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Abstra
t

In this 
ontribution we establish a 
al
ulus of pseudodi�erential boundary

value problems with Hölder 
ontinuous 
oe�
ients. It is a generalization of the


al
ulus of pseudodi�erential boundary value problems introdu
ed by Boutet

de Monvel. We dis
uss their mapping properties in Bessel potential and 
ertain

Besov spa
es. Although having non-smooth 
oe�
ients and the operator 
lasses

being not 
losed under 
omposition, we will prove that the 
omposition of Green

operators a

1

(x;D

x

)a

2

(x;D

x

) 
oin
ides with a Green operator a(x;D

x

) up to

order m

1

+m

2

� �, where � 2 (0; �

2

) is arbitrary, a

j

(x; �) is in C

�

j

(R

n

) w.r.t.

x, and m

j

is the order of a

j

(x;D

x

), j = 1; 2. Moreover, a(x;D

x

) is obtained

by the asymptoti
 expansion formula of the smooth 
oe�
ient 
ase leaving out

all terms of order less than m

1

+ m

2

� �. This result is used to 
onstru
t a

parametrix of a uniformly ellipti
 Green operator a(x;D

x

).

Key words: Pseudodi�erential boundary value problems, non-smooth pseudodi�erential

operators
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1 Introdu
tion

In [5℄ L. Boutet de Monvel introdu
ed an operator 
lass modeling di�erential and

pseudodi�erential boundary problems, whi
h is 
losed under 
omposition and 
an be

used to 
onstru
t parametri
es to ellipti
 operators. It gave great impa
t in many

dire
tions. This 
al
ulus and further developed 
al
uli, 
f. e.g. Grubb [12℄, have

been used in index theory, 
f. [5℄, Rempel and S
hulze [22℄, in the theory of Navier-

Stokes equations, 
f. Grubb and Solonnikov [16, 13℄, in geometri
al problems as tra
e

expansions, 
f. e.g. Grubb and S
hrohe [15℄, and others, 
f. [12℄.

Although the original 
al
ulus of Boutet de Monvel was generalized in many

dire
tions, it is usually assumed that the symbols of the operators are smooth in

the spa
e variable x. In order to treat boundary value problems in domains with

1



2 1 INTRODUCTION

non-smooth boundary or apply the theory to quasi-linear equations, it is ne
essary

to allow symbols with limited smoothness in the spa
e variable x.

In the present 
ontribution we generalize the so-
alled Green operators in [5℄

to operators with symbols whi
h are Hölder 
ontinuous in x � also 
alled Green

operator with �Hölder 
ontinuous 
oe�
ients�. We dis
uss their mapping properties

and behavior under 
omposition. The present work extends and improves the results

of [1, 2℄, where some partial results in this dire
tion were proved and applied to

show the existen
e of a bounded H

1

-
al
ulus of the Stokes operator in so-
alled

asymptoti
ally �at layers with C

1;1

-boundary.

A Green operator in the half-spa
e R

n

+

= R

n�1

� (0;1) is of the form

a(x;D

x

) =

�

p(x;D

x

)

+

+ g(x;D

x

) k(x;D

x

)

t(x;D

x

) s(x

0

; D

x

0

)

�

:

S(R

n

+

)

N

�

S(R

n�1

)

M

!

C

0

(R

n

+

)

N

0

�

C

0

(R

n�1

)

M

0

(1.1)

Here p(x;D

x

)

+

= r

+

p(x;D

x

)e

+

is a trun
ated pseudodi�erential operator, k(x;D

x

)

is a Poisson operator (also 
alled potential operator), t(x

0

; D

x

) is a tra
e operator,

g(x;D

x

) is a singular Green operator, and s(x

0

; D

x

0

) is a pseudodi�erential operator

on R

n�1

, 
f. [5℄, [22℄, or [12℄ for the de�nition in the smooth 
oe�
ient 
ase. The

pre
ise de�nitions in the Hölder 
ontinuous 
ase are given below. They are based

on the de�nition of the 
lass C

�

S

m

1;0

(R

n

� R

n

), 
f. Kumano-Go and Nagase [19℄ or

Taylor [25℄, i.e.,

p 2 C

�

S

m

1;0

(R

n

� R

n

), k�

�

�

p(:; �)k

C

�

(R

n

)

� C

�

(1 + j�j)

m�j�j

for all � 2 N

n

0

;

where C

�

(R

n

) is the spa
e of all [� ℄-times di�erentiable fun
tions with bounded and

Hölder 
ontinuous [� ℄-th derivatives of degree � � [� ℄.

Having non-smooth 
oe�
ients there are several new aspe
ts: First of all, the

mapping properties in Bessel potential and Besov spa
es are of 
ourse limited by the

smoothness of the 
oe�
ients. It is well-known that, if p 2 C

�

S

m

1;0

(R

n

� R

n

), the

asso
iated pseudodi�erential operator p(x;D

x

) is a bounded operator

p(x;D

x

) : H

s+m

q

(R

n

)! H

s

q

(R

n

) if jsj < �;


f. e.g. [25, Proposition 2.1.D℄. Using the latter mapping properties in a ve
tor-valued

variant, we will prove our �rst main result:

THEOREM 1.1 Let a(x;D

x

) be a Green operator of order m 2 R, 
lass r 2 Z,

with C

�

-regularity in x. Then for every s 2 R

a(x;D

x

) : H

s+m

q

(R

n

+

)

N

�B

s+m�

1

q

q

(R

n�1

)

M

! H

s

q

(R

n

+

)

N

0

� B

s�

1

q

q

(R

n�1

)

M

0

provided that jsj < � if N

0

6= 0, js�

1

q

j < � if M

0

6= 0, s +m > r �

1

q

0

if N 6= 0, and

m 2 Z if p(x;D

x

) 6= 0.
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Considering 
ompositions of pseudodi�erential or Green operators with non-smooth


oe�
ients the situation is more 
ompli
ated. The 
lass of pseudodi�erential opera-

tors with non-smooth 
oe�
ients is of 
ourse not 
losed under 
omposition sin
e e.g.

[�

x

j

; p(x;D

x

)℄ = (�

x

j

p)(x;D

x

). In parti
ular the statement that p

1

(x;D

x

)p

2

(x;D

x

) =

(p

1

#p

2

)(x;D

x

) where p

1

#p

2

has the asymptoti
 expansion

p

1

#p

2

(x; �) �

X

�2N

n

0

1

�!

�

�

�

p

1

(x; �)D

�

x

p

2

(x; �) (1.2)


annot hold if p

2

is not smooth in x. However it will be shown under 
ertain restri
-

tions on m

1

that, if p

j

2 C

�

j

S

m

j

(R

n

� R

n

), j = 1; 2, for any � 2 (0; �

2

), � 62 N ,

p

1

(x;D

x

)p

2

(x;D

x

) =

X

j�j<�

1

�!

OP(�

�

�

p

1

(x; �)D

�

x

p

2

(x; �)) +R

�

;

where R

�

is of order m

1

+m

2

� � in the sense of the mapping properties in Bessel

potential and Besov spa
es, 
f. Theorem 3.6 below. Hen
e in some sense the asymp-

toti
 expansion is valid as long as D

�

x

p

2

(x; �) exists and is Hölder 
ontinuous w.r.t

x.

The 
orresponding statement for 
ompositions of Green operators is as follows:

THEOREM 1.2 Let a

j

(x;D

x

), j = 1; 2, be Green operators of order m

j

2 R, 
lass

r

j

2 Z, and 
oe�
ients in C

�

j

, �

j

> 0, j = 1; 2, and let p

j

; g

j

; k

j

; t

j

; s

j

; N

j

;M

j

; N

0

j

;M

0

j

denote the 
orresponding operators and parameters due to (1.1). Moreover, let N

0

2

=

N

1

, M

0

2

=M

1

and assume that the 
oe�
ients of ~g

2

and

~

k

2

are independent of x

n

and

that m

j

2 Z if p

j

6= 0. Then for every � 2 (0; �

2

), � 62 N, there is a Green operator

(a

1

#

[�℄

a

2

)(x;D

x

) of order m

1

+m

2

, 
lass max(r

1

+m

2

; r

2

), and with 
oe�
ients in

C

�

, � := min(�

1

; �

2

� [�℄), su
h that

a

1

(x;D

x

)a

2

(x;D

x

)�(a

1

#

[�℄

a

2

)(x;D

x

) :

H

s+m

1

+m

2

��

q

(R

n

+

)

N

2

�

B

s+m

1

+m

2

�

1

q

��

q

(R

n�1

)

M

2

!

H

s

q

(R

n

+

)

N

0

1

�

B

s�

1

q

q

(R

n�1

)

M

0

1

is a bounded linear mapping if the following 
onditions are satis�es:

1. jsj < � , s� � > ��

2

if N

0

1

6= 0,

�

�

�

s�

1

q

�

�

�

< � , s�

1

q

� � > ��

2

if M

0

1

6= 0,

2. ��

2

+ � < s+m

1

< �

2

if N

1

6= 0 and ��

2

+ � < s+m

1

�

1

q

< �

2

if M

1

6= 0,

3. s+m

1

> r

1

�

1

q

0

if N

1

6= 0 and s+m

1

+m

2

� � > r

2

�

1

q

0

if N

2

6= 0.

More pre
isely,

(a

1

#

[�℄

a

2

)(x;D

x

) =

�

p

1

#

[�℄

p

2

(x;D

x

)

+

+ g(x;D

x

) k(x;D

x

)

t(x

0

; D

x

) s(x

0

; D

x

0

)

�

;

where
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1. g(x;D

x

) = (p

1

#

0

[�℄

g

2

)(x;D

x

) + (g

1

#

[�℄

p

2

)(x;D

x

) + (g

1

#

0

[�℄

g

2

)(x;D

x

)

+(k

1

#

0

[�℄

t

2

)(x;D

x

)� l

�

(p

1

; p

2

)(x;D

x

),

2. t(x

0

; D

x

) = (t

1

#

[�℄

p

2

)(x;D

x

) + (t

1

#

0

[�℄

g

2

)(x

0

; D

x

) + (s

1

#

0

[�℄

t

2

)(x

0

; D

x

),

3. k(x;D

x

) = (p

1

#

[�℄

k

2

)(x;D

x

) + (g

1

#

0

[�℄

k

2

)(x;D

x

) + (k

1

#

0

[�℄

s

2

)(x;D

x

),

4. s(x

0

; D

x

0

) = (t

1

#

0

[�℄

k

2

)(x

0

; D

x

0

) + (s

1

#

0

[�℄

s

2

)(x

0

; D

x

0

),

and the terms are de�ned by (3.5), (4.8), (5.9)-(5.10), and (5.18) below.

Theorem 1.2 will be used to 
onstru
t an inverse of a uniformly ellipti
 Green

operator a(x;D

x

) up to order ��, where 0 < � < � and � > 0 is the regularity of the


oe�
ients of a(x;D

x

).

The stru
ture of the arti
le is as follows: In Se
tion 2 we summarize the ne
es-

sary preliminaries on ve
tor-valued and weighted fun
tion spa
es. Then in Se
tion 3

we 
onsider the mapping properties and the 
ompositions of operator-valued pseu-

dodi�erential operators with Hölder 
ontinuous 
oe�
ients, whi
h will be the basis

for the further dis
ussion sin
e Green operators 
an be 
onsidered as operator-valued

pseudodi�erential operators. The main results of this 
ontributions are proved in Se
-

tion 4 and Se
tion 5. In Se
tion 4, the Poisson, tra
e, and singular Green operators

are de�ned and the 
orresponding mapping properties and statements on 
omposi-

tions are proved. Then trun
ated pseudodi�erential operator enter the dis
ussion in

Se
tion 5, where �rst of all a transmission 
ondition for non-smooth pseudodi�eren-

tial operators is given. Finally, Se
tion 6 is devoted to the parametrix 
onstru
tion

in the 
ase of non-smooth 
oe�
ient.

A
knowledgments: The author expresses his gratitude to Gerd Grubb for sev-

eral helpful 
omments on the manus
ript.

2 Preliminaries

2.1 Ve
tor-Valued Besov and Bessel Potential Spa
es

First of all, N denotes the set of natural numbers (without 0), N

0

= N [ f0g, Z the

set of integers, R the real numbers, and C is the set of 
omplex numbers.

We will keep 
lose to the notation of the monograph [12℄. In parti
ular, �

x

j

f =

�

j

f , j = 1; : : : ; n, denotes the partial derivatives of f : R

n

! C and D

x

j

:= �i�

x

j

.

For s 2 R we de�ne [s℄ to be the largest integer � s and set [s℄

+

= maxfs; 0g.

In the following let X be a Bana
h spa
e and 
 � R

n

be a domain. Then

L

p

(
;X), 1 � p < 1, is de�ned as the spa
e of strongly measurable fun
tions

f : 
! X with

kfk

L

p

(
;X)

:=

�

Z




kf(x)k

p

X

dx

�

1

p

<1
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and L

1

(
;X) is the spa
e of all strongly measurable and essentially bounded fun
-

tions. Moreover, L

p

(
) denotes the standard Lebesgue spa
e and k � k

p

:= k � k

L

p

(
)

.

Similarly, `

p

(N

0

;X), 1 � p � 1, denotes the X-valued variant of `

p

(N

0

).

Furthermore, let S(R

n

;X) be the spa
e of smooth rapidly de
reasing fun
tion

f : R

n

! X and let S(R

n

) := S(R

n

; C ). Moreover, S

0

(R

n

;X) := L(S(R

n

); X)

denotes the spa
e of tempered X-valued distributions, 
f. e.g. Amann [3℄. As in the

s
alar 
ase the Fourier transformation is an isomorphism F : S(R

n

;X) ! S(R

n

;X)

and F : S

0

(R

n

;X)! S

0

(R

n

;X), 
f [3℄. Moreover, if p : R

n

! C is a smooth fun
tion

su
h that p and all its derivatives are of at most polynomial growth, then

p(D

x

)f := F

�1

[p(�)

^

f ℄;

^

f := F [f ℄;

is a bounded operator on S(R

n

;X) and S

0

(R

n

;X). In parti
ular let h�i := (1+ j�j

2

)

1

2

and let '

j

(�), j 2 N

0

, be a partition of unity on R

n

with supp'

0

� fj�j � 2g and

supp'

j

� f2

j�1

� j�j � 2

j+1

g for j 2 N .

Then the X-valued variants of the Bessel potential and Besov spa
es of order

s 2 R are de�ned as

H

s

p

(R

n

;X) := ff 2 S

0

(R

n

;X) : hD

x

i

s

f 2 L

p

(R

n

;X)g if 1 < p <1;

B

s

p;q

(R

n

;X) := ff 2 S

0

(R

n

;X) : (2

sj

'

j

(D

x

)f)

j2N

0

2 `

q

(N

0

;L

p

(R

n

;X))g;

where 1 � p; q � 1. Moreover, we will use the abbreviations B

s

p

(R

n

;X) :=

B

s

p;p

(R

n

;X), B

s

p

(R

n

) := B

s

p

(R

n

; C ), and H

s

p

(R

n

) := H

s

p

(R

n

; C ).

As in the s
alar 
ase, the following properties are simple 
onsequen
es of the

de�nition and the fa
t that '

j

(D

x

)h�i

s

f = k

j

� f with kk

j

k

L

1

(R

n

)

� C2

sj

, j 2 N

0

, 
f.

Stein [24, Chapter VI, Se
tion 5.3℄:

B

s

p;q

1

(R

n

;X) � B

s

p;q

2

(R

n

;X) for 1 � q

1

� q

2

� 1; 1 � p � 1

B

s

p;1

(R

n

;X) � H

s

p

(R

n

;X) � B

s

p;1

(R

n

;X) for 1 < p <1; (2.1)

B

s+"

p;1

(R

n

;X) � B

s

p;1

(R

n

;X) for 1 � p � 1; " > 0;

where s 2 R. In parti
ular,

B

s+"

p

(R

n

;X) � H

s

p

(R

n

;X) � B

s�"

p

(R

n

;X) for 1 < p <1; " > 0: (2.2)

For interpolation properties of the s
alar Besov and Bessel potential spa
es we refer

to Bergh and Löfström [4℄ and Triebel [26℄. As in the latter monographs we will

denote the 
omplex and real interpolation fun
tor by (:; :)

[�℄

, (:; :)

�;q

, respe
tively.

Lemma 2.1 Let 1 � p; q

0

; q

1

; q � 1, s

0

; s

1

2 R, s

0

6= s

1

, � 2 (0; 1), X be a Bana
h

spa
e, and let H be a Hilbert spa
e. Then

(B

s

0

p;q

0

(R

n

;X); B

s

1

p;q

1

(R

n

;X))

�;q

= B

s

p;q

(R

n

;X);

(H

s

0

p

(R

n

;X); H

s

1

p

(R

n

;X))

�;q

= B

s

p;q

(R

n

;X) if 1 < p <1;

(B

s

0

p;q

(R

n

;X); B

s

1

p;q

(R

n

;X))

[�℄

= B

s

p;q

(R

n

;X) if 1 � p <1;

(H

s

0

q

(R

n

;H); H

s

1

q

(R

n

;H))

[�℄

= H

s

q

(R

n

;H) if 1 < p <1;

where s = (1� �)s

0

+ �s

1

.
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Proof: For the �rst and third interpolation spa
es we refer to Amann [3, Se
tion

5℄ and the referen
es given there. The se
ond statement is a 
onsequen
e of the �rst

and (2.1). For the last statement, we note that the Mikhlin multiplier theorem holds

for L

p

(R

n

;H) if 1 < p <1. Hen
e the standard proof remains valid in the H-valued


ase, 
f. [4℄.

Furthermore, we note that

F (H

s

p

(R

n

;X

0

); H

s

p

(R

n

;X

1

)) = H

s

p

(R

n

;F (X

0

; X

1

)) for 1 < p <1

F (B

s

p

(R

n

;X

0

); B

s

p

(R

n

;X

1

)) = B

s

p

(R

n

;F (X

0

; X

1

)) for 1 � p <1

if F (:; :) = (:; :)

[�℄

or F (:; :) = (:; :)

�;q

. Sin
e hD

x

i

s

is by de�nition an isomorphism

from H

s

p

(R

n

;X

j

) onto L

p

(R

n

;X

j

), the statement for the Bessel potential spa
es is a


onsequen
e of the statement for the Lebesgue spa
es, 
f. Triebel [26, Se
tion 1.18.4℄.

Moreover, as in the s
alar 
ase f 7! ('

j

(D

x

)f)

j2N

0

is a retra
tion from B

s

p;q

(R

n

;X

k

),

k = 0; 1, into `

q

(N

0

;L

p

(R

n

;X

k

)) with 
oretra
tion (f

j

)

j2N

0

7!

P

1

j=0

2

�sj

 

j

(D

x

)f

j

,

where  

j

(D

x

) :=

P

1

k=�1

'

j+k

(D

x

). Hen
e the statement for B

s

p

(R

n

;X) is a 
onse-

quen
e of the interpolation properties of ve
tor-valued `

p

(N

0

) and L

p

-spa
es, 
f. [26,

Se
tion 1.18.1/4℄.

Finally, if X is re�exive, s 2 R, and 1 < p; q <1, then

(B

s

p;q

(R

n

;X))

0

�

=

B

�s

p

0

;q

0

(R

n

;X

0

); (H

s

p

(R

n

;X))

0

�

=

H

�s

p

0

(R

n

;X

0

);


f. [3℄ for the Besov spa
es and Edwards [6, 8.20.5℄ for (L

p

(R

n

;X))

0

�

=

L

p

0

(R

n

;X

0

),

whi
h implies the statement for H

s

p

(R

n

;X).

2.2 Weighted Fun
tion Spa
es

In the following we will use a measurable fun
tion ! : R

n

! (0;1) to de�ne weighted

Lebesgue, Besov-, and Bessel potential spa
es.

First of all, if M � R

n

is a non-empty measurable set, L

p

(M;!), 1 � p < 1,

denotes the ve
tor spa
e of all measurable fun
tions f : M ! C su
h that

kfk

L

p

(R

n

;!)

:=

�

Z

M

jf(x)j

p

!(x)dx

�

1

p

<1:

Sin
e f 7! f!

1

p

is an isometri
 isomorphism from L

p

(M;!) onto L

p

(M),

(L

p

(M;!))

0

= L

p

0

(M;!

0

); !

0

(x) := !(x)

�

p

0

p

; (2.3)

if 1 < p <1 by the usual identi�
ation of fun
tions with fun
tionals. Moreover, we

note that

(L

p

(R

n

; !

0

); L

p

(R

n

; !

1

))

�;p

= (L

p

(R

n

; !

0

); L

p

(R

n

; !

1

))

[�℄

= L

p

(R

n

; !)
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where !(x) := !

0

(x)

1��

!

1

(x)

�

, 0 < � < 1, and 1 � p < 1, 
f. [4, Theorem

5.4.1/5.5.3℄.

In order to get 
ontinuity of 
lassi
al singular integral operators on L

p

(R

n

; !) for

1 < p <1 a ne
essary and su�
ient 
ondition is that ! is in the Mu
kenhoupt 
lass

A

p

, i.e.,

sup

Q

1

jQj

Z

Q

!(x)dx

�

1

jQj

Z

Q

!(x)

�

p

0

p

dx

�

p

p

0

<1;

where the supremum is taken with respe
t to all 
ubes Q � R

n

, 
f. [24, Chapter V℄.

In the 
ase that !(x) = jx

n

j

Æp

, it is an elementary 
al
ulation that jx

n

j

Æp

2 A

p

if and

only if �

1

p

< Æ <

1

p

0

.

If ! 2 A

p

, 1 < p < 1, and s 2 R, then we de�ne the weighted Bessel potential

spa
e as

H

s

p

(R

n

; !) := fu 2 S

0

(R

n

) : hD

x

i

s

u 2 L

p

(R

n

; !)g

normed by khD

x

i

s

� k

L

p

(R

n

;!)

. Using the variant of the Mikhlin multiplier theorem

for weighted L

p

-spa
es when ! 2 A

p

, 
f. Gar
ia-Cuerva and Rubio de Fran
ia [8,

Chapter IV, Theorem 3.9℄, one 
an prove in the same way as for the standard Bessel

potential spa
es that

H

m

p

(R

n

; !) = W

m

p

(R

n

; !) := fu 2 L

p

(R

n

; !) : D

�

x

u 2 L

p

(R

n

; !) for j�j � mg (2.4)

for m 2 N

0

and that

(H

s

0

p

(R

n

; !); H

s

1

p

(R

n

; !))

[�℄

= H

s

p

(R

n

; !); s = (1� �)s

0

+ �s

1

; (2.5)

for all s

0

; s

1

2 R, 1 < p <1, and ! 2 A

p

, 
f. Fröhli
h [7, Lemma 8.1/Satz 8.3℄.

Moreover, sin
e hD

x

i

s

is an isomorphism from H

s

p

(R

n

; !) onto L

p

(R

n

; !) and

be
ause of (2.3),

(H

s

p

(R

n

; !))

0

= H

�s

p

0

(R

n

; !

0

); !

0

(x) = !(x)

�

p

0

p

: (2.6)

If ! 2 A

p

, the weighted Bessel potential spa
es on R

n

+

:= R

n�1

� (0;1) are de�ned

as

H

s

p

(R

n

+

; !) := r

+

H

s

p

(R

n

;!);

H

s

p;0

(R

n

+

; !) := fu 2 H

s

p

(R

n

; !) : supp u � R

n

+

g;

where r

+

f denotes the restri
tion of a distribution f to R

n

+

. As usual

H

m

p

(R

n

+

; !) = W

m

p

(R

n

+

; !) := fu 2 L

p

(R

n

+

; !) : D

�

x

u 2 L

p

(R

n

+

; !) for j�j � mg;


f. [7, Se
tion 8.2.2℄. Moreover, be
ause of (2.6) and the de�nitions,

H

s

p

(R

n

+

; !)

0

= H

�s

p

0

;0

(R

n

+

; !

0

); !

0

(x) = !(x)

�

p

0

p

:
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In parti
ular we will useH

s

p

(R

+

; jx

n

j

pÆ

) andH

s

p;0

(R

+

; jx

n

j

pÆ

) also denoted byH

s

p

(R

+

; x

pÆ

n

),

H

s

p;0

(R

+

; x

pÆ

n

), resp., with �

1

p

< Æ <

1

p

0

. Sin
e (1 + i�

n

)

t

2 S

t

1;0

(R � R) is a 
lassi
al

pseudodi�erential symbol and be
ause of the 
ontinuity of pseudodi�erential opera-

tors in weighted Bessel potential spa
es, 
f. Mars
hall [20℄,

(1 + iD

n

)

t

: H

s+t

p

(R; jx

n

j

Æp

)! H

s

p

(R; jx

n

j

Æp

):

By the Paley-Wiener theorem, supp(1 + iD

n

)

t

f � R

+

if supp f � R

+

. Hen
e

(1 + iD

n

)

t

: H

s+t

p;0

(R

+

; x

Æp

n

)! H

s

p;0

(R

+

; x

Æp

n

) (2.7)

(1� iD

n

)

t

: H

s+t

p

(R

+

; x

Æp

n

)! H

s

p

(R

+

; x

Æp

n

) (2.8)

are isomorphisms by (2.6) and ((1 + iD

n

)

t

)

0

= (1� iD

n

)

�t

.

As a 
onsequen
e we obtain the following generalization of Grubb and Kokholm [14,

Theorem 1.8℄:

Lemma 2.2 Let s 2 R. If 1 < q � 2, �

1

2

< Æ

1

<

1

q

�

1

2

< Æ

2

<

1

2

, and � =

(

1

q

�

1

2

� Æ

1

)=(Æ

2

� Æ

1

), then

(H

s

2

(R

+

; x

2Æ

1

n

); H

s

2

(R

+

; x

2Æ

2

n

))

�;q

� H

s

q

(R

+

); (2.9)

(H

s�Æ

1

2;0

(R

+

); H

s�Æ

2

2;0

(R

+

))

�;q

� H

s

q;0

(R

+

): (2.10)

Moreover, if 2 � q < 1, s 2 R, �

1

2

< Æ

1

<

1

2

�

1

q

< Æ

2

<

1

2

, and � = (

1

2

�

1

q

�

Æ

1

)=(Æ

2

� Æ

1

), then

(H

s

2;0

(R

+

; x

�2Æ

1

n

); H

s

2;0

(R

+

; x

�2Æ

2

n

))

�;q

� H

s

q;0

(R

+

); (2.11)

(H

s+Æ

1

2

(R

+

); H

s+Æ

2

2

(R

+

))

�;q

� H

s

q

(R

+

): (2.12)

Proof: The lemma was proved by Grubb and Kokholm [14, Theorem 1.8℄ for the


ase s = 0, where we note that H

�Æ

j

2;0

(R

+

) = H

�Æ

j

2

(R

+

) sin
e jÆ

j

j <

1

2

. Then the

general 
ase is a 
onsequen
e of (2.7)-(2.8).

Finally, we note that

X

s

p

(R

n

+

) = X

s

p

(R

n�1

;L

p

(R

+

)) \ L

p

(R

n�1

;X

s

p

(R

+

)) (2.13)

X

�s

p

(R

n

+

) = X

�s

p

(R

n�1

;L

p

(R

+

)) + L

p

(R

n�1

;X

�s

p

(R

+

)) (2.14)

where X = H or X = B and s > 0, 
f. e.g. Grubb [11, (A.23)℄ and the referen
es

given there.

If Æ � 0, s > 0, we de�ne the weighted Besov spa
e

B

s

q

(R

n

+

; x

Æq

n

) := ff 2 W

[s℄

q

(R

n

+

; x

Æq

n

) : kfk

B

s

q

(R

n

+

;x

Æq

n

)

<1g

kfk

q

B

s

q

(R

n

+

;x

Æq

n

)

:= kfk

q

W

[s℄

q

(R

n

+

;x

Æq

n

)

+

X

j�j�k

Z

R

n

+

jhj

�(s�k)q

k�

l

h

D

�

fk

q

L

q

(R

n

+

;x

Æq

n

)

dh

jhj

n

;
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where k; l 2 N

0

su
h that k < s and l > s� k. Then

B

s

q

(R

n

+

; x

Æq

n

) = (L

q

(R

n

+

; x

Æq

n

);W

m

q

(R

n

+

; x

Æq

n

))

�;q

; (2.15)

where s = �m, 0 < � < 1, m 2 N , 
f. [26, Theorem 3.3.1℄. Finally, we de�ne

B

�s

q;0

(R

n

+

; x

�Æq

n

) := (B

s

q

0

(R

n

+

; x

Æq

0

n

))

0

:

Note that the de�nition of this weighted Besov spa
e for Æ = 0 is 
onsistent with the

Besov spa
es de�ned by

B

s

q

(R

n

+

) := r

+

B

s

q

(R

n

); B

s

q;0

(R

n

+

) = ff 2 B

s

q

(R

n

) : supp f � R

n

+

g; s 2 R

and that B

s

q

(R

n

+

) = B

s

q;0

(R

n

+

) if and only if �

1

q

0

< s <

1

q

.

3 Operator-Valued Pseudodi�erential Operators with

Non-Smooth Coe�
ients

In the following we will use operator-valued pseudodi�erential operators with 
oe�-


ients in the Hölder spa
e C

�

(R

n

) of all fun
tions f : R

n

! C with Hölder 
ontinuous

derivatives �

�

x

f of degree � � [� ℄ for all j�j � [� ℄ normed by

kfk

C

�

(R

n

)

:=

X

j�j�[� ℄

k�

�

x

fk

1

+

X

j�j=[� ℄

sup

x6=y

j�

�

x

f(x)� �

�

x

f(y)j

jx� yj

��[� ℄

:

Here [� ℄ denotes the largest integer not larger than � . The ve
tor-valued variant

C

�

(R

n

;X), where X is a Bana
h spa
e, is de�ned in an obvious way.

In the following we will often use that

C

�

(R

n

) ,! C

���

0

(R

n�1

;C

�

0

(R)) for 0 < �

0

< �: (3.1)

De�nition 3.1 Let X be a Bana
h spa
e. The symbol spa
e C

�

S

m

1;Æ

(R

n

� R

n

;X),

� > 0, Æ 2 [0; 1℄, m 2 R, is the set of all fun
tions p : R

n

� R

n

! X that are smooth

with respe
t to � and are in C

�

with respe
t to x satisfying the estimates

kD

�

�

D

�

x

p(:; �)k

L

1

(R

n

;X)

� C

�;�

h�i

m�j�j+Æj�j

; kD

�

�

p(:; �)k

C

�

(R

n

;X)

� C

�

h�i

m�j�j+Æ�

for all � 2 N

n

0

and j�j � [� ℄.

For short we also write C

�

S

m

1;Æ

(X) or even C

�

S

m

1;Æ

if X is known from the 
on-

text. Obviously,

T

�>0

C

�

S

m

1;Æ

(R

n

� R

n

;X) 
oin
ides with the usual Hörmander 
lass

S

m

1;Æ

(R

n

� R

n

;X) in the ve
tor-valued variant.

Remark 3.2 Note that if p 2 C

�

S

m

0

1;Æ

(R

n

� R

n

;X

0

) \ C

�

S

m

1

1;Æ

(R

n

� R

n

;X

1

) and

(X

0

; X

1

) is an interpolation 
ouple, then p 2 C

�

S

m

1;Æ

(R

n

�R

n

;X) withX = (X

0

; X

1

)

�;q

or X = (X

0

; X

1

)

[�℄

, � 2 (0; 1), 1 � q � 1, and m = (1� �)m

0

+ �m

1

.



10 3 OPERATOR-VALUED PSEUDODIFFERENTIAL OPERATORS

In parti
ular we are interested in the 
ase Æ = 0. But we need the 
lasses

C

�

S

m

1;Æ

with Æ > 0 when working with the te
hnique 
alled symbol smoothing : If

p 2 C

�

S

m

1;Æ

(R

n

� R

n

;X), Æ 2 [0; 1), then for every 
 2 (Æ; 1) there is a de
omposition

p = p

#

+ p

b

with

p

#

2 S

m

1;


(R

n

� R

n

;X); p

b

2 C

�

S

m�(
�Æ)�

1;


(R

n

� R

n

;X); (3.2)


f. [25, Equation (1.3.21)℄. Moreover, if Æ = 0, we have

�

�

x

p

#

2 S

m

1;


(R

n

� R

n

;X) for j�j � �; (3.3)

�

�

x

p

#

2 S

m+
(j�j��)

1;


(R

n

� R

n

;X) for j�j > �; (3.4)


f. Taylor [25, Proposition 1.3.D℄. Note that the proofs in [25℄ are formulated for

s
alar symbols only, but they still hold in the X-valued setting sin
e they are based

on elementary estimates.

In the 
ase X = L(X

0

; X

1

) is the spa
e of all bounded linear operators A : X

0

!

X

1

for some Bana
h spa
es X

0

and X

1

we de�ne the pseudodi�erential operator of

a symbol p 2 C

�

S

m

1;0

(R

n

� R

n

;L(X

0

; X

1

)) as

p(x;D

x

)u = OP(p)u =

Z

R

n

e

ix��

p(x; �)û(�)�� for u 2 S(R

n

;X

0

);

where �� := (2�)

�n

d�. Moreover, OP

0

(p) and OP

n

(p) will denote the pseudodi�eren-

tial operator of a symbol depending on x

0

; �

0

2 R

n�1

, x

n

; �

n

2 R, respe
tively, where

we use the de
omposition x = (x

0

; x

n

), � = (�

0

; �

n

) for x; � 2 R

n

.

Note that, if p 2 S

m

1;Æ

(R

n

� R

n

;X), Æ 2 [0; 1), the well-known statements on


omposition, adjoints, and asymptoti
 expansion of pseudodi�erential operators with

s
alar symbols dire
tly 
arry over to the present operator valued setting, 
f. e.g.

Kumano-Go [18℄.

The proofs of the mapping properties of Green operators with non-smooth 
oef-

�
ients are based on the following two theorems.

THEOREM 3.3 Let � > 0, 1 < q < 1, m 2 R, and let H

0

; H

1

be Hilbert spa
es.

If p 2 C

�

S

m

1;0

(R

n

�R

n

;L(H

0

; H

1

)), then p(x;D

x

) extends to a bounded linear operator

p(x;D

x

) : H

s+m

q

(R

n

;H

0

)! H

s

q

(R

n

;H

1

) for all jsj < �:

Proof: Theorem 3.3 is an operator-valued variant of [25, Proposition 2.1.D℄. As

indi
ated in [1, Appendix℄ the proof given in [25℄ dire
tly 
arries over to the present

setting by using the Mikhlin multiplier theorem in the L(H)-valued version, where

it is essential that H is a Hilbert spa
e.

It is known that in general p(x;D

x

) does not have to be a bounded operator

from H

s+m

q

(R

n

;X

0

) to H

s

q

(R

n

;X

1

) if X

0

and X

1

are merely Bana
h spa
es, see [14,

Remark 1.7℄ for a 
ounterexample. But in the 
ase of ve
tor-valued Besov spa
es the

situation is easier:
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THEOREM 3.4 Let � > 0, 0 � � � 1, 1 � q; r � 1, m 2 R, and let X

0

; X

1

be Bana
h spa
es. If p 2 C

�

S

m

1;�

(R

n

� R

n

;L(X

0

; X

1

)), then p(x;D

x

) extends to a

bounded linear operator

p(x;D

x

) : B

s+m

q;r

(R

n

;X

0

)! B

s

q;r

(R

n

;X

1

) for all � �(1� �) < s < �:

Proof: On
e the 
ase � = 1 is proved, the 
ase � 2 [0; 1) is easily obtained by the

same arguments as in [25, Se
tion 2.1℄.

The 
ase X

0

= X

1

= C and q = r = 1 is proved in [25, Theorem 2.1.A℄. The

proof 
an be adapted to our situation as follows: For the 
ase q; r 2 [1;1℄ we just

have to repla
e [25, Lemma 2.1.H℄ with [17, Theorem 2.4℄ and have to use [17, Lemma

2.5℄ instead of [25, Equation (2.1.23)℄. Then the proof in the present ve
tor-valued


ase is literally the same as in the s
alar 
ase sin
e all inequalities are obtained by

dire
t (and in prin
iple elementary) estimates. In parti
ular the Mikhlin multiplier

theorem is not needed in 
ontrary to the proof for the Bessel potential spa
es.

The following variant of the latter theorem will be useful in order to analyze some

remainder terms in the 
omposition of Green operators.

Lemma 3.5 Let �; �

0

> 0, 1 � q; r � 1, and let p 2 C

�

S

m

1;0

(R

n

� R

n

;L(X

0

; X

1

)),

m 2 R. If additionally p 2 C

�

0

S

m��

1;0

(R

n

� R

n

;L(X

0

; X

1

)) for some 0 < � < � , then

p(x;D

x

) : B

s+m��

q;r

(R

n

;X

0

)! B

s

q;r

(R

n

;X

1

)

is a 
ontinuous mapping for all �� + � < s < � .

Proof: Sin
e 0 < � < � , there is a Æ 2 (0; 1) su
h that � = �Æ. Let p = p

#

+ p

b

be the de
omposition as des
ribed above with 
 = Æ. Sin
e p 2 C

�

0

S

m��

1;0

(R

n

�

R

n

;L(X

0

; X

1

)), p

#

2 S

m��

1;Æ

(R

n

�R

n

;L(X

0

; X

1

)):Moreover, be
ause of p 2 C

�

S

m

1;0

(R

n

�

R

n

;L(X

0

; X

1

)) and � = Æ� , p

b

2 C

�

S

m��

1;Æ

(R

n

� R

n

;L(X

0

; X

1

)): Hen
e the lemma is

a 
onsequen
e of Theorem 3.4.

We denote for k 2 N

0

(p

1

#

k

p

2

)(x; �) =

X

j�j�k

1

�!

�

�

�

p

1

(x; �)D

�

x

p

2

(x; �): (3.5)

Moreover, if p

j

(x

0

; �

0

) are the symbols of operator-valued pseudodi�erential operators

on R

n�1

, p

1

#

0

k

p

2

is de�ned as above with (x; �; �) repla
ed by (x

0

; �

0

; �

0

) 2 R

n�1

�

R

n�1

� N

n�1

0

. In the following we will often use the abbreviation

R

�

(p

1

; p

2

) := p

1

(x;D

x

)p

2

(x;D

x

)� (p

1

#

[�℄

p

2

)(x;D

x

)

and R

0

�

(p

1

; p

2

) for operators on R

n�1

where � 2 (0; �

2

).
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The following theorem shows that R

�

is of order m

1

+m

2

� � in the sense of map-

ping properties in Besov and Bessel potential spa
es, where � 2 (0; �

2

) is arbitrary.

This theorem is the basis for all statements on 
ompositions of Green operators with

non-smooth 
oe�
ients.

THEOREM 3.6 Let 1 � p; q � 1, m

1

; m

2

2 R, �

1

; �

2

> 0, � 2 (0; �

2

), � :=

min(�

1

; �

2

� [�℄), and let p

1

2 C

�

1

S

m

1

1;0

(R

n

� R

n

;L(X

1

; X

2

)) and p

2

2 C

�

2

S

m

2

1;0

(R

n

�

R

n

;L(X

0

; X

1

)), where X

0

; X

1

; X

2

are Bana
h spa
es. Then for every s 2 R su
h that

jsj < � , s� � > ��

2

, and ��

2

+ � < s+m

1

< �

2

p

1

(x;D

x

)p

2

(x;D

x

)� p

1

#

[�℄

p

2

(x;D

x

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s

p;q

(R

n

;X

2

):

are bounded operators (de�ned by extension from S(R

n

;X

0

)). The analogous state-

ment holds for Bessel potential spa
es instead of Besov spa
es if 1 < p < 1 and

� 62 N.

Proof: First of all, if p

1

is 
hosen a

ording to the assumptions of the theorem and

p

2

2 S

m

2

1;Æ

(R

n

�R

n

;L(X

0

; X

1

)), 0 � Æ < 1, is a smooth symbol, then there is a symbol

p

1

#p

2

2 C

�

1

S

m

1

+m

2

1;Æ

(R

n

� R

n

;L(X

0

; X

1

)) su
h that

p

1

(x;D

x

)p

2

(x;D

x

)f = p

1

#p

2

(x;D

x

)f (3.6)

for all f 2 S(R

n

;X

0

) and the asymptoti
 expansion (1.2) holds. The latter statement


an be proved by a simple modi�
ation of the standard proof for 
ompositions of

smooth symbols, 
f. e.g. [18, Chapter 2, Theorem 1.7℄. The 
ru
ial fa
t is that only

smoothness of p

1

in � 2 R

n

and smoothness of p

2

in x are needed in order to make

the proof using os
illatory integrals work.

Let Æ :=

�

�

2

. Then by (3.2)-(3.4) p

2

(x; �) = p

#

2

(x; �)+ p

b

2

(x; �) with p

b

2

2 C

�

2

S

m

2

��

1;Æ

and

�

�

x

p

#

2

2 S

m

2

1;Æ

(R

n

� R

n

;L(X

0

; X

1

)) if j�j � [�

2

℄;

�

�

x

p

#

2

2 S

m

2

�Æ(�

2

�j�j)

1;Æ

(R

n

� R

n

;L(X

0

; X

1

)) if j�j > [�

2

℄:

Hen
e we get

p

1

(x;D

x

)p

2

(x;D

x

) = p

1

(x;D

x

)p

#

2

(x;D

x

) + p

1

(x;D

x

)p

b

2

(x;D

x

);

where p

1

(x;D

x

)p

b

2

(x;D

x

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

) ! B

s

p;q

(R

n

;X

1

) is a bounded opera-

tor sin
e ��

2

(1� Æ) = ��

2

+ � < s+m

1

< �

2

and jsj < �

1

.

Moreover, p

1

(x; �) = p

#

1

(x; �) + p

b

1

(x; �) with p

#

1

2 S

m

1

1;Æ

and p

b

1

2 C

�

1

S

m

1

�Æ�

1

1;Æ

. Be-


ause of (3.6), p

#

1

(x;D

x

)p

#

2

(x;D

x

) = p

#

(x;D

x

) and p

b

1

(x;D

x

)p

#

2

(x;D

x

) = p

b

(x;D

x

)

with

p

#

(x; �) �

X

�2N

n

0

1

�!

�

�

�

p

#

1

(x; �)D

�

x

p

#

2

(x; �); p

b

(x; �) �

X

�2N

n

0

1

�!

�

�

�

p

b

1

(x; �)D

�

x

p

#

2

(x; �);
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where

�

�

�

p

#

1

(x; �)D

�

x

p

#

2

(x; �) 2 C

�

1

S

m

1

+m

2

�(1�Æ)j�j��

1;Æ

(R

n

� R

n

;L(X

0

; X

2

))

�

�

�

p

b

1

(x; �)D

�

x

p

#

2

(x; �) 2 C

�

1

S

m

1

+m

2

�(1�Æ)j�j���Æ�

1

1;Æ

(R

n

� R

n

;L(X

0

; X

2

))

if j�j > [�℄. Thus, sin
e (1� Æ)j�j � 0,

p

1

(x; �)p

#

2

(x; �) =

X

j�j�[�℄

1

�!

�

�

�

p

1

(x; �)D

�

x

p

#

2

(x; �) + r

#

(x; �) + r

b

(x; �)

with r

#

2 S

m

1

+m

2

��

1;Æ

and r

b

2 C

�

1

S

m

1

+m

2

���Æ�

1

1;Æ

. Hen
e

r

b

(x;D

x

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s+Æ�

1

p;q

(R

n

;X

2

) if � �

1

+ Æ�

1

< s+ Æ�

1

< �

1

and therefore

r

#

(x;D

x

) + r

b

(x;D

x

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s

p;q

(R

n

;X

2

) if jsj < �

1

:

Moreover, if j�j � [�℄,

�

�

�

p

1

(x; �)D

�

x

p

#

2

(x; �) =

�

�

�

p

1

(x; �)D

�

x

p

2

(x; �)� �

�

�

p

#

1

(x; �)D

�

x

p

b

2

(x; �)� �

�

�

p

b

1

(x; �)D

�

x

p

b

2

(x; �);

where �

�

�

p

#

1

D

�

x

p

b

2

2 C

�

2

�j�j

S

m

1

+m

2

�(1�Æ)j�j��

1;Æ

and �

�

�

p

b

1

D

�

x

p

b

2

2 C

�

S

m

1

+m

2

���Æ�

1

1;Æ

. Hen
e

OP(�

�

�

p

#

1

D

�

x

p

b

2

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s+(1�Æ)j�j

p;q

(R

n

;X

2

)

if �(�

2

� j�j)(1� Æ) < s+ (1� Æ)j�j < �

2

� j�j. Thus

OP(�

�

�

p

#

1

D

�

x

p

b

2

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s

p;q

(R

n

;X

2

)

for all jsj < � . Moreover,

OP(�

�

�

p

b

1

D

�

x

p

b

2

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s+Æ�

1

p;q

(R

n

;X

2

)

if �� + �Æ < s+ Æ�

1

< � and therefore

OP(�

�

�

p

b

1

D

�

x

p

b

2

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s

p;q

(R

n

;X

2

)

for jsj < � . Combining all terms, we have proved the theorem for the 
ase of Besov

spa
es. Be
ause of (2.2) and sin
e � 2 (0; �

2

) is arbitrary, the statement for Bessel

potential spa
es is a 
onsequen
e of the one for Besov spa
es.

Remark 3.7 In the 
ase of s
alar Bessel potential spa
es Mars
hall proved a similar

theorem in the 
ontext of non-smooth symbols of the 
lass S

m

�;Æ

, 
f. [21, Theorem

3.5℄. It 
overs the 
ase X

0

= X

1

= C , � � 1, and �

1

= �

2

of the latter theorem.
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4 Poisson Operators, Tra
e Operators, and Singular

Green Operators

We assume that the reader is familiar with the basi
 de�nitions of the Boutet de

Monvel 
al
ulus, 
f. [5℄, [12℄, [22℄, or [23℄. Re
all that S(R

+

) is the spa
e of

smooth rapidly de
reasing fun
tions on R

+

. Moreover, sin
e S(R

+

) is a nu
lear

spa
e, S(R

+

)

^


S(R

+

) = S(R

2

++

), where R

2

++

:= R

+

� R

+

.

We start with the de�nition of the symbol-kernels of the non-smooth Poisson,

tra
e, and singular Green operators.

De�nition 4.1 The spa
e C

�

S

d

1;0

(R

N

� R

n�1

;S(R

+

)), d 2 R, n;N 2 N, 
onsists of

all fun
tions

~

f(x; �

0

; y

n

), whi
h are smooth in (�

0

; y

n

) 2 R

n�1

� R

+

, are in C

�

(R

N

)

with respe
t to x, and satisfy

ky

l

n

�

l

0

y

n

D

�

�

0

~

f(:; �

0

; :)k

C

�

(R

N

;L

2

y

n

(R

+

))

� C

�;l;l

0

h�

0

i

d+

1

2

�l+l

0

�j�j

(4.1)

for all � 2 N

n�1

0

; l; l

0

2 N

0

.

Similarly, the spa
e C

�

S

d

1;0

(R

N

� R

n�1

;S(R

2

++

)), d 2 R, n;N 2 N, is the spa
e

of all

~

f(x; �

0

; y

n

; z

n

), whi
h are smooth in (�

0

; y

n

; z

n

) 2 R

n�1

� R

2

++

and whi
h are in

C

�

(R

N

) with respe
t to x su
h that

ky

k

n

�

k

0

y

n

z

l

n

�

l

0

z

n

D

�

�

0

~

f(:; �

0

; :)k

C

�

(R

N

;L

2

y

n

;z

n

(R

2

++

))

� C

�;k;k

0

;l;l

0

h�

0

i

d+1�k+k

0

�l+l

0

�j�j

(4.2)

for all � 2 N

n�1

0

; k; k

0

; l; l

0

2 N

0

.

Now the Poisson operators with non-smooth 
oe�
ients are de�ned in almost the

same way as in the smooth 
ase:

De�nition 4.2 Let

~

k =

~

k(x; �

0

; y

n

) 2 C

�

S

d�1

1;0

(R

n

� R

n�1

;S(R

+

)), d 2 R. Then we

de�ne the Poisson operator of order d by

k(x;D

x

)a = F

�1

�

0

7!x

0

h

~

k(x; �

0

; x

n

)�a(�

0

)

i

; a 2 S(R

n�1

);

where �a(�

0

) := F

x

0

7!�

0

[a℄ denotes the partial Fourier transform applied to a.

Remarks 4.3 1. In the following many symbol-kernels

~

k(x; �

0

; y

n

) will depend

only on x

0

2 R

n�1

as in the standard 
al
ulus with smooth 
oe�
ient. This

fa
t will be denoted by

~

k 2 C

�

S

d�1

1;0

(R

n�1

� R

n�1

;S(R

+

)). But we will also

need these more general symbol-kernels sin
e they o

ur naturally when 
on-

sidering k(x;D

x

)a := r

+

p(x;D

x

)Æ

0


a, where p is a pseudodi�erential operator

satisfying the transmission 
ondition de�ned below and Æ

0

denotes the delta

distribution w.r.t. x

n

.
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2. If

~

k 2 S

d�1

1;0

(R

n

�R

n�1

;S(R

+

)) =

T

�>0

C

�

S

d�1

1;0

(R

n

�R

n�1

;S(R

+

)) is a smooth

symbol, then

~

k(x; �

0

; x

n

) 2 S(R

+

) w.r.t x

n

and one 
an prove that k(x;D

x

) =

k

0

(x

0

; D

x

) with

~

k

0

(x

0

; �

0

; x

n

) 2 S

d�1

1;0

(R

n�1

�R

n�1

;S(R

+

)), 
f. [12, Remark 2.4.9℄.

Moreover,

~

k

0

(x

0

; �

0

; x

n

) �

X

k2N

0

1

k!

x

k

n

�

k

x

n

k(x

0

; 0; �

0

; y

n

)j

y

n

=x

n

(4.3)

Of 
ourse the latter statement no longer holds if k(x; �

0

; y

n

) is not smooth in

x

n

. Nevertheless k(x;D

x

) 
an be approximated by an operator k

0

(x

0

; D

x

) with

symbol-kernel derived from (4.3) with k < � , 
f. Theorem 4.11 below.

3. For ea
h �xed x 2 R

n

the symbol-kernel

~

k

x

(�

0

; y

n

) :=

~

k(x; �

0

; y

n

) belongs to

S

d�1

1;0

(R

n�1

� R

n�1

;S(R

+

)) w.r.t (�

0

; y

n

). Moreover, let

j

~

f j

(d�1)

m

:= sup

x

0

;�

0

2R

n�1

;l+l

0

+j�j+j�j�m

ky

l

n

�

l

0

y

n

D

�

x

0

D

�

�

0

~

f(x

0

; �

0

; :))k

L

2

(R

+

)

h�

0

i

�d+

1

2

+l�l

0

+j�j

for f 2 S

d�1

1;0

(R

n�1

�R

n�1

;S(R

+

)). Then

~

k 2 C

�

S

d�1

1;0

(R

n

�R

n�1

;S(R

+

)) if and

only if

~

k

x

2 S

d�1

1;0

(R

n�1

� R

n�1

;S(R

+

)) for ea
h �xed x 2 R

n

and

j�

�

x

~

k(x; :)j

(d�1)

m

� C

�;m

for j�j � [� ℄;

j�

�

x

~

k(x; :)� �

�

x

~

k(y; :)j

(d�1)

m

� C

�;m

jx� yj

��[� ℄

for j�j = [� ℄

uniformly in x; y 2 R

n

and for all m 2 N

0

.

Finally, we note that the boundary symbol operator k(x; �

0

; D

n

) is de�ned as a one-

dimensional operator with symbol-kernel

~

k(x; �

0

; y

n

) for �xed (x

0

; �

0

).

The tra
e and singular Green operators are de�ned as follows:

De�nition 4.4 Let d 2 R and let r 2 N

0

.

1. If

~

t 2 C

�

S

d

1;0

(R

n�1

�R

n�1

;S(R

+

)), s

j

2 C

�

S

d�j

1;0

(R

n�1

�R

n�1

), j = 0; : : : ; r�1,

then the asso
iated tra
e operator of order d and 
lass r is de�ned as

t(x

0

; D

x

)f =

r�1

X

j=0

s

j

(x

0

; D

x

0

)


j

f + t

0

(x

0

; D

x

)f

t

0

(x

0

; D

x

)f = F

�1

�

0

7!x

0

�

Z

1

0

~

t

0

(x

0

; �

0

; y

n

)

�

f(�

0

; y

n

)dy

n

�

;

where

�

f(�

0

; x

n

) = F

x

0

7!�

0

[f(:; x

n

)℄ and 


j

f = D

j

n

f j

x

n

=0

.

2. If ~g 2 C

�

S

d�1

1;0

(R

n

� R

n�1

;S(R

2

++

)),

~

k

j

2 C

�

S

d�j�1

1;0

(R

n

� R

n�1

;S(R

+

)) for

j = 0; : : : ; r � 1, then the asso
iated singular Green operator of order d and
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lass r is de�ned as

g(x;D

x

)f =

r�1

X

j=0

k

j

(x;D

x

)


j

f + g

0

(x;D

x

)f;

g

0

(x;D

x

)f = F

�1

�

0

7!x

0

�

Z

1

0

~g

0

(x; �

0

; x

n

; y

n

)

�

f(�

0

; y

n

)dy

n

�

;

where

�

f and 


j

f are as above.

Finally, the boundary symbol operators t(x

0

; �

0

; D

n

) and g(x; �

0

; D

n

) are de�ned in

the same way as for the Poisson operator.

Remark 4.5 Let a

j

(x; �

0

; D

n

), j = 1; 2, be the boundary symbol operator of a Pois-

son, tra
e, or singular Green operator of order d

j

, 
lass r

j

, with 
oe�
ients in C

�

j

.

Using the observation of Remark 4.3.2 it follows from the standard 
al
ulus that the


omposition a

1

(x; �

0

; D

n

)a

2

(x

0

; �

0

; D

n

) = a(x; �

0

; D

n

) of boundary symbol operators is

again a boundary symbol operator if the 
omposition is well-de�ned and the 
oe�-


ients of a

2

are independent of x

n

. The new boundary symbol operator is of order

d

1

+ d

2

, 
lass r

2

, and has 
oe�
ients in C

min(�

1

;�

2

)

.

In order to apply Theorem 3.3 and Theorem 3.6 it is an important fa
t that

we 
an 
onsider the Poisson, tra
e, and singular Green operators as operator-valued

pseudodi�erential operators as follows:

Lemma 4.6 Let 1 < q < 1, d 2 R, � > 0. Moreover, let

~

k 2 C

�

S

d�1

1;0

(R

n�1

�

R

n�1

;S(R

+

)),

~

t 2 C

�

S

d

1;0

(R

n�1

�R

n�1

;S(R

+

)), and let ~g 2 C

�

S

d�1

1;0

(R

n�1

�R

n�1

;S(R

2

++

)).

Then

k(x

0

; �

0

; D

n

) 2 C

�

S

d�

1

q

+s�Æ

1;0

(R

n�1

� R

n�1

;L(C ; H

s

q

(R

+

; x

qÆ

n

)));

t(x

0

; �

0

; D

n

) 2 C

�

S

d+

1

q

+s�Æ

0

1;0

(R

n�1

� R

n�1

;L(H

�s

q;0

(R

+

; x

�qÆ

0

n

); C ));

g(x

0

; �

0

; D

n

) 2 C

�

S

d+s+s

0

�Æ�Æ

0

1;0

(R

n�1

� R

n�1

;L(H

�s

q;0

(R

+

; x

�qÆ

0

n

); H

s

0

q

(R

+

; x

qÆ

n

)))

for all s; s

0

� 0, 0 � Æ <

1

q

0

, and 0 � Æ

0

<

1

q

.

Proof: First of all, if

~

f 2 C

�

S

d

1;0

(R

N

� R

n�1

;S(R

+

)), N 2 N

0

, d 2 R, then (4.1)

implies

y

l

n

�

l

0

y

n

~

f(x; �

0

; y

n

) 2 C

�

S

d+

1

2

�l+l

0

1;0

(R

N

� R

n�1

;L

2

(R

+

));

where the L

2

(R

+

)-norm is taken with respe
t to y

n

. Moreover, we will use the

elementary interpolation inequalities

kfk

p

� C

p;q

kfk

1+

1

q

�

1

p

q

kx

n

fk

1

p

�

1

q

q

kfk

q

� C

p;q

kfk

1+

1

q

�

1

p

p

kf

0

k

1

p

�

1

q

p

(4.4)
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for all f 2 S(R

+

) and 1 � p � q � 1 su
h that

1

p

�

1

q

< 1. The �rst one is proved by

using 1 = 1=(1+"jx

n

j)+"jx

n

j=(1+"jx

n

j), applying Hölder's inequality, and 
hoosing

a suitable " > 0. The se
ond inequality is a 
onsequen
e of Sobolev's embedding

theorem applied to f("x) for " = kfk

p

=kf

0

k

p

.

Therefore we 
on
lude

y

l

n

�

l

0

y

n

~

f(x; �

0

; y

n

) 2 C

�

S

d+1�

1

q

�l+l

0

1;0

(R

N

� R

n�1

;L

q

(R

+

)):

Hen
e

�

l

0

y

n

~

f(x; �

0

; y

n

) 2 C

�

S

d+1�

1

q

�Æ+l

0

1;0

(R

N

� R

n�1

;L

q

(R

+

; y

qÆ

n

))

for Æ � 0 be
ause of (L

q

(R

+

); L

q

(R

+

; y

lq

n

))

�;q

= L

q

(R

+

; y

q�l

n

), � 2 (0; 1). Thus

~

f(x; �

0

; y

n

) 2 C

�

S

d+1�

1

q

�Æ+s

1;0

(R

N

� R

n�1

;H

s

q

(R

+

; y

qÆ

n

))

for all s � 0 and Æ 2 [0;

1

q

0

) by (2.4)-(2.5). This implies the statements for the Poisson

and tra
e boundary symbol operators sin
e k(x

0

; �

0

; D

n

)a =

~

k(x

0

; �

0

; x

n

)a, a 2 C , and

t(x

0

; �

0

; D

n

)f =

R

1

0

~

t(x

0

; �

0

; y

n

)f(y

n

)dy

n

, f 2 S(R

+

).

In the 
ase of singular Green symbol-kernels, the symbol-kernel estimates imply

in the same way as before that

x

Æ

n

y

Æ

0

n

�

m

x

n

�

m

0

y

n

~g(x

0

; �

0

; x

n

; y

n

) 2 C

�

S

d�Æ�Æ

0

+m+m

0

1;0

(R

n�1

� R

n�1

;L

q

(R

+

;L

q

0

(R

+

)))

for all m;m

0

2 N

0

and Æ; Æ

0

� 0. Hen
e

k�

�

�

0

g(x

0

; �

0

; D

n

)fk

H

m

q

(R

+

;x

Æq

n

)

� C

�;m;m

0

h�

0

i

d�j�j+m+m

0

�Æ�Æ

0

kfk

H

�m

q;0

(R

+

;x

�qÆ

0

n

)

for all m;m

0

2 N

0

, � 2 N

n�1

0

, Æ 2 [0;

1

q

0

), and Æ

0

2 [0;

1

q

), i.e.,

g(x

0

; �

0

; D

n

) 2 C

�

S

d+m+m

0

�Æ�Æ

0

1;0

(R

n�1

� R

n�1

;L(H

�m

0

q;0

(R

+

; x

�qÆ

0

n

); H

m

q

(R

+

; x

qÆ

n

))):

for allm;m

0

2 N

0

, Æ 2 [0;

1

q

0

), and Æ

0

2 [0;

1

q

). Then interpolation �nishes the proof.

Remark 4.7 Let X

s

q

(R

+

; x

qÆ

0

n

) := B

s

q

(R

+

; x

qÆ

0

n

)\H

s

q

(R

+

; x

qÆ

0

n

) and X

�s

q;0

(R

+

; x

�qÆ

n

) :=

B

�s

q;0

(R

+

; x

�qÆ

n

) + H

�s

q;0

(R

+

; x

�qÆ

n

) for s > 0 and X

0

q

(R

+

; x

qÆ

n

) := X

0

q;0

(R

+

; x

qÆ

n

) :=

L

q

(R

+

; x

qÆ

n

). Then by (2.15) the latter lemma implies

k(x

0

; �

0

; D

n

) 2 C

�

S

d�

1

q

+s�Æ

1;0

(R

n�1

� R

n�1

;L(C ; X

s

q

(R

+

; x

qÆ

n

)));

t(x

0

; �

0

; D

n

) 2 C

�

S

d+

1

q

+s�Æ

0

1;0

(R

n�1

� R

n�1

;L(X

�s

q;0

(R

+

; x

�qÆ

0

n

); C ));

g(x

0

; �

0

; D

n

) 2 C

�

S

d+s+s

0

�Æ�Æ

0

1;0

(R

n�1

� R

n�1

;L(X

�s

q;0

(R

+

; x

�qÆ

0

n

); X

s

0

q

(R

+

; x

qÆ

0

n

)))

for all s; s

0

� 0, Æ 2 [0;

1

q

0

), and Æ

0

2 [0;

1

q

).
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THEOREM 4.8 Let

~

k 2 C

�

S

d�1

1;0

(R

n�1

�R

n�1

;S(R

+

)),

~

t 2 C

�

S

d

1;0

(R

n�1

�R

n�1

;S(R

+

)),

and let ~g 2 C

�

S

d�1

1;0

(R

n�1

�R

n�1

;S(R

2

++

)), d 2 R, � > 0. Then for every 1 < q <1

k(x

0

; D

x

) : B

d+s�

1

q

q

(R

n�1

)! H

s

q

(R

n

+

) if jsj < �;

t(x

0

; D

x

) : H

d+s

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

) if

�

�

�

�

s�

1

q

�

�

�

�

< � and d+ s > �

1

q

0

;

g(x

0

; D

x

) : H

d+s

q

(R

n

+

)! H

s

q

(R

n

+

) if jsj < � and d+ s > �

1

q

0

are 
ontinuous operators.

Proof: By Lemma 4.6 and Theorem 3.3,

k(x

0

; D

x

) : H

d+s+s

0

�

1

2

�Æ

0

q

(R

n�1

)! H

s

q

(R

n�1

;H

s

0

2

(R

+

; x

2Æ

0

n

))

g(x

0

; D

x

) : H

d+s+s

0

+s

00

�Æ�Æ

0

q

(R

n�1

;H

�s

00

2;0

(R

+

; x

�2Æ

n

))! H

s

q

(R

n�1

;H

s

0

2

(R

+

; x

2Æ

0

n

))

if jsj < � and

t(x

0

; D

x

) : H

d+s

q

(R

n�1

;H

�s

00

2;0

(R

+

; x

�2Æ

n

))! H

s�s

00

�

1

2

�Æ

q

(R

n�1

)

if

�

�

s� s

00

�

1

2

� Æ

�

�

< � for all s

0

; s

00

� 0, and 0 � Æ; Æ

0

<

1

2

. Hen
e using (2.9) if

1 < q � 2 and (2.12) if 2 � q <1,

k(x

0

; D

x

) : B

d+s+s

0

�

1

q

q

(R

n�1

)! H

s

q

(R

n�1

;H

s

0

q

(R

+

))

for all jsj < � and s

0

� 0 whi
h implies the statement for k(x

0

; D

x

) due to (2.13)-

(2.14). Similarly, using (2.10) if 1 < q � 2 and (2.11) if 2 � q <1,

t(x

0

; D

x

) : H

d+s

q

(R

n�1

;H

�s

00

q;0

(R

+

))! B

s�s

00

�

1

q

q

(R

n�1

)

for all s 2 R, s

00

� 0 with js � s

00

�

1

q

j < � . Be
ause of H

�s

00

q;0

(R

+

) = H

�s

00

q

(R

+

)

if 0 � s

00

<

1

q

0

and (2.13)-(2.14), the statement for t(x

0

; D

x

) is proved. Finally, if

1 < q � 2,

g(x

0

; D

x

) : H

d+s+s

0

+s

00

q

(R

n�1

;H

�s

00

�Æ

2;0

(R

+

))! H

s

q

(R

n�1

;H

s

0

2

(R

+

; x

2Æ

n

))

for s

0

; s

00

� 0, 0 � Æ <

1

2

, and jsj < � and therefore using (2.9)-(2.10) yields

g(x

0

; D

x

) : H

d+s+s

0

+s

00

q

(R

n�1

;H

�s

00

q;0

(R

+

))! H

s

q

(R

n�1

;H

s

0

q

(R

+

)):

If 2 � q <1, the latter mapping property is proved with the aid of (2.11)-(2.12) in

the same way. Be
ause of (2.13)-(2.14), also the last statement is proved.

The following lemma is the fundamental result on x

n

-dependent Poisson and

singular Green symbol-kernels.
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Lemma 4.9 Let

~

k(x; �

0

; y

n

) 2 C

�

S

m�1

1;0

(R

n

� R

n�1

;S(R

+

)), m 2 R, with

~

kj

x

n

=0

= 0

and let ~g(x; �

0

; y

n

; z

n

) 2 C

�

S

m�1

1;0

(R

n

� R

n�1

;S(R

2

++

)) with ~gj

x

n

=0

= 0. Then

k(x

0

; x

n

; �

0

; D

n

) 2C

���

0

S

m�

1

q

+s��

1;0

(R

n�1

� R

n�1

;L(C ; H

s

q

(R

+

)))

\ C

�

S

m�

1

q

1;0

(R

n�1

� R

n�1

;L(C ; L

q

(R

+

)));

g(x

0

; x

n

; �

0

; D

n

) 2C

���

0

S

m�

1

q

+s+s

0

���Æ

1;0

(R

n�1

� R

n�1

;L(H

�s

0

q;0

(R

+

; x

�Æq

n

); H

s

q

(R

+

)))

\ C

�

S

m�

1

q

+s

0

�Æ

1;0

(R

n�1

� R

n�1

;L(H

�s

0

q;0

(R

+

; x

�Æq

n

); L

q

(R

+

)))

for all � 2 [0; 1) with � < �

0

, 0 < s < �

0

< � , s

0

> 0, Æ 2 [0;

1

q

).

Proof: We 
an assume that s 2 (0; 1) sin
e the general 
ase 
an be redu
ed by

di�erentiation and interpolation to this 
ase. First of all, for

~

f =

~

k and d = m � 1

the symbol-kernel estimates (4.1) are equivalent to the estimates

ky

l

n

�

l

0

y

n

D

�

�

0

~

k(x; �

0

; y

n

)k

C

�

(R

n

x

;L

1

y

n

)

� C

�;l;l

0

h�

0

i

m�l+l

0

�j�j

(4.5)

for all � 2 N

n�1

0

; l; l

0

2 N

0

be
ause of (4.4). The latter estimates imply

�

�

�

�

l

0

z

n

D

�

�

0

h

~

k(x

0

; x

n

; �

0

; z

n

)�

~

k(x

0

; y

n

; �

0

; z

n

)

i

�

�

�

� C

�;s;l

0

jx

n

� y

n

j

�

0

z

�s

n

h�

0

i

m�s+l

0

�j�j

(4.6)

uniformly in x; y 2 R

n

; �

0

2 R

n�1

and for all � 2 N

n�1

0

, l

0

2 N

0

, s � 0, and

0 < �

0

� min(1; �).

Claim: Let f

(�)

(x

0

; x

n

; �

0

) := D

�

�

0

~

k(x

0

; x

n

; �

0

; x

n

). Then

x

s

0

n

�

�

f

(�)

(x

0

; x

n

; �

0

)� f

(�)

(x

0

; y

n

; �

0

)

�

�

� C

�;s

0

;�

0

jx

n

� y

n

j

�

00

h�

0

i

m�j�j�s

0

��

0

+�

00

uniformly in x

0

; �

0

2 R

n�1

, x

n

; y

n

� 0 with jx

n

�y

n

j � 1 and for all � 2 N

n�1

0

, s

0

� 0,

where 0 � �

00

� �

0

� min(1; �).

Proof of the 
laim: It su�
es to 
onsider the 
ase 0 � x

n

� y

n

. Then

x

s

0

n

�

�

�

D

�

�

0

~

k(x; �

0

; y

n

)�D

�

�

0

~

k(x

0

; y

n

; �

0

; y

n

)

�

�

�

� C

�;s

0

jx

n

� y

n

j

�

00

h�

0

i

m�j�j�s

0

+�

0

��

00

(4.7)

by (4.6) with s = s

0

+ �

0

� �

00

. Moreover,

x

s

0

n

�

�

�

D

�

�

0

~

k(x; �

0

; x

n

)�D

�

�

0

~

k(x; �

0

; y

n

)

�

�

�

� x

s

0

n

�

jD

�

�

0

~

k(x; �

0

; x

n

)j+ jD

�

�

0

~

k(x; �

0

; y

n

)j

�

� C

�;s

0

;�

0

h�

0

i

m�j�j�s

0

��

0

by (4.6) with s = s

0

+ �

0

and l

0

= 0 sin
e

~

k(x

0

; 0; �

0

; y

n

) = 0. Furthermore,

x

s

0

n

jD

�

�

0

~

k(x; �

0

; x

n

)�D

�

�

0

~

k(x; �

0

; y

n

)j

� x

s

0

n

Z

y

n

x

n

j�

y

n

~

k(x; �

0

; t)jdt � C

�;s

0

;�

0

jx

n

� y

n

jh�

0

i

m�j�j�s

0

��

0

+1
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by (4.6) with s = s

0

+ �

0

, l

0

= 1, and y

n

= 0. Interpolation of the last two inequalities

yields

x

s

0

n

jD

�

�

0

~

k(x; �

0

; x

n

)�D

�

�

0

~

k(x; �

0

; y

n

)j � C

�;s

0

jx

n

� y

n

j

�

00

h�

0

i

m�j�j�s

0

��

0

+�

00

:

Combining the latter inequality and (4.7) proves the 
laim.

Be
ause of (4.4),

kfk

B

�

00

q;1

(R

+

)

� C

�

kfk

q

+ sup

h>0

h

��

00

k�

h

fk

q

�

� C

�

kfk

1

q

0

1

kx

n

fk

1

q

1

+ sup

h>0

h

��

00

k�

h

fk

1

q

0

1

kx

n

�

h

fk

1

q

1

�

;

where �

h

f(x) = f(x+ h)� f(x) and we have used an equivalent norm on B

�

00

q;1

(R

+

)

due to [26, Theorem 4.4.1℄. Hen
e we 
on
lude

kD

�

�

0

~

k(x; �

0

; x

n

)k

B

�

00

q;1

(R

+;x

n

)

� C

�;q;�

0

h�

0

i

m�

1

q

�j�j��

0

+�

00

:

Moreover, using (3.1) it 
an be proved in the same way that

k�

�

�

0

~

k(x

0

; x

n

; �

0

; x

n

)k

C

���

0

(R

n�1

x

0

;B

�

00

q;1

(R

+;x

n

))

� C

�;q;�

0

h�

0

i

m�

1

q

�j�j��

0

+�

00

:

Finally, let 0 < s < � < �

0

and set �

00

:= s� � + �

0

. Then s < �

00

< �

0

and therefore

B

�

00

q;1

(R

+

) ,! H

s

q

(R

+

) whi
h together with the latter estimate proves

k(x

0

; x

n

; �

0

; D

n

) 2 C

���

0

S

m�

1

q

+s��

1;0

(R

n�1

� R

n�1

;L(C ; H

s

q

(R

+

))):

Moreover, by (4.5),

kx

l

n

D

�

�

0

~

k(x; �

0

; x

n

))k

C

�

(R

n�1

x

0

;L

1

x

n

)

� C

�;l

h�

0

i

m�l�j�j

for � 2 N

n�1

0

, l 2 N

0

, whi
h implies k(x; �

0

; D

n

) 2 C

�

S

m�

1

q

1;0

(R

n�1

�R

n�1

;L(C ; L

q

(R

+

)))

due to (4.4).

Using the arguments of Lemma 4.6, the proof above 
an be easily modi�ed to

prove the statement for g(x; �

0

; D

n

).

Be
ause of

~

k(x; �

0

; y

n

) =

~

k(x

0

; 0; �

0

; y

n

) +

~

k

r

(x; �

0

; y

n

), where

~

k

r

(x; �

0

; y

n

)j

x

n

=0

= 0,

the latter lemma, Lemma 4.6, and real interpolation imply:

Corollary 4.10 Let

~

k 2 C

�

S

m�1

1;0

(R

n

� R

n�1

;S(R

+

)) and let ~g 2 C

�

S

m�1

1;0

(R

n

�

R

n�1

;S(R

2

++

)), m 2 R. Then

k(x; �

0

; D

n

) 2C

���

0

S

m�

1

q

+s

1;0

(R

n�1

� R

n�1

;L(C ; H

s

q

(R

+

) \B

s

q

(R

+

)))

g(x; �

0

; D

n

) 2C

���

0

S

m�

1

q

+s+s

0

1;0

(R

n�1

� R

n�1

;L(H

�s

0

q;0

(R

+

); H

s

q

(R

+

) \B

s

q

(R

+

)))

for all 0 � s < �

0

< � , s

0

� 0.
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Moreover, Lemma 4.9 yields:

THEOREM 4.11 Let

~

k 2 C

�

S

m�1

1;0

(R

n

� R

n�1

;S(R

+

)) and let ~g 2 C

�

S

m�1

1;0

(R

n

�

R

n�1

;S(R

2

++

)), m 2 R. Then for every 0 < � < � , � 62 N, and �� + � < s < � � [�℄

k(x;D

x

)�

[�℄

X

j=0

x

j

n

j!

(�

j

x

n

k)(x

0

; 0; D

x

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s

q

(R

n

+

);

g(x;D

x

)�

[�℄

X

j=0

x

j

n

j!

(�

j

x

n

g)(x

0

; 0; D

x

) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m� � > �

1

q

0

:

Proof: First of all,

f(x; �

0

; D

n

) =

[�℄

X

j=0

x

j

n

j!

(�

j

x

n

f)(x

0

; 0; �

0

; D

n

) + x

[�℄

n

f

r

(x; �

0

; D

n

)

for f = k; g, where

y

[�℄

n

~

k

r

2 C

��[�℄

S

m�[�℄�1

1;0

(�;S(R

+

)); y

[�℄

n

~g

r

2 C

��[�℄

S

m�[�℄�1

1;0

(�;S(R

2

++

));

and

~

k

r

j

x

n

=0

= ~g

r

j

x

n

=0

= 0. Hen
e it su�
es to 
onsider the 
ase [�℄ = 0.

Now let �

0

2 (�;min(1; �)) and let �� + � < s < � . Then Lemma 4.9 and

Lemma 3.5 yield for s

0

� 0

k

r

(x;D

x

) : B

m+s�

1

q

��

0

+"

q

(R

n�1

)! B

s

q

(R

n�1

;L

q

(R

+

));

g

r

(x;D

x

) : B

m+s+s

0

��

0

q

(R

n�1

;H

�s

0

q;0

(R

+

))! B

s

q

(R

n�1

;L

q

(R

+

));

and if s > 0

k

r

(x;D

x

) : B

m+s�

1

q

��

0

+"

q

(R

n�1

)! B

"

q

(R

n�1

;B

s

q

(R

+

));

g

r

(x;D

x

) : B

m+s+s

0

��

0

+"

q

(R

n�1

;H

�s

0

q;0

(R

+

))! B

"

q

(R

n�1

;B

s

q

(R

+

));

where " > 0 is arbitrary and B

"

q

(R

n�1

;B

s

q

(R

+

)) ,! L

q

(R

n�1

;B

s

q

(R

+

)). This implies

the statement for k(x;D

x

) by (2.13)-(2.14) and

g

r

(x;D

x

) : B

m+s+s

0

��

0

+"

q

(R

n�1

;B

�s

0

q;0

(R

+

))! B

s

q

(R

n

+

)

for s

0

� 0. Hen
e, if m + s � � � 0, the statement for g

r

(x;D

x

) is also proved. If

m+ s� � < 0, we use (2.15) and (2.2) to obtain

g

r

(x;D

x

) : L

q

(R

n�1

;B

m+s��

0

+2"

q;0

(R

+

))! B

s

q

(R

n

+

);

for " > 0 su�
iently small. Sin
e B

m+s��

q;0

(R

+

) = B

m+s��

q

(R

+

) if �

1

q

0

< m+s�� <

1

q

,

the theorem is proved.
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Remark 4.12 The argument in the last part of the latter proof will be used many

times: In order to show that A : B

s��

q

(R

n

+

)! X is a bounded operator into a Bana
h

spa
e X for an s� � > �

1

q

0

, it is su�
ient to prove

A : B

s+s

0

��

0

q

(R

n�1

;H

�s

0

q;0

(R

+

))! X or B

s+s

0

��

0

q

(R

n�1

;B

�s

0

q;0

(R

+

))! X

for all s

0

2 (0;

1

q

0

) and some �

0

> �.

In the following let

(a

1

#

0

k

a

2

)(x; �

0

; D

n

) :=

X

j�

0

j�k

1

�

0

!

�

�

0

�

0

a

1

(x; �

0

; D

n

)D

�

0

x

0

a

2

(x

0

; �

0

; D

n

); (4.8)

where k 2 N

0

and a

j

(x; �

0

; D

n

) denotes the boundary symbol operator of a Poisson,

tra
e, singular Green operator, or a symbol of a pseudodi�erential operator on R

n�1

.

Moreover, it is assumed that a

2

is independent of x

n

. � If a

2

does depend on x

n

,

Theorem 4.11 
an be used to redu
e the 
omposition to the latter 
ase. � Finally, let

R

0

�

(a

1

; a

2

) := a

1

(x;D

x

)a

2

(x

0

; D

x

)� (a

1

#

0

k

a

2

)(x;D

x

):

The following theorem treats 
ompositions of Poisson, tra
e, singular Green, and

n � 1-dimensional pseudodi�erential operators. It is a main step in the proof of

Theorem 1.2 and the fundamental result of this se
tion.

THEOREM 4.13 Let

~

k

j

2 C

�

j

S

m

j

�1

1;0

(R

n

� R

n�1

;S(R

+

)),

~

t

j

2 C

�

j

S

m

j

1;0

(R

n�1

�

R

n�1

;S(R

+

))), ~g

j

2 C

�

j

S

m

j

�1

1;0

(R

n

� R

n�1

;S(R

2

++

)), s

j

2 C

�

j

S

m

j

�1

1;0

(R

n�1

� R

n�1

),

and 
 2 C

�

2

(R

n�1

), �

j

> 0, m

j

2 R su
h that

~

k

2

(x; �

0

; y

n

) and ~g

2

(x; �

0

; y

n

; z

n

) are

independent of x

n

. Moreover, let � 2 (0; �

2

), � 62 N, and set � := min(�

1

; �

2

� [�℄),

m := m

1

+m

2

.

1. Assume that jsj < � , s� � > ��

2

, and ��

2

+ � < s+m

1

< �

2

. Then

R

0

�

(g

1

; k

2

); R

0

�

(s

1

; k

2

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s

q

(R

n

+

);

R

0

�

(g

1

; g

2

); R

0

�

(s

1

; g

2

) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m� � > �

1

q

0

;

R

0

�

(g

1

; 
) : B

s+m

1

��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m

1

� � > �

1

q

0

:

2. Assume that jsj < � , s� � > ��

2

, and ��

2

+ � < s+m

1

�

1

q

< �

2

. Then

R

0

�

(k

1

; t

2

) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m� � > �

1

q

0

;

R

0

�

(k

1

; s

2

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s

q

(R

n

+

):
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3. Assume that

�

�

�

s�

1

q

�

�

�

< � , s�

1

q

� � > ��

2

, and ��

2

+ � < s+m

1

< �

2

. Then

R

0

�

(t

1

; g

2

) : B

s+m��

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

) if s+m� � > �

1

q

0

;

R

0

�

(t

1

; k

2

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s�

1

q

q

(R

n�1

);

R

0

�

(t

1

; 
) : B

s+m

1

��

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

) if s+m

1

� � > �

1

q

0

:

4. Assume that

�

�

�

s�

1

q

�

�

�

< � , s �

1

q

� � > ��

2

, and ��

2

+ � < s +m

1

�

1

q

< �

2

.

Then

R

0

�

(s

1

; t

2

) : B

s+m��

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

) if s+m� � > �

1

q

0

;

R

0

�

(s

1

; s

2

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s�

1

q

q

(R

n�1

):

Proof: First of all let �

0

2 (�; �

2

) with [�

0

℄ = [�℄ su�
iently 
lose to � su
h that all


onditions still hold if � is repla
ed by �

0

.

We �rst 
onsider the 
omposition g

1

(x;D

x

)g

2

(x

0

; D

x

). The statement 
on
erning

this 
omposition is a 
onsequen
e of the fa
t that

R

0

�

(g

1

; g

2

) : B

s+s

0

+m��

0

q

(R

n�1

;H

�s

0

q;0

(R

+

))! B

s

q

(R

n�1

;L

q

(R

+

)) and (4.9)

R

0

�

(g

1

; g

2

) : B

s+s

0

+m��

0

+"

q

(R

n�1

;H

�s

0

q;0

(R

+

))! B

"

q

(R

n�1

;B

s

q

(R

+

)) if s > 0 (4.10)

for some " > 0 and arbitrary s

0

> 0, 
f. Remark 4.12. Be
ause of Remark 4.7 and

Corollary 4.10,

g

1

(x; �

0

; D

n

) 2C

�

1

��

0

S

m

1

+s

1;0

(L(L

q

(R

+

); B

s

q

(R

+

))) \ C

�

1

S

m

1

1;0

(L(L

q

(R

+

)));

g

2

(x

0

; �

0

; D

n

) 2C

�

2

S

m

2

+s

0

1;0

(L(H

�s

0

q;0

(R

+

); L

q

(R

+

)));

where s

0

� 0, 0 < s < �

0

< �

1

. Hen
e (4.9) and (4.10) are 
onsequen
es of Theo-

rem 3.6.

All other 
ompositions of the operators k

j

(x;D

x

); t

j

(x

0

; D

x

); g

j

(x;D

x

), and s

j

(x

0

; D

x

0

)

ex
ept s

1

(x

0

; D

x

0

)k

2

(x

0

; D

x

); s

1

(x

0

; D

x

0

)g

2

(x

0

; D

x

) and the 
ompositions with 
(x

0

) are

treated in the same way.

In order to estimate R

�

(s

1

; k

2

) and R

�

(s

1

; g

2

), we use that

k

2

(:; D

n

) 2C

�

2

S

m

2

+s�

1

q

1;0

(L(C ; B

s

q

(R

+

))) \ C

�

2

S

m

2

�

1

q

1;0

(L(C ; L

q

(R

+

)));

g

2

(:; D

n

) 2C

�

2

S

m

2

+s+s

0

1;0

(L(H

�s

0

q;0

(R

+

); B

s

q

(R

+

))) \ C

�

2

S

m

2

+s

0

1;0

(L(H

�s

0

q;0

(R

+

); L

q

(R

+

)));

s

1

2C

�

1

S

m

1

1;0

(L(B

s

q

(R

+

)) \ L(L

q

(R

+

)));

where s > 0; s

0

� 0 and apply Theorem 3.6 as before.
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Finally, the statements for g

1

(x;D

x

)
(x

0

) and t

1

(x;D

x

)
(x

0

) are proved using

g

1

(:; D

n

) 2C

�

1

��

0

S

m

1

+s+s

0

1;0

(L(H

�s

0

q;0

(R

+

); B

s

q

(R

+

))) \ C

�

1

S

m

1

+s

0

1;0

(L(H

�s

0

q;0

(R

+

); L

q

(R

+

)));

t

1

(:; D

n

) 2C

�

1

S

m

1

+s

0

1;0

(L(H

�s

0

q;0

(R

+

); C )); 
(x

0

) 2 C

�

2

S

0

1;0

(L(H

�s

0

q;0

(R

+

)));

where s

0

� 0 and 0 < s < �

0

< �

1

.

Remark 4.14 Note that all singular Green and tra
e operators in the latter theorem

are of 
lass 0. The statements in the general 
ase 
an be easily obtained from the

latter one using that 


j

k

2

(x

0

; D

x

) and 


j

g

2

(x

0

; D

x

) are pseudodi�erential operators,

Poisson operators of order m

2

+ j, j 2 N

0

, respe
tively.

The following lemma treats some remainder terms, whi
h will be needed when dis-


ussing 
ompositions with di�erential operators.

Lemma 4.15 Let

~

t 2 C

�

1

S

m

1;0

(R

n�1

�R

n�1

;S(R

+

)), ~g 2 C

�

1

S

m�1

1;0

(R

n

�R

n�1

;S(R

2

++

)),

m 2 R, �

1

; �

2

> 0, and let 
 2 C

�

2

(R

n

) with 
(x

0

; 0) = 0. Then for every � 2 [0; 1)

with � < �

2

and s 2 R with ��

2

+ � < s+m < �

2

and s+m� � > �

1

q

0

t(x

0

; D

x

)
(x) : B

s+m��

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

) if

�

�

�

�

s�

1

q

�

�

�

�

< �

1

;

g(x;D

x

)
(x) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if jsj < �

1

:

Proof: First of all, let �

0

2 (�;min(1; �

2

)) su
h that s+m��

0

> max(�

1

q

0

;��

2

). Be-


ause of (3.1), s+m��

0

+" < �

2

��

0

for " > 0 su�
iently small, and k
fk

L

q

(R

+

;x

�

0

q

n

)

�

k
k

C

�

0

(R)

kfk

q

if 
j

x

n

=0

= 0, we have


(x) : B

s+m��

0

+"

q

(R

n�1

;L

q

(R

+

))! B

s+m��

0

+"

q

(R

n�1

;L

q

(R

+

; x

�

0

q

n

)):

Moreover, using Lemma 4.6, Corollary 4.10, and Theorem 3.4,

t(x

0

; D

x

) : B

s+m��

0

q

(R

n�1

;L

q

(R

+

; x

�

0

q

n

))! B

s�

1

q

q

(R

n�1

) if

�

�

�

�

s�

1

q

�

�

�

�

< �

1

;

g(x;D

x

) : B

s+m��

0

q

(R

n�1

;L

q

(R

+

; x

�

0

q

n

))! B

s

q

(R

n�1

;L

q

(R

+

)) if jsj < �

1

;

g(x;D

x

) : B

s+m��

0

+"

q

(R

n�1

;L

q

(R

+

; x

�

0

q

n

))! B

"

q

(R

n�1

;B

s

q

(R

+

)) if 0 < s < �

1

for " > 0 su�
iently small. Hen
e 
hoosing " > 0 su�
iently small the 
ase s+m�� �

0 is proved be
ause of (2.13)-(2.14) and (2.2).

Now let�

1

q

0

< s+m�� < 0 and �

0

2 (�;min(1; �

2

)) su
h that�

1

q

0

< s+m��

0

< 0.

Then we use that

j(
f; g)

L

2

(R

+

)

j � Ckfk

B

�s

0

q

(R

+

)

k
k

C

�

2

(R)

�

kgk

L

q

0

(R

+

;x

[�

0

�s

0

℄

+

q

0

n

)

+ kgk

B

s

0

q

0

(R

+

;x

�

0

q

0

n

)

�
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for s

0

2 (0;

1

q

0

) with s

0

< �

2

and f; g 2 C

1

0

(R

+

). Therefore


(x) : L

q

(R

n�1

;B

�s

0

q

(R

+

))! L

q

(R

n�1

;L

q

(R

+

; x

�[�

0

�s

0

℄

+

q

n

) +B

�s

0

q

(R

+

; x

��

0

q

n

)):

Be
ause of Remark 4.7 and Theorem 3.4, we 
on
lude for s

0

= �s�m� �

0

+ ", " > 0

su�
iently small,

t(x

0

; D

x

) : B

�"

q

(R

n�1

;L

q

(R

+

; x

�[�

0

�s

0

℄

+

q

n

) +B

�s

0

q

(R

+

; x

��

0

q

n

))! B

s�

1

q

q

(R

n�1

)

if

�

�

�

s�

1

q

�

�

�

< �

1

and

g(x;D

x

) : B

�"

q

(R

n�1

;L

q

(R

+

; x

�[�

0

�s

0

℄

+

q

n

) +B

�s

0

q

(R

+

; x

��

0

q

n

))! B

s

q

(R

n�1

;L

q

(R

+

));

g(x;D

x

) : B

�"=2

q

(R

n�1

;L

q

(R

+

; x

�[�

0

�s

0

℄

+

q

n

) +B

�s

0

q

(R

+

; x

��

0

q

n

))! B

"=2

q

(R

n�1

;B

s

q

(R

+

))

if jsj < �

1

. Therefore by (2.2)

t(x

0

; D

x

)
(x) : L

q

(R

n�1

;B

s+m��

q

(R

+

))! B

s�

1

q

q

(R

n�1

) if

�

�

�

�

s�

1

q

�

�

�

�

< �

1

;

g(x;D

x

)
(x) : L

q

(R

n�1

;B

s+m��

q

(R

+

))! B

s

q

(R

n�1

;L

q

(R

+

)) if jsj < �

1

;

g(x;D

x

)
(x) : L

q

(R

n�1

;B

s+m��

q

(R

+

))! L

q

(R

n�1

;B

s

q

(R

+

)) if 0 < s < �

1

;

whi
h �nishes the proof.

5 Trun
ated Pseudodi�erential Operators

5.1 De�nition and Consequen
es

Re
all that H

d

, d 2 Z, denotes the spa
e of all smooth fun
tions f : R ! C whi
h

admit an asymptoti
 expansion f(t) � s

d

t

d

+ s

d�1

t

d�1

+ : : : in the sense that for all

k; l, and N 2 N

0

�

�

�

�

�

�

l

t

"

t

k

f(t)�

d

X

j=d�N

s

j

t

j+k

#

�

�

�

�

�

� C

k;l;N

(1 + jtj)

d�N�1+k�l

as jtj ! 1:

It is important that H

�1

= H

+

�H

�

�1

, where H

+

and H

�

�1

are the subspa
es of all

f 2 H

�1

whi
h 
an be extended holomorphi
ally to the lower, upper 
omplex plane,

resp., and

H

+

= F [e

+

S(R

+

)℄; H

�

�1

= F [e

�

S(R

�

)℄;

where e

�

f denotes the extension by zero of a fun
tion f de�ned on R

�

, see [12, Chap-

ter II, Se
tion 2.2℄ for details. Moreover, h

+

= Fe

+

r

+

F

�1

and h

�

�1

= Fe

�

r

�

F

�1

are


ontinuous proje
tions on H

+

and H

�

�1

, resp. Here r

�

denotes the restri
tion to R

�

and e

�

the extension by zero from R

�

to R. We use the 
onventionH

�

r

= H

�

�1

�C

r

[t℄,

r 2 N

0

, where C

r

[t℄ denotes the set of all 
omplex polynomials of degree r. Moreover,

h

�1

: H

d

!H

�1

is the proje
tion with range H

�1

and kernel C

d

[t℄.
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Remark 5.1 As in the standard 
al
ulus the Poisson, tra
e, and singular Green

operator de�ned in the last se
tion 
an be des
ribed with the aid of their symbols:

k(x;D

x

)a = F

�1

� 7!x

[k(x; �)�a(�

0

)℄ ; t(x

0

; D

x

)f = F

�1

�

0

7!x

0

�

Z

+

t(x

0

; �)

^

f(�)��

n

�

;

g(x;D

x

)f = F

�1

�

0

7!x

0

�

Z

+

g(x; �; �

n

)

^

f(�

0

; �

n

)��

n

�

;

where k(x; �) = F

y

n

7!�

n

[e

+

y

n

~

k(:; y

n

)℄, t

0

(x

0

; �) =

�

F

y

n

7!�

n

[e

+

y

n

~

t

0

(:; y

n

)℄, g

0

(x; �; �

n

) =

F

y

n

7!�

n

�

F

z

n

7!�

n

[e

+

y

n

e

+

z

n

~g

0

(:; y

n

; z

n

)℄,

t(x

0

; �) =

r�1

X

j=0

s

j

(x

0

; �

0

)�

j

n

+ t

0

(x

0

; �); g(x; �) =

r�1

X

j=0

k

j

(x; �

0

)�

j

n

+ g

0

(x

0

; �)


f. [12, Se
tion 2.3℄, and where

�

F [f ℄(x) := F [f ℄(�x) denotes the 
onjugate Fourier

transformation. Here k

j

(x; �) is the symbol of the Poisson operator k

j

(x;D

x

) and

R

+

is the �plus-integral�, 
f. [12, Se
tion 2.2℄.

Finally, t(x;D

x

) and g(x;D

x

) are said to be of 
lass �m, m 2 N , if t(x; �) 2

H

�m�1

w.r.t. �

n

, g(x; �; �

n

) 2 H

�m�1

w.r.t. �

n

, respe
tively.

The following transmission 
ondition assures that p(x;D

x

)

+

= r

+

p(x;D

x

)e

+

is 
on-

tinuous between Bessel potential spa
es and Besov spa
es on the half-spa
e R

n

+

.

De�nition 5.2 Let p 2 C

�

S

d

1;0

(R

n

� R

n

), d 2 Z. Then p satis�es the global trans-

mission 
ondition � simply 
alled transmission 
ondition in the following � if there

are fun
tions s

k;�

(x; �

0

) smooth in �

0

and in C

�

w.r.t. x su
h that for any � 2 N

n

0

and l 2 N

0



















�

l

n

D

�

�

p(:; �)�

d�j�j

X

k=�l

s

k;�

(:; �

0

)�

k+l

n



















C

�

(R

n

)

� C

k;l;�

h�

0

i

d+1+l�j�j

j�

n

j

�1

(5.1)

when j�

n

j � h�

0

i.

It is an important fa
t that the symbols s

k;�

(x; �

0

) have to �t together under term-

wise di�erentiation as it is in the smooth 
oe�
ient 
ase. In parti
ular, they have

to be zero after a �nite number of di�erentiations in �

0

. Hen
e s

k;�

(x; �

0

) has to be a

polynomial in �

0

with 
oe�
ients in C

�

(R

n

).

Remark 5.3 In 
ontrast to the transmission 
ondition for a smooth symbol p 2

S

d

1;0

(R

n

� R

n

), 
f. e.g. [12, De�nition 2.2.7℄, in the latter non-smooth version a 
on-

dition not only at x

n

= 0 is posed. � Therefore it is 
alled global transmission 
on-

dition. � It is motivated by appli
ations, where p(x; �) = q(A(x)�), A 2 C

�

(R

n

)

n�n

,

and q 2 S

d

1;0

(R

n

�R

n

) satis�es the transmission 
ondition for symbols in S

d

1;0

(R

n

�R

n

).

Of 
ourse it 
an be relaxed sin
e only the behavior of p(x; �) near x

n

= 0 plays a

role in order to prove the 
ontinuity of the trun
ated pseudodi�erential operator.

However the latter 
ondition is simple and su�
ient for our purposes.
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Finally, a Green operator of order m 2 R, 
lass r 2 N

0

, and with 
oe�
ients

in C

�

, � > 0, is an operator of the form (1.1), where p(x;D

x

), g(x;D

x

), k(x;D

x

),

t(x

0

; D

x

), and s(x

0

; D

x

0

) are pseudodi�erential operators, singular Green, Poisson,

and tra
e operators, resp., of order m su
h that m 2 Z if p 6= 0, p(x;D

x

) satis�es

the transmission 
ondition, and g(x;D

x

) and t(x

0

; D

x

) are of 
lass r. The bound-

ary symbol operator a(x; �

0

; D

n

) is the Green operator, whi
h is obtained from the


orresponding symbols and symbol-kernels by �xing (x

0

; �

0

) and 
onsidering all oper-

ators as one-dimensional operators a
ting only in x

n

. Moreover, p(x; �) is 
alled the

interior symbol of a(x;D

x

).

Lemma 5.4 Let p 2 C

�

S

d

1;0

(R

n

� R

n

), d 2 Z, that satis�es the transmission 
ondi-

tion. Then r

+

p(x;D

x

)Æ

0


a = k(x;D

x

)a for all a 2 S(R

n�1

), where

~

k 2 C

�

S

d

1;0

(R

n

�

R

n�1

;S(R

+

)) is a Poisson symbol-kernel of order d+ 1 and Æ

0

denotes the delta dis-

tribution w.r.t. x

n

.

Proof: First of all by (5.1) h

�1

[�

l

n

D

�

�

p(:; �)℄ = �

l

n

D

�

�

p(:; �)�

P

d�j�j�j

k=�l

s

k;�;j

(:; �

0

)�

k+l

n

.

Therefore

kh

�1;�

n

[�

l

n

D

�

�

p(:; �)℄k

C

�

(R

n

)

�

(

C

l;�

h�

0

i

d+l+1�j�j

j�

n

j

�1

when j�

n

j � h�

0

i;

C

l;�

h�

0

i

d+l�j�j

when j�

n

j < h�

0

i;

(5.2)

where we have used (5.1) for j�

n

j � h�

0

i and the symbol estimates for j�

n

j < h�

0

i.

This implies

kh

�1;�

n

[�

l

n

D

�

�

p(:; �

0

; :)℄k

C

�

(R

n

;L

2

�

n

(R))

� C

k;�

h�

0

i

d+

1

2

+l�j�j

(5.3)

by an elementary 
al
ulation, 
f. the proof of [12, Theorem 2.2.10℄.

Sin
e r

+

p(x; �

0

; D

x

n

)Æ

0


a = r

+

F

�1

�

n

7!x

n

[h

+

p(x; �)a℄ for all a 2 C , we have

~

k(x; �

0

; y

n

) =

r

+

F

�1

�

n

7!y

n

[h

+

p(x; �)℄ 2 S(R

+

) w.r.t. y

n

. Hen
e the previous estimate implies

kD

�

0

�

0

y

l

n

D

l

0

y

n

~

k(:; �

0

; y

n

)k

C

�

(R

n

;L

2

y

n

(R

+

))

� C

l;l

0

;�

0

h�

0

i

d+

1

2

�l+l

0

�j�

0

j

; (5.4)

whi
h proves the lemma.

In 
onne
tion with Lemma 5.4 the identity

[D

k

x

n

; e

+

℄ = �i

k�1

X

j=0

D

k�1�j

x

n

Æ

0


 


j

; (5.5)


f. [12, (2.2.39)℄, where [A;B℄ := AB � BA, will often be used.

Let p 2 C

�

S

d

1;0

(R

n

� R

n

). Then we denote

G

+

(p(x;D

x

)) := r

+

p(x;D

x

)e

�

J; G

�

(p(x;D

x

)) := Jr

�

p(x;D

x

)e

+

;

where (Jf)(x) := f(x

0

;�x

n

)), x 2 R

n

.
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Lemma 5.5 Let p 2 C

�

S

d

1;0

(R

n

� R

n

), d 2 Z, satisfy the transmission 
ondition.

Then G

+

(p(x;D

x

)) = g

+

(p)(x;D

x

) and G

�

(p(x;D

x

)) = g

�

(p)(x;D

x

), where ~g

�

(p) 2

C

�

S

d�1

1;0

(R

n

�R

n�1

;S(R

2

++

)) are singular Green symbol-kernels of order d. Moreover,

~g

�

(p)(x; �

0

; y

n

; z

n

) = r

�

F

�1

�

n

7!t

[p(x; �)℄

�

�

t=�y

n

�z

n

.

Proof: For every �xed x 2 R

n

the symbol p

x

(�) := p(x; �) is a smooth symbol of

order d satisfying the transmission 
ondition. Hen
e the stated identities are dire
t


onsequen
es of the 
orresponding statements in the smooth 
ase, 
f. e.g. [12, The-

orem 2.6.10℄. Moreover, the estimates to show ~g

�

(p) 2 C

�

S

d�1

1;0

(R

n

� R

n�1

;S(R

2

++

))

are proved in the same way as in the proof of [12, Theorem 2.6.10℄, where the regu-

larity in x does not play any role.

In order to 
onsider p(x;D

x

)

+

as operator-valued pseudodi�erential operator on

R

n�1

, we will use:

Lemma 5.6 Let 1 < q < 1 and let p 2 C

�

S

m

1;0

(R

n

� R

n

), m 2 Z, satisfy the

transmission 
ondition. Then

p(x;D

x

)

+

=

m

X

j=0

s

j

(x;D

x

0

)D

j

x

n

+ p

0

(x;D

x

)

+

;

where p

0

(x;D

x

) = OP

0

(p

0

(x; �

0

; D

n

)) with

p

0

(x; �

0

; D

n

)

+

2 C

���

0

S

m+�

1;0

(R

n�1

� R

n�1

;L(H

s��

q

(R

+

); H

s

q

(R

+

)))

for all 0 < �

0

< � , jsj < �

0

, and � 2 [0; 1℄ with s � � > �

1

q

0

and where s

j

(x;D

x

0

)

are di�erential operators of order m � j with 
oe�
ients in C

�

(R

n

). Moreover,




0

p(x;D

x

)

+

=

P

m

j=0

s

j

(x

0

; 0; D

x

0

)


j

+ t

0

(x

0

; D

x

0

); where

~

t

0

(x

0

; �

0

; y

n

) 2 C

�

S

m

1;0

(R

n�1

�

R

n�1

;S(R

+

)).

Proof: Let p

0

(x; �) := h

�1;�

n

[p(x; �)℄. As seen in the proof of Lemma 5.4, p

0

(x; �) =

p(x; �)�

P

m

j=0

s

j

(x; �

0

)�

j

n

, where s

j

(x; �

0

) 2 C

�

S

m�j

1;0

(R

n

� R

n�1

) are the symbols due

to (5.1) for � = l = 0. Be
ause of (5.1) and the symbol estimates

k�

�

�

p

0

(:; �)k

C

�

(R

n

)

� C

�

h�

0

i

m+��j�

0

j

h�

n

i

����

n

; � 2 R

n

; (5.6)

for all � 2 N

n

0

and � 2 [0; 1℄. Be
ause of the latter estimate, (3.1), and Theorem 3.3,

we 
on
lude that

k�

�

0

�

0

p

0

(:; x

n

; �

0

; D

n

)k

C

���

0

(R

n�1

;L(H

s��

q

(R);H

s

q

(R)))

� C

s;�

h�

0

i

m+��j�

0

j

for all jsj < �

0

, �

0

2 N

n�1

0

.

Now, if s� � 2 (�

1

q

0

;

1

q

), then e

+

: H

s

q

(R

+

)! H

s

q

(R) is a 
ontinuous mapping and

therefore the latter estimate implies the statement in this 
ase.
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Next we prove the statement for s � � 2 (k �

1

q

0

; k +

1

q

), k 2 N

0

, with jsj < �

0

.

Then the general 
ase is obtain by interpolation. Using 1 =

1

q(�)

+

P

n

j=1

�

k

j

q(�)

�

k

j

with

q(�) = 1 +

P

k

j=1

�

2k

j

,

p

0

(x; �

0

; D

n

)

+

=

n�1

X

j=1

p

j

(x; �

0

; D

n

)

+

�

k

j

+ p

n

(x; �

0

; D

n

)

+

D

k

x

n

+ r

+

p

n

(x; �

0

; D

n

)[D

k

x

n

; e

+

℄;

where p

j

(x; �) 2 C

�

S

m�k

1;0

(R

n

� R

n

), j = 1; : : : ; n, satisfy the transmission 
ondition.

Sin
e s � � � k 2 (�

1

q

0

;

1

q

), e

+

D

k

x

n

: H

s��

q

(R

+

) ! H

s���k

q

(R) and we 
an apply the

�rst part on p

j

(x; �

0

; D

n

). Finally,

r

+

p

n

(x; �

0

; D

n

)D

k�1�j

x

n

Æ

0


 


j

2 C

���

S

m

1;0

(R

n�1

� R

n�1

;L(H

s��

q

(R

+

); H

s

q

(R

+

)))

by Lemma 5.4, Corollary 4.10, and 


j

: H

s

q

(R

+

)! C if j � k � 1. Hen
e using (5.5)

we obtain the same statement for r

+

p

n

(x; �

0

; D

n

)[D

k

x

n

; e

+

℄.

The identity for 


0

p(x;D

x

)

+

is obvious and

~

t

0

(x

0

; �

0

; y

n

) =

�

F

�1

�

n

7!y

n

[p

0

(x

0

; 0; �)℄ 2

C

�

S

m

1;0

(R

n�1

� R

n�1

;S(R

+

)) is proved by the same estimates as in the proof of

Lemma 5.4.

Remark 5.7 If p 2 C

�

S

�m

1;0

(R

n

� R

n

) with m � 0 and � > 0, then

p(x; �

0

; D

n

) 2 C

���

0

S

�m

1

1;0

(R

n�1

� R

n�1

;L(H

s�m

2

q

(R); H

s

q

(R)))

for all jsj < �

0

< � and m

1

; m

2

� 0 with m

1

+m

2

= m. Moreover, if m 2 N

0

and p

satis�es the transmission 
ondition, it 
an be proved as above that

p(x; �

0

; D

n

)

+

2 C

���

0

S

�m

1

1;0

(R

n�1

� R

n�1

;L(H

s�m

2

q

(R

+

); H

s

q

(R

+

)))

for all jsj < �

0

< � with s�m

2

> �

1

q

0

.

Let p 2 C

�

S

m

1;0

(R

n

� R

n

), d 2 R, � > 0. When dis
ussing the 
ompositions of

p(x;D

x

)

+

with Poisson, tra
e, and singular Green operators, the following Taylor

expansion will be useful:

p(x; �) =

k

X

j=0

x

j

n

j!

�

j

x

n

p(x

0

; 0; �) + x

k

n

q

k

(x; �); (5.7)

where q

k

2 C

��k

S

m

1;0

(R

n

� R

n

), k = 0; : : : ; [� ℄, and q

k

(x

0

; 0; �) = 0.

5.2 Composition of Trun
ated Pseudodi�erential Operators

with Poisson, Tra
e, and Singular Green Operators

In the following we study the 
ompositions of trun
ated pseudodi�erential operators

with Poisson, tra
e, and singular Green operators satisfying the following assumption:
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Assumption 5.8 Let

~

k

2

2 C

�

2

S

m

2

�1

1;0

(R

n�1

� R

n�1

;S(R

+

)),

~

t

1

2 C

�

1

S

m

1

1;0

(R

n�1

�

R

n�1

;S(R

+

)), ~g

1

2 C

�

1

S

m

1

�1

1;0

(R

n

�R

n�1

;S(R

2

++

)), ~g

2

2 C

�

2

S

m

2

�1

1;0

(R

n�1

�R

n�1

;S(R

2

++

))

for �

j

> 0 and m

j

2 R, j = 1; 2. Moreover, let p

j

2 C

�

j

S

m

j

1;0

(R

n

� R

n

) satisfy the

transmission 
ondition, where we assume in the following that m

j

2 Z if a 
omposi-

tion with p

j

is 
onsidered. We will denote by

p

j

(x;D

x

) =

m

j

X

k=0

s

j;k

(x;D

x

0

)D

k

x

n

+ p

0

j

(x;D

x

) (5.8)

the de
omposition due to Lemma 5.6. Finally, let � 2 (0; �

2

), � 62 N

0

, and set

� := min(�

1

; �

2

� [�℄), m := m

1

+m

2

.

We study the following 
ompositions:

p

1

(x;D

x

)

+

a

2

(x

0

; D

x

) = (p

1

#

0

[�℄

a

2

)(x;D

x

) +R

0

�

(p

1

; a

2

)

(p

1

#

0

[�℄

a

2

)(x; �

0

; D

n

) =

X

j�

0

j�[�℄

1

�

0

!

�

�

0

�

0

p

1

(x; �

0

; D

n

)

+

D

�

0

x

0

a

2

(x

0

; �

0

; D

n

) (5.9)

a

1

(x;D

x

)p

2

(x;D

x

)

+

= (a

1

#

[�℄

p

2

)(x;D

x

) +R

�

(a

1

; p

2

) where

(a

1

#

[�℄

p

2

)(x; �

0

; D

n

) =

X

j�j�[�℄

1

�!

D

�

0

�

0

a

1

(x; �

0

; D

n

)x

�

n

n

�

�

x

p

2

(x

0

; 0; �

0

; D

n

)

+

(5.10)

for a

1

= g

1

; t

1

, a

2

= k

2

; g

2

.

Be
ause of the 
omposition rules of boundary symbol operators (in the smooth


ase) (p

1

#

0

[�℄

k

2

)(x;D

x

), (p

1

#

0

[�℄

g

2

)(x;D

x

), (g

1

#

[�℄

p

2

)(x;D

x

), and (t

1

#

[�℄

p

2

)(x

0

; D

x

) are

Poisson, singular Green, and tra
e operators, resp., of order m with 
oe�
ients

in C

�

, 
f. Remark 4.3. Here (p

1

#

0

[�℄

g

2

)(x;D

x

) is of 
lass 0 and (g

1

#

[�℄

p

2

)(x;D

x

),

(t

1

#

[�℄

p

2

)(x

0

; D

x

) are of 
lass max(0; m

2

).

THEOREM 5.9 Let 1 < q <1, s 2 R, and let

~

k

2

;

~

t

1

; ~g

j

, and p

j

be as in Assump-

tion 5.8.

1. If jsj < � , s� � > ��

2

, ��

2

+ � < s+m

1

< �

2

, and s+m

1

� � > �

1

q

0

, then

R

0

�

(p

1

; k

2

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s

q

(R

n

+

);

R

0

�

(p

1

; g

2

) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m� � > �

1

q

0

;

R

�

(g

1

; p

2

) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m� �; s+m

1

� � > �

1

q

0

:

2. If

�

�

�

s�

1

q

�

�

�

< � , s�

1

q

� � > ��

2

, ��

2

+ � < s+m

1

< �

2

, s+m

1

� � > �

1

q

0

, and

s+m� � > �

1

q

0

, then R

�

(t

1

; p

2

) : B

s+m��

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

).
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The theorem will be proved at the end of this se
tion.

Remark 5.10 Using the Taylor expansion (5.7) for p

1

with k = [�

0

℄ and �

0

2 (0; �

1

),

�

0

62 N

0

, the formulae 
an be redu
ed to Poisson, tra
e, and singular Green operators

with x

n

-independent 
oe�
ients as in the smooth 
ase, 
f. Remark 4.3.1. The new

remainder terms are easily estimated using Theorem 4.11. But the remainder term

will be of order m

1

+m

2

� �

0

with �

0

arbitrarily 
lose to �

1

. Hen
e in that 
ase there

is loss of a

ura
y of the formulae if �

1

< �

2

.

Lemma 5.11 Let

~

k

2

;

~

t

1

; ~g

j

, p

0

j

be as in Assumption 5.8. Moreover, let R

0

�

(a

1

; p

0

2

) :=

a

1

(x;D

x

)p

0

2

(x;D

x

)

+

�OP

0

(a

1

(:; D

n

)#

0

[�℄

p

2

(:; D

n

)) for a

1

= g

1

; t

1

.

1. If jsj < � , s� � > ��

2

, and ��

2

+ � < s+m

1

< �

2

, then

R

0

�

(p

0

1

; k

2

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s

q

(R

n

+

);

R

0

�

(p

0

1

; g

2

); R

0

�

(g

1

; p

0

2

) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m� � > �

1

q

0

:

2. If js�

1

q

j < � , s�

1

q

� � > ��

2

, ��

2

+ � < s+m

1

< �

2

, and s+m� � > �

1

q

0

,

then R

0

�

(t

0

1

; p

0

2

) : B

s+m��

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

).

Proof: First of all, be
ause of Remark 4.12 and s +m� � > �

1

q

0

, it is su�
ient to

prove the mapping properties withB

s+m��

q

(R

n

+

) repla
ed by B

s+m��+s

00

q

(R

n�1

;H

�s

0

q

(R

+

))

for s

0

2 [0;

1

q

0

).

By Lemma 5.6

p

0

j

(x; �

0

; D

n

)

+

2C

�

j

��

0

S

m

j

1;0

(R

n�1

� R

n�1

;L(B

s

q

(R

+

)) \ L(H

s

q

(R

+

))) (5.11)

\ C

�

j

S

m

j

+s

0

1;0

(R

n�1

� R

n�1

;L(H

�s

0

q

(R

+

); L

q

(R

+

))) (5.12)

for all 0 < �

0

< �

j

, jsj < �

0

with s > �

1

q

0

, and s

0

2 [0;

1

q

0

). Moreover, if m

j

< 0,

p

j

(x;D

x

) = p

0

j

(x;D

x

) and by Remark 5.7

p

0

j

(x; �

0

; D

n

)

+

2C

�

j

��

0

S

0

1;0

(R

n�1

� R

n�1

;L(B

s+m

j

q

(R

+

); B

s

q

(R

+

))); (5.13)

for all 0 < �

0

< �

j

, jsj < �

0

, s+m

j

> �

1

q

0

.

Using (5.11), (5.12), Remark 4.7, and Corollary 4.10 we 
an apply Theorem 3.6

to obtain

R

0

�

(p

0

1

; k

2

) : B

s+m���

1

q

q

(R

n�1

)! B

s

q

(R

n�1

;L

q

(R

+

))

R

0

�

(p

0

1

; g

2

); R

0

�

(g

1

; p

0

2

) : B

s+m��+s

0

q

(R

n�1

;H

�s

00

q

(R

+

))! B

s

q

(R

n�1

;L

q

(R

+

))

R

0

�

(t

1

; p

0

2

) : B

s+m��+s

0

q

(R

n�1

;H

�s

00

q

(R

+

))! B

s�

1

q

q

(R

n�1

)
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for s

0

2 [0;

1

q

0

) and under the same restri
tions on s as in the theorem. Hen
e, if

s � 0, the lemma is proved be
ause of (2.14).

Moreover, if m

1

� 0 and s > 0, we use that by Remark 4.7

k

2

(x

0

; �

0

; D

n

) 2 C

�

2

S

m

2

+s�

1

q

1;0
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Proof: By Lemma 4.6, Corollary 4.10, and interpolation
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x

); p

0

2

(x;D

x

)) = g

+

(p

1

)(x;D

x

)g

�

(p

2

)(x;D

x

)

=

[�℄

X

�

n

=0

1

�

n

!

g

+

(p

1

)(x;D

x

)x

�

n

n

�

�

n

x

n

g

�

(p

2

)(x

0

; 0; D

x

) +R

1;�

=

X

j�j�[�℄

1

�!

OP

0

(D

�

0

�

0

g

+

(p

1

)(x; �

0

; D

n

)x

�

n

n

�

�

x

g

�

(p

2

)(x

0

; 0; �

0

; D

n

)) +R

2;�

;

where R

j;�

: B

s+m

1

+m

2

��

q

(R

n

+

)! B

s

q

(R

n

+

), j = 1; 2. Hen
e we proved the theorem for

the 
ase s+m

1

+m

2

� � 2 (�

1

q

0

;

1

q

).
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Now let s+m

1

+m

2

�� 2 (k�

1

q

0

; k+

1

q

) for k 2 N . � Then the 
ase s+m

1

+m

2

�� =

k �

1

q

0

, k 2 N , is obtained by interpolation. � Sin
e (p

1

(x;D

x

)p

2

(x;D

x

))

+

may not

be well-de�ned, we use an order redu
ing operator. � Note that, if e.g. f 2 S(R

n

+

)

with 


0

f 6� 0, then e

+

f 2 B

s+m

1

+m

2

2

(R

n

+

) implies s+m

1

+m

2

�

1

2

. Hen
e, if �

2

<

1

2

and m

2

� 1, there is no s 2 R with s +m

1

> ��

2

and s +m

1

+m

2

�

1

2

. Therefore

p

2

(x;D

x

)e

+

f is not well-de�ned in general.

Let p

�

(�) 2 S

�k

1;0

(R

n

� R

n

) satisfy the transmission 
ondition su
h that

I =

X

j�j�k

p

�

(D

x

)D

�

x

: (5.19)

Then p

2

(x;D

x

) =

P

j�j�k

p

2;�

(x;D

x

)D

�

x

; where p

2;�

(x; �) := p

2

(x; �)p

�

(�) 2 C

�

2

S

m

2

�k

1;0

satis�es the transmission 
ondition. Therefore

p

2

(x;D

x

)

+

=

X

j�j�k

p

2;�

(x;D

x

)

+

D

�

x

+

X

j�j�k

L(p

2;�

(x;D

x

); D

�

x

);

where, be
ause of (5.5) and Lemma 5.4, L(p

2;�

(x;D

x

); D

�

x

) = r

+

p

2;�

(x;D

x

)[D

�

x

; e

+

℄

is a singular Green operator of order m

2

, 
lass k, and with 
oe�
ients in C

�

2

. Sin
e

s+m

1

+m

2

� k 2 (�

1

q

0

;

1

q

), we 
an apply the theorem for this 
ase proved above to


on
lude

p

1

(x;D

x

)

+

p

2;�

(x;D

x

)

+

D

�

x

= (p

1

#

[�℄

p

2;�

)(x;D

x

)

+

D

�

x

� l

�

(p

1

; p

2;�

)(x;D

x

)D

�

x

+R

�

= ((p

1

#

[�℄

p

2;�

)(x;D

x

)D

�

x

)

+

� L((p

1

#

[�℄

p

2;�

)(x;D

x

); D

�

x

)

�l

�

(p

1

; p

2;�

)(x;D

x

)D

�

x

+R

�

where R

�

: B

s+m

1

+m

2

��

q

(R

n

+

)! B

s

q

(R

n

+

). Using (5.7) for p

2

we 
on
lude

L((�

�

�

p

1

D

�

x

p

2;�

)(x;D

x

); D

�

x

) =

[�℄�j�j

X

j=0

1

j!

r

+

OP(�

�

�

p

1

x

j

n

D

�

x

�

j

x

n

p

2;�

(x

0

; 0; �))[D

�

x

; e

+

℄

+r

+

OP(�

�

�

p

1

x

[�℄�j�j

n

D

�

x

q

2;�

)[D

�

x

; e

+

℄;

where q

2;�

2 C

�

2

�[�℄

S

m

2

�k

1;0

with q

2;�

j

x

n

=0

= 0. If �

2

� [�℄ � �

1

, Theorem 4.11 yields

r

+

OP(�

�

�

p

1

(x; �)x

[�℄�j�j

n

D

�

x

q

2;�

(x; �))[D

�

x

; e

+

℄ : B

s+m

1

+m

2

��

q

(R

n

+

)! B

s

q

(R

n

+

)

if s satis�es the assumptions of the theorem. If �

2

� [�℄ > �

1

, Lemma 5.14 below

implies the same statement.

Therefore

L((p

1

#

[�℄

p

2;�

)(x;D

x

); D

�

x

)

=

X

j�j�[�℄

[�℄�j�j

X

j=0

1

�!j!

L(OP

0

(x

j

n

�

�

�

p

1

(x; �

0

; D

n

)D

�

x

�

j

x

n

p

2;�

(x

0

; 0; �

0

; D

n

)); D

�

x

) +R

�

=

X

j
j�[�℄

1


!

L(OP

0

(�




0

�

0

p

1

(x; �

0

; D

n

)x




n

n

D




0

x

�




n

x

n

p

2;�

(x

0

; 0; �

0

; D

n

)); D

�

x

) +R

�
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by an elementary 
al
ulation. Moreover, by Theorem 5.9 and Theorem 4.11

p

1

(x;D

x

)

+

L(p

2;�

(x;D

x

); D

�

x

)

=

X

j�j�[�℄

1

�!

OP

0

(�

�

0

�

0

p

1

(x; �

0

; D

n

)

+

L(x

�

n

n

D

�

0

x

0

�

�

n

x

n

p

2;�

(x

0

; 0; �

0

; D

n

); D

�

x

) +R

�

:

Using the identity L(P

1

; P

2

Q) = L(P

1

P

2

; Q) + L(P

1

; P

2

)Q

+

� P

1;+

L(P

2

; Q) for the

boundary symbol operator and the 
al
ulations above, it is elementary to 
he
k that

l

�

(p

1

; p

2

)(x;D

x

) =

X

j�j�k

�

L((p

1

#

[�℄

p

2;�

)(x;D

x

); D

�

x

) + l

�

(p

1

; p

2;�

)(x;D

x

)D

�

x

�p

1

(x;D

x

)

+

L(p

2;�

(x;D

x

); D

�

x

)

�

+R

�

;

whi
h �nishes the proof.

Lemma 5.14 Let p

j

2 C

�

j

S

m

j

1;0

(R

n

� R

n

), m

j

2 Z, j = 1; 2, 0 < �

1

< �

2

� 1,

satisfy the transmission 
ondition with p

2

(x

0

; 0; �) = 0. Moreover, let k(x; �

0

; D

n

)a :=

r

+

OP

n

(p

1

(x; �)p

2

(x; �))Æ

0


 a for a 2 C . Then for every � < �

2

and 0 < s < �

1

k(x; �

0

; D

n

) 2 C

�

S

m

1

+m

2

+s+1�

1

q

��

1;0

(R

n�1

� R

n�1

;L(C ; B

s

q

(R

+

)));

where 0 < � < min(�

1

� s; �

2

� �) and therefore k(x;D

x

) : B

s+m

1

+m

2

+1�

1

q

��

q

(R

n�1

)!

B

s

q

(R

n

+

) is a bounded linear operator if �min(�

1

; �

2

� �) < s < �

1

.

Proof: We 
an assume w.l.o.g. that m

2

= �1 and � � s. Moreover, as in the proof

of Lemma 4.9 it is su�
ient to prove the statement for B

s

q;1

(R

+

) instead of B

s

q

(R

+

).

Then

h

�1;�

n

[p

1

(x; �)p

2

(x; �)℄ = h

�1;�

n

[p

1

(x; �)℄p

2

(x; �) +

m

1

X

j=0

s

j;1

(x; �

0

)h

�1;�

n

�

�

j

n

p

2

(x; �)

�

;

where s

j;1

(x; �

0

) are the terms in the expansion due to De�nition 5.2 for p

1

with

� = l = 0. The terms r

+

P

m

1

j=0

OP

n

(s

j;1

(x; �

0

)h

�1;�

n

[�

j

n

p

2

(x; �)℄) Æ

0


a are easily esti-

mated with the aid of Lemma 4.9. and kfgk

B

s

q;1

� C

�

kfk

C

s

kgk

L

q

+ kfk

L

1

kgk

B

s

q;1

�

:

Therefore we 
an assume for the rest of the proof that p

1

(x; �) 2 H

�1

w.r.t. �

n

.

First let 0 < h � x

n

. Then

h

�s

j

~

k(x

0

; x

n

+ h; �

0

; y

n

)�

~

k(x

0

; x

n

; �

0

; y

n

)j

� h

�s

kp

1

(x

0

; x

n

+ h; �

0

; :)� p

1

(x; �

0

; :)k

L

2

(R)

kp

2

(x

0

; x

n

+ h; �

0

; :)k

L

2

(R)

+h

�s

kp

1

(x; �

0

; :)k

L

2

(R)

kp

2

(x

0

; x

n

+ h; �

0

; :)� p

2

(x; �

0

; :)k

L

2

(R)

;
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where

h

�s

kp

1

(x

0

; x

n

+ h; �

0

; :)� p

1

(x; �

0

; :)k

L

2

(R)

� Ckp

1

(:; �

0

; :)k

C

�

1

(R

n

;L

2

(R))

� Ch�

0

i

m

1

+

1

2

h

�s

kp

2

(x

0

; x

n

+ h; �

0

; :)� p

2

(x; �

0

; :)k

L

2

(R)

� Cx

��s

n

h�

0

i

m

2

+

1

2

kp

1

(x; �

0

; :)k

L

2

(R)

� Ch�

0

i

m

1

+

1

2

kp

2

(x

0

; x

n

+ h; �

0

; :)k

L

2

(R)

� Cx

�

n

h�

0

i

m

2

+

1

2

by (5.3) and sin
e p

2

(x

0

; 0; �) = 0. Hen
e

h

�s

x

s��

n

j

~

k(x

0

; x

n

+ h; �

0

; y

n

)�

~

k(x; �

0

; y

n

)j � Ch�

0

i

m

1

+m

2

+1

:

By the same 
al
ulations as above, it 
an be shown that

h

�s

x

s��

n

�

�

�

y

l

n

�

l

0

y

n

�

�

0

�

0

�

~

k(x

0

; x

n

+ h; �

0

; y

n

)�

~

k(x; �

0

; y

n

)

�

�

�

�

� C

l;l

0

;�

0

h�

0

i

m

1

+m

2

+1�l+l

0

�j�

0

j

for l; l

0

2 N

0

, �

0

2 N

n�1

0

. This implies

h

�s

�

�

�

x

s

0

n

�

�

0

�

0

�

~

k(x

0

; x

n

+ h; �

0

; x

n

+ h)�

~

k(x; �

0

; x

n

)

�

�

�

�

� C

s

0

;�

0

h�

0

i

m

1

+m

2

+1��+s�s

0

�j�

0

j

for s

0

� 0, �

0

2 N

n�1

0

.

In the 
ase h > x

n

, one 
an use

�

�

�

x

s

0

��

n

�

�

0

�

0

~

k(x; �

0

; x

n

)

�

�

�

� Ch�

0

i

m

1

+m

2

+1�s

0

�j�

0

j

for

�

0

2 N

n�1

0

; s

0

� 0, to prove the latter estimate. Hen
e

sup

h>0

h

�s










�

�

0

�

0

�

~

k(x

0

; :+ h; �

0

; :+ h)�

~

k(x

0

; :; �

0

; :)

�










q

� C

�

0

h�

0

i

m

1

+m

2

+1�

1

q

��+s�j�

0

j

by (4.4). In a similar way one estimates k�

�

0

�

0

~

k(x

0

; :; �

0

; :)k

q

. Thus

k�

�

0

�

0

k(x; �

0

; D

n

)k

L(C ;B

s

q;1

(R

+

))

� C

�

0

h�

0

i

m

1

+m

2

+1�

1

q

���j�

0

j

:

Finally, repla
ing

~

k(x; �

0

; y

n

) by jh

0

j

��

(�

h

0

~

k)(x; �

0

; y

n

) :=

~

k(x

0

+h

0

; x

n

; �

0

; y

n

)�

~

k(x; �

0

; y

n

),

h

0

2 R

n�1

, it 
an be proved as above that

k�

�

0

�

0

k(:; �

0

; D

n

)k

C

�

(R

n�1

;L(C ;B

s

q;1

(R

+

)))

� C

�

0

h�

0

i

m

1

+m

2

+1�

1

q

��+s�j�

0

j

:

Then the 
ontinuity of k(x;D

x

) is proved as in the proof of Theorem 4.11.

As a 
onsequen
e of the 
omposition rules we obtain:

THEOREM 5.15 Let p 2 C

�

S

m

1;0

(R

n

� R

n

), m 2 Z, satisfy the transmission 
on-

dition. Then

p(x;D

x

)

+

: H

s+m

q

(R

n

+

)! H

s

q

(R

n

+

)

is a 
ontinuous operator for all jsj < � with s+m > �

1

q

0

.



5.4 Negative Classes and Proofs of the Main Theorems 39

Proof: The proof is done by the same s
heme as in Lemma 5.5 and Theorem 5.13.

The 
ase s +m 2 (�

1

q

0

;

1

q

) is trivial sin
e e

+

: H

s+m

q

(R

n

+

)

! H

s

q

(R

n

+

). Then the 
ase

s+m 2 (k �

1

q

0

; k +

1

q

), k 2 N , is redu
ed to the �rst 
ase using

p(x;D

x

)

+

=

X

j�j�k

p

�

(x;D

x

)

+

D

�

x

+

X

j�j�k

L(p

�

(x;D

x

); D

�

x

);

where p

�

2 C

�

S

m�k

1;0

(R

n

� R

n

), 
f. (5.19).

5.4 Negative Classes and Proofs of the Main Theorems

The 
on
ept of negative 
lasses easily 
arries over to the non-smooth situation sin
e

it is only a matter of the behavior of the symbols w.r.t. �

n

, �

n

, resp., 
f. Remark 5.1.

As in the smooth 
oe�
ient 
ase it holds that

t(x

0

; D

x

) is of 
lass �m , t(x

0

; D

x

)D

m

x

n

is of 
lass 0; (5.20)

g(x;D

x

) is of 
lass �m , g(x;D

x

)D

m

x

n

is of 
lass 0; (5.21)


f. [12, (2.8.2)℄.

Moreover, as in [12, De�nition 2.8.2℄ we say that p(x;D

x

)

+

+ g(x;D

x

) is of 
lass

r 2 N

0

if g(x;D

x

) is of 
lass r and that p(x;D

x

)

+

+ g(x;D

x

) is of 
lass r = �m;

m 2 N if

(p(x;D

x

)

+

+ g(x;D

x

))D

m

x

n

= p

0

(x;D

x

)

+

+ g

0

(x;D

x

) with g

0

(x;D

x

) of 
lass 0:

Then a(x;D

x

) is said to be of 
lass r 2 Z if p(x;D

x

)

+

+ g(x;D

x

) and t(x

0

; D

x

) are of


lass r.

Finally, it remains to prove our main theorems:

Proof of Theorem 1.1: Be
ause of Theorem 4.8, Theorem 4.11, and Theorem 5.15,

the 
ase r 2 N

0

is proved. By the same arguments as in in [12, Theorem 2.8.3℄ it is

easy to prove

p(x;D

x

)

+

+ g(x;D

x

) : H

s+m

q

(R

n

+

)! H

s

q

(R

n

+

) if jsj < �;

t(x

0

; D

x

) : H

s+m

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

) if

�

�

�

�

s�

1

q

�

�

�

�

< �

for the general 
lass r 2 Z by using the statement if the 
lass is 0. Hen
e the theorem

is proved.

Proof of Theorem 1.2: First of all, sin
e � 2 (0; �

2

), � 62 N , is arbitrary, the

Bessel potential spa
es 
an be repla
ed by Besov spa
es using (2.2). Hen
e it only

remains to extend the statements of Theorem 4.13, Theorem 5.9, and Theorem 5.13

to arbitrary 
lasses r

j

2 Z. As mentioned in Remark 4.14, the 
ompositions with
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g

j

(x;D

x

) and t

j

(x

0

; D

x

) of 
lass r

j

2 N

0

redu
e to 
ompositions with 


j

and oper-

ators of 
lass 0. Using 


j

= 


0

D

j

x

n

, the 
ompositions with 


j


an be redu
ed to

Theorem 5.9, Theorem 5.13, and Lemma 5.6. Finally, if r

j

2 Z, it only remains to


he
k that t(x

0

; D

x

) and p(x;D

x

)

+

+g(x;D

x

) are of 
lass max(r

1

+m

2

; r

2

), whi
h 
an

be done by using the de�nitions and (5.20)-(5.21) dire
tly or by the same argument

as in [12, Remark 2.8.4℄.

6 Parametrix Constru
tion

In this last se
tion we apply Theorem 1.2 to 
onstru
t a parametrix to ellipti
 Green

operators. In the following we will assume that the symbols of the operators are

polyhomogeneous, i.e., there is an asymptoti
 expansion in homogeneous terms of

de
reasing order. The pre
ise de�nition is 
ompletely analogous to the de�nition in

the smooth 
ase, 
f. e.g. [9℄, where we assume that the 
oe�
ients of g(x;D

x

) and

k(x;D

x

) are independent of x

n

in order to have a uniquely de�ned prin
iple part.

The prin
iple part of a(x;D

x

) will be denoted by a

0

(x;D

x

).

De�nition 6.1 A polyhomogeneous Green operator a(x;D

x

) of order m 2 Z, 
lass

r 2 Z, and 
oe�
ients in C

�

, � > 0, is said to be uniformly ellipti
 if the prin
ipal

interior symbol p

0

(x; �) : C

N

! C

N

is invertible for every x 2 R

n

, j�j = 1, and

p

�1

0

(x; �) is uniformly bounded in x 2 R

n

, j�j = 1, and prin
ipal boundary symbol

operator

a

0

(x

0

; 0; �

0

; D

n

) : H

r

2

(R

+

)

N

� C

M

! H

r�m

2

(R

+

)

N

� C

M

0

is invertible and a

0

(x

0

; 0; �

0

; D

n

)

�1

is uniformly bounded in x

0

; �

0

2 R

n�1

with j�

0

j = 1.

Sin
e matrix inversion is smooth, p

�1

0

(x; �) 2 C

�

S

�m

1;0

(R

n

�R

n

)
L(C

N

) (suitably de-

�ned for j�j � 1). But it remains to prove that a

0

(x

0

; 0; �

0

; D

n

)

�1

is again a boundary

symbol operator in the non-smooth symbol-kernel 
lasses.

Sin
e for every �xed x

0

0

2 R

n�1

the boundary symbol operator a

x

0

0

(�

0

; D

n

) :=

a

0

(x

0

0

; 0; �

0

; D

n

) belongs to the standard 
al
ulus, a

x

0

0

(�

0

; D

n

)

�1

is again a boundary

symbol operator of order �m and 
lass r�m, 
f. [5℄, [22℄, or [12℄. Hen
e it remains

to prove that a

0

(x

0

; 0; �

0

; D

n

)

�1

is in C

�

w.r.t. x

0

and satis�es the 
orresponding

symbol-kernel estimates. As known from the proof in the smooth 
oe�
ient 
ase,


f. [5℄, [22, Proposition 3.1.1.2.6℄, or [12, Theorem 3.1.7℄, the statement 
an be

redu
ed to the inversion of a(x

0

; 0; �

0

; D

n

) = I + g(x

0

; �

0

; D

n

), where g(x

0

; D

x

) is a

Green operator of order and 
lass 0 with small operator norm in L(L

2

(R

+

)). This

is done by 
omposition with order redu
ing operators and other operators belonging

to the 
al
ulus as well as inversion of matrix-valued pseudodi�erential symbols. All

these steps dire
tly 
arry over to the non-smooth 
oe�
ient 
ase. Finally, the next

lemma treats the operator I + g(x

0

; �

0

; D

n

).



41

Lemma 6.2 If ~g 2 C

�

S

�1

1;0

(R

n�1

� R

n�1

;S(R

2

++

)) 
 L(C

N

), � > 0, N 2 N, with

k~g(x

0

; �

0

; :; :)k

L

2

(R

2

++

)

�

1

2

; then I + g(x

0

; �

0

; D

n

) is invertible and there is a ~g

0

2

C

�

S

�1

1;0

(R

n�1

�R

n�1

;S(R

2

++

))
L(C

N

) su
h that (I+g(x

0

; �

0

; D

n

))

�1

= I+g

0

(x

0

; �

0

; D

n

).

Proof: The lemma 
an be proved by similar arguments as in the proof of [12, Propo-

sition 3.2.1℄. By the assumptions kg(x

0

; �

0

; D

n

)k

L(L

2

(R

+

))

= k~g(x

0

; �

0

; :; :)k

L

2

(R

2

++

)

�

1

2

: Hen
e I + g(x

0

; �

0

; D

n

) is invertible in L(L

2

(R

+

)) and (I + g(x

0

; �

0

; D

n

))

�1

=

P

1

k=0

g(x

0

; �

0

; D

n

)

k

; where g(x

0

; �

0

; D

n

)

k

= g

k

(x

0

; �

0

; D

n

) with

~g

k

(x

0

; �

0

; x

n

; y

n

) =

Z

R

� � �

Z

R

Z

R

~g(x

0

; �

0

; x

n

; w

1

)~g(x

0

; �

0

; w

1

; w

2

) � � � ~g(x

0

; �

0

; w

k�1

; y

n

)dw

1

dw

2

� � �dw

k�1

for k � 2. Then it 
an be proved in a straight-forward manner that ~g

0

(x

0

; �

0

; x

n

; y

n

) :=

P

1

k=1

~g

k

(x

0

; �

0

; x

n

; y

n

) 2 C

�

S

�1

(R

n�1

� R

n�1

;S(R

2

++

))
 L(C

N

).

Corollary 6.3 If a(x;D

x

) is a polyhomogeneous ellipti
 Green operator of order

m 2 Z, 
lass r 2 Z, and in C

�

, � > 0, w.r.t. x, then a

0

(x

0

; 0; �

0

; D

n

)

�1

is a boundary

symbol operator of order �m, 
lass r �m, and in C

�

w.r.t. x

0

.

In order to 
onstru
t a parametrix in the non-smooth 
oe�
ient 
ase one has to take


are of the restri
tion of the mapping properties due to the limited smoothness of

the 
oe�
ients. If for instan
e p 2 C

�

S

m

1;0

(R

n

� R

n

), m 2 R, is ellipti
 and q 2

C

�

S

�m

1;0

(R

n

� R

n

) su
h that q(x; �) = p

�1

(x; �) for j�j � R > 0, then by Theorem 3.3

p(x;D

x

) : H

s+m

q

(R

n

) ! H

s

q

(R

n

) if jsj < � but q(x;D

x

) : H

s

q

(R

n

) ! H

s+m

q

(R

n

) if

js +mj < � for 1 < q < 1. Hen
e the restri
tion on s is too strong unless m = 0.

In [1℄ the problem was solved by taking the parametrix in y-form instead of x-form.

But, sin
e we did not treat operators in y-form, we use order-redu
ing operators to

the operator to order 0.

By [10, Proposition 4.2℄, there is a family of ellipti
 polyhomogeneous symbols

�

m

�

(�) 2 S

m

1;0

(R

n

� R

n

) satisfying the transmission 
ondition su
h that �

m

�

(�

0

; D

n

)

+

is of 
lass �1 and �

j

�

(�

0

; D

n

)

+

�

k

�

(�

0

; D

n

)

+

= �

j+k

�

(�

0

; D

n

)

+

for j; k 2 Z: Hen
e, if

a(x;D

x

) is an ellipti
 Green operator of order m and 
lass r, then

a

0

(x;D

x

) := a(x;D

x

)

�

�

�m

�

(D

x

)

+

hD

x

0

i

�m

�

(6.1)

is an ellipti
 Green operator of order 0 and 
lass r �m.

THEOREM 6.4 Let a(x;D

x

) be an ellipti
 Green operator of order m 2 Z, 
lass

r 2 Z, and of regularity C

�

, � > 0, in x. Then for every � 2 (0; �), � 62 N, there is a

parametrix B = B

[�℄

su
h that a(x;D

x

)B = I +R

�

, where

R

�

: H

s��

q

(R

n

+

)

N

�B

s���

1

q

q

(R

n�1

)

M

0

! H

s

q

(R

n

+

)

N

� B

s�

1

q

q

(R

n�1

)

M
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if �� + � < s < � � [�℄, s � � > r �m �

1

q

0

, and s �

1

q

> �� + � when M 6= 0 or

M

0

6= 0. More pre
isely, B = diag(�

�

(D

x

)

�m

+

; hD

x

0

i

�m

)b(x;D

x

), where b(x;D

x

) is a

Green operator of order 0 and 
lass r �m.

Proof: In the following R

�

will denote an operator with mapping properties stated

in the theorem. Be
ause of (6.1), we 
an assume that m = 0. Moreover, we 
onsider

for simpli
ity only the 
ase that a(x;D

x

) = a

0

(x;D

x

).

In order to 
onstru
t an inverse modulo terms of order ��, we make the Ansatz

b(x;D

x

) =

P

[�℄

j=0

b

j

(x;D

x

); where b

j

(x;D

x

) are Green operators of order �m�j with


oe�
ients in C

��j

. Moreover, denote by q

j

(x; �) the interior symbol of b

j

(x;D

x

).

Then by Theorem 1.2

a(x;D

x

)b

j

(x;D

x

) = (a#

[�℄�j

b

j

)(x;D

x

) +R

�

=

[�℄�j

X

k=0

r

(k)

j

(x;D

x

) +R

�

;

where r

(k)

j

(x;D

x

) is a Green operator of order �m� j�k with 
oe�
ients in C

��j�k

.

Moreover, let q

(k)

j

(x; �) denote the interior symbol of r

(k)

j

(x;D

x

). Then

r

(0)

j

(x

0

; 0; �

0

; D

n

) = a

0

(x

0

; 0; �

0

; D

n

)b

j

(x

0

; 0; �

0

; D

n

); q

(0)

j

(x; �) = p

0

(x; �)q

j

(x; �):

Hen
e sorting the terms by their order a(x;D

x

)b(x;D

x

) =

P

[�℄

l=0

P

l

k=0

r

(k)

l�k

(x;D

x

) +

R

�

: In order to obtain a(x;D

x

)b(x;D

x

) = I + R

�

, we determine b

j

(x;D

x

), j � 1,

su

essively by

b

0

(x

0

; 0; �

0

; D

n

) = a

0

(x

0

; 0; �

0

; D

n

)

�1

;

b

l

(x

0

; 0; �

0

; D

n

) = �a

0

(x

0

; 0; �

0

; D

n

)

�1

l

X

k=1

r

(k)

l�k

(x

0

; 0; �

0

; D

n

); l = 1; : : : ; [�℄

for j�

0

j � 1 and q

0

(x; �) = p

0

(x; �), q

l

(x; �) = �p(x; �)

�1

P

l

k=0

q

(k)

l�k

(x; �); l = 1; : : : ; [�℄;

for j�j � 1.
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