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Abstrat

The present ontribution deals with the Stokes operator A

q

on L

q

�

(
), 1 <

q < 1, where 
 is an exterior domain in R

2

of lass C

2

. It is proved that A

q

admits a boundedH

1

-alulus.This implies the existene of bounded imaginary

powers of A

q

, whih has several important appliations. � So far this property

was only known for exterior domains in R

n

, n � 3. � In partiular, this

shows that A

q

has maximal regularity on L

q

�

(
). For the proof the resolvent

(�+A

q

)

�1

has to be analyzed for j�j ! 1 and �! 0. For large � this is done

using an approximate resolvent based on the results of [3℄, whih were obtained

by applying the alulus of pseudodi�erential boundary value problems. For

small � we analyze the representation of the resolvent developed in [11℄ by a

potential theoretial method.
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nary powers, H

1

-alulus
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1 Introdution and Main Result

Let 
 � R

2

be an exterior domain with C

2

-boundary, i.e., R

2

n 
 is ompat and

�
 is a C

2

-manifold. Moreover, let L

q

�

(
) := ff 2 C

1

0

(
)

n

: div f = 0g

L

q

(
)

, 1 <

q <1; denote the spae of solenoidal vetor �elds in L

q

(
)

n

with vanishing normal

omponent on �
.

In this artile we onsider the Stokes operator A

q

= �P

q

� on L

q

�

(
) with domain

D(A

q

) = ff 2 W

2

q

(
)

n

: f j

�


= 0g \ L

q

�

(
)

�
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2 1 INTRODUCTION AND MAIN RESULT

where P

q

: L

q

(
)

n

! L

q

�

(
) denotes the well-known Helmholtz projetion, f. Simader

and Sohr [23℄. Borhers and Varnhorn [11℄ proved that �A

q

generates a bounded

and analyti semi-group. More preisely, they have shown that

k(�+ A

q

)

�1

k

L(L

q

�

(
))

�

C

q;Æ

j�j

; � 2 �

Æ

; (1.1)

where �

Æ

:= fz 2 C n f0g : j arg zj < Æg and Æ 2 (0; �). Earlier the same property

was shown by Borhers and Sohr [10℄ for the ase of exterior domains 
 � R

n

with

n � 3. But the latter ontribution ould not settle the two-dimensional ase sine

there are some additional di�ulties in omparison to the ase n � 3, f. Remark 1.3

below and [11, Introdution℄ for further explanations.

Besides the fat that �A

q

generates a bounded analyti semi-group, an important

property of the Stokes operator is that it possesses bounded imaginary powers, i.e.,

A

iy

q

:=

1

2�i

Z

�

(��)

iy

(�+ A

q

)

�1

d�

is a bounded operator satisfying

kA

iy

q

k

L(L

q

�

(
))

� C

q;Æ

e

(��Æ)jyj

; y 2 R; (1.2)

where Æ 2 (0; �), 1 < q <1, and � is the negatively orientated boundary of �

Æ

. The

latter property is not di�ult to proved in the ase 
 = R

n

or 
 = R

n

+

, n � 2, f. [18℄.

Besides these ases, the proof (1.2) is involved and most proofs use pseudodi�erential

operator tehniques. This was done by Giga [16℄ for bounded domains in R

n

, n � 2,

and by Giga and Sohr [17℄ for exterior domains in R

n

, n � 3, with smooth boundary.

An alternative proof, whih uses a perturbation theorem for the H

1

-alulus instead

of pseudodi�erential operators, was given by Noll and Saal [22℄ for bounded and

exterior domains in R

n

, n � 3, with C

3

-boundary. Moreover, (1.2) was proved for an

in�nite layer 
 = R

n�1

�(�1; 1) in [4℄ and more generally for so-alled asymptotially

�at layers with C

1;1

-boundary in [3℄.

The purpose of the present ontribution is to prove:

Theorem 1.1 Let 1 < q < 1 and let Æ 2 (0; �). Then A

q

admits a bounded

H

1

-alulus with respet to Æ, i.e.,

h(A

q

) :=

1

2�i

Z

�

h(��)(�+ A

q

)

�1

d� (1.3)

is a bounded operator satisfying

kh(A

q

)k

L(L

q

�

(
))

� C

q;Æ

khk

1

(1.4)

for all h 2 H

1

(Æ), where H

1

(Æ) denotes the Banah algebra of all bounded holomor-

phi funtions h : �

��Æ

! C .
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We note that in order to prove (1.4) for all h 2 H

1

(Æ) it is su�ient to show the

estimate for h 2 H(Æ), whih onsists of all h 2 H

1

(Æ) suh that

jh(z)j � C

jzj

s

1 + jzj

2s

for all z 2 �

��Æ

for some s > 0, f. [7, Lemma 2.1℄. For h 2 H(Æ) the integral (1.3) is well-de�ned as

a Bohner integral on L(L

q

�

(
)) and for arbitrary h 2 H

1

(Æ) the operator in (1.3)

an be de�ned on a suitable dense subspae, f. [7℄ for details.

The bounded H

1

-alulus was introdued by MIntosh [21℄ and generalizes the

property of having bounded imaginary powers sine hoosing h

y

(z) := z

iy

, y 2 R, in

(1.3)-(1.4) implies (1.2). Although in [4, 16, 17, 18℄ only (1.2) is proved, the proofs

are easily modi�ed to show (1.4).

The well-known result due to Dore and Venni [14, Theorem 3.2℄ and its extension

by Giga and Sohr [18, Theorem 2.1℄ gives an important appliation of this abstrat

property:

Theorem 1.2 Let 1 < p; q < 1 and let 0 < T � 1. Then for every f 2

L

p

(0; T ;L

q

�

(
)) there is a unique solution u 2 W

1

p

(0; T ;L

q

�

(
)) \ L

p

(0; T ;D(A

q

))

of

u

0

(t) + A

q

u(t) = f(t); 0 < t < T;

u(0) = 0

Moreover,

ku

0

k

L

p

(0;T ;L

q

�

)

+ kA

q

uk

L

p

(0;T ;L

q

�

)

� Ckfk

L

p

(0;T ;L

q

�

)

;

where C does not depend on T .

Therefore the Stokes operator A

q

has maximal regularity on L

q

�

(
), 1 < q <1.

Finally, we mention that the boundedness of A

iy

and (1.2) an be used to har-

aterize the domain of the frational powers A

�

q

, 0 < � < 1, as

D(A

�

q

) = (L

q

�

(
);D(A

q

))

[�℄

;

where (:; :)

[�℄

denotes the omplex interpolation funtor, f. [17, Proposition 6.1℄.

The outline of the proof of Theorem 1.1 is as follows: Roughly speaking, one has

to deal with two singularities of the Cauhy-integral (1.4). The �rst ours sine �

is unbounded and (� + A

q

)

�1

is only of order O(j�j

�1

) as j�j ! 1. The seond is

due to the singularity of (� + A

q

)

�1

as � ! 0. Hene we split � = �

R

_

[�

0

R

, where

�

0

R

:= � \ B

R

(0) with suitable R > 0 and analyze eah part separately. In order

to analyze (1.3) with � replaed by �

R

, an approximate resolvent R

�

is onstruted

that oinides with (� + A

q

)

�1

modulo terms of order O((1 + j�j)

�1�"

) for some

" > 0, as j�j ! 1. The onstrution is based on results of [3℄, whih were obtained

by pseudodi�erential operator tehniques and were used in order to prove (1.4) for
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the Stokes operator on asymptotially �at layers. The latter analysis is done in

Setion 4. Finally, it remains to estimate (1.3) with � replaed by �

0

R

. For this we

use the representation of (�+A

q

)

�1

developed in [10℄ in terms of the resolvent of the

Stokes operator on R

2

and some single and double layer potentials, f. Setion 5. But

�rst of all we start with some preliminaries in Setion 2 and introdue the so-alled

redued Stokes operator in Setion 3, whih is needed in order to apply the results of

[3℄.

Remark 1.3 The analysis of the resolvent as j�j ! 0 in the present two-dimensional

ase is more di�ult than in dimension n � 3 sine the estimate

kr

2

uk

q

� C

q;Æ

kA

q

uk

q

; � 2 �

Æ

; u 2 D(A

q

); (1.5)

holds if and only if 1 < q <

n

2

, f. [11, Introdution℄ and [9℄. Hene the method of

[17, Setion 4℄ for the ase of an exterior domain in R

n

, n � 3, is not appliable sine

it is based on (1.5).

Aknowledgements: The author is grateful to Hermann Sohr for pointing out that

the present problem was unsolved before and for motivating him to solve it.

2 Preliminaries

First of all, N will denote the set of natural numbers (without 0) and N

0

:= N [ f0g.

Let 
 � R

n

, n � 2, be a domain. Then C

1

(
) denotes the set of all smooth

f : 
! C , C

1

0

(
) is the set of all f 2 C

1

(
) with ompat support, and

C

1

(0)

(
) := fu = vj




: v 2 C

1

0

(R

n

)g:

The usual Lebesgue-spae with respet to the Lebesgue measure on 
 and the (n�1)-

dimensional surfae measure on �
 will be denoted by L

q

(
), L

q

(�
), resp., 1 � q �

1. Moreover, we use the abbreviations k:k

q

� k:k

L

q

(
)

and k:k

q;�


� k:k

L

q

(�
)

.

Furthermore, L

q

lo

(
), 1 � q � 1, is de�ned as the spae of f : 
 ! C suh that

f 2 L

q

(B \ 
) for all balls B with B \ 
 6= ;. The usual salar produt on L

2

(M)

is denoted by (:; :)

M

for M = 
; �
.

In the following the usual Sobolev-Slobodekij spaes based on L

q

, 1 < q <1, are

denoted by W

s

q

(
) and W

s

q

(�
), s � 0, with norms k:k

s;q

and k:k

s;q;�


, respetively,

f. e.g. [6℄. Moreover, W

m

q;0

(
), m 2 N , denotes the losure of C

1

0

(
) in W

m

q

(
) and

W

�m

q

(
) := (W

m

q

0

;0

(
))

0

; W

�m

q;0

(
) := (W

m

q

0

(
))

0

; W

�s

q

(�
) := (W

s

q

0

(�
))

0

for m 2 N and s > 0, where

1

q

+

1

q

0

= 1.

Finally, the homogeneous Sobolev spae of order 1 is de�ned as

_

W

1

q

(
) :=

�

p 2 L

q

lo

(
) : rp 2 L

q

(
)

	

normed by kr � k

q

. If 
 � R

n

, n � 2, is an exterior domain with C

1

-boundary, for

every p 2

_

W

1

q

(
) there is a ~p 2

_

W

1

q

(R

n

) suh that ~pj




= p and kr~pk

q

� Ckrpk

q

, f.

e.g. [12, Theorem 1.2℄. As a onsequene we obtain the following useful lemma.
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Lemma 2.1 Let 
 � R

n

, n � 2, be an exterior domain with C

1

-boundary and let

1 < q <1. Then for every p 2

_

W

1

q

(
) there is a deomposition p = p

1

+p

2

suh that

p

1

2 W

1

q

(
) and p

2

2 L

q

lo

(
) with rp

2

2 W

1

q

(
) satisfying k(p

1

;rp

2

)k

1;q

� Ckrpk

q

.

Proof: De�ne for instane p

1

2 W

1

q

(
) as

p

1

= F

�1

[(1� ')(�)F [~p℄(�)℄

�

�




;

where ~p is as above, ' 2 C

1

0

(R

n

) with '(�) = 1 in a neighborhood of 0, and F

denotes the Fourier transformation.

In the following let 
 � R

n

, n � 2, be an exterior domain with C

m

-boundary,

m 2 N. Conerning traes reall that, if m � s > j +

1

q

, j 2 N

0

, with s �

1

q

62 N ,

there is a bounded operator



j

: W

s

q

(
)! W

s�

1

q

q

(�
) (2.1)

suh that 

j

u = �

j

�

uj

�


for all f 2 C

1

(0)

(
), f. e.g. [6℄.

Furthermore, we reall that for f 2 L

q

(
)

n

suh that div f 2 L

q

(
) it is possible

to de�ne a weak trae of the normal omponent 

�

f 2 W

�

1

q

q

(�
) by

h

�

f; vi

�


:= (f;rv)




+ (div f; v)




for all v 2 W

1

q

0

(
): (2.2)

Moreover, we note that, if f = f

0

+ rp, f

0

2 L

q

�

(
), p 2

_

W

1

q

(
), is the Helmholtz

deomposition of f 2 L

q

(
)

n

, then p is uniquely determined as solution of the weak

Neumann problem

�p = div f in 
 (2.3)

�

�

pj

�


= � � f j

�


on �
; (2.4)

where � denotes the exterior normal, (2.3) is understood in the sense of distributions,

and (2.4) is understood as 

�

(f �rp) = 0, f. [23℄. Beause of the de�nition of 

�

,

the pressure p 2

_

W

1

q

(
) solves (2.3)-(2.4) if and only if

(rp;rv)




= (f;rv)




for all v 2

_

W

1

q

0

(
):

Finally, the resolvent of the Laplae operator on R

n

, n � 2, is given by

(���

R

n

)

�1

f = F

�1

�

F [f ℄(�)

�+ j�j

2

�

; (2.5)

where F denotes the Fourier transformation. As a onsequene of the Mikhlin mul-

tiplier theorem, f. e.g. [8℄, one obtains for u = (���

R

n

)

�1

f

j�jkuk

q

+ kr

2

uk

q

� C

q;Æ

kfk

q

; � 2 �

Æ

; f 2 L

q

(R

n

); (2.6)

where 1 < q <1 and 0 < Æ < �.
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3 The Redued Stokes Operator

In the following let 
 � R

n

, n � 2, be an exterior domain with C

2

-boundary.

In order to apply the results from [3℄ for the onstrution of an approximate

resolvent for large �, we need the redued Stokes operator A

0;q

de�ned as

A

0;q

u := (��+rK

N

T )u; Tu := 

�

(��r div)uj

�


;

for u 2 D(A

0;q

) := W

2

q

(
)

n

\ W

1

q;0

(
)

n

, where K

N

denotes the Poisson operator

of the Laplae equation with Neumann boundary onditions, i.e., �K

N

= 0 and

�

�

K

N

j

�


= I. Beause of [23, Theorem 4.4℄, K

N

exists and is a bounded operator

K

N

: W

�

1

q

q;(0)

(�
) :=

�

a 2 W

�

1

q

q

(�
) : ha; 1i

�


= 0

�

!

_

W

1

q

(
):

Note that A

q;0

is a densely de�ned unbounded operator on L

q

(
)

n

in ontrast to the

Stokes operator, whih ats on the subspae L

q

�

(
).

It remains to justify that rK

N

T : D(A

0;q

)! L

q

(
)

n

. Sine div(��r div)u = 0,

T : W

2

q

(
)

n

!W

�

1

q

q

(
) is a bounded operator and by (2.2)

hTu; vi

�


:= ((��r div)u;rv)




for all v 2 W

1

q

0

(
): (3.1)

The latter identity implies that even Tu 2 W

�

1

q

q;(0)

(�
) for u 2 W

2

q

(
), whih an be

seen as follows: Sine �
 is ompat, we may assume that also supp u is ompat.

Then hoosing v 2 C

1

(0)

(
) suh that v � 1 on supp u [ �
 yields hTu; 1i

�


= 1.

There is the following alternative desription of T : Introduing loal oordinates

Tu = div

�

�

�

u

�

j

�


for every u 2 C

1

(0)

(
) with uj

�


= 0, f. [20, Lemma A.1℄. Here u

�

denotes the tangential omponents of u and div

�

a

�

:= �

�

1

a

�

1

+: : :+�

�

n�1

a

�

n�1

for a 2

W

s

q

(�
), s�

1

q

62 Z, where �

1

(y); : : : ; �

n�1

(y) denotes a basis of the tangential spae

T

y

�
 for eah y 2 �
 suh that �

1

(y); : : : ; �

n�1

(y); �(y) is a positively orientated

orthonormal basis of R

n

. Hene by (2.1)

T : W

2+s

q

(
)

n

!W

s�

1

q

q

(�
) for all 0 � s > �1 +

1

q

: (3.2)

Remark 3.1 As the usual Stokes operator is assoiated to the Stokes resolvent equa-

tion, i.e.,

(���)u+rp = f in 
; (3.3)

div u = 0 in 
; (3.4)

uj

�


= 0 on �
; (3.5)

the redued Stokes operator is assoiated to the redued Stokes resolvent equations

(���+rK

N

T )u = f in 
; (3.6)

uj

�


= 0 on �
: (3.7)
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The redued system (3.6)-(3.7) is obtained from (3.3)-(3.5) by expressing the pressure

p in terms of the data f and the veloity �eld u, whih goes bak to the work of Grubb

and Solonnikov [20, Setion 4 and 5℄, f. [2, Setion 3℄ for details.

The onstrution in Setion 4 is based on the following lemma.

Lemma 3.2 Let 
 � R

n

, n � 2, be an exterior domain with C

1;1

-boundary, let

1 < q < 1, and assume that (� + A

0;q

)

�1

exists for some � 2 C n (�1; 0). Then

(�+ A

q

)

�1

exists and

A

0;q

j

L

q

�

(
)

= A

q

; (�+ A

0;q

)

�1

j

L

q

�

(
)

= (�+ A

q

)

�1

: (3.8)

Proof: The �rst statement an be seen as follows: If u 2 D(A

0;q

) \ L

q

�

(
), then

div(��u+rK

N

Tu) = 0 in the sense of distributions and



�

(��u+rK

N

Tu) = �

�

�u+ �

�

K

N

Tuj

�


= 0

in the sense of (2.2). Hene ��u = (�� + rK

N

T )u � rK

N

Tu is the Helmholtz

deomposition of ��u, i.e., (��+rK

N

T )u = P

q

(��)u = A

q

u.

In order to prove the seond relation let u = (�+A

0;q

)

�1

f with f 2 L

q

�

(
). Then

applying div and 

�

to (3.6) we onlude for g = div u

(���)g = 0 in 
; (3.9)

�

�

g = 0 on �
; (3.10)

where �

�

gj

�


= 

�

rg. Beause of Proposition 3.3 below, g = div u = 0. Therefore

u 2 L

q

�

(
) and (� + A

q

)u = (� + A

0;q

)u = f . Sine by the �rst statement � + A

q

=

(�+A

q;0

)j

L

q

�

(
)

is injetive, we �nally onlude that (�+A

q

)

�1

f = u = (�+A

q;0

)

�1

f

for every f 2 L

q

�

(
).

It remains to prove:

Proposition 3.3 Let 1 < q < 1 and let � 2 C n (�1; 0). Then there is only one

solution g 2 W

1

q

(
) with g = div u for some u 2 D(A

0;q

) satisfying (3.9)-(3.10)

namely g = 0.

Proof: If � = 0, this is a onsequene of the (unique) Helmholtz deomposition,

f. [23℄. Hene it remains to onsider � 6= 0. Then by de�nition of 

�

, the system

(3.9)-(3.10) is equivalent to

�(g; v) + (rg;rv) = 0 for all v 2 W

1

q

0

(
): (3.11)

If q = 2, this implies g = 0 by hoosing v = g. Hene in the ase q 6= 2 it is su�ient

to prove g 2 W

1

2

(
). If q > 2, let  2 C

1

(R

n

) suh that  (x) = 1 for jxj � R + 1

and  (x) = 0 for jxj � R, where R > 0 is hosen suh that �
 � B

R

(0). Then

~g :=  g 2 W

1

q

(R

n

) solves

(���)~g = �2(r ) � r~g � (� )~g =: f in R

n

;
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where f 2 L

q

(R

n

) has ompat support. Therefore ~g 2 W

2

r

(R

n

) for every 1 < r � q,

whih implies g 2 W

1

2

(
) if q > 2. Finally, (3.9)-(3.10) imply that �g = �g and

�

�

gj

�


= 0. Hene the same proedure of the ellipti regularity theory as in the proof

of [15, Lemma 5.4℄ yields g 2 W

2

q

(
) ,!W

1

q

1

(
), where

1

q

1

=

1

q

�

1

n

. Thus in the ase

q

1

� 2 we onlude g 2 W

1

2

(
). If q

1

< 2, we repeat this argument �nitely many

times until g 2 W

1

q

m

(
) with q

m

> 2.

4 Analysis of the Resolvent for Large �

In order to estimate (1.3) with � replaed by �

R

:= � nB

R

(0), R > 0, it is su�ient

to onstrut an approximate resolvent R

�

satisfying

(�+ A

0;q

)

�1

= R

�

+ S

�

;

where kS

�

k

L(L

q

(
))

� C

q;Æ

(1 + j�j)

�1�"

for some " > 0 and









Z

�

R

h(��)R

�

d�









L(L

q

(
))

� C

q;Æ

khk

1

for all h 2 H(Æ). The operator R

�

an be onstruted using the alulus of pseu-

dodi�erential boundary value problems developed by Grubb [19℄ in a version with

non-smooth oe�ients, f. [3, 1℄. This approah was already used in [3℄ to prove

the existene of a bounded H

1

-alulus in asymptotially �at layers. Sine this on-

strution is mainly based on loalization and a similar approximation of (�+A

0;q

)

�1

in a urved half-spae R

n



= f(x

0

; x

n

) 2 R

n

: x

n

> (x

0

)g,  2 C

1;1

(R

n�1

), it an

easily be modi�ed to the ase of an exterior domain � as well as many other lasses

of domains.

For the present ontribution it is not neessary to reall the preise onstrution of

the approximate resolvent R

�

in the urved half-spae and all the operators belonging

to alulus of pseudodi�erential boundary value problems with Hölder-ontinuous

oe�ients. We refer to [3℄ for the details. For the following analysis, it is su�ient

to reall the following theorem, whih summarizes results obtained in [3℄.

Theorem 4.1 Let R

n



, n � 2,  2 C

1;1

(R

n�1

) be a urved half-spae, 1 < q < 1,

and let Æ 2 (0; �). Then there is a bounded operator R

;�

: L

q

(R

n



)

n

! W

2

q

(R

n



)

n

,

whih is independent of q, suh that

(���+r

e

K

;N

T )R

;�

f = f + S

;�

f in R

n



; (4.1)

R

;�

f = 0 on �R

n



(4.2)

for every f 2 L

q

(R

n



)

n

and � 2 C n (�1; 0℄, where kS

;�

k

L(L

q

(R

n



))

� C

q;Æ

(1 + j�j)

�"

uniformly in � 2 �

Æ

for some " > 0. Here

e

K

;N

: W

�

1

q

q

(�R

n



)! W

1

q

(R

n



) is a bounded
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operator, whih is independent of q, satisfying

�

e

K

;N

a = R

0



a in R

n



; (4.3)

�

�

e

K

;N

aj

�


= a+ S

0



a on �R

n



; (4.4)

where R

0



: W

�

1

q

�"

q

(�R

n



)!W

�1

q;0

(R

n



) and S

0



: W

�

1

q

�"

q

(�R

n



)!W

�

1

q

q

(�R

n



) are bounded

operators. Moreover, for every R > 0

(1 + j�j)kR

;�

k

L(L

q

(R

n



))

+ kr

2

R

;�

k

L(L

q

(R

n



))

� C

q;Æ

; � 2 �

Æ

; (4.5)









Z

�

R

h(��)R

;�

d�









L(L

q

(R

n



))

� C

q;Æ

khk

1

; h 2 H(Æ): (4.6)

Proof: First of all

e

K

;N

�

e

K

1

is de�ned in [3, Setion 5.5℄ as

e

K

;N

= F

�;�1

k

1

(D

x

; x

0

)F

�

0

;

where k

1

(D

x

; x

0

) is a Poisson operator of order �1 in R-form with C

0;1

-oe�ients

in the sense of [3, Setion 4℄, F : R

n

+

! R

n



is de�ned by F (x) = (x

0

; x

n

+ (x

0

)),

(F

�;�1

f)(x) := f(F

�1

(x)) is the push-forward of a funtion f : R

n

+

! C by F , and

(F

�

0

a)(y) := a(F

0

(y)) is the pull-bak of a funtion a : �R

n



! C by F

0

:= F j

�R

n

+

. The

statements on

e

K

;N

are a onsequene of [3, Lemma 5.15℄ using

L

q

(R

n�1

;L

1

(0; b)) ,! W

�1

q;0

(R

n

+

); H

�1

q

(R

n�1

;L

q

(R

+

)) ,! W

�1

q;0

(R

n

+

);

and the fat that F

�

: W

�1

q;0

(R

n



)!W

�1

q;0

(R

n

+

) is an isomorphism.

The operator R

;�

� R

0;�

is de�ned in [3, Setion 5.6℄. Then (4.1)-(4.2) and the

estimate of S

;�

is the statement of [3, Lemma 5.17℄ if r

e

K

;N

TR

;�

is replaed by

the operator

e

G

�

de�ned in [3, Lemma 5.17℄. However the estimate







r

e

K

;N

TR

�

�

e

G

�







L(L

q

(R

n



))

� C

q;Æ

(1 + j�j)

�"

; � 2 �

Æ

;

for some " > 0 is shown in the last part of the proof of [3, Lemma 5.18℄.

Finally, (4.5) follows from [3, Estimate (5.35)℄ and (4.6) is a onsequene of [3,

Theorem 5.13℄, [3, Lemma 5.14℄, and [3, Theorem 3.2℄.

Remark 4.2 The operator

e

K

;N

of the latter theorem is an approximate Poisson

operator to the Laplae equation with Neumann boundary ondition on R

n



. As

stated above, it is onstruted expliitly in [3℄ and is an operator of the alulus of

pseudodi�erential boundary value problems neessary to onstrut the approximate

resolvent of the redued Stokes operator.
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We will use the latter theorem to onstrut an approximate resolvent in an exterior

domain 
 � R

n

, n � 2, with C

1;1

-boundary. In order to loalize 
 let U

j

� 
,

j = 0; : : : ; m be relatively open sets suh that

1. eah U

j

\ 
, j = 1; : : : ; m, is bounded and oinides (after rotation) with a

relatively open subset of R

n



j

, where R

n



j

, 

j

2 C

1;1

(R

n�1

), is a urved half-

spae.

2. �
 �

S

m

j=1

U

j

, U

0

\ �
 = ;, and 
 �

S

m

j=0

U

j

.

Moreover, let '

j

2 C

1

(0)

(
), j = 0; : : : ; m, be a partition of unity on 
 suh that

supp'

j

� U

j

, j = 0; : : : ; m. Finally, let  

j

2 C

1

(0)

(
), j = 0; : : : ; m, suh that  

j

= 1

on supp'

j

and again supp 

j

� U

j

, j = 0; : : : ; m. Now we de�ne the approximate

resolvent R

�

as

R

�

f =

m

X

j=0

 

j

R

j;�

'

j

f; f 2 L

q

(
)

n

;

where R

j;�

= R



j

;�

, j = 1; : : : ; m, is the approximate resolvent on R

n



j

due to The-

orem 4.1 and R

0;�

= (� � �

R

n

)

�1

is the resolvent of the Laplae operator on R

n

.

Moreover, we de�ne the approximate Poisson operator

e

K

N

a =

m

X

j=1

 

j

e

K



j

;N

'

j

a; a 2 W

�

1

q

q

(�
);

where

e

K



j

;N

is the operator due to Theorem 4.1 for R

n



j

. Now we have

Lemma 4.3 Let 1 < q < 1, 
 � R

n

, n � 2, be an exterior domain with C

1;1

-

boundary, let

e

K

N

be as above, and let K

N

be the Poisson operator of the Neumann

problem as de�ned in Setion 3. Then there is some " > 0 suh that

kr(K

N

�

e

K

N

)Tuk

q

� C

q

kuk

2�";q

;

for all u 2 W

2�"

q

(
)

n

.

Proof: Let f 2 L

q

0

(
)

n

be arbitrary and let f = f

0

+rp, f

0

2 L

q

0

�

(
), p 2

_

W

1

q

0

(
),

be its Helmholtz deomposition. By Lemma 2.1 p = p

1

+ p

2

, where p

1

2 W

1

q

0

(
) and

p

2

2 L

q

0

lo

(
) with rp

2

2 W

1

q

0

(
) and k(p

1

;rp

2

)k

1;q

0

� C

q

0

krpk

q

0

.

Then by (4.3)-(4.4)

(r(K

N

�

e

K

N

)Tu; f)




= (r(K

N

�

e

K

N

)Tu;rp)




= (r(K

N

�

e

K

N

)Tu;rp

2

)




+ h(I � �

�

e

K

N

)Tu; p

1

i

�


� (�

e

K

N

Tu; p

1

)




;

where

jh(I � �

�

e

K

N

)Tu; p

1

i

�


j �

m

X

j=1

jh 

j

S

0



j

'

j

Tu; p

1

i

�


j

� CkTuk

W

�

1

q

�"

q

(�
)

kp

1

k

1;q

0

� Ckuk

2�";q

kfk

q

0
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by (3.2) for " > 0 suitably small. Moreover,

j(�

e

K

N

Tu; p

1

)




j

�

m

X

j=1

j( 

j

R

0



j

'

j

Tu; p

1

)




j+

m

X

j=1

j(2(r 

j

) � r

e

K



j

;N

'

j

Tu+ (� 

j

)

e

K



j

;N

'

j

Tu; p

1

)




j;

where

j( 

j

R

0



j

'

j

Tu; p

1

)




j � CkR

0



j

'

j

Tuk

W

�1

q;0

(R

n



j

)

kp

1

k

1;q

0

� Ckuk

2�";q

kfk

q

0

for some " > 0. Sine p

1

2 W

1

q

0

(
) ,! L

s

0

(
) for some s

0

> q

0

and

e

K



j

;N

: W

�

1

s

s

(�R

n



j

)!

W

1

s

(R

n



),

1

s

+

1

s

0

= 1,

j(2(r 

j

) � r

e

K



j

;N

'

j

Tu+ (� 

j

)

e

K



j

;N

'

j

Tu; p

1

)




j

� Ck'

j

Tuk

W

�

1

s

s

(�R

n



j

)

kp

1

k

1;q

0

� CkTuk

W

�

1

q

�"

q

(�R

n



j

)

kfk

q

0

� Ckuk

2�";q

kfk

q

0

;

where we have used that supp'

j

is ompat and �

1

s

� �

1

q

� " for suitably small

" > 0. The term (r

e

K

N

Tu;rp

2

)




is estimated in the same way using rp

2

2 W

1

q

0

(
).

Finally, by (3.1)

j(rK

N

Tu;rp

2

)




j = j((��r div)u;rp

2

)




j

� j(ru;r

2

p

2

)




j+ j(�

�

u;rp

2

)

�


j+ j(div u;�p

2

)




j+ j(div u; �

�

p

2

)

�


j

� C

�

kruk

q

kr

2

p

2

k

q

0

+ kruk

L

q

(�
)

krp

2

k

L

q

0

(�
)

�

� Ckuk

2�";q

krp

2

k

1;q

0

� Ckuk

2�";q

kfk

q

0

for some " > 0.

Using the latter lemma and Theorem 4.1 we obtain:

Theorem 4.4 Let 
 � R

n

, n � 2, be an exterior domain with C

1;1

-boundary, Æ 2

(0; �), and let 1 < q <1. Then for every R > 0









Z

�

R

h(��)(�+ A

q

)

�1

d�









L(L

q

(
))

� C

q;Æ;R

khk

1

for every h 2 H(Æ).

Proof: First of all, by (2.6), (4.5), and interpolation

kR

j;�

'

j

fk

s;q

� C

q;Æ;R

(1 + j�j)

�1+

s

2

kfk

q

; � 2 �

Æ

; j�j � R; (4.7)



12 5 ANALYSIS OF THE RESOLVENT FOR SMALL �

for all s 2 [0; 2℄, f 2 L

q

(
)

n

, and j = 0; : : : ; m. Moreover, by (4.1)

(���+rK

N

T )R

�

f

= f +

m

X

j=1

 

j

S



j

;�

'

j

f �

m

X

j=0

(2(r 

j

) � rR

j;�

'

j

f + (� 

j

)R

j;�

'

j

f)

+(rK

N

T �r

e

K

N

T )R

�

f:

Hene (4.7), Theorem 4.1, and Lemma 4.3 imply

(���+rK

N

T )R

�

= I + S

0

�

;

where kS

0

�

k

L(L

q

(
))

� C

q;Æ

(1+ j�j)

�1�"

uniformly in � 2 �

Æ

for some " > 0. Therefore

(�+ A

0;q

)

�1

exists for all � 2 �

Æ

with j�j � R

0

for some R

0

> 0 and

(�+ A

0;q

)

�1

= R

�

+ S

�

;

where kS

�

k

L(L

q

(
))

� C

q;Æ

(1 + j�j)

�"

uniformly in � 2 �

Æ

, j�j � R. Sine (� +

A

0;q

)

�1

j

L

q

�

(
)

= (�+ A

q

)

�1

, we onlude that

(�+ A

q

)

�1

= R

�

j

L

q

�

(
)

+ S

�

j

L

q

�

(
)

;

for � 2 �

Æ

with j�j � R

0

. Moreover,









Z

�

R

h(��)B

�

d�









L(L

q

(
))

� C

q;Æ

khk

1

for B

�

= R

�

; S

�

;

for R � R

0

beause of (4.6) and kS

�

k � C

q;Æ

(1 + j�j)

�1�"

. Finally, sine (� + A

q

)

�1

is uniformly bounded on eah ompat subset of �

Æ

n f0g, R > 0 an be hosen

arbitrarily.

5 Analysis of the Resolvent for Small �

First of all, reall that the resolvent of the Stokes operator A

q;R

2

on L

q

(R

2

), 1 < q <

1, an be written as

(�+ A

q;R

2

)

�1

= P (���

R

2

)

�1

; where (5.1)

Pf = F

�1

��

I �

��

T

j�j

2

�

F [f ℄(�)

�

for � 2 C n (�1; 0℄. Moreover, (���

R

2

)

�1

an be represented as

(���

R

2

)

�1

f = e

�

� f; where e

�

(x) = K

0

(

p

�jxj):
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Here

p

� denotes the unique square root of � with Re

p

� > 0 and K

n

(z), n 2 N

0

,

is the modi�ed Bessel funtion of order n, f. [5, page 375℄. We note that K

0

0

(z) =

�K

1

(z). From the de�nition it follows that

K

0

(z) = O(ln z); K

1

(z) = O(z

�1

) as z ! 0: (5.2)

Furthermore, we will use that

jK

n

(z)j � C

n;Æ

e

��jzj

for z 2 �

Æ=2

; jzj � 1 (5.3)

with 0 < Æ < � and for some � > 0 depending on Æ, f. [5, page 378℄.

Moreover, it is well-known that

k(���

R

2

)

�1

fk

r

� C

s;q;Æ

j�j

�1+

1

q

�

1

r

kfk

q

; � 2 �

Æ

; (5.4)

for 1 < q < 1, q � r � 1, and Æ 2 (0; �), f. e.g. proof of [11, Proposition

4.1℄. Beause of the identity (� + A

q;R

2

)

�1

= (� � �

R

2

)

�1

P and the ontinuity

P : L

q

(R

2

)

2

! L

q

(R

2

)

2

, the same is true for the Stokes resolvent.

Finally, A

q;R

2

possesses a bounded H

1

-alulus for all Æ 2 (0; �). In partiular,









1

2�i

Z

�

h(��)(� + A

q;R

2

)

�1

d�









L(L

q

(R

2

))

� C

Æ

khk

1

; h 2 H(Æ); (5.5)

f. [13, Theorem 7.2℄.

Remark 5.1 The estimate (5.5) also holds with � replaed by �

R

= � n B

R

(0),

R > 0, f. [3, Lemma 5.14℄.

Next we reall the representation of the resolvent of the Stokes operator developed

in [11℄, whih is

(�+ A

q

)

�1

f =

�

(�+ A

q;R

2

)

�1

f

0

�

�

�




� B

�

�

K

�1

�

f

�

; (5.6)

where f

�

= (� + A

q;R

2

)

�1

f

0

j

�


and f

0

denotes the extension of f by zero to R

2

.

Moreover,

B

�

�

� = D

�

�

�� �E

�

�

M�+

4��

ln

p

�

E

�

�

�; �; � 2 C n f0g; (5.7)

and K

�

= B

�

�

j

�


. Here D

�

�

is a double layer potential, whih satis�es

kD

�

�

�k

q

�

8

>

<

>

:

C

q;Æ

j�j

1

2

�

1

q

k�k

1;�


if 1 < q < 2;

C

q;Æ

j ln�jk�k

1;�


if q = 2;

C

q;Æ

k�k

1;�


if q > 2

(5.8)
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uniformly in � 2 �

Æ

, Æ 2 (0; �), with j�j �

1

2

and � 2 C

0

(�
)

n

with

R

�


� � � d� = 0,

f. [11, Estimate (4.15)℄. Moreover, E

�

�

is the single layer potential de�ned by

E

�

�

� =

Z

�


E

(r;)

�

(x� y)�(y) d�(y); � 2 C

0

(�
)

n

;

where the matrix E

(r;)

�

(x) = (E

�

jk

(x))

j;k=1;2

is de�ned by

E

�

jk

(x) =

1

2�

�

Æ

jk

e

1

(

p

�jxj) +

x

j

x

k

jxj

2

e

2

(

p

�jxj)

�

and

e

1

(�) = K

0

(�) + �

�1

K

1

(�)� �

�2

; e

2

(�) = �K

0

(�)� 2�

�1

K

1

(�) + 2�

�2

:

Finally, M� = �� �

M

, where �

M

denotes the mean-value of � on �
.

Beause of [11, Proposition 3.8℄ K

�

is invertible for all � 2 �

Æ

with j�j � R for

some R > 0 and

kK

�1

�

k

L(C

0

(�
))

� C

Æ

; � 2 �

Æ

\ B

R

(0): (5.9)

In partiular, this implies

kD

�

�

K

�1

�

f

�

k

q

� Cj�j

�1+"

kfk

q

(5.10)

by (5.4) and (5.8) for some " > 0, where

R

�


� � f

�

d� = 0 sine div f

�

= 0 and K

�1

�

preserves this property, f. [11, Lemma 3.7℄. Hene the latter term orresponds to

an absolutely integrable part in (1.3).

As shown in [11, Setion 3℄

^

E

(r;)

�

(�) := F [E

(r;)

�

℄(�) =

1

2�(�+ j�j

2

)

�

I �

��

T

j�j

2

�

:

Therefore the single layer potential E

�

�

an be represented as E

�

�

= PE

0

�

, where

(E

0

�

�)(x) =

Z

�


K

0

(

p

�jx� yj)�(y) d�(y)

and P de�ned as above is bounded on L

q

(R

2

), 1 < q < 1, and is independent of

�. Hene using (5.6) and (5.7) in (1.3) and estimating eah term separately we an

replae E

�

�

by E

0

�

.

Summarizing it su�es to estimate (1.3) with (�+A

q

)

�1

replaed by E

0

�

MK

�1

�

f

�

and

1

ln

p

�

E

0

�

K

�1

�

f

�

, whih is done in the following two lemmata.

Lemma 5.2 Let 1 < q < 1, Æ 2 (0; �), " > 0, and let E

0

�

M be de�ned as above.

Then

kE

0

�

M�k

q

�

(

C

q;Æ

j�j

1

2

�

1

q

k�k

1

if 1 < q < 2;

C

q;Æ;"

j�j

�"

k�k

1

if q � 2
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for all � 2 C

0

(�
) uniformly in � 2 �

Æ

\B

1

(0). In partiular, there is an a < 1 and

R > 0 suh that for all f 2 L

q

(R

2

)

2

kE

0

�

MK

�1

�

f

�

k

q

� C

q;Æ

j�j

�a

kfk

q

; � 2 �

Æ

; j�j � R:

Proof: First of all, sine

kE

0

�

�k

r

� C

r;Æ

j�j

�

1

r

k�k

1

; � 2 �

Æ

; (5.11)

for 1 < r < 1, f. [11, Equation (4.14)℄, and L

r

(
 \ B

R

) ,! L

q

(
 \ B

R

) if r � q,

it is su�ient to estimate the L

q

(


R

)-norm of E

0

�

M� with 


R

:= 
 n B

R

(0), where

R > 1 is hosen suh that �
 � B

R�1

(0). Sine

R

�


M�(y) d�(y) = 0,

E

0

�

M� =

Z

�


�

K

0

(

p

�jx� yj)�K

0

(

p

�jxj)

�

M�(y) d�(y):

Moreover,

�

�

�

K

0

(

p

�jx� yj)�K

0

(

p

�jxj)

�

�

�

� C sup

s2[jx�yj;jxj℄

jK

0

0

(

p

�s)jj�j

1

2

jyj:

Using K

0

0

(z) = �K

1

(z) and (5.2), we onlude

Z

R�jxj�j�j

�

1

2

�

�

�

K

0

(

p

�jx� yj)�K

0

(

p

�jxj)

�

�

�

q

dx

� C

Z

R�jxj�j�j

�

1

2

jxj

�q

dx �

8

>

<

>

:

C

Æ

j�j

q

2

�1

if 1 < q < 2;

C

Æ

j ln�j if q = 2;

C

Æ

if q > 2;

where we have used jx� yj �

jxj

R

. Similarly, by (5.3)

Z

jxj>j�j

�

1

2

�

�

�

K

0

(

p

�jx� yj)�K

0

(

p

�jxj)

�

�

�

q

dx

� Cj�j

q

2

Z

jxj>j�j

�

1

2

e

�

q

j�j

1

2

jxj

dx = C

0

j�j

q

2

�1

with some 

q

> 0. This implies the statement of the theorem.

Lemma 5.3 Let 1 < q <1, Æ 2 (0; �), and let E

0

�

K

�1

�

f

�

be de�ned as above. Then











Z

�

0

R

h(��)

1

ln

p

�

E

0

�

K

�1

�

f

�

d�











q

� C

q;Æ

khk

1

kfk

q

(5.12)

for all h 2 H(Æ) and f 2 L

q

(R

2

)

2

, where R > 0 is as in (5.9).
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Proof: First of all,

kE

0

�

K

�1

�

f

�

k

r

� Cj�j

�1+

1

q

�

1

r

kfk

q

for all q � r <1 due to (5.11), (5.4), and (5.9). Hene we an replae the L

q

(
) on

the left-hand side of (5.12) by L

q

(


R

0

) with 


R

0

:= 
nB

R

0

(0), where R

0

> 1 is hosen

suh that �
 � B

R

0

�1

(0). Moreover, beause of the Marinkiewisz interpolation

theorem, f. [8, Theorem 1.3.1℄, and sine 1 < q < 1 is arbitrary, it is su�ient to

prove (5.12) with the L

q

(


R

0

)-norm replaed by the weak L

q

-norm on 


R

0

, i.e.,

kfk

L

q

�

(


R

0

)

:= sup

�>0

f�m(f; �)

1

q

g; where m(f; �) = jfx 2 


R

0

: jf(x)j > �gj :

Moreover,

�

�

�

�

�

Z

�

0

R

h(��)

1

ln

p

�

(E

0

�

K

�1

�

f

�

)(x) d�

�

�

�

�

�

� khk

1

Z

�

0

R

�

�

�

�

1

ln

p

�

(E

0

�

K

�1

�

f

�

)(x)

�

�

�

�

dj�j:

Now by the de�nition of E

0

�

and (5.9)

�

�

�

�

1

ln

p

�

(E

0

�

K

�1

�

f

�

)(x)

�

�

�

�

� C

q

Z

�


jK

0

(

p

�jx� yj)j d�(y)kj ln�j

�1

f

�

k

1;�


:

Setting g

�

=

R

�


jK

0

(

p

�jx� yj)j d�(y), we onlude

�

�

�

�

�

Z

�

0

R

h(��)

1

ln

p

�

(E

�

K

�1

�

f

�

j

�


)(x) d�

�

�

�

�

�

� Ckhk

1

 

Z

�

0

R

g

�

(x)

q

dj�j

!

1

q

 

Z

�

0

R

j ln�j

�q

0

kf

�

k

q

0

1;�


dj�j

!

1

q

0

:

Beause of (5.4)

Z

�

0

R

j ln�j

�q

0

kf

�

k

q

0

1;�


dj�j � C

q

Z

�

0

R

j ln�j

�q

0

j�j

�1

dj�jkfk

q

0

q

� C

0

q

kfk

q

0

q

:

Furthermore,

Z

�

0

R

g

�

(x)

q

dj�j � C

X

�

sup

y2�


Z

R

0

�

�

�

K

0

�

s

1

2

e

�i

Æ

2

jx� yj

�

�

�

�

q

ds

� C sup

y2�


X

�

Z

1

0

�

�

�

K

0

�

t

1

2

e

�i

Æ

2

�

�

�

�

q

dtjx� yj

�2

� C

0

q

0

(1 + jxj)

�2

beause dist(x; �
) � 1 and by (5.2)-(5.3). Hene

�

R

�

0

R

g

�

(x)

q

dj�j

�

1

q

2 L

q

�

(


R

),

whih �nishes the proof.
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Proof of Theorem 1.1: Let R > 0 be small enough suh that K

�1

�

exists for

� 2 �

Æ

, j�j � R. By Theorem 4.4 it is su�ient to prove (1.4) with � replaed by

�

0

R

= � \ B

R

(0) and arbitrary h 2 H(Æ). But this is a onsequene of the identity

(5.6), Remark 5.1, (5.10), Lemma 5.2, and Lemma 5.3.
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