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1. Introdu
tion

There are numerous similarities between the 
overing theory of graphs

and the 
overing theory of topologi
al spa
es. In algebrai
 topology, 
f.

e.g. De�nition III.3.1 of [3℄, a map p : X ! Y between ar
wise 
onne
ted,

lo
ally ar
wise 
onne
ted Hausdor� spa
es is 
alled a 
overing map if ea
h

element y 2 Y has an ar
wise 
onne
ted neighborhood U su
h that p

�1

(U)

is a nonempty disjoint union of sets U

�

on whi
h p

jU

�

is a homeomorphism

U

�

�

�! U . In 
lassi
al graph theory one repla
es the topologi
al spa
es

X and Y by 
onne
ted graphs �

1

and �

2

, the neighborhood U of a vertex

y 2 �

2

by the indu
ed subgraph �

2

(y) on the neighbors of y in �

2

and

requires that for ea
h preimage x in �

1

of y the restri
tion of p to �

1

(x) is

a bije
tion resp. isomorphism onto �

2

(y).

More pre
isely, a surje
tion � : �

1

! �

2

between 
onne
ted graphs �

1

, �

2

is 
alled a 1-
overing map if for ea
h x in �

1

the map � indu
es a bije
tion

between the set of verti
es of �

1

(x) onto the set of verti
es of �

2

(x

�

). On

the other hand, a surje
tion � : �

1

! �

2

between 
onne
ted graphs �

1

, �

2

is 
alled a 2-
overing map if for ea
h x in �

1

the map � indu
es a graph iso-

morphism between the indu
ed subgraph �

1

(x) onto the indu
ed subgraph

�

2

(x

�

).

The notion of 1-
overings (or lo
al isomorphisms, as they are sometimes


alled) is important for the study of epimorphisms between point-line geome-

tries under whi
h the point row of ea
h line is mapped bije
tively onto the

point row of its image and, dually, the line pen
il of ea
h point is mapped bi-

je
tively onto the line pen
il of its image. In 
ase of 
ag-transitive point-line

geometries this 
orresponds to the study of inje
tive 
ompletions of amal-

gams 
onsisting of two groups (the point stabilizer and the line stabilizer).

The geometry of the dihedral groupD

2n

=




a; b j a

2

= b

2

= (ab)

n

= 1

�

prob-

ably is the easiest example. A 2n-gon admits 1-
overs by any 2kn-gon,

k � 1; this 1-
overing 
orresponds to the group epimorphism D

2kn

=




a; b j a

2

= b

2

= (ab)

kn

= 1

�

! D

2n

=




a; b j a

2

= b

2

= (ab)

n

= 1

�

indu
ed

by fa
toring out the 
y
li
 normal subgroup generated by all nth powers

of the produ
t ab. Of 
ourse, the universal 1-
over of a 2n-gon is the tree

of valen
y two, whi
h 
orresponds to D

21

=




a; b j a

2

= b

2

= 1

�

being the

universal 
ompletion of the amalgam hai [ hbi. For a thorough treatment of

the relationship between 
overs of graphs and amalgams we refer the reader

to [5℄, [6℄, [16℄, [17℄. There also exist a number of arti
les on 1-
overings

1
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from a purely geometri
 point of view, espe
ially for generalized polygons,

see [7℄, [8℄, [14℄.

2-
overings, on the other hand, are important when studying lo
ally ho-

mogeneous graphs. A graph � is 
alled lo
ally homogeneous, if for any pair

x, y of verti
es of � the indu
ed subgraphs �(x) and �(y) on the neighbors

of x, resp. y are isomorphi
. It is 
lear from the de�nitions that any 2-
over

of a lo
ally homogeneous graph is again lo
ally homogeneous with the same

lo
al stru
ture. Therefore, when studying lo
ally homogeneous graphs, it

suÆ
es to only 
onsider the simply 
onne
ted ones, i.e., those graphs that


oin
ide with their universal 2-
over. For example, in [9℄ one 
an �nd a 
har-

a
terization of the line-hyperline graphs of a proje
tive spa
e of suÆ
iently

large dimension by their lo
al stru
ture. The line-hyperline graph of some

proje
tive spa
e P 
onsists of the noninterse
ting line-hyperline pairs of P

(i.e., pairs of 
omplemented subspa
es of dimension two, resp. 
odimension

two in the 
orresponding ve
tor spa
e) in whi
h the pair (l; L) is adja
ent to

the pair (m;M) if and only if l � M and m � L. It is easily seen that the

lo
al stru
ture of the line-hyperline graph of P is given by the line-hyperline

graph of an arbitrary hyperline of P. Conversely, Theorem 1 of [9℄ says that

this lo
al property is 
hara
teristi
 for the line-hyperline graphs for suÆ-


iently large dimension. The proof of that theorem heavily relies on the

assumption that the lo
ally homogeneous graphs under 
onsideration are

simply 
onne
ted. Only after a su

essful 
lassi�
ation of the simply 
on-

ne
ted graphs one realizes that they do not admit quotients with the same

lo
al stru
ture (be
ause their diameter is two), 
ompleting the proof.

Surowski's work [18℄ beautifully uni�es the 
on
epts of 1-
overings and

2-
overings by 
onsidering simpli
ial 
omplexes. While topologists may not

be surprised by the results presented in [18℄, the arti
le des
ribes graph

theoreti
 
overing theory in a language perfe
tly suited for geometers.

Malni
, Nedela and Skoviera [13℄ de�ne a di�erent notion of graphs. A

graph � = (V;D; �;�1) in their sense 
onsists of a set V of verti
es, a set D

of darts, a map � : D ! V and a permutation �1 : D ! D : d 7! d

�1

with

(�1)

2

= id. The map � assigns to ea
h dart its initial vertex, while the map

�1 inter
hanges a dart and its reverse. The terminal vertex of a dart x is

the initial vertex of x

�1

. The orbits of �1 are 
alled edges. Note that edges


onsist of one or two darts. An edge is 
alled a semi-edge if its 
ardinality

is one, a loop if its 
ardinality is two and both darts 
ontained in this edge

have the same initial vertex, and a link otherwise.

The authors of [13℄ justify this de�nition of a graph by appli
ations in the

theory of Cayley graphs. For example, Gross and Tu
ker [11℄ note that not

all Cayley graphs are regular 
overs of bouquets of 
ir
les. Using the notion

of a graph as in [13℄, however, one 
an prove that ea
h Cayley graph is a

regular 
over of some monopole, i.e., a graph 
onsisting of a unique vertex

and an arbitrary number of darts, 
f. 6.2 of [13℄, restated and reproved as

Theorem 5.6 in the present paper. A 
overing � in the sense of [13℄ is a
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graph surje
tion � su
h that for ea
h vertex x in the domain the set of darts

with initial vertex x is mapped bije
tively under � onto the set of darts with

initial vertex x

�

.

Neither topology nor Surowski's work [18℄ apply to the 
overing theory

of graphs with semi-edges. Therefore it is one goal of the present paper to

provide a suitable theory of 
overings. To this end we de�ne the notion of a

fundamental 1-
overing (see De�nition 3.1) and prove that this 
overing is

universal (
f. De�nition 3.3).

Theorem 3.5 Let � be a 
onne
ted graph, let x be a vertex of �, and let

b

� be

the fundamental 1-
over of � based at x. Then the fundamental 1-
overing

� :

b

�! � is universal.

As a 
onsequen
e of the pre
eding theorem we 
an 
lassify all graphs that

are 1-
overs of a given graph. Results of this kind are typi
al in the 
ontext

of topologi
al spa
es. In our 
ontext, however, we 
an a
hieve more: We

give an expli
it 
onstru
tion of ea
h 
over, 
omparable to the 
onstru
tion

of 
overs of simpli
ial 
omplexes in x55 of Seifert and Threlfall [15℄.

Later in this paper we turn our attention to re
e
tions and lo
al re
e
tions

of graphs, a re
e
tion of a 
onne
ted graph being an involutive automor-

phism of the graph that does not stabilize any vertex with the property that

if one removes the darts of the graph that are normalized by the automor-

phism, then the graph be
omes dis
onne
ted (see the beginning of Se
tion

4). Applying the theory of re
e
tions of graphs to the Cayley graph of a

Coxeter group we obtain the following 
hara
terization.

Theorem 7.6 The following statements are equivalent:

(i) (W;S) is a Coxeter system.

(ii) (W;S) satis�es the ex
hange 
ondition.

(iii) The elements of S a
t as re
e
tions on the Cayley graph Cay(W;S).

In [12℄ this 
hara
terization is proven for the 
ontext of '
lassi
al graphs'

and used to identify as Coxeter groups re
e
tion groups on 
ertain topolog-

i
al spa
es.

Finally, we 
ombine the pre
eding theorem with our dis
ussion of monopoles

in Se
tion 5 to obtain a 
hara
terization of the Cayley graphs of Coxeter

groups.

Theorem 8.1 Let � : �! (v;D; �;�1) be a 1-
overing of a monopole. The

graph � is the Cayley graph of a Coxeter group if and only if � is regular and

any de
k transformation in �(�) that inter
hanges two neighboring verti
es

of � a
ts as a re
e
tion on �.

2. Coverings

Following [13℄, a graph � = (V;D; �;�1) 
onsists of a set V of verti
es, a

set D of darts, a map � : D ! V and a permutation �1 : D ! D : d 7! d

�1

with (�1)

2

= id. The map � assigns to ea
h dart its initial vertex, while
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the map �1 inter
hanges a dart and its reverse. The terminal vertex of

a dart x is the initial vertex of x

�1

. The orbits of �1 are 
alled edges. Note

that edges 
onsist of one or two darts. An edge is 
alled a semi-edge if its


ardinality is one, a loop if its 
ardinality is two and both darts 
ontained

in this edge have the same initial vertex, and a link otherwise.

A monopole is a graph 
onsisting of one vertex and a number of darts.

A morphism of graphs � : (V

1

;D

1

; �

1

;�1

1

)! (V

2

;D

2

; �

2

;�1

2

) 
onsists

of maps V

1

! V

2

and D

1

! D

2

su
h that �

1

� = ��

2

and (�1

1

)� = �(�1

2

).

A path of length t is a sequen
e of t darts 
 = x

1

� � � x

t

su
h that

the terminal vertex of x

k


oin
ides with the initial vertex of x

k+1

for all

1 � k � t � 1. A path of length 0 (or trivial path) is a vertex x. The

initial vertex of 
, denoted by 


�

, is the initial vertex of x

1

(resp., x in


ase of a trivial path), the terminal vertex of 
 is the terminal vertex of

x

t

(resp., x in 
ase of a trivial path). If a path 
 has initial vertex x, then


 is based at x. If its initial and terminal verti
es 
oin
ide, then 
 is 
alled

a 
y
le or a 
losed path.

If a path 


1

terminates at some vertex x and a path 


2

starts at the

same vertex x, then 


1




2

is a path, 
alled the 
on
atenation of 


1

and




2

. Note that 
on
atenation with the trivial path does not 
hange the path.

Furthermore, (


1




2

)

�

= 


�

1

and (


1




2

)

�1

= 


�1

2




�1

1

.

A graph is 
onne
ted if for ea
h pair x, y there exists a path from x

to y. We say that a vertex y is a neighbor of the vertex x if there exists

a dart d with d

�

= x and (d

�1

)

�

= y. Noti
e that the neighbor relation is

symmetri
. We denote the set of all neighbors of some vertex x by B

1

(x)

(`B' stands for ball) and the set B

1

(x)[fxg by D

1

(x) (`D' stands for disk).

Let � be a 
onne
ted graph. Two paths in � are 1-homotopi
 if one


an be obtained from the other by a �nite number of appli
ations of the

following operation, 
alled elementary 1-homotopy: inserting or deleting

a return, i.e., a 
y
le xx

�1

of length two: repla
e xx

�1

by x

�

or x

�

by xx

�1

.

A 
y
le that is homotopi
 to a 
y
le of length 0 is 
alled 1-homotopi
ally

trivial. By q

1

(�) denote the 1-fundamental groupoid (also 
alled path

groupoid) of �, that is, the set of all 1-homotopy 
lasses of paths in �

endowed with the partial multipli
ation ([


1

℄

1

; [


2

℄

1

) 7! [


1




2

℄

1

whenever

the terminal vertex of 


1


oin
ides with the initial vertex of 


2

; the subset

q

1

(�;x) � q

1

(�) of 1-homotopy 
lasses of paths in � with initial vertex

x is 
alled the path groupoid of � based at x. The subset �

1

(�;x) �

q

1

(�;x) � q

1

(�) of all 1-homotopy 
lasses of 
y
les in � based at some

vertex x forms a group, the 1-fundamental group (or path group) of �

at x.

Lemma 2.1. Let � be a 
onne
ted graph and let x, y be verti
es of �. Then

�

1

(�;x)

�

=

�

1

(�;y) via the isomorphism that, for a �xed path 
 from y to

x, assigns to a homotopy 
lass [Æ℄

1

of 
y
les based at x the homotopy 
lass

�


Æ


�1

�

1

of 
y
les based at y.
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Proof. As

�


Æ

1




�1

�

1

�


Æ

2




�1

�

1

=

�


Æ

1




�1


Æ

2




�1

�

1

=

�


Æ

1

Æ

2




�1

�

1

the given

map is a group homomorphism. Certainly, it is bije
tive, so it is an isomor-

phism. �

In a 
onne
ted graph �, by the above lemma, two path groups with base

points x, y are isomorphi
 under the transition map that, for a �xed path


 from y to x, assigns to a homotopy 
lass [Æ℄

1

of paths based at x the

homotopy 
lass

�


Æ


�1

�

1

of paths based at y. Any representative of this

isomorphism 
lass of path groups of � with base point is 
alled the path

group of �, denoted by �

1

(�). The 
orresponding transition map is 
alled

a base transformation.

De�nition 2.2. Let � = (V;D; �;�1) and

b

� = (

b

V ;

b

D;b�;




�1) be graphs. A

graph epimorphism � :

b

� ! � is 
alled a 1-
overing if, for every vertex

x 2

b

� the map � sends the set of darts of

b

� with initial vertex x bije
tively

onto the set of darts of � with initial vertex x

�

. The graph

b

� is 
alled a

1-
over of the graph �. The set �

�1

(x), x 2 V [D is 
alled a �ber; it is


alled a vertex �ber if x 2 V and a dart �ber if x 2 D.

A 
onne
ted graph � is 
alled 1-simply 
onne
ted if any 1-
overing

b

�! � with

b

� 
onne
ted is an isomorphism.

Lemma 2.3. Let � :

b

� ! � be a 1-
overing of graphs and let 
 be an

arbitrary path in � with initial vertex x. Then for every vertex
b
x 2 �

�1

(x)

there exists a unique path b
 with
b
x as initial vertex and b


�

= 
. Moreover,

1-homotopi
 paths of � lift to 1-homotopi
 paths of

b

�, and 1-homotopi
 paths

of

b

� are mapped onto 1-homotopi
 paths of �. In parti
ular, if 


1

and 


2

are 1-homotopi
 in �, then their lifts b


1

and b


2

in

b

� with identi
al initial

verti
es have identi
al terminal verti
es.

Proof. See Proposition 4.2 of [13℄. �

Let � :

b

�! � be a 1-
overing of graphs and let � be an automorphism of

�. We say that � lifts to

b

� if there exists an automorphism

b

� of

b

�, a lift

of �, su
h that

b

�� = ��. If � lifts then so does �

�1

. If, more generally, all

automorphisms in a group A � Aut � lift, then all those lifts form a group,

the lift

b

A � Aut

b

� of A. (See [13℄ for 
onditions under whi
h lifts exist.)

The trivial group of automorphisms of � always lifts. The group of all of

its lifts is 
alled the group of de
k transformations and is denoted by

�(�).

Proposition 2.4. Let � :

b

�! � be a 1-
overing of 
onne
ted graphs. Then

�(�) a
ts semi-regularly on

b

�, that is, �(�) a
ts �xed point-freely on both

the set of verti
es and the set of darts of

b

�.

Proof. This follows dire
tly from Lemma 2.3. �

De�nition 2.5. Let � :

b

� ! � be a 1-
overing of 
onne
ted graphs. It is


alled regular, if �(�) a
ts transitively on some, when
e ea
h, vertex �ber.
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The impli
ation of transitivity on ea
h vertex �ber by the transitivity on

some vertex �ber follows from Lemma 2.3 as follows. First, one observes

that by the 
onne
tedness of �, it is enough to show that if �(�) a
ts

transitively on �

�1

(x) for some vertex x of � it a
ts transitively on �

�1

(y)

for all neighbors y of x. So, let d be a dart with d

�

= x and (d

�1

)

�

= y.

Then by Lemma 2.3, the path d lifts to a unique path

b

d for ea
h
b
x 2 �

�1

(x).

Hen
e, if Æ 2 �(�) maps
b
x

1

onto
b
x

2

, it also maps the 
orresponding lift

b

d

1

of d starting at
b
x

1

onto the lift

b

d

2

of d starting at
b
x

1

, when
e (

b

d

�1

1

)

�

gets

mapped onto (

b

d

�1

2

)

�

. The transitivity of �(�) on the �ber of �

�1

(y) now

follows from the fa
t that ea
h element of the �ber of y is a neighbor of an

element of the �ber of x.

Remark 2.6. It seems tempting to extend the theory of 2-
overings to graphs

admitting loops and semi-edges as well. However, this does not lead to any

new 
on
ept at all. For, when studying 2-
overings of graphs one requires

that 
y
les of the form d

1

d

2

d

3

with d

�

1

= (d

�1

3

)

�

are null-homotopi
. For a

semi-edge d this implies that d is null-homotopi
, be
ause both dd and ddd

are null-homotopi
. Similarly, if l is a loop based at the vertex x and d is

any other dart based at x, then l is null-homotopi
 be
ause ldd

�1

and dd

�1

are null-homotopi
. Therefore the only 
onne
ted graph in whi
h loops and

semi-edges do not lift trivially is the graph 
onsisting of one vertex and a

loop, whose universal 2-
over is the 
omplete graph on three verti
es.

3. Fundamental and universal 
overs

De�nition 3.1. Let � = (V;D; �;�1) be a 
onne
ted graph and let x be a

vertex of �. Then the graph

b

� = (

b

V ;

b

D;b�;




�1) with

b

V = q

1

(�;x);

b

D =

�

([
℄

1

; d) 2 q

1

(�;x) �D j d

�

= (


�1

)

�

	

;

b� :

b

D !

b

V : ([
℄

1

; d) 7! [
℄

1

;




�1 :

b

D !

b

D : ([
℄

1

; d) 7! ([
d℄

1

; d

�1

)

is 
alled the fundamental 1-
over of � based at x.

Proposition 3.2. Let � be a 
onne
ted graph, let x be a vertex of �, and

let

b

� be the fundamental 1-
over of � based at x. Then the 
anoni
al map

� :

b

�! � with

�j

b

V

:

b

V ! V : 
 7! (


�1

)

�

�j

b

D

:

b

D ! D : ([
℄

1

; d) 7! d

is a 1-
overing map. Moreover, � :

b

�! � is an isomorphism if and only if

�

1

(�;x) is trivial.

Proof. Straightforward. �
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De�nition 3.3. Let �,

b

� be 
onne
ted graphs and let x 2 �,
b
x 2

b

� be

verti
es. A 1-
overing � :

b

� ! � mapping
b
x onto x is 
alled universal if,

for any 1-
overing � : �

1

! � and any x

1

2 �

�1

(x), there exists a unique

1-
overing map � :

b

�! �

1

with � = �� and
b
x

�

= x

1

.

Remark 3.4. By de�nition a universal 1-
overing � :

b

� ! � is regular.

Indeed, if x 2 �,
b
x 2

b

� with
b
x

�

= x, then, by the universality of �, for ea
h

x

1

2 �

�1

(x) there exists an automorphism of

b

� mapping
b
x onto x

1

.

Theorem 3.5. Let � be a 
onne
ted graph, let x be a vertex of �, and

let

b

� be the fundamental 1-
over of � based at x. Then the fundamental

1-
overing � :

b

�! � is universal.

Proof. Let � : �

1

! � be an arbitrary 1-
overing and let x

1

2 �

�1

(x).

By Lemma 2.3 any 
lass of paths [
℄

1

2 q

1

(�;x) lifts to a unique 
lass of

paths [b
℄

1

2 q

1

(�

1

;x

1

). De�ne a map � :

b

� ! �

1

by [
℄

�

1

= (b


�1

)

�

and

([
℄

1

; d)

�

=

b

d, where

b

d is the unique lift of d based at [
℄

�

1

= (b


�1

)

�

by

Lemma 2.3. It is 
lear that � :

b

� ! �

1

is a 1-
overing with � = �� and

x

�

= x

1

. Uniqueness follows from 
onne
tedness. �

Corollary 3.6. Let � be a 
onne
ted graph and let x be a vertex of �. Then

its fundamental 1-
over

b

� based at x is 1-simply 
onne
ted.

Proof. Let � :

b

� ! � be the fundamental 1-
overing and let � : �

1

!

b

� be

some 1-
overing. Then � := �� : �

1

! � is a 1-
overing. Let x

1

2 �

�1

(x) �

�

�1

(x). By the universal property of �, there exists a 1-
overing � :

b

�! �

1

mapping (x) onto x

1

with � = �� = ���. Then �� is a 1-
overing from

b

� onto itself with (x)

��

= (x), when
e it is the identity by the universal

property of �. Therefore � is inje
tive, when
e bije
tive. Thus the graph

morphism � is the inverse of the graph morphism � and both � and � are

graph automorphisms. Hen
e

b

� is 1-simply 
onne
ted. �

Let � be a 
onne
ted graph. If

b

�

1

is the fundamental 1-
over of � based

at x and

b

�

2

is the fundamental 1-
over of � based at y, and, moreover, if 


is an arbitrary path in � from y to x, then the map from

b

�

1

to

b

�

2

indu
ed

by [Æ℄

1

7! [
Æ℄

1

is an isomorphism of graphs. This proves the following.

Proposition 3.7. Let � be a 
onne
ted graph and let x, y be verti
es of �.

Then the fundamental 1-
over of � based at x is isomorphi
 to the funda-

mental 1-
over of � at y via base transformation. 2

Hen
e we 
an suppress the base point of a fundamental 1-
over and speak

of the fundamental 1-
over of �. If we speak of a fundamental 1-
over and a

path group in the same 
ontext, then we always assume that the parti
ular


over and the parti
ular group have the same base vertex.

Corollary 3.8 (of Theorem 3.5). Let � be a 
onne
ted graph. The graph �

is 1-simply 
onne
ted if and only if �

1

(�) is trivial.
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Proof. If �

1

(�) is non-trivial, then the fundamental 
over of � is not iso-

morphi
 to � by Proposition 3.2. Hen
e � is not simply 
onne
ted.

Conversely, assume that � is not simply 
onne
ted. Then it admits a 1-


overing � : �

1

! � for some �

1

that is not an isomorphism. If � :

b

�! � is

the 
anoni
al 1-
overing of � by its fundamental 1-
over

b

�, then, by Theorem

3.5, there exists a 1-
overing � :

b

� ! �

1

with � = ��. If � were to be an

isomorphism, then � would have to be inje
tive (as � is surje
tive) whi
h is

not the 
ase. So � is not an isomorphism and Proposition 3.2 implies that

�

1

(�) is non-trivial. �

Corollary 3.9 (of Corollary 3.8). Let � be a 
onne
ted graph and let � :

�

1

! � be a 1-
overing with 1-simply 
onne
ted �

1

. Then �

1

is isomorphi


to the fundamental 1-
over

b

� of �. 2

Theorem 3.10. Let � = (V;D; �;�1) be a 
onne
ted graph. Then, for

any vertex x of �, there is a one-to-one 
orresponden
e between 1-
overs

of � based at x and subgroups of �

1

(�;x). More pre
isely, if U is a sub-

group of �

1

(�;x), then the 
orresponding 1-
over of � is the graph �

0

=

(V

0

;D

0

; �

0

;�1

0

) with

V

0

= Un q

1

(�;x);

D

0

=

�

(U [
℄

1

; d) 2 Un q

1

(�;x) �D j d

�

= (


�1

)

�

	

;

b� : D

0

! V

0

: (U [
℄

1

; d) 7! U [
℄

1

;

�1

0

: D

0

! D

0

: (U [
℄

1

; d) 7! (U [
d℄

1

; d

�1

):

Note that we use the symbol n in the theorem to denote right 
osets, re-

spe
tively, U -orbits for the left multipli
ation a
tion on q

1

(�;x).

Proof. Given a subgroup U of �

1

(�;x) it is straightforward to 
he
k that

the graph �

0

given above is a 1-
over of �.

Conversely, let � : �

0

! � be a 1-
overing. By Theorem 3.5 there exists

a 1-
overing � :

b

� ! �

0

, where

b

� is the fundamental 
over of �. We 
an


onsider

b

� as the fundamental 1-
over of �

0

based at x

�

, sin
e

b

� is 1-simply


onne
ted, so by Corollary 3.9 isomorphi
 to the fundamental 1-
over of

�

0

. By Lemma 2.3 the 1-
overing � indu
es an embedding of �

1

(�

0

;x

�

) in

�

1

(�;x). (It indu
es a well-de�ned map as images of homotopi
 paths are

homotopi
. This indu
ed map is inje
tive as lifts of homotopi
 paths are

homotopi
.) We have identi�ed �

1

(�

0

;x

�

) with a subgroup of �

1

(�;x) and

hen
e �

0

= �

1

(�

0

;x

�

)n

b

�, �nishing the proof. �

Corollary 3.11 (of Lemma 2.1 and Theorem 3.10). Let � be a 
onne
ted

graph. Then there is a one-to-one 
orresponden
e between equivalen
e 
lasses

of 1-
overs of � without base vertex and 
onjuga
y 
lasses of subgroups of

�

1

(�). 2

Corollary 3.12 (of Theorem 3.10). Let � : �

1

! �

2

be a 1-
overing and let

y = x

�

for some vertex x of �

1

. Then � indu
es a group monomorphism

�

#

: �(�

1

;x)! �(�

2

;y). 2
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Corollary 3.13 (of Theorem 3.10). Let � : �

1

! �

2

be a 1-
overing with

y = x

�

for some vertex x 2 �

1

. Assume that � : �

0

! �

2

is another 1-


overing, and let w 2 �

�1

(y). Then a 1-
overing � : �

0

! �

1

with �� = �

exists if and only if �

1

(�

0

;w)

�

#

� �

1

(�

1

;x)

�

#

. Moreover, if su
h a � exists

it is unique. 2

Corollary 3.14 (of Corollary 3.13). Let � : �

1

! �

2

be a 1-
overing with

y = x

�

for some vertex x 2 �

1

and let x

0

2 �

�1

(x). Then there exists a

de
k transformation in �(�) taking x

0

to x if and only if �

1

(�

1

;x

0

)

�

#

=

�

1

(�

1

;x)

�

#

.

Proof. Let � 2 �(�) be the de
k transformation taking x

0

to x. Then

Corollary 3.13 applies with �

0

= �

1

, w = x

0

and � = � and � = �� =

�, yielding �

1

(�

1

;x

0

)

(��)

#

= �

1

(�

1

;x

0

)

�

#

� �

1

(�

1

;x)

�

#

. The reverse

in
lusion follows by symmetry. �

Corollary 3.15 (of Lemma 2.1 and Corollary 3.14; 
f. Corollary 5.5 of [13℄).

Let � : �

1

! �

2

be a 1-
overing with y = x

�

for some vertex x 2 �

1

. The

subgroup �

1

(�

1

;x)

�

#

of �

1

(�

2

;y) is normal if and only if � is a regular

1-
overing.

Proof. The base transformation of Lemma 2.1 between bases x

0

, x inside the

�ber �

�1

(y) proves that �

1

(�

1

;x)

�

#

and �

1

(�

1

;x

0

)

�

#

are 
onjugate inside

�

1

(�

2

;y). On the other hand, by Corollary 3.14, we have �

1

(�

1

;x

0

)

�

#

=

�

1

(�

1

;x)

�

#

for all x

0

2 �

�1

(y) if and only if �(�) a
ts transitively on

�

�1

(y), i.e., if and only if � is a regular 1-
overing. �

Corollary 3.16 (of Corollary 3.15). Let � : �

1

! �

2

be a regular 1-
overing

with y = x

�

for some vertex x 2 �

1

. Then

�(�)

�

=

�

1

(�

2

;y)=�

1

(�

1

;x)

�

#

:

2

Corollary 3.17 (of Corollaries 3.8 and 3.16). Let � : �

1

! �

2

be a regular

1-
overing with y = x

�

for some vertex x 2 �

1

. If, moreover, �

1

is 1-simply


onne
ted, then

�(�)

�

=

�

1

(�

2

;y):

2

Remark 3.18. The 
on
ept of a fundamental 
over for simpli
ial 
omplexes

already exists in the literature, e.g. x55 of Seifert and Threlfall [15℄. The

purpose of Se
tion 3 is to provide an extension of the simpli
ial 
overing

theory to graphs with semi-edges.

4. Refle
tions and lo
al refle
tions

For an automorphism � of a 
onne
ted graph � = (V;D; �;�1) set

Fix

�

(V ) := fv 2 V j v

�

= vg ; the set of �xed verti
es, and

Norm

�

(D) :=

�

d 2 D j d 6= d

�

= d

�1

	

; the set of properly normalized darts.
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An involution � of a 
onne
ted graph � = (V;D; �;�1) is 
alled a re
e
-

tion, if Fix

�

(V ) = ; and if �

�

= (V;D

�

; �

�

;�1

�

) with D

�

= DnNorm

�

(D)

and �

�

= �j

D

�

, �1

�

= �1j

D

�

is dis
onne
ted. We write x �

�

x

0

if x and

x

0

are verti
es of the same 
onne
ted 
omponent in �

�

and we say that �

separates x and x

0

if we have x 6�

�

x

0

. For x 2 V set

V

�

+

(x) = fy 2 V j x �

�

yg and V

�

�

(x) = fy 2 V j x 6�

�

yg:

An involution � of a 
onne
ted graph � is 
alled a lo
al re
e
tion if

there exists a vertex v with D

1

(v)\D

1

(v

�

) 6= ; and if, for any vertex v with

D

1

(v) \D

1

(v

�

) 6= ;, the restri
tion of � to D

1

(v) \D

1

(v

�

) is a re
e
tion.

Proposition 4.1. Let � = (V;D; �;�1) be a 
onne
ted graph. Any lo
al

re
e
tion � : �! � has the following properties. The set Fix

�

(V ) is empty,

the graph �

�


onsists of one or two 
onne
ted 
omponents, and, for every

dart d with d 6= d

�

= d

�1

, the graph (V;D

�

[

�

d; d

�1

	

; �j

D

�

[fd;d

�1

g

;�1j

D

�

[fd;d

�1

g

)

is 
onne
ted.

Proof. Suppose v 2 Fix

�

(V ). Then D

1

(v) \D

1

(v

�

) 
ontains v = v

�

, so the

restri
tion of � to D

1

(v) \D

1

(v

�

) is not a re
e
tion.

Suppose �

�


onsists of more than two 
onne
ted 
omponents. Sin
e darts

of � with d 6= d

�

= d

�1


an only 
onne
t 
onne
ted 
omponents of �

�

that are inter
hanged by �, the original graph � 
annot be 
onne
ted, a


ontradi
tion. Hen
e �

�


onsists of one or two 
onne
ted 
omponents.

The last statement is trivially true if �

�

is 
onne
ted. If it is dis
on-

ne
ted, then, by the above, it 
onsists of two 
onne
ted 
omponents, and

the 
onne
ted 
omponents have to be inter
hanged by �. Adding any dart

of � with d 6= d

�

= d

�1

obviously 
onne
ts the two 
omponents. �

Corollary 4.2. Let � = (V;D; �;�1) be a 
onne
ted graph. A lo
al re
e
tion

of � is a re
e
tion if and only if �

�


onsists of two 
onne
ted 
omponents.

2

Theorem 4.3. Let � = (V;D; �;�1) be a 
onne
ted graph. Any lo
al re
e
-

tion � of � 
an be lifted to a re
e
tion b� of

b

� = (

b

V ;

b

D;b�;




�1) with

b

V = V � f�1; 1g ;

b

D = D � f�1; 1g ;

b� :

b

D !

b

V : (d;�1) 7! (d

�

;�1)




�1 :

b

D !

b

D : (d;�1) 7!

�

(d

�1

;�1); if d 62 Norm

�

(D);

(d

�1

;�1); if d 2 Norm

�

(D);

mapping (v;�1) onto (v

�

;�1) and (d;�1) onto (d

�

;�1). The 
anoni
al

map � :

b

�! � is a 1-
overing and �� = �b�.
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Proof. The only thing to prove is the fa
t that b� is a re
e
tion. It is a graph

morphism, sin
e

((d;�1)

�

)

b�

= (d

�

;�1)

b�

= (d

��

;�1)

= (d

��

;�1)

= (d

�

;�1)

�

= ((d;�1)

b�

)

�

and

((d;�1)

�1

)

b�

= (d

�1

; �(�1))

b�

= (d

(�1)�

; �(�1))

= (d

�(�1)

; �(�1))

= (d

�

;�1)

�1

= ((d;�1)

b�

)

�1

where � = 1 if d 62 Norm

�

(D) and � = �1 if d 2 Norm

�

(D). Be
ause b�

2

= id

the morphism b� is an automorphism. Certainly, the graph

b

� is 
onne
ted

and Fix

b�

(

b

V ) = ;. The set Norm

b�

(

b

D) equals f(d;�1) j d 2 Norm

�

(D)g and

the graph

b

�

b�


onsists of two 
onne
ted 
omponents. Therefore b� is a re
e
-

tion. �

Lemma 4.4. If � is a (lo
al) re
e
tion on a graph � = (V;D; �;�1) and

� is a graph automorphism of �, then �

�1

�� is a (lo
al) re
e
tion and we

have Norm

�

�1

��

(D) = (Norm

�

(D))

�

.

Proof. We have d 2 (Norm

�

(D))

�

if and only if d

�

�1

2 Norm

�

(D), whi
h

is equivalent to d

�

�1

�

= (d

�

�1

)

�1

= (d

�1

)

�

�1

, when
e d

�

�1

��

= d

�1

, whi
h

in turn is equivalent to d 2 Norm

�

�1

��

(D). In the same way, we 
an prove

Fix

�

�1

��

(V ) = Fix

�

(V )

�

, and in our 
ase that set is empty. Sin
e � is a

graph automorphism, the graph �

�

�1

��

= (V;D

�

�1

��

; �

�

�1

��

;�1

�

�1

��

) is

not 
onne
ted, so �

�1

�� is a (lo
al) re
e
tion. �

Let � be a graph and let � : W ! Aut(�) be a group a
tion �. The

a
tion � is free if no vertex of � is �xed by a group element other than

the identity. This implies that � is inje
tive, so we may think of W as a

subgroup of Aut(�).

Lemma 4.5. Let � = (V;D; �;�1) be a graph and let W a
t freely on �.

We have

Norm

w

(D) \Norm

v

(D) = ;

for ea
h pair v, w of distin
t involutions in W . In parti
ular, any involution

r 2 W a
ting as a lo
al re
e
tion of � is uniquely determined by the set

Norm

r

(D).

Proof. Noti
e Norm

v

(D) = Norm

v

�1(D). Suppose d 2 Norm

w

(D)\Norm

v

(D)

and, thus, d 2 Norm

w

(D) \Norm

v

�1(D). Sin
e the operation of W is free,
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the equality (d

�

)

wv

�1

= ((d

wv

�1

)

�

) = ((d

�1

)

v

�1

)

�

= d

�

implies wv

�1

= 1,

when
e w = v. The se
ond statement is 
lear sin
e Norm

r

(D) is not empty

for a lo
al re
e
tion r 2W . �

De�nition 4.6. Let W be a group generated by a symmetri
 subset S, i.e.,

S

�1

= S, with 1 =2 S. A word (on S) is a sequen
e (s

1

; s

2

; : : : ; s

n

) of

elements of S. Let w 2 W . The length `

S

(w) or simply `(w) of w (with

respe
t to S) is the smallest integer n � 0 su
h that w = s

1

s

2

� � � s

n

for a

word (s

1

; s

2

; : : : ; s

n

). A redu
ed de
omposition of w (with respe
t to S)

is a word (s

1

; s

2

; : : : ; s

n

) su
h that we have w = s

1

s

2

� � � s

n

and n = `(w).

Lemma 4.7. Let � = (V;D; �;�1) be a graph and let W a
t on �. Let S be

a generating subset of W su
h that every element of S a
ts as a re
e
tion

of �. Suppose there is a vertex x su
h that for every s 2 S there exists a

d

x;x

s

2 D with d

�

x;x

s

= x and (d

�1

x;x

s

)

�

= (d

x

s

;x

)

�

= x

s

. Furthermore suppose

for all s; t 2 S, w 2W , the relation x

s

= x

wtw

�1

implies s = wtw

�1

. Then

the stabilizer W

x

is trivial.

Proof. Suppose, we have x

w

= x for a w 2 W of minimal length n � 1.

Take a redu
ed de
omposition (s

1

; s

2

; : : : ; s

n

) of w with respe
t to S. Con-

sider the path d

x;x

s

n

d

x

s

n

;x

s

n�1

s

n

� � � d

x

s

2

���s

n

;x

s

1

s

2

���s

n with initial and terminal

vertex x (the dart d

x

s

j

���s

n

;x

s

j�1

s

j

���s

n
exists as d

x;x

s

j�1

exists and s

j

� � � s

n

is

an automorphism of �). The verti
es x and x

s

n

are separated by s

n

. So

there must be an index 1 < j � n, su
h that s

n

separates x

s

j

s

j+1

:::s

n

and

x

s

j�1

s

j

:::s

n

. In other words, we have x

(s

j

s

j+1

���s

n

)s

n

= x

s

j�1

s

j

���s

n

or equiva-

lently x

(s

j

s

j+1

���s

n

)s

n

(s

j

s

j+1

���s

n

)

�1

= x

s

j�1

. By hypothesis we get

(s

j

s

j+1

� � � s

n

)s

n

(s

j

s

j+1

� � � s

n

)

�1

= s

j�1

or equivalently s

j

s

j+1

� � � s

n

= s

j�1

s

j

� � � s

n�1

when
e

s

1

s

2

� � � s

n

= s

1

s

2

� � � s

j�2

s

j

s

j+1

� � � s

n�1

;

whi
h is a 
ontradi
tion to the minimality of n. �

Proposition 4.8. Let � be a 
onne
ted graph, let W a
t on � and let S

be a generating subset of W . Suppose there is a vertex x 2 V su
h that for

ea
h dart d with initial vertex x there is an s 2 S with x

s

= (d

�1

)

�

. Then

the a
tion of W on the set of verti
es of � is transitive.

Proof. By a straightforward indu
tion argument. �

5. Covers of monopoles

De�nition 5.1. An automaton is a triple A = (S;X; �) where S is a set,

the set of states, X is a set, the set of inputs, and � : S�X ! S is a map,

the transition map. (By iteration we 
an and sometimes will 
onsider � as

a map from S�X

�

into S, where X

�

is the monoid of of all words over the

alphabet X.) The transition semi-group G

A

of the automaton A 
onsists

of the transformations g : S ! S su
h that there exists an x 2 X

�

su
h that
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s

g

= (s; x)

�

for all s 2 S. The automaton A is 
alled a group automaton

if its transition semi-group G

A

is a group.

Obviously, in a group automaton the map �

x

: S ! S : s 7! (s; x)

�

is a

permutation of S for arbitrary x 2 X. Therefore we 
an add the symbol

x

�1

to X and de�ne the map �

x

�1
as the inverse map of �

x

. Then X admits

an involution �1 with the property (x

�1

)

�1

= x. If a group automaton

A = (S;X; �) satis�es X

�1

= X, then it is 
alled symmetri
. A group

automaton is 
alled homogeneous if s

�

x

= s

�

y

for some s 2 S implies

s

�

x

= s

�

y

for all s 2 S.

The transition graph � = (V;D; �;�1) of a symmetri
 group automaton

A = (S;X; �) 
onsists of

b

V = S;

b

D = S �X;

� : D ! V : (s; x) 7! s;

�1 : D ! D : (s; x) 7! ((s; x)

�

; x

�1

):

Theorem 5.2. Any transition graph of a symmetri
 group automaton is a

1-
over of a monopole and vi
e versa.

Proof. Certainly, the 
anoni
al proje
tion S � X ! X extends to a 1-


overing of the monopole (fSg ;X; ��;�1) with �� : X ! fSg the 
onstant

map and �1 : X ! X the inversion map.

Conversely, let

b

� = (

b

V ;

b

D;b�;




�1) be a 1-
over of the monopole � =

(v;D; �;�1). Then (

b

V ;D; �) with (x; d)

�

de�ned as the terminal vertex

in

b

V of the unique lift of the path d of length one to a path of

b

� with

initial vertex x by Lemma 2.3, is an automaton. It even is a group automa-

ton, be
ause �

d

�1
is the inverse of �

d

. Moreover, D

�1

= D implies that

the group automaton is symmetri
. Obviously,

b

� is the transition graph of

(

b

V ;D; �). �

An automaton A = (S;X; �) is 
alled strongly 
onne
ted if for ea
h pair

s, t of states there exists an x 2 X

�

with (s; x)

�

= t. The transition graph of

a symmetri
 group automaton is 
onne
ted if and only if the 
orresponding

automaton is strongly 
onne
ted.

Lemma 5.3. Let

b

� be the transition graph of a strongly 
onne
ted symmetri


group automaton (S;X; �) and let � = (v;D; �;�1) be a monopole 1-
overed

by

b

�. The 1-
overing

b

�! � is regular if and only if (S;X; �) is homogeneous

and for ea
h x 2 X the map �

x


an be extended to an automorphism of

b

�.

Proof. Suppose for ea
h x 2 X the map �

x


an be extended to an auto-

morphism of

b

� and (S;X; �) is homogeneous. There exists an equivalen
e

relation on X de�ned by x � y if and only if s

�

x

= s

�

y

for some, when
e by

homogeneity of (S;X; �), all s 2 S. Certainly (S;X=�; �� ) is a homogeneous

strongly 
onne
ted symmetri
 group automaton and for ea
h �x 2 X=�



14 RALF GRAMLICH AND GEORG W. HOFMANN AND KARL-HERMANN NEEB

the map ��

�x


an be extended to an automorphism of the transition graph

of (S;X=�; ��). All edges ex
ept at most one of the transition graph of

(S;X=�; �� ) are links. Moreover, ea
h link is uniquely determined by its ini-

tial and terminal verti
es. It is 
lear that ea
h map �

�x

indu
es a (uniquely

determined) de
k transformation of the 1-
overing from the transition graph

of (S;X=�; �� ) onto some monopole with dart set X=�. But now it is trivial

to extend �

x

to a de
k transformation of the 1-
overing

b

�! �. The strong


onne
tedness of (S;X; �) yields transitivity of the group of de
k transfor-

mations on the vertex �bers, when
e

b

�! � is regular.

Conversely, assume that

b

� ! � is regular. Then for ea
h pair x, y of

neighbors in

b

� there exists a de
k transformation mapping x to y. This

implies the homogeneity of (S;X; �). Moreover, the restri
tion of this au-

tomorphism to the set of verti
es 
oin
ides with the map �

d

where d is the

dart in � that lifts to some dart

b

d in

b

� with initial vertex x and terminal

vertex y. �

Example 5.4 (An inhomogeneous group automaton). Let S = f1; 2; 3; 4g,

let X =

�

a; a

�1

; b; b

�1

; 
; 


�1

	

and de�ne � as follows.

a a

�1

b b

�1


 


�1

1 2 4 2 2 4 4

2 3 1 1 1 3 3

3 4 2 4 4 2 2

4 1 3 3 3 1 1

:

Noti
e that the map �

a


an be extended to an automorphism of the transition

graph � of the group automaton (S;X; �) but not to a de
k transformation of

the 
anoni
al 1-
overing. Indeed, if an automorphism of � indu
ed by �

a

is a

de
k transformation, then it has to preserve the �ber �

�1

(a) of the 1-
overing

� : �! (fSg ;X; �;�1). But then this automorphism has to inter
hange the

�bers �

�1

(b) and �

�1

(
) and, thus, is not a de
k transformation.

In [13℄ one 
an �nd a 
hara
terization of graphs that are regular 1-
overs

of monopoles. Here is a brief reminder of their result.

De�nition 5.5. A voltage spa
e on a 
onne
ted graph � is a triple (F;G; �)

where G is a group a
ting on a non-empty set F and � : q

1

(�) ! G is a

homomorphism of groupoids. The group G is 
alled the voltage group, the

set F is the abstra
t �ber and [
℄

�

1

is the voltage of the 1-homotopy 
lass

of the path 
.

In 
ase G a
ts on F = G by right translation, then (F;G; �) is 
alled a

Cayley voltage spa
e.
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To any voltage spa
e (F;G; �) over some graph � there exists the asso
i-

ated graph

b

� = (

b

V ;

b

D;b�;




�1) with

b

V = V � F;

b

D = D � F;

b� :

b

D !

b

V : (d; f) 7! (d

�

; f);




�1 :

b

D !

b

D : (d; f) 7! (d

�1

; f

(d

�

)

):

One 
an 
he
k that the 
anoni
al proje
tion � :

b

�! � indu
ed by (d; f)

�

=

d is a 1-
overing.

It was observed in [13℄ (see also [10℄) that with ea
h regular 1-
overing

� :

b

� ! � one 
an asso
iate a Cayley voltage spa
e as follows. Choose

G to be the group of de
k transformations �(�) and label the elements of

ea
h vertex �ber by G so that the left a
tion of �(�) on

b

� indu
es the

a
tion of �(�) on itself by left translation on ea
h labelled vertex �ber. The

homomorphism � : q

1

(�) ! �(�) is given by d

�

= g

�1

1

g

2

for ea
h dart d

if there exists a dart in �

�1

(d) passing from the element labelled g

1

in the

vertex �ber of d

�

to the element labelled g

2

in the vertex �ber of (d

�1

)

�

.

Note that � is well-de�ned. Indeed, if there exists another dart in �

�1

(d)

with initial vertex labelled g

3

and terminal vertex labelled g

4

, then, by the

left a
tion of G = �(�), we have g

3

g

�1

1

= g

4

g

�1

2

and hen
e g

�1

1

g

2

= g

�1

3

g

4

.

Given a group G and a generating multiset S = S

�1

of G (i.e., we have

a map � : S ! G with hS

�

i = G and (s

�1

)

�

= (s

�

)

�1

for all s 2 S), the

Cayley graph Cay(G;S) is the graph (G;G � S; �;�1) where (g; s)

�

= g

and (g; s)

�1

= (gs

�

; s

�1

).

Theorem 5.6 (Malni
, Nedela, Skoviera [13℄). Any Cayley graph is a reg-

ular 1-
over of a monopole and vi
e versa.

Proof. Consider the Cayley graph Cay(G;S) of the group G with respe
t to

the generating multiset S = S

�1

. Then the map indu
ed by the 
anoni
al

proje
tion G � S 7! S extends to a regular 1-
overing of the monopole

(fGg ; S; ��;�1) with �� : S ! fGg the 
onstant map and �1 : S ! S the

inversion map.

To prove the 
onverse, re
all that by the above any regular 1-
overing

� :

b

�! � gives rise to some Cayley voltage spa
e (�(�);�(�); �). Suppose

we have a 1-
overing of some monopole � = (v;D; �;�1). Then the graph

b

� = (

b

V ;

b

D;b�;




�1) asso
iated to the voltage spa
e (�(�);�(�); �) 
onsists of

b

V = fvg ��(�) = �(�);

b

D = D ��(�);

b� :

b

D !

b

V : (d; f) 7! (d

�

; f) = (v; f) = f;




�1 :

b

D !

b

D : (d; f) 7! (d

�1

; f

(d

�

)

) = (d

�1

; fd

�

);
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whi
h is the Cayley graph of �(�) with respe
t to the generating multiset

D. �

Corollary 5.7. Let � = (V;D; �;�1) be a 
onne
ted graph, suppose the

group W a
ts regularly on � and let S � W be a symmetri
, generating

multiset. If for a �xed vertex x of � the set of darts with initial vertex x

equals fd

s

2 D j s 2 Sg with (d

�1

s

)

�

= s:x and d

s

= d

t

if and only if s = t,

then the map �

x

:W � S ! D : (w; s) 7! w:d

s

indu
es an equivariant graph

isomorphism from the Cayley graph Cay(W;S) of W with respe
t to S to

the graph �.

Proof. Let (x; fd

s

2 D j s 2 Sg; �

0

;�1

0

) be a monopole where �

0

: fd

s

2

D j s 2 Sg ! fxg is the 
onstant map and �1

0

: fd

s

2 D j s 2 Sg !

fd

s

2 D j s 2 Sg : d

s

7! d

s

�1 . The map � : (V;D; �;�1) ! (x; fd

s

2 D j

s 2 Sg; �

0

;�1

0

) with (w:d

s

)

�

= d

s

is a regular 1-
overing. Indeed, it is a

morphism as d

�1

s

= s:d

s

�1
and w:d

�1

s

= ws:d

s

�1
when
e (�1)� = �(�1

0

)

(the 
ondition �� = ��

0

is satis�ed trivially), it is a 1-
overing sin
e the w:d

s

,

s 2 S, are the darts with initial vertex w:x, and it is regular as the groupW is

a lift of the identity a
ting regularly on �. In parti
ular, by Proposition 2.4,

we have W

�

=

�(�). Hen
e, by the theorem, (V;D; �;�1) 
an be 
onsidered

as the Cayley graph of �(�)

�

=

W with respe
t to S. The equivarian
e

follows by the a
tion W ! Aut(Cay(W;S)) : g 7! f(w; s) 7! (gw; s)g on the

Cayley graph and the a
tion W ! Aut(�) : g 7! fw:d

s

7! gw:d

s

g on �. �

Remark 5.8. Consider the a
tion of W on its Cayley graph with respe
t to

S, and suppose the elements of S a
t as re
e
tions. Due to Lemma 4.4, the

set R := fwsw

�1

: s 2 S;w 2Wg 
onsists of re
e
tions.

Corollary 5.9 (of Theorem 5.6). Any Cayley graph (G;G � S; �;�1) of a

group G generated by a multiset S 
onsisting of involutions is a regular 1-


over of the monopole (fGg ; S; �

0

;�1

0

) (with �

0

the 
onstant map and �1

0

the

identity map) admitting only semi-edges. Conversely, if � : �! (v;D; �;�1)

is a regular 1-
overing onto a monopole admitting only semi-edges, then �

is the Cayley graph of a group G

�

=

�(�) generated by involutions. 2

Corollary 5.10 (of Lemma 5.3 and Theorem 5.6). The transition graph �

of some strongly 
onne
ted symmetri
 group automaton (S;X; �) is a Cayley

graph if and only if (S;X; �) is homogeneous and for ea
h x 2 X the map

�

x


an be extended to an automorphism of �. 2

6. Chambers

For the next de�nition re
all that R = fwsw

�1

: s 2 S;w 2Wg.

De�nition 6.1. Let � be a 
onne
ted graph and let W a
t freely on �. More-

over, assume W is generated by a subset S of elements that a
t as re
e
tions

on �. Sin
e the a
tion of W is free the elements of S are involutions, so S

is symmetri
, i.e., S

�1

= S. De�ne the equivalen
e relation �:= \

s2R

�

s

on X. The equivalen
e 
lasses of this relation are 
alled 
hambers. De�ne
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the 
hamber graph �

C

on the 
hambers of � with darts d

C;C

0

with initial

vertex C and terminal vertex C

0

for distin
t 
hambers C, C

0

if there exists

a dart d of � with d

�

= x 2 C and (d

�1

)

�

= x

0

2 C

0

. Moreover, de�ne

(d

C;C

0

)

�1

= d

C

0

;C

. The group W also a
ts on �

C

and the elements of S a
t

as re
e
tions on �

C

. Indeed, for ea
h s 2 S, the graph �

s

(
f. the de�ni-

tion of a re
e
tion at the beginning of Se
tion 4) 
onsists of two 
onne
ted


omponents, and any 
hamber is 
ompletely 
ontained in one 
omponent.

For s 2 R, we shall 
all Norm

s

(D) a wall of a 
hamber C, if Norm

s

(D)


ontains a dart whose initial vertex is 
ontained in C. By S

C

we denote the

set of all s 2 R for whi
h Norm

s

(D) is a wall of the 
hamber C. With S

also R 
onsists of involutions, and so does S

C

�

~

S.

Let s 2 R. We say that a path d

C

0

;C

1

d

C

1

;C

2

� � � d

C

n�1

;C

n


rosses s, if

the set of indi
es 0 � j < n with C

j

6�

s

C

j+1

is not empty. The wall s is


rossed n times by a path if the set of indi
es 0 � j < n with C

j

6�

s

C

j+1

has n elements.

Lemma 6.2. If the dart d

C;C

0

exists, then there is a unique element s 2 R

separating C and C

0

. For this element we have C

s

= C

0

.

Proof. Sin
e d

C;C

0

is a dart of the 
hamber graph, there exists a dart d of �

with d

�

= x 2 C and (d

�1

)

�

= x

0

2 C

0

. Sin
e C and C

0

are distin
t, there

is an s 2 S separating x and x

0

. This means d 2 Norm

s

(D), so we have

x

s

= x

0

and hen
e C

s

= C

0

. For any re
e
tion r separating x and x

0

we get

d 2 Norm

r

(D) and 
an 
on
lude s = r due to Lemma 4.5, whi
h proves the

uniqueness of s. �

Re
all that W a
ts freely on �.

Proposition 6.3. The distan
e between two 
hambers C and C

0

is equal to

the number of elements s 2 R separating C and C

0

.

Proof. Let C and C

0

be 
hambers and let d

C;C

1

d

C

1

;C

2

� � � d

C

n�1

;C

0

be a mini-

mal path from C to C

0

of length n. Let m be the number of elements s 2 R

separating C and C

0

. For every s 2 R separating C and C

0

there is an index

0 � j < n su
h that s separates C

j

and C

j+1

and s is uniquely determined

by this property due to Lemma 6.2. This entails m � n.

Now we assumem < n. So there is an s 2 R separating C and C

0

su
h that

there are two di�erent indi
es j and j

0

with C

j

6�

s

C

j+1

and C

j

0

6�

s

C

j

0

+1

.

Without loss of generality, we 
an assume j < j

0

and C

j+1

�

s

C

j

0

. But then

the path d

C;C

1

� � � d

C

j�1

;C

j

=C

s

j+1

� � � d

C

s

j

0

=C

j

0

+1

;C

j

0

+2

� � � d

C

n�1

;C

0

has the length

n� 2, whi
h is a 
ontradi
tion to the fa
t that the path is minimal. �

Corollary 6.4. Minimal galleries 
ross every s 2 R at most on
e. 2

Proposition 6.5. The group W is generated by S

C

and a
ts transitively on

the set of 
hambers and R is the set of all re
e
tions in W .

Proof. By Proposition 4.8 the subgroup

~

W := hS

C

i of W generated by the

elements of S

C

a
ts transitively on the set of 
hambers. Sin
e R 
onsists
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of re
e
tions and generates W , it suÆ
es to show that every re
e
tion lies

in

~

W . Let r be a re
e
tion and let d 2 Norm

r

(D). Then d

�

= x

1

lies in a


hamber

~

C. There is a w 2

~

W , su
h that C

w

=

~

C. Sin
e Norm

r

(D) is a

wall of

~

C, the set Norm

r

(D)

w

�1

= Norm

wrw

�1
(D) (
f. Lemma 4.4) is a wall

of C. We get wrw

�1

2 S. This means r 2

~

W and r 2 R. Sin
e R 
onsists

of re
e
tions, it is pre
isely the set of all re
e
tions. Sin
e it generates W

and its elements lie in

~

W , the set S

C

generates W . �

Proposition 6.6. The group W a
ts regularly on the set of 
hambers.

Proof. Let C be a 
hamber. Then d

C;C

s

is a dart of the 
hamber graph for

every s 2 S

C

. If we have C

~s

= C

s

for s 2 S

C

and ~s 2 R then we get ~s = s

by Lemma 6.2. So by Lemma 4.7 the stabilizer W

C

is trivial. Sin
e W a
ts

transitively on the set of 
hambers, this implies regularity. �

Corollary 6.7. The 
hamber graph �

C

is isomorphi
 to the Cayley graph

Cay(W;S

C

). Moreover, this isomorphism is W -equivariant.

Proof. This follows by the proposition and Corollary 5.7. �

Corollary 6.8. There exists a 1-1 
orresponden
e between words on S and

paths in �

C

with initial vertex C. Two words on S represent the same

element of W if and only if the terminal verti
es of the 
orresponding paths

based at C 
oin
ide. 2

The following result states for a very spe
ial 
ase that S

C

is a minimal

generating set for W . We will need this result for the proof of Theorem 7.4.

Lemma 6.9. Let C be a 
hamber and let s

1

6= s

2

2 S

C

. Suppose that W is

generated by S = fs

1

; s

2

g. Then S = S

C

.

Proof. A

ording to [2℄ Ch. IV x 1, the pair (W;S) is a Coxeter system,

as S 
onsists of two involutions. Let �

1

be the Cayley graph of W with

respe
t to S, and let �

2

be the Cayley graph of W with respe
t to S

C

.

Both graphs have the same set of verti
es and every dart in �

1

is a dart in

�

2

. By Corollary 6.7, the 
hamber graph 
an be identi�ed with �

2

. It is

easily veri�ed by studying the Cayley graph of dihedral groups (i.e. groups

generated by two involutions) that, if we add a non-empty set of edges to the

graph G

1

, then the resulting graph is not G-invariant or the group elements

fw

�1

sw : w 2 W; s 2 Sg do not all a
t as re
e
tions on it. We 
on
lude

that both graphs �

1

and �

2

have the same set of darts. Sin
e the number of

darts emanating from 1 in the Cayley graph is just the number of generators,

we obtain jSj = jS

C

j, and thus S

C

= S. �

The following result shows an interesting way of 
hara
terizing the �nite-

ness of the group W .

De�nition 6.10. Let C be a 
hamber. Set �C :=

T

s2R

X

s

�

(C), so �C is

the (possibly empty) set of all verti
es, whi
h are separated by every s 2 R

from the verti
es in C.
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Theorem 6.11. Let C be a 
hamber. The group W is �nite if and only if

the set �C is non-empty; in this 
ase �C is a 
hamber. If W is �nite then

the following hold:

(i) The map C 7! �C is an equivariant involution of the 
hamber

graph.

(ii) S

C

= S

�C

.

(iii) �C =

\

s2S

C

X

s

�

(C).

(iv) The 
hamber �C is the unique 
hamber with maximal distan
e from

the 
hamber C.

Proof. Assume that �C is non-empty and let x;y 2 �C. The verti
es x, y


annot be separated by any s 2 R, as x, y both are separated by all s 2 R

from any z 2 C. Therefore �C is a 
hamber. All elements of R separate C

and �C. The 
hamber graph is 
onne
ted, be
ause the 
hambers partition

the vertex set of � and � is 
onne
ted, so by Proposition 6.3 the set R is

�nite. As a 
onsequen
e, the set of all 
hambers is �nite. Sin
e W a
ts

regularly on this set, it is a �nite group.

Now let W be �nite. So the set of 
hambers is �nite. Let

~

C be a


hamber with maximal distan
e n from C. Suppose there is an s 2 R

that does not separate

~

C and C. Then the 
hamber

~

C

s

has distan
e

m � n from C. Let d

C;C

1

� � � d

C

m�1

;C

m

=

~

C

s

be a minimal path from C to

~

C

s

. There is an index 0 � j < m su
h that C

s

j

= C

j+1

. The path

d

C;C

1

� � � d

C

j

=C

s

j+1

;C

s

j+2

� � � d

C

s

m�1

;C

s

m

=

~

C

has the length m � 1 < n, whi
h is

a 
ontradi
tion. So we have

~

C = �C. We have proved the �rst assertion

and part (iv).

To prove (i) let m be the distan
e between C and �C. Sin
e W a
ts

transitively on the 
hamber graph, for any 
hamber

~

C the distan
e of any


hamber

~

C and �

~

C is equal to m. So the given map is an involution. Now

let w 2 W and C a 
hamber. Then the distan
e between C

w

and (�C)

w

equals the distan
e m between C and �C, whi
h entails �(C

w

) = (�C)

w

.

So the map is equivariant. If two 
hambers C and

~

C are adja
ent, then the

distan
e between �C and

~

C is m� 1. Thus �C and �

~

C are separated by

one and only one element of R. So they are adja
ent.

For part (ii) let C be a 
hamber. Then Norm

s

(D) is a wall of C if and

only if C and C

s

are adja
ent. This is equivalent to �C and �C

s

adja
ent.

Finally, we prove (iii). Suppose C and C

0

are separated by every element

of S

C

. Now let ~s 2 R and s 2 S

C

. Suppose ~s separates C and C

0

. Sin
e

S

C

generates W , it suÆ
es to show that s~ss

�1

separates C and C

0

. Cer-

tainly s~ss

�1

separates C

s

and C

0

s

. If s~ss

�1

= s, then ~s = s we are done.

Otherwise, re
all that s is the only element of R whi
h separates C and

C

s

. The same is true for C

0

and C

0

s

. So neither C and C

s

nor C

0

and C

0

s

are separated by ~s. This means ~s separates C

s

and C

0

s

and, thus, s~ss

�1

separates C and C

0

. �
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Corollary 6.12 (of Corollary 6.8 and Theorem 6.11). If W is �nite, there

exists a unique longest element w

0

in W with respe
t to S and it has length

jRj. 2

For the 
ase of dihedral groups we will need statement Theorem 6.11 (iii)

without requiring W to be �nite:

Lemma 6.13. If S

C

= fs

1

; s

2

g then

�C =

\

s2S

C

X

s

�

(C):

Proof. If the set D :=

T

s2S

C

X

s

�

(C) is empty then so is �C by de�nition.

So we suppose that D is not empty and dedu
e that W is �nite. Then we

are done by Theorem 6.11 (iii). So let

~

C be a 
hamber in D with minimal

distan
e m to C. Re
all the statement of Proposition 6.3. The distan
e

between C

s

1

and

~

C ism�1. So there is a path of length m�1 starting with

the dart d

~

C;C

0

and ending in C

s

1

. The 
hamber C

0

must lie outside of D

due to the minimality of the distan
e between C and

~

C. The path does not


ross s

1

, so the path d

~

C;C

0

must 
ross s

2

. Thus Norm

s

2

(D) is a wall of

~

C.

By swapping the roles of s

1

and s

2

we see that E

s

1

is also a wall of

~

C. Due

to transitive a
tion of W on 
hambers, every 
hamber has two walls. We

obtainD =

~

C. Now we 
an pro
eed as in the proof of Theorem 6.11 (iii). �

7. Coxeter groups

De�nition 7.1. Let W be a group generated by a subset S of proper in-

volutions. For s and t 2 S let m(s; t) 2 N [ 1 be the order of st in W .

Set I :=

�

(s; t) 2 S � S j m(s; t) < 1

	

. The pair (W;S) is 
alled a Cox-

eter system, if W has a presentation of the form W =




S j (st)

m(s;t)

=

1 for all (s; t) 2 I

�

. Then the group W is 
alled a Coxeter group.

In Se
tion 8 we want to relate Coxeter groups to the Cayley graphs and


overs of monopoles from Se
tion 5. Therefore we have to allow for repetition

of generators and trivial generators in Coxeter groups. More pre
isely, if W

is a Coxeter group with respe
t to a generating system S �W of involutions

and � : D ! S [ f1

W

g is a surje
tion, then we 
all W a Coxeter group

with respe
t to the generating multiset D. In view of the map �1 in

a graph we set d

�1

:= d for ea
h d 2 D. The relation � from the proof of

Lemma 5.3 shows that one 
an pass between the two notions without problem.

Remark 7.2. The existen
e of a presentation of the form in the above

de�nition is equivalent to either of the following 
onditions:

(i) The system (W;S) satis�es the following universal property: Let G

be a group and let f : S ! G be a map with (f(s)f(t))

m(s;t)

= 1 for

all (s; t) 2 I. Then there is a unique homomorphism

~

f : W ! G

extending f .
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(ii) Let W be a group and let f : W ! W be a homomorphism.

Assume that there is a map h : S ! W with f

�

h(s)

�

= s and

�

h(s)h(t)

�

m(s;t)

= 1 for (s; t) 2 I and su
h that the elements h(s)

with s 2 S generate W . Then f is inje
tive.

De�nition 7.3. We say that the pair (W;S) satis�es the ex
hange 
ondi-

tion if the following holds. Let w 2 W and s 2 S, su
h that `(sw) � `(w).

Then for every redu
ed de
omposition (s

1

; s

2

; : : : ; s

n

) of w, there is an inte-

ger 1 � j � n, su
h that ss

1

s

2

� � � s

j�1

= s

1

s

2

� � � s

j

.

Theorem 7.4. For any 
hamber C the pair (W;S

C

) is a Coxeter system.

Proof. Let W be a group and let f :W !W be a homomorphism. Assume

there exists a map h : S

C

! W with f(h(s)) = s and (h(s)h(s

0

))

m(s;s

0

)

= 1

for (s; s

0

) 2 I and su
h that the elements h(s) with s 2 S

C

generate W . If

we show that f is inje
tive, we are done by Remark 7.2.

Sin
e ea
h s 2 S

C

is an involution, so is ea
h h(s) 2 W , s 2 S

C

, when
e

every element g 2 W 
an be represented as g = h(s

n

)h(s

n�1

) � � � h(s

1

) with

n 2 N and s

1

; s

2

; : : : ; s

n

2 S

C

. Suppose g 2 ker f and let C be a 
hamber.

This means d

C;C

s

1

d

C

s

1

;C

s

2

s

1

� � � d

C

s

n�1

���s

1

;C

s

n

���s

1

is a 
y
le.

Let k be the maximal value o

uring as a distan
e between C and C

s

i

s

i�1

���s

1

for some 0 < i < n, and let i be the maximal value for whi
h C

s

i

s

i�1

���s

1

has

distan
e k from C. Set w := s

i

s

i�1

� � � s

1

. The 
hamber C

s

i

w

is 
loser to

C than C

w

. (See Figure 1.) Sin
e w

�1

s

i

w separates C

s

i

w

and C

w

, it also

separates C and C

w

by Corollary 6.4. So s

i

separates C

w

�1

and C. In the

same way we show that s

i+1

separates C

w

�1

and C.

We now 
onsider the subgroupW

0

ofW generated by the subset S

0

= fs

i

; s

i+1

g.

Set

R

0

:= fw

�1

sw : w 2W

0

; s 2 S

0

g:

Now W

0

is generated by the W

0

-invariant set of re
e
tions R

0

. We shall


all the 
hambers with respe
t to this set of re
e
tions large 
hambers in

order to distinguish them from the small 
hambers whi
h 
ome from the

set of re
e
tions R. Let C

0

be the large 
hamber that 
ontains C. From

Lemma 6.9 we know S

0

= S

C

0

. The 
hamber graph with respe
t to R

0


an

be identi�ed with the Cayley graph of the dihedral group W

0

with respe
t

to S

0

. Sin
e

C

w

�1

�

\

s2S

C

0

X

s

�

(C

0

);

the set �C

0

is a large 
hamber due to Lemma 6.13. So the groupW

0

is �nite

due to Theorem 6.11. Thus the Cayley graph of W

0

with respe
t to S

0

is a


y
le.
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C

C

w

Norm

w

�1

s

i

w

(D)

Path of old representation

Path of new representation

Norm

w

�1

s

i+1

w

(D)

C

s

i

w

C

s

i+1

w

Figure 1. Paths 
orresponding to the old and the new rep-

resentations of g

The large 
hambers C

0

and �C

0

have distan
e jR

0

j = m(s

i

; s

i+1

) by the

de�nition of �C

0

. Set

bw :=

8

<

:

(s

i

s

i+1

)

m(s

i

;s

i+1

)

2

if m(s

i

; s

i+1

) is even.

(s

i

s

i+1

)

m(s

i

;s

i+1

)�1

2

s

i

if m(s

i

; s

i+1

) is odd.

Sin
e bw:C

0

= �C

0

, the large 
hamber �C

0


ontains the small 
hamber

b

C := bw:C. So the small 
hambers C and

b

C have distan
e at least jR

0

j.

This implies that the paths

d

C;C

s

i

d

C

s

i

;C

s

i+1

s

i

d

C

s

i+1

s

i

;C

s

i

s

i+1

s

i

: : : ; d

b

C

s

i

;

b

C

and

d

C;C

s

i+1

d

C

s

i+1

;C

s

i

s

i+1

d

C

s

i

s

i+1

;C

s

i+1

s

i

s

i+1

: : : ; d

b

C

s

i+1

;

b

C

are minimal (with respe
t to R) and have length jR

0

j.
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Due to Theorem 6.11 (iii), the small 
hambers C and

b

C are separated by

ea
h of the elements of R

0

, and the small 
hambers C

w

�1

and

b

C are separated

by none of the elements of R. Sin
e the distan
e between C and C

w

�1

is k,

the distan
e w

�1

:C and

b

C is k � jR

0

j. So ea
h of the small 
hambers

C

s

i

; C

s

i+1

s

i

; C

s

i

s

i+1

s

i

; C

s

i+1

s

i

s

i+1

s

i

; : : : ; C

s

i+1

has distan
e less than k from C

w

�1

. So the w-translates of these elements

have distan
e less than k from C.

We obtain the new representation

g = h(s

n

)h(s

n�1

) � � � h(s

i+2

)

�

h(s

i

)h(s

i+1

)

�

m(s

i

;s

i+1

)�1

| {z }

=h(s

i+1

)h(s

i

)

h(s

i�1

); : : : ; h(s

1

):

The 
orresponding 
y
li
 path has a smaller k or a smaller index i for whi
h

the maximal distan
e k o

urs. (See Figure 1.) By indu
tion we obtain

g = 1.

�

If we spe
ialize our a
tion of W to the a
tion on the Cayley graph, then


hambers 
onsist of only one vertex, sin
e the a
tion on the points and on the


hambers is simply transitive. In this 
ase we have the following 
orollary

of Theorem 6.11.

Theorem 7.5. Let (W;S) be a Coxeter system and let R = fwsw

�1

: s 2

S;w 2Wg. Then the following 
onditions are equivalent:

(i) W is �nite.

(ii) R is �nite.

(iii) There is a w 2 W su
h that 1 is separated from w by every s 2 R.

2

If 
ondition (iii) is satis�ed, then w is the unique group element with

maximal length and it has length jRj, 
f. Corollary 6.12.

Theorem 7.6. The following statements are equivalent:

(i) (W;S) is a Coxeter system.

(ii) (W;S) satis�es the ex
hange 
ondition.

(iii) The elements of S a
t as re
e
tions on Cay(W;S).

Proof. The impli
ation (i) =) (ii) is well-known, see e.g. [4℄. The impli
a-

tion (iii) =) (i) is a 
onsequen
e of Theorem 7.4 and Corollary 6.7.

So now we assume (ii). Our proof is inspired by the ideas in [2℄ Ch. IV, x 1.7.

Let s 2 S and set

P

s

:= fw 2W : `(w) < `(sw)g:

Due to [2℄ Ch. IV, x 1.5 Proposition 4 the group W is the disjoint union of

P

s

and s:P

s

= fw 2 W : `(w) > `(sw)g. Let (w; s

0

) be a dart with initial

vertex w 2 W and terminal vertex ws

0

for s

0

2 S. Assume w 2 P

s

and

ws

0

2 P

s

s

. By showing (w; s

0

) 2 Norm

s

(D) in the Cayley graph Cay(W;S),

we prove that s is a re
e
tion. So we are done if we show sw = ws

0

.
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Set n := `(w). Due to w 2 P

s

, we have `(sw) = n + 1. Using this and

ws

0

2 P

s

s

we get n � `(sws

0

) < `(ws

0

) � n+1. We 
on
lude `(sws

0

) = n and

`(ws

0

) = n+1. Now let (s

1

; s

2

; : : : ; s

n

) be a redu
ed de
omposition of w. By

setting s

n+1

:= s

0

, we obtain the redu
ed de
omposition (s

1

; s

2

; : : : ; s

n+1

)

of ws

0

. The ex
hange 
ondition tells us that there is an index 1 � j �

n + 1, su
h that we have ss

1

s

2

� � � s

j�1

= s

1

s

2

� � � s

j

. Suppose j < n +

1 for a moment. Then we get sw = ss

1

s

2

� � � s

n

= s

1

s

2

� � � s

j

s

j

� � � s

n

=

s

1

s

2

� � � s

j�1

s

j+1

� � � s

n

, whi
h is a 
ontradi
tion to `(sw) = n + 1. So we

have j = n+ 1 and the above equation yields sw = ws

0

. �

Corollary 7.7. If (W;S) is a Coxeter system, then the set R = fwsw

�1

:

s 2 S;w 2Wg is exa
tly the subset of W 
onsisting of those elements whi
h

operate as re
e
tions on the Cayley graph of W with respe
t to S. Any

subgroup generated by a subset of R is a Coxeter group.

Proof. Let (W;S) be a Coxeter system and 
onsider the a
tion of W on its

Cayley graph with respe
t to S. This a
tion is free. By Proposition 6.5, the

set R is the set of re
e
tions in W . Any subgroup of W operates freely on

the Cayley graph of W with respe
t to S. If this subgroup is generated by

re
e
tions, then it is a Coxeter group by Theorem 7.4. �

8. Covers of monopoles, revisited

Theorem 8.1. Let � : � ! (v;D; �;�1) be a 1-
overing of a monopole

admitting semi-edges only. The graph � is the Cayley graph of a Coxeter

group if and only if � is regular and any de
k transformation in �(�) that

inter
hanges two neighboring verti
es of � a
ts as a re
e
tion on �.

Proof. Theorem 5.6 implies that � is the Cayley graph of �(�) with respe
t

to the generating multiset D (with embedding map � : D ! �(�) as de�ned

before Theorem 5.6) if and only if � is regular. The set of verti
es of �

equals �(�). By regularity of � and by Lemma 4.4 it suÆ
es to study de
k

transformations that inter
hange the vertex 1 of � and some neighboring

vertex d

�

of �. But any su
h de
k transformation is given by the maps

�(�)! �(�) : w 7! d

�

w on the verti
es of � and D ��(�) ! D ��(�) :

(d;w) 7! (d; d

�

w) on the darts. (For, the given map is a de
k transformation

inter
hanging 1 and d

�

, so it has to be the one we were studying as �(�)

a
ts regularly on �.) By Theorem 7.6 the group �(�) is a Coxeter group

with respe
t to the generating multiset D if and only if the elements of D

that do not a
t as the identity on � a
t as re
e
tions on �. The theorem is

proved. �
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