SEMI-EDGES, REFLECTIONS AND COXETER GROUPS

RALF GRAMLICH AND GEORG W. HOFMANN AND KARL-HERMANN NEEB

1. INTRODUCTION

There are numerous similarities between the covering theory of graphs
and the covering theory of topological spaces. In algebraic topology, cf.
e.g. Definition I11.3.1 of [3], a map p : X — Y between arcwise connected,
locally arcwise connected Hausdorff spaces is called a covering map if each
element y € Y has an arcwise connected neighborhood U such that p~!(U)
is a nonempty disjoint union of sets U, on which p|y, is a homeomorphism

Uy = U. In classical graph theory one replaces the topological spaces
X and Y by connected graphs I'} and I's, the neighborhood U of a vertex
y € I'y by the induced subgraph I';(y) on the neighbors of y in I's and
requires that for each preimage x in I'; of y the restriction of p to I'1(x) is
a bijection resp. isomorphism onto I'y(y).

More precisely, a surjection 7 : I'y — I's between connected graphs I'y, I's
is called a 1-covering map if for each x in I'y the map 7 induces a bijection
between the set of vertices of I'i(x) onto the set of vertices of I'o(x”). On
the other hand, a surjection 7 : I'y — I'y between connected graphs I';, I's
is called a 2-covering map if for each x in I'y the map 7 induces a graph iso-
morphism between the induced subgraph I'1 (x) onto the induced subgraph
FQ (Xﬂ—).

The notion of 1-coverings (or local isomorphisms, as they are sometimes
called) is important for the study of epimorphisms between point-line geome-
tries under which the point row of each line is mapped bijectively onto the
point row of its image and, dually, the line pencil of each point is mapped bi-
jectively onto the line pencil of its image. In case of flag-transitive point-line
geometries this corresponds to the study of injective completions of amal-
gams consisting of two groups (the point stabilizer and the line stabilizer).
The geometry of the dihedral group Dy, = (a,b | a®> = b* = (ab)™ = 1) prob-
ably is the easiest example. A 2n-gon admits 1-covers by any 2kn-gon,
k > 1; this l-covering corresponds to the group epimorphism Dok, =
{(a,b|a? =b* = (ab)" =1) = Do, = (a,b|a® =b* = (ab)” = 1) induced
by factoring out the cyclic normal subgroup generated by all nth powers
of the product ab. Of course, the universal 1-cover of a 2n-gon is the tree
of valency two, which corresponds to Doy, = <a, bla?=0b>= 1> being the
universal completion of the amalgam (a) U (b). For a thorough treatment of
the relationship between covers of graphs and amalgams we refer the reader
to [5], [6], [16], [17]. There also exist a number of articles on 1-coverings

1



2 RALF GRAMLICH AND GEORG W. HOFMANN AND KARL-HERMANN NEEB

from a purely geometric point of view, especially for generalized polygons,
see [7], [8], [14].

2-coverings, on the other hand, are important when studying locally ho-
mogeneous graphs. A graph I is called locally homogeneous, if for any pair
x, y of vertices of I" the induced subgraphs I'(x) and I'(y) on the neighbors
of x, resp. y are isomorphic. It is clear from the definitions that any 2-cover
of a locally homogeneous graph is again locally homogeneous with the same
local structure. Therefore, when studying locally homogeneous graphs, it
suffices to only consider the simply connected ones, i.e., those graphs that
coincide with their universal 2-cover. For example, in [9] one can find a char-
acterization of the line-hyperline graphs of a projective space of sufficiently
large dimension by their local structure. The line-hyperline graph of some
projective space P consists of the nonintersecting line-hyperline pairs of P
(i.e., pairs of complemented subspaces of dimension two, resp. codimension
two in the corresponding vector space) in which the pair (I, L) is adjacent to
the pair (m, M) if and only if I C M and m C L. It is easily seen that the
local structure of the line-hyperline graph of P is given by the line-hyperline
graph of an arbitrary hyperline of . Conversely, Theorem 1 of [9] says that
this local property is characteristic for the line-hyperline graphs for suffi-
ciently large dimension. The proof of that theorem heavily relies on the
assumption that the locally homogeneous graphs under consideration are
simply connected. Only after a successful classification of the simply con-
nected graphs one realizes that they do not admit quotients with the same
local structure (because their diameter is two), completing the proof.

Surowski’s work [18] beautifully unifies the concepts of 1-coverings and
2-coverings by considering simplicial complexes. While topologists may not
be surprised by the results presented in [18], the article describes graph
theoretic covering theory in a language perfectly suited for geometers.

Malnic, Nedela and Skoviera [13] define a different notion of graphs. A
graph I' = (V, D,1,—1) in their sense consists of a set V' of vertices, a set D
of darts, a map ¢ : D — V and a permutation —1: D — D : d — d~! with
(=1)? = id. The map ¢ assigns to each dart its initial vertez, while the map
—1 interchanges a dart and its reverse. The terminal vertex of a dart x is
the initial vertex of z—!. The orbits of —1 are called edges. Note that edges
consist of one or two darts. An edge is called a semi-edge if its cardinality
is one, a loop if its cardinality is two and both darts contained in this edge
have the same initial vertex, and a link otherwise.

The authors of [13] justify this definition of a graph by applications in the
theory of Cayley graphs. For example, Gross and Tucker [11] note that not
all Cayley graphs are regular covers of bouquets of circles. Using the notion
of a graph as in [13], however, one can prove that each Cayley graph is a
regular cover of some monopole, i.e., a graph consisting of a unique vertex
and an arbitrary number of darts, cf. 6.2 of [13], restated and reproved as
Theorem 5.6 in the present paper. A covering ¢ in the sense of [13] is a
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graph surjection 7 such that for each vertex x in the domain the set of darts
with initial vertex x is mapped bijectively under 7 onto the set of darts with
initial vertex x®.

Neither topology nor Surowski’s work [18] apply to the covering theory
of graphs with semi-edges. Therefore it is one goal of the present paper to
provide a suitable theory of coverings. To this end we define the notion of a
fundamental 1-covering (see Definition 3.1) and prove that this covering is
universal (cf. Definition 3.3).

Theorem 3.5 Let I be a connected graph, let x be a vertex of I, and let T be
the fundamental 1-cover of T' based at x. Then the fundamental 1-covering
m: [ = I' is universal.

As a consequence of the preceding theorem we can classify all graphs that
are 1-covers of a given graph. Results of this kind are typical in the context
of topological spaces. In our context, however, we can achieve more: We
give an explicit construction of each cover, comparable to the construction
of covers of simplicial complexes in §55 of Seifert and Threlfall [15].

Later in this paper we turn our attention to reflections and local reflections
of graphs, a reflection of a connected graph being an involutive automor-
phism of the graph that does not stabilize any vertex with the property that
if one removes the darts of the graph that are normalized by the automor-
phism, then the graph becomes disconnected (see the beginning of Section
4). Applying the theory of reflections of graphs to the Cayley graph of a
Coxeter group we obtain the following characterization.

Theorem 7.6 The following statements are equivalent:

(i) (W,8S) is a Cozeter system.
(ii) (W, S) satisfies the exchange condition.
(iii) The elements of S act as reflections on the Cayley graph Cay (W, S).

In [12] this characterization is proven for the context of ’classical graphs’
and used to identify as Coxeter groups reflection groups on certain topolog-
ical spaces.

Finally, we combine the preceding theorem with our discussion of monopoles
in Section 5 to obtain a characterization of the Cayley graphs of Coxeter
groups.

Theorem 8.1 Let 7 : T' — (v, D, i, —1) be a 1-covering of a monopole. The
graph T is the Cayley graph of a Coxeter group if and only if w is reqular and
any deck transformation in A(w) that interchanges two neighboring vertices
of I' acts as a reflection on T.

2. COVERINGS

Following [13], a graph I' = (V, D, , —1) consists of a set V of vertices, a
set D of darts, a map ¢ : D — V and a permutation —1: D — D :d > d~!
with (—1)2 = id. The map ¢ assigns to each dart its initial vertex, while
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the map —1 interchanges a dart and its reverse. The terminal vertex of
a dart z is the initial vertex of 7. The orbits of —1 are called edges. Note
that edges consist of one or two darts. An edge is called a semi-edge if its
cardinality is one, a loop if its cardinality is two and both darts contained
in this edge have the same initial vertex, and a link otherwise.

A monopole is a graph consisting of one vertex and a number of darts.

A morphism of graphs ¢ : (V1, Dy,t1,—11) = (Va, D, 12, —13) consists
of maps Vi — Vo and Dy — Dy such that 11¢ = ¢ro and (—11)¢ = ¢(—12).

A path of length ¢ is a sequence of ¢t darts v = 1 ---x¢ such that
the terminal vertex of zj coincides with the initial vertex of zpy; for all
1 <k <t-1. A path of length 0 (or trivial path) is a vertex x. The
initial vertex of v, denoted by ~+*, is the initial vertex of z; (resp., x in
case of a trivial path), the terminal vertex of v is the terminal vertex of
xy (resp., x in case of a trivial path). If a path  has initial vertex x, then
v is based at x. If its initial and terminal vertices coincide, then y is called
a cycle or a closed path.

If a path ; terminates at some vertex x and a path 7, starts at the
same vertex x, then -;y, is a path, called the concatenation of v, and
2. Note that concatenation with the trivial path does not change the path.
Furthermore, (y172)" = 7} and (y192) ™" =7, 'y,

A graph is connected if for each pair x, y there exists a path from x
to y. We say that a vertex y is a neighbor of the vertex x if there exists
a dart d with d* = x and (d=')* = y. Notice that the neighbor relation is
symmetric. We denote the set of all neighbors of some vertex x by Bj(x)
(‘B’ stands for ball) and the set By (x)U{x} by D;(x) (‘D’ stands for disk).

Let T' be a connected graph. Two paths in I' are 1-homotopic if one
can be obtained from the other by a finite number of applications of the
following operation, called elementary 1-homotopy: inserting or deleting
areturn, i.e., a cycle zz ! of length two: replace zz~! by #* or z* by zz L.
A cycle that is homotopic to a cycle of length 0 is called 1-homotopically
trivial. By IT;(I") denote the 1-fundamental groupoid (also called path
groupoid) of I', that is, the set of all 1-homotopy classes of paths in I’
endowed with the partial multiplication ([y1];,[y2];) — [v172]; whenever
the terminal vertex of v, coincides with the initial vertex of -yy; the subset
I, (I', x) € L;(I") of 1-homotopy classes of paths in I' with initial vertex
x is called the path groupoid of I' based at x. The subset II; (I',x) C
I, (I', x) € II;(T") of all 1-homotopy classes of cycles in I' based at some
vertex x forms a group, the 1-fundamental group (or path group) of I'
at x.

Lemma 2.1. Let I be a connected graph and let x, y be vertices of I'. Then
I, (0, x) = I141(T,y) via the isomorphism that, for a fized path ~ from y to
X, assigns to a homotopy class [8], of cycles based at x the homotopy class
[767*1]1 of cycles based at y.
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Proof. As [7617*1]1 [7527*1]1 = [7617*17627*1]1 = [751527*1]1 the given
map is a group homomorphism. Certainly, it is bijective, so it is an isomor-
phism. O

In a connected graph I', by the above lemma, two path groups with base
points x, y are isomorphic under the transition map that, for a fixed path
v from y to x, assigns to a homotopy class [0]; of paths based at x the
homotopy class [757*1]1 of paths based at y. Any representative of this
isomorphism class of path groups of I' with base point is called the path
group of I', denoted by I1;(T"). The corresponding transition map is called
a base transformation.

Definition 2.2. Let T' = (V,D,t,—1) and T = (‘7,13,/[, :\1) be graphs. A
graph epimorphism w : T — T is called a 1-covering if, for every vertex
x €T the map 7 sends the set of darts of T with initial vertez x bijectively
onto the set of darts of I' with initial vertexr x™. The graph T is called a
1-cover of the graph T'. The set 7 '(z), z € V.U D is called a fiber; it is
called a vertex fiber if z € V and a dart fiber if z € D.

A connected graph T is called 1-simply connected if any 1-covering
T — T with T connected is an isomorphism.

Lemma 2.3. Let 7 : I — I be a 1-covering of graphs and let v be an
arbitrary path in T with initial vertex x. Then for every vertezx X € 71 (x)
there exists a unique path 3 with X as initial vertexr and y™ = . Moreover,
1-homotopic paths of I lift to 1-homotopic paths of f, and 1-homotopic paths
off are mapped onto 1-homotopic paths of U'. In particular, if v1 and o
are 1-homotopic in T, then their lifts 41 and 7o in T with identical initial
vertices have identical terminal vertices.

Proof. See Proposition 4.2 of [13]. O

Let 7:T — T bea 1- coverlng of graphs and let ¢ be an automorphlsm of
I'. We say that ¢ lifts to T if there exists an automorphism d) of I‘ a lift
of ¢, such that gb7r = . If ¢ lifts then so does ¢~'. If, more generally, all
automorphisms in a group A < Aut I' lift, then all those lifts form a group,
the lift A < Aut I of A. (See [13] for conditions under which lifts exist.)
The trivial group of automorphisms of I' always lifts. The group of all of

its lifts is called the group of deck transformations and is denoted by
A(m).

Proposition 2.4. Let 7 : T>Tbhea 1-covering of connected graphs. Then
A(r) acts semi-regularly on T, that is, A(w) acts fized point-freely on both
the set of vertices and the set of darts of I'.

Proof. This follows directly from Lemma 2.3. |

Definition 2.5. Let 7: T — T be a 1-covering of connected graphs. It is
called regular, if A(m) acts transitively on some, whence each, vertex fiber.
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The implication of transitivity on each vertex fiber by the transitivity on
some vertex fiber follows from Lemma 2.3 as follows. First, one observes
that by the connectedness of T', it is enough to show that if A(w) acts
transitively on 7 !(x) for some vertex x of T it acts transitively on 7 *(y)
for all neighbors y of x. So, let d be a dart with d* = x and (d"!)* = y.
Then by Lemma 2.3, the path d lifts to a unique path d for each X € 7~ (x )
Hence, if 6 € A(7r) maps X; onto x2, it also maps the correspondlng lift d;
of d starting at X; onto the lift dy of d starting at X;, whence (d1 )" gets
mapped onto (c/l;_l)b. The transitivity of A(r) on the fiber of 77! (y) now
follows from the fact that each element of the fiber of y is a neighbor of an
element of the fiber of x.

Remark 2.6. It seems tempting to extend the theory of 2-coverings to graphs
admitting loops and semi-edges as well. However, this does not lead to any
new concept at all. For, when studying 2-coverings of graphs one requires
that cycles of the form didsds with d} = (d;l)‘ are null-homotopic. For a
semi-edge d this implies that d is null-homotopic, because both dd and ddd
are null-homotopic. Similarly, if | is a loop based at the vertex x and d is
any other dart based at x, then | is null-homotopic because ldd—' and dd "
are null-homotopic. Therefore the only connected graph in which loops and
semi-edges do not lift trivially is the graph consisting of one vertex and a
loop, whose universal 2-cover is the complete graph on three vertices.

3. FUNDAMENTAL AND UNIVERSAL COVERS

Definition 3.1. Let ' = (V D,L, ) be a connected graph and let x be a
verter of I'. Then the graph r'= (V D, 0 —1) with

V o= IL(T,x),

D = {(h],,d) em(T,x) x D[ d" = (v1)},
D=V (Bl d) = D,
“1:D—D ([’Y]ud)'_*([’)’dhvdil)

1s called the fundamental 1-cover of I based at x.

Proposition 3.2. Let I' be a connected graph, let x be a verter of I', and
let T be the fundamental 1-cover of I' based at x. Then the canonical map
m: ' — I with

Tl VoV @ oye (v h¢
D—>D : ([v]y,d) — d

7T|D

15 a 1-covering map. Moreover, m : T 7T isan isomorphism if and only if
I, (T, x) is trivial.

Proof. Straightforward. O
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Definition 3.3. Let T, T be connected graphs and let x € T', X € T be
vertices. A 1-covering m : LT mapping X onto X is called universal if,
for any 1-covering a : T'1 — T and any x1 € o }(x), there erists a unique
1-covering map B : T — Iy with 7 = Ba and XP = x;.

Remark 3.4. By definition a universal 1-covering = : T > T is reqular.
Indeed, if x € T, X € T with X™ = x, then, by the universality of , for each
X1 € m 1(x) there exists an automorphism of I' mapping X onto X;.

Theorem 3.5. Let I' be a connected graph, let x be a verter of I', and
let T be the fundamental 1-cover of I' based at x. Then the fundamental
1-covering w : I' — T' is universal.

Proof. Let a : Ty — T be an arbitrary l-covering and let x; € a !(x).
By Lemma 2.3 any class of paths [y]; € II;(I',x) lifts to a unique class of
paths [7]; € II;(I"1,x1). Define a map f : I' - Iy by [fy]f = (1) and
(7],,d)? = d, where d is the unique lift of d based at [y]f = (Y by
Lemma 2.3. It is clear that (3 : r— I'; is a 1-covering with 7 = S« and
x? = x;. Uniqueness follows from connectedness. O

Corollary 3.6. Let I' be a connected graph and let x be a vertex of I'. Then
its fundamental 1-cover ' based at x is 1-simply connected.

Proof. Let m : T — I be the fundamental 1-covering and let ¢ : '} — T be
some 1-covering. Then o := ¢ : I'; — I'is a 1-covering. Let x; € ¢~ (x) C
a~!(x). By the universal property of 7, there exists a l1-covering 3 : R\
mapping (x) onto x; with 7 = Sa = B¢ém. Then [¢ is a 1-covering from
T onto itself with (x)?® = (x), whence it is the identity by the universal
property of w. Therefore § is injective, whence bijective. Thus the graph
morphism ¢ is the inverse of the graph morphism 8 and both § and ¢ are
graph automorphisms. Hence Tis 1-simply connected. O

Let I' be a connected graph. If fl is the fundamental 1-cover of I' based
at x and Ty is the fundamental 1-cover of T based at y, and, moreover, if y
is an arbitrary path in I' from y to x, then the map from T4 to I'y induced
by [0], + [vd], is an isomorphism of graphs. This proves the following.

Proposition 3.7. Let I' be a connected graph and let x, y be vertices of L.
Then the fundamental 1-cover of I' based at x is isomorphic to the funda-
mental 1-cover of I' at y via base transformation. O

Hence we can suppress the base point of a fundamental 1-cover and speak
of the fundamental 1-cover of I'. If we speak of a fundamental 1-cover and a
path group in the same context, then we always assume that the particular
cover and the particular group have the same base vertex.

Corollary 3.8 (of Theorem 3.5). Let I' be a connected graph. The graph I’
is L-simply connected if and only if 111 (I") is trivial.
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Proof. If II; (I") is non-trivial, then the fundamental cover of I" is not iso-
morphic to I' by Proposition 3.2. Hence I' is not simply connected.
Conversely, assume that I' is not simply connected. Then it admits a 1-
covering « : I'y — I for some I'; that is not an isomorphism. If 7 : T > TIis
the canonical 1-covering of I by its fundamental 1-cover f, then, by Theorem
3.5, there exists a 1-covering [ : T - Ty with 7 = Ba. If m were to be an
isomorphism, then a would have to be injective (as ( is surjective) which is
not the case. So 7 is not an isomorphism and Proposition 3.2 implies that
I1,(T") is non-trivial. O

Corollary 3.9 (of Corollary 3.8). Let I' be a connected graph and let « :
'y = I be a 1-covering with 1-simply connected I'y. Then I'y is isomorphic
to the fundamental 1-cover I' of T'. O

Theorem 3.10. Let I' = (V,D,.,—1) be a connected graph. Then, for
any verter x of I', there is a one-to-one correspondence between 1-covers
of I based at x and subgroups of 111 (I, x). More precisely, if U is a sub-
group of I1;(I',x), then the corresponding l-cover of I is the graph 'y =
(V[),D[),l,o, —10) with

Vo = U\ (I,x),
Dy = {(Ulyl,,d) e U\ (I,x) x D |d" = (y~")'},
v:Dy—=Vo : (Ul ,d) = Ull,
~19: Dy =Dy : (U[ly,d)~ (Ulyd],,d™").

Note that we use the symbol \ in the theorem to denote right cosets, re-
spectively, U-orbits for the left multiplication action on II; (I, x).

Proof. Given a subgroup U of I1; (', x) it is straightforward to check that
the graph ['y given above is a 1-cover of I'.

Conversely, let a:T'y—T be a l1- -covering. By Theorem 3.5 there exists
a 1-covering B T — 'y, where T is the fundamental cover of I' We can
consider T as the fundamental 1-cover of 'y based at x?, since Tis1- simply
connected, so by Corollary 3.9 isomorphic to the fundamental 1-cover of
I'o. By Lemma 2.3 the l-covering « induces an embedding of II; (I'y, x?) in
I, (I, x). (It induces a well-defined map as images of homotopic paths are
homotopic. This induced map is injective as lifts of homotopic paths are
homotopic.) We have identified II; (I'g, x*) with a subgroup of I1; (", x) and
hence I'y = I1; (T, xﬂ)\f, finishing the proof. O

Corollary 3.11 (of Lemma 2.1 and Theorem 3.10). Let I' be a connected
graph. Then there is a one-to-one correspondence between equivalence classes
of 1-covers of I' without base vertex and conjugacy classes of subgroups of
Hl(I‘) O
Corollary 3.12 (of Theorem 3.10). Let w: 'y — 'y be a 1-covering and let

y = X" for some vertex x of I'y. Then m induces a group monomorphism
Ty :H(Fl,x) —)H(Fg,y) O
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Corollary 3.13 (of Theorem 3.10). Let w : 'y — [y be a 1-covering with
y = X" for some vertex x € I'y. Assume that o : 'y — 'y 4s another 1-
covering, and let w € o *(y). Then a 1-covering 8 : T'g — T'y with 7 = «
exists if and only if Iy (T, w)*# C Iy ("1, x)™#. Moreover, if such a 3 exists
1t 1S unique. O

Corollary 3.14 (of Corollary 3.13). Let w : I'y — I'y be a 1-covering with
y = X" for some vertex x € 'y and let xo € 771 (x). Then there exists a
deck transformation in A(m) taking xo to x if and only if I1;(I',x¢)™# =
Hl(Fl,x)”#.

Proof. Let ¢ € A(w) be the deck transformation taking xg to x. Then
Corollary 3.13 applies with I'y = I'y, w = xp and f = ¢ and a = ¢ =
m, yielding Hl(Fl,xo)(¢”)# = I (T'y,x0)™ C II1(T'y,x)™. The reverse
inclusion follows by symmetry. g

Corollary 3.15 (of Lemma 2.1 and Corollary 3.14; cf. Corollary 5.5 of [13]).
Let m: 'y = I's be a 1-covering with y = X" for some vertex x € I'1. The
subgroup 11, (', x)™#* of 111(I'y,y) is normal if and only if © is a regular
1-covering.

Proof. The base transformation of Lemma 2.1 between bases xg, x inside the
fiber 7! (y) proves that ITy (I'1,x)™* and IT; ("1, x)™# are conjugate inside
IT1;(I'2,y). On the other hand, by Corollary 3.14, we have II;(I'1,xq)™# =
[ (Ty,x)™* for all xg € n '(y) if and only if A(rw) acts transitively on
n~1(y), i.e., if and only if 7 is a regular 1-covering. O

Corollary 3.16 (of Corollary 3.15). Let 7 : I'y — I’y be a regular 1-covering
with y = X" for some vertex x € I'y. Then

A(m) = Iy (T, y) /I (I'y, x) ™.

O
Corollary 3.17 (of Corollaries 3.8 and 3.16). Let 7 : I'y = I'y be a regular
1-covering with'y = x™ for some vertex x € I'y. If, moreover, 'y is 1-simply
connected, then

A(r) =1L (T2, y).

O
Remark 3.18. The concept of a fundamental cover for simplicial complexes
already exists in the literature, e.g. §55 of Seifert and Threlfall [15]. The

purpose of Section 8 is to provide an extension of the simplicial covering
theory to graphs with semi-edges.

4. REFLECTIONS AND LOCAL REFLECTIONS

For an automorphism o of a connected graph I' = (V, D, 1, —1) set
Fix,(V) = {v eV |v’ =v}, the set of fixed vertices, and
Norm, (D) := {d €eD|d#d° = d_l} , the set of properly normalized darts.
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An involution o of a connected graph I' = (V, D, 1, —1) is called a reflec-
tion, if Fix,(V) = 0 and if T, = (V, Dy, ¢y, —1,) with D, = D\Norm, (D)
and ¢, = t|p,, =1, = —1|p, is disconnected. We write z ~, z' if  and
z’ are vertices of the same connected component in I', and we say that o
separates z and 7’ if we have z 4, z'. For x € V set

Vi()={yeV]|z~;y} and V(z)={y €V |z sy}

An involution o of a connected graph I' is called a local reflection if
there exists a vertex v with Dy (v) N D1 (v7) # () and if, for any vertex v with
D1 (v) N Dy(v7) # 0, the restriction of o to Di(v) N Dy (v?) is a reflection.

Proposition 4.1. Let I' = (V,D,1,—1) be a connected graph. Any local
reflection o : T' — T has the following properties. The set Fix, (V') is empty,

the graph T, consists of one or two connected components, and, for every
dart d withd # d° = d*, the graph (V, D,U{d,d "'} st p,ugda-13 —Ub,uga,d-13)
s connected.

Proof. Suppose v € Fix,(V). Then D;(v) N Di(v?) contains v = v7, so the
restriction of o to Dj(v) N Dy (v?) is not a reflection.

Suppose [', consists of more than two connected components. Since darts
of I' with d # d° = d~' can only connect connected components of ',
that are interchanged by o, the original graph I' cannot be connected, a
contradiction. Hence I';, consists of one or two connected components.

The last statement is trivially true if ', is connected. If it is discon-
nected, then, by the above, it consists of two connected components, and
the connected components have to be interchanged by . Adding any dart
of I with d # d? = d~! obviously connects the two components. O

Corollary 4.2. LetI' = (V, D, 1, —1) be a connected graph. A local reflection
of I is a reflection if and only if I'y consists of two connected components.
O

Theorem 4.3. Let I' = (V, D, 1, —1) be a connected graph. Any local reflec-
tion o of T' can be lifted to a reflection o of ' = (V,D,1, —1) with

‘7 = V X {_1a1}a
_5 = D X {_17 1}?
2DV (d, £1) = (d*, +1)
N.Ho B (d7',£1), if d ¢ Norm,(D),
1:D—>D (d,£1) — {(d—1,¢1), if d € Norm, (D),

mapping (v, £1) onto (v7,F1) and (d,£1) onto (d°,F1). The canonical
map 7 : T — T is a 1-covering and ow = 7o.
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Proof. The only thing to prove is the fact that & is a reflection. It is a graph
morphism, since

((d.£1)")" =

(

(

(

(
=
((d.£)7")7 = (d ' e(=#1)°
=

(

(
=
where € = 1 if d ¢ Norm, (D) and € = —1 if d € Normy (D). Because % =id
the morphism & is an automorphism. Certainly, the graph I' is connected
and Fixz(V) = (. The set Normg(D) equals {(d,+1) | d € Norm, (D)} and
the graph I's consists of two connected components. Therefore 7 is a reflec-
tion. a

Lemma 4.4. If o is a (local) reflection on a graph I' = (V,D,t,—1) and
¢ is a graph automorphism of T, then ¢ ‘o¢ is a (local) reflection and we
have Normy-1,4(D) = (Norm, (D))?.

Proof. We have d € (Norm,(D))? if and only if d®~ € Norm, (D), which
is equivalent to d? 7 = (d¢") L = (d"1)¢"", whence d¢ 7% = d~!, which
in turn is equivalent to d € Normg-1,4(D). In the same way, we can prove
Fixy-1,4(V) = Fix,(V)?, and in our case that set is empty. Since ¢ is a
graph automorphism, the graph [y-1,4 = (V, Dy-154,t-15¢, —1y-15¢) is
not connected, so ¢p~'o¢ is a (local) reflection. O

Let T' be a graph and let « : W — Aut(I") be a group action I". The
action « is free if no vertex of I' is fixed by a group element other than
the identity. This implies that « is injective, so we may think of W as a
subgroup of Aut(T").

Lemma 4.5. Let I' = (V,D,i,—1) be a graph and let W act freely on T.
We have

Norm,, (D) N Norm, (D) =0
for each pair v, w of distinct involutions in W. In particular, any involution

r € W acting as a local reflection of T' is uniquely determined by the set
Norm, (D).

Proof. Notice Norm, (D) = Norm,-1 (D). Suppose d € Norm,,(D)NNorm, (D)
and, thus, d € Norm,, (D) N Norm,-1 (D). Since the operation of W is free,
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the equality (d)**" = ((d“* ')") = ((d"1)* )" = d* implies wo ! = 1,
whence w = v. The second statement is clear since Norm, (D) is not empty
for a local reflection r € W. g

Definition 4.6. Let W be a group generated by a symmetric subset S, i.e.,
Sl =S, with1 ¢ S. A word (on S) is a sequence (s1,52,...,5,) of
elements of S. Let w € W. The length ls(w) or simply ¢(w) of w (with
respect to S) is the smallest integer n > 0 such that w = s182--- sy, for a
word (81,82,...,5,). A reduced decomposition of w (with respect to S)
is a word (81,82,...,Sy) such that we have w = sys9 -+ s, and n = £(w).

Lemma 4.7. Let ' = (V,D,.,—1) be a graph and let W act on T". Let S be
a generating subset of W such that every element of S acts as a reflection
of I'. Suppose there is a vertexr x such that for every s € S there exists a
dxxs € D with dy xs = x and (d;;cs)‘ = (dxs x)" = x*. Furthermore suppose
for all s,t € S, w e W, the relation x* = xwtw™! implies s = wtw~'. Then
the stabilizer W, is trivial.

Proof. Suppose, we have x¥ = x for a w € W of minimal length n > 1.

Take a reduced decomposition (s1, s2,...,s,) of w with respect to S. Con-
sider the path dx xsn dysn xsn—15n -+ - dxsa~sn xsi1s2--sn With initial and terminal
vertex x (the dart ysjrosn yoj—15j-sn €XIStS as dy ysj—1 exists and sj--- sy, 18
an automorphism of I'). The vertices x and x®» are separated by s,. So
there must be an index 1 < j < n, such that s, separates x®/%+1-5» and
x%i-15i--5n  In other words, we have x(5i%i+17"sn)sn — x5i-15;""$n or equiva-
lently x (838741 sn)sn(sj8j41005m) TH = xesi-1, By hypothesis we get
—1
(878541 Sn)sn(8j8j41 " 80) " = 851
or equivalently s;s;1---8, = sj_18;--- 8,1 whence

§182 " 8p = 8182852858541 Sn—1,

which is a contradiction to the minimality of n. O

Proposition 4.8. Let I' be a connected graph, let W act on I' and let S
be a generating subset of W. Suppose there is a vertex x € V such that for
each dart d with initial verter x there is an s € S with x° = (d~!)". Then
the action of W on the set of vertices of I' is transitive.

Proof. By a straightforward induction argument. O

5. COVERS OF MONOPOLES

Definition 5.1. An automaton is a triple A = (S, X, 1) where S is a set,
the set of states, X is a set, the set of inputs, and 7: Sx X — S is a map,
the transition map. (By iteration we can and sometimes will consider T as
a map from S x X* into S, where X* is the monoid of of all words over the
alphabet X.) The transition semi-group G4 of the automaton A consists
of the transformations g : S — S such that there exists an x € X* such that



SEMI-EDGES, REFLECTIONS AND COXETER GROUPS 13

s9 = (s,z)" for all s € S. The automaton A is called a group automaton
if its transition semi-group G 4 s a group.

Obviously, in a group automaton the map 7, : S — S : s — (s,2)" is a
permutation of S for arbitrary © € X. Therefore we can add the symbol
27! to X and define the map 7,-1 as the inverse map of 7,. Then X admits
an involution —1 with the property (x~!)~! = x. If a group automaton
A = (S,X,7) satisfies X! = X, then it is called symmetric. A group
automaton is called homogeneous if s> = s™ for some s € S implies
s™ =s™ for all s € S.

The transition graph I' = (V, D, —1) of a symmetric group automaton
A= (S, X, 1) consists of

V = 8,
D = Sx X,
t:D—=V  (s,x) s,
~1:D—=D : (s,z)~ ((s,z)7,z}).

Theorem 5.2. Any transition graph of a symmetric group automaton is a
1-cover of a monopole and vice versa.

Proof. Certainly, the canonical projection § x X — X extends to a 1-
covering of the monopole ({S},X,r,—1) with ¢ : X — {S} the constant
map and —1 : X — X the inversion map.

Conversely, let T = (17,13,?, :\1) be a l-cover of the monopole I' =
(v,D,t,—1). Then (I7,D,7') with (z,d)” defined as the terminal vertex
in V of the unique lift of the path d of length one to a path of T with
initial vertex z by Lemma 2.3, is an automaton. It even is a group automa-
ton, because 7,1 is the inverse of 74. Moreover, D! = D implies that
tlle group automaton is symmetric. Obviously, T is the transition graph of

(V,D,T). O

An automaton A = (S, X, 7) is called strongly connected if for each pair
s, t of states there exists an z € X* with (s,z)” = ¢. The transition graph of
a symmetric group automaton is connected if and only if the corresponding
automaton is strongly connected.

Lemma 5.3. Let T be the transition graph of a strongly connected symmetric
group automaton (S, X,7) and let I = (v, D, 1, —1) be a monopole 1-covered
by T. The 1-covering R reqular if and only if (S, X, ) is homogeneous
and for each x € X the map 1, can be extended to an automorphism of L.

Proof. Suppose for each z € X the map 7, can be extended to an auto-
morphism of T and (S, X, 7) is homogeneous. There exists an equivalence
relation on X defined by x = y if and only if s™ = s™ for some, whence by
homogeneity of (S, X, 7), all s € S. Certainly (S, X/=,7) is a homogeneous
strongly connected symmetric group automaton and for each z € X/ =
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the map 7z can be extended to an automorphism of the transition graph
of (S,X/=,7). All edges except at most one of the transition graph of
(S, X/=,7) are links. Moreover, each link is uniquely determined by its ini-
tial and terminal vertices. It is clear that each map 7; induces a (uniquely
determined) deck transformation of the 1-covering from the transition graph
of (S, X/=,7) onto some monopole with dart set X/=. But now it is trivial
to extend 7, to a deck transformation of the 1-covering [ = T. The strong
connectedness of (S, X, 7) yields transitivity of the group of deck transfor-
mations on the vertex fibers, whence F>TIis regular.

Conversely,/\assume that T' — T is regular. Then for each pair x, y of
neighbors in I' there exists a deck transformation mapping x to y. This
implies the homogeneity of (S, X, 7). Moreover, the restriction of this au-
tomorphism to the set of vertices commdes with the map 74 where d is the
dart in T that lifts to some dart d in T' with initial vertex x and terminal
vertex y. O

Example 5.4 (An inhomogeneous group automaton). Let S = {1,2,3,4},
let X = {a,(fl,b, b1, c, cfl} and define T as follows.

b—l —1

a a b c c
1 2 4 2 2 4 4
23 1 1 1 3 3
34 2 4 4 2 2
41 3 3 3 1 1

Notice that the map 7, can be extended to an automorphism of the transition
graph T of the group automaton (S, X, T) but not to a deck transformation of
the canonical 1-covering. Indeed, if an automorphism of I' induced by 7, is a
deck transformation, then it has to preserve the fiber 1~ (a) of the 1-covering
m: T — ({S},X,t,—1). But then this automorphism has to interchange the
fibers = 1(b) and 7 1(c) and, thus, is not a deck transformation.

In [13] one can find a characterization of graphs that are regular 1-covers
of monopoles. Here is a brief reminder of their result.

Definition 5.5. A voltage space on a connected graph T is a triple (F, G, §)
where G is a group acting on a non-empty set F and & : [[1(T") — G is a
homomorphism of groupoids. The group G is called the voltage group, the
set F is the abstract fiber and [7]% is the voltage of the 1-homotopy class
of the path .

In case G acts on F = G by right translation, then (F,G.£) is called a
Cayley voltage space.
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To any voltage space (F,G, &) over some graph I' there exists the associ-
ated graph ' = (V, D,7, —1) with
= V xXF,
= DxF,
D (d, f) = (d", ),
Z1:D—=D : (df)— (d7h FU),

<) o <

One can check that the canonical projection = : T — T induced by (d, f)™ =
d is a 1-covering.

It was observed in [13] (see also [10]) that with each regular 1-covering
7 : T — T one can associate a Cayley voltage space as follows. Choose
G to be the group of deck transformations A(w) and label the elements of
each vertex fiber by G so that the left action of A(r) on T induces the
action of A(m) on itself by left translation on each labelled vertex fiber. The
homomorphism ¢ : IT;(T') — A(n) is given by d¢ = g, 'go for each dart d
if there exists a dart in 7 !(d) passing from the element labelled g1 in the
vertex fiber of d* to the element labelled go in the vertex fiber of (d !)-.
Note that ¢ is well-defined. Indeed, if there exists another dart in 7 !(d)
with initial vertex labelled g3 and terminal vertex labelled g4, then, by the
left action of G = A(w), we have gggfl = 94951 and hence gflgg = gglg4.

Given a group G and a generating multiset S = S~! of G (i.e., we have
amap «: S — G with (S%) = G and (s 1) = (5*)"! for all s € S), the
Cayley graph Cay(G,S) is the graph (G,G x S,t,—1) where (g,s)" = g
and (g,s) "' = (gs%,s7).

Theorem 5.6 (Malnic, Nedela, Skoviera [13]). Any Cayley graph is a reg-
ular 1-cover of a monopole and vice versa.

Proof. Consider the Cayley graph Cay (G, S) of the group G with respect to
the generating multiset S = S~!'. Then the map induced by the canonical
projection G x S — S extends to a regular 1-covering of the monopole
({G},S,t,—1) with 7 : S — {G} the constant map and —1 : S — S the
inversion map.

To prove the converse, recall that by the above any regular 1-covering
L =T gives rise to some Cayley voltage space (A(7), A(r), ). Suppose
we have a 1-covering of some monopole I' = (v, D,t,—1). Then the graph
T = (V,D,7,Z1) associated to the voltage space (A(r), A(r), €) consists of

V o= {v} x Ar) = A(n),

D = DxA(n),
D=V o (df) = (df) = (0 f) =],
T1:D=D i (df) = (@ D) = (@ fdd),
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which is the Cayley graph of A(w) with respect to the generating multiset
D. O

Corollary 5.7. Let I' = (V,D,.,—1) be a connected graph, suppose the
group W acts reqularly on I' and let S C W be a symmetric, generating
multiset. If for a fived vertex x of I' the set of darts with initial vertex x
equals {ds € D | s € S} with (d;')" = s.x and ds = d; if and only if s = t,
then the map ¢« : W xS — D : (w,s) — w.ds induces an equivariant graph
isomorphism from the Cayley graph Cay(W,S) of W with respect to S to
the graph T'.

Proof. Let (x,{ds € D | s € S},//,—1") be a monopole where ¢/ : {ds; €
D | s € S} — {x} is the constant map and —1" : {d; € D | s € S} —
{ds € D | s € S}:ds — dg-1. The map 7 : (V,D,1,—1) — (x,{ds € D |
s € S}, —1") with (w.ds)™ = ds is a regular 1-covering. Indeed, it is a
morphism as d;' = s.d,-1 and w.d;! = ws.ds—1 whence (—1)7 = 7(-1")
(the condition v = 74/ is satisfied trivially), it is a 1-covering since the w.d,
s € S, are the darts with initial vertex w.x, and it is regular as the group W is
a lift of the identity acting regularly on I'. In particular, by Proposition 2.4,
we have W = A(~). Hence, by the theorem, (V, D,t,—1) can be considered
as the Cayley graph of A(m) = W with respect to S. The equivariance
follows by the action W — Aut(Cay(W,S)) : g = {(w,s) — (gw, s)} on the
Cayley graph and the action W — Aut(') : ¢ = {w.ds — gw.ds} on I'. O

Remark 5.8. Consider the action of W on its Cayley graph with respect to
S, and suppose the elements of S act as reflections. Due to Lemma 4.4, the
set R:={wsw ! :s € S,weW} consists of reflections.

Corollary 5.9 (of Theorem 5.6). Any Cayley graph (G,G x S,1,—1) of a
group G generated by a multiset S consisting of involutions is a reqular 1-
cover of the monopole ({G}, S, —1") (with ' the constant map and —1" the
identity map) admitting only semi-edges. Conversely, ifm : I' — (v, D,t,—1)
s a regular 1-covering onto a monopole admitting only semi-edges, then I’
is the Cayley graph of a group G = A(r) generated by involutions. O

Corollary 5.10 (of Lemma 5.3 and Theorem 5.6). The transition graph T'
of some strongly connected symmetric group automaton (S, X, ) is a Cayley
graph if and only if (S, X,T) is homogeneous and for each © € X the map
T, can be extended to an automorphism of L. O

6. CHAMBERS
For the next definition recall that R = {wsw™!:s € S,w € W}.

Definition 6.1. Let ' be a connected graph and let W act freely on T'. More-
over, assume W is generated by a subset S of elements that act as reflections
on ['. Since the action of W is free the elements of S are involutions, so S
is symmetric, i.e., St = S. Define the equivalence relation ~:= Ngcp ~
on X. The equivalence classes of this relation are called chambers. Define
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the chamber graph I'c on the chambers of I' with darts dc,cr with initial
verter C' and terminal vertex C' for distinct chambers C, C' if there exists
a dart d of T with d* = x € C and (d" )" = x' € C'. Moreover, define
(dcyc/)*l =dcr,c. The group W also acts on I'c and the elements of S act
as reflections on U'c. Indeed, for each s € S, the graph s (cf. the defini-
tion of a reflection at the beginning of Section 4) consists of two connected
components, and any chamber is completely contained in one component.

For s € R, we shall call Normg(D) a wall of a chamber C, if Normg(D)
contains a dart whose initial vertex is contained in C'. By S¢ we denote the
set of all s € R for which Normg (D) is a wall of the chamber C. With S
also R consists of involutions, and so does S¢ C S.

Let s € R. We say that a path dc,,c,dc,,c, - dc,_,,c, crosses s, if
the set of indices 0 < j < n with C; +#s Cji1 is not empty. The wall s is
crossed n times by a path if the set of indices 0 < j < n with Cj #s Cji1
has n elements.

Lemma 6.2. If the dart dccr exists, then there is a unique element s € R
separating C and C'. For this element we have C* = C".

Proof. Since dc ¢ is a dart of the chamber graph, there exists a dart d of T’
with d* = x € C and (d ')* = x' € C'. Since C and C' are distinct, there
is an s € S separating x and x’. This means d € Norm,(D), so we have
x® = x’ and hence C* = C’. For any reflection r separating x and x’ we get
d € Norm, (D) and can conclude s = r due to Lemma 4.5, which proves the
uniqueness of s. O

Recall that W acts freely on I

Proposition 6.3. The distance between two chambers C and C' is equal to
the number of elements s € R separating C' and C'.

Proof. Let C and C' be chambers and let d¢ ¢, dcy ¢, - - - de,_, o' be a mini-
mal path from C to C’ of length n. Let m be the number of elements s € R
separating C' and C’. For every s € R separating C' and C’ there is an index
0 < j < n such that s separates C; and Cj;1 and s is uniquely determined
by this property due to Lemma 6.2. This entails m < n.

Now we assume m < n. So thereisan s € R separating C' and C” such that
there are two different indices j and j' with C; #, Cjq1 and Cj o, Cjryy.
Without loss of generality, we can assume j < j' and Cj;; ~; Cj. But then
the path do ¢, - - dcjilycj:c]al cee dC;I:Cj’+1aCj’+2 cee an_l,C” has the length
n — 2, which is a contradiction to the fact that the path is minimal. O

Corollary 6.4. Minimal galleries cross every s € R alt most once. O

Proposition 6.5. The group W is generated by Sc and acts transitively on
the set of chambers and R is the set of all reflections in W.

Proof. By Proposition 4.8 the subgroup W := (S¢) of W generated by the
elements of S¢ acts transitively on the set of chambers. Since R consists
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of reflections and generates W, it suffices to show that every reflection lies
in W. Let r be a reflection and let d € Norm, (D). Then d* = x; lies in a
chamber C. There is a w € W, such that C¥ = C. Since Norm,(D) is a
wall of C, the set Norm, (D)~ = Norm,,,,—1(D) (cf. Lemma 4.4) is a wall
of C. We get wrw™' € S. This means r € W and r € R. Since R consists
of reflections, it is precisely the set of all reflections. Since it generates W
and its elements lie in W, the set S¢ generates W. d

Proposition 6.6. The group W acts regularly on the set of chambers.

Proof. Let C be a chamber. Then d¢ cs is a dart of the chamber graph for
every s € Sc. If we have C® = C* for s € S¢ and 5 € R then we get § = s
by Lemma 6.2. So by Lemma 4.7 the stabilizer W¢ is trivial. Since W acts
transitively on the set of chambers, this implies regularity. 0

Corollary 6.7. The chamber graph U'c is isomorphic to the Cayley graph
Cay (W, Sc). Moreover, this isomorphism is W -equivariant.

Proof. This follows by the proposition and Corollary 5.7. |

Corollary 6.8. There exists a 1-1 correspondence between words on S and
paths in U'c with initial verter C. Two words on S represent the same
element of W if and only if the terminal vertices of the corresponding paths
based at C coincide. O

The following result states for a very special case that S¢ is a minimal
generating set for W. We will need this result for the proof of Theorem 7.4.

Lemma 6.9. Let C' be a chamber and let s1 # so € S¢. Suppose that W is
generated by S = {s1,s2}. Then S = Sc.

Proof. According to [2] Ch. IV § 1, the pair (W, S) is a Coxeter system,
as S counsists of two involutions. Let I'y be the Cayley graph of W with
respect to S, and let 'y be the Cayley graph of W with respect to Sc.
Both graphs have the same set of vertices and every dart in I'; is a dart in
I's. By Corollary 6.7, the chamber graph can be identified with I'y. It is
easily verified by studying the Cayley graph of dihedral groups (i.e. groups
generated by two involutions) that, if we add a non-empty set of edges to the
graph G, then the resulting graph is not G-invariant or the group elements
{wtsw:w € W, s € S} do not all act as reflections on it. We conclude
that both graphs I'y and I's have the same set of darts. Since the number of
darts emanating from 1 in the Cayley graph is just the number of generators,
we obtain |S| = |S¢|, and thus S¢ = S. O

The following result shows an interesting way of characterizing the finite-
ness of the group W.

Definition 6.10. Let C be a chamber. Set —C := (e X* (C), so —C is
the (possibly empty) set of all vertices, which are separated by every s € R
from the vertices in C'.
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Theorem 6.11. Let C' be a chamber. The group W is finite if and only if
the set —C' 1is non-empty; in this case —C is a chamber. If W is finite then
the following hold:

(i) The map C — —C is an equivariant involution of the chamber

graph.
(ii) Se =S_¢.
(iii) —C' = (] X2(0)

sESc
(iv) The chamber —C' is the unique chamber with mazimal distance from
the chamber C.

Proof. Assume that —C is non-empty and let x,y € —C". The vertices x, y
cannot be separated by any s € R, as x, y both are separated by all s € R
from any z € C. Therefore —C' is a chamber. All elements of R separate C'
and —C. The chamber graph is connected, because the chambers partition
the vertex set of I' and I is connected, so by Proposition 6.3 the set R is
finite. As a consequence, the set of all chambers is finite. Since W acts
regularly on this set, it is a finite group.

Now let W be finite. So the set of chambers is finite. Let C be a
chamber with maximal distance n from C. Suppose there is an s € R
that does not separate C' and C. Then the chamber C* has distance

m < n from C. Let doc, - --dcm_1 O —Crs be a minimal path from C to

C$. There is an index 0 < j < m such that C7 = Cjt1. The path

dec, -+ dc =8Oy dC%_l,C%:é has the length m — 1 < n, which is
a contradiction. So we have C' = —C'. We have proved the first assertion

and part (iv).

To prove (i) let m be the distance between C and —C. Since W acts
transitively on the chamber graph, for any chamber C the distance of any
chamber C' and —C is equal to m. So the given map is an involution. Now
let w € W and C a chamber. Then the distance between C* and (—C)¥
equals the distance m between C' and —C, which entails —(C%) = (—-C)".
So the map is equivariant. If two chambers C' and C are ‘adjacent, then the
distance between —C and C is in — 1. Thus —C and —C are separated by
one and only one element of R. So they are adjacent.

For part (ii) let C be a chamber. Then Normg(D) is a wall of C if and
only if C' and C? are adjacent. This is equivalent to —C and —C'® adjacent.

Finally, we prove (iii). Suppose C and C’ are separated by every element
of Sc. Now let § € R and s € S¢. Suppose § separates C and C’. Since
Sc generates W, it suffices to show that s§s~' separates C' and C’. Cer-
tainly 555! separates C° and C'°. If sis~! = s, then 5 = s we are done.
Otherwise, recall that s is the only element of R which separates C' and
C?. The same is true for C' and C’*. So neither C' and C*® nor C" and C"*
are separated by 5. This means § separates C° and C'° and, thus, s3s~!
separates C' and C'. O
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Corollary 6.12 (of Corollary 6.8 and Theorem 6.11). If W is finite, there
exrists a unique longest element wy in W with respect to S and it has length
|R|. O

For the case of dihedral groups we will need statement Theorem 6.11 (iii)
without requiring W to be finite:

Lemma 6.13. If S¢ = {s1,s2} then
-C= () X°(0).

SESc

Proof. If the set D := (\,cq., X*(C) is empty then so is —C by definition.
So we suppose that D is not empty and deduce that W is finite. Then we
are done by Theorem 6.11 (iii). So let C' be a chamber in D with minimal
distance m to C. Recall the statement of Proposition 6.3. The distance
between C*' and C' is m — 1. So there is a path of length m — 1 starting with

the dart ds ., and ending in C*'. The chamber C' must lie outside of D

due to the minimality of the distance between C' and C. The path does not
cross s, so the path dg ., must cross s;. Thus Normy, (D) is a wall of C.

By swapping the roles of s; and so we see that E°! is also a wall of C. Due
to transitive action of W on chambers, every chamber has two walls. We
obtain D = C. Now we can proceed as in the proof of Theorem 6.11 (iii). O

7. COXETER GROUPS

Definition 7.1. Let W be a group generated by a subset S of proper in-
volutions. For s and t € S let m(s,t) € NU oo be the order of st in W.
Set I :={(s,t) € S x S |m(s,t) < oo}. The pair (W,S) is called a Cox-
eter system, if W has a presentation of the form W = (S | (st)™(s:t) =
1 for all (s,t) € I). Then the group W is called a Coxeter group.

In Section 8 we want to relate Coxeter groups to the Cayley graphs and
covers of monopoles from Section 5. Therefore we have to allow for repetition
of generators and trivial generators in Cozeter groups. More precisely, if W
1s a Cozeter group with respect to a generating system S C W of involutions
and a: D — SU{lw} is a surjection, then we call W o Coxeter group
with respect to the generating multiset D. In view of the map —1 in
a graph we set d=' := d for each d € D. The relation = from the proof of
Lemma 5.8 shows that one can pass between the two notions without problem.

Remark 7.2. The existence of a presentation of the form in the above
definition is equivalent to either of the following conditions:

(i) The system (W, S) satisfies the following universal property: Let G
be a group and let f : S — G be a map with (f(s)f(t))mfs’t) =1 for

all (s,t) € I. Then there is a unique homomorphism f : W — G
extending f.



SEMI-EDGES, REFLECTIONS AND COXETER GROUPS 21

(ii) Let W be a group and let f : W — W be a homomorphism.
Assume that there is a map h : S — W with f(h(s)) = s and

(h(s)h(t))m(s’t) =1 for (s,t) € I and such that the elements h(s)
with s € S generate W. Then f is injective.

Definition 7.3. We say that the pair (W, S) satisfies the exchange condi-
tion if the following holds. Let w € W and s € S, such that ¢(sw) < £(w).
Then for every reduced decomposition (s1,S2,...,Sp) of w, there is an inte-
ger 1 < j <mn, such that ss1s3---sj_1 = 5182+ - 5j.

Theorem 7.4. For any chamber C the pair (W, Sc) is a Coxeter system.

Proof. Let W be a group and let f : W — W be a homomorphism. Assume
there exists a map h: Sc — W with f(h(s)) = s and (h(s)h(s"))™5) =1
for (s,s’) € I and such that the elements h(s) with s € Sc generate W. If
we show that f is injective, we are done by Remark 7.2.

Since each s € S¢ is an involution, so is each h(s) € W, s € S¢, whence
every element g € W can be represented as g = h(s,)h(sp,_1)--- h(s1) with
n € N and s1,892,...,8, € S¢. Suppose g € ker f and let C' be a chamber.
This means d¢, cs1desy os2s1 *+ Aesn—1751 csnesy 18 @ cycle.

Let k£ be the maximal value occuring as a distance between C' and C'#i%i-151
for some 0 < 7 < m, and let 7 be the maximal value for which C*i%i-1""%1 hag
distance k from C. Set w := s;8;_1---81. The chamber C*%"Y is closer to
C than C". (See Figure 1.) Since w~!s;w separates C* and C, it also
separates C' and C' by Corollary 6.4. So s; separates Cv" and C. In the
same way we show that s;;; separates Ccv ' and C.

We now consider the subgroup W' of W generated by the subset S’ = {s;, s;+1}.
Set

R :={wlsw:weW, scsl

Now W' is generated by the W'-invariant set of reflections R’. We shall
call the chambers with respect to this set of reflections large chambers in
order to distinguish them from the small chambers which come from the
set of reflections R. Let C’ be the large chamber that contains C. From
Lemma 6.9 we know S’ = Scv. The chamber graph with respect to R’ can
be identified with the Cayley graph of the dihedral group W' with respect
to S’. Since

the set —C" is a large chamber due to Lemma 6.13. So the group W' is finite
due to Theorem 6.11. Thus the Cayley graph of W’ with respect to S’ is a
cycle.
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Norm,, 15,4, (D) Normy,-14,, (D)

__-~ Path of old representation

, Path of new representation

FI1GURE 1. Paths corresponding to the old and the new rep-
resentations of g

The large chambers C' and —C' have distance |R'| = m(s;, si+1) by the
definition of —C". Set

m(s;,8i41)

- (siSit1) 2 if m(s;, si+1) is even.
w = m(s;,8541)—1
05141 . .
(8iSi+1) 2 si if m(s;, si41) is odd.
Since w.C' = —C', the large chamber —C’ contains the small chamber

C := @.C. So the small chambers C and C have distance at least |R'|.
This implies that the paths

dC’,CSi dcsiycsiwtlsi dcsi+15i,csi5i+15i ceey dési 6 and
k
do,csivr dosivr goisier dosisier csit15isier vy as; i &

are minimal (with respect to R) and have length |R|.
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Due to Theorem 6.11 (iii), the small chambers C and C are separated by
each of the elements of R, and the small chambers cv " and C are separated
by none of the elements of R. Since the distance between C' and cv s k,
the distance w=.C and C is k — |R'|. So each of the small chambers

Csi, Csi+18i QOfisi1si  OSi+1sisit1si - (OSi+l
has distance less than k from C%”'. So the w-translates of these elements
have distance less than & from C.
We obtain the new representation
isSi+1)—1
9= h(sn)h(sn 1)+ h(sip2) (A(s:)h(si41)) ™7 ™ hisi 1), h(sy).

=h(si1)h(s:)
The corresponding cyclic path has a smaller k or a smaller index ¢ for which
the maximal distance k occurs. (See Figure 1.) By induction we obtain
g=1.

g

If we specialize our action of W to the action on the Cayley graph, then
chambers consist of only one vertex, since the action on the points and on the
chambers is simply transitive. In this case we have the following corollary
of Theorem 6.11.

Theorem 7.5. Let (W, S) be a Cozeter system and let R = {wsw ! : s €
S,w € W}. Then the following conditions are equivalent:
(i) W is finite.
(ii) R is finite.
(iii) There is a w € W such that 1 is separated from w by every s € R.
O

If condition (iii) is satisfied, then w is the unique group element with
maximal length and it has length |R|, cf. Corollary 6.12.

Theorem 7.6. The following statements are equivalent:

(i) (W,S) is a Cozeter system.
(ii) (W, S) satisfies the exchange condition.
(iii) The elements of S act as reflections on Cay(W, S).

Proof. The implication (i) = (ii) is well-known, see e.g. [4]. The implica-
tion (iii) = (i) is a consequence of Theorem 7.4 and Corollary 6.7.

So now we assume (ii). Our proofis inspired by the ideas in [2] Ch. IV, § 1.7.
Let s € S and set

Py :={weW:l(w) <l(sw)}.

Due to [2] Ch. IV, § 1.5 Proposition 4 the group W is the disjoint union of
Ps and s.P; = {w € W : f(w) > £(sw)}. Let (w,s’) be a dart with initial
vertex w € W and terminal vertex ws' for s’ € S. Assume w € P, and
ws' € P¢. By showing (w, s') € Normy(D) in the Cayley graph Cay (W, S),
we prove that s is a reflection. So we are done if we show sw = ws’.
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Set n := f(w). Due to w € Ps, we have £(sw) = n + 1. Using this and
ws' € P we get n < l(sws') < L(ws') < n+1. We conclude £(sws’) = n and
l(ws") = n+1. Now let (s1, s, ..., 5,) be a reduced decomposition of w. By
setting s,+1 := s’, we obtain the reduced decomposition (s1,$2,...,8n+1)
of ws’. The exchange condition tells us that there is an index 1 < j <
n + 1, such that we have ssisp---sj_1 = s182---5;. Suppose j < n +
1 for a moment. Then we get sw = ssis2---8, = S$182---5j8;--" 8, =
5182+ 8j_18j41 " Sp, which is a contradiction to £(sw) = n 4+ 1. So we
have j = n + 1 and the above equation yields sw = ws’. d

Corollary 7.7. If (W,S) is a Coxzeter system, then the set R = {wsw " :
s € S,we W} is exactly the subset of W consisting of those elements which
operate as reflections on the Cayley graph of W with respect to S. Any
subgroup generated by a subset of R is a Cozeter group.

Proof. Let (W, S) be a Coxeter system and consider the action of W on its
Cayley graph with respect to S. This action is free. By Proposition 6.5, the
set R is the set of reflections in W. Any subgroup of W operates freely on
the Cayley graph of W with respect to S. If this subgroup is generated by
reflections, then it is a Coxeter group by Theorem 7.4. O

8. COVERS OF MONOPOLES, REVISITED

Theorem 8.1. Let m : I' — (v,D,t,—1) be a l-covering of a monopole
admitting semi-edges only. The graph I' is the Cayley graph of a Cozeter
group if and only if © is regular and any deck transformation in A(rm) that
interchanges two neighboring vertices of I' acts as a reflection on T'.

Proof. Theorem 5.6 implies that [ is the Cayley graph of A(7) with respect
to the generating multiset D (with embedding map & : D — A(w) as defined
before Theorem 5.6) if and only if 7 is regular. The set of vertices of I'
equals A(7). By regularity of 7 and by Lemma 4.4 it suffices to study deck
transformations that interchange the vertex 1 of I' and some neighboring
vertex d¢ of I'. But any such deck transformation is given by the maps
A(m) = A(r) : w = d®w on the vertices of I and D x A(r) — D x A(n) :
(d,w) + (d,déw) on the darts. (For, the given map is a deck transformation
interchanging 1 and d¢, so it has to be the one we were studying as A(r)
acts regularly on I'.) By Theorem 7.6 the group A(r) is a Coxeter group
with respect to the generating multiset D if and only if the elements of D
that do not act as the identity on I' act as reflections on I'. The theorem is
proved. O
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