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1 Introduction

In 1977 Kok-Wee Phan [9] published a theorem on generation of the special unitary group SU(n + 1, ¢?)
by a system of its subgroups isomorphic to SU(3,¢?). The proof of Phan’s theorem given in his 1977
paper is somewhat incomplete. This motivated the paper [1] in which a new and complete proof of Phan’s
theorem was provided. The approach of [1] is based on the concepts of diagram geometries and amalgams
of groups. It turns out that Phan’s configuration arises as the amalgam of stripped rank two parabolics in
the flag-transitive action of SU(n + 1, ¢?) on the geometry of nondegenerate subspaces of the underlying
unitary space (stripped in the sense that the torus of SU(n+1, ¢?) has been removed). This point of view
leads to a twofold interpretation of Phan’s theorem: its complete proof must include (1) a classification
of related amalgams; and (2) a verification that—apart from some small exceptional cases—the above
geometry is simply connected. These two parts are tied together by a lemma due to Tits, that implies
that if a group G acts flag-transitively on a simply connected geometry then the corresponding amalgam
of maximal parabolics provides a presentation for G. For an outline of the idea how to re-prove, extend
and generalize Phan’s theorems the reader is referred to [2].

Notice that this new approach has already yielded an unexpected new Phan-type theorem for the group
Sp(2n, q). See [5] for the simple connectedness of the corresponding geometry and [6] for a classification
of related amalgams. In terms of the Dynkin diagrams, the original Phan’s theorem corresponds to the
diagram A,,, while the new theorem for Sp(2n,q) corresponds to the diagram C,,. We conjecture that
there is also a similar result, a Phan-type theorem, for every spherical diagram of rank at least three.
In a later paper [10], Phan himself claimed such theorems for the groups Spin®(2n,q) (diagram D,,),
2Es(q), E7(q), Es(q) (diagrams FEg, E7, and Fg, respectively). So the proof of our conjecture requires
new proofs for these results of Phan’s, as well as new theorems for groups SO(2n + 1,¢) (diagram B,,)
and Fy(q) (diagram Fj). The purpose of the present paper is to do the case D,,, that is, to reprove and
extend Phan’s theorem on Spin®(2n, ¢), using our new methods.

As defined in [1], subgroups U; and Us of SU(3,¢?) form a standard pair whenever each U; is the
stabilizer in SU(3, ¢?) of a nonsingular vector v; of the natural module U of SU(3,¢?) and, furthermore,
vy and vy are perpendicular. By Witt’s theorem, standard pairs are exactly the conjugates of the pair
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formed by the two subgroups SU(2, ¢?) arising from the 2 x 2 blocks on the main diagonal with respect
to an orthonormal basis of U. Standard pairs in quotients of SU(3, ¢?) over a subgroup of its center are
defined as the images under the natural homomorphism of the standard pairs from SU (3, ¢?).

Similarly to [1], we say that a group G possesses a weak Phan system of type D,, over F,2 if G' contains
subgroups U; = SU(2,4?), for i = 1,...,n and U, j, for distinct é,j € {1,...,n}, so that the following
hold:

(wP1) If (4, ) is not an edge of the Dynkin diagram D,, then U; ; is a central product of U; and Uj;

(wP2) If (i,j) is an edge of the Dynkin diagram D,,, then U; ; is isomorphic to a quotient of SU(3, ¢?)
over a subgroup of its center; moreover, U; and U; form a standard pair in U; ;; and

(wP3) the subgroups U; ;, 1 <i < j < n, generate G.

Note that we added (wP3) instead of just saying that the groups U; generate G for the sake of the
case ¢ = 2. Indeed, the group SU(3,2?) is not generated by a standard pair of subgroups SU(2,22), i.e.,
the geometry of nondegenerate subspaces of F§ with respect to a nondegenerate form, is not connected,
cf. [1]. This fact influenced the wording of the entire definition: we did not introduce U; ; as (U;,U;)
exactly in order to allow the case g = 2.

The main result of this paper is the following generalization of Phan’s D,, theorem [10]. Notice that
Phan only allowed odd prime powers g > 5. We start with the case of arbitrary prime power ¢ > 4.

Main Theorem A
Let ¢ > 4, n > 3, and let G be a group that contains a weak Phan system of type D, over Fp2. Then G
is isomorphic to a factor group of Spin™t(2n,q) for n even and a factor group of Spin~(2n,q) for n odd.

Main Theorem A leaves us with two exceptional cases ¢ = 2, 3. For these cases the following is true:

Main Theorem B
Let ¢ =2 or 3, and n > 4. Let G be a group that contains a weak Phan system of type D, over F.
Suppose further that

(1) for any triple i, j, k of nodes of the Dynkin diagram D,, that form a subdiagram O———0—0 of
i J
type Az, the subgroup (U; ;,Uj k) is isomorphic to a factor group of SU(4,¢?);
(2) additionally, if ¢ = 2 then

(i) for any triple i, j, k of nodes of D,, that form a subdiagram o o—0 of type A1 & Ay the
i J
groups U; and Uj, commute elementwise; and
(i) for any quadruple i, j, k, | of nodes of D, that form a subdiagram o———o o—o of
i J

type As @ Ay the groups U; j and Uy commute elementwise.

Then G is isomorphic to a factor group of Spin™(2n,q) for n even and isomorphic to a factor group of
Spin~—(2n,q) for n odd.

This paper is organized as follows. In Section 2 we state four important geometrical and group-
theoretical results that form the cornerstones of our proof of Main Theorem A and B. In Section 3 we
study unitary involutions on a nondegenerate quadratic space V over an arbitrary field of square order



and in Section 4 we study the resulting geometry, some kind of folded building geometry. Section 5
provides some basic facts and methods from algebraic topology. Those methods are applied in Sections 6
and 7 to establish the simple connectedness of the folded building geometry from Section 4. Theorems 1
and 2 of Section 2 are proved in Section 7. In Section 8 we apply Tits’ lemma and Theorems 1 and 2 to
obtain a presentation of flag-transitive groups of automorphisms of our geometry, establishing Theorems
3 and 4 of Section 2.

Acknowledgement: The authors would like to thank Ronald Solomon and Richard Lyons for their encour-
agement to reprove Phan’s theorems.

2 Relevant geometric results

Along the way to a proof of our Main Theorems we obtain a number of geometric and group-theoretic
results. In this section we collect some of those. Let V be the natural module of the group G =
[SOT(2n,q?), SOT(2n, ¢?)] with the nondegenerate quadratic form f and let o be an involutory semilinear
transformation of V' with f(z”) = f(«)? such that there exists a maximal f-singular subspace U of V' with
UNnU? = {0}. We will show, see Proposition 3.10, that G, = Cg(o) is isomorphic to the commutator
group of SO (2n,q) if n is even and isomorphic to the commutator group of SO~ (2n, q) if n is odd. The
flipflop geometry T, consists of those f-singular subspaces of V' (except the ones of dimension n — 1) that
trivially intersect the polar of their images under o.

The geometry I'; has the following properties. Refer to Section 4 for geometric terminology and to
Section 5 for notions from algebraic topology.

Theorem 1
Let ¢ > 3 and let n > 2. Then the following hold.

(1) T, is a rank n geometry admitting a flag-transitive group of automorphisms G, = SQ%(2n, q) for
n even and G, = SQ~(2n,q) for n odd.

(2) T, is residually connected.
(3) T, is simply connected unless (n,q) = (3, 3).

In the case (n,q) = (3,3), the geometry ', is not simply connected. It admits a triple cover which is
universal. For ¢ = 2 the geometry is connected (but not residually connected) and simply connected for
n > 4.

Theorem 2
Let q = 2 and let n > 2. Then the following hold.

(1) T, is a rank n geometry admitting a flag-transitive group of automorphisms G, = SQ%(2n, q) for
n even and G, = SQ~(2n,q) for n odd.

(2) T, is connected.

(3) Ty is simply connected if n > 4.



The residual connectedness of T', fails because it admits a residue isomorphic to the geometry of
nondegenerate subspaces of F§ with respect to a nondegenerate unitary form, which is not connected by
[1]. Equivalently, a standard pair of SU(3,2?) does not generate SU (3,2?).

Theorem 1 and Theorem 2 have some group-theoretic implications via Tits’ lemma. Let F' = Uy, ...,
U, be a maximal flag of I';. For 2 < s < n —1, let A(,) be the amalgam of all rank s parabolics, i.e.,
stabilizers in G, of subflags of F' of corank s. Again, for geometric terminology see Section 4. Amalgams
are defined in Section 8.

Theorem 3
Let n be an integer and let € be the sign of (—1)". Then the following hold.

(1) If ¢ > 4 and n > 3 then G, = SQ¢(2n, q) is the universal completion of A(s).
(2) If g =2, 3 and n > 4 then G, = SQ¢(2n, q) is the universal completion of A(s).

The universal version Spin®(2n, q) of SQ¢(2n, q) of course also acts flag-transtively on I';, so Theorem
3 also holds for this group. The maximal parabolics M; of Spin¢(2n,q) with respect to F = Uy, ...,
U, are semisimple groups of the form GU(i,q?) x Spin*(2n — 2i,q), i = 1,...,n — 2, and GU(n, ¢*),
i =n—1,n. Bach M;, 1 <i < n — 2, stabilizes the direct decomposition U; & U? @ (U;, UZ)* of the
quadratic module U of Spin€(2n,q). For 1 <i < n —2 they induce GU (i, ¢?) on U; and Spin*(2n — 2i, q)
on Uf‘. The parabolics M,,_; and M, induce GU(n,q*) on U, i, respectively U,. The intersection
of all M;, i.e., the Borel subgroup arising from the action of Spin¢(2n,q) on I'y, is a maximal torus 7'
of Spin¢(2n,q) of order (q + 1)". Let M? be the subgroup SU (i, q?) x Spin™(2n — 2i,q), respectively
SU(n,q*) of M;. For an arbitrary parabolic M; = N;es M; define MY = N;e; My . Here J is a subset of
the type set I = {1,...,n} of I's. It can be shown that M, = MIT.

In case of a minimal parabolic Mp (;;, we have that L; := M?\{i} =~ SL(2,q). Infact, foralll <i<n
the group L; arises as SU(2,¢?) = SL(2,q). Notice that T; = L; N T is a torus in L; of size ¢+ 1. Notice
also that the subgroups T; generate T' as their direct product. If ¢ # 2 we have (L;,L;) = M?\{i,j}'
In particular, if in that case A is the Dynkin diagram D,, then the subgroups L; have the following
properties:

(1) L; =2 SU(2,q) fori=1,...,n;

o\~ ) LixLj, if (i,j) is not an edge of A;
(2) {Li, Ly) = { SU(3,q), if (i,7) is an edge of A.

For (7,j) an edge of A the groups U;, U; form a standard pair of U; ;. Moreover, the U;, 1 < i < n,
form a weak Phan system inside Spin¢(2n,¢). In fact, Spin€(2n, q) is defined by this weak Phan system,
as stated in Theorem 4.

1]jor arbitrary ¢ define A?s) to be the amalgam formed by the subgroups MY for all parabolics M of
rank s.

Theorem 4
Let n be an integer and let € be the sign of (—1)". Then the following hold.

(1) If ¢ > 4 and n > 3 then Spint(2n,q) is the universal completion of A?2).

(2) If g =2, 3 and n > 4 then Spin®(2n,q) is the universal completion ofA(()3).



3 Flips and forms

Let V' be a 2n-dimensional nondegenerate orthogonal space of plus type over F2. Let f be the quadratic
form on V' and let (-, -) be the corresponding bilinear form, so that (u,v) = f(u+wv) — f(u) — f(v). When
n > 2, the orthogonal space V' gives rise to the building geometry D of type D,,. The elements of D of
typei =1,2,...,n—2 are the f-singular subspaces of V' of dimension i. The elements of D of the last two
types, n — 1 and n, are the maximal (i.e., n-dimensional) f-singular subspaces. Two such subspaces U
and U’ have the same type if and only if U NU’ has an even codimension in U. Incidence is symmetrized
containment except for incidence between elements of type n — 1 and n. Two elements of type n — 1 resp.
n are incident if they intersect each other in a hyperplane, i.e., a subspace of dimension n — 1.

Recall that a semilinear transformation corresponding to an automorphism ¢ of IF,» is a mapping
o :V — V such that for all u,v € V and a € F2 we have (u + v)? = u” + v and (av)” = a®v?. We
say that a semilinear transformation o weakly preserves f if there is an a € F2 such that for every v € V
we have f(v?) = af(v)?. Semilinear transformations weakly preserving f form the group ['O*(2n,¢?).
Every element of this group induces an automorphism of D, possibly switching the types n — 1 and n.
The converse is also true. Every automorphism of D, fixing the types n — 1 and n, or switching them,
is induced by a semilinear transformation weakly preserving f. Notice also that the only semilinear
transformations acting trivially on D are the linear scalar transformations.

In this section we study involutory automorphisms of D induced by semilinear transformations o with
¢ # Id. The map o2 has to be linear, as it acts trivially on D, so ¢ must be of order two. We will
use the bar to denote the action of this unique automorphism of F,>. Such an automorphism o of D is
called a unitary involution. In other words a unitary involution o satisfies (\v)” = Av? and o2 = ald
for some a € Fyz. We claim that a € ;. Indeed, for v € V, v # 0, we have av’ = (v")"2 =7
(U"z)" = (av)” = av”. This shows that @ = a, hence a € F,. Choose a € F;: such that aa =
This is possible by the surjectivity of the norm map from Fp to F,. Then, setting 0’ = ao, we get
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v = (") = a(aw’)’ = adv” = adav = v. Thus, (0')? = Id. Clearly, o and o' induce the same
automorphism of D and so we may assume without loss of generality that o2 = Id. Since o weakly
preserves f, there is a b € F,2 such that f(v?) = bf(v) for all v € V. Notice that bb = 1. Indeed, pick

v € V so that f(v) # 0. Then f(v) = f(v‘72) = bf(v7) = bbf(v). Thus, bb = 1. Choose 8 € Fp2 so
that b = g Such a choice is possible as the subgroup of order g + 1 of the multiplicative group of F.
(cyclic of order g? — 1) consists of precisely those elements which are of the form y4~! for some . Define
f'(v) := Bf(v). Then f'(v7) = Bf(v7) = Bbf(v) = %f’(v) = f'(v). Clearly, f' is a quadratic form of
plus type and, since the zeros of f coincide with the zeros of f’, the quadratic form f’ defines exactly the
same building geometry D. Consequently we can assume right from the beginning that f and o have the

property f(v”) = f(v), which by polarization also implies (u7,v%) = (u,v).

Hence studying unitary involutions of D means studying semilinear transformations o of V' satisfying
(F1) (\v)? = M7
(F2) f(v7) = f(v); and,
(F3) 0% =1d.
From now on we will require any unitary involution to satisfy (F1) through (F3).

Let us now describe two examples of semilinear transformations ¢ inducing unitary involutions.
Let eq,...,en, f1,---, fn be a hyperbolic basis in V. This means that the subspaces (ei,...,e,) and



(fi,..., fn) are totally singular and that (e;, f;) = 6;; for 1 <4, j < n. Define ¢; and oy as follows:

n n n n
O wiei+Y_yifa) =Y Giei+ Y #if;
i=1 i=1 i=1 i=1
and
n n n—1 n—1
O wiei+Y_yif) =D Giei+ D Tifi + Tnen + Gnfn-
i—1 i—1 i—1 i—1

Then o7 and o9 satisfy (F1) through (F3). Therefore, both o; and o2 induce unitary involutions. Ob-
serve that o1 sends U = (ey,...,e,) to (f1,..., fn), while o2 sends U to (fi,..., fn—1,€n). Thus, the
codimension of U N U?! in U is n, while the codimension of U N U2 in U is n — 1. Hence if n is odd
then the unitary involution induced by o; switches the types n — 1 and n, while the one induced by o5
preserves them. If n is even then the opposite occurs: o, preserves the types and o2 switches n — 1 and
n. In other words, if W is an arbitrary maximal f-singular subspace of V', the dimension of W N W71 is
always even and the dimension of W N W2 is always odd. In particular, o; and o9 induce nonconjugate
unitary involutions.

We will eventually prove that every unitary involution is conjugate to either o; or o, but first we
record some general facts. Define ((u,v)) := (u,v?) = f(u +v7) — f(u) — f(v7).

Lemma 3.1
The form ((+,-)) is a nondegenerate Hermitian form. Furthermore, ((u”,v?)) = ((u,v)) for u,v € V.

Proof. Clearly, ((-,-)) is a sesquilinear form. Also, ((v,u)) = (v,u?) = (u%,v) = (u’,v7) =
(u,v°) = ((u,v)). Thus, ((-,-)) is Hermitian. If w is in the radical of ((-,-)) then for any v € V, we
have 0 = ((u,v%)) = (u,v° ) = (u,v). Therefore, u = 0, as (-,-) is nondegenerate (recall that V has even
dimension). Finally, ((u7,v?)) = (u7,v) = (v,u’) = ((v,u)) = ((u,v)). O

Let g be the unitary form related to ((,-)), i.e., g(v) = ((v,v)). Notice that g and ((-,-)) have the
same radical and rank on every subspace of V. This does not hold for f and (-,-) when ¢ is even. In this
case the radical of f can be a hyperplane in the radical of (-,-) and hence the rank of f can be one larger
than the rank of (-, ).

In what follows we will work with both (-,-) and ((+,-)). This calls for two different perpendicularity
symbols. If U is a subspace of V then U+ denotes its orthogonal complement with respect to (-, -), while
U~ will be used for ((-,-)).

Lemma 3.2
For a subspace U C V, we have U = (U%)* = (U%)?. Similarly, U+ = (U7)Y = (UL)°.

Proof. The first equality in the first claim immediately follows from the definition of ((-,-)). If
u € (UL)? (say, u = (u')? for u' € UL) and v € U then ((u,v)) = ((u')?,v°) = (u',v) = 0. The second
claim follows by an application of o to the equalities in the first claim. O

Lemma 3.3
Let U be a subspace of V. Then f has the same rank on U and U ; likewise, it has the same rank on
U+ and UL = (U1)?. The same statements hold also for (-,-), g, and ((-,")).



Proof. The first claim follows from (F2) for f and (-,-), and from Lemma 3.1 for g and ((-,-)). The
second claim follows from the first one and Lemma 3.2. O

Now we focus on the case where U is o-invariant. Let us start with the following general property of
unitary involutions.

Lemma 3.4
Every o-invariant subspace of V admits a o-invariant complement. In particular if U and W are o-
invariant and U C W then U has a o-invariant complement in W'.

Proof. We will just need the property (F1). It is clear that (F1) is inherited by the restrictions of o
to all o-invariant subspaces and factor spaces. Let U be a o-invariant proper subspace of V. We claim
that there exists a one-dimensional o-invariant subspace not contained in U. Once this is proved, we
can factor out that invariant one-dimensional space and induction finishes the proof of the lemma. Let
v e V\U. If (v) is o-invariant then we are done. Otherwise consider (v,v?). This subspace contains
q + 1 one-dimensional o-invariant subspaces (v + Av”) where A\ = 1. Clearly at most one of these lies in
U.

For the second claim, if U C W are o-invariant and if T' is a complement to U in V then TN W is a
o-invariant complement to U in W. O

Suppose U is o-invariant. Clearly (F1), (F2), (F3) hold when you reduce o and the forms to U. Also,
it follows from Lemma 3.2 that Ut = UL, In other words, for a o-invariant subspace U, the polar
(and hence also the radical) of U is the same with respect to (-,-) and ((-,-)). Thus for a o-invariant
subspace we will speak simply of its radical, meaning the radical for (-,-), ((-,-)) and g. The radical for
f will be referred to as the f-radical. Note that Lemma 3.4 implies that each of the radicals has an
o-invariant complement in U. Notice that the o-invariant complement is automatically nondegenerate
for the corresponding form.

Lemma 3.5
If U is an f-nondegenerate o-invariant subspace of V' of dimension at least three, then there exists a
vector v of U that is f-singular and g-nonsingular.

Proof. Let W be a subspace of U which is maximal f-singular. If W and W7 generate a subspace
that is (-, -)-totally isotropic then W is the unique maximal f-singular subspace in (W, W) which means
that W = W?. So if W # W7 then ((-,-)) is nontrivial on W, and so W contains the required vector.
Therefore by way of contradiction we can assume that every W is o-invariant. Since every f-singular
one-dimensional subspace of U is the intersection of the maximal f-singular subspaces containing it, it
follows that o fixes all f-singular one-dimensional subspaces of U.

Let again W be a subspace of U which is maximal f-singular. Suppose W has dimension more than
one. Since o fixes each one-dimensional subspace of W, it will have to act on W as a scalar and this
contradicts (F1).

If dim W = 1 then there are two cases: dimU = 3 or dim U = 4 and f restricted to U is of minus type.
First assume dim U = 3. Let (a) be any one-dimensional subspace of U and let u; and uy be vectors of
U with f(u1) =0 = f(uz2) such that (a,u1,u2) = U. Then (a,u) is either a tangent line or it contains
another f-singular one-dimensional subspace besides (u1). In either case o leaves the subspace (a,u1)
invariant as it weakly preserves f. For the same reason also the subspace (a,us) is o-invariant. Hence
the intersection (a) = (a,u1) N (@, uz) is o-invariant. Since a was chosen arbitrarily, o leaves invariant
all one-dimensional subspaces of U. This implies that o acts as a linear scalar map on U, contradicting



property (F1). Hence there exists a vector u of U with f(u) = 0 that is linearly independent from u?.
This means g(u) = ((u,u”)) # 0.

Finally if dimU = 4 then pick T to be an f-nondegenerate three-dimensional subspace of U. The
space T' is generated by f-singular vectors hence it is g-invariant. Now the above argument applies. [

We have reached the stage where we can classify the unitary involutions.

Proposition 3.6
There are exactly two conjugacy classes of unitary involutions in TO* (2n, ¢?).

Proof. We first construct f-singular vectors e, ..., ep—1, f1, ..., fn—1 such that ef = f;, (e;,e;) =0
and (e;, fj) = d;5. Thereis nothing to prove for n = 1 so assume that n is at least two. By Lemma 3.5 there
is a vector v which is singular with respect to f and nonsingular with respect to g. Let ¢ = g(v) = ((v,v)).
Since g is unitary, we have ¢ € ;. By surjectivity of the norm map, there is a v € Fj2 such that ¢ = v¥.
Set e; = %v and fi = eJ. Then e; and f; are singular for f and (e, f1) = ((e1,e1)) = %((’U,U)) =1. Let
U = {e1, f1) and Vi = U+. Since U is o-invariant, Lemma 3.2 shows that V, = U is also o-invariant.
Furthermore, f is nondegenerate on V4 of plus type. If dim Vy > 4 then o induces an unitary involution
on the building geometry of V4. This means that, working inductively and applying Lemma 3.5 in each
step, we can complement e; and f; by further f-singular vectors es, f2,...,en—1, fn—1, such that for
1<i,j <n—1wehave (e;,ej) =0=(fi, f;), (€, f;) = 6;; and ef = f;.

For arbitrary n let now U = (e1, fi...,en_1, fn_1)® and Vy = U+. Then both U and V, are o-
invariant. Since f is nondegenerate on U of plus type, it is so on V; as well. This means that Vy
contains exactly two singular one-dimensional spaces, say (e} and (f). There are two possibilities: either
o interchanges these two subspaces, or it stabilizes both of them. Consider the first possibility. Setting
c = g(e) = (e,e”), we see that ¢ € F,. Choosing v € F,2 such that ¢ = 77 and setting e, = %e and
fn = €2 we obtain a complete hyperbolic basis ei,...,en, fi,.-., fn on which o acts the way o1 does.
Hence o is conjugate to o7 in this first case. Consider now the second possibility. Suppose e = ce.
Since 02 = 1, we obtain e = e’ = (ce)? = éce, which shows that ¢¢ = 1. This means that there is a
v € Fy2 such that ¢ = % Indeed, the subgroup of order g + 1 of the multiplicative group of Fy (cyclic

of order ¢> — 1) consists of precisely those elements which are of the form 7471 for some 7. Taking
en = e, we compute: (en)” = (ve)” = ¥(ce) = TF(ve) = en. Let f, be the unique vector in (f) such

that (en, fn) = 1. Since (eqn, f7) = (€2, f7) = (en, fn) = 1, we must also have that f7 = f,,. Thus, in the
second case o acts on the hyperbolic basis ey,...,e,, fi,..., fn the way o2 does. Hence o is conjugate
to 0s. O

In view of [2] studying flipflop geometries related to o only makes sense when one actually has a
chamber of the building mapped to an opposite chamber, as otherwise the flipflop geometry would be
empty. The following result shows that such maps o are the ones that are conjugate to o;.

Corollary 3.7
Suppose o is a unitary involution. The following are equivalent:

(F4a) o is conjugate to o .

(F4b) V contains a maximal f-singular subspace U such that (U,U%) = V.
(F4c) V contains a maximal f-singular subspace U such that U NU° = {0}.
(

F4d) V contains a maximal f-singular subspace U such that dimU NU? is even.



(F4e) For every maximal f-singular subspace U of V' we have that dimU N U’ is even.

Proof. By analyzing the action of o; and o3 on the two types of maximal f-singular subspaces of V
one immediately deduces that (F4a) and (F4e) are equivalent and that (F4d) implies (F4a). Also it is
clear that (F4b) and (F4c) are equivalent. The implication (F4a) = (F4b) follows from the fact that
(e1y...,en) ={(f1,..., fn). Clearly, (F4c) implies (F4d). O

Any unitary involution satisfying the equivalent conditions above is called a flip. From now on we
assume that ¢ is a flip on V.

Next, let us study the “eigenspaces” of ¢ in V. For A € F,2, define V\ = {u € V|u” = Au}. Note
that V) is not a true eigenspace, because o is not linear. We will see that every non-empty V) is a
2n-dimensional F,-vector space.

Lemma 3.8
The following hold.

(1) For 0 # p € Fp2, we have puVy = Vy/, where \' = %/\; in particular, V) is an F,-subspace of V.
(2) Vi # 0 if and only if A\ = 1; furthermore, if V # 0, then Vy contains a basis of V.

Proof. Suppose u € V. Then (pu)? = fu’ = fAu = %/\(,uu). This proves (1). Also, u = u” = Xu.
Thus, if u # 0 then A\ = 1. This proves the ‘only if’” part of (2). To prove the ‘if’ part, choose a canonical
basis {e1,..., fn} of V for o. Fix a A € F,2 such that A\ = 1. Define u; = e; + A\f; and v; = Xe; + f; for
1 <i < n. A simple check shows that u; and v; are in V). This shows that V) # 0. Furthermore, u; and
v; are not proportional unless A = A, that is, A € F,. Thus, if A ¢ F, then {uy,...,up,v1,...,v,} is &
basis of V. If A € F, then consider /\’ = ”)\ Where W is chosen S0 that L ¢F,. By (1), Var = V. Also,

since X' ¢ F,, the space V) contains a ba51s of V', and hence so does VA O

Now fix a A € F,2\F, such that A\ = 1.

Lemma 3.9
The restriction of Af to V) is a nondegenerate IF,-quadratic form. It is of plus type if n is even and of
minus type if n is odd.

Proof. Clearly, the form Af is F,-quadratic. Since V) contains a basis of V' by Lemma 3.8 (2), the
form is nondegenerate. It remains to see that it takes values in F,. If u € V), then Af(u) = Af(u”) =
M2 f(u) = Af(u).

To determine the type of Af we compute the form Af on the F;-vector space (u;, v;) with respect to
the basis u;, v; for 1 < i < n where, as above, u; = e; + A\f; and v; = \e; + f;. We have

Af(ui) = Mf(ei + Afi) = M(e)) + AF(Afo) + Aei, M) = AN =15
Af(vi) = Af(Xei + fi) = Mf(Xei) + Af(fi) + A(Xei, fi) = AX =1; and
/\(Ul',’Ui) = )\(61 + /_\fz, /_\ei + fz) =+ 5\

So the form Af on (u;,v;) with respect to the basis u;, v; equals a® + 8% +aB(A+A) = (B+aA) (B +al).
We are looking for solutions in F, of the equation 0 = (8 + a))(8 + a)). However, since A ¢ F,, this
equation does not have any solutions in F,. Therefore the restriction of Af to the F,-vector space (u;,v;)
is elliptic. The claim about the type of A\f follows. O



Observe that the conjugation by o is an automorphism of G = SQ*(2n, ¢?). Let G, be the centralizer
of o in G. The above setup gives us means to identify G,. Let H be the commutator group of the group
of linear transformations of V) of determinant 1 preserving the (restriction of the) form A\f. By Lemma
3.9 it is isomorphic to SQT(2n, q) in case n even and isomorphic to SQ~(2n,q) in case n odd. Since Vy
contains a basis of V, we can use F,2-linearity to extend the action of the elements of H to the entire
V. This allows us to identify H with a subgroup of G. Clearly, since h € H preserves Af, it must also
preserve f.

Proposition 3.10
G,=H.

Proof. Choose a basis {wy,...,ws,} in V). Then this set is also a basis of V. Let h € H. If u =
S waw; € Vothen u = (127, Fidw)* = 12" Zdwl. On the other hand, u"* = (22", z;wl)? =
ngl i wh. Therefore, H < G,. Now take h € G,. If u € Vj then (u")? = (u”)" = (Au)" = Au". This
proves that h leaves V) invariant. It remains to see that h preserves Af. However, this is clear, because
h is ;2 -linear and it preserves f. O

4 The flipflop geometry I'

Before studying the geometry we are interested in, let us recall some definitions. Let I be a finite set,
called the set of types. Its elements as well as its subsets are called types. Let I' = (X, x,typ) be a triple
where X is a set, * C X x X is a symmetric and reflexive relation and typ : X — I is a map, such that,
for z,y € X we have z = y if and only if z *xy and typ(z) = typ(y). Then I is called a pregeometry over
I. The elements of X are called the elements of ', the relation x is called the incidence relation of I, the
map typ is called the type function of T'.

Let I' = (X, *,typ) be a pregeometry over I. If A C X, then A is of type typ(A) C I, of cotype
I\typ(A), of rank |typ(A4)|, and of corank |I\typ(A)|. The rank of A is also denoted by rk (A). The
cardinality |I| of I is called the rank of .

A flag F' of a pregeometry I' is a set of mutually incident elements of I'. Notice that typp : F' — I is
a injection. A mazimal flag of I is a flag that is maximal with respect to inclusion. Flags of type I are
called chambers. A geometry over I is a pregeometry I' over I in which every maximal flag is a chamber.

Let F'be a flag of I, say of type J C I. Then the residue I'r of F'is the geometry (X', x| x/x x-, typ|I\J)
over I\J, with X' :={z € X | FU {2z} is a flag of T" and typ(z) ¢ typ(F)}.

The geometry I' is connected if the graph (X, %) is connected. The geometry I is residually connected
if for any flag F' of corank at least two the residue I'p is connected.

Finally, if I' = (X, %, typ) and I'" = (X', «', typ’) are two geometries, over I and I’ respectively, with
INI' =0, then the direct sum I’ @ I is the geometry (X U X' " typ U typ’) over I U I’, with *TIX = %,
*TIX’ =" and (X x X') C«".

We will use the notation from the previous section. In particular, V' is a nondegenerate orthogonal I = -
space of dimension 2n with a quadratic form f of plus type and associated symmetric bilinear form (-, ),
the map o is a flip and ((+,)) the corresponding Hermitian form. Also, G is isomorphic to SQT(2n, ¢).
Furthermore, G, is the centralizer Cg (o) of o in G. The group G, is isomorphic to SQT(2n,q) if n is
even and isomorphic to S~ (2n, q) if n is odd.

Throughout this section, we assume n > 2. Let D be the building geometry associated with G. The
elements of D of type ¢ = 1,2,...,n — 2 are the singular subspaces of V of dimension i. The elements

10



of D of the last two types, n — 1 and n, are the maximal (n-dimensional) singular subspaces. Two such
subspaces U and U’ have the same type if and only if U N U’ has an even codimension in U. Incidence
is given by symmetrized containment except incidence between elements of type n — 1 and n. Two such
elements are incident if their intersection is a hyperplane of either element. We will use the customary
geometric terminology. In particular, points, lines, and planes are elements of vector space dimension 1,
2, and 3, respectively.

Let I' = ', be the pregeometry consisting of those f-singular proper subspaces of V' that do not
intersect the polar of their image under o. (See [2] for an explanation why this is a natural object to
consider.) The pregeometry I is called the flipflop geometry of D associated with . Alternatively, we
can describe the flipflop geometry I' as follows.

Proposition 4.1
The elements of I are all proper subspaces U C V of dimension other than n — 1, which are singular with
respect to f and nondegenerate with respect to ((+,)).

Proof. By Lemma 3.2, UL = (U1)°. Hence, if X is the ((-,-))-radical of U, we have X = U N UL =
U N (UL)?. Therefore X = {0} if and only if U N (U+)? = {0}. O

Recall that a group G of automorphisms of some pregeometry A is called flag-transitive if for each
pair F, F of flags with typ(F1) = typ(Fz) there exists a g € G with FY = F,. Notice that for a geometry
A this condition is equivalent to the condition that for each pair Fy, F» of chambers there exists a g € G
with FY = F.

Proposition 4.2
The pregeometry T is a geometry of rank n. Moreover, G, acts flag-transitively on T.

Proof. For the first claim we need to show that a maximal flag F' in ' contains elements of all types.
If F contains an element of type ¢ less than n then clearly it also contains elements of all types less than
i. Suppose m is the highest type present in F' and let U be the element of type m in F'. Suppose first
that m <n — 1. Let W = (U,U%) and T = W+=. Since o is a flip of W, it also is a flip of T. Therefore,
by Corollary 3.7 there exists a maximal f-singular subspace X in T, such that X“NX = {0}. The space
X has dimension n —m and thus (U, X') is an element of I" of type n — 1 or n incident to each element of
F. Som =n—1orn. By symmetry it suffices to consider only one of these cases. Suppose that m = n.
Then the only type possibly missing in F'is n — 1. Let X be a hyperplane in U such that X contains
the element of type n — 2 from F' and X is nondegenerate with respect to ((,-)). Then X is contained
in exactly two f-singular subspaces of dimension n. One of them is U, let Y be the other one. Since
X N X+ = {0}, the space Y N Y has dimension at most one. Since o is a flip, Corollary 3.7 implies
that Y N Y = {0}, so Y is nondegenerate for ((-,-)) and it can be added to F as the missing element
of type n — 1. This shows that I' is a geometry.

For the second claim, let V1, Vs, ..., V,, and V{, V3, ..., V! be two chambers ordered by types. Choose
bases B = {e1,...,en}, B' ={€},... e} for V;, and V,! that are orthonormal with respect to ((-,-)) and
such that V; = (eq,...,e;), V] = (e},...,€e}) for 1 <i<n—2and also V,,_1 NV,, = (e1,...,en_1) and

Ee2

V! . nV!={(e,...,el_1). Choose some h € G such that e = e/, (eZ)" = (e!)?. Such an h exists, since
G acts transitively on the set of hyperbolic bases of V. Notice that ¢ o h = h o ¢ on the basis BU B¢ of
V. Therefore h € G,. O

Let us first discuss the cases n equal to two and three. In case n = 3, our flipflop geometry has already
been studied in [1] in guise of the geometry of nondegenerate subspaces of a four-dimensional F,2 -vector
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space with respect to a nondegenerate unitary form. Indeed, for n = 3 our flipflop geometry is obtained as
the geometry I'; of the twin building geometry of type D3 over the field F,2. (See Proposition 1 of [14] for
a characterization of spherical twin buildings.) Building-theoretically ¢ interchanges the positive and the
negative part of the twin building, interchanges the distances and preserves the codistance, cf. [2]. The
twin buildings of type D3 and of type As over I, are isomorphic, so the image of o under this isomorphism
will be a flip of the twin building geometry of type A3 over Fyz. It remains to see which flip this image
is. It is clear that a flip of the twin building of type A3(¢?) is induced by a nondegenerate polarity on the
projective space IF"(]F;‘2 ), and since the flip admits a chamber that is mapped to its opposite, this polarity
cannot be a symplectic one. So it is orthogonal or unitary. A nondegenerate two-dimensional subspace
of a orthogonal space has at least ¢> — 1 nondegenerate points, while a nondegenerate two-dimensional
subspace of a unitary space has ¢®> — ¢ nondegenerate points. Hence, indeed, our flipflop geometry in case
n = 3 coincides with the flipflop geometry for n = 3 from [1]. Therefore all properties of our geometry I"
for n = 3 follow from [1].

Theorem 4.3

Let n = 3. The geometry I is isomorphic to the geometry of nondegenerate subspaces of a nondegenerate
unitary space of dimension four over ;2. In particular, it is connected for all ¢ and simply connected for
q=>4.

See Section 5 for a definition of simple connectedness.
Proof. The first claim follows from the above discussion. The second claim follows from [1]. O

In case n = 2, by the above paragraph our ', is isomorphic to the residue of a line of the geometry of
nondegenerate subspaces of a four-dimensional F,2-vector space with respect to a nondegenerate unitary
form. Hence T', is a generalized digon, which certainly is connected.

This discussion shows that the desired properties of I', hold true for n equal to two and three. This
means that in the remainder of the paper we can assume n > 4, which we will do unless it is specified
otherwise.

The following lemma will be very useful throughout the article. Recall that the points and the lines
are the elements of I' of types one and two respectively.

Lemma 4.4

Let p be a point of I' and W D p be a three-dimensional f-singular subspace of V' of ((-,-))-rank at least
two. Let U be a two-dimensional subspace of W that contains at least one point and does not contain
p. Then U contains at least q*> — 2q — 1 (respectively, q*> — q — 1) points that are collinear with p if it is
(respectively, is not) a line.

Proof. Since W is f-singular, we only need to consider ((-,-)). Notice that, if U is a two-dimensional
subspace of W that is not totally isotropic with respect to ((,-)), then U contains ¢? — ¢ points, if U is
a line, and it contains ¢ points if it is not a line.

Consider U; = p*~ N W. Then, by the above, among the ¢> + 1 two-dimensional subspaces on p in
W, at least ¢> — ¢ meet U, in a point and hence they are lines. If U is itself a line, then at most ¢ + 1
of those lines do not meet U in a point of I'. This leaves at least ¢> — 2¢ — 1 lines on p meeting U in a
point. If U is not a line then at most one of the ¢ — ¢ — 1 lines on p does not meet U in a point. Hence
the lemma follows. O
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We need to prove that the geometry I' is connected. This follows from the connectedness of the
collinearity graph of T, i.e., the graph on the points of I' in which two points are adjacent if and only if
they are collinear.

Lemma 4.5
The collinearity graph of the geometry I' has diameter two. In particular, I' is connected.

Proof. Suppose n > 5. Let py,p> be distinct points of the geometry. Consider W := (p;,pa)* N
(p1,p2)*t. Then dim W > 2n — 4. Moreover, the space W is o-invariant and has rank at least 2n — 6,
which is at least four. Indeed, W+ = (py,p2,p7,p3) has rank at least two and hence its radical is at
most two-dimensional. Therefore Lemma 3.5 yields a point of I inside that complement. This point is
collinear in I' to both p; and p,.

So now suppose n = 4. Take pi, p2, and W as above. If the rank of W is at least three, then again
Lemma 3.5 yields a common neighbor of p; and p2. The only case that W does not have rank at least
three occurs in case of dim W = 4 and rk W = 2. If that happens, let W) be equal to p;- N pit, which is
six-dimensional and nondegenerate. Moreover, o is a flip of Wi, since it is a flip of (p1,pJ). Take U to
be a maximal f-singular subspace of W. Notice that U necessarily has to be three-dimensional, as W is
the direct sum of its radical and a hyperbolic line. Since ¢ is a flip of W7, the intersection U N U7 has to
be even-dimensional by Corollary 3.7. Hence W contains a point of I'; which is collinear to p; and p-.

Connectedness of the collinearity graph and hence the geometry follow from the finiteness of its
diameter. O

We summarize Lemma 4.5 and the results of [1] on connectedness in the following theorem and
corollary.

Theorem 4.6
Let n > 2. Then I is connected. O

Corollary 4.7
The geometry I is residually connected unless q = 2.

Proof. The residues of I are either direct sums (and as such connected) or isomorphic to our geometry
I in some smaller dimension (and as such connected by Theorem 4.6) or isomorphic to geometry of
nondegenerate subspaces of some IF,>-vector space with respect to a nondegenerate unitary form. The
latter one however is not connected in case of a three-dimensional Fy2-vector space, see [1]. O

5 Fundamental group and simple connectedness

Let ' be a connected geometry. A path of length & in the geometry is a sequence of elements (xo, - .., xg)
such that z; and z;y; are incident, 0 < i < k — 1. A cycle based at an element x is a path in which
9 = xr = x. Two paths are homotopically equivalent if one can be obtained from the other via the
following operations (called elementary homotopies): inserting or deleting a repetition (i.e., replacing x
by zx or vice versa), a return (i.e., replacing x by wyx or vice versa), or a triangle (i.e., replacing x
by xyzx or vice versa). The equivalence classes of cycles based at an element z form a group under
the operation induced by concatenation of cycles. This group is called the fundamental group of T' and
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denoted by m1 (I, z). A cycle based at z that is homotopically equivalent to the trivial cycle (x) is called
null-homotopic. Every cycle of length 2 or 3 is null-homotopic.

Suppose ' and [ are geometries over the same type set and suppose ¢ : I 5Tisa homomorphism
of geometries, i.e., ¢ preserves the types and sends incident elements to incident elements. A surjective
homomorphism ¢ between connected geometries [ and T is called a covering if and only if for every
non-empty flag F in T the mapping ¢ induces an isomorphism between the residue of Fin I and the
residue of F' = ¢(ﬁ) in I'. Coverings of a geometry correspond to the usual topological coverings of the
flag complex. It is well-known that a surjective homomorphism ¢ between connected geometries I’ and
I is a covering if and only if for every element Z in I the map ¢ induces an isomorphism between the
residue of  in I' and the residue of z = ¢(z) in I'. If ¢ is an isomorphism, then the covering is said to
be trivial.

Recall the following result.

Theorem 5.1
Let T be a connected geometry and let x be an element of I'. Then every covering of the geometry T is
trivial if and only if w1 (T, z) is trivial.

Proof. See [11]. O
A geometry satisfying the equivalent conditions in the previous theorem is called simply connected.

A geometric cycle in the geometry G is a cycle each element of which is incident with a common
element x.

Proposition 5.2
Every geometric cycle is null-homotopic.

Proof. Suppose v = x125 ... 2z is a cycle without returns all of its elements are incident with some
element z. If k& < 3 then v is null-homotopic by definition. So we assume that & > 3. If z; = z or
x3 = x then z; is incident to x3 and so < is homotopic to a shorter geometric cycle, namely ziz3 ... x1.
Similarly, if 2 = x or x4 = x then 7 is homotopic to z1xsx4 ... x1. Finally, if © # x;, i < 4, then ~ is
homotopic to x1xxy . .. x1, by inserting the triangle (x4, 2, x,x4). Thus, in all cases v is homotopic to a
shorter geometric cycle, and the claim follows by induction. O

Corollary 5.3
If two cycles are obtained from one another by inserting or erasing a geometric cycle then they are
homotopic. O

Let G be a geometry over the set I. Let i,j € I, then we define i ~ j if there exists a flag F' of cotype
{i,j} such that the residue of F' is a geometry containing two elements that are not incident. Then the
graph (I,~) is called the digon diagram of G.

Lemma 5.4
Let T' be a geometry of rank n > 4 with digon diagram
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and assume that for each element x of type n — 1 or n the collinearity graph of T';, is connected. Further-
more, suppose that if the residue I'y of some element y has a disconnected diagram falling into connected
components Ay, Ay, Az (one of those may be empty), then T, is equal to the direct sum of the three
truncations of I'y with respect to typ(A1), typ(Az) and typ(As). Then every cycle of T based at some
element of type 1 or 2 is homotopically equivalent to a cycle passing exclusively through elements of type
1 or 2.

Proof. We will induct on the number of elements of the path that are not of type 1 or 2. If this number
is zero there is nothing to prove. Take an arbitrary cycle v := ¢ = xpx1...2,-12; = . Let x4 be the
first element that is not of type 1 or 2. Clearly s ¢ {0,t}. There are the following cases to consider:

If the type of zs is less or equal n — 2 and if the type of x5y is bigger than the type of x5 then zs_;
and zs41 are incident as they belong to two different direct summands of I';,,. Thus 7 is homotopically
equivalent to the cycle zzy ... 2512541 ... 2.

Suppose the type of s, is smaller than the type of zs. Let y be an element of type n — 1 or n
which is incident to z, (in particular, take z,, if the type of z, is n — 1 or n), then y is incident to both
xs—1 and zsy1. Indeed, either y = x; and there is nothing to prove or y is contained in another direct
summand of I'y, than zs_1, xs41. Therefore, by Proposition 5.2, v is homotopically equivalent to the
path xxy ... x5 1yxs41 ... 2. Now pick two elements z, w of type 1 such that z is incident to 541 and w is
xs_1,if ;1 is a point, or a point incident to x; 1, otherwise. Using the hypothesis we can connect w and
z with a path ww; ...wyz passing exclusively through elements of type 1 and 2, all of which are incident
with y. Again by Proposition 5.2 v is homotopically equivalent to xx; ...ZTs_1w1 ... Wg2Tsy2 . .. & Which
contains fewer elements that are not of type 1 or 2.

Notice that the above paragraph includes the case typ(zs—1) € {1,2}, typ(zs+1) = n—1, typ(zs) = n.
The only case missing altogether is typ(zs_1) € {1,2}, typ(zs4+1) = n, typ(zs) = n — 1, which holds by
interchanging the labels n — 1 and n. O

Lemma 5.5
Assume that I' =T'y @ I's with I'y connected of rank at least two. Then I is simply connected.

Proof. See Lemma 7.2 of [5]. O

Our strategy of proof for the simple connectedness of the geometry I is to establish that its funda-
mental group is trivial. We want to apply Lemma 5.4 to I' so that it will suffice to prove that every cycle
passing through only points and lines is homotopically trivial. The residue of an element of type n — 1
or n of I' is isomorphic to the geometry of nondegenerate subspaces with respect to some unitary form
studied in [1]. There it is proved that I' satisfies the hypothesis of Lemma 5.4 on the collinearity graph
of the residues for n > 4. The direct sum property required in the hypothesis of Lemma 5.4 follows by
the definition of I'. Hence we can restrict ourselves to cycles passing through points and lines only. Since
any pair of distinct collinear points of I' uniquely determines the line incident to both points it actually
suffices to study cycles in the collinearity graph of I'. Finally, by Lemma 4.5, any cycle of length six or
more automatically decomposes into smaller cycles. Therefore all we need to establish is that arbitrary
triangles, quadrangles, and pentagons in the collinearity graph of I' are homotopically trivial. The next
two sections deal with that problem.
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6 Simple connectedness, Part 1

In this section we only deal with the case n > 4 and ¢ > 3. First we show that every triangle can be
decomposed into geometric triangles.

Lemma 6.1
All triangles are decomposable.

Proof. Consider a triangle with vertices (u), (v) and (w). Let U = (u,v,w). Then U is totally singular
with respect to (-,-). If it is nondegenerate with respect to ((-,-)) then the triangle is geometric. So we
can assume that U is degenerate. Since U contains a line it cannot have rank less than two. This means
it has rank exactly two and its radical R is one-dimensional, hence R = (r) for some r € U.

First let us suppose that R # R. Consider the line L = (u,v). Let W = L+ N L*. Then W
is a nondegenerate o-invariant subspace of codimension four and, hence, of dimension at least four.
Furthermore, with respect to (-,-), the space W is of plus type, since V and (L,L°) = W+ are of plus
type. Notice that R,R” C W. Let X = Rt N W. Consider W with respect to just (-,-). Since W
is nondegenerate of plus type, X is generated by singular vectors. In particular, there is a singular
one-dimensional space (t) which is contained in X but not in X?. Then the space (u,v,w,t) is totally
singular with respect to (-,-) and nondegenerate with respect to ((+,-)). Thus, (u,v,w,t) is an element of
I', and so our triangle is geometric.

Now suppose R = R and choose r € R such that r = r?. We claim that we can choose a four-
dimensional subspace W such that U C W, W is totally singular with respect to (+,-) and its rank with
respect to ((+,-)) is exactly two. Indeed consider first a maximal totally singular subspace X containing
U. Since o is a flip, the radical Y of X with respect to ((-,-)) has even dimension (since ¥ = X N X7).
Notice that R C Y. Let S be any other one-dimensional space in Y. Then W = (U, S) is as required.
Let now Y be the two-dimensional radical of W.

Let x be a nonzero vector in (u,v) N {(w,r). After a suitable scaling we can assume that v = u + v
and w = r + x. Notice that « is a nonsingular vector, since w is nonsingular. Pick a € F,2, a # 0,1, so
that u + av is nonsingular. Let us consider vectors ¢ of the form u + av + y, where y € Y\ R. Then
t is nonsingular and the point (t) is collinear with (u), (v), and (w) (since (u,t), (v,t), and (w,t) are
complements to Y in W). This allows us to decompose the triangle (u), (v), (w) as a product of three
triangles.

Let us compute the radicals of the three-dimensional spaces that these triangles generate. Those
radicals are the intersections of the respective three-dimensional spaces with Y. It is easy to compute
that (u,v,t) NY = (y), (v, w,t) NY = (y —ar), and (v,w,t)NY = (y —r).

We first assume that Y is not o-invariant. In that case Y NY? = R and so none of the above three
radicals can be o-invariant. Hence the three new triangles are geometric, and hence the triangle (u),
(v), (w) is decomposable. Finally, we deal with the case Y = Y. If we can choose y so that none of
the one-dimensional spaces (y), (y — r), and (y — ar) is o-invariant then again the three new triangles
are geometric and our initial triangle is decomposable. Note that Y contains exactly ¢ one-dimensional
o-invariant subspaces aside from r. Indeed, assuming that s and r are o-invariant vectors in Y, the
one-dimensional space (s + ar) is o invariant if and only if & = a and so there are ¢ choices for a.

Now each of the (¢> — 1)q vectors in the invariant spaces besides R can occur in at most three triples
(y), {y —r), and (y —ar). The total number of triples is ¢* — ¢> (once we pick y, the triple is determined)
and there are at most 3(¢q% —1)q triples that contain at least one bad one-dimensional space. Note however
that if we pick y to be an o-invariant vector, then both (y), (y —r) are o-invariant one-dimensional spaces
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hence the number of bad triples is strictly less than 3(¢® — ¢). If ¢ > 3 this assures the existence of a
good triple. O

We will consider 4-gons next. When studying them, the following lemma will prove useful.

Lemma 6.2
Let U be a four-dimensional (-, -)-nondegenerate subspace of V' of Witt index two and of ((-,-))-rank at
least one. Then V contains a point of I'.

Proof. If U has ((-,-))-rank one, any two-dimensional (-,-)-totally singular subspace of U not inside
the ((+,-))-radical of U contains points of T.

If U has ((:,))-rank two, then it has a two-dimensional ((-,-))-radical X. Any (:,)-totally singular
two-dimensional subspace of U that does not intersect X necessarily is ((+, -))-nondegenerate, so it contains
points of I'.

If the ((-,-))-rank of U equals three, then any (-,-)-totally singular two-dimensional subspace of U
not containing the ((+,))-radical of U has ((-,-))-rank at least one. Indeed, U does not contain three-
dimensional ((+,))-totally isotropic subspaces. Hence U contains points of T.

If U is ((-,-))-nondegenerate, then the claim follows from the fact that the unitary quadrangle H (3, ¢%)
does not contain a subquadrangle isomorphic to @7 (3, ¢?), see [8]. O

Lemma 6.3
Let ¢ > 3. Then any quadrangle inside a (-, -)-totally isotropic subspace of V' is null-homotopic.

Proof. Let a, b, ¢, d be a quadrangle such that (-,-) vanishes on (a, b, ¢, d).

If {a,b, c,d) is three-dimensional then it can have ((,-))-rank two or three. If its ((-,))-rank is three,
then a, b, ¢, d is a geometric cycle and, thus, null-homotopic. So we can assume that its ((-,-))-rank is
two. But then any complement of its radical X is a line of I'. Therefore ¢ and d have a common neighbor
on the line (a, b), since that contains at least six points.

If (a, b, ¢, d) is four-dimensional then it can have ((-,-))-rank two, three or four. In case of ((-,-))-rank
four the cycle a, b, ¢, d again is geometric, whence null-homotopic. If its ((-,-))-rank is two, then the span
(a,b,c) intersects the two-dimensional radical X in a one-dimensional space X;. Any two-dimensional
subspace of (a, b, c¢) missing X; is a complement of X and, thus, a line of I. Hence exactly one of the at
least six points of I' on the line (a, b) is not collinear to ¢, leaving at least five points that are collinear
to ¢. By symmetry, d is not collinear to a unique point of {a,b), whence there are at least four points on
(a,b) collinear to both ¢ and d, decomposing the quadrangle.

Finally, assume the ((-,-))-rank of (a,b,c,d) is three. Let X be its one-dimensional ((-,-))-radical.
If X is contained in (a,b,c), then (a,b,c) has ((-,))-rank two and any two-dimensional subspace of it
missing X is a line of I". Hence, in this case ¢ is collinear to all points of (a,b) except one. On the other
hand, by Lemma 4.4 the point d is collinear to ¢ — 2q — 1 points of (a,b). Removing the point that c
is not collinear to if necessary, there remain ¢? — 2¢q — 2 points of {(a,b) collinear to both ¢ and d. Since
q > 3, this is a positive number.

So we can assume that X is not contained in (a, b, ¢). Consider the two-dimensional subspace (d, X).
It intersects (a, b, c) in some one-dimensional space e distinct from X. Therefore, as the ((-,-))-rank of
(d, X)) is one, e is a point of I'. Since the ((-,-))-rank of (a,d, X) = (a,d,e) is two (indeed, it contains
the ((+,-))-radical X, but also the line {(a,d)), any two-dimensional subspace of (a,d, X) missing X is a
line of T'. In particular, {a,e) is a line of T'. For the same reason, the space (c, e) is a line of I'. We have
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decomposed the quadrangle a, b, ¢, d into the quadrangle a, b, ¢, e (which lies inside the three-dimensional
space (a, b, c) and by the above is null-homotopic) and the quadrangle a, e, ¢, d (which has the property
that the radical X lies inside (a, d, e) and hence is null-homotopic by the preceding paragraph). O

Remark 6.4 There exists a much shorter proof for ¢ > 4. Indeed, by Lemma 4.4 there exist ¢ — 3q — 2
points on (a,b) collinear to both ¢ and d, decomposing the quadrangle. This example illustrates that
studying the flipflip geometries over small fields may be quite difficult. And, indeed, we did not succeed
to decompose pentagons in case (n,q) = (4,3), but we have to rely on a computer based computation
instead.

Lemma 6.5
Let ¢ > 3. Any quadrangle with a (-,-)-perpendicular pair of opposite points is null-homotopic.

Proof. Let a, b, ¢, d be a quadrangle with a L ¢. In view of the preceding lemma we can assume that
b £ d. In that case {(a,c) is the radical of {a,b,c,d) and also of W = (a,c)t. It follows that (a,c) is
((+,-))-degenerate or that a and ¢ are collinear and the quadrangle decomposes in two triangles. Hence
assume {(a,c) is ((+,-))-degenerate. Then it has a one-dimensional ((-,-))-radical X. For each v € W we
will denote by v’ its image in W' = W/(a, c¢). We will identify W' with some complement of {(a,c) in W
containing b and d. (If no such complement exists, then (a,c) and (b,d) have a nontrivial intersection,
whence (a,b,c,d) is (-,-)-totally isotropic, so we are in the case of the preceding lemma.) Note that
the pre-image of a vector of W' is an affine two-dimensional subspace of W and the pre-image of a
one-dimensional subspace of W' is a three-dimensional subspace of W.

Choose a (-, -)-totally singular two-dimensional subspace [ of W' through b and an opposite (-, -)-totally
singular two-dimensional subspace m of W' through d. Notice that the pre-images (a, b, ¢) of b and (a, ¢, d)
of d in W have rank two or three with respect to ((-,-)) as they contain lines of I'. Therefore both ! and
m each contain at most ¢ + 1 one-dimensional subspaces whose pre-images in W have ((,-))-rank one.
Consequently, we can find a one-dimensional subspace z; of [ and a (-, -)-perpendicular one-dimensional
subspace z of m such that the pre-images of both z; and z2 in W have ((+,-))-rank two or three.

It is possible to find a common neighbor p of a and ¢ in {a, ¢, z1) and a common neighbor ¢ of a and
cin (a,c, z). Since z; L z2 and (a,c) is the (-,-)-radical of W we also have p L ¢. Similarly, b L z; and
d L zo implies b L p and d L ¢q. Consequently we have decomposed the quadrangle a, b, ¢, d into the
quadrangles a, b, ¢, p and a, p, ¢, ¢ and a, q, ¢, d, all three span a (-, -)-totally isotropic subspace and by
Lemma, 6.3 are null-homotopic. [l

Lemma 6.6
Let ¢ > 3. Any quadrangle is null-homotopic.

Proof. In view of Lemmas 6.3 and 6.5 we may assume that the quadrangle a, b, ¢, d has the property
a Y cand b £ d. Therefore the span (a,b, ¢,d) must be four-dimensional and the (-, -)-rank of (a, b, ¢, d)
must be four. Therefore the space (a,b,c,d)* contains a point e of I' by Lemma 6.2. By Lemma 4.4
there exist at least ¢ — 2¢q — 1 points of each line of the quadrangle a, b, ¢, d collinear to e. We have
decomposed the quadrangle a, b, ¢, d into quadrangles satisfying the hypothesis of Lemma 6.5, whence
a, b, ¢, d is null-homotopic. O

Lemma 6.7
Let ¢ > 3. Any pentagon a, b, ¢, d, e with a | ¢ and a L d is null-homotopic.
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Proof. By Lemma 4.4 the line {c,d) contains ¢ — 2¢ — 1 points of T’ collinear to a, decomposing the
pentagon. O

Lemma 6.8
Let ¢ > 3 and n > 5. Then any pentagon is null-homotopic.

Proof. Leta,b, ¢, d, e be a pentagon. In view of the preceding lemma we can assume a £ d and ¢ £ e.
Consequently, (a, ¢, d) has (-, -)-rank two, and its radical X, which is distinct from d, is contained in (c, d).
Since ¢ £ e and d L e we have e £ X. Therefore {a,c,d,e) has to be four-dimensional and its (-, -)-rank
is four. Hence the (-,-)-rank of (a,b,c,d,e) is at least four, and so is the (-,-)-rank of {(a,b,c,d,e)",
which has at least dimension five. Moreover, the ((-,-))-rank of {a,b, ¢,d, €) is at least two, as it contains
points, so the ((-,-))-rank of (a, b, c,d,e)* also is at least two. Hence we can choose a (-, -)-nondegenerate
four-dimensional subspace of (a, b, c,d,e)* that has ((-,-))-rank at least one, so by Lemma 6.2 the space
(a,b,c,d, e) contains a point f of I'. By Lemma 4.4 there exists points on (a, b}, (b, ¢}, {c,d), {d,e), (e,a)
collinear to f, decomposing a, b, ¢, d, e into quadrangles. O

Lemma 6.9
Let ¢ > 4 and let n = 4. Then any pentagon is null-homotopic.

Proof. Let a, b, ¢, d, e be a pentagon. In view of Lemma 6.7 we can assume that a £ d. Hence the
(+,-)-rank of {a,c,d) is two, and the (-,-)-radical X of (a,c,d) is contained in {c¢,d). Therefore the (-,-)-
rank of {a,c,d)" is four. Note that X cannot be the ((-,-))-radical of (a,c,d)*, as then it also would be
the ((+,-))-radical of (a,c,d)?. However, this is impossible as (¢, d) and (¢, d)? are ((-,))-nondegenerate.

If X is a point of T, then consider (a,c,d)* N X*-. This space is a complement of X inside (a, c,d)*
and as such it is (-, -)-nondegenerate. Moreover, the ((-,-))-rank of (a, ¢, d) is at least two, hence so is the
((+,-))-rank of (a, c,d)*, whence (a,c,d)* N X' is not ((-,-))-totally isotropic and by Lemma 6.2 we can
find a point p of T' in that space. Then (X, p) is a line of I.

If X is not a point of I', then we chose any (-, -)-singular one-dimensional subspace p of (a, ¢, d)-\ X -
and (X, p) is also a line of T'.

That line (X,p) contains at least ¢ — 3¢ — 2 points of ' collinear to a and d, which is at least one
since ¢ > 4, say f. Therefore we have decomposed the pentagon a, b, ¢, d, e into a quadrangle a, f, d, e
and a pentagon a, b, ¢, d, f, in which f L c.

If also f L b, then we are done by Lemma 6.7. If f / b, then we can repeat the whole argument
of the present proof for the pentagon f, d, ¢, b, a instead of a, b, ¢, d, e. We will then obtain another
quadrangle and a pentagon f, d, ¢, b, g with ¢ L f and ¢ L g, which is null-homotopic by Lemma 6.7. O

7 Simple connectedness, Part 2

In this section we deal with the case ¢ = 2 and n > 5. First of all note that in this case two points p and
q of I are collinear if and only if p L g and pllq. Therefore we do not have to worry about triangles.

Lemma 7.1
Any triangle of T' is geometric.
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Proof. Let a, b, ¢ be a triangle. Then allb, b1l c and clla implies that the ((-,-))-rank of (a,b,c) is
three, whence (a, b, c) is an element of I, so that the triangle a, b, ¢ is geometric. O

Lemma 7.2
Any quadrangle of ' is null-homotopic.

Proof. Let a, b, ¢, d be a quadrangle. Assume first that (a,c,a,c”) is of dimension four. Let
W := (a,c)* N{a,c)*. It is o-invariant, has dimension 2n — 4, (which is at least six) and has a zero- or
two-dimensional (-, -)-radical X (as (-,-) is alternating), which at the same time is the ((-,))-radical. By
Lemma 3.4 there exists a o-invariant (-,-)- and ((-, -))-nondegenerate complement W' to that radical in
W, and W' has dimension at least four.

On the space W' the map o acts as a flip. Indeed, consider a maximal (-, -)-totally singular subspace of
V that is generated by X, a and a maximal (-, -)-totally isotropic subspace U of W'. Since a is a point of T,
it is moved by o, whence the intersection U @& (X, a)NU® (X, a)? equals the intersection U XNU G X7,
which in turn is equal to (UNU?) @ X. Since X has even dimension and U & (X,a) NU? @ (X, a)? has
even dimension (it is the intersection of a maximal (-,-)-totally singular subspace with its image under
the flip o) also the intersection U N U? has even dimension. Therefore, o has to be a flip of W', as it is
conjugate to either oy or g2 by Proposition 3.6 and only o1 has the property that a maximal (-, -)-totally
isotropic subspace intersects its image in a subspace of even dimension.

Notice that b and d live in W and that their projections onto W' (with respect to the decomposition
W = W'® X) are points and they can be connected in W' by Theorem 4.6, hence so can b and d and,
thus, the quadrangle can be decomposed into triangles, since all these points are collinear with a and c.

It remains to consider the case where both (a,c,a?,c¢”) and (b,d,b°,d?) are three-dimensional. No-
tice that each of these two spaces is of (+,-)- and ((-,-))-rank two and that they are (-,-)- and ((-,-))-
perpendicular. Let U = (a,b, ¢,d) + (a,b,c,d). If U is of dimension less than six, then it has (-, -)-radical
of dimension at most one, which means that U+ has (-, -)-rank at least four. Now consider a o-invariant
complement to the radical in U+ and using Lemma 3.5 we see that U+ contains a point of I', which is
collinear to a, b, ¢, d.

So we can assume that U has dimension six and that its (-,-)-radical X has dimension two. Let W
be ¢ invariant complement to X in U+. Then W is at least two-dimensional and (-,-)-nondegenerate.
If X contains a o-invariant f-nonsingular one-dimensional subspace, its span with W is g-invariant and
f-nondegenerate of dimension at least three. So it contains a point by Lemma 3.5. Thus we can assume
that X is f-singular. We claim that W is of plus type and that o is a flip of W. Indeed, the span of U
and W equals to X*. Consider the quotient X+/X. Since X is f-singular, this is a space of plus type.
The image of U is of plus type, so the image of W (which is isometric to W) is of plus type, too. Since
X is two-dimensional, ¢ induces a flip on X+ /X. It also induces a flip on the image of U, thus it induces
a flip on the image of W, whence on W. Therefore W contains points. O

Lemma 7.3
Any pentagon of I is null-homotopic.

Proof. Let a, b, ¢, d, e be a pentagon. Let W be {(c,d)* N (c,d)* and let U be (a,c,d)* N {a,c,d)*.
The space W is nondegenerate o-invariant of dimension 2n — 4. Moreover, o is a flip on W, because o
is a flip on (c,d,c?,d?), as that space contains the line (c,d). The space U is o-invariant of dimension
at least 2n — 6 and has rank at least 2n — 8. By Lemma 3.5 the space U contains a point of I' unless it
has rank exactly two, in which case n = 5, and ¢ is not a flip on the complement of the radical. If the
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(+,-)-radical X of U is not f-singular, then we can choose a o-invariant f-nonsingular vector in X. Taking
the span of this vector together with a o-invariant complement Y of X in U produces a three-dimensional
f-nondegenerate o-invariant space, in which we can find a point of I' by Lemma 3.5. So we can assume
that X is f-singular. In this last case, as in the previous proof, show that Y is of plus type and o is a
flip on Y. Indeed, the image of U+ in X1 /X is of plus type and o induces a flip on it. O

Proof of Theorem 1 and Theorem 2. The claims (1) follow by Proposition 3.10 and Proposition
4.2. The claims (2) follow by Theorem 4.6 and Corollary 4.7. Claims (3) follow by Theorem 4.3 and
Sections 6 and 7 and Appendix A. O

8 Consequences of simple connectedness

In the present paper an amalgam A of groups is a set with a partial operation of multiplication and a
collection of subsets {H;}icr, for some index set I, such that the following hold:

1) A =UjerH;;

2) the product ab is defined if and only if a,b € H; for some i € I;

(1)
(2)
(3) the restriction of the multiplication to each H; turns H; into a group; and
(4)

4) H;N H;j is a subgroup in both H; and Hj for all ¢,5 € I.

It follows that the groups H; share the same identity element, which is then the only identity element
in A, and that a=! € A is well-defined for every a € A. We will call the groups H; the members of the
amalgam 4. Notice that our definition is a special case of the general definition of an amalgam of groups
as found, say, in [12].

A group H is called a completion of an amalgam A if there exists a map 7 : 4 — H such that
(1) for all ¢ € I the restriction of 7 to H; is a homomorphism of H; to H; and

(2) m(A) generates H.

Among all completions of A there is one “largest” which can be defined as the group having the following
presentation:
U(A) = (tn | h € A, tit, =t,, whenever zy = z in A).

Obviously, U(A) is a completion of A since one can take 7 to be the mapping h — . Every completion
of A is isomorphic to a quotient of U(A), and because of that U(A) is called the universal completion.

Suppose a group H < Aut I acts flag-transitively on a geometry I'. A rank k parabolic is the stabilizer
in H of a flag of corank k from I'. Parabolics of rank n — 1 (where n is the rank of I') are called mazimal
parabolics. They are exactly the stabilizers in H of elements of .

Let F' be a maximal flag in I', and let H, denote the stabilizer in H of « € I'. The amalgam
A = A(F) = Uger H, is called the amalgam of maximal parabolics in H. Since the action of H is
flag-transitive, this amalgam is defined uniquely up to conjugation in H. For a fixed flag F' we can also
use the notation M; for the maximal parabolic H,, where x € F is of type i. (We defined this notation in
the introduction.) For a subset J C I = {0,1,...,n — 1}, define M to be Njcs M}, including My = H.
Notice that My is a parabolic of rank |I \ J|; indeed, it is the stabilizer of the subflag of F' of type .J.
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Similarly to A, we can define the amalgam A, as the union of all rank s parabolics. With this notation
we can write A = A(,_1). Moreover, according to our definition, A,y = H.

Proposition 8.1 (Tits’ Lemma)

Suppose a group H acts flag-transitively on a geometry I' and let A be the amalgam of maximal parabolics
associated with some maximal flag F'. Then H is the universal completion of the amalgam A if and only
if ' is simply connected.

Proof. Follows from [13], Corollaire 1, applied to the flag complex of T'. O

Theorem 8.2

Let T be a geometry over some finite set I with a flag-transitive group of automorphisms G, let k < |I|,
let A and Ap_1 be the amalgam of parabolics resp. rank-k-parabolics with respect to some maximal
flag F', and assume that all residues of rank greater or equal k with respect to subsets of F' are simply

connected. Then G = U(A) = U(A(—1))-

Proof. We will proceed by induction and show that the universal completion of A(;_,) coincides with
the universal completion of A(;). Denote by Hy the universal completion of Ay, .

The universal completion Hy of A, is also a completion of A(,_1). Indeed, if n = k, then H,, =G,
which certainly is a completion of A,_1). In case n > k, the amalgam A is the union of all G
with J of corank k and we have a map 7 : Ay — Hy such that mg, : G; — Hy is a homomorphism.
Consequently, also mg,nq,, : Gy NGy — Hy is a homomorphism. It remains to show that the set of all
images 7(Gy NGy ) with [I\(JU J')| = k — 1 actually generate Hy. But since I's is connected (simple
connectedness assumes connectedness), the group n(Gy) < Hy is generated by all those images for a
fixed J (because the G; NG are maximal parabolics in G 7). Thus, Hy, is a completion of A(x_1), as it
is generated by the 7(G ).

Therefore there is a canonical homomorphism ¢ from Hy_; onto Hj, whose restriction to A _y) is the
identity. Let ¢ be the inverse of the restriction of ¢ to Ax_1). Let J C I be such that |I'\ J| = k and let
G 7 be defined as (Y(GyNA_1))). By simple connectedness of I'y and by Proposition 8.1 (Tits’ Lemma),

¢ induces an isomorphism of Gy onto G. Therefore, ¢ extends to an isomorphism of Ay C Hj, onto

./i(k) = U GJ C Hi_;.
JCII\J|=k

Hence the universal completion of A(;_;) coincides with the universal completion of A(). The fact
H,, = @ finishes the proof. O

Proof of Theorem 3. This follows immediately by Theorems 1, 2, and 8.2. O
Proof of Theorem 4. Lets=2ifg > 4and s =3if ¢ =2, 3, and suppose that n > s+1. Let H be the
universal completion of the amalgam A?S). Let ¢ be the canonical homomorphism of H onto H, that exists
due to the fact that H is a completion of A? . Denote by A% | the copy of Al in H, so that ¢ induces an

(s)° (s)
isomorphism of A?S) onto A?S). As in the proof of Theorem 2, let ¢ : A?S) — A?S) be the inverse of ¢, Q)
Additionally, define T; = ¢(T;) and T = (T3, ..., Ty). Observe that T;, Tj < M\ (; 4 = (Li, L;) C A7,
Since 9 restricted to the latter group is an isomorphism to 1/1(M?\{i7j}), the groups T; and Tj commute
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elementwise. Because T is the direct product of the groups T;, the map ¢ establishes an isomorphism
between 7" and T'.

Let J be a subset of I with |/ \ J] = s. Observe that M; = M9T. Accordingly, we would like to
define My as MYT, where M9 = )(M9). For this definition to make sense, we need to show that T
normalizes MY. Assume first that ¢ > 2. Since M? is normal in M; and since T < M;, we have that
T normalizes all M; and therefore T' normalizes every L; = Nj¢ I\{i}M]O . Observe that T; < L; and

Li,L; < M?\{l. i = (Ls, Lj). Since 9 is an isomorphism from A(()s) to fl(()s), the group fj normalizes L;
for all i and j. It is clear that MY is generated by L;, i € I\ J. The same must be true for MY and L;’s.

Therefore every Tj will normalize every Mf} which means that also 7' normalizes Mf} If ¢ = 2 the same
result can be achieved by using M?\{l. j}’s in place of L;’s; recall that in this case we assume s = 3.

Since T normalizes M9 and since TN MY = (T | j € I\ J) is isomorphic (via ¢) to T'N MY, the map
¢ establishes an isomorphism between M; and M, and, thus, ¢ extends to an isomorphism

Ag= U M — Ay

JCI|I\J|=s

Therefore, the universal completions of A, and A(()s) are isomorphic, and the claim follows from Theorem
3. O

The Main Theorems A and B can be proved using Theorem 4 in exactly the same fashion as the
Phan-type theorems of [1] and of [6] are proved. The exact details are left to the reader.

A Computations in GAP

In this section we report on a computation done in the computer algebra system GAP in order to prove
the following proposition.

Proposition A.1
Let T be the flipflop geometry for n =4 and ¢ = 2 or ¢ = 3. Then T is simply connected.

Proof. We prove both cases of the statement by using Proposition 8.1 (Tits’ Lemma). For this we
consider the maximal parabolics in SO (8,¢q) of a maximal flag F in I'. Let ey,...,eq, f1,...,fs be a
hyperbolic basis of the underlying vector space (cf. Section 3). Since SO (8, q) acts flag-transitively on
I’ we may choose F to be (e1), (e1,e2), (€1, e2,e3,e4), (€1, €2,€3, f1)-

The main part of the proof is computer based. We determine a generating set for each maximal
parabolic corresponding to F. For each generating set we compute a set of defining relators. The
generating sets constructed have the property that the intersection of two maximal parabolics is generated
be the intersection of their generating sets. Then the universal completion of the amalgam is defined by
the presentation given by the union of the generating sets and the union of the sets of defining relators.

Finally, we determine the index of a preimage of one of the maximal parabolics in the universal
completion. The group SO (8,q) is the universal completion of the amalgam if and only if the index of
the preimage in the universal completion is equal to the index of the maximal parabolic in SOT (8, q).
This is checked by performing a coset enumeration for the presentation of the universal completion over
the preimage of one of the maximal parabolics. O
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A matrix M € SO (8,¢?) lies in (our copy of) SO (8, q) if and only of (M*")~! = M. The stabilizer of
F' is isomorphic to C;lH. It is the set of all diagonal matrices in SOT (8, ¢) with elements of multiplicative
order dividing ¢ + 1 on the diagonal.

Below we provide enough information for each of the two cases to make it possible to check the claims
in any group theory computer system that provides the standard algorithms for working with matrix
groups over finite fields, permutation groups and finitely presented groups. We used GAP [4] for our
computations.

For each maximal parabolic we list a set of matrices and a finite presentation. The matrices together
with generators for the flag stabilizer form a generating set for the parabolic subgroup. Upper case
letters denoting matrices correspond to lower case letters in the finite presentations. It is routine to
verify that the given matrices satisfy the given relators. Unfortunately it is a bit more complicated to
check that the given presentations define each maximal parabolic. By direct inspection one checks that
each matrix is in SO™(8,3) and fixes the required elements in F. In order to show that the specified
sets of matrices generate the proposed parabolics it suffices to determine the order of the subgroup
each set generates. These are routine computations in GAP. Again, the generating sets for the maximal
parabolics are arranged such that the intersection of two parabolics is generated by the intersection of
their generating sets.

A.1 The case ¢ =3

In this case, we will show that the universal completion of the amalgam of the maximal parabolics
corresponding to {(e1), {e1,e2), (e1,ea,€3,e4) is already SOT(8,3). From this it follows that the universal
completion of the amalgam of all four maximal parabolics is SOT (8, 3).

Let z be a primitive element in Fy with minimal polynomial 22 — x — 1. We define the following
matrices:

25 27 1
25 28 25 28
1 25 2z
1 1
U= 27 2P V= 1
27z 27z
1 27 2P
1 1
1 1
1 1
z 20 23 23
25z z 20
W .= i Y = T
1 1
28 27 z z
2T 27 27 23

Each maximal parabolic in SOT (8, 3) is generated by the matrices specified in the following table together

24



with generators of the flag stabilizer.

stabilizer | element | generators
Sl (61> V7 W7 Y
52 <61762> U7 W7Y
53 (61,62,63,€4> U, V,W

In addition to these elements we use diagonal matrices D;, 1 < ¢ < 4, that generate the stabilizer
of the flag F, isomorphic to C§. The following presentations define each maximal parabolic. To each
presentation the relators d; for 1 <4 <4 and [d;, d;] for 1 <i,j < 4 need to be added.

Generators for Sy: di,ds,ds, dg, v, w,y.

Relators for Si: [v,d1], [v,d4], [w,d1], [w,dz], [y, ds], [y, d1], ¥*, v?, widsdy, vdzvdads, (ydy*ds)?,
(yw™d3)?, wldy 'wdywtdy, (wy)?d2d?, vw dyv~tw T T dad, tw,
vavdgw_lv_lyw_lv_lyw_lydglw_ldll, vavdgydglv_lyw_lv_lydglw_lydgzd?,,
dgvyv_lyw_lvdglva_lv_lywd4ywd4_2.

Generators for So: dyi,ds,ds, dy, u,w,y.
Relators for Sa: [u,w], [u,y], [u,ds], [u,dd], [w,d1], [w,d2], [y,d1], [y,dz], ¥?, w3dsds, dyu=3ds,
(ydsdy")?, udiudy ", wyw ™ dyydy " w=tdy, ydy 'wdy tydy dy 2 wdady fwyw !

Generators for Ss: dy,ds,ds,ds, u,v,w.

Relators for Ss: %, [u,w], [u,d4], [u,ds], [v, di], [v,d4], [w,ds], [w,d1], w?dsdy, u="d] ' u="ds,
u2dyud,, dy vt dy v ds, wdzwdzwdy, wowt dzv Tt w o dy s, woutd dy o e e dy s,
v lvw tou o twe tu Low Ludywdy.

The union of the relators above together with the generators dy,ds, ds, ds, u, v, w,y give a presentation
for the universal completion of the amalgam of the maximal parabolics. Coset enumeration over the
subgroup generated by u, v, w gives an index of 379040 which is the index of the maximal parabolic
stabilizing (e, es, e3,eq4) in SOT(8,3). This shows that SOT(8,3) is the universal completion of the
amalgam of maximal parabolics.

A.2 The case ¢ =2

In the following, let z be a primitive element in F; with minimal polynomial 22 + = 4+ 1. We define the
following matrices:
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22 z
1 22
z z
W .= 1 Y = 5 1
z z
1 z
22 22
1 1
22 22 2 1
1 z =z 22 1 =z
1 221 22 22 22
z z 1 22
S = PR T:= 1
1 22 22 z 1 22
1 =z 1 z z =z
22 22 1 z
z 22
z2 z 1 1
1 22 1 22
z 1 z =z
R:= 22 Q= z
z 22 1
1 z z 1
22 22 22 1

Each maximal parabolic in SOT (8, 2) is generated by the matrices specified in the following table together
with generators of the flag stabilizer.

stabilizer | element | generators

51 (61) V, W, T,R,Q,Y
SQ (61,€2> U, W,Y

53 (61,62763,64> U7V757W7T

54 <617627637f4> UavasaRaQ

In addition to these elements we use diagonal matrices D;, 1 < i < 4, that generate the stabilizer of
the flag F, isomorphic to Ci. The following presentations define each maximal parabolic. To each
presentation the relators d? for 1 < <4 and [d;,d;] for 1 < i,j < 4 need to be added.

Generators for Sy: dy,ds,ds, dg,v,w,t,r,q,9y.

Relators for Si: v2, y?, diqd; 'q~ ", dyrd; v~ Y, dayds 'y, doydy 'y, diydy ty, wtyr—ty, dyvd; tv,
d3r2d44, vYvY, w_ldglwdg, ydaydy, w_ldgwdzl, dlt_ldflt, dgvdglv, d;lvdw, wd4d;1d4w,
rq_Qd«oTld;l, d§1d4w_1d21w_1, q_lqugvdgl, rw_lr_ldglwdzl, d2t—1d;1td;1t—1, vdgltd4td4d2,
dgdiwtdgt, r2vwd2d3_1w_1v, dquyvtd4d2_1, dgwt_lwd4t_1d§1d4_1w_1, d;lw_ltdzlw_ltd3d4w,
tqydaq 't Yqdy yq Y, daytwadsydy Mtwads, dy 'yrotwedstdy tyq
wtdy fodywody tdy g tdy fw T dy t tydy ttwgdsttdy g w T e  yd

twdyq~ w T dyyqydsg T wdads, rtT wadsytwady 'wT qydag
qyd4q_1d§1w_1d;lqd;lyq_ldglw_ld;lqdzlyq_ldglw_ldglqd;lyq_ldglw_ldgl.
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Generators for Sy: dy,ds,ds, dg,u, w,y.
Relators for So: u?, y?, dywd; *w™!, dyyd; 'y, dowdy *w ™, dsud; 'u, dzsw tdyw ™", dzyds 'y, d; tyd, 'y,
dyud; tu, udy tudy, vwuw™' ) uyuy, wtdzdyw™t, wdadsw™t, wTyw T yw T yw Ty,

Generators for S3: di,ds,ds, dy,u,v,s,w,t.

Relators for Ss: u?, v?, 3, dlvdflv, dlwdflw_l, dltdflt_l, d4ud21u, d4vd21v, d4wd§1w_1,
d4sdlls_1, udfludg, wwuw ™!, wd;lw_ldg, wdglwdgl, w2d471d371, s~ udss™dy, sdflvsdgl,
s dgdody 572, t7 Ny T dyw ™ dy Y tdgst ™ sT g, davsdy tdad] ! sds.

Generators for Sy: dy,ds,ds,ds,u,v,s,r,q.

Relators for Sy: u?, v?, d§1d47“_2, r_ldglrdgl, 7“2d3d;1, rur—lu, qdflq_ldl, d4vd21v, rdflr_ldl,
rd;lr_ldg, d4s_1d4_15, vdl_lvdl, d4ud4_1u, d3ud3_1u, dgudl_lu, d31}d2_1v, s~ s uds,

dytq 2rtdy N st sudadyt s, qdartq tudsdy !, sdadytsdy tdysdy s,

q 'slrsldyrtsdydsdy tdt, qdyts T dyg  dady sdydady

The union of the relators above together with the generators d;,ds,ds,ds,u,v,w,y,s,t,r,q give a
presentation for the universal completion of the amalgam of the maximal parabolics. Coset enumeration
over the subgroup generated by v, w, y, t, r, ¢ gives an index of 2240 which is the index of the maximal
parabolic stabilizing (e;) in SOT(8,2). This shows that SO (8,2) is the universal completion of the
amalgam of maximal parabolics.
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