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1 Introdution

In 1977 Kok-Wee Phan [9℄ published a theorem on generation of the speial unitary group SU(n+1; q

2

)

by a system of its subgroups isomorphi to SU(3; q

2

). The proof of Phan's theorem given in his 1977

paper is somewhat inomplete. This motivated the paper [1℄ in whih a new and omplete proof of Phan's

theorem was provided. The approah of [1℄ is based on the onepts of diagram geometries and amalgams

of groups. It turns out that Phan's on�guration arises as the amalgam of stripped rank two parabolis in

the ag-transitive ation of SU(n+1; q

2

) on the geometry of nondegenerate subspaes of the underlying

unitary spae (stripped in the sense that the torus of SU(n+1; q

2

) has been removed). This point of view

leads to a twofold interpretation of Phan's theorem: its omplete proof must inlude (1) a lassi�ation

of related amalgams; and (2) a veri�ation that|apart from some small exeptional ases|the above

geometry is simply onneted. These two parts are tied together by a lemma due to Tits, that implies

that if a group G ats ag-transitively on a simply onneted geometry then the orresponding amalgam

of maximal parabolis provides a presentation for G. For an outline of the idea how to re-prove, extend

and generalize Phan's theorems the reader is referred to [2℄.

Notie that this new approah has already yielded an unexpeted new Phan-type theorem for the group

Sp(2n; q). See [5℄ for the simple onnetedness of the orresponding geometry and [6℄ for a lassi�ation

of related amalgams. In terms of the Dynkin diagrams, the original Phan's theorem orresponds to the

diagram A

n

, while the new theorem for Sp(2n; q) orresponds to the diagram C

n

. We onjeture that

there is also a similar result, a Phan-type theorem, for every spherial diagram of rank at least three.

In a later paper [10℄, Phan himself laimed suh theorems for the groups Spin

�

(2n; q) (diagram D

n

),

2

E

6

(q), E

7

(q), E

8

(q) (diagrams E

6

, E

7

, and E

8

, respetively). So the proof of our onjeture requires

new proofs for these results of Phan's, as well as new theorems for groups SO(2n + 1; q) (diagram B

n

)

and F

4

(q) (diagram F

4

). The purpose of the present paper is to do the ase D

n

, that is, to reprove and

extend Phan's theorem on Spin

�

(2n; q), using our new methods.

As de�ned in [1℄, subgroups U

1

and U

2

of SU(3; q

2

) form a standard pair whenever eah U

i

is the

stabilizer in SU(3; q

2

) of a nonsingular vetor v

i

of the natural module U of SU(3; q

2

) and, furthermore,

v

1

and v

2

are perpendiular. By Witt's theorem, standard pairs are exatly the onjugates of the pair

�
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formed by the two subgroups SU(2; q

2

) arising from the 2� 2 bloks on the main diagonal with respet

to an orthonormal basis of U . Standard pairs in quotients of SU(3; q

2

) over a subgroup of its enter are

de�ned as the images under the natural homomorphism of the standard pairs from SU(3; q

2

).

Similarly to [1℄, we say that a group G possesses a weak Phan system of type D

n

over F

q

2

if G ontains

subgroups U

i

�

=

SU(2; q

2

), for i = 1; : : : ; n and U

i;j

, for distint i; j 2 f1; : : : ; ng, so that the following

hold:

(wP1) If (i; j) is not an edge of the Dynkin diagram D

n

then U

i;j

is a entral produt of U

i

and U

j

;

(wP2) If (i; j) is an edge of the Dynkin diagram D

n

, then U

i;j

is isomorphi to a quotient of SU(3; q

2

)

over a subgroup of its enter; moreover, U

i

and U

j

form a standard pair in U

i;j

; and

(wP3) the subgroups U

i;j

, 1 � i < j � n, generate G.

Note that we added (wP3) instead of just saying that the groups U

i

generate G for the sake of the

ase q = 2. Indeed, the group SU(3; 2

2

) is not generated by a standard pair of subgroups SU(2; 2

2

), i.e.,

the geometry of nondegenerate subspaes of F

3

4

with respet to a nondegenerate form, is not onneted,

f. [1℄. This fat inuened the wording of the entire de�nition: we did not introdue U

i;j

as hU

i

; U

j

i

exatly in order to allow the ase q = 2.

The main result of this paper is the following generalization of Phan's D

n

theorem [10℄. Notie that

Phan only allowed odd prime powers q � 5. We start with the ase of arbitrary prime power q � 4.

Main Theorem A

Let q � 4, n � 3, and let G be a group that ontains a weak Phan system of type D

n

over F

q

2
. Then G

is isomorphi to a fator group of Spin

+

(2n; q) for n even and a fator group of Spin

�

(2n; q) for n odd.

Main Theorem A leaves us with two exeptional ases q = 2, 3. For these ases the following is true:

Main Theorem B

Let q = 2 or 3, and n � 4. Let G be a group that ontains a weak Phan system of type D

n

over F

q

2

.

Suppose further that

(1) for any triple i, j, k of nodes of the Dynkin diagram D

n

that form a subdiagram

i

Æ

j

Æ

k

Æ of

type A

3

, the subgroup hU

i;j

; U

j;k

i is isomorphi to a fator group of SU(4; q

2

);

(2) additionally, if q = 2 then

(i) for any triple i, j, k of nodes of D

n

that form a subdiagram

i

Æ

j

Æ

k

Æ of type A

1

�A

2

the

groups U

i

and U

j;k

ommute elementwise; and

(ii) for any quadruple i, j, k, l of nodes of D

n

that form a subdiagram

i

Æ

j

Æ

k

Æ

l

Æ of

type A

2

�A

2

the groups U

i;j

and U

k;l

ommute elementwise.

Then G is isomorphi to a fator group of Spin

+

(2n; q) for n even and isomorphi to a fator group of

Spin

�

(2n; q) for n odd.

This paper is organized as follows. In Setion 2 we state four important geometrial and group-

theoretial results that form the ornerstones of our proof of Main Theorem A and B. In Setion 3 we

study unitary involutions on a nondegenerate quadrati spae V over an arbitrary �eld of square order

2



and in Setion 4 we study the resulting geometry, some kind of folded building geometry. Setion 5

provides some basi fats and methods from algebrai topology. Those methods are applied in Setions 6

and 7 to establish the simple onnetedness of the folded building geometry from Setion 4. Theorems 1

and 2 of Setion 2 are proved in Setion 7. In Setion 8 we apply Tits' lemma and Theorems 1 and 2 to

obtain a presentation of ag-transitive groups of automorphisms of our geometry, establishing Theorems

3 and 4 of Setion 2.

Aknowledgement: The authors would like to thank Ronald Solomon and Rihard Lyons for their enour-

agement to reprove Phan's theorems.

2 Relevant geometri results

Along the way to a proof of our Main Theorems we obtain a number of geometri and group-theoreti

results. In this setion we ollet some of those. Let V be the natural module of the group G

�

=

[SO

+

(2n; q

2

); SO

+

(2n; q

2

)℄ with the nondegenerate quadrati form f and let � be an involutory semilinear

transformation of V with f(x

�

) = f(x)

q

suh that there exists a maximal f -singular subspae U of V with

U \ U

�

= f0g. We will show, see Proposition 3.10, that G

�

= C

G

(�) is isomorphi to the ommutator

group of SO

+

(2n; q) if n is even and isomorphi to the ommutator group of SO

�

(2n; q) if n is odd. The

ipop geometry �

�

onsists of those f -singular subspaes of V (exept the ones of dimension n�1) that

trivially interset the polar of their images under �.

The geometry �

�

has the following properties. Refer to Setion 4 for geometri terminology and to

Setion 5 for notions from algebrai topology.

Theorem 1

Let q � 3 and let n � 2. Then the following hold.

(1) �

�

is a rank n geometry admitting a ag-transitive group of automorphisms G

�

�

=

S


+

(2n; q) for

n even and G

�

�

=

S


�

(2n; q) for n odd.

(2) �

�

is residually onneted.

(3) �

�

is simply onneted unless (n; q) = (3; 3).

In the ase (n; q) = (3; 3), the geometry �

�

is not simply onneted. It admits a triple over whih is

universal. For q = 2 the geometry is onneted (but not residually onneted) and simply onneted for

n � 4.

Theorem 2

Let q = 2 and let n � 2. Then the following hold.

(1) �

�

is a rank n geometry admitting a ag-transitive group of automorphisms G

�

�

=

S


+

(2n; q) for

n even and G

�

�

=

S


�

(2n; q) for n odd.

(2) �

�

is onneted.

(3) �

�

is simply onneted if n � 4.
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The residual onnetedness of �

�

fails beause it admits a residue isomorphi to the geometry of

nondegenerate subspaes of F

3

4

with respet to a nondegenerate unitary form, whih is not onneted by

[1℄. Equivalently, a standard pair of SU(3; 2

2

) does not generate SU(3; 2

2

).

Theorem 1 and Theorem 2 have some group-theoreti impliations via Tits' lemma. Let F = U

1

, . . . ,

U

n

be a maximal ag of �

�

. For 2 � s � n � 1, let A

(s)

be the amalgam of all rank s parabolis, i.e.,

stabilizers in G

�

of subags of F of orank s. Again, for geometri terminology see Setion 4. Amalgams

are de�ned in Setion 8.

Theorem 3

Let n be an integer and let � be the sign of (�1)

n

. Then the following hold.

(1) If q � 4 and n � 3 then G

�

�

=

S


�

(2n; q) is the universal ompletion of A

(2)

.

(2) If q = 2, 3 and n � 4 then G

�

�

=

S


�

(2n; q) is the universal ompletion of A

(3)

.

The universal version Spin

�

(2n; q) of S


�

(2n; q) of ourse also ats ag-transtively on �

�

, so Theorem

3 also holds for this group. The maximal parabolis M

i

of Spin

�

(2n; q) with respet to F = U

1

, . . . ,

U

n

are semisimple groups of the form GU(i; q

2

) � Spin

�

(2n � 2i; q), i = 1; : : : ; n � 2, and GU(n; q

2

),

i = n � 1; n. Eah M

i

, 1 � i � n � 2, stabilizes the diret deomposition U

i

� U

�

i

� hU

i

; U

�

i

i

?

of the

quadrati module U of Spin

�

(2n; q). For 1 � i � n�2 they indue GU(i; q

2

) on U

i

and Spin

�

(2n�2i; q)

on U

?

i

. The parabolis M

n�1

and M

n

indue GU(n; q

2

) on U

n�1

, respetively U

n

. The intersetion

of all M

i

, i.e., the Borel subgroup arising from the ation of Spin

�

(2n; q) on �

�

, is a maximal torus T

of Spin

�

(2n; q) of order (q + 1)

n

. Let M

0

i

be the subgroup SU(i; q

2

) � Spin

�

(2n � 2i; q), respetively

SU(n; q

2

) of M

i

. For an arbitrary paraboli M

J

= \

i2J

M

i

de�ne M

0

J

= \

i2J

M

0

i

. Here J is a subset of

the type set I = f1; : : : ; ng of �

�

. It an be shown that M

J

=M

0

J

T .

In ase of a minimal paraboliM

Infig

, we have that L

i

:=M

0

Infig

�

=

SL(2; q). In fat, for all 1 � i � n

the group L

i

arises as SU(2; q

2

)

�

=

SL(2; q). Notie that T

i

= L

i

\ T is a torus in L

i

of size q+1. Notie

also that the subgroups T

i

generate T as their diret produt. If q 6= 2 we have hL

i

; L

j

i = M

0

Infi;jg

.

In partiular, if in that ase � is the Dynkin diagram D

n

then the subgroups L

i

have the following

properties:

(1) L

i

�

=

SU(2; q) for i = 1; : : : ; n;

(2) hL

i

; L

j

i

�

=

�

L

i

� L

j

; if (i; j) is not an edge of �;

SU(3; q); if (i; j) is an edge of �.

For (i; j) an edge of � the groups U

i

, U

j

form a standard pair of U

i;j

. Moreover, the U

i

, 1 � i � n,

form a weak Phan system inside Spin

�

(2n; q). In fat, Spin

�

(2n; q) is de�ned by this weak Phan system,

as stated in Theorem 4.

For arbitrary q de�ne A

0

(s)

to be the amalgam formed by the subgroups M

0

J

for all parabolis M

J

of

rank s.

Theorem 4

Let n be an integer and let � be the sign of (�1)

n

. Then the following hold.

(1) If q � 4 and n � 3 then Spin

�

(2n; q) is the universal ompletion of A

0

(2)

.

(2) If q = 2, 3 and n � 4 then Spin

�

(2n; q) is the universal ompletion of A

0

(3)

.
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3 Flips and forms

Let V be a 2n-dimensional nondegenerate orthogonal spae of plus type over F

q

2

. Let f be the quadrati

form on V and let (�; �) be the orresponding bilinear form, so that (u; v) = f(u+v)�f(u)�f(v). When

n � 2, the orthogonal spae V gives rise to the building geometry D of type D

n

. The elements of D of

type i = 1; 2; : : : ; n�2 are the f -singular subspaes of V of dimension i. The elements of D of the last two

types, n � 1 and n, are the maximal (i.e., n-dimensional) f -singular subspaes. Two suh subspaes U

and U

0

have the same type if and only if U \U

0

has an even odimension in U . Inidene is symmetrized

ontainment exept for inidene between elements of type n�1 and n. Two elements of type n�1 resp.

n are inident if they interset eah other in a hyperplane, i.e., a subspae of dimension n� 1.

Reall that a semilinear transformation orresponding to an automorphism � of F

q

2

is a mapping

� : V �! V suh that for all u; v 2 V and a 2 F

q

2

we have (u+ v)

�

= u

�

+ v

�

and (av)

�

= a

�

v

�

. We

say that a semilinear transformation � weakly preserves f if there is an a 2 F

q

2

suh that for every v 2 V

we have f(v

�

) = af(v)

�

. Semilinear transformations weakly preserving f form the group �O

+

(2n; q

2

).

Every element of this group indues an automorphism of D, possibly swithing the types n � 1 and n.

The onverse is also true. Every automorphism of D, �xing the types n � 1 and n, or swithing them,

is indued by a semilinear transformation weakly preserving f . Notie also that the only semilinear

transformations ating trivially on D are the linear salar transformations.

In this setion we study involutory automorphisms of D indued by semilinear transformations � with

� 6= Id. The map �

2

has to be linear, as it ats trivially on D, so � must be of order two. We will

use the bar to denote the ation of this unique automorphism of F

q

2

. Suh an automorphism � of D is

alled a unitary involution. In other words a unitary involution � satis�es (�v)

�

=

�

�v

�

and �

2

= aId

for some a 2 F

q

2

. We laim that a 2 F

q

. Indeed, for v 2 V , v 6= 0, we have av

�

= (v

�

)

�

2

= v

�

3

=

(v

�

2

)

�

= (av)

�

= �av

�

. This shows that �a = a, hene a 2 F

q

. Choose � 2 F

q

2

suh that ��� =

1

a

.

This is possible by the surjetivity of the norm map from F

q

2

to F

q

. Then, setting �

0

= ��, we get

v

�

02

= (v

�

0

)

�

0

= �(�v

�

)

�

= ���v

�

2

= ���av = v. Thus, (�

0

)

2

= Id. Clearly, � and �

0

indue the same

automorphism of D and so we may assume without loss of generality that �

2

= Id. Sine � weakly

preserves f , there is a b 2 F

q

2

suh that f(v

�

) = bf(v) for all v 2 V . Notie that b

�

b = 1. Indeed, pik

v 2 V so that f(v) 6= 0. Then f(v) = f(v

�

2

) = bf(v

�

) = b

�

bf(v). Thus, b

�

b = 1. Choose � 2 F

q

2

so

that b =

�

�

�

. Suh a hoie is possible as the subgroup of order q + 1 of the multipliative group of F

q

2

(yli of order q

2

� 1) onsists of preisely those elements whih are of the form 

q�1

for some . De�ne

f

0

(v) := �f(v). Then f

0

(v

�

) = �f(v

�

) = �bf(v) =

�b

�

�

f

0

(v) = f

0

(v). Clearly, f

0

is a quadrati form of

plus type and, sine the zeros of f oinide with the zeros of f

0

, the quadrati form f

0

de�nes exatly the

same building geometry D. Consequently we an assume right from the beginning that f and � have the

property f(v

�

) = f(v), whih by polarization also implies (u

�

; v

�

) = (u; v).

Hene studying unitary involutions of D means studying semilinear transformations � of V satisfying

(F1) (�v)

�

=

�

�v

�

;

(F2) f(v

�

) = f(v); and,

(F3) �

2

= Id.

From now on we will require any unitary involution to satisfy (F1) through (F3).

Let us now desribe two examples of semilinear transformations � induing unitary involutions.

Let e

1

; : : : ; e

n

; f

1

; : : : ; f

n

be a hyperboli basis in V . This means that the subspaes he

1

; : : : ; e

n

i and

5



hf

1

; : : : ; f

n

i are totally singular and that (e

i

; f

j

) = Æ

ij

for 1 � i; j � n. De�ne �

1

and �

2

as follows:

(

n

X

i=1

x

i

e

i

+

n

X

i=1

y

i

f

i

)

�

1

=

n

X

i=1

�y

i

e

i

+

n

X

i=1

�x

i

f

i

and

(

n

X

i=1

x

i

e

i

+

n

X

i=1

y

i

f

i

)

�

2

=

n�1

X

i=1

�y

i

e

i

+

n�1

X

i=1

�x

i

f

i

+ �x

n

e

n

+ �y

n

f

n

:

Then �

1

and �

2

satisfy (F1) through (F3). Therefore, both �

1

and �

2

indue unitary involutions. Ob-

serve that �

1

sends U = he

1

; : : : ; e

n

i to hf

1

; : : : ; f

n

i, while �

2

sends U to hf

1

; : : : ; f

n�1

; e

n

i. Thus, the

odimension of U \ U

�

1

in U is n, while the odimension of U \ U

�

2

in U is n � 1. Hene if n is odd

then the unitary involution indued by �

1

swithes the types n� 1 and n, while the one indued by �

2

preserves them. If n is even then the opposite ours: �

1

preserves the types and �

2

swithes n� 1 and

n. In other words, if W is an arbitrary maximal f -singular subspae of V , the dimension of W \W

�

1

is

always even and the dimension of W \W

�

2

is always odd. In partiular, �

1

and �

2

indue nononjugate

unitary involutions.

We will eventually prove that every unitary involution is onjugate to either �

1

or �

2

, but �rst we

reord some general fats. De�ne ((u; v)) := (u; v

�

) = f(u+ v

�

)� f(u)� f(v

�

).

Lemma 3.1

The form ((�; �)) is a nondegenerate Hermitian form. Furthermore, ((u

�

; v

�

)) = ((u; v)) for u; v 2 V .

Proof. Clearly, ((�; �)) is a sesquilinear form. Also, ((v; u)) = (v; u

�

) = (u

�

; v) = (u

�

2

; v

�

) =

(u; v

�

) = ((u; v)). Thus, ((�; �)) is Hermitian. If u is in the radial of ((�; �)) then for any v 2 V , we

have 0 = ((u; v

�

)) = (u; v

�

2

) = (u; v). Therefore, u = 0, as (�; �) is nondegenerate (reall that V has even

dimension). Finally, ((u

�

; v

�

)) = (u

�

; v) = (v; u

�

) = ((v; u)) = ((u; v)).

Let g be the unitary form related to ((�; �)), i.e., g(v) = ((v; v)). Notie that g and ((�; �)) have the

same radial and rank on every subspae of V . This does not hold for f and (�; �) when q is even. In this

ase the radial of f an be a hyperplane in the radial of (�; �) and hene the rank of f an be one larger

than the rank of (�; �).

In what follows we will work with both (�; �) and ((�; �)). This alls for two di�erent perpendiularity

symbols. If U is a subspae of V then U

?

denotes its orthogonal omplement with respet to (�; �), while

U

??

will be used for ((�; �)).

Lemma 3.2

For a subspae U � V , we have U

??

= (U

�

)

?

= (U

?

)

�

. Similarly, U

?

= (U

�

)

??

= (U

??

)

�

.

Proof. The �rst equality in the �rst laim immediately follows from the de�nition of ((�; �)). If

u 2 (U

?

)

�

(say, u = (u

0

)

�

for u

0

2 U

?

) and v 2 U then ((u; v)) = ((u

0

)

�

; v

�

) = (u

0

; v) = 0. The seond

laim follows by an appliation of � to the equalities in the �rst laim.

Lemma 3.3

Let U be a subspae of V . Then f has the same rank on U and U

�

; likewise, it has the same rank on

U

?

and U

??

= (U

?

)

�

. The same statements hold also for (�; �), g, and ((�; �)).
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Proof. The �rst laim follows from (F2) for f and (�; �), and from Lemma 3.1 for g and ((�; �)). The

seond laim follows from the �rst one and Lemma 3.2.

Now we fous on the ase where U is �-invariant. Let us start with the following general property of

unitary involutions.

Lemma 3.4

Every �-invariant subspae of V admits a �-invariant omplement. In partiular if U and W are �-

invariant and U �W then U has a �-invariant omplement in W .

Proof. We will just need the property (F1). It is lear that (F1) is inherited by the restritions of �

to all �-invariant subspaes and fator spaes. Let U be a �-invariant proper subspae of V . We laim

that there exists a one-dimensional �-invariant subspae not ontained in U . One this is proved, we

an fator out that invariant one-dimensional spae and indution �nishes the proof of the lemma. Let

v 2 V n U . If hvi is �-invariant then we are done. Otherwise onsider hv; v

�

i. This subspae ontains

q+1 one-dimensional �-invariant subspaes hv+ �v

�

i where �

�

� = 1. Clearly at most one of these lies in

U .

For the seond laim, if U �W are �-invariant and if T is a omplement to U in V then T \W is a

�-invariant omplement to U in W .

Suppose U is �-invariant. Clearly (F1), (F2), (F3) hold when you redue � and the forms to U . Also,

it follows from Lemma 3.2 that U

?

= U

??

. In other words, for a �-invariant subspae U , the polar

(and hene also the radial) of U is the same with respet to (�; �) and ((�; �)). Thus for a �-invariant

subspae we will speak simply of its radial, meaning the radial for (�; �), ((�; �)) and g. The radial for

f will be referred to as the f -radial. Note that Lemma 3.4 implies that eah of the radials has an

�-invariant omplement in U . Notie that the �-invariant omplement is automatially nondegenerate

for the orresponding form.

Lemma 3.5

If U is an f -nondegenerate �-invariant subspae of V of dimension at least three, then there exists a

vetor u of U that is f -singular and g-nonsingular.

Proof. Let W be a subspae of U whih is maximal f -singular. If W and W

�

generate a subspae

that is (�; �)-totally isotropi then W is the unique maximal f -singular subspae in hW;W

�

i whih means

that W = W

�

. So if W 6= W

�

then ((�; �)) is nontrivial on W , and so W ontains the required vetor.

Therefore by way of ontradition we an assume that every W is �-invariant. Sine every f -singular

one-dimensional subspae of U is the intersetion of the maximal f -singular subspaes ontaining it, it

follows that � �xes all f -singular one-dimensional subspaes of U .

Let again W be a subspae of U whih is maximal f -singular. Suppose W has dimension more than

one. Sine � �xes eah one-dimensional subspae of W , it will have to at on W as a salar and this

ontradits (F1).

If dimW = 1 then there are two ases: dimU = 3 or dimU = 4 and f restrited to U is of minus type.

First assume dimU = 3. Let hai be any one-dimensional subspae of U and let u

1

and u

2

be vetors of

U with f(u

1

) = 0 = f(u

2

) suh that ha; u

1

; u

2

i = U . Then ha; u

1

i is either a tangent line or it ontains

another f -singular one-dimensional subspae besides hu

1

i. In either ase � leaves the subspae ha; u

1

i

invariant as it weakly preserves f . For the same reason also the subspae ha; u

2

i is �-invariant. Hene

the intersetion hai = ha; u

1

i \ ha; u

2

i is �-invariant. Sine a was hosen arbitrarily, � leaves invariant

all one-dimensional subspaes of U . This implies that � ats as a linear salar map on U , ontraditing
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property (F1). Hene there exists a vetor u of U with f(u) = 0 that is linearly independent from u

�

.

This means g(u) = ((u; u

�

)) 6= 0.

Finally if dimU = 4 then pik T to be an f -nondegenerate three-dimensional subspae of U . The

spae T is generated by f -singular vetors hene it is �-invariant. Now the above argument applies.

We have reahed the stage where we an lassify the unitary involutions.

Proposition 3.6

There are exatly two onjugay lasses of unitary involutions in �O

+

(2n; q

2

).

Proof. We �rst onstrut f -singular vetors e

1

, . . . , e

n�1

, f

1

, . . . , f

n�1

suh that e

�

i

= f

i

, (e

i

; e

j

) = 0

and (e

i

; f

j

) = Æ

ij

. There is nothing to prove for n = 1 so assume that n is at least two. By Lemma 3.5 there

is a vetor v whih is singular with respet to f and nonsingular with respet to g. Let  = g(v) = ((v; v)).

Sine g is unitary, we have  2 F

q

. By surjetivity of the norm map, there is a  2 F

q

2

suh that  = �.

Set e

1

=

1



v and f

1

= e

�

1

. Then e

1

and f

1

are singular for f and (e

1

; f

1

) = ((e

1

; e

1

)) =

1

�

((v; v)) = 1. Let

U = he

1

; f

1

i and V

0

= U

?

. Sine U is �-invariant, Lemma 3.2 shows that V

0

= U

??

is also �-invariant.

Furthermore, f is nondegenerate on V

0

of plus type. If dimV

0

� 4 then � indues an unitary involution

on the building geometry of V

0

. This means that, working indutively and applying Lemma 3.5 in eah

step, we an omplement e

1

and f

1

by further f -singular vetors e

2

; f

2

; : : : ; e

n�1

; f

n�1

, suh that for

1 � i; j � n� 1 we have (e

i

; e

j

) = 0 = (f

i

; f

j

), (e

i

; f

j

) = Æ

ij

and e

�

i

= f

i

.

For arbitrary n let now U = he

1

; f

1

: : : ; e

n�1

; f

n�1

i

?

and V

0

= U

?

. Then both U and V

0

are �-

invariant. Sine f is nondegenerate on U of plus type, it is so on V

0

as well. This means that V

0

ontains exatly two singular one-dimensional spaes, say hei and hfi. There are two possibilities: either

� interhanges these two subspaes, or it stabilizes both of them. Consider the �rst possibility. Setting

 = g(e) = (e; e

�

), we see that  2 F

q

. Choosing  2 F

q

2

suh that  = � and setting e

n

=

1



e and

f

n

= e

�

n

we obtain a omplete hyperboli basis e

1

; : : : ; e

n

; f

1

; : : : ; f

n

on whih � ats the way �

1

does.

Hene � is onjugate to �

1

in this �rst ase. Consider now the seond possibility. Suppose e

�

= e.

Sine �

2

= 1, we obtain e = e

�

2

= (e)

�

= �e, whih shows that � = 1. This means that there is a

 2 F

q

2

suh that  =



�

. Indeed, the subgroup of order q + 1 of the multipliative group of F

q

2

(yli

of order q

2

� 1) onsists of preisely those elements whih are of the form 

q�1

for some . Taking

e

n

= e, we ompute: (e

n

)

�

= (e)

�

= �(e) =

�



(e) = e

n

. Let f

n

be the unique vetor in hfi suh

that (e

n

; f

n

) = 1. Sine (e

n

; f

�

n

) = (e

�

n

; f

�

n

) = (e

n

; f

n

) = 1, we must also have that f

�

n

= f

n

. Thus, in the

seond ase � ats on the hyperboli basis e

1

; : : : ; e

n

; f

1

; : : : ; f

n

the way �

2

does. Hene � is onjugate

to �

2

.

In view of [2℄ studying ipop geometries related to � only makes sense when one atually has a

hamber of the building mapped to an opposite hamber, as otherwise the ipop geometry would be

empty. The following result shows that suh maps � are the ones that are onjugate to �

1

.

Corollary 3.7

Suppose � is a unitary involution. The following are equivalent:

(F4a) � is onjugate to �

1

.

(F4b) V ontains a maximal f -singular subspae U suh that hU;U

�

i = V .

(F4) V ontains a maximal f -singular subspae U suh that U \ U

�

= f0g.

(F4d) V ontains a maximal f -singular subspae U suh that dimU \ U

�

is even.
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(F4e) For every maximal f -singular subspae U of V we have that dimU \ U

�

is even.

Proof. By analyzing the ation of �

1

and �

2

on the two types of maximal f -singular subspaes of V

one immediately dedues that (F4a) and (F4e) are equivalent and that (F4d) implies (F4a). Also it is

lear that (F4b) and (F4) are equivalent. The impliation (F4a) ) (F4b) follows from the fat that

he

1

; : : : ; e

n

i

�

1

= hf

1

; : : : ; f

n

i. Clearly, (F4) implies (F4d).

Any unitary involution satisfying the equivalent onditions above is alled a ip. From now on we

assume that � is a ip on V .

Next, let us study the \eigenspaes" of � in V . For � 2 F

q

2

, de�ne V

�

= fu 2 V ju

�

= �ug. Note

that V

�

is not a true eigenspae, beause � is not linear. We will see that every non-empty V

�

is a

2n-dimensional F

q

-vetor spae.

Lemma 3.8

The following hold.

(1) For 0 6= � 2 F

q

2
, we have �V

�

= V

�

0

, where �

0

=

��

�

�; in partiular, V

�

is an F

q

-subspae of V .

(2) V

�

6= 0 if and only if �

�

� = 1; furthermore, if V

�

6= 0, then V

�

ontains a basis of V .

Proof. Suppose u 2 V

�

. Then (�u)

�

= ��u

�

= ���u =

��

�

�(�u). This proves (1). Also, u = u

�

2

=

�

��u.

Thus, if u 6= 0 then �

�

� = 1. This proves the `only if' part of (2). To prove the `if' part, hoose a anonial

basis fe

1

; : : : ; f

n

g of V for �. Fix a � 2 F

q

2

suh that �

�

� = 1. De�ne u

i

= e

i

+

�

�f

i

and v

i

=

�

�e

i

+ f

i

for

1 � i � n. A simple hek shows that u

i

and v

i

are in V

�

. This shows that V

�

6= 0. Furthermore, u

i

and

v

i

are not proportional unless

�

� = �, that is, � 2 F

q

. Thus, if � 62 F

q

then fu

1

; : : : ; u

n

; v

1

; : : : ; v

n

g is a

basis of V . If � 2 F

q

then onsider �

0

=

��

�

�, where � is hosen so that

��

�

62 F

q

. By (1), V

�

0

= �V

�

. Also,

sine �

0

62 F

q

, the spae V

�

0

ontains a basis of V , and hene so does V

�

.

Now �x a � 2 F

q

2

nF

q

suh that �

�

� = 1.

Lemma 3.9

The restrition of �f to V

�

is a nondegenerate F

q

-quadrati form. It is of plus type if n is even and of

minus type if n is odd.

Proof. Clearly, the form �f is F

q

-quadrati. Sine V

�

ontains a basis of V by Lemma 3.8 (2), the

form is nondegenerate. It remains to see that it takes values in F

q

. If u 2 V

�

, then �f(u) =

�

�f(u

�

) =

�

��

2

f(u) = �f(u).

To determine the type of �f we ompute the form �f on the F

q

-vetor spae hu

i

; v

i

i with respet to

the basis u

i

, v

i

for 1 � i � n where, as above, u

i

= e

i

+

�

�f

i

and v

i

=

�

�e

i

+ f

i

. We have

�f(u

i

) = �f(e

i

+

�

�f

i

) = �f(e

i

) + �f(

�

�f

i

) + �(e

i

;

�

�f

i

) = �

�

� = 1;

�f(v

i

) = �f(

�

�e

i

+ f

i

) = �f(

�

�e

i

) + �f(f

i

) + �(

�

�e

i

; f

i

) = �

�

� = 1; and

�(u

i

; v

i

) = �(e

i

+

�

�f

i

;

�

�e

i

+ f

i

) = �+

�

�:

So the form �f on hu

i

; v

i

i with respet to the basis u

i

, v

i

equals �

2

+�

2

+��(�+

�

�) = (�+��)(�+�

�

�).

We are looking for solutions in F

q

of the equation 0 = (� + ��)(� + �

�

�). However, sine � 62 F

q

, this

equation does not have any solutions in F

q

. Therefore the restrition of �f to the F

q

-vetor spae hu

i

; v

i

i

is ellipti. The laim about the type of �f follows.
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Observe that the onjugation by � is an automorphism of G = S


+

(2n; q

2

). Let G

�

be the entralizer

of � in G. The above setup gives us means to identify G

�

. Let H be the ommutator group of the group

of linear transformations of V

�

of determinant 1 preserving the (restrition of the) form �f . By Lemma

3.9 it is isomorphi to S


+

(2n; q) in ase n even and isomorphi to S


�

(2n; q) in ase n odd. Sine V

�

ontains a basis of V , we an use F

q

2

-linearity to extend the ation of the elements of H to the entire

V . This allows us to identify H with a subgroup of G. Clearly, sine h 2 H preserves �f , it must also

preserve f .

Proposition 3.10

G

�

= H .

Proof. Choose a basis fw

1

; : : : ; w

2n

g in V

�

. Then this set is also a basis of V . Let h 2 H . If u =

P

2n

i=1

x

i

w

i

2 V then u

�h

= (

P

2n

i=1

�x

i

�w

i

)

h

=

P

2n

i=1

�x

i

�w

h

i

. On the other hand, u

h�

= (

P

2n

i=1

x

i

w

h

i

)

�

=

P

2n

i=1

�x

i

�w

h

i

. Therefore, H � G

�

. Now take h 2 G

�

. If u 2 V

�

then (u

h

)

�

= (u

�

)

h

= (�u)

h

= �u

h

. This

proves that h leaves V

�

invariant. It remains to see that h preserves �f . However, this is lear, beause

h is F

q

2
-linear and it preserves f .

4 The ipop geometry �

Before studying the geometry we are interested in, let us reall some de�nitions. Let I be a �nite set,

alled the set of types. Its elements as well as its subsets are alled types. Let � = (X; �; typ) be a triple

where X is a set, � � X �X is a symmetri and reexive relation and typ : X ! I is a map, suh that,

for x; y 2 X we have x = y if and only if x � y and typ(x) = typ(y). Then � is alled a pregeometry over

I . The elements of X are alled the elements of �, the relation � is alled the inidene relation of �, the

map typ is alled the type funtion of �.

Let � = (X; �; typ) be a pregeometry over I . If A � X , then A is of type typ(A) � I , of otype

Intyp(A), of rank jtyp(A)j, and of orank jIntyp(A)j. The rank of A is also denoted by rk (A). The

ardinality jI j of I is alled the rank of �.

A ag F of a pregeometry � is a set of mutually inident elements of �. Notie that typ

jF

: F ! I is

a injetion. A maximal ag of � is a ag that is maximal with respet to inlusion. Flags of type I are

alled hambers. A geometry over I is a pregeometry � over I in whih every maximal ag is a hamber.

Let F be a ag of �, say of type J � I . Then the residue �

F

of F is the geometry (X

0

; �

jX

0

�X

0

; typ

jInJ

)

over InJ , with X

0

:= fx 2 X j F [ fxg is a ag of � and typ(x) =2 typ(F )g.

The geometry � is onneted if the graph (X; �) is onneted. The geometry � is residually onneted

if for any ag F of orank at least two the residue �

F

is onneted.

Finally, if � = (X; �; typ) and �

0

= (X

0

; �

0

; typ

0

) are two geometries, over I and I

0

, respetively, with

I \ I

0

= ;, then the diret sum �� �

0

is the geometry (X [X

0

; �

00

; typ [ typ

0

) over I t I

0

, with �

00

jX

= �,

�

00

jX

0

= �

0

and (X �X

0

) � �

00

.

We will use the notation from the previous setion. In partiular, V is a nondegenerate orthogonal F

q

2
-

spae of dimension 2n with a quadrati form f of plus type and assoiated symmetri bilinear form (�; �),

the map � is a ip and ((�; �)) the orresponding Hermitian form. Also, G is isomorphi to S


+

(2n; q

2

).

Furthermore, G

�

is the entralizer C

G

(�) of � in G. The group G

�

is isomorphi to S


+

(2n; q) if n is

even and isomorphi to S


�

(2n; q) if n is odd.

Throughout this setion, we assume n � 2. Let D be the building geometry assoiated with G. The

elements of D of type i = 1; 2; : : : ; n � 2 are the singular subspaes of V of dimension i. The elements
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of D of the last two types, n� 1 and n, are the maximal (n-dimensional) singular subspaes. Two suh

subspaes U and U

0

have the same type if and only if U \ U

0

has an even odimension in U . Inidene

is given by symmetrized ontainment exept inidene between elements of type n� 1 and n. Two suh

elements are inident if their intersetion is a hyperplane of either element. We will use the ustomary

geometri terminology. In partiular, points, lines, and planes are elements of vetor spae dimension 1,

2, and 3, respetively.

Let � = �

�

be the pregeometry onsisting of those f -singular proper subspaes of V that do not

interset the polar of their image under �. (See [2℄ for an explanation why this is a natural objet to

onsider.) The pregeometry � is alled the ipop geometry of D assoiated with �. Alternatively, we

an desribe the ipop geometry � as follows.

Proposition 4.1

The elements of � are all proper subspaes U � V of dimension other than n�1, whih are singular with

respet to f and nondegenerate with respet to ((�; �)).

Proof. By Lemma 3.2, U

??

= (U

?

)

�

. Hene, if X is the ((�; �))-radial of U , we have X = U \ U

??

=

U \ (U

?

)

�

. Therefore X = f0g if and only if U \ (U

?

)

�

= f0g.

Reall that a group G of automorphisms of some pregeometry � is alled ag-transitive if for eah

pair F

1

, F

2

of ags with typ(F

1

) = typ(F

2

) there exists a g 2 G with F

g

1

= F

2

. Notie that for a geometry

� this ondition is equivalent to the ondition that for eah pair F

1

, F

2

of hambers there exists a g 2 G

with F

g

1

= F

2

.

Proposition 4.2

The pregeometry � is a geometry of rank n. Moreover, G

�

ats ag-transitively on �.

Proof. For the �rst laim we need to show that a maximal ag F in � ontains elements of all types.

If F ontains an element of type i less than n then learly it also ontains elements of all types less than

i. Suppose m is the highest type present in F and let U be the element of type m in F . Suppose �rst

that m < n� 1. Let W = hU;U

�

i and T = W

?

. Sine � is a ip of W , it also is a ip of T . Therefore,

by Corollary 3.7 there exists a maximal f -singular subspae X in T , suh that X

�

\X = f0g. The spae

X has dimension n�m and thus hU;Xi is an element of � of type n� 1 or n inident to eah element of

F . So m = n� 1 or n. By symmetry it suÆes to onsider only one of these ases. Suppose that m = n.

Then the only type possibly missing in F is n � 1. Let X be a hyperplane in U suh that X ontains

the element of type n� 2 from F and X is nondegenerate with respet to ((�; �)). Then X is ontained

in exatly two f -singular subspaes of dimension n. One of them is U , let Y be the other one. Sine

X \ X

??

= f0g, the spae Y \ Y

??

has dimension at most one. Sine � is a ip, Corollary 3.7 implies

that Y \ Y

??

= f0g, so Y is nondegenerate for ((�; �)) and it an be added to F as the missing element

of type n� 1. This shows that � is a geometry.

For the seond laim, let V

1

, V

2

, : : :, V

n

and V

0

1

, V

0

2

, : : :, V

0

n

be two hambers ordered by types. Choose

bases B = fe

1

; : : : ; e

n

g, B

0

= fe

0

1

; : : : ; e

0

n

g for V

n

and V

0

n

that are orthonormal with respet to ((�; �)) and

suh that V

i

= he

1

; : : : ; e

i

i, V

0

i

= he

0

1

; : : : ; e

0

i

i for 1 � i � n � 2 and also V

n�1

\ V

n

= he

1

; : : : ; e

n�1

i and

V

0

n�1

\ V

0

n

= he

0

1

; : : : ; e

0

n�1

i. Choose some h 2 G suh that e

h

i

= e

0

i

, (e

�

i

)

h

= (e

0

i

)

�

. Suh an h exists, sine

G ats transitively on the set of hyperboli bases of V . Notie that � Æ h = h Æ � on the basis B [ B

�

of

V . Therefore h 2 G

�

.

Let us �rst disuss the ases n equal to two and three. In ase n = 3, our ipop geometry has already

been studied in [1℄ in guise of the geometry of nondegenerate subspaes of a four-dimensional F

q

2

-vetor

11



spae with respet to a nondegenerate unitary form. Indeed, for n = 3 our ipop geometry is obtained as

the geometry �

�

of the twin building geometry of type D

3

over the �eld F

q

2

. (See Proposition 1 of [14℄ for

a haraterization of spherial twin buildings.) Building-theoretially � interhanges the positive and the

negative part of the twin building, interhanges the distanes and preserves the odistane, f. [2℄. The

twin buildings of typeD

3

and of type A

3

over F

q

2

are isomorphi, so the image of � under this isomorphism

will be a ip of the twin building geometry of type A

3

over F

q

2

. It remains to see whih ip this image

is. It is lear that a ip of the twin building of type A

3

(q

2

) is indued by a nondegenerate polarity on the

projetive spae P(F

4

q

2

), and sine the ip admits a hamber that is mapped to its opposite, this polarity

annot be a sympleti one. So it is orthogonal or unitary. A nondegenerate two-dimensional subspae

of a orthogonal spae has at least q

2

� 1 nondegenerate points, while a nondegenerate two-dimensional

subspae of a unitary spae has q

2

� q nondegenerate points. Hene, indeed, our ipop geometry in ase

n = 3 oinides with the ipop geometry for n = 3 from [1℄. Therefore all properties of our geometry �

for n = 3 follow from [1℄.

Theorem 4.3

Let n = 3. The geometry � is isomorphi to the geometry of nondegenerate subspaes of a nondegenerate

unitary spae of dimension four over F

q

2

. In partiular, it is onneted for all q and simply onneted for

q � 4.

See Setion 5 for a de�nition of simple onnetedness.

Proof. The �rst laim follows from the above disussion. The seond laim follows from [1℄.

In ase n = 2, by the above paragraph our �

�

is isomorphi to the residue of a line of the geometry of

nondegenerate subspaes of a four-dimensional F

q

2

-vetor spae with respet to a nondegenerate unitary

form. Hene �

�

is a generalized digon, whih ertainly is onneted.

This disussion shows that the desired properties of �

�

hold true for n equal to two and three. This

means that in the remainder of the paper we an assume n � 4, whih we will do unless it is spei�ed

otherwise.

The following lemma will be very useful throughout the artile. Reall that the points and the lines

are the elements of � of types one and two respetively.

Lemma 4.4

Let p be a point of � and W � p be a three-dimensional f -singular subspae of V of ((�; �))-rank at least

two. Let U be a two-dimensional subspae of W that ontains at least one point and does not ontain

p. Then U ontains at least q

2

� 2q � 1 (respetively, q

2

� q � 1) points that are ollinear with p if it is

(respetively, is not) a line.

Proof. Sine W is f -singular, we only need to onsider ((�; �)). Notie that, if U is a two-dimensional

subspae of W that is not totally isotropi with respet to ((�; �)), then U ontains q

2

� q points, if U is

a line, and it ontains q

2

points if it is not a line.

Consider U

1

= p

??

\W . Then, by the above, among the q

2

+ 1 two-dimensional subspaes on p in

W , at least q

2

� q meet U

1

in a point and hene they are lines. If U is itself a line, then at most q + 1

of those lines do not meet U in a point of �. This leaves at least q

2

� 2q � 1 lines on p meeting U in a

point. If U is not a line then at most one of the q

2

� q � 1 lines on p does not meet U in a point. Hene

the lemma follows.

12



We need to prove that the geometry � is onneted. This follows from the onnetedness of the

ollinearity graph of �, i.e., the graph on the points of � in whih two points are adjaent if and only if

they are ollinear.

Lemma 4.5

The ollinearity graph of the geometry � has diameter two. In partiular, � is onneted.

Proof. Suppose n � 5. Let p

1

; p

2

be distint points of the geometry. Consider W := hp

1

; p

2

i

?

\

hp

1

; p

2

i

??

. Then dimW � 2n � 4. Moreover, the spae W is �-invariant and has rank at least 2n � 6,

whih is at least four. Indeed, W

?

= hp

1

; p

2

; p

�

1

; p

�

2

i has rank at least two and hene its radial is at

most two-dimensional. Therefore Lemma 3.5 yields a point of � inside that omplement. This point is

ollinear in � to both p

1

and p

2

.

So now suppose n = 4. Take p

1

, p

2

, and W as above. If the rank of W is at least three, then again

Lemma 3.5 yields a ommon neighbor of p

1

and p

2

. The only ase that W does not have rank at least

three ours in ase of dimW = 4 and rkW = 2. If that happens, let W

1

be equal to p

?

1

\ p

??

1

, whih is

six-dimensional and nondegenerate. Moreover, � is a ip of W

1

, sine it is a ip of hp

1

; p

�

1

i. Take U to

be a maximal f -singular subspae of W . Notie that U neessarily has to be three-dimensional, as W is

the diret sum of its radial and a hyperboli line. Sine � is a ip of W

1

, the intersetion U \U

�

has to

be even-dimensional by Corollary 3.7. Hene W ontains a point of �, whih is ollinear to p

1

and p

2

.

Connetedness of the ollinearity graph and hene the geometry follow from the �niteness of its

diameter.

We summarize Lemma 4.5 and the results of [1℄ on onnetedness in the following theorem and

orollary.

Theorem 4.6

Let n � 2. Then � is onneted.

Corollary 4.7

The geometry � is residually onneted unless q = 2.

Proof. The residues of � are either diret sums (and as suh onneted) or isomorphi to our geometry

� in some smaller dimension (and as suh onneted by Theorem 4.6) or isomorphi to geometry of

nondegenerate subspaes of some F

q

2

-vetor spae with respet to a nondegenerate unitary form. The

latter one however is not onneted in ase of a three-dimensional F

2

2

-vetor spae, see [1℄.

5 Fundamental group and simple onnetedness

Let � be a onneted geometry. A path of length k in the geometry is a sequene of elements (x

0

; : : : ; x

k

)

suh that x

i

and x

i+1

are inident, 0 � i � k � 1. A yle based at an element x is a path in whih

x

0

= x

k

= x. Two paths are homotopially equivalent if one an be obtained from the other via the

following operations (alled elementary homotopies): inserting or deleting a repetition (i.e., replaing x

by xx or vie versa), a return (i.e., replaing x by xyx or vie versa), or a triangle (i.e., replaing x

by xyzx or vie versa). The equivalene lasses of yles based at an element x form a group under

the operation indued by onatenation of yles. This group is alled the fundamental group of � and

13



denoted by �

1

(�; x). A yle based at x that is homotopially equivalent to the trivial yle (x) is alled

null-homotopi. Every yle of length 2 or 3 is null-homotopi.

Suppose � and

^

� are geometries over the same type set and suppose � :

^

� ! � is a homomorphism

of geometries, i.e., � preserves the types and sends inident elements to inident elements. A surjetive

homomorphism � between onneted geometries

^

� and � is alled a overing if and only if for every

non-empty ag

^

F in

^

� the mapping � indues an isomorphism between the residue of

^

F in

^

� and the

residue of F = �(

^

F ) in �. Coverings of a geometry orrespond to the usual topologial overings of the

ag omplex. It is well-known that a surjetive homomorphism � between onneted geometries

^

� and

� is a overing if and only if for every element x̂ in

^

� the map � indues an isomorphism between the

residue of x̂ in

^

� and the residue of x = �(x̂) in �. If � is an isomorphism, then the overing is said to

be trivial.

Reall the following result.

Theorem 5.1

Let � be a onneted geometry and let x be an element of �. Then every overing of the geometry � is

trivial if and only if �

1

(�; x) is trivial.

Proof. See [11℄.

A geometry satisfying the equivalent onditions in the previous theorem is alled simply onneted.

A geometri yle in the geometry G is a yle eah element of whih is inident with a ommon

element x.

Proposition 5.2

Every geometri yle is null-homotopi.

Proof. Suppose  = x

1

x

2

: : : x

k

x

1

is a yle without returns all of its elements are inident with some

element x. If k � 3 then  is null-homotopi by de�nition. So we assume that k > 3. If x

1

= x or

x

3

= x then x

1

is inident to x

3

and so  is homotopi to a shorter geometri yle, namely x

1

x

3

: : : x

1

.

Similarly, if x

2

= x or x

4

= x then  is homotopi to x

1

x

2

x

4

: : : x

1

. Finally, if x 6= x

i

, i � 4, then  is

homotopi to x

1

xx

4

: : : x

1

, by inserting the triangle (x

4

; x

2

; x; x

4

). Thus, in all ases  is homotopi to a

shorter geometri yle, and the laim follows by indution.

Corollary 5.3

If two yles are obtained from one another by inserting or erasing a geometri yle then they are

homotopi.

Let G be a geometry over the set I . Let i; j 2 I , then we de�ne i � j if there exists a ag F of otype

fi; jg suh that the residue of F is a geometry ontaining two elements that are not inident. Then the

graph (I;�) is alled the digon diagram of G.

Lemma 5.4

Let � be a geometry of rank n � 4 with digon diagram

1

Æ

2

Æ Æ � � �

n�2

Æ

Æ

n�1

Æ

14



and assume that for eah element x of type n� 1 or n the ollinearity graph of �

x

is onneted. Further-

more, suppose that if the residue �

y

of some element y has a disonneted diagram falling into onneted

omponents �

1

, �

2

, �

3

(one of those may be empty), then �

x

is equal to the diret sum of the three

trunations of �

y

with respet to typ(�

1

), typ(�

2

) and typ(�

3

). Then every yle of � based at some

element of type 1 or 2 is homotopially equivalent to a yle passing exlusively through elements of type

1 or 2.

Proof. We will indut on the number of elements of the path that are not of type 1 or 2. If this number

is zero there is nothing to prove. Take an arbitrary yle  := x = x

0

x

1

: : : x

t�1

x

t

= x. Let x

s

be the

�rst element that is not of type 1 or 2. Clearly s 62 f0; tg. There are the following ases to onsider:

If the type of x

s

is less or equal n� 2 and if the type of x

s+1

is bigger than the type of x

s

then x

s�1

and x

s+1

are inident as they belong to two di�erent diret summands of �

x

s

. Thus  is homotopially

equivalent to the yle xx

1

: : : x

s�1

x

s+1

: : : x.

Suppose the type of x

s+1

is smaller than the type of x

s

. Let y be an element of type n � 1 or n

whih is inident to x

s

(in partiular, take x

s

, if the type of x

s

is n� 1 or n), then y is inident to both

x

s�1

and x

s+1

. Indeed, either y = x

s

and there is nothing to prove or y is ontained in another diret

summand of �

x

s

than x

s�1

, x

s+1

. Therefore, by Proposition 5.2,  is homotopially equivalent to the

path xx

1

: : : x

s�1

yx

s+1

: : : x. Now pik two elements z, w of type 1 suh that z is inident to x

s+1

and w is

x

s�1

, if x

i�1

is a point, or a point inident to x

i�1

, otherwise. Using the hypothesis we an onnet w and

z with a path ww

1

: : : w

k

z passing exlusively through elements of type 1 and 2, all of whih are inident

with y. Again by Proposition 5.2  is homotopially equivalent to xx

1

: : : x

s�1

w

1

: : : w

k

zx

s+2

: : : x whih

ontains fewer elements that are not of type 1 or 2.

Notie that the above paragraph inludes the ase typ(x

s�1

) 2 f1; 2g, typ(x

s+1

) = n�1, typ(x

s

) = n.

The only ase missing altogether is typ(x

s�1

) 2 f1; 2g, typ(x

s+1

) = n, typ(x

s

) = n � 1, whih holds by

interhanging the labels n� 1 and n.

Lemma 5.5

Assume that � = �

1

� �

2

with �

1

onneted of rank at least two. Then � is simply onneted.

Proof. See Lemma 7.2 of [5℄.

Our strategy of proof for the simple onnetedness of the geometry � is to establish that its funda-

mental group is trivial. We want to apply Lemma 5.4 to � so that it will suÆe to prove that every yle

passing through only points and lines is homotopially trivial. The residue of an element of type n � 1

or n of � is isomorphi to the geometry of nondegenerate subspaes with respet to some unitary form

studied in [1℄. There it is proved that � satis�es the hypothesis of Lemma 5.4 on the ollinearity graph

of the residues for n � 4. The diret sum property required in the hypothesis of Lemma 5.4 follows by

the de�nition of �. Hene we an restrit ourselves to yles passing through points and lines only. Sine

any pair of distint ollinear points of � uniquely determines the line inident to both points it atually

suÆes to study yles in the ollinearity graph of �. Finally, by Lemma 4.5, any yle of length six or

more automatially deomposes into smaller yles. Therefore all we need to establish is that arbitrary

triangles, quadrangles, and pentagons in the ollinearity graph of � are homotopially trivial. The next

two setions deal with that problem.
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6 Simple onnetedness, Part 1

In this setion we only deal with the ase n � 4 and q � 3. First we show that every triangle an be

deomposed into geometri triangles.

Lemma 6.1

All triangles are deomposable.

Proof. Consider a triangle with verties hui, hvi and hwi. Let U = hu; v; wi. Then U is totally singular

with respet to (�; �). If it is nondegenerate with respet to ((�; �)) then the triangle is geometri. So we

an assume that U is degenerate. Sine U ontains a line it annot have rank less than two. This means

it has rank exatly two and its radial R is one-dimensional, hene R = hri for some r 2 U .

First let us suppose that R

�

6= R. Consider the line L = hu; vi. Let W = L

?

\ L

??

. Then W

is a nondegenerate �-invariant subspae of odimension four and, hene, of dimension at least four.

Furthermore, with respet to (�; �), the spae W is of plus type, sine V and hL;L

�

i = W

?

are of plus

type. Notie that R;R

�

� W . Let X = R

?

\ W . Consider W with respet to just (�; �). Sine W

is nondegenerate of plus type, X is generated by singular vetors. In partiular, there is a singular

one-dimensional spae hti whih is ontained in X but not in X

�

. Then the spae hu; v; w; ti is totally

singular with respet to (�; �) and nondegenerate with respet to ((�; �)). Thus, hu; v; w; ti is an element of

�, and so our triangle is geometri.

Now suppose R = R

�

and hoose r 2 R suh that r = r

�

. We laim that we an hoose a four-

dimensional subspae W suh that U � W , W is totally singular with respet to (�; �) and its rank with

respet to ((�; �)) is exatly two. Indeed onsider �rst a maximal totally singular subspae X ontaining

U . Sine � is a ip, the radial Y of X with respet to ((�; �)) has even dimension (sine Y = X \X

�

).

Notie that R � Y . Let S be any other one-dimensional spae in Y . Then W = hU; Si is as required.

Let now Y be the two-dimensional radial of W .

Let x be a nonzero vetor in hu; vi \ hw; ri. After a suitable saling we an assume that x = u + v

and w = r + x. Notie that x is a nonsingular vetor, sine w is nonsingular. Pik a 2 F

q

2

, a 6= 0; 1, so

that u + av is nonsingular. Let us onsider vetors t of the form u + av + y, where y 2 Y n R. Then

t is nonsingular and the point hti is ollinear with hui, hvi, and hwi (sine hu; ti, hv; ti, and hw; ti are

omplements to Y in W ). This allows us to deompose the triangle hui, hvi, hwi as a produt of three

triangles.

Let us ompute the radials of the three-dimensional spaes that these triangles generate. Those

radials are the intersetions of the respetive three-dimensional spaes with Y . It is easy to ompute

that hu; v; ti \ Y = hyi, hu;w; ti \ Y = hy � ari, and hv; w; ti \ Y = hy � ri.

We �rst assume that Y is not �-invariant. In that ase Y \ Y

�

= R and so none of the above three

radials an be �-invariant. Hene the three new triangles are geometri, and hene the triangle hui,

hvi, hwi is deomposable. Finally, we deal with the ase Y = Y

�

. If we an hoose y so that none of

the one-dimensional spaes hyi, hy � ri, and hy � ari is �-invariant then again the three new triangles

are geometri and our initial triangle is deomposable. Note that Y ontains exatly q one-dimensional

�-invariant subspaes aside from r. Indeed, assuming that s and r are �-invariant vetors in Y , the

one-dimensional spae hs+ �ri is � invariant if and only if �� = � and so there are q hoies for �.

Now eah of the (q

2

� 1)q vetors in the invariant spaes besides R an our in at most three triples

hyi, hy� ri, and hy�ari. The total number of triples is q

4

� q

2

(one we pik y, the triple is determined)

and there are at most 3(q

2

�1)q triples that ontain at least one bad one-dimensional spae. Note however

that if we pik y to be an �-invariant vetor, then both hyi, hy�ri are �-invariant one-dimensional spaes
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hene the number of bad triples is stritly less than 3(q

3

� q). If q � 3 this assures the existene of a

good triple.

We will onsider 4-gons next. When studying them, the following lemma will prove useful.

Lemma 6.2

Let U be a four-dimensional (�; �)-nondegenerate subspae of V of Witt index two and of ((�; �))-rank at

least one. Then V ontains a point of �.

Proof. If U has ((�; �))-rank one, any two-dimensional (�; �)-totally singular subspae of U not inside

the ((�; �))-radial of U ontains points of �.

If U has ((�; �))-rank two, then it has a two-dimensional ((�; �))-radial X . Any (�; �)-totally singular

two-dimensional subspae of U that does not intersetX neessarily is ((�; �))-nondegenerate, so it ontains

points of �.

If the ((�; �))-rank of U equals three, then any (�; �)-totally singular two-dimensional subspae of U

not ontaining the ((�; �))-radial of U has ((�; �))-rank at least one. Indeed, U does not ontain three-

dimensional ((�; �))-totally isotropi subspaes. Hene U ontains points of �.

If U is ((�; �))-nondegenerate, then the laim follows from the fat that the unitary quadrangleH(3; q

2

)

does not ontain a subquadrangle isomorphi to Q

+

(3; q

2

), see [8℄.

Lemma 6.3

Let q � 3. Then any quadrangle inside a (�; �)-totally isotropi subspae of V is null-homotopi.

Proof. Let a, b, , d be a quadrangle suh that (�; �) vanishes on ha; b; ; di.

If ha; b; ; di is three-dimensional then it an have ((�; �))-rank two or three. If its ((�; �))-rank is three,

then a, b, , d is a geometri yle and, thus, null-homotopi. So we an assume that its ((�; �))-rank is

two. But then any omplement of its radial X is a line of �. Therefore  and d have a ommon neighbor

on the line ha; bi, sine that ontains at least six points.

If ha; b; ; di is four-dimensional then it an have ((�; �))-rank two, three or four. In ase of ((�; �))-rank

four the yle a, b, , d again is geometri, whene null-homotopi. If its ((�; �))-rank is two, then the span

ha; b; i intersets the two-dimensional radial X in a one-dimensional spae X

1

. Any two-dimensional

subspae of ha; b; i missing X

1

is a omplement of X and, thus, a line of �. Hene exatly one of the at

least six points of � on the line ha; bi is not ollinear to , leaving at least �ve points that are ollinear

to . By symmetry, d is not ollinear to a unique point of ha; bi, whene there are at least four points on

ha; bi ollinear to both  and d, deomposing the quadrangle.

Finally, assume the ((�; �))-rank of ha; b; ; di is three. Let X be its one-dimensional ((�; �))-radial.

If X is ontained in ha; b; i, then ha; b; i has ((�; �))-rank two and any two-dimensional subspae of it

missing X is a line of �. Hene, in this ase  is ollinear to all points of ha; bi exept one. On the other

hand, by Lemma 4.4 the point d is ollinear to q

2

� 2q � 1 points of ha; bi. Removing the point that 

is not ollinear to if neessary, there remain q

2

� 2q � 2 points of ha; bi ollinear to both  and d. Sine

q � 3, this is a positive number.

So we an assume that X is not ontained in ha; b; i. Consider the two-dimensional subspae hd;Xi.

It intersets ha; b; i in some one-dimensional spae e distint from X . Therefore, as the ((�; �))-rank of

hd;Xi is one, e is a point of �. Sine the ((�; �))-rank of ha; d;Xi = ha; d; ei is two (indeed, it ontains

the ((�; �))-radial X , but also the line ha; di), any two-dimensional subspae of ha; d;Xi missing X is a

line of �. In partiular, ha; ei is a line of �. For the same reason, the spae h; ei is a line of �. We have
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deomposed the quadrangle a, b, , d into the quadrangle a, b, , e (whih lies inside the three-dimensional

spae ha; b; i and by the above is null-homotopi) and the quadrangle a, e, , d (whih has the property

that the radial X lies inside ha; d; ei and hene is null-homotopi by the preeding paragraph).

Remark 6.4 There exists a muh shorter proof for q � 4. Indeed, by Lemma 4.4 there exist q

2

� 3q� 2

points on ha; bi ollinear to both  and d, deomposing the quadrangle. This example illustrates that

studying the ipip geometries over small �elds may be quite diÆult. And, indeed, we did not sueed

to deompose pentagons in ase (n; q) = (4; 3), but we have to rely on a omputer based omputation

instead.

Lemma 6.5

Let q � 3. Any quadrangle with a (�; �)-perpendiular pair of opposite points is null-homotopi.

Proof. Let a, b, , d be a quadrangle with a ? . In view of the preeding lemma we an assume that

b 6? d. In that ase ha; i is the radial of ha; b; ; di and also of W = ha; i

?

. It follows that ha; i is

((�; �))-degenerate or that a and  are ollinear and the quadrangle deomposes in two triangles. Hene

assume ha; i is ((�; �))-degenerate. Then it has a one-dimensional ((�; �))-radial X . For eah v 2 W we

will denote by v

0

its image in W

0

= W=ha; i. We will identify W

0

with some omplement of ha; i in W

ontaining b and d. (If no suh omplement exists, then ha; i and hb; di have a nontrivial intersetion,

whene ha; b; ; di is (�; �)-totally isotropi, so we are in the ase of the preeding lemma.) Note that

the pre-image of a vetor of W

0

is an aÆne two-dimensional subspae of W and the pre-image of a

one-dimensional subspae of W

0

is a three-dimensional subspae of W .

Choose a (�; �)-totally singular two-dimensional subspae l ofW

0

through b and an opposite (�; �)-totally

singular two-dimensional subspaem ofW

0

through d. Notie that the pre-images ha; b; i of b and ha; ; di

of d in W have rank two or three with respet to ((�; �)) as they ontain lines of �. Therefore both l and

m eah ontain at most q + 1 one-dimensional subspaes whose pre-images in W have ((�; �))-rank one.

Consequently, we an �nd a one-dimensional subspae z

1

of l and a (�; �)-perpendiular one-dimensional

subspae z

2

of m suh that the pre-images of both z

1

and z

2

in W have ((�; �))-rank two or three.

It is possible to �nd a ommon neighbor p of a and  in ha; ; z

1

i and a ommon neighbor q of a and

 in ha; ; z

2

i. Sine z

1

? z

2

and ha; i is the (�; �)-radial of W we also have p ? q. Similarly, b ? z

1

and

d ? z

2

implies b ? p and d ? q. Consequently we have deomposed the quadrangle a, b, , d into the

quadrangles a, b, , p and a, p, , q and a, q, , d, all three span a (�; �)-totally isotropi subspae and by

Lemma 6.3 are null-homotopi.

Lemma 6.6

Let q � 3. Any quadrangle is null-homotopi.

Proof. In view of Lemmas 6.3 and 6.5 we may assume that the quadrangle a, b, , d has the property

a 6?  and b 6? d. Therefore the span ha; b; ; di must be four-dimensional and the (�; �)-rank of ha; b; ; di

must be four. Therefore the spae ha; b; ; di

?

ontains a point e of � by Lemma 6.2. By Lemma 4.4

there exist at least q

2

� 2q � 1 points of eah line of the quadrangle a, b, , d ollinear to e. We have

deomposed the quadrangle a, b, , d into quadrangles satisfying the hypothesis of Lemma 6.5, whene

a, b, , d is null-homotopi.

Lemma 6.7

Let q � 3. Any pentagon a, b, , d, e with a ?  and a ? d is null-homotopi.
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Proof. By Lemma 4.4 the line h; di ontains q

2

� 2q � 1 points of � ollinear to a, deomposing the

pentagon.

Lemma 6.8

Let q � 3 and n � 5. Then any pentagon is null-homotopi.

Proof. Let a, b, , d, e be a pentagon. In view of the preeding lemma we an assume a 6? d and  6? e.

Consequently, ha; ; di has (�; �)-rank two, and its radial X , whih is distint from d, is ontained in h; di.

Sine  6? e and d ? e we have e 6? X . Therefore ha; ; d; ei has to be four-dimensional and its (�; �)-rank

is four. Hene the (�; �)-rank of ha; b; ; d; ei is at least four, and so is the (�; �)-rank of ha; b; ; d; ei

?

,

whih has at least dimension �ve. Moreover, the ((�; �))-rank of ha; b; ; d; ei is at least two, as it ontains

points, so the ((�; �))-rank of ha; b; ; d; ei

?

also is at least two. Hene we an hoose a (�; �)-nondegenerate

four-dimensional subspae of ha; b; ; d; ei

?

that has ((�; �))-rank at least one, so by Lemma 6.2 the spae

ha; b; ; d; ei ontains a point f of �. By Lemma 4.4 there exists points on ha; bi, hb; i, h; di, hd; ei, he; ai

ollinear to f , deomposing a, b, , d, e into quadrangles.

Lemma 6.9

Let q � 4 and let n = 4. Then any pentagon is null-homotopi.

Proof. Let a, b, , d, e be a pentagon. In view of Lemma 6.7 we an assume that a 6? d. Hene the

(�; �)-rank of ha; ; di is two, and the (�; �)-radial X of ha; ; di is ontained in h; di. Therefore the (�; �)-

rank of ha; ; di

?

is four. Note that X annot be the ((�; �))-radial of ha; ; di

?

, as then it also would be

the ((�; �))-radial of ha; ; di

�

. However, this is impossible as h; di and h; di

�

are ((�; �))-nondegenerate.

If X is a point of �, then onsider ha; ; di

?

\X

??

. This spae is a omplement of X inside ha; ; di

?

and as suh it is (�; �)-nondegenerate. Moreover, the ((�; �))-rank of ha; ; di is at least two, hene so is the

((�; �))-rank of ha; ; di

?

, whene ha; ; di

?

\X

??

is not ((�; �))-totally isotropi and by Lemma 6.2 we an

�nd a point p of � in that spae. Then hX; pi is a line of �.

If X is not a point of �, then we hose any (�; �)-singular one-dimensional subspae p of ha; ; di

?

nX

??

and hX; pi is also a line of �.

That line hX; pi ontains at least q

2

� 3q � 2 points of � ollinear to a and d, whih is at least one

sine q � 4, say f . Therefore we have deomposed the pentagon a, b, , d, e into a quadrangle a, f , d, e

and a pentagon a, b, , d, f , in whih f ? .

If also f ? b, then we are done by Lemma 6.7. If f 6? b, then we an repeat the whole argument

of the present proof for the pentagon f , d, , b, a instead of a, b, , d, e. We will then obtain another

quadrangle and a pentagon f , d, , b, g with  ? f and  ? g, whih is null-homotopi by Lemma 6.7.

7 Simple onnetedness, Part 2

In this setion we deal with the ase q = 2 and n � 5. First of all note that in this ase two points p and

q of � are ollinear if and only if p ? q and p??q. Therefore we do not have to worry about triangles.

Lemma 7.1

Any triangle of � is geometri.

19



Proof. Let a, b,  be a triangle. Then a??b, b?? and ??a implies that the ((�; �))-rank of ha; b; i is

three, whene ha; b; i is an element of �, so that the triangle a, b,  is geometri.

Lemma 7.2

Any quadrangle of � is null-homotopi.

Proof. Let a, b, , d be a quadrangle. Assume �rst that ha; ; a

�

; 

�

i is of dimension four. Let

W := ha; i

?

\ ha; i

??

. It is �-invariant, has dimension 2n� 4, (whih is at least six) and has a zero- or

two-dimensional (�; �)-radial X (as (�; �) is alternating), whih at the same time is the ((�; �))-radial. By

Lemma 3.4 there exists a �-invariant (�; �)- and ((�; �))-nondegenerate omplement W

0

to that radial in

W , and W

0

has dimension at least four.

On the spaeW

0

the map � ats as a ip. Indeed, onsider a maximal (�; �)-totally singular subspae of

V that is generated byX , a and a maximal (�; �)-totally isotropi subspae U ofW

0

. Sine a is a point of �,

it is moved by �, whene the intersetion U�hX; ai\U

�

�hX; ai

�

equals the intersetion U�X\U

�

�X

�

,

whih in turn is equal to (U \ U

�

)�X . Sine X has even dimension and U � hX; ai \U

�

� hX; ai

�

has

even dimension (it is the intersetion of a maximal (�; �)-totally singular subspae with its image under

the ip �) also the intersetion U \ U

�

has even dimension. Therefore, � has to be a ip of W

0

, as it is

onjugate to either �

1

or �

2

by Proposition 3.6 and only �

1

has the property that a maximal (�; �)-totally

isotropi subspae intersets its image in a subspae of even dimension.

Notie that b and d live in W and that their projetions onto W

0

(with respet to the deomposition

W = W

0

�X) are points and they an be onneted in W

0

by Theorem 4.6, hene so an b and d and,

thus, the quadrangle an be deomposed into triangles, sine all these points are ollinear with a and .

It remains to onsider the ase where both ha; ; a

�

; 

�

i and hb; d; b

�

; d

�

i are three-dimensional. No-

tie that eah of these two spaes is of (�; �)- and ((�; �))-rank two and that they are (�; �)- and ((�; �))-

perpendiular. Let U = ha; b; ; di+ ha; b; ; di

�

. If U is of dimension less than six, then it has (�; �)-radial

of dimension at most one, whih means that U

?

has (�; �)-rank at least four. Now onsider a �-invariant

omplement to the radial in U

?

and using Lemma 3.5 we see that U

?

ontains a point of �, whih is

ollinear to a, b, , d.

So we an assume that U has dimension six and that its (�; �)-radial X has dimension two. Let W

be � invariant omplement to X in U

?

. Then W is at least two-dimensional and (�; �)-nondegenerate.

If X ontains a �-invariant f -nonsingular one-dimensional subspae, its span with W is �-invariant and

f -nondegenerate of dimension at least three. So it ontains a point by Lemma 3.5. Thus we an assume

that X is f -singular. We laim that W is of plus type and that � is a ip of W . Indeed, the span of U

and W equals to X

?

. Consider the quotient X

?

=X . Sine X is f -singular, this is a spae of plus type.

The image of U is of plus type, so the image of W (whih is isometri to W ) is of plus type, too. Sine

X is two-dimensional, � indues a ip on X

?

=X . It also indues a ip on the image of U , thus it indues

a ip on the image of W , whene on W . Therefore W ontains points.

Lemma 7.3

Any pentagon of � is null-homotopi.

Proof. Let a, b, , d, e be a pentagon. Let W be h; di

?

\ h; di

??

and let U be ha; ; di

?

\ ha; ; di

??

.

The spae W is nondegenerate �-invariant of dimension 2n � 4. Moreover, � is a ip on W , beause �

is a ip on h; d; 

�

; d

�

i, as that spae ontains the line h; di. The spae U is �-invariant of dimension

at least 2n� 6 and has rank at least 2n� 8. By Lemma 3.5 the spae U ontains a point of � unless it

has rank exatly two, in whih ase n = 5, and � is not a ip on the omplement of the radial. If the
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(�; �)-radial X of U is not f -singular, then we an hoose a �-invariant f -nonsingular vetor in X . Taking

the span of this vetor together with a �-invariant omplement Y of X in U produes a three-dimensional

f -nondegenerate �-invariant spae, in whih we an �nd a point of � by Lemma 3.5. So we an assume

that X is f -singular. In this last ase, as in the previous proof, show that Y is of plus type and � is a

ip on Y . Indeed, the image of U

?

in X

?

=X is of plus type and � indues a ip on it.

Proof of Theorem 1 and Theorem 2. The laims (1) follow by Proposition 3.10 and Proposition

4.2. The laims (2) follow by Theorem 4.6 and Corollary 4.7. Claims (3) follow by Theorem 4.3 and

Setions 6 and 7 and Appendix A.

8 Consequenes of simple onnetedness

In the present paper an amalgam A of groups is a set with a partial operation of multipliation and a

olletion of subsets fH

i

g

i2I

, for some index set I , suh that the following hold:

(1) A = [

i2I

H

i

;

(2) the produt ab is de�ned if and only if a; b 2 H

i

for some i 2 I ;

(3) the restrition of the multipliation to eah H

i

turns H

i

into a group; and

(4) H

i

\H

j

is a subgroup in both H

i

and H

j

for all i; j 2 I .

It follows that the groups H

i

share the same identity element, whih is then the only identity element

in A, and that a

�1

2 A is well-de�ned for every a 2 A. We will all the groups H

i

the members of the

amalgam A. Notie that our de�nition is a speial ase of the general de�nition of an amalgam of groups

as found, say, in [12℄.

A group H is alled a ompletion of an amalgam A if there exists a map � : A ! H suh that

(1) for all i 2 I the restrition of � to H

i

is a homomorphism of H

i

to H ; and

(2) �(A) generates H .

Among all ompletions of A there is one \largest" whih an be de�ned as the group having the following

presentation:

U(A) = ht

h

j h 2 A; t

x

t

y

= t

z

; whenever xy = z in Ai:

Obviously, U(A) is a ompletion of A sine one an take � to be the mapping h 7! t

h

. Every ompletion

of A is isomorphi to a quotient of U(A), and beause of that U(A) is alled the universal ompletion.

Suppose a group H � Aut� ats ag-transitively on a geometry �. A rank k paraboli is the stabilizer

in H of a ag of orank k from �. Parabolis of rank n� 1 (where n is the rank of �) are alled maximal

parabolis. They are exatly the stabilizers in H of elements of �.

Let F be a maximal ag in �, and let H

x

denote the stabilizer in H of x 2 �. The amalgam

A = A(F ) = [

x2F

H

x

is alled the amalgam of maximal parabolis in H . Sine the ation of H is

ag-transitive, this amalgam is de�ned uniquely up to onjugation in H . For a �xed ag F we an also

use the notationM

i

for the maximal paraboli H

x

, where x 2 F is of type i. (We de�ned this notation in

the introdution.) For a subset J � I = f0; 1; : : : ; n� 1g, de�ne M

J

to be \

j2J

M

j

, inluding M

;

= H .

Notie that M

J

is a paraboli of rank jI n J j; indeed, it is the stabilizer of the subag of F of type J .
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Similarly to A, we an de�ne the amalgam A

(s)

as the union of all rank s parabolis. With this notation

we an write A = A

(n�1)

. Moreover, aording to our de�nition, A

(n)

= H .

Proposition 8.1 (Tits' Lemma)

Suppose a groupH ats ag-transitively on a geometry � and let A be the amalgam of maximal parabolis

assoiated with some maximal ag F . Then H is the universal ompletion of the amalgam A if and only

if � is simply onneted.

Proof. Follows from [13℄, Corollaire 1, applied to the ag omplex of �.

Theorem 8.2

Let � be a geometry over some �nite set I with a ag-transitive group of automorphisms G, let k � jI j,

let A and A

k�1

be the amalgam of parabolis resp. rank-k-parabolis with respet to some maximal

ag F , and assume that all residues of rank greater or equal k with respet to subsets of F are simply

onneted. Then G = U(A) = U(A

(k�1)

).

Proof. We will proeed by indution and show that the universal ompletion of A

(k�1)

oinides with

the universal ompletion of A

(k)

. Denote by H

k

the universal ompletion of A

(k)

.

The universal ompletion H

k

of A

(k)

is also a ompletion of A

(k�1)

. Indeed, if n = k, then H

n

= G,

whih ertainly is a ompletion of A

(n�1)

. In ase n > k, the amalgam A

(k)

is the union of all G

J

with J of orank k and we have a map � : A

(k)

! H

k

suh that �

jG

J

: G

J

! H

k

is a homomorphism.

Consequently, also �

jG

J

\G

J

0

: G

J

\G

J

0

! H

k

is a homomorphism. It remains to show that the set of all

images �(G

J

\ G

J

0

) with jIn(J [ J

0

)j = k � 1 atually generate H

k

. But sine �

J

is onneted (simple

onnetedness assumes onnetedness), the group �(G

J

) � H

k

is generated by all those images for a

�xed J (beause the G

J

\G

J

0

are maximal parabolis in G

J

). Thus, H

k

is a ompletion of A

(k�1)

, as it

is generated by the �(G

J

).

Therefore there is a anonial homomorphism � from H

k�1

onto H

k

whose restrition to A

(k�1)

is the

identity. Let  be the inverse of the restrition of � to A

(k�1)

. Let J � I be suh that jI n J j = k and let

^

G

J

be de�ned as h (G

J

\A

(k�1)

)i. By simple onnetedness of �

J

and by Proposition 8.1 (Tits' Lemma),

� indues an isomorphism of

^

G

J

onto G

J

. Therefore,  extends to an isomorphism of A

(k)

� H

k

onto

^

A

(k)

=

[

J�I;jInJj=k

^

G

J

� H

k�1

:

Hene the universal ompletion of A

(k�1)

oinides with the universal ompletion of A

(k)

. The fat

H

n

= G �nishes the proof.

Proof of Theorem 3. This follows immediately by Theorems 1, 2, and 8.2.

Proof of Theorem 4. Let s = 2 if q � 4 and s = 3 if q = 2, 3, and suppose that n � s+1. Let

^

H be the

universal ompletion of the amalgamA

0

(s)

. Let � be the anonial homomorphism of

^

H ontoH , that exists

due to the fat that H is a ompletion of A

0

(s)

. Denote by

^

A

0

(s)

the opy of A

0

(s)

in

^

H, so that � indues an

isomorphism of

^

A

0

(s)

onto A

0

(s)

. As in the proof of Theorem 2, let  : A

0

(s)

!

^

A

0

(s)

be the inverse of �

j

^

A

0

(s)

.

Additionally, de�ne

^

T

i

=  (T

i

) and

^

T = h

^

T

1

; : : : ;

^

T

n

i. Observe that T

i

; T

j

� M

0

Infi;jg

= hL

i

; L

j

i � A

0

(s)

.

Sine  restrited to the latter group is an isomorphism to  (M

0

Infi;jg

), the groups

^

T

i

and

^

T

j

ommute

22



elementwise. Beause T is the diret produt of the groups T

i

, the map � establishes an isomorphism

between

^

T and T .

Let J be a subset of I with jI n J j = s. Observe that M

J

= M

0

J

T . Aordingly, we would like to

de�ne

^

M

J

as

^

M

0

J

^

T , where

^

M

0

J

=  (M

0

J

). For this de�nition to make sense, we need to show that

^

T

normalizes

^

M

0

J

. Assume �rst that q > 2. Sine M

0

i

is normal in M

i

and sine T � M

i

, we have that

T normalizes all M

i

and therefore T normalizes every L

i

= \

j2Infig

M

0

j

. Observe that T

j

� L

j

and

L

i

; L

j

� M

0

Infi;jg

= hL

i

; L

j

i. Sine  is an isomorphism from A

0

(s)

to

^

A

0

(s)

, the group

^

T

j

normalizes

^

L

i

for all i and j. It is lear that M

0

J

is generated by L

i

, i 2 I n J . The same must be true for

^

M

0

J

and

^

L

i

's.

Therefore every

^

T

j

will normalize every

^

M

0

J

whih means that also

^

T normalizes

^

M

0

J

. If q = 2 the same

result an be ahieved by using M

0

Infi;jg

's in plae of L

i

's; reall that in this ase we assume s = 3.

Sine

^

T normalizesM

0

J

and sine

^

T \

^

M

0

J

= h

^

T

j

j j 2 I n Ji is isomorphi (via �) to T \M

0

J

, the map

� establishes an isomorphism between

^

M

J

and M

J

, and, thus, � extends to an isomorphism

^

A

(s)

=

[

J�I;jInJj=s

^

M

J

�! A

(s)

:

Therefore, the universal ompletions of A

(s)

and A

0

(s)

are isomorphi, and the laim follows from Theorem

3.

The Main Theorems A and B an be proved using Theorem 4 in exatly the same fashion as the

Phan-type theorems of [1℄ and of [6℄ are proved. The exat details are left to the reader.

A Computations in GAP

In this setion we report on a omputation done in the omputer algebra system GAP in order to prove

the following proposition.

Proposition A.1

Let � be the ipop geometry for n = 4 and q = 2 or q = 3. Then � is simply onneted.

Proof. We prove both ases of the statement by using Proposition 8.1 (Tits' Lemma). For this we

onsider the maximal parabolis in SO

+

(8; q) of a maximal ag F in �. Let e

1

; : : : ; e

4

; f

1

; : : : ; f

4

be a

hyperboli basis of the underlying vetor spae (f. Setion 3). Sine SO

+

(8; q) ats ag-transitively on

� we may hoose F to be he

1

i; he

1

; e

2

i; he

1

; e

2

; e

3

; e

4

i; he

1

; e

2

; e

3

; f

4

i.

The main part of the proof is omputer based. We determine a generating set for eah maximal

paraboli orresponding to F . For eah generating set we ompute a set of de�ning relators. The

generating sets onstruted have the property that the intersetion of two maximal parabolis is generated

be the intersetion of their generating sets. Then the universal ompletion of the amalgam is de�ned by

the presentation given by the union of the generating sets and the union of the sets of de�ning relators.

Finally, we determine the index of a preimage of one of the maximal parabolis in the universal

ompletion. The group SO

+

(8; q) is the universal ompletion of the amalgam if and only if the index of

the preimage in the universal ompletion is equal to the index of the maximal paraboli in SO

+

(8; q).

This is heked by performing a oset enumeration for the presentation of the universal ompletion over

the preimage of one of the maximal parabolis.
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AmatrixM 2 SO

+

(8; q

2

) lies in (our opy of) SO

+

(8; q) if and only of (M

tr

)

�1

=M . The stabilizer of

F is isomorphi to C

4

q+1

. It is the set of all diagonal matries in SO

+

(8; q) with elements of multipliative

order dividing q + 1 on the diagonal.

Below we provide enough information for eah of the two ases to make it possible to hek the laims

in any group theory omputer system that provides the standard algorithms for working with matrix

groups over �nite �elds, permutation groups and �nitely presented groups. We used GAP [4℄ for our

omputations.

For eah maximal paraboli we list a set of matries and a �nite presentation. The matries together

with generators for the ag stabilizer form a generating set for the paraboli subgroup. Upper ase

letters denoting matries orrespond to lower ase letters in the �nite presentations. It is routine to

verify that the given matries satisfy the given relators. Unfortunately it is a bit more ompliated to

hek that the given presentations de�ne eah maximal paraboli. By diret inspetion one heks that

eah matrix is in SO

+

(8; 3) and �xes the required elements in F . In order to show that the spei�ed

sets of matries generate the proposed parabolis it suÆes to determine the order of the subgroup

eah set generates. These are routine omputations in GAP. Again, the generating sets for the maximal

parabolis are arranged suh that the intersetion of two parabolis is generated by the intersetion of

their generating sets.

A.1 The ase q = 3

In this ase, we will show that the universal ompletion of the amalgam of the maximal parabolis

orresponding to he

1

i, he

1

; e

2

i, he

1

; e

2

; e

3

; e

4

i is already SO

+

(8; 3). From this it follows that the universal

ompletion of the amalgam of all four maximal parabolis is SO

+

(8; 3).

Let z be a primitive element in F

9

with minimal polynomial x

2

� x � 1. We de�ne the following

matries:

U :=

0

B

B

B

B

B

B

B

B

B

B

�

z

5

z

7

z

5

z

3

1

1

z

7

z

5

z

7

z

1

1

1

C

C

C

C

C

C

C

C

C

C

A

V :=

0

B

B

B

B

B

B

B

B

B

B

�

1

z

5

z

3

z

5

z

7

1

1

z

7

z

z

7

z

5

1

1

C

C

C

C

C

C

C

C

C

C

A

W :=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

z z

5

z

5

z

5

1

1

z

3

z

7

z

7

z

7

1

C

C

C

C

C

C

C

C

C

C

A

Y :=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

z

3

z

3

z z

5

1

1

z z

z

7

z

3

1

C

C

C

C

C

C

C

C

C

C

A

Eah maximal paraboli in SO

+

(8; 3) is generated by the matries spei�ed in the following table together
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with generators of the ag stabilizer.

stabilizer element generators

S

1

he

1

i V;W; Y

S

2

he

1

; e

2

i U;W; Y

S

3

he

1

; e

2

; e

3

; e

4

i U; V;W

In addition to these elements we use diagonal matries D

i

, 1 � i � 4, that generate the stabilizer

of the ag F , isomorphi to C

4

4

. The following presentations de�ne eah maximal paraboli. To eah

presentation the relators d

4

i

for 1 � i � 4 and [d

i

; d

j

℄ for 1 � i; j � 4 need to be added.

Generators for S

1

: d

1

; d

2

; d

3

; d

4

; v; w; y.

Relators for S

1

: [v; d

1

℄, [v; d

4

℄, [w; d

1

℄, [w; d

2

℄, [y; d

2

℄, [y; d

1

℄, y

2

, v

3

, w

2

d

3

d

4

, vd

3

vd

2

d

2

3

, (yd

�1

3

d

4

)

2

,

(yw

�1

d

3

)

2

, w

�1

d

�1

3

wd

4

w

�1

d

4

, (w

�1

y)

3

d

2

3

d

2

4

, vw

�1

d

3

v

�1

w

�1

v

�1

d

3

d

�1

2

w,

vwyvd

3

w

�1

v

�1

yw

�1

v

�1

yw

�1

yd

�1

3

w

�1

d

�1

4

, vwyvd

3

yd

�1

3

v

�1

yw

�1

v

�1

yd

�1

3

w

�1

yd

�2

4

d

3

,

d

2

vyv

�1

yw

�1

vd

�1

3

yvw

�1

v

�1

ywd

4

ywd

�2

4

.

Generators for S

2

: d

1

; d

2

; d

3

; d

4

; u; w; y.

Relators for S

2

: [u;w℄, [u; y℄, [u; d

3

℄, [u; d

4

℄, [w; d

1

℄, [w; d

2

℄, [y; d

1

℄, [y; d

2

℄, y

2

, w

2

d

3

d

4

, d

1

u

�3

d

2

,

(yd

3

d

�1

4

)

2

, ud

1

ud

�1

2

, wyw

�1

d

4

yd

�1

4

w

�1

d

4

, yd

�1

3

wd

�1

3

yd

�1

4

d

�2

3

wd

4

d

�1

3

wyw

�1

.

Generators for S

3

: d

1

; d

2

; d

3

; d

4

; u; v; w.

Relators for S

3

: v

3

, [u;w℄, [u; d

4

℄, [u; d

3

℄, [v, d

1

℄, [v; d

4

℄, [w; d

2

℄, [w; d

1

℄, w

2

d

3

d

4

, u

�1

d

�1

1

u

�1

d

2

,

u

�2

d

1

ud

1

, d

�1

2

v

�1

d

�1

3

v

�1

d

2

3

, wd

3

wd

3

wd

�1

4

, wvw

�1

d

3

v

�1

w

�1

v

�1

d

�1

2

d

3

, uvu

�1

d

�1

1

d

�1

2

v

�1

u

�1

v

�1

d

�1

2

d

3

,

u

�1

vw

�1

vu

�1

v

�1

wv

�1

u

�1

vw

�1

vd

4

wd

4

.

The union of the relators above together with the generators d

1

; d

2

; d

3

; d

4

; u; v; w; y give a presentation

for the universal ompletion of the amalgam of the maximal parabolis. Coset enumeration over the

subgroup generated by u, v, w gives an index of 379040 whih is the index of the maximal paraboli

stabilizing he

1

; e

2

; e

3

; e

4

i in SO

+

(8; 3). This shows that SO

+

(8; 3) is the universal ompletion of the

amalgam of maximal parabolis.

A.2 The ase q = 2

In the following, let z be a primitive element in F

4

with minimal polynomial x

2

+ x + 1. We de�ne the

following matries:

U :=

0

B

B

B

B

B

B

B

B

B

B

�

z

2

z

1

1

z

z

2

1

1

1

C

C

C

C

C

C

C

C

C

C

A

V :=

0

B

B

B

B

B

B

B

B

B

B

�

1

z

z

2

1

1

z

2

z

1

1

C

C

C

C

C

C

C

C

C

C

A
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W :=

0

B

B

B

B

B

B

B

B

B

B

�

z

2

1

z

1

z

1

z

2

1

1

C

C

C

C

C

C

C

C

C

C

A

Y :=

0

B

B

B

B

B

B

B

B

B

B

�

z

z

2

z

1

z

2

z

z

2

1

1

C

C

C

C

C

C

C

C

C

C

A

S :=

0

B

B

B

B

B

B

B

B

B

B

�

z

2

z

2

z

1 z z

1 z

2

1

z

z z z

2

1 z

2

z

2

1 z 1

z

2

1

C

C

C

C

C

C

C

C

C

C

A

T :=

0

B

B

B

B

B

B

B

B

B

B

�

1

z

2

1 z

z

2

z

2

z

2

z 1 z

2

1

z 1 z

2

z z z

z

2

1 z

1

C

C

C

C

C

C

C

C

C

C

A

R :=

0

B

B

B

B

B

B

B

B

B

B

�

z

z

2

1

z

z

2

z

1

z

2

1

C

C

C

C

C

C

C

C

C

C

A

Q :=

0

B

B

B

B

B

B

B

B

B

B

�

z

2

z 1 1

z

2

1 z

2

1 z z

z

1 z

2

1

z z 1

z

2

z

2

1

1

C

C

C

C

C

C

C

C

C

C

A

Eah maximal paraboli in SO

+

(8; 2) is generated by the matries spei�ed in the following table together

with generators of the ag stabilizer.

stabilizer element generators

S

1

he

1

i V;W; T;R;Q; Y

S

2

he

1

; e

2

i U;W; Y

S

3

he

1

; e

2

; e

3

; e

4

i U; V; S;W; T

S

4

he

1

; e

2

; e

3

; f

4

i U; V; S;R;Q

In addition to these elements we use diagonal matries D

i

, 1 � i � 4, that generate the stabilizer of

the ag F , isomorphi to C

4

3

. The following presentations de�ne eah maximal paraboli. To eah

presentation the relators d

3

i

for 1 � i � 4 and [d

i

; d

j

℄ for 1 � i; j � 4 need to be added.

Generators for S

1

: d

1

; d

2

; d

3

; d

4

; v; w; t; r; q; y.

Relators for S

1

: v

2

, y

2

, d

1

qd

�1

1

q

�1

, d

1

rd

�1

1

r

�1

, d

3

yd

�1

3

y, d

2

yd

�1

2

y, d

1

yd

�1

1

y, w

�1

yr

�1

y, d

1

vd

�1

1

v,

d

3

r

2

d

�1

4

, vyvy, w

�1

d

�1

4

wd

3

, yd

4

yd

4

, w

�1

d

3

wd

�1

4

, d

1

t

�1

d

�1

1

t, d

2

vd

�1

3

v, d

�1

4

vd

4

v, wd

4

d

�1

3

d

4

w,

rq

�2

d

�1

3

d

�1

2

, d

�1

3

d

4

w

�1

d

�1

4

w

�1

, q

�1

vqd

3

vd

�1

3

, rw

�1

r

�1

d

�1

3

wd

�1

4

, d

2

t

�1

d

�1

2

td

�1

2

t

�1

, vd

�1

2

td

4

td

4

d

2

,

d

2

d

2

4

wtd

2

t, r

2

vwd

2

d

�1

3

w

�1

v, d

3

yqyvtd

4

d

�1

2

, d

2

wt

�1

wd

4

t

�1

d

�1

3

d

�1

4

w

�1

, d

�1

2

w

�1

td

�1

4

w

�1

td

3

d

4

w,

tqyd

4

q

�1

t

�1

qd

�1

4

yq

�1

, d

4

ytwqd

3

yd

�1

4

twqd

3

, d

�1

2

yrvtwqd

3

tqd

�1

4

yq

�1

,

w

�1

d

�1

3

vd

1

wvd

�1

2

d

�1

1

d

�1

3

d

�1

2

w

�1

vd

�1

3

, tyd

�1

4

twqd

3

t

�1

d

�1

3

q

�1

w

�1

t

�1

yd

�1

4

,

twd

4

q

�1

w

�1

t

�1

d

4

yqyd

4

q

�1

wd

4

d

3

, rt

�1

wqd

4

ytwqd

�1

4

w

�1

qyd

4

q

�1

,

qyd

4

q

�1

d

�1

3

w

�1

d

�1

3

qd

�1

4

yq

�1

d

�1

3

w

�1

d

�1

3

qd

�1

4

yq

�1

d

�1

3

w

�1

d

�1

3

qd

�1

4

yq

�1

d

�1

3

w

�1

d

�1

3

.
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Generators for S

2

: d

1

; d

2

; d

3

; d

4

; u; w; y.

Relators for S

2

: u

2

, y

2

, d

1

wd

�1

1

w

�1

, d

1

yd

�1

1

y, d

2

wd

�1

2

w

�1

, d

3

ud

�1

3

u, d

3

w

�1

d

3

w

�1

, d

3

yd

�1

3

y, d

�1

4

yd

�1

4

y,

d

4

ud

�1

4

u, ud

�1

2

ud

1

, uwuw

�1

, uyuy, w

�1

d

3

d

4

w

�1

, w

�1

d

4

d

3

w

�1

, w

�1

yw

�1

yw

�1

yw

�1

y.

Generators for S

3

: d

1

; d

2

; d

3

; d

4

; u; v; s; w; t.

Relators for S

3

: u

2

, v

2

, t

3

, d

1

vd

�1

1

v, d

1

wd

�1

1

w

�1

, d

1

td

�1

1

t

�1

, d

4

ud

�1

4

u, d

4

vd

�1

4

v, d

4

wd

�1

3

w

�1

,

d

4

sd

�1

4

s

�1

, ud

�1

1

ud

2

, uwuw

�1

, wd

�1

2

w

�1

d

2

, wd

�1

3

wd

�1

3

, w

2

d

�1

4

d

�1

3

, s

�1

ud

2

s

�1

d

1

, sd

�1

1

vsd

�1

2

,

s

�1

d

3

d

2

d

1

s

�2

, t

�1

d

�1

2

t

�1

d

3

w

�1

d

�1

2

, td

3

st

�1

s

�1

d

�1

3

, d

2

vsd

�1

3

d

2

d

�1

1

sd

3

.

Generators for S

4

: d

1

; d

2

; d

3

; d

4

; u; v; s; r; q.

Relators for S

4

: u

2

, v

2

, d

�1

3

d

4

r

�2

, r

�1

d

�1

4

rd

�1

3

, r

2

d

3

d

�1

4

, rur

�1

u, qd

�1

1

q

�1

d

1

, d

4

vd

�1

4

v, rd

�1

1

r

�1

d

1

,

rd

�1

2

r

�1

d

2

, d

4

s

�1

d

�1

4

s, vd

�1

1

vd

1

, d

4

ud

�1

4

u, d

3

ud

�1

3

u, d

2

ud

�1

1

u, d

3

vd

�1

2

v, s

�1

d

1

s

�1

ud

2

,

d

�1

4

q

�2

r

�1

d

�1

2

d

�1

3

, sud

2

d

�1

1

s

�1

v, qd

4

r

�1

q

�1

vd

3

d

�1

2

, sd

3

d

�1

1

sd

�1

1

d

3

sd

�1

1

d

3

,

q

�1

s

�1

rs

�1

d

1

r

�1

sd

1

d

3

d

�1

2

d

�1

1

, qd

�1

3

s

�1

d

1

q

�1

d

2

d

1

sd

1

d

3

d

�1

2

.

The union of the relators above together with the generators d

1

; d

2

; d

3

; d

4

; u; v; w; y; s; t; r; q give a

presentation for the universal ompletion of the amalgam of the maximal parabolis. Coset enumeration

over the subgroup generated by v, w, y, t, r, q gives an index of 2240 whih is the index of the maximal

paraboli stabilizing he

1

i in SO

+

(8; 2). This shows that SO

+

(8; 2) is the universal ompletion of the

amalgam of maximal parabolis.
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