with a spe
tral semi-norm. By the following

lemma, Palmer's results are immediately available for lo
ally m-
onvex 
on-

tinuous inverse algebras (in parti
ular, for 
ommutative 
ontinuous inverse

algebras).

1.4 Lemma (Lo
ally m-
onvex algebras). The following statements

hold in every 
omplex lo
ally m-
onvex algebra A.

(a) Multipli
ation is 
ontinuous, and quasi-inversion is 
ontinuous on its

domain.
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(b) The algebra A is a 
ontinuous quasi-inverse algebra if and only if it

admits a 
ontinuous spe
tral semi-norm.

Statement (a) was already observed by Mi
hael [16℄.

Proof. (a) Algebra multipli
ation is a bilinear map whi
h is 
ontinuous

at (0; 0) and hen
e 
ontinuous. In parti
ular, multipli
ation in the monoid

(A; Æ) is 
ontinuous, so that it suÆ
es to prove that quasi-inversion is 
on-

tinuous at 0 2 A. Let � be a sub-multipli
ative semi-norm on A, and

let a

q

denote the quasi-inverse of a quasi-invertible element a 2 A. Then

a

q

= �a + a

q

a, when
e �(a

q

) � �(a) + �(a

q

) �(a). If �(a) < 1, it follows

that �(a

q

) �

�(a)

1��(a)

. We 
on
lude that quasi-inversion is 
ontinuous with

respe
t to �.

(b) Let � be a 
ontinuous sub-multipli
ative semi-norm on A su
h that

� � �. Sin
e a 2 A is quasi-invertible if and only if 1� a 2 (A

1

)

�

, the open

set fx 2 A; �(x) < 1g 
onsists of quasi-invertible elements, so that A is a


ontinuous quasi-inverse algebra.

Conversely, assume that the set of quasi-invertible elements of A is open.

Then there is a 
ontinuous sub-multipli
ative semi-norm � on A and a

number " > 0 su
h that fx 2 A; �(x) < "g 
onsists of quasi-invertible ele-

ments. Let x 2 A. If � 2 C satis�es �(x) < "j�j then � � x 2 (A

1

)

�

.

Hen
e �(x) < j�j, whi
h entails �(x) � "

�1

�(x). Sin
e �(x)

n

= �(x

n

) �

"

�1

�(x

n

) � "

�1

�(x)

n

holds for all n 2 N, we 
on
lude that �(x) � �(x). �

From now on, we will 
onsider the full 
lass of 
ontinuous (quasi-) inverse

algebras. The following result is fundamental for many others. This is

one important reason why we in
lude lo
al 
onvexity in our de�nition of


ontinuous inverse algebras.

1.5 Lemma (Elementary properties of spe
tra). In a 
ontinuous quasi-

inverse algebra A, the following statements hold.

(a) Every element has non-empty 
ompa
t spe
trum.

(b) If 
 � C is open then A




:

= fa 2 A; Sp(a) � 
g is an open subset

of A.

(
) If A is a skew �eld then A is topologi
ally isomorphi
 to C .

Proof. (a) This follows from Liouville's Theorem. Sin
e the spe
trum of

a 2 A with respe
t to A equals the spe
trum with respe
t to the double


ommutant fag

00

and this is a 
ontinuous inverse algebra with 
ontinuous

multipli
ation, we may refer to Gl�o
kner [11, 4.3℄ for the details. As Gl�o
kner

himself observes [11, 4.15℄, the standing 
ompleteness hypothesis of [11,

Se
tion 4℄ is not used in the proof of this result.
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(b) We may assume that A has a unit element. Let a 2 A, and let


 � C be an open neighbourhood of Sp(a). First assume that 0 2 
. Then

K

:

= f0g [ f� 2 C

�

; 1=� 62 
g is 
ompa
t. If � 2 K then 1 � �a 2 A

�

.

The map

K �A �! A : (�; b) 7�! (1� �a)

�1

� �(1� �a)

�1

b (1� �a)

�1

is 
ontinuous, and it maps K � f0g into A

�

. By 
ompa
tness, there is a

neighbourhood U � A of 0 su
h that K � U is mapped into A

�

. We 
laim

that a + U � A




. Let b 2 U and � 2 C n 
. Set �

:

=

1

�

2 
. Then the


al
ulation

�� (a+ b) = (�� a)

�

(�� a)

�1

� (�� a)

�1

b (�� a)

�1

�

(�� a)

=

1

�

(1� �a)

�

(1� �a)

�1

� �(1� �a)

�1

b (1� �a)

�1

�

(1� �a)

shows that � 62 Sp(a + b), whi
h proves our 
laim. If 0 62 
 then we 
hoose

� 2 
 and �nd that A




= � � 1 + fa 2 A; Sp(a) 2 
� �g is open in A.

(
) Assume that A is a skew �eld. Let a 2 A. We may 
hoose � 2 Sp(a).

Then � � a 62 A

�

, so that � � a = 0, and we 
on
lude that a = � � 1.

(This generalization of the Gelfand{Mazur Theorem was �rst observed by

Arens [2℄.) �

1.6 Lemma (The Neumann series). Let A be a 
ontinuous quasi-inverse

algebra. The following are equivalent for an element a 2 A.

(i) The Neumann series

P

1

n=1

a

n


onverges (its limit is (1� a)

�1

� 1).

(ii) lim

n!1

a

n

= 0.

(iii) �(a) < 1.

Proof. We may assume that A has a unit element. It is 
lear that (i)

implies (ii). Lemma 1.5 shows that the balan
ed set fx 2 A; �(x) < 1g is

an open zero-neighbourhood. In view of this fa
t, the impli
ation (iii)) (i)

was proved by Gl�o
kner [11, 3.3℄. Finally, if lim

n

a

n

= 0 then some n 2 N

satis�es 1 > �(a

n

) = �(a)

n

, and we 
on
lude that �(a) < 1. �

1.7 Proposition (Closed subalgebras). Let A be a 
ontinuous inverse

algebra, and let B � A be a 
losed unital subalgebra. Then the following

assertions hold:

(a) B is a 
ontinuous inverse algebra.

(b) The topologi
al boundary �B

�

of B

�

with respe
t to B does not

meet A

�

, and B

�

is a union of 
onne
ted 
omponents of A

�

\B.
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(
) If b 2 B then � Sp

B

(b) � Sp

A

(b), and Sp

B

(b) is the union of Sp

A

(b)

and a (possibly empty) 
olle
tion of bounded 
onne
ted 
omponents

of C n Sp

A

(b). In parti
ular, the spe
tral radii satisfy �

B

(b) = �

A

(b),

and if Sp

A

(b) � R then Sp

B

(b) = Sp

A

(b).

Proof. (a) The set U

:

= fa 2 A; �(a) < 1g is open in A by Lemma 1.5.

If a 2 U then Lemma 1.6 shows that the inverse of 1 � a is given by the

Neumann series, i.e. (1�a)

�1

=

P

1

k=0

a

k

. This proves that B\(1+U) � B

�

.

(b) Assume that b 2 A

�

\�B

�

. Let V � A

�

be a neighbourhood of b

�1

.

Then V

�1

is a neighbourhood of b and hen
e meets B

�

, whi
h implies that V

meets B

�

as well. Thus b

�1

belongs to the 
losure of B

�

and hen
e to B.

We 
on
lude that b 2 B

�

, whi
h 
ontradi
ts b 2 �B

�

be
ause B

�

is open

in B.

This also implies the se
ond part of assertion (b) by means of the fol-

lowing elementary topologi
al observation (see Rudin [28, 10.16℄): if W and

W

0

are subsets of a topologi
al spa
e X with W open in X and 
ontained

in W

0

su
h that W

0

\ �W = ; then W

0

� W [ (X nW ), and thus W is a

union of 
onne
ted 
omponents of W

0

.

(
) The remainder of the proof follows Rudin's treatment of the Bana
h

algebra 
ase [28, 10.18℄. Choose b 2 B. If � 2 � Sp

B

(b) then � �1� b 2 �B

�

,

when
e � 2 Sp

A

(b) by part (b). Sin
e C nSp

B

(b) is open in C and 
ontained

in C n Sp

A

(b), the topologi
al observation above shows that C n Sp

B

(b) is

the union of 
ertain 
onne
ted 
omponents of C n Sp

A

(b), and the other


onne
ted 
omponents are 
ontained in Sp

B

(b). �

1.8 Proposition (Semi-simple quotients). Let A be a 
ontinuous quasi-

inverse algebra, and let I � A be an ideal su
h that A=I is semi-simple.

Then I is 
losed in A, and rad(A) � I. In parti
ular, the Ja
obson radi
al

is a 
losed ideal of A.

For Bana
h algebras, see Bonsall and Dun
an [7, 25.10℄.

Proof. Let a 2 A be an element of the 
losure J of I. Sin
e the set of

quasi-invertible element of A is open, there is an element b 2 I su
h that

a�b is quasi-invertible. Hen
e (a�b)+I = a+I is a quasi-invertible element

of A=I. Thus the ideal J=I of A=I 
onsists of quasi-invertible elements. As

A=I is semi-simple, we 
on
lude that J = I.

Similarly, the ideal (rad(A) + I)=I of A=I 
onsists of quasi-invertible

elements, so that rad(A) � I.

The Ja
obson radi
al is 
losed be
ause A= rad(A) is semi-simple. �

2 Appli
ations of the Gelfand homomorphism

2.1 De�nition. Let A be a 
omplex algebra with unit.

8



(a) De�ne the Gelfand spe
trum of A as �

A

:

= Hom(A; C ) with the

topology of pointwise 
onvergen
e on A. Note that 0 62 �

A

be
ause we

require homomorphisms to respe
t the unit elements.

(b) Ea
h element a 2 A gives rise to a 
ontinuous fun
tion â : �

A

! C

by â(�)

:

= �(a). The fun
tion â is 
alled the Gelfand transform of a. The

map a 7! â : A ! C(�

A

), whi
h is a homomorphism of unital algebras, is


alled the Gelfand homomorphism of the algebra A.

2.2 Theorem (The Gelfand homomorphism). In a 
ommutative 
on-

tinuous inverse algebra A, the following statements hold.

(a) Every element a 2 A satis�es

Sp(a) = f�(a); � 2 �

A

g = â(�

A

):

(b) The Gelfand spe
trum �

A

is a 
ompa
t Hausdor� spa
e.

(
) The Gelfand homomorphism is 
ontinuous with respe
t to the topology

of uniform 
onvergen
e on C(�

A

). Its kernel is the Ja
obson radi
al

of A.

(d) Every element a 2 A satis�es �(a) = kâk

1

, so that the spe
tral radius

is a 
ontinuous sub-multipli
ative semi-norm on A with the Ja
obson

radi
al as its zero spa
e.

Proof. It is not hard to adapt the proof for Bana
h algebras (see, for

instan
e, Rudin [28, 11.9℄). The details 
an be found in [5℄. �

2.3 Lemma. Let A be a 
ontinuous quasi-inverse algebra. Then every

algebra homomorphism � : A! C is 
ontinuous.

Proof. Let " > 0. Choose a balan
ed 0-neighbourhood U � A whi
h


onsists of quasi-invertible elements. Then �(U) � C is a dis
 around 0

whi
h 
onsists of quasi-invertible elements and hen
e does not 
ontain 1.

The image of the 0-neighbourhood "U � A under � is a dis
 around 0

of radius at most ". We 
on
lude that � is 
ontinuous at 0 and hen
e


ontinuous. �

The proof of the following result on automati
 
ontinuity depends on

the Closed Graph Theorem. Therefore, we 
an only prove it for Fr�e
het

algebras.

2.4 Proposition. Let ' : A ! B be an algebra homomorphism between


ontinuous quasi-inverse Fr�e
het algebras. If B is 
ommutative and semi-

simple then ' is 
ontinuous.

9



Proof. We adapt the well-known proof for Bana
h algebras (see Bonsall

and Dun
an [7, 17.8℄ or Rudin [28, 11.10℄). Sin
e the unitization of a semi-

simple algebra is semi-simple (see Palmer [20, 4.3.3℄), we may assume that B

has a unit element, so that we 
an apply Theorem 2.2.

Let (a

n

)

n2N

be a sequen
e in A whi
h 
onverges to a 2 A su
h that the

image sequen
e ('(a

n

))

n2N


onverges to some element b 2 B. By the Closed

Graph Theorem [28, 2.15℄, it suÆ
es to show that b = '(a). If � 2 �

B

then

� Æ ' 2 Hom(A; C ), and both � and � Æ ' are 
ontinuous. Hen
e for every

� 2 �

B

,

�(b) = �

�

lim

n

'(a

n

)

�

= lim

n

�

�

'(a

n

)

�

= �

�

'

�

lim

n

a

n

�

�

= �

�

'(a)

�

:

By Theorem 2.2, the di�eren
e b � '(a) belongs to the Ja
obson radi
al

of B, whi
h is the zero ideal by hypothesis. �

The Gelfand homomorphism has a wealth of 
onsequen
es for non-
om-

mutative 
ontinuous inverse algebras. Many of these depend on the use of


ommutants as des
ribed in Remark 1.3.

2.5 Proposition. Let A be a 
ontinuous quasi-inverse algebra, and let

a; b 2 A be 
ommuting elements. Then

Sp(a+ b) � Sp(a) + Sp(b) and Sp(a � b) � Sp(a) � Sp(b):

Proof. Apply Theorem 2.2 to the 
ommutative 
ontinuous inverse algebra

fa; bg

00

� A

1

. This yields

Sp(a+ b) = im

�

(a+ b)b

�

= im(â+

^

b) � im(â) + im(

^

b) = Sp(a) + Sp(b):

The analogous 
al
ulation holds for the produ
t a � b. �

3 C

�

-semi-norms

3.1 De�nition. (a) A

�

-algebra is an algebra A over C whi
h 
arries a


onjugate linear anti-multipli
ative involution a 7! a

�

: A ! A. If A does

not have a unit element then the involution is extended to the unitization

A

1

= A� C by setting (a; �)

�

:

= (a

�

; �).

The set of unitary elements of A

1

is U(A

1

)

:

=

�

u 2 (A

1

)

�

; u

�1

= u

�

	

.

An element a 2 A is 
alled normal if a

�

a = aa

�

, and self-adjoint if a

�

= a.

We often denote self-adjoint elements by the letter h, but we do not 
all

them \hermitian" be
ause this word is used for elements of a Bana
h algebra

whi
h have real numeri
al range. We o

asionally write Sym(A) for the set

of self-adjoint elements of A, whi
h is a real ve
tor subspa
e of A.

(b) A 
ontinuous (quasi-) inverse

�

-algebra is just a 
ontinuous (quasi-)

inverse algebra whi
h also is a

�

-algebra. Following the tradition in the

theory of Bana
h algebras, we expli
itly assume 
ontinuity of the involution

when we need it.
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For semi-simple 
ommutative algebras, Proposition 2.4 implies the fol-

lowing result on automati
 
ontinuity.

3.2 Proposition. The involution in a semi-simple 
ommutative 
ontinuous

quasi-inverse Fr�e
het

�

-algebra A is 
ontinuous.

Proof. The opposite algebra A

opp

is the real topologi
al ve
tor spa
e A

with the opposite 
omplex stru
ture (�; a) 7! �a and with the opposite

algebra multipli
ation (a; b) 7! ba. It is a 
ontinuous quasi-inverse Fr�e
het

algebra, and the involution is an algebra isomorphism from A

opp

onto A.

Su
h an isomorphism is 
ontinuous by Proposition 2.4. �

3.3 Remark. In a semi-simple Bana
h

�

-algebra, the involution is always


ontinuous (see Palmer [21, 11.1.1℄ or Bonsall and Dun
an [7, 36.2℄). Un-

fortunately, none of the proofs that I know 
an easily be generalized to

non-
ommutative 
ontinuous inverse Fr�e
het

�

-algebras. However, positive

results on automati
 
ontinuity are provided by Theorem 3.9 below.

Automati
 
ontinuity is a problem for whi
h lo
al m-
onvexity is prof-

itable. Indeed, let A and B be lo
ally m-
onvex 
ontinuous quasi-inverse

Fr�e
het algebras, and assume that B is semi-simple. Then every surje
-

tive homomorphism from A onto B is automati
ally 
ontinuous. This is

mentioned by Aupetit [3℄. It 
an also be derived from Ransford's elegant

treatment of the Bana
h algebra 
ase [26℄, whi
h is reprodu
ed and suitably

generalized by Palmer [20, 2.3.9℄. As in the proof of Proposition 3.2, this re-

sult implies that the involution in a semi-simple lo
allym-
onvex 
ontinuous

quasi-inverse Fr�e
het

�

-algebra is automati
ally 
ontinuous.

3.4 De�nition. (a) A semi-norm � on a 
omplex

�

-algebra A is 
alled a

C

�

-semi-norm if �(a

�

a) = �(a)

2

holds for all a 2 A. Sebesty�en's Theo-

rem [29℄ (
f. Palmer [21, 9.5.14℄) states that a C

�

-semi-norm � is automati-


ally sub-multipli
ative, whi
h means that � satis�es �(ab) � �(a) �(b) for

all a; b 2 A.

(b) Let A be a 
ontinuous quasi-inverse

�

-algebra. Then the Ra��kov{Pt�ak

fun
tional on A is de�ned by

� : A �! R

+

0

; a 7�!

p

�(a

�

a) :

The fun
tion � will play a prominent role in the theory of hermitian


ontinuous inverse

�

-algebras in Se
tion 7. The name \Ra��kov{Pt�ak fun
-

tional" is suggested by Palmer [21℄ be
ause � appears impli
itly in Ra��kov's

work [25℄ and is expli
itly used by Pt�ak [23, 24℄.

3.5 Lemma (Elementary properties of �). Let A be a 
ontinuous

quasi-inverse

�

-algebra.

(a) If 
 2 A is a normal element then �(
) � �(
).

11



(b) If � is a C

�

-semi-norm on A then � � � .

Proof. Assertion (a) follows from Proposition 2.5. To prove (b), 
onsider

the

�

-ideal A

�

:

= fa 2 A; �(a) = 0g of A. Sin
e � indu
es a C

�

-norm on

the quotient

�

-algebra B

:

= A=A

�

, the 
ompletion C of B with respe
t to

this norm is a C

�

-algebra. Hen
e every a 2 A satis�es �(a)

2

= �(a

�

a) =

�

C

(a

�

a+A

�

) � �

A

(a

�

a) = �(a)

2

. �

3.6 Proposition. Let � be a C

�

-semi-norm on a 
ontinuous quasi-inverse

�

-algebra A. Then rad(A) � fa 2 A; �(a) = 0g.

Note that the Ja
obson radi
al of any

�

-algebra is a

�

-ideal.

Proof. Re
all that rad(A) is the largest ideal of A whi
h 
onsists of quasi-

invertible elements. Let a 2 rad(A). Then �

�1

a is quasi-invertible for every

� 2 C

�

, whi
h means that � � a 2 (A

1

)

�

. Therefore, the spe
tral radius

vanishes on rad(A). Sin
e a

�

a 2 rad(A), we 
on
lude that �(a) � �(a) =

p

�(a

�

a) = 0. �

3.7 De�nition. Let A be a 
ontinuous quasi-inverse

�

-algebra. Lemma 3.5

implies that the supremum

�

C

�

(a)

:

= sup f�(a); � is a C

�

-semi-norm on Ag

is �nite for every a 2 A. Sin
e �

C

�

is itself a C

�

-semi-norm on A, it is the

greatest C

�

-semi-norm on A. It is sometimes 
alled the Gelfand{Na��mark

semi-norm of A (Palmer [21℄).

The zero spa
e I

:

= fa 2 A; �

C

�

(a) = 0g of �

C

�

is a

�

-ideal of A. The


ompletion C

�

(A) of A=I with respe
t to the C

�

-norm indu
ed by �

C

�

is


alled the enveloping C

�

-algebra of A. It has the universal property that

every

�

-homomorphism from A into a C

�

-algebra fa
tors uniquely through

the natural homomorphism � : A! C

�

(A).

3.8 Proposition. Let A be a 
ontinuous quasi-inverse

�

-algebra with 
on-

tinuous involution. Then every C

�

-semi-norm on A is 
ontinuous.

Proof. Let � be a C

�

-semi-norm on A. As in the proof of Lemma 3.5,

let C be the 
ompletion of A=A

�

with respe
t to the C

�

-norm indu
ed by �.

Lemma 1.5 yields a neighbourhood U � A of 0 su
h that all a 2 U satisfy

�

A

(a) < 1. Proposition 1.2 and 
ontinuity of the involution yield a neigh-

bourhood V � A of 0 su
h that all a 2 V satisfy a

�

aa

�

2 U . If a 2 A

then �(a)

4

= �(a

�

a)

2

= �(a

�

aa

�

a) � �(a

�

aa

�

) �(a) by sub-multipli
ativity

of �, when
e �(a)

3

� �(a

�

aa

�

). The spe
tral radius of a normal element of

a C

�

-algebra equals its norm (see Rudin [28, 11.28℄). Hen
e if a 2 A then

�(a)

3

� �(a

�

aa

�

) = �

C

(a

�

aa

�

+A

�

) � �

A

(a

�

aa

�

) < 1:

Therefore, the open unit ball in A with respe
t to � is a neighbourhood of 0.

We 
on
lude that � is 
ontinuous. �
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3.9 Theorem. The following hold for a 
ontinuous quasi-inverse Fr�e
het

�

-algebra A:

(a) Every C

�

-semi-norm on A is 
ontinuous.

(b) If fa 2 A; �

C

�

(a) = 0g = f0g, i.e. if �

C

�

is a norm, then the involution

of A is 
ontinuous.

Proof. Let � be a C

�

-semi-norm on A. We 
laim that the

�

-ideal A

�

=

fa 2 A; �(a) = 0g of A is 
losed. Set B

:

= A=A

�

. The 
ompletion C of B

with respe
t to the norm indu
ed by � is a C

�

-algebra. Let k � k be the

norm on C indu
ed by �. Choose x 2 rad(B). Then �

�1

x is quasi-invertible

for all � 2 C

�

. This means that � � x is invertible in B and hen
e in C,

so that �

C

(x) = 0. Sin
e x

�

x 2 rad(B), this shows that kxk

2

= kx

�

xk =

�

C

(x

�

x) = 0. We 
on
lude that rad(B) = f0g, when
e the 
laim follows

from Proposition 1.8. In parti
ular, the quotient algebra B is a 
ontinuous

quasi-inverse

�

-algebra, and it is a Fr�e
het spa
e (see Rudin [28, 1.41℄).

Now we will use the Closed Graph Theorem in order to prove that the

involution on B is 
ontinuous. Let (x

n

)

n2N

be a sequen
e in B whi
h 
on-

verges to some element y 2 B su
h that (x

�

n

)

n2N


onverges to some element

z 2 B. Sin
e

kx

n

� z

�

k

2

= �

C

�

(x

n

� z

�

)

�

(x

n

� z

�

)

�

� �

B

�

(x

�

n

� z)(x

n

� z

�

)

�

and lim

n

(x

�

n

� z)(x

n

� z

�

) = 0, Lemma 1.5 shows that lim

n

kx

n

� z

�

k = 0.

Similarly, the inequality kx

n

� yk

2

� �

B

�

(x

�

n

� y

�

)(x

n

� y)

�

implies that

lim

n

kx

n

� yk = 0. Hen
e y = z

�

, and the Closed Graph Theorem (see

Rudin [28, 2.15℄) yields that the involution on B is 
ontinuous. Proposi-

tion 3.8 shows that k � k is a 
ontinuous norm on B. This implies that � is


ontinuous.

Assume that �

C

�

is a norm. Set �

:

= �

C

�

in the above argument. Then

A

�

= 0, so that A

�

=

B, and we have proved that the involution on A is


ontinuous. �

4 The holomorphi
 fun
tional 
al
ulus

4.1 De�nition. (a) A sequen
e (x

n

)

n2N

in a lo
ally 
onvex real ve
tor

spa
e E is 
alled aMa
key{Cau
hy sequen
e if there is a net (t

m;n

)

(m;n)2N�N

of positive real numbers whi
h 
onverges to 0 su
h that the set

�

x

m

� x

n

t

m;n

; m;n 2 N

�

is a bounded subset of E. Every Ma
key{Cau
hy sequen
e is a Cau
hy

sequen
e.

13



(b) The lo
ally 
onvex real ve
tor spa
e E is 
alled Ma
key 
omplete

if every Ma
key{Cau
hy sequen
e in E 
onverges. This holds if and only

if every smooth 
urve � : [a; b℄ ! E (where a; b 2 R) has a Riemann inte-

gral

R

b

a

�(t) dt in E (see Kriegl and Mi
hor [15, 2.14℄).

In a Ma
key 
omplete 
ontinuous inverse algebra, a holomorphi
 fun
-

tional 
al
ulus 
an be based on integration along smooth 
ontours. For

algebras with 
ontinuous multipli
ation, this has been worked out by Gl�o
k-

ner [11℄, to whom the following theorem is essentially due. A fun
tional


al
ulus for a wider 
lass of algebras was also sket
hed by Allan [1℄.

4.2 Theorem (Holomorphi
 fun
tional 
al
ulus). Let A be a Ma
key


omplete 
ontinuous inverse algebra. For an open subset 
 � C , let O(
)

be the algebra of holomorphi
 fun
tions on 
, equipped with the lo
ally


onvex topology of uniform 
onvergen
e on 
ompa
t subsets of 
. Re
all

that A




:

= fa 2 A; Sp(a) � 
g is an open subset of A.

(a) For ea
h element a 2 A




, there is a unique 
ontinuous homomorphism

of unital algebras

f 7�! f [a℄ : O(
) �! A

whi
h sends id




2 O(
) to a 2 A.

(b) The map

(f; a) 7�! f [a℄ : O(
)�A




�! A

is 
ontinuous.

Proof. (a) Let a 2 A




. Choose a smooth 
ontour � surrounding Sp(a)

in 
, and set

f [a℄

:

=

1

2�i

Z

�

f(�)(� � a)

�1

d�:

Gl�o
kner [11, 4.7, 4.9, and 4.10℄ shows that this de�nition does not depend

on the 
hoi
e of � and yields a 
ontinuous homomorphism from O(
) into

the double 
ommutant fag

00

. The uniqueness of a 
ontinuous homomorphism

with the required properties follows from Runge's Theorem (see Rudin [27,

13.9℄), whi
h states that the rational fun
tions form a dense subset of O(
).

(b) Let (f; a) 2 O(
) � A




. Choose an open neighbourhood 


0

� 


of Sp(a) whi
h is relatively 
ompa
t in 
, and let � be a smooth 
ontour

whi
h surrounds the 
losure of 


0

in 
. Let l > 0 be the length of � (
ounting

multipli
ities). Let � be a 
ontinuous semi-norm on A, and let " > 0. By


ompa
tness of im(�) � C , there is a neighbourhood U � A




0

of a su
h that

all (�; b) 2 (im(�); U) satisfy �

�

(� � b)

�1

� (� � a)

�1

�

< ". If b 2 U and
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g 2 O(
) then

�(g[b℄ � f [a℄) =

1

2�

�

�

Z

�

g(�)(� � b)

�1

d� �

Z

�

f(�)(� � a)

�1

d�

�

=

1

2�

�

�

Z

�

g(�)

�

(� � b)

�1

� (� � a)

�1

�

d�

+

Z

�

�

g(�)� f(�)

�

(� � a)

�1

d�

�

�

l

2�

�

" sup

�2im(�)

jg(�)j + sup

�2im(�)

jg(�)� f(�)j � sup

�2im(�)

�

�

(� � a)

�1

�

�

This expression be
omes arbitrarily small if " is suÆ
iently small and g is

suÆ
iently 
lose to f . We 
on
lude that the map (g; b) 7! g[b℄ is 
ontinuous

at (f; a). �

4.3 Remark (Spe
tral Mapping Theorem). Many familiar properties

of the holomorphi
 fun
tional 
al
ulus on a Bana
h algebra as well as their

proofs 
arry over to a Ma
key 
omplete 
ontinuous inverse algebra A. For

instan
e, let 
 � C be an open subset, and 
hoose f 2 O(
) and a 2 A




.

Then the Spe
tral Mapping Theorem Sp(f [a℄) = f(Sp(a)) 
an be proved as

in the Bana
h algebra 
ase (see Rudin [28, 10.28℄; 
f. Gl�o
kner [11, 4.12℄).

By 
ontinuity of the fun
tional 
al
ulus, if f has a power series expansion

f(�) =

P

1

n=0

�

n

(���

0

)

n

on 
 then the series

P

1

n=0

�

n

(a��

0

�1)

n


onverges

to f [a℄, 
f. [11, 4.11℄.

4.4 Corollary (Composition). Let A be a Ma
key 
omplete 
ontinuous

inverse algebra. Let 
 � C and 


0

� C be open subsets, 
hoose f 2 O(
)

and g 2 O(


0

), and suppose that f(
) � 


0

. Then (g Æ f)[a℄ = g[f [a℄℄ holds

for every a 2 A




.

Proof. Fix a 2 A




and f 2 O(
) su
h that f(
) � 


0

. The two maps

from O(


0

) to A whi
h are given by g 7! (g Æ f)[a℄ and by g 7! g[f [a℄℄ are


ontinuous unital homomorphisms whi
h map id




0

to f [a℄. By uniqueness

of the 
ontinuous holomorphi
 fun
tional 
al
ulus, they are equal.

Gl�o
kner [11, 4.13℄ refers to Rudin [28, 10.29℄ for an alternative proof.

�

4.5 Remark (Homomorphisms; real analyti
 fun
tions). Runge's

Theorem (see Rudin [27, 13.9℄), whi
h was used in the proof of Theorem 4.2,

has many appli
ations to the holomorphi
 fun
tional 
al
ulus on a Ma
key


omplete 
ontinuous inverse algebra A, of whi
h we re
ord three. Let 
 � C

be an open subset, and 
hoose f 2 O(
) and a 2 A




.

Let ' : A ! B be a 
ontinuous unital homomorphism into a Ma
key


omplete 
ontinuous inverse algebra B. Approximating f by rational fun
-

tions, we �nd that '(f [a℄) = f ['(a)℄.
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Every element of A whi
h 
ommutes with a also 
ommutes with f [a℄. In

other words, f [a℄ belongs to the double 
ommutant fag

00

of a in A.

Assume that A is a Ma
key 
omplete 
ontinuous inverse

�

-algebra with


ontinuous involution. Let 


�

� C be the image of 
 under 
omplex 
on-

jugation. For f 2 O(
), de�ne f

�

2 O(


�

) by f

�

(�)

:

= f

�

�

�

. For every

element a 2 A




, the map

f 7�!

�

f

�

[a

�

℄

�

�

: O(
) �! A

is a 
ontinuous homomorphism of unital algebras whi
h sends id




2 O(
) to

a 2 A. By uniqueness of the holomorphi
 fun
tional 
al
ulus, the equation

f

�

[a

�

℄

�

= f [a℄ holds for every f 2 O(
) and every a 2 A




. In parti
ular,

assume that 
 is 
onne
ted and equals 


�

. Let f 2 O(
) be a fun
tion

whi
h takes real values on 
 \ R. Then f

�


oin
ides with f on 
 \ R.

By the Identity Theorem [27, Corollary of Theorem 10.18℄, the fun
tions f

and f

�


oin
ide on their domain 
. Therefore, every element a 2 A




satis�es

f [a

�

℄ = f [a℄

�

.

4.6 Proposition (Square roots). Let A be a Ma
key 
omplete 
ontinuous

inverse algebra. Then every element a 2 A with Sp(a) \ ℄�1; 0℄ = ; has

a unique square root with spe
trum 
ontained in the open right half plane.

This square root belongs to the double 
ommutant of a.

Proof. Set 


:

= C n ℄�1; 0℄. Let f 2 O(
) be the prin
ipal bran
h of

the 
omplex square root fun
tion, so that f(1) = 1 and f(�)

2

= � for every

� 2 
. De�ne b

:

= f [a℄ by the holomorphi
 fun
tional 
al
ulus. Then

b

2

= a, the spe
trum of b is 
ontained in the open right half-plane, and b

belongs to the double 
ommutant of a.

Let b

1

2 A be a square root of a with spe
trum 
ontained in the open

right half plane. Then b

1


ommutes with b

1

2

= a and hen
e with b. Propo-

sition 2.5 shows that Sp(b+ b

1

) is 
ontained in the open right half-plane. In

parti
ular, the element b+ b

1

is invertible. Sin
e

0 = b

2

� b

1

2

= (b+ b

1

)(b� b

1

);

this implies that b = b

1

. In other words, the element b is the unique square

root of a with spe
trum 
ontained in the open right half plane. �

4.7 Corollary (Self-adjoint square roots). Let A be a Ma
key 
omplete


ontinuous inverse

�

-algebra. Then every self-adjoint element h 2 A with

Sp(h) \ ℄�1; 0℄ = ; has a unique square root with spe
trum 
ontained in

the open right half plane. This square root is self-adjoint and belongs to the

double 
ommutant of h.

Note that we need not assume 
ontinuity of the involution.
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Proof. Proposition 4.6 yields a unique element k 2 A su
h that k

2

= h

and Im(Sp(k)) > 0. Sin
e these two properties also hold for k

�

, uniqueness

implies that k is self-adjoint. The double 
ommutant property also follows

from Proposition 4.6. �

5 The unitary semi-norm

5.1 Proposition (U(A) spans A). Let A be a Ma
key 
omplete 
ontinuous

inverse

�

-algebra, and let h 2 A be a self-adjoint element with spe
tral radius

�(h) < 1. Then there is a unitary element u 2 U(A) su
h that h =

1

2

(u+u

�

).

In parti
ular, the algebra A is the linear span of its unitary elements.

Proof. The rational fun
tion � 7!

1+�

1��

maps the open unit dis
 onto the

right half plane. By the Spe
tral Mapping Theorem, the spe
trum of the

element (1 + h)(1 � h)

�1

is 
ontained in the open right half plane. Let

k 2 A be a self-adjoint element su
h that k

2

= (1 + h)(1 � h)

�1

, and set

u

:

= (k + i)(k � i)

�1

. Then u is a unitary element of A, and we 
al
ulate

u+ u

�

= (k + i)(k � i)

�1

+ (k + i)

�1

(k � i)

=

�

(k + i)

2

+ (k � i)

2

�

(k + i)

�1

(k � i)

�1

= (k

2

+ 2ik � 1 + k

2

� 2ik � 1)

�

(k � i)(k + i)

�

�1

= 2(k

2

� 1)(k

2

+ 1)

�1

= 2

�

(1 + h)(1 � h)

�1

� 1

��

(1 + h)(1 � h)

�1

+ 1

�

�1

= 2

�

(1 + h)(1 � h)

�1

� 1

�

(1� h)

�(1� h)

�1

�

(1 + h)(1 � h)

�1

+ 1

�

�1

= 2

�

(1 + h)� (1� h)

��

(1 + h) + (1� h)

�

�1

= 2h:

This proves the proposition. �

5.2 Remark. We have 
hosen a proof whi
h only needs the existen
e of

square roots in a rather weak sense. The 
al
ulation be
omes shorter if we

exploit the full for
e of Corollary 4.7, 
f. Bonsall and Dun
an [7, 12.14℄.

Indeed, the double 
ommutant of 1 � h

2


ontains a self-adjoint element k

su
h that k

2

= 1�h

2

. Sin
e h and k 
ommute, the element u

:

= h+ ik 2 A

is unitary, and it satis�es h =

1

2

(u+ u

�

).

5.3 De�nition. Let A be a Ma
key 
omplete 
ontinuous inverse

�

-algebra.

The 
onvex hull 
onv(U(A)) is

�

-invariant, balan
ed, and 
losed under mul-

tipli
ation, and Proposition 5.1 shows that it is absorbing. Therefore, the

Minkowski fun
tional of 
onv(U(A)),

�

U

: A �! R

+

0

; a 7�! inf

�

� 2 R

+

;

1

�

a 2 
onv(U(A))

	

;
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is a

�

-invariant sub-multipli
ative semi-norm on A. The semi-norm �

U

is


alled the unitary semi-norm of A.

If A is a Ma
key 
omplete 
ontinuous quasi-inverse

�

-algebra then the

unitary semi-norm �

U

of A is de�ned as the restri
tion of the unitary semi-

norm of the unitization A

1

= A+ C � 1.

5.4 Lemma. Let A be a Ma
key 
omplete 
ontinuous inverse

�

-algebra.

Then for every self-adjoint element h 2 A, the unitary semi-norm and the

spe
tral radius are related by the inequality �

U

(h) � �(h).

Proof. Choose a positive real number t su
h that t > �(h) and therefore

�(t

�1

h) < 1. Proposition 5.1 yields a unitary element u 2 A

1

su
h that

t

�1

h =

1

2

(u+ u

�

). Hen
e t

�1

h belongs to the 
onvex hull of U(A

1

), so that

�

U

(t

�1

h) � 1. We 
on
lude that �

U

(h) � t. �

5.5 Proposition. The unitary semi-norm �

U

on a Ma
key 
omplete 
on-

tinuous quasi-inverse

�

-algebra A with 
ontinuous involution is 
ontinuous.

Proof. Sin
e �

U

is a semi-norm, it suÆ
es to show that it is 
ontinuous

at 0. Given " > 0, let 
 � C be the open dis
 with 
entre 0 and radius

"

2

.

Then A




is a neighbourhood of 0 in A. By Lemma 5.4, every self-adjoint

element h 2 A




satis�es �

U

(h) � �(h) <

"

2

. Let V � A be a

�

-invariant

balan
ed neighbourhood of 0 su
h that

1

2

V +

1

2

V � A




. Choose a 2 V .

De�ne self-adjoint elements of A by h

:

=

1

2

(a+a

�

) and k

:

=

1

2i

(a�a

�

). Then

h; k 2 A




, and a = h + ik. We 
on
lude that �

U

(a) � �

U

(h) + �

U

(k) < ".

�

5.6 Remark. Let A be a

�

-algebra su
h that the unitization A

1

= A+ C �1

is the linear span of U(A

1

). Su
h an algebra is 
alled a U

�

-algebra by

Palmer, who develops the theory of these algebras in Se
tion 10.4 of his

monograph [21℄. In parti
ular, the

�

-representation theory of A is very

similar to the

�

-representation theory of Bana
h

�

-algebras. This fa
t is

based on the following observation. Let � be a

�

-representation of A on a

pre-Hilbert spa
e X, i.e. a homomorphism from A into the algebra of lin-

ear endomorphisms of X su
h that h�(a):x; yi = hx; �(a

�

):yi holds for all

a 2 A and all x; y 2 X. Then � is normed, whi
h means that �(a) is a

bounded operator on X for every a 2 A. Hen
e � extends to a representa-

tion of A on the Hilbert spa
e 
ompletion of X. Moreover, the inequality

k�(a)k � �

U

(a) holds for every a 2 A, where the unitary semi-norm �

U

of A is 
onstru
ted as in De�nition 5.3. To prove this observation, it suÆ
es

to note that id

X

��(w) is a unitary operator whenever 1 � w is a unitary

element of A

1

, see [21, 10.3.8℄.

A similar argument shows that A has a greatest C

�

-semi-norm. Indeed,

let � be a non-zero C

�

-semi-norm on A. Then � extends to a C

�

-semi-

norm �

1

on A

1

su
h that �

1

(1) = 1 (see [21, 9.5.3℄). If u 2 A

1

is unitary
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then �

1

(u) =

p

�

1

(u

�

u) = 1. This entails that �

1

(a) � �

U

(a) holds for every

element a 2 A

1

. Therefore, the Gelfand{Na��mark semi-norm �

C

�

of A 
an

be 
onstru
ted as in De�nition 3.7, and it satis�es the inequality �

C

�

� �

U

(
f. [21, 10.3.9℄).

5.7 Theorem. Let A be a Ma
key 
omplete 
ontinuous quasi-inverse

�

-

algebra with 
ontinuous involution, and let A

�

U

be the zero spa
e of the

unitary semi-norm. Then the norm-
ompletion C of the quotient algebra

A=A

�

U

is a C

�

-algebra.

Proof. Assume �rst that A 
ontains a unit element 1. Let k � k denote

both the quotient norm indu
ed by �

U

on A=A

�

U

and its extension to the


ompletion C, and write � : A ! C for the quotient proje
tion followed by

the in
lusion of A=A

�

U

into C.

Let h 2 C be a self-adjoint element. Choose a sequen
e (a

n

)

n2N

inA su
h

that lim

n

�(a

n

) = h. De�ne self-adjoint elements of A by h

n

:

=

1

2

(a

n

+ a

�

n

).

Then lim

n

�(h

n

) = h be
ause the involution on C is isometri
. Continuity

of the fun
tional 
al
ulus implies that exp[ih℄ = lim

n

exp[�(ih

n

)℄. Propo-

sition 5.5 shows that the proje
tion � is 
ontinuous. Hen
e exp[�(ih

n

)℄ =

�(exp[ih

n

℄). Sin
e the involution on A is 
ontinuous, the element exp[ih

n

℄ 2

A is unitary. Hen
e

k exp[�(ih

n

)℄k = k�(exp[ih

n

℄)k = �

U

(exp[ih

n

℄) � 1:

This proves the inequality k exp[ih℄k � 1 for every self-adjoint element h 2

C. We infer that k exp[ih℄k = 1 holds for every self-adjoint element h 2 C.

This implies that every self-adjoint element of C has real numeri
al range

(see Bonsall and Dun
an [7, 10.13℄). The Vidav{Palmer Theorem (see [7,

38.14℄ or Palmer [21, 11.2.5℄) shows that C is a C

�

-algebra.

Now assume that A does not have a unit element. Let (a; �) 2 A

1

= A�C

be a unitary element. Then j�j = 1. Therefore, the image of the 
onvex hull

of U(A

1

) under the produ
t proje
tion of A

1

onto C is the 
losed unit dis
.

Hen
e (A

1

)

�

U

= A

�

U

. The �rst part of the proof shows that the 
ompletion

of A

1

=A

�

U

with respe
t to the norm indu
ed by �

U

is a C

�

-algebra. Sin
e

A=A

�

U

is isometri
ally embedded in A

1

=A

�

U

, the theorem follows. �

5.8 Corollary. Let A be a Ma
key 
omplete 
ontinuous quasi-inverse

�

-

algebra with 
ontinuous involution. Then the unitary semi-norm of A equals

the greatest C

�

-semi-norm, i.e. �

U

= �

C

�

. If A has a unit element then

fa 2 A; �

C

�

(a) � 1g is the 
losed 
onvex hull of U(A).

For Bana
h

�

-algebras, this 
orollary is due to Palmer [19℄.

Proof. The theorem implies that �

U

is a C

�

-semi-norm, when
e �

U

� �

C

�

.

The opposite inequality is 
ontained in Remark 5.6.
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Assume that A is a unital algebra. Sin
e �

U

is 
ontinuous on A by

Proposition 5.5, the 
losed unit ball fa 2 A; �

U

(a) � 1g is a 
losed 
onvex

subset of A, and this subset 
ontains the unitary group U(A) and hen
e its


losed 
onvex hull. Conversely, 
hoose a 2 A with �

U

(a) � 1. Then every

neighbourhood of a 
ontains an element of the form �a with 0 < � < 1,

and �a belongs to the 
onvex hull of U(A) be
ause �

U

(�a) � � < 1. We


on
lude that a belongs to the 
losed 
onvex hull of U(A). �

6 Positive linear fun
tionals

6.1 De�nition. Let A be a 
omplex

�

-algebra. A linear fun
tional ! : A!

C is 
alled positive if !(a

�

a) 2 R

+

0

holds for every a 2 A. The set of all

positive linear fun
tionals on A is denoted by Pos(A; C ).

6.2 Proposition. Let A be a Ma
key 
omplete 
ontinuous quasi-inverse

�

-algebra. Then every positive linear fun
tional ! : A! C has the following

properties.

(a) !(a

�

b) = !(b

�

a) for all a; b 2 A;

(b) j!(a

�

b)j

2

� !(a

�

a) !(b

�

b) for all a; b 2 A;

(
) j!(x

�

ax)j � !(x

�

x)

p

�(a

�

a) for all a; x 2 A;

(d) j!(x

�


x)j � !(x

�

x) �(
) for all 
; x 2 A su
h that 
 is normal.

Proof. Let a; b 2 A. If � 2 C then

0 � !

�

(a+ �b)

�

(a+ �b)

�

= !(a

�

a) + �!(a

�

b) + �!(b

�

a) + j�j

2

!(b

�

b):

In parti
ular, all � 2 C satisfy �!(a

�

b) + �!(b

�

a) 2 R. Setting �

:

= 1 and

�

:

= i, we �nd that !(a

�

b) = !(b

�

a). If !(b

�

b) = 0 then 0 � !(a

�

a) +

2Re(�!(a

�

b)) holds for all � 2 C . Hen
e !(a

�

b) = 0, and property (b)

follows. If !(b

�

b) 6= 0 then (b) is proved by setting �

:

= �!(b

�

a)=!(b

�

b).

Let a; x 2 A. Choose � 2 R with � > �(a

�

a). Corollary 4.7 yields

a self-adjoint element k 2 A

1

= A + C � 1 su
h that k

2

= � � a

�

a. The

inequality !(x

�

k

2

x) � 0 implies !(x

�

a

�

ax) � !(x

�

x) � �. We 
on
lude that

!(x

�

a

�

ax) � !(x

�

x) �(a

�

a). Together with property (b), this shows that

j!(x

�

ax)j

2

� !(x

�

x) !(x

�

a

�

ax) � !(x

�

x)

2

�(a

�

a):

Thus we have proved (
). If 
 2 A is normal then �(


�


) � �(


�

) �(
) = �(
)

2

by Proposition 2.5. This implies (d). �

6.3 Corollary. Let A be a Ma
key 
omplete 
ontinuous inverse

�

-algebra.

Then every positive linear fun
tional ! : A! C has the following properties.
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(a) !(a

�

) = !(a) for all a 2 A;

(b) j!(a)j

2

� !(1) !(a

�

a) for all a 2 A;

(
) j!(a)j � !(1)

p

�(a

�

a) for all a 2 A;

(d) j!(
)j � !(1) �(
) for all normal elements 
 2 A.

In parti
ular, every positive linear fun
tional on A is 
ontinuous on the real

subspa
e of normal elements of A.

Proof. Properties (a){(d) follow from the 
orresponding statements of

Proposition 6.2 by setting suitable algebra elements equal to 1. The 
on-

tinuity assertion follows from Lemma 1.5. �

6.4 Proposition (Gelfand{Na��mark{Segal Constru
tion). Let A be a

Ma
key 
omplete 
ontinuous inverse algebra, and let ! : A! C be a positive

linear fun
tional. Then there exist a Hilbert spa
e H, a

�

-representation

� : A ! B(H), and a ve
tor v 2 H su
h that �(A):v is a dense subspa
e

of H, and all a 2 A satisfy !(a) = h�(a):v; vi.

Proof. De�ne a positive semide�nite sesquilinear form on A by ha; bi

:

=

!(b

�

a). Let R � A be the radi
al of this form. In other words,

R

:

= fa 2 A; 8 b 2 A : ha; bi = 0g = fa 2 A; !(a

�

a) = 0g ;

where the se
ond equality follows from Proposition 6.2. The form h�; �i

indu
es a 
omplex s
alar produ
t on A=R, whi
h we denote by the same

symbol. The Hilbert spa
e H is de�ned as the 
ompletion of A=R.

Sin
e R is a left ideal of A, a representation � of A on the pre-Hilbert

spa
e A=R is de�ned by �(a):(x+R)

:

= ax+R for a; x 2 A. If a 2 A then

k�(a)k

2

= sup

�

k�(a):vk

2

; v 2 A=R; kvk � 1

	

= sup f!(x

�

a

�

ax); x 2 A; !(x

�

x) � 1g � �(a

�

a)

by Proposition 6.2. Hen
e �(a) is bounded, and it extends to a bounded

operator on H, whi
h we also denote by �(a). This yields a

�

-representation

of A on H be
ause




�(a

�

):(x+R); y +R

�

=




a

�

x+R; y +R

�

= !(y

�

a

�

x)

= !

�

(ay)

�

x

�

=




x+R; ay +R

�

=




x+R; �(a):(y +R)

�

holds for all a; x; y 2 A.

Set v

:

= 1 +R 2 A=R � H. Then �(A):v = A=R is dense in H, and all

a 2 A satisfy h�(a):v; vi = !(a). �

21



We have given the most dire
t approa
h to the Gelfand{Na��mark{Segal


onstru
tion. For some purposes, it is an advantage to 
onsider H as a

reprodu
ing kernel Hilbert subspa
e of the linear dual of A (see Neeb [17,

III.1℄). In this pi
ture, the representation � of A on H is the a
tion by right

multipli
ation in the argument of the fun
tion.

6.5 Corollary. Every positive linear fun
tional ! on a Ma
key 
omplete


ontinuous inverse

�

-algebra A is 
ontinuous with respe
t to the greatest

C

�

-semi-norm �

C

�

of A.

Proof. In the notation of Proposition 6.4, the map a 7! k�(a)k : A! R is

a C

�

-semi-norm, so that all a 2 A satisfy

j!(a)j = jh�(a):v; vij � k�(a):vk � kvk � k�(a)k � kvk

2

� kvk

2

�

C

�

(a): �

6.6 Proposition (Automati
 
ontinuity). Let A be a Ma
key 
omplete


ontinuous inverse

�

-algebra A. Assume that the involution of A is 
ontinu-

ous or that A is a Fr�e
het spa
e. Then every

�

-representation of A on a

Hilbert spa
e is 
ontinuous. In parti
ular, every positive linear fun
tional

on A is 
ontinuous.

Proof. If � : A ! B(H) is a

�

-representation of A on a Hilbert spa
e H

then a 7! k�(a)k : A ! R is a C

�

-semi-norm on A. Hen
e the assertions

follow immediately from Proposition 3.8, Theorem 3.9, and Proposition 6.4.

�

6.7 De�nition. In any 
omplex

�

-algebra A, the positive 
one is de�ned as

Pos(A)

:

= fh 2 Sym(A); 8! 2 Pos(A; C ) : !(h) � 0g :

6.8 Proposition. In a Ma
key 
omplete 
ontinuous inverse

�

-algebra A,

the positive 
one Pos(A) equals the 
losed 
onvex 
one in Sym(A) generated

by fa

�

a; a 2 Ag.

Proof. Let P � Sym(A) be the 
losed 
onvex 
one generated by the set

fa

�

a; a 2 Ag. Sin
e Pos(A) is a 
onvex 
one and a 
losed subset of Sym(A),

we have P � Pos(A). Conversely, assume that h 2 Sym(A) nP . The Hahn{

Bana
h Theorem (see, for instan
e, Rudin [28, 3.4℄) yields a 
ontinuous

linear fun
tional ' : Sym(A) ! R su
h that '(h) 62 '(P ). We may assume

that '(h) < 0 and '(P ) � R

+

0

. De�ne

! : A �! C ; a 7�! '

�

a+ a

�

2

�

+ i'

�

a� a

�

2i

�

:

If a 2 A then !(ia) = '

�

i

a�a

�

2

�

+ i'

�

a+a

�

2

�

= i!(a). Hen
e ! is a C -

linear fun
tional on A. The fun
tionals ! and ' 
oin
ide on Sym(A), so

that !(P ) � R

+

0

. We 
on
lude that ! 2 Pos(A; C ) and !(h) < 0, when
e

h 62 Pos(A). �
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7 Hermitian 
ontinuous inverse

�

-algebras

In this se
tion, we study a 
ondition whi
h establishes a 
onne
tion between

the involution and the properties of spe
tra in a 
omplex

�

-algebra. As the

following example shows, this 
onne
tion 
an be quite loose in general.

7.1 Example. Let A be the Bana
h algebra C�C , whi
h is unital and semi-

simple. De�ne an involution on A by (�

1

; �

2

)

�

:

= (�

2

; �

1

). The spe
trum of

(�

1

; �

2

) is f�

1

; �

2

g. The self-adjoint elements of A are exa
tly those of the

form (�; �) for some � 2 C . Every positive linear fun
tional on A vanishes

(
f. Bonsall and Dun
an [7, 37.16℄).

The unitary elements of A are the elements (�; 1=�) with � 2 C

�

. It

follows easily that the 
onvex hull of the unitary group U(A) equals A. In

parti
ular, the unitary semi-norm �

U

of A is trivial. The same holds for the

Gelfand{Na��mark semi-norm �

C

�

be
ause �

C

�

� �

U

.

7.2 De�nition. A 
ontinuous quasi-inverse

�

-algebra A is 
alled hermitian

if every self-adjoint element has real spe
trum.

For the following theorem, re
all the de�nition and basi
 properties of

the Ra��kov{Pt�ak fun
tional � (De�nition 3.4 and Lemma 3.5). The use of �

as the prin
ipal tool in the theory of hermitian Bana
h

�

-algebras is due to

Pt�ak [23℄.

7.3 Theorem (Pt�ak's Theorem for 
ontinuous inverse

�

-algebras).

The following are equivalent for a Ma
key 
omplete 
ontinuous inverse

�

-

algebra A:

(i) A is hermitian;

(ii) � � � (Pt�ak's 
riterion);

(iii) �

C

�

= � (Ra��kov's 
riterion);

(iv) �(
) = �(
) for all normal elements 
 2 A;

(v) �(a+ a

�

) � 2�(a) for all a 2 A.

Sin
e Lemma 3.5 yields the inequality �

C

�

� � in every 
ontinuous inverse

�

-algebra, these 
onditions are also equivalent to the inequality � � �

C

�

,

whi
h plays a 
entral role in Palmer's approa
h [21, Se
tion 10.4℄.

The following proof of Theorem 7.3 is self-
ontained. It uses some spe
i�


material for 
ontinuous inverse algebras, but most arguments 
an be found,

for the 
ase of Bana
h

�

-algebras, in Pt�ak's exposition [24, Se
tion 5℄; see

also Bonsall and Dun
an [7, x 41℄.
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Proof. We will �rst prove the equivalen
e of 
onditions (i), (ii), and (iv).

Lemma 3.5 shows that (ii) implies (iv). Assume that (iv) holds. If A is not

hermitian, there is a self-adjoint element h 2 A su
h that i 2 Sp(h). Let

� 2 R. Then i+ i� belongs to the spe
trum of the normal element h+ i�,

so that

(1 + �)

2

� �(h+ i�)

2

= �(h+ i�)

2

= �

�

(h+ i�)

�

(h+ i�)

�

= �(h

2

+ �

2

) � �(h

2

) + �

2

:

Hen
e 1 + 2� � �(h

2

) holds for all � 2 R. This 
ontradi
tion proves that A

is hermitian.

Assume that A is hermitian. We 
laim that 1 � a is invertible for ea
h

a 2 A whi
h satis�es �(a) < 1. Indeed, Corollary 4.7 yields a self-adjoint

element h 2 A su
h that h

2

= 1 � a

�

a, and h is invertible be
ause 1 � a

�

a

is invertible. We 
al
ulate

(1 + a

�

)(1� a) = 1 + a

�

� a� a

�

a

= h

2

+ a

�

� a = h

�

1 + h

�1

(a

�

� a)h

�1

�

h:

Sin
e ih

�1

(a

�

�a)h

�1

is a self-adjoint element, it has real spe
trum, so that

the displayed expressions are invertible. Hen
e 1�a is left invertible. By the

same argument, the adjoint (1�a)

�

= 1�a

�

is left invertible be
ause �(a

�

) =

�(a) < 1. Thus 1 � a is invertible as we 
laimed. Let a 2 A be arbitrary,

and 
hoose � 2 C with j�j > �(a), so that �(�

�1

a) = j�j

�1

�(a) < 1. Then

the elements 1� �

�1

a and �� a of A are invertible, so that � 62 Sp(a). We


on
lude that �(a) � �(a). Thus (i) implies (ii), and we have proved the

equivalen
e of (i), (ii), and (iv).

Now we will assume 
onditions (i) and (ii) and derive (iii). If a 2 A then

�(a

�

a) =

p

�(a

�

a a

�

a) =

p

�(a

�

a)

2

= �(a)

2

:

Let h; k 2 A be self-adjoint elements. Then

�(hk) � �(hk) =

p

�(khhk) =

p

�(h

2

k

2

) :

It follows by indu
tion that �(hk) � �(h

2

n

k

2

n

)

2

�n

holds for all n 2 N. If

�(h) < 1 and �(k) < 1 then Lemma 1.6 yields that lim

m

h

m

= 0 = lim

m

k

m

.

Proposition 1.2 implies that lim

m

h

m

k

2m

h

m

= 0, when
e Lemma 1.5 shows

that lim

m

�(h

m

k

2m

h

m

) = 0. Sin
e �(h

2m

k

2m

) = �(h

m

k

2m

h

m

), we infer

that �(hk) < 1. For general self-adjoint h; k 2 A, 
hoose �; � 2 R with

�(h) < � and �(k) < �. We have proved that �

�

(�

�1

h)(�

�1

k)

�

< 1 and

hen
e �(hk) < ��. We 
on
lude that

�(hk) � �(h) �(k) (h = h

�

; k = k

�

):

This implies that all a; b 2 A satisfy

�(ab) =

p

�(b

�

a

�

ab) =

p

�(a

�

abb

�

) �

p

�(a

�

a) �(bb

�

) = �(a) �(b):
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Our next aim is to prove that the set

P

:

=

�

h 2 Sym(A); Sp(h) � R

+

0

	

is a 
onvex 
one. (In fa
t, Corollary 7.7 will show that P = Pos(A).) If

h 2 P then �h 2 P holds for all � � 0. We have to prove that h + k 2 P

if h; k 2 P . Sin
e A is hermitian, it suÆ
es to show that 1 + h + k 2 A

�

.

Sin
e 1 + h; 1 + k 2 A

�

, we may de�ne self-adjoint elements u; v 2 A

�

by

u

:

= h(1+h)

�1

and v

:

= k(1+k)

�1

. The Spe
tral Mapping Theorem gives

�(u) < 1 and �(v) < 1. We have seen that this implies �(uv) < 1, and so

1� uv 2 A

�

. Sin
e

1 + h+ k = (1 + h)(1 � uv)(1 + k);

it follows that 1 + h+ k 2 A

�

. We 
on
lude that h+ k 2 P .

If h; k 2 A are arbitrary self-adjoint elements then �(h)�h; �(k)�k 2 P ,

when
e �(h) + �(k)� (h+ k) 2 P . This implies that

�(h+ k) � �(h) + �(k) (h = h

�

; k = k

�

):

Let a 2 A, and set h

:

= a+ a

�

and k

:

= i(a� a

�

). Then

�(h

2

+ k

2

)� h

2

=

�

�(h

2

+ k

2

)� (h

2

+ k

2

)

�

+ k

2

2 P;

and so

�(a+ a

�

) =

p

�(h

2

) �

p

�(h

2

+ k

2

) =

p

2�(a

�

a+ aa

�

)

�

p

2(�(a

�

a) + �(aa

�

)) =

p

2(�(a)

2

+ �(a)

2

) = 2�(a):

Let a; b 2 A. Then

�(a+ b)

2

= �

�

(a+ b)

�

(a+ b)

�

= �(a

�

a+ b

�

b+ a

�

b+ b

�

a)

� �(a

�

a) + �(b

�

b) + �(a

�

b+ b

�

a)

� �(a)

2

+ �(b)

2

+ 2�(a

�

b)

� �(a)

2

+ �(b)

2

+ 2�(a

�

) �(b) =

�

�(a) + �(b)

�

2

:

Thus we have proved that � is a C

�

-semi-norm. Hen
e � � �

C

�

, and we infer

from Lemma 3.5 that �

C

�

= � . This 
ompletes the proof of 
ondition (iii).

If 
ondition (iii) holds then � is sub-additive, whi
h implies (v). Assume

that (v) holds, and let 
 2 A be a normal element. Write 
 = h + ik with

self-adjoint elements h; k 2 A. Then hk = kh, so that �(
) � �(h) + �(k) by

Proposition 2.5. Moreover,

�(h) = �(h) = �

�




2

+




�

2

�

� 2�

�




2

�

= �(
)
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and, similarly, �(k) � �(
). We 
on
lude that �(
) � 2�(
). If n 2 N then

�(
)

2n

= �(


n

)

2

� 4�(


n

)

2

= 4�

�

(


�

)

n




n

�

= 4�

�

(


�


)

n

�

= 4�(


�


)

n

= 4�(
)

2n

:

Hen
e �(
) �

n

p

2 �(
) for all n 2 N and so �(
) � �(
). Sin
e �(
) � �(
)

holds without further assumptions, we have proved 
ondition (iv). �

7.4 Remark (Further 
hara
terizations of hermitian algebras).

(a) Let A be a Ma
key 
omplete 
ontinuous inverse

�

-algebra. Then A

is hermitian if and only if there is a 
onstant C > 0 su
h that all a 2 A

satisfy �(a

�

a) � C�

C

�

(a

�

a). This 
ondition was observed by Palmer [21,

10.4.8℄.

Indeed, Palmer's 
ondition follows immediately from Ra��kov's 
ondition

�

C

�

= � . Conversely, assume that Palmer's 
ondition holds. Let h 2 A be

self-adjoint. If n 2 N then �(h)

2n

= �((h

n

)

2

) � C�

C

�

((h

n

)

2

) � C�

C

�

(h)

2n

.

Hen
e �(h) � �

C

�

(h). This implies � � �

C

�

, and we 
on
lude that �

C

�

= � ,

so that A is hermitian.

Pt�ak's 
ondition � � � 
an also be proved dire
tly from the inequality

�(h) � �

C

�

(h) for all h 2 Sym(A) (
f. Palmer [21, 10.2.11℄). Namely, 
hoose

a 2 A with �

C

�

(a) �

1

3

. Then

�(a+ a

�

� a

�

a) � �

C

�

(a+ a

�

� a

�

a)

� �

C

�

(a) + �

C

�

(a

�

) + �

C

�

(a

�

) �

C

�

(a)

�

�

1 + �

C

�

(a)

�

2

� 1

< 1:

Hen
e (1�a

�

)(1�a) = 1�(a+a

�

�a

�

a) is invertible. Similarly, the element

(1 � a)(1 � a

�

) is invertible. We 
on
lude that 1 � a 2 A

�

. Let a 2 A be

arbitrary, and 
hoose � 2 C with j�j > 3�

C

�

(a), so that �

C

�

(�

�1

a) =

j�j

�1

�

C

�

(a) <

1

3

. Then the elements 1� �

�1

a and �� a of A are invertible,

so that � 62 Sp(a). This implies that �(a) � 3�

C

�

(a). If n 2 N then

�(a)

n

= �(a

n

) � 3�

C

�

(a

n

) � 3�

C

�

(a)

n

. We 
on
lude that � � �

C

�

. Sin
e

�

C

�

� � , we have proved that � � � .

(b) Pt�ak [24, 5.10℄ proved that the following are equivalent for a unital

Bana
h

�

-algebra A:

(i) A is hermitian;

(ii) Sp(u) � f� 2 C ; j�j = 1g for all u 2 U(A);

(iii) � is bounded on U(A).

Pt�ak's proof also applies to Ma
key 
omplete 
ontinuous inverse

�

-algebras.
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7.5 Proposition (C

�

(A) for hermitian A). Let A be a Ma
key 
omplete


ontinuous inverse

�

-algebra, and let � : A ! C

�

(A) be the natural homo-

morphism from A into its enveloping C

�

-algebra. Then A is hermitian if

and only if � is equispe
tral, whi
h means that �

�1

�

C

�

(A)

�

�

= A

�

.

Note that �

�1

�

C

�

(A)

�

�

= A

�

holds if and only if every a 2 A satis�es

Sp(�(a)) = Sp(a). This explains the word \equispe
tral".

Proof. If � is equispe
tral then A is hermitian be
ause C

�

-algebras are

hermitian (see, for instan
e, Rudin [28, 11.28℄).

Conversely, assume that A is hermitian, so that it satis�es � � �

C

�

.

Choose a 2 A su
h that �(a) is invertible in C

�

(A). We have to prove that

a 2 A

�

. Sin
e �(A) is dense in C

�

(A), we may 
hoose b 2 A su
h that

k�(a)

�1

� �(b)k < k�(a)k

�1

. We 
al
ulate

�(1� ab) � �

C

�

(1� ab) = k1� �(ab)k =







�(a)

�

�(a)

�1

� �(b)

�







< 1:

The analogous 
al
ulation yields the inequality �(1�ba) < 1. Hen
e ab; ba 2

A

�

, and we 
on
lude that a 2 A

�

. �

7.6 Proposition (Spe
trum and states). Let A be a Ma
key 
omplete

hermitian 
ontinuous inverse

�

-algebra. Then every normal element 
 2 A

satis�es


onv(Sp(
)) = f!(
); ! 2 Pos(A; C ); !(1) = 1g :

Proof. Let � : A ! C

�

(A) be the natural homomorphism from A into its

enveloping C

�

-algebra. By Corollary 6.5, every positive linear fun
tional

on A fa
tors through a positive linear fun
tional on �(A), whi
h extends by


ontinuity to a positive linear fun
tional on C

�

(A). In other words,

Pos(A; C ) = f! Æ �; ! 2 Pos(C

�

(A); C )g :

In view of Proposition 7.5, the assertion follows from the 
orresponding

result for C

�

-algebras (see, for instan
e, Bonsall and Dun
an [7, x 38℄).

A di�erent proof 
an be found in Palmer's monograph [21, 10.4.21℄. �

The set f! 2 Pos(A; C ); !(1) = 1g is 
alled the set of states of A. The ex-

treme points of this 
onvex set are 
alled the pure states of A. A re�nement

of the pre
eding proposition (Palmer [21, 10.4.21℄) asserts that the spe
trum

of a normal element 
 2 A is 
ontained in the image of 
 under the set of

pure states.

7.7 Corollary (Shirali{Ford Theorem). Every Ma
key 
omplete her-

mitian 
ontinuous inverse

�

-algebra satis�es

Pos(A) =

�

h 2 Sym(A); Sp(h) � R

+

0

	

:

In parti
ular, Sp(a

�

a) � R

+

0

holds for all a 2 A. �
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7.8 Remark. Kaplansky [14℄ 
onje
tured in 1949 that every element a of

a hermitian Bana
h

�

-algebra satis�es Sp(a

�

a) � R

+

0

. This 
onje
ture was

�nally proved by Shirali and Ford [30℄ in 1970. The parti
ularly 
on
eptual

proof based on Proposition 7.5 whi
h we have given is due to Fragoulopou-

lou [10℄. Several other proofs have been given; see Bonsall and Dun
an [7,

41.5℄, Pt�ak [24, 5.9℄, and Palmer [21, 10.4.2℄.

Se
tion 10.4 of Palmer's monograph 
ontains a number of additional

properties of

�

-algebras whi
h satisfy � � �

C

�

. Palmer develops his theory

for

�

-algebras in whi
h some sub-multipli
ative semi-norm dominates the

spe
tral radius. The reader must be alert to the fa
t that this hypothesis is

sometimes used without being expli
itly stated (e.g. [21, 10.4.4 and 10.4.16℄).

Palmer's work is very 
omprehensive, whi
h makes it sometimes diÆ
ult to

read. For these reasons, we have de
ided to give proofs for results su
h

as Propositions 7.5 and 7.6 whi
h are also 
ontained in Palmer's book [21,

10.4.18 and 10.4.21℄.

7.9 Proposition. The Ja
obson radi
al of a Ma
key 
omplete hermitian


ontinuous inverse

�

-algebra A equals the

�

-ideal fa 2 A; �

C

�

(a) = 0g.

Proof. Proposition 3.6 shows that �

C

�

vanishes on rad(A). Conversely,

if A is hermitian then � � �

C

�

, so that fa 2 A; �

C

�

(a) = 0g 
onsists of

quasi-invertible elements and hen
e is 
ontained in rad(A). �

7.10 Proposition. Let A be a Ma
key 
omplete hermitian 
ontinuous

inverse

�

-algebra, and let B � A be a 
losed unital

�

-subalgebra. Then B is

hermitian, and B

�

= A

�

\B.

The 
ondition B

�

= A

�

\ B holds if and only if every b 2 B satis�es

Sp

B

(b) = Sp

A

(b). Hen
e a subalgebra B � A whi
h satis�es this 
ondition

might be 
alled \equispe
tral".

Proof. Choose b 2 A

�

\B. Then b

�

2 A

�

and b

�

b 2 A

�

, so that Sp

A

(b

�

b) �

R

+

. Proposition 1.7 shows that Sp

B

(b

�

b) = Sp

A

(b

�

b), when
e b

�

b 2 B

�

.

We 
on
lude that b

�1

= (b

�

b)

�1

b

�

2 B, so that b 2 B

�

. Hen
e B is an

equispe
tral subalgebra. In parti
ular, it is hermitian. �
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