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Abstract

The present contribution deals with the Stokes operator A, on LE(2), 1 <
q < oo, where €2 is an exterior domain in R? of class C?. It is proved that Ay
admits a bounded Ho-calculus.This implies the existence of bounded imaginary
powers of Ay, which has several important applications. — So far this property
was only known for exterior domains in R*, n > 3. — In particular, this
shows that A, has maximal regularity on LZ(Q). For the proof the resolvent
(A+ A4,)~! has to be analyzed for |A\| = oo and A — 0. For large X this is done
using an approximate resolvent based on the results of [3], which were obtained
by applying the calculus of pseudodifferential boundary value problems. For
small A we analyze the representation of the resolvent developed in [11] by a
potential theoretical method.
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1 Introduction and Main Result

Let 2 C R? be an exterior domain with C?-boundary, i.e., R? \  is compact and
%) is a C2-manifold. Moreover, let L2(Q) = [ € Co()" :divf =01~ ) 1 <
q < 00, denote the space of solenoidal vector fields in L,(€2)" with vanishing normal
component on 0f).

In this article we consider the Stokes operator A, = —P,A on L2(2) with domain

D(Ag) = {f € W/()" : flaa = 0} N LE(Q)
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2 1 INTRODUCTION AND MAIN RESULT

where P,: LY(Q2)" — L2(2) denotes the well-known Helmholtz projection, cf. Simader
and Sohr [23]. Borchers and Varnhorn [11] proved that —A, generates a bounded
and analytic semi-group. More precisely, they have shown that

Cos

A+ A) Ml ey < T A€ Xy, (1.1)

where Y5 := {z € C\ {0} : |argz| < 0} and ¢ € (0, 7). Earlier the same property
was shown by Borchers and Sohr [10] for the case of exterior domains @ C R" with
n > 3. But the latter contribution could not settle the two-dimensional case since
there are some additional difficulties in comparison to the case n > 3, c¢f. Remark 1.3
below and [11, Introduction| for further explanations.

Besides the fact that —A, generates a bounded analytic semi-group, an important
property of the Stokes operator is that it possesses bounded imaginary powers, i.e.,

A= 1 [ A,y

¢ 21 r
is a bounded operator satisfying
1AZ gy < Caae™ " yeR, (1.2)

where § € (0,7), 1 < g < 0o, and I is the negatively orientated boundary of ¥5. The
latter property is not difficult to proved in the case 2 = R" or Q = R}, n > 2, cf. [18].
Besides these cases, the proof (1.2) is involved and most proofs use pseudodifferential
operator techniques. This was done by Giga [16]| for bounded domains in R”, n > 2,
and by Giga and Sohr [17] for exterior domains in R", n > 3, with smooth boundary.
An alternative proof, which uses a perturbation theorem for the H.,-calculus instead
of pseudodifferential operators, was given by Noll and Saal [22| for bounded and
exterior domains in R*, n > 3, with C3-boundary. Moreover, (1.2) was proved for an
infinite layer Q = R"~! x (=1, 1) in [4] and more generally for so-called asymptotically
flat layers with C'!'-boundary in [3].
The purpose of the present contribution is to prove:

Theorem 1.1 Let 1 < g < oo and let 6 € (0,7). Then A, admits a bounded
H-calculus with respect to ¢, i.e.,

1
h(Ay) == — [ h(=A\)(A+ A,) ' dA (1.3)
2w Jr
15 a bounded operator satisfying
1A cza) < Cysllhlloo (1.4)

for all h € Hy(9), where Hy(0) denotes the Banach algebra of all bounded holomor-
phic functions h: ¥X,_s — C.



We note that in order to prove (1.4) for all h € H(0) it is sufficient to show the
estimate for h € H(J), which consists of all h € H,(d) such that

h() < o2

SO P forall z € ¥, 5
z S

for some s > 0, cf. [7, Lemma 2.1]. For h € H(0) the integral (1.3) is well-defined as
a Bochner integral on £(L2(Q2)) and for arbitrary h € H(d) the operator in (1.3)
can be defined on a suitable dense subspace, cf. |[7] for details.

The bounded H-calculus was introduced by McIntosh [21] and generalizes the
property of having bounded imaginary powers since choosing h,(z) := 2%, y € R, in
(1.3)-(1.4) implies (1.2). Although in [4, 16, 17, 18| only (1.2) is proved, the proofs
are easily modified to show (1.4).

The well-known result due to Dore and Venni [14, Theorem 3.2| and its extension
by Giga and Sohr [18, Theorem 2.1] gives an important application of this abstract

property:

Theorem 1.2 Let 1 < p,g < o0 and let 0 < T < oo. Then for every f €
LP(0,T; LL(Q)) there is a unique solution u € W, (0,T;LL(Q)) N LP(0,T;D(A,))
of

u'(t) + Agu(t) = f(1), 0<t<T,
u(0) = 0

Moreover,
14| Legorsney + 1Aqull Loo,rigy < CFllro,rine)s

where C' does not depend on T .

Therefore the Stokes operator A, has mazimal regularity on LL(£2), 1 < g < 0.
Finally, we mention that the boundedness of A% and (1.2) can be used to char-
acterize the domain of the fractional powers A7, 0 < a <1, as

D(Ag) = (L3(€), D(Ay)) 1o,

where (., .)[q) denotes the complex interpolation functor, cf. [17, Proposition 6.1].
The outline of the proof of Theorem 1.1 is as follows: Roughly speaking, one has
to deal with two singularities of the Cauchy-integral (1.4). The first occurs since I'
is unbounded and (A + A,)™! is only of order O(J]A|™") as |A\| = oco. The second is
due to the singularity of (A + 4,) ' as A — 0. Hence we split I' = ['zUI"},, where
I, := I' N Bg(0) with suitable R > 0 and analyze each part separately. In order
to analyze (1.3) with " replaced by I'g, an approximate resolvent R) is constructed
that coincides with (A + A,)~" modulo terms of order O((1 + |A|)™'7¢) for some
e >0, as |\| = oco. The construction is based on results of 3], which were obtained
by pseudodifferential operator techniques and were used in order to prove (1.4) for
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the Stokes operator on asymptotically flat layers. The latter analysis is done in
Section 4. Finally, it remains to estimate (1.3) with I' replaced by I'%. For this we
use the representation of (A+ A,)~" developed in [10] in terms of the resolvent of the
Stokes operator on R? and some single and double layer potentials, cf. Section 5. But
first of all we start with some preliminaries in Section 2 and introduce the so-called
reduced Stokes operator in Section 3, which is needed in order to apply the results of

13].

Remark 1.3 The analysis of the resolvent as |A\| — 0 in the present two-dimensional
case is more difficult than in dimension n > 3 since the estimate

IV2ully < Cosll Agully, A€ Xs,u € D(4,), (1.5)

holds if and only if 1 < ¢ < §, cf. [11, Introduction| and [9]. Hence the method of

[17, Section 4] for the case of an exterior domain in R", n > 3, is not applicable since
it is based on (1.5).

Acknowledgements: The author is grateful to Hermann Sohr for pointing out that
the present problem was unsolved before and for motivating him to solve it.

2 Preliminaries

First of all, N will denote the set of natural numbers (without 0) and Ny := NU {0}.
Let Q@ C R", n > 2, be a domain. Then C*°(Q2) denotes the set of all smooth
f: Q= C, C§°(Q) is the set of all f € C°°(Q2) with compact support, and

CH(Q) = {u=vlg:ve CFR")}.

The usual Lebesgue-space with respect to the Lebesgue measure on  and the (n—1)-
dimensional surface measure on 02 will be denoted by L4(2), L7(02), resp., 1 < ¢ <
co. Moreover, we use the abbreviations [.||; = ||.||Le@) and ||.]lgo0 = |-||lLe@0)-
Furthermore, L (Q), 1 < ¢ < oo, is defined as the space of f: Q — C such that
f € LYBNQ) for all balls B with BN Q # (). The usual scalar product on L?(M)
is denoted by (.,.)n for M = Q, 0.

In the following the usual Sobolev-Slobodeckij spaces based on L7, 1 < ¢ < o0, are
denoted by W7(€2) and W7 (0€2), s > 0, with norms |[|.|[s 4 and ||.||s 4,00, respectively,
cf. e.g. [6]. Moreover, W7,(2), m € N, denotes the closure of C§°(€2) in W;"(€2) and

W™ () i= (Wo()', Wig(Q) := (Wt (), W5 (09) := (W (09))

q

formENands>O,Where%+$:1.

Finally, the homogeneous Sobolev space of order 1 is defined as

W (Q):={peLL.(Q):Vpe LI(Q)}

q loc

normed by ||V - |- If @ C R", n > 2, is an exterior domain with C"'-boundary, for
every p € W, () there is a p € W, (R") such that p|o = p and ||Vp||, < C[|Vpl|g, cf.
e.g. [12, Theorem 1.2]. As a consequence we obtain the following useful lemma.



Lemma 2.1 Let Q@ C R", n > 2, be an exterior domain with C'-boundary and let
1 < g < oo. Then for every p € qu(Q) there is a decomposition p = py+ps such that

p1 € Wi (Q) and py € L, () with Vp, € W} (Q) satisfying || (pr, Vp2)llre < C[Vplly.

loc

Proof: Define for instance p; € W, (Q) as

p=F (1 =) OFBIE g

where p is as above, ¢ € C§°(R") with ¢(§) = 1 in a neighborhood of 0, and F
denotes the Fourier transformation. ]

In the following let 2 C R™, n > 2, be an exterior domain with C"™-boundary,

m € N. Concerning traces recall that, if m > s > j + %, j €Ny, with s — L ¢ N,

there is a bounded operator !
s_1
v Wi (Q) — Wy “(09) (2.1)

such that vju = dulspq for all f € Co) (Q), cf. e.g. [6].
Furthermore, we recall that for f € L7(2)"” such that div f € L?(€2) it is possible
1

to define a weak trace of the normal component v, f € W, * (092) by
(Wwf,v)oq == (f,Vo)g + (div f,v)q  forall v € W, (Q). (2.2)

Moreover, we note that, if f = fy 4+ Vp, fo € LL(Q), p € qu(Q), is the Helmholtz

decomposition of f € L7(Q2)", then p is uniquely determined as solution of the weak
Neumann problem

Ap =div f in Q2 (2.3)

duploa =v - flan on 09, (2.4)

where v denotes the exterior normal, (2.3) is understood in the sense of distributions,

and (2.4) is understood as v, (f — Vp) = 0, cf. [23]. Because of the definition of +,,
the pressure p € W (Q) solves (2.3)-(2.4) if and only if

(Vp,Vv)g = (f, Vo)  for all v € W(Q).

Finally, the resolvent of the Laplace operator on R", n > 2, is given by

f[f](f)]
A1E12]7

(A= Age) Lf = F 1 [ 25)

where F denotes the Fourier transformation. As a consequence of the Mikhlin mul-
tiplier theorem, cf. e.g. [8], one obtains for u = (A — Aga)~'f
Mllullg + V2ullg < Cooll flley A€ B, f € LURY), (2.6)

where 1 < ¢g<oocand 0 <0 <.
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3 The Reduced Stokes Operator

In the following let Q C R, n > 2, be an exterior domain with C?-boundary.
In order to apply the results from [3] for the construction of an approximate
resolvent for large A\, we need the reduced Stokes operator Ay, defined as

Apqu = (=A+VENT)u, Tu:=7v,(A — Vdiv)ulsq,

for u € D(Agg) = WZ(Q)" N W, ()", where Ky denotes the Poisson operator
of the Laplace equation with Neumann boundary conditions, i.e., AKy = 0 and
0, K n|sq = I. Because of [23, Theorem 4.4], Ky exists and is a bounded operator

Kn: W, (09) = {a € Wy “(09) : (a,1)pn = 0} — W, (9).

Note that A, is a densely defined unbounded operator on L?(£2)" in contrast to the
Stokes operator, which acts on the subspace LZ(£2).
It remains to justify that VKNT': D(Ap4) — L4(2)". Since div(A -V div)u = 0,
1

T: W2 Q)" — W, “(Q) is a bounded operator and by (2.2)
(T, v)o0 = (A = Vdiv)u, Vv)g  for all v € W (Q). (3.1)

1

The latter identity implies that even Tu € th(%)(aﬁ) for u € W2(Q), which can be
seen as follows: Since 0f2 is compact, we may assume that also supp u is compact.
Then choosing v € C (Q) such that v = 1 on supp u U 9Q yields (Tu, 1)gq = 1.

There is the following alternative description of 1": Introducing local coordinates
Tu = div; 0, ur|on for every u € O (Q) with u|sq = 0, cf. [20, Lemma A.1]. Here u,
denotes the tangential components of v and div, a, := Oy, ax, +. ..+ 0k, 0k, , fora €
W3 (09), s — % ¢ 7, where k1(y), ..., Kk, 1(y) denotes a basis of the tangential space
T,0Q for each y € 0Q such that x1(y),...,kn—1(y), ¥(y) is a positively orientated
orthonormal basis of R”. Hence by (2.1)

o1 1
T WEE () 5 Wy TTO0) forall 025> ~1+ . (3.2)

Remark 3.1 As the usual Stokes operator is associated to the Stokes resolvent equa-
tion, i.e.,

A=A)u+Vp=f inQ, (3.3)
divu =0 in Q, (3.4)
ulgo =0 on 09, (3.5)

the reduced Stokes operator is associated to the reduced Stokes resolvent equations

A—A+VENT)u=f in{, (3.6)
U,|ag =0 on 0. (37)



The reduced system (3.6)-(3.7) is obtained from (3.3)-(3.5) by expressing the pressure
p in terms of the data f and the velocity field u, which goes back to the work of Grubb
and Solonnikov |20, Section 4 and 5|, cf. |2, Section 3] for details.

The construction in Section 4 is based on the following lemma.

Lemma 3.2 Let Q C R*, n > 2, be an exterior domain with C*'-boundary, let
1 < ¢ < oo, and assume that (A + Ag,) ' exists for some X\ € C\ (—00,0). Then
(A+ A,) ! exists and

Aoglrz) = Ags A+ Aog) iz = A+ A4, (3.8)

Proof: The first statement can be seen as follows: If u € D(Ay,) N LL(2), then
div(—Au 4+ VKyTu) = 0 in the sense of distributions and

Yo(—Au+ VENTu) = —y,Au+ 0, KyTulsgo =0

in the sense of (2.2). Hence —Au = (=A + VKyT)u — VKyTu is the Helmholtz
decomposition of —Au, i.e., (A + VENT)u = Py(—A)u = Aju.

In order to prove the second relation let u = (A+ Ao ,) ' f with f € LL(Q2). Then
applying div and +, to (3.6) we conclude for ¢ = divu

(A—A)g=0 1inQ, (3.9)
d,g =0 on 09, (3.10)

where 0,9]oo = 7, Vg. Because of Proposition 3.3 below, g = divu = 0. Therefore
uwe L1(2) and (A + Ay))u = (A+ Agy)u = f. Since by the first statement A + A, =
(A+Ag0)|12(q) is injective, we finally conclude that (A+Ay) "' f =u= (A+A,0) "' f
for every f € L1(Q). |

[t remains to prove:

Proposition 3.3 Let 1 < ¢ < 0o and let A € C\ (—00,0). Then there is only one
solution g € qu(Q) with g = divu for some u € D(Ay,) satisfying (3.9)-(3.10)
namely g = 0.

Proof: If A = 0, this is a consequence of the (unique) Helmholtz decomposition,
cf. |23]. Hence it remains to consider A # 0. Then by definition of v,, the system
(3.9)-(3.10) is equivalent to

Ag,v)+(Vg,Vv) =0  forall v e W,(). (3.11)

If ¢ = 2, this implies ¢ = 0 by choosing v = ¢g. Hence in the case g # 2 it is sufficient
to prove g € Wy (). If ¢ > 2, let ¢p € C(R") such that ¢(z) =1 for |z| > R+1
and ¢(z) = 0 for |z| < R, where R > 0 is chosen such that 0 C Bg(0). Then
g :=1g € W;(R") solves

(A=A)g=-2(Vy)-Vg—(AY)g=f nR"
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where f € LY(R") has compact support. Therefore g € W2(R") for every 1 < r < g,
which implies ¢ € W3 (Q) if ¢ > 2. Finally, (3.9)-(3.10) imply that Ag = \g and
J,9)aa = 0. Hence the same procedure of the elliptic regularity theory as in the proof
of [15, Lemma 5.4] yields g € W2(Q2) — W, (), where qil = é — L. Thus in the case
q1 > 2 we conclude g € W} (). If ¢ < 2, we repeat this argument finitely many
times until g € W () with g, > 2. |

4 Analysis of the Resolvent for Large )\

In order to estimate (1.3) with I" replaced by I' := '\ Bg(0), R > 0, it is sufficient
to construct an approximate resolvent R, satisfying

()\ + Ao,q)il — R)\ —|— S)\,

where ||S)||zza@)) < Cys(1 + |A])7'7¢ for some € > 0 and

for all h € H(5). The operator Ry can be constructed using the calculus of pseu-
dodifferential boundary value problems developed by Grubb [19] in a version with
non-smooth coefficients, cf. |3, 1]. This approach was already used in [3| to prove
the existence of a bounded H.-calculus in asymptotically flat layers. Since this con-
struction is mainly based on localization and a similar approximation of (A+ Ag ;)"
in a curved half-space R = {(2/,2,) € R" : z, > y(«')}, v € CHHR*'), it can
easily be modified to the case of an exterior domain — as well as many other classes
of domains.

For the present contribution it is not necessary to recall the precise construction of
the approximate resolvent R, in the curved half-space and all the operators belonging
to calculus of pseudodifferential boundary value problems with Holder-continuous
coefficients. We refer to [3] for the details. For the following analysis, it is sufficient
to recall the following theorem, which summarizes results obtained in [3].

< Cyslllloe
£(L9(5)

/F h(=\) Ry dA

Theorem 4.1 Let R}, n > 2, v € CLYR™ 1Y) be a curved half-space, 1 < q < oo,
and let & € (0,7). Then there is a bounded operator R, : LY(R?)" — WZ(RZ)",
which s independent of q, such that

(A= A+ VE, NT)Rypf = f+Soaf inR, (4.1)
Ro\f=0 on ORY (4.2)

for every f € LYR})" and A € C\ (—o0,0], where ||Syallc@a@n)) < Cgs(l+[A])7*
N 1
uniformly in X € X5 for some e > 0. Here K x: Wy * (0R?) — W, (R?) is a bounded



operator, which is independent of q, satisfying
AK, ya = Ra in R, (4.3)
BVI?77Na|39 =a+Sa ondRY, (4.4)

1, _1_, _1
where Rl : Wy * (9R?) — W, (R?) and S.,: Wy * (9R?) — W, *(OR?) are bounded
operators. Moreover, for every R > 0

(L + DI Ry all ooy + 1V Ry allezay) < Cus, A€ s, (4.5)

/ h(=\)R, » dA < Cpsllblles  heHE).  (46)
Tr

£(Le(Rn)

Proof: First of all I?%N = K, is defined in [3, Section 5.5] as

I}"y,N - F*’ilkl(Dazaxl)Fga

where k,(D,,2') is a Poisson operator of order —1 in R-form with C'*!'-coefficients
in the sense of [3, Section 4], F': R} — RI is defined by F(z) = (', 2, + 7(2')),
(F5~1f)(z) := f(F~"(x)) is the push-forward of a function f: R? — C by F', and
(Fya)(y) :== a(Fo(y)) is the pull-back of a function a: IR} — C by Fy := F|sgy. The

statements on K, y are a consequence of [3, Lemma 5.15] using
LRSS L00) = WA(RY),  H, RS LAR,)) = W (R,

and the fact that F*: W, (R?) — W, (R?) is an isomorphism.

The operator R, = Ry is defined in 3, Section 5.6]. Then (4.1)-(4.2) and the
estimate of S, , is the statement of [3, Lemma 5.17] if V[?%NTR%A is replaced by
the operator G defined in [3, Lemma 5.17]. However the estimate

HW?%NTRA - éAH <Cs(L+ A5, Aens,
L(LA(Rz))
for some £ > 0 is shown in the last part of the proof of |3, Lemma 5.18].

Finally, (4.5) follows from |3, Estimate (5.35)] and (4.6) is a consequence of |3,
Theorem 5.13|, [3, Lemma 5.14], and [3, Theorem 3.2]. |

Remark 4.2 The operator I~(%N of the latter theorem is an approximate Poisson
operator to the Laplace equation with Neumann boundary condition on R7. As
stated above, it is constructed explicitly in [3] and is an operator of the calculus of
pseudodifferential boundary value problems necessary to construct the approximate
resolvent of the reduced Stokes operator.
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We will use the latter theorem to construct an approximate resolvent in an exterior
domain @ C R*, n > 2, with C"*-boundary. In order to localize Q let U; C Q,

j =0,...,m be relatively open sets such that
l.each U;NQ, j =1,.. .,m, is bounded and coincides (after rotation) with a
relatively open subset of R, where R}, v; € CLYR" 1), is a curved half-
space.

2. 00) C U;ﬂ:l Uj, UyNo) = (Z), and - UT:O Uj.

Moreover, let ¢, € C&%(Q), j = 0,...,m, be a partition of unity on € such that
supp ¢; C Uj, 7 =0,...,m. Finally, let ¢; € C’(o‘(j)(ﬁ), j=0,...,m, such that v; =1
on supp ¢; and again supp; C U;, 7 = 0,...,m. Now we define the approximate

resolvent R) as
Ryf =) wiRingif,  fe LY,
§=0

where R;\ = R\, j = 1,...,m, is the approximate resolvent on MJ_ due to The-
orem 4.1 and Ry, = (A — Agn)~! is the resolvent of the Laplace operator on R".
Moreover, we define the approximate Poisson operator

~ m ~ _1
KNCL = Z%K%N@ja, a € Wq e (89),
j=1

where [}%N is the operator due to Theorem 4.1 for RZL_. Now we have

Lemma 4.3 Let 1 < ¢ < o0, Q C R", n > 2, be an exsterior domain with C"'-
boundary, let Ky be as above, and let Ky be the Poisson operator of the Neumann
problem as defined in Section 3. Then there is some € > 0 such that

IV(Ey = Ky)Tully < Cyllullz--q.
for all w € W2==(Q)".

Proof: Let f € L7 (Q)" be arbitrary and let f = fo + Vp, fo € LY(Q), p € qu,(Q),
be its Helmholtz decomposition. By Lemma 2.1 p = p; + ps, where p; € qu,(Q) and

p2 € L{ (9) with Vp, € W, () and ||(p1, Vp2)ligy < Cy VDl

loc

Then by (4.3)-(4.4)

(V(Ky = Kx)Tu, o = (V(Ky — Ky)Tu, Vp)o )
= (V(Ky — Kn)Tu,Vpy)a + (I — 0,Kn)Tu,p1)oa — (AKNTu, p1)a,

where

(I = 0, Kn)Tu, pr)aal < Y (58], 05Tu, pr)acl
=1

J
< COfTu|l i
qu

ooy P11 < Cllulla—gllFlly
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by (3.2) for € > 0 suitably small. Moreover,

|(AI~(NTU,P1)Q|

m

< Y WR, @iTu,p)al + > 1(2(VYy) - VI, v Tu+ (Aty) Ky, v Tu, pi)al,
7=1

i=1

where

(i B, 0iTu, m)al < OBy @i Tullw gy IPr]lg < Cllulla—gll Fll

~ _1
for some ¢ > 0. Since p; € W5 (Q2) — L¥ () forsome s' > ¢’ and K, y: Wy * (OR} ) —
W;(M)’ % + % =1,

[(2(Vy) - VIN(%-,N%'TU + (AY;) Ky, noiTu, pr)al

< ; < r < /
< CllgTull, (amj)llpﬂll,q < Cf|Tul] aR%)Ilqu < Cllullz—gllfllars

1
s

_1_
W, T

where we have used that supp ¢; is compact and —% < —% — ¢ for suitably small

e > 0. The term (VEKyTu, Vps)q is estimated in the same way using Vp, € W, ().
Finally, by (3.1)
(VENTu, Vp2)a| = |((A — Vdiv)u, Vp2)q|
< |(Vu, V2p2)a| + 1(Bou, Vps)aal + |(div u, Apy)al + [(divu, d,p2)sq]
< € (Il IV?pelly + [ ulon [Vl )
< COllulle-egllVP2lluy < Cllulla—<qll fll

for some ¢ > 0. u
Using the latter lemma and Theorem 4.1 we obtain:

Theorem 4.4 Let Q C R*, n > 2, be an exterior domain with CY'-boundary, § €
(0,7), and let 1 < q < co. Then for every R > 0

for every h € H(9).

/ =N+ A,) L dA

< Cy,rllhlloo
£(19(5))

Proof: First of all, by (2.6), (4.5), and interpolation

0 < CrarL+ )5 fll,  AeS =R (A7)

| Rjnp;f
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for all s € [0,2], f € LY(Q)", and j =0, ..., m. Moreover, by (4.1)
(= A+ VENT) RS
= f+21/)g iapif — Z (Vo) - VR o f + (A Rixesf)
(VKNT . VKNT)R,\ f.
Hence (4.7), Theorem 4.1, and Lemma 4.3 imply

A=A+ VENT)Ry, =1+ 5],

where ||S}]|z(La()) < Cgs(1+|A])71 ¢ uniformly in A € X5 for some ¢ > 0. Therefore
(A + Ag,) * exists for all A € X5 with |A\| > R’ for some R > 0 and

(A + Agy)~" = Ry + Sy,

where ||Sx||ze@) < Cf 5(1 + |A]) ¢ uniformly in A € X, |A\|] > R. Since (A +
Aog) Mz = (A + Ay) ™", we conclude that

A+ Ay ™" = Ralro) + Salzo

for A € X5 with |A| > R'. Moreover,

for R > R’ because of (4.6) and [|Sy|| < Cys5(1 4 [A])~"°. Finally, since (A + A,)~"
is uniformly bounded on each compact subset of X5\ {0}, R > 0 can be chosen
arbitrarily. [

< C’q,6||h||oo for B)\ = R)\a S)\a
L(L9(€))

/F h(=A)By dA

5 Analysis of the Resolvent for Small A

First of all, recall that the resolvent of the Stokes operator A,r> on LY(R?), 1 < ¢ <
o0, can be written as

A+ Agre)™" = P(A—Ag2), where (5.1)
pp = 7| (1-55) )]

for A € C\ (—o0,0]. Moreover, (A — Agz)~" can be represented as

A—Ar2) 'f = eyxxf, where ey(z) = Ko(V\|z]).
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Here /X denotes the unique square root of A with Rev/A > 0 and K,(2), n € Ny,
is the modified Bessel function of order n, cf. [5, page 375]. We note that K{(z) =
—K(%). From the definition it follows that

Ky(z) = O(ln 2), K (z) =0(:z"h as z — 0. (5.2)
Furthermore, we will use that
1K, (2)] < Cp5e ] for z € X5/, 2| > 1 (5.3)

with 0 < § < 7 and for some a > 0 depending on §, cf. [5, page 378|.
Moreover, it is well-known that

1

1l 1
IO = Aa) Sl < CogalM 5 Sl Ae S, (5.4)

for 1 < ¢ <o0,qg<r < oo, and § € (0,7), cf. e.g. proof of [11, Proposition
4.1]. Because of the identity (A + A,g2)™" = (A — Age)™'P and the continuity
P: L1(R?*)? — LY(R?)?, the same is true for the Stokes resolvent.

Finally, A,z possesses a bounded Hy-calculus for all § € (0, 7). In particular,

cf. [13, Theorem 7.2].

L/Fh(_A)(A+Aq,R2)1dA

27

< C5||h||007 h € H(5), (55)
L(L9(R?))

Remark 5.1 The estimate (5.5) also holds with I' replaced by I'r = ' \ Bg(0),
R >0, cf. |3, Lemma 5.14|.

Next we recall the representation of the resolvent of the Stokes operator developed
in [11], which is

A+ A7 f = (A +Agr2) " fo) | — BAEY fas (5.6)

where f) = (A + A r2) "' folon and fo denotes the extension of f by zero to RZ.
Moreover,

4o

In v\

and K = Bj|gq. Here Dj is a double layer potential, which satisfies

Byb = Dip—nE; Mo+ — ~Ep,  a,neC\{0}, (5.7)

11 .
CosI A2 7][¢]|cp0 if1<g<2,

1D3¢lly < CoolInA[[|9]locon  if ¢ =2, (5.8)
Cy.5/| 050,00 ifg>2
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uniformly in A € £;, 0 € (0,7), with |[A] < £ and ¢ € C°(9Q)" with [,,v-dpdo =0,
cf. [11, Estimate (4.15)]. Moreover, Ej is the single layer potential defined by

Bo= | BV —y)e(y)doly), ¢ e CO0)",

where the matrix £\ (z) = (B} (2))j k=1, is defined by

BA) = o (dwenVAll) + s (VA1) )

[
and
e1(k) = Ko(k) + 5 'Ky (k) — k2, ex(k) = —Ko(k) — 26 1K\ (k) + 2K 2.

Finally, M¢ = ¢ — ¢y, where ¢p; denotes the mean-value of ¢ on 052.
Because of [11, Proposition 3.8] K, is invertible for all A € ¥; with |A| < R for
some R > 0 and
||K;1||£(CO(3Q)) < 05, A E Y5 N BR(O) (59)

In particular, this implies
IDZES falle < CIAFEI £l (5.10)

by (5.4) and (5.8) for some € > 0, where [, v - fydo = 0 since div fy = 0 and K; '
preserves this property, c¢f. [11, Lemma 3.7]. Hence the latter term corresponds to
an absolutely integrable part in (1.3).

As shown in [11, Section 3]

~(r,c r,c 1 r
ELOE) = FIELNO) = 5o (T 5 )

Therefore the single layer potential £} can be represented as F; = PEY, where

(Byo)(w) = | Ko(VAlr = y])o(y) do(y)
and P defined as above is bounded on LY(R?), 1 < ¢ < oo, and is independent of
A. Hence using (5.6) and (5.7) in (1.3) and estimating each term separately we can
replace E; by E}.
Summarizing it suffices to estimate (1.3) with (A+ A4,)~! replaced by E\M K ' fy
and ﬁE;K;lfA, which is done in the following two lemmata.

Lemma 5.2 Let 1 < ¢ < o0, § € (0,7), € > 0, and let E\M be defined as above.
Then o
CslAl* eflolle  if1<qg<2

IE\Mg||, < .
MU Cuse A N0l ifg>2
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for all ¢ € C°(09Q) uniformly in A € 5N B1(0). In particular, there is an a < 1 and
R > 0 such that for all f € L1(R?)?

IESME filly < Cosl AT Ifll, - A€ S5 N < R.
Proof: First of all, since

_1
T

||ES\¢||T < Cr,5|)\

?|| 505 A€ X, (5.11)

for 1 < r < oo, cf. [11, Equation (4.14)], and L"(Q2 N Br) — LY(Q N Bg) if r > ¢,
it is sufficient to estimate the LI(Qg)-norm of E{M¢ with Qp := Q\ Bg(0), where
R > 1is chosen such that 0Q C Br_1(0). Since [,, M¢(y) do(y) =0,

E\Mo = [ (Ko(VAlz = y)) = Ko(VAJz])) Mo(y) do(y).

0N

Moreover,

Ko(VXz = yl) = Ko(VAleD| <€ sup  [KG(VAs)IIA 2yl

s€llz—yl,|z(]

Using K|(z) = —K,(z) and (5.2), we conclude

/Rg|w|<x|—%
CsIA\27t ifl<qg<2,

< C x| de < { Cs|In A if g =2,
R<w[<|A[72 0(5 if q> 27

Ko(V Xz — y]) = Ko(VA|a])|" da

where we have used |z — y| > ‘—;‘. Similarly, by (5.3)

1
/96>|>\2

< C|A|%/ el M2lel gy — C'IA)F
ja]>[A| "2

Ko(Vz = y]) - Ko(VAlz))|" da

with some ¢, > 0. This implies the statement of the theorem. [ |

Lemma 5.3 Let 1 < q < oo, 6 € (0,7), and let E\K ' fy be defined as above. Then
1 _
[ NS BT RN < Coslibllli (5.12)
r
q

‘ A ln\/X

for all h € H(6) and f € LY(R?*)?, where R > 0 is as in (5.9).
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Proof: First of all,
1B full, < CIATH a7 £l

for all ¢ <r < oo due to (5.11), (5.4), and (5.9). Hence we can replace the LI(2) on
the left-hand side of (5.12) by L(Qg) with Qg := Q\ Br/(0), where R’ > 1 is chosen
such that 02 C Bgr_1(0). Moreover, because of the Marcinkiewisz interpolation
theorem, cf. [8, Theorem 1.3.1], and since 1 < ¢ < oo is arbitrary, it is sufficient to

prove (5.12) with the L?(Qx )-norm replaced by the weak LY-norm on Qg i.e.,

1Nz = supiom(f, o)1}, where m(f,0) = [{z € Qu : |f(2)| > o}

Moreover,
BN (B ) ) A < [ [ | (B ) @) dlA.
F’R lIl\/X AT — 00 F’R lIl\/X ASE
Now by the definition of E and (5.9)
1
E\K} <C, | |Ks(V Nz —y])|d In A~ fallso
(BT 1)) < G [ 1l = )] o) 1A
Setting gx = [,, |Ko(VAlz — y|)| do(y), we conclude
1
( A) \/—(E/\K ' alo) (@) dA

1

7

< cln- (/ qdw) (/ A q||fx||oomd|A|) .

Because of (5.4)

L AT o 01 < Gy [ AR AN < G
R

Furthermore,
R 1 4.8 q
/ a(x)1dIN < C’Z sup/ ‘KO (856 ZE|3L‘—y|>‘ ds
"= 1 yeon
o 148\ |9
< (C'sup Z/ ‘KO (tiei%)‘ dt|r — y| ™2
yeoN) T 0

< Cp(1+ |z])

1
because dist(z,0?) > 1 and by (5.2)-(5.3). Hence (fF,R g,\(x)qd|)\|)q € L1(Qg),

which finishes the proof.
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Proof of Theorem 1.1: Let R > 0 be small enough such that K;l exists for
A € X5, |A] < R. By Theorem 4.4 it is sufficient to prove (1.4) with I" replaced by
I''s = I'N Bg(0) and arbitrary h € H(J). But this is a consequence of the identity
(5.6), Remark 5.1, (5.10), Lemma 5.2, and Lemma 5.3. |
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