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Abstrat

In this ontribution we establish a alulus of pseudodi�erential boundary

value problems with Hölder ontinuous oe�ients. It is a generalization of the

alulus of pseudodi�erential boundary value problems introdued by Boutet

de Monvel. We disuss their mapping properties in Bessel potential and ertain

Besov spaes. Although having non-smooth oe�ients and the operator lasses

being not losed under omposition, we will prove that the omposition of Green

operators a

1

(x;D

x

)a

2

(x;D

x

) oinides with a Green operator a(x;D

x

) up to

order m

1

+m

2

� �, where � 2 (0; �

2

) is arbitrary, a

j

(x; �) is in C

�

j

(R

n

) w.r.t.

x, and m

j

is the order of a

j

(x;D

x

), j = 1; 2. Moreover, a(x;D

x

) is obtained

by the asymptoti expansion formula of the smooth oe�ient ase leaving out

all terms of order less than m

1

+ m

2

� �. This result is used to onstrut a

parametrix of a uniformly ellipti Green operator a(x;D

x

).

Key words: Pseudodi�erential boundary value problems, non-smooth pseudodi�erential

operators
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1 Introdution

In [5℄ L. Boutet de Monvel introdued an operator lass modeling di�erential and

pseudodi�erential boundary problems, whih is losed under omposition and an be

used to onstrut parametries to ellipti operators. It gave great impat in many

diretions. This alulus and further developed aluli, f. e.g. Grubb [12℄, have

been used in index theory, f. [5℄, Rempel and Shulze [22℄, in the theory of Navier-

Stokes equations, f. Grubb and Solonnikov [16, 13℄, in geometrial problems as trae

expansions, f. e.g. Grubb and Shrohe [15℄, and others, f. [12℄.

Although the original alulus of Boutet de Monvel was generalized in many

diretions, it is usually assumed that the symbols of the operators are smooth in

the spae variable x. In order to treat boundary value problems in domains with

1



2 1 INTRODUCTION

non-smooth boundary or apply the theory to quasi-linear equations, it is neessary

to allow symbols with limited smoothness in the spae variable x.

In the present ontribution we generalize the so-alled Green operators in [5℄

to operators with symbols whih are Hölder ontinuous in x � also alled Green

operator with �Hölder ontinuous oe�ients�. We disuss their mapping properties

and behavior under omposition. The present work extends and improves the results

of [1, 2℄, where some partial results in this diretion were proved and applied to

show the existene of a bounded H

1

-alulus of the Stokes operator in so-alled

asymptotially �at layers with C

1;1

-boundary.

A Green operator in the half-spae R

n

+

= R

n�1

� (0;1) is of the form

a(x;D

x

) =

�

p(x;D

x

)

+

+ g(x;D

x

) k(x;D

x

)

t(x;D

x

) s(x

0

; D

x

0

)

�

:

S(R

n

+

)

N

�

S(R

n�1

)

M

!

C

0

(R

n

+

)

N

0

�

C

0

(R

n�1

)

M

0

(1.1)

Here p(x;D

x

)

+

= r

+

p(x;D

x

)e

+

is a trunated pseudodi�erential operator, k(x;D

x

)

is a Poisson operator (also alled potential operator), t(x

0

; D

x

) is a trae operator,

g(x;D

x

) is a singular Green operator, and s(x

0

; D

x

0

) is a pseudodi�erential operator

on R

n�1

, f. [5℄, [22℄, or [12℄ for the de�nition in the smooth oe�ient ase. The

preise de�nitions in the Hölder ontinuous ase are given below. They are based

on the de�nition of the lass C

�

S

m

1;0

(R

n

� R

n

), f. Kumano-Go and Nagase [19℄ or

Taylor [25℄, i.e.,

p 2 C

�

S

m

1;0

(R

n

� R

n

), k�

�

�

p(:; �)k

C

�

(R

n

)

� C

�

(1 + j�j)

m�j�j

for all � 2 N

n

0

;

where C

�

(R

n

) is the spae of all [� ℄-times di�erentiable funtions with bounded and

Hölder ontinuous [� ℄-th derivatives of degree � � [� ℄.

Having non-smooth oe�ients there are several new aspets: First of all, the

mapping properties in Bessel potential and Besov spaes are of ourse limited by the

smoothness of the oe�ients. It is well-known that, if p 2 C

�

S

m

1;0

(R

n

� R

n

), the

assoiated pseudodi�erential operator p(x;D

x

) is a bounded operator

p(x;D

x

) : H

s+m

q

(R

n

)! H

s

q

(R

n

) if jsj < �;

f. e.g. [25, Proposition 2.1.D℄. Using the latter mapping properties in a vetor-valued

variant, we will prove our �rst main result:

THEOREM 1.1 Let a(x;D

x

) be a Green operator of order m 2 R, lass r 2 Z,

with C

�

-regularity in x. Then for every s 2 R

a(x;D

x

) : H

s+m

q

(R

n

+

)

N

�B

s+m�

1

q

q

(R

n�1

)

M

! H

s

q

(R

n

+

)

N

0

� B

s�

1

q

q

(R

n�1

)

M

0

provided that jsj < � if N

0

6= 0, js�

1

q

j < � if M

0

6= 0, s +m > r �

1

q

0

if N 6= 0, and

m 2 Z if p(x;D

x

) 6= 0.
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Considering ompositions of pseudodi�erential or Green operators with non-smooth

oe�ients the situation is more ompliated. The lass of pseudodi�erential opera-

tors with non-smooth oe�ients is of ourse not losed under omposition sine e.g.

[�

x

j

; p(x;D

x

)℄ = (�

x

j

p)(x;D

x

). In partiular the statement that p

1

(x;D

x

)p

2

(x;D

x

) =

(p

1

#p

2

)(x;D

x

) where p

1

#p

2

has the asymptoti expansion

p

1

#p

2

(x; �) �

X

�2N

n

0

1

�!

�

�

�

p

1

(x; �)D

�

x

p

2

(x; �) (1.2)

annot hold if p

2

is not smooth in x. However it will be shown under ertain restri-

tions on m

1

that, if p

j

2 C

�

j

S

m

j

(R

n

� R

n

), j = 1; 2, for any � 2 (0; �

2

), � 62 N ,

p

1

(x;D

x

)p

2

(x;D

x

) =

X

j�j<�

1

�!

OP(�

�

�

p

1

(x; �)D

�

x

p

2

(x; �)) +R

�

;

where R

�

is of order m

1

+m

2

� � in the sense of the mapping properties in Bessel

potential and Besov spaes, f. Theorem 3.6 below. Hene in some sense the asymp-

toti expansion is valid as long as D

�

x

p

2

(x; �) exists and is Hölder ontinuous w.r.t

x.

The orresponding statement for ompositions of Green operators is as follows:

THEOREM 1.2 Let a

j

(x;D

x

), j = 1; 2, be Green operators of order m

j

2 R, lass

r

j

2 Z, and oe�ients in C

�

j

, �

j

> 0, j = 1; 2, and let p

j

; g

j

; k

j

; t

j

; s

j

; N

j

;M

j

; N

0

j

;M

0

j

denote the orresponding operators and parameters due to (1.1). Moreover, let N

0

2

=

N

1

, M

0

2

=M

1

and assume that the oe�ients of ~g

2

and

~

k

2

are independent of x

n

and

that m

j

2 Z if p

j

6= 0. Then for every � 2 (0; �

2

), � 62 N, there is a Green operator

(a

1

#

[�℄

a

2

)(x;D

x

) of order m

1

+m

2

, lass max(r

1

+m

2

; r

2

), and with oe�ients in

C

�

, � := min(�

1

; �

2

� [�℄), suh that

a

1

(x;D

x

)a

2

(x;D

x

)�(a

1

#

[�℄

a

2

)(x;D

x

) :

H

s+m

1

+m

2

��

q

(R

n

+

)

N

2

�

B

s+m

1

+m

2

�

1

q

��

q

(R

n�1

)

M

2

!

H

s

q

(R

n

+

)

N

0

1

�

B

s�

1

q

q

(R

n�1

)

M

0

1

is a bounded linear mapping if the following onditions are satis�es:

1. jsj < � , s� � > ��

2

if N

0

1

6= 0,

�

�

�

s�

1

q

�

�

�

< � , s�

1

q

� � > ��

2

if M

0

1

6= 0,

2. ��

2

+ � < s+m

1

< �

2

if N

1

6= 0 and ��

2

+ � < s+m

1

�

1

q

< �

2

if M

1

6= 0,

3. s+m

1

> r

1

�

1

q

0

if N

1

6= 0 and s+m

1

+m

2

� � > r

2

�

1

q

0

if N

2

6= 0.

More preisely,

(a

1

#

[�℄

a

2

)(x;D

x

) =

�

p

1

#

[�℄

p

2

(x;D

x

)

+

+ g(x;D

x

) k(x;D

x

)

t(x

0

; D

x

) s(x

0

; D

x

0

)

�

;

where
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1. g(x;D

x

) = (p

1

#

0

[�℄

g

2

)(x;D

x

) + (g

1

#

[�℄

p

2

)(x;D

x

) + (g

1

#

0

[�℄

g

2

)(x;D

x

)

+(k

1

#

0

[�℄

t

2

)(x;D

x

)� l

�

(p

1

; p

2

)(x;D

x

),

2. t(x

0

; D

x

) = (t

1

#

[�℄

p

2

)(x;D

x

) + (t

1

#

0

[�℄

g

2

)(x

0

; D

x

) + (s

1

#

0

[�℄

t

2

)(x

0

; D

x

),

3. k(x;D

x

) = (p

1

#

[�℄

k

2

)(x;D

x

) + (g

1

#

0

[�℄

k

2

)(x;D

x

) + (k

1

#

0

[�℄

s

2

)(x;D

x

),

4. s(x

0

; D

x

0

) = (t

1

#

0

[�℄

k

2

)(x

0

; D

x

0

) + (s

1

#

0

[�℄

s

2

)(x

0

; D

x

0

),

and the terms are de�ned by (3.5), (4.8), (5.9)-(5.10), and (5.18) below.

Theorem 1.2 will be used to onstrut an inverse of a uniformly ellipti Green

operator a(x;D

x

) up to order ��, where 0 < � < � and � > 0 is the regularity of the

oe�ients of a(x;D

x

).

The struture of the artile is as follows: In Setion 2 we summarize the nees-

sary preliminaries on vetor-valued and weighted funtion spaes. Then in Setion 3

we onsider the mapping properties and the ompositions of operator-valued pseu-

dodi�erential operators with Hölder ontinuous oe�ients, whih will be the basis

for the further disussion sine Green operators an be onsidered as operator-valued

pseudodi�erential operators. The main results of this ontributions are proved in Se-

tion 4 and Setion 5. In Setion 4, the Poisson, trae, and singular Green operators

are de�ned and the orresponding mapping properties and statements on omposi-

tions are proved. Then trunated pseudodi�erential operator enter the disussion in

Setion 5, where �rst of all a transmission ondition for non-smooth pseudodi�eren-

tial operators is given. Finally, Setion 6 is devoted to the parametrix onstrution

in the ase of non-smooth oe�ient.

Aknowledgments: The author expresses his gratitude to Gerd Grubb for sev-

eral helpful omments on the manusript.

2 Preliminaries

2.1 Vetor-Valued Besov and Bessel Potential Spaes

First of all, N denotes the set of natural numbers (without 0), N

0

= N [ f0g, Z the

set of integers, R the real numbers, and C is the set of omplex numbers.

We will keep lose to the notation of the monograph [12℄. In partiular, �

x

j

f =

�

j

f , j = 1; : : : ; n, denotes the partial derivatives of f : R

n

! C and D

x

j

:= �i�

x

j

.

For s 2 R we de�ne [s℄ to be the largest integer � s and set [s℄

+

= maxfs; 0g.

In the following let X be a Banah spae and 
 � R

n

be a domain. Then

L

p

(
;X), 1 � p < 1, is de�ned as the spae of strongly measurable funtions

f : 
! X with

kfk

L

p

(
;X)

:=

�

Z




kf(x)k

p

X

dx

�

1

p

<1
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and L

1

(
;X) is the spae of all strongly measurable and essentially bounded fun-

tions. Moreover, L

p

(
) denotes the standard Lebesgue spae and k � k

p

:= k � k

L

p

(
)

.

Similarly, `

p

(N

0

;X), 1 � p � 1, denotes the X-valued variant of `

p

(N

0

).

Furthermore, let S(R

n

;X) be the spae of smooth rapidly dereasing funtion

f : R

n

! X and let S(R

n

) := S(R

n

; C ). Moreover, S

0

(R

n

;X) := L(S(R

n

); X)

denotes the spae of tempered X-valued distributions, f. e.g. Amann [3℄. As in the

salar ase the Fourier transformation is an isomorphism F : S(R

n

;X) ! S(R

n

;X)

and F : S

0

(R

n

;X)! S

0

(R

n

;X), f [3℄. Moreover, if p : R

n

! C is a smooth funtion

suh that p and all its derivatives are of at most polynomial growth, then

p(D

x

)f := F

�1

[p(�)

^

f ℄;

^

f := F [f ℄;

is a bounded operator on S(R

n

;X) and S

0

(R

n

;X). In partiular let h�i := (1+ j�j

2

)

1

2

and let '

j

(�), j 2 N

0

, be a partition of unity on R

n

with supp'

0

� fj�j � 2g and

supp'

j

� f2

j�1

� j�j � 2

j+1

g for j 2 N .

Then the X-valued variants of the Bessel potential and Besov spaes of order

s 2 R are de�ned as

H

s

p

(R

n

;X) := ff 2 S

0

(R

n

;X) : hD

x

i

s

f 2 L

p

(R

n

;X)g if 1 < p <1;

B

s

p;q

(R

n

;X) := ff 2 S

0

(R

n

;X) : (2

sj

'

j

(D

x

)f)

j2N

0

2 `

q

(N

0

;L

p

(R

n

;X))g;

where 1 � p; q � 1. Moreover, we will use the abbreviations B

s

p

(R

n

;X) :=

B

s

p;p

(R

n

;X), B

s

p

(R

n

) := B

s

p

(R

n

; C ), and H

s

p

(R

n

) := H

s

p

(R

n

; C ).

As in the salar ase, the following properties are simple onsequenes of the

de�nition and the fat that '

j

(D

x

)h�i

s

f = k

j

� f with kk

j

k

L

1

(R

n

)

� C2

sj

, j 2 N

0

, f.

Stein [24, Chapter VI, Setion 5.3℄:

B

s

p;q

1

(R

n

;X) � B

s

p;q

2

(R

n

;X) for 1 � q

1

� q

2

� 1; 1 � p � 1

B

s

p;1

(R

n

;X) � H

s

p

(R

n

;X) � B

s

p;1

(R

n

;X) for 1 < p <1; (2.1)

B

s+"

p;1

(R

n

;X) � B

s

p;1

(R

n

;X) for 1 � p � 1; " > 0;

where s 2 R. In partiular,

B

s+"

p

(R

n

;X) � H

s

p

(R

n

;X) � B

s�"

p

(R

n

;X) for 1 < p <1; " > 0: (2.2)

For interpolation properties of the salar Besov and Bessel potential spaes we refer

to Bergh and Löfström [4℄ and Triebel [26℄. As in the latter monographs we will

denote the omplex and real interpolation funtor by (:; :)

[�℄

, (:; :)

�;q

, respetively.

Lemma 2.1 Let 1 � p; q

0

; q

1

; q � 1, s

0

; s

1

2 R, s

0

6= s

1

, � 2 (0; 1), X be a Banah

spae, and let H be a Hilbert spae. Then

(B

s

0

p;q

0

(R

n

;X); B

s

1

p;q

1

(R

n

;X))

�;q

= B

s

p;q

(R

n

;X);

(H

s

0

p

(R

n

;X); H

s

1

p

(R

n

;X))

�;q

= B

s

p;q

(R

n

;X) if 1 < p <1;

(B

s

0

p;q

(R

n

;X); B

s

1

p;q

(R

n

;X))

[�℄

= B

s

p;q

(R

n

;X) if 1 � p <1;

(H

s

0

q

(R

n

;H); H

s

1

q

(R

n

;H))

[�℄

= H

s

q

(R

n

;H) if 1 < p <1;

where s = (1� �)s

0

+ �s

1

.
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Proof: For the �rst and third interpolation spaes we refer to Amann [3, Setion

5℄ and the referenes given there. The seond statement is a onsequene of the �rst

and (2.1). For the last statement, we note that the Mikhlin multiplier theorem holds

for L

p

(R

n

;H) if 1 < p <1. Hene the standard proof remains valid in the H-valued

ase, f. [4℄.

Furthermore, we note that

F (H

s

p

(R

n

;X

0

); H

s

p

(R

n

;X

1

)) = H

s

p

(R

n

;F (X

0

; X

1

)) for 1 < p <1

F (B

s

p

(R

n

;X

0

); B

s

p

(R

n

;X

1

)) = B

s

p

(R

n

;F (X

0

; X

1

)) for 1 � p <1

if F (:; :) = (:; :)

[�℄

or F (:; :) = (:; :)

�;q

. Sine hD

x

i

s

is by de�nition an isomorphism

from H

s

p

(R

n

;X

j

) onto L

p

(R

n

;X

j

), the statement for the Bessel potential spaes is a

onsequene of the statement for the Lebesgue spaes, f. Triebel [26, Setion 1.18.4℄.

Moreover, as in the salar ase f 7! ('

j

(D

x

)f)

j2N

0

is a retration from B

s

p;q

(R

n

;X

k

),

k = 0; 1, into `

q

(N

0

;L

p

(R

n

;X

k

)) with oretration (f

j

)

j2N

0

7!

P

1

j=0

2

�sj

 

j

(D

x

)f

j

,

where  

j

(D

x

) :=

P

1

k=�1

'

j+k

(D

x

). Hene the statement for B

s

p

(R

n

;X) is a onse-

quene of the interpolation properties of vetor-valued `

p

(N

0

) and L

p

-spaes, f. [26,

Setion 1.18.1/4℄.

Finally, if X is re�exive, s 2 R, and 1 < p; q <1, then

(B

s

p;q

(R

n

;X))

0

�

=

B

�s

p

0

;q

0

(R

n

;X

0

); (H

s

p

(R

n

;X))

0

�

=

H

�s

p

0

(R

n

;X

0

);

f. [3℄ for the Besov spaes and Edwards [6, 8.20.5℄ for (L

p

(R

n

;X))

0

�

=

L

p

0

(R

n

;X

0

),

whih implies the statement for H

s

p

(R

n

;X).

2.2 Weighted Funtion Spaes

In the following we will use a measurable funtion ! : R

n

! (0;1) to de�ne weighted

Lebesgue, Besov-, and Bessel potential spaes.

First of all, if M � R

n

is a non-empty measurable set, L

p

(M;!), 1 � p < 1,

denotes the vetor spae of all measurable funtions f : M ! C suh that

kfk

L

p

(R

n

;!)

:=

�

Z

M

jf(x)j

p

!(x)dx

�

1

p

<1:

Sine f 7! f!

1

p

is an isometri isomorphism from L

p

(M;!) onto L

p

(M),

(L

p

(M;!))

0

= L

p

0

(M;!

0

); !

0

(x) := !(x)

�

p

0

p

; (2.3)

if 1 < p <1 by the usual identi�ation of funtions with funtionals. Moreover, we

note that

(L

p

(R

n

; !

0

); L

p

(R

n

; !

1

))

�;p

= (L

p

(R

n

; !

0

); L

p

(R

n

; !

1

))

[�℄

= L

p

(R

n

; !)
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where !(x) := !

0

(x)

1��

!

1

(x)

�

, 0 < � < 1, and 1 � p < 1, f. [4, Theorem

5.4.1/5.5.3℄.

In order to get ontinuity of lassial singular integral operators on L

p

(R

n

; !) for

1 < p <1 a neessary and su�ient ondition is that ! is in the Mukenhoupt lass

A

p

, i.e.,

sup

Q

1

jQj

Z

Q

!(x)dx

�

1

jQj

Z

Q

!(x)

�

p

0

p

dx

�

p

p

0

<1;

where the supremum is taken with respet to all ubes Q � R

n

, f. [24, Chapter V℄.

In the ase that !(x) = jx

n

j

Æp

, it is an elementary alulation that jx

n

j

Æp

2 A

p

if and

only if �

1

p

< Æ <

1

p

0

.

If ! 2 A

p

, 1 < p < 1, and s 2 R, then we de�ne the weighted Bessel potential

spae as

H

s

p

(R

n

; !) := fu 2 S

0

(R

n

) : hD

x

i

s

u 2 L

p

(R

n

; !)g

normed by khD

x

i

s

� k

L

p

(R

n

;!)

. Using the variant of the Mikhlin multiplier theorem

for weighted L

p

-spaes when ! 2 A

p

, f. Garia-Cuerva and Rubio de Frania [8,

Chapter IV, Theorem 3.9℄, one an prove in the same way as for the standard Bessel

potential spaes that

H

m

p

(R

n

; !) = W

m

p

(R

n

; !) := fu 2 L

p

(R

n

; !) : D

�

x

u 2 L

p

(R

n

; !) for j�j � mg (2.4)

for m 2 N

0

and that

(H

s

0

p

(R

n

; !); H

s

1

p

(R

n

; !))

[�℄

= H

s

p

(R

n

; !); s = (1� �)s

0

+ �s

1

; (2.5)

for all s

0

; s

1

2 R, 1 < p <1, and ! 2 A

p

, f. Fröhlih [7, Lemma 8.1/Satz 8.3℄.

Moreover, sine hD

x

i

s

is an isomorphism from H

s

p

(R

n

; !) onto L

p

(R

n

; !) and

beause of (2.3),

(H

s

p

(R

n

; !))

0

= H

�s

p

0

(R

n

; !

0

); !

0

(x) = !(x)

�

p

0

p

: (2.6)

If ! 2 A

p

, the weighted Bessel potential spaes on R

n

+

:= R

n�1

� (0;1) are de�ned

as

H

s

p

(R

n

+

; !) := r

+

H

s

p

(R

n

;!);

H

s

p;0

(R

n

+

; !) := fu 2 H

s

p

(R

n

; !) : supp u � R

n

+

g;

where r

+

f denotes the restrition of a distribution f to R

n

+

. As usual

H

m

p

(R

n

+

; !) = W

m

p

(R

n

+

; !) := fu 2 L

p

(R

n

+

; !) : D

�

x

u 2 L

p

(R

n

+

; !) for j�j � mg;

f. [7, Setion 8.2.2℄. Moreover, beause of (2.6) and the de�nitions,

H

s

p

(R

n

+

; !)

0

= H

�s

p

0

;0

(R

n

+

; !

0

); !

0

(x) = !(x)

�

p

0

p

:
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In partiular we will useH

s

p

(R

+

; jx

n

j

pÆ

) andH

s

p;0

(R

+

; jx

n

j

pÆ

) also denoted byH

s

p

(R

+

; x

pÆ

n

),

H

s

p;0

(R

+

; x

pÆ

n

), resp., with �

1

p

< Æ <

1

p

0

. Sine (1 + i�

n

)

t

2 S

t

1;0

(R � R) is a lassial

pseudodi�erential symbol and beause of the ontinuity of pseudodi�erential opera-

tors in weighted Bessel potential spaes, f. Marshall [20℄,

(1 + iD

n

)

t

: H

s+t

p

(R; jx

n

j

Æp

)! H

s

p

(R; jx

n

j

Æp

):

By the Paley-Wiener theorem, supp(1 + iD

n

)

t

f � R

+

if supp f � R

+

. Hene

(1 + iD

n

)

t

: H

s+t

p;0

(R

+

; x

Æp

n

)! H

s

p;0

(R

+

; x

Æp

n

) (2.7)

(1� iD

n

)

t

: H

s+t

p

(R

+

; x

Æp

n

)! H

s

p

(R

+

; x

Æp

n

) (2.8)

are isomorphisms by (2.6) and ((1 + iD

n

)

t

)

0

= (1� iD

n

)

�t

.

As a onsequene we obtain the following generalization of Grubb and Kokholm [14,

Theorem 1.8℄:

Lemma 2.2 Let s 2 R. If 1 < q � 2, �

1

2

< Æ

1

<

1

q

�

1

2

< Æ

2

<

1

2

, and � =

(

1

q

�

1

2

� Æ

1

)=(Æ

2

� Æ

1

), then

(H

s

2

(R

+

; x

2Æ

1

n

); H

s

2

(R

+

; x

2Æ

2

n

))

�;q

� H

s

q

(R

+

); (2.9)

(H

s�Æ

1

2;0

(R

+

); H

s�Æ

2

2;0

(R

+

))

�;q

� H

s

q;0

(R

+

): (2.10)

Moreover, if 2 � q < 1, s 2 R, �

1

2

< Æ

1

<

1

2

�

1

q

< Æ

2

<

1

2

, and � = (

1

2

�

1

q

�

Æ

1

)=(Æ

2

� Æ

1

), then

(H

s

2;0

(R

+

; x

�2Æ

1

n

); H

s

2;0

(R

+

; x

�2Æ

2

n

))

�;q

� H

s

q;0

(R

+

); (2.11)

(H

s+Æ

1

2

(R

+

); H

s+Æ

2

2

(R

+

))

�;q

� H

s

q

(R

+

): (2.12)

Proof: The lemma was proved by Grubb and Kokholm [14, Theorem 1.8℄ for the

ase s = 0, where we note that H

�Æ

j

2;0

(R

+

) = H

�Æ

j

2

(R

+

) sine jÆ

j

j <

1

2

. Then the

general ase is a onsequene of (2.7)-(2.8).

Finally, we note that

X

s

p

(R

n

+

) = X

s

p

(R

n�1

;L

p

(R

+

)) \ L

p

(R

n�1

;X

s

p

(R

+

)) (2.13)

X

�s

p

(R

n

+

) = X

�s

p

(R

n�1

;L

p

(R

+

)) + L

p

(R

n�1

;X

�s

p

(R

+

)) (2.14)

where X = H or X = B and s > 0, f. e.g. Grubb [11, (A.23)℄ and the referenes

given there.

If Æ � 0, s > 0, we de�ne the weighted Besov spae

B

s

q

(R

n

+

; x

Æq

n

) := ff 2 W

[s℄

q

(R

n

+

; x

Æq

n

) : kfk

B

s

q

(R

n

+

;x

Æq

n

)

<1g

kfk

q

B

s

q

(R

n

+

;x

Æq

n

)

:= kfk

q

W

[s℄

q

(R

n

+

;x

Æq

n

)

+

X

j�j�k

Z

R

n

+

jhj

�(s�k)q

k�

l

h

D

�

fk

q

L

q

(R

n

+

;x

Æq

n

)

dh

jhj

n

;
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where k; l 2 N

0

suh that k < s and l > s� k. Then

B

s

q

(R

n

+

; x

Æq

n

) = (L

q

(R

n

+

; x

Æq

n

);W

m

q

(R

n

+

; x

Æq

n

))

�;q

; (2.15)

where s = �m, 0 < � < 1, m 2 N , f. [26, Theorem 3.3.1℄. Finally, we de�ne

B

�s

q;0

(R

n

+

; x

�Æq

n

) := (B

s

q

0

(R

n

+

; x

Æq

0

n

))

0

:

Note that the de�nition of this weighted Besov spae for Æ = 0 is onsistent with the

Besov spaes de�ned by

B

s

q

(R

n

+

) := r

+

B

s

q

(R

n

); B

s

q;0

(R

n

+

) = ff 2 B

s

q

(R

n

) : supp f � R

n

+

g; s 2 R

and that B

s

q

(R

n

+

) = B

s

q;0

(R

n

+

) if and only if �

1

q

0

< s <

1

q

.

3 Operator-Valued Pseudodi�erential Operators with

Non-Smooth Coe�ients

In the following we will use operator-valued pseudodi�erential operators with oe�-

ients in the Hölder spae C

�

(R

n

) of all funtions f : R

n

! C with Hölder ontinuous

derivatives �

�

x

f of degree � � [� ℄ for all j�j � [� ℄ normed by

kfk

C

�

(R

n

)

:=

X

j�j�[� ℄

k�

�

x

fk

1

+

X

j�j=[� ℄

sup

x6=y

j�

�

x

f(x)� �

�

x

f(y)j

jx� yj

��[� ℄

:

Here [� ℄ denotes the largest integer not larger than � . The vetor-valued variant

C

�

(R

n

;X), where X is a Banah spae, is de�ned in an obvious way.

In the following we will often use that

C

�

(R

n

) ,! C

���

0

(R

n�1

;C

�

0

(R)) for 0 < �

0

< �: (3.1)

De�nition 3.1 Let X be a Banah spae. The symbol spae C

�

S

m

1;Æ

(R

n

� R

n

;X),

� > 0, Æ 2 [0; 1℄, m 2 R, is the set of all funtions p : R

n

� R

n

! X that are smooth

with respet to � and are in C

�

with respet to x satisfying the estimates

kD

�

�

D

�

x

p(:; �)k

L

1

(R

n

;X)

� C

�;�

h�i

m�j�j+Æj�j

; kD

�

�

p(:; �)k

C

�

(R

n

;X)

� C

�

h�i

m�j�j+Æ�

for all � 2 N

n

0

and j�j � [� ℄.

For short we also write C

�

S

m

1;Æ

(X) or even C

�

S

m

1;Æ

if X is known from the on-

text. Obviously,

T

�>0

C

�

S

m

1;Æ

(R

n

� R

n

;X) oinides with the usual Hörmander lass

S

m

1;Æ

(R

n

� R

n

;X) in the vetor-valued variant.

Remark 3.2 Note that if p 2 C

�

S

m

0

1;Æ

(R

n

� R

n

;X

0

) \ C

�

S

m

1

1;Æ

(R

n

� R

n

;X

1

) and

(X

0

; X

1

) is an interpolation ouple, then p 2 C

�

S

m

1;Æ

(R

n

�R

n

;X) withX = (X

0

; X

1

)

�;q

or X = (X

0

; X

1

)

[�℄

, � 2 (0; 1), 1 � q � 1, and m = (1� �)m

0

+ �m

1

.



10 3 OPERATOR-VALUED PSEUDODIFFERENTIAL OPERATORS

In partiular we are interested in the ase Æ = 0. But we need the lasses

C

�

S

m

1;Æ

with Æ > 0 when working with the tehnique alled symbol smoothing : If

p 2 C

�

S

m

1;Æ

(R

n

� R

n

;X), Æ 2 [0; 1), then for every  2 (Æ; 1) there is a deomposition

p = p

#

+ p

b

with

p

#

2 S

m

1;

(R

n

� R

n

;X); p

b

2 C

�

S

m�(�Æ)�

1;

(R

n

� R

n

;X); (3.2)

f. [25, Equation (1.3.21)℄. Moreover, if Æ = 0, we have

�

�

x

p

#

2 S

m

1;

(R

n

� R

n

;X) for j�j � �; (3.3)

�

�

x

p

#

2 S

m+(j�j��)

1;

(R

n

� R

n

;X) for j�j > �; (3.4)

f. Taylor [25, Proposition 1.3.D℄. Note that the proofs in [25℄ are formulated for

salar symbols only, but they still hold in the X-valued setting sine they are based

on elementary estimates.

In the ase X = L(X

0

; X

1

) is the spae of all bounded linear operators A : X

0

!

X

1

for some Banah spaes X

0

and X

1

we de�ne the pseudodi�erential operator of

a symbol p 2 C

�

S

m

1;0

(R

n

� R

n

;L(X

0

; X

1

)) as

p(x;D

x

)u = OP(p)u =

Z

R

n

e

ix��

p(x; �)û(�)�� for u 2 S(R

n

;X

0

);

where �� := (2�)

�n

d�. Moreover, OP

0

(p) and OP

n

(p) will denote the pseudodi�eren-

tial operator of a symbol depending on x

0

; �

0

2 R

n�1

, x

n

; �

n

2 R, respetively, where

we use the deomposition x = (x

0

; x

n

), � = (�

0

; �

n

) for x; � 2 R

n

.

Note that, if p 2 S

m

1;Æ

(R

n

� R

n

;X), Æ 2 [0; 1), the well-known statements on

omposition, adjoints, and asymptoti expansion of pseudodi�erential operators with

salar symbols diretly arry over to the present operator valued setting, f. e.g.

Kumano-Go [18℄.

The proofs of the mapping properties of Green operators with non-smooth oef-

�ients are based on the following two theorems.

THEOREM 3.3 Let � > 0, 1 < q < 1, m 2 R, and let H

0

; H

1

be Hilbert spaes.

If p 2 C

�

S

m

1;0

(R

n

�R

n

;L(H

0

; H

1

)), then p(x;D

x

) extends to a bounded linear operator

p(x;D

x

) : H

s+m

q

(R

n

;H

0

)! H

s

q

(R

n

;H

1

) for all jsj < �:

Proof: Theorem 3.3 is an operator-valued variant of [25, Proposition 2.1.D℄. As

indiated in [1, Appendix℄ the proof given in [25℄ diretly arries over to the present

setting by using the Mikhlin multiplier theorem in the L(H)-valued version, where

it is essential that H is a Hilbert spae.

It is known that in general p(x;D

x

) does not have to be a bounded operator

from H

s+m

q

(R

n

;X

0

) to H

s

q

(R

n

;X

1

) if X

0

and X

1

are merely Banah spaes, see [14,

Remark 1.7℄ for a ounterexample. But in the ase of vetor-valued Besov spaes the

situation is easier:
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THEOREM 3.4 Let � > 0, 0 � � � 1, 1 � q; r � 1, m 2 R, and let X

0

; X

1

be Banah spaes. If p 2 C

�

S

m

1;�

(R

n

� R

n

;L(X

0

; X

1

)), then p(x;D

x

) extends to a

bounded linear operator

p(x;D

x

) : B

s+m

q;r

(R

n

;X

0

)! B

s

q;r

(R

n

;X

1

) for all � �(1� �) < s < �:

Proof: One the ase � = 1 is proved, the ase � 2 [0; 1) is easily obtained by the

same arguments as in [25, Setion 2.1℄.

The ase X

0

= X

1

= C and q = r = 1 is proved in [25, Theorem 2.1.A℄. The

proof an be adapted to our situation as follows: For the ase q; r 2 [1;1℄ we just

have to replae [25, Lemma 2.1.H℄ with [17, Theorem 2.4℄ and have to use [17, Lemma

2.5℄ instead of [25, Equation (2.1.23)℄. Then the proof in the present vetor-valued

ase is literally the same as in the salar ase sine all inequalities are obtained by

diret (and in priniple elementary) estimates. In partiular the Mikhlin multiplier

theorem is not needed in ontrary to the proof for the Bessel potential spaes.

The following variant of the latter theorem will be useful in order to analyze some

remainder terms in the omposition of Green operators.

Lemma 3.5 Let �; �

0

> 0, 1 � q; r � 1, and let p 2 C

�

S

m

1;0

(R

n

� R

n

;L(X

0

; X

1

)),

m 2 R. If additionally p 2 C

�

0

S

m��

1;0

(R

n

� R

n

;L(X

0

; X

1

)) for some 0 < � < � , then

p(x;D

x

) : B

s+m��

q;r

(R

n

;X

0

)! B

s

q;r

(R

n

;X

1

)

is a ontinuous mapping for all �� + � < s < � .

Proof: Sine 0 < � < � , there is a Æ 2 (0; 1) suh that � = �Æ. Let p = p

#

+ p

b

be the deomposition as desribed above with  = Æ. Sine p 2 C

�

0

S

m��

1;0

(R

n

�

R

n

;L(X

0

; X

1

)), p

#

2 S

m��

1;Æ

(R

n

�R

n

;L(X

0

; X

1

)):Moreover, beause of p 2 C

�

S

m

1;0

(R

n

�

R

n

;L(X

0

; X

1

)) and � = Æ� , p

b

2 C

�

S

m��

1;Æ

(R

n

� R

n

;L(X

0

; X

1

)): Hene the lemma is

a onsequene of Theorem 3.4.

We denote for k 2 N

0

(p

1

#

k

p

2

)(x; �) =

X

j�j�k

1

�!

�

�

�

p

1

(x; �)D

�

x

p

2

(x; �): (3.5)

Moreover, if p

j

(x

0

; �

0

) are the symbols of operator-valued pseudodi�erential operators

on R

n�1

, p

1

#

0

k

p

2

is de�ned as above with (x; �; �) replaed by (x

0

; �

0

; �

0

) 2 R

n�1

�

R

n�1

� N

n�1

0

. In the following we will often use the abbreviation

R

�

(p

1

; p

2

) := p

1

(x;D

x

)p

2

(x;D

x

)� (p

1

#

[�℄

p

2

)(x;D

x

)

and R

0

�

(p

1

; p

2

) for operators on R

n�1

where � 2 (0; �

2

).
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The following theorem shows that R

�

is of order m

1

+m

2

� � in the sense of map-

ping properties in Besov and Bessel potential spaes, where � 2 (0; �

2

) is arbitrary.

This theorem is the basis for all statements on ompositions of Green operators with

non-smooth oe�ients.

THEOREM 3.6 Let 1 � p; q � 1, m

1

; m

2

2 R, �

1

; �

2

> 0, � 2 (0; �

2

), � :=

min(�

1

; �

2

� [�℄), and let p

1

2 C

�

1

S

m

1

1;0

(R

n

� R

n

;L(X

1

; X

2

)) and p

2

2 C

�

2

S

m

2

1;0

(R

n

�

R

n

;L(X

0

; X

1

)), where X

0

; X

1

; X

2

are Banah spaes. Then for every s 2 R suh that

jsj < � , s� � > ��

2

, and ��

2

+ � < s+m

1

< �

2

p

1

(x;D

x

)p

2

(x;D

x

)� p

1

#

[�℄

p

2

(x;D

x

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s

p;q

(R

n

;X

2

):

are bounded operators (de�ned by extension from S(R

n

;X

0

)). The analogous state-

ment holds for Bessel potential spaes instead of Besov spaes if 1 < p < 1 and

� 62 N.

Proof: First of all, if p

1

is hosen aording to the assumptions of the theorem and

p

2

2 S

m

2

1;Æ

(R

n

�R

n

;L(X

0

; X

1

)), 0 � Æ < 1, is a smooth symbol, then there is a symbol

p

1

#p

2

2 C

�

1

S

m

1

+m

2

1;Æ

(R

n

� R

n

;L(X

0

; X

1

)) suh that

p

1

(x;D

x

)p

2

(x;D

x

)f = p

1

#p

2

(x;D

x

)f (3.6)

for all f 2 S(R

n

;X

0

) and the asymptoti expansion (1.2) holds. The latter statement

an be proved by a simple modi�ation of the standard proof for ompositions of

smooth symbols, f. e.g. [18, Chapter 2, Theorem 1.7℄. The ruial fat is that only

smoothness of p

1

in � 2 R

n

and smoothness of p

2

in x are needed in order to make

the proof using osillatory integrals work.

Let Æ :=

�

�

2

. Then by (3.2)-(3.4) p

2

(x; �) = p

#

2

(x; �)+ p

b

2

(x; �) with p

b

2

2 C

�

2

S

m

2

��

1;Æ

and

�

�

x

p

#

2

2 S

m

2

1;Æ

(R

n

� R

n

;L(X

0

; X

1

)) if j�j � [�

2

℄;

�

�

x

p

#

2

2 S

m

2

�Æ(�

2

�j�j)

1;Æ

(R

n

� R

n

;L(X

0

; X

1

)) if j�j > [�

2

℄:

Hene we get

p

1

(x;D

x

)p

2

(x;D

x

) = p

1

(x;D

x

)p

#

2

(x;D

x

) + p

1

(x;D

x

)p

b

2

(x;D

x

);

where p

1

(x;D

x

)p

b

2

(x;D

x

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

) ! B

s

p;q

(R

n

;X

1

) is a bounded opera-

tor sine ��

2

(1� Æ) = ��

2

+ � < s+m

1

< �

2

and jsj < �

1

.

Moreover, p

1

(x; �) = p

#

1

(x; �) + p

b

1

(x; �) with p

#

1

2 S

m

1

1;Æ

and p

b

1

2 C

�

1

S

m

1

�Æ�

1

1;Æ

. Be-

ause of (3.6), p

#

1

(x;D

x

)p

#

2

(x;D

x

) = p

#

(x;D

x

) and p

b

1

(x;D

x

)p

#

2

(x;D

x

) = p

b

(x;D

x

)

with

p

#

(x; �) �

X

�2N

n

0

1

�!

�

�

�

p

#

1

(x; �)D

�

x

p

#

2

(x; �); p

b

(x; �) �

X

�2N

n

0

1

�!

�

�

�

p

b

1

(x; �)D

�

x

p

#

2

(x; �);
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where

�

�

�

p

#

1

(x; �)D

�

x

p

#

2

(x; �) 2 C

�

1

S

m

1

+m

2

�(1�Æ)j�j��

1;Æ

(R

n

� R

n

;L(X

0

; X

2

))

�

�

�

p

b

1

(x; �)D

�

x

p

#

2

(x; �) 2 C

�

1

S

m

1

+m

2

�(1�Æ)j�j���Æ�

1

1;Æ

(R

n

� R

n

;L(X

0

; X

2

))

if j�j > [�℄. Thus, sine (1� Æ)j�j � 0,

p

1

(x; �)p

#

2

(x; �) =

X

j�j�[�℄

1

�!

�

�

�

p

1

(x; �)D

�

x

p

#

2

(x; �) + r

#

(x; �) + r

b

(x; �)

with r

#

2 S

m

1

+m

2

��

1;Æ

and r

b

2 C

�

1

S

m

1

+m

2

���Æ�

1

1;Æ

. Hene

r

b

(x;D

x

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s+Æ�

1

p;q

(R

n

;X

2

) if � �

1

+ Æ�

1

< s+ Æ�

1

< �

1

and therefore

r

#

(x;D

x

) + r

b

(x;D

x

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s

p;q

(R

n

;X

2

) if jsj < �

1

:

Moreover, if j�j � [�℄,

�

�

�

p

1

(x; �)D

�

x

p

#

2

(x; �) =

�

�

�

p

1

(x; �)D

�

x

p

2

(x; �)� �

�

�

p

#

1

(x; �)D

�

x

p

b

2

(x; �)� �

�

�

p

b

1

(x; �)D

�

x

p

b

2

(x; �);

where �

�

�

p

#

1

D

�

x

p

b

2

2 C

�

2

�j�j

S

m

1

+m

2

�(1�Æ)j�j��

1;Æ

and �

�

�

p

b

1

D

�

x

p

b

2

2 C

�

S

m

1

+m

2

���Æ�

1

1;Æ

. Hene

OP(�

�

�

p

#

1

D

�

x

p

b

2

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s+(1�Æ)j�j

p;q

(R

n

;X

2

)

if �(�

2

� j�j)(1� Æ) < s+ (1� Æ)j�j < �

2

� j�j. Thus

OP(�

�

�

p

#

1

D

�

x

p

b

2

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s

p;q

(R

n

;X

2

)

for all jsj < � . Moreover,

OP(�

�

�

p

b

1

D

�

x

p

b

2

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s+Æ�

1

p;q

(R

n

;X

2

)

if �� + �Æ < s+ Æ�

1

< � and therefore

OP(�

�

�

p

b

1

D

�

x

p

b

2

) : B

s+m

1

+m

2

��

p;q

(R

n

;X

0

)! B

s

p;q

(R

n

;X

2

)

for jsj < � . Combining all terms, we have proved the theorem for the ase of Besov

spaes. Beause of (2.2) and sine � 2 (0; �

2

) is arbitrary, the statement for Bessel

potential spaes is a onsequene of the one for Besov spaes.

Remark 3.7 In the ase of salar Bessel potential spaes Marshall proved a similar

theorem in the ontext of non-smooth symbols of the lass S

m

�;Æ

, f. [21, Theorem

3.5℄. It overs the ase X

0

= X

1

= C , � � 1, and �

1

= �

2

of the latter theorem.
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4 Poisson Operators, Trae Operators, and Singular

Green Operators

We assume that the reader is familiar with the basi de�nitions of the Boutet de

Monvel alulus, f. [5℄, [12℄, [22℄, or [23℄. Reall that S(R

+

) is the spae of

smooth rapidly dereasing funtions on R

+

. Moreover, sine S(R

+

) is a nulear

spae, S(R

+

)

^


S(R

+

) = S(R

2

++

), where R

2

++

:= R

+

� R

+

.

We start with the de�nition of the symbol-kernels of the non-smooth Poisson,

trae, and singular Green operators.

De�nition 4.1 The spae C

�

S

d

1;0

(R

N

� R

n�1

;S(R

+

)), d 2 R, n;N 2 N, onsists of

all funtions

~

f(x; �

0

; y

n

), whih are smooth in (�

0

; y

n

) 2 R

n�1

� R

+

, are in C

�

(R

N

)

with respet to x, and satisfy

ky

l

n

�

l

0

y

n

D

�

�

0

~

f(:; �

0

; :)k

C

�

(R

N

;L

2

y

n

(R

+

))

� C

�;l;l

0

h�

0

i

d+

1

2

�l+l

0

�j�j

(4.1)

for all � 2 N

n�1

0

; l; l

0

2 N

0

.

Similarly, the spae C

�

S

d

1;0

(R

N

� R

n�1

;S(R

2

++

)), d 2 R, n;N 2 N, is the spae

of all

~

f(x; �

0

; y

n

; z

n

), whih are smooth in (�

0

; y

n

; z

n

) 2 R

n�1

� R

2

++

and whih are in

C

�

(R

N

) with respet to x suh that

ky

k

n

�

k

0

y

n

z

l

n

�

l

0

z

n

D

�

�

0

~

f(:; �

0

; :)k

C

�

(R

N

;L

2

y

n

;z

n

(R

2

++

))

� C

�;k;k

0

;l;l

0

h�

0

i

d+1�k+k

0

�l+l

0

�j�j

(4.2)

for all � 2 N

n�1

0

; k; k

0

; l; l

0

2 N

0

.

Now the Poisson operators with non-smooth oe�ients are de�ned in almost the

same way as in the smooth ase:

De�nition 4.2 Let

~

k =

~

k(x; �

0

; y

n

) 2 C

�

S

d�1

1;0

(R

n

� R

n�1

;S(R

+

)), d 2 R. Then we

de�ne the Poisson operator of order d by

k(x;D

x

)a = F

�1

�

0

7!x

0

h

~

k(x; �

0

; x

n

)�a(�

0

)

i

; a 2 S(R

n�1

);

where �a(�

0

) := F

x

0

7!�

0

[a℄ denotes the partial Fourier transform applied to a.

Remarks 4.3 1. In the following many symbol-kernels

~

k(x; �

0

; y

n

) will depend

only on x

0

2 R

n�1

as in the standard alulus with smooth oe�ient. This

fat will be denoted by

~

k 2 C

�

S

d�1

1;0

(R

n�1

� R

n�1

;S(R

+

)). But we will also

need these more general symbol-kernels sine they our naturally when on-

sidering k(x;D

x

)a := r

+

p(x;D

x

)Æ

0


a, where p is a pseudodi�erential operator

satisfying the transmission ondition de�ned below and Æ

0

denotes the delta

distribution w.r.t. x

n

.
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2. If

~

k 2 S

d�1

1;0

(R

n

�R

n�1

;S(R

+

)) =

T

�>0

C

�

S

d�1

1;0

(R

n

�R

n�1

;S(R

+

)) is a smooth

symbol, then

~

k(x; �

0

; x

n

) 2 S(R

+

) w.r.t x

n

and one an prove that k(x;D

x

) =

k

0

(x

0

; D

x

) with

~

k

0

(x

0

; �

0

; x

n

) 2 S

d�1

1;0

(R

n�1

�R

n�1

;S(R

+

)), f. [12, Remark 2.4.9℄.

Moreover,

~

k

0

(x

0

; �

0

; x

n

) �

X

k2N

0

1

k!

x

k

n

�

k

x

n

k(x

0

; 0; �

0

; y

n

)j

y

n

=x

n

(4.3)

Of ourse the latter statement no longer holds if k(x; �

0

; y

n

) is not smooth in

x

n

. Nevertheless k(x;D

x

) an be approximated by an operator k

0

(x

0

; D

x

) with

symbol-kernel derived from (4.3) with k < � , f. Theorem 4.11 below.

3. For eah �xed x 2 R

n

the symbol-kernel

~

k

x

(�

0

; y

n

) :=

~

k(x; �

0

; y

n

) belongs to

S

d�1

1;0

(R

n�1

� R

n�1

;S(R

+

)) w.r.t (�

0

; y

n

). Moreover, let

j

~

f j

(d�1)

m

:= sup

x

0

;�

0

2R

n�1

;l+l

0

+j�j+j�j�m

ky

l

n

�

l

0

y

n

D

�

x

0

D

�

�

0

~

f(x

0

; �

0

; :))k

L

2

(R

+

)

h�

0

i

�d+

1

2

+l�l

0

+j�j

for f 2 S

d�1

1;0

(R

n�1

�R

n�1

;S(R

+

)). Then

~

k 2 C

�

S

d�1

1;0

(R

n

�R

n�1

;S(R

+

)) if and

only if

~

k

x

2 S

d�1

1;0

(R

n�1

� R

n�1

;S(R

+

)) for eah �xed x 2 R

n

and

j�

�

x

~

k(x; :)j

(d�1)

m

� C

�;m

for j�j � [� ℄;

j�

�

x

~

k(x; :)� �

�

x

~

k(y; :)j

(d�1)

m

� C

�;m

jx� yj

��[� ℄

for j�j = [� ℄

uniformly in x; y 2 R

n

and for all m 2 N

0

.

Finally, we note that the boundary symbol operator k(x; �

0

; D

n

) is de�ned as a one-

dimensional operator with symbol-kernel

~

k(x; �

0

; y

n

) for �xed (x

0

; �

0

).

The trae and singular Green operators are de�ned as follows:

De�nition 4.4 Let d 2 R and let r 2 N

0

.

1. If

~

t 2 C

�

S

d

1;0

(R

n�1

�R

n�1

;S(R

+

)), s

j

2 C

�

S

d�j

1;0

(R

n�1

�R

n�1

), j = 0; : : : ; r�1,

then the assoiated trae operator of order d and lass r is de�ned as

t(x

0

; D

x

)f =

r�1

X

j=0

s

j

(x

0

; D

x

0

)

j

f + t

0

(x

0

; D

x

)f

t

0

(x

0

; D

x

)f = F

�1

�

0

7!x

0

�

Z

1

0

~

t

0

(x

0

; �

0

; y

n

)

�

f(�

0

; y

n

)dy

n

�

;

where

�

f(�

0

; x

n

) = F

x

0

7!�

0

[f(:; x

n

)℄ and 

j

f = D

j

n

f j

x

n

=0

.

2. If ~g 2 C

�

S

d�1

1;0

(R

n

� R

n�1

;S(R

2

++

)),

~

k

j

2 C

�

S

d�j�1

1;0

(R

n

� R

n�1

;S(R

+

)) for

j = 0; : : : ; r � 1, then the assoiated singular Green operator of order d and
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lass r is de�ned as

g(x;D

x

)f =

r�1

X

j=0

k

j

(x;D

x

)

j

f + g

0

(x;D

x

)f;

g

0

(x;D

x

)f = F

�1

�

0

7!x

0

�

Z

1

0

~g

0

(x; �

0

; x

n

; y

n

)

�

f(�

0

; y

n

)dy

n

�

;

where

�

f and 

j

f are as above.

Finally, the boundary symbol operators t(x

0

; �

0

; D

n

) and g(x; �

0

; D

n

) are de�ned in

the same way as for the Poisson operator.

Remark 4.5 Let a

j

(x; �

0

; D

n

), j = 1; 2, be the boundary symbol operator of a Pois-

son, trae, or singular Green operator of order d

j

, lass r

j

, with oe�ients in C

�

j

.

Using the observation of Remark 4.3.2 it follows from the standard alulus that the

omposition a

1

(x; �

0

; D

n

)a

2

(x

0

; �

0

; D

n

) = a(x; �

0

; D

n

) of boundary symbol operators is

again a boundary symbol operator if the omposition is well-de�ned and the oe�-

ients of a

2

are independent of x

n

. The new boundary symbol operator is of order

d

1

+ d

2

, lass r

2

, and has oe�ients in C

min(�

1

;�

2

)

.

In order to apply Theorem 3.3 and Theorem 3.6 it is an important fat that

we an onsider the Poisson, trae, and singular Green operators as operator-valued

pseudodi�erential operators as follows:

Lemma 4.6 Let 1 < q < 1, d 2 R, � > 0. Moreover, let

~

k 2 C

�

S

d�1

1;0

(R

n�1

�

R

n�1

;S(R

+

)),

~

t 2 C

�

S

d

1;0

(R

n�1

�R

n�1

;S(R

+

)), and let ~g 2 C

�

S

d�1

1;0

(R

n�1

�R

n�1

;S(R

2

++

)).

Then

k(x

0

; �

0

; D

n

) 2 C

�

S

d�

1

q

+s�Æ

1;0

(R

n�1

� R

n�1

;L(C ; H

s

q

(R

+

; x

qÆ

n

)));

t(x

0

; �

0

; D

n

) 2 C

�

S

d+

1

q

+s�Æ

0

1;0

(R

n�1

� R

n�1

;L(H

�s

q;0

(R

+

; x

�qÆ

0

n

); C ));

g(x

0

; �

0

; D

n

) 2 C

�

S

d+s+s

0

�Æ�Æ

0

1;0

(R

n�1

� R

n�1

;L(H

�s

q;0

(R

+

; x

�qÆ

0

n

); H

s

0

q

(R

+

; x

qÆ

n

)))

for all s; s

0

� 0, 0 � Æ <

1

q

0

, and 0 � Æ

0

<

1

q

.

Proof: First of all, if

~

f 2 C

�

S

d

1;0

(R

N

� R

n�1

;S(R

+

)), N 2 N

0

, d 2 R, then (4.1)

implies

y

l

n

�

l

0

y

n

~

f(x; �

0

; y

n

) 2 C

�

S

d+

1

2

�l+l

0

1;0

(R

N

� R

n�1

;L

2

(R

+

));

where the L

2

(R

+

)-norm is taken with respet to y

n

. Moreover, we will use the

elementary interpolation inequalities

kfk

p

� C

p;q

kfk

1+

1

q

�

1

p

q

kx

n

fk

1

p

�

1

q

q

kfk

q

� C

p;q

kfk

1+

1

q

�

1

p

p

kf

0

k

1

p

�

1

q

p

(4.4)
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for all f 2 S(R

+

) and 1 � p � q � 1 suh that

1

p

�

1

q

< 1. The �rst one is proved by

using 1 = 1=(1+"jx

n

j)+"jx

n

j=(1+"jx

n

j), applying Hölder's inequality, and hoosing

a suitable " > 0. The seond inequality is a onsequene of Sobolev's embedding

theorem applied to f("x) for " = kfk

p

=kf

0

k

p

.

Therefore we onlude

y

l

n

�

l

0

y

n

~

f(x; �

0

; y

n

) 2 C

�

S

d+1�

1

q

�l+l

0

1;0

(R

N

� R

n�1

;L

q

(R

+

)):

Hene

�

l

0

y

n

~

f(x; �

0

; y

n

) 2 C

�

S

d+1�

1

q

�Æ+l

0

1;0

(R

N

� R

n�1

;L

q

(R

+

; y

qÆ

n

))

for Æ � 0 beause of (L

q

(R

+

); L

q

(R

+

; y

lq

n

))

�;q

= L

q

(R

+

; y

q�l

n

), � 2 (0; 1). Thus

~

f(x; �

0

; y

n

) 2 C

�

S

d+1�

1

q

�Æ+s

1;0

(R

N

� R

n�1

;H

s

q

(R

+

; y

qÆ

n

))

for all s � 0 and Æ 2 [0;

1

q

0

) by (2.4)-(2.5). This implies the statements for the Poisson

and trae boundary symbol operators sine k(x

0

; �

0

; D

n

)a =

~

k(x

0

; �

0

; x

n

)a, a 2 C , and

t(x

0

; �

0

; D

n

)f =

R

1

0

~

t(x

0

; �

0

; y

n

)f(y

n

)dy

n

, f 2 S(R

+

).

In the ase of singular Green symbol-kernels, the symbol-kernel estimates imply

in the same way as before that

x

Æ

n

y

Æ

0

n

�

m

x

n

�

m

0

y

n

~g(x

0

; �

0

; x

n

; y

n

) 2 C

�

S

d�Æ�Æ

0

+m+m

0

1;0

(R

n�1

� R

n�1

;L

q

(R

+

;L

q

0

(R

+

)))

for all m;m

0

2 N

0

and Æ; Æ

0

� 0. Hene

k�

�

�

0

g(x

0

; �

0

; D

n

)fk

H

m

q

(R

+

;x

Æq

n

)

� C

�;m;m

0

h�

0

i

d�j�j+m+m

0

�Æ�Æ

0

kfk

H

�m

q;0

(R

+

;x

�qÆ

0

n

)

for all m;m

0

2 N

0

, � 2 N

n�1

0

, Æ 2 [0;

1

q

0

), and Æ

0

2 [0;

1

q

), i.e.,

g(x

0

; �

0

; D

n

) 2 C

�

S

d+m+m

0

�Æ�Æ

0

1;0

(R

n�1

� R

n�1

;L(H

�m

0

q;0

(R

+

; x

�qÆ

0

n

); H

m

q

(R

+

; x

qÆ

n

))):

for allm;m

0

2 N

0

, Æ 2 [0;

1

q

0

), and Æ

0

2 [0;

1

q

). Then interpolation �nishes the proof.

Remark 4.7 Let X

s

q

(R

+

; x

qÆ

0

n

) := B

s

q

(R

+

; x

qÆ

0

n

)\H

s

q

(R

+

; x

qÆ

0

n

) and X

�s

q;0

(R

+

; x

�qÆ

n

) :=

B

�s

q;0

(R

+

; x

�qÆ

n

) + H

�s

q;0

(R

+

; x

�qÆ

n

) for s > 0 and X

0

q

(R

+

; x

qÆ

n

) := X

0

q;0

(R

+

; x

qÆ

n

) :=

L

q

(R

+

; x

qÆ

n

). Then by (2.15) the latter lemma implies

k(x

0

; �

0

; D

n

) 2 C

�

S

d�

1

q

+s�Æ

1;0

(R

n�1

� R

n�1

;L(C ; X

s

q

(R

+

; x

qÆ

n

)));

t(x

0

; �

0

; D

n

) 2 C

�

S

d+

1

q

+s�Æ

0

1;0

(R

n�1

� R

n�1

;L(X

�s

q;0

(R

+

; x

�qÆ

0

n

); C ));

g(x

0

; �

0

; D

n

) 2 C

�

S

d+s+s

0

�Æ�Æ

0

1;0

(R

n�1

� R

n�1

;L(X

�s

q;0

(R

+

; x

�qÆ

0

n

); X

s

0

q

(R

+

; x

qÆ

0

n

)))

for all s; s

0

� 0, Æ 2 [0;

1

q

0

), and Æ

0

2 [0;

1

q

).
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THEOREM 4.8 Let

~

k 2 C

�

S

d�1

1;0

(R

n�1

�R

n�1

;S(R

+

)),

~

t 2 C

�

S

d

1;0

(R

n�1

�R

n�1

;S(R

+

)),

and let ~g 2 C

�

S

d�1

1;0

(R

n�1

�R

n�1

;S(R

2

++

)), d 2 R, � > 0. Then for every 1 < q <1

k(x

0

; D

x

) : B

d+s�

1

q

q

(R

n�1

)! H

s

q

(R

n

+

) if jsj < �;

t(x

0

; D

x

) : H

d+s

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

) if

�

�

�

�

s�

1

q

�

�

�

�

< � and d+ s > �

1

q

0

;

g(x

0

; D

x

) : H

d+s

q

(R

n

+

)! H

s

q

(R

n

+

) if jsj < � and d+ s > �

1

q

0

are ontinuous operators.

Proof: By Lemma 4.6 and Theorem 3.3,

k(x

0

; D

x

) : H

d+s+s

0

�

1

2

�Æ

0

q

(R

n�1

)! H

s

q

(R

n�1

;H

s

0

2

(R

+

; x

2Æ

0

n

))

g(x

0

; D

x

) : H

d+s+s

0

+s

00

�Æ�Æ

0

q

(R

n�1

;H

�s

00

2;0

(R

+

; x

�2Æ

n

))! H

s

q

(R

n�1

;H

s

0

2

(R

+

; x

2Æ

0

n

))

if jsj < � and

t(x

0

; D

x

) : H

d+s

q

(R

n�1

;H

�s

00

2;0

(R

+

; x

�2Æ

n

))! H

s�s

00

�

1

2

�Æ

q

(R

n�1

)

if

�

�

s� s

00

�

1

2

� Æ

�

�

< � for all s

0

; s

00

� 0, and 0 � Æ; Æ

0

<

1

2

. Hene using (2.9) if

1 < q � 2 and (2.12) if 2 � q <1,

k(x

0

; D

x

) : B

d+s+s

0

�

1

q

q

(R

n�1

)! H

s

q

(R

n�1

;H

s

0

q

(R

+

))

for all jsj < � and s

0

� 0 whih implies the statement for k(x

0

; D

x

) due to (2.13)-

(2.14). Similarly, using (2.10) if 1 < q � 2 and (2.11) if 2 � q <1,

t(x

0

; D

x

) : H

d+s

q

(R

n�1

;H

�s

00

q;0

(R

+

))! B

s�s

00

�

1

q

q

(R

n�1

)

for all s 2 R, s

00

� 0 with js � s

00

�

1

q

j < � . Beause of H

�s

00

q;0

(R

+

) = H

�s

00

q

(R

+

)

if 0 � s

00

<

1

q

0

and (2.13)-(2.14), the statement for t(x

0

; D

x

) is proved. Finally, if

1 < q � 2,

g(x

0

; D

x

) : H

d+s+s

0

+s

00

q

(R

n�1

;H

�s

00

�Æ

2;0

(R

+

))! H

s

q

(R

n�1

;H

s

0

2

(R

+

; x

2Æ

n

))

for s

0

; s

00

� 0, 0 � Æ <

1

2

, and jsj < � and therefore using (2.9)-(2.10) yields

g(x

0

; D

x

) : H

d+s+s

0

+s

00

q

(R

n�1

;H

�s

00

q;0

(R

+

))! H

s

q

(R

n�1

;H

s

0

q

(R

+

)):

If 2 � q <1, the latter mapping property is proved with the aid of (2.11)-(2.12) in

the same way. Beause of (2.13)-(2.14), also the last statement is proved.

The following lemma is the fundamental result on x

n

-dependent Poisson and

singular Green symbol-kernels.
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Lemma 4.9 Let

~

k(x; �

0

; y

n

) 2 C

�

S

m�1

1;0

(R

n

� R

n�1

;S(R

+

)), m 2 R, with

~

kj

x

n

=0

= 0

and let ~g(x; �

0

; y

n

; z

n

) 2 C

�

S

m�1

1;0

(R

n

� R

n�1

;S(R

2

++

)) with ~gj

x

n

=0

= 0. Then

k(x

0

; x

n

; �

0

; D

n

) 2C

���

0

S

m�

1

q

+s��

1;0

(R

n�1

� R

n�1

;L(C ; H

s

q

(R

+

)))

\ C

�

S

m�

1

q

1;0

(R

n�1

� R

n�1

;L(C ; L

q

(R

+

)));

g(x

0

; x

n

; �

0

; D

n

) 2C

���

0

S

m�

1

q

+s+s

0

���Æ

1;0

(R

n�1

� R

n�1

;L(H

�s

0

q;0

(R

+

; x

�Æq

n

); H

s

q

(R

+

)))

\ C

�

S

m�

1

q

+s

0

�Æ

1;0

(R

n�1

� R

n�1

;L(H

�s

0

q;0

(R

+

; x

�Æq

n

); L

q

(R

+

)))

for all � 2 [0; 1) with � < �

0

, 0 < s < �

0

< � , s

0

> 0, Æ 2 [0;

1

q

).

Proof: We an assume that s 2 (0; 1) sine the general ase an be redued by

di�erentiation and interpolation to this ase. First of all, for

~

f =

~

k and d = m � 1

the symbol-kernel estimates (4.1) are equivalent to the estimates

ky

l

n

�

l

0

y

n

D

�

�

0

~

k(x; �

0

; y

n

)k

C

�

(R

n

x

;L

1

y

n

)

� C

�;l;l

0

h�

0

i

m�l+l

0

�j�j

(4.5)

for all � 2 N

n�1

0

; l; l

0

2 N

0

beause of (4.4). The latter estimates imply

�

�

�

�

l

0

z

n

D

�

�

0

h

~

k(x

0

; x

n

; �

0

; z

n

)�

~

k(x

0

; y

n

; �

0

; z

n

)

i

�

�

�

� C

�;s;l

0

jx

n

� y

n

j

�

0

z

�s

n

h�

0

i

m�s+l

0

�j�j

(4.6)

uniformly in x; y 2 R

n

; �

0

2 R

n�1

and for all � 2 N

n�1

0

, l

0

2 N

0

, s � 0, and

0 < �

0

� min(1; �).

Claim: Let f

(�)

(x

0

; x

n

; �

0

) := D

�

�

0

~

k(x

0

; x

n

; �

0

; x

n

). Then

x

s

0

n

�

�

f

(�)

(x

0

; x

n

; �

0

)� f

(�)

(x

0

; y

n

; �

0

)

�

�

� C

�;s

0

;�

0

jx

n

� y

n

j

�

00

h�

0

i

m�j�j�s

0

��

0

+�

00

uniformly in x

0

; �

0

2 R

n�1

, x

n

; y

n

� 0 with jx

n

�y

n

j � 1 and for all � 2 N

n�1

0

, s

0

� 0,

where 0 � �

00

� �

0

� min(1; �).

Proof of the laim: It su�es to onsider the ase 0 � x

n

� y

n

. Then

x

s

0

n

�

�

�

D

�

�

0

~

k(x; �

0

; y

n

)�D

�

�

0

~

k(x

0

; y

n

; �

0

; y

n

)

�

�

�

� C

�;s

0

jx

n

� y

n

j

�

00

h�

0

i

m�j�j�s

0

+�

0

��

00

(4.7)

by (4.6) with s = s

0

+ �

0

� �

00

. Moreover,

x

s

0

n

�

�

�

D

�

�

0

~

k(x; �

0

; x

n

)�D

�

�

0

~

k(x; �

0

; y

n

)

�

�

�

� x

s

0

n

�

jD

�

�

0

~

k(x; �

0

; x

n

)j+ jD

�

�

0

~

k(x; �

0

; y

n

)j

�

� C

�;s

0

;�

0

h�

0

i

m�j�j�s

0

��

0

by (4.6) with s = s

0

+ �

0

and l

0

= 0 sine

~

k(x

0

; 0; �

0

; y

n

) = 0. Furthermore,

x

s

0

n

jD

�

�

0

~

k(x; �

0

; x

n

)�D

�

�

0

~

k(x; �

0

; y

n

)j

� x

s

0

n

Z

y

n

x

n

j�

y

n

~

k(x; �

0

; t)jdt � C

�;s

0

;�

0

jx

n

� y

n

jh�

0

i

m�j�j�s

0

��

0

+1
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by (4.6) with s = s

0

+ �

0

, l

0

= 1, and y

n

= 0. Interpolation of the last two inequalities

yields

x

s

0

n

jD

�

�

0

~

k(x; �

0

; x

n

)�D

�

�

0

~

k(x; �

0

; y

n

)j � C

�;s

0

jx

n

� y

n

j

�

00

h�

0

i

m�j�j�s

0

��

0

+�

00

:

Combining the latter inequality and (4.7) proves the laim.

Beause of (4.4),

kfk

B

�

00

q;1

(R

+

)

� C

�

kfk

q

+ sup

h>0

h

��

00

k�

h

fk

q

�

� C

�

kfk

1

q

0

1

kx

n

fk

1

q

1

+ sup

h>0

h

��

00

k�

h

fk

1

q

0

1

kx

n

�

h

fk

1

q

1

�

;

where �

h

f(x) = f(x+ h)� f(x) and we have used an equivalent norm on B

�

00

q;1

(R

+

)

due to [26, Theorem 4.4.1℄. Hene we onlude

kD

�

�

0

~

k(x; �

0

; x

n

)k

B

�

00

q;1

(R

+;x

n

)

� C

�;q;�

0

h�

0

i

m�

1

q

�j�j��

0

+�

00

:

Moreover, using (3.1) it an be proved in the same way that

k�

�

�

0

~

k(x

0

; x

n

; �

0

; x

n

)k

C

���

0

(R

n�1

x

0

;B

�

00

q;1

(R

+;x

n

))

� C

�;q;�

0

h�

0

i

m�

1

q

�j�j��

0

+�

00

:

Finally, let 0 < s < � < �

0

and set �

00

:= s� � + �

0

. Then s < �

00

< �

0

and therefore

B

�

00

q;1

(R

+

) ,! H

s

q

(R

+

) whih together with the latter estimate proves

k(x

0

; x

n

; �

0

; D

n

) 2 C

���

0

S

m�

1

q

+s��

1;0

(R

n�1

� R

n�1

;L(C ; H

s

q

(R

+

))):

Moreover, by (4.5),

kx

l

n

D

�

�

0

~

k(x; �

0

; x

n

))k

C

�

(R

n�1

x

0

;L

1

x

n

)

� C

�;l

h�

0

i

m�l�j�j

for � 2 N

n�1

0

, l 2 N

0

, whih implies k(x; �

0

; D

n

) 2 C

�

S

m�

1

q

1;0

(R

n�1

�R

n�1

;L(C ; L

q

(R

+

)))

due to (4.4).

Using the arguments of Lemma 4.6, the proof above an be easily modi�ed to

prove the statement for g(x; �

0

; D

n

).

Beause of

~

k(x; �

0

; y

n

) =

~

k(x

0

; 0; �

0

; y

n

) +

~

k

r

(x; �

0

; y

n

), where

~

k

r

(x; �

0

; y

n

)j

x

n

=0

= 0,

the latter lemma, Lemma 4.6, and real interpolation imply:

Corollary 4.10 Let

~

k 2 C

�

S

m�1

1;0

(R

n

� R

n�1

;S(R

+

)) and let ~g 2 C

�

S

m�1

1;0

(R

n

�

R

n�1

;S(R

2

++

)), m 2 R. Then

k(x; �

0

; D

n

) 2C

���

0

S

m�

1

q

+s

1;0

(R

n�1

� R

n�1

;L(C ; H

s

q

(R

+

) \B

s

q

(R

+

)))

g(x; �

0

; D

n

) 2C

���

0

S

m�

1

q

+s+s

0

1;0

(R

n�1

� R

n�1

;L(H

�s

0

q;0

(R

+

); H

s

q

(R

+

) \B

s

q

(R

+

)))

for all 0 � s < �

0

< � , s

0

� 0.
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Moreover, Lemma 4.9 yields:

THEOREM 4.11 Let

~

k 2 C

�

S

m�1

1;0

(R

n

� R

n�1

;S(R

+

)) and let ~g 2 C

�

S

m�1

1;0

(R

n

�

R

n�1

;S(R

2

++

)), m 2 R. Then for every 0 < � < � , � 62 N, and �� + � < s < � � [�℄

k(x;D

x

)�

[�℄

X

j=0

x

j

n

j!

(�

j

x

n

k)(x

0

; 0; D

x

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s

q

(R

n

+

);

g(x;D

x

)�

[�℄

X

j=0

x

j

n

j!

(�

j

x

n

g)(x

0

; 0; D

x

) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m� � > �

1

q

0

:

Proof: First of all,

f(x; �

0

; D

n

) =

[�℄

X

j=0

x

j

n

j!

(�

j

x

n

f)(x

0

; 0; �

0

; D

n

) + x

[�℄

n

f

r

(x; �

0

; D

n

)

for f = k; g, where

y

[�℄

n

~

k

r

2 C

��[�℄

S

m�[�℄�1

1;0

(�;S(R

+

)); y

[�℄

n

~g

r

2 C

��[�℄

S

m�[�℄�1

1;0

(�;S(R

2

++

));

and

~

k

r

j

x

n

=0

= ~g

r

j

x

n

=0

= 0. Hene it su�es to onsider the ase [�℄ = 0.

Now let �

0

2 (�;min(1; �)) and let �� + � < s < � . Then Lemma 4.9 and

Lemma 3.5 yield for s

0

� 0

k

r

(x;D

x

) : B

m+s�

1

q

��

0

+"

q

(R

n�1

)! B

s

q

(R

n�1

;L

q

(R

+

));

g

r

(x;D

x

) : B

m+s+s

0

��

0

q

(R

n�1

;H

�s

0

q;0

(R

+

))! B

s

q

(R

n�1

;L

q

(R

+

));

and if s > 0

k

r

(x;D

x

) : B

m+s�

1

q

��

0

+"

q

(R

n�1

)! B

"

q

(R

n�1

;B

s

q

(R

+

));

g

r

(x;D

x

) : B

m+s+s

0

��

0

+"

q

(R

n�1

;H

�s

0

q;0

(R

+

))! B

"

q

(R

n�1

;B

s

q

(R

+

));

where " > 0 is arbitrary and B

"

q

(R

n�1

;B

s

q

(R

+

)) ,! L

q

(R

n�1

;B

s

q

(R

+

)). This implies

the statement for k(x;D

x

) by (2.13)-(2.14) and

g

r

(x;D

x

) : B

m+s+s

0

��

0

+"

q

(R

n�1

;B

�s

0

q;0

(R

+

))! B

s

q

(R

n

+

)

for s

0

� 0. Hene, if m + s � � � 0, the statement for g

r

(x;D

x

) is also proved. If

m+ s� � < 0, we use (2.15) and (2.2) to obtain

g

r

(x;D

x

) : L

q

(R

n�1

;B

m+s��

0

+2"

q;0

(R

+

))! B

s

q

(R

n

+

);

for " > 0 su�iently small. Sine B

m+s��

q;0

(R

+

) = B

m+s��

q

(R

+

) if �

1

q

0

< m+s�� <

1

q

,

the theorem is proved.
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Remark 4.12 The argument in the last part of the latter proof will be used many

times: In order to show that A : B

s��

q

(R

n

+

)! X is a bounded operator into a Banah

spae X for an s� � > �

1

q

0

, it is su�ient to prove

A : B

s+s

0

��

0

q

(R

n�1

;H

�s

0

q;0

(R

+

))! X or B

s+s

0

��

0

q

(R

n�1

;B

�s

0

q;0

(R

+

))! X

for all s

0

2 (0;

1

q

0

) and some �

0

> �.

In the following let

(a

1

#

0

k

a

2

)(x; �

0

; D

n

) :=

X

j�

0

j�k

1

�

0

!

�

�

0

�

0

a

1

(x; �

0

; D

n

)D

�

0

x

0

a

2

(x

0

; �

0

; D

n

); (4.8)

where k 2 N

0

and a

j

(x; �

0

; D

n

) denotes the boundary symbol operator of a Poisson,

trae, singular Green operator, or a symbol of a pseudodi�erential operator on R

n�1

.

Moreover, it is assumed that a

2

is independent of x

n

. � If a

2

does depend on x

n

,

Theorem 4.11 an be used to redue the omposition to the latter ase. � Finally, let

R

0

�

(a

1

; a

2

) := a

1

(x;D

x

)a

2

(x

0

; D

x

)� (a

1

#

0

k

a

2

)(x;D

x

):

The following theorem treats ompositions of Poisson, trae, singular Green, and

n � 1-dimensional pseudodi�erential operators. It is a main step in the proof of

Theorem 1.2 and the fundamental result of this setion.

THEOREM 4.13 Let

~

k

j

2 C

�

j

S

m

j

�1

1;0

(R

n

� R

n�1

;S(R

+

)),

~

t

j

2 C

�

j

S

m

j

1;0

(R

n�1

�

R

n�1

;S(R

+

))), ~g

j

2 C

�

j

S

m

j

�1

1;0

(R

n

� R

n�1

;S(R

2

++

)), s

j

2 C

�

j

S

m

j

�1

1;0

(R

n�1

� R

n�1

),

and  2 C

�

2

(R

n�1

), �

j

> 0, m

j

2 R suh that

~

k

2

(x; �

0

; y

n

) and ~g

2

(x; �

0

; y

n

; z

n

) are

independent of x

n

. Moreover, let � 2 (0; �

2

), � 62 N, and set � := min(�

1

; �

2

� [�℄),

m := m

1

+m

2

.

1. Assume that jsj < � , s� � > ��

2

, and ��

2

+ � < s+m

1

< �

2

. Then

R

0

�

(g

1

; k

2

); R

0

�

(s

1

; k

2

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s

q

(R

n

+

);

R

0

�

(g

1

; g

2

); R

0

�

(s

1

; g

2

) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m� � > �

1

q

0

;

R

0

�

(g

1

; ) : B

s+m

1

��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m

1

� � > �

1

q

0

:

2. Assume that jsj < � , s� � > ��

2

, and ��

2

+ � < s+m

1

�

1

q

< �

2

. Then

R

0

�

(k

1

; t

2

) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m� � > �

1

q

0

;

R

0

�

(k

1

; s

2

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s

q

(R

n

+

):
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3. Assume that

�

�

�

s�

1

q

�

�

�

< � , s�

1

q

� � > ��

2

, and ��

2

+ � < s+m

1

< �

2

. Then

R

0

�

(t

1

; g

2

) : B

s+m��

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

) if s+m� � > �

1

q

0

;

R

0

�

(t

1

; k

2

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s�

1

q

q

(R

n�1

);

R

0

�

(t

1

; ) : B

s+m

1

��

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

) if s+m

1

� � > �

1

q

0

:

4. Assume that

�

�

�

s�

1

q

�

�

�

< � , s �

1

q

� � > ��

2

, and ��

2

+ � < s +m

1

�

1

q

< �

2

.

Then

R

0

�

(s

1

; t

2

) : B

s+m��

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

) if s+m� � > �

1

q

0

;

R

0

�

(s

1

; s

2

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s�

1

q

q

(R

n�1

):

Proof: First of all let �

0

2 (�; �

2

) with [�

0

℄ = [�℄ su�iently lose to � suh that all

onditions still hold if � is replaed by �

0

.

We �rst onsider the omposition g

1

(x;D

x

)g

2

(x

0

; D

x

). The statement onerning

this omposition is a onsequene of the fat that

R

0

�

(g

1

; g

2

) : B

s+s

0

+m��

0

q

(R

n�1

;H

�s

0

q;0

(R

+

))! B

s

q

(R

n�1

;L

q

(R

+

)) and (4.9)

R

0

�

(g

1

; g

2

) : B

s+s

0

+m��

0

+"

q

(R

n�1

;H

�s

0

q;0

(R

+

))! B

"

q

(R

n�1

;B

s

q

(R

+

)) if s > 0 (4.10)

for some " > 0 and arbitrary s

0

> 0, f. Remark 4.12. Beause of Remark 4.7 and

Corollary 4.10,

g

1

(x; �

0

; D

n

) 2C

�

1

��

0

S

m

1

+s

1;0

(L(L

q

(R

+

); B

s

q

(R

+

))) \ C

�

1

S

m

1

1;0

(L(L

q

(R

+

)));

g

2

(x

0

; �

0

; D

n

) 2C

�

2

S

m

2

+s

0

1;0

(L(H

�s

0

q;0

(R

+

); L

q

(R

+

)));

where s

0

� 0, 0 < s < �

0

< �

1

. Hene (4.9) and (4.10) are onsequenes of Theo-

rem 3.6.

All other ompositions of the operators k

j

(x;D

x

); t

j

(x

0

; D

x

); g

j

(x;D

x

), and s

j

(x

0

; D

x

0

)

exept s

1

(x

0

; D

x

0

)k

2

(x

0

; D

x

); s

1

(x

0

; D

x

0

)g

2

(x

0

; D

x

) and the ompositions with (x

0

) are

treated in the same way.

In order to estimate R

�

(s

1

; k

2

) and R

�

(s

1

; g

2

), we use that

k

2

(:; D

n

) 2C

�

2

S

m

2

+s�

1

q

1;0

(L(C ; B

s

q

(R

+

))) \ C

�

2

S

m

2

�

1

q

1;0

(L(C ; L

q

(R

+

)));

g

2

(:; D

n

) 2C

�

2

S

m

2

+s+s

0

1;0

(L(H

�s

0

q;0

(R

+

); B

s

q

(R

+

))) \ C

�

2

S

m

2

+s

0

1;0

(L(H

�s

0

q;0

(R

+

); L

q

(R

+

)));

s

1

2C

�

1

S

m

1

1;0

(L(B

s

q

(R

+

)) \ L(L

q

(R

+

)));

where s > 0; s

0

� 0 and apply Theorem 3.6 as before.
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Finally, the statements for g

1

(x;D

x

)(x

0

) and t

1

(x;D

x

)(x

0

) are proved using

g

1

(:; D

n

) 2C

�

1

��

0

S

m

1

+s+s

0

1;0

(L(H

�s

0

q;0

(R

+

); B

s

q

(R

+

))) \ C

�

1

S

m

1

+s

0

1;0

(L(H

�s

0

q;0

(R

+

); L

q

(R

+

)));

t

1

(:; D

n

) 2C

�

1

S

m

1

+s

0

1;0

(L(H

�s

0

q;0

(R

+

); C )); (x

0

) 2 C

�

2

S

0

1;0

(L(H

�s

0

q;0

(R

+

)));

where s

0

� 0 and 0 < s < �

0

< �

1

.

Remark 4.14 Note that all singular Green and trae operators in the latter theorem

are of lass 0. The statements in the general ase an be easily obtained from the

latter one using that 

j

k

2

(x

0

; D

x

) and 

j

g

2

(x

0

; D

x

) are pseudodi�erential operators,

Poisson operators of order m

2

+ j, j 2 N

0

, respetively.

The following lemma treats some remainder terms, whih will be needed when dis-

ussing ompositions with di�erential operators.

Lemma 4.15 Let

~

t 2 C

�

1

S

m

1;0

(R

n�1

�R

n�1

;S(R

+

)), ~g 2 C

�

1

S

m�1

1;0

(R

n

�R

n�1

;S(R

2

++

)),

m 2 R, �

1

; �

2

> 0, and let  2 C

�

2

(R

n

) with (x

0

; 0) = 0. Then for every � 2 [0; 1)

with � < �

2

and s 2 R with ��

2

+ � < s+m < �

2

and s+m� � > �

1

q

0

t(x

0

; D

x

)(x) : B

s+m��

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

) if

�

�

�

�

s�

1

q

�

�

�

�

< �

1

;

g(x;D

x

)(x) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if jsj < �

1

:

Proof: First of all, let �

0

2 (�;min(1; �

2

)) suh that s+m��

0

> max(�

1

q

0

;��

2

). Be-

ause of (3.1), s+m��

0

+" < �

2

��

0

for " > 0 su�iently small, and kfk

L

q

(R

+

;x

�

0

q

n

)

�

kk

C

�

0

(R)

kfk

q

if j

x

n

=0

= 0, we have

(x) : B

s+m��

0

+"

q

(R

n�1

;L

q

(R

+

))! B

s+m��

0

+"

q

(R

n�1

;L

q

(R

+

; x

�

0

q

n

)):

Moreover, using Lemma 4.6, Corollary 4.10, and Theorem 3.4,

t(x

0

; D

x

) : B

s+m��

0

q

(R

n�1

;L

q

(R

+

; x

�

0

q

n

))! B

s�

1

q

q

(R

n�1

) if

�

�

�

�

s�

1

q

�

�

�

�

< �

1

;

g(x;D

x

) : B

s+m��

0

q

(R

n�1

;L

q

(R

+

; x

�

0

q

n

))! B

s

q

(R

n�1

;L

q

(R

+

)) if jsj < �

1

;

g(x;D

x

) : B

s+m��

0

+"

q

(R

n�1

;L

q

(R

+

; x

�

0

q

n

))! B

"

q

(R

n�1

;B

s

q

(R

+

)) if 0 < s < �

1

for " > 0 su�iently small. Hene hoosing " > 0 su�iently small the ase s+m�� �

0 is proved beause of (2.13)-(2.14) and (2.2).

Now let�

1

q

0

< s+m�� < 0 and �

0

2 (�;min(1; �

2

)) suh that�

1

q

0

< s+m��

0

< 0.

Then we use that

j(f; g)

L

2

(R

+

)

j � Ckfk

B

�s

0

q

(R

+

)

kk

C

�

2

(R)

�

kgk

L

q

0

(R

+

;x

[�

0

�s

0

℄

+

q

0

n

)

+ kgk

B

s

0

q

0

(R

+

;x

�

0

q

0

n

)

�
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for s

0

2 (0;

1

q

0

) with s

0

< �

2

and f; g 2 C

1

0

(R

+

). Therefore

(x) : L

q

(R

n�1

;B

�s

0

q

(R

+

))! L

q

(R

n�1

;L

q

(R

+

; x

�[�

0

�s

0

℄

+

q

n

) +B

�s

0

q

(R

+

; x

��

0

q

n

)):

Beause of Remark 4.7 and Theorem 3.4, we onlude for s

0

= �s�m� �

0

+ ", " > 0

su�iently small,

t(x

0

; D

x

) : B

�"

q

(R

n�1

;L

q

(R

+

; x

�[�

0

�s

0

℄

+

q

n

) +B

�s

0

q

(R

+

; x

��

0

q

n

))! B

s�

1

q

q

(R

n�1

)

if

�

�

�

s�

1

q

�

�

�

< �

1

and

g(x;D

x

) : B

�"

q

(R

n�1

;L

q

(R

+

; x

�[�

0

�s

0

℄

+

q

n

) +B

�s

0

q

(R

+

; x

��

0

q

n

))! B

s

q

(R

n�1

;L

q

(R

+

));

g(x;D

x

) : B

�"=2

q

(R

n�1

;L

q

(R

+

; x

�[�

0

�s

0

℄

+

q

n

) +B

�s

0

q

(R

+

; x

��

0

q

n

))! B

"=2

q

(R

n�1

;B

s

q

(R

+

))

if jsj < �

1

. Therefore by (2.2)

t(x

0

; D

x

)(x) : L

q

(R

n�1

;B

s+m��

q

(R

+

))! B

s�

1

q

q

(R

n�1

) if

�

�

�

�

s�

1

q

�

�

�

�

< �

1

;

g(x;D

x

)(x) : L

q

(R

n�1

;B

s+m��

q

(R

+

))! B

s

q

(R

n�1

;L

q

(R

+

)) if jsj < �

1

;

g(x;D

x

)(x) : L

q

(R

n�1

;B

s+m��

q

(R

+

))! L

q

(R

n�1

;B

s

q

(R

+

)) if 0 < s < �

1

;

whih �nishes the proof.

5 Trunated Pseudodi�erential Operators

5.1 De�nition and Consequenes

Reall that H

d

, d 2 Z, denotes the spae of all smooth funtions f : R ! C whih

admit an asymptoti expansion f(t) � s

d

t

d

+ s

d�1

t

d�1

+ : : : in the sense that for all

k; l, and N 2 N

0

�

�

�

�

�

�

l

t

"

t

k

f(t)�

d

X

j=d�N

s

j

t

j+k

#

�

�

�

�

�

� C

k;l;N

(1 + jtj)

d�N�1+k�l

as jtj ! 1:

It is important that H

�1

= H

+

�H

�

�1

, where H

+

and H

�

�1

are the subspaes of all

f 2 H

�1

whih an be extended holomorphially to the lower, upper omplex plane,

resp., and

H

+

= F [e

+

S(R

+

)℄; H

�

�1

= F [e

�

S(R

�

)℄;

where e

�

f denotes the extension by zero of a funtion f de�ned on R

�

, see [12, Chap-

ter II, Setion 2.2℄ for details. Moreover, h

+

= Fe

+

r

+

F

�1

and h

�

�1

= Fe

�

r

�

F

�1

are

ontinuous projetions on H

+

and H

�

�1

, resp. Here r

�

denotes the restrition to R

�

and e

�

the extension by zero from R

�

to R. We use the onventionH

�

r

= H

�

�1

�C

r

[t℄,

r 2 N

0

, where C

r

[t℄ denotes the set of all omplex polynomials of degree r. Moreover,

h

�1

: H

d

!H

�1

is the projetion with range H

�1

and kernel C

d

[t℄.
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Remark 5.1 As in the standard alulus the Poisson, trae, and singular Green

operator de�ned in the last setion an be desribed with the aid of their symbols:

k(x;D

x

)a = F

�1

� 7!x

[k(x; �)�a(�

0

)℄ ; t(x

0

; D

x

)f = F

�1

�

0

7!x

0

�

Z

+

t(x

0

; �)

^

f(�)��

n

�

;

g(x;D

x

)f = F

�1

�

0

7!x

0

�

Z

+

g(x; �; �

n

)

^

f(�

0

; �

n

)��

n

�

;

where k(x; �) = F

y

n

7!�

n

[e

+

y

n

~

k(:; y

n

)℄, t

0

(x

0

; �) =

�

F

y

n

7!�

n

[e

+

y

n

~

t

0

(:; y

n

)℄, g

0

(x; �; �

n

) =

F

y

n

7!�

n

�

F

z

n

7!�

n

[e

+

y

n

e

+

z

n

~g

0

(:; y

n

; z

n

)℄,

t(x

0

; �) =

r�1

X

j=0

s

j

(x

0

; �

0

)�

j

n

+ t

0

(x

0

; �); g(x; �) =

r�1

X

j=0

k

j

(x; �

0

)�

j

n

+ g

0

(x

0

; �)

f. [12, Setion 2.3℄, and where

�

F [f ℄(x) := F [f ℄(�x) denotes the onjugate Fourier

transformation. Here k

j

(x; �) is the symbol of the Poisson operator k

j

(x;D

x

) and

R

+

is the �plus-integral�, f. [12, Setion 2.2℄.

Finally, t(x;D

x

) and g(x;D

x

) are said to be of lass �m, m 2 N , if t(x; �) 2

H

�m�1

w.r.t. �

n

, g(x; �; �

n

) 2 H

�m�1

w.r.t. �

n

, respetively.

The following transmission ondition assures that p(x;D

x

)

+

= r

+

p(x;D

x

)e

+

is on-

tinuous between Bessel potential spaes and Besov spaes on the half-spae R

n

+

.

De�nition 5.2 Let p 2 C

�

S

d

1;0

(R

n

� R

n

), d 2 Z. Then p satis�es the global trans-

mission ondition � simply alled transmission ondition in the following � if there

are funtions s

k;�

(x; �

0

) smooth in �

0

and in C

�

w.r.t. x suh that for any � 2 N

n

0

and l 2 N

0













�

l

n

D

�

�

p(:; �)�

d�j�j

X

k=�l

s

k;�

(:; �

0

)�

k+l

n













C

�

(R

n

)

� C

k;l;�

h�

0

i

d+1+l�j�j

j�

n

j

�1

(5.1)

when j�

n

j � h�

0

i.

It is an important fat that the symbols s

k;�

(x; �

0

) have to �t together under term-

wise di�erentiation as it is in the smooth oe�ient ase. In partiular, they have

to be zero after a �nite number of di�erentiations in �

0

. Hene s

k;�

(x; �

0

) has to be a

polynomial in �

0

with oe�ients in C

�

(R

n

).

Remark 5.3 In ontrast to the transmission ondition for a smooth symbol p 2

S

d

1;0

(R

n

� R

n

), f. e.g. [12, De�nition 2.2.7℄, in the latter non-smooth version a on-

dition not only at x

n

= 0 is posed. � Therefore it is alled global transmission on-

dition. � It is motivated by appliations, where p(x; �) = q(A(x)�), A 2 C

�

(R

n

)

n�n

,

and q 2 S

d

1;0

(R

n

�R

n

) satis�es the transmission ondition for symbols in S

d

1;0

(R

n

�R

n

).

Of ourse it an be relaxed sine only the behavior of p(x; �) near x

n

= 0 plays a

role in order to prove the ontinuity of the trunated pseudodi�erential operator.

However the latter ondition is simple and su�ient for our purposes.
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Finally, a Green operator of order m 2 R, lass r 2 N

0

, and with oe�ients

in C

�

, � > 0, is an operator of the form (1.1), where p(x;D

x

), g(x;D

x

), k(x;D

x

),

t(x

0

; D

x

), and s(x

0

; D

x

0

) are pseudodi�erential operators, singular Green, Poisson,

and trae operators, resp., of order m suh that m 2 Z if p 6= 0, p(x;D

x

) satis�es

the transmission ondition, and g(x;D

x

) and t(x

0

; D

x

) are of lass r. The bound-

ary symbol operator a(x; �

0

; D

n

) is the Green operator, whih is obtained from the

orresponding symbols and symbol-kernels by �xing (x

0

; �

0

) and onsidering all oper-

ators as one-dimensional operators ating only in x

n

. Moreover, p(x; �) is alled the

interior symbol of a(x;D

x

).

Lemma 5.4 Let p 2 C

�

S

d

1;0

(R

n

� R

n

), d 2 Z, that satis�es the transmission ondi-

tion. Then r

+

p(x;D

x

)Æ

0


a = k(x;D

x

)a for all a 2 S(R

n�1

), where

~

k 2 C

�

S

d

1;0

(R

n

�

R

n�1

;S(R

+

)) is a Poisson symbol-kernel of order d+ 1 and Æ

0

denotes the delta dis-

tribution w.r.t. x

n

.

Proof: First of all by (5.1) h

�1

[�

l

n

D

�

�

p(:; �)℄ = �

l

n

D

�

�

p(:; �)�

P

d�j�j�j

k=�l

s

k;�;j

(:; �

0

)�

k+l

n

.

Therefore

kh

�1;�

n

[�

l

n

D

�

�

p(:; �)℄k

C

�

(R

n

)

�

(

C

l;�

h�

0

i

d+l+1�j�j

j�

n

j

�1

when j�

n

j � h�

0

i;

C

l;�

h�

0

i

d+l�j�j

when j�

n

j < h�

0

i;

(5.2)

where we have used (5.1) for j�

n

j � h�

0

i and the symbol estimates for j�

n

j < h�

0

i.

This implies

kh

�1;�

n

[�

l

n

D

�

�

p(:; �

0

; :)℄k

C

�

(R

n

;L

2

�

n

(R))

� C

k;�

h�

0

i

d+

1

2

+l�j�j

(5.3)

by an elementary alulation, f. the proof of [12, Theorem 2.2.10℄.

Sine r

+

p(x; �

0

; D

x

n

)Æ

0


a = r

+

F

�1

�

n

7!x

n

[h

+

p(x; �)a℄ for all a 2 C , we have

~

k(x; �

0

; y

n

) =

r

+

F

�1

�

n

7!y

n

[h

+

p(x; �)℄ 2 S(R

+

) w.r.t. y

n

. Hene the previous estimate implies

kD

�

0

�

0

y

l

n

D

l

0

y

n

~

k(:; �

0

; y

n

)k

C

�

(R

n

;L

2

y

n

(R

+

))

� C

l;l

0

;�

0

h�

0

i

d+

1

2

�l+l

0

�j�

0

j

; (5.4)

whih proves the lemma.

In onnetion with Lemma 5.4 the identity

[D

k

x

n

; e

+

℄ = �i

k�1

X

j=0

D

k�1�j

x

n

Æ

0


 

j

; (5.5)

f. [12, (2.2.39)℄, where [A;B℄ := AB � BA, will often be used.

Let p 2 C

�

S

d

1;0

(R

n

� R

n

). Then we denote

G

+

(p(x;D

x

)) := r

+

p(x;D

x

)e

�

J; G

�

(p(x;D

x

)) := Jr

�

p(x;D

x

)e

+

;

where (Jf)(x) := f(x

0

;�x

n

)), x 2 R

n

.
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Lemma 5.5 Let p 2 C

�

S

d

1;0

(R

n

� R

n

), d 2 Z, satisfy the transmission ondition.

Then G

+

(p(x;D

x

)) = g

+

(p)(x;D

x

) and G

�

(p(x;D

x

)) = g

�

(p)(x;D

x

), where ~g

�

(p) 2

C

�

S

d�1

1;0

(R

n

�R

n�1

;S(R

2

++

)) are singular Green symbol-kernels of order d. Moreover,

~g

�

(p)(x; �

0

; y

n

; z

n

) = r

�

F

�1

�

n

7!t

[p(x; �)℄

�

�

t=�y

n

�z

n

.

Proof: For every �xed x 2 R

n

the symbol p

x

(�) := p(x; �) is a smooth symbol of

order d satisfying the transmission ondition. Hene the stated identities are diret

onsequenes of the orresponding statements in the smooth ase, f. e.g. [12, The-

orem 2.6.10℄. Moreover, the estimates to show ~g

�

(p) 2 C

�

S

d�1

1;0

(R

n

� R

n�1

;S(R

2

++

))

are proved in the same way as in the proof of [12, Theorem 2.6.10℄, where the regu-

larity in x does not play any role.

In order to onsider p(x;D

x

)

+

as operator-valued pseudodi�erential operator on

R

n�1

, we will use:

Lemma 5.6 Let 1 < q < 1 and let p 2 C

�

S

m

1;0

(R

n

� R

n

), m 2 Z, satisfy the

transmission ondition. Then

p(x;D

x

)

+

=

m

X

j=0

s

j

(x;D

x

0

)D

j

x

n

+ p

0

(x;D

x

)

+

;

where p

0

(x;D

x

) = OP

0

(p

0

(x; �

0

; D

n

)) with

p

0

(x; �

0

; D

n

)

+

2 C

���

0

S

m+�

1;0

(R

n�1

� R

n�1

;L(H

s��

q

(R

+

); H

s

q

(R

+

)))

for all 0 < �

0

< � , jsj < �

0

, and � 2 [0; 1℄ with s � � > �

1

q

0

and where s

j

(x;D

x

0

)

are di�erential operators of order m � j with oe�ients in C

�

(R

n

). Moreover,



0

p(x;D

x

)

+

=

P

m

j=0

s

j

(x

0

; 0; D

x

0

)

j

+ t

0

(x

0

; D

x

0

); where

~

t

0

(x

0

; �

0

; y

n

) 2 C

�

S

m

1;0

(R

n�1

�

R

n�1

;S(R

+

)).

Proof: Let p

0

(x; �) := h

�1;�

n

[p(x; �)℄. As seen in the proof of Lemma 5.4, p

0

(x; �) =

p(x; �)�

P

m

j=0

s

j

(x; �

0

)�

j

n

, where s

j

(x; �

0

) 2 C

�

S

m�j

1;0

(R

n

� R

n�1

) are the symbols due

to (5.1) for � = l = 0. Beause of (5.1) and the symbol estimates

k�

�

�

p

0

(:; �)k

C

�

(R

n

)

� C

�

h�

0

i

m+��j�

0

j

h�

n

i

����

n

; � 2 R

n

; (5.6)

for all � 2 N

n

0

and � 2 [0; 1℄. Beause of the latter estimate, (3.1), and Theorem 3.3,

we onlude that

k�

�

0

�

0

p

0

(:; x

n

; �

0

; D

n

)k

C

���

0

(R

n�1

;L(H

s��

q

(R);H

s

q

(R)))

� C

s;�

h�

0

i

m+��j�

0

j

for all jsj < �

0

, �

0

2 N

n�1

0

.

Now, if s� � 2 (�

1

q

0

;

1

q

), then e

+

: H

s

q

(R

+

)! H

s

q

(R) is a ontinuous mapping and

therefore the latter estimate implies the statement in this ase.
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Next we prove the statement for s � � 2 (k �

1

q

0

; k +

1

q

), k 2 N

0

, with jsj < �

0

.

Then the general ase is obtain by interpolation. Using 1 =

1

q(�)

+

P

n

j=1

�

k

j

q(�)

�

k

j

with

q(�) = 1 +

P

k

j=1

�

2k

j

,

p

0

(x; �

0

; D

n

)

+

=

n�1

X

j=1

p

j

(x; �

0

; D

n

)

+

�

k

j

+ p

n

(x; �

0

; D

n

)

+

D

k

x

n

+ r

+

p

n

(x; �

0

; D

n

)[D

k

x

n

; e

+

℄;

where p

j

(x; �) 2 C

�

S

m�k

1;0

(R

n

� R

n

), j = 1; : : : ; n, satisfy the transmission ondition.

Sine s � � � k 2 (�

1

q

0

;

1

q

), e

+

D

k

x

n

: H

s��

q

(R

+

) ! H

s���k

q

(R) and we an apply the

�rst part on p

j

(x; �

0

; D

n

). Finally,

r

+

p

n

(x; �

0

; D

n

)D

k�1�j

x

n

Æ

0


 

j

2 C

���

S

m

1;0

(R

n�1

� R

n�1

;L(H

s��

q

(R

+

); H

s

q

(R

+

)))

by Lemma 5.4, Corollary 4.10, and 

j

: H

s

q

(R

+

)! C if j � k � 1. Hene using (5.5)

we obtain the same statement for r

+

p

n

(x; �

0

; D

n

)[D

k

x

n

; e

+

℄.

The identity for 

0

p(x;D

x

)

+

is obvious and

~

t

0

(x

0

; �

0

; y

n

) =

�

F

�1

�

n

7!y

n

[p

0

(x

0

; 0; �)℄ 2

C

�

S

m

1;0

(R

n�1

� R

n�1

;S(R

+

)) is proved by the same estimates as in the proof of

Lemma 5.4.

Remark 5.7 If p 2 C

�

S

�m

1;0

(R

n

� R

n

) with m � 0 and � > 0, then

p(x; �

0

; D

n

) 2 C

���

0

S

�m

1

1;0

(R

n�1

� R

n�1

;L(H

s�m

2

q

(R); H

s

q

(R)))

for all jsj < �

0

< � and m

1

; m

2

� 0 with m

1

+m

2

= m. Moreover, if m 2 N

0

and p

satis�es the transmission ondition, it an be proved as above that

p(x; �

0

; D

n

)

+

2 C

���

0

S

�m

1

1;0

(R

n�1

� R

n�1

;L(H

s�m

2

q

(R

+

); H

s

q

(R

+

)))

for all jsj < �

0

< � with s�m

2

> �

1

q

0

.

Let p 2 C

�

S

m

1;0

(R

n

� R

n

), d 2 R, � > 0. When disussing the ompositions of

p(x;D

x

)

+

with Poisson, trae, and singular Green operators, the following Taylor

expansion will be useful:

p(x; �) =

k

X

j=0

x

j

n

j!

�

j

x

n

p(x

0

; 0; �) + x

k

n

q

k

(x; �); (5.7)

where q

k

2 C

��k

S

m

1;0

(R

n

� R

n

), k = 0; : : : ; [� ℄, and q

k

(x

0

; 0; �) = 0.

5.2 Composition of Trunated Pseudodi�erential Operators

with Poisson, Trae, and Singular Green Operators

In the following we study the ompositions of trunated pseudodi�erential operators

with Poisson, trae, and singular Green operators satisfying the following assumption:
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Assumption 5.8 Let

~

k

2

2 C

�

2

S

m

2

�1

1;0

(R

n�1

� R

n�1

;S(R

+

)),

~

t

1

2 C

�

1

S

m

1

1;0

(R

n�1

�

R

n�1

;S(R

+

)), ~g

1

2 C

�

1

S

m

1

�1

1;0

(R

n

�R

n�1

;S(R

2

++

)), ~g

2

2 C

�

2

S

m

2

�1

1;0

(R

n�1

�R

n�1

;S(R

2

++

))

for �

j

> 0 and m

j

2 R, j = 1; 2. Moreover, let p

j

2 C

�

j

S

m

j

1;0

(R

n

� R

n

) satisfy the

transmission ondition, where we assume in the following that m

j

2 Z if a omposi-

tion with p

j

is onsidered. We will denote by

p

j

(x;D

x

) =

m

j

X

k=0

s

j;k

(x;D

x

0

)D

k

x

n

+ p

0

j

(x;D

x

) (5.8)

the deomposition due to Lemma 5.6. Finally, let � 2 (0; �

2

), � 62 N

0

, and set

� := min(�

1

; �

2

� [�℄), m := m

1

+m

2

.

We study the following ompositions:

p

1

(x;D

x

)

+

a

2

(x

0

; D

x

) = (p

1

#

0

[�℄

a

2

)(x;D

x

) +R

0

�

(p

1

; a

2

)

(p

1

#

0

[�℄

a

2

)(x; �

0

; D

n

) =

X

j�

0

j�[�℄

1

�

0

!

�

�

0

�

0

p

1

(x; �

0

; D

n

)

+

D

�

0

x

0

a

2

(x

0

; �

0

; D

n

) (5.9)

a

1

(x;D

x

)p

2

(x;D

x

)

+

= (a

1

#

[�℄

p

2

)(x;D

x

) +R

�

(a

1

; p

2

) where

(a

1

#

[�℄

p

2

)(x; �

0

; D

n

) =

X

j�j�[�℄

1

�!

D

�

0

�

0

a

1

(x; �

0

; D

n

)x

�

n

n

�

�

x

p

2

(x

0

; 0; �

0

; D

n

)

+

(5.10)

for a

1

= g

1

; t

1

, a

2

= k

2

; g

2

.

Beause of the omposition rules of boundary symbol operators (in the smooth

ase) (p

1

#

0

[�℄

k

2

)(x;D

x

), (p

1

#

0

[�℄

g

2

)(x;D

x

), (g

1

#

[�℄

p

2

)(x;D

x

), and (t

1

#

[�℄

p

2

)(x

0

; D

x

) are

Poisson, singular Green, and trae operators, resp., of order m with oe�ients

in C

�

, f. Remark 4.3. Here (p

1

#

0

[�℄

g

2

)(x;D

x

) is of lass 0 and (g

1

#

[�℄

p

2

)(x;D

x

),

(t

1

#

[�℄

p

2

)(x

0

; D

x

) are of lass max(0; m

2

).

THEOREM 5.9 Let 1 < q <1, s 2 R, and let

~

k

2

;

~

t

1

; ~g

j

, and p

j

be as in Assump-

tion 5.8.

1. If jsj < � , s� � > ��

2

, ��

2

+ � < s+m

1

< �

2

, and s+m

1

� � > �

1

q

0

, then

R

0

�

(p

1

; k

2

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s

q

(R

n

+

);

R

0

�

(p

1

; g

2

) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m� � > �

1

q

0

;

R

�

(g

1

; p

2

) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m� �; s+m

1

� � > �

1

q

0

:

2. If

�

�

�

s�

1

q

�

�

�

< � , s�

1

q

� � > ��

2

, ��

2

+ � < s+m

1

< �

2

, s+m

1

� � > �

1

q

0

, and

s+m� � > �

1

q

0

, then R

�

(t

1

; p

2

) : B

s+m��

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

).
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The theorem will be proved at the end of this setion.

Remark 5.10 Using the Taylor expansion (5.7) for p

1

with k = [�

0

℄ and �

0

2 (0; �

1

),

�

0

62 N

0

, the formulae an be redued to Poisson, trae, and singular Green operators

with x

n

-independent oe�ients as in the smooth ase, f. Remark 4.3.1. The new

remainder terms are easily estimated using Theorem 4.11. But the remainder term

will be of order m

1

+m

2

� �

0

with �

0

arbitrarily lose to �

1

. Hene in that ase there

is loss of auray of the formulae if �

1

< �

2

.

Lemma 5.11 Let

~

k

2

;

~

t

1

; ~g

j

, p

0

j

be as in Assumption 5.8. Moreover, let R

0

�

(a

1

; p

0

2

) :=

a

1

(x;D

x

)p

0

2

(x;D

x

)

+

�OP

0

(a

1

(:; D

n

)#

0

[�℄

p

2

(:; D

n

)) for a

1

= g

1

; t

1

.

1. If jsj < � , s� � > ��

2

, and ��

2

+ � < s+m

1

< �

2

, then

R

0

�

(p

0

1

; k

2

) : B

s+m�

1

q

��

q

(R

n�1

)! B

s

q

(R

n

+

);

R

0

�

(p

0

1

; g

2

); R

0

�

(g

1

; p

0

2

) : B

s+m��

q

(R

n

+

)! B

s

q

(R

n

+

) if s+m� � > �

1

q

0

:

2. If js�

1

q

j < � , s�

1

q

� � > ��

2

, ��

2

+ � < s+m

1

< �

2

, and s+m� � > �

1

q

0

,

then R

0

�

(t

0

1

; p

0

2

) : B

s+m��

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

).

Proof: First of all, beause of Remark 4.12 and s +m� � > �

1

q

0

, it is su�ient to

prove the mapping properties withB

s+m��

q

(R

n

+

) replaed by B

s+m��+s

00

q

(R

n�1

;H

�s

0

q

(R

+

))

for s

0

2 [0;

1

q

0

).

By Lemma 5.6

p

0

j

(x; �

0

; D

n

)

+

2C

�

j

��

0

S

m

j

1;0

(R

n�1

� R

n�1

;L(B

s

q

(R

+

)) \ L(H

s

q

(R

+

))) (5.11)

\ C

�

j

S

m

j

+s

0

1;0

(R

n�1

� R

n�1

;L(H

�s

0

q

(R

+

); L

q

(R

+

))) (5.12)

for all 0 < �

0

< �

j

, jsj < �

0

with s > �

1

q

0

, and s

0

2 [0;

1

q

0

). Moreover, if m

j

< 0,

p

j

(x;D

x

) = p

0

j

(x;D

x

) and by Remark 5.7

p

0

j

(x; �

0

; D

n

)

+

2C

�

j

��

0

S

0

1;0

(R

n�1

� R

n�1

;L(B

s+m

j

q

(R

+

); B

s

q

(R

+

))); (5.13)

for all 0 < �

0

< �

j

, jsj < �

0

, s+m

j

> �

1

q

0

.

Using (5.11), (5.12), Remark 4.7, and Corollary 4.10 we an apply Theorem 3.6

to obtain

R

0

�

(p

0

1

; k

2

) : B

s+m���

1

q

q

(R

n�1

)! B

s

q

(R

n�1

;L

q

(R

+

))

R

0

�

(p

0

1

; g

2

); R

0

�

(g

1

; p

0

2

) : B

s+m��+s

0

q

(R

n�1

;H

�s

00

q

(R

+

))! B

s

q

(R

n�1

;L

q

(R

+

))

R

0

�

(t

1

; p

0

2

) : B

s+m��+s

0

q

(R

n�1

;H

�s

00

q

(R

+

))! B

s�

1

q

q

(R

n�1

)
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for s

0

2 [0;

1

q

0

) and under the same restritions on s as in the theorem. Hene, if

s � 0, the lemma is proved beause of (2.14).

Moreover, if m

1

� 0 and s > 0, we use that by Remark 4.7

k

2

(x

0

; �

0

; D

n

) 2 C

�

2

S

m

2

+s�

1

q

1;0

(R

n�1

� R

n�1

;L(C ; B

s

q

(R

+

)))

g

2

(x

0

; �

0

; D

n

) 2 C

�

2

S

m

2

+s+s

0

1;0

(R

n�1

� R

n�1

;L(H

�s

0

q

(R

+

); B

s

q

(R

+

)))

for s

0

2 [0;

1

q

0

). Hene, if m

1

� 0, s > 0, s

0

2 [0;

1

q

0

) and " > 0 is su�iently small,

R

0

�

(p

0

1

; k

2

) : B

s+m�

1

q

��+"

q

(R

n�1

)! B

"

q

(R

n�1

;B

s

q

(R

+

)) (5.14)

R

0

�

(p

0

1

; g

2

) : B

s+m��+s

0

+"

q

(R

n�1

;H

�s

0

q

(R

+

))! B

"

q

(R

n�1

;B

s

q

(R

+

)) (5.15)

by Theorem 3.6 and (5.11). Here the assumptions of Theorem 3.6 are satis�ed for

su�iently small " > 0 sine m

1

< s +m

1

< �

2

and m

1

� 0. Beause of (2.2) and

(2.13), this implies the statements for p

0

1

(x;D

x

)

+

k

2

(x

0

; D

x

) and p

0

1

(x;D

x

)

+

g

2

(x

0

; D

x

)

in this ase.

If m

1

< 0 and s > 0, we use (5.13) and

k

2

(x

0

; �

0

; D

n

) 2 C

�

2

S

s+m�

1

q

1;0

(R

n�1

� R

n�1

;L(C ; B

s+m

1

q

(R

+

)))

g

2

(x

0

; �

0

; D

n

) 2 C

�

2

S

s+m+s

0

1;0

(R

n�1

� R

n�1

;L(H

�s

0

q

(R

+

); B

s+m

1

q

(R

+

)))

for s

0

2 [0;

1

q

0

). Then Theorem 3.6 yields (5.14)-(5.15) again.

ForR

0

�

(g

1

; p

0

2

) we simply use (5.12) and g

1

(:; D

n

) 2 C

���

0

S

s+m

1

1;0

(L(L

q

(R

+

); B

s

q

(R

+

)))

for 0 < s < �

0

< � to onlude that

R

0

�

(g

1

; p

2

) : B

s+m��+s

0

+"
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Proof: By Lemma 4.6, Corollary 4.10, and interpolation
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+
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for 0 < s
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< �
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if �� + � < s < � are bounded operators where " > 0 . This implies the statement

of the lemma sine � 2 (0;min(1; �
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Proof of Theorem 5.9: First of all, let p
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denote the di�erential operator part of the deomposition (5.8).
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Then the ompositions of p
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where, beause of (5.5) and Lemma 5.4, L(p

2;�

(x;D

x

); D

�

x

) = r

+

p

2;�

(x;D

x

)[D

�

x

; e

+

℄

is a singular Green operator of order m

2

, lass k, and with oe�ients in C

�

2

. Sine

s+m

1

+m

2

� k 2 (�

1

q

0

;

1

q

), we an apply the theorem for this ase proved above to

onlude

p

1

(x;D

x

)

+

p

2;�

(x;D

x

)

+

D

�

x

= (p

1

#

[�℄

p

2;�

)(x;D

x

)

+

D

�

x

� l

�

(p

1

; p

2;�

)(x;D

x

)D

�

x

+R

�

= ((p

1

#

[�℄

p

2;�

)(x;D

x

)D

�

x

)

+

� L((p

1

#

[�℄

p

2;�

)(x;D

x

); D

�

x

)

�l

�

(p

1

; p

2;�

)(x;D

x

)D

�

x

+R

�

where R

�

: B

s+m

1

+m

2

��

q

(R

n

+

)! B

s

q

(R

n

+

). Using (5.7) for p

2

we onlude

L((�

�

�

p

1

D

�

x

p

2;�

)(x;D

x

); D

�

x

) =

[�℄�j�j

X

j=0

1

j!

r

+

OP(�

�

�

p

1

x

j

n

D

�

x

�

j

x

n

p

2;�

(x

0

; 0; �))[D

�

x

; e

+

℄

+r

+

OP(�

�

�

p

1

x

[�℄�j�j

n

D

�

x

q

2;�

)[D

�

x

; e

+

℄;

where q

2;�

2 C

�

2

�[�℄

S

m

2

�k

1;0

with q

2;�

j

x

n

=0

= 0. If �

2

� [�℄ � �

1

, Theorem 4.11 yields

r

+

OP(�

�

�

p

1

(x; �)x

[�℄�j�j

n

D

�

x

q

2;�

(x; �))[D

�

x

; e

+

℄ : B

s+m

1

+m

2

��

q

(R

n

+

)! B

s

q

(R

n

+

)

if s satis�es the assumptions of the theorem. If �

2

� [�℄ > �

1

, Lemma 5.14 below

implies the same statement.

Therefore

L((p

1

#

[�℄

p

2;�

)(x;D

x

); D

�

x

)

=

X

j�j�[�℄

[�℄�j�j

X

j=0

1

�!j!

L(OP

0

(x

j

n

�

�

�

p

1

(x; �

0

; D

n

)D

�

x

�

j

x

n

p

2;�

(x

0

; 0; �

0

; D

n

)); D

�

x

) +R

�

=

X

jj�[�℄

1

!

L(OP

0

(�



0

�

0

p

1

(x; �

0

; D

n

)x



n

n

D



0

x

�



n

x

n

p

2;�

(x

0

; 0; �

0

; D

n

)); D

�

x

) +R

�
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by an elementary alulation. Moreover, by Theorem 5.9 and Theorem 4.11

p

1

(x;D

x

)

+

L(p

2;�

(x;D

x

); D

�

x

)

=

X

j�j�[�℄

1

�!

OP

0

(�

�

0

�

0

p

1

(x; �

0

; D

n

)

+

L(x

�

n

n

D

�

0

x

0

�

�

n

x

n

p

2;�

(x

0

; 0; �

0

; D

n

); D

�

x

) +R

�

:

Using the identity L(P

1

; P

2

Q) = L(P

1

P

2

; Q) + L(P

1

; P

2

)Q

+

� P

1;+

L(P

2

; Q) for the

boundary symbol operator and the alulations above, it is elementary to hek that

l

�

(p

1

; p

2

)(x;D

x

) =

X

j�j�k

�

L((p

1

#

[�℄

p

2;�

)(x;D

x

); D

�

x

) + l

�

(p

1

; p

2;�

)(x;D

x

)D

�

x

�p

1

(x;D

x

)

+

L(p

2;�

(x;D

x

); D

�

x

)

�

+R

�

;

whih �nishes the proof.

Lemma 5.14 Let p

j

2 C

�

j

S

m

j

1;0

(R

n

� R

n

), m

j

2 Z, j = 1; 2, 0 < �

1

< �

2

� 1,

satisfy the transmission ondition with p

2

(x

0

; 0; �) = 0. Moreover, let k(x; �

0

; D

n

)a :=

r

+

OP

n

(p

1

(x; �)p

2

(x; �))Æ

0


 a for a 2 C . Then for every � < �

2

and 0 < s < �

1

k(x; �

0

; D

n

) 2 C

�

S

m

1

+m

2

+s+1�

1

q

��

1;0

(R

n�1

� R

n�1

;L(C ; B

s

q

(R

+

)));

where 0 < � < min(�

1

� s; �

2

� �) and therefore k(x;D

x

) : B

s+m

1

+m

2

+1�

1

q

��

q

(R

n�1

)!

B

s

q

(R

n

+

) is a bounded linear operator if �min(�

1

; �

2

� �) < s < �

1

.

Proof: We an assume w.l.o.g. that m

2

= �1 and � � s. Moreover, as in the proof

of Lemma 4.9 it is su�ient to prove the statement for B

s

q;1

(R

+

) instead of B

s

q

(R

+

).

Then

h

�1;�

n

[p

1

(x; �)p

2

(x; �)℄ = h

�1;�

n

[p

1

(x; �)℄p

2

(x; �) +

m

1

X

j=0

s

j;1

(x; �

0

)h

�1;�

n

�

�

j

n

p

2

(x; �)

�

;

where s

j;1

(x; �

0

) are the terms in the expansion due to De�nition 5.2 for p

1

with

� = l = 0. The terms r

+

P

m

1

j=0

OP

n

(s

j;1

(x; �

0

)h

�1;�

n

[�

j

n

p

2

(x; �)℄) Æ

0


a are easily esti-

mated with the aid of Lemma 4.9. and kfgk

B

s

q;1

� C

�

kfk

C

s

kgk

L

q

+ kfk

L

1

kgk

B

s

q;1

�

:

Therefore we an assume for the rest of the proof that p

1

(x; �) 2 H

�1

w.r.t. �

n

.

First let 0 < h � x

n

. Then

h

�s

j

~

k(x

0

; x

n

+ h; �

0

; y

n

)�

~

k(x

0

; x

n

; �

0

; y

n

)j

� h

�s

kp

1

(x

0

; x

n

+ h; �

0

; :)� p

1

(x; �

0

; :)k

L

2

(R)

kp

2

(x

0

; x

n

+ h; �

0

; :)k

L

2

(R)

+h

�s

kp

1

(x; �

0

; :)k

L

2

(R)

kp

2

(x

0

; x

n

+ h; �

0

; :)� p

2

(x; �

0

; :)k

L

2

(R)

;
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where

h

�s

kp

1

(x

0

; x

n

+ h; �

0

; :)� p

1

(x; �

0

; :)k

L

2

(R)

� Ckp

1

(:; �

0

; :)k

C

�

1

(R

n

;L

2

(R))

� Ch�

0

i

m

1

+

1

2

h

�s

kp

2

(x

0

; x

n

+ h; �

0

; :)� p

2

(x; �

0

; :)k

L

2

(R)

� Cx

��s

n

h�

0

i

m

2

+

1

2

kp

1

(x; �

0

; :)k

L

2

(R)

� Ch�

0

i

m

1

+

1

2

kp

2

(x

0

; x

n

+ h; �

0

; :)k

L

2

(R)

� Cx

�

n

h�

0

i

m

2

+

1

2

by (5.3) and sine p

2

(x

0

; 0; �) = 0. Hene

h

�s

x

s��

n

j

~

k(x

0

; x

n

+ h; �

0

; y

n

)�

~

k(x; �

0

; y

n

)j � Ch�

0

i

m

1

+m

2

+1

:

By the same alulations as above, it an be shown that

h

�s

x

s��

n

�

�

�

y

l

n

�

l

0

y

n

�

�

0

�

0

�

~

k(x

0

; x

n

+ h; �

0

; y

n

)�

~

k(x; �

0

; y

n

)

�

�

�

�

� C

l;l

0

;�

0

h�

0

i

m

1

+m

2

+1�l+l

0

�j�

0

j

for l; l

0

2 N

0

, �

0

2 N

n�1

0

. This implies

h

�s

�

�

�

x

s

0

n

�

�

0

�

0

�

~

k(x

0

; x

n

+ h; �

0

; x

n

+ h)�

~

k(x; �

0

; x

n

)

�

�

�

�

� C

s

0

;�

0

h�

0

i

m

1

+m

2

+1��+s�s

0

�j�

0

j

for s

0

� 0, �

0

2 N

n�1

0

.

In the ase h > x

n

, one an use

�

�

�

x

s

0

��

n

�

�

0

�

0

~

k(x; �

0

; x

n

)

�

�

�

� Ch�

0

i

m

1

+m

2

+1�s

0

�j�

0

j

for

�

0

2 N

n�1

0

; s

0

� 0, to prove the latter estimate. Hene

sup

h>0

h

�s







�

�

0

�

0

�

~

k(x

0

; :+ h; �

0

; :+ h)�

~

k(x

0

; :; �

0

; :)

�







q

� C

�

0

h�

0

i

m

1

+m

2

+1�

1

q

��+s�j�

0

j

by (4.4). In a similar way one estimates k�

�

0

�

0

~

k(x

0

; :; �

0

; :)k

q

. Thus

k�

�

0

�

0

k(x; �

0

; D

n

)k

L(C ;B

s

q;1

(R

+

))

� C

�

0

h�

0

i

m

1

+m

2

+1�

1

q

���j�

0

j

:

Finally, replaing

~

k(x; �

0

; y

n

) by jh

0

j

��

(�

h

0

~

k)(x; �

0

; y

n

) :=

~

k(x

0

+h

0

; x

n

; �

0

; y

n

)�

~

k(x; �

0

; y

n

),

h

0

2 R

n�1

, it an be proved as above that

k�

�

0

�

0

k(:; �

0

; D

n

)k

C

�

(R

n�1

;L(C ;B

s

q;1

(R

+

)))

� C

�

0

h�

0

i

m

1

+m

2

+1�

1

q

��+s�j�

0

j

:

Then the ontinuity of k(x;D

x

) is proved as in the proof of Theorem 4.11.

As a onsequene of the omposition rules we obtain:

THEOREM 5.15 Let p 2 C

�

S

m

1;0

(R

n

� R

n

), m 2 Z, satisfy the transmission on-

dition. Then

p(x;D

x

)

+

: H

s+m

q

(R

n

+

)! H

s

q

(R

n

+

)

is a ontinuous operator for all jsj < � with s+m > �

1

q

0

.
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Proof: The proof is done by the same sheme as in Lemma 5.5 and Theorem 5.13.

The ase s +m 2 (�

1

q

0

;

1

q

) is trivial sine e

+

: H

s+m

q

(R

n

+

)

! H

s

q

(R

n

+

). Then the ase

s+m 2 (k �

1

q

0

; k +

1

q

), k 2 N , is redued to the �rst ase using

p(x;D

x

)

+

=

X

j�j�k

p

�

(x;D

x

)

+

D

�

x

+

X

j�j�k

L(p

�

(x;D

x

); D

�

x

);

where p

�

2 C

�

S

m�k

1;0

(R

n

� R

n

), f. (5.19).

5.4 Negative Classes and Proofs of the Main Theorems

The onept of negative lasses easily arries over to the non-smooth situation sine

it is only a matter of the behavior of the symbols w.r.t. �

n

, �

n

, resp., f. Remark 5.1.

As in the smooth oe�ient ase it holds that

t(x

0

; D

x

) is of lass �m , t(x

0

; D

x

)D

m

x

n

is of lass 0; (5.20)

g(x;D

x

) is of lass �m , g(x;D

x

)D

m

x

n

is of lass 0; (5.21)

f. [12, (2.8.2)℄.

Moreover, as in [12, De�nition 2.8.2℄ we say that p(x;D

x

)

+

+ g(x;D

x

) is of lass

r 2 N

0

if g(x;D

x

) is of lass r and that p(x;D

x

)

+

+ g(x;D

x

) is of lass r = �m;

m 2 N if

(p(x;D

x

)

+

+ g(x;D

x

))D

m

x

n

= p

0

(x;D

x

)

+

+ g

0

(x;D

x

) with g

0

(x;D

x

) of lass 0:

Then a(x;D

x

) is said to be of lass r 2 Z if p(x;D

x

)

+

+ g(x;D

x

) and t(x

0

; D

x

) are of

lass r.

Finally, it remains to prove our main theorems:

Proof of Theorem 1.1: Beause of Theorem 4.8, Theorem 4.11, and Theorem 5.15,

the ase r 2 N

0

is proved. By the same arguments as in in [12, Theorem 2.8.3℄ it is

easy to prove

p(x;D

x

)

+

+ g(x;D

x

) : H

s+m

q

(R

n

+

)! H

s

q

(R

n

+

) if jsj < �;

t(x

0

; D

x

) : H

s+m

q

(R

n

+

)! B

s�

1

q

q

(R

n�1

) if

�

�

�

�

s�

1

q

�

�

�

�

< �

for the general lass r 2 Z by using the statement if the lass is 0. Hene the theorem

is proved.

Proof of Theorem 1.2: First of all, sine � 2 (0; �

2

), � 62 N , is arbitrary, the

Bessel potential spaes an be replaed by Besov spaes using (2.2). Hene it only

remains to extend the statements of Theorem 4.13, Theorem 5.9, and Theorem 5.13

to arbitrary lasses r

j

2 Z. As mentioned in Remark 4.14, the ompositions with
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g

j

(x;D

x

) and t

j

(x

0

; D

x

) of lass r

j

2 N

0

redue to ompositions with 

j

and oper-

ators of lass 0. Using 

j

= 

0

D

j

x

n

, the ompositions with 

j

an be redued to

Theorem 5.9, Theorem 5.13, and Lemma 5.6. Finally, if r

j

2 Z, it only remains to

hek that t(x

0

; D

x

) and p(x;D

x

)

+

+g(x;D

x

) are of lass max(r

1

+m

2

; r

2

), whih an

be done by using the de�nitions and (5.20)-(5.21) diretly or by the same argument

as in [12, Remark 2.8.4℄.

6 Parametrix Constrution

In this last setion we apply Theorem 1.2 to onstrut a parametrix to ellipti Green

operators. In the following we will assume that the symbols of the operators are

polyhomogeneous, i.e., there is an asymptoti expansion in homogeneous terms of

dereasing order. The preise de�nition is ompletely analogous to the de�nition in

the smooth ase, f. e.g. [9℄, where we assume that the oe�ients of g(x;D

x

) and

k(x;D

x

) are independent of x

n

in order to have a uniquely de�ned priniple part.

The priniple part of a(x;D

x

) will be denoted by a

0

(x;D

x

).

De�nition 6.1 A polyhomogeneous Green operator a(x;D

x

) of order m 2 Z, lass

r 2 Z, and oe�ients in C

�

, � > 0, is said to be uniformly ellipti if the prinipal

interior symbol p

0

(x; �) : C

N

! C

N

is invertible for every x 2 R

n

, j�j = 1, and

p

�1

0

(x; �) is uniformly bounded in x 2 R

n

, j�j = 1, and prinipal boundary symbol

operator

a

0

(x

0

; 0; �

0

; D

n

) : H

r

2

(R

+

)

N

� C

M

! H

r�m

2

(R

+

)

N

� C

M

0

is invertible and a

0

(x

0

; 0; �

0

; D

n

)

�1

is uniformly bounded in x

0

; �

0

2 R

n�1

with j�

0

j = 1.

Sine matrix inversion is smooth, p

�1

0

(x; �) 2 C

�

S

�m

1;0

(R

n

�R

n

)
L(C

N

) (suitably de-

�ned for j�j � 1). But it remains to prove that a

0

(x

0

; 0; �

0

; D

n

)

�1

is again a boundary

symbol operator in the non-smooth symbol-kernel lasses.

Sine for every �xed x

0

0

2 R

n�1

the boundary symbol operator a

x

0

0

(�

0

; D

n

) :=

a

0

(x

0

0

; 0; �

0

; D

n

) belongs to the standard alulus, a

x

0

0

(�

0

; D

n

)

�1

is again a boundary

symbol operator of order �m and lass r�m, f. [5℄, [22℄, or [12℄. Hene it remains

to prove that a

0

(x

0

; 0; �

0

; D

n

)

�1

is in C

�

w.r.t. x

0

and satis�es the orresponding

symbol-kernel estimates. As known from the proof in the smooth oe�ient ase,

f. [5℄, [22, Proposition 3.1.1.2.6℄, or [12, Theorem 3.1.7℄, the statement an be

redued to the inversion of a(x

0

; 0; �

0

; D

n

) = I + g(x

0

; �

0

; D

n

), where g(x

0

; D

x

) is a

Green operator of order and lass 0 with small operator norm in L(L

2

(R

+

)). This

is done by omposition with order reduing operators and other operators belonging

to the alulus as well as inversion of matrix-valued pseudodi�erential symbols. All

these steps diretly arry over to the non-smooth oe�ient ase. Finally, the next

lemma treats the operator I + g(x

0

; �

0

; D

n

).
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Lemma 6.2 If ~g 2 C

�

S

�1

1;0

(R

n�1

� R

n�1

;S(R

2

++

)) 
 L(C

N

), � > 0, N 2 N, with

k~g(x

0

; �

0

; :; :)k

L

2

(R

2

++

)

�

1

2

; then I + g(x

0

; �

0

; D

n

) is invertible and there is a ~g

0

2

C

�

S

�1

1;0

(R

n�1

�R

n�1

;S(R

2

++

))
L(C

N

) suh that (I+g(x

0

; �

0

; D

n

))

�1

= I+g

0

(x

0

; �

0

; D

n

).

Proof: The lemma an be proved by similar arguments as in the proof of [12, Propo-

sition 3.2.1℄. By the assumptions kg(x

0

; �

0

; D

n

)k

L(L

2

(R

+

))

= k~g(x

0

; �

0

; :; :)k

L

2

(R

2

++

)

�

1

2

: Hene I + g(x

0

; �

0

; D

n

) is invertible in L(L

2

(R

+

)) and (I + g(x

0

; �

0

; D

n

))

�1

=

P

1

k=0

g(x

0

; �

0

; D

n

)

k

; where g(x

0

; �

0

; D

n

)

k

= g

k

(x

0

; �

0

; D

n

) with

~g

k

(x

0

; �

0

; x

n

; y

n

) =

Z

R

� � �

Z

R

Z

R

~g(x

0

; �

0

; x

n

; w

1

)~g(x

0

; �

0

; w

1

; w

2

) � � � ~g(x

0

; �

0

; w

k�1

; y

n

)dw

1

dw

2

� � �dw

k�1

for k � 2. Then it an be proved in a straight-forward manner that ~g

0

(x

0

; �

0

; x

n

; y

n

) :=

P

1

k=1

~g

k

(x

0

; �

0

; x

n

; y

n

) 2 C

�

S

�1

(R

n�1

� R

n�1

;S(R

2

++

))
 L(C

N

).

Corollary 6.3 If a(x;D

x

) is a polyhomogeneous ellipti Green operator of order

m 2 Z, lass r 2 Z, and in C

�

, � > 0, w.r.t. x, then a

0

(x

0

; 0; �

0

; D

n

)

�1

is a boundary

symbol operator of order �m, lass r �m, and in C

�

w.r.t. x

0

.

In order to onstrut a parametrix in the non-smooth oe�ient ase one has to take

are of the restrition of the mapping properties due to the limited smoothness of

the oe�ients. If for instane p 2 C

�

S

m

1;0

(R

n

� R

n

), m 2 R, is ellipti and q 2

C

�

S

�m

1;0

(R

n

� R

n

) suh that q(x; �) = p

�1

(x; �) for j�j � R > 0, then by Theorem 3.3

p(x;D

x

) : H

s+m

q

(R

n

) ! H

s

q

(R

n

) if jsj < � but q(x;D

x

) : H

s

q

(R

n

) ! H

s+m

q

(R

n

) if

js +mj < � for 1 < q < 1. Hene the restrition on s is too strong unless m = 0.

In [1℄ the problem was solved by taking the parametrix in y-form instead of x-form.

But, sine we did not treat operators in y-form, we use order-reduing operators to

the operator to order 0.

By [10, Proposition 4.2℄, there is a family of ellipti polyhomogeneous symbols

�

m

�

(�) 2 S

m

1;0

(R

n

� R

n

) satisfying the transmission ondition suh that �

m

�

(�

0

; D

n

)

+

is of lass �1 and �

j

�

(�

0

; D

n

)

+

�

k

�

(�

0

; D

n

)

+

= �

j+k

�

(�

0

; D

n

)

+

for j; k 2 Z: Hene, if

a(x;D

x

) is an ellipti Green operator of order m and lass r, then

a

0

(x;D

x

) := a(x;D

x

)

�

�

�m

�

(D

x

)

+

hD

x

0

i

�m

�

(6.1)

is an ellipti Green operator of order 0 and lass r �m.

THEOREM 6.4 Let a(x;D

x

) be an ellipti Green operator of order m 2 Z, lass

r 2 Z, and of regularity C

�

, � > 0, in x. Then for every � 2 (0; �), � 62 N, there is a

parametrix B = B

[�℄

suh that a(x;D

x

)B = I +R

�

, where

R

�

: H

s��

q

(R

n

+

)

N

�B

s���

1

q

q

(R

n�1

)

M

0

! H

s

q

(R

n

+

)

N

� B

s�

1

q

q

(R

n�1

)

M
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if �� + � < s < � � [�℄, s � � > r �m �

1

q

0

, and s �

1

q

> �� + � when M 6= 0 or

M

0

6= 0. More preisely, B = diag(�

�

(D

x

)

�m

+

; hD

x

0

i

�m

)b(x;D

x

), where b(x;D

x

) is a

Green operator of order 0 and lass r �m.

Proof: In the following R

�

will denote an operator with mapping properties stated

in the theorem. Beause of (6.1), we an assume that m = 0. Moreover, we onsider

for simpliity only the ase that a(x;D

x

) = a

0

(x;D

x

).

In order to onstrut an inverse modulo terms of order ��, we make the Ansatz

b(x;D

x

) =

P

[�℄

j=0

b

j

(x;D

x

); where b

j

(x;D

x

) are Green operators of order �m�j with

oe�ients in C

��j

. Moreover, denote by q

j

(x; �) the interior symbol of b

j

(x;D

x

).

Then by Theorem 1.2

a(x;D

x

)b

j

(x;D

x

) = (a#

[�℄�j

b

j

)(x;D

x

) +R

�

=

[�℄�j

X

k=0

r

(k)

j

(x;D

x

) +R

�

;

where r

(k)

j

(x;D

x

) is a Green operator of order �m� j�k with oe�ients in C

��j�k

.

Moreover, let q

(k)

j

(x; �) denote the interior symbol of r

(k)

j

(x;D

x

). Then

r

(0)

j

(x

0

; 0; �

0

; D

n

) = a

0

(x

0

; 0; �

0

; D

n

)b

j

(x

0

; 0; �

0

; D

n

); q

(0)

j

(x; �) = p

0

(x; �)q

j

(x; �):

Hene sorting the terms by their order a(x;D

x

)b(x;D

x

) =

P

[�℄

l=0

P

l

k=0

r

(k)

l�k

(x;D

x

) +

R

�

: In order to obtain a(x;D

x

)b(x;D

x

) = I + R

�

, we determine b

j

(x;D

x

), j � 1,

suessively by

b

0

(x

0

; 0; �

0

; D

n

) = a

0

(x

0

; 0; �

0

; D

n

)

�1

;

b

l

(x

0

; 0; �

0

; D

n

) = �a

0

(x

0

; 0; �

0

; D

n

)

�1

l

X

k=1

r

(k)

l�k

(x

0

; 0; �

0

; D

n

); l = 1; : : : ; [�℄

for j�

0

j � 1 and q

0

(x; �) = p

0

(x; �), q

l

(x; �) = �p(x; �)

�1

P

l

k=0

q

(k)

l�k

(x; �); l = 1; : : : ; [�℄;

for j�j � 1.
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