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Abstrat

A large part of the theory of Banah

�

-algebras is developed and

generalized to ontinuous inverse

�

-algebras (i.e. omplex loally on-

vex unital

�

-algebras with open unit group and ontinuous inversion)

whih are (Makey) omplete. If the involution is ontinuous, the

losed unit ball with respet to the greatest C

�

-semi-norm is the losed

onvex hull of the unitary elements. (This is originally due to Palmer.)

For hermitian ontinuous inverse

�

-algebras, we generalize harater-

izations due to Ra��kov, Pt�ak, and Palmer, we prove the Shirali{Ford

Theorem, and we show that losed subalgebras are equispetrally em-

bedded.
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Introdution

A omplex ontinuous inverse algebra shares many important properties of

Banah algebras if it is (sequentially) omplete or satis�es a slightly weaker

ondition alled Makey ompleteness. For instane, every element has non-

empty ompat spetrum, and the holomorphi funtional alulus works.

The theory of ommutative omplete ontinuous inverse algebras was initi-

ated by Waelbroek [32, 33℄. Non-ommutative ontinuous inverse algebras

are used in K-theory and non-ommutative geometry [6, 8, 9, 22℄ and in the

theory of pseudo-di�erential operators [12℄. Reently, ontinuous inverse

algebras have reeived renewed interest as the natural framework for the

investigation of linear Lie groups of in�nite dimension [11℄. For example,

they serve as oordinate domains for the in�nite-dimensional analogues of

the lassial groups [18℄. In order to study unitary groups, i.e. the invariane

groups of (not neessarily positive de�nite) hermitian forms, one must equip

the oordinate algebra with an involution. Moreover, this involution may be

�
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onneted with the spetral properties of the algebra by ertain onditions

of positive de�niteness. Typially, one would like elements of the form a

�

a to

have non-negative real spetrum. For instane, this ondition is used for the

Harish{Chandra deomposition of Lie groups of the type U(1; 1;A), where A

is a ontinuous inverse

�

-algebra [4℄. The Harish{Chandra deomposition,

in turn, yields one of the very few onstrution priniples for irreduible

unitary representations of these in�nite-dimensional Lie groups.

The investigation of ontinuous inverse algebras with an involution is the

subjet of this artile. It is remarkable how smoothly the theory of Banah

algebras an be generalized to this ontext if one arefully hooses the line

of attak. The deepest results, whih have been announed in the abstrat,

are ontained in Setion 5 on unitary elements and Setion 7 on algebras

in whih every self-adjoint element has real spetrum. The latter property

implies the above positivity ondition; for Banah algebras, this result is the

Shirali{Ford Theorem. Setion 7 also shows that 	

�

-algebras in the sense

of Gramsh [12, 5.1℄ are exatly semi-simple hermitian Fr�ehet ontinuous

inverse algebras.

Setion 1 ontains elementary results suh as the relation between the

spetrum of an element and its spetrum with respet to a losed subalgebra.

Setion 2 provides the Gelfand homomorphism for ommutative ontinuous

inverse algebras. Setion 3 introdues the greatest C

�

-semi-norm and gives

two results on automati ontinuity. In Setion 4, we report on the holomor-

phi funtional alulus as developed by Gl�okner [11℄, and we prove Ford's

square root lemma. Setion 6 ontains the fundamental properties of posi-

tive linear funtionals and inludes another result on automati ontinuity.

In my view, the most interesting ontinuous inverse

�

-algebras are those

in whih a unit element exists, the involution is ontinuous, and the mul-

tipliation is jointly and not just separately ontinuous. My attitude is to

assume any of these three onditions whenever this makes the statement of

a result shorter and learer. However, this is often not the ase, and then

I have preferred the more general statement. In fat, sine Jordan multi-

pliation is ontinuous in any ontinuous inverse algebra, it turns out that

joint ontinuity of the multipliation need not be assumed for any result in

this artile. Continuity of the involution is only needed in a very limited

number of plaes. When a statement onerns unital algebras, it is usually

not diÆult to obtain a similar result for non-unital algebras by means of

adjuntion of a unit element.

1 Continuous inverse algebras

Let us �rst reall some algebrai onepts. A omplex loally onvex algebra

is a omplex assoiative algebra A with a loally onvex Hausdor� vetor

spae topology suh that the algebra multipliation is separately ontinuous.
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The latter ondition means that x 7! ax and x 7! xa are ontinuous maps

from A into itself whenever a 2 A. Separate ontinuity is often more easy to

prove than joint ontinuity, i.e. ontinuity of multipliation as a map from

A�A into A, and it is suÆient for everything we will prove in this paper. We

will sometimes onsider Fr�ehet algebras, whih are omplex loally onvex

algebras in whih the topology is ompletely metrizable. This implies that

multipliation is jointly ontinuous (see Rudin [28, 2.17℄). The unitization

A

1

= A+C �1 of a omplex algebra A is de�ned as A if A has a unit element,

and as the diret sum A�C of loally onvex vetor spaes with the algebra

multipliation de�ned by (a; �) � (b; �)

:

= (ab + �b + �a; ��) if A does not

have a unit element.

The adjuntion of a unit element an be avoided by the onept of quasi-

multipliation, whih is also useful in some other respets. This is the binary

operation de�ned on an algebra A by a Æ b

:

= a + b � ab. Note that the

equation a Æ b = 1 � (1 � a)(1 � b) holds in A

1

and that (A; Æ) is a monoid

with neutral element 0 2 A. An element a 2 A is alled quasi-invertible if it

is invertible with respet to this monoid struture. Every algebra (in fat,

every ring) has a greatest ideal whih onsists of quasi-invertible elements.

This ideal is alled the Jaobson radial of the algebra A and denoted by

rad(A). The algebra is alled semi-simple if rad(A) = f0g.

Let A be a omplex algebra. The spetrum of an element a 2 A is the

subset

Sp(a)

:

=

�

� 2 C ; � � 1� a 62 (A

1

)

�

	

of C . The spetral radius of a 2 A is

�(a)

:

= sup fj�j; � 2 Sp(a)g 2 R

+

0

[ f�1g:

If a; b 2 A then Sp(ab) [ f0g = Sp(ba) [ f0g. Indeed, if � 2 C

�

n Sp(ab)

then

1

�

(1 + b(� � ab)

�1

a) is the inverse of � � ba 2 A

1

. In partiular, the

formula �(ab) = �(ba) holds unless one produt has spetrum f0g and the

other has empty spetrum (f. Palmer [20, 2.2.1℄). Let a 2 A, and let f

be a omplex rational funtion without poles in Sp(a). Then one an form

the element f(a) 2 A

1

, and the Spetral Mapping Theorem asserts that

Sp(f(a)) = f(Sp(a)) unless Sp(a) is empty and f is a onstant. For an

elegant simple proof, see Palmer [20, 2.1.10℄.

1.1 De�nition. A ontinuous inverse algebra is a omplex loally onvex

algebra with unit in whih the set of invertible elements is a neighbourhood

of 1 and inversion is ontinuous at 1. A ontinuous quasi-inverse algebra

is a omplex loally onvex algebra (with or without unit) suh that the

unitization A

1

is a ontinuous inverse algebra.

Our de�nition follows Turpin [31℄ in not requiring joint ontinuity of the mul-

tipliation. This is not beause we are strongly interested in algebras with
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disontinuous multipliation, but beause the following proposition yields

ontinuity of the Jordan multipliation, whih is all we need in this paper.

A short argument shows that a omplex algebra with a loally onvex

vetor spae topology is a ontinuous quasi-inverse algebra if and only if the

set of quasi-invertible elements is a neighbourhood of 0 and quasi-inversion

is ontinuous at 0.

1.2 Proposition (Turpin [31℄). Let A be a ontinuous inverse algebra.

Then A

�

is an open subset of A, and inversion is a ontinuous map from A

�

into itself. Jordan multipliation (a; b) 7! ab+ba : A�A! A is ontinuous.

In partiular, the maps (a; b) 7! aba : A � A ! A and a 7! a

n

: A ! A

for n 2 N are ontinuous, and multipliation is ontinuous on every ommu-

tative subalgebra of A.

The following ingenious proof, whih is due to Turpin [31℄, does not even

use separate ontinuity of the multipliation, and indeed Turpin's de�nition

does not inlude this ondition. However, it will be used in Remark 1.3.

Thus it is fundamental to the holomorphi funtional alulus whih will be

developed in Setion 4.

Proof. If a 2 A is suÆiently small then both 1+a and 1�a are invertible,

and the formula a

2

= 1 � 2

�

(1 + a)

�1

+ (1 � a)

�1

�

�1

shows that the map

a 7! a

2

is ontinuous at 0. This implies that the bilinear map

� : A�A �! A; (a; b) 7�! ab+ ba = (a+ b)

2

� a

2

� b

2

is ontinuous at (0; 0). If a 2 A then the linear map x 7! �(a; x) is ontinuous

at 0 and hene ontinuous. We onlude that � is ontinuous. By indution,

this implies that the n-th power map a 7! a

n

is ontinuous on A for every

n 2 N. Sine 2aba = �(a; ab+ba)��(a

2

; b), we �nd that the map (a; b) 7! aba

is ontinuous as well.

Let a 2 A

�

. If x 2 A is suÆiently small then a

2

+x = a(1+a

�1

xa

�1

)a is

invertible, and the map x 7! (a

2

+x)

�1

is de�ned in a neighbourhood of 0 and

ontinuous at 0. Hene the map x 7! x

�2

is de�ned in a neighbourhood of a

and ontinuous at a. Finally, this proves that the map x 7! x

�1

=

1

2

�(x; x

�2

)

is de�ned in a neighbourhood of a and ontinuous at a. �

1.3 Remark (Commutants). By many authors, the multipliation in a

ontinuous inverse algebra is assumed to be jointly ontinuous. For instane,

this is perfetly natural in the theory of linear Lie groups. We an often use

these parts of the literature by working in ommutative subalgebras. This is

beause the following observation leads to ommutative subalgebras whih

are again ontinuous inverse algebras.

Let S be a subset of a ontinuous inverse algebra A. Then the ommutant

S

0

:

= fa 2 A; 8 s 2 S : as = sag of S is a subalgebra of A whih satis�es

(S

0

)

�

= A

�

\ S

0

:
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Indeed, it is easy to see that a

�1

ommutes with S whenever a 2 A

�

om-

mutes with S. Sine multipliation in A is separately ontinuous, the sub-

algebra S

0

is losed. In partiular, it inherits the ompleteness properties

of A.

We have proved that every ommutant is a ontinuous inverse algebra.

Note that this argument applies to any maximal ommutative subalgebra

beause suh a subalgebra equals its own ommutant.

Also note that the double ommutant of a ommuting subset is ommu-

tative.

Continuous inverse Fr�ehet algebras admit a slightly di�erent de�nition.

Let A be a Fr�ehet algebra. We have notied above that multipliation

in A is jointly ontinuous. Quasi-inversion is a ontinuous map from the

set of quasi-invertible elements into itself if and only if that set is a G

Æ

-set

in A (Waelbroek [34, VII, Prop. 2℄). Hene A is a ontinuous quasi-inverse

algebra if and only if the set of quasi-invertible elements is a neighbourhood

of 0 in A. Indeed, this ondition implies that the set of quasi-invertible

elements is open and hene a G

Æ

-set in A beause multipliation with an

invertible element is a homeomorphism of A onto itself.

A omplex loally onvex algebra in whih the topology an be desribed

by a family of sub-multipliative semi-norms is alled loally multipliatively

onvex, or loally m-onvex for short. These algebras were introdued by

Mihael [16℄. They are exatly the dense subalgebras of projetive limits of

Banah algebras. In partiular, a Fr�ehet algebra is loally m-onvex if and

only if it is isomorphi to the projetive limit of a sequene of Banah alge-

bras. Many important examples of ontinuous inverse algebras are loally

m-onvex, although this is sometimes diÆult to see; in other ases, the ques-

tion is open (f. Gramsh [13℄). Turpin [31℄ proved that every ommutative

ontinuous inverse algebra is loally m-onvex. However, this result does

not extend to the non-ommutative ase. Indeed,

_

Zelazko [35℄ onstruted

a ontinuous inverse Fr�ehet algebra whih is not loally m-onvex.

A spetral semi-norm on a omplex algebra is a sub-multipliative semi-

norm whih is greater than or equal to the spetral radius. In his two-volume

monograph [20, 21℄, Palmer has generalized important parts of the theory

of Banah algebras to algebras with a spetral semi-norm. By the following

lemma, Palmer's results are immediately available for loally m-onvex on-

tinuous inverse algebras (in partiular, for ommutative ontinuous inverse

algebras).

1.4 Lemma (Loally m-onvex algebras). The following statements

hold in every omplex loally m-onvex algebra A.

(a) Multipliation is ontinuous, and quasi-inversion is ontinuous on its

domain.
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(b) The algebra A is a ontinuous quasi-inverse algebra if and only if it

admits a ontinuous spetral semi-norm.

Statement (a) was already observed by Mihael [16℄.

Proof. (a) Algebra multipliation is a bilinear map whih is ontinuous

at (0; 0) and hene ontinuous. In partiular, multipliation in the monoid

(A; Æ) is ontinuous, so that it suÆes to prove that quasi-inversion is on-

tinuous at 0 2 A. Let � be a sub-multipliative semi-norm on A, and

let a

q

denote the quasi-inverse of a quasi-invertible element a 2 A. Then

a

q

= �a + a

q

a, whene �(a

q

) � �(a) + �(a

q

) �(a). If �(a) < 1, it follows

that �(a

q

) �

�(a)

1��(a)

. We onlude that quasi-inversion is ontinuous with

respet to �.

(b) Let � be a ontinuous sub-multipliative semi-norm on A suh that

� � �. Sine a 2 A is quasi-invertible if and only if 1� a 2 (A

1

)

�

, the open

set fx 2 A; �(x) < 1g onsists of quasi-invertible elements, so that A is a

ontinuous quasi-inverse algebra.

Conversely, assume that the set of quasi-invertible elements of A is open.

Then there is a ontinuous sub-multipliative semi-norm � on A and a

number " > 0 suh that fx 2 A; �(x) < "g onsists of quasi-invertible ele-

ments. Let x 2 A. If � 2 C satis�es �(x) < "j�j then � � x 2 (A

1

)

�

.

Hene �(x) < j�j, whih entails �(x) � "

�1

�(x). Sine �(x)

n

= �(x

n

) �

"

�1

�(x

n

) � "

�1

�(x)

n

holds for all n 2 N, we onlude that �(x) � �(x). �

From now on, we will onsider the full lass of ontinuous (quasi-) inverse

algebras. The following result is fundamental for many others. This is

one important reason why we inlude loal onvexity in our de�nition of

ontinuous inverse algebras.

1.5 Lemma (Elementary properties of spetra). In a ontinuous quasi-

inverse algebra A, the following statements hold.

(a) Every element has non-empty ompat spetrum.

(b) If 
 � C is open then A




:

= fa 2 A; Sp(a) � 
g is an open subset

of A.

() If A is a skew �eld then A is topologially isomorphi to C .

Proof. (a) This follows from Liouville's Theorem. Sine the spetrum of

a 2 A with respet to A equals the spetrum with respet to the double

ommutant fag

00

and this is a ontinuous inverse algebra with ontinuous

multipliation, we may refer to Gl�okner [11, 4.3℄ for the details. As Gl�okner

himself observes [11, 4.15℄, the standing ompleteness hypothesis of [11,

Setion 4℄ is not used in the proof of this result.

6



(b) We may assume that A has a unit element. Let a 2 A, and let


 � C be an open neighbourhood of Sp(a). First assume that 0 2 
. Then

K

:

= f0g [ f� 2 C

�

; 1=� 62 
g is ompat. If � 2 K then 1 � �a 2 A

�

.

The map

K �A �! A : (�; b) 7�! (1� �a)

�1

� �(1� �a)

�1

b (1� �a)

�1

is ontinuous, and it maps K � f0g into A

�

. By ompatness, there is a

neighbourhood U � A of 0 suh that K � U is mapped into A

�

. We laim

that a + U � A




. Let b 2 U and � 2 C n 
. Set �

:

=

1

�

2 
. Then the

alulation

�� (a+ b) = (�� a)

�

(�� a)

�1

� (�� a)

�1

b (�� a)

�1

�

(�� a)

=

1

�

(1� �a)

�

(1� �a)

�1

� �(1� �a)

�1

b (1� �a)

�1

�

(1� �a)

shows that � 62 Sp(a + b), whih proves our laim. If 0 62 
 then we hoose

� 2 
 and �nd that A




= � � 1 + fa 2 A; Sp(a) 2 
� �g is open in A.

() Assume that A is a skew �eld. Let a 2 A. We may hoose � 2 Sp(a).

Then � � a 62 A

�

, so that � � a = 0, and we onlude that a = � � 1.

(This generalization of the Gelfand{Mazur Theorem was �rst observed by

Arens [2℄.) �

1.6 Lemma (The Neumann series). Let A be a ontinuous quasi-inverse

algebra. The following are equivalent for an element a 2 A.

(i) The Neumann series

P

1

n=1

a

n

onverges (its limit is (1� a)

�1

� 1).

(ii) lim

n!1

a

n

= 0.

(iii) �(a) < 1.

Proof. We may assume that A has a unit element. It is lear that (i)

implies (ii). Lemma 1.5 shows that the balaned set fx 2 A; �(x) < 1g is

an open zero-neighbourhood. In view of this fat, the impliation (iii)) (i)

was proved by Gl�okner [11, 3.3℄. Finally, if lim

n

a

n

= 0 then some n 2 N

satis�es 1 > �(a

n

) = �(a)

n

, and we onlude that �(a) < 1. �

1.7 Proposition (Closed subalgebras). Let A be a ontinuous inverse

algebra, and let B � A be a losed unital subalgebra. Then the following

assertions hold:

(a) B is a ontinuous inverse algebra.

(b) The topologial boundary �B

�

of B

�

with respet to B does not

meet A

�

, and B

�

is a union of onneted omponents of A

�

\B.
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() If b 2 B then � Sp

B

(b) � Sp

A

(b), and Sp

B

(b) is the union of Sp

A

(b)

and a (possibly empty) olletion of bounded onneted omponents

of C n Sp

A

(b). In partiular, the spetral radii satisfy �

B

(b) = �

A

(b),

and if Sp

A

(b) � R then Sp

B

(b) = Sp

A

(b).

Proof. (a) The set U

:

= fa 2 A; �(a) < 1g is open in A by Lemma 1.5.

If a 2 U then Lemma 1.6 shows that the inverse of 1 � a is given by the

Neumann series, i.e. (1�a)

�1

=

P

1

k=0

a

k

. This proves that B\(1+U) � B

�

.

(b) Assume that b 2 A

�

\�B

�

. Let V � A

�

be a neighbourhood of b

�1

.

Then V

�1

is a neighbourhood of b and hene meets B

�

, whih implies that V

meets B

�

as well. Thus b

�1

belongs to the losure of B

�

and hene to B.

We onlude that b 2 B

�

, whih ontradits b 2 �B

�

beause B

�

is open

in B.

This also implies the seond part of assertion (b) by means of the fol-

lowing elementary topologial observation (see Rudin [28, 10.16℄): if W and

W

0

are subsets of a topologial spae X with W open in X and ontained

in W

0

suh that W

0

\ �W = ; then W

0

� W [ (X nW ), and thus W is a

union of onneted omponents of W

0

.

() The remainder of the proof follows Rudin's treatment of the Banah

algebra ase [28, 10.18℄. Choose b 2 B. If � 2 � Sp

B

(b) then � �1� b 2 �B

�

,

whene � 2 Sp

A

(b) by part (b). Sine C nSp

B

(b) is open in C and ontained

in C n Sp

A

(b), the topologial observation above shows that C n Sp

B

(b) is

the union of ertain onneted omponents of C n Sp

A

(b), and the other

onneted omponents are ontained in Sp

B

(b). �

1.8 Proposition (Semi-simple quotients). Let A be a ontinuous quasi-

inverse algebra, and let I � A be an ideal suh that A=I is semi-simple.

Then I is losed in A, and rad(A) � I. In partiular, the Jaobson radial

is a losed ideal of A.

For Banah algebras, see Bonsall and Dunan [7, 25.10℄.

Proof. Let a 2 A be an element of the losure J of I. Sine the set of

quasi-invertible element of A is open, there is an element b 2 I suh that

a�b is quasi-invertible. Hene (a�b)+I = a+I is a quasi-invertible element

of A=I. Thus the ideal J=I of A=I onsists of quasi-invertible elements. As

A=I is semi-simple, we onlude that J = I.

Similarly, the ideal (rad(A) + I)=I of A=I onsists of quasi-invertible

elements, so that rad(A) � I.

The Jaobson radial is losed beause A= rad(A) is semi-simple. �

2 Appliations of the Gelfand homomorphism

2.1 De�nition. Let A be a omplex algebra with unit.
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(a) De�ne the Gelfand spetrum of A as �

A

:

= Hom(A; C ) with the

topology of pointwise onvergene on A. Note that 0 62 �

A

beause we

require homomorphisms to respet the unit elements.

(b) Eah element a 2 A gives rise to a ontinuous funtion â : �

A

! C

by â(�)

:

= �(a). The funtion â is alled the Gelfand transform of a. The

map a 7! â : A ! C(�

A

), whih is a homomorphism of unital algebras, is

alled the Gelfand homomorphism of the algebra A.

2.2 Theorem (The Gelfand homomorphism). In a ommutative on-

tinuous inverse algebra A, the following statements hold.

(a) Every element a 2 A satis�es

Sp(a) = f�(a); � 2 �

A

g = â(�

A

):

(b) The Gelfand spetrum �

A

is a ompat Hausdor� spae.

() The Gelfand homomorphism is ontinuous with respet to the topology

of uniform onvergene on C(�

A

). Its kernel is the Jaobson radial

of A.

(d) Every element a 2 A satis�es �(a) = kâk

1

, so that the spetral radius

is a ontinuous sub-multipliative semi-norm on A with the Jaobson

radial as its zero spae.

Proof. It is not hard to adapt the proof for Banah algebras (see, for

instane, Rudin [28, 11.9℄). The details an be found in [5℄. �

2.3 Lemma. Let A be a ontinuous quasi-inverse algebra. Then every

algebra homomorphism � : A! C is ontinuous.

Proof. Let " > 0. Choose a balaned 0-neighbourhood U � A whih

onsists of quasi-invertible elements. Then �(U) � C is a dis around 0

whih onsists of quasi-invertible elements and hene does not ontain 1.

The image of the 0-neighbourhood "U � A under � is a dis around 0

of radius at most ". We onlude that � is ontinuous at 0 and hene

ontinuous. �

The proof of the following result on automati ontinuity depends on

the Closed Graph Theorem. Therefore, we an only prove it for Fr�ehet

algebras.

2.4 Proposition. Let ' : A ! B be an algebra homomorphism between

ontinuous quasi-inverse Fr�ehet algebras. If B is ommutative and semi-

simple then ' is ontinuous.
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Proof. We adapt the well-known proof for Banah algebras (see Bonsall

and Dunan [7, 17.8℄ or Rudin [28, 11.10℄). Sine the unitization of a semi-

simple algebra is semi-simple (see Palmer [20, 4.3.3℄), we may assume that B

has a unit element, so that we an apply Theorem 2.2.

Let (a

n

)

n2N

be a sequene in A whih onverges to a 2 A suh that the

image sequene ('(a

n

))

n2N

onverges to some element b 2 B. By the Closed

Graph Theorem [28, 2.15℄, it suÆes to show that b = '(a). If � 2 �

B

then

� Æ ' 2 Hom(A; C ), and both � and � Æ ' are ontinuous. Hene for every

� 2 �

B

,

�(b) = �

�

lim

n

'(a

n

)

�

= lim

n

�

�

'(a

n

)

�

= �

�

'

�

lim

n

a

n

�

�

= �

�

'(a)

�

:

By Theorem 2.2, the di�erene b � '(a) belongs to the Jaobson radial

of B, whih is the zero ideal by hypothesis. �

The Gelfand homomorphism has a wealth of onsequenes for non-om-

mutative ontinuous inverse algebras. Many of these depend on the use of

ommutants as desribed in Remark 1.3.

2.5 Proposition. Let A be a ontinuous quasi-inverse algebra, and let

a; b 2 A be ommuting elements. Then

Sp(a+ b) � Sp(a) + Sp(b) and Sp(a � b) � Sp(a) � Sp(b):

Proof. Apply Theorem 2.2 to the ommutative ontinuous inverse algebra

fa; bg

00

� A

1

. This yields

Sp(a+ b) = im

�

(a+ b)b

�

= im(â+

^

b) � im(â) + im(

^

b) = Sp(a) + Sp(b):

The analogous alulation holds for the produt a � b. �

3 C

�

-semi-norms

3.1 De�nition. (a) A

�

-algebra is an algebra A over C whih arries a

onjugate linear anti-multipliative involution a 7! a

�

: A ! A. If A does

not have a unit element then the involution is extended to the unitization

A

1

= A� C by setting (a; �)

�

:

= (a

�

; �).

The set of unitary elements of A

1

is U(A

1

)

:

=

�

u 2 (A

1

)

�

; u

�1

= u

�

	

.

An element a 2 A is alled normal if a

�

a = aa

�

, and self-adjoint if a

�

= a.

We often denote self-adjoint elements by the letter h, but we do not all

them \hermitian" beause this word is used for elements of a Banah algebra

whih have real numerial range. We oasionally write Sym(A) for the set

of self-adjoint elements of A, whih is a real vetor subspae of A.

(b) A ontinuous (quasi-) inverse

�

-algebra is just a ontinuous (quasi-)

inverse algebra whih also is a

�

-algebra. Following the tradition in the

theory of Banah algebras, we expliitly assume ontinuity of the involution

when we need it.

10



For semi-simple ommutative algebras, Proposition 2.4 implies the fol-

lowing result on automati ontinuity.

3.2 Proposition. The involution in a semi-simple ommutative ontinuous

quasi-inverse Fr�ehet

�

-algebra A is ontinuous.

Proof. The opposite algebra A

opp

is the real topologial vetor spae A

with the opposite omplex struture (�; a) 7! �a and with the opposite

algebra multipliation (a; b) 7! ba. It is a ontinuous quasi-inverse Fr�ehet

algebra, and the involution is an algebra isomorphism from A

opp

onto A.

Suh an isomorphism is ontinuous by Proposition 2.4. �

3.3 Remark. In a semi-simple Banah

�

-algebra, the involution is always

ontinuous (see Palmer [21, 11.1.1℄ or Bonsall and Dunan [7, 36.2℄). Un-

fortunately, none of the proofs that I know an easily be generalized to

non-ommutative ontinuous inverse Fr�ehet

�

-algebras. However, positive

results on automati ontinuity are provided by Theorem 3.9 below.

Automati ontinuity is a problem for whih loal m-onvexity is prof-

itable. Indeed, let A and B be loally m-onvex ontinuous quasi-inverse

Fr�ehet algebras, and assume that B is semi-simple. Then every surje-

tive homomorphism from A onto B is automatially ontinuous. This is

mentioned by Aupetit [3℄. It an also be derived from Ransford's elegant

treatment of the Banah algebra ase [26℄, whih is reprodued and suitably

generalized by Palmer [20, 2.3.9℄. As in the proof of Proposition 3.2, this re-

sult implies that the involution in a semi-simple loallym-onvex ontinuous

quasi-inverse Fr�ehet

�

-algebra is automatially ontinuous.

3.4 De�nition. (a) A semi-norm � on a omplex

�

-algebra A is alled a

C

�

-semi-norm if �(a

�

a) = �(a)

2

holds for all a 2 A. Sebesty�en's Theo-

rem [29℄ (f. Palmer [21, 9.5.14℄) states that a C

�

-semi-norm � is automati-

ally sub-multipliative, whih means that � satis�es �(ab) � �(a) �(b) for

all a; b 2 A.

(b) Let A be a ontinuous quasi-inverse

�

-algebra. Then the Ra��kov{Pt�ak

funtional on A is de�ned by

� : A �! R

+

0

; a 7�!

p

�(a

�

a) :

The funtion � will play a prominent role in the theory of hermitian

ontinuous inverse

�

-algebras in Setion 7. The name \Ra��kov{Pt�ak fun-

tional" is suggested by Palmer [21℄ beause � appears impliitly in Ra��kov's

work [25℄ and is expliitly used by Pt�ak [23, 24℄.

3.5 Lemma (Elementary properties of �). Let A be a ontinuous

quasi-inverse

�

-algebra.

(a) If  2 A is a normal element then �() � �().

11



(b) If � is a C

�

-semi-norm on A then � � � .

Proof. Assertion (a) follows from Proposition 2.5. To prove (b), onsider

the

�

-ideal A

�

:

= fa 2 A; �(a) = 0g of A. Sine � indues a C

�

-norm on

the quotient

�

-algebra B

:

= A=A

�

, the ompletion C of B with respet to

this norm is a C

�

-algebra. Hene every a 2 A satis�es �(a)

2

= �(a

�

a) =

�

C

(a

�

a+A

�

) � �

A

(a

�

a) = �(a)

2

. �

3.6 Proposition. Let � be a C

�

-semi-norm on a ontinuous quasi-inverse

�

-algebra A. Then rad(A) � fa 2 A; �(a) = 0g.

Note that the Jaobson radial of any

�

-algebra is a

�

-ideal.

Proof. Reall that rad(A) is the largest ideal of A whih onsists of quasi-

invertible elements. Let a 2 rad(A). Then �

�1

a is quasi-invertible for every

� 2 C

�

, whih means that � � a 2 (A

1

)

�

. Therefore, the spetral radius

vanishes on rad(A). Sine a

�

a 2 rad(A), we onlude that �(a) � �(a) =

p

�(a

�

a) = 0. �

3.7 De�nition. Let A be a ontinuous quasi-inverse

�

-algebra. Lemma 3.5

implies that the supremum

�

C

�

(a)

:

= sup f�(a); � is a C

�

-semi-norm on Ag

is �nite for every a 2 A. Sine �

C

�

is itself a C

�

-semi-norm on A, it is the

greatest C

�

-semi-norm on A. It is sometimes alled the Gelfand{Na��mark

semi-norm of A (Palmer [21℄).

The zero spae I

:

= fa 2 A; �

C

�

(a) = 0g of �

C

�

is a

�

-ideal of A. The

ompletion C

�

(A) of A=I with respet to the C

�

-norm indued by �

C

�

is

alled the enveloping C

�

-algebra of A. It has the universal property that

every

�

-homomorphism from A into a C

�

-algebra fators uniquely through

the natural homomorphism � : A! C

�

(A).

3.8 Proposition. Let A be a ontinuous quasi-inverse

�

-algebra with on-

tinuous involution. Then every C

�

-semi-norm on A is ontinuous.

Proof. Let � be a C

�

-semi-norm on A. As in the proof of Lemma 3.5,

let C be the ompletion of A=A

�

with respet to the C

�

-norm indued by �.

Lemma 1.5 yields a neighbourhood U � A of 0 suh that all a 2 U satisfy

�

A

(a) < 1. Proposition 1.2 and ontinuity of the involution yield a neigh-

bourhood V � A of 0 suh that all a 2 V satisfy a

�

aa

�

2 U . If a 2 A

then �(a)

4

= �(a

�

a)

2

= �(a

�

aa

�

a) � �(a

�

aa

�

) �(a) by sub-multipliativity

of �, whene �(a)

3

� �(a

�

aa

�

). The spetral radius of a normal element of

a C

�

-algebra equals its norm (see Rudin [28, 11.28℄). Hene if a 2 A then

�(a)

3

� �(a

�

aa

�

) = �

C

(a

�

aa

�

+A

�

) � �

A

(a

�

aa

�

) < 1:

Therefore, the open unit ball in A with respet to � is a neighbourhood of 0.

We onlude that � is ontinuous. �
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3.9 Theorem. The following hold for a ontinuous quasi-inverse Fr�ehet

�

-algebra A:

(a) Every C

�

-semi-norm on A is ontinuous.

(b) If fa 2 A; �

C

�

(a) = 0g = f0g, i.e. if �

C

�

is a norm, then the involution

of A is ontinuous.

Proof. Let � be a C

�

-semi-norm on A. We laim that the

�

-ideal A

�

=

fa 2 A; �(a) = 0g of A is losed. Set B

:

= A=A

�

. The ompletion C of B

with respet to the norm indued by � is a C

�

-algebra. Let k � k be the

norm on C indued by �. Choose x 2 rad(B). Then �

�1

x is quasi-invertible

for all � 2 C

�

. This means that � � x is invertible in B and hene in C,

so that �

C

(x) = 0. Sine x

�

x 2 rad(B), this shows that kxk

2

= kx

�

xk =

�

C

(x

�

x) = 0. We onlude that rad(B) = f0g, whene the laim follows

from Proposition 1.8. In partiular, the quotient algebra B is a ontinuous

quasi-inverse

�

-algebra, and it is a Fr�ehet spae (see Rudin [28, 1.41℄).

Now we will use the Closed Graph Theorem in order to prove that the

involution on B is ontinuous. Let (x

n

)

n2N

be a sequene in B whih on-

verges to some element y 2 B suh that (x

�

n

)

n2N

onverges to some element

z 2 B. Sine

kx

n

� z

�

k

2

= �

C

�

(x

n

� z

�

)

�

(x

n

� z

�

)

�

� �

B

�

(x

�

n

� z)(x

n

� z

�

)

�

and lim

n

(x

�

n

� z)(x

n

� z

�

) = 0, Lemma 1.5 shows that lim

n

kx

n

� z

�

k = 0.

Similarly, the inequality kx

n

� yk

2

� �

B

�

(x

�

n

� y

�

)(x

n

� y)

�

implies that

lim

n

kx

n

� yk = 0. Hene y = z

�

, and the Closed Graph Theorem (see

Rudin [28, 2.15℄) yields that the involution on B is ontinuous. Proposi-

tion 3.8 shows that k � k is a ontinuous norm on B. This implies that � is

ontinuous.

Assume that �

C

�

is a norm. Set �

:

= �

C

�

in the above argument. Then

A

�

= 0, so that A

�

=

B, and we have proved that the involution on A is

ontinuous. �

4 The holomorphi funtional alulus

4.1 De�nition. (a) A sequene (x

n

)

n2N

in a loally onvex real vetor

spae E is alled aMakey{Cauhy sequene if there is a net (t

m;n

)

(m;n)2N�N

of positive real numbers whih onverges to 0 suh that the set

�

x

m

� x

n

t

m;n

; m;n 2 N

�

is a bounded subset of E. Every Makey{Cauhy sequene is a Cauhy

sequene.
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(b) The loally onvex real vetor spae E is alled Makey omplete

if every Makey{Cauhy sequene in E onverges. This holds if and only

if every smooth urve � : [a; b℄ ! E (where a; b 2 R) has a Riemann inte-

gral

R

b

a

�(t) dt in E (see Kriegl and Mihor [15, 2.14℄).

In a Makey omplete ontinuous inverse algebra, a holomorphi fun-

tional alulus an be based on integration along smooth ontours. For

algebras with ontinuous multipliation, this has been worked out by Gl�ok-

ner [11℄, to whom the following theorem is essentially due. A funtional

alulus for a wider lass of algebras was also skethed by Allan [1℄.

4.2 Theorem (Holomorphi funtional alulus). Let A be a Makey

omplete ontinuous inverse algebra. For an open subset 
 � C , let O(
)

be the algebra of holomorphi funtions on 
, equipped with the loally

onvex topology of uniform onvergene on ompat subsets of 
. Reall

that A




:

= fa 2 A; Sp(a) � 
g is an open subset of A.

(a) For eah element a 2 A




, there is a unique ontinuous homomorphism

of unital algebras

f 7�! f [a℄ : O(
) �! A

whih sends id




2 O(
) to a 2 A.

(b) The map

(f; a) 7�! f [a℄ : O(
)�A




�! A

is ontinuous.

Proof. (a) Let a 2 A




. Choose a smooth ontour � surrounding Sp(a)

in 
, and set

f [a℄

:

=

1

2�i

Z

�

f(�)(� � a)

�1

d�:

Gl�okner [11, 4.7, 4.9, and 4.10℄ shows that this de�nition does not depend

on the hoie of � and yields a ontinuous homomorphism from O(
) into

the double ommutant fag

00

. The uniqueness of a ontinuous homomorphism

with the required properties follows from Runge's Theorem (see Rudin [27,

13.9℄), whih states that the rational funtions form a dense subset of O(
).

(b) Let (f; a) 2 O(
) � A




. Choose an open neighbourhood 


0

� 


of Sp(a) whih is relatively ompat in 
, and let � be a smooth ontour

whih surrounds the losure of 


0

in 
. Let l > 0 be the length of � (ounting

multipliities). Let � be a ontinuous semi-norm on A, and let " > 0. By

ompatness of im(�) � C , there is a neighbourhood U � A




0

of a suh that

all (�; b) 2 (im(�); U) satisfy �

�

(� � b)

�1

� (� � a)

�1

�

< ". If b 2 U and
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g 2 O(
) then

�(g[b℄ � f [a℄) =

1

2�

�

�

Z

�

g(�)(� � b)

�1

d� �

Z

�

f(�)(� � a)

�1

d�

�

=

1

2�

�

�

Z

�

g(�)

�

(� � b)

�1

� (� � a)

�1

�

d�

+

Z

�

�

g(�)� f(�)

�

(� � a)

�1

d�

�

�

l

2�

�

" sup

�2im(�)

jg(�)j + sup

�2im(�)

jg(�)� f(�)j � sup

�2im(�)

�

�

(� � a)

�1

�

�

This expression beomes arbitrarily small if " is suÆiently small and g is

suÆiently lose to f . We onlude that the map (g; b) 7! g[b℄ is ontinuous

at (f; a). �

4.3 Remark (Spetral Mapping Theorem). Many familiar properties

of the holomorphi funtional alulus on a Banah algebra as well as their

proofs arry over to a Makey omplete ontinuous inverse algebra A. For

instane, let 
 � C be an open subset, and hoose f 2 O(
) and a 2 A




.

Then the Spetral Mapping Theorem Sp(f [a℄) = f(Sp(a)) an be proved as

in the Banah algebra ase (see Rudin [28, 10.28℄; f. Gl�okner [11, 4.12℄).

By ontinuity of the funtional alulus, if f has a power series expansion

f(�) =

P

1

n=0

�

n

(���

0

)

n

on 
 then the series

P

1

n=0

�

n

(a��

0

�1)

n

onverges

to f [a℄, f. [11, 4.11℄.

4.4 Corollary (Composition). Let A be a Makey omplete ontinuous

inverse algebra. Let 
 � C and 


0

� C be open subsets, hoose f 2 O(
)

and g 2 O(


0

), and suppose that f(
) � 


0

. Then (g Æ f)[a℄ = g[f [a℄℄ holds

for every a 2 A




.

Proof. Fix a 2 A




and f 2 O(
) suh that f(
) � 


0

. The two maps

from O(


0

) to A whih are given by g 7! (g Æ f)[a℄ and by g 7! g[f [a℄℄ are

ontinuous unital homomorphisms whih map id




0

to f [a℄. By uniqueness

of the ontinuous holomorphi funtional alulus, they are equal.

Gl�okner [11, 4.13℄ refers to Rudin [28, 10.29℄ for an alternative proof.

�

4.5 Remark (Homomorphisms; real analyti funtions). Runge's

Theorem (see Rudin [27, 13.9℄), whih was used in the proof of Theorem 4.2,

has many appliations to the holomorphi funtional alulus on a Makey

omplete ontinuous inverse algebra A, of whih we reord three. Let 
 � C

be an open subset, and hoose f 2 O(
) and a 2 A




.

Let ' : A ! B be a ontinuous unital homomorphism into a Makey

omplete ontinuous inverse algebra B. Approximating f by rational fun-

tions, we �nd that '(f [a℄) = f ['(a)℄.
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Every element of A whih ommutes with a also ommutes with f [a℄. In

other words, f [a℄ belongs to the double ommutant fag

00

of a in A.

Assume that A is a Makey omplete ontinuous inverse

�

-algebra with

ontinuous involution. Let 


�

� C be the image of 
 under omplex on-

jugation. For f 2 O(
), de�ne f

�

2 O(


�

) by f

�

(�)

:

= f

�

�

�

. For every

element a 2 A




, the map

f 7�!

�

f

�

[a

�

℄

�

�

: O(
) �! A

is a ontinuous homomorphism of unital algebras whih sends id




2 O(
) to

a 2 A. By uniqueness of the holomorphi funtional alulus, the equation

f

�

[a

�

℄

�

= f [a℄ holds for every f 2 O(
) and every a 2 A




. In partiular,

assume that 
 is onneted and equals 


�

. Let f 2 O(
) be a funtion

whih takes real values on 
 \ R. Then f

�

oinides with f on 
 \ R.

By the Identity Theorem [27, Corollary of Theorem 10.18℄, the funtions f

and f

�

oinide on their domain 
. Therefore, every element a 2 A




satis�es

f [a

�

℄ = f [a℄

�

.

4.6 Proposition (Square roots). Let A be a Makey omplete ontinuous

inverse algebra. Then every element a 2 A with Sp(a) \ ℄�1; 0℄ = ; has

a unique square root with spetrum ontained in the open right half plane.

This square root belongs to the double ommutant of a.

Proof. Set 


:

= C n ℄�1; 0℄. Let f 2 O(
) be the prinipal branh of

the omplex square root funtion, so that f(1) = 1 and f(�)

2

= � for every

� 2 
. De�ne b

:

= f [a℄ by the holomorphi funtional alulus. Then

b

2

= a, the spetrum of b is ontained in the open right half-plane, and b

belongs to the double ommutant of a.

Let b

1

2 A be a square root of a with spetrum ontained in the open

right half plane. Then b

1

ommutes with b

1

2

= a and hene with b. Propo-

sition 2.5 shows that Sp(b+ b

1

) is ontained in the open right half-plane. In

partiular, the element b+ b

1

is invertible. Sine

0 = b

2

� b

1

2

= (b+ b

1

)(b� b

1

);

this implies that b = b

1

. In other words, the element b is the unique square

root of a with spetrum ontained in the open right half plane. �

4.7 Corollary (Self-adjoint square roots). Let A be a Makey omplete

ontinuous inverse

�

-algebra. Then every self-adjoint element h 2 A with

Sp(h) \ ℄�1; 0℄ = ; has a unique square root with spetrum ontained in

the open right half plane. This square root is self-adjoint and belongs to the

double ommutant of h.

Note that we need not assume ontinuity of the involution.
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Proof. Proposition 4.6 yields a unique element k 2 A suh that k

2

= h

and Im(Sp(k)) > 0. Sine these two properties also hold for k

�

, uniqueness

implies that k is self-adjoint. The double ommutant property also follows

from Proposition 4.6. �

5 The unitary semi-norm

5.1 Proposition (U(A) spans A). Let A be a Makey omplete ontinuous

inverse

�

-algebra, and let h 2 A be a self-adjoint element with spetral radius

�(h) < 1. Then there is a unitary element u 2 U(A) suh that h =

1

2

(u+u

�

).

In partiular, the algebra A is the linear span of its unitary elements.

Proof. The rational funtion � 7!

1+�

1��

maps the open unit dis onto the

right half plane. By the Spetral Mapping Theorem, the spetrum of the

element (1 + h)(1 � h)

�1

is ontained in the open right half plane. Let

k 2 A be a self-adjoint element suh that k

2

= (1 + h)(1 � h)

�1

, and set

u

:

= (k + i)(k � i)

�1

. Then u is a unitary element of A, and we alulate

u+ u

�

= (k + i)(k � i)

�1

+ (k + i)

�1

(k � i)

=

�

(k + i)

2

+ (k � i)

2

�

(k + i)

�1

(k � i)

�1

= (k

2

+ 2ik � 1 + k

2

� 2ik � 1)

�

(k � i)(k + i)

�

�1

= 2(k

2

� 1)(k

2

+ 1)

�1

= 2

�

(1 + h)(1 � h)

�1

� 1

��

(1 + h)(1 � h)

�1

+ 1

�

�1

= 2

�

(1 + h)(1 � h)

�1

� 1

�

(1� h)

�(1� h)

�1

�

(1 + h)(1 � h)

�1

+ 1

�

�1

= 2

�

(1 + h)� (1� h)

��

(1 + h) + (1� h)

�

�1

= 2h:

This proves the proposition. �

5.2 Remark. We have hosen a proof whih only needs the existene of

square roots in a rather weak sense. The alulation beomes shorter if we

exploit the full fore of Corollary 4.7, f. Bonsall and Dunan [7, 12.14℄.

Indeed, the double ommutant of 1 � h

2

ontains a self-adjoint element k

suh that k

2

= 1�h

2

. Sine h and k ommute, the element u

:

= h+ ik 2 A

is unitary, and it satis�es h =

1

2

(u+ u

�

).

5.3 De�nition. Let A be a Makey omplete ontinuous inverse

�

-algebra.

The onvex hull onv(U(A)) is

�

-invariant, balaned, and losed under mul-

tipliation, and Proposition 5.1 shows that it is absorbing. Therefore, the

Minkowski funtional of onv(U(A)),

�

U

: A �! R

+

0

; a 7�! inf

�

� 2 R

+

;

1

�

a 2 onv(U(A))

	

;
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is a

�

-invariant sub-multipliative semi-norm on A. The semi-norm �

U

is

alled the unitary semi-norm of A.

If A is a Makey omplete ontinuous quasi-inverse

�

-algebra then the

unitary semi-norm �

U

of A is de�ned as the restrition of the unitary semi-

norm of the unitization A

1

= A+ C � 1.

5.4 Lemma. Let A be a Makey omplete ontinuous inverse

�

-algebra.

Then for every self-adjoint element h 2 A, the unitary semi-norm and the

spetral radius are related by the inequality �

U

(h) � �(h).

Proof. Choose a positive real number t suh that t > �(h) and therefore

�(t

�1

h) < 1. Proposition 5.1 yields a unitary element u 2 A

1

suh that

t

�1

h =

1

2

(u+ u

�

). Hene t

�1

h belongs to the onvex hull of U(A

1

), so that

�

U

(t

�1

h) � 1. We onlude that �

U

(h) � t. �

5.5 Proposition. The unitary semi-norm �

U

on a Makey omplete on-

tinuous quasi-inverse

�

-algebra A with ontinuous involution is ontinuous.

Proof. Sine �

U

is a semi-norm, it suÆes to show that it is ontinuous

at 0. Given " > 0, let 
 � C be the open dis with entre 0 and radius

"

2

.

Then A




is a neighbourhood of 0 in A. By Lemma 5.4, every self-adjoint

element h 2 A




satis�es �

U

(h) � �(h) <

"

2

. Let V � A be a

�

-invariant

balaned neighbourhood of 0 suh that

1

2

V +

1

2

V � A




. Choose a 2 V .

De�ne self-adjoint elements of A by h

:

=

1

2

(a+a

�

) and k

:

=

1

2i

(a�a

�

). Then

h; k 2 A




, and a = h + ik. We onlude that �

U

(a) � �

U

(h) + �

U

(k) < ".

�

5.6 Remark. Let A be a

�

-algebra suh that the unitization A

1

= A+ C �1

is the linear span of U(A

1

). Suh an algebra is alled a U

�

-algebra by

Palmer, who develops the theory of these algebras in Setion 10.4 of his

monograph [21℄. In partiular, the

�

-representation theory of A is very

similar to the

�

-representation theory of Banah

�

-algebras. This fat is

based on the following observation. Let � be a

�

-representation of A on a

pre-Hilbert spae X, i.e. a homomorphism from A into the algebra of lin-

ear endomorphisms of X suh that h�(a):x; yi = hx; �(a

�

):yi holds for all

a 2 A and all x; y 2 X. Then � is normed, whih means that �(a) is a

bounded operator on X for every a 2 A. Hene � extends to a representa-

tion of A on the Hilbert spae ompletion of X. Moreover, the inequality

k�(a)k � �

U

(a) holds for every a 2 A, where the unitary semi-norm �

U

of A is onstruted as in De�nition 5.3. To prove this observation, it suÆes

to note that id

X

��(w) is a unitary operator whenever 1 � w is a unitary

element of A

1

, see [21, 10.3.8℄.

A similar argument shows that A has a greatest C

�

-semi-norm. Indeed,

let � be a non-zero C

�

-semi-norm on A. Then � extends to a C

�

-semi-

norm �

1

on A

1

suh that �

1

(1) = 1 (see [21, 9.5.3℄). If u 2 A

1

is unitary
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then �

1

(u) =

p

�

1

(u

�

u) = 1. This entails that �

1

(a) � �

U

(a) holds for every

element a 2 A

1

. Therefore, the Gelfand{Na��mark semi-norm �

C

�

of A an

be onstruted as in De�nition 3.7, and it satis�es the inequality �

C

�

� �

U

(f. [21, 10.3.9℄).

5.7 Theorem. Let A be a Makey omplete ontinuous quasi-inverse

�

-

algebra with ontinuous involution, and let A

�

U

be the zero spae of the

unitary semi-norm. Then the norm-ompletion C of the quotient algebra

A=A

�

U

is a C

�

-algebra.

Proof. Assume �rst that A ontains a unit element 1. Let k � k denote

both the quotient norm indued by �

U

on A=A

�

U

and its extension to the

ompletion C, and write � : A ! C for the quotient projetion followed by

the inlusion of A=A

�

U

into C.

Let h 2 C be a self-adjoint element. Choose a sequene (a

n

)

n2N

inA suh

that lim

n

�(a

n

) = h. De�ne self-adjoint elements of A by h

n

:

=

1

2

(a

n

+ a

�

n

).

Then lim

n

�(h

n

) = h beause the involution on C is isometri. Continuity

of the funtional alulus implies that exp[ih℄ = lim

n

exp[�(ih

n

)℄. Propo-

sition 5.5 shows that the projetion � is ontinuous. Hene exp[�(ih

n

)℄ =

�(exp[ih

n

℄). Sine the involution on A is ontinuous, the element exp[ih

n

℄ 2

A is unitary. Hene

k exp[�(ih

n

)℄k = k�(exp[ih

n

℄)k = �

U

(exp[ih

n

℄) � 1:

This proves the inequality k exp[ih℄k � 1 for every self-adjoint element h 2

C. We infer that k exp[ih℄k = 1 holds for every self-adjoint element h 2 C.

This implies that every self-adjoint element of C has real numerial range

(see Bonsall and Dunan [7, 10.13℄). The Vidav{Palmer Theorem (see [7,

38.14℄ or Palmer [21, 11.2.5℄) shows that C is a C

�

-algebra.

Now assume that A does not have a unit element. Let (a; �) 2 A

1

= A�C

be a unitary element. Then j�j = 1. Therefore, the image of the onvex hull

of U(A

1

) under the produt projetion of A

1

onto C is the losed unit dis.

Hene (A

1

)

�

U

= A

�

U

. The �rst part of the proof shows that the ompletion

of A

1

=A

�

U

with respet to the norm indued by �

U

is a C

�

-algebra. Sine

A=A

�

U

is isometrially embedded in A

1

=A

�

U

, the theorem follows. �

5.8 Corollary. Let A be a Makey omplete ontinuous quasi-inverse

�

-

algebra with ontinuous involution. Then the unitary semi-norm of A equals

the greatest C

�

-semi-norm, i.e. �

U

= �

C

�

. If A has a unit element then

fa 2 A; �

C

�

(a) � 1g is the losed onvex hull of U(A).

For Banah

�

-algebras, this orollary is due to Palmer [19℄.

Proof. The theorem implies that �

U

is a C

�

-semi-norm, whene �

U

� �

C

�

.

The opposite inequality is ontained in Remark 5.6.
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Assume that A is a unital algebra. Sine �

U

is ontinuous on A by

Proposition 5.5, the losed unit ball fa 2 A; �

U

(a) � 1g is a losed onvex

subset of A, and this subset ontains the unitary group U(A) and hene its

losed onvex hull. Conversely, hoose a 2 A with �

U

(a) � 1. Then every

neighbourhood of a ontains an element of the form �a with 0 < � < 1,

and �a belongs to the onvex hull of U(A) beause �

U

(�a) � � < 1. We

onlude that a belongs to the losed onvex hull of U(A). �

6 Positive linear funtionals

6.1 De�nition. Let A be a omplex

�

-algebra. A linear funtional ! : A!

C is alled positive if !(a

�

a) 2 R

+

0

holds for every a 2 A. The set of all

positive linear funtionals on A is denoted by Pos(A; C ).

6.2 Proposition. Let A be a Makey omplete ontinuous quasi-inverse

�

-algebra. Then every positive linear funtional ! : A! C has the following

properties.

(a) !(a

�

b) = !(b

�

a) for all a; b 2 A;

(b) j!(a

�

b)j

2

� !(a

�

a) !(b

�

b) for all a; b 2 A;

() j!(x

�

ax)j � !(x

�

x)

p

�(a

�

a) for all a; x 2 A;

(d) j!(x

�

x)j � !(x

�

x) �() for all ; x 2 A suh that  is normal.

Proof. Let a; b 2 A. If � 2 C then

0 � !

�

(a+ �b)

�

(a+ �b)

�

= !(a

�

a) + �!(a

�

b) + �!(b

�

a) + j�j

2

!(b

�

b):

In partiular, all � 2 C satisfy �!(a

�

b) + �!(b

�

a) 2 R. Setting �

:

= 1 and

�

:

= i, we �nd that !(a

�

b) = !(b

�

a). If !(b

�

b) = 0 then 0 � !(a

�

a) +

2Re(�!(a

�

b)) holds for all � 2 C . Hene !(a

�

b) = 0, and property (b)

follows. If !(b

�

b) 6= 0 then (b) is proved by setting �

:

= �!(b

�

a)=!(b

�

b).

Let a; x 2 A. Choose � 2 R with � > �(a

�

a). Corollary 4.7 yields

a self-adjoint element k 2 A

1

= A + C � 1 suh that k

2

= � � a

�

a. The

inequality !(x

�

k

2

x) � 0 implies !(x

�

a

�

ax) � !(x

�

x) � �. We onlude that

!(x

�

a

�

ax) � !(x

�

x) �(a

�

a). Together with property (b), this shows that

j!(x

�

ax)j

2

� !(x

�

x) !(x

�

a

�

ax) � !(x

�

x)

2

�(a

�

a):

Thus we have proved (). If  2 A is normal then �(

�

) � �(

�

) �() = �()

2

by Proposition 2.5. This implies (d). �

6.3 Corollary. Let A be a Makey omplete ontinuous inverse

�

-algebra.

Then every positive linear funtional ! : A! C has the following properties.
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(a) !(a

�

) = !(a) for all a 2 A;

(b) j!(a)j

2

� !(1) !(a

�

a) for all a 2 A;

() j!(a)j � !(1)

p

�(a

�

a) for all a 2 A;

(d) j!()j � !(1) �() for all normal elements  2 A.

In partiular, every positive linear funtional on A is ontinuous on the real

subspae of normal elements of A.

Proof. Properties (a){(d) follow from the orresponding statements of

Proposition 6.2 by setting suitable algebra elements equal to 1. The on-

tinuity assertion follows from Lemma 1.5. �

6.4 Proposition (Gelfand{Na��mark{Segal Constrution). Let A be a

Makey omplete ontinuous inverse algebra, and let ! : A! C be a positive

linear funtional. Then there exist a Hilbert spae H, a

�

-representation

� : A ! B(H), and a vetor v 2 H suh that �(A):v is a dense subspae

of H, and all a 2 A satisfy !(a) = h�(a):v; vi.

Proof. De�ne a positive semide�nite sesquilinear form on A by ha; bi

:

=

!(b

�

a). Let R � A be the radial of this form. In other words,

R

:

= fa 2 A; 8 b 2 A : ha; bi = 0g = fa 2 A; !(a

�

a) = 0g ;

where the seond equality follows from Proposition 6.2. The form h�; �i

indues a omplex salar produt on A=R, whih we denote by the same

symbol. The Hilbert spae H is de�ned as the ompletion of A=R.

Sine R is a left ideal of A, a representation � of A on the pre-Hilbert

spae A=R is de�ned by �(a):(x+R)

:

= ax+R for a; x 2 A. If a 2 A then

k�(a)k

2

= sup

�

k�(a):vk

2

; v 2 A=R; kvk � 1

	

= sup f!(x

�

a

�

ax); x 2 A; !(x

�

x) � 1g � �(a

�

a)

by Proposition 6.2. Hene �(a) is bounded, and it extends to a bounded

operator on H, whih we also denote by �(a). This yields a

�

-representation

of A on H beause




�(a

�

):(x+R); y +R

�

=




a

�

x+R; y +R

�

= !(y

�

a

�

x)

= !

�

(ay)

�

x

�

=




x+R; ay +R

�

=




x+R; �(a):(y +R)

�

holds for all a; x; y 2 A.

Set v

:

= 1 +R 2 A=R � H. Then �(A):v = A=R is dense in H, and all

a 2 A satisfy h�(a):v; vi = !(a). �
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We have given the most diret approah to the Gelfand{Na��mark{Segal

onstrution. For some purposes, it is an advantage to onsider H as a

reproduing kernel Hilbert subspae of the linear dual of A (see Neeb [17,

III.1℄). In this piture, the representation � of A on H is the ation by right

multipliation in the argument of the funtion.

6.5 Corollary. Every positive linear funtional ! on a Makey omplete

ontinuous inverse

�

-algebra A is ontinuous with respet to the greatest

C

�

-semi-norm �

C

�

of A.

Proof. In the notation of Proposition 6.4, the map a 7! k�(a)k : A! R is

a C

�

-semi-norm, so that all a 2 A satisfy

j!(a)j = jh�(a):v; vij � k�(a):vk � kvk � k�(a)k � kvk

2

� kvk

2

�

C

�

(a): �

6.6 Proposition (Automati ontinuity). Let A be a Makey omplete

ontinuous inverse

�

-algebra A. Assume that the involution of A is ontinu-

ous or that A is a Fr�ehet spae. Then every

�

-representation of A on a

Hilbert spae is ontinuous. In partiular, every positive linear funtional

on A is ontinuous.

Proof. If � : A ! B(H) is a

�

-representation of A on a Hilbert spae H

then a 7! k�(a)k : A ! R is a C

�

-semi-norm on A. Hene the assertions

follow immediately from Proposition 3.8, Theorem 3.9, and Proposition 6.4.

�

6.7 De�nition. In any omplex

�

-algebra A, the positive one is de�ned as

Pos(A)

:

= fh 2 Sym(A); 8! 2 Pos(A; C ) : !(h) � 0g :

6.8 Proposition. In a Makey omplete ontinuous inverse

�

-algebra A,

the positive one Pos(A) equals the losed onvex one in Sym(A) generated

by fa

�

a; a 2 Ag.

Proof. Let P � Sym(A) be the losed onvex one generated by the set

fa

�

a; a 2 Ag. Sine Pos(A) is a onvex one and a losed subset of Sym(A),

we have P � Pos(A). Conversely, assume that h 2 Sym(A) nP . The Hahn{

Banah Theorem (see, for instane, Rudin [28, 3.4℄) yields a ontinuous

linear funtional ' : Sym(A) ! R suh that '(h) 62 '(P ). We may assume

that '(h) < 0 and '(P ) � R

+

0

. De�ne

! : A �! C ; a 7�! '

�

a+ a

�

2

�

+ i'

�

a� a

�

2i

�

:

If a 2 A then !(ia) = '

�

i

a�a

�

2

�

+ i'

�

a+a

�

2

�

= i!(a). Hene ! is a C -

linear funtional on A. The funtionals ! and ' oinide on Sym(A), so

that !(P ) � R

+

0

. We onlude that ! 2 Pos(A; C ) and !(h) < 0, whene

h 62 Pos(A). �
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7 Hermitian ontinuous inverse

�

-algebras

In this setion, we study a ondition whih establishes a onnetion between

the involution and the properties of spetra in a omplex

�

-algebra. As the

following example shows, this onnetion an be quite loose in general.

7.1 Example. Let A be the Banah algebra C�C , whih is unital and semi-

simple. De�ne an involution on A by (�

1

; �

2

)

�

:

= (�

2

; �

1

). The spetrum of

(�

1

; �

2

) is f�

1

; �

2

g. The self-adjoint elements of A are exatly those of the

form (�; �) for some � 2 C . Every positive linear funtional on A vanishes

(f. Bonsall and Dunan [7, 37.16℄).

The unitary elements of A are the elements (�; 1=�) with � 2 C

�

. It

follows easily that the onvex hull of the unitary group U(A) equals A. In

partiular, the unitary semi-norm �

U

of A is trivial. The same holds for the

Gelfand{Na��mark semi-norm �

C

�

beause �

C

�

� �

U

.

7.2 De�nition. A ontinuous quasi-inverse

�

-algebra A is alled hermitian

if every self-adjoint element has real spetrum.

For the following theorem, reall the de�nition and basi properties of

the Ra��kov{Pt�ak funtional � (De�nition 3.4 and Lemma 3.5). The use of �

as the prinipal tool in the theory of hermitian Banah

�

-algebras is due to

Pt�ak [23℄.

7.3 Theorem (Pt�ak's Theorem for ontinuous inverse

�

-algebras).

The following are equivalent for a Makey omplete ontinuous inverse

�

-

algebra A:

(i) A is hermitian;

(ii) � � � (Pt�ak's riterion);

(iii) �

C

�

= � (Ra��kov's riterion);

(iv) �() = �() for all normal elements  2 A;

(v) �(a+ a

�

) � 2�(a) for all a 2 A.

Sine Lemma 3.5 yields the inequality �

C

�

� � in every ontinuous inverse

�

-algebra, these onditions are also equivalent to the inequality � � �

C

�

,

whih plays a entral role in Palmer's approah [21, Setion 10.4℄.

The following proof of Theorem 7.3 is self-ontained. It uses some spei�

material for ontinuous inverse algebras, but most arguments an be found,

for the ase of Banah

�

-algebras, in Pt�ak's exposition [24, Setion 5℄; see

also Bonsall and Dunan [7, x 41℄.
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Proof. We will �rst prove the equivalene of onditions (i), (ii), and (iv).

Lemma 3.5 shows that (ii) implies (iv). Assume that (iv) holds. If A is not

hermitian, there is a self-adjoint element h 2 A suh that i 2 Sp(h). Let

� 2 R. Then i+ i� belongs to the spetrum of the normal element h+ i�,

so that

(1 + �)

2

� �(h+ i�)

2

= �(h+ i�)

2

= �

�

(h+ i�)

�

(h+ i�)

�

= �(h

2

+ �

2

) � �(h

2

) + �

2

:

Hene 1 + 2� � �(h

2

) holds for all � 2 R. This ontradition proves that A

is hermitian.

Assume that A is hermitian. We laim that 1 � a is invertible for eah

a 2 A whih satis�es �(a) < 1. Indeed, Corollary 4.7 yields a self-adjoint

element h 2 A suh that h

2

= 1 � a

�

a, and h is invertible beause 1 � a

�

a

is invertible. We alulate

(1 + a

�

)(1� a) = 1 + a

�

� a� a

�

a

= h

2

+ a

�

� a = h

�

1 + h

�1

(a

�

� a)h

�1

�

h:

Sine ih

�1

(a

�

�a)h

�1

is a self-adjoint element, it has real spetrum, so that

the displayed expressions are invertible. Hene 1�a is left invertible. By the

same argument, the adjoint (1�a)

�

= 1�a

�

is left invertible beause �(a

�

) =

�(a) < 1. Thus 1 � a is invertible as we laimed. Let a 2 A be arbitrary,

and hoose � 2 C with j�j > �(a), so that �(�

�1

a) = j�j

�1

�(a) < 1. Then

the elements 1� �

�1

a and �� a of A are invertible, so that � 62 Sp(a). We

onlude that �(a) � �(a). Thus (i) implies (ii), and we have proved the

equivalene of (i), (ii), and (iv).

Now we will assume onditions (i) and (ii) and derive (iii). If a 2 A then

�(a

�

a) =

p

�(a

�

a a

�

a) =

p

�(a

�

a)

2

= �(a)

2

:

Let h; k 2 A be self-adjoint elements. Then

�(hk) � �(hk) =

p

�(khhk) =

p

�(h

2

k

2

) :

It follows by indution that �(hk) � �(h

2

n

k

2

n

)

2

�n

holds for all n 2 N. If

�(h) < 1 and �(k) < 1 then Lemma 1.6 yields that lim

m

h

m

= 0 = lim

m

k

m

.

Proposition 1.2 implies that lim

m

h

m

k

2m

h

m

= 0, whene Lemma 1.5 shows

that lim

m

�(h

m

k

2m

h

m

) = 0. Sine �(h

2m

k

2m

) = �(h

m

k

2m

h

m

), we infer

that �(hk) < 1. For general self-adjoint h; k 2 A, hoose �; � 2 R with

�(h) < � and �(k) < �. We have proved that �

�

(�

�1

h)(�

�1

k)

�

< 1 and

hene �(hk) < ��. We onlude that

�(hk) � �(h) �(k) (h = h

�

; k = k

�

):

This implies that all a; b 2 A satisfy

�(ab) =

p

�(b

�

a

�

ab) =

p

�(a

�

abb

�

) �

p

�(a

�

a) �(bb

�

) = �(a) �(b):

24



Our next aim is to prove that the set

P

:

=

�

h 2 Sym(A); Sp(h) � R

+

0

	

is a onvex one. (In fat, Corollary 7.7 will show that P = Pos(A).) If

h 2 P then �h 2 P holds for all � � 0. We have to prove that h + k 2 P

if h; k 2 P . Sine A is hermitian, it suÆes to show that 1 + h + k 2 A

�

.

Sine 1 + h; 1 + k 2 A

�

, we may de�ne self-adjoint elements u; v 2 A

�

by

u

:

= h(1+h)

�1

and v

:

= k(1+k)

�1

. The Spetral Mapping Theorem gives

�(u) < 1 and �(v) < 1. We have seen that this implies �(uv) < 1, and so

1� uv 2 A

�

. Sine

1 + h+ k = (1 + h)(1 � uv)(1 + k);

it follows that 1 + h+ k 2 A

�

. We onlude that h+ k 2 P .

If h; k 2 A are arbitrary self-adjoint elements then �(h)�h; �(k)�k 2 P ,

whene �(h) + �(k)� (h+ k) 2 P . This implies that

�(h+ k) � �(h) + �(k) (h = h

�

; k = k

�

):

Let a 2 A, and set h

:

= a+ a

�

and k

:

= i(a� a

�

). Then

�(h

2

+ k

2

)� h

2

=

�

�(h

2

+ k

2

)� (h

2

+ k

2

)

�

+ k

2

2 P;

and so

�(a+ a

�

) =

p

�(h

2

) �

p

�(h

2

+ k

2

) =

p

2�(a

�

a+ aa

�

)

�

p

2(�(a

�

a) + �(aa

�

)) =

p

2(�(a)

2

+ �(a)

2

) = 2�(a):

Let a; b 2 A. Then

�(a+ b)

2

= �

�

(a+ b)

�

(a+ b)

�

= �(a

�

a+ b

�

b+ a

�

b+ b

�

a)

� �(a

�

a) + �(b

�

b) + �(a

�

b+ b

�

a)

� �(a)

2

+ �(b)

2

+ 2�(a

�

b)

� �(a)

2

+ �(b)

2

+ 2�(a

�

) �(b) =

�

�(a) + �(b)

�

2

:

Thus we have proved that � is a C

�

-semi-norm. Hene � � �

C

�

, and we infer

from Lemma 3.5 that �

C

�

= � . This ompletes the proof of ondition (iii).

If ondition (iii) holds then � is sub-additive, whih implies (v). Assume

that (v) holds, and let  2 A be a normal element. Write  = h + ik with

self-adjoint elements h; k 2 A. Then hk = kh, so that �() � �(h) + �(k) by

Proposition 2.5. Moreover,

�(h) = �(h) = �

�



2

+



�

2

�

� 2�

�



2

�

= �()
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and, similarly, �(k) � �(). We onlude that �() � 2�(). If n 2 N then

�()

2n

= �(

n

)

2

� 4�(

n

)

2

= 4�

�

(

�

)

n



n

�

= 4�

�

(

�

)

n

�

= 4�(

�

)

n

= 4�()

2n

:

Hene �() �

n

p

2 �() for all n 2 N and so �() � �(). Sine �() � �()

holds without further assumptions, we have proved ondition (iv). �

7.4 Remark (Further haraterizations of hermitian algebras).

(a) Let A be a Makey omplete ontinuous inverse

�

-algebra. Then A

is hermitian if and only if there is a onstant C > 0 suh that all a 2 A

satisfy �(a

�

a) � C�

C

�

(a

�

a). This ondition was observed by Palmer [21,

10.4.8℄.

Indeed, Palmer's ondition follows immediately from Ra��kov's ondition

�

C

�

= � . Conversely, assume that Palmer's ondition holds. Let h 2 A be

self-adjoint. If n 2 N then �(h)

2n

= �((h

n

)

2

) � C�

C

�

((h

n

)

2

) � C�

C

�

(h)

2n

.

Hene �(h) � �

C

�

(h). This implies � � �

C

�

, and we onlude that �

C

�

= � ,

so that A is hermitian.

Pt�ak's ondition � � � an also be proved diretly from the inequality

�(h) � �

C

�

(h) for all h 2 Sym(A) (f. Palmer [21, 10.2.11℄). Namely, hoose

a 2 A with �

C

�

(a) �

1

3

. Then

�(a+ a

�

� a

�

a) � �

C

�

(a+ a

�

� a

�

a)

� �

C

�

(a) + �

C

�

(a

�

) + �

C

�

(a

�

) �

C

�

(a)

�

�

1 + �

C

�

(a)

�

2

� 1

< 1:

Hene (1�a

�

)(1�a) = 1�(a+a

�

�a

�

a) is invertible. Similarly, the element

(1 � a)(1 � a

�

) is invertible. We onlude that 1 � a 2 A

�

. Let a 2 A be

arbitrary, and hoose � 2 C with j�j > 3�

C

�

(a), so that �

C

�

(�

�1

a) =

j�j

�1

�

C

�

(a) <

1

3

. Then the elements 1� �

�1

a and �� a of A are invertible,

so that � 62 Sp(a). This implies that �(a) � 3�

C

�

(a). If n 2 N then

�(a)

n

= �(a

n

) � 3�

C

�

(a

n

) � 3�

C

�

(a)

n

. We onlude that � � �

C

�

. Sine

�

C

�

� � , we have proved that � � � .

(b) Pt�ak [24, 5.10℄ proved that the following are equivalent for a unital

Banah

�

-algebra A:

(i) A is hermitian;

(ii) Sp(u) � f� 2 C ; j�j = 1g for all u 2 U(A);

(iii) � is bounded on U(A).

Pt�ak's proof also applies to Makey omplete ontinuous inverse

�

-algebras.
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7.5 Proposition (C

�

(A) for hermitian A). Let A be a Makey omplete

ontinuous inverse

�

-algebra, and let � : A ! C

�

(A) be the natural homo-

morphism from A into its enveloping C

�

-algebra. Then A is hermitian if

and only if � is equispetral, whih means that �

�1

�

C

�

(A)

�

�

= A

�

.

Note that �

�1

�

C

�

(A)

�

�

= A

�

holds if and only if every a 2 A satis�es

Sp(�(a)) = Sp(a). This explains the word \equispetral".

Proof. If � is equispetral then A is hermitian beause C

�

-algebras are

hermitian (see, for instane, Rudin [28, 11.28℄).

Conversely, assume that A is hermitian, so that it satis�es � � �

C

�

.

Choose a 2 A suh that �(a) is invertible in C

�

(A). We have to prove that

a 2 A

�

. Sine �(A) is dense in C

�

(A), we may hoose b 2 A suh that

k�(a)

�1

� �(b)k < k�(a)k

�1

. We alulate

�(1� ab) � �

C

�

(1� ab) = k1� �(ab)k =





�(a)

�

�(a)

�1

� �(b)

�





< 1:

The analogous alulation yields the inequality �(1�ba) < 1. Hene ab; ba 2

A

�

, and we onlude that a 2 A

�

. �

7.6 Proposition (Spetrum and states). Let A be a Makey omplete

hermitian ontinuous inverse

�

-algebra. Then every normal element  2 A

satis�es

onv(Sp()) = f!(); ! 2 Pos(A; C ); !(1) = 1g :

Proof. Let � : A ! C

�

(A) be the natural homomorphism from A into its

enveloping C

�

-algebra. By Corollary 6.5, every positive linear funtional

on A fators through a positive linear funtional on �(A), whih extends by

ontinuity to a positive linear funtional on C

�

(A). In other words,

Pos(A; C ) = f! Æ �; ! 2 Pos(C

�

(A); C )g :

In view of Proposition 7.5, the assertion follows from the orresponding

result for C

�

-algebras (see, for instane, Bonsall and Dunan [7, x 38℄).

A di�erent proof an be found in Palmer's monograph [21, 10.4.21℄. �

The set f! 2 Pos(A; C ); !(1) = 1g is alled the set of states of A. The ex-

treme points of this onvex set are alled the pure states of A. A re�nement

of the preeding proposition (Palmer [21, 10.4.21℄) asserts that the spetrum

of a normal element  2 A is ontained in the image of  under the set of

pure states.

7.7 Corollary (Shirali{Ford Theorem). Every Makey omplete her-

mitian ontinuous inverse

�

-algebra satis�es

Pos(A) =

�

h 2 Sym(A); Sp(h) � R

+

0

	

:

In partiular, Sp(a

�

a) � R

+

0

holds for all a 2 A. �
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7.8 Remark. Kaplansky [14℄ onjetured in 1949 that every element a of

a hermitian Banah

�

-algebra satis�es Sp(a

�

a) � R

+

0

. This onjeture was

�nally proved by Shirali and Ford [30℄ in 1970. The partiularly oneptual

proof based on Proposition 7.5 whih we have given is due to Fragoulopou-

lou [10℄. Several other proofs have been given; see Bonsall and Dunan [7,

41.5℄, Pt�ak [24, 5.9℄, and Palmer [21, 10.4.2℄.

Setion 10.4 of Palmer's monograph ontains a number of additional

properties of

�

-algebras whih satisfy � � �

C

�

. Palmer develops his theory

for

�

-algebras in whih some sub-multipliative semi-norm dominates the

spetral radius. The reader must be alert to the fat that this hypothesis is

sometimes used without being expliitly stated (e.g. [21, 10.4.4 and 10.4.16℄).

Palmer's work is very omprehensive, whih makes it sometimes diÆult to

read. For these reasons, we have deided to give proofs for results suh

as Propositions 7.5 and 7.6 whih are also ontained in Palmer's book [21,

10.4.18 and 10.4.21℄.

7.9 Proposition. The Jaobson radial of a Makey omplete hermitian

ontinuous inverse

�

-algebra A equals the

�

-ideal fa 2 A; �

C

�

(a) = 0g.

Proof. Proposition 3.6 shows that �

C

�

vanishes on rad(A). Conversely,

if A is hermitian then � � �

C

�

, so that fa 2 A; �

C

�

(a) = 0g onsists of

quasi-invertible elements and hene is ontained in rad(A). �

7.10 Proposition. Let A be a Makey omplete hermitian ontinuous

inverse

�

-algebra, and let B � A be a losed unital

�

-subalgebra. Then B is

hermitian, and B

�

= A

�

\B.

The ondition B

�

= A

�

\ B holds if and only if every b 2 B satis�es

Sp

B

(b) = Sp

A

(b). Hene a subalgebra B � A whih satis�es this ondition

might be alled \equispetral".

Proof. Choose b 2 A

�

\B. Then b

�

2 A

�

and b

�

b 2 A

�

, so that Sp

A

(b

�

b) �

R

+

. Proposition 1.7 shows that Sp

B

(b

�

b) = Sp

A

(b

�

b), whene b

�

b 2 B

�

.

We onlude that b

�1

= (b

�

b)

�1

b

�

2 B, so that b 2 B

�

. Hene B is an

equispetral subalgebra. In partiular, it is hermitian. �
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