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1. Introdution

There are numerous similarities between the overing theory of graphs

and the overing theory of topologial spaes. In algebrai topology, f.

e.g. De�nition III.3.1 of [3℄, a map p : X ! Y between arwise onneted,

loally arwise onneted Hausdor� spaes is alled a overing map if eah

element y 2 Y has an arwise onneted neighborhood U suh that p

�1

(U)

is a nonempty disjoint union of sets U

�

on whih p

jU

�

is a homeomorphism

U

�

�

�! U . In lassial graph theory one replaes the topologial spaes

X and Y by onneted graphs �

1

and �

2

, the neighborhood U of a vertex

y 2 �

2

by the indued subgraph �

2

(y) on the neighbors of y in �

2

and

requires that for eah preimage x in �

1

of y the restrition of p to �

1

(x) is

a bijetion resp. isomorphism onto �

2

(y).

More preisely, a surjetion � : �

1

! �

2

between onneted graphs �

1

, �

2

is alled a 1-overing map if for eah x in �

1

the map � indues a bijetion

between the set of verties of �

1

(x) onto the set of verties of �

2

(x

�

). On

the other hand, a surjetion � : �

1

! �

2

between onneted graphs �

1

, �

2

is alled a 2-overing map if for eah x in �

1

the map � indues a graph iso-

morphism between the indued subgraph �

1

(x) onto the indued subgraph

�

2

(x

�

).

The notion of 1-overings (or loal isomorphisms, as they are sometimes

alled) is important for the study of epimorphisms between point-line geome-

tries under whih the point row of eah line is mapped bijetively onto the

point row of its image and, dually, the line penil of eah point is mapped bi-

jetively onto the line penil of its image. In ase of ag-transitive point-line

geometries this orresponds to the study of injetive ompletions of amal-

gams onsisting of two groups (the point stabilizer and the line stabilizer).

The geometry of the dihedral groupD

2n

=




a; b j a

2

= b

2

= (ab)

n

= 1

�

prob-

ably is the easiest example. A 2n-gon admits 1-overs by any 2kn-gon,

k � 1; this 1-overing orresponds to the group epimorphism D

2kn

=




a; b j a

2

= b

2

= (ab)

kn

= 1

�

! D

2n

=




a; b j a

2

= b

2

= (ab)

n

= 1

�

indued

by fatoring out the yli normal subgroup generated by all nth powers

of the produt ab. Of ourse, the universal 1-over of a 2n-gon is the tree

of valeny two, whih orresponds to D

21

=




a; b j a

2

= b

2

= 1

�

being the

universal ompletion of the amalgam hai [ hbi. For a thorough treatment of

the relationship between overs of graphs and amalgams we refer the reader

to [5℄, [6℄, [16℄, [17℄. There also exist a number of artiles on 1-overings

1
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from a purely geometri point of view, espeially for generalized polygons,

see [7℄, [8℄, [14℄.

2-overings, on the other hand, are important when studying loally ho-

mogeneous graphs. A graph � is alled loally homogeneous, if for any pair

x, y of verties of � the indued subgraphs �(x) and �(y) on the neighbors

of x, resp. y are isomorphi. It is lear from the de�nitions that any 2-over

of a loally homogeneous graph is again loally homogeneous with the same

loal struture. Therefore, when studying loally homogeneous graphs, it

suÆes to only onsider the simply onneted ones, i.e., those graphs that

oinide with their universal 2-over. For example, in [9℄ one an �nd a har-

aterization of the line-hyperline graphs of a projetive spae of suÆiently

large dimension by their loal struture. The line-hyperline graph of some

projetive spae P onsists of the noninterseting line-hyperline pairs of P

(i.e., pairs of omplemented subspaes of dimension two, resp. odimension

two in the orresponding vetor spae) in whih the pair (l; L) is adjaent to

the pair (m;M) if and only if l � M and m � L. It is easily seen that the

loal struture of the line-hyperline graph of P is given by the line-hyperline

graph of an arbitrary hyperline of P. Conversely, Theorem 1 of [9℄ says that

this loal property is harateristi for the line-hyperline graphs for suÆ-

iently large dimension. The proof of that theorem heavily relies on the

assumption that the loally homogeneous graphs under onsideration are

simply onneted. Only after a suessful lassi�ation of the simply on-

neted graphs one realizes that they do not admit quotients with the same

loal struture (beause their diameter is two), ompleting the proof.

Surowski's work [18℄ beautifully uni�es the onepts of 1-overings and

2-overings by onsidering simpliial omplexes. While topologists may not

be surprised by the results presented in [18℄, the artile desribes graph

theoreti overing theory in a language perfetly suited for geometers.

Malni, Nedela and Skoviera [13℄ de�ne a di�erent notion of graphs. A

graph � = (V;D; �;�1) in their sense onsists of a set V of verties, a set D

of darts, a map � : D ! V and a permutation �1 : D ! D : d 7! d

�1

with

(�1)

2

= id. The map � assigns to eah dart its initial vertex, while the map

�1 interhanges a dart and its reverse. The terminal vertex of a dart x is

the initial vertex of x

�1

. The orbits of �1 are alled edges. Note that edges

onsist of one or two darts. An edge is alled a semi-edge if its ardinality

is one, a loop if its ardinality is two and both darts ontained in this edge

have the same initial vertex, and a link otherwise.

The authors of [13℄ justify this de�nition of a graph by appliations in the

theory of Cayley graphs. For example, Gross and Tuker [11℄ note that not

all Cayley graphs are regular overs of bouquets of irles. Using the notion

of a graph as in [13℄, however, one an prove that eah Cayley graph is a

regular over of some monopole, i.e., a graph onsisting of a unique vertex

and an arbitrary number of darts, f. 6.2 of [13℄, restated and reproved as

Theorem 5.6 in the present paper. A overing � in the sense of [13℄ is a
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graph surjetion � suh that for eah vertex x in the domain the set of darts

with initial vertex x is mapped bijetively under � onto the set of darts with

initial vertex x

�

.

Neither topology nor Surowski's work [18℄ apply to the overing theory

of graphs with semi-edges. Therefore it is one goal of the present paper to

provide a suitable theory of overings. To this end we de�ne the notion of a

fundamental 1-overing (see De�nition 3.1) and prove that this overing is

universal (f. De�nition 3.3).

Theorem 3.5 Let � be a onneted graph, let x be a vertex of �, and let

b

� be

the fundamental 1-over of � based at x. Then the fundamental 1-overing

� :

b

�! � is universal.

As a onsequene of the preeding theorem we an lassify all graphs that

are 1-overs of a given graph. Results of this kind are typial in the ontext

of topologial spaes. In our ontext, however, we an ahieve more: We

give an expliit onstrution of eah over, omparable to the onstrution

of overs of simpliial omplexes in x55 of Seifert and Threlfall [15℄.

Later in this paper we turn our attention to reetions and loal reetions

of graphs, a reetion of a onneted graph being an involutive automor-

phism of the graph that does not stabilize any vertex with the property that

if one removes the darts of the graph that are normalized by the automor-

phism, then the graph beomes disonneted (see the beginning of Setion

4). Applying the theory of reetions of graphs to the Cayley graph of a

Coxeter group we obtain the following haraterization.

Theorem 7.6 The following statements are equivalent:

(i) (W;S) is a Coxeter system.

(ii) (W;S) satis�es the exhange ondition.

(iii) The elements of S at as reetions on the Cayley graph Cay(W;S).

In [12℄ this haraterization is proven for the ontext of 'lassial graphs'

and used to identify as Coxeter groups reetion groups on ertain topolog-

ial spaes.

Finally, we ombine the preeding theorem with our disussion of monopoles

in Setion 5 to obtain a haraterization of the Cayley graphs of Coxeter

groups.

Theorem 8.1 Let � : �! (v;D; �;�1) be a 1-overing of a monopole. The

graph � is the Cayley graph of a Coxeter group if and only if � is regular and

any dek transformation in �(�) that interhanges two neighboring verties

of � ats as a reetion on �.

2. Coverings

Following [13℄, a graph � = (V;D; �;�1) onsists of a set V of verties, a

set D of darts, a map � : D ! V and a permutation �1 : D ! D : d 7! d

�1

with (�1)

2

= id. The map � assigns to eah dart its initial vertex, while



4 RALF GRAMLICH AND GEORG W. HOFMANN AND KARL-HERMANN NEEB

the map �1 interhanges a dart and its reverse. The terminal vertex of

a dart x is the initial vertex of x

�1

. The orbits of �1 are alled edges. Note

that edges onsist of one or two darts. An edge is alled a semi-edge if its

ardinality is one, a loop if its ardinality is two and both darts ontained

in this edge have the same initial vertex, and a link otherwise.

A monopole is a graph onsisting of one vertex and a number of darts.

A morphism of graphs � : (V

1

;D

1

; �

1

;�1

1

)! (V

2

;D

2

; �

2

;�1

2

) onsists

of maps V

1

! V

2

and D

1

! D

2

suh that �

1

� = ��

2

and (�1

1

)� = �(�1

2

).

A path of length t is a sequene of t darts  = x

1

� � � x

t

suh that

the terminal vertex of x

k

oinides with the initial vertex of x

k+1

for all

1 � k � t � 1. A path of length 0 (or trivial path) is a vertex x. The

initial vertex of , denoted by 

�

, is the initial vertex of x

1

(resp., x in

ase of a trivial path), the terminal vertex of  is the terminal vertex of

x

t

(resp., x in ase of a trivial path). If a path  has initial vertex x, then

 is based at x. If its initial and terminal verties oinide, then  is alled

a yle or a losed path.

If a path 

1

terminates at some vertex x and a path 

2

starts at the

same vertex x, then 

1



2

is a path, alled the onatenation of 

1

and



2

. Note that onatenation with the trivial path does not hange the path.

Furthermore, (

1



2

)

�

= 

�

1

and (

1



2

)

�1

= 

�1

2



�1

1

.

A graph is onneted if for eah pair x, y there exists a path from x

to y. We say that a vertex y is a neighbor of the vertex x if there exists

a dart d with d

�

= x and (d

�1

)

�

= y. Notie that the neighbor relation is

symmetri. We denote the set of all neighbors of some vertex x by B

1

(x)

(`B' stands for ball) and the set B

1

(x)[fxg by D

1

(x) (`D' stands for disk).

Let � be a onneted graph. Two paths in � are 1-homotopi if one

an be obtained from the other by a �nite number of appliations of the

following operation, alled elementary 1-homotopy: inserting or deleting

a return, i.e., a yle xx

�1

of length two: replae xx

�1

by x

�

or x

�

by xx

�1

.

A yle that is homotopi to a yle of length 0 is alled 1-homotopially

trivial. By q

1

(�) denote the 1-fundamental groupoid (also alled path

groupoid) of �, that is, the set of all 1-homotopy lasses of paths in �

endowed with the partial multipliation ([

1

℄

1

; [

2

℄

1

) 7! [

1



2

℄

1

whenever

the terminal vertex of 

1

oinides with the initial vertex of 

2

; the subset

q

1

(�;x) � q

1

(�) of 1-homotopy lasses of paths in � with initial vertex

x is alled the path groupoid of � based at x. The subset �

1

(�;x) �

q

1

(�;x) � q

1

(�) of all 1-homotopy lasses of yles in � based at some

vertex x forms a group, the 1-fundamental group (or path group) of �

at x.

Lemma 2.1. Let � be a onneted graph and let x, y be verties of �. Then

�

1

(�;x)

�

=

�

1

(�;y) via the isomorphism that, for a �xed path  from y to

x, assigns to a homotopy lass [Æ℄

1

of yles based at x the homotopy lass

�

Æ

�1

�

1

of yles based at y.
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Proof. As

�

Æ

1



�1

�

1

�

Æ

2



�1

�

1

=

�

Æ

1



�1

Æ

2



�1

�

1

=

�

Æ

1

Æ

2



�1

�

1

the given

map is a group homomorphism. Certainly, it is bijetive, so it is an isomor-

phism. �

In a onneted graph �, by the above lemma, two path groups with base

points x, y are isomorphi under the transition map that, for a �xed path

 from y to x, assigns to a homotopy lass [Æ℄

1

of paths based at x the

homotopy lass

�

Æ

�1

�

1

of paths based at y. Any representative of this

isomorphism lass of path groups of � with base point is alled the path

group of �, denoted by �

1

(�). The orresponding transition map is alled

a base transformation.

De�nition 2.2. Let � = (V;D; �;�1) and

b

� = (

b

V ;

b

D;b�;



�1) be graphs. A

graph epimorphism � :

b

� ! � is alled a 1-overing if, for every vertex

x 2

b

� the map � sends the set of darts of

b

� with initial vertex x bijetively

onto the set of darts of � with initial vertex x

�

. The graph

b

� is alled a

1-over of the graph �. The set �

�1

(x), x 2 V [D is alled a �ber; it is

alled a vertex �ber if x 2 V and a dart �ber if x 2 D.

A onneted graph � is alled 1-simply onneted if any 1-overing

b

�! � with

b

� onneted is an isomorphism.

Lemma 2.3. Let � :

b

� ! � be a 1-overing of graphs and let  be an

arbitrary path in � with initial vertex x. Then for every vertex
b
x 2 �

�1

(x)

there exists a unique path b with
b
x as initial vertex and b

�

= . Moreover,

1-homotopi paths of � lift to 1-homotopi paths of

b

�, and 1-homotopi paths

of

b

� are mapped onto 1-homotopi paths of �. In partiular, if 

1

and 

2

are 1-homotopi in �, then their lifts b

1

and b

2

in

b

� with idential initial

verties have idential terminal verties.

Proof. See Proposition 4.2 of [13℄. �

Let � :

b

�! � be a 1-overing of graphs and let � be an automorphism of

�. We say that � lifts to

b

� if there exists an automorphism

b

� of

b

�, a lift

of �, suh that

b

�� = ��. If � lifts then so does �

�1

. If, more generally, all

automorphisms in a group A � Aut � lift, then all those lifts form a group,

the lift

b

A � Aut

b

� of A. (See [13℄ for onditions under whih lifts exist.)

The trivial group of automorphisms of � always lifts. The group of all of

its lifts is alled the group of dek transformations and is denoted by

�(�).

Proposition 2.4. Let � :

b

�! � be a 1-overing of onneted graphs. Then

�(�) ats semi-regularly on

b

�, that is, �(�) ats �xed point-freely on both

the set of verties and the set of darts of

b

�.

Proof. This follows diretly from Lemma 2.3. �

De�nition 2.5. Let � :

b

� ! � be a 1-overing of onneted graphs. It is

alled regular, if �(�) ats transitively on some, whene eah, vertex �ber.
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The impliation of transitivity on eah vertex �ber by the transitivity on

some vertex �ber follows from Lemma 2.3 as follows. First, one observes

that by the onnetedness of �, it is enough to show that if �(�) ats

transitively on �

�1

(x) for some vertex x of � it ats transitively on �

�1

(y)

for all neighbors y of x. So, let d be a dart with d

�

= x and (d

�1

)

�

= y.

Then by Lemma 2.3, the path d lifts to a unique path

b

d for eah
b
x 2 �

�1

(x).

Hene, if Æ 2 �(�) maps
b
x

1

onto
b
x

2

, it also maps the orresponding lift

b

d

1

of d starting at
b
x

1

onto the lift

b

d

2

of d starting at
b
x

1

, whene (

b

d

�1

1

)

�

gets

mapped onto (

b

d

�1

2

)

�

. The transitivity of �(�) on the �ber of �

�1

(y) now

follows from the fat that eah element of the �ber of y is a neighbor of an

element of the �ber of x.

Remark 2.6. It seems tempting to extend the theory of 2-overings to graphs

admitting loops and semi-edges as well. However, this does not lead to any

new onept at all. For, when studying 2-overings of graphs one requires

that yles of the form d

1

d

2

d

3

with d

�

1

= (d

�1

3

)

�

are null-homotopi. For a

semi-edge d this implies that d is null-homotopi, beause both dd and ddd

are null-homotopi. Similarly, if l is a loop based at the vertex x and d is

any other dart based at x, then l is null-homotopi beause ldd

�1

and dd

�1

are null-homotopi. Therefore the only onneted graph in whih loops and

semi-edges do not lift trivially is the graph onsisting of one vertex and a

loop, whose universal 2-over is the omplete graph on three verties.

3. Fundamental and universal overs

De�nition 3.1. Let � = (V;D; �;�1) be a onneted graph and let x be a

vertex of �. Then the graph

b

� = (

b

V ;

b

D;b�;



�1) with

b

V = q

1

(�;x);

b

D =

�

([℄

1

; d) 2 q

1

(�;x) �D j d

�

= (

�1

)

�

	

;

b� :

b

D !

b

V : ([℄

1

; d) 7! [℄

1

;



�1 :

b

D !

b

D : ([℄

1

; d) 7! ([d℄

1

; d

�1

)

is alled the fundamental 1-over of � based at x.

Proposition 3.2. Let � be a onneted graph, let x be a vertex of �, and

let

b

� be the fundamental 1-over of � based at x. Then the anonial map

� :

b

�! � with

�j

b

V

:

b

V ! V :  7! (

�1

)

�

�j

b

D

:

b

D ! D : ([℄

1

; d) 7! d

is a 1-overing map. Moreover, � :

b

�! � is an isomorphism if and only if

�

1

(�;x) is trivial.

Proof. Straightforward. �
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De�nition 3.3. Let �,

b

� be onneted graphs and let x 2 �,
b
x 2

b

� be

verties. A 1-overing � :

b

� ! � mapping
b
x onto x is alled universal if,

for any 1-overing � : �

1

! � and any x

1

2 �

�1

(x), there exists a unique

1-overing map � :

b

�! �

1

with � = �� and
b
x

�

= x

1

.

Remark 3.4. By de�nition a universal 1-overing � :

b

� ! � is regular.

Indeed, if x 2 �,
b
x 2

b

� with
b
x

�

= x, then, by the universality of �, for eah

x

1

2 �

�1

(x) there exists an automorphism of

b

� mapping
b
x onto x

1

.

Theorem 3.5. Let � be a onneted graph, let x be a vertex of �, and

let

b

� be the fundamental 1-over of � based at x. Then the fundamental

1-overing � :

b

�! � is universal.

Proof. Let � : �

1

! � be an arbitrary 1-overing and let x

1

2 �

�1

(x).

By Lemma 2.3 any lass of paths [℄

1

2 q

1

(�;x) lifts to a unique lass of

paths [b℄

1

2 q

1

(�

1

;x

1

). De�ne a map � :

b

� ! �

1

by [℄

�

1

= (b

�1

)

�

and

([℄

1

; d)

�

=

b

d, where

b

d is the unique lift of d based at [℄

�

1

= (b

�1

)

�

by

Lemma 2.3. It is lear that � :

b

� ! �

1

is a 1-overing with � = �� and

x

�

= x

1

. Uniqueness follows from onnetedness. �

Corollary 3.6. Let � be a onneted graph and let x be a vertex of �. Then

its fundamental 1-over

b

� based at x is 1-simply onneted.

Proof. Let � :

b

� ! � be the fundamental 1-overing and let � : �

1

!

b

� be

some 1-overing. Then � := �� : �

1

! � is a 1-overing. Let x

1

2 �

�1

(x) �

�

�1

(x). By the universal property of �, there exists a 1-overing � :

b

�! �

1

mapping (x) onto x

1

with � = �� = ���. Then �� is a 1-overing from

b

� onto itself with (x)

��

= (x), whene it is the identity by the universal

property of �. Therefore � is injetive, whene bijetive. Thus the graph

morphism � is the inverse of the graph morphism � and both � and � are

graph automorphisms. Hene

b

� is 1-simply onneted. �

Let � be a onneted graph. If

b

�

1

is the fundamental 1-over of � based

at x and

b

�

2

is the fundamental 1-over of � based at y, and, moreover, if 

is an arbitrary path in � from y to x, then the map from

b

�

1

to

b

�

2

indued

by [Æ℄

1

7! [Æ℄

1

is an isomorphism of graphs. This proves the following.

Proposition 3.7. Let � be a onneted graph and let x, y be verties of �.

Then the fundamental 1-over of � based at x is isomorphi to the funda-

mental 1-over of � at y via base transformation. 2

Hene we an suppress the base point of a fundamental 1-over and speak

of the fundamental 1-over of �. If we speak of a fundamental 1-over and a

path group in the same ontext, then we always assume that the partiular

over and the partiular group have the same base vertex.

Corollary 3.8 (of Theorem 3.5). Let � be a onneted graph. The graph �

is 1-simply onneted if and only if �

1

(�) is trivial.
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Proof. If �

1

(�) is non-trivial, then the fundamental over of � is not iso-

morphi to � by Proposition 3.2. Hene � is not simply onneted.

Conversely, assume that � is not simply onneted. Then it admits a 1-

overing � : �

1

! � for some �

1

that is not an isomorphism. If � :

b

�! � is

the anonial 1-overing of � by its fundamental 1-over

b

�, then, by Theorem

3.5, there exists a 1-overing � :

b

� ! �

1

with � = ��. If � were to be an

isomorphism, then � would have to be injetive (as � is surjetive) whih is

not the ase. So � is not an isomorphism and Proposition 3.2 implies that

�

1

(�) is non-trivial. �

Corollary 3.9 (of Corollary 3.8). Let � be a onneted graph and let � :

�

1

! � be a 1-overing with 1-simply onneted �

1

. Then �

1

is isomorphi

to the fundamental 1-over

b

� of �. 2

Theorem 3.10. Let � = (V;D; �;�1) be a onneted graph. Then, for

any vertex x of �, there is a one-to-one orrespondene between 1-overs

of � based at x and subgroups of �

1

(�;x). More preisely, if U is a sub-

group of �

1

(�;x), then the orresponding 1-over of � is the graph �

0

=

(V

0

;D

0

; �

0

;�1

0

) with

V

0

= Un q

1

(�;x);

D

0

=

�

(U [℄

1

; d) 2 Un q

1

(�;x) �D j d

�

= (

�1

)

�

	

;

b� : D

0

! V

0

: (U [℄

1

; d) 7! U [℄

1

;

�1

0

: D

0

! D

0

: (U [℄

1

; d) 7! (U [d℄

1

; d

�1

):

Note that we use the symbol n in the theorem to denote right osets, re-

spetively, U -orbits for the left multipliation ation on q

1

(�;x).

Proof. Given a subgroup U of �

1

(�;x) it is straightforward to hek that

the graph �

0

given above is a 1-over of �.

Conversely, let � : �

0

! � be a 1-overing. By Theorem 3.5 there exists

a 1-overing � :

b

� ! �

0

, where

b

� is the fundamental over of �. We an

onsider

b

� as the fundamental 1-over of �

0

based at x

�

, sine

b

� is 1-simply

onneted, so by Corollary 3.9 isomorphi to the fundamental 1-over of

�

0

. By Lemma 2.3 the 1-overing � indues an embedding of �

1

(�

0

;x

�

) in

�

1

(�;x). (It indues a well-de�ned map as images of homotopi paths are

homotopi. This indued map is injetive as lifts of homotopi paths are

homotopi.) We have identi�ed �

1

(�

0

;x

�

) with a subgroup of �

1

(�;x) and

hene �

0

= �

1

(�

0

;x

�

)n

b

�, �nishing the proof. �

Corollary 3.11 (of Lemma 2.1 and Theorem 3.10). Let � be a onneted

graph. Then there is a one-to-one orrespondene between equivalene lasses

of 1-overs of � without base vertex and onjugay lasses of subgroups of

�

1

(�). 2

Corollary 3.12 (of Theorem 3.10). Let � : �

1

! �

2

be a 1-overing and let

y = x

�

for some vertex x of �

1

. Then � indues a group monomorphism

�

#

: �(�

1

;x)! �(�

2

;y). 2
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Corollary 3.13 (of Theorem 3.10). Let � : �

1

! �

2

be a 1-overing with

y = x

�

for some vertex x 2 �

1

. Assume that � : �

0

! �

2

is another 1-

overing, and let w 2 �

�1

(y). Then a 1-overing � : �

0

! �

1

with �� = �

exists if and only if �

1

(�

0

;w)

�

#

� �

1

(�

1

;x)

�

#

. Moreover, if suh a � exists

it is unique. 2

Corollary 3.14 (of Corollary 3.13). Let � : �

1

! �

2

be a 1-overing with

y = x

�

for some vertex x 2 �

1

and let x

0

2 �

�1

(x). Then there exists a

dek transformation in �(�) taking x

0

to x if and only if �

1

(�

1

;x

0

)

�

#

=

�

1

(�

1

;x)

�

#

.

Proof. Let � 2 �(�) be the dek transformation taking x

0

to x. Then

Corollary 3.13 applies with �

0

= �

1

, w = x

0

and � = � and � = �� =

�, yielding �

1

(�

1

;x

0

)

(��)

#

= �

1

(�

1

;x

0

)

�

#

� �

1

(�

1

;x)

�

#

. The reverse

inlusion follows by symmetry. �

Corollary 3.15 (of Lemma 2.1 and Corollary 3.14; f. Corollary 5.5 of [13℄).

Let � : �

1

! �

2

be a 1-overing with y = x

�

for some vertex x 2 �

1

. The

subgroup �

1

(�

1

;x)

�

#

of �

1

(�

2

;y) is normal if and only if � is a regular

1-overing.

Proof. The base transformation of Lemma 2.1 between bases x

0

, x inside the

�ber �

�1

(y) proves that �

1

(�

1

;x)

�

#

and �

1

(�

1

;x

0

)

�

#

are onjugate inside

�

1

(�

2

;y). On the other hand, by Corollary 3.14, we have �

1

(�

1

;x

0

)

�

#

=

�

1

(�

1

;x)

�

#

for all x

0

2 �

�1

(y) if and only if �(�) ats transitively on

�

�1

(y), i.e., if and only if � is a regular 1-overing. �

Corollary 3.16 (of Corollary 3.15). Let � : �

1

! �

2

be a regular 1-overing

with y = x

�

for some vertex x 2 �

1

. Then

�(�)

�

=

�

1

(�

2

;y)=�

1

(�

1

;x)

�

#

:

2

Corollary 3.17 (of Corollaries 3.8 and 3.16). Let � : �

1

! �

2

be a regular

1-overing with y = x

�

for some vertex x 2 �

1

. If, moreover, �

1

is 1-simply

onneted, then

�(�)

�

=

�

1

(�

2

;y):

2

Remark 3.18. The onept of a fundamental over for simpliial omplexes

already exists in the literature, e.g. x55 of Seifert and Threlfall [15℄. The

purpose of Setion 3 is to provide an extension of the simpliial overing

theory to graphs with semi-edges.

4. Refletions and loal refletions

For an automorphism � of a onneted graph � = (V;D; �;�1) set

Fix

�

(V ) := fv 2 V j v

�

= vg ; the set of �xed verties, and

Norm

�

(D) :=

�

d 2 D j d 6= d

�

= d

�1

	

; the set of properly normalized darts.
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An involution � of a onneted graph � = (V;D; �;�1) is alled a ree-

tion, if Fix

�

(V ) = ; and if �

�

= (V;D

�

; �

�

;�1

�

) with D

�

= DnNorm

�

(D)

and �

�

= �j

D

�

, �1

�

= �1j

D

�

is disonneted. We write x �

�

x

0

if x and

x

0

are verties of the same onneted omponent in �

�

and we say that �

separates x and x

0

if we have x 6�

�

x

0

. For x 2 V set

V

�

+

(x) = fy 2 V j x �

�

yg and V

�

�

(x) = fy 2 V j x 6�

�

yg:

An involution � of a onneted graph � is alled a loal reetion if

there exists a vertex v with D

1

(v)\D

1

(v

�

) 6= ; and if, for any vertex v with

D

1

(v) \D

1

(v

�

) 6= ;, the restrition of � to D

1

(v) \D

1

(v

�

) is a reetion.

Proposition 4.1. Let � = (V;D; �;�1) be a onneted graph. Any loal

reetion � : �! � has the following properties. The set Fix

�

(V ) is empty,

the graph �

�

onsists of one or two onneted omponents, and, for every

dart d with d 6= d

�

= d

�1

, the graph (V;D

�

[

�

d; d

�1

	

; �j

D

�

[fd;d

�1

g

;�1j

D

�

[fd;d

�1

g

)

is onneted.

Proof. Suppose v 2 Fix

�

(V ). Then D

1

(v) \D

1

(v

�

) ontains v = v

�

, so the

restrition of � to D

1

(v) \D

1

(v

�

) is not a reetion.

Suppose �

�

onsists of more than two onneted omponents. Sine darts

of � with d 6= d

�

= d

�1

an only onnet onneted omponents of �

�

that are interhanged by �, the original graph � annot be onneted, a

ontradition. Hene �

�

onsists of one or two onneted omponents.

The last statement is trivially true if �

�

is onneted. If it is dison-

neted, then, by the above, it onsists of two onneted omponents, and

the onneted omponents have to be interhanged by �. Adding any dart

of � with d 6= d

�

= d

�1

obviously onnets the two omponents. �

Corollary 4.2. Let � = (V;D; �;�1) be a onneted graph. A loal reetion

of � is a reetion if and only if �

�

onsists of two onneted omponents.

2

Theorem 4.3. Let � = (V;D; �;�1) be a onneted graph. Any loal ree-

tion � of � an be lifted to a reetion b� of

b

� = (

b

V ;

b

D;b�;



�1) with

b

V = V � f�1; 1g ;

b

D = D � f�1; 1g ;

b� :

b

D !

b

V : (d;�1) 7! (d

�

;�1)



�1 :

b

D !

b

D : (d;�1) 7!

�

(d

�1

;�1); if d 62 Norm

�

(D);

(d

�1

;�1); if d 2 Norm

�

(D);

mapping (v;�1) onto (v

�

;�1) and (d;�1) onto (d

�

;�1). The anonial

map � :

b

�! � is a 1-overing and �� = �b�.
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Proof. The only thing to prove is the fat that b� is a reetion. It is a graph

morphism, sine

((d;�1)

�

)

b�

= (d

�

;�1)

b�

= (d

��

;�1)

= (d

��

;�1)

= (d

�

;�1)

�

= ((d;�1)

b�

)

�

and

((d;�1)

�1

)

b�

= (d

�1

; �(�1))

b�

= (d

(�1)�

; �(�1))

= (d

�(�1)

; �(�1))

= (d

�

;�1)

�1

= ((d;�1)

b�

)

�1

where � = 1 if d 62 Norm

�

(D) and � = �1 if d 2 Norm

�

(D). Beause b�

2

= id

the morphism b� is an automorphism. Certainly, the graph

b

� is onneted

and Fix

b�

(

b

V ) = ;. The set Norm

b�

(

b

D) equals f(d;�1) j d 2 Norm

�

(D)g and

the graph

b

�

b�

onsists of two onneted omponents. Therefore b� is a ree-

tion. �

Lemma 4.4. If � is a (loal) reetion on a graph � = (V;D; �;�1) and

� is a graph automorphism of �, then �

�1

�� is a (loal) reetion and we

have Norm

�

�1

��

(D) = (Norm

�

(D))

�

.

Proof. We have d 2 (Norm

�

(D))

�

if and only if d

�

�1

2 Norm

�

(D), whih

is equivalent to d

�

�1

�

= (d

�

�1

)

�1

= (d

�1

)

�

�1

, whene d

�

�1

��

= d

�1

, whih

in turn is equivalent to d 2 Norm

�

�1

��

(D). In the same way, we an prove

Fix

�

�1

��

(V ) = Fix

�

(V )

�

, and in our ase that set is empty. Sine � is a

graph automorphism, the graph �

�

�1

��

= (V;D

�

�1

��

; �

�

�1

��

;�1

�

�1

��

) is

not onneted, so �

�1

�� is a (loal) reetion. �

Let � be a graph and let � : W ! Aut(�) be a group ation �. The

ation � is free if no vertex of � is �xed by a group element other than

the identity. This implies that � is injetive, so we may think of W as a

subgroup of Aut(�).

Lemma 4.5. Let � = (V;D; �;�1) be a graph and let W at freely on �.

We have

Norm

w

(D) \Norm

v

(D) = ;

for eah pair v, w of distint involutions in W . In partiular, any involution

r 2 W ating as a loal reetion of � is uniquely determined by the set

Norm

r

(D).

Proof. Notie Norm

v

(D) = Norm

v

�1(D). Suppose d 2 Norm

w

(D)\Norm

v

(D)

and, thus, d 2 Norm

w

(D) \Norm

v

�1(D). Sine the operation of W is free,
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the equality (d

�

)

wv

�1

= ((d

wv

�1

)

�

) = ((d

�1

)

v

�1

)

�

= d

�

implies wv

�1

= 1,

whene w = v. The seond statement is lear sine Norm

r

(D) is not empty

for a loal reetion r 2W . �

De�nition 4.6. Let W be a group generated by a symmetri subset S, i.e.,

S

�1

= S, with 1 =2 S. A word (on S) is a sequene (s

1

; s

2

; : : : ; s

n

) of

elements of S. Let w 2 W . The length `

S

(w) or simply `(w) of w (with

respet to S) is the smallest integer n � 0 suh that w = s

1

s

2

� � � s

n

for a

word (s

1

; s

2

; : : : ; s

n

). A redued deomposition of w (with respet to S)

is a word (s

1

; s

2

; : : : ; s

n

) suh that we have w = s

1

s

2

� � � s

n

and n = `(w).

Lemma 4.7. Let � = (V;D; �;�1) be a graph and let W at on �. Let S be

a generating subset of W suh that every element of S ats as a reetion

of �. Suppose there is a vertex x suh that for every s 2 S there exists a

d

x;x

s

2 D with d

�

x;x

s

= x and (d

�1

x;x

s

)

�

= (d

x

s

;x

)

�

= x

s

. Furthermore suppose

for all s; t 2 S, w 2W , the relation x

s

= x

wtw

�1

implies s = wtw

�1

. Then

the stabilizer W

x

is trivial.

Proof. Suppose, we have x

w

= x for a w 2 W of minimal length n � 1.

Take a redued deomposition (s

1

; s

2

; : : : ; s

n

) of w with respet to S. Con-

sider the path d

x;x

s

n

d

x

s

n

;x

s

n�1

s

n

� � � d

x

s

2

���s

n

;x

s

1

s

2

���s

n with initial and terminal

vertex x (the dart d

x

s

j

���s

n

;x

s

j�1

s

j

���s

n
exists as d

x;x

s

j�1

exists and s

j

� � � s

n

is

an automorphism of �). The verties x and x

s

n

are separated by s

n

. So

there must be an index 1 < j � n, suh that s

n

separates x

s

j

s

j+1

:::s

n

and

x

s

j�1

s

j

:::s

n

. In other words, we have x

(s

j

s

j+1

���s

n

)s

n

= x

s

j�1

s

j

���s

n

or equiva-

lently x

(s

j

s

j+1

���s

n

)s

n

(s

j

s

j+1

���s

n

)

�1

= x

s

j�1

. By hypothesis we get

(s

j

s

j+1

� � � s

n

)s

n

(s

j

s

j+1

� � � s

n

)

�1

= s

j�1

or equivalently s

j

s

j+1

� � � s

n

= s

j�1

s

j

� � � s

n�1

whene

s

1

s

2

� � � s

n

= s

1

s

2

� � � s

j�2

s

j

s

j+1

� � � s

n�1

;

whih is a ontradition to the minimality of n. �

Proposition 4.8. Let � be a onneted graph, let W at on � and let S

be a generating subset of W . Suppose there is a vertex x 2 V suh that for

eah dart d with initial vertex x there is an s 2 S with x

s

= (d

�1

)

�

. Then

the ation of W on the set of verties of � is transitive.

Proof. By a straightforward indution argument. �

5. Covers of monopoles

De�nition 5.1. An automaton is a triple A = (S;X; �) where S is a set,

the set of states, X is a set, the set of inputs, and � : S�X ! S is a map,

the transition map. (By iteration we an and sometimes will onsider � as

a map from S�X

�

into S, where X

�

is the monoid of of all words over the

alphabet X.) The transition semi-group G

A

of the automaton A onsists

of the transformations g : S ! S suh that there exists an x 2 X

�

suh that
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s

g

= (s; x)

�

for all s 2 S. The automaton A is alled a group automaton

if its transition semi-group G

A

is a group.

Obviously, in a group automaton the map �

x

: S ! S : s 7! (s; x)

�

is a

permutation of S for arbitrary x 2 X. Therefore we an add the symbol

x

�1

to X and de�ne the map �

x

�1
as the inverse map of �

x

. Then X admits

an involution �1 with the property (x

�1

)

�1

= x. If a group automaton

A = (S;X; �) satis�es X

�1

= X, then it is alled symmetri. A group

automaton is alled homogeneous if s

�

x

= s

�

y

for some s 2 S implies

s

�

x

= s

�

y

for all s 2 S.

The transition graph � = (V;D; �;�1) of a symmetri group automaton

A = (S;X; �) onsists of

b

V = S;

b

D = S �X;

� : D ! V : (s; x) 7! s;

�1 : D ! D : (s; x) 7! ((s; x)

�

; x

�1

):

Theorem 5.2. Any transition graph of a symmetri group automaton is a

1-over of a monopole and vie versa.

Proof. Certainly, the anonial projetion S � X ! X extends to a 1-

overing of the monopole (fSg ;X; ��;�1) with �� : X ! fSg the onstant

map and �1 : X ! X the inversion map.

Conversely, let

b

� = (

b

V ;

b

D;b�;



�1) be a 1-over of the monopole � =

(v;D; �;�1). Then (

b

V ;D; �) with (x; d)

�

de�ned as the terminal vertex

in

b

V of the unique lift of the path d of length one to a path of

b

� with

initial vertex x by Lemma 2.3, is an automaton. It even is a group automa-

ton, beause �

d

�1
is the inverse of �

d

. Moreover, D

�1

= D implies that

the group automaton is symmetri. Obviously,

b

� is the transition graph of

(

b

V ;D; �). �

An automaton A = (S;X; �) is alled strongly onneted if for eah pair

s, t of states there exists an x 2 X

�

with (s; x)

�

= t. The transition graph of

a symmetri group automaton is onneted if and only if the orresponding

automaton is strongly onneted.

Lemma 5.3. Let

b

� be the transition graph of a strongly onneted symmetri

group automaton (S;X; �) and let � = (v;D; �;�1) be a monopole 1-overed

by

b

�. The 1-overing

b

�! � is regular if and only if (S;X; �) is homogeneous

and for eah x 2 X the map �

x

an be extended to an automorphism of

b

�.

Proof. Suppose for eah x 2 X the map �

x

an be extended to an auto-

morphism of

b

� and (S;X; �) is homogeneous. There exists an equivalene

relation on X de�ned by x � y if and only if s

�

x

= s

�

y

for some, whene by

homogeneity of (S;X; �), all s 2 S. Certainly (S;X=�; �� ) is a homogeneous

strongly onneted symmetri group automaton and for eah �x 2 X=�
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the map ��

�x

an be extended to an automorphism of the transition graph

of (S;X=�; ��). All edges exept at most one of the transition graph of

(S;X=�; �� ) are links. Moreover, eah link is uniquely determined by its ini-

tial and terminal verties. It is lear that eah map �

�x

indues a (uniquely

determined) dek transformation of the 1-overing from the transition graph

of (S;X=�; �� ) onto some monopole with dart set X=�. But now it is trivial

to extend �

x

to a dek transformation of the 1-overing

b

�! �. The strong

onnetedness of (S;X; �) yields transitivity of the group of dek transfor-

mations on the vertex �bers, whene

b

�! � is regular.

Conversely, assume that

b

� ! � is regular. Then for eah pair x, y of

neighbors in

b

� there exists a dek transformation mapping x to y. This

implies the homogeneity of (S;X; �). Moreover, the restrition of this au-

tomorphism to the set of verties oinides with the map �

d

where d is the

dart in � that lifts to some dart

b

d in

b

� with initial vertex x and terminal

vertex y. �

Example 5.4 (An inhomogeneous group automaton). Let S = f1; 2; 3; 4g,

let X =

�

a; a

�1

; b; b

�1

; ; 

�1

	

and de�ne � as follows.

a a

�1

b b

�1

 

�1

1 2 4 2 2 4 4

2 3 1 1 1 3 3

3 4 2 4 4 2 2

4 1 3 3 3 1 1

:

Notie that the map �

a

an be extended to an automorphism of the transition

graph � of the group automaton (S;X; �) but not to a dek transformation of

the anonial 1-overing. Indeed, if an automorphism of � indued by �

a

is a

dek transformation, then it has to preserve the �ber �

�1

(a) of the 1-overing

� : �! (fSg ;X; �;�1). But then this automorphism has to interhange the

�bers �

�1

(b) and �

�1

() and, thus, is not a dek transformation.

In [13℄ one an �nd a haraterization of graphs that are regular 1-overs

of monopoles. Here is a brief reminder of their result.

De�nition 5.5. A voltage spae on a onneted graph � is a triple (F;G; �)

where G is a group ating on a non-empty set F and � : q

1

(�) ! G is a

homomorphism of groupoids. The group G is alled the voltage group, the

set F is the abstrat �ber and [℄

�

1

is the voltage of the 1-homotopy lass

of the path .

In ase G ats on F = G by right translation, then (F;G; �) is alled a

Cayley voltage spae.
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To any voltage spae (F;G; �) over some graph � there exists the assoi-

ated graph

b

� = (

b

V ;

b

D;b�;



�1) with

b

V = V � F;

b

D = D � F;

b� :

b

D !

b

V : (d; f) 7! (d

�

; f);



�1 :

b

D !

b

D : (d; f) 7! (d

�1

; f

(d

�

)

):

One an hek that the anonial projetion � :

b

�! � indued by (d; f)

�

=

d is a 1-overing.

It was observed in [13℄ (see also [10℄) that with eah regular 1-overing

� :

b

� ! � one an assoiate a Cayley voltage spae as follows. Choose

G to be the group of dek transformations �(�) and label the elements of

eah vertex �ber by G so that the left ation of �(�) on

b

� indues the

ation of �(�) on itself by left translation on eah labelled vertex �ber. The

homomorphism � : q

1

(�) ! �(�) is given by d

�

= g

�1

1

g

2

for eah dart d

if there exists a dart in �

�1

(d) passing from the element labelled g

1

in the

vertex �ber of d

�

to the element labelled g

2

in the vertex �ber of (d

�1

)

�

.

Note that � is well-de�ned. Indeed, if there exists another dart in �

�1

(d)

with initial vertex labelled g

3

and terminal vertex labelled g

4

, then, by the

left ation of G = �(�), we have g

3

g

�1

1

= g

4

g

�1

2

and hene g

�1

1

g

2

= g

�1

3

g

4

.

Given a group G and a generating multiset S = S

�1

of G (i.e., we have

a map � : S ! G with hS

�

i = G and (s

�1

)

�

= (s

�

)

�1

for all s 2 S), the

Cayley graph Cay(G;S) is the graph (G;G � S; �;�1) where (g; s)

�

= g

and (g; s)

�1

= (gs

�

; s

�1

).

Theorem 5.6 (Malni, Nedela, Skoviera [13℄). Any Cayley graph is a reg-

ular 1-over of a monopole and vie versa.

Proof. Consider the Cayley graph Cay(G;S) of the group G with respet to

the generating multiset S = S

�1

. Then the map indued by the anonial

projetion G � S 7! S extends to a regular 1-overing of the monopole

(fGg ; S; ��;�1) with �� : S ! fGg the onstant map and �1 : S ! S the

inversion map.

To prove the onverse, reall that by the above any regular 1-overing

� :

b

�! � gives rise to some Cayley voltage spae (�(�);�(�); �). Suppose

we have a 1-overing of some monopole � = (v;D; �;�1). Then the graph

b

� = (

b

V ;

b

D;b�;



�1) assoiated to the voltage spae (�(�);�(�); �) onsists of

b

V = fvg ��(�) = �(�);

b

D = D ��(�);

b� :

b

D !

b

V : (d; f) 7! (d

�

; f) = (v; f) = f;



�1 :

b

D !

b

D : (d; f) 7! (d

�1

; f

(d

�

)

) = (d

�1

; fd

�

);
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whih is the Cayley graph of �(�) with respet to the generating multiset

D. �

Corollary 5.7. Let � = (V;D; �;�1) be a onneted graph, suppose the

group W ats regularly on � and let S � W be a symmetri, generating

multiset. If for a �xed vertex x of � the set of darts with initial vertex x

equals fd

s

2 D j s 2 Sg with (d

�1

s

)

�

= s:x and d

s

= d

t

if and only if s = t,

then the map �

x

:W � S ! D : (w; s) 7! w:d

s

indues an equivariant graph

isomorphism from the Cayley graph Cay(W;S) of W with respet to S to

the graph �.

Proof. Let (x; fd

s

2 D j s 2 Sg; �

0

;�1

0

) be a monopole where �

0

: fd

s

2

D j s 2 Sg ! fxg is the onstant map and �1

0

: fd

s

2 D j s 2 Sg !

fd

s

2 D j s 2 Sg : d

s

7! d

s

�1 . The map � : (V;D; �;�1) ! (x; fd

s

2 D j

s 2 Sg; �

0

;�1

0

) with (w:d

s

)

�

= d

s

is a regular 1-overing. Indeed, it is a

morphism as d

�1

s

= s:d

s

�1
and w:d

�1

s

= ws:d

s

�1
whene (�1)� = �(�1

0

)

(the ondition �� = ��

0

is satis�ed trivially), it is a 1-overing sine the w:d

s

,

s 2 S, are the darts with initial vertex w:x, and it is regular as the groupW is

a lift of the identity ating regularly on �. In partiular, by Proposition 2.4,

we have W

�

=

�(�). Hene, by the theorem, (V;D; �;�1) an be onsidered

as the Cayley graph of �(�)

�

=

W with respet to S. The equivariane

follows by the ation W ! Aut(Cay(W;S)) : g 7! f(w; s) 7! (gw; s)g on the

Cayley graph and the ation W ! Aut(�) : g 7! fw:d

s

7! gw:d

s

g on �. �

Remark 5.8. Consider the ation of W on its Cayley graph with respet to

S, and suppose the elements of S at as reetions. Due to Lemma 4.4, the

set R := fwsw

�1

: s 2 S;w 2Wg onsists of reetions.

Corollary 5.9 (of Theorem 5.6). Any Cayley graph (G;G � S; �;�1) of a

group G generated by a multiset S onsisting of involutions is a regular 1-

over of the monopole (fGg ; S; �

0

;�1

0

) (with �

0

the onstant map and �1

0

the

identity map) admitting only semi-edges. Conversely, if � : �! (v;D; �;�1)

is a regular 1-overing onto a monopole admitting only semi-edges, then �

is the Cayley graph of a group G

�

=

�(�) generated by involutions. 2

Corollary 5.10 (of Lemma 5.3 and Theorem 5.6). The transition graph �

of some strongly onneted symmetri group automaton (S;X; �) is a Cayley

graph if and only if (S;X; �) is homogeneous and for eah x 2 X the map

�

x

an be extended to an automorphism of �. 2

6. Chambers

For the next de�nition reall that R = fwsw

�1

: s 2 S;w 2Wg.

De�nition 6.1. Let � be a onneted graph and let W at freely on �. More-

over, assume W is generated by a subset S of elements that at as reetions

on �. Sine the ation of W is free the elements of S are involutions, so S

is symmetri, i.e., S

�1

= S. De�ne the equivalene relation �:= \

s2R

�

s

on X. The equivalene lasses of this relation are alled hambers. De�ne
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the hamber graph �

C

on the hambers of � with darts d

C;C

0

with initial

vertex C and terminal vertex C

0

for distint hambers C, C

0

if there exists

a dart d of � with d

�

= x 2 C and (d

�1

)

�

= x

0

2 C

0

. Moreover, de�ne

(d

C;C

0

)

�1

= d

C

0

;C

. The group W also ats on �

C

and the elements of S at

as reetions on �

C

. Indeed, for eah s 2 S, the graph �

s

(f. the de�ni-

tion of a reetion at the beginning of Setion 4) onsists of two onneted

omponents, and any hamber is ompletely ontained in one omponent.

For s 2 R, we shall all Norm

s

(D) a wall of a hamber C, if Norm

s

(D)

ontains a dart whose initial vertex is ontained in C. By S

C

we denote the

set of all s 2 R for whih Norm

s

(D) is a wall of the hamber C. With S

also R onsists of involutions, and so does S

C

�

~

S.

Let s 2 R. We say that a path d

C

0

;C

1

d

C

1

;C

2

� � � d

C

n�1

;C

n

rosses s, if

the set of indies 0 � j < n with C

j

6�

s

C

j+1

is not empty. The wall s is

rossed n times by a path if the set of indies 0 � j < n with C

j

6�

s

C

j+1

has n elements.

Lemma 6.2. If the dart d

C;C

0

exists, then there is a unique element s 2 R

separating C and C

0

. For this element we have C

s

= C

0

.

Proof. Sine d

C;C

0

is a dart of the hamber graph, there exists a dart d of �

with d

�

= x 2 C and (d

�1

)

�

= x

0

2 C

0

. Sine C and C

0

are distint, there

is an s 2 S separating x and x

0

. This means d 2 Norm

s

(D), so we have

x

s

= x

0

and hene C

s

= C

0

. For any reetion r separating x and x

0

we get

d 2 Norm

r

(D) and an onlude s = r due to Lemma 4.5, whih proves the

uniqueness of s. �

Reall that W ats freely on �.

Proposition 6.3. The distane between two hambers C and C

0

is equal to

the number of elements s 2 R separating C and C

0

.

Proof. Let C and C

0

be hambers and let d

C;C

1

d

C

1

;C

2

� � � d

C

n�1

;C

0

be a mini-

mal path from C to C

0

of length n. Let m be the number of elements s 2 R

separating C and C

0

. For every s 2 R separating C and C

0

there is an index

0 � j < n suh that s separates C

j

and C

j+1

and s is uniquely determined

by this property due to Lemma 6.2. This entails m � n.

Now we assumem < n. So there is an s 2 R separating C and C

0

suh that

there are two di�erent indies j and j

0

with C

j

6�

s

C

j+1

and C

j

0

6�

s

C

j

0

+1

.

Without loss of generality, we an assume j < j

0

and C

j+1

�

s

C

j

0

. But then

the path d

C;C

1

� � � d

C

j�1

;C

j

=C

s

j+1

� � � d

C

s

j

0

=C

j

0

+1

;C

j

0

+2

� � � d

C

n�1

;C

0

has the length

n� 2, whih is a ontradition to the fat that the path is minimal. �

Corollary 6.4. Minimal galleries ross every s 2 R at most one. 2

Proposition 6.5. The group W is generated by S

C

and ats transitively on

the set of hambers and R is the set of all reetions in W .

Proof. By Proposition 4.8 the subgroup

~

W := hS

C

i of W generated by the

elements of S

C

ats transitively on the set of hambers. Sine R onsists
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of reetions and generates W , it suÆes to show that every reetion lies

in

~

W . Let r be a reetion and let d 2 Norm

r

(D). Then d

�

= x

1

lies in a

hamber

~

C. There is a w 2

~

W , suh that C

w

=

~

C. Sine Norm

r

(D) is a

wall of

~

C, the set Norm

r

(D)

w

�1

= Norm

wrw

�1
(D) (f. Lemma 4.4) is a wall

of C. We get wrw

�1

2 S. This means r 2

~

W and r 2 R. Sine R onsists

of reetions, it is preisely the set of all reetions. Sine it generates W

and its elements lie in

~

W , the set S

C

generates W . �

Proposition 6.6. The group W ats regularly on the set of hambers.

Proof. Let C be a hamber. Then d

C;C

s

is a dart of the hamber graph for

every s 2 S

C

. If we have C

~s

= C

s

for s 2 S

C

and ~s 2 R then we get ~s = s

by Lemma 6.2. So by Lemma 4.7 the stabilizer W

C

is trivial. Sine W ats

transitively on the set of hambers, this implies regularity. �

Corollary 6.7. The hamber graph �

C

is isomorphi to the Cayley graph

Cay(W;S

C

). Moreover, this isomorphism is W -equivariant.

Proof. This follows by the proposition and Corollary 5.7. �

Corollary 6.8. There exists a 1-1 orrespondene between words on S and

paths in �

C

with initial vertex C. Two words on S represent the same

element of W if and only if the terminal verties of the orresponding paths

based at C oinide. 2

The following result states for a very speial ase that S

C

is a minimal

generating set for W . We will need this result for the proof of Theorem 7.4.

Lemma 6.9. Let C be a hamber and let s

1

6= s

2

2 S

C

. Suppose that W is

generated by S = fs

1

; s

2

g. Then S = S

C

.

Proof. Aording to [2℄ Ch. IV x 1, the pair (W;S) is a Coxeter system,

as S onsists of two involutions. Let �

1

be the Cayley graph of W with

respet to S, and let �

2

be the Cayley graph of W with respet to S

C

.

Both graphs have the same set of verties and every dart in �

1

is a dart in

�

2

. By Corollary 6.7, the hamber graph an be identi�ed with �

2

. It is

easily veri�ed by studying the Cayley graph of dihedral groups (i.e. groups

generated by two involutions) that, if we add a non-empty set of edges to the

graph G

1

, then the resulting graph is not G-invariant or the group elements

fw

�1

sw : w 2 W; s 2 Sg do not all at as reetions on it. We onlude

that both graphs �

1

and �

2

have the same set of darts. Sine the number of

darts emanating from 1 in the Cayley graph is just the number of generators,

we obtain jSj = jS

C

j, and thus S

C

= S. �

The following result shows an interesting way of haraterizing the �nite-

ness of the group W .

De�nition 6.10. Let C be a hamber. Set �C :=

T

s2R

X

s

�

(C), so �C is

the (possibly empty) set of all verties, whih are separated by every s 2 R

from the verties in C.
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Theorem 6.11. Let C be a hamber. The group W is �nite if and only if

the set �C is non-empty; in this ase �C is a hamber. If W is �nite then

the following hold:

(i) The map C 7! �C is an equivariant involution of the hamber

graph.

(ii) S

C

= S

�C

.

(iii) �C =

\

s2S

C

X

s

�

(C).

(iv) The hamber �C is the unique hamber with maximal distane from

the hamber C.

Proof. Assume that �C is non-empty and let x;y 2 �C. The verties x, y

annot be separated by any s 2 R, as x, y both are separated by all s 2 R

from any z 2 C. Therefore �C is a hamber. All elements of R separate C

and �C. The hamber graph is onneted, beause the hambers partition

the vertex set of � and � is onneted, so by Proposition 6.3 the set R is

�nite. As a onsequene, the set of all hambers is �nite. Sine W ats

regularly on this set, it is a �nite group.

Now let W be �nite. So the set of hambers is �nite. Let

~

C be a

hamber with maximal distane n from C. Suppose there is an s 2 R

that does not separate

~

C and C. Then the hamber

~

C

s

has distane

m � n from C. Let d

C;C

1

� � � d

C

m�1

;C

m

=

~

C

s

be a minimal path from C to

~

C

s

. There is an index 0 � j < m suh that C

s

j

= C

j+1

. The path

d

C;C

1

� � � d

C

j

=C

s

j+1

;C

s

j+2

� � � d

C

s

m�1

;C

s

m

=

~

C

has the length m � 1 < n, whih is

a ontradition. So we have

~

C = �C. We have proved the �rst assertion

and part (iv).

To prove (i) let m be the distane between C and �C. Sine W ats

transitively on the hamber graph, for any hamber

~

C the distane of any

hamber

~

C and �

~

C is equal to m. So the given map is an involution. Now

let w 2 W and C a hamber. Then the distane between C

w

and (�C)

w

equals the distane m between C and �C, whih entails �(C

w

) = (�C)

w

.

So the map is equivariant. If two hambers C and

~

C are adjaent, then the

distane between �C and

~

C is m� 1. Thus �C and �

~

C are separated by

one and only one element of R. So they are adjaent.

For part (ii) let C be a hamber. Then Norm

s

(D) is a wall of C if and

only if C and C

s

are adjaent. This is equivalent to �C and �C

s

adjaent.

Finally, we prove (iii). Suppose C and C

0

are separated by every element

of S

C

. Now let ~s 2 R and s 2 S

C

. Suppose ~s separates C and C

0

. Sine

S

C

generates W , it suÆes to show that s~ss

�1

separates C and C

0

. Cer-

tainly s~ss

�1

separates C

s

and C

0

s

. If s~ss

�1

= s, then ~s = s we are done.

Otherwise, reall that s is the only element of R whih separates C and

C

s

. The same is true for C

0

and C

0

s

. So neither C and C

s

nor C

0

and C

0

s

are separated by ~s. This means ~s separates C

s

and C

0

s

and, thus, s~ss

�1

separates C and C

0

. �
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Corollary 6.12 (of Corollary 6.8 and Theorem 6.11). If W is �nite, there

exists a unique longest element w

0

in W with respet to S and it has length

jRj. 2

For the ase of dihedral groups we will need statement Theorem 6.11 (iii)

without requiring W to be �nite:

Lemma 6.13. If S

C

= fs

1

; s

2

g then

�C =

\

s2S

C

X

s

�

(C):

Proof. If the set D :=

T

s2S

C

X

s

�

(C) is empty then so is �C by de�nition.

So we suppose that D is not empty and dedue that W is �nite. Then we

are done by Theorem 6.11 (iii). So let

~

C be a hamber in D with minimal

distane m to C. Reall the statement of Proposition 6.3. The distane

between C

s

1

and

~

C ism�1. So there is a path of length m�1 starting with

the dart d

~

C;C

0

and ending in C

s

1

. The hamber C

0

must lie outside of D

due to the minimality of the distane between C and

~

C. The path does not

ross s

1

, so the path d

~

C;C

0

must ross s

2

. Thus Norm

s

2

(D) is a wall of

~

C.

By swapping the roles of s

1

and s

2

we see that E

s

1

is also a wall of

~

C. Due

to transitive ation of W on hambers, every hamber has two walls. We

obtainD =

~

C. Now we an proeed as in the proof of Theorem 6.11 (iii). �

7. Coxeter groups

De�nition 7.1. Let W be a group generated by a subset S of proper in-

volutions. For s and t 2 S let m(s; t) 2 N [ 1 be the order of st in W .

Set I :=

�

(s; t) 2 S � S j m(s; t) < 1

	

. The pair (W;S) is alled a Cox-

eter system, if W has a presentation of the form W =




S j (st)

m(s;t)

=

1 for all (s; t) 2 I

�

. Then the group W is alled a Coxeter group.

In Setion 8 we want to relate Coxeter groups to the Cayley graphs and

overs of monopoles from Setion 5. Therefore we have to allow for repetition

of generators and trivial generators in Coxeter groups. More preisely, if W

is a Coxeter group with respet to a generating system S �W of involutions

and � : D ! S [ f1

W

g is a surjetion, then we all W a Coxeter group

with respet to the generating multiset D. In view of the map �1 in

a graph we set d

�1

:= d for eah d 2 D. The relation � from the proof of

Lemma 5.3 shows that one an pass between the two notions without problem.

Remark 7.2. The existene of a presentation of the form in the above

de�nition is equivalent to either of the following onditions:

(i) The system (W;S) satis�es the following universal property: Let G

be a group and let f : S ! G be a map with (f(s)f(t))

m(s;t)

= 1 for

all (s; t) 2 I. Then there is a unique homomorphism

~

f : W ! G

extending f .
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(ii) Let W be a group and let f : W ! W be a homomorphism.

Assume that there is a map h : S ! W with f

�

h(s)

�

= s and

�

h(s)h(t)

�

m(s;t)

= 1 for (s; t) 2 I and suh that the elements h(s)

with s 2 S generate W . Then f is injetive.

De�nition 7.3. We say that the pair (W;S) satis�es the exhange ondi-

tion if the following holds. Let w 2 W and s 2 S, suh that `(sw) � `(w).

Then for every redued deomposition (s

1

; s

2

; : : : ; s

n

) of w, there is an inte-

ger 1 � j � n, suh that ss

1

s

2

� � � s

j�1

= s

1

s

2

� � � s

j

.

Theorem 7.4. For any hamber C the pair (W;S

C

) is a Coxeter system.

Proof. Let W be a group and let f :W !W be a homomorphism. Assume

there exists a map h : S

C

! W with f(h(s)) = s and (h(s)h(s

0

))

m(s;s

0

)

= 1

for (s; s

0

) 2 I and suh that the elements h(s) with s 2 S

C

generate W . If

we show that f is injetive, we are done by Remark 7.2.

Sine eah s 2 S

C

is an involution, so is eah h(s) 2 W , s 2 S

C

, whene

every element g 2 W an be represented as g = h(s

n

)h(s

n�1

) � � � h(s

1

) with

n 2 N and s

1

; s

2

; : : : ; s

n

2 S

C

. Suppose g 2 ker f and let C be a hamber.

This means d

C;C

s

1

d

C

s

1

;C

s

2

s

1

� � � d

C

s

n�1

���s

1

;C

s

n

���s

1

is a yle.

Let k be the maximal value ouring as a distane between C and C

s

i

s

i�1

���s

1

for some 0 < i < n, and let i be the maximal value for whih C

s

i

s

i�1

���s

1

has

distane k from C. Set w := s

i

s

i�1

� � � s

1

. The hamber C

s

i

w

is loser to

C than C

w

. (See Figure 1.) Sine w

�1

s

i

w separates C

s

i

w

and C

w

, it also

separates C and C

w

by Corollary 6.4. So s

i

separates C

w

�1

and C. In the

same way we show that s

i+1

separates C

w

�1

and C.

We now onsider the subgroupW

0

ofW generated by the subset S

0

= fs

i

; s

i+1

g.

Set

R

0

:= fw

�1

sw : w 2W

0

; s 2 S

0

g:

Now W

0

is generated by the W

0

-invariant set of reetions R

0

. We shall

all the hambers with respet to this set of reetions large hambers in

order to distinguish them from the small hambers whih ome from the

set of reetions R. Let C

0

be the large hamber that ontains C. From

Lemma 6.9 we know S

0

= S

C

0

. The hamber graph with respet to R

0

an

be identi�ed with the Cayley graph of the dihedral group W

0

with respet

to S

0

. Sine

C

w

�1

�

\

s2S

C

0

X

s

�

(C

0

);

the set �C

0

is a large hamber due to Lemma 6.13. So the groupW

0

is �nite

due to Theorem 6.11. Thus the Cayley graph of W

0

with respet to S

0

is a

yle.
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C

C

w

Norm

w

�1

s

i

w

(D)

Path of old representation

Path of new representation

Norm

w

�1

s

i+1

w

(D)

C

s

i

w

C

s

i+1

w

Figure 1. Paths orresponding to the old and the new rep-

resentations of g

The large hambers C

0

and �C

0

have distane jR

0

j = m(s

i

; s

i+1

) by the

de�nition of �C

0

. Set

bw :=

8

<

:

(s

i

s

i+1

)

m(s

i

;s

i+1

)

2

if m(s

i

; s

i+1

) is even.

(s

i

s

i+1

)

m(s

i

;s

i+1

)�1

2

s

i

if m(s

i

; s

i+1

) is odd.

Sine bw:C

0

= �C

0

, the large hamber �C

0

ontains the small hamber

b

C := bw:C. So the small hambers C and

b

C have distane at least jR

0

j.

This implies that the paths

d

C;C

s

i

d

C

s

i

;C

s

i+1

s

i

d

C

s

i+1

s

i

;C

s

i

s

i+1

s

i

: : : ; d

b

C

s

i

;

b

C

and

d

C;C

s

i+1

d

C

s

i+1

;C

s

i

s

i+1

d

C

s

i

s

i+1

;C

s

i+1

s

i

s

i+1

: : : ; d

b

C

s

i+1

;

b

C

are minimal (with respet to R) and have length jR

0

j.
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Due to Theorem 6.11 (iii), the small hambers C and

b

C are separated by

eah of the elements of R

0

, and the small hambers C

w

�1

and

b

C are separated

by none of the elements of R. Sine the distane between C and C

w

�1

is k,

the distane w

�1

:C and

b

C is k � jR

0

j. So eah of the small hambers

C

s

i

; C

s

i+1

s

i

; C

s

i

s

i+1

s

i

; C

s

i+1

s

i

s

i+1

s

i

; : : : ; C

s

i+1

has distane less than k from C

w

�1

. So the w-translates of these elements

have distane less than k from C.

We obtain the new representation

g = h(s

n

)h(s

n�1

) � � � h(s

i+2

)

�

h(s

i

)h(s

i+1

)

�

m(s

i

;s

i+1

)�1

| {z }

=h(s

i+1

)h(s

i

)

h(s

i�1

); : : : ; h(s

1

):

The orresponding yli path has a smaller k or a smaller index i for whih

the maximal distane k ours. (See Figure 1.) By indution we obtain

g = 1.

�

If we speialize our ation of W to the ation on the Cayley graph, then

hambers onsist of only one vertex, sine the ation on the points and on the

hambers is simply transitive. In this ase we have the following orollary

of Theorem 6.11.

Theorem 7.5. Let (W;S) be a Coxeter system and let R = fwsw

�1

: s 2

S;w 2Wg. Then the following onditions are equivalent:

(i) W is �nite.

(ii) R is �nite.

(iii) There is a w 2 W suh that 1 is separated from w by every s 2 R.

2

If ondition (iii) is satis�ed, then w is the unique group element with

maximal length and it has length jRj, f. Corollary 6.12.

Theorem 7.6. The following statements are equivalent:

(i) (W;S) is a Coxeter system.

(ii) (W;S) satis�es the exhange ondition.

(iii) The elements of S at as reetions on Cay(W;S).

Proof. The impliation (i) =) (ii) is well-known, see e.g. [4℄. The implia-

tion (iii) =) (i) is a onsequene of Theorem 7.4 and Corollary 6.7.

So now we assume (ii). Our proof is inspired by the ideas in [2℄ Ch. IV, x 1.7.

Let s 2 S and set

P

s

:= fw 2W : `(w) < `(sw)g:

Due to [2℄ Ch. IV, x 1.5 Proposition 4 the group W is the disjoint union of

P

s

and s:P

s

= fw 2 W : `(w) > `(sw)g. Let (w; s

0

) be a dart with initial

vertex w 2 W and terminal vertex ws

0

for s

0

2 S. Assume w 2 P

s

and

ws

0

2 P

s

s

. By showing (w; s

0

) 2 Norm

s

(D) in the Cayley graph Cay(W;S),

we prove that s is a reetion. So we are done if we show sw = ws

0

.
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Set n := `(w). Due to w 2 P

s

, we have `(sw) = n + 1. Using this and

ws

0

2 P

s

s

we get n � `(sws

0

) < `(ws

0

) � n+1. We onlude `(sws

0

) = n and

`(ws

0

) = n+1. Now let (s

1

; s

2

; : : : ; s

n

) be a redued deomposition of w. By

setting s

n+1

:= s

0

, we obtain the redued deomposition (s

1

; s

2

; : : : ; s

n+1

)

of ws

0

. The exhange ondition tells us that there is an index 1 � j �

n + 1, suh that we have ss

1

s

2

� � � s

j�1

= s

1

s

2

� � � s

j

. Suppose j < n +

1 for a moment. Then we get sw = ss

1

s

2

� � � s

n

= s

1

s

2

� � � s

j

s

j

� � � s

n

=

s

1

s

2

� � � s

j�1

s

j+1

� � � s

n

, whih is a ontradition to `(sw) = n + 1. So we

have j = n+ 1 and the above equation yields sw = ws

0

. �

Corollary 7.7. If (W;S) is a Coxeter system, then the set R = fwsw

�1

:

s 2 S;w 2Wg is exatly the subset of W onsisting of those elements whih

operate as reetions on the Cayley graph of W with respet to S. Any

subgroup generated by a subset of R is a Coxeter group.

Proof. Let (W;S) be a Coxeter system and onsider the ation of W on its

Cayley graph with respet to S. This ation is free. By Proposition 6.5, the

set R is the set of reetions in W . Any subgroup of W operates freely on

the Cayley graph of W with respet to S. If this subgroup is generated by

reetions, then it is a Coxeter group by Theorem 7.4. �

8. Covers of monopoles, revisited

Theorem 8.1. Let � : � ! (v;D; �;�1) be a 1-overing of a monopole

admitting semi-edges only. The graph � is the Cayley graph of a Coxeter

group if and only if � is regular and any dek transformation in �(�) that

interhanges two neighboring verties of � ats as a reetion on �.

Proof. Theorem 5.6 implies that � is the Cayley graph of �(�) with respet

to the generating multiset D (with embedding map � : D ! �(�) as de�ned

before Theorem 5.6) if and only if � is regular. The set of verties of �

equals �(�). By regularity of � and by Lemma 4.4 it suÆes to study dek

transformations that interhange the vertex 1 of � and some neighboring

vertex d

�

of �. But any suh dek transformation is given by the maps

�(�)! �(�) : w 7! d

�

w on the verties of � and D ��(�) ! D ��(�) :

(d;w) 7! (d; d

�

w) on the darts. (For, the given map is a dek transformation

interhanging 1 and d

�

, so it has to be the one we were studying as �(�)

ats regularly on �.) By Theorem 7.6 the group �(�) is a Coxeter group

with respet to the generating multiset D if and only if the elements of D

that do not at as the identity on � at as reetions on �. The theorem is

proved. �
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