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1 Introdu
tion

In 1977 Kok-Wee Phan [9℄ published a theorem on generation of the spe
ial unitary group SU(n+1; q

2

)

by a system of its subgroups isomorphi
 to SU(3; q

2

). The proof of Phan's theorem given in his 1977

paper is somewhat in
omplete. This motivated the paper [1℄ in whi
h a new and 
omplete proof of Phan's

theorem was provided. The approa
h of [1℄ is based on the 
on
epts of diagram geometries and amalgams

of groups. It turns out that Phan's 
on�guration arises as the amalgam of stripped rank two paraboli
s in

the 
ag-transitive a
tion of SU(n+1; q

2

) on the geometry of nondegenerate subspa
es of the underlying

unitary spa
e (stripped in the sense that the torus of SU(n+1; q

2

) has been removed). This point of view

leads to a twofold interpretation of Phan's theorem: its 
omplete proof must in
lude (1) a 
lassi�
ation

of related amalgams; and (2) a veri�
ation that|apart from some small ex
eptional 
ases|the above

geometry is simply 
onne
ted. These two parts are tied together by a lemma due to Tits, that implies

that if a group G a
ts 
ag-transitively on a simply 
onne
ted geometry then the 
orresponding amalgam

of maximal paraboli
s provides a presentation for G. For an outline of the idea how to re-prove, extend

and generalize Phan's theorems the reader is referred to [2℄.

Noti
e that this new approa
h has already yielded an unexpe
ted new Phan-type theorem for the group

Sp(2n; q). See [5℄ for the simple 
onne
tedness of the 
orresponding geometry and [6℄ for a 
lassi�
ation

of related amalgams. In terms of the Dynkin diagrams, the original Phan's theorem 
orresponds to the

diagram A

n

, while the new theorem for Sp(2n; q) 
orresponds to the diagram C

n

. We 
onje
ture that

there is also a similar result, a Phan-type theorem, for every spheri
al diagram of rank at least three.

In a later paper [10℄, Phan himself 
laimed su
h theorems for the groups Spin

�

(2n; q) (diagram D

n

),

2

E

6

(q), E

7

(q), E

8

(q) (diagrams E

6

, E

7

, and E

8

, respe
tively). So the proof of our 
onje
ture requires

new proofs for these results of Phan's, as well as new theorems for groups SO(2n + 1; q) (diagram B

n

)

and F

4

(q) (diagram F

4

). The purpose of the present paper is to do the 
ase D

n

, that is, to reprove and

extend Phan's theorem on Spin

�

(2n; q), using our new methods.

As de�ned in [1℄, subgroups U

1

and U

2

of SU(3; q

2

) form a standard pair whenever ea
h U

i

is the

stabilizer in SU(3; q

2

) of a nonsingular ve
tor v

i

of the natural module U of SU(3; q

2

) and, furthermore,

v

1

and v

2

are perpendi
ular. By Witt's theorem, standard pairs are exa
tly the 
onjugates of the pair

�
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formed by the two subgroups SU(2; q

2

) arising from the 2� 2 blo
ks on the main diagonal with respe
t

to an orthonormal basis of U . Standard pairs in quotients of SU(3; q

2

) over a subgroup of its 
enter are

de�ned as the images under the natural homomorphism of the standard pairs from SU(3; q

2

).

Similarly to [1℄, we say that a group G possesses a weak Phan system of type D

n

over F

q

2

if G 
ontains

subgroups U

i

�

=

SU(2; q

2

), for i = 1; : : : ; n and U

i;j

, for distin
t i; j 2 f1; : : : ; ng, so that the following

hold:

(wP1) If (i; j) is not an edge of the Dynkin diagram D

n

then U

i;j

is a 
entral produ
t of U

i

and U

j

;

(wP2) If (i; j) is an edge of the Dynkin diagram D

n

, then U

i;j

is isomorphi
 to a quotient of SU(3; q

2

)

over a subgroup of its 
enter; moreover, U

i

and U

j

form a standard pair in U

i;j

; and

(wP3) the subgroups U

i;j

, 1 � i < j � n, generate G.

Note that we added (wP3) instead of just saying that the groups U

i

generate G for the sake of the


ase q = 2. Indeed, the group SU(3; 2

2

) is not generated by a standard pair of subgroups SU(2; 2

2

), i.e.,

the geometry of nondegenerate subspa
es of F

3

4

with respe
t to a nondegenerate form, is not 
onne
ted,


f. [1℄. This fa
t in
uen
ed the wording of the entire de�nition: we did not introdu
e U

i;j

as hU

i

; U

j

i

exa
tly in order to allow the 
ase q = 2.

The main result of this paper is the following generalization of Phan's D

n

theorem [10℄. Noti
e that

Phan only allowed odd prime powers q � 5. We start with the 
ase of arbitrary prime power q � 4.

Main Theorem A

Let q � 4, n � 3, and let G be a group that 
ontains a weak Phan system of type D

n

over F

q

2
. Then G

is isomorphi
 to a fa
tor group of Spin

+

(2n; q) for n even and a fa
tor group of Spin

�

(2n; q) for n odd.

Main Theorem A leaves us with two ex
eptional 
ases q = 2, 3. For these 
ases the following is true:

Main Theorem B

Let q = 2 or 3, and n � 4. Let G be a group that 
ontains a weak Phan system of type D

n

over F

q

2

.

Suppose further that

(1) for any triple i, j, k of nodes of the Dynkin diagram D

n

that form a subdiagram

i

Æ

j

Æ

k

Æ of

type A

3

, the subgroup hU

i;j

; U

j;k

i is isomorphi
 to a fa
tor group of SU(4; q

2

);

(2) additionally, if q = 2 then

(i) for any triple i, j, k of nodes of D

n

that form a subdiagram

i

Æ

j

Æ

k

Æ of type A

1

�A

2

the

groups U

i

and U

j;k


ommute elementwise; and

(ii) for any quadruple i, j, k, l of nodes of D

n

that form a subdiagram

i

Æ

j

Æ

k

Æ

l

Æ of

type A

2

�A

2

the groups U

i;j

and U

k;l


ommute elementwise.

Then G is isomorphi
 to a fa
tor group of Spin

+

(2n; q) for n even and isomorphi
 to a fa
tor group of

Spin

�

(2n; q) for n odd.

This paper is organized as follows. In Se
tion 2 we state four important geometri
al and group-

theoreti
al results that form the 
ornerstones of our proof of Main Theorem A and B. In Se
tion 3 we

study unitary involutions on a nondegenerate quadrati
 spa
e V over an arbitrary �eld of square order
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and in Se
tion 4 we study the resulting geometry, some kind of folded building geometry. Se
tion 5

provides some basi
 fa
ts and methods from algebrai
 topology. Those methods are applied in Se
tions 6

and 7 to establish the simple 
onne
tedness of the folded building geometry from Se
tion 4. Theorems 1

and 2 of Se
tion 2 are proved in Se
tion 7. In Se
tion 8 we apply Tits' lemma and Theorems 1 and 2 to

obtain a presentation of 
ag-transitive groups of automorphisms of our geometry, establishing Theorems

3 and 4 of Se
tion 2.

A
knowledgement: The authors would like to thank Ronald Solomon and Ri
hard Lyons for their en
our-

agement to reprove Phan's theorems.

2 Relevant geometri
 results

Along the way to a proof of our Main Theorems we obtain a number of geometri
 and group-theoreti


results. In this se
tion we 
olle
t some of those. Let V be the natural module of the group G

�

=

[SO

+

(2n; q

2

); SO

+

(2n; q

2

)℄ with the nondegenerate quadrati
 form f and let � be an involutory semilinear

transformation of V with f(x

�

) = f(x)

q

su
h that there exists a maximal f -singular subspa
e U of V with

U \ U

�

= f0g. We will show, see Proposition 3.10, that G

�

= C

G

(�) is isomorphi
 to the 
ommutator

group of SO

+

(2n; q) if n is even and isomorphi
 to the 
ommutator group of SO

�

(2n; q) if n is odd. The


ip
op geometry �

�


onsists of those f -singular subspa
es of V (ex
ept the ones of dimension n�1) that

trivially interse
t the polar of their images under �.

The geometry �

�

has the following properties. Refer to Se
tion 4 for geometri
 terminology and to

Se
tion 5 for notions from algebrai
 topology.

Theorem 1

Let q � 3 and let n � 2. Then the following hold.

(1) �

�

is a rank n geometry admitting a 
ag-transitive group of automorphisms G

�

�

=

S


+

(2n; q) for

n even and G

�

�

=

S


�

(2n; q) for n odd.

(2) �

�

is residually 
onne
ted.

(3) �

�

is simply 
onne
ted unless (n; q) = (3; 3).

In the 
ase (n; q) = (3; 3), the geometry �

�

is not simply 
onne
ted. It admits a triple 
over whi
h is

universal. For q = 2 the geometry is 
onne
ted (but not residually 
onne
ted) and simply 
onne
ted for

n � 4.

Theorem 2

Let q = 2 and let n � 2. Then the following hold.

(1) �

�

is a rank n geometry admitting a 
ag-transitive group of automorphisms G

�

�

=

S


+

(2n; q) for

n even and G

�

�

=

S


�

(2n; q) for n odd.

(2) �

�

is 
onne
ted.

(3) �

�

is simply 
onne
ted if n � 4.
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The residual 
onne
tedness of �

�

fails be
ause it admits a residue isomorphi
 to the geometry of

nondegenerate subspa
es of F

3

4

with respe
t to a nondegenerate unitary form, whi
h is not 
onne
ted by

[1℄. Equivalently, a standard pair of SU(3; 2

2

) does not generate SU(3; 2

2

).

Theorem 1 and Theorem 2 have some group-theoreti
 impli
ations via Tits' lemma. Let F = U

1

, . . . ,

U

n

be a maximal 
ag of �

�

. For 2 � s � n � 1, let A

(s)

be the amalgam of all rank s paraboli
s, i.e.,

stabilizers in G

�

of sub
ags of F of 
orank s. Again, for geometri
 terminology see Se
tion 4. Amalgams

are de�ned in Se
tion 8.

Theorem 3

Let n be an integer and let � be the sign of (�1)

n

. Then the following hold.

(1) If q � 4 and n � 3 then G

�

�

=

S


�

(2n; q) is the universal 
ompletion of A

(2)

.

(2) If q = 2, 3 and n � 4 then G

�

�

=

S


�

(2n; q) is the universal 
ompletion of A

(3)

.

The universal version Spin

�

(2n; q) of S


�

(2n; q) of 
ourse also a
ts 
ag-transtively on �

�

, so Theorem

3 also holds for this group. The maximal paraboli
s M

i

of Spin

�

(2n; q) with respe
t to F = U

1

, . . . ,

U

n

are semisimple groups of the form GU(i; q

2

) � Spin

�

(2n � 2i; q), i = 1; : : : ; n � 2, and GU(n; q

2

),

i = n � 1; n. Ea
h M

i

, 1 � i � n � 2, stabilizes the dire
t de
omposition U

i

� U

�

i

� hU

i

; U

�

i

i

?

of the

quadrati
 module U of Spin

�

(2n; q). For 1 � i � n�2 they indu
e GU(i; q

2

) on U

i

and Spin

�

(2n�2i; q)

on U

?

i

. The paraboli
s M

n�1

and M

n

indu
e GU(n; q

2

) on U

n�1

, respe
tively U

n

. The interse
tion

of all M

i

, i.e., the Borel subgroup arising from the a
tion of Spin

�

(2n; q) on �

�

, is a maximal torus T

of Spin

�

(2n; q) of order (q + 1)

n

. Let M

0

i

be the subgroup SU(i; q

2

) � Spin

�

(2n � 2i; q), respe
tively

SU(n; q

2

) of M

i

. For an arbitrary paraboli
 M

J

= \

i2J

M

i

de�ne M

0

J

= \

i2J

M

0

i

. Here J is a subset of

the type set I = f1; : : : ; ng of �

�

. It 
an be shown that M

J

=M

0

J

T .

In 
ase of a minimal paraboli
M

Infig

, we have that L

i

:=M

0

Infig

�

=

SL(2; q). In fa
t, for all 1 � i � n

the group L

i

arises as SU(2; q

2

)

�

=

SL(2; q). Noti
e that T

i

= L

i

\ T is a torus in L

i

of size q+1. Noti
e

also that the subgroups T

i

generate T as their dire
t produ
t. If q 6= 2 we have hL

i

; L

j

i = M

0

Infi;jg

.

In parti
ular, if in that 
ase � is the Dynkin diagram D

n

then the subgroups L

i

have the following

properties:

(1) L

i

�

=

SU(2; q) for i = 1; : : : ; n;

(2) hL

i

; L

j

i

�

=

�

L

i

� L

j

; if (i; j) is not an edge of �;

SU(3; q); if (i; j) is an edge of �.

For (i; j) an edge of � the groups U

i

, U

j

form a standard pair of U

i;j

. Moreover, the U

i

, 1 � i � n,

form a weak Phan system inside Spin

�

(2n; q). In fa
t, Spin

�

(2n; q) is de�ned by this weak Phan system,

as stated in Theorem 4.

For arbitrary q de�ne A

0

(s)

to be the amalgam formed by the subgroups M

0

J

for all paraboli
s M

J

of

rank s.

Theorem 4

Let n be an integer and let � be the sign of (�1)

n

. Then the following hold.

(1) If q � 4 and n � 3 then Spin

�

(2n; q) is the universal 
ompletion of A

0

(2)

.

(2) If q = 2, 3 and n � 4 then Spin

�

(2n; q) is the universal 
ompletion of A

0

(3)

.
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3 Flips and forms

Let V be a 2n-dimensional nondegenerate orthogonal spa
e of plus type over F

q

2

. Let f be the quadrati


form on V and let (�; �) be the 
orresponding bilinear form, so that (u; v) = f(u+v)�f(u)�f(v). When

n � 2, the orthogonal spa
e V gives rise to the building geometry D of type D

n

. The elements of D of

type i = 1; 2; : : : ; n�2 are the f -singular subspa
es of V of dimension i. The elements of D of the last two

types, n � 1 and n, are the maximal (i.e., n-dimensional) f -singular subspa
es. Two su
h subspa
es U

and U

0

have the same type if and only if U \U

0

has an even 
odimension in U . In
iden
e is symmetrized


ontainment ex
ept for in
iden
e between elements of type n�1 and n. Two elements of type n�1 resp.

n are in
ident if they interse
t ea
h other in a hyperplane, i.e., a subspa
e of dimension n� 1.

Re
all that a semilinear transformation 
orresponding to an automorphism � of F

q

2

is a mapping

� : V �! V su
h that for all u; v 2 V and a 2 F

q

2

we have (u+ v)

�

= u

�

+ v

�

and (av)

�

= a

�

v

�

. We

say that a semilinear transformation � weakly preserves f if there is an a 2 F

q

2

su
h that for every v 2 V

we have f(v

�

) = af(v)

�

. Semilinear transformations weakly preserving f form the group �O

+

(2n; q

2

).

Every element of this group indu
es an automorphism of D, possibly swit
hing the types n � 1 and n.

The 
onverse is also true. Every automorphism of D, �xing the types n � 1 and n, or swit
hing them,

is indu
ed by a semilinear transformation weakly preserving f . Noti
e also that the only semilinear

transformations a
ting trivially on D are the linear s
alar transformations.

In this se
tion we study involutory automorphisms of D indu
ed by semilinear transformations � with

� 6= Id. The map �

2

has to be linear, as it a
ts trivially on D, so � must be of order two. We will

use the bar to denote the a
tion of this unique automorphism of F

q

2

. Su
h an automorphism � of D is


alled a unitary involution. In other words a unitary involution � satis�es (�v)

�

=

�

�v

�

and �

2

= aId

for some a 2 F

q

2

. We 
laim that a 2 F

q

. Indeed, for v 2 V , v 6= 0, we have av

�

= (v

�

)

�

2

= v

�

3

=

(v

�

2

)

�

= (av)

�

= �av

�

. This shows that �a = a, hen
e a 2 F

q

. Choose � 2 F

q

2

su
h that ��� =

1

a

.

This is possible by the surje
tivity of the norm map from F

q

2

to F

q

. Then, setting �

0

= ��, we get

v

�

02

= (v

�

0

)

�

0

= �(�v

�

)

�

= ���v

�

2

= ���av = v. Thus, (�

0

)

2

= Id. Clearly, � and �

0

indu
e the same

automorphism of D and so we may assume without loss of generality that �

2

= Id. Sin
e � weakly

preserves f , there is a b 2 F

q

2

su
h that f(v

�

) = bf(v) for all v 2 V . Noti
e that b

�

b = 1. Indeed, pi
k

v 2 V so that f(v) 6= 0. Then f(v) = f(v

�

2

) = bf(v

�

) = b

�

bf(v). Thus, b

�

b = 1. Choose � 2 F

q

2

so

that b =

�

�

�

. Su
h a 
hoi
e is possible as the subgroup of order q + 1 of the multipli
ative group of F

q

2

(
y
li
 of order q

2

� 1) 
onsists of pre
isely those elements whi
h are of the form 


q�1

for some 
. De�ne

f

0

(v) := �f(v). Then f

0

(v

�

) = �f(v

�

) = �bf(v) =

�b

�

�

f

0

(v) = f

0

(v). Clearly, f

0

is a quadrati
 form of

plus type and, sin
e the zeros of f 
oin
ide with the zeros of f

0

, the quadrati
 form f

0

de�nes exa
tly the

same building geometry D. Consequently we 
an assume right from the beginning that f and � have the

property f(v

�

) = f(v), whi
h by polarization also implies (u

�

; v

�

) = (u; v).

Hen
e studying unitary involutions of D means studying semilinear transformations � of V satisfying

(F1) (�v)

�

=

�

�v

�

;

(F2) f(v

�

) = f(v); and,

(F3) �

2

= Id.

From now on we will require any unitary involution to satisfy (F1) through (F3).

Let us now des
ribe two examples of semilinear transformations � indu
ing unitary involutions.

Let e

1

; : : : ; e

n

; f

1

; : : : ; f

n

be a hyperboli
 basis in V . This means that the subspa
es he

1

; : : : ; e

n

i and

5



hf

1

; : : : ; f

n

i are totally singular and that (e

i

; f

j

) = Æ

ij

for 1 � i; j � n. De�ne �

1

and �

2

as follows:

(

n

X

i=1

x

i

e

i

+

n

X

i=1

y

i

f

i

)

�

1

=

n

X

i=1

�y

i

e

i

+

n

X

i=1

�x

i

f

i

and

(

n

X

i=1

x

i

e

i

+

n

X

i=1

y

i

f

i

)

�

2

=

n�1

X

i=1

�y

i

e

i

+

n�1

X

i=1

�x

i

f

i

+ �x

n

e

n

+ �y

n

f

n

:

Then �

1

and �

2

satisfy (F1) through (F3). Therefore, both �

1

and �

2

indu
e unitary involutions. Ob-

serve that �

1

sends U = he

1

; : : : ; e

n

i to hf

1

; : : : ; f

n

i, while �

2

sends U to hf

1

; : : : ; f

n�1

; e

n

i. Thus, the


odimension of U \ U

�

1

in U is n, while the 
odimension of U \ U

�

2

in U is n � 1. Hen
e if n is odd

then the unitary involution indu
ed by �

1

swit
hes the types n� 1 and n, while the one indu
ed by �

2

preserves them. If n is even then the opposite o

urs: �

1

preserves the types and �

2

swit
hes n� 1 and

n. In other words, if W is an arbitrary maximal f -singular subspa
e of V , the dimension of W \W

�

1

is

always even and the dimension of W \W

�

2

is always odd. In parti
ular, �

1

and �

2

indu
e non
onjugate

unitary involutions.

We will eventually prove that every unitary involution is 
onjugate to either �

1

or �

2

, but �rst we

re
ord some general fa
ts. De�ne ((u; v)) := (u; v

�

) = f(u+ v

�

)� f(u)� f(v

�

).

Lemma 3.1

The form ((�; �)) is a nondegenerate Hermitian form. Furthermore, ((u

�

; v

�

)) = ((u; v)) for u; v 2 V .

Proof. Clearly, ((�; �)) is a sesquilinear form. Also, ((v; u)) = (v; u

�

) = (u

�

; v) = (u

�

2

; v

�

) =

(u; v

�

) = ((u; v)). Thus, ((�; �)) is Hermitian. If u is in the radi
al of ((�; �)) then for any v 2 V , we

have 0 = ((u; v

�

)) = (u; v

�

2

) = (u; v). Therefore, u = 0, as (�; �) is nondegenerate (re
all that V has even

dimension). Finally, ((u

�

; v

�

)) = (u

�

; v) = (v; u

�

) = ((v; u)) = ((u; v)).

Let g be the unitary form related to ((�; �)), i.e., g(v) = ((v; v)). Noti
e that g and ((�; �)) have the

same radi
al and rank on every subspa
e of V . This does not hold for f and (�; �) when q is even. In this


ase the radi
al of f 
an be a hyperplane in the radi
al of (�; �) and hen
e the rank of f 
an be one larger

than the rank of (�; �).

In what follows we will work with both (�; �) and ((�; �)). This 
alls for two di�erent perpendi
ularity

symbols. If U is a subspa
e of V then U

?

denotes its orthogonal 
omplement with respe
t to (�; �), while

U

??

will be used for ((�; �)).

Lemma 3.2

For a subspa
e U � V , we have U

??

= (U

�

)

?

= (U

?

)

�

. Similarly, U

?

= (U

�

)

??

= (U

??

)

�

.

Proof. The �rst equality in the �rst 
laim immediately follows from the de�nition of ((�; �)). If

u 2 (U

?

)

�

(say, u = (u

0

)

�

for u

0

2 U

?

) and v 2 U then ((u; v)) = ((u

0

)

�

; v

�

) = (u

0

; v) = 0. The se
ond


laim follows by an appli
ation of � to the equalities in the �rst 
laim.

Lemma 3.3

Let U be a subspa
e of V . Then f has the same rank on U and U

�

; likewise, it has the same rank on

U

?

and U

??

= (U

?

)

�

. The same statements hold also for (�; �), g, and ((�; �)).
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Proof. The �rst 
laim follows from (F2) for f and (�; �), and from Lemma 3.1 for g and ((�; �)). The

se
ond 
laim follows from the �rst one and Lemma 3.2.

Now we fo
us on the 
ase where U is �-invariant. Let us start with the following general property of

unitary involutions.

Lemma 3.4

Every �-invariant subspa
e of V admits a �-invariant 
omplement. In parti
ular if U and W are �-

invariant and U �W then U has a �-invariant 
omplement in W .

Proof. We will just need the property (F1). It is 
lear that (F1) is inherited by the restri
tions of �

to all �-invariant subspa
es and fa
tor spa
es. Let U be a �-invariant proper subspa
e of V . We 
laim

that there exists a one-dimensional �-invariant subspa
e not 
ontained in U . On
e this is proved, we


an fa
tor out that invariant one-dimensional spa
e and indu
tion �nishes the proof of the lemma. Let

v 2 V n U . If hvi is �-invariant then we are done. Otherwise 
onsider hv; v

�

i. This subspa
e 
ontains

q+1 one-dimensional �-invariant subspa
es hv+ �v

�

i where �

�

� = 1. Clearly at most one of these lies in

U .

For the se
ond 
laim, if U �W are �-invariant and if T is a 
omplement to U in V then T \W is a

�-invariant 
omplement to U in W .

Suppose U is �-invariant. Clearly (F1), (F2), (F3) hold when you redu
e � and the forms to U . Also,

it follows from Lemma 3.2 that U

?

= U

??

. In other words, for a �-invariant subspa
e U , the polar

(and hen
e also the radi
al) of U is the same with respe
t to (�; �) and ((�; �)). Thus for a �-invariant

subspa
e we will speak simply of its radi
al, meaning the radi
al for (�; �), ((�; �)) and g. The radi
al for

f will be referred to as the f -radi
al. Note that Lemma 3.4 implies that ea
h of the radi
als has an

�-invariant 
omplement in U . Noti
e that the �-invariant 
omplement is automati
ally nondegenerate

for the 
orresponding form.

Lemma 3.5

If U is an f -nondegenerate �-invariant subspa
e of V of dimension at least three, then there exists a

ve
tor u of U that is f -singular and g-nonsingular.

Proof. Let W be a subspa
e of U whi
h is maximal f -singular. If W and W

�

generate a subspa
e

that is (�; �)-totally isotropi
 then W is the unique maximal f -singular subspa
e in hW;W

�

i whi
h means

that W = W

�

. So if W 6= W

�

then ((�; �)) is nontrivial on W , and so W 
ontains the required ve
tor.

Therefore by way of 
ontradi
tion we 
an assume that every W is �-invariant. Sin
e every f -singular

one-dimensional subspa
e of U is the interse
tion of the maximal f -singular subspa
es 
ontaining it, it

follows that � �xes all f -singular one-dimensional subspa
es of U .

Let again W be a subspa
e of U whi
h is maximal f -singular. Suppose W has dimension more than

one. Sin
e � �xes ea
h one-dimensional subspa
e of W , it will have to a
t on W as a s
alar and this


ontradi
ts (F1).

If dimW = 1 then there are two 
ases: dimU = 3 or dimU = 4 and f restri
ted to U is of minus type.

First assume dimU = 3. Let hai be any one-dimensional subspa
e of U and let u

1

and u

2

be ve
tors of

U with f(u

1

) = 0 = f(u

2

) su
h that ha; u

1

; u

2

i = U . Then ha; u

1

i is either a tangent line or it 
ontains

another f -singular one-dimensional subspa
e besides hu

1

i. In either 
ase � leaves the subspa
e ha; u

1

i

invariant as it weakly preserves f . For the same reason also the subspa
e ha; u

2

i is �-invariant. Hen
e

the interse
tion hai = ha; u

1

i \ ha; u

2

i is �-invariant. Sin
e a was 
hosen arbitrarily, � leaves invariant

all one-dimensional subspa
es of U . This implies that � a
ts as a linear s
alar map on U , 
ontradi
ting
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property (F1). Hen
e there exists a ve
tor u of U with f(u) = 0 that is linearly independent from u

�

.

This means g(u) = ((u; u

�

)) 6= 0.

Finally if dimU = 4 then pi
k T to be an f -nondegenerate three-dimensional subspa
e of U . The

spa
e T is generated by f -singular ve
tors hen
e it is �-invariant. Now the above argument applies.

We have rea
hed the stage where we 
an 
lassify the unitary involutions.

Proposition 3.6

There are exa
tly two 
onjuga
y 
lasses of unitary involutions in �O

+

(2n; q

2

).

Proof. We �rst 
onstru
t f -singular ve
tors e

1

, . . . , e

n�1

, f

1

, . . . , f

n�1

su
h that e

�

i

= f

i

, (e

i

; e

j

) = 0

and (e

i

; f

j

) = Æ

ij

. There is nothing to prove for n = 1 so assume that n is at least two. By Lemma 3.5 there

is a ve
tor v whi
h is singular with respe
t to f and nonsingular with respe
t to g. Let 
 = g(v) = ((v; v)).

Sin
e g is unitary, we have 
 2 F

q

. By surje
tivity of the norm map, there is a 
 2 F

q

2

su
h that 
 = 
�
.

Set e

1

=

1




v and f

1

= e

�

1

. Then e

1

and f

1

are singular for f and (e

1

; f

1

) = ((e

1

; e

1

)) =

1


�


((v; v)) = 1. Let

U = he

1

; f

1

i and V

0

= U

?

. Sin
e U is �-invariant, Lemma 3.2 shows that V

0

= U

??

is also �-invariant.

Furthermore, f is nondegenerate on V

0

of plus type. If dimV

0

� 4 then � indu
es an unitary involution

on the building geometry of V

0

. This means that, working indu
tively and applying Lemma 3.5 in ea
h

step, we 
an 
omplement e

1

and f

1

by further f -singular ve
tors e

2

; f

2

; : : : ; e

n�1

; f

n�1

, su
h that for

1 � i; j � n� 1 we have (e

i

; e

j

) = 0 = (f

i

; f

j

), (e

i

; f

j

) = Æ

ij

and e

�

i

= f

i

.

For arbitrary n let now U = he

1

; f

1

: : : ; e

n�1

; f

n�1

i

?

and V

0

= U

?

. Then both U and V

0

are �-

invariant. Sin
e f is nondegenerate on U of plus type, it is so on V

0

as well. This means that V

0


ontains exa
tly two singular one-dimensional spa
es, say hei and hfi. There are two possibilities: either

� inter
hanges these two subspa
es, or it stabilizes both of them. Consider the �rst possibility. Setting


 = g(e) = (e; e

�

), we see that 
 2 F

q

. Choosing 
 2 F

q

2

su
h that 
 = 
�
 and setting e

n

=

1




e and

f

n

= e

�

n

we obtain a 
omplete hyperboli
 basis e

1

; : : : ; e

n

; f

1

; : : : ; f

n

on whi
h � a
ts the way �

1

does.

Hen
e � is 
onjugate to �

1

in this �rst 
ase. Consider now the se
ond possibility. Suppose e

�

= 
e.

Sin
e �

2

= 1, we obtain e = e

�

2

= (
e)

�

= �

e, whi
h shows that 
�
 = 1. This means that there is a


 2 F

q

2

su
h that 
 =




�


. Indeed, the subgroup of order q + 1 of the multipli
ative group of F

q

2

(
y
li


of order q

2

� 1) 
onsists of pre
isely those elements whi
h are of the form 


q�1

for some 
. Taking

e

n

= 
e, we 
ompute: (e

n

)

�

= (
e)

�

= �
(
e) =

�






(
e) = e

n

. Let f

n

be the unique ve
tor in hfi su
h

that (e

n

; f

n

) = 1. Sin
e (e

n

; f

�

n

) = (e

�

n

; f

�

n

) = (e

n

; f

n

) = 1, we must also have that f

�

n

= f

n

. Thus, in the

se
ond 
ase � a
ts on the hyperboli
 basis e

1

; : : : ; e

n

; f

1

; : : : ; f

n

the way �

2

does. Hen
e � is 
onjugate

to �

2

.

In view of [2℄ studying 
ip
op geometries related to � only makes sense when one a
tually has a


hamber of the building mapped to an opposite 
hamber, as otherwise the 
ip
op geometry would be

empty. The following result shows that su
h maps � are the ones that are 
onjugate to �

1

.

Corollary 3.7

Suppose � is a unitary involution. The following are equivalent:

(F4a) � is 
onjugate to �

1

.

(F4b) V 
ontains a maximal f -singular subspa
e U su
h that hU;U

�

i = V .

(F4
) V 
ontains a maximal f -singular subspa
e U su
h that U \ U

�

= f0g.

(F4d) V 
ontains a maximal f -singular subspa
e U su
h that dimU \ U

�

is even.
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(F4e) For every maximal f -singular subspa
e U of V we have that dimU \ U

�

is even.

Proof. By analyzing the a
tion of �

1

and �

2

on the two types of maximal f -singular subspa
es of V

one immediately dedu
es that (F4a) and (F4e) are equivalent and that (F4d) implies (F4a). Also it is


lear that (F4b) and (F4
) are equivalent. The impli
ation (F4a) ) (F4b) follows from the fa
t that

he

1

; : : : ; e

n

i

�

1

= hf

1

; : : : ; f

n

i. Clearly, (F4
) implies (F4d).

Any unitary involution satisfying the equivalent 
onditions above is 
alled a 
ip. From now on we

assume that � is a 
ip on V .

Next, let us study the \eigenspa
es" of � in V . For � 2 F

q

2

, de�ne V

�

= fu 2 V ju

�

= �ug. Note

that V

�

is not a true eigenspa
e, be
ause � is not linear. We will see that every non-empty V

�

is a

2n-dimensional F

q

-ve
tor spa
e.

Lemma 3.8

The following hold.

(1) For 0 6= � 2 F

q

2
, we have �V

�

= V

�

0

, where �

0

=

��

�

�; in parti
ular, V

�

is an F

q

-subspa
e of V .

(2) V

�

6= 0 if and only if �

�

� = 1; furthermore, if V

�

6= 0, then V

�


ontains a basis of V .

Proof. Suppose u 2 V

�

. Then (�u)

�

= ��u

�

= ���u =

��

�

�(�u). This proves (1). Also, u = u

�

2

=

�

��u.

Thus, if u 6= 0 then �

�

� = 1. This proves the `only if' part of (2). To prove the `if' part, 
hoose a 
anoni
al

basis fe

1

; : : : ; f

n

g of V for �. Fix a � 2 F

q

2

su
h that �

�

� = 1. De�ne u

i

= e

i

+

�

�f

i

and v

i

=

�

�e

i

+ f

i

for

1 � i � n. A simple 
he
k shows that u

i

and v

i

are in V

�

. This shows that V

�

6= 0. Furthermore, u

i

and

v

i

are not proportional unless

�

� = �, that is, � 2 F

q

. Thus, if � 62 F

q

then fu

1

; : : : ; u

n

; v

1

; : : : ; v

n

g is a

basis of V . If � 2 F

q

then 
onsider �

0

=

��

�

�, where � is 
hosen so that

��

�

62 F

q

. By (1), V

�

0

= �V

�

. Also,

sin
e �

0

62 F

q

, the spa
e V

�

0


ontains a basis of V , and hen
e so does V

�

.

Now �x a � 2 F

q

2

nF

q

su
h that �

�

� = 1.

Lemma 3.9

The restri
tion of �f to V

�

is a nondegenerate F

q

-quadrati
 form. It is of plus type if n is even and of

minus type if n is odd.

Proof. Clearly, the form �f is F

q

-quadrati
. Sin
e V

�


ontains a basis of V by Lemma 3.8 (2), the

form is nondegenerate. It remains to see that it takes values in F

q

. If u 2 V

�

, then �f(u) =

�

�f(u

�

) =

�

��

2

f(u) = �f(u).

To determine the type of �f we 
ompute the form �f on the F

q

-ve
tor spa
e hu

i

; v

i

i with respe
t to

the basis u

i

, v

i

for 1 � i � n where, as above, u

i

= e

i

+

�

�f

i

and v

i

=

�

�e

i

+ f

i

. We have

�f(u

i

) = �f(e

i

+

�

�f

i

) = �f(e

i

) + �f(

�

�f

i

) + �(e

i

;

�

�f

i

) = �

�

� = 1;

�f(v

i

) = �f(

�

�e

i

+ f

i

) = �f(

�

�e

i

) + �f(f

i

) + �(

�

�e

i

; f

i

) = �

�

� = 1; and

�(u

i

; v

i

) = �(e

i

+

�

�f

i

;

�

�e

i

+ f

i

) = �+

�

�:

So the form �f on hu

i

; v

i

i with respe
t to the basis u

i

, v

i

equals �

2

+�

2

+��(�+

�

�) = (�+��)(�+�

�

�).

We are looking for solutions in F

q

of the equation 0 = (� + ��)(� + �

�

�). However, sin
e � 62 F

q

, this

equation does not have any solutions in F

q

. Therefore the restri
tion of �f to the F

q

-ve
tor spa
e hu

i

; v

i

i

is ellipti
. The 
laim about the type of �f follows.
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Observe that the 
onjugation by � is an automorphism of G = S


+

(2n; q

2

). Let G

�

be the 
entralizer

of � in G. The above setup gives us means to identify G

�

. Let H be the 
ommutator group of the group

of linear transformations of V

�

of determinant 1 preserving the (restri
tion of the) form �f . By Lemma

3.9 it is isomorphi
 to S


+

(2n; q) in 
ase n even and isomorphi
 to S


�

(2n; q) in 
ase n odd. Sin
e V

�


ontains a basis of V , we 
an use F

q

2

-linearity to extend the a
tion of the elements of H to the entire

V . This allows us to identify H with a subgroup of G. Clearly, sin
e h 2 H preserves �f , it must also

preserve f .

Proposition 3.10

G

�

= H .

Proof. Choose a basis fw

1

; : : : ; w

2n

g in V

�

. Then this set is also a basis of V . Let h 2 H . If u =

P

2n

i=1

x

i

w

i

2 V then u

�h

= (

P

2n

i=1

�x

i

�w

i

)

h

=

P

2n

i=1

�x

i

�w

h

i

. On the other hand, u

h�

= (

P

2n

i=1

x

i

w

h

i

)

�

=

P

2n

i=1

�x

i

�w

h

i

. Therefore, H � G

�

. Now take h 2 G

�

. If u 2 V

�

then (u

h

)

�

= (u

�

)

h

= (�u)

h

= �u

h

. This

proves that h leaves V

�

invariant. It remains to see that h preserves �f . However, this is 
lear, be
ause

h is F

q

2
-linear and it preserves f .

4 The 
ip
op geometry �

Before studying the geometry we are interested in, let us re
all some de�nitions. Let I be a �nite set,


alled the set of types. Its elements as well as its subsets are 
alled types. Let � = (X; �; typ) be a triple

where X is a set, � � X �X is a symmetri
 and re
exive relation and typ : X ! I is a map, su
h that,

for x; y 2 X we have x = y if and only if x � y and typ(x) = typ(y). Then � is 
alled a pregeometry over

I . The elements of X are 
alled the elements of �, the relation � is 
alled the in
iden
e relation of �, the

map typ is 
alled the type fun
tion of �.

Let � = (X; �; typ) be a pregeometry over I . If A � X , then A is of type typ(A) � I , of 
otype

Intyp(A), of rank jtyp(A)j, and of 
orank jIntyp(A)j. The rank of A is also denoted by rk (A). The


ardinality jI j of I is 
alled the rank of �.

A 
ag F of a pregeometry � is a set of mutually in
ident elements of �. Noti
e that typ

jF

: F ! I is

a inje
tion. A maximal 
ag of � is a 
ag that is maximal with respe
t to in
lusion. Flags of type I are


alled 
hambers. A geometry over I is a pregeometry � over I in whi
h every maximal 
ag is a 
hamber.

Let F be a 
ag of �, say of type J � I . Then the residue �

F

of F is the geometry (X

0

; �

jX

0

�X

0

; typ

jInJ

)

over InJ , with X

0

:= fx 2 X j F [ fxg is a 
ag of � and typ(x) =2 typ(F )g.

The geometry � is 
onne
ted if the graph (X; �) is 
onne
ted. The geometry � is residually 
onne
ted

if for any 
ag F of 
orank at least two the residue �

F

is 
onne
ted.

Finally, if � = (X; �; typ) and �

0

= (X

0

; �

0

; typ

0

) are two geometries, over I and I

0

, respe
tively, with

I \ I

0

= ;, then the dire
t sum �� �

0

is the geometry (X [X

0

; �

00

; typ [ typ

0

) over I t I

0

, with �

00

jX

= �,

�

00

jX

0

= �

0

and (X �X

0

) � �

00

.

We will use the notation from the previous se
tion. In parti
ular, V is a nondegenerate orthogonal F

q

2
-

spa
e of dimension 2n with a quadrati
 form f of plus type and asso
iated symmetri
 bilinear form (�; �),

the map � is a 
ip and ((�; �)) the 
orresponding Hermitian form. Also, G is isomorphi
 to S


+

(2n; q

2

).

Furthermore, G

�

is the 
entralizer C

G

(�) of � in G. The group G

�

is isomorphi
 to S


+

(2n; q) if n is

even and isomorphi
 to S


�

(2n; q) if n is odd.

Throughout this se
tion, we assume n � 2. Let D be the building geometry asso
iated with G. The

elements of D of type i = 1; 2; : : : ; n � 2 are the singular subspa
es of V of dimension i. The elements
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of D of the last two types, n� 1 and n, are the maximal (n-dimensional) singular subspa
es. Two su
h

subspa
es U and U

0

have the same type if and only if U \ U

0

has an even 
odimension in U . In
iden
e

is given by symmetrized 
ontainment ex
ept in
iden
e between elements of type n� 1 and n. Two su
h

elements are in
ident if their interse
tion is a hyperplane of either element. We will use the 
ustomary

geometri
 terminology. In parti
ular, points, lines, and planes are elements of ve
tor spa
e dimension 1,

2, and 3, respe
tively.

Let � = �

�

be the pregeometry 
onsisting of those f -singular proper subspa
es of V that do not

interse
t the polar of their image under �. (See [2℄ for an explanation why this is a natural obje
t to


onsider.) The pregeometry � is 
alled the 
ip
op geometry of D asso
iated with �. Alternatively, we


an des
ribe the 
ip
op geometry � as follows.

Proposition 4.1

The elements of � are all proper subspa
es U � V of dimension other than n�1, whi
h are singular with

respe
t to f and nondegenerate with respe
t to ((�; �)).

Proof. By Lemma 3.2, U

??

= (U

?

)

�

. Hen
e, if X is the ((�; �))-radi
al of U , we have X = U \ U

??

=

U \ (U

?

)

�

. Therefore X = f0g if and only if U \ (U

?

)

�

= f0g.

Re
all that a group G of automorphisms of some pregeometry � is 
alled 
ag-transitive if for ea
h

pair F

1

, F

2

of 
ags with typ(F

1

) = typ(F

2

) there exists a g 2 G with F

g

1

= F

2

. Noti
e that for a geometry

� this 
ondition is equivalent to the 
ondition that for ea
h pair F

1

, F

2

of 
hambers there exists a g 2 G

with F

g

1

= F

2

.

Proposition 4.2

The pregeometry � is a geometry of rank n. Moreover, G

�

a
ts 
ag-transitively on �.

Proof. For the �rst 
laim we need to show that a maximal 
ag F in � 
ontains elements of all types.

If F 
ontains an element of type i less than n then 
learly it also 
ontains elements of all types less than

i. Suppose m is the highest type present in F and let U be the element of type m in F . Suppose �rst

that m < n� 1. Let W = hU;U

�

i and T = W

?

. Sin
e � is a 
ip of W , it also is a 
ip of T . Therefore,

by Corollary 3.7 there exists a maximal f -singular subspa
e X in T , su
h that X

�

\X = f0g. The spa
e

X has dimension n�m and thus hU;Xi is an element of � of type n� 1 or n in
ident to ea
h element of

F . So m = n� 1 or n. By symmetry it suÆ
es to 
onsider only one of these 
ases. Suppose that m = n.

Then the only type possibly missing in F is n � 1. Let X be a hyperplane in U su
h that X 
ontains

the element of type n� 2 from F and X is nondegenerate with respe
t to ((�; �)). Then X is 
ontained

in exa
tly two f -singular subspa
es of dimension n. One of them is U , let Y be the other one. Sin
e

X \ X

??

= f0g, the spa
e Y \ Y

??

has dimension at most one. Sin
e � is a 
ip, Corollary 3.7 implies

that Y \ Y

??

= f0g, so Y is nondegenerate for ((�; �)) and it 
an be added to F as the missing element

of type n� 1. This shows that � is a geometry.

For the se
ond 
laim, let V

1

, V

2

, : : :, V

n

and V

0

1

, V

0

2

, : : :, V

0

n

be two 
hambers ordered by types. Choose

bases B = fe

1

; : : : ; e

n

g, B

0

= fe

0

1

; : : : ; e

0

n

g for V

n

and V

0

n

that are orthonormal with respe
t to ((�; �)) and

su
h that V

i

= he

1

; : : : ; e

i

i, V

0

i

= he

0

1

; : : : ; e

0

i

i for 1 � i � n � 2 and also V

n�1

\ V

n

= he

1

; : : : ; e

n�1

i and

V

0

n�1

\ V

0

n

= he

0

1

; : : : ; e

0

n�1

i. Choose some h 2 G su
h that e

h

i

= e

0

i

, (e

�

i

)

h

= (e

0

i

)

�

. Su
h an h exists, sin
e

G a
ts transitively on the set of hyperboli
 bases of V . Noti
e that � Æ h = h Æ � on the basis B [ B

�

of

V . Therefore h 2 G

�

.

Let us �rst dis
uss the 
ases n equal to two and three. In 
ase n = 3, our 
ip
op geometry has already

been studied in [1℄ in guise of the geometry of nondegenerate subspa
es of a four-dimensional F

q

2

-ve
tor

11



spa
e with respe
t to a nondegenerate unitary form. Indeed, for n = 3 our 
ip
op geometry is obtained as

the geometry �

�

of the twin building geometry of type D

3

over the �eld F

q

2

. (See Proposition 1 of [14℄ for

a 
hara
terization of spheri
al twin buildings.) Building-theoreti
ally � inter
hanges the positive and the

negative part of the twin building, inter
hanges the distan
es and preserves the 
odistan
e, 
f. [2℄. The

twin buildings of typeD

3

and of type A

3

over F

q

2

are isomorphi
, so the image of � under this isomorphism

will be a 
ip of the twin building geometry of type A

3

over F

q

2

. It remains to see whi
h 
ip this image

is. It is 
lear that a 
ip of the twin building of type A

3

(q

2

) is indu
ed by a nondegenerate polarity on the

proje
tive spa
e P(F

4

q

2

), and sin
e the 
ip admits a 
hamber that is mapped to its opposite, this polarity


annot be a symple
ti
 one. So it is orthogonal or unitary. A nondegenerate two-dimensional subspa
e

of a orthogonal spa
e has at least q

2

� 1 nondegenerate points, while a nondegenerate two-dimensional

subspa
e of a unitary spa
e has q

2

� q nondegenerate points. Hen
e, indeed, our 
ip
op geometry in 
ase

n = 3 
oin
ides with the 
ip
op geometry for n = 3 from [1℄. Therefore all properties of our geometry �

for n = 3 follow from [1℄.

Theorem 4.3

Let n = 3. The geometry � is isomorphi
 to the geometry of nondegenerate subspa
es of a nondegenerate

unitary spa
e of dimension four over F

q

2

. In parti
ular, it is 
onne
ted for all q and simply 
onne
ted for

q � 4.

See Se
tion 5 for a de�nition of simple 
onne
tedness.

Proof. The �rst 
laim follows from the above dis
ussion. The se
ond 
laim follows from [1℄.

In 
ase n = 2, by the above paragraph our �

�

is isomorphi
 to the residue of a line of the geometry of

nondegenerate subspa
es of a four-dimensional F

q

2

-ve
tor spa
e with respe
t to a nondegenerate unitary

form. Hen
e �

�

is a generalized digon, whi
h 
ertainly is 
onne
ted.

This dis
ussion shows that the desired properties of �

�

hold true for n equal to two and three. This

means that in the remainder of the paper we 
an assume n � 4, whi
h we will do unless it is spe
i�ed

otherwise.

The following lemma will be very useful throughout the arti
le. Re
all that the points and the lines

are the elements of � of types one and two respe
tively.

Lemma 4.4

Let p be a point of � and W � p be a three-dimensional f -singular subspa
e of V of ((�; �))-rank at least

two. Let U be a two-dimensional subspa
e of W that 
ontains at least one point and does not 
ontain

p. Then U 
ontains at least q

2

� 2q � 1 (respe
tively, q

2

� q � 1) points that are 
ollinear with p if it is

(respe
tively, is not) a line.

Proof. Sin
e W is f -singular, we only need to 
onsider ((�; �)). Noti
e that, if U is a two-dimensional

subspa
e of W that is not totally isotropi
 with respe
t to ((�; �)), then U 
ontains q

2

� q points, if U is

a line, and it 
ontains q

2

points if it is not a line.

Consider U

1

= p

??

\W . Then, by the above, among the q

2

+ 1 two-dimensional subspa
es on p in

W , at least q

2

� q meet U

1

in a point and hen
e they are lines. If U is itself a line, then at most q + 1

of those lines do not meet U in a point of �. This leaves at least q

2

� 2q � 1 lines on p meeting U in a

point. If U is not a line then at most one of the q

2

� q � 1 lines on p does not meet U in a point. Hen
e

the lemma follows.
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We need to prove that the geometry � is 
onne
ted. This follows from the 
onne
tedness of the


ollinearity graph of �, i.e., the graph on the points of � in whi
h two points are adja
ent if and only if

they are 
ollinear.

Lemma 4.5

The 
ollinearity graph of the geometry � has diameter two. In parti
ular, � is 
onne
ted.

Proof. Suppose n � 5. Let p

1

; p

2

be distin
t points of the geometry. Consider W := hp

1

; p

2

i

?

\

hp

1

; p

2

i

??

. Then dimW � 2n � 4. Moreover, the spa
e W is �-invariant and has rank at least 2n � 6,

whi
h is at least four. Indeed, W

?

= hp

1

; p

2

; p

�

1

; p

�

2

i has rank at least two and hen
e its radi
al is at

most two-dimensional. Therefore Lemma 3.5 yields a point of � inside that 
omplement. This point is


ollinear in � to both p

1

and p

2

.

So now suppose n = 4. Take p

1

, p

2

, and W as above. If the rank of W is at least three, then again

Lemma 3.5 yields a 
ommon neighbor of p

1

and p

2

. The only 
ase that W does not have rank at least

three o

urs in 
ase of dimW = 4 and rkW = 2. If that happens, let W

1

be equal to p

?

1

\ p

??

1

, whi
h is

six-dimensional and nondegenerate. Moreover, � is a 
ip of W

1

, sin
e it is a 
ip of hp

1

; p

�

1

i. Take U to

be a maximal f -singular subspa
e of W . Noti
e that U ne
essarily has to be three-dimensional, as W is

the dire
t sum of its radi
al and a hyperboli
 line. Sin
e � is a 
ip of W

1

, the interse
tion U \U

�

has to

be even-dimensional by Corollary 3.7. Hen
e W 
ontains a point of �, whi
h is 
ollinear to p

1

and p

2

.

Conne
tedness of the 
ollinearity graph and hen
e the geometry follow from the �niteness of its

diameter.

We summarize Lemma 4.5 and the results of [1℄ on 
onne
tedness in the following theorem and


orollary.

Theorem 4.6

Let n � 2. Then � is 
onne
ted.

Corollary 4.7

The geometry � is residually 
onne
ted unless q = 2.

Proof. The residues of � are either dire
t sums (and as su
h 
onne
ted) or isomorphi
 to our geometry

� in some smaller dimension (and as su
h 
onne
ted by Theorem 4.6) or isomorphi
 to geometry of

nondegenerate subspa
es of some F

q

2

-ve
tor spa
e with respe
t to a nondegenerate unitary form. The

latter one however is not 
onne
ted in 
ase of a three-dimensional F

2

2

-ve
tor spa
e, see [1℄.

5 Fundamental group and simple 
onne
tedness

Let � be a 
onne
ted geometry. A path of length k in the geometry is a sequen
e of elements (x

0

; : : : ; x

k

)

su
h that x

i

and x

i+1

are in
ident, 0 � i � k � 1. A 
y
le based at an element x is a path in whi
h

x

0

= x

k

= x. Two paths are homotopi
ally equivalent if one 
an be obtained from the other via the

following operations (
alled elementary homotopies): inserting or deleting a repetition (i.e., repla
ing x

by xx or vi
e versa), a return (i.e., repla
ing x by xyx or vi
e versa), or a triangle (i.e., repla
ing x

by xyzx or vi
e versa). The equivalen
e 
lasses of 
y
les based at an element x form a group under

the operation indu
ed by 
on
atenation of 
y
les. This group is 
alled the fundamental group of � and

13



denoted by �

1

(�; x). A 
y
le based at x that is homotopi
ally equivalent to the trivial 
y
le (x) is 
alled

null-homotopi
. Every 
y
le of length 2 or 3 is null-homotopi
.

Suppose � and

^

� are geometries over the same type set and suppose � :

^

� ! � is a homomorphism

of geometries, i.e., � preserves the types and sends in
ident elements to in
ident elements. A surje
tive

homomorphism � between 
onne
ted geometries

^

� and � is 
alled a 
overing if and only if for every

non-empty 
ag

^

F in

^

� the mapping � indu
es an isomorphism between the residue of

^

F in

^

� and the

residue of F = �(

^

F ) in �. Coverings of a geometry 
orrespond to the usual topologi
al 
overings of the


ag 
omplex. It is well-known that a surje
tive homomorphism � between 
onne
ted geometries

^

� and

� is a 
overing if and only if for every element x̂ in

^

� the map � indu
es an isomorphism between the

residue of x̂ in

^

� and the residue of x = �(x̂) in �. If � is an isomorphism, then the 
overing is said to

be trivial.

Re
all the following result.

Theorem 5.1

Let � be a 
onne
ted geometry and let x be an element of �. Then every 
overing of the geometry � is

trivial if and only if �

1

(�; x) is trivial.

Proof. See [11℄.

A geometry satisfying the equivalent 
onditions in the previous theorem is 
alled simply 
onne
ted.

A geometri
 
y
le in the geometry G is a 
y
le ea
h element of whi
h is in
ident with a 
ommon

element x.

Proposition 5.2

Every geometri
 
y
le is null-homotopi
.

Proof. Suppose 
 = x

1

x

2

: : : x

k

x

1

is a 
y
le without returns all of its elements are in
ident with some

element x. If k � 3 then 
 is null-homotopi
 by de�nition. So we assume that k > 3. If x

1

= x or

x

3

= x then x

1

is in
ident to x

3

and so 
 is homotopi
 to a shorter geometri
 
y
le, namely x

1

x

3

: : : x

1

.

Similarly, if x

2

= x or x

4

= x then 
 is homotopi
 to x

1

x

2

x

4

: : : x

1

. Finally, if x 6= x

i

, i � 4, then 
 is

homotopi
 to x

1

xx

4

: : : x

1

, by inserting the triangle (x

4

; x

2

; x; x

4

). Thus, in all 
ases 
 is homotopi
 to a

shorter geometri
 
y
le, and the 
laim follows by indu
tion.

Corollary 5.3

If two 
y
les are obtained from one another by inserting or erasing a geometri
 
y
le then they are

homotopi
.

Let G be a geometry over the set I . Let i; j 2 I , then we de�ne i � j if there exists a 
ag F of 
otype

fi; jg su
h that the residue of F is a geometry 
ontaining two elements that are not in
ident. Then the

graph (I;�) is 
alled the digon diagram of G.

Lemma 5.4

Let � be a geometry of rank n � 4 with digon diagram

1

Æ

2

Æ Æ � � �

n�2

Æ

Æ

n�1

Æ
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and assume that for ea
h element x of type n� 1 or n the 
ollinearity graph of �

x

is 
onne
ted. Further-

more, suppose that if the residue �

y

of some element y has a dis
onne
ted diagram falling into 
onne
ted


omponents �

1

, �

2

, �

3

(one of those may be empty), then �

x

is equal to the dire
t sum of the three

trun
ations of �

y

with respe
t to typ(�

1

), typ(�

2

) and typ(�

3

). Then every 
y
le of � based at some

element of type 1 or 2 is homotopi
ally equivalent to a 
y
le passing ex
lusively through elements of type

1 or 2.

Proof. We will indu
t on the number of elements of the path that are not of type 1 or 2. If this number

is zero there is nothing to prove. Take an arbitrary 
y
le 
 := x = x

0

x

1

: : : x

t�1

x

t

= x. Let x

s

be the

�rst element that is not of type 1 or 2. Clearly s 62 f0; tg. There are the following 
ases to 
onsider:

If the type of x

s

is less or equal n� 2 and if the type of x

s+1

is bigger than the type of x

s

then x

s�1

and x

s+1

are in
ident as they belong to two di�erent dire
t summands of �

x

s

. Thus 
 is homotopi
ally

equivalent to the 
y
le xx

1

: : : x

s�1

x

s+1

: : : x.

Suppose the type of x

s+1

is smaller than the type of x

s

. Let y be an element of type n � 1 or n

whi
h is in
ident to x

s

(in parti
ular, take x

s

, if the type of x

s

is n� 1 or n), then y is in
ident to both

x

s�1

and x

s+1

. Indeed, either y = x

s

and there is nothing to prove or y is 
ontained in another dire
t

summand of �

x

s

than x

s�1

, x

s+1

. Therefore, by Proposition 5.2, 
 is homotopi
ally equivalent to the

path xx

1

: : : x

s�1

yx

s+1

: : : x. Now pi
k two elements z, w of type 1 su
h that z is in
ident to x

s+1

and w is

x

s�1

, if x

i�1

is a point, or a point in
ident to x

i�1

, otherwise. Using the hypothesis we 
an 
onne
t w and

z with a path ww

1

: : : w

k

z passing ex
lusively through elements of type 1 and 2, all of whi
h are in
ident

with y. Again by Proposition 5.2 
 is homotopi
ally equivalent to xx

1

: : : x

s�1

w

1

: : : w

k

zx

s+2

: : : x whi
h


ontains fewer elements that are not of type 1 or 2.

Noti
e that the above paragraph in
ludes the 
ase typ(x

s�1

) 2 f1; 2g, typ(x

s+1

) = n�1, typ(x

s

) = n.

The only 
ase missing altogether is typ(x

s�1

) 2 f1; 2g, typ(x

s+1

) = n, typ(x

s

) = n � 1, whi
h holds by

inter
hanging the labels n� 1 and n.

Lemma 5.5

Assume that � = �

1

� �

2

with �

1


onne
ted of rank at least two. Then � is simply 
onne
ted.

Proof. See Lemma 7.2 of [5℄.

Our strategy of proof for the simple 
onne
tedness of the geometry � is to establish that its funda-

mental group is trivial. We want to apply Lemma 5.4 to � so that it will suÆ
e to prove that every 
y
le

passing through only points and lines is homotopi
ally trivial. The residue of an element of type n � 1

or n of � is isomorphi
 to the geometry of nondegenerate subspa
es with respe
t to some unitary form

studied in [1℄. There it is proved that � satis�es the hypothesis of Lemma 5.4 on the 
ollinearity graph

of the residues for n � 4. The dire
t sum property required in the hypothesis of Lemma 5.4 follows by

the de�nition of �. Hen
e we 
an restri
t ourselves to 
y
les passing through points and lines only. Sin
e

any pair of distin
t 
ollinear points of � uniquely determines the line in
ident to both points it a
tually

suÆ
es to study 
y
les in the 
ollinearity graph of �. Finally, by Lemma 4.5, any 
y
le of length six or

more automati
ally de
omposes into smaller 
y
les. Therefore all we need to establish is that arbitrary

triangles, quadrangles, and pentagons in the 
ollinearity graph of � are homotopi
ally trivial. The next

two se
tions deal with that problem.
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6 Simple 
onne
tedness, Part 1

In this se
tion we only deal with the 
ase n � 4 and q � 3. First we show that every triangle 
an be

de
omposed into geometri
 triangles.

Lemma 6.1

All triangles are de
omposable.

Proof. Consider a triangle with verti
es hui, hvi and hwi. Let U = hu; v; wi. Then U is totally singular

with respe
t to (�; �). If it is nondegenerate with respe
t to ((�; �)) then the triangle is geometri
. So we


an assume that U is degenerate. Sin
e U 
ontains a line it 
annot have rank less than two. This means

it has rank exa
tly two and its radi
al R is one-dimensional, hen
e R = hri for some r 2 U .

First let us suppose that R

�

6= R. Consider the line L = hu; vi. Let W = L

?

\ L

??

. Then W

is a nondegenerate �-invariant subspa
e of 
odimension four and, hen
e, of dimension at least four.

Furthermore, with respe
t to (�; �), the spa
e W is of plus type, sin
e V and hL;L

�

i = W

?

are of plus

type. Noti
e that R;R

�

� W . Let X = R

?

\ W . Consider W with respe
t to just (�; �). Sin
e W

is nondegenerate of plus type, X is generated by singular ve
tors. In parti
ular, there is a singular

one-dimensional spa
e hti whi
h is 
ontained in X but not in X

�

. Then the spa
e hu; v; w; ti is totally

singular with respe
t to (�; �) and nondegenerate with respe
t to ((�; �)). Thus, hu; v; w; ti is an element of

�, and so our triangle is geometri
.

Now suppose R = R

�

and 
hoose r 2 R su
h that r = r

�

. We 
laim that we 
an 
hoose a four-

dimensional subspa
e W su
h that U � W , W is totally singular with respe
t to (�; �) and its rank with

respe
t to ((�; �)) is exa
tly two. Indeed 
onsider �rst a maximal totally singular subspa
e X 
ontaining

U . Sin
e � is a 
ip, the radi
al Y of X with respe
t to ((�; �)) has even dimension (sin
e Y = X \X

�

).

Noti
e that R � Y . Let S be any other one-dimensional spa
e in Y . Then W = hU; Si is as required.

Let now Y be the two-dimensional radi
al of W .

Let x be a nonzero ve
tor in hu; vi \ hw; ri. After a suitable s
aling we 
an assume that x = u + v

and w = r + x. Noti
e that x is a nonsingular ve
tor, sin
e w is nonsingular. Pi
k a 2 F

q

2

, a 6= 0; 1, so

that u + av is nonsingular. Let us 
onsider ve
tors t of the form u + av + y, where y 2 Y n R. Then

t is nonsingular and the point hti is 
ollinear with hui, hvi, and hwi (sin
e hu; ti, hv; ti, and hw; ti are


omplements to Y in W ). This allows us to de
ompose the triangle hui, hvi, hwi as a produ
t of three

triangles.

Let us 
ompute the radi
als of the three-dimensional spa
es that these triangles generate. Those

radi
als are the interse
tions of the respe
tive three-dimensional spa
es with Y . It is easy to 
ompute

that hu; v; ti \ Y = hyi, hu;w; ti \ Y = hy � ari, and hv; w; ti \ Y = hy � ri.

We �rst assume that Y is not �-invariant. In that 
ase Y \ Y

�

= R and so none of the above three

radi
als 
an be �-invariant. Hen
e the three new triangles are geometri
, and hen
e the triangle hui,

hvi, hwi is de
omposable. Finally, we deal with the 
ase Y = Y

�

. If we 
an 
hoose y so that none of

the one-dimensional spa
es hyi, hy � ri, and hy � ari is �-invariant then again the three new triangles

are geometri
 and our initial triangle is de
omposable. Note that Y 
ontains exa
tly q one-dimensional

�-invariant subspa
es aside from r. Indeed, assuming that s and r are �-invariant ve
tors in Y , the

one-dimensional spa
e hs+ �ri is � invariant if and only if �� = � and so there are q 
hoi
es for �.

Now ea
h of the (q

2

� 1)q ve
tors in the invariant spa
es besides R 
an o

ur in at most three triples

hyi, hy� ri, and hy�ari. The total number of triples is q

4

� q

2

(on
e we pi
k y, the triple is determined)

and there are at most 3(q

2

�1)q triples that 
ontain at least one bad one-dimensional spa
e. Note however

that if we pi
k y to be an �-invariant ve
tor, then both hyi, hy�ri are �-invariant one-dimensional spa
es
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hen
e the number of bad triples is stri
tly less than 3(q

3

� q). If q � 3 this assures the existen
e of a

good triple.

We will 
onsider 4-gons next. When studying them, the following lemma will prove useful.

Lemma 6.2

Let U be a four-dimensional (�; �)-nondegenerate subspa
e of V of Witt index two and of ((�; �))-rank at

least one. Then V 
ontains a point of �.

Proof. If U has ((�; �))-rank one, any two-dimensional (�; �)-totally singular subspa
e of U not inside

the ((�; �))-radi
al of U 
ontains points of �.

If U has ((�; �))-rank two, then it has a two-dimensional ((�; �))-radi
al X . Any (�; �)-totally singular

two-dimensional subspa
e of U that does not interse
tX ne
essarily is ((�; �))-nondegenerate, so it 
ontains

points of �.

If the ((�; �))-rank of U equals three, then any (�; �)-totally singular two-dimensional subspa
e of U

not 
ontaining the ((�; �))-radi
al of U has ((�; �))-rank at least one. Indeed, U does not 
ontain three-

dimensional ((�; �))-totally isotropi
 subspa
es. Hen
e U 
ontains points of �.

If U is ((�; �))-nondegenerate, then the 
laim follows from the fa
t that the unitary quadrangleH(3; q

2

)

does not 
ontain a subquadrangle isomorphi
 to Q

+

(3; q

2

), see [8℄.

Lemma 6.3

Let q � 3. Then any quadrangle inside a (�; �)-totally isotropi
 subspa
e of V is null-homotopi
.

Proof. Let a, b, 
, d be a quadrangle su
h that (�; �) vanishes on ha; b; 
; di.

If ha; b; 
; di is three-dimensional then it 
an have ((�; �))-rank two or three. If its ((�; �))-rank is three,

then a, b, 
, d is a geometri
 
y
le and, thus, null-homotopi
. So we 
an assume that its ((�; �))-rank is

two. But then any 
omplement of its radi
al X is a line of �. Therefore 
 and d have a 
ommon neighbor

on the line ha; bi, sin
e that 
ontains at least six points.

If ha; b; 
; di is four-dimensional then it 
an have ((�; �))-rank two, three or four. In 
ase of ((�; �))-rank

four the 
y
le a, b, 
, d again is geometri
, when
e null-homotopi
. If its ((�; �))-rank is two, then the span

ha; b; 
i interse
ts the two-dimensional radi
al X in a one-dimensional spa
e X

1

. Any two-dimensional

subspa
e of ha; b; 
i missing X

1

is a 
omplement of X and, thus, a line of �. Hen
e exa
tly one of the at

least six points of � on the line ha; bi is not 
ollinear to 
, leaving at least �ve points that are 
ollinear

to 
. By symmetry, d is not 
ollinear to a unique point of ha; bi, when
e there are at least four points on

ha; bi 
ollinear to both 
 and d, de
omposing the quadrangle.

Finally, assume the ((�; �))-rank of ha; b; 
; di is three. Let X be its one-dimensional ((�; �))-radi
al.

If X is 
ontained in ha; b; 
i, then ha; b; 
i has ((�; �))-rank two and any two-dimensional subspa
e of it

missing X is a line of �. Hen
e, in this 
ase 
 is 
ollinear to all points of ha; bi ex
ept one. On the other

hand, by Lemma 4.4 the point d is 
ollinear to q

2

� 2q � 1 points of ha; bi. Removing the point that 


is not 
ollinear to if ne
essary, there remain q

2

� 2q � 2 points of ha; bi 
ollinear to both 
 and d. Sin
e

q � 3, this is a positive number.

So we 
an assume that X is not 
ontained in ha; b; 
i. Consider the two-dimensional subspa
e hd;Xi.

It interse
ts ha; b; 
i in some one-dimensional spa
e e distin
t from X . Therefore, as the ((�; �))-rank of

hd;Xi is one, e is a point of �. Sin
e the ((�; �))-rank of ha; d;Xi = ha; d; ei is two (indeed, it 
ontains

the ((�; �))-radi
al X , but also the line ha; di), any two-dimensional subspa
e of ha; d;Xi missing X is a

line of �. In parti
ular, ha; ei is a line of �. For the same reason, the spa
e h
; ei is a line of �. We have
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de
omposed the quadrangle a, b, 
, d into the quadrangle a, b, 
, e (whi
h lies inside the three-dimensional

spa
e ha; b; 
i and by the above is null-homotopi
) and the quadrangle a, e, 
, d (whi
h has the property

that the radi
al X lies inside ha; d; ei and hen
e is null-homotopi
 by the pre
eding paragraph).

Remark 6.4 There exists a mu
h shorter proof for q � 4. Indeed, by Lemma 4.4 there exist q

2

� 3q� 2

points on ha; bi 
ollinear to both 
 and d, de
omposing the quadrangle. This example illustrates that

studying the 
ip
ip geometries over small �elds may be quite diÆ
ult. And, indeed, we did not su

eed

to de
ompose pentagons in 
ase (n; q) = (4; 3), but we have to rely on a 
omputer based 
omputation

instead.

Lemma 6.5

Let q � 3. Any quadrangle with a (�; �)-perpendi
ular pair of opposite points is null-homotopi
.

Proof. Let a, b, 
, d be a quadrangle with a ? 
. In view of the pre
eding lemma we 
an assume that

b 6? d. In that 
ase ha; 
i is the radi
al of ha; b; 
; di and also of W = ha; 
i

?

. It follows that ha; 
i is

((�; �))-degenerate or that a and 
 are 
ollinear and the quadrangle de
omposes in two triangles. Hen
e

assume ha; 
i is ((�; �))-degenerate. Then it has a one-dimensional ((�; �))-radi
al X . For ea
h v 2 W we

will denote by v

0

its image in W

0

= W=ha; 
i. We will identify W

0

with some 
omplement of ha; 
i in W


ontaining b and d. (If no su
h 
omplement exists, then ha; 
i and hb; di have a nontrivial interse
tion,

when
e ha; b; 
; di is (�; �)-totally isotropi
, so we are in the 
ase of the pre
eding lemma.) Note that

the pre-image of a ve
tor of W

0

is an aÆne two-dimensional subspa
e of W and the pre-image of a

one-dimensional subspa
e of W

0

is a three-dimensional subspa
e of W .

Choose a (�; �)-totally singular two-dimensional subspa
e l ofW

0

through b and an opposite (�; �)-totally

singular two-dimensional subspa
em ofW

0

through d. Noti
e that the pre-images ha; b; 
i of b and ha; 
; di

of d in W have rank two or three with respe
t to ((�; �)) as they 
ontain lines of �. Therefore both l and

m ea
h 
ontain at most q + 1 one-dimensional subspa
es whose pre-images in W have ((�; �))-rank one.

Consequently, we 
an �nd a one-dimensional subspa
e z

1

of l and a (�; �)-perpendi
ular one-dimensional

subspa
e z

2

of m su
h that the pre-images of both z

1

and z

2

in W have ((�; �))-rank two or three.

It is possible to �nd a 
ommon neighbor p of a and 
 in ha; 
; z

1

i and a 
ommon neighbor q of a and


 in ha; 
; z

2

i. Sin
e z

1

? z

2

and ha; 
i is the (�; �)-radi
al of W we also have p ? q. Similarly, b ? z

1

and

d ? z

2

implies b ? p and d ? q. Consequently we have de
omposed the quadrangle a, b, 
, d into the

quadrangles a, b, 
, p and a, p, 
, q and a, q, 
, d, all three span a (�; �)-totally isotropi
 subspa
e and by

Lemma 6.3 are null-homotopi
.

Lemma 6.6

Let q � 3. Any quadrangle is null-homotopi
.

Proof. In view of Lemmas 6.3 and 6.5 we may assume that the quadrangle a, b, 
, d has the property

a 6? 
 and b 6? d. Therefore the span ha; b; 
; di must be four-dimensional and the (�; �)-rank of ha; b; 
; di

must be four. Therefore the spa
e ha; b; 
; di

?


ontains a point e of � by Lemma 6.2. By Lemma 4.4

there exist at least q

2

� 2q � 1 points of ea
h line of the quadrangle a, b, 
, d 
ollinear to e. We have

de
omposed the quadrangle a, b, 
, d into quadrangles satisfying the hypothesis of Lemma 6.5, when
e

a, b, 
, d is null-homotopi
.

Lemma 6.7

Let q � 3. Any pentagon a, b, 
, d, e with a ? 
 and a ? d is null-homotopi
.
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Proof. By Lemma 4.4 the line h
; di 
ontains q

2

� 2q � 1 points of � 
ollinear to a, de
omposing the

pentagon.

Lemma 6.8

Let q � 3 and n � 5. Then any pentagon is null-homotopi
.

Proof. Let a, b, 
, d, e be a pentagon. In view of the pre
eding lemma we 
an assume a 6? d and 
 6? e.

Consequently, ha; 
; di has (�; �)-rank two, and its radi
al X , whi
h is distin
t from d, is 
ontained in h
; di.

Sin
e 
 6? e and d ? e we have e 6? X . Therefore ha; 
; d; ei has to be four-dimensional and its (�; �)-rank

is four. Hen
e the (�; �)-rank of ha; b; 
; d; ei is at least four, and so is the (�; �)-rank of ha; b; 
; d; ei

?

,

whi
h has at least dimension �ve. Moreover, the ((�; �))-rank of ha; b; 
; d; ei is at least two, as it 
ontains

points, so the ((�; �))-rank of ha; b; 
; d; ei

?

also is at least two. Hen
e we 
an 
hoose a (�; �)-nondegenerate

four-dimensional subspa
e of ha; b; 
; d; ei

?

that has ((�; �))-rank at least one, so by Lemma 6.2 the spa
e

ha; b; 
; d; ei 
ontains a point f of �. By Lemma 4.4 there exists points on ha; bi, hb; 
i, h
; di, hd; ei, he; ai


ollinear to f , de
omposing a, b, 
, d, e into quadrangles.

Lemma 6.9

Let q � 4 and let n = 4. Then any pentagon is null-homotopi
.

Proof. Let a, b, 
, d, e be a pentagon. In view of Lemma 6.7 we 
an assume that a 6? d. Hen
e the

(�; �)-rank of ha; 
; di is two, and the (�; �)-radi
al X of ha; 
; di is 
ontained in h
; di. Therefore the (�; �)-

rank of ha; 
; di

?

is four. Note that X 
annot be the ((�; �))-radi
al of ha; 
; di

?

, as then it also would be

the ((�; �))-radi
al of ha; 
; di

�

. However, this is impossible as h
; di and h
; di

�

are ((�; �))-nondegenerate.

If X is a point of �, then 
onsider ha; 
; di

?

\X

??

. This spa
e is a 
omplement of X inside ha; 
; di

?

and as su
h it is (�; �)-nondegenerate. Moreover, the ((�; �))-rank of ha; 
; di is at least two, hen
e so is the

((�; �))-rank of ha; 
; di

?

, when
e ha; 
; di

?

\X

??

is not ((�; �))-totally isotropi
 and by Lemma 6.2 we 
an

�nd a point p of � in that spa
e. Then hX; pi is a line of �.

If X is not a point of �, then we 
hose any (�; �)-singular one-dimensional subspa
e p of ha; 
; di

?

nX

??

and hX; pi is also a line of �.

That line hX; pi 
ontains at least q

2

� 3q � 2 points of � 
ollinear to a and d, whi
h is at least one

sin
e q � 4, say f . Therefore we have de
omposed the pentagon a, b, 
, d, e into a quadrangle a, f , d, e

and a pentagon a, b, 
, d, f , in whi
h f ? 
.

If also f ? b, then we are done by Lemma 6.7. If f 6? b, then we 
an repeat the whole argument

of the present proof for the pentagon f , d, 
, b, a instead of a, b, 
, d, e. We will then obtain another

quadrangle and a pentagon f , d, 
, b, g with 
 ? f and 
 ? g, whi
h is null-homotopi
 by Lemma 6.7.

7 Simple 
onne
tedness, Part 2

In this se
tion we deal with the 
ase q = 2 and n � 5. First of all note that in this 
ase two points p and

q of � are 
ollinear if and only if p ? q and p??q. Therefore we do not have to worry about triangles.

Lemma 7.1

Any triangle of � is geometri
.
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Proof. Let a, b, 
 be a triangle. Then a??b, b??
 and 
??a implies that the ((�; �))-rank of ha; b; 
i is

three, when
e ha; b; 
i is an element of �, so that the triangle a, b, 
 is geometri
.

Lemma 7.2

Any quadrangle of � is null-homotopi
.

Proof. Let a, b, 
, d be a quadrangle. Assume �rst that ha; 
; a

�

; 


�

i is of dimension four. Let

W := ha; 
i

?

\ ha; 
i

??

. It is �-invariant, has dimension 2n� 4, (whi
h is at least six) and has a zero- or

two-dimensional (�; �)-radi
al X (as (�; �) is alternating), whi
h at the same time is the ((�; �))-radi
al. By

Lemma 3.4 there exists a �-invariant (�; �)- and ((�; �))-nondegenerate 
omplement W

0

to that radi
al in

W , and W

0

has dimension at least four.

On the spa
eW

0

the map � a
ts as a 
ip. Indeed, 
onsider a maximal (�; �)-totally singular subspa
e of

V that is generated byX , a and a maximal (�; �)-totally isotropi
 subspa
e U ofW

0

. Sin
e a is a point of �,

it is moved by �, when
e the interse
tion U�hX; ai\U

�

�hX; ai

�

equals the interse
tion U�X\U

�

�X

�

,

whi
h in turn is equal to (U \ U

�

)�X . Sin
e X has even dimension and U � hX; ai \U

�

� hX; ai

�

has

even dimension (it is the interse
tion of a maximal (�; �)-totally singular subspa
e with its image under

the 
ip �) also the interse
tion U \ U

�

has even dimension. Therefore, � has to be a 
ip of W

0

, as it is


onjugate to either �

1

or �

2

by Proposition 3.6 and only �

1

has the property that a maximal (�; �)-totally

isotropi
 subspa
e interse
ts its image in a subspa
e of even dimension.

Noti
e that b and d live in W and that their proje
tions onto W

0

(with respe
t to the de
omposition

W = W

0

�X) are points and they 
an be 
onne
ted in W

0

by Theorem 4.6, hen
e so 
an b and d and,

thus, the quadrangle 
an be de
omposed into triangles, sin
e all these points are 
ollinear with a and 
.

It remains to 
onsider the 
ase where both ha; 
; a

�

; 


�

i and hb; d; b

�

; d

�

i are three-dimensional. No-

ti
e that ea
h of these two spa
es is of (�; �)- and ((�; �))-rank two and that they are (�; �)- and ((�; �))-

perpendi
ular. Let U = ha; b; 
; di+ ha; b; 
; di

�

. If U is of dimension less than six, then it has (�; �)-radi
al

of dimension at most one, whi
h means that U

?

has (�; �)-rank at least four. Now 
onsider a �-invariant


omplement to the radi
al in U

?

and using Lemma 3.5 we see that U

?


ontains a point of �, whi
h is


ollinear to a, b, 
, d.

So we 
an assume that U has dimension six and that its (�; �)-radi
al X has dimension two. Let W

be � invariant 
omplement to X in U

?

. Then W is at least two-dimensional and (�; �)-nondegenerate.

If X 
ontains a �-invariant f -nonsingular one-dimensional subspa
e, its span with W is �-invariant and

f -nondegenerate of dimension at least three. So it 
ontains a point by Lemma 3.5. Thus we 
an assume

that X is f -singular. We 
laim that W is of plus type and that � is a 
ip of W . Indeed, the span of U

and W equals to X

?

. Consider the quotient X

?

=X . Sin
e X is f -singular, this is a spa
e of plus type.

The image of U is of plus type, so the image of W (whi
h is isometri
 to W ) is of plus type, too. Sin
e

X is two-dimensional, � indu
es a 
ip on X

?

=X . It also indu
es a 
ip on the image of U , thus it indu
es

a 
ip on the image of W , when
e on W . Therefore W 
ontains points.

Lemma 7.3

Any pentagon of � is null-homotopi
.

Proof. Let a, b, 
, d, e be a pentagon. Let W be h
; di

?

\ h
; di

??

and let U be ha; 
; di

?

\ ha; 
; di

??

.

The spa
e W is nondegenerate �-invariant of dimension 2n � 4. Moreover, � is a 
ip on W , be
ause �

is a 
ip on h
; d; 


�

; d

�

i, as that spa
e 
ontains the line h
; di. The spa
e U is �-invariant of dimension

at least 2n� 6 and has rank at least 2n� 8. By Lemma 3.5 the spa
e U 
ontains a point of � unless it

has rank exa
tly two, in whi
h 
ase n = 5, and � is not a 
ip on the 
omplement of the radi
al. If the
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(�; �)-radi
al X of U is not f -singular, then we 
an 
hoose a �-invariant f -nonsingular ve
tor in X . Taking

the span of this ve
tor together with a �-invariant 
omplement Y of X in U produ
es a three-dimensional

f -nondegenerate �-invariant spa
e, in whi
h we 
an �nd a point of � by Lemma 3.5. So we 
an assume

that X is f -singular. In this last 
ase, as in the previous proof, show that Y is of plus type and � is a


ip on Y . Indeed, the image of U

?

in X

?

=X is of plus type and � indu
es a 
ip on it.

Proof of Theorem 1 and Theorem 2. The 
laims (1) follow by Proposition 3.10 and Proposition

4.2. The 
laims (2) follow by Theorem 4.6 and Corollary 4.7. Claims (3) follow by Theorem 4.3 and

Se
tions 6 and 7 and Appendix A.

8 Consequen
es of simple 
onne
tedness

In the present paper an amalgam A of groups is a set with a partial operation of multipli
ation and a


olle
tion of subsets fH

i

g

i2I

, for some index set I , su
h that the following hold:

(1) A = [

i2I

H

i

;

(2) the produ
t ab is de�ned if and only if a; b 2 H

i

for some i 2 I ;

(3) the restri
tion of the multipli
ation to ea
h H

i

turns H

i

into a group; and

(4) H

i

\H

j

is a subgroup in both H

i

and H

j

for all i; j 2 I .

It follows that the groups H

i

share the same identity element, whi
h is then the only identity element

in A, and that a

�1

2 A is well-de�ned for every a 2 A. We will 
all the groups H

i

the members of the

amalgam A. Noti
e that our de�nition is a spe
ial 
ase of the general de�nition of an amalgam of groups

as found, say, in [12℄.

A group H is 
alled a 
ompletion of an amalgam A if there exists a map � : A ! H su
h that

(1) for all i 2 I the restri
tion of � to H

i

is a homomorphism of H

i

to H ; and

(2) �(A) generates H .

Among all 
ompletions of A there is one \largest" whi
h 
an be de�ned as the group having the following

presentation:

U(A) = ht

h

j h 2 A; t

x

t

y

= t

z

; whenever xy = z in Ai:

Obviously, U(A) is a 
ompletion of A sin
e one 
an take � to be the mapping h 7! t

h

. Every 
ompletion

of A is isomorphi
 to a quotient of U(A), and be
ause of that U(A) is 
alled the universal 
ompletion.

Suppose a group H � Aut� a
ts 
ag-transitively on a geometry �. A rank k paraboli
 is the stabilizer

in H of a 
ag of 
orank k from �. Paraboli
s of rank n� 1 (where n is the rank of �) are 
alled maximal

paraboli
s. They are exa
tly the stabilizers in H of elements of �.

Let F be a maximal 
ag in �, and let H

x

denote the stabilizer in H of x 2 �. The amalgam

A = A(F ) = [

x2F

H

x

is 
alled the amalgam of maximal paraboli
s in H . Sin
e the a
tion of H is


ag-transitive, this amalgam is de�ned uniquely up to 
onjugation in H . For a �xed 
ag F we 
an also

use the notationM

i

for the maximal paraboli
 H

x

, where x 2 F is of type i. (We de�ned this notation in

the introdu
tion.) For a subset J � I = f0; 1; : : : ; n� 1g, de�ne M

J

to be \

j2J

M

j

, in
luding M

;

= H .

Noti
e that M

J

is a paraboli
 of rank jI n J j; indeed, it is the stabilizer of the sub
ag of F of type J .
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Similarly to A, we 
an de�ne the amalgam A

(s)

as the union of all rank s paraboli
s. With this notation

we 
an write A = A

(n�1)

. Moreover, a

ording to our de�nition, A

(n)

= H .

Proposition 8.1 (Tits' Lemma)

Suppose a groupH a
ts 
ag-transitively on a geometry � and let A be the amalgam of maximal paraboli
s

asso
iated with some maximal 
ag F . Then H is the universal 
ompletion of the amalgam A if and only

if � is simply 
onne
ted.

Proof. Follows from [13℄, Corollaire 1, applied to the 
ag 
omplex of �.

Theorem 8.2

Let � be a geometry over some �nite set I with a 
ag-transitive group of automorphisms G, let k � jI j,

let A and A

k�1

be the amalgam of paraboli
s resp. rank-k-paraboli
s with respe
t to some maximal


ag F , and assume that all residues of rank greater or equal k with respe
t to subsets of F are simply


onne
ted. Then G = U(A) = U(A

(k�1)

).

Proof. We will pro
eed by indu
tion and show that the universal 
ompletion of A

(k�1)


oin
ides with

the universal 
ompletion of A

(k)

. Denote by H

k

the universal 
ompletion of A

(k)

.

The universal 
ompletion H

k

of A

(k)

is also a 
ompletion of A

(k�1)

. Indeed, if n = k, then H

n

= G,

whi
h 
ertainly is a 
ompletion of A

(n�1)

. In 
ase n > k, the amalgam A

(k)

is the union of all G

J

with J of 
orank k and we have a map � : A

(k)

! H

k

su
h that �

jG

J

: G

J

! H

k

is a homomorphism.

Consequently, also �

jG

J

\G

J

0

: G

J

\G

J

0

! H

k

is a homomorphism. It remains to show that the set of all

images �(G

J

\ G

J

0

) with jIn(J [ J

0

)j = k � 1 a
tually generate H

k

. But sin
e �

J

is 
onne
ted (simple


onne
tedness assumes 
onne
tedness), the group �(G

J

) � H

k

is generated by all those images for a

�xed J (be
ause the G

J

\G

J

0

are maximal paraboli
s in G

J

). Thus, H

k

is a 
ompletion of A

(k�1)

, as it

is generated by the �(G

J

).

Therefore there is a 
anoni
al homomorphism � from H

k�1

onto H

k

whose restri
tion to A

(k�1)

is the

identity. Let  be the inverse of the restri
tion of � to A

(k�1)

. Let J � I be su
h that jI n J j = k and let

^

G

J

be de�ned as h (G

J

\A

(k�1)

)i. By simple 
onne
tedness of �

J

and by Proposition 8.1 (Tits' Lemma),

� indu
es an isomorphism of

^

G

J

onto G

J

. Therefore,  extends to an isomorphism of A

(k)

� H

k

onto

^

A

(k)

=

[

J�I;jInJj=k

^

G

J

� H

k�1

:

Hen
e the universal 
ompletion of A

(k�1)


oin
ides with the universal 
ompletion of A

(k)

. The fa
t

H

n

= G �nishes the proof.

Proof of Theorem 3. This follows immediately by Theorems 1, 2, and 8.2.

Proof of Theorem 4. Let s = 2 if q � 4 and s = 3 if q = 2, 3, and suppose that n � s+1. Let

^

H be the

universal 
ompletion of the amalgamA

0

(s)

. Let � be the 
anoni
al homomorphism of

^

H ontoH , that exists

due to the fa
t that H is a 
ompletion of A

0

(s)

. Denote by

^

A

0

(s)

the 
opy of A

0

(s)

in

^

H, so that � indu
es an

isomorphism of

^

A

0

(s)

onto A

0

(s)

. As in the proof of Theorem 2, let  : A

0

(s)

!

^

A

0

(s)

be the inverse of �

j

^

A

0

(s)

.

Additionally, de�ne

^

T

i

=  (T

i

) and

^

T = h

^

T

1

; : : : ;

^

T

n

i. Observe that T

i

; T

j

� M

0

Infi;jg

= hL

i

; L

j

i � A

0

(s)

.

Sin
e  restri
ted to the latter group is an isomorphism to  (M

0

Infi;jg

), the groups

^

T

i

and

^

T

j


ommute
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elementwise. Be
ause T is the dire
t produ
t of the groups T

i

, the map � establishes an isomorphism

between

^

T and T .

Let J be a subset of I with jI n J j = s. Observe that M

J

= M

0

J

T . A

ordingly, we would like to

de�ne

^

M

J

as

^

M

0

J

^

T , where

^

M

0

J

=  (M

0

J

). For this de�nition to make sense, we need to show that

^

T

normalizes

^

M

0

J

. Assume �rst that q > 2. Sin
e M

0

i

is normal in M

i

and sin
e T � M

i

, we have that

T normalizes all M

i

and therefore T normalizes every L

i

= \

j2Infig

M

0

j

. Observe that T

j

� L

j

and

L

i

; L

j

� M

0

Infi;jg

= hL

i

; L

j

i. Sin
e  is an isomorphism from A

0

(s)

to

^

A

0

(s)

, the group

^

T

j

normalizes

^

L

i

for all i and j. It is 
lear that M

0

J

is generated by L

i

, i 2 I n J . The same must be true for

^

M

0

J

and

^

L

i

's.

Therefore every

^

T

j

will normalize every

^

M

0

J

whi
h means that also

^

T normalizes

^

M

0

J

. If q = 2 the same

result 
an be a
hieved by using M

0

Infi;jg

's in pla
e of L

i

's; re
all that in this 
ase we assume s = 3.

Sin
e

^

T normalizesM

0

J

and sin
e

^

T \

^

M

0

J

= h

^

T

j

j j 2 I n Ji is isomorphi
 (via �) to T \M

0

J

, the map

� establishes an isomorphism between

^

M

J

and M

J

, and, thus, � extends to an isomorphism

^

A

(s)

=

[

J�I;jInJj=s

^

M

J

�! A

(s)

:

Therefore, the universal 
ompletions of A

(s)

and A

0

(s)

are isomorphi
, and the 
laim follows from Theorem

3.

The Main Theorems A and B 
an be proved using Theorem 4 in exa
tly the same fashion as the

Phan-type theorems of [1℄ and of [6℄ are proved. The exa
t details are left to the reader.

A Computations in GAP

In this se
tion we report on a 
omputation done in the 
omputer algebra system GAP in order to prove

the following proposition.

Proposition A.1

Let � be the 
ip
op geometry for n = 4 and q = 2 or q = 3. Then � is simply 
onne
ted.

Proof. We prove both 
ases of the statement by using Proposition 8.1 (Tits' Lemma). For this we


onsider the maximal paraboli
s in SO

+

(8; q) of a maximal 
ag F in �. Let e

1

; : : : ; e

4

; f

1

; : : : ; f

4

be a

hyperboli
 basis of the underlying ve
tor spa
e (
f. Se
tion 3). Sin
e SO

+

(8; q) a
ts 
ag-transitively on

� we may 
hoose F to be he

1

i; he

1

; e

2

i; he

1

; e

2

; e

3

; e

4

i; he

1

; e

2

; e

3

; f

4

i.

The main part of the proof is 
omputer based. We determine a generating set for ea
h maximal

paraboli
 
orresponding to F . For ea
h generating set we 
ompute a set of de�ning relators. The

generating sets 
onstru
ted have the property that the interse
tion of two maximal paraboli
s is generated

be the interse
tion of their generating sets. Then the universal 
ompletion of the amalgam is de�ned by

the presentation given by the union of the generating sets and the union of the sets of de�ning relators.

Finally, we determine the index of a preimage of one of the maximal paraboli
s in the universal


ompletion. The group SO

+

(8; q) is the universal 
ompletion of the amalgam if and only if the index of

the preimage in the universal 
ompletion is equal to the index of the maximal paraboli
 in SO

+

(8; q).

This is 
he
ked by performing a 
oset enumeration for the presentation of the universal 
ompletion over

the preimage of one of the maximal paraboli
s.
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AmatrixM 2 SO

+

(8; q

2

) lies in (our 
opy of) SO

+

(8; q) if and only of (M

tr

)

�1

=M . The stabilizer of

F is isomorphi
 to C

4

q+1

. It is the set of all diagonal matri
es in SO

+

(8; q) with elements of multipli
ative

order dividing q + 1 on the diagonal.

Below we provide enough information for ea
h of the two 
ases to make it possible to 
he
k the 
laims

in any group theory 
omputer system that provides the standard algorithms for working with matrix

groups over �nite �elds, permutation groups and �nitely presented groups. We used GAP [4℄ for our


omputations.

For ea
h maximal paraboli
 we list a set of matri
es and a �nite presentation. The matri
es together

with generators for the 
ag stabilizer form a generating set for the paraboli
 subgroup. Upper 
ase

letters denoting matri
es 
orrespond to lower 
ase letters in the �nite presentations. It is routine to

verify that the given matri
es satisfy the given relators. Unfortunately it is a bit more 
ompli
ated to


he
k that the given presentations de�ne ea
h maximal paraboli
. By dire
t inspe
tion one 
he
ks that

ea
h matrix is in SO

+

(8; 3) and �xes the required elements in F . In order to show that the spe
i�ed

sets of matri
es generate the proposed paraboli
s it suÆ
es to determine the order of the subgroup

ea
h set generates. These are routine 
omputations in GAP. Again, the generating sets for the maximal

paraboli
s are arranged su
h that the interse
tion of two paraboli
s is generated by the interse
tion of

their generating sets.

A.1 The 
ase q = 3

In this 
ase, we will show that the universal 
ompletion of the amalgam of the maximal paraboli
s


orresponding to he

1

i, he

1

; e

2

i, he

1

; e

2

; e

3

; e

4

i is already SO

+

(8; 3). From this it follows that the universal


ompletion of the amalgam of all four maximal paraboli
s is SO

+

(8; 3).

Let z be a primitive element in F

9

with minimal polynomial x

2

� x � 1. We de�ne the following

matri
es:

U :=

0

B

B

B

B

B

B

B

B

B

B

�

z

5

z

7

z

5

z

3

1

1

z

7

z

5

z

7

z

1

1

1

C

C

C

C

C

C

C

C

C

C

A

V :=

0

B

B

B

B

B

B

B

B

B

B

�

1

z

5

z

3

z

5

z

7

1

1

z

7

z

z

7

z

5

1

1

C

C

C

C

C

C

C

C

C

C

A

W :=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

z z

5

z

5

z

5

1

1

z

3

z

7

z

7

z

7

1

C

C

C

C

C

C

C

C

C

C

A

Y :=

0

B

B

B

B

B

B

B

B

B

B

�

1

1

z

3

z

3

z z

5

1

1

z z

z

7

z

3

1

C

C

C

C

C

C

C

C

C

C

A

Ea
h maximal paraboli
 in SO

+

(8; 3) is generated by the matri
es spe
i�ed in the following table together
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with generators of the 
ag stabilizer.

stabilizer element generators

S

1

he

1

i V;W; Y

S

2

he

1

; e

2

i U;W; Y

S

3

he

1

; e

2

; e

3

; e

4

i U; V;W

In addition to these elements we use diagonal matri
es D

i

, 1 � i � 4, that generate the stabilizer

of the 
ag F , isomorphi
 to C

4

4

. The following presentations de�ne ea
h maximal paraboli
. To ea
h

presentation the relators d

4

i

for 1 � i � 4 and [d

i

; d

j

℄ for 1 � i; j � 4 need to be added.

Generators for S

1

: d

1

; d

2

; d

3

; d

4

; v; w; y.

Relators for S

1

: [v; d

1

℄, [v; d

4

℄, [w; d

1

℄, [w; d

2

℄, [y; d

2

℄, [y; d

1

℄, y

2

, v

3

, w

2

d

3

d

4

, vd

3

vd

2

d

2

3

, (yd

�1

3

d

4

)

2

,

(yw

�1

d

3

)

2

, w

�1

d

�1

3

wd

4

w

�1

d

4

, (w

�1

y)

3

d

2

3

d

2

4

, vw

�1

d

3

v

�1

w

�1

v

�1

d

3

d

�1

2

w,

vwyvd

3

w

�1

v

�1

yw

�1

v

�1

yw

�1

yd

�1

3

w

�1

d

�1

4

, vwyvd

3

yd

�1

3

v

�1

yw

�1

v

�1

yd

�1

3

w

�1

yd

�2

4

d

3

,

d

2

vyv

�1

yw

�1

vd

�1

3

yvw

�1

v

�1

ywd

4

ywd

�2

4

.

Generators for S

2

: d

1

; d

2

; d

3

; d

4

; u; w; y.

Relators for S

2

: [u;w℄, [u; y℄, [u; d

3

℄, [u; d

4

℄, [w; d

1

℄, [w; d

2

℄, [y; d

1

℄, [y; d

2

℄, y

2

, w

2

d

3

d

4

, d

1

u

�3

d

2

,

(yd

3

d

�1

4

)

2

, ud

1

ud

�1

2

, wyw

�1

d

4

yd

�1

4

w

�1

d

4

, yd

�1

3

wd

�1

3

yd

�1

4

d

�2

3

wd

4

d

�1

3

wyw

�1

.

Generators for S

3

: d

1

; d

2

; d

3

; d

4

; u; v; w.

Relators for S

3

: v

3

, [u;w℄, [u; d

4

℄, [u; d

3

℄, [v, d

1

℄, [v; d

4

℄, [w; d

2

℄, [w; d

1

℄, w

2

d

3

d

4

, u

�1

d

�1

1

u

�1

d

2

,

u

�2

d

1

ud

1

, d

�1

2

v

�1

d

�1

3

v

�1

d

2

3

, wd

3

wd

3

wd

�1

4

, wvw

�1

d

3

v

�1

w

�1

v

�1

d

�1

2

d

3

, uvu

�1

d

�1

1

d

�1

2

v

�1

u

�1

v

�1

d

�1

2

d

3

,

u

�1

vw

�1

vu

�1

v

�1

wv

�1

u

�1

vw

�1

vd

4

wd

4

.

The union of the relators above together with the generators d

1

; d

2

; d

3

; d

4

; u; v; w; y give a presentation

for the universal 
ompletion of the amalgam of the maximal paraboli
s. Coset enumeration over the

subgroup generated by u, v, w gives an index of 379040 whi
h is the index of the maximal paraboli


stabilizing he

1

; e

2

; e

3

; e

4

i in SO

+

(8; 3). This shows that SO

+

(8; 3) is the universal 
ompletion of the

amalgam of maximal paraboli
s.

A.2 The 
ase q = 2

In the following, let z be a primitive element in F

4

with minimal polynomial x

2

+ x + 1. We de�ne the

following matri
es:

U :=

0

B

B

B

B

B

B

B

B

B

B

�

z

2

z

1

1

z

z

2

1

1

1

C

C

C

C

C

C

C

C

C

C

A

V :=

0

B

B

B

B

B

B

B

B

B

B

�

1

z

z

2

1

1

z

2

z

1

1

C

C

C

C

C

C

C

C

C

C

A
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W :=

0

B

B

B

B

B

B

B

B

B

B

�

z

2

1

z

1

z

1

z

2

1

1

C

C

C

C

C

C

C

C

C

C

A

Y :=

0

B

B

B

B

B

B

B

B

B

B

�

z

z

2

z

1

z

2

z

z

2

1

1

C

C

C

C

C

C

C

C

C

C

A

S :=

0

B

B

B

B

B

B

B

B

B

B

�

z

2

z

2

z

1 z z

1 z

2

1

z

z z z

2

1 z

2

z

2

1 z 1

z

2

1

C

C

C

C

C

C

C

C

C

C

A

T :=

0

B

B

B

B

B

B

B

B

B

B

�

1

z

2

1 z

z

2

z

2

z

2

z 1 z

2

1

z 1 z

2

z z z

z

2

1 z

1

C

C

C

C

C

C

C

C

C

C

A

R :=

0

B

B

B

B

B

B

B

B

B

B

�

z

z

2

1

z

z

2

z

1

z

2

1

C

C

C

C

C

C

C

C

C

C

A

Q :=

0

B

B

B

B

B

B

B

B

B

B

�

z

2

z 1 1

z

2

1 z

2

1 z z

z

1 z

2

1

z z 1

z

2

z

2

1

1

C

C

C

C

C

C

C

C

C

C

A

Ea
h maximal paraboli
 in SO

+

(8; 2) is generated by the matri
es spe
i�ed in the following table together

with generators of the 
ag stabilizer.

stabilizer element generators

S

1

he

1

i V;W; T;R;Q; Y

S

2

he

1

; e

2

i U;W; Y

S

3

he

1

; e

2

; e

3

; e

4

i U; V; S;W; T

S

4

he

1

; e

2

; e

3

; f

4

i U; V; S;R;Q

In addition to these elements we use diagonal matri
es D

i

, 1 � i � 4, that generate the stabilizer of

the 
ag F , isomorphi
 to C

4

3

. The following presentations de�ne ea
h maximal paraboli
. To ea
h

presentation the relators d

3

i

for 1 � i � 4 and [d

i

; d

j

℄ for 1 � i; j � 4 need to be added.

Generators for S

1

: d

1

; d

2

; d

3

; d

4

; v; w; t; r; q; y.

Relators for S

1

: v

2

, y

2

, d

1

qd

�1

1

q

�1

, d

1

rd

�1

1

r

�1

, d

3

yd

�1

3

y, d

2

yd

�1

2

y, d

1

yd

�1

1

y, w

�1

yr

�1

y, d

1

vd

�1

1

v,

d

3

r

2

d

�1

4

, vyvy, w

�1

d

�1

4

wd

3

, yd

4

yd

4

, w

�1

d

3

wd

�1

4

, d

1

t

�1

d

�1

1

t, d

2

vd

�1

3

v, d

�1

4

vd

4

v, wd

4

d

�1

3

d

4

w,

rq

�2

d

�1

3

d

�1

2

, d

�1

3

d

4

w

�1

d

�1

4

w

�1

, q

�1

vqd

3

vd

�1

3

, rw

�1

r

�1

d

�1

3

wd

�1

4

, d

2

t

�1

d

�1

2

td

�1

2

t

�1

, vd

�1

2

td

4

td

4

d

2

,

d

2

d

2

4

wtd

2

t, r

2

vwd

2

d

�1

3

w

�1

v, d

3

yqyvtd

4

d

�1

2

, d

2

wt

�1

wd

4

t

�1

d

�1

3

d

�1

4

w

�1

, d

�1

2

w

�1

td

�1

4

w

�1

td

3

d

4

w,

tqyd

4

q

�1

t

�1

qd

�1

4

yq

�1

, d

4

ytwqd

3

yd

�1

4

twqd

3

, d

�1

2

yrvtwqd

3

tqd

�1

4

yq

�1

,

w

�1

d

�1

3

vd

1

wvd

�1

2

d

�1

1

d

�1

3

d

�1

2

w

�1

vd

�1

3

, tyd

�1

4

twqd

3

t

�1

d

�1

3

q

�1

w

�1

t

�1

yd

�1

4

,

twd

4

q

�1

w

�1

t

�1

d

4

yqyd

4

q

�1

wd

4

d

3

, rt

�1

wqd

4

ytwqd

�1

4

w

�1

qyd

4

q

�1

,

qyd

4

q

�1

d

�1

3

w

�1

d

�1

3

qd

�1

4

yq

�1

d

�1

3

w

�1

d

�1

3

qd

�1

4

yq

�1

d

�1

3

w

�1

d

�1

3

qd

�1

4

yq

�1

d

�1

3

w

�1

d

�1

3

.
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Generators for S

2

: d

1

; d

2

; d

3

; d

4

; u; w; y.

Relators for S

2

: u

2

, y

2

, d

1

wd

�1

1

w

�1

, d

1

yd

�1

1

y, d

2

wd

�1

2

w

�1

, d

3

ud

�1

3

u, d

3

w

�1

d

3

w

�1

, d

3

yd

�1

3

y, d

�1

4

yd

�1

4

y,

d

4

ud

�1

4

u, ud

�1

2

ud

1

, uwuw

�1

, uyuy, w

�1

d

3

d

4

w

�1

, w

�1

d

4

d

3

w

�1

, w

�1

yw

�1

yw

�1

yw

�1

y.

Generators for S

3

: d

1

; d

2

; d

3

; d

4

; u; v; s; w; t.

Relators for S

3

: u

2

, v

2

, t

3

, d

1

vd

�1

1

v, d

1

wd

�1

1

w

�1

, d

1

td

�1

1

t

�1

, d

4

ud

�1

4

u, d

4

vd

�1

4

v, d

4

wd

�1

3

w

�1

,

d

4

sd

�1

4

s

�1

, ud

�1

1

ud

2

, uwuw

�1

, wd

�1

2

w

�1

d

2

, wd

�1

3

wd

�1

3

, w

2

d

�1

4

d

�1

3

, s

�1

ud

2

s

�1

d

1

, sd

�1

1

vsd

�1

2

,

s

�1

d

3

d

2

d

1

s

�2

, t

�1

d

�1

2

t

�1

d

3

w

�1

d

�1

2

, td

3

st

�1

s

�1

d

�1

3

, d

2

vsd

�1

3

d

2

d

�1

1

sd

3

.

Generators for S

4

: d

1

; d

2

; d

3

; d

4

; u; v; s; r; q.

Relators for S

4

: u

2

, v

2

, d

�1

3

d

4

r

�2

, r

�1

d

�1

4

rd

�1

3

, r

2

d

3

d

�1

4

, rur

�1

u, qd

�1

1

q

�1

d

1

, d

4

vd

�1

4

v, rd

�1

1

r

�1

d

1

,

rd

�1

2

r

�1

d

2

, d

4

s

�1

d

�1

4

s, vd

�1

1

vd

1

, d

4

ud

�1

4

u, d

3

ud

�1

3

u, d

2

ud

�1

1

u, d

3

vd

�1

2

v, s

�1

d

1

s

�1

ud

2

,

d

�1

4

q

�2

r

�1

d

�1

2

d

�1

3

, sud

2

d

�1

1

s

�1

v, qd

4

r

�1

q

�1

vd

3

d

�1

2

, sd

3

d

�1

1

sd

�1

1

d

3

sd

�1

1

d

3

,

q

�1

s

�1

rs

�1

d

1

r

�1

sd

1

d

3

d

�1

2

d

�1

1

, qd

�1

3

s

�1

d

1

q

�1

d

2

d

1

sd

1

d

3

d

�1

2

.

The union of the relators above together with the generators d

1

; d

2

; d

3

; d

4

; u; v; w; y; s; t; r; q give a

presentation for the universal 
ompletion of the amalgam of the maximal paraboli
s. Coset enumeration

over the subgroup generated by v, w, y, t, r, q gives an index of 2240 whi
h is the index of the maximal

paraboli
 stabilizing he

1

i in SO

+

(8; 2). This shows that SO

+

(8; 2) is the universal 
ompletion of the

amalgam of maximal paraboli
s.
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