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Abstract

In this contribution we establish a calculus of pseudodifferential boundary
value problems with Hélder continuous coefficients. It is a generalization of the
calculus of pseudodifferential boundary value problems introduced by Boutet
de Monvel. We discuss their mapping properties in Bessel potential and certain
Besov spaces. Although having non-smooth coefficients and the operator classes
being not closed under composition, we will prove that the composition of Green
operators ai(z, Dg)as(z, Dy) coincides with a Green operator a(z, D;) up to
order my + mg — 0, where 6 € (0, 72) is arbitrary, a;(z,§) is in C (R") w.r.t.
x, and m; is the order of a;(x, D;), 7 = 1,2. Moreover, a(x,D,) is obtained
by the asymptotic expansion formula of the smooth coefficient case leaving out
all terms of order less than mji + mo — 6. This result is used to construct a
parametrix of a uniformly elliptic Green operator a(z, D).

Key words: Pseudodifferential boundary value problems, non-smooth pseudodifferential
operators
AMS-Classification: 35S 15, 35 J 55

1 Introduction

In [5] L. Boutet de Monvel introduced an operator class modeling differential and
pseudodifferential boundary problems, which is closed under composition and can be
used to construct parametrices to elliptic operators. It gave great impact in many
directions. This calculus and further developed calculi, cf. e.g. Grubb [12], have
been used in index theory, cf. [5], Rempel and Schulze [22], in the theory of Navier-
Stokes equations, cf. Grubb and Solonnikov [16, 13|, in geometrical problems as trace
expansions, cf. e.g. Grubb and Schrohe [15], and others, cf. [12].

Although the original calculus of Boutet de Monvel was generalized in many
directions, it is usually assumed that the symbols of the operators are smooth in
the space variable x. In order to treat boundary value problems in domains with
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non-smooth boundary or apply the theory to quasi-linear equations, it is necessary
to allow symbols with limited smoothness in the space variable z.

In the present contribution we generalize the so-called Green operators in [5]
to operators with symbols which are Holder continuous in x — also called Green
operator with “Holder continuous coefficients”. We discuss their mapping properties
and behavior under composition. The present work extends and improves the results
of [1, 2], where some partial results in this direction were proved and applied to
show the existence of a bounded H*-calculus of the Stokes operator in so-called
asymptotically flat layers with C'™!'-boundary.

A Green operator in the half-space R? =R"* x (0, 00) is of the form

S(R™)N CO(R™ )N’
= p(l‘, D$)+ + g(l‘, Dfl?) k(anI) . X+ X+
a(wx)_< H(z, Da) s(', D) ) S(R1)M - co(Rn—l)Mf(l'l)

Here p(x, D,)+ = rp(x, D,)e" is a truncated pseudodifferential operator, k(z, D)
is a Poisson operator (also called potential operator), t(z', D,) is a trace operator,
g(x, D;) is a singular Green operator, and s(z', D) is a pseudodifferential operator
on R"! cf. [5], [22], or [12] for the definition in the smooth coefficient case. The
precise definitions in the Holder continuous case are given below. They are based
on the definition of the class C7STH(R" x R*), cf. Kumano-Go and Nagase [19] or
Taylor [25], i.e.,

p € CTSTH(R" x R") < [10¢p(-, ) |lcrmny < Ca(1+1€))™ 1 for all o € Ny,

where C(R") is the space of all [7]-times differentiable functions with bounded and
Holder continuous [7]-th derivatives of degree 7 — [1].

Having non-smooth coefficients there are several new aspects: First of all, the
mapping properties in Bessel potential and Besov spaces are of course limited by the
smoothness of the coefficients. It is well-known that, if p € C7STH(R" x R*), the
associated pseudodifferential operator p(z, D,) is a bounded operator

p(z,Dy): HI"™(R") — H(R") if |s| <,

cf. e.g. [25, Proposition 2.1.D|. Using the latter mapping properties in a vector-valued
variant, we will prove our first main result:

THEOREM 1.1 Let a(z, D,) be a Green operator of order m € R, class r € Z,
with C7-reqularity in x. Then for every s € R

1 1
s+m—= 5—=
+ q q

ala, Dy)s Hy™ (R x B (R <5 Hy(®)Y x By (R

provided that |s| < T if N' # 0, |8—$|<7‘7;fM’7é0,8+m>7‘—$ if N #£0, and
m € Z if p(x, D,) # 0.



Considering compositions of pseudodifferential or Green operators with non-smooth
coefficients the situation is more complicated. The class of pseudodifferential opera-
tors with non-smooth coefficients is of course not closed under composition since e.g.
[0, p(7, Dy)] = (Oy;p)(2, D). In particular the statement that p;(z, Dy)p (v, Dy) =
(p1#tp2)(z, D) where p;#ps has the asymptotic expansion

O (2,€) D2, €) (12

Pi#p2(,§) ~ Z

aeNy

cannot hold if p, is not smooth in x. However it will be shown under certain restric-
tions on m; that, if p; € C7S™ (R* x R"), j =1,2, for any 0 € (0,73), 0 € N,

pl(anw)pZ(anw) - Z 50P(8§‘p1(x,§)Dgp2(JU,f)) + R97

la]<@

where Ry is of order m; + ms — # in the sense of the mapping properties in Bessel
potential and Besov spaces, cf. Theorem 3.6 below. Hence in some sense the asymp-
totic expansion is valid as long as D%po(z, ) exists and is Holder continuous w.r.t
x.

The corresponding statement for compositions of Green operators is as follows:

THEOREM 1.2 Let aj(z,D,), j = 1,2, be Green operators of order m; € R, class
rj € Z, and coefficients in C"i, 7; > 0, j = 1,2, and let p;, g;, kj, t;, s, Nj, My, N7, M;
denote the corresponding operators and parameters due to (1.1). Moreover, let Nj =
Ny, My = M, and assume that the coefficients of g» and ko are independent of x,, and
that m; € Z if pj # 0. Then for every 6 € (0,72), § € N, there is a Green operator
(ar#az)(x, Dy) of order my + my, class max(ry 4+ ma,rs), and with coefficients in
C7, 7 :=min(r, 7o — [0]), such that

e (R ) (R
ar(x, Dy)as(x, Dy)—(a1#9102) (2, Dy) : - _?_0 N B X
BZ mitmz2—y (Rn—l)Mg B; q (Rnfl)M{

15 a bounded linear mapping if the following conditions are satisfies:

1. ]s|<1,s—0>—m if N #0, s—% <7',8—$—0>—7’2 if M| #0,

2. —Ty+0<s+m <7y ifN17é06md—7'2+9<3+m1_%<72 if My # 0,

3. 8+m1>T1—$Z-fN17£0 and8+m1+m2—9>r2—$ifN27é0.

More precisely,

Dx JDx k ,Dm
(al#[g]a2)(x7DI) B ( pl#[e]pZ(ij(xly)ﬁ_x;_ g(x ) S(EL‘ZI;‘, Dx')) > )

where
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L. g(.’L‘, Dx) = (pl#l[g].QZ)(xa Dx) + (91#[9]192)(33, Dx) + (91#19]92)(1‘; Dx)
+(k1#{gt2) (z, D) — lo(p1, p2) (2, Ds),

2. t(a!, Da) = (ope) (@ Du) + (6 02) (@', D) + (518 t2) (@, Do),
3. k(xa va) = (pl#[ﬁ]]@)(xa Dx) + (gl#l[g]l@)(xa Dx) + (kl#l[g]SZ)(xa Da:)a
4. s(a', Dy) = (Li# k) (2", D) + (s1#552) (¢, D),

and the terms are defined by (3.5), (4.8), (5.9)-(5.10), and (5.18) below.

Theorem 1.2 will be used to construct an inverse of a uniformly elliptic Green
operator a(z, D,) up to order —f, where 0 < # < 7 and 7 > 0 is the regularity of the
coefficients of a(x, D).

The structure of the article is as follows: In Section 2 we summarize the neces-
sary preliminaries on vector-valued and weighted function spaces. Then in Section 3
we consider the mapping properties and the compositions of operator-valued pseu-
dodifferential operators with Holder continuous coefficients, which will be the basis
for the further discussion since Green operators can be considered as operator-valued
pseudodifferential operators. The main results of this contributions are proved in Sec-
tion 4 and Section 5. In Section 4, the Poisson, trace, and singular Green operators
are defined and the corresponding mapping properties and statements on composi-
tions are proved. Then truncated pseudodifferential operator enter the discussion in
Section 5, where first of all a transmission condition for non-smooth pseudodifferen-
tial operators is given. Finally, Section 6 is devoted to the parametrix construction
in the case of non-smooth coefficient.

Acknowledgments: The author expresses his gratitude to Gerd Grubb for sev-
eral helpful comments on the manuscript.

2 Preliminaries

2.1 Vector-Valued Besov and Bessel Potential Spaces

First of all, N denotes the set of natural numbers (without 0), Ny = NU {0}, Z the
set, of integers, R the real numbers, and C is the set of complex numbers.

We will keep close to the notation of the monograph [12]. In particular, d,, f =
0;f, j = 1,...,n, denotes the partial derivatives of f: R* — C and D, := —i0,;.
For s € R we define [s] to be the largest integer < s and set [s]; = max{s, 0}.

In the following let X be a Banach space and {2 C R" be a domain. Then

LP(2;X), 1 < p < oo, is defined as the space of strongly measurable functions
f:Q — X with

|ummmw=(AWﬂw%w)p<w
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and L>(; X) is the space of all strongly measurable and essentially bounded func-
tions. Moreover, L?(§2) denotes the standard Lebesgue space and || - ||, :== || - || o ()
Similarly, 7(Ny; X), 1 < p < oo, denotes the X-valued variant of ¢7(Np).

Furthermore, let S(R™; X') be the space of smooth rapidly decreasing function
[+ R - X and let S(R*) := S(R",C). Moreover, §'(R"; X) := L(S(R"), X)
denotes the space of tempered X-valued distributions, cf. e.g. Amann [3]. As in the
scalar case the Fourier transformation is an isomorphism F: S(R*; X) — S(R"; X)
and F: 8'(R*; X) — S'(R*; X), cf |3]. Moreover, if p: R* — C is a smooth function
such that p and all its derivatives are of at most polynomial growth, then

p(Do)f =F ') f],  f=7FIf],
is a bounded operator on S(R™; X) and &'(R"; X). In particular let (€) := (14 |€]?)2
and let ¢;(§), j € Ny, be a partition of unity on R* with supp ¢y C {|¢| < 2} and
supp @; C {2771 < [¢| <271} for j €N,
Then the X-valued variants of the Bessel potential and Besov spaces of order
s € R are defined as

Hy(R"; X) :={f € S'(R*; X):(D,)°f € IP(R*; X)} if 1 <p< oo,

B, (R"; X) := {f € §'(R"; X) : (299;(Dx) f)jen, € £'(No; L*(R"; X))},
where 1 < p,q < co. Moreover, we will use the abbreviations Bj(R"; X) :=
B (R*; X), By(R") := B;(R*;C), and H;(R") := H,(R"; C).

As in the scalar case, the following properties are simple consequences of the
definition and the fact that ¢;(D,)(€)*f = k; * f with ||k;|| L1 gn) < C2%, j € Ny, cf.
Stein |24, Chapter VI, Section 5.3

B, (R X)C B (R";X) for 1 <qy <gp <o0,1<p<oo
B, (R"; X) C Hy(R"; X) C B, (R"; X) for1<p< oo, (2.1)
B;E(R”;X)QB;J(R”;X) for 1 <p<oo,e >0,
where s € R. In particular,
B;*g(R";X) C Hy(R*; X) C By *(R"; X) for1<p<oo,e>0. (2.2)

For interpolation properties of the scalar Besov and Bessel potential spaces we refer
to Bergh and Lofstrom [4] and Triebel [26]. As in the latter monographs we will
denote the complex and real interpolation functor by (.,.)j, (.,.)s,, respectively.

Lemma 2.1 Let 1 < p,qo,q1,9 < 00, S,51 € R, 59 # 51, 0 € (0,1), X be a Banach
space, and let H be a Hilbert space. Then

(B (R X), By, (R*; X))o = By o (R"; X)),

P90 p,q1
(HSO(]R”-X) H;I(R";X))g,q:B;,q(R";X) if 1 < p< oo,
(B,%,(R"; X), B)L(R"; X)) = B, ,(R*; X) if 1 <p< oo,
(H o( ”, H), HSI(R",H))[H} = H;(R";H) if 1 <p< oo,

where s = (1 — 6)sg + 0s;.
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Proof: For the first and third interpolation spaces we refer to Amann [3, Section
5| and the references given there. The second statement is a consequence of the first
and (2.1). For the last statement, we note that the Mikhlin multiplier theorem holds
for LP(R™; H) if 1 < p < oo. Hence the standard proof remains valid in the H-valued
case, cf. [4]. |

Furthermore, we note that

F(HS(RY; Xo), H3(R"; X)) = H3(R"; F(Xo,X,)) for1<p< oo

P
F(B;(R”;Xg),B;(R”;Xl)) = B;(R”;F(Xo,Xl)) for 1 <p< oo

if F(.,.) = () or F(.,.) = (., .)eq- Since (D;)° is by definition an isomorphism
from H;(R"; X;) onto LP(R"; X;), the statement for the Bessel potential spaces is a
consequence of the statement for the Lebesgue spaces, cf. Triebel [26, Section 1.18.4].
Moreover, as in the scalar case f — (¢;(Ds)f)jen, is a retraction from By (R"; Xy),
k = 0,1, into £9(No; LP(R"; X)) with coretraction (f;)jen, — D729 277 ;(Ds) fj,
where ¥;(D,) := 31, ¢j+r(D,). Hence the statement for B,(R"; X) is a conse-
quence of the interpolation properties of vector-valued 7(Ny) and LP-spaces, cf. |26,
Section 1.18.1/4].
Finally, if X is reflexive, s € R, and 1 < p, ¢ < oo, then

(B} (R X)) = B, (R X)), (Hy(R' X)) = Hy (R X),

cf. [3] for the Besov spaces and Edwards [6, 8.20.5] for (LP(R"; X))’ = LY (R*; X'),
which implies the statement for H;(R"; X).

2.2 Weighted Function Spaces

In the following we will use a measurable function w: R* — (0, c0) to define weighted
Lebesgue, Besov-, and Bessel potential spaces.

First of all, if M C R™ is a non-empty measurable set, LP(M,w), 1 < p < oo,
denotes the vector space of all measurable functions f: M — C such that

| fllze(n w) == (/ |f(x)|pw(az)da;> < 0.
M
Since f — fw% is an isometric isomorphism from LP(M,w) onto LP (M),

(LP(M,w)) = ¥ (M,w"),  W'(z):=w(x) 7, (2.3)

if 1 < p < oo by the usual identification of functions with functionals. Moreover, we
note that

(Lp(Rn=w0)7 Lp(anwl))a,p = (Lp(Rn=w0)7 Lp(anwl))[o] = Lp(anw)
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where w(r) = wo(r) wi(z)?, 0 < @ < 1, and 1 < p < oo, cf. [4, Theorem
5.4.1/5.5.3|.

In order to get continuity of classical singular integral operators on LP(R",w) for
1 < p < o0 a necessary and sufficient condition is that w is in the Muckenhoupt class

Ay, ie.,

P
/

1 1 _2 P
sgp@/q)w(x)dx (@/QW(QJ) Pd:v> < 00,

where the supremum is taken with respect to all cubes @ C R, cf. [24, Chapter V].
In the case that w(z) = |2,|%, it is an elementary calculation that |z,|°? € A, if and
only if —% <0< z%'

IfweAd),1<p<oo,and s € R, then we define the weighted Bessel potential
space as

Hy(R",w) = {u € S'(R") : (Dy)*u € LP(R",w)}

normed by |[(Dz)® - ||zr(gnw). Using the variant of the Mikhlin multiplier theorem
for weighted LP-spaces when w € A, cf. Garcia-Cuerva and Rubio de Francia [8,
Chapter IV, Theorem 3.9], one can prove in the same way as for the standard Bessel
potential spaces that

H'R", w) = W"R",w) :={u € LF(R",w) : Dyu € LP(R",w) for [a] <m} (2.4)
for m € Ny and that

(Hy(R", w), H' (R, w)) g = Hy(R",w), 5= (1—0)so+ 0s1, (2.5)
for all sg,s1 € R, 1 < p < o0, and w € A, cf. Frohlich |7, Lemma 8.1/Satz 8.3].

Moreover, since (D,)° is an isomorphism from H;(R",w) onto LP(R",w) and
because of (2.3),

(H,(R",w)) = H,*(R", "), W'(r) =w(x) ». (2.6)

If w € A,, the weighted Bessel potential spaces on R :=R" ' x (0,00) are defined
as

Hy(R},w) = r"Hj(R";w),
Hp (R}, w) = {u€ Hj(R",w):suppu C R, },

where r* f denotes the restriction of a distribution f to R} . As usual
H' (R, w) = WRY,w) == {u € L’(R} ,w) : Dyu € LP(R},w) for [a| < m},

cf. |7, Section 8.2.2|. Moreover, because of (2.6) and the definitions,

H(R) W) = Hyp (B o), w'(a) = w(z)”
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In particular we will use HS(R+ |xn|p5) and H (R, |z,[") also denoted by HS(Ry,a2’),
HEo(Ry,a2?), resp., with —5 <6< 17 Slnce (1 +i&,)" € Sio(R x R) is a classical
pseudodifferential symbol and because of the continuity of pseudodifferential opera-
tors in weighted Bessel potential spaces, cf. Marschall [20],

(1+iDy)" s HyP (R, |2 |"7) = H3(R, |2,]7).

By the Paley-Wiener theorem, supp(1 +iD,) f C R, if supp f € R,. Hence
(1 +ZDn)t H;Bt( 7xfzp) - H;;O(R+,[L‘ip) (27)
(1 - iDn)t: H;+t(R+7xip) - H;(RwLaxip)

are isomorphisms by (2.6) and ((1 +:D,)") = (1 —iD,)™"
As a consequence we obtain the following generalization of Grubb and Kokholm [14,
Theorem 1.8]:

Lemma 2.2 Let s € R. If1 < q < 2, —% < 0 < %—% < 0y < %, and 0 =
(% — % — 51)/(62 — (51), then

(H3(Ry,a3), Hy (R 732))og © Hy(Ry), (2.9)

(Hso" (R ), H3g (Ry))og 2 Hyp(Ry). (2.10)

Moreover, if 2 < q < 00, s € R, _%<61<%_%<52<%, and@z(%—%—

51)/(62 — (51), then
(Hso(Ry, 2, 2), Hyg(Ry,7,%))0g 2 Hyp(Ry), (2.11)
(H5+51(R+),H5+52(R+))9,q c Hj[R,). (2.12)

Proof: The lemma was proved by Grubb and Kokholm [14, Theorem 1.8] for the

case s = 0, where we note that ijgf (R.) = Hy”(R,) since |6;] < 5. Then the

general case is a consequence of (2.7)-(2.8). |

Finally, we note that

Xp(RY) = Xp (R LP(Ry ) N LP(R™ 5 X (R, ) (2.13)
X, '(RY) = X, (R LP(Ry)) + LP(R 1 X, *(RL)) (2.14)
where X = H or X = B and s > 0, cf. e.g. Grubb [11, (A.23)| and the references

given there.
If 9 >0, s >0, we define the weighted Besov space

By, a30) = {f € WEHRL, 230) + £l gy g atey < o0}
(s— N dh
0 ity 3= I+ O / I NALD o T

|a| <k



where k,[l € Ny such that £ < s and [ > s — k. Then
By (R, apt) = (LURY, apt), Wi (RE ) ). (2.15)
where s = 0m, 0 < 0 <1, m € N, cf. |26, Theorem 3.3.1|. Finally, we define
B (R:, 2,%0) = (By (R, 2)7))',

Note that the definition of this weighted Besov space for 6 = 0 is consistent with the
Besov spaces defined by

By(R}) :=r"By(R"),  Byy(R;)={f€Bj(R"):suppfCR.}, seR

and that B;(R}) = By (R") if and only if —% <s < é

3 Operator-Valued Pseudodifferential Operators with
Non-Smooth Coefficients
In the following we will use operator-valued pseudodifferential operators with coeffi-

cients in the Holder space C7(R™) of all functions f: R* — C with Hélder continuous
derivatives 0% f of degree 7 — [7] for all || < [7] normed by

[ fller@ny = Z 10% floo + Z su (x) — aO‘f( )|

le|<[7] la|= ‘T#y |Ji B y|T 7

Here [7] denotes the largest integer not larger than 7. The vector-valued variant
CT(R"; X), where X is a Banach space, is defined in an obvious way.
In the following we will often use that

CT(R") < C™" (R*"!; C™ (R)) for 0 <7’ < 7. (3.1)

Definition 3.1 Let X be a Banach space. The symbol space C7ST%(R* x R*; X),
>0, €[0,1], m € R, is the set of all functions p: R* x R* — X that are smooth
with respect to & and are in C™ with respect to x satisfying the estimates

1DE DIp(, &) |z=enix) < Capl€)™ 1P I DEP(, €)ller@nixy < Ca (€)™
for all « € Ny and || < [7].

For short we also write C7S7%(X) or even C7S7% if X is known from the con-
text. Obviously, (),.,C" %(R" x R"; X) c01nc1des with the usual Hérmander class
STs(R* x R"; X) in the vector-valued Variant.

Remark 3.2 Note that if p € C7S™(R" x R"; Xg) N CTS™ (R x R"; X,) and
(Xo, X1) is an interpolation couple, then p € C7ST%(R* xR"; X) with X = (X, X1)s,
or X = (Xo, X1)p, 0 € (0,1),1 < g <oo,and m = (1—6)mg+ 0m,.
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In particular we are interested in the case § = 0. But we need the classes
C7STs with 6 > 0 when working with the technique called symbol smoothing: If
p € CTSTH(R* x R*; X), 6 € [0,1), then for every v € (d,1) there is a decomposition
p = p? + p® with

p* e SR xR X),  pe TSP OTT(RY < R X), (3.2)

cf. [25, Equation (1.3.21)]. Moreover, if 6 = 0, we have
0ip* € 5P (R* x R*; X) for |8] < T, (3.3)
o%p* e ST IVPITI(RY x R X)) for 8] > 7 (3.4)

cf. Taylor |25, Proposition 1.3.D]. Note that the proofs in [25] are formulated for
scalar symbols only, but they still hold in the X-valued setting since they are based
on elementary estimates.

In the case X = £(Xp, X;) is the space of all bounded linear operators A: Xy —
X, for some Banach spaces X, and X; we define the pseudodifferential operator of
a symbol p € C7ST{(R" x R*; L(Xy, X)) as

p(x, Dy)u = OP(p)u = / e Ep(x, £)a(€)dé  for u € S(R™; Xy),
where d€ := (27)7"d€. Moreover, OP'(p) and OP,,(p) will denote the pseudodifferen-
tial operator of a symbol depending on ', & € R* !, 2,,&, € R, respectively, where
we use the decomposition x = (2', x,,), £ = (£/,&,) for z,£ € R™.

Note that, if p € ST%(R* x R*; X), § € [0,1), the well-known statements on
composition, adjoints, and asymptotic expansion of pseudodifferential operators with
scalar symbols directly carry over to the present operator valued setting, cf. e.g.
Kumano-Go [18].

The proofs of the mapping properties of Green operators with non-smooth coef-
ficients are based on the following two theorems.

THEOREM 3.3 Let7 > 0,1 < g < o0, m €R, and let Hy, H, be Hilbert spaces.
Ifp € CTSTH(R" xR*; L(Hy, Hy)), then p(x, D) extends to a bounded linear operator

p(x,Dy): Hy'™(R"; Hy) — H,(R"; Hy) for all |s| <.

Proof: Theorem 3.3 is an operator-valued variant of |25, Proposition 2.1.D|. As
indicated in |1, Appendix]| the proof given in [25] directly carries over to the present
setting by using the Mikhlin multiplier theorem in the £(H)-valued version, where
it is essential that H is a Hilbert space. [ |

It is known that in general p(z, D) does not have to be a bounded operator
from H;H™(R™; Xo) to H7(R"; X,) if X and X, are merely Banach spaces, see [14,
Remark 1.7| for a counterexample. But in the case of vector-valued Besov spaces the
situation is easier:
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THEOREM 3.4 Let 7 > 0,0< p < 1,1 <gq,r <oo, m e R, and let Xy, X;
be Banach spaces. If p € CTST",(R" x R"; L(Xy, X1)), then p(x, D,) extends to a
bounded linear operator

p(x,Dy): B,™(R"; Xo) — B, (R*; X1)  forall —7(1—p) <s<T.

Proof: Once the case p = 1 is proved, the case p € [0, 1) is easily obtained by the
same arguments as in [25, Section 2.1|.

The case Xo = X; = C and ¢ = r = oo is proved in |25, Theorem 2.1.A]. The
proof can be adapted to our situation as follows: For the case ¢,r € [1,00] we just
have to replace |25, Lemma 2.1.H| with [17, Theorem 2.4| and have to use |17, Lemma
2.5| instead of |25, Equation (2.1.23)]. Then the proof in the present vector-valued
case is literally the same as in the scalar case since all inequalities are obtained by
direct (and in principle elementary) estimates. In particular the Mikhlin multiplier
theorem is not needed in contrary to the proof for the Bessel potential spaces. [ |

The following variant of the latter theorem will be useful in order to analyze some
remainder terms in the composition of Green operators.

Lemma 3.5 Let 7,7' > 0, 1 < ¢,r < 00, and let p € CTSTH(R" x R*; L( Xy, X1)),
m € R. If additionally p € CT,STO_‘Q(R” x R"; L(Xo, X1)) for some 0 < 6§ < T, then

p(z,D,): B;;mfé’(R"; Xo) = B, (R*; X))

s a continuous mapping for all —7+60 < s < 7.

Proof: Since 0 < 6 < 7, there is a § € (0,1) such that § = 7. Let p = p* + p°
be the decomposition as described above with v = §. Since p € C’T'S{’,‘O_Q(R" X
R™; £( Xy, X)), p* € ST{G(R” xR"; L( X, X1)). Moreover, because of p € C7 S (R" x
R"; £(Xo, X1)) and = o7, p* € C7S7’(R* x R*; £(X0, X1)). Hence the lemma is
a consequence of Theorem 3.4. [ |

We denote for k € Ny

(P1#4p2) (2, €) = Z éag“pl(x,ﬁ)Dﬁpz(w,ﬁ)- (3.5)

la<k

Moreover, if p; (2, ') are the symbols of operator-valued pseudodifferential operators
on R*™ py#,py is defined as above with (z,&, «) replaced by (2/,&',a) € R*™! x
R*! x Nj '. In the following we will often use the abbreviation

Re(pbm) = Pl(l"; Da:)P2(!L"; Da:) - (Pl#[a}m)(x, Da:)

and Rj)(py, p2) for operators on R*~! where 6 € (0, 7).
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The following theorem shows that Ry is of order m +ms — 6 in the sense of map-
ping properties in Besov and Bessel potential spaces, where 6 € (0, 7y) is arbitrary.
This theorem is the basis for all statements on compositions of Green operators with
non-smooth coefficients.

THEOREM 3.6 Let 1 < p,q < o0, my,my € R, 7,75 > 0, § € (0,72), T :=
min(ry, 7o — [0]), and let p; € C™ ST (R™ x R*; L(X,, Xo)) and p, € C™ ST (R* x
R™; £L(Xo, X1)), where Xy, X1, Xo are Banach spaces. Then for every s € R such that
|s| <7, s=0>—7y, and -+ 0 < s+my <1y

pi(x, Do)pa(x, Dy) — pi#tgpa(z, D) s Byt™ ™= (R"; Xo) — B (R"; X5).

are bounded operators (defined by extension from S(R™; Xy)). The analogous state-
ment holds for Bessel potential spaces instead of Besov spaces if 1 < p < oo and
0 ¢ N.

Proof: First of all, if p; is chosen according to the assumptions of the theorem and
p2 € ST5 (R* xR™; L(Xo, X1)), 0 < 6 < 1, is a smooth symbol, then there is a symbol
pL#ED2 € C’“S{’fﬁm?‘ (R™ x R™; £(Xo, X)) such that

p1(z, Dy)pa(w, Dy) f = pr#tpe(z, Dy) f (3.6)

for all f € S(R"; X;y) and the asymptotic expansion (1.2) holds. The latter statement
can be proved by a simple modification of the standard proof for compositions of
smooth symbols, cf. e.g. [18, Chapter 2, Theorem 1.7|. The crucial fact is that only
smoothness of p; in & € R” and smoothness of py in x are needed in order to make
the proof using oscillatory integrals work.

Let § := £. Then by (3.2)-(3.4) pa(, &) = P} (2, €) +ph(x, &) with ph € crSyE?
and

9ept SR x R"; £(Xo, X1)) if |a| < [r],
oept e sfj;*‘“ﬁ*'““(w x R L(Xo, X1)) i |a| > [r].

Hence we get

pl(l‘, DCL‘)pQ(‘T7 D:I:) - pl(x, Dw)p#(xa Dw) —|—p1(l‘, D:L‘)pg(xa DCL‘))

where p(x, Dy)ph(x, Dy): Bstmitm=(R*; X,) — BS (R"; X1) is a bounded opera-
tor since —m(l —0) = —To + 0 < s+my <7y and [s| < 7.

Moreover, p;(z, &) = p¥ (z,€) + p(x, €) with p¥ € STy and p} € C’“Sffg_‘sn. Be-
cause of (3.6), p” (z, D,)p¥ (x, D,) = p#(x, D,) and p’(z, D,)p¥ (z, D,) = p(x, D)
with

PP €)Y O DR, E), w6~ Y (e, DI (5, 6),

aeNg aeNg



13

where
O¢ Y (v, €)Depf (¢,€) € CT ST VTR X RY £( X, X))
01} (@, ) Dy (w,€) € CmST T ITIIR R X R £(Xo, X))
if |a| > [#]. Thus, since (1 —0)|a| > 0,
1
i OpF (,6) = D — 08 (@, Dip (2,) + 1% (w,€) +1'(x,€)
lal<[o]
with 7% € Sfng“mZ*a and r* € C™ Sﬁﬁmref‘sﬁ. Hence
r’(z, Dy): Btm™ ™ (R Xo) — Byt (R*; Xs) if =7 +0m <s+0m <7
and therefore
r#(x, Dy) +r’(x, Dy): Byi™ ™R Xo) — BS (R*; X,) if |s| < 7.
Moreover, if |a| < [6],
g1 (@, D3y (w,€) =
8?]91(.%‘, f)DgPZ(xa 5) - 8?1)31#(‘%7 f)Dgpg(l‘, 5) - 8?19?(1‘7 f)Dg‘pg(:E, g)a

where ag‘pfﬁDg‘pg € C’TZ—|O“ST§+m2_(1_6)|a‘_0 and 0gp} DI} € CTST§+m2*975“. Hence

T

OP(dgp} Dap): Bitmtm=0(R"; Xo) — Bt =)lel(R"; X,)

if —(m —|a])(1—0) <s+(1—-0)|a] <7 —|al. Thus

OP(9gp} Deph): Bitmitm=0(R™; X,) — BS (R"; X)

x

for all |s| < 7. Moreover,
OP(0¢pi Dyph): By ™% (R"; Xo) — By -™ (R"; Xy)
if —7 4+ 70 < s+ dmn <7 and therefore

OP(0gp}Dyp): Byt ~"(R*; Xo) — B; ,(R*; X3)

p.q

for |s| < 7. Combining all terms, we have proved the theorem for the case of Besov
spaces. Because of (2.2) and since 6 € (0,7) is arbitrary, the statement for Bessel
potential spaces is a consequence of the one for Besov spaces. [ |

Remark 3.7 In the case of scalar Bessel potential spaces Marschall proved a similar
theorem in the context of non-smooth symbols of the class S7%, cf. [21, Theorem
3.5]. It covers the case Xg = X; =C, # <1, and 7y = 75 of the latter theorem.
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4 Poisson Operators, Trace Operators, and Singular
Green Operators

We assume that the reader is familiar with the basic definitions of the Boutet de
Monvel calculus, cf. [5], [12], [22], or [23]. Recall that S(R,) is the space of
smooth rapidly decreasing functions on R,. Moreover, since S(R,) is a nuclear
space, S(RL)®S(R,) = S(R?H), where Ri+ =R, x R;.

We start with the definition of the symbol-kernels of the non-smooth Poisson,
trace, and singular Green operators.

Definition 4.1 The space CTS{{O(RN x R S[R,)), d€R, n,N €N, consists of
all functions f(x, €, yy), which are smooth in (£, y,) € R* ! x Ry, are in CT(RY)
with respect to x, and satisfy

4 r 1 |
||y7llagl/nD(§l’f('7€,7')||C"(RN;L§n(R+)) < Oy (€ytratH-lal (4.1)

foralla e o7 LI € Ny,

Similarly, the space C’TS{{O(RN X R”fl,S(Ri_Jr)), deR, n,N €N, is the space
of all f(a;, & Yny Zn), which are smooth in (£, yn, z,) € R*™1 x Ri+ and which are in
C™(RN) with respect to x such that

||y7]za’yc;z7lzai;D?’f(a 6’7 ')||C"(RN;L2

Yn,zn

(#2,) < Cakp (&ydrimhER I el (g 9)

forall a e Ny 1 kK LT €N,

Now the Poisson operators with non-smooth coefficients are defined in almost the
same way as in the smooth case:

Definition 4.2 Let k = k(z,&,y,) € CTS{ (R x R*1 S(Ry)), d € R. Then we
define the Poisson operator of order d by

k(z, Dp)a = Fgl o k(x, & 2,)a(€)|,  ae SR,

gl)_>xl
where a(§') := Fypela] denotes the partial Fourier transform applied to a.

Remarks 4.3 1. In the following many symbol-kernels k(z,&’,y,) will depend
only on 2/ € R*! as in the standard calculus with smooth coefficient. This
fact will be denoted by k € C7S{g (R x R*1, S(Ry)). But we will also
need these more general symbol-kernels since they occur naturally when con-
sidering k(z, D;)a := rp(x, D,;)d ® a, where p is a pseudodifferential operator
satisfying the transmission condition defined below and dy denotes the delta
distribution w.r.t. z,,.
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2. If k€ S{g (R x R*L, S(Ry)) = (,20 C7 S5 (R x R*™1, S(Ry)) is a smooth
symbol, then l~§(~x,§’,xn) € S(R;) w.r.t x, and one can prove that k(z, D,) =
K'(z', Dy) with k'(a', €', x,) € ST (R xR, S(R)), cf. [12, Remark 2.4.9].
Moreover,

~ 1
Ko € an) ~ D om0 B0, yn)ly, =z, (4.3)

keNy

Of course the latter statement no longer holds if k(z, &', y,) is not smooth in
x,. Nevertheless k(z, D,) can be approximated by an operator k'(z’, D,) with
symbol-kernel derived from (4.3) with £ < 7, c¢f. Theorem 4.11 below.

3. For each fixed z € R" the symbol-kernel ko (€, yn) = k(z,€,y,) belongs to
SEHRTE X R S(Ry)) werit (€, ya). Moreover, let,

A = sup v}, DD F (o, € Dz (€) HHart 1o
o’ &' ERN =L I+ +a|+|B|<m

for f € SR xR, S(Ry)). Then k € C7S{g'(R* x R*!, S(R,)) if and
only if k, € S{g' (R~ x R""!,S(R,)) for each fixed x € R" and

07k, )5 < Com for 5] < [r],
07k (w,.) = 07k(y, )5 Y < Comle =y for |B] =[]

uniformly in z,y € R* and for all m € Ny.

Finally, we note that the boundary symbol operator k(x, &', Dy) is defined as a one-
dimensional operator with symbol-kernel k(z, &', y,,) for fixed (2',¢').
The trace and singular Green operators are defined as follows:

Definition 4.4 Let d € R and let r € Ny.

1. Ift € C7SE (R xR, S(RY)), s; € CTST /(R xRYY), j=0,...,r—1,
then the associated trace operator of order d and class r is defined as

—_

r—

ta', D) f = sj(@", Dot )y f + to(a', Dy) f
j

W D = il { [t f€mian]

Il
o

where f(f’,xn) = Fooself(@n)] and v;f = D fla,—o-

2. If § € CTSINRY x R, S(RL)), by € C7SETHRY x R1,8(R.)) for

j =0,...,7r — 1, then the associated singular Green operator of order d and
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class r is defined as

‘
|
-

g(anw)f = kj(anw)ﬁ)/jf_FgO(anw)fa

J

gO(anw)f = f{';w' |:/0 f]o(az,5',xn,yn)f(§',yn)dyn )

Il
o

where f and vy, f are as above.

Finally, the boundary symbol operators t(z',¢', D,,) and g(x, &', D,,) are defined in
the same way as for the Poisson operator.

Remark 4.5 Let aj(x,&', D,), j = 1,2, be the boundary symbol operator of a Pois-
son, trace, or singular Green operator of order d;, class r;, with coefficients in C.
Using the observation of Remark 4.3.2 it follows from the standard calculus that the
composition a1 (x, &', Dyp)as(2', &', Dy) = a(x, &', D,,) of boundary symbol operators is
again a boundary symbol operator if the composition is well-defined and the coeffi-
cients of ay are independent of x,,. The new boundary symbol operator is of order
dy + dy, class 79, and has coefficients in C™n(71:72)

In order to apply Theorem 3.3 and Theorem 3.6 it is an important fact that
we can consider the Poisson, trace, and singular Green operators as operator-valued
pseudodifferential operators as follows:

Lemma 4.6 Let 1 < ¢ < 0o, d € R, 7 > 0. Moreover, let k € C’TSﬁBl(R”_l X
R S(Ry)), T € CTSL (R I xR* 1 S(R,)), and let § € C7 S5 (R} xR"*l,S(RL)).
Then

k2!, €, D) € €781, T (R x R £(C HE (R, 2))),

Lig ¢ ’
Ha', €&, D) € CSy ot (R x R L(HZ (R, 2777),©)),

g(a',€, D) € CTSIP T VR X R L(H, (R0, ), HY (R 28)

foralls,5’20,0§5<$, and0§5’<$.
Proof: First of all, if f € C7S{ (RY x R""!,S(Ry)), N € Ny, d € R, then (4.1)
implies
3 T d"‘%_l‘H’ n—
yéagl;nf(%flayn) € C"5 (RY x R*™; L*(Ry)),
where the L?(R,)-norm is taken with respect to y,. Moreover, we will use the
elementary interpolation inequalities

1 11
-3 1+

1Flly < Cogllfllo™® 7117 * (44)

14l 1 1
||f||p < Cp,q“qu ! pHxang



17

for all f € S(R;) and 1 < p < ¢ < oo such that %—% < 1. The first one is proved by
using 1 = 1/(1+¢|x,|) +¢e|z,|/(1+£|x,]), applying Holder’s inequality, and choosing
a suitable ¢ > 0. The second inequality is a consequence of Sobolev’s embedding
theorem applied to f(ex) for e = ||f||,/||f'|],-

Therefore we conclude

d+1— ——H—l’

e, f(@" &, yn) €C7S, (RY x R*'; LY(R,)).
Hence ,
3L F(, € ya) € O8I RY xR LRy, )
for § > 0 because of (LY(R, ), LY(Ry,4%))g, = LY(R,,y?), 6 € (0,1). Thus
Fla, €y € CTS T RY x R IR )

forall s > 0 and 0 € [0, %) by (2.4)-(2.5). This implies the statements for the Poisson
and trace boundary symbol operators since k(z/, &', Dy)a = k(z', €, zp)a, a € C, and

t(@, €, D) f = [t yn) f(Yn)dym, [ € S(R,).

In the case of smgular Green symbol-kernels, the symbol-kernel estimates imply
in the same way as before that

nyn am am ( /7€/,xmyn) c 07511,65—5’+m+m’ (Rnfl % Rnfl; Lq(R+; Lq/ (R+)))

Tn [’/n

for all m, m' € Ny and 4,0’ > 0. Hence
102076 D) Loy sty € Comman (EIHmmT

for all m,m' € Ny, a € NJ 1, § € [0, %), and 0" € [0, %), ie.,

g(a', €', D) € CTSIEH T (R X R L(Hog" Ry 07,97), Hy' (Ry ).
for all m,m’ € Ny, § € [0, i,) and ¢' € [0, q). Then interpolation finishes the proof. m

Remark 4.7 Let X$(R;, %) := BS(Ry, 22 ) N H (R, 22) and X §(Ry,2,%) :=

B (R, z,7) + H, 0(]R+ z;%) for s > 0 and XO(R+ a?) = X0Ry,x%) =
Lq(&,x%‘s) Then by (2.15) the latter lemma implies

1y

K€, D) € 0787

t(z', €, D,) € CTSfE e (R x R L(X g (R, 2,7), C€)),

g(m/7€/, Dn) c CTSi{J(gers’fﬁfé’ (Rnfl x Rnfl;ﬁ(qu;O (R+,an6’),X;’ (R+7x;116’)))

(R xR L(C X, Ry, 2))),

for all s, >0, ¢ € [0, i,) and 0’ € |0, q).
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THEOREM 4.8 Letk € C7S{; (R xR, S(Ry)), £ € CTS¢(RIxR™, S(Ry)),
and let § € C’TSﬁBl(R”_l X R”_l,S(Ri+)), deR, 7>0. Then for every 1 < q < oo

ko', Dy): By (R o HARY) if |s| < 7,
o1 1 1
t(a',Dy): HIP(RY) — By “(R*)  if [s—=| <7 andd+s> i
1
g(2', Dy,): Hg+s(Ri) — H;(R?) if|s| <7 andd+s>——
q

are continuous operators.
Proof: By Lemma 4.6 and Theorem 3.3,

d+s+s'—

k(2! Dy): HY T (R o g R H (R 02))

g(.l“ 7D:v): H;i+s+s’+s”7676’ (Rnfl;H;;g”( ,33;26)) N H;(Rnfl; Hés’ (&,:L‘igl))
if |s| < 7 and
ps— _ s—s' ———(5 n—
t(a', D) Hy ™ (R Hyg (Ry, @, %)) — Hy (R* )

if ‘s—s”— % —(5‘ < 7 forall §,s" > 0, and 0 < 9,0 < % Hence using (2.9) if
l<g<2and (2.12)if 2 < g < 0,

B, Dy): By RN (R HY (R,)
for all |s| < 7 and s’ > 0 which implies the statement for k(2', D,) due to (2.13)-
(2.14). Similarly, using (2.10) if 1 < ¢ <2 and (2.11) if 2 < ¢ < o0,

m_1

R

t(a', Dy): HiP (R Hog' (Ry)) — By

for all s € R, s” > 0 with |s — s" — %| < 7. Because of H;gll(&) = H,*"(R})
if 0 < 5" < % and (2.13)-(2.14), the statement for t(z', D,) is proved. Finally, if

1<g¢g<2,
g(x',Dx)i H;l+s+s’+s”(Rn—1;H2—7§”—6(R+)) - Hs(Rn 1, Hs (R-F; 7216))
for s',s" > 0,0 <48 < 3, and |s| < 7 and therefore using (2.9)-(2.10) yields

g(a’, D) Hy (R Hog" (R ) — H (R Hy (Ry)).

q;

If 2 < g < oo, the latter mapping property is proved with the aid of (2.11)-(2.12) in
the same way. Because of (2.13)-(2.14), also the last statement is proved. |

The following lemma is the fundamental result on z,-dependent Poisson and
singular Green symbol-kernels.
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Lemma 4.9 Let k(z, £, y,) € CTST (R x R S(Ry)), m € R, with k|y,—0 = 0
and let §(x,&',yn, 2n) € CTST 1R X R”_l,S(Ri+)) with §ly,—0 = 0. Then

+s

k(2! 0, €, Dy) €CT7 ST T R X R £(C, HE(R,)))

NC7S1, (R” Px R L(C LY(Ry))),
Lysts’'—0-6

g(a' 2n, &', Dy) €CTT 510 ! (R*™" x R' L(Hyg (Ry, 2,%0), Hy (Ry)))
+s -0 _ n— —s _
NCTSyy (R x R"™ L(Hyg Ry, 2,°), LY(Ry)))
forall® € [0,1) with <7, 0<s<7 <7,5>0,0¢€ [0,5).

Proof: We can assume that s € (0,1) since the general case can be reduced by

differentiation and interpolation to this case. First of all, for f =k and d = m — 1
the symbol-kernel estimates (4.1) are equivalent to the estimates
||y£zagl/’an’l;:(xaglayn)“C"(Rg;L%) < C'a,z,z'<§'>m_l+l,_|a‘ (4.5)

for all € Ni7*,1,1' € Ny because of (4.4). The latter estimates imply

z’nD(g’ [l%(x’, T, 517 Zn) o /;(xla ynagla Zn)] ‘ < Ca,s,l’|xn - yn|T’Z;S<§I>mis+llila‘ (46)
uniformly in 7,y € R*, ¢ € R*! and for all @ € NJ7', I' € Ny, s > 0, and
0 < 7" <min(1,7).

Claim: Let (2, 2,,£") = Dg‘,l;;(x’,xn,f’,xn). Then

f(O‘) (ZL‘,, Ly 6,) - f(oc) (:I'Ja Yn, 6,)‘ S Ca,s',T' |513n - yn|T” <§,>m_|a‘—5'—7’+7”

uniformly in o', £ € R x,,y, > 0 with |z, —y,| < 1 and for all« € Ny *, s' >0,
where 0 < 7" < 7/ < min(1, 7).
Proof of the claim: It suffices to consider the case 0 < x,, < y,,. Then

’
S
‘rn

a/;(x, é-/, yn) _ Dg‘,l%(a;', Y, 5/, yn) < Ca,s’|xn N yn|7u <€/>m—\a|75'+7’77u (47)

by (4.6) with s = s + 7" — 7"". Moreover,

(ZC g .Tn) D?’]%(‘Taglayn)

< x <|D§/ (l'f ZL"n)|+ |D§, (xf yn)|) < Ca,s’,7'<§,>m_‘a|_s’_71

by (4.6) with s = ' + 7’ and I = 0 since k(z',0, &, y,) = 0. Furthermore,
o3 | Dgk(x, € wn) — DEk(z, € )]

Yn ~ I
< / 10y, k (2, €', 8)|dt < Cop |0 — g (€)=
Tn
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by (4.6) with s = s'+7',I' =1, and y,, = 0. Interpolation of the last two inequalities
yields

:L‘;’|D?/I~€(-’L’, 6,7 -’En) - Dg,];}(l‘, 6’7 yn)| < Ca,s’ T, — yn|7u <§/>m—|a\—s'_7—l+7u.

Combining the latter inequality and (4.7) proves the claim.
Because of (4.4),

e < € (164518011,
? h>0
1 1 , 1 1
< © (I I+ sup 81 llea A1)
>

where A, f(z) = f(z + h) — f(z) and we have used an equivalent norm on B] (R,
due to [26, Theorem 4.4.1]. Hence we conclude

~ 1 o "
”D?’k(x’g,,xn)||Bg,'éo(R+,zn) < Ca’q’T,<€/>m g —lal=r"+1"

Moreover, using (3.1) it can be proved in the same way that

m—%—\oz|—7"+7'”

106 k(@' @n, & 2o (a7 1 ) S Cnar (€)

Finally, let 0 < s < § < 7" and set 7" := s — 0 + 7'. Then s < 7" < 7" and therefore
B (Ry) < H;(Ry) which together with the latter estimate proves

m7%+579

k(a2 2,6, Dy) € C777 S (R™' x R*™ 1 £(C, H:(Ry))).
Moreover, by (4.5),

I DER(e, & onller vz < Cautt)™

for @ € Nj ™', 1 € Ny, which implies k(z, €', D,)) € C7S; o * (R xR* 1 £(C, LU(R,)))
due to (4.4).

Using the arguments of Lemma 4.6, the proof above can be easily modified to
prove the statement for g(z, &', D,,). [ ]

Because of k(x, &, y,) = k(2',0,€, yp) + kr(2, €, yp), where ky (2, €, yn) |z, =0 = 0,
the latter lemma, Lemma 4.6, and real interpolation imply:

Corollary 4.10 Let k € CTS7 ' (R x R*L, S(Ry)) and let § € CTST5 (R x
]R”_I,S(R?H)), m € R. Then

! T—7' m—%-l—s n— n— s s
k(l’,g,Dn)EC SI,O (R IXR 1;‘C(C7Hq(R+)ﬂBq(R+)))

g(2,€,D,) €CT TSI T R ) ROV £(H S (R ), HAR,) N BY(R.)))

forall0<s<7' <7, >0.
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Moreover, Lemma 4.9 yields:

THEOREM 4.11 Let k € CS7 (R x R*L, S(Ry)) and let § € CTST (R x
]R”_I,S(R?H)), m € R. Then for every 0 <0 <7,0 ¢ N, and —7 +0 < s <1 — [0]

(0]

Jj stm—L_
B, Da) = > 5200 k)0, D) B, (R > By(RY),
— .
7=0
[0] o 1
g(x,Dy) = > ﬁ(@ing)(x',O,DI): B O(RY) — BIRY) if s+m—0> -7
j=0 7"
Proof: First of all,
o
f@,&,Dy) = Y 2 [)(',0,¢,Dy) + ! f(,¢, Dy)
— !

1=

for f =k, g, where
3 o e
Wk, € C ST SRy, wge € O UST (L S(RY),

and ky|z,—0 = Grls,—0 = 0. Hence it suffices to consider the case [#] = 0.
Now let ¢ € (@,min(1,7)) and let —7 + 6 < s < 7. Then Lemma 4.9 and
Lemma 3.5 yield for s’ > 0

m+57$70’+5

ky(x,D,;): By (R*') = B(R*'; LY(Ry)),
gr(z, Dy): BP0 (R H S (R ) — BI(R LY(R,)),
and if s >0

mts—g—0'+e n— €(TRPN— s
kr(e,Da): By 0 (R = By(R BY(Ry)),

gr (2, Dg): Byt =0 (R Hod (Ry)) — By(R'™ By(Ry ),

where £ > 0 is arbitrary and B;(R"™"; Bi(R,)) < LY(R*"'; BS(R..)). This implies
the statement for k(x, D,) by (2.13)-(2.14) and

g (x, Dy): By tsts =0 (R=1 B(Ry ) — BE(RY)

for s > 0. Hence, if m + s — 6 > 0, the statement for g.(z, D,) is also proved. If
m+s—6 <0, we use (2.15) and (2.2) to obtain

gr(z, Dy): LY(R" By " (Ry)) — B;(R}),

for e > 0 sufficiently small. Since By *(R;) = BmH=(R,) if —g <mts—0 <,
the theorem is proved. [ |
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Remark 4.12 The argument in the last part of the latter proof will be used many
times: In order to show that A: B;_G(R’}r) — X is a bounded operator into a Banach
space X foran s — 60 > —%, it is sufficient to prove

A: BIFTU(RTL Hey (R) = X o BT (R B (RL)) = X

for all &' € (0, %) and some ¢’ > 0.

In the following let

/ / 1 o ! o 1ol
(a1 #.02)(x, &', D,,) = Z Jag, ar(z, &', Dy) DS as(x', €', Dy), (4.8)

l|<k

where k£ € Ny and a;(z,£', D,) denotes the boundary symbol operator of a Poisson,
trace, singular Green operator, or a symbol of a pseudodifferential operator on R*~!.
Moreover, it is assumed that ay is independent of x,. — If as does depend on z,,
Theorem 4.11 can be used to reduce the composition to the latter case. — Finally, let

Ry(ay, az) := a1 (z, Dy)ag(z', Dy) — (a1#.a2) (x, Dy).

The following theorem treats compositions of Poisson, trace, singular Green, and
n — l-dimensional pseudodifferential operators. It is a main step in the proof of
Theorem 1.2 and the fundamental result of this section.

THEOREM 4.13 Let k; € CSy3 (R x R* 1, S(Ry)), #; € COST3(R™" x

— - i — n n— =2 L n— n—
R, S(R,)), g € CHSTET (R x R, S(R,)), 55 € COST3T (R x R,
and ¢ € C2(R"), 7, > 0, m; € R such that ko(z, &, y,) and §2(,&',yn, 2,) are
independent of x,. Moreover, let 0 € (0,73), 0 € N, and set 7 := min(ny, 75 — [0]),
m = mj + Mms.

1. Assume that |s| <71, s —0 > —7y, and =7y + 6 < s +my < 1o. Then

s+m—1-9 - < ron
R;(gl7k2)7R19(317k2): Bq ? (Rn 1) — Bq(R+)7
. 1
Ry(91, 92), By(s1, 92): By (RL) — By(RL) ftm—0>—
. 1
Ry(gr o) By (RY) = By(RY)  if sty — 0>~

2. Assume that |s| <1, s—0> -1y, and =19 +6 < s +my — % < Ty. Then

1
Ry(k1,t2): BST(RY}) — Bi(RY) ifs+m—0> 7

s+m—L1—-9

Ry(k1,s2): B, * (R"') = B3(R?).
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3. Assume that ‘8 — é

<7',8—%—9>—7’2, and —1y + 0 < s+my < 7. Then

s-1 , 1
Ry(t1,g2): BSF™ (RY) = By “(R") if s+m—0> g
s+m—1—0 _ s—1 n—
Ry(t1, ky): B, ¢ (R"™') = B, “(R"™),
s—1 , 1
Rj(ty,c): By7™ °(RY) — By “(R"1) if s+my —0 > 7

4. Assume that ‘5—%‘ <, 3—%—9> —Ta, and—72—|—9<5+m1—% < To.
Then

s—1 1
Rj(s1,t2): BiF™ Y(RY) — By “(R*) if s+m—60> ~7

s+m—1

—0 s—1
Ry(s1,89): By * (R™!) = By “(R*7H).

Proof: First of all let ' € (0, 2) with [¢#'] = [0] sufficiently close to 6 such that all
conditions still hold if # is replaced by 6'.

We first consider the composition ¢, (x, D,)ga(2’, D). The statement concerning
this composition is a consequence of the fact that

Ry(g1,902): BP0 (RY Hg (Ry)) — BS(R™'; LYR,))  and (4.9)
Ry(g1,90): BP0 =R H S (R)) — BE(R 5 Bi(Ry)) ifs>0  (4.10)

for some £ > 0 and arbitrary s’ > 0, cf. Remark 4.12. Because of Remark 4.7 and
Corollary 4.10,

g1(w, €', Dy) €CT TSI (L(L(Ry), By(R.))) N C™STH(L(LY(RL))),
g2(a',€', Do) € CSTEH (L(H,' (Ry), LU(R,))),
where s’ > 0, 0 < s < 7" < 77. Hence (4.9) and (4.10) are consequences of Theo-
rem 3.6.

All other compositions of the operators k;(z, D,), t;j(«', Dy), gj(x, Dy), and s;(z', Dy)
except s1(x', Dy )ka(2', Dy), s1(x', D) go(2', D) and the compositions with ¢(z') are
treated in the same way.

In order to estimate Ry(sy, k2) and Ry(s1, g2), we use that

1
q

k(. Dy) € OS2 (L(C, B (R))) N O ST 4 (L(C, L (R ))),
g2(., D)) € O STt (L(H 8 (Ry), BY(R,))) N C™ST8 (L(H (R, ), LY(Ry))),
51 € CTSTS (L(BA(R,)) N L(L(R,))),

where s > 0, > 0 and apply Theorem 3.6 as before.
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Finally, the statements for g;(z, D,)c(z') and ¢, (z, D;)c(2") are proved using

91(s Dp) € CTTSTRT(L(Heg (Ry ), By (R4))) N CT ST (C(Hyg (Ry), LU(R))),
ta (., n)GC“ST(%“(E(H,;S'(RH,C)), cz') € O™ 87 (L(Hyg (R1))),

where s’ > 0and 0 < s < 7' < 7. [ ]

Remark 4.14 Note that all singular Green and trace operators in the latter theorem
are of class 0. The statements in the general case can be easily obtained from the
latter one using that v;ks(2’, D,) and v;g2(2', D,) are pseudodifferential operators,
Poisson operators of order my + 7, j € Ny, respectively.

The following lemma treats some remainder terms, which will be needed when dis-
cussing compositions with differential operators.

Lemma 4.15 Lett € C™ ST (R xR, S(Ry)), g € CﬂSfjgl(Rann—l,S(R?H)),

m € R, 1,79 >0, and let ¢ € C™(R™) with c¢(2',0) = 0. Then for every 6 € [0,1)
with @ < and s e R with — T +0 <s+m <1y and8+m—0>—$

s—1 _ .
Ha', Dy)e(w): By "(RY) — By *(R") of

s — —‘ <71,
q
9(z, D,)c(z): ByT™ (RY) — Bi(RY) if |s| < .

Proof: First of all, let ' € (6, min(1, 72)) such that s+m—60" > max(—%, —Ty). Be-
cause of (3.1), s+m—60' +e < 1, —0' for ¢ > 0 sufficiently small, and ||cf||Lq(R+ 22y <
lellcer @yl fllg if €la=0 = 0, we have

cw): By TR LOR)) = By R LRy 1)),
Moreover, using Lemma 4.6, Corollary 4.10, and Theorem 3.4,

1

1, Dy): By (R LR ) 5 By (R if s — -

<7'1,

g(z,Dy): Bg+m—9’ (R LY(R,, 20 9)) — B (R LY(R,.)) if |s| < 7,
g(z, Dy): By (R LRy, 207) — Bo(R™ ™ BI(R,)) if0<s<mn

for e > 0 sufficiently small. Hence choosing ¢ > 0 sufficiently small the case s+m—6 >
0 is proved because of (2.13)-(2.14) and (2.2).
Now let —% < s+m—0 < 0and 0 € (#, min(1, 72)) such that —% < s+m—6§ < 0.
Then we use that
BS I I)>

(cfr x| < CNFllpor e, lelleme (ngn e+ g
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for 5" € (0, ,) with s’ < 7 and f,g € C5°(Ry ). Therefore
() LR B, (Ry)) = LR LRy, 2,0 ) 4 B (R, 2,7).

Because of Remark 4.7 and Theorem 3.4, we conclude for 8 = —s—m—60"+¢,e >0
sufficiently small,

s—_1
t(a',D,): BF(R" Y LRy, 2, "+ + B, ¥ (R, ,2,”) — B, “(R")

if‘s—ﬂ < 711 and

g(e, Do)z By (R LURy 2" =19 + B Ry, 2,79)) = By(R'™5 LY(R,)),
g(x, Dy): By (R LRy, 1+9) + B 5'( ,2,"1) = B*(R""'; B (Ry))
if |s| < 7. Therefore by (2.2)
s—1 1
t(a, Dy)e(x): LYR"™; B (R,)) — By “(R™) if |s— —‘ <7,
q

. n—1. ps+m—0 s n—1, :
g(e, Do)e(e): LIRS By (Ry)) — By(R™ 5 LU(R,)) if [s| <7,
9(z, Dy)e(z): LYR™ B (Ry)) — LYR S Bi(Ry)) if0<s<m,
which finishes the proof. [ |

5 Truncated Pseudodifferential Operators

5.1 Definition and Consequences

Recall that Hg4, d € Z, denotes the space of all smooth functions f: R — C which
admit an asymptotic expansion f(t) ~ sqt% 4+ s4_1t*"!' + ... in the sense that for all
k,l,and N € N

d
0, [t’“f(t) = Y st

j=d—N

< Cran (L4 )N as [t — oo

It is important that H_; = H*T & H~;, where HT and H~, are the subspaces of all
f € H_; which can be extended holomorphically to the lower, upper complex plane,
resp., and
WY =Fle"SRy)], H, =Fle SR,

where e* f denotes the extension by zero of a function f defined on R, see [12, Chap-
ter II, Section 2.2| for details. Moreover, h* = Fetr*F 1 and h=, = Fe r~F ! are
continuous projections on H+ and H_,, resp. Here r* denotes the restriction to Ry
and e* the extension by zero from R. to R. We use the convention H, = H_, ®C, [t],
r € Ny, where C,[t] denotes the set of all complex polynomials of degree r. Moreover,
h_y: Hq — H_1 is the projection with range H_; and kernel Cgylt].
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Remark 5.1 As in the standard calculus the Poisson, trace, and singular Green
operator defined in the last section can be described with the aid of their symbols:

oD = FL e 9], e Df = 7t | [ O ode]
o001 = ol | [ ot s f€man]

where k(z,§) = fyann[e;jf(.,yn)], to(2, &) = fynwgn[e;—ni(O('ayn)L 9o(x,&,mn) =
fynHﬁnfannn[e Yn zngo( yn)’zn)])

r—1 r—1
ZSJ £ + to(a, ), Zk]xf )&, + g0’ €)
7=0 Jj=0

cf. [12, Section 2.3|, and where F|[f](x) := F[f](—x) denotes the conjugate Fourier
transformation. Here k;(x,£) is the symbol of the Poisson operator k;(z, D,) and f+
is the “plus-integral”, cf. [12, Section 2.2].

Finally, t(z, D) and g(x, D,) are said to be of class —m, m € N, if t(z,§) €
H oo wrt. &, g(2,6, 1) € Hoymo1 W.I.t. 1), Tespectively.

The following transmission condition assures that p(x, D;), = r*p(z, D;)e™ is con-
tinuous between Bessel potential spaces and Besov spaces on the half-space R’} .

Definition 5.2 Let p € C7S{((R" x R"), d € Z. Then p satisfies the global trans-
mission condition — simply called transmission condition in the following — if there
are functions siq(x, &) smooth in & and in CT w.r.t. x such that for any o € Nj

and | € Ny
d—|a|

EDEP(-6) = D skal- €)™ < Crual€)™H g (5.)

b=t o7 (Bm)

when [€,| > (£).

It is an important fact that the symbols s o(z, ') have to fit together under term-
wise differentiation as it is in the smooth coefficient case. In particular, they have
to be zero after a finite number of differentiations in £'. Hence sy o(z,£’) has to be a
polynomial in &' with coefficients in C7(R").

Remark 5.3 In contrast to the transmission condition for a smooth symbol p €
S{y(R" x R"), cf. e.g. |12, Definition 2.2.7], in the latter non-smooth version a con-
dition not only at z,, = 0 is posed. — Therefore it is called global transmission con-
dition. — It is motivated by applications, where p(z, &) = q(A(x)E), A € CT(R™)"*",
and g € S{((R"xR") satisfies the transmission condition for symbols in S{ ;(R" xR").
Of course it can be relaxed since only the behavior of p(x,&) near z,, = 0 plays a
role in order to prove the continuity of the truncated pseudodifferential operator.
However the latter condition is simple and sufficient for our purposes.
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Finally, a Green operator of order m € R, class r € Np, and with coefficients
in C7, 7 > 0, is an operator of the form (1.1), where p(z, D,), g(z, D,), k(x, D,),
t(«', D), and s(z', D,/) are pseudodifferential operators, singular Green, Poisson,
and trace operators, resp., of order m such that m € Z if p # 0, p(x, D,) satisfies
the transmission condition, and g(z, D,) and t(z', D,) are of class r. The bound-
ary symbol operator a(z, ', D,,) is the Green operator, which is obtained from the
corresponding symbols and symbol-kernels by fixing (z',£’) and considering all oper-
ators as one-dimensional operators acting only in z,,. Moreover, p(z,£) is called the
interior symbol of a(x, D,).

Lemma 5.4 Let p € C’TS{{O(]R” x R"), d € Z, that satisfies the transmission condi-
tion. Then r*p(x, Dy)o®a = k(z, Dy)a for all a € S(R*™'), where k € OS¢ (R x
R, S(R,)) is a Poisson symbol-kernel of order d+1 and &y denotes the delta dis-
tribution w.r.t. x,.

Proof: First of all by (5.1) h_[€, D¢p(.,€)] = €, Dep(.,€) — el g0 E)ERT
Therefore

Cra(€)HH70lE, 7 when |&,] > (€),

Cl7a<§/>d+lf\a| when |§n| < <€/>7 (52)

1h-1,6, (6, DEP( O]llem@ny < {

where we have used (5.1) for |§,| > (¢') and the symbol estimates for |, < (£).
This implies

1h-1, (€. DEP( €', Nllom@nizz @) < Cral€) 21 (5.3)

by an elementary calculation, cf. the proof of [12, Theorem 2.2.10]. 3
Since rp(x, &', D, )0o®a = rTF. L [hTp(x,€)a] foralla € C, we have k(z, £, y,) =

T En—rTn
7'+.7:§:LL>% [hip(x,&)] € S(Ry) w.r.t. y,. Hence the previous estimate implies
’ [ 1 o
| D¢ yh D, k(. €, yo)llor@eirz, &) < Clra (gydratrilet] (5.4)
which proves the lemma. [ |

In connection with Lemma 5.4 the identity

k—1
(D} ef]=—i> DE 16 @, (5.5)

J=0

cf. [12, (2.2.39)|, where [A, B] := AB — BA, will often be used.
Let p € C7S{((R" x R"). Then we denote

G (p(z,Dy)) :=1"p(x,Dy)e” ], G (p(z,Dy)) = Jr™p(z, Dy)e”,

where (Jf)(z) = f(a', —x,)), v € R".
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Lemma 5.5 Let p € C7S{((R* x R"), d € Z, satisfy the transmission condition.
Then G*(p(z, D;)) = g*(p)(z, D;) and G~ (p(z, Dy)) = g~ (p)(x, Dy), where §=(p) €
CTSfygl(]R” x Rt S(RiQI are singular Green symbol-kernels of order d. Moreover,
g:l:(p) (.T, 5’7 Yn, Zn) =r* fgn;_nf[p(xa g)] ‘t:iynizn :

Proof: For every fixed x € R” the symbol p, (&) := p(x,§) is a smooth symbol of
order d satisfying the transmission condition. Hence the stated identities are direct
consequences of the corresponding statements in the smooth case, cf. e.g. [12, The-

orem 2.6.10]. Moreover, the estimates to show §*(p) € C7S{¢"(R" X ]R”fl,S(RiJr))
are proved in the same way as in the proof of [12, Theorem 2.6.10|, where the regu-
larity in x does not play any role. [ |

In order to consider p(x, D, ) as operator-valued pseudodifferential operator on
R* !, we will use:

Lemma 5.6 Let 1 < q¢ < oo and let p € CTST{(R* x R"), m € Z, satisfy the
transmaission condition. Then

p(x,Dx)+ - Zsj(vad?’)Din +p’(l‘,DQ;)+,
=0
where p'(x, D) = OP'(p'(z, &', D,,)) with
P, D)y € CTTSTHRT x R L(Hy T (Ry ), Hi (R)))

for all0 < 7" < 7, |s| < 7', and 0 € [0,1] with s — 0 > —% and where s;(x, Dy)
are differential operators of order m — j with coefficients in CT(R™). Moreover,
Yop(x, D)y = D750 55(@', 0, Dyr)yj +to(a', Do), where to(2', € yn) € CTSTH(R! x
R S(R,)).

Proof: Let p/(z,§) := h_1¢,[p(x,&)]. As seen in the proof of Lemma 5.4, p/(z,§) =
p(x,8) = >0 si(x, &), where sj(x,&') € CTSYy “J(R™ x R" 1) are the symbols due
o (5.1) for a =1 = 0. Because of (5.1) and the symbol estimates

1087/ (, Ollom@ny < Cal€)™H71UE) 7, ¢ eRY, (5.6)

for all @ € NJ and 60 € [0,1]. Because of the latter estimate, (3.1), and Theorem 3.3,
we conclude that

||aa] p'(., Tn, 5,7 Dn) ||C"_T,(R"_I;C(Hqsfg(R),Hg (R))) < Cs,a <€/>m+07\a |

for all |s| < 7/, o' € Ny 1.
Now, if s—6 € (—%, %), then e*: H?(R) — H(R) is a continuous mapping and
therefore the latter estimate implies the statement in this case.
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Next we prove the statement for s — 0 € (k — i,k + %), k € Ny, with |s| < 7.

k
Then the general case is obtain by interpolation. Using 1 = ﬁ + 2?21 %ff with
k
q(§) =1+ 23:1 §J2ka

n—1
P8, Dn)e = pi(w,&, Dn) & + palx, &, Do) DE + 1 pa(a, &, Dy)[DE €],
j=1
where p;(z,§) € C’TST”’c R™ x R"), j =1,...,n, satisfy the transmission condition.

o
Since s — 0 —k € (—y,¢), e" Dy« Ho "(Ry) — Hy " *(R) and we can apply the

first part on p;(x,&’, Dy,). Finally,
rtpa(a, €, D) Dy VG @y € OT USTH(RY x R L L(Hy *(Ry), He (Ry)))

by Lemma 5.4, Corollary 4.10, and v;: H; (R, ) — Cif j <k — 1. Hence using (5.5)

we obtain the same statement for r¥p,(z, &, D,)[DF | e*]. )
The identity for yop(x, D,) is obvious and #y(a’, &', y,) = F. L. [p'(2,0,€)] €

En—rYn

CTST (R x R S(Ry)) is proved by the same estimates as in the proof of
Lemma 5.4. m

Remark 5.7 If p € C7S| J"(R" x R") with m > 0 and 7 > 0, then
p(z,€,Dy,) € CT7 ST (R x R L(H™(R), H (R)))

for all |s| < 7" < 7 and my, ms > 0 with m; + my = m. Moreover, if m € Ny and p
satisfies the transmission condition, it can be proved as above that

p(@,€', Du)s € CT7 S (R X R L(Hy ™ (Ry), Hy(R)))
for all |s| < 7/ < 7 with s —mgy > —%.

Let p € C7STH(R* x R*), d € R, 7 > 0. When discussing the compositions of
p(x, D)+ with Poisson, trace, and singular Green operators, the following Taylor
expansion will be useful:

k

P €)=Y gj.—‘z;az;np(x',o,a T k(e €), (5.7)

=0

Where qr c OTﬁkSKLo(Rn X Rn); k - 07 ey [T]J a‘nd qk(x1707§) = 0

5.2 Composition of Truncated Pseudodifferential Operators
with Poisson, Trace, and Singular Green Operators

In the following we study the compositions of truncated pseudodifferential operators
with Poisson, trace, and singular Green operators satisfying the following assumption:
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Assumption 5.8 Let ky € CST3 ' (R™! x R" 1, S(Ry)), & € CTSTH (R x

i) ~ mi— n n— ™2 ~ T2 QM2 — n— n— ™2
R, S(Ry)), g1 € CTSTy 'R xR S(RY,)), G2 € C 2571ﬁ0 HRI xR S(RY )
for 7;, > 0 and m; € R, j = 1,2. Moreover, let p; € CS| §(R* x R") satisfy the
transmission condition, where we assume in the following that m; € Z if a composi-
tion with p; is considered. We will denote by

mj

pi(w, Dy) = sju(x, D) D, +pl(w, Dy) (5.8)

k=0
the decomposition due to Lemma 5.6. Finally, let 0 € (0,75), 0 ¢ Ny, and set
7 :=min(m, 72 — [0]), m = my + ma.

We study the following compositions:
p1(x, Dy)yaz (2", Dy) = (pi#g02) (2, Di) + Ry(p1, as)

/ / 1 o / o 1ol
(pl#[G]G’Q)(‘TJ€ ) Dn) = Z Jag’ p1($,§ JDn)'i'Da:’ CLQ(.’L‘ 75 JDTL) (59)

|’ |<[0]
ay (ZC, D:E)pZ(xa D:E)+ = (al#[(ﬂp2)(ay7 D:L‘) + Re(a17p2) where

1 /
(a#t0p2) (5,6, Dn) = Y —Dgan(2,€, Da)ayy 05pa(', 0,6, Da) . (5.10)
laf<[0]

for ap = glatla g = k27g2-
Because of the composition rules of boundary symbol operators (in the smooth

case) (p1#(gk2)(z, Dy), (D1#(9)92) (2, Da), (917 10)p2) (2, Dy), and (ti#gp2)(2', Dy) are
Poisson, singular Green, and trace operators, resp., of order m with coefficients

in C7, cf. Remark 4.3. Here (pi#{y92)(x, D) is of class 0 and (g1#(gp2) (2, D),
(t1#9p2) (2", D) are of class max(0,ms).

THEOREM 5.9 Let 1 < ¢ < 00, s € R, and let ks, t,, gj, and p; be as in Assump-
tion 5.8.

1 If|s|<7,8=0>—Ty, —To + 0 < s+ my < Ty, ands+m1—9>—$, then

stm—L-9 _ S/ Tom
Rlﬁ(plakQ): B‘I ! (Rn 1) - Bq(R-i-)a
. 1
Ry(p1,92): By (RY) — Bi(RY) ifs+m—0>——,
. 1
Ry(g1,p2): Bfm*G(Rﬁ) — B (RY) ifs+m—0,s4+m; —0> 7

2. If

s—%‘ <7',3—%—9>—7'2, —7'2+0<5—|—m1<7'2,8+m1—9>—$, and

s+m—0> -1 then Ry(t,po): By °(R%) — By “(R"Y).
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The theorem will be proved at the end of this section.

Remark 5.10 Using the Taylor expansion (5.7) for p; with k = [¢'] and 6" € (0,71),
0" ¢ Ny, the formulae can be reduced to Poisson, trace, and singular Green operators
with z,-independent coefficients as in the smooth case, cf. Remark 4.3.1. The new
remainder terms are easily estimated using Theorem 4.11. But the remainder term
will be of order my + my — 0" with 8" arbitrarily close to 7;. Hence in that case there
is loss of accuracy of the formulae if 7 < 7.

Lemma 5.11 Let INCQ,tNl,f]j, pj be as in Assumption 5.8. Moreover, let Ry(ay,py) =
al(flf, Dx)pé(xa Dx)-i— - OP,(a’l(‘J Dn)#l[a}p2(a DTL)) f07’ a1 = g1, tl'

1. If|s| <7, s=60>—7y, and —15 + 0 < s+ my < Ty, then

s+m—Li—¢

R;(pllakQ): B‘I ! (Rnil)_)B;(Ri)a

ST+m— n S mn - ]_
Ry(P}, 92), Ry(gr,ph): BT °(RY) — Bi(RY) if s+m—0> 7

2. ]f|3—§|<7';8—§—9>—72, —Ty+0<s+m <o, ands+m—9>—$,
_1
then Ry(th,ph): BS™ (R — By "(R*1).

Proof: First of all, because of Remark 4.12 and s + m — 0 > —%, it is sufficient to
prove the mapping properties with B;*m*Q(R’}F) replaced by B;*m*”s” (R, Hq*S' (Ry))
for s' € [O,%).

By Lemma 5.6

Py(a,€,Dy) €CT T STE R X R L(BY(R)) N L(H(R,))  (5.11)
NCTSTET (R xRS L(H, Y (Ry), LU(R,)) (5.12)

for all 0 < 7" < 75, |s| < 7" with s > —%, and s’ € [O,%). Moreover, if m; < 0,

pj(z, D;) = pj(x, D) and by Remark 5.7

Pi(@, €', D)o €077 SYy(R*H x R L(By ™ (Ry), By (Ry))), (5.13)
forall0 <7 <71, |s| <7/, s+m; > —%.
Using (5.11), (5.12), Remark 4.7, and Corollary 4.10 we can apply Theorem 3.6
to obtain

stm—0—1t

Ry(py, k2): By "R = By(R™ LRy )
Ry(ph. 92), Ry(gr, ) By H (R Hy* (Ry)) — By(R*™H LRy )

Ry(ty,ph): B0+ (R H*"(Ry)) — B, *(R*™)
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for ' € 0, i) and under the same restrictions on s as in the theorem. Hence, if

s < 0, the lemma is proved because of (2.14).
Moreover, if m; > 0 and s > 0, we use that by Remark 4.7

ko(a,€,D,) € C7S g 1 (R x R £(C, BS (Ry)))
go(a’,€,D,) € CSTET (R x R L(H, Y (Ry), BE(RY)))

for s' € |0, %) Hence, if m; >0, s >0, s' € [0, %) and £ > 0 is sufficiently small,

s+m—l—0+e n— c n— s
Ry, k2): By * (R*") = Bi(R" ' Bi(R)) (5.14)
Ry(p}, go): BT 0m e (R HOY(Ry)) — B(R Y BI(RY)) (5.15)

by Theorem 3.6 and (5.11). Here the assumptions of Theorem 3.6 are satisfied for
sufficiently small € > 0 since m; < s +m; < 7 and m; > 0. Because of (2.2) and
(2.13), this implies the statements for p)(z, D,)+ks(2', D,) and p}(z, D,)+g2(2', D)
in this case.

If m;y <0 and s > 0, we use (5.13) and

ks(2, €, D) € O S " F(RY x RV L(C, BI™ (R,))
g2, €, Dy) € CP S (R x R L(H Y (Ry), BET™(Ry)))

for s € |0, %) Then Theorem 3.6 yields (5.14)-(5.15) again.

For Rj(g1,ph) we simply use (5.12) and g, (., D,) € C™ 7 S; ™ (L(LY(R), B:(R})))
for 0 < s < 7" < 7 to conclude that

Ry(g1,p2): Bstm=0+"+e(R=1 H-5'(Ry)) — BE(R™; B3 (R,.))

for s' € [0, i) and ¢ > 0 sufficiently small, which finishes the proof. [ ]

Lemma 5.12 Let p € CS[G(R* x R*), my € Z, 75 > 0, with p(2',0,§) = 0
satisfy the transmission condition and let p'(x, &) be as in Lemma 5.6. Moreover, let
te CnSTE(R 1 x R S(Ry)) and g € C™STE MR x R"*HS(KL)), m; € R
and set T := min(7y,72), m := my + ma. Then for every 0 € (0,1) with < 15 and
s € R with s+m —60 > —%

s—1 1

OP'(t(a/, &', Dp)p' (@, , Dn)4): BT '(RY) — By “(R*™') if —7+0<s——<r,
q
OP'(g(x,€, Dy)p' (2, €', D)) : By °(RY) — B;(RY}) if —T+0<s<rt

are bounded operators.
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Proof: By Lemma 4.6, Corollary 4.10, and interpolation

m1+

t(a',€,Dy) € CTS (R”*l R L L(LY(R,, z,%),QC)), (5.16)

mi+y Lys'—0

9(x,&,D,) € C™ TS| (R"* x R" 5 L(LYRy, 2,7), BS (Ry)))  (5.17)

for 0 < s’ < 7" < 11, where it is clear from the proof of Lemma 4.6 that in the case of
LY(R, ,x,%) the restriction < 7 is not necessary. Together with (5.12) for p; = p/
this yields

/m-i- +s'

t(a', &, Dn)p' (2,8, Dn)+ €CT Sy * (L(H,* (R+) ©))
g(2,€, Do)y (2,6, D) €C7° STJFS FULH T (Ry), By (R4)))
for all " € [0, %), s >0 and 7' € (0, min(r; — s,72)).

Moreover, since p'(2/,0,&) = 0, 2% (z,£) € O 7 (R 1;C7Y(R)) w.r.t. « for
0 <6 <7 <min(l,7), (5.6) yields

106228 ) ey < CIOE e < Cul€mr N>
forall @ € Ny, s € [0,1], and 6 € (0,1) with # < 7. Then the latter estimate implies

w;ﬁp’(x, 5’7 l)n)+ c CTZ—T’S{TZ/(?+S”(£(H(I—S” (R+) Lq(&)))
& P, D)y € CPSTE (C(H Y (R, ), (R, 271)

for all " € [0, %) and 7' € (0, 7). Hence (5.16)-(5.17) yields
! ! / To m+ +5”—0 gl
t(l‘,f,Dn) (ZL‘ g D )+€C 510 (‘C(H (R+)7C))
g(x, &, Dp)p' (2, €', D)y € CTSTF " (L(H " (Ry), By (Ry)))
forall 0 < §" < % and 0 < s’ <7, where 0 < 7p < min(ry — s, 75 — ).
Therefore Lemma 3.5 implies that
OP'(t(., Dn)p' (-, Do) 1) : By ™" =(R' 1 H* (Ry)) — By " (R')
if—’]’+9<8—%<7’,0§8"<%,and
OP'(g(, Du)p/ (-, D)) By =" (R Hy ' (Ry)) = By(R*™ LU(Ry)
OP'(g(, Dp)p' (s Da)+): Byt PR H ™ (Ry)) — LUR™ 5 By (Ry))

if —7 4+ 60 < s < 7 are bounded operators where £ > 0 . This implies the statement
of the lemma since 6 € (0, min(1,72)) can be chosen arbitrarily. |

Proof of Theorem 5.9: First of all, let pi(zx,D;) = p;(z,D;) — pj(z, D) =
Z‘a|<m] ¢ja(r)DS denote the differential operator part of the decomposition (5.8).



34 5 TRUNCATED PSEUDODIFFERENTIAL OPERATORS

Then the compositions of p}(x, D,) with ky(2', D,) and g»(2’, D,) reduce to the
composition with DF. But the composition with D~ is trivial and the composi-
tion with Dg,' can be treated with Theorem 4.13. Moreover, the compositions of
py(z, D,) and ko(z', D,), go(2', D;), resp., were dealt with in Lemma 5.11. Hence the
statements on Ry(p1, k2) and Ry(p1, g2) are proved.

Similarly, the composition of ¢, (z, D,) and tl(x D,) with pf(z, D,) reduces to
the composition with ¢y o (), where ¢y (z) = ZJ 0 ’;7 9 canla’,0)+ ng]cgya (z) with
¢ho(2',0) = 0 is used. Here gy(z, Dy)zd, and ti(a', D)), are singular Green, trace
operators, resp., of order m; —j and the composition with 9] ¢ (2,0) can be treated
with Theorem 4.13. Moreover,

g1(x, Dy)xl? ]C2a( ): B;+m1*0(Ri) — B (R") if |s|] <m

!
ti(z', Dy)al? ]CM( ): BifMORE) = By (R if [s— =] <7,

by Lemma 4.15 where s € R such that —,+6 < s+m; < and s+m; — 0 > —%.
Finally, because of Lemma 5.11, it remains to consider

1
> JOP (08 ai(2,€, Dy) DY ply(x,€', Dy) 1)
o |<fo]
Wlth a; = 91,?51- By (57),

01—/ "
DS ph(z, €', Dy,) Z —” i py(a’,0,&, Dy) + 2=, (2, €', Dy,)

Jj=0

where ¢, € C7VISTE(R® x R") with gg0(, 0 ) =0 satisﬁes the transmission

condition. Hence we can apply Lemma 5.12 to 9 ‘ay (@, &, D ) -’ ‘qua (,&',Dy) 4,
a1 = g1, 11, to finish the proof. [

5.3 The “Left-Over” Operator L(pi(z, D,),p2(x, D,))
In the following let L(Py, P,) := (P P2)y — P+ Py ..

THEOREM 5.13 Let p; € C7 Sf}g (R*! x R*), m; € Z, satisfy the transmission
condition. Then for every 0 € (0,71), 0 € N,

p1($, Dz)+p2(33, Da:)+ = (pl#[e]pz)(% D$)+ - le(plapz)(l“, D:L‘) + Ry

where lg(p1,p2)(x, Dy) is a singular Green operator of order my + my and class
max(ms, 0) with

]_ ! !
l@(pl,pg)(l‘,fl,Dn) = Z aL(@g‘,pl(x,f',Dn),xﬁ”Dg‘@gjpg(x',0,5',Dn)) (518)

|a| <[0]
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and Ry: Bytmitm:= 6'(R") —> BS(R”) if |s] <Tys—0>—T, -+ 0 <s+my <7,
ands+m1+m2—9> —=
Proof: First we consider the case s +mq+mqe—0 € (—i, Then by Theorem 3.6

0
and the continuity of e : Bitmitm2=0(Ry ) — Bgtmitma- (R )

pl(xa Da:)+p2(-'177 Dx)-l— = (pl#[a}p?)(fl;a Da:)—l— + L(pl(xa Dx)JpZ(xJ -Dx)) =+ R0,+7
where Ry : Bitmtm—f(Rr) — Bi(RY). Using (5.8),

m2

L(pl(ana:)7p2(ana:)) = ZL(pll(ana:)782,k(x7Dw’)DI; )+L( (‘T D ) pIQ(ana:))a

k=0
since L(s (2, Dy )DE | po(x, Dy)) = 0. Moreover,

0 o

sox(z, &) = Z i"'aﬁgsm(x 0,&) 4 2%y 4 (2, €,

n-

an=0

where ry (7, &') is again the symbol of a differential operator and r9(2',0,&') = 0
Since %-:v,[f]rg,k(a;,f) =0 for j = 0,...,[], and because of (5.5), where k — 1 <
mo — 1 < [f], we conclude that L(p)(z, DQ;),ZL'%%TQ’k(.’L’, Dy )DE ) = 0. Hence

L(pll(xaD$)782,k(an$’)DI;n) = Z—L(p'l(a;,Dw),xg"D’;n)(?g:sz,k(x',O,Dwf),

where L(p}(x, D), 22Dk ) is a singular Green operator of order m; — a,, + k and
class k — a,,. Therefore, by Theorem 4.13 and Remark 4.14,

1 '
L(p (¢, Dy), s26(x, D) Dy ) = Y — OP'(L(Dg py (-, Dp), O sz(a',0,€) Dy ).

lae| <[0]
On the other hand, by Lemma 5.5, Theorem 4.11, Theorem 4.11 and Theorem 4.13,

L(pll(anw)ap;(anw)) = g+(p1)(anm)gi(p2)(anw)

(0]
1
= Y 0 ), Do) 05 g7 (p2) (@', 0, D) + R
an=0 "'
1 /
= > — OP'(Dg g™ (p1) (2,€, Du)ayy 079" (p2) (2, 0,6, Dn)) + Rap,
lof<[o]

where R;q: Bitmtm=0(RY) — Bi(R%), j = 1,2. Hence we proved the theorem for
the case s +my +my — 0 € (—2, %)
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Now let s+m;+my—0 € (k—i, k+%) for K € N. — Then the case s+mq+my—0 =
k — %, k € N, is obtained by interpolation. — Since (p;(z, Dy)ps(z, D;))+ may not

be well-defined, we use an order reducing operator. — Note that, if e.g. f € S(Ri)
with v f # 0, then et f € B5t™ ™2 (R% ) implies s + my + my < % Hence, if 75 < %
and my > 1, there is no s € R with s +my; > —m and s + m; + my < % Therefore
pa(z, Dy)ey f is not well-defined in general.

Let pg(€) € Si5(R* x R") satisfy the transmission condition such that

I=> ps(D;)DYL. (5.19)

18|<k

Then py(z, Dy) = 3 51<4 P2,5(2, D,)D?, where py 5(z,€) := po(x, E)ps(€) € C’”Sffgik
satisfies the transmission condition. Therefore

p2(z, D)+ = Z pQ,ﬂ(anx)-l-Dg + Z L(p2,5(z, Dy), DY),
18|<k 1BI<k

where, because of (5.5) and Lemma 5.4, L(ps 5(z, D;), D) = r*pyg(z, D,)[ D2, ]
is a singular Green operator of order my, class k, and with coefficients in C™. Since
s+my+me—k € (— 1 %) we can apply the theorem for this case proved above to
conclude

p1(w, Dg)ypas(, D$)+Df = (pl#[a}pz,ﬂ)(x,Dz)+Df - la(p1,p2,ﬁ)(x,Dz)D5 + Ry
= (21 #0p2,6)(w, D2) D)1 — L((11#10p2,6) (w, D), DY)
—ly(p1, p2,6)(x, Dy) DS + Ry
where Ry: Bgtmitme=0(R ) — BS(R% ). Using (5.7) for p, we conclude

[0]-laf
L((0¢p1Dgpas)(w, Do), DY) = Y j—7'+ OP (g pra}, D33l pop(2',0,€))[DY, "]
j=0 7’
+r" OP(d¢p gl peg, 5)[DP et
where ¢, 53 € C”’[a]S{ng_k with ¢o gls,—0 = 0. If 79 — [f] < 71, Theorem 4.11 yields
rt OP(0¢py(x, €)1 Do p(, €))[DF, €] Byr™*+™~Y(RY) — B;(RY)

if s satisfies the assumptions of the theorem. If 7 — [f] > 73, Lemma 5.14 below
implies the same statement.
Therefore

L((pr#0 pz,ﬂ)(ﬂf Dy), DY)

—laf

= > Z 7L (OP' (23,08 p1 (2, &', D) D2OL pag(a’,0,€',Dy)), DE) + Ry
la|<[0] =0
1
= ) —L(OP (0 pr(2, €, Do)l DY 02 pa g (', 0, €', D)), D) + Ry

Iv1<[0]
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by an elementary calculation. Moreover, by Theorem 5.9 and Theorem 4.11

pl(xa Dw)+L(p2,ﬂ(x7 Dw)a Dg)

1 ’ !
= Y~ OP(O i, €, D) Ll DY 0o o (', 0,61, Da), DE) + Ro.
laf<[0]

Using the ldentlty L(Pl, PQQ) = L(Plpg, Q) + L(Pl, P2)Q+ — P1,+L(P2, Q) for the
boundary symbol operator and the calculations above, it is elementary to check that

le(p17p2)($,Dz) = Z [L((pl#[a}pz,g)(a:,Dw),Dﬁ)+le(p1,pz,ﬂ)(w,D$)Df
1BI<k

—D1 (x, Dw)+L(p2,ﬂ(x7 DI): Dg)] + R‘97

which finishes the proof. [ |

Lemma 5.14 Let p; € CTS{§(R* X R*), mj € Z, j = 1,2, 0 <1 <7 <1,
satisfy the transmission condition with py(x',0,&) = 0. Moreover, let k(z,&', Dy,)a :=
rt OP,(p1(x, &)p2(x,£))00 ® a for a € C. Then for every 0 < 5 and 0 < s < 1y

m1+m2+s+17$79

k(z,€',Dy) € CTS) (R* x R* ' L(C, B (R))),
. s+m1+m2+17170 1
where 0 < 7 < min(my — s, 7 — 0) and therefore k(z, D,): By T (R —
B (R} ) is a bounded linear operator if —min(m, 7o —0) < s < 7.

Proof: We can assume w.l.o.g. that my = —1 and 6 > s. Moreover, as in the proof
of Lemma 4.9 it is sufficient to prove the statement for B; (R, ) instead of B (R, ).
Then

mi

hovg, [p1(@,§)p2(2,€)] = hovg, [p1(z, §)Ip2(, §) + Zsj,1(x,€')h_1,gn [Epa(2,6)]

=0

where s;;(z,&’) are the terms in the expansion due to Definition 5.2 for p; with

a =1=0. The terms r* Y7 OP,, (s;1(z, ") h_1, [Ehpa(w, §)]) 0o @ a are easily esti-

mated with the aid of Lemma 4.9. and || fg||zs . < C (I flesNlglle + ||f||Loo||g||Bgm) :

Therefore we can assume for the rest of the proof that pi(x,&) € H 1 w.r.t. &,.
First let 0 < h < x,. Then

W2k (2 @ 4 hy € yn) — k(2 20, € yn)|
< B an + €)= o, S ) 2@ llpe (e, on + B, € ) 2wy
+h 0 p1 (@, 8 Mz llpe (@, 20 + 0, &) = pa(2, €5 ) L2 w),
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where

D10 2+ € — 1o €5 ey < Ol ) ey < C1EY™
h ¥ Ipa(a’, wn + €L ) = pa(@, €, )llL2e) < Cals(¢ >m2+%
Ipa(2, €, ) |2y < CEV™ 3 Ipa(al, 2 + b, € )| r2my < Calh(g)mts

by (5.3) and since py(z’,0,&) = 0. Hence
Wy k(e o + b€ yn) = k(€ )| < O™t
By the same calculations as above, it can be shown that

hs 50 yflaglj’n ?,’ (IN{I(Jil,xn + h, 5/7 yn) _ /;7(33, fl, yn)> ‘ < Cl,l’,a’ <€l>m1+m2+1—l+l’—\0/|

for [,I' € Ny, o/ € NJ'. This implies

h/fs

x;/aga,/ (/;:(:E,,an + h, f,,l"n + h) B ]2(33,5’,330)‘ < Cslya,<£/>m1+m2+179+575’7\a'\

for s >0, € Np71.

In the case h > x,, one can use |z’ —083, (a; ¢ x| < C(§’>m1+m2+1—8’—|a’\ for

o € NI7' 5" > 0, to prove the latter estimate. Hence

supysoh*

(R 1€ h) = B €0)) | < Gyt
by (4.4). In a similar way one estimates ||8§‘,'l~f(a;’, & )|lg- Thus

108 k(, €', Do) leie,s o ey < Car(€y™ e 071,

Finally, replacing k(aj & yn) by |P |77 (Apk )(x & yn) = /%(x'+h',xn,§’,yn)—l%(x,f’,yn),
h' € R* !, it can be proved as above that

' _1_ A
10k ( €', Di)llemznm1:(6.3 e (g < Car (Y™ T ma=007
Then the continuity of k(x, D,) is proved as in the proof of Theorem 4.11. n

As a consequence of the composition rules we obtain:

THEOREM 5.15 Let p € CTSTH(R* x R"), m € Z, satisfy the transmission con-
dition. Then
p(z, Dy)y: H;*'m(R’i) — H;(R’}r)

is a continuous operator for all |s| < T with s +m > —%
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Proof: The proof is done by the same scheme as in Lemma 5.5 and Theorem 5.13.
The case s +m € (—%, %) is trivial since et : H*+tma(®L) H(RY). Then the case
s+me (k- i, k + %), k € N, is reduced to the first case using

p(x7DfIJ)+ = Z pa(anm)+D§ + Z L(pa(anm)aDg)a

|la|<k |la|<k

where p, € C’TSTO”“(]R” x R™), cf. (5.19). |

5.4 Negative Classes and Proofs of the Main Theorems

The concept of negative classes easily carries over to the non-smooth situation since
it is only a matter of the behavior of the symbols w.r.t. &,, n,,, resp., cf. Remark 5.1.
As in the smooth coefficient case it holds that

t(x', D,) is of class —m < t(x', D,)DY is of class 0, (5.20)

Tn

g(xz,D,) is of class —m < g(x,D,)D} is of class 0, (5.21)

Tn

of. [12, (2.8.2)].

Moreover, as in [12, Definition 2.8.2| we say that p(z, D), + g(z, D) is of class
r € Ny if g(z, D,) is of class r and that p(x, D)+ + g(x, D) is of class r = —m,
m € N if

(0(w, D2) s + g, Do) DI = pl(, D)4 + g/, D) with g'(x, Dy) of class 0.

Then a(z, D,) is said to be of class r € Z if p(x, D,)y + g(x, D,) and ¢(2’, D,) are of
class r.

Finally, it remains to prove our main theorems:
Proof of Theorem 1.1: Because of Theorem 4.8, Theorem 4.11, and Theorem 5.15,
the case r € Ny is proved. By the same arguments as in in [12, Theorem 2.8.3] it is
easy to prove

P, D)y + g, Da): HI™(RL) > HIRY)  if|s| <.
s—1i 1

t(a',Dy): HP™RY) — By “(R*) if |s — —‘ <T
q

for the general class r € Z by using the statement if the class is 0. Hence the theorem
is proved. [ |

Proof of Theorem 1.2: First of all, since § € (0,7), 8 ¢ N, is arbitrary, the
Bessel potential spaces can be replaced by Besov spaces using (2.2). Hence it only
remains to extend the statements of Theorem 4.13, Theorem 5.9, and Theorem 5.13
to arbitrary classes r; € Z. As mentioned in Remark 4.14, the compositions with
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gj(x,Dy) and t;(2', Dy) of class r; € Ny reduce to compositions with ; and oper-
ators of class 0. Using v; = ')/[)D%n, the compositions with ~; can be reduced to
Theorem 5.9, Theorem 5.13, and Lemma 5.6. Finally, if r; € Z, it only remains to
check that ¢(z', D,) and p(z, D;) 1+ g(z, D,) are of class max(r +mg, r9), which can
be done by using the definitions and (5.20)-(5.21) directly or by the same argument
as in [12, Remark 2.8.4]. |

6 Parametrix Construction

In this last section we apply Theorem 1.2 to construct a parametrix to elliptic Green
operators. In the following we will assume that the symbols of the operators are
polyhomogeneous, i.e., there is an asymptotic expansion in homogeneous terms of
decreasing order. The precise definition is completely analogous to the definition in
the smooth case, cf. e.g. [9], where we assume that the coefficients of g(z, D,) and
k(x,D,) are independent of x, in order to have a uniquely defined principle part.
The principle part of a(z, D,) will be denoted by ag(x, D).

Definition 6.1 A polyhomogeneous Green operator a(z, D,) of order m € Z, class
r € Z, and coefficients in C7, 7 > 0, s said to be uniformly elliptic uof the principal
interior symbol po(z,&): CV — CN s invertible for every x € R*, [£| = 1, and
py H(x,€) is uniformly bounded in x € R*, |¢| = 1, and principal boundary symbol
operator

ao(a',0,&, Dy): Hy (RN x CM — H™(R,)N x C¥
is invertible and ag(2',0,&', Dy) "t is uniformly bounded in ', & € R*1 with |¢'| = 1.

Since matrix inversion is smooth, p;*(z,§) € C7S§"(R" x R") ® L(CY) (suitably de-
fined for |¢| < 1). But it remains to prove that ag(z',0,&’, D,) ! is again a boundary
symbol operator in the non-smooth symbol-kernel classes.

Since for every fixed z;, € R*™! the boundary symbol operator g (&' Dy) =
ao(g, 0,&', Dy) belongs to the standard calculus, ay (&', D,) " is again a boundary
symbol operator of order —m and class r — m, cf. [5], [22], or [12]. Hence it remains
to prove that ay(z',0,&,D,) ! is in C7 w.r.t. 2’ and satisfies the corresponding
symbol-kernel estimates. As known from the proof in the smooth coefficient case,
cf. [5], [22, Proposition 3.1.1.2.6], or [12, Theorem 3.1.7|, the statement can be
reduced to the inversion of a(2’,0,¢',D,) = I + g(«/, &, D,,), where g(2', D,) is a
Green operator of order and class 0 with small operator norm in £(L?(R,)). This
is done by composition with order reducing operators and other operators belonging
to the calculus as well as inversion of matrix-valued pseudodifferential symbols. All
these steps directly carry over to the non-smooth coefficient case. Finally, the next
lemma treats the operator I + g(z',&', D,,).
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Lemma 6.2 If § € C"STj(R** x R”fl,S(KiJr)) ®@ L(CN), 7 >0, N € N, with

lg(2", &, ez, < ;, then I + g(a',&', D,,) is invertible and there is a §' €

C’TSIO(R” LxR*1 S(R ++))®L((CN) such that (I+g(x', &', Dy)) "t = I[+¢'(«', &, Dy,).

Proof: The lemma can be proved by similar arguments as in the proof of [12, Propo-
sition 3.2.1]. By the assumptions ||g(2', &', Dy)llez2my) = 119(2", €, Ml2@z ) <
1. Hence I + g(a/,¢,D,) is invertible in £(L*(Ry)) and (I + g(«/,&,Dy)) " =
Z]C:;o:() g(xla 5’7 Dn)ka where g(xla &-l, Dn)k - gk(l‘la &-l, Dn) with

a' &, yn) =

/ // f l“mw1) ( f w17w2) (xlaflawkflayn)dwldu@"'dwkfl

for k > 2. Then it can be proved in a straight-forward manner that g'(z', &', z,,, y,) :=
00~ T Q- n— n— o2
Sorey gk(@ € T, yn) € CTSTHR x R S(RLL)) ® L(C). u

Corollary 6.3 If a(x,D,) is a polyhomogeneous elliptic Green operator of order
m € Z, classr € Z, and in C7, 7 > 0, w.r.t. x, then ay(z',0,£, D,)~" is a boundary
symbol operator of order —m, class r —m, and in C™ w.r.t. x'.

In order to construct a parametrix in the non-smooth coefficient case one has to take
care of the restriction of the mapping properties due to the limited smoothness of
the coefficients. If for instance p € CTSTH(R" x R"), m € R, is elliptic and ¢ €
CTS¢"(R* x R*) such that ¢(x,&) = p~'(z, &) for || > R > 0, then by Theorem 3.3
p(x, Dy): HF™(R") — Hi(R") if |s| < 7 but ¢(z, D,): Hy(R*) — H;"™(R") if
|s +m| < 7 for 1 < ¢ < co. Hence the restriction on s is too strong unless m = 0.
In [1] the problem was solved by taking the parametrix in y-form instead of z-form.
But, since we did not treat operators in y-form, we use order-reducing operators to
the operator to order 0.

By [10, Proposition 4.2|, there is a family of elliptic polyhomogeneous symbols
A"(€) € STH(R® x R") satisfying the transmission condition such that \™ (&', Dy,) 4
is of class —oo and M (&, D,) N (€', D)y = M(¢, D)y for j k € Z. Hence, if
a(x, D;) is an elliptic Green operator of order m and class r, then

a'(x,D,) = a(x, D,) ( A" (D) (6.1)

o)

is an elliptic Green operator of order 0 and class r — m.

THEOREM 6.4 Let a(x, D) be an elliptic Green operator of order m € Z, class
r € Z, and of reqularity C™, 7 > 0, in x. Then for every 6 € (0,7), § € N, there is a
parametriz B = Bg such that a(x, Dy)B = I + Ry, where

s—0—1

s—1 _
Ro: Hy (RN x By~ “(R* MM — H(R?)Y x B, “(R* )M
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if—T+9<s<T—[0],3—0>r—m—$, cmds—%>—7’+9 when M # 0 or

M' # 0. More precisely, B = diag(A_(D,) ™, (Dy) ™)b(z, D,), where b(x, D) is a
Green operator of order 0 and class r —m.

Proof: In the following Ry will denote an operator with mapping properties stated
in the theorem. Because of (6.1), we can assume that m = 0. Moreover, we consider
for simplicity only the case that a(x, D,) = ag(x, D).

In order to construct an inverse modulo terms of order —f, we make the Ansatz
b(z,D,) = de]o bj(x, D), where bj(x, D;) are Green operators of order —m — j with
coefficients in C™7. Moreover, denote by g¢;(z,&) the interior symbol of b;(z, D).
Then by Theorem 1.2

a(w, D)bj(x, Dy) = (a#ig-ib) (@, D) + Ry = Zr e) + Ro,

where 7"( )(x D,) is a Green operator of order —m — j — k with coefficients in C777F.

Moreover, let q](- (x,€) denote the interior symbol of rj(-k)(x, D,). Then

r(@',0,€', Dy) = ag(a’, 0,6, Da)bi(a',0,€', D), 4 (w,€) = pola, )g; (2, ).

Hence sorting the terms by their order a(x, D,)b(x, D,) = Zz OZk 07"5 k(x D,) +
Ry. In order to obtain a(x, D;)b(x, D) = I + Ry, we determine b;(x, D), j > 1,
successively by

bO(l‘la 07 gl, Dn) = Qo (xla 07 517 Dn)il

[
bi(2',0,€, Dy) = —ao(a’, 0,6, D) 1> B (2,0,€, D), 1=1,...,[0]

for |¢/| > 1 and go(x,€) = po(,€), qi(,€) = —p(z, &)~ Tk ot 1 (7,6), 1= 1,..., 6],
for [€] > 1. |
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